xref: /titanic_50/usr/src/uts/common/inet/ip/ip_if.c (revision 07070659d3b755175df60ae6860c2b082250982f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 
47 #include <sys/kmem.h>
48 #include <sys/systm.h>
49 #include <sys/param.h>
50 #include <sys/socket.h>
51 #include <sys/isa_defs.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_types.h>
55 #include <net/if_dl.h>
56 #include <net/route.h>
57 #include <sys/sockio.h>
58 #include <netinet/in.h>
59 #include <netinet/ip6.h>
60 #include <netinet/icmp6.h>
61 #include <netinet/igmp_var.h>
62 #include <sys/strsun.h>
63 #include <sys/policy.h>
64 #include <sys/ethernet.h>
65 
66 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
67 #include <inet/mi.h>
68 #include <inet/nd.h>
69 #include <inet/arp.h>
70 #include <inet/mib2.h>
71 #include <inet/ip.h>
72 #include <inet/ip6.h>
73 #include <inet/ip6_asp.h>
74 #include <inet/tcp.h>
75 #include <inet/ip_multi.h>
76 #include <inet/ip_ire.h>
77 #include <inet/ip_ftable.h>
78 #include <inet/ip_rts.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/ip_if.h>
81 #include <inet/ip_impl.h>
82 #include <inet/tun.h>
83 #include <inet/sctp_ip.h>
84 #include <inet/ip_netinfo.h>
85 
86 #include <net/pfkeyv2.h>
87 #include <inet/ipsec_info.h>
88 #include <inet/sadb.h>
89 #include <inet/ipsec_impl.h>
90 #include <sys/iphada.h>
91 
92 
93 #include <netinet/igmp.h>
94 #include <inet/ip_listutils.h>
95 #include <inet/ipclassifier.h>
96 #include <sys/mac.h>
97 
98 #include <sys/systeminfo.h>
99 #include <sys/bootconf.h>
100 
101 #include <sys/tsol/tndb.h>
102 #include <sys/tsol/tnet.h>
103 
104 /* The character which tells where the ill_name ends */
105 #define	IPIF_SEPARATOR_CHAR	':'
106 
107 /* IP ioctl function table entry */
108 typedef struct ipft_s {
109 	int	ipft_cmd;
110 	pfi_t	ipft_pfi;
111 	int	ipft_min_size;
112 	int	ipft_flags;
113 } ipft_t;
114 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
115 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
116 
117 typedef struct ip_sock_ar_s {
118 	union {
119 		area_t	ip_sock_area;
120 		ared_t	ip_sock_ared;
121 		areq_t	ip_sock_areq;
122 	} ip_sock_ar_u;
123 	queue_t	*ip_sock_ar_q;
124 } ip_sock_ar_t;
125 
126 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
127 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
128 		    char *value, caddr_t cp, cred_t *ioc_cr);
129 
130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
131 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
132 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133     mblk_t *mp, boolean_t need_up);
134 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
135     mblk_t *mp, boolean_t need_up);
136 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
137     queue_t *q, mblk_t *mp, boolean_t need_up);
138 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
139     mblk_t *mp, boolean_t need_up);
140 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
141     mblk_t *mp);
142 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
143     queue_t *q, mblk_t *mp, boolean_t need_up);
144 static int	ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp,
145     sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl);
146 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **);
147 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
148 static void	ipsq_flush(ill_t *ill);
149 static void	ipsq_clean_all(ill_t *ill);
150 static void	ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring);
151 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
152     queue_t *q, mblk_t *mp, boolean_t need_up);
153 static void	ipsq_delete(ipsq_t *);
154 
155 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
156 		    boolean_t initialize);
157 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
158 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
159 static void	ipif_delete_cache_ire(ire_t *, char *);
160 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
161 static void	ipif_free(ipif_t *ipif);
162 static void	ipif_free_tail(ipif_t *ipif);
163 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
164 static void	ipif_multicast_down(ipif_t *ipif);
165 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
166 static void	ipif_set_default(ipif_t *ipif);
167 static int	ipif_set_values(queue_t *q, mblk_t *mp,
168     char *interf_name, uint_t *ppa);
169 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
170     queue_t *q);
171 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
172     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
173     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error);
174 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
175 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
176 
177 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
178 static int	ill_arp_off(ill_t *ill);
179 static int	ill_arp_on(ill_t *ill);
180 static void	ill_delete_interface_type(ill_if_t *);
181 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
182 static void	ill_dl_down(ill_t *ill);
183 static void	ill_down(ill_t *ill);
184 static void	ill_downi(ire_t *ire, char *ill_arg);
185 static void	ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg);
186 static void	ill_down_tail(ill_t *ill);
187 static void	ill_free_mib(ill_t *ill);
188 static void	ill_glist_delete(ill_t *);
189 static boolean_t ill_has_usable_ipif(ill_t *);
190 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
191 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
192 static void	ill_phyint_free(ill_t *ill);
193 static void	ill_phyint_reinit(ill_t *ill);
194 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
195 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
196 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
197 static void	ill_stq_cache_delete(ire_t *, char *);
198 
199 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
200 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
201 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
202     in6_addr_t *);
203 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
204     ipaddr_t *);
205 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
206 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
207     in6_addr_t *);
208 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
209     ipaddr_t *);
210 
211 static void	ipif_save_ire(ipif_t *, ire_t *);
212 static void	ipif_remove_ire(ipif_t *, ire_t *);
213 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *);
214 static void 	ip_cgtp_bcast_delete(ire_t *);
215 
216 /*
217  * Per-ill IPsec capabilities management.
218  */
219 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
220 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
221 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
222 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
223 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
224 static void ill_capability_proto(ill_t *, int, mblk_t *);
225 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
226     boolean_t);
227 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
228 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
229 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
230 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
231 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
232 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
234 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
235     dl_capability_sub_t *);
236 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
237 
238 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
239 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
240 static void ill_capability_dls_reset(ill_t *, mblk_t **);
241 static void ill_capability_dls_disable(ill_t *);
242 
243 static void	illgrp_cache_delete(ire_t *, char *);
244 static void	illgrp_delete(ill_t *ill);
245 static void	illgrp_reset_schednext(ill_t *ill);
246 
247 static ill_t	*ill_prev_usesrc(ill_t *);
248 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
249 static void	ill_disband_usesrc_group(ill_t *);
250 
251 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
252 
253 /*
254  * if we go over the memory footprint limit more than once in this msec
255  * interval, we'll start pruning aggressively.
256  */
257 int ip_min_frag_prune_time = 0;
258 
259 /*
260  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
261  * and the IPsec DOI
262  */
263 #define	MAX_IPSEC_ALGS	256
264 
265 #define	BITSPERBYTE	8
266 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
267 
268 #define	IPSEC_ALG_ENABLE(algs, algid) \
269 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
270 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
271 
272 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
273 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
274 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
275 
276 typedef uint8_t ipsec_capab_elem_t;
277 
278 /*
279  * Per-algorithm parameters.  Note that at present, only encryption
280  * algorithms have variable keysize (IKE does not provide a way to negotiate
281  * auth algorithm keysize).
282  *
283  * All sizes here are in bits.
284  */
285 typedef struct
286 {
287 	uint16_t	minkeylen;
288 	uint16_t	maxkeylen;
289 } ipsec_capab_algparm_t;
290 
291 /*
292  * Per-ill capabilities.
293  */
294 struct ill_ipsec_capab_s {
295 	ipsec_capab_elem_t *encr_hw_algs;
296 	ipsec_capab_elem_t *auth_hw_algs;
297 	uint32_t algs_size;	/* size of _hw_algs in bytes */
298 	/* algorithm key lengths */
299 	ipsec_capab_algparm_t *encr_algparm;
300 	uint32_t encr_algparm_size;
301 	uint32_t encr_algparm_end;
302 };
303 
304 /*
305  * List of AH and ESP IPsec acceleration capable ills
306  */
307 typedef struct ipsec_capab_ill_s {
308 	uint_t ill_index;
309 	boolean_t ill_isv6;
310 	struct ipsec_capab_ill_s *next;
311 } ipsec_capab_ill_t;
312 
313 static ipsec_capab_ill_t *ipsec_capab_ills_ah;
314 static ipsec_capab_ill_t *ipsec_capab_ills_esp;
315 krwlock_t ipsec_capab_ills_lock;
316 
317 /*
318  * The field values are larger than strictly necessary for simple
319  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
320  */
321 static area_t	ip_area_template = {
322 	AR_ENTRY_ADD,			/* area_cmd */
323 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
324 					/* area_name_offset */
325 	/* area_name_length temporarily holds this structure length */
326 	sizeof (area_t),			/* area_name_length */
327 	IP_ARP_PROTO_TYPE,		/* area_proto */
328 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
329 	IP_ADDR_LEN,			/* area_proto_addr_length */
330 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
331 					/* area_proto_mask_offset */
332 	0,				/* area_flags */
333 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
334 					/* area_hw_addr_offset */
335 	/* Zero length hw_addr_length means 'use your idea of the address' */
336 	0				/* area_hw_addr_length */
337 };
338 
339 /*
340  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
341  * support
342  */
343 static area_t	ip6_area_template = {
344 	AR_ENTRY_ADD,			/* area_cmd */
345 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
346 					/* area_name_offset */
347 	/* area_name_length temporarily holds this structure length */
348 	sizeof (area_t),			/* area_name_length */
349 	IP_ARP_PROTO_TYPE,		/* area_proto */
350 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
351 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
352 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
353 					/* area_proto_mask_offset */
354 	0,				/* area_flags */
355 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
356 					/* area_hw_addr_offset */
357 	/* Zero length hw_addr_length means 'use your idea of the address' */
358 	0				/* area_hw_addr_length */
359 };
360 
361 static ared_t	ip_ared_template = {
362 	AR_ENTRY_DELETE,
363 	sizeof (ared_t) + IP_ADDR_LEN,
364 	sizeof (ared_t),
365 	IP_ARP_PROTO_TYPE,
366 	sizeof (ared_t),
367 	IP_ADDR_LEN
368 };
369 
370 static ared_t	ip6_ared_template = {
371 	AR_ENTRY_DELETE,
372 	sizeof (ared_t) + IPV6_ADDR_LEN,
373 	sizeof (ared_t),
374 	IP_ARP_PROTO_TYPE,
375 	sizeof (ared_t),
376 	IPV6_ADDR_LEN
377 };
378 
379 /*
380  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
381  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
382  * areq is used).
383  */
384 static areq_t	ip_areq_template = {
385 	AR_ENTRY_QUERY,			/* cmd */
386 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
387 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
388 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
389 	sizeof (areq_t),			/* target addr offset */
390 	IP_ADDR_LEN,			/* target addr_length */
391 	0,				/* flags */
392 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
393 	IP_ADDR_LEN,			/* sender addr length */
394 	6,				/* xmit_count */
395 	1000,				/* (re)xmit_interval in milliseconds */
396 	4				/* max # of requests to buffer */
397 	/* anything else filled in by the code */
398 };
399 
400 static arc_t	ip_aru_template = {
401 	AR_INTERFACE_UP,
402 	sizeof (arc_t),		/* Name offset */
403 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
404 };
405 
406 static arc_t	ip_ard_template = {
407 	AR_INTERFACE_DOWN,
408 	sizeof (arc_t),		/* Name offset */
409 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
410 };
411 
412 static arc_t	ip_aron_template = {
413 	AR_INTERFACE_ON,
414 	sizeof (arc_t),		/* Name offset */
415 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
416 };
417 
418 static arc_t	ip_aroff_template = {
419 	AR_INTERFACE_OFF,
420 	sizeof (arc_t),		/* Name offset */
421 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
422 };
423 
424 
425 static arma_t	ip_arma_multi_template = {
426 	AR_MAPPING_ADD,
427 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
428 				/* Name offset */
429 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
430 	IP_ARP_PROTO_TYPE,
431 	sizeof (arma_t),			/* proto_addr_offset */
432 	IP_ADDR_LEN,				/* proto_addr_length */
433 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
434 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
435 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
436 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
437 	IP_MAX_HW_LEN,				/* hw_addr_length */
438 	0,					/* hw_mapping_start */
439 };
440 
441 static ipft_t	ip_ioctl_ftbl[] = {
442 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
443 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
444 		IPFT_F_NO_REPLY },
445 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
446 		IPFT_F_NO_REPLY },
447 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
448 	{ 0 }
449 };
450 
451 /* Simple ICMP IP Header Template */
452 static ipha_t icmp_ipha = {
453 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
454 };
455 
456 /* Flag descriptors for ip_ipif_report */
457 static nv_t	ipif_nv_tbl[] = {
458 	{ IPIF_UP,		"UP" },
459 	{ IPIF_BROADCAST,	"BROADCAST" },
460 	{ ILLF_DEBUG,		"DEBUG" },
461 	{ PHYI_LOOPBACK,	"LOOPBACK" },
462 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
463 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
464 	{ PHYI_RUNNING,		"RUNNING" },
465 	{ ILLF_NOARP,		"NOARP" },
466 	{ PHYI_PROMISC,		"PROMISC" },
467 	{ PHYI_ALLMULTI,	"ALLMULTI" },
468 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
469 	{ ILLF_MULTICAST,	"MULTICAST" },
470 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
471 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
472 	{ IPIF_DHCPRUNNING,	"DHCP" },
473 	{ IPIF_PRIVATE,		"PRIVATE" },
474 	{ IPIF_NOXMIT,		"NOXMIT" },
475 	{ IPIF_NOLOCAL,		"NOLOCAL" },
476 	{ IPIF_DEPRECATED,	"DEPRECATED" },
477 	{ IPIF_PREFERRED,	"PREFERRED" },
478 	{ IPIF_TEMPORARY,	"TEMPORARY" },
479 	{ IPIF_ADDRCONF,	"ADDRCONF" },
480 	{ PHYI_VIRTUAL,		"VIRTUAL" },
481 	{ ILLF_ROUTER,		"ROUTER" },
482 	{ ILLF_NONUD,		"NONUD" },
483 	{ IPIF_ANYCAST,		"ANYCAST" },
484 	{ ILLF_NORTEXCH,	"NORTEXCH" },
485 	{ ILLF_IPV4,		"IPV4" },
486 	{ ILLF_IPV6,		"IPV6" },
487 	{ IPIF_MIPRUNNING,	"MIP" },
488 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
489 	{ PHYI_FAILED,		"FAILED" },
490 	{ PHYI_STANDBY,		"STANDBY" },
491 	{ PHYI_INACTIVE,	"INACTIVE" },
492 	{ PHYI_OFFLINE,		"OFFLINE" },
493 };
494 
495 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
496 
497 static ip_m_t	ip_m_tbl[] = {
498 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
499 	    ip_ether_v6intfid },
500 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
501 	    ip_nodef_v6intfid },
502 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
503 	    ip_nodef_v6intfid },
504 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
505 	    ip_nodef_v6intfid },
506 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
507 	    ip_ether_v6intfid },
508 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
509 	    ip_ib_v6intfid },
510 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
511 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
512 	    ip_nodef_v6intfid }
513 };
514 
515 static ill_t	ill_null;		/* Empty ILL for init. */
516 char	ipif_loopback_name[] = "lo0";
517 static char *ipv4_forward_suffix = ":ip_forwarding";
518 static char *ipv6_forward_suffix = ":ip6_forwarding";
519 static kstat_t *loopback_ksp = NULL;
520 static	sin6_t	sin6_null;	/* Zero address for quick clears */
521 static	sin_t	sin_null;	/* Zero address for quick clears */
522 static	uint_t	ill_index = 1;	/* Used to assign interface indicies */
523 /* When set search for unused index */
524 static boolean_t ill_index_wrap = B_FALSE;
525 /* When set search for unused ipif_seqid */
526 static ipif_t	ipif_zero;
527 uint_t	ipif_src_random;
528 
529 /*
530  * For details on the protection offered by these locks please refer
531  * to the notes under the Synchronization section at the start of ip.c
532  */
533 krwlock_t	ill_g_lock;		/* The global ill_g_lock */
534 kmutex_t	ip_addr_avail_lock;	/* Address availability check lock */
535 ipsq_t		*ipsq_g_head;		/* List of all ipsq's on the system */
536 
537 krwlock_t	ill_g_usesrc_lock;	/* Protects usesrc related fields */
538 
539 /*
540  * illgrp_head/ifgrp_head is protected by IP's perimeter.
541  */
542 static  ill_group_t *illgrp_head_v4;	/* Head of IPv4 ill groups */
543 ill_group_t *illgrp_head_v6;		/* Head of IPv6 ill groups */
544 
545 ill_g_head_t	ill_g_heads[MAX_G_HEADS];   /* ILL List Head */
546 
547 /*
548  * ppa arena is created after these many
549  * interfaces have been plumbed.
550  */
551 uint_t	ill_no_arena = 12;
552 
553 #pragma align CACHE_ALIGN_SIZE(phyint_g_list)
554 static phyint_list_t phyint_g_list;	/* start of phyint list */
555 
556 /*
557  * Reflects value of FAILBACK variable in IPMP config file
558  * /etc/default/mpathd. Default value is B_TRUE.
559  * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no"
560  * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel.
561  */
562 static boolean_t ipmp_enable_failback = B_TRUE;
563 
564 /*
565  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
566  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
567  * set through platform specific code (Niagara/Ontario).
568  */
569 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
570 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
571 
572 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
573 
574 static uint_t
575 ipif_rand(void)
576 {
577 	ipif_src_random = ipif_src_random * 1103515245 + 12345;
578 	return ((ipif_src_random >> 16) & 0x7fff);
579 }
580 
581 /*
582  * Allocate per-interface mibs. Only used for ipv6.
583  * Returns true if ok. False otherwise.
584  *  ipsq  may not yet be allocated (loopback case ).
585  */
586 static boolean_t
587 ill_allocate_mibs(ill_t *ill)
588 {
589 	ASSERT(ill->ill_isv6);
590 
591 	/* Already allocated? */
592 	if (ill->ill_ip6_mib != NULL) {
593 		ASSERT(ill->ill_icmp6_mib != NULL);
594 		return (B_TRUE);
595 	}
596 
597 	ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib),
598 	    KM_NOSLEEP);
599 	if (ill->ill_ip6_mib == NULL) {
600 		return (B_FALSE);
601 	}
602 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
603 	    KM_NOSLEEP);
604 	if (ill->ill_icmp6_mib == NULL) {
605 		kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib));
606 		ill->ill_ip6_mib = NULL;
607 		return (B_FALSE);
608 	}
609 	/*
610 	 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later
611 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
612 	 * -> ill_phyint_reinit
613 	 */
614 	return (B_TRUE);
615 }
616 
617 /*
618  * Common code for preparation of ARP commands.  Two points to remember:
619  * 	1) The ill_name is tacked on at the end of the allocated space so
620  *	   the templates name_offset field must contain the total space
621  *	   to allocate less the name length.
622  *
623  *	2) The templates name_length field should contain the *template*
624  *	   length.  We use it as a parameter to bcopy() and then write
625  *	   the real ill_name_length into the name_length field of the copy.
626  * (Always called as writer.)
627  */
628 mblk_t *
629 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
630 {
631 	arc_t	*arc = (arc_t *)template;
632 	char	*cp;
633 	int	len;
634 	mblk_t	*mp;
635 	uint_t	name_length = ill->ill_name_length;
636 	uint_t	template_len = arc->arc_name_length;
637 
638 	len = arc->arc_name_offset + name_length;
639 	mp = allocb(len, BPRI_HI);
640 	if (mp == NULL)
641 		return (NULL);
642 	cp = (char *)mp->b_rptr;
643 	mp->b_wptr = (uchar_t *)&cp[len];
644 	if (template_len)
645 		bcopy(template, cp, template_len);
646 	if (len > template_len)
647 		bzero(&cp[template_len], len - template_len);
648 	mp->b_datap->db_type = M_PROTO;
649 
650 	arc = (arc_t *)cp;
651 	arc->arc_name_length = name_length;
652 	cp = (char *)arc + arc->arc_name_offset;
653 	bcopy(ill->ill_name, cp, name_length);
654 
655 	if (addr) {
656 		area_t	*area = (area_t *)mp->b_rptr;
657 
658 		cp = (char *)area + area->area_proto_addr_offset;
659 		bcopy(addr, cp, area->area_proto_addr_length);
660 		if (area->area_cmd == AR_ENTRY_ADD) {
661 			cp = (char *)area;
662 			len = area->area_proto_addr_length;
663 			if (area->area_proto_mask_offset)
664 				cp += area->area_proto_mask_offset;
665 			else
666 				cp += area->area_proto_addr_offset + len;
667 			while (len-- > 0)
668 				*cp++ = (char)~0;
669 		}
670 	}
671 	return (mp);
672 }
673 
674 mblk_t *
675 ipif_area_alloc(ipif_t *ipif)
676 {
677 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
678 	    (char *)&ipif->ipif_lcl_addr));
679 }
680 
681 mblk_t *
682 ipif_ared_alloc(ipif_t *ipif)
683 {
684 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
685 	    (char *)&ipif->ipif_lcl_addr));
686 }
687 
688 mblk_t *
689 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
690 {
691 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
692 	    (char *)&addr));
693 }
694 
695 /*
696  * Completely vaporize a lower level tap and all associated interfaces.
697  * ill_delete is called only out of ip_close when the device control
698  * stream is being closed.
699  */
700 void
701 ill_delete(ill_t *ill)
702 {
703 	ipif_t	*ipif;
704 	ill_t	*prev_ill;
705 
706 	/*
707 	 * ill_delete may be forcibly entering the ipsq. The previous
708 	 * ioctl may not have completed and may need to be aborted.
709 	 * ipsq_flush takes care of it. If we don't need to enter the
710 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
711 	 * ill_delete_tail is sufficient.
712 	 */
713 	ipsq_flush(ill);
714 
715 	/*
716 	 * Nuke all interfaces.  ipif_free will take down the interface,
717 	 * remove it from the list, and free the data structure.
718 	 * Walk down the ipif list and remove the logical interfaces
719 	 * first before removing the main ipif. We can't unplumb
720 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
721 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
722 	 * POINTOPOINT.
723 	 *
724 	 * If ill_ipif was not properly initialized (i.e low on memory),
725 	 * then no interfaces to clean up. In this case just clean up the
726 	 * ill.
727 	 */
728 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
729 		ipif_free(ipif);
730 
731 	/*
732 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
733 	 * So nobody can be using this mp now. Free the mp allocated for
734 	 * honoring ILLF_NOARP
735 	 */
736 	freemsg(ill->ill_arp_on_mp);
737 	ill->ill_arp_on_mp = NULL;
738 
739 	/* Clean up msgs on pending upcalls for mrouted */
740 	reset_mrt_ill(ill);
741 
742 	/*
743 	 * ipif_free -> reset_conn_ipif will remove all multicast
744 	 * references for IPv4. For IPv6, we need to do it here as
745 	 * it points only at ills.
746 	 */
747 	reset_conn_ill(ill);
748 
749 	/*
750 	 * ill_down will arrange to blow off any IRE's dependent on this
751 	 * ILL, and shut down fragmentation reassembly.
752 	 */
753 	ill_down(ill);
754 
755 	/* Let SCTP know, so that it can remove this from its list. */
756 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
757 
758 	/*
759 	 * If an address on this ILL is being used as a source address then
760 	 * clear out the pointers in other ILLs that point to this ILL.
761 	 */
762 	rw_enter(&ill_g_usesrc_lock, RW_WRITER);
763 	if (ill->ill_usesrc_grp_next != NULL) {
764 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
765 			ill_disband_usesrc_group(ill);
766 		} else {	/* consumer of the usesrc ILL */
767 			prev_ill = ill_prev_usesrc(ill);
768 			prev_ill->ill_usesrc_grp_next =
769 			    ill->ill_usesrc_grp_next;
770 		}
771 	}
772 	rw_exit(&ill_g_usesrc_lock);
773 }
774 
775 static void
776 ipif_non_duplicate(ipif_t *ipif)
777 {
778 	ill_t *ill = ipif->ipif_ill;
779 	mutex_enter(&ill->ill_lock);
780 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
781 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
782 		ASSERT(ill->ill_ipif_dup_count > 0);
783 		ill->ill_ipif_dup_count--;
784 	}
785 	mutex_exit(&ill->ill_lock);
786 }
787 
788 /*
789  * ill_delete_tail is called from ip_modclose after all references
790  * to the closing ill are gone. The wait is done in ip_modclose
791  */
792 void
793 ill_delete_tail(ill_t *ill)
794 {
795 	mblk_t	**mpp;
796 	ipif_t	*ipif;
797 
798 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
799 		ipif_non_duplicate(ipif);
800 		ipif_down_tail(ipif);
801 	}
802 
803 	ASSERT(ill->ill_ipif_dup_count == 0 &&
804 	    ill->ill_arp_down_mp == NULL &&
805 	    ill->ill_arp_del_mapping_mp == NULL);
806 
807 	/*
808 	 * If polling capability is enabled (which signifies direct
809 	 * upcall into IP and driver has ill saved as a handle),
810 	 * we need to make sure that unbind has completed before we
811 	 * let the ill disappear and driver no longer has any reference
812 	 * to this ill.
813 	 */
814 	mutex_enter(&ill->ill_lock);
815 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
816 		cv_wait(&ill->ill_cv, &ill->ill_lock);
817 	mutex_exit(&ill->ill_lock);
818 
819 	/*
820 	 * Clean up polling and soft ring capabilities
821 	 */
822 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
823 		ill_capability_dls_disable(ill);
824 
825 	/*
826 	 * Send the detach if there's one to send (i.e., if we're above a
827 	 * style 2 DLPI driver).
828 	 */
829 	if (ill->ill_detach_mp != NULL) {
830 		ill_dlpi_send(ill, ill->ill_detach_mp);
831 		ill->ill_detach_mp = NULL;
832 	}
833 
834 	if (ill->ill_net_type != IRE_LOOPBACK)
835 		qprocsoff(ill->ill_rq);
836 
837 	/*
838 	 * We do an ipsq_flush once again now. New messages could have
839 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
840 	 * could also have landed up if an ioctl thread had looked up
841 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
842 	 * enqueued the ioctl when we did the ipsq_flush last time.
843 	 */
844 	ipsq_flush(ill);
845 
846 	/*
847 	 * Free capabilities.
848 	 */
849 	if (ill->ill_ipsec_capab_ah != NULL) {
850 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
851 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
852 		ill->ill_ipsec_capab_ah = NULL;
853 	}
854 
855 	if (ill->ill_ipsec_capab_esp != NULL) {
856 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
857 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
858 		ill->ill_ipsec_capab_esp = NULL;
859 	}
860 
861 	if (ill->ill_mdt_capab != NULL) {
862 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
863 		ill->ill_mdt_capab = NULL;
864 	}
865 
866 	if (ill->ill_hcksum_capab != NULL) {
867 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
868 		ill->ill_hcksum_capab = NULL;
869 	}
870 
871 	if (ill->ill_zerocopy_capab != NULL) {
872 		kmem_free(ill->ill_zerocopy_capab,
873 		    sizeof (ill_zerocopy_capab_t));
874 		ill->ill_zerocopy_capab = NULL;
875 	}
876 
877 	if (ill->ill_dls_capab != NULL) {
878 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
879 		ill->ill_dls_capab->ill_unbind_conn = NULL;
880 		kmem_free(ill->ill_dls_capab,
881 		    sizeof (ill_dls_capab_t) +
882 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
883 		ill->ill_dls_capab = NULL;
884 	}
885 
886 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
887 
888 	while (ill->ill_ipif != NULL)
889 		ipif_free_tail(ill->ill_ipif);
890 
891 	ill_down_tail(ill);
892 
893 	/*
894 	 * We have removed all references to ilm from conn and the ones joined
895 	 * within the kernel.
896 	 *
897 	 * We don't walk conns, mrts and ires because
898 	 *
899 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
900 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
901 	 *    ill references.
902 	 */
903 	ASSERT(ilm_walk_ill(ill) == 0);
904 	/*
905 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
906 	 * could free the phyint. No more reference to the phyint after this
907 	 * point.
908 	 */
909 	(void) ill_glist_delete(ill);
910 
911 	rw_enter(&ip_g_nd_lock, RW_WRITER);
912 	if (ill->ill_ndd_name != NULL)
913 		nd_unload(&ip_g_nd, ill->ill_ndd_name);
914 	rw_exit(&ip_g_nd_lock);
915 
916 
917 	if (ill->ill_frag_ptr != NULL) {
918 		uint_t count;
919 
920 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
921 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
922 		}
923 		mi_free(ill->ill_frag_ptr);
924 		ill->ill_frag_ptr = NULL;
925 		ill->ill_frag_hash_tbl = NULL;
926 	}
927 	if (ill->ill_nd_lla_mp != NULL)
928 		freemsg(ill->ill_nd_lla_mp);
929 	/* Free all retained control messages. */
930 	mpp = &ill->ill_first_mp_to_free;
931 	do {
932 		while (mpp[0]) {
933 			mblk_t  *mp;
934 			mblk_t  *mp1;
935 
936 			mp = mpp[0];
937 			mpp[0] = mp->b_next;
938 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
939 				mp1->b_next = NULL;
940 				mp1->b_prev = NULL;
941 			}
942 			freemsg(mp);
943 		}
944 	} while (mpp++ != &ill->ill_last_mp_to_free);
945 
946 	ill_free_mib(ill);
947 	ILL_TRACE_CLEANUP(ill);
948 }
949 
950 static void
951 ill_free_mib(ill_t *ill)
952 {
953 	if (ill->ill_ip6_mib != NULL) {
954 		kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib));
955 		ill->ill_ip6_mib = NULL;
956 	}
957 	if (ill->ill_icmp6_mib != NULL) {
958 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
959 		ill->ill_icmp6_mib = NULL;
960 	}
961 }
962 
963 /*
964  * Concatenate together a physical address and a sap.
965  *
966  * Sap_lengths are interpreted as follows:
967  *   sap_length == 0	==>	no sap
968  *   sap_length > 0	==>	sap is at the head of the dlpi address
969  *   sap_length < 0	==>	sap is at the tail of the dlpi address
970  */
971 static void
972 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
973     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
974 {
975 	uint16_t sap_addr = (uint16_t)sap_src;
976 
977 	if (sap_length == 0) {
978 		if (phys_src == NULL)
979 			bzero(dst, phys_length);
980 		else
981 			bcopy(phys_src, dst, phys_length);
982 	} else if (sap_length < 0) {
983 		if (phys_src == NULL)
984 			bzero(dst, phys_length);
985 		else
986 			bcopy(phys_src, dst, phys_length);
987 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
988 	} else {
989 		bcopy(&sap_addr, dst, sizeof (sap_addr));
990 		if (phys_src == NULL)
991 			bzero((char *)dst + sap_length, phys_length);
992 		else
993 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
994 	}
995 }
996 
997 /*
998  * Generate a dl_unitdata_req mblk for the device and address given.
999  * addr_length is the length of the physical portion of the address.
1000  * If addr is NULL include an all zero address of the specified length.
1001  * TRUE? In any case, addr_length is taken to be the entire length of the
1002  * dlpi address, including the absolute value of sap_length.
1003  */
1004 mblk_t *
1005 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1006 		t_scalar_t sap_length)
1007 {
1008 	dl_unitdata_req_t *dlur;
1009 	mblk_t	*mp;
1010 	t_scalar_t	abs_sap_length;		/* absolute value */
1011 
1012 	abs_sap_length = ABS(sap_length);
1013 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1014 		DL_UNITDATA_REQ);
1015 	if (mp == NULL)
1016 		return (NULL);
1017 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1018 	/* HACK: accomodate incompatible DLPI drivers */
1019 	if (addr_length == 8)
1020 		addr_length = 6;
1021 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1022 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1023 	dlur->dl_priority.dl_min = 0;
1024 	dlur->dl_priority.dl_max = 0;
1025 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1026 	    (uchar_t *)&dlur[1]);
1027 	return (mp);
1028 }
1029 
1030 /*
1031  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1032  * Return an error if we already have 1 or more ioctls in progress.
1033  * This is used only for non-exclusive ioctls. Currently this is used
1034  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1035  * and thus need to use ipsq_pending_mp_add.
1036  */
1037 boolean_t
1038 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1039 {
1040 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1041 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1042 	/*
1043 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1044 	 */
1045 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1046 	    (add_mp->b_datap->db_type == M_IOCTL));
1047 
1048 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1049 	/*
1050 	 * Return error if the conn has started closing. The conn
1051 	 * could have finished cleaning up the pending mp list,
1052 	 * If so we should not add another mp to the list negating
1053 	 * the cleanup.
1054 	 */
1055 	if (connp->conn_state_flags & CONN_CLOSING)
1056 		return (B_FALSE);
1057 	/*
1058 	 * Add the pending mp to the head of the list, chained by b_next.
1059 	 * Note down the conn on which the ioctl request came, in b_prev.
1060 	 * This will be used to later get the conn, when we get a response
1061 	 * on the ill queue, from some other module (typically arp)
1062 	 */
1063 	add_mp->b_next = (void *)ill->ill_pending_mp;
1064 	add_mp->b_queue = CONNP_TO_WQ(connp);
1065 	ill->ill_pending_mp = add_mp;
1066 	if (connp != NULL)
1067 		connp->conn_oper_pending_ill = ill;
1068 	return (B_TRUE);
1069 }
1070 
1071 /*
1072  * Retrieve the ill_pending_mp and return it. We have to walk the list
1073  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1074  */
1075 mblk_t *
1076 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1077 {
1078 	mblk_t	*prev = NULL;
1079 	mblk_t	*curr = NULL;
1080 	uint_t	id;
1081 	conn_t	*connp;
1082 
1083 	/*
1084 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1085 	 * up the pending mp, but it does not know the ioc_id and
1086 	 * passes in a zero for it.
1087 	 */
1088 	mutex_enter(&ill->ill_lock);
1089 	if (ioc_id != 0)
1090 		*connpp = NULL;
1091 
1092 	/* Search the list for the appropriate ioctl based on ioc_id */
1093 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1094 	    prev = curr, curr = curr->b_next) {
1095 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1096 		connp = Q_TO_CONN(curr->b_queue);
1097 		/* Match based on the ioc_id or based on the conn */
1098 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1099 			break;
1100 	}
1101 
1102 	if (curr != NULL) {
1103 		/* Unlink the mblk from the pending mp list */
1104 		if (prev != NULL) {
1105 			prev->b_next = curr->b_next;
1106 		} else {
1107 			ASSERT(ill->ill_pending_mp == curr);
1108 			ill->ill_pending_mp = curr->b_next;
1109 		}
1110 
1111 		/*
1112 		 * conn refcnt must have been bumped up at the start of
1113 		 * the ioctl. So we can safely access the conn.
1114 		 */
1115 		ASSERT(CONN_Q(curr->b_queue));
1116 		*connpp = Q_TO_CONN(curr->b_queue);
1117 		curr->b_next = NULL;
1118 		curr->b_queue = NULL;
1119 	}
1120 
1121 	mutex_exit(&ill->ill_lock);
1122 
1123 	return (curr);
1124 }
1125 
1126 /*
1127  * Add the pending mp to the list. There can be only 1 pending mp
1128  * in the list. Any exclusive ioctl that needs to wait for a response
1129  * from another module or driver needs to use this function to set
1130  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1131  * the other module/driver. This is also used while waiting for the
1132  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1133  */
1134 boolean_t
1135 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1136     int waitfor)
1137 {
1138 	ipsq_t	*ipsq;
1139 
1140 	ASSERT(IAM_WRITER_IPIF(ipif));
1141 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1142 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1143 	/*
1144 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1145 	 * M_ERROR/M_HANGUP from driver
1146 	 */
1147 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1148 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP));
1149 
1150 	ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1151 	if (connp != NULL) {
1152 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1153 		/*
1154 		 * Return error if the conn has started closing. The conn
1155 		 * could have finished cleaning up the pending mp list,
1156 		 * If so we should not add another mp to the list negating
1157 		 * the cleanup.
1158 		 */
1159 		if (connp->conn_state_flags & CONN_CLOSING)
1160 			return (B_FALSE);
1161 	}
1162 	mutex_enter(&ipsq->ipsq_lock);
1163 	ipsq->ipsq_pending_ipif = ipif;
1164 	/*
1165 	 * Note down the queue in b_queue. This will be returned by
1166 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1167 	 * the processing
1168 	 */
1169 	add_mp->b_next = NULL;
1170 	add_mp->b_queue = q;
1171 	ipsq->ipsq_pending_mp = add_mp;
1172 	ipsq->ipsq_waitfor = waitfor;
1173 	/*
1174 	 * ipsq_current_ipif is needed to restart the operation from
1175 	 * ipif_ill_refrele_tail when the last reference to the ipi/ill
1176 	 * is gone. Since this is not an ioctl ipsq_current_ipif has not
1177 	 * been set until now.
1178 	 */
1179 	if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) {
1180 		ASSERT(ipsq->ipsq_current_ipif == NULL);
1181 		ipsq->ipsq_current_ipif = ipif;
1182 		ipsq->ipsq_last_cmd = DB_TYPE(add_mp);
1183 	}
1184 	if (connp != NULL)
1185 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1186 	mutex_exit(&ipsq->ipsq_lock);
1187 	return (B_TRUE);
1188 }
1189 
1190 /*
1191  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1192  * queued in the list.
1193  */
1194 mblk_t *
1195 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1196 {
1197 	mblk_t	*curr = NULL;
1198 
1199 	mutex_enter(&ipsq->ipsq_lock);
1200 	*connpp = NULL;
1201 	if (ipsq->ipsq_pending_mp == NULL) {
1202 		mutex_exit(&ipsq->ipsq_lock);
1203 		return (NULL);
1204 	}
1205 
1206 	/* There can be only 1 such excl message */
1207 	curr = ipsq->ipsq_pending_mp;
1208 	ASSERT(curr != NULL && curr->b_next == NULL);
1209 	ipsq->ipsq_pending_ipif = NULL;
1210 	ipsq->ipsq_pending_mp = NULL;
1211 	ipsq->ipsq_waitfor = 0;
1212 	mutex_exit(&ipsq->ipsq_lock);
1213 
1214 	if (CONN_Q(curr->b_queue)) {
1215 		/*
1216 		 * This mp did a refhold on the conn, at the start of the ioctl.
1217 		 * So we can safely return a pointer to the conn to the caller.
1218 		 */
1219 		*connpp = Q_TO_CONN(curr->b_queue);
1220 	} else {
1221 		*connpp = NULL;
1222 	}
1223 	curr->b_next = NULL;
1224 	curr->b_prev = NULL;
1225 	return (curr);
1226 }
1227 
1228 /*
1229  * Cleanup the ioctl mp queued in ipsq_pending_mp
1230  * - Called in the ill_delete path
1231  * - Called in the M_ERROR or M_HANGUP path on the ill.
1232  * - Called in the conn close path.
1233  */
1234 boolean_t
1235 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1236 {
1237 	mblk_t	*mp;
1238 	ipsq_t	*ipsq;
1239 	queue_t	*q;
1240 	ipif_t	*ipif;
1241 
1242 	ASSERT(IAM_WRITER_ILL(ill));
1243 	ipsq = ill->ill_phyint->phyint_ipsq;
1244 	mutex_enter(&ipsq->ipsq_lock);
1245 	/*
1246 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1247 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1248 	 * even if it is meant for another ill, since we have to enqueue
1249 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1250 	 * If connp is non-null we are called from the conn close path.
1251 	 */
1252 	mp = ipsq->ipsq_pending_mp;
1253 	if (mp == NULL || (connp != NULL &&
1254 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1255 		mutex_exit(&ipsq->ipsq_lock);
1256 		return (B_FALSE);
1257 	}
1258 	/* Now remove from the ipsq_pending_mp */
1259 	ipsq->ipsq_pending_mp = NULL;
1260 	q = mp->b_queue;
1261 	mp->b_next = NULL;
1262 	mp->b_prev = NULL;
1263 	mp->b_queue = NULL;
1264 
1265 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1266 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1267 	if (ill->ill_move_in_progress) {
1268 		ILL_CLEAR_MOVE(ill);
1269 	} else if (ill->ill_up_ipifs) {
1270 		ill_group_cleanup(ill);
1271 	}
1272 
1273 	ipif = ipsq->ipsq_pending_ipif;
1274 	ipsq->ipsq_pending_ipif = NULL;
1275 	ipsq->ipsq_waitfor = 0;
1276 	ipsq->ipsq_current_ipif = NULL;
1277 	mutex_exit(&ipsq->ipsq_lock);
1278 
1279 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1280 		ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE :
1281 		    NO_COPYOUT, connp != NULL ? ipif : NULL, NULL);
1282 	} else {
1283 		/*
1284 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1285 		 * be just inet_freemsg. we have to restart it
1286 		 * otherwise the thread will be stuck.
1287 		 */
1288 		inet_freemsg(mp);
1289 	}
1290 	return (B_TRUE);
1291 }
1292 
1293 /*
1294  * The ill is closing. Cleanup all the pending mps. Called exclusively
1295  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1296  * knows this ill, and hence nobody can add an mp to this list
1297  */
1298 static void
1299 ill_pending_mp_cleanup(ill_t *ill)
1300 {
1301 	mblk_t	*mp;
1302 	queue_t	*q;
1303 
1304 	ASSERT(IAM_WRITER_ILL(ill));
1305 
1306 	mutex_enter(&ill->ill_lock);
1307 	/*
1308 	 * Every mp on the pending mp list originating from an ioctl
1309 	 * added 1 to the conn refcnt, at the start of the ioctl.
1310 	 * So bump it down now.  See comments in ip_wput_nondata()
1311 	 */
1312 	while (ill->ill_pending_mp != NULL) {
1313 		mp = ill->ill_pending_mp;
1314 		ill->ill_pending_mp = mp->b_next;
1315 		mutex_exit(&ill->ill_lock);
1316 
1317 		q = mp->b_queue;
1318 		ASSERT(CONN_Q(q));
1319 		mp->b_next = NULL;
1320 		mp->b_prev = NULL;
1321 		mp->b_queue = NULL;
1322 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL);
1323 		mutex_enter(&ill->ill_lock);
1324 	}
1325 	ill->ill_pending_ipif = NULL;
1326 
1327 	mutex_exit(&ill->ill_lock);
1328 }
1329 
1330 /*
1331  * Called in the conn close path and ill delete path
1332  */
1333 static void
1334 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1335 {
1336 	ipsq_t	*ipsq;
1337 	mblk_t	*prev;
1338 	mblk_t	*curr;
1339 	mblk_t	*next;
1340 	queue_t	*q;
1341 	mblk_t	*tmp_list = NULL;
1342 
1343 	ASSERT(IAM_WRITER_ILL(ill));
1344 	if (connp != NULL)
1345 		q = CONNP_TO_WQ(connp);
1346 	else
1347 		q = ill->ill_wq;
1348 
1349 	ipsq = ill->ill_phyint->phyint_ipsq;
1350 	/*
1351 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1352 	 * In the case of ioctl from a conn, there can be only 1 mp
1353 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1354 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1355 	 * ioctls meant for this ill form conn's are not flushed. They will
1356 	 * be processed during ipsq_exit and will not find the ill and will
1357 	 * return error.
1358 	 */
1359 	mutex_enter(&ipsq->ipsq_lock);
1360 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1361 	    curr = next) {
1362 		next = curr->b_next;
1363 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1364 			/* Unlink the mblk from the pending mp list */
1365 			if (prev != NULL) {
1366 				prev->b_next = curr->b_next;
1367 			} else {
1368 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1369 				ipsq->ipsq_xopq_mphead = curr->b_next;
1370 			}
1371 			if (ipsq->ipsq_xopq_mptail == curr)
1372 				ipsq->ipsq_xopq_mptail = prev;
1373 			/*
1374 			 * Create a temporary list and release the ipsq lock
1375 			 * New elements are added to the head of the tmp_list
1376 			 */
1377 			curr->b_next = tmp_list;
1378 			tmp_list = curr;
1379 		} else {
1380 			prev = curr;
1381 		}
1382 	}
1383 	mutex_exit(&ipsq->ipsq_lock);
1384 
1385 	while (tmp_list != NULL) {
1386 		curr = tmp_list;
1387 		tmp_list = curr->b_next;
1388 		curr->b_next = NULL;
1389 		curr->b_prev = NULL;
1390 		curr->b_queue = NULL;
1391 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1392 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1393 			    CONN_CLOSE : NO_COPYOUT, NULL, NULL);
1394 		} else {
1395 			/*
1396 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1397 			 * this can't be just inet_freemsg. we have to
1398 			 * restart it otherwise the thread will be stuck.
1399 			 */
1400 			inet_freemsg(curr);
1401 		}
1402 	}
1403 }
1404 
1405 /*
1406  * This conn has started closing. Cleanup any pending ioctl from this conn.
1407  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1408  */
1409 void
1410 conn_ioctl_cleanup(conn_t *connp)
1411 {
1412 	mblk_t *curr;
1413 	ipsq_t	*ipsq;
1414 	ill_t	*ill;
1415 	boolean_t refheld;
1416 
1417 	/*
1418 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1419 	 * ioctl has not yet started, the mp is pending in the list headed by
1420 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1421 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1422 	 * is currently executing now the mp is not queued anywhere but
1423 	 * conn_oper_pending_ill is null. The conn close will wait
1424 	 * till the conn_ref drops to zero.
1425 	 */
1426 	mutex_enter(&connp->conn_lock);
1427 	ill = connp->conn_oper_pending_ill;
1428 	if (ill == NULL) {
1429 		mutex_exit(&connp->conn_lock);
1430 		return;
1431 	}
1432 
1433 	curr = ill_pending_mp_get(ill, &connp, 0);
1434 	if (curr != NULL) {
1435 		mutex_exit(&connp->conn_lock);
1436 		CONN_DEC_REF(connp);
1437 		inet_freemsg(curr);
1438 		return;
1439 	}
1440 	/*
1441 	 * We may not be able to refhold the ill if the ill/ipif
1442 	 * is changing. But we need to make sure that the ill will
1443 	 * not vanish. So we just bump up the ill_waiter count.
1444 	 */
1445 	refheld = ill_waiter_inc(ill);
1446 	mutex_exit(&connp->conn_lock);
1447 	if (refheld) {
1448 		if (ipsq_enter(ill, B_TRUE)) {
1449 			ill_waiter_dcr(ill);
1450 			/*
1451 			 * Check whether this ioctl has started and is
1452 			 * pending now in ipsq_pending_mp. If it is not
1453 			 * found there then check whether this ioctl has
1454 			 * not even started and is in the ipsq_xopq list.
1455 			 */
1456 			if (!ipsq_pending_mp_cleanup(ill, connp))
1457 				ipsq_xopq_mp_cleanup(ill, connp);
1458 			ipsq = ill->ill_phyint->phyint_ipsq;
1459 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1460 			return;
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * The ill is also closing and we could not bump up the
1466 	 * ill_waiter_count or we could not enter the ipsq. Leave
1467 	 * the cleanup to ill_delete
1468 	 */
1469 	mutex_enter(&connp->conn_lock);
1470 	while (connp->conn_oper_pending_ill != NULL)
1471 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1472 	mutex_exit(&connp->conn_lock);
1473 	if (refheld)
1474 		ill_waiter_dcr(ill);
1475 }
1476 
1477 /*
1478  * ipcl_walk function for cleaning up conn_*_ill fields.
1479  */
1480 static void
1481 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1482 {
1483 	ill_t	*ill = (ill_t *)arg;
1484 	ire_t	*ire;
1485 
1486 	mutex_enter(&connp->conn_lock);
1487 	if (connp->conn_multicast_ill == ill) {
1488 		/* Revert to late binding */
1489 		connp->conn_multicast_ill = NULL;
1490 		connp->conn_orig_multicast_ifindex = 0;
1491 	}
1492 	if (connp->conn_incoming_ill == ill)
1493 		connp->conn_incoming_ill = NULL;
1494 	if (connp->conn_outgoing_ill == ill)
1495 		connp->conn_outgoing_ill = NULL;
1496 	if (connp->conn_outgoing_pill == ill)
1497 		connp->conn_outgoing_pill = NULL;
1498 	if (connp->conn_nofailover_ill == ill)
1499 		connp->conn_nofailover_ill = NULL;
1500 	if (connp->conn_xmit_if_ill == ill)
1501 		connp->conn_xmit_if_ill = NULL;
1502 	if (connp->conn_ire_cache != NULL) {
1503 		ire = connp->conn_ire_cache;
1504 		/*
1505 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1506 		 * interface X and ipif coming from interface Y, if interface
1507 		 * X and Y are part of the same IPMPgroup. Thus whenever
1508 		 * interface X goes down, remove all references to it by
1509 		 * checking both on ire_ipif and ire_stq.
1510 		 */
1511 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1512 		    (ire->ire_type == IRE_CACHE &&
1513 		    ire->ire_stq == ill->ill_wq)) {
1514 			connp->conn_ire_cache = NULL;
1515 			mutex_exit(&connp->conn_lock);
1516 			ire_refrele_notr(ire);
1517 			return;
1518 		}
1519 	}
1520 	mutex_exit(&connp->conn_lock);
1521 
1522 }
1523 
1524 /* ARGSUSED */
1525 void
1526 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1527 {
1528 	ill_t	*ill = q->q_ptr;
1529 	ipif_t	*ipif;
1530 
1531 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1532 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1533 		ipif_non_duplicate(ipif);
1534 		ipif_down_tail(ipif);
1535 	}
1536 	ill_down_tail(ill);
1537 	freemsg(mp);
1538 	ipsq->ipsq_current_ipif = NULL;
1539 }
1540 
1541 /*
1542  * ill_down_start is called when we want to down this ill and bring it up again
1543  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1544  * all interfaces, but don't tear down any plumbing.
1545  */
1546 boolean_t
1547 ill_down_start(queue_t *q, mblk_t *mp)
1548 {
1549 	ill_t	*ill;
1550 	ipif_t	*ipif;
1551 
1552 	ill = q->q_ptr;
1553 
1554 	ASSERT(IAM_WRITER_ILL(ill));
1555 
1556 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1557 		(void) ipif_down(ipif, NULL, NULL);
1558 
1559 	ill_down(ill);
1560 
1561 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1562 	mutex_enter(&ill->ill_lock);
1563 	/*
1564 	 * Atomically test and add the pending mp if references are
1565 	 * still active.
1566 	 */
1567 	if (!ill_is_quiescent(ill)) {
1568 		/*
1569 		 * Get rid of any pending mps and cleanup. Call will
1570 		 * not fail since we are passing a null connp.
1571 		 */
1572 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1573 		    mp, ILL_DOWN);
1574 		mutex_exit(&ill->ill_lock);
1575 		return (B_FALSE);
1576 	}
1577 	mutex_exit(&ill->ill_lock);
1578 	return (B_TRUE);
1579 }
1580 
1581 static void
1582 ill_down(ill_t *ill)
1583 {
1584 	/* Blow off any IREs dependent on this ILL. */
1585 	ire_walk(ill_downi, (char *)ill);
1586 
1587 	mutex_enter(&ire_mrtun_lock);
1588 	if (ire_mrtun_count != 0) {
1589 		mutex_exit(&ire_mrtun_lock);
1590 		ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif,
1591 		    (char *)ill, NULL);
1592 	} else {
1593 		mutex_exit(&ire_mrtun_lock);
1594 	}
1595 
1596 	/*
1597 	 * If any interface based forwarding table exists
1598 	 * Blow off the ires there dependent on this ill
1599 	 */
1600 	mutex_enter(&ire_srcif_table_lock);
1601 	if (ire_srcif_table_count > 0) {
1602 		mutex_exit(&ire_srcif_table_lock);
1603 		ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill);
1604 	} else {
1605 		mutex_exit(&ire_srcif_table_lock);
1606 	}
1607 
1608 	/* Remove any conn_*_ill depending on this ill */
1609 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill);
1610 
1611 	if (ill->ill_group != NULL) {
1612 		illgrp_delete(ill);
1613 	}
1614 
1615 }
1616 
1617 static void
1618 ill_down_tail(ill_t *ill)
1619 {
1620 	int	i;
1621 
1622 	/* Destroy ill_srcif_table if it exists */
1623 	/* Lock not reqd really because nobody should be able to access */
1624 	mutex_enter(&ill->ill_lock);
1625 	if (ill->ill_srcif_table != NULL) {
1626 		ill->ill_srcif_refcnt = 0;
1627 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
1628 			rw_destroy(&ill->ill_srcif_table[i].irb_lock);
1629 		}
1630 		kmem_free(ill->ill_srcif_table,
1631 		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t));
1632 		ill->ill_srcif_table = NULL;
1633 		ill->ill_srcif_refcnt = 0;
1634 		ill->ill_mrtun_refcnt = 0;
1635 	}
1636 	mutex_exit(&ill->ill_lock);
1637 }
1638 
1639 /*
1640  * ire_walk routine used to delete every IRE that depends on queues
1641  * associated with 'ill'.  (Always called as writer.)
1642  */
1643 static void
1644 ill_downi(ire_t *ire, char *ill_arg)
1645 {
1646 	ill_t	*ill = (ill_t *)ill_arg;
1647 
1648 	/*
1649 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1650 	 * interface X and ipif coming from interface Y, if interface
1651 	 * X and Y are part of the same IPMP group. Thus whenever interface
1652 	 * X goes down, remove all references to it by checking both
1653 	 * on ire_ipif and ire_stq.
1654 	 */
1655 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1656 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1657 		ire_delete(ire);
1658 	}
1659 }
1660 
1661 /*
1662  * A seperate routine for deleting revtun and srcif based routes
1663  * are needed because the ires only deleted when the interface
1664  * is unplumbed. Also these ires have ire_in_ill non-null as well.
1665  * we want to keep mobile IP specific code separate.
1666  */
1667 static void
1668 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg)
1669 {
1670 	ill_t   *ill = (ill_t *)ill_arg;
1671 
1672 	ASSERT(ire->ire_in_ill != NULL);
1673 
1674 	if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) ||
1675 	    (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) {
1676 		ire_delete(ire);
1677 	}
1678 }
1679 
1680 /*
1681  * Remove ire/nce from the fastpath list.
1682  */
1683 void
1684 ill_fastpath_nack(ill_t *ill)
1685 {
1686 	if (ill->ill_isv6) {
1687 		nce_fastpath_list_dispatch(ill, NULL, NULL);
1688 	} else {
1689 		ire_fastpath_list_dispatch(ill, NULL, NULL);
1690 	}
1691 }
1692 
1693 /* Consume an M_IOCACK of the fastpath probe. */
1694 void
1695 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1696 {
1697 	mblk_t	*mp1 = mp;
1698 
1699 	/*
1700 	 * If this was the first attempt turn on the fastpath probing.
1701 	 */
1702 	mutex_enter(&ill->ill_lock);
1703 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1704 		ill->ill_dlpi_fastpath_state = IDS_OK;
1705 	mutex_exit(&ill->ill_lock);
1706 
1707 	/* Free the M_IOCACK mblk, hold on to the data */
1708 	mp = mp->b_cont;
1709 	freeb(mp1);
1710 	if (mp == NULL)
1711 		return;
1712 	if (mp->b_cont != NULL) {
1713 		/*
1714 		 * Update all IRE's or NCE's that are waiting for
1715 		 * fastpath update.
1716 		 */
1717 		if (ill->ill_isv6) {
1718 			/*
1719 			 * update nce's in the fastpath list.
1720 			 */
1721 			nce_fastpath_list_dispatch(ill,
1722 			    ndp_fastpath_update, mp);
1723 		} else {
1724 
1725 			/*
1726 			 * update ire's in the fastpath list.
1727 			 */
1728 			ire_fastpath_list_dispatch(ill,
1729 			    ire_fastpath_update, mp);
1730 			/*
1731 			 * Check if we need to traverse reverse tunnel table.
1732 			 * Since there is only single ire_type (IRE_MIPRTUN)
1733 			 * in the table, we don't need to match on ire_type.
1734 			 * We have to check ire_mrtun_count and not the
1735 			 * ill_mrtun_refcnt since ill_mrtun_refcnt is set
1736 			 * on the incoming ill and here we are dealing with
1737 			 * outgoing ill.
1738 			 */
1739 			mutex_enter(&ire_mrtun_lock);
1740 			if (ire_mrtun_count != 0) {
1741 				mutex_exit(&ire_mrtun_lock);
1742 				ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN,
1743 				    (void (*)(ire_t *, void *))
1744 					ire_fastpath_update, mp, ill);
1745 			} else {
1746 				mutex_exit(&ire_mrtun_lock);
1747 			}
1748 		}
1749 		mp1 = mp->b_cont;
1750 		freeb(mp);
1751 		mp = mp1;
1752 	} else {
1753 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1754 	}
1755 
1756 	freeb(mp);
1757 }
1758 
1759 /*
1760  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1761  * The data portion of the request is a dl_unitdata_req_t template for
1762  * what we would send downstream in the absence of a fastpath confirmation.
1763  */
1764 int
1765 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1766 {
1767 	struct iocblk	*ioc;
1768 	mblk_t	*mp;
1769 
1770 	if (dlur_mp == NULL)
1771 		return (EINVAL);
1772 
1773 	mutex_enter(&ill->ill_lock);
1774 	switch (ill->ill_dlpi_fastpath_state) {
1775 	case IDS_FAILED:
1776 		/*
1777 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1778 		 * support it.
1779 		 */
1780 		mutex_exit(&ill->ill_lock);
1781 		return (ENOTSUP);
1782 	case IDS_UNKNOWN:
1783 		/* This is the first probe */
1784 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1785 		break;
1786 	default:
1787 		break;
1788 	}
1789 	mutex_exit(&ill->ill_lock);
1790 
1791 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1792 		return (EAGAIN);
1793 
1794 	mp->b_cont = copyb(dlur_mp);
1795 	if (mp->b_cont == NULL) {
1796 		freeb(mp);
1797 		return (EAGAIN);
1798 	}
1799 
1800 	ioc = (struct iocblk *)mp->b_rptr;
1801 	ioc->ioc_count = msgdsize(mp->b_cont);
1802 
1803 	putnext(ill->ill_wq, mp);
1804 	return (0);
1805 }
1806 
1807 void
1808 ill_capability_probe(ill_t *ill)
1809 {
1810 	/*
1811 	 * Do so only if negotiation is enabled, capabilities are unknown,
1812 	 * and a capability negotiation is not already in progress.
1813 	 */
1814 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN &&
1815 	    ill->ill_dlpi_capab_state != IDS_RENEG)
1816 		return;
1817 
1818 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1819 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1820 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1821 }
1822 
1823 void
1824 ill_capability_reset(ill_t *ill)
1825 {
1826 	mblk_t *sc_mp = NULL;
1827 	mblk_t *tmp;
1828 
1829 	/*
1830 	 * Note here that we reset the state to UNKNOWN, and later send
1831 	 * down the DL_CAPABILITY_REQ without first setting the state to
1832 	 * INPROGRESS.  We do this in order to distinguish the
1833 	 * DL_CAPABILITY_ACK response which may come back in response to
1834 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1835 	 * also handle the case where the driver doesn't send us back
1836 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1837 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1838 	 * features are turned off until the state reaches IDS_OK.
1839 	 */
1840 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1841 
1842 	/*
1843 	 * Disable sub-capabilities and request a list of sub-capability
1844 	 * messages which will be sent down to the driver.  Each handler
1845 	 * allocates the corresponding dl_capability_sub_t inside an
1846 	 * mblk, and links it to the existing sc_mp mblk, or return it
1847 	 * as sc_mp if it's the first sub-capability (the passed in
1848 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1849 	 * sc_mp will be pulled-up, before passing it downstream.
1850 	 */
1851 	ill_capability_mdt_reset(ill, &sc_mp);
1852 	ill_capability_hcksum_reset(ill, &sc_mp);
1853 	ill_capability_zerocopy_reset(ill, &sc_mp);
1854 	ill_capability_ipsec_reset(ill, &sc_mp);
1855 	ill_capability_dls_reset(ill, &sc_mp);
1856 
1857 	/* Nothing to send down in order to disable the capabilities? */
1858 	if (sc_mp == NULL)
1859 		return;
1860 
1861 	tmp = msgpullup(sc_mp, -1);
1862 	freemsg(sc_mp);
1863 	if ((sc_mp = tmp) == NULL) {
1864 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1865 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1866 		return;
1867 	}
1868 
1869 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1870 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1871 }
1872 
1873 /*
1874  * Request or set new-style hardware capabilities supported by DLS provider.
1875  */
1876 static void
1877 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1878 {
1879 	mblk_t *mp;
1880 	dl_capability_req_t *capb;
1881 	size_t size = 0;
1882 	uint8_t *ptr;
1883 
1884 	if (reqp != NULL)
1885 		size = MBLKL(reqp);
1886 
1887 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1888 	if (mp == NULL) {
1889 		freemsg(reqp);
1890 		return;
1891 	}
1892 	ptr = mp->b_rptr;
1893 
1894 	capb = (dl_capability_req_t *)ptr;
1895 	ptr += sizeof (dl_capability_req_t);
1896 
1897 	if (reqp != NULL) {
1898 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1899 		capb->dl_sub_length = size;
1900 		bcopy(reqp->b_rptr, ptr, size);
1901 		ptr += size;
1902 		mp->b_cont = reqp->b_cont;
1903 		freeb(reqp);
1904 	}
1905 	ASSERT(ptr == mp->b_wptr);
1906 
1907 	ill_dlpi_send(ill, mp);
1908 }
1909 
1910 static void
1911 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1912 {
1913 	dl_capab_id_t *id_ic;
1914 	uint_t sub_dl_cap = outers->dl_cap;
1915 	dl_capability_sub_t *inners;
1916 	uint8_t *capend;
1917 
1918 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1919 
1920 	/*
1921 	 * Note: range checks here are not absolutely sufficient to
1922 	 * make us robust against malformed messages sent by drivers;
1923 	 * this is in keeping with the rest of IP's dlpi handling.
1924 	 * (Remember, it's coming from something else in the kernel
1925 	 * address space)
1926 	 */
1927 
1928 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1929 	if (capend > mp->b_wptr) {
1930 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1931 		    "malformed sub-capability too long for mblk");
1932 		return;
1933 	}
1934 
1935 	id_ic = (dl_capab_id_t *)(outers + 1);
1936 
1937 	if (outers->dl_length < sizeof (*id_ic) ||
1938 	    (inners = &id_ic->id_subcap,
1939 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1940 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1941 		    "encapsulated capab type %d too long for mblk",
1942 		    inners->dl_cap);
1943 		return;
1944 	}
1945 
1946 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1947 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1948 		    "isn't as expected; pass-thru module(s) detected, "
1949 		    "discarding capability\n", inners->dl_cap));
1950 		return;
1951 	}
1952 
1953 	/* Process the encapsulated sub-capability */
1954 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1955 }
1956 
1957 /*
1958  * Process Multidata Transmit capability negotiation ack received from a
1959  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1960  * DL_CAPABILITY_ACK message.
1961  */
1962 static void
1963 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1964 {
1965 	mblk_t *nmp = NULL;
1966 	dl_capability_req_t *oc;
1967 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1968 	ill_mdt_capab_t **ill_mdt_capab;
1969 	uint_t sub_dl_cap = isub->dl_cap;
1970 	uint8_t *capend;
1971 
1972 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1973 
1974 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1975 
1976 	/*
1977 	 * Note: range checks here are not absolutely sufficient to
1978 	 * make us robust against malformed messages sent by drivers;
1979 	 * this is in keeping with the rest of IP's dlpi handling.
1980 	 * (Remember, it's coming from something else in the kernel
1981 	 * address space)
1982 	 */
1983 
1984 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1985 	if (capend > mp->b_wptr) {
1986 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1987 		    "malformed sub-capability too long for mblk");
1988 		return;
1989 	}
1990 
1991 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1992 
1993 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1994 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1995 		    "unsupported MDT sub-capability (version %d, expected %d)",
1996 		    mdt_ic->mdt_version, MDT_VERSION_2);
1997 		return;
1998 	}
1999 
2000 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
2001 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
2002 		    "capability isn't as expected; pass-thru module(s) "
2003 		    "detected, discarding capability\n"));
2004 		return;
2005 	}
2006 
2007 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
2008 
2009 		if (*ill_mdt_capab == NULL) {
2010 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
2011 			    KM_NOSLEEP);
2012 
2013 			if (*ill_mdt_capab == NULL) {
2014 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2015 				    "could not enable MDT version %d "
2016 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
2017 				    ill->ill_name);
2018 				return;
2019 			}
2020 		}
2021 
2022 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
2023 		    "MDT version %d (%d bytes leading, %d bytes trailing "
2024 		    "header spaces, %d max pld bufs, %d span limit)\n",
2025 		    ill->ill_name, MDT_VERSION_2,
2026 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
2027 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
2028 
2029 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
2030 		(*ill_mdt_capab)->ill_mdt_on = 1;
2031 		/*
2032 		 * Round the following values to the nearest 32-bit; ULP
2033 		 * may further adjust them to accomodate for additional
2034 		 * protocol headers.  We pass these values to ULP during
2035 		 * bind time.
2036 		 */
2037 		(*ill_mdt_capab)->ill_mdt_hdr_head =
2038 		    roundup(mdt_ic->mdt_hdr_head, 4);
2039 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
2040 		    roundup(mdt_ic->mdt_hdr_tail, 4);
2041 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
2042 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
2043 
2044 		ill->ill_capabilities |= ILL_CAPAB_MDT;
2045 	} else {
2046 		uint_t size;
2047 		uchar_t *rptr;
2048 
2049 		size = sizeof (dl_capability_req_t) +
2050 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2051 
2052 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2053 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2054 			    "could not enable MDT for %s (ENOMEM)\n",
2055 			    ill->ill_name);
2056 			return;
2057 		}
2058 
2059 		rptr = nmp->b_rptr;
2060 		/* initialize dl_capability_req_t */
2061 		oc = (dl_capability_req_t *)nmp->b_rptr;
2062 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2063 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2064 		    sizeof (dl_capab_mdt_t);
2065 		nmp->b_rptr += sizeof (dl_capability_req_t);
2066 
2067 		/* initialize dl_capability_sub_t */
2068 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2069 		nmp->b_rptr += sizeof (*isub);
2070 
2071 		/* initialize dl_capab_mdt_t */
2072 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2073 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2074 
2075 		nmp->b_rptr = rptr;
2076 
2077 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2078 		    "to enable MDT version %d\n", ill->ill_name,
2079 		    MDT_VERSION_2));
2080 
2081 		/* set ENABLE flag */
2082 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2083 
2084 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2085 		ill_dlpi_send(ill, nmp);
2086 	}
2087 }
2088 
2089 static void
2090 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2091 {
2092 	mblk_t *mp;
2093 	dl_capab_mdt_t *mdt_subcap;
2094 	dl_capability_sub_t *dl_subcap;
2095 	int size;
2096 
2097 	if (!ILL_MDT_CAPABLE(ill))
2098 		return;
2099 
2100 	ASSERT(ill->ill_mdt_capab != NULL);
2101 	/*
2102 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2103 	 * structure since it's possible that another thread is still
2104 	 * referring to it.  The structure only gets deallocated when
2105 	 * we destroy the ill.
2106 	 */
2107 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2108 
2109 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2110 
2111 	mp = allocb(size, BPRI_HI);
2112 	if (mp == NULL) {
2113 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2114 		    "request to disable MDT\n"));
2115 		return;
2116 	}
2117 
2118 	mp->b_wptr = mp->b_rptr + size;
2119 
2120 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2121 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2122 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2123 
2124 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2125 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2126 	mdt_subcap->mdt_flags = 0;
2127 	mdt_subcap->mdt_hdr_head = 0;
2128 	mdt_subcap->mdt_hdr_tail = 0;
2129 
2130 	if (*sc_mp != NULL)
2131 		linkb(*sc_mp, mp);
2132 	else
2133 		*sc_mp = mp;
2134 }
2135 
2136 /*
2137  * Send a DL_NOTIFY_REQ to the specified ill to enable
2138  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2139  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2140  * acceleration.
2141  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2142  */
2143 static boolean_t
2144 ill_enable_promisc_notify(ill_t *ill)
2145 {
2146 	mblk_t *mp;
2147 	dl_notify_req_t *req;
2148 
2149 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2150 
2151 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2152 	if (mp == NULL)
2153 		return (B_FALSE);
2154 
2155 	req = (dl_notify_req_t *)mp->b_rptr;
2156 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2157 	    DL_NOTE_PROMISC_OFF_PHYS;
2158 
2159 	ill_dlpi_send(ill, mp);
2160 
2161 	return (B_TRUE);
2162 }
2163 
2164 
2165 /*
2166  * Allocate an IPsec capability request which will be filled by our
2167  * caller to turn on support for one or more algorithms.
2168  */
2169 static mblk_t *
2170 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2171 {
2172 	mblk_t *nmp;
2173 	dl_capability_req_t	*ocap;
2174 	dl_capab_ipsec_t	*ocip;
2175 	dl_capab_ipsec_t	*icip;
2176 	uint8_t			*ptr;
2177 	icip = (dl_capab_ipsec_t *)(isub + 1);
2178 
2179 	/*
2180 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2181 	 * PROMISC_ON/OFF notification from the provider. We need to
2182 	 * do this before enabling the algorithms to avoid leakage of
2183 	 * cleartext packets.
2184 	 */
2185 
2186 	if (!ill_enable_promisc_notify(ill))
2187 		return (NULL);
2188 
2189 	/*
2190 	 * Allocate new mblk which will contain a new capability
2191 	 * request to enable the capabilities.
2192 	 */
2193 
2194 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2195 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2196 	if (nmp == NULL)
2197 		return (NULL);
2198 
2199 	ptr = nmp->b_rptr;
2200 
2201 	/* initialize dl_capability_req_t */
2202 	ocap = (dl_capability_req_t *)ptr;
2203 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2204 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2205 	ptr += sizeof (dl_capability_req_t);
2206 
2207 	/* initialize dl_capability_sub_t */
2208 	bcopy(isub, ptr, sizeof (*isub));
2209 	ptr += sizeof (*isub);
2210 
2211 	/* initialize dl_capab_ipsec_t */
2212 	ocip = (dl_capab_ipsec_t *)ptr;
2213 	bcopy(icip, ocip, sizeof (*icip));
2214 
2215 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2216 	return (nmp);
2217 }
2218 
2219 /*
2220  * Process an IPsec capability negotiation ack received from a DLS Provider.
2221  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2222  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2223  */
2224 static void
2225 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2226 {
2227 	dl_capab_ipsec_t	*icip;
2228 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2229 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2230 	uint_t cipher, nciphers;
2231 	mblk_t *nmp;
2232 	uint_t alg_len;
2233 	boolean_t need_sadb_dump;
2234 	uint_t sub_dl_cap = isub->dl_cap;
2235 	ill_ipsec_capab_t **ill_capab;
2236 	uint64_t ill_capab_flag;
2237 	uint8_t *capend, *ciphend;
2238 	boolean_t sadb_resync;
2239 
2240 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2241 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2242 
2243 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2244 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2245 		ill_capab_flag = ILL_CAPAB_AH;
2246 	} else {
2247 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2248 		ill_capab_flag = ILL_CAPAB_ESP;
2249 	}
2250 
2251 	/*
2252 	 * If the ill capability structure exists, then this incoming
2253 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2254 	 * If this is so, then we'd need to resynchronize the SADB
2255 	 * after re-enabling the offloaded ciphers.
2256 	 */
2257 	sadb_resync = (*ill_capab != NULL);
2258 
2259 	/*
2260 	 * Note: range checks here are not absolutely sufficient to
2261 	 * make us robust against malformed messages sent by drivers;
2262 	 * this is in keeping with the rest of IP's dlpi handling.
2263 	 * (Remember, it's coming from something else in the kernel
2264 	 * address space)
2265 	 */
2266 
2267 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2268 	if (capend > mp->b_wptr) {
2269 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2270 		    "malformed sub-capability too long for mblk");
2271 		return;
2272 	}
2273 
2274 	/*
2275 	 * There are two types of acks we process here:
2276 	 * 1. acks in reply to a (first form) generic capability req
2277 	 *    (no ENABLE flag set)
2278 	 * 2. acks in reply to a ENABLE capability req.
2279 	 *    (ENABLE flag set)
2280 	 *
2281 	 * We process the subcapability passed as argument as follows:
2282 	 * 1 do initializations
2283 	 *   1.1 initialize nmp = NULL
2284 	 *   1.2 set need_sadb_dump to B_FALSE
2285 	 * 2 for each cipher in subcapability:
2286 	 *   2.1 if ENABLE flag is set:
2287 	 *	2.1.1 update per-ill ipsec capabilities info
2288 	 *	2.1.2 set need_sadb_dump to B_TRUE
2289 	 *   2.2 if ENABLE flag is not set:
2290 	 *	2.2.1 if nmp is NULL:
2291 	 *		2.2.1.1 allocate and initialize nmp
2292 	 *		2.2.1.2 init current pos in nmp
2293 	 *	2.2.2 copy current cipher to current pos in nmp
2294 	 *	2.2.3 set ENABLE flag in nmp
2295 	 *	2.2.4 update current pos
2296 	 * 3 if nmp is not equal to NULL, send enable request
2297 	 *   3.1 send capability request
2298 	 * 4 if need_sadb_dump is B_TRUE
2299 	 *   4.1 enable promiscuous on/off notifications
2300 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2301 	 *	AH or ESP SA's to interface.
2302 	 */
2303 
2304 	nmp = NULL;
2305 	oalg = NULL;
2306 	need_sadb_dump = B_FALSE;
2307 	icip = (dl_capab_ipsec_t *)(isub + 1);
2308 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2309 
2310 	nciphers = icip->cip_nciphers;
2311 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2312 
2313 	if (ciphend > capend) {
2314 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2315 		    "too many ciphers for sub-capability len");
2316 		return;
2317 	}
2318 
2319 	for (cipher = 0; cipher < nciphers; cipher++) {
2320 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2321 
2322 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2323 			/*
2324 			 * TBD: when we provide a way to disable capabilities
2325 			 * from above, need to manage the request-pending state
2326 			 * and fail if we were not expecting this ACK.
2327 			 */
2328 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2329 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2330 
2331 			/*
2332 			 * Update IPsec capabilities for this ill
2333 			 */
2334 
2335 			if (*ill_capab == NULL) {
2336 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2337 				    ("ill_capability_ipsec_ack: "
2338 					"allocating ipsec_capab for ill\n"));
2339 				*ill_capab = ill_ipsec_capab_alloc();
2340 
2341 				if (*ill_capab == NULL) {
2342 					cmn_err(CE_WARN,
2343 					    "ill_capability_ipsec_ack: "
2344 					    "could not enable IPsec Hardware "
2345 					    "acceleration for %s (ENOMEM)\n",
2346 					    ill->ill_name);
2347 					return;
2348 				}
2349 			}
2350 
2351 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2352 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2353 
2354 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2355 				cmn_err(CE_WARN,
2356 				    "ill_capability_ipsec_ack: "
2357 				    "malformed IPsec algorithm id %d",
2358 				    ialg->alg_prim);
2359 				continue;
2360 			}
2361 
2362 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2363 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2364 				    ialg->alg_prim);
2365 			} else {
2366 				ipsec_capab_algparm_t *alp;
2367 
2368 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2369 				    ialg->alg_prim);
2370 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2371 				    ialg->alg_prim)) {
2372 					cmn_err(CE_WARN,
2373 					    "ill_capability_ipsec_ack: "
2374 					    "no space for IPsec alg id %d",
2375 					    ialg->alg_prim);
2376 					continue;
2377 				}
2378 				alp = &((*ill_capab)->encr_algparm[
2379 						ialg->alg_prim]);
2380 				alp->minkeylen = ialg->alg_minbits;
2381 				alp->maxkeylen = ialg->alg_maxbits;
2382 			}
2383 			ill->ill_capabilities |= ill_capab_flag;
2384 			/*
2385 			 * indicate that a capability was enabled, which
2386 			 * will be used below to kick off a SADB dump
2387 			 * to the ill.
2388 			 */
2389 			need_sadb_dump = B_TRUE;
2390 		} else {
2391 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2392 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2393 				ialg->alg_prim));
2394 
2395 			if (nmp == NULL) {
2396 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2397 				if (nmp == NULL) {
2398 					/*
2399 					 * Sending the PROMISC_ON/OFF
2400 					 * notification request failed.
2401 					 * We cannot enable the algorithms
2402 					 * since the Provider will not
2403 					 * notify IP of promiscous mode
2404 					 * changes, which could lead
2405 					 * to leakage of packets.
2406 					 */
2407 					cmn_err(CE_WARN,
2408 					    "ill_capability_ipsec_ack: "
2409 					    "could not enable IPsec Hardware "
2410 					    "acceleration for %s (ENOMEM)\n",
2411 					    ill->ill_name);
2412 					return;
2413 				}
2414 				/* ptr to current output alg specifier */
2415 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2416 			}
2417 
2418 			/*
2419 			 * Copy current alg specifier, set ENABLE
2420 			 * flag, and advance to next output alg.
2421 			 * For now we enable all IPsec capabilities.
2422 			 */
2423 			ASSERT(oalg != NULL);
2424 			bcopy(ialg, oalg, alg_len);
2425 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2426 			nmp->b_wptr += alg_len;
2427 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2428 		}
2429 
2430 		/* move to next input algorithm specifier */
2431 		ialg = (dl_capab_ipsec_alg_t *)
2432 		    ((char *)ialg + alg_len);
2433 	}
2434 
2435 	if (nmp != NULL)
2436 		/*
2437 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2438 		 * IPsec hardware acceleration.
2439 		 */
2440 		ill_dlpi_send(ill, nmp);
2441 
2442 	if (need_sadb_dump)
2443 		/*
2444 		 * An acknowledgement corresponding to a request to
2445 		 * enable acceleration was received, notify SADB.
2446 		 */
2447 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2448 }
2449 
2450 /*
2451  * Given an mblk with enough space in it, create sub-capability entries for
2452  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2453  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2454  * in preparation for the reset the DL_CAPABILITY_REQ message.
2455  */
2456 static void
2457 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2458     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2459 {
2460 	dl_capab_ipsec_t *oipsec;
2461 	dl_capab_ipsec_alg_t *oalg;
2462 	dl_capability_sub_t *dl_subcap;
2463 	int i, k;
2464 
2465 	ASSERT(nciphers > 0);
2466 	ASSERT(ill_cap != NULL);
2467 	ASSERT(mp != NULL);
2468 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2469 
2470 	/* dl_capability_sub_t for "stype" */
2471 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2472 	dl_subcap->dl_cap = stype;
2473 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2474 	mp->b_wptr += sizeof (dl_capability_sub_t);
2475 
2476 	/* dl_capab_ipsec_t for "stype" */
2477 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2478 	oipsec->cip_version = 1;
2479 	oipsec->cip_nciphers = nciphers;
2480 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2481 
2482 	/* create entries for "stype" AUTH ciphers */
2483 	for (i = 0; i < ill_cap->algs_size; i++) {
2484 		for (k = 0; k < BITSPERBYTE; k++) {
2485 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2486 				continue;
2487 
2488 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2489 			bzero((void *)oalg, sizeof (*oalg));
2490 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2491 			oalg->alg_prim = k + (BITSPERBYTE * i);
2492 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2493 		}
2494 	}
2495 	/* create entries for "stype" ENCR ciphers */
2496 	for (i = 0; i < ill_cap->algs_size; i++) {
2497 		for (k = 0; k < BITSPERBYTE; k++) {
2498 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2499 				continue;
2500 
2501 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2502 			bzero((void *)oalg, sizeof (*oalg));
2503 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2504 			oalg->alg_prim = k + (BITSPERBYTE * i);
2505 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2506 		}
2507 	}
2508 }
2509 
2510 /*
2511  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2512  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2513  * POPC instruction, but our macro is more flexible for an arbitrary length
2514  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2515  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2516  * stays that way, we can reduce the number of iterations required.
2517  */
2518 #define	COUNT_1S(val, sum) {					\
2519 	uint8_t x = val & 0xff;					\
2520 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2521 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2522 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2523 }
2524 
2525 /* ARGSUSED */
2526 static void
2527 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2528 {
2529 	mblk_t *mp;
2530 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2531 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2532 	uint64_t ill_capabilities = ill->ill_capabilities;
2533 	int ah_cnt = 0, esp_cnt = 0;
2534 	int ah_len = 0, esp_len = 0;
2535 	int i, size = 0;
2536 
2537 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2538 		return;
2539 
2540 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2541 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2542 
2543 	/* Find out the number of ciphers for AH */
2544 	if (cap_ah != NULL) {
2545 		for (i = 0; i < cap_ah->algs_size; i++) {
2546 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2547 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2548 		}
2549 		if (ah_cnt > 0) {
2550 			size += sizeof (dl_capability_sub_t) +
2551 			    sizeof (dl_capab_ipsec_t);
2552 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2553 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2554 			size += ah_len;
2555 		}
2556 	}
2557 
2558 	/* Find out the number of ciphers for ESP */
2559 	if (cap_esp != NULL) {
2560 		for (i = 0; i < cap_esp->algs_size; i++) {
2561 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2562 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2563 		}
2564 		if (esp_cnt > 0) {
2565 			size += sizeof (dl_capability_sub_t) +
2566 			    sizeof (dl_capab_ipsec_t);
2567 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2568 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2569 			size += esp_len;
2570 		}
2571 	}
2572 
2573 	if (size == 0) {
2574 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2575 		    "there's nothing to reset\n"));
2576 		return;
2577 	}
2578 
2579 	mp = allocb(size, BPRI_HI);
2580 	if (mp == NULL) {
2581 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2582 		    "request to disable IPSEC Hardware Acceleration\n"));
2583 		return;
2584 	}
2585 
2586 	/*
2587 	 * Clear the capability flags for IPSec HA but retain the ill
2588 	 * capability structures since it's possible that another thread
2589 	 * is still referring to them.  The structures only get deallocated
2590 	 * when we destroy the ill.
2591 	 *
2592 	 * Various places check the flags to see if the ill is capable of
2593 	 * hardware acceleration, and by clearing them we ensure that new
2594 	 * outbound IPSec packets are sent down encrypted.
2595 	 */
2596 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2597 
2598 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2599 	if (ah_cnt > 0) {
2600 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2601 		    cap_ah, mp);
2602 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2603 	}
2604 
2605 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2606 	if (esp_cnt > 0) {
2607 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2608 		    cap_esp, mp);
2609 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2610 	}
2611 
2612 	/*
2613 	 * At this point we've composed a bunch of sub-capabilities to be
2614 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2615 	 * by the caller.  Upon receiving this reset message, the driver
2616 	 * must stop inbound decryption (by destroying all inbound SAs)
2617 	 * and let the corresponding packets come in encrypted.
2618 	 */
2619 
2620 	if (*sc_mp != NULL)
2621 		linkb(*sc_mp, mp);
2622 	else
2623 		*sc_mp = mp;
2624 }
2625 
2626 static void
2627 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2628     boolean_t encapsulated)
2629 {
2630 	boolean_t legacy = B_FALSE;
2631 
2632 	/*
2633 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2634 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2635 	 * instructed the driver to disable its advertised capabilities,
2636 	 * so there's no point in accepting any response at this moment.
2637 	 */
2638 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2639 		return;
2640 
2641 	/*
2642 	 * Note that only the following two sub-capabilities may be
2643 	 * considered as "legacy", since their original definitions
2644 	 * do not incorporate the dl_mid_t module ID token, and hence
2645 	 * may require the use of the wrapper sub-capability.
2646 	 */
2647 	switch (subp->dl_cap) {
2648 	case DL_CAPAB_IPSEC_AH:
2649 	case DL_CAPAB_IPSEC_ESP:
2650 		legacy = B_TRUE;
2651 		break;
2652 	}
2653 
2654 	/*
2655 	 * For legacy sub-capabilities which don't incorporate a queue_t
2656 	 * pointer in their structures, discard them if we detect that
2657 	 * there are intermediate modules in between IP and the driver.
2658 	 */
2659 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2660 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2661 		    "%d discarded; %d module(s) present below IP\n",
2662 		    subp->dl_cap, ill->ill_lmod_cnt));
2663 		return;
2664 	}
2665 
2666 	switch (subp->dl_cap) {
2667 	case DL_CAPAB_IPSEC_AH:
2668 	case DL_CAPAB_IPSEC_ESP:
2669 		ill_capability_ipsec_ack(ill, mp, subp);
2670 		break;
2671 	case DL_CAPAB_MDT:
2672 		ill_capability_mdt_ack(ill, mp, subp);
2673 		break;
2674 	case DL_CAPAB_HCKSUM:
2675 		ill_capability_hcksum_ack(ill, mp, subp);
2676 		break;
2677 	case DL_CAPAB_ZEROCOPY:
2678 		ill_capability_zerocopy_ack(ill, mp, subp);
2679 		break;
2680 	case DL_CAPAB_POLL:
2681 		if (!SOFT_RINGS_ENABLED())
2682 			ill_capability_dls_ack(ill, mp, subp);
2683 		break;
2684 	case DL_CAPAB_SOFT_RING:
2685 		if (SOFT_RINGS_ENABLED())
2686 			ill_capability_dls_ack(ill, mp, subp);
2687 		break;
2688 	default:
2689 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2690 		    subp->dl_cap));
2691 	}
2692 }
2693 
2694 /*
2695  * As part of negotiating polling capability, the driver tells us
2696  * the default (or normal) blanking interval and packet threshold
2697  * (the receive timer fires if blanking interval is reached or
2698  * the packet threshold is reached).
2699  *
2700  * As part of manipulating the polling interval, we always use our
2701  * estimated interval (avg service time * number of packets queued
2702  * on the squeue) but we try to blank for a minimum of
2703  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2704  * packet threshold during this time. When we are not in polling mode
2705  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2706  * rr_min_blank_ratio but up the packet cnt by a ratio of
2707  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2708  * possible although for a shorter interval.
2709  */
2710 #define	RR_MAX_BLANK_RATIO	20
2711 #define	RR_MIN_BLANK_RATIO	10
2712 #define	RR_MAX_PKT_CNT_RATIO	3
2713 #define	RR_MIN_PKT_CNT_RATIO	3
2714 
2715 /*
2716  * These can be tuned via /etc/system.
2717  */
2718 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2719 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2720 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2721 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2722 
2723 static mac_resource_handle_t
2724 ill_ring_add(void *arg, mac_resource_t *mrp)
2725 {
2726 	ill_t			*ill = (ill_t *)arg;
2727 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2728 	ill_rx_ring_t		*rx_ring;
2729 	int			ip_rx_index;
2730 
2731 	ASSERT(mrp != NULL);
2732 	if (mrp->mr_type != MAC_RX_FIFO) {
2733 		return (NULL);
2734 	}
2735 	ASSERT(ill != NULL);
2736 	ASSERT(ill->ill_dls_capab != NULL);
2737 
2738 	mutex_enter(&ill->ill_lock);
2739 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2740 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2741 		ASSERT(rx_ring != NULL);
2742 
2743 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2744 			time_t normal_blank_time =
2745 			    mrfp->mrf_normal_blank_time;
2746 			uint_t normal_pkt_cnt =
2747 			    mrfp->mrf_normal_pkt_count;
2748 
2749 			bzero(rx_ring, sizeof (ill_rx_ring_t));
2750 
2751 			rx_ring->rr_blank = mrfp->mrf_blank;
2752 			rx_ring->rr_handle = mrfp->mrf_arg;
2753 			rx_ring->rr_ill = ill;
2754 			rx_ring->rr_normal_blank_time = normal_blank_time;
2755 			rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2756 
2757 			rx_ring->rr_max_blank_time =
2758 			    normal_blank_time * rr_max_blank_ratio;
2759 			rx_ring->rr_min_blank_time =
2760 			    normal_blank_time * rr_min_blank_ratio;
2761 			rx_ring->rr_max_pkt_cnt =
2762 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2763 			rx_ring->rr_min_pkt_cnt =
2764 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2765 
2766 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2767 			mutex_exit(&ill->ill_lock);
2768 
2769 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2770 			    (int), ip_rx_index);
2771 			return ((mac_resource_handle_t)rx_ring);
2772 		}
2773 	}
2774 
2775 	/*
2776 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2777 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2778 	 * should be made configurable. Meanwhile it cause no panic because
2779 	 * driver will pass ip_input a NULL handle which will make
2780 	 * IP allocate the default squeue and Polling mode will not
2781 	 * be used for this ring.
2782 	 */
2783 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2784 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2785 
2786 	mutex_exit(&ill->ill_lock);
2787 	return (NULL);
2788 }
2789 
2790 static boolean_t
2791 ill_capability_dls_init(ill_t *ill)
2792 {
2793 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2794 	conn_t 			*connp;
2795 	size_t			sz;
2796 
2797 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2798 		if (ill_dls == NULL) {
2799 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2800 			    "soft_ring enabled for ill=%s (%p) but data "
2801 			    "structs uninitialized\n", ill->ill_name,
2802 			    (void *)ill);
2803 		}
2804 		return (B_TRUE);
2805 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2806 		if (ill_dls == NULL) {
2807 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2808 			    "polling enabled for ill=%s (%p) but data "
2809 			    "structs uninitialized\n", ill->ill_name,
2810 			(void *)ill);
2811 		}
2812 		return (B_TRUE);
2813 	}
2814 
2815 	if (ill_dls != NULL) {
2816 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2817 		/* Soft_Ring or polling is being re-enabled */
2818 
2819 		connp = ill_dls->ill_unbind_conn;
2820 		ASSERT(rx_ring != NULL);
2821 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2822 		bzero((void *)rx_ring,
2823 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2824 		ill_dls->ill_ring_tbl = rx_ring;
2825 		ill_dls->ill_unbind_conn = connp;
2826 		return (B_TRUE);
2827 	}
2828 
2829 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
2830 		return (B_FALSE);
2831 
2832 	sz = sizeof (ill_dls_capab_t);
2833 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2834 
2835 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2836 	if (ill_dls == NULL) {
2837 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2838 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2839 		    (void *)ill);
2840 		CONN_DEC_REF(connp);
2841 		return (B_FALSE);
2842 	}
2843 
2844 	/* Allocate space to hold ring table */
2845 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2846 	ill->ill_dls_capab = ill_dls;
2847 	ill_dls->ill_unbind_conn = connp;
2848 	return (B_TRUE);
2849 }
2850 
2851 /*
2852  * ill_capability_dls_disable: disable soft_ring and/or polling
2853  * capability. Since any of the rings might already be in use, need
2854  * to call ipsq_clean_all() which gets behind the squeue to disable
2855  * direct calls if necessary.
2856  */
2857 static void
2858 ill_capability_dls_disable(ill_t *ill)
2859 {
2860 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2861 
2862 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2863 		ipsq_clean_all(ill);
2864 		ill_dls->ill_tx = NULL;
2865 		ill_dls->ill_tx_handle = NULL;
2866 		ill_dls->ill_dls_change_status = NULL;
2867 		ill_dls->ill_dls_bind = NULL;
2868 		ill_dls->ill_dls_unbind = NULL;
2869 	}
2870 
2871 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2872 }
2873 
2874 static void
2875 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2876     dl_capability_sub_t *isub)
2877 {
2878 	uint_t			size;
2879 	uchar_t			*rptr;
2880 	dl_capab_dls_t	dls, *odls;
2881 	ill_dls_capab_t	*ill_dls;
2882 	mblk_t			*nmp = NULL;
2883 	dl_capability_req_t	*ocap;
2884 	uint_t			sub_dl_cap = isub->dl_cap;
2885 
2886 	if (!ill_capability_dls_init(ill))
2887 		return;
2888 	ill_dls = ill->ill_dls_capab;
2889 
2890 	/* Copy locally to get the members aligned */
2891 	bcopy((void *)idls, (void *)&dls,
2892 	    sizeof (dl_capab_dls_t));
2893 
2894 	/* Get the tx function and handle from dld */
2895 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2896 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2897 
2898 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2899 		ill_dls->ill_dls_change_status =
2900 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2901 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2902 		ill_dls->ill_dls_unbind =
2903 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2904 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2905 	}
2906 
2907 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2908 	    isub->dl_length;
2909 
2910 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2911 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2912 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2913 		    ill->ill_name, (void *)ill);
2914 		return;
2915 	}
2916 
2917 	/* initialize dl_capability_req_t */
2918 	rptr = nmp->b_rptr;
2919 	ocap = (dl_capability_req_t *)rptr;
2920 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2921 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2922 	rptr += sizeof (dl_capability_req_t);
2923 
2924 	/* initialize dl_capability_sub_t */
2925 	bcopy(isub, rptr, sizeof (*isub));
2926 	rptr += sizeof (*isub);
2927 
2928 	odls = (dl_capab_dls_t *)rptr;
2929 	rptr += sizeof (dl_capab_dls_t);
2930 
2931 	/* initialize dl_capab_dls_t to be sent down */
2932 	dls.dls_rx_handle = (uintptr_t)ill;
2933 	dls.dls_rx = (uintptr_t)ip_input;
2934 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
2935 
2936 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2937 		dls.dls_ring_cnt = ip_soft_rings_cnt;
2938 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2939 		dls.dls_flags = SOFT_RING_ENABLE;
2940 	} else {
2941 		dls.dls_flags = POLL_ENABLE;
2942 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
2943 		    "to enable polling\n", ill->ill_name));
2944 	}
2945 	bcopy((void *)&dls, (void *)odls,
2946 	    sizeof (dl_capab_dls_t));
2947 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2948 	/*
2949 	 * nmp points to a DL_CAPABILITY_REQ message to
2950 	 * enable either soft_ring or polling
2951 	 */
2952 	ill_dlpi_send(ill, nmp);
2953 }
2954 
2955 static void
2956 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2957 {
2958 	mblk_t *mp;
2959 	dl_capab_dls_t *idls;
2960 	dl_capability_sub_t *dl_subcap;
2961 	int size;
2962 
2963 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2964 		return;
2965 
2966 	ASSERT(ill->ill_dls_capab != NULL);
2967 
2968 	size = sizeof (*dl_subcap) + sizeof (*idls);
2969 
2970 	mp = allocb(size, BPRI_HI);
2971 	if (mp == NULL) {
2972 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
2973 		    "request to disable soft_ring\n"));
2974 		return;
2975 	}
2976 
2977 	mp->b_wptr = mp->b_rptr + size;
2978 
2979 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2980 	dl_subcap->dl_length = sizeof (*idls);
2981 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2982 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
2983 	else
2984 		dl_subcap->dl_cap = DL_CAPAB_POLL;
2985 
2986 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
2987 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2988 		idls->dls_flags = SOFT_RING_DISABLE;
2989 	else
2990 		idls->dls_flags = POLL_DISABLE;
2991 
2992 	if (*sc_mp != NULL)
2993 		linkb(*sc_mp, mp);
2994 	else
2995 		*sc_mp = mp;
2996 }
2997 
2998 /*
2999  * Process a soft_ring/poll capability negotiation ack received
3000  * from a DLS Provider.isub must point to the sub-capability
3001  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
3002  */
3003 static void
3004 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3005 {
3006 	dl_capab_dls_t		*idls;
3007 	uint_t			sub_dl_cap = isub->dl_cap;
3008 	uint8_t			*capend;
3009 
3010 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
3011 	    sub_dl_cap == DL_CAPAB_POLL);
3012 
3013 	if (ill->ill_isv6)
3014 		return;
3015 
3016 	/*
3017 	 * Note: range checks here are not absolutely sufficient to
3018 	 * make us robust against malformed messages sent by drivers;
3019 	 * this is in keeping with the rest of IP's dlpi handling.
3020 	 * (Remember, it's coming from something else in the kernel
3021 	 * address space)
3022 	 */
3023 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3024 	if (capend > mp->b_wptr) {
3025 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
3026 		    "malformed sub-capability too long for mblk");
3027 		return;
3028 	}
3029 
3030 	/*
3031 	 * There are two types of acks we process here:
3032 	 * 1. acks in reply to a (first form) generic capability req
3033 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
3034 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
3035 	 *    capability req.
3036 	 */
3037 	idls = (dl_capab_dls_t *)(isub + 1);
3038 
3039 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
3040 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
3041 		    "capability isn't as expected; pass-thru "
3042 		    "module(s) detected, discarding capability\n"));
3043 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
3044 			/*
3045 			 * This is a capability renegotitation case.
3046 			 * The interface better be unusable at this
3047 			 * point other wise bad things will happen
3048 			 * if we disable direct calls on a running
3049 			 * and up interface.
3050 			 */
3051 			ill_capability_dls_disable(ill);
3052 		}
3053 		return;
3054 	}
3055 
3056 	switch (idls->dls_flags) {
3057 	default:
3058 		/* Disable if unknown flag */
3059 	case SOFT_RING_DISABLE:
3060 	case POLL_DISABLE:
3061 		ill_capability_dls_disable(ill);
3062 		break;
3063 	case SOFT_RING_CAPABLE:
3064 	case POLL_CAPABLE:
3065 		/*
3066 		 * If the capability was already enabled, its safe
3067 		 * to disable it first to get rid of stale information
3068 		 * and then start enabling it again.
3069 		 */
3070 		ill_capability_dls_disable(ill);
3071 		ill_capability_dls_capable(ill, idls, isub);
3072 		break;
3073 	case SOFT_RING_ENABLE:
3074 	case POLL_ENABLE:
3075 		mutex_enter(&ill->ill_lock);
3076 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3077 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3078 			ASSERT(ill->ill_dls_capab != NULL);
3079 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3080 		}
3081 		if (sub_dl_cap == DL_CAPAB_POLL &&
3082 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3083 			ASSERT(ill->ill_dls_capab != NULL);
3084 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3085 			ip1dbg(("ill_capability_dls_ack: interface %s "
3086 			    "has enabled polling\n", ill->ill_name));
3087 		}
3088 		mutex_exit(&ill->ill_lock);
3089 		break;
3090 	}
3091 }
3092 
3093 /*
3094  * Process a hardware checksum offload capability negotiation ack received
3095  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3096  * of a DL_CAPABILITY_ACK message.
3097  */
3098 static void
3099 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3100 {
3101 	dl_capability_req_t	*ocap;
3102 	dl_capab_hcksum_t	*ihck, *ohck;
3103 	ill_hcksum_capab_t	**ill_hcksum;
3104 	mblk_t			*nmp = NULL;
3105 	uint_t			sub_dl_cap = isub->dl_cap;
3106 	uint8_t			*capend;
3107 
3108 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3109 
3110 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3111 
3112 	/*
3113 	 * Note: range checks here are not absolutely sufficient to
3114 	 * make us robust against malformed messages sent by drivers;
3115 	 * this is in keeping with the rest of IP's dlpi handling.
3116 	 * (Remember, it's coming from something else in the kernel
3117 	 * address space)
3118 	 */
3119 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3120 	if (capend > mp->b_wptr) {
3121 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3122 		    "malformed sub-capability too long for mblk");
3123 		return;
3124 	}
3125 
3126 	/*
3127 	 * There are two types of acks we process here:
3128 	 * 1. acks in reply to a (first form) generic capability req
3129 	 *    (no ENABLE flag set)
3130 	 * 2. acks in reply to a ENABLE capability req.
3131 	 *    (ENABLE flag set)
3132 	 */
3133 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3134 
3135 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3136 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3137 		    "unsupported hardware checksum "
3138 		    "sub-capability (version %d, expected %d)",
3139 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3140 		return;
3141 	}
3142 
3143 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3144 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3145 		    "checksum capability isn't as expected; pass-thru "
3146 		    "module(s) detected, discarding capability\n"));
3147 		return;
3148 	}
3149 
3150 #define	CURR_HCKSUM_CAPAB				\
3151 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3152 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3153 
3154 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3155 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3156 		/* do ENABLE processing */
3157 		if (*ill_hcksum == NULL) {
3158 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3159 			    KM_NOSLEEP);
3160 
3161 			if (*ill_hcksum == NULL) {
3162 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3163 				    "could not enable hcksum version %d "
3164 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3165 				    ill->ill_name);
3166 				return;
3167 			}
3168 		}
3169 
3170 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3171 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3172 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3173 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3174 		    "has enabled hardware checksumming\n ",
3175 		    ill->ill_name));
3176 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3177 		/*
3178 		 * Enabling hardware checksum offload
3179 		 * Currently IP supports {TCP,UDP}/IPv4
3180 		 * partial and full cksum offload and
3181 		 * IPv4 header checksum offload.
3182 		 * Allocate new mblk which will
3183 		 * contain a new capability request
3184 		 * to enable hardware checksum offload.
3185 		 */
3186 		uint_t	size;
3187 		uchar_t	*rptr;
3188 
3189 		size = sizeof (dl_capability_req_t) +
3190 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3191 
3192 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3193 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3194 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3195 			    ill->ill_name);
3196 			return;
3197 		}
3198 
3199 		rptr = nmp->b_rptr;
3200 		/* initialize dl_capability_req_t */
3201 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3202 		ocap->dl_sub_offset =
3203 		    sizeof (dl_capability_req_t);
3204 		ocap->dl_sub_length =
3205 		    sizeof (dl_capability_sub_t) +
3206 		    isub->dl_length;
3207 		nmp->b_rptr += sizeof (dl_capability_req_t);
3208 
3209 		/* initialize dl_capability_sub_t */
3210 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3211 		nmp->b_rptr += sizeof (*isub);
3212 
3213 		/* initialize dl_capab_hcksum_t */
3214 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3215 		bcopy(ihck, ohck, sizeof (*ihck));
3216 
3217 		nmp->b_rptr = rptr;
3218 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3219 
3220 		/* Set ENABLE flag */
3221 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3222 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3223 
3224 		/*
3225 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3226 		 * hardware checksum acceleration.
3227 		 */
3228 		ill_dlpi_send(ill, nmp);
3229 	} else {
3230 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3231 		    "advertised %x hardware checksum capability flags\n",
3232 		    ill->ill_name, ihck->hcksum_txflags));
3233 	}
3234 }
3235 
3236 static void
3237 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3238 {
3239 	mblk_t *mp;
3240 	dl_capab_hcksum_t *hck_subcap;
3241 	dl_capability_sub_t *dl_subcap;
3242 	int size;
3243 
3244 	if (!ILL_HCKSUM_CAPABLE(ill))
3245 		return;
3246 
3247 	ASSERT(ill->ill_hcksum_capab != NULL);
3248 	/*
3249 	 * Clear the capability flag for hardware checksum offload but
3250 	 * retain the ill_hcksum_capab structure since it's possible that
3251 	 * another thread is still referring to it.  The structure only
3252 	 * gets deallocated when we destroy the ill.
3253 	 */
3254 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3255 
3256 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3257 
3258 	mp = allocb(size, BPRI_HI);
3259 	if (mp == NULL) {
3260 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3261 		    "request to disable hardware checksum offload\n"));
3262 		return;
3263 	}
3264 
3265 	mp->b_wptr = mp->b_rptr + size;
3266 
3267 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3268 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3269 	dl_subcap->dl_length = sizeof (*hck_subcap);
3270 
3271 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3272 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3273 	hck_subcap->hcksum_txflags = 0;
3274 
3275 	if (*sc_mp != NULL)
3276 		linkb(*sc_mp, mp);
3277 	else
3278 		*sc_mp = mp;
3279 }
3280 
3281 static void
3282 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3283 {
3284 	mblk_t *nmp = NULL;
3285 	dl_capability_req_t *oc;
3286 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3287 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3288 	uint_t sub_dl_cap = isub->dl_cap;
3289 	uint8_t *capend;
3290 
3291 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3292 
3293 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3294 
3295 	/*
3296 	 * Note: range checks here are not absolutely sufficient to
3297 	 * make us robust against malformed messages sent by drivers;
3298 	 * this is in keeping with the rest of IP's dlpi handling.
3299 	 * (Remember, it's coming from something else in the kernel
3300 	 * address space)
3301 	 */
3302 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3303 	if (capend > mp->b_wptr) {
3304 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3305 		    "malformed sub-capability too long for mblk");
3306 		return;
3307 	}
3308 
3309 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3310 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3311 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3312 		    "unsupported ZEROCOPY sub-capability (version %d, "
3313 		    "expected %d)", zc_ic->zerocopy_version,
3314 		    ZEROCOPY_VERSION_1);
3315 		return;
3316 	}
3317 
3318 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3319 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3320 		    "capability isn't as expected; pass-thru module(s) "
3321 		    "detected, discarding capability\n"));
3322 		return;
3323 	}
3324 
3325 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3326 		if (*ill_zerocopy_capab == NULL) {
3327 			*ill_zerocopy_capab =
3328 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3329 			    KM_NOSLEEP);
3330 
3331 			if (*ill_zerocopy_capab == NULL) {
3332 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3333 				    "could not enable Zero-copy version %d "
3334 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3335 				    ill->ill_name);
3336 				return;
3337 			}
3338 		}
3339 
3340 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3341 		    "supports Zero-copy version %d\n", ill->ill_name,
3342 		    ZEROCOPY_VERSION_1));
3343 
3344 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3345 		    zc_ic->zerocopy_version;
3346 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3347 		    zc_ic->zerocopy_flags;
3348 
3349 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3350 	} else {
3351 		uint_t size;
3352 		uchar_t *rptr;
3353 
3354 		size = sizeof (dl_capability_req_t) +
3355 		    sizeof (dl_capability_sub_t) +
3356 		    sizeof (dl_capab_zerocopy_t);
3357 
3358 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3359 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3360 			    "could not enable zerocopy for %s (ENOMEM)\n",
3361 			    ill->ill_name);
3362 			return;
3363 		}
3364 
3365 		rptr = nmp->b_rptr;
3366 		/* initialize dl_capability_req_t */
3367 		oc = (dl_capability_req_t *)rptr;
3368 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3369 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3370 		    sizeof (dl_capab_zerocopy_t);
3371 		rptr += sizeof (dl_capability_req_t);
3372 
3373 		/* initialize dl_capability_sub_t */
3374 		bcopy(isub, rptr, sizeof (*isub));
3375 		rptr += sizeof (*isub);
3376 
3377 		/* initialize dl_capab_zerocopy_t */
3378 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3379 		*zc_oc = *zc_ic;
3380 
3381 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3382 		    "to enable zero-copy version %d\n", ill->ill_name,
3383 		    ZEROCOPY_VERSION_1));
3384 
3385 		/* set VMSAFE_MEM flag */
3386 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3387 
3388 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3389 		ill_dlpi_send(ill, nmp);
3390 	}
3391 }
3392 
3393 static void
3394 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3395 {
3396 	mblk_t *mp;
3397 	dl_capab_zerocopy_t *zerocopy_subcap;
3398 	dl_capability_sub_t *dl_subcap;
3399 	int size;
3400 
3401 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3402 		return;
3403 
3404 	ASSERT(ill->ill_zerocopy_capab != NULL);
3405 	/*
3406 	 * Clear the capability flag for Zero-copy but retain the
3407 	 * ill_zerocopy_capab structure since it's possible that another
3408 	 * thread is still referring to it.  The structure only gets
3409 	 * deallocated when we destroy the ill.
3410 	 */
3411 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3412 
3413 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3414 
3415 	mp = allocb(size, BPRI_HI);
3416 	if (mp == NULL) {
3417 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3418 		    "request to disable Zero-copy\n"));
3419 		return;
3420 	}
3421 
3422 	mp->b_wptr = mp->b_rptr + size;
3423 
3424 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3425 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3426 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3427 
3428 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3429 	zerocopy_subcap->zerocopy_version =
3430 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3431 	zerocopy_subcap->zerocopy_flags = 0;
3432 
3433 	if (*sc_mp != NULL)
3434 		linkb(*sc_mp, mp);
3435 	else
3436 		*sc_mp = mp;
3437 }
3438 
3439 /*
3440  * Consume a new-style hardware capabilities negotiation ack.
3441  * Called from ip_rput_dlpi_writer().
3442  */
3443 void
3444 ill_capability_ack(ill_t *ill, mblk_t *mp)
3445 {
3446 	dl_capability_ack_t *capp;
3447 	dl_capability_sub_t *subp, *endp;
3448 
3449 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3450 		ill->ill_dlpi_capab_state = IDS_OK;
3451 
3452 	capp = (dl_capability_ack_t *)mp->b_rptr;
3453 
3454 	if (capp->dl_sub_length == 0)
3455 		/* no new-style capabilities */
3456 		return;
3457 
3458 	/* make sure the driver supplied correct dl_sub_length */
3459 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3460 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3461 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3462 		return;
3463 	}
3464 
3465 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3466 	/*
3467 	 * There are sub-capabilities. Process the ones we know about.
3468 	 * Loop until we don't have room for another sub-cap header..
3469 	 */
3470 	for (subp = SC(capp, capp->dl_sub_offset),
3471 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3472 	    subp <= endp;
3473 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3474 
3475 		switch (subp->dl_cap) {
3476 		case DL_CAPAB_ID_WRAPPER:
3477 			ill_capability_id_ack(ill, mp, subp);
3478 			break;
3479 		default:
3480 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3481 			break;
3482 		}
3483 	}
3484 #undef SC
3485 }
3486 
3487 /*
3488  * This routine is called to scan the fragmentation reassembly table for
3489  * the specified ILL for any packets that are starting to smell.
3490  * dead_interval is the maximum time in seconds that will be tolerated.  It
3491  * will either be the value specified in ip_g_frag_timeout, or zero if the
3492  * ILL is shutting down and it is time to blow everything off.
3493  *
3494  * It returns the number of seconds (as a time_t) that the next frag timer
3495  * should be scheduled for, 0 meaning that the timer doesn't need to be
3496  * re-started.  Note that the method of calculating next_timeout isn't
3497  * entirely accurate since time will flow between the time we grab
3498  * current_time and the time we schedule the next timeout.  This isn't a
3499  * big problem since this is the timer for sending an ICMP reassembly time
3500  * exceeded messages, and it doesn't have to be exactly accurate.
3501  *
3502  * This function is
3503  * sometimes called as writer, although this is not required.
3504  */
3505 time_t
3506 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3507 {
3508 	ipfb_t	*ipfb;
3509 	ipfb_t	*endp;
3510 	ipf_t	*ipf;
3511 	ipf_t	*ipfnext;
3512 	mblk_t	*mp;
3513 	time_t	current_time = gethrestime_sec();
3514 	time_t	next_timeout = 0;
3515 	uint32_t	hdr_length;
3516 	mblk_t	*send_icmp_head;
3517 	mblk_t	*send_icmp_head_v6;
3518 	zoneid_t zoneid;
3519 
3520 	ipfb = ill->ill_frag_hash_tbl;
3521 	if (ipfb == NULL)
3522 		return (B_FALSE);
3523 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3524 	/* Walk the frag hash table. */
3525 	for (; ipfb < endp; ipfb++) {
3526 		send_icmp_head = NULL;
3527 		send_icmp_head_v6 = NULL;
3528 		mutex_enter(&ipfb->ipfb_lock);
3529 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3530 			time_t frag_time = current_time - ipf->ipf_timestamp;
3531 			time_t frag_timeout;
3532 
3533 			if (frag_time < dead_interval) {
3534 				/*
3535 				 * There are some outstanding fragments
3536 				 * that will timeout later.  Make note of
3537 				 * the time so that we can reschedule the
3538 				 * next timeout appropriately.
3539 				 */
3540 				frag_timeout = dead_interval - frag_time;
3541 				if (next_timeout == 0 ||
3542 				    frag_timeout < next_timeout) {
3543 					next_timeout = frag_timeout;
3544 				}
3545 				break;
3546 			}
3547 			/* Time's up.  Get it out of here. */
3548 			hdr_length = ipf->ipf_nf_hdr_len;
3549 			ipfnext = ipf->ipf_hash_next;
3550 			if (ipfnext)
3551 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3552 			*ipf->ipf_ptphn = ipfnext;
3553 			mp = ipf->ipf_mp->b_cont;
3554 			for (; mp; mp = mp->b_cont) {
3555 				/* Extra points for neatness. */
3556 				IP_REASS_SET_START(mp, 0);
3557 				IP_REASS_SET_END(mp, 0);
3558 			}
3559 			mp = ipf->ipf_mp->b_cont;
3560 			ill->ill_frag_count -= ipf->ipf_count;
3561 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3562 			ipfb->ipfb_count -= ipf->ipf_count;
3563 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3564 			ipfb->ipfb_frag_pkts--;
3565 			/*
3566 			 * We do not send any icmp message from here because
3567 			 * we currently are holding the ipfb_lock for this
3568 			 * hash chain. If we try and send any icmp messages
3569 			 * from here we may end up via a put back into ip
3570 			 * trying to get the same lock, causing a recursive
3571 			 * mutex panic. Instead we build a list and send all
3572 			 * the icmp messages after we have dropped the lock.
3573 			 */
3574 			if (ill->ill_isv6) {
3575 				BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails);
3576 				if (hdr_length != 0) {
3577 					mp->b_next = send_icmp_head_v6;
3578 					send_icmp_head_v6 = mp;
3579 				} else {
3580 					freemsg(mp);
3581 				}
3582 			} else {
3583 				BUMP_MIB(&ip_mib, ipReasmFails);
3584 				if (hdr_length != 0) {
3585 					mp->b_next = send_icmp_head;
3586 					send_icmp_head = mp;
3587 				} else {
3588 					freemsg(mp);
3589 				}
3590 			}
3591 			freeb(ipf->ipf_mp);
3592 		}
3593 		mutex_exit(&ipfb->ipfb_lock);
3594 		/*
3595 		 * Now need to send any icmp messages that we delayed from
3596 		 * above.
3597 		 */
3598 		while (send_icmp_head_v6 != NULL) {
3599 			ip6_t *ip6h;
3600 
3601 			mp = send_icmp_head_v6;
3602 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3603 			mp->b_next = NULL;
3604 			if (mp->b_datap->db_type == M_CTL)
3605 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3606 			else
3607 				ip6h = (ip6_t *)mp->b_rptr;
3608 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3609 			    ill);
3610 			if (zoneid == ALL_ZONES) {
3611 				freemsg(mp);
3612 			} else {
3613 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3614 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3615 				    B_FALSE, zoneid);
3616 			}
3617 		}
3618 		while (send_icmp_head != NULL) {
3619 			ipaddr_t dst;
3620 
3621 			mp = send_icmp_head;
3622 			send_icmp_head = send_icmp_head->b_next;
3623 			mp->b_next = NULL;
3624 
3625 			if (mp->b_datap->db_type == M_CTL)
3626 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3627 			else
3628 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3629 
3630 			zoneid = ipif_lookup_addr_zoneid(dst, ill);
3631 			if (zoneid == ALL_ZONES) {
3632 				freemsg(mp);
3633 			} else {
3634 				icmp_time_exceeded(ill->ill_wq, mp,
3635 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid);
3636 			}
3637 		}
3638 	}
3639 	/*
3640 	 * A non-dying ILL will use the return value to decide whether to
3641 	 * restart the frag timer, and for how long.
3642 	 */
3643 	return (next_timeout);
3644 }
3645 
3646 /*
3647  * This routine is called when the approximate count of mblk memory used
3648  * for the specified ILL has exceeded max_count.
3649  */
3650 void
3651 ill_frag_prune(ill_t *ill, uint_t max_count)
3652 {
3653 	ipfb_t	*ipfb;
3654 	ipf_t	*ipf;
3655 	size_t	count;
3656 
3657 	/*
3658 	 * If we are here within ip_min_frag_prune_time msecs remove
3659 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3660 	 * ill_frag_free_num_pkts.
3661 	 */
3662 	mutex_enter(&ill->ill_lock);
3663 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3664 	    (ip_min_frag_prune_time != 0 ?
3665 	    ip_min_frag_prune_time : msec_per_tick)) {
3666 
3667 		ill->ill_frag_free_num_pkts++;
3668 
3669 	} else {
3670 		ill->ill_frag_free_num_pkts = 0;
3671 	}
3672 	ill->ill_last_frag_clean_time = lbolt;
3673 	mutex_exit(&ill->ill_lock);
3674 
3675 	/*
3676 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3677 	 */
3678 	if (ill->ill_frag_free_num_pkts != 0) {
3679 		int ix;
3680 
3681 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3682 			ipfb = &ill->ill_frag_hash_tbl[ix];
3683 			mutex_enter(&ipfb->ipfb_lock);
3684 			if (ipfb->ipfb_ipf != NULL) {
3685 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3686 				    ill->ill_frag_free_num_pkts);
3687 			}
3688 			mutex_exit(&ipfb->ipfb_lock);
3689 		}
3690 	}
3691 	/*
3692 	 * While the reassembly list for this ILL is too big, prune a fragment
3693 	 * queue by age, oldest first.  Note that the per ILL count is
3694 	 * approximate, while the per frag hash bucket counts are accurate.
3695 	 */
3696 	while (ill->ill_frag_count > max_count) {
3697 		int	ix;
3698 		ipfb_t	*oipfb = NULL;
3699 		uint_t	oldest = UINT_MAX;
3700 
3701 		count = 0;
3702 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3703 			ipfb = &ill->ill_frag_hash_tbl[ix];
3704 			mutex_enter(&ipfb->ipfb_lock);
3705 			ipf = ipfb->ipfb_ipf;
3706 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3707 				oldest = ipf->ipf_gen;
3708 				oipfb = ipfb;
3709 			}
3710 			count += ipfb->ipfb_count;
3711 			mutex_exit(&ipfb->ipfb_lock);
3712 		}
3713 		/* Refresh the per ILL count */
3714 		ill->ill_frag_count = count;
3715 		if (oipfb == NULL) {
3716 			ill->ill_frag_count = 0;
3717 			break;
3718 		}
3719 		if (count <= max_count)
3720 			return;	/* Somebody beat us to it, nothing to do */
3721 		mutex_enter(&oipfb->ipfb_lock);
3722 		ipf = oipfb->ipfb_ipf;
3723 		if (ipf != NULL) {
3724 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3725 		}
3726 		mutex_exit(&oipfb->ipfb_lock);
3727 	}
3728 }
3729 
3730 /*
3731  * free 'free_cnt' fragmented packets starting at ipf.
3732  */
3733 void
3734 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3735 {
3736 	size_t	count;
3737 	mblk_t	*mp;
3738 	mblk_t	*tmp;
3739 	ipf_t **ipfp = ipf->ipf_ptphn;
3740 
3741 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3742 	ASSERT(ipfp != NULL);
3743 	ASSERT(ipf != NULL);
3744 
3745 	while (ipf != NULL && free_cnt-- > 0) {
3746 		count = ipf->ipf_count;
3747 		mp = ipf->ipf_mp;
3748 		ipf = ipf->ipf_hash_next;
3749 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3750 			IP_REASS_SET_START(tmp, 0);
3751 			IP_REASS_SET_END(tmp, 0);
3752 		}
3753 		ill->ill_frag_count -= count;
3754 		ASSERT(ipfb->ipfb_count >= count);
3755 		ipfb->ipfb_count -= count;
3756 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3757 		ipfb->ipfb_frag_pkts--;
3758 		freemsg(mp);
3759 		BUMP_MIB(&ip_mib, ipReasmFails);
3760 	}
3761 
3762 	if (ipf)
3763 		ipf->ipf_ptphn = ipfp;
3764 	ipfp[0] = ipf;
3765 }
3766 
3767 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3768 	"obsolete and may be removed in a future release of Solaris.  Use " \
3769 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3770 
3771 /*
3772  * For obsolete per-interface forwarding configuration;
3773  * called in response to ND_GET.
3774  */
3775 /* ARGSUSED */
3776 static int
3777 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3778 {
3779 	ill_t *ill = (ill_t *)cp;
3780 
3781 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3782 
3783 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3784 	return (0);
3785 }
3786 
3787 /*
3788  * For obsolete per-interface forwarding configuration;
3789  * called in response to ND_SET.
3790  */
3791 /* ARGSUSED */
3792 static int
3793 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3794     cred_t *ioc_cr)
3795 {
3796 	long value;
3797 	int retval;
3798 
3799 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3800 
3801 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3802 	    value < 0 || value > 1) {
3803 		return (EINVAL);
3804 	}
3805 
3806 	rw_enter(&ill_g_lock, RW_READER);
3807 	retval = ill_forward_set(q, mp, (value != 0), cp);
3808 	rw_exit(&ill_g_lock);
3809 	return (retval);
3810 }
3811 
3812 /*
3813  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
3814  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
3815  * up RTS_IFINFO routing socket messages for each interface whose flags we
3816  * change.
3817  */
3818 /* ARGSUSED */
3819 int
3820 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp)
3821 {
3822 	ill_t *ill = (ill_t *)cp;
3823 	ill_group_t *illgrp;
3824 
3825 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock));
3826 
3827 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3828 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)) ||
3829 	    (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK))
3830 		return (EINVAL);
3831 
3832 	/*
3833 	 * If the ill is in an IPMP group, set the forwarding policy on all
3834 	 * members of the group to the same value.
3835 	 */
3836 	illgrp = ill->ill_group;
3837 	if (illgrp != NULL) {
3838 		ill_t *tmp_ill;
3839 
3840 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
3841 		    tmp_ill = tmp_ill->ill_group_next) {
3842 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3843 			    (enable ? "Enabling" : "Disabling"),
3844 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
3845 			    tmp_ill->ill_name));
3846 			mutex_enter(&tmp_ill->ill_lock);
3847 			if (enable)
3848 				tmp_ill->ill_flags |= ILLF_ROUTER;
3849 			else
3850 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
3851 			mutex_exit(&tmp_ill->ill_lock);
3852 			if (tmp_ill->ill_isv6)
3853 				ill_set_nce_router_flags(tmp_ill, enable);
3854 			/* Notify routing socket listeners of this change. */
3855 			ip_rts_ifmsg(tmp_ill->ill_ipif);
3856 		}
3857 	} else {
3858 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3859 		    (enable ? "Enabling" : "Disabling"),
3860 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3861 		mutex_enter(&ill->ill_lock);
3862 		if (enable)
3863 			ill->ill_flags |= ILLF_ROUTER;
3864 		else
3865 			ill->ill_flags &= ~ILLF_ROUTER;
3866 		mutex_exit(&ill->ill_lock);
3867 		if (ill->ill_isv6)
3868 			ill_set_nce_router_flags(ill, enable);
3869 		/* Notify routing socket listeners of this change. */
3870 		ip_rts_ifmsg(ill->ill_ipif);
3871 	}
3872 
3873 	return (0);
3874 }
3875 
3876 /*
3877  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3878  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3879  * set or clear.
3880  */
3881 static void
3882 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3883 {
3884 	ipif_t *ipif;
3885 	nce_t *nce;
3886 
3887 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3888 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
3889 		if (nce != NULL) {
3890 			mutex_enter(&nce->nce_lock);
3891 			if (enable)
3892 				nce->nce_flags |= NCE_F_ISROUTER;
3893 			else
3894 				nce->nce_flags &= ~NCE_F_ISROUTER;
3895 			mutex_exit(&nce->nce_lock);
3896 			NCE_REFRELE(nce);
3897 		}
3898 	}
3899 }
3900 
3901 /*
3902  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
3903  * for this ill.  Make sure the v6/v4 question has been answered about this
3904  * ill.  The creation of this ndd variable is only for backwards compatibility.
3905  * The preferred way to control per-interface IP forwarding is through the
3906  * ILLF_ROUTER interface flag.
3907  */
3908 static int
3909 ill_set_ndd_name(ill_t *ill)
3910 {
3911 	char *suffix;
3912 
3913 	ASSERT(IAM_WRITER_ILL(ill));
3914 
3915 	if (ill->ill_isv6)
3916 		suffix = ipv6_forward_suffix;
3917 	else
3918 		suffix = ipv4_forward_suffix;
3919 
3920 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
3921 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
3922 	/*
3923 	 * Copies over the '\0'.
3924 	 * Note that strlen(suffix) is always bounded.
3925 	 */
3926 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
3927 	    strlen(suffix) + 1);
3928 
3929 	/*
3930 	 * Use of the nd table requires holding the reader lock.
3931 	 * Modifying the nd table thru nd_load/nd_unload requires
3932 	 * the writer lock.
3933 	 */
3934 	rw_enter(&ip_g_nd_lock, RW_WRITER);
3935 	if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
3936 	    nd_ill_forward_set, (caddr_t)ill)) {
3937 		/*
3938 		 * If the nd_load failed, it only meant that it could not
3939 		 * allocate a new bunch of room for further NDD expansion.
3940 		 * Because of that, the ill_ndd_name will be set to 0, and
3941 		 * this interface is at the mercy of the global ip_forwarding
3942 		 * variable.
3943 		 */
3944 		rw_exit(&ip_g_nd_lock);
3945 		ill->ill_ndd_name = NULL;
3946 		return (ENOMEM);
3947 	}
3948 	rw_exit(&ip_g_nd_lock);
3949 	return (0);
3950 }
3951 
3952 /*
3953  * Intializes the context structure and returns the first ill in the list
3954  * cuurently start_list and end_list can have values:
3955  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
3956  * IP_V4_G_HEAD		Traverse IPV4 list only.
3957  * IP_V6_G_HEAD		Traverse IPV6 list only.
3958  */
3959 
3960 /*
3961  * We don't check for CONDEMNED ills here. Caller must do that if
3962  * necessary under the ill lock.
3963  */
3964 ill_t *
3965 ill_first(int start_list, int end_list, ill_walk_context_t *ctx)
3966 {
3967 	ill_if_t *ifp;
3968 	ill_t *ill;
3969 	avl_tree_t *avl_tree;
3970 
3971 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
3972 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
3973 
3974 	/*
3975 	 * setup the lists to search
3976 	 */
3977 	if (end_list != MAX_G_HEADS) {
3978 		ctx->ctx_current_list = start_list;
3979 		ctx->ctx_last_list = end_list;
3980 	} else {
3981 		ctx->ctx_last_list = MAX_G_HEADS - 1;
3982 		ctx->ctx_current_list = 0;
3983 	}
3984 
3985 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
3986 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list);
3987 		if (ifp != (ill_if_t *)
3988 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) {
3989 			avl_tree = &ifp->illif_avl_by_ppa;
3990 			ill = avl_first(avl_tree);
3991 			/*
3992 			 * ill is guaranteed to be non NULL or ifp should have
3993 			 * not existed.
3994 			 */
3995 			ASSERT(ill != NULL);
3996 			return (ill);
3997 		}
3998 		ctx->ctx_current_list++;
3999 	}
4000 
4001 	return (NULL);
4002 }
4003 
4004 /*
4005  * returns the next ill in the list. ill_first() must have been called
4006  * before calling ill_next() or bad things will happen.
4007  */
4008 
4009 /*
4010  * We don't check for CONDEMNED ills here. Caller must do that if
4011  * necessary under the ill lock.
4012  */
4013 ill_t *
4014 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4015 {
4016 	ill_if_t *ifp;
4017 	ill_t *ill;
4018 
4019 
4020 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
4021 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4022 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list));
4023 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4024 	    AVL_AFTER)) != NULL) {
4025 		return (ill);
4026 	}
4027 
4028 	/* goto next ill_ifp in the list. */
4029 	ifp = lastill->ill_ifptr->illif_next;
4030 
4031 	/* make sure not at end of circular list */
4032 	while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) {
4033 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4034 			return (NULL);
4035 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list);
4036 	}
4037 
4038 	return (avl_first(&ifp->illif_avl_by_ppa));
4039 }
4040 
4041 /*
4042  * Check interface name for correct format which is name+ppa.
4043  * name can contain characters and digits, the right most digits
4044  * make up the ppa number. use of octal is not allowed, name must contain
4045  * a ppa, return pointer to the start of ppa.
4046  * In case of error return NULL.
4047  */
4048 static char *
4049 ill_get_ppa_ptr(char *name)
4050 {
4051 	int namelen = mi_strlen(name);
4052 
4053 	int len = namelen;
4054 
4055 	name += len;
4056 	while (len > 0) {
4057 		name--;
4058 		if (*name < '0' || *name > '9')
4059 			break;
4060 		len--;
4061 	}
4062 
4063 	/* empty string, all digits, or no trailing digits */
4064 	if (len == 0 || len == (int)namelen)
4065 		return (NULL);
4066 
4067 	name++;
4068 	/* check for attempted use of octal */
4069 	if (*name == '0' && len != (int)namelen - 1)
4070 		return (NULL);
4071 	return (name);
4072 }
4073 
4074 /*
4075  * use avl tree to locate the ill.
4076  */
4077 static ill_t *
4078 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4079     ipsq_func_t func, int *error)
4080 {
4081 	char *ppa_ptr = NULL;
4082 	int len;
4083 	uint_t ppa;
4084 	ill_t *ill = NULL;
4085 	ill_if_t *ifp;
4086 	int list;
4087 	ipsq_t *ipsq;
4088 
4089 	if (error != NULL)
4090 		*error = 0;
4091 
4092 	/*
4093 	 * get ppa ptr
4094 	 */
4095 	if (isv6)
4096 		list = IP_V6_G_HEAD;
4097 	else
4098 		list = IP_V4_G_HEAD;
4099 
4100 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4101 		if (error != NULL)
4102 			*error = ENXIO;
4103 		return (NULL);
4104 	}
4105 
4106 	len = ppa_ptr - name + 1;
4107 
4108 	ppa = stoi(&ppa_ptr);
4109 
4110 	ifp = IP_VX_ILL_G_LIST(list);
4111 
4112 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) {
4113 		/*
4114 		 * match is done on len - 1 as the name is not null
4115 		 * terminated it contains ppa in addition to the interface
4116 		 * name.
4117 		 */
4118 		if ((ifp->illif_name_len == len) &&
4119 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4120 			break;
4121 		} else {
4122 			ifp = ifp->illif_next;
4123 		}
4124 	}
4125 
4126 
4127 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) {
4128 		/*
4129 		 * Even the interface type does not exist.
4130 		 */
4131 		if (error != NULL)
4132 			*error = ENXIO;
4133 		return (NULL);
4134 	}
4135 
4136 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4137 	if (ill != NULL) {
4138 		/*
4139 		 * The block comment at the start of ipif_down
4140 		 * explains the use of the macros used below
4141 		 */
4142 		GRAB_CONN_LOCK(q);
4143 		mutex_enter(&ill->ill_lock);
4144 		if (ILL_CAN_LOOKUP(ill)) {
4145 			ill_refhold_locked(ill);
4146 			mutex_exit(&ill->ill_lock);
4147 			RELEASE_CONN_LOCK(q);
4148 			return (ill);
4149 		} else if (ILL_CAN_WAIT(ill, q)) {
4150 			ipsq = ill->ill_phyint->phyint_ipsq;
4151 			mutex_enter(&ipsq->ipsq_lock);
4152 			mutex_exit(&ill->ill_lock);
4153 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4154 			mutex_exit(&ipsq->ipsq_lock);
4155 			RELEASE_CONN_LOCK(q);
4156 			*error = EINPROGRESS;
4157 			return (NULL);
4158 		}
4159 		mutex_exit(&ill->ill_lock);
4160 		RELEASE_CONN_LOCK(q);
4161 	}
4162 	if (error != NULL)
4163 		*error = ENXIO;
4164 	return (NULL);
4165 }
4166 
4167 /*
4168  * comparison function for use with avl.
4169  */
4170 static int
4171 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4172 {
4173 	uint_t ppa;
4174 	uint_t ill_ppa;
4175 
4176 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4177 
4178 	ppa = *((uint_t *)ppa_ptr);
4179 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4180 	/*
4181 	 * We want the ill with the lowest ppa to be on the
4182 	 * top.
4183 	 */
4184 	if (ill_ppa < ppa)
4185 		return (1);
4186 	if (ill_ppa > ppa)
4187 		return (-1);
4188 	return (0);
4189 }
4190 
4191 /*
4192  * remove an interface type from the global list.
4193  */
4194 static void
4195 ill_delete_interface_type(ill_if_t *interface)
4196 {
4197 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
4198 
4199 	ASSERT(interface != NULL);
4200 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4201 
4202 	avl_destroy(&interface->illif_avl_by_ppa);
4203 	if (interface->illif_ppa_arena != NULL)
4204 		vmem_destroy(interface->illif_ppa_arena);
4205 
4206 	remque(interface);
4207 
4208 	mi_free(interface);
4209 }
4210 
4211 /* Defined in ip_netinfo.c */
4212 extern ddi_taskq_t	*eventq_queue_nic;
4213 
4214 /*
4215  * remove ill from the global list.
4216  */
4217 static void
4218 ill_glist_delete(ill_t *ill)
4219 {
4220 	char *nicname;
4221 	size_t nicnamelen;
4222 	hook_nic_event_t *info;
4223 
4224 	if (ill == NULL)
4225 		return;
4226 
4227 	rw_enter(&ill_g_lock, RW_WRITER);
4228 
4229 	if (ill->ill_name != NULL) {
4230 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4231 		if (nicname != NULL) {
4232 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4233 			nicnamelen = ill->ill_name_length;
4234 		}
4235 	} else {
4236 		nicname = NULL;
4237 		nicnamelen = 0;
4238 	}
4239 
4240 	/*
4241 	 * If the ill was never inserted into the AVL tree
4242 	 * we skip the if branch.
4243 	 */
4244 	if (ill->ill_ifptr != NULL) {
4245 		/*
4246 		 * remove from AVL tree and free ppa number
4247 		 */
4248 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4249 
4250 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4251 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4252 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4253 		}
4254 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4255 			ill_delete_interface_type(ill->ill_ifptr);
4256 		}
4257 
4258 		/*
4259 		 * Indicate ill is no longer in the list.
4260 		 */
4261 		ill->ill_ifptr = NULL;
4262 		ill->ill_name_length = 0;
4263 		ill->ill_name[0] = '\0';
4264 		ill->ill_ppa = UINT_MAX;
4265 	}
4266 
4267 	/*
4268 	 * Run the unplumb hook after the NIC has disappeared from being
4269 	 * visible so that attempts to revalidate its existance will fail.
4270 	 *
4271 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4272 	 * that the ordering of delivered events to listeners matches the
4273 	 * order of them in the kernel.
4274 	 */
4275 	if ((info = ill->ill_nic_event_info) != NULL) {
4276 		if (info->hne_event != NE_DOWN) {
4277 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4278 			    "attached for %s\n", info->hne_event,
4279 			    ill->ill_name));
4280 			if (info->hne_data != NULL)
4281 				kmem_free(info->hne_data, info->hne_datalen);
4282 			kmem_free(info, sizeof (hook_nic_event_t));
4283 		} else {
4284 			if (ddi_taskq_dispatch(eventq_queue_nic,
4285 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4286 			    == DDI_FAILURE) {
4287 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4288 				    "failed\n"));
4289 				if (info->hne_data != NULL)
4290 					kmem_free(info->hne_data,
4291 					    info->hne_datalen);
4292 				kmem_free(info, sizeof (hook_nic_event_t));
4293 			}
4294 		}
4295 	}
4296 
4297 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4298 	if (info != NULL) {
4299 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4300 		info->hne_lif = 0;
4301 		info->hne_event = NE_UNPLUMB;
4302 		info->hne_data = nicname;
4303 		info->hne_datalen = nicnamelen;
4304 		info->hne_family = ill->ill_isv6 ? ipv6 : ipv4;
4305 	} else {
4306 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4307 		    "information for %s (ENOMEM)\n", ill->ill_name));
4308 		if (nicname != NULL)
4309 			kmem_free(nicname, nicnamelen);
4310 	}
4311 
4312 	ill->ill_nic_event_info = info;
4313 
4314 	ill_phyint_free(ill);
4315 
4316 	rw_exit(&ill_g_lock);
4317 }
4318 
4319 /*
4320  * allocate a ppa, if the number of plumbed interfaces of this type are
4321  * less than ill_no_arena do a linear search to find a unused ppa.
4322  * When the number goes beyond ill_no_arena switch to using an arena.
4323  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4324  * is the return value for an error condition, so allocation starts at one
4325  * and is decremented by one.
4326  */
4327 static int
4328 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4329 {
4330 	ill_t *tmp_ill;
4331 	uint_t start, end;
4332 	int ppa;
4333 
4334 	if (ifp->illif_ppa_arena == NULL &&
4335 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4336 		/*
4337 		 * Create an arena.
4338 		 */
4339 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4340 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4341 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4342 			/* allocate what has already been assigned */
4343 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4344 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4345 		    tmp_ill, AVL_AFTER)) {
4346 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4347 			    1,		/* size */
4348 			    1,		/* align/quantum */
4349 			    0,		/* phase */
4350 			    0,		/* nocross */
4351 		(void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */
4352 		(void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */
4353 			    VM_NOSLEEP|VM_FIRSTFIT);
4354 			if (ppa == 0) {
4355 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4356 				    " failed while switching"));
4357 				vmem_destroy(ifp->illif_ppa_arena);
4358 				ifp->illif_ppa_arena = NULL;
4359 				break;
4360 			}
4361 		}
4362 	}
4363 
4364 	if (ifp->illif_ppa_arena != NULL) {
4365 		if (ill->ill_ppa == UINT_MAX) {
4366 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4367 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4368 			if (ppa == 0)
4369 				return (EAGAIN);
4370 			ill->ill_ppa = --ppa;
4371 		} else {
4372 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4373 			    1, 		/* size */
4374 			    1, 		/* align/quantum */
4375 			    0, 		/* phase */
4376 			    0, 		/* nocross */
4377 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4378 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4379 			    VM_NOSLEEP|VM_FIRSTFIT);
4380 			/*
4381 			 * Most likely the allocation failed because
4382 			 * the requested ppa was in use.
4383 			 */
4384 			if (ppa == 0)
4385 				return (EEXIST);
4386 		}
4387 		return (0);
4388 	}
4389 
4390 	/*
4391 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4392 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4393 	 */
4394 	if (ill->ill_ppa == UINT_MAX) {
4395 		end = UINT_MAX - 1;
4396 		start = 0;
4397 	} else {
4398 		end = start = ill->ill_ppa;
4399 	}
4400 
4401 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4402 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4403 		if (start++ >= end) {
4404 			if (ill->ill_ppa == UINT_MAX)
4405 				return (EAGAIN);
4406 			else
4407 				return (EEXIST);
4408 		}
4409 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4410 	}
4411 	ill->ill_ppa = start;
4412 	return (0);
4413 }
4414 
4415 /*
4416  * Insert ill into the list of configured ill's. Once this function completes,
4417  * the ill is globally visible and is available through lookups. More precisely
4418  * this happens after the caller drops the ill_g_lock.
4419  */
4420 static int
4421 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4422 {
4423 	ill_if_t *ill_interface;
4424 	avl_index_t where = 0;
4425 	int error;
4426 	int name_length;
4427 	int index;
4428 	boolean_t check_length = B_FALSE;
4429 
4430 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
4431 
4432 	name_length = mi_strlen(name) + 1;
4433 
4434 	if (isv6)
4435 		index = IP_V6_G_HEAD;
4436 	else
4437 		index = IP_V4_G_HEAD;
4438 
4439 	ill_interface = IP_VX_ILL_G_LIST(index);
4440 	/*
4441 	 * Search for interface type based on name
4442 	 */
4443 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) {
4444 		if ((ill_interface->illif_name_len == name_length) &&
4445 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4446 			break;
4447 		}
4448 		ill_interface = ill_interface->illif_next;
4449 	}
4450 
4451 	/*
4452 	 * Interface type not found, create one.
4453 	 */
4454 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) {
4455 
4456 		ill_g_head_t ghead;
4457 
4458 		/*
4459 		 * allocate ill_if_t structure
4460 		 */
4461 
4462 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4463 		if (ill_interface == NULL) {
4464 			return (ENOMEM);
4465 		}
4466 
4467 
4468 
4469 		(void) strcpy(ill_interface->illif_name, name);
4470 		ill_interface->illif_name_len = name_length;
4471 
4472 		avl_create(&ill_interface->illif_avl_by_ppa,
4473 		    ill_compare_ppa, sizeof (ill_t),
4474 		    offsetof(struct ill_s, ill_avl_byppa));
4475 
4476 		/*
4477 		 * link the structure in the back to maintain order
4478 		 * of configuration for ifconfig output.
4479 		 */
4480 		ghead = ill_g_heads[index];
4481 		insque(ill_interface, ghead.ill_g_list_tail);
4482 
4483 	}
4484 
4485 	if (ill->ill_ppa == UINT_MAX)
4486 		check_length = B_TRUE;
4487 
4488 	error = ill_alloc_ppa(ill_interface, ill);
4489 	if (error != 0) {
4490 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4491 			ill_delete_interface_type(ill->ill_ifptr);
4492 		return (error);
4493 	}
4494 
4495 	/*
4496 	 * When the ppa is choosen by the system, check that there is
4497 	 * enough space to insert ppa. if a specific ppa was passed in this
4498 	 * check is not required as the interface name passed in will have
4499 	 * the right ppa in it.
4500 	 */
4501 	if (check_length) {
4502 		/*
4503 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4504 		 */
4505 		char buf[sizeof (uint_t) * 3];
4506 
4507 		/*
4508 		 * convert ppa to string to calculate the amount of space
4509 		 * required for it in the name.
4510 		 */
4511 		numtos(ill->ill_ppa, buf);
4512 
4513 		/* Do we have enough space to insert ppa ? */
4514 
4515 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4516 			/* Free ppa and interface type struct */
4517 			if (ill_interface->illif_ppa_arena != NULL) {
4518 				vmem_free(ill_interface->illif_ppa_arena,
4519 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4520 			}
4521 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4522 			    0) {
4523 				ill_delete_interface_type(ill->ill_ifptr);
4524 			}
4525 
4526 			return (EINVAL);
4527 		}
4528 	}
4529 
4530 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4531 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4532 
4533 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4534 	    &where);
4535 	ill->ill_ifptr = ill_interface;
4536 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4537 
4538 	ill_phyint_reinit(ill);
4539 	return (0);
4540 }
4541 
4542 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4543 static boolean_t
4544 ipsq_init(ill_t *ill)
4545 {
4546 	ipsq_t  *ipsq;
4547 
4548 	/* Init the ipsq and impicitly enter as writer */
4549 	ill->ill_phyint->phyint_ipsq =
4550 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4551 	if (ill->ill_phyint->phyint_ipsq == NULL)
4552 		return (B_FALSE);
4553 	ipsq = ill->ill_phyint->phyint_ipsq;
4554 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4555 	ill->ill_phyint->phyint_ipsq_next = NULL;
4556 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4557 	ipsq->ipsq_refs = 1;
4558 	ipsq->ipsq_writer = curthread;
4559 	ipsq->ipsq_reentry_cnt = 1;
4560 #ifdef ILL_DEBUG
4561 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH);
4562 #endif
4563 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4564 	return (B_TRUE);
4565 }
4566 
4567 /*
4568  * ill_init is called by ip_open when a device control stream is opened.
4569  * It does a few initializations, and shoots a DL_INFO_REQ message down
4570  * to the driver.  The response is later picked up in ip_rput_dlpi and
4571  * used to set up default mechanisms for talking to the driver.  (Always
4572  * called as writer.)
4573  *
4574  * If this function returns error, ip_open will call ip_close which in
4575  * turn will call ill_delete to clean up any memory allocated here that
4576  * is not yet freed.
4577  */
4578 int
4579 ill_init(queue_t *q, ill_t *ill)
4580 {
4581 	int	count;
4582 	dl_info_req_t	*dlir;
4583 	mblk_t	*info_mp;
4584 	uchar_t *frag_ptr;
4585 
4586 	/*
4587 	 * The ill is initialized to zero by mi_alloc*(). In addition
4588 	 * some fields already contain valid values, initialized in
4589 	 * ip_open(), before we reach here.
4590 	 */
4591 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4592 
4593 	ill->ill_rq = q;
4594 	ill->ill_wq = WR(q);
4595 
4596 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4597 	    BPRI_HI);
4598 	if (info_mp == NULL)
4599 		return (ENOMEM);
4600 
4601 	/*
4602 	 * Allocate sufficient space to contain our fragment hash table and
4603 	 * the device name.
4604 	 */
4605 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4606 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4607 	if (frag_ptr == NULL) {
4608 		freemsg(info_mp);
4609 		return (ENOMEM);
4610 	}
4611 	ill->ill_frag_ptr = frag_ptr;
4612 	ill->ill_frag_free_num_pkts = 0;
4613 	ill->ill_last_frag_clean_time = 0;
4614 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4615 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4616 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4617 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4618 		    NULL, MUTEX_DEFAULT, NULL);
4619 	}
4620 
4621 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4622 	if (ill->ill_phyint == NULL) {
4623 		freemsg(info_mp);
4624 		mi_free(frag_ptr);
4625 		return (ENOMEM);
4626 	}
4627 
4628 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4629 	/*
4630 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4631 	 * at this point because of the following reason. If we can't
4632 	 * enter the ipsq at some point and cv_wait, the writer that
4633 	 * wakes us up tries to locate us using the list of all phyints
4634 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4635 	 * If we don't set it now, we risk a missed wakeup.
4636 	 */
4637 	ill->ill_phyint->phyint_illv4 = ill;
4638 	ill->ill_ppa = UINT_MAX;
4639 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4640 
4641 	if (!ipsq_init(ill)) {
4642 		freemsg(info_mp);
4643 		mi_free(frag_ptr);
4644 		mi_free(ill->ill_phyint);
4645 		return (ENOMEM);
4646 	}
4647 
4648 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4649 
4650 
4651 	/* Frag queue limit stuff */
4652 	ill->ill_frag_count = 0;
4653 	ill->ill_ipf_gen = 0;
4654 
4655 	ill->ill_global_timer = INFINITY;
4656 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
4657 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4658 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4659 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4660 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4661 
4662 	/*
4663 	 * Initialize IPv6 configuration variables.  The IP module is always
4664 	 * opened as an IPv4 module.  Instead tracking down the cases where
4665 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4666 	 * here for convenience, this has no effect until the ill is set to do
4667 	 * IPv6.
4668 	 */
4669 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4670 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4671 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4672 	ill->ill_max_buf = ND_MAX_Q;
4673 	ill->ill_refcnt = 0;
4674 
4675 	/* Send down the Info Request to the driver. */
4676 	info_mp->b_datap->db_type = M_PCPROTO;
4677 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4678 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4679 	dlir->dl_primitive = DL_INFO_REQ;
4680 
4681 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4682 
4683 	qprocson(q);
4684 	ill_dlpi_send(ill, info_mp);
4685 
4686 	return (0);
4687 }
4688 
4689 /*
4690  * ill_dls_info
4691  * creates datalink socket info from the device.
4692  */
4693 int
4694 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4695 {
4696 	size_t	length;
4697 	ill_t	*ill = ipif->ipif_ill;
4698 
4699 	sdl->sdl_family = AF_LINK;
4700 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4701 	sdl->sdl_type = ipif->ipif_type;
4702 	(void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4703 	length = mi_strlen(sdl->sdl_data);
4704 	ASSERT(length < 256);
4705 	sdl->sdl_nlen = (uchar_t)length;
4706 	sdl->sdl_alen = ill->ill_phys_addr_length;
4707 	mutex_enter(&ill->ill_lock);
4708 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) {
4709 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[length],
4710 		    ill->ill_phys_addr_length);
4711 	}
4712 	mutex_exit(&ill->ill_lock);
4713 	sdl->sdl_slen = 0;
4714 	return (sizeof (struct sockaddr_dl));
4715 }
4716 
4717 /*
4718  * ill_xarp_info
4719  * creates xarp info from the device.
4720  */
4721 static int
4722 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4723 {
4724 	sdl->sdl_family = AF_LINK;
4725 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4726 	sdl->sdl_type = ill->ill_type;
4727 	(void) ipif_get_name(ill->ill_ipif, sdl->sdl_data,
4728 	    sizeof (sdl->sdl_data));
4729 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4730 	sdl->sdl_alen = ill->ill_phys_addr_length;
4731 	sdl->sdl_slen = 0;
4732 	return (sdl->sdl_nlen);
4733 }
4734 
4735 static int
4736 loopback_kstat_update(kstat_t *ksp, int rw)
4737 {
4738 	kstat_named_t *kn = KSTAT_NAMED_PTR(ksp);
4739 
4740 	if (rw == KSTAT_WRITE)
4741 		return (EACCES);
4742 	kn[0].value.ui32 = loopback_packets;
4743 	kn[1].value.ui32 = loopback_packets;
4744 	return (0);
4745 }
4746 
4747 
4748 /*
4749  * Has ifindex been plumbed already.
4750  */
4751 static boolean_t
4752 phyint_exists(uint_t index)
4753 {
4754 	phyint_t *phyi;
4755 
4756 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
4757 	/*
4758 	 * Indexes are stored in the phyint - a common structure
4759 	 * to both IPv4 and IPv6.
4760 	 */
4761 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index,
4762 	    (void *) &index, NULL);
4763 	return (phyi != NULL);
4764 }
4765 
4766 /*
4767  * Assign a unique interface index for the phyint.
4768  */
4769 static boolean_t
4770 phyint_assign_ifindex(phyint_t *phyi)
4771 {
4772 	uint_t starting_index;
4773 
4774 	ASSERT(phyi->phyint_ifindex == 0);
4775 	if (!ill_index_wrap) {
4776 		phyi->phyint_ifindex = ill_index++;
4777 		if (ill_index == 0) {
4778 			/* Reached the uint_t limit Next time wrap  */
4779 			ill_index_wrap = B_TRUE;
4780 		}
4781 		return (B_TRUE);
4782 	}
4783 
4784 	/*
4785 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4786 	 * at this point and don't want to call any function that attempts
4787 	 * to get the lock again.
4788 	 */
4789 	starting_index = ill_index++;
4790 	for (; ill_index != starting_index; ill_index++) {
4791 		if (ill_index != 0 && !phyint_exists(ill_index)) {
4792 			/* found unused index - use it */
4793 			phyi->phyint_ifindex = ill_index;
4794 			return (B_TRUE);
4795 		}
4796 	}
4797 
4798 	/*
4799 	 * all interface indicies are inuse.
4800 	 */
4801 	return (B_FALSE);
4802 }
4803 
4804 /*
4805  * Return a pointer to the ill which matches the supplied name.  Note that
4806  * the ill name length includes the null termination character.  (May be
4807  * called as writer.)
4808  * If do_alloc and the interface is "lo0" it will be automatically created.
4809  * Cannot bump up reference on condemned ills. So dup detect can't be done
4810  * using this func.
4811  */
4812 ill_t *
4813 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4814     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc)
4815 {
4816 	ill_t	*ill;
4817 	ipif_t	*ipif;
4818 	kstat_named_t	*kn;
4819 	boolean_t isloopback;
4820 	ipsq_t *old_ipsq;
4821 
4822 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4823 
4824 	rw_enter(&ill_g_lock, RW_READER);
4825 	ill = ill_find_by_name(name, isv6, q, mp, func, error);
4826 	rw_exit(&ill_g_lock);
4827 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4828 		return (ill);
4829 
4830 	/*
4831 	 * Couldn't find it.  Does this happen to be a lookup for the
4832 	 * loopback device and are we allowed to allocate it?
4833 	 */
4834 	if (!isloopback || !do_alloc)
4835 		return (NULL);
4836 
4837 	rw_enter(&ill_g_lock, RW_WRITER);
4838 
4839 	ill = ill_find_by_name(name, isv6, q, mp, func, error);
4840 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4841 		rw_exit(&ill_g_lock);
4842 		return (ill);
4843 	}
4844 
4845 	/* Create the loopback device on demand */
4846 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4847 	    sizeof (ipif_loopback_name), BPRI_MED));
4848 	if (ill == NULL)
4849 		goto done;
4850 
4851 	*ill = ill_null;
4852 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4853 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4854 	if (ill->ill_phyint == NULL)
4855 		goto done;
4856 
4857 	if (isv6)
4858 		ill->ill_phyint->phyint_illv6 = ill;
4859 	else
4860 		ill->ill_phyint->phyint_illv4 = ill;
4861 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4862 	ill->ill_max_frag = IP_LOOPBACK_MTU;
4863 	/* Add room for tcp+ip headers */
4864 	if (isv6) {
4865 		ill->ill_isv6 = B_TRUE;
4866 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
4867 		if (!ill_allocate_mibs(ill))
4868 			goto done;
4869 	} else {
4870 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
4871 	}
4872 	ill->ill_max_mtu = ill->ill_max_frag;
4873 	/*
4874 	 * ipif_loopback_name can't be pointed at directly because its used
4875 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
4876 	 * from the glist, ill_glist_delete() sets the first character of
4877 	 * ill_name to '\0'.
4878 	 */
4879 	ill->ill_name = (char *)ill + sizeof (*ill);
4880 	(void) strcpy(ill->ill_name, ipif_loopback_name);
4881 	ill->ill_name_length = sizeof (ipif_loopback_name);
4882 	/* Set ill_name_set for ill_phyint_reinit to work properly */
4883 
4884 	ill->ill_global_timer = INFINITY;
4885 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
4886 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4887 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4888 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4889 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4890 
4891 	/* No resolver here. */
4892 	ill->ill_net_type = IRE_LOOPBACK;
4893 
4894 	/* Initialize the ipsq */
4895 	if (!ipsq_init(ill))
4896 		goto done;
4897 
4898 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
4899 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
4900 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
4901 #ifdef ILL_DEBUG
4902 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
4903 #endif
4904 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
4905 	if (ipif == NULL)
4906 		goto done;
4907 
4908 	ill->ill_flags = ILLF_MULTICAST;
4909 
4910 	/* Set up default loopback address and mask. */
4911 	if (!isv6) {
4912 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
4913 
4914 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
4915 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4916 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
4917 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4918 		    ipif->ipif_v6subnet);
4919 		ill->ill_flags |= ILLF_IPV4;
4920 	} else {
4921 		ipif->ipif_v6lcl_addr = ipv6_loopback;
4922 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4923 		ipif->ipif_v6net_mask = ipv6_all_ones;
4924 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4925 		    ipif->ipif_v6subnet);
4926 		ill->ill_flags |= ILLF_IPV6;
4927 	}
4928 
4929 	/*
4930 	 * Chain us in at the end of the ill list. hold the ill
4931 	 * before we make it globally visible. 1 for the lookup.
4932 	 */
4933 	ill->ill_refcnt = 0;
4934 	ill_refhold(ill);
4935 
4936 	ill->ill_frag_count = 0;
4937 	ill->ill_frag_free_num_pkts = 0;
4938 	ill->ill_last_frag_clean_time = 0;
4939 
4940 	old_ipsq = ill->ill_phyint->phyint_ipsq;
4941 
4942 	if (ill_glist_insert(ill, "lo", isv6) != 0)
4943 		cmn_err(CE_PANIC, "cannot insert loopback interface");
4944 
4945 	/* Let SCTP know so that it can add this to its list */
4946 	sctp_update_ill(ill, SCTP_ILL_INSERT);
4947 
4948 	/* Let SCTP know about this IPIF, so that it can add it to its list */
4949 	sctp_update_ipif(ipif, SCTP_IPIF_INSERT);
4950 
4951 	/*
4952 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
4953 	 */
4954 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
4955 		/* Loopback ills aren't in any IPMP group */
4956 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
4957 		ipsq_delete(old_ipsq);
4958 	}
4959 
4960 	/*
4961 	 * Delay this till the ipif is allocated as ipif_allocate
4962 	 * de-references ill_phyint for getting the ifindex. We
4963 	 * can't do this before ipif_allocate because ill_phyint_reinit
4964 	 * -> phyint_assign_ifindex expects ipif to be present.
4965 	 */
4966 	mutex_enter(&ill->ill_phyint->phyint_lock);
4967 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
4968 	mutex_exit(&ill->ill_phyint->phyint_lock);
4969 
4970 	if (loopback_ksp == NULL) {
4971 		/* Export loopback interface statistics */
4972 		loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net",
4973 		    KSTAT_TYPE_NAMED, 2, 0);
4974 		if (loopback_ksp != NULL) {
4975 			loopback_ksp->ks_update = loopback_kstat_update;
4976 			kn = KSTAT_NAMED_PTR(loopback_ksp);
4977 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
4978 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
4979 			kstat_install(loopback_ksp);
4980 		}
4981 	}
4982 
4983 	if (error != NULL)
4984 		*error = 0;
4985 	*did_alloc = B_TRUE;
4986 	rw_exit(&ill_g_lock);
4987 	return (ill);
4988 done:
4989 	if (ill != NULL) {
4990 		if (ill->ill_phyint != NULL) {
4991 			ipsq_t	*ipsq;
4992 
4993 			ipsq = ill->ill_phyint->phyint_ipsq;
4994 			if (ipsq != NULL)
4995 				kmem_free(ipsq, sizeof (ipsq_t));
4996 			mi_free(ill->ill_phyint);
4997 		}
4998 		ill_free_mib(ill);
4999 		mi_free(ill);
5000 	}
5001 	rw_exit(&ill_g_lock);
5002 	if (error != NULL)
5003 		*error = ENOMEM;
5004 	return (NULL);
5005 }
5006 
5007 /*
5008  * Return a pointer to the ill which matches the index and IP version type.
5009  */
5010 ill_t *
5011 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5012     ipsq_func_t func, int *err)
5013 {
5014 	ill_t	*ill;
5015 	ipsq_t  *ipsq;
5016 	phyint_t *phyi;
5017 
5018 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5019 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5020 
5021 	if (err != NULL)
5022 		*err = 0;
5023 
5024 	/*
5025 	 * Indexes are stored in the phyint - a common structure
5026 	 * to both IPv4 and IPv6.
5027 	 */
5028 	rw_enter(&ill_g_lock, RW_READER);
5029 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index,
5030 	    (void *) &index, NULL);
5031 	if (phyi != NULL) {
5032 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5033 		if (ill != NULL) {
5034 			/*
5035 			 * The block comment at the start of ipif_down
5036 			 * explains the use of the macros used below
5037 			 */
5038 			GRAB_CONN_LOCK(q);
5039 			mutex_enter(&ill->ill_lock);
5040 			if (ILL_CAN_LOOKUP(ill)) {
5041 				ill_refhold_locked(ill);
5042 				mutex_exit(&ill->ill_lock);
5043 				RELEASE_CONN_LOCK(q);
5044 				rw_exit(&ill_g_lock);
5045 				return (ill);
5046 			} else if (ILL_CAN_WAIT(ill, q)) {
5047 				ipsq = ill->ill_phyint->phyint_ipsq;
5048 				mutex_enter(&ipsq->ipsq_lock);
5049 				rw_exit(&ill_g_lock);
5050 				mutex_exit(&ill->ill_lock);
5051 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5052 				mutex_exit(&ipsq->ipsq_lock);
5053 				RELEASE_CONN_LOCK(q);
5054 				*err = EINPROGRESS;
5055 				return (NULL);
5056 			}
5057 			RELEASE_CONN_LOCK(q);
5058 			mutex_exit(&ill->ill_lock);
5059 		}
5060 	}
5061 	rw_exit(&ill_g_lock);
5062 	if (err != NULL)
5063 		*err = ENXIO;
5064 	return (NULL);
5065 }
5066 
5067 /*
5068  * Return the ifindex next in sequence after the passed in ifindex.
5069  * If there is no next ifindex for the given protocol, return 0.
5070  */
5071 uint_t
5072 ill_get_next_ifindex(uint_t index, boolean_t isv6)
5073 {
5074 	phyint_t *phyi;
5075 	phyint_t *phyi_initial;
5076 	uint_t   ifindex;
5077 
5078 	rw_enter(&ill_g_lock, RW_READER);
5079 
5080 	if (index == 0) {
5081 		phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index);
5082 	} else {
5083 		phyi = phyi_initial = avl_find(
5084 		    &phyint_g_list.phyint_list_avl_by_index,
5085 		    (void *) &index, NULL);
5086 	}
5087 
5088 	for (; phyi != NULL;
5089 	    phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index,
5090 	    phyi, AVL_AFTER)) {
5091 		/*
5092 		 * If we're not returning the first interface in the tree
5093 		 * and we still haven't moved past the phyint_t that
5094 		 * corresponds to index, avl_walk needs to be called again
5095 		 */
5096 		if (!((index != 0) && (phyi == phyi_initial))) {
5097 			if (isv6) {
5098 				if ((phyi->phyint_illv6) &&
5099 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5100 				    (phyi->phyint_illv6->ill_isv6 == 1))
5101 					break;
5102 			} else {
5103 				if ((phyi->phyint_illv4) &&
5104 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5105 				    (phyi->phyint_illv4->ill_isv6 == 0))
5106 					break;
5107 			}
5108 		}
5109 	}
5110 
5111 	rw_exit(&ill_g_lock);
5112 
5113 	if (phyi != NULL)
5114 		ifindex = phyi->phyint_ifindex;
5115 	else
5116 		ifindex = 0;
5117 
5118 	return (ifindex);
5119 }
5120 
5121 
5122 /*
5123  * Return the ifindex for the named interface.
5124  * If there is no next ifindex for the interface, return 0.
5125  */
5126 uint_t
5127 ill_get_ifindex_by_name(char *name)
5128 {
5129 	phyint_t	*phyi;
5130 	avl_index_t	where = 0;
5131 	uint_t		ifindex;
5132 
5133 	rw_enter(&ill_g_lock, RW_READER);
5134 
5135 	if ((phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name,
5136 	    name, &where)) == NULL) {
5137 		rw_exit(&ill_g_lock);
5138 		return (0);
5139 	}
5140 
5141 	ifindex = phyi->phyint_ifindex;
5142 
5143 	rw_exit(&ill_g_lock);
5144 
5145 	return (ifindex);
5146 }
5147 
5148 
5149 /*
5150  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5151  * that gives a running thread a reference to the ill. This reference must be
5152  * released by the thread when it is done accessing the ill and related
5153  * objects. ill_refcnt can not be used to account for static references
5154  * such as other structures pointing to an ill. Callers must generally
5155  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5156  * or be sure that the ill is not being deleted or changing state before
5157  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5158  * ill won't change any of its critical state such as address, netmask etc.
5159  */
5160 void
5161 ill_refhold(ill_t *ill)
5162 {
5163 	mutex_enter(&ill->ill_lock);
5164 	ill->ill_refcnt++;
5165 	ILL_TRACE_REF(ill);
5166 	mutex_exit(&ill->ill_lock);
5167 }
5168 
5169 void
5170 ill_refhold_locked(ill_t *ill)
5171 {
5172 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5173 	ill->ill_refcnt++;
5174 	ILL_TRACE_REF(ill);
5175 }
5176 
5177 int
5178 ill_check_and_refhold(ill_t *ill)
5179 {
5180 	mutex_enter(&ill->ill_lock);
5181 	if (ILL_CAN_LOOKUP(ill)) {
5182 		ill_refhold_locked(ill);
5183 		mutex_exit(&ill->ill_lock);
5184 		return (0);
5185 	}
5186 	mutex_exit(&ill->ill_lock);
5187 	return (ILL_LOOKUP_FAILED);
5188 }
5189 
5190 /*
5191  * Must not be called while holding any locks. Otherwise if this is
5192  * the last reference to be released, there is a chance of recursive mutex
5193  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5194  * to restart an ioctl.
5195  */
5196 void
5197 ill_refrele(ill_t *ill)
5198 {
5199 	mutex_enter(&ill->ill_lock);
5200 	ASSERT(ill->ill_refcnt != 0);
5201 	ill->ill_refcnt--;
5202 	ILL_UNTRACE_REF(ill);
5203 	if (ill->ill_refcnt != 0) {
5204 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5205 		mutex_exit(&ill->ill_lock);
5206 		return;
5207 	}
5208 
5209 	/* Drops the ill_lock */
5210 	ipif_ill_refrele_tail(ill);
5211 }
5212 
5213 /*
5214  * Obtain a weak reference count on the ill. This reference ensures the
5215  * ill won't be freed, but the ill may change any of its critical state
5216  * such as netmask, address etc. Returns an error if the ill has started
5217  * closing.
5218  */
5219 boolean_t
5220 ill_waiter_inc(ill_t *ill)
5221 {
5222 	mutex_enter(&ill->ill_lock);
5223 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5224 		mutex_exit(&ill->ill_lock);
5225 		return (B_FALSE);
5226 	}
5227 	ill->ill_waiters++;
5228 	mutex_exit(&ill->ill_lock);
5229 	return (B_TRUE);
5230 }
5231 
5232 void
5233 ill_waiter_dcr(ill_t *ill)
5234 {
5235 	mutex_enter(&ill->ill_lock);
5236 	ill->ill_waiters--;
5237 	if (ill->ill_waiters == 0)
5238 		cv_broadcast(&ill->ill_cv);
5239 	mutex_exit(&ill->ill_lock);
5240 }
5241 
5242 /*
5243  * Named Dispatch routine to produce a formatted report on all ILLs.
5244  * This report is accessed by using the ndd utility to "get" ND variable
5245  * "ip_ill_status".
5246  */
5247 /* ARGSUSED */
5248 int
5249 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5250 {
5251 	ill_t		*ill;
5252 	ill_walk_context_t ctx;
5253 
5254 	(void) mi_mpprintf(mp,
5255 	    "ILL      " MI_COL_HDRPAD_STR
5256 	/*   01234567[89ABCDEF] */
5257 	    "rq       " MI_COL_HDRPAD_STR
5258 	/*   01234567[89ABCDEF] */
5259 	    "wq       " MI_COL_HDRPAD_STR
5260 	/*   01234567[89ABCDEF] */
5261 	    "upcnt mxfrg err name");
5262 	/*   12345 12345 123 xxxxxxxx  */
5263 
5264 	rw_enter(&ill_g_lock, RW_READER);
5265 	ill = ILL_START_WALK_ALL(&ctx);
5266 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5267 		(void) mi_mpprintf(mp,
5268 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5269 		    "%05u %05u %03d %s",
5270 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5271 		    ill->ill_ipif_up_count,
5272 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5273 	}
5274 	rw_exit(&ill_g_lock);
5275 
5276 	return (0);
5277 }
5278 
5279 /*
5280  * Named Dispatch routine to produce a formatted report on all IPIFs.
5281  * This report is accessed by using the ndd utility to "get" ND variable
5282  * "ip_ipif_status".
5283  */
5284 /* ARGSUSED */
5285 int
5286 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5287 {
5288 	char	buf1[INET6_ADDRSTRLEN];
5289 	char	buf2[INET6_ADDRSTRLEN];
5290 	char	buf3[INET6_ADDRSTRLEN];
5291 	char	buf4[INET6_ADDRSTRLEN];
5292 	char	buf5[INET6_ADDRSTRLEN];
5293 	char	buf6[INET6_ADDRSTRLEN];
5294 	char	buf[LIFNAMSIZ];
5295 	ill_t	*ill;
5296 	ipif_t	*ipif;
5297 	nv_t	*nvp;
5298 	uint64_t flags;
5299 	zoneid_t zoneid;
5300 	ill_walk_context_t ctx;
5301 
5302 	(void) mi_mpprintf(mp,
5303 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5304 	    "\tlocal address\n"
5305 	    "\tsrc address\n"
5306 	    "\tsubnet\n"
5307 	    "\tmask\n"
5308 	    "\tbroadcast\n"
5309 	    "\tp-p-dst");
5310 
5311 	ASSERT(q->q_next == NULL);
5312 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5313 
5314 	rw_enter(&ill_g_lock, RW_READER);
5315 	ill = ILL_START_WALK_ALL(&ctx);
5316 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5317 		for (ipif = ill->ill_ipif; ipif != NULL;
5318 		    ipif = ipif->ipif_next) {
5319 			if (zoneid != GLOBAL_ZONEID &&
5320 			    zoneid != ipif->ipif_zoneid &&
5321 			    ipif->ipif_zoneid != ALL_ZONES)
5322 				continue;
5323 			(void) mi_mpprintf(mp,
5324 			    MI_COL_PTRFMT_STR
5325 			    "%04u %05u %u/%u/%u %s %d",
5326 			    (void *)ipif,
5327 			    ipif->ipif_metric, ipif->ipif_mtu,
5328 			    ipif->ipif_ib_pkt_count,
5329 			    ipif->ipif_ob_pkt_count,
5330 			    ipif->ipif_fo_pkt_count,
5331 			    ipif_get_name(ipif, buf, sizeof (buf)),
5332 			    ipif->ipif_zoneid);
5333 
5334 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5335 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5336 
5337 		/* Tack on text strings for any flags. */
5338 		nvp = ipif_nv_tbl;
5339 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5340 			if (nvp->nv_value & flags)
5341 				(void) mi_mpprintf_nr(mp, " %s",
5342 				    nvp->nv_name);
5343 		}
5344 		(void) mi_mpprintf(mp,
5345 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5346 		    inet_ntop(AF_INET6,
5347 			&ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5348 		    inet_ntop(AF_INET6,
5349 			&ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5350 		    inet_ntop(AF_INET6,
5351 			&ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5352 		    inet_ntop(AF_INET6,
5353 			&ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5354 		    inet_ntop(AF_INET6,
5355 			&ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5356 		    inet_ntop(AF_INET6,
5357 			&ipif->ipif_v6pp_dst_addr,
5358 			buf6, sizeof (buf6)));
5359 		}
5360 	}
5361 	rw_exit(&ill_g_lock);
5362 	return (0);
5363 }
5364 
5365 /*
5366  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5367  * driver.  We construct best guess defaults for lower level information that
5368  * we need.  If an interface is brought up without injection of any overriding
5369  * information from outside, we have to be ready to go with these defaults.
5370  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5371  * we primarely want the dl_provider_style.
5372  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5373  * at which point we assume the other part of the information is valid.
5374  */
5375 void
5376 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5377 {
5378 	uchar_t		*brdcst_addr;
5379 	uint_t		brdcst_addr_length, phys_addr_length;
5380 	t_scalar_t	sap_length;
5381 	dl_info_ack_t	*dlia;
5382 	ip_m_t		*ipm;
5383 	dl_qos_cl_sel1_t *sel1;
5384 
5385 	ASSERT(IAM_WRITER_ILL(ill));
5386 
5387 	/*
5388 	 * Till the ill is fully up ILL_CHANGING will be set and
5389 	 * the ill is not globally visible. So no need for a lock.
5390 	 */
5391 	dlia = (dl_info_ack_t *)mp->b_rptr;
5392 	ill->ill_mactype = dlia->dl_mac_type;
5393 
5394 	ipm = ip_m_lookup(dlia->dl_mac_type);
5395 	if (ipm == NULL) {
5396 		ipm = ip_m_lookup(DL_OTHER);
5397 		ASSERT(ipm != NULL);
5398 	}
5399 	ill->ill_media = ipm;
5400 
5401 	/*
5402 	 * When the new DLPI stuff is ready we'll pull lengths
5403 	 * from dlia.
5404 	 */
5405 	if (dlia->dl_version == DL_VERSION_2) {
5406 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5407 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5408 		    brdcst_addr_length);
5409 		if (brdcst_addr == NULL) {
5410 			brdcst_addr_length = 0;
5411 		}
5412 		sap_length = dlia->dl_sap_length;
5413 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5414 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5415 		    brdcst_addr_length, sap_length, phys_addr_length));
5416 	} else {
5417 		brdcst_addr_length = 6;
5418 		brdcst_addr = ip_six_byte_all_ones;
5419 		sap_length = -2;
5420 		phys_addr_length = brdcst_addr_length;
5421 	}
5422 
5423 	ill->ill_bcast_addr_length = brdcst_addr_length;
5424 	ill->ill_phys_addr_length = phys_addr_length;
5425 	ill->ill_sap_length = sap_length;
5426 	ill->ill_max_frag = dlia->dl_max_sdu;
5427 	ill->ill_max_mtu = ill->ill_max_frag;
5428 
5429 	ill->ill_type = ipm->ip_m_type;
5430 
5431 	if (!ill->ill_dlpi_style_set) {
5432 		if (dlia->dl_provider_style == DL_STYLE2)
5433 			ill->ill_needs_attach = 1;
5434 
5435 		/*
5436 		 * Allocate the first ipif on this ill. We don't delay it
5437 		 * further as ioctl handling assumes atleast one ipif to
5438 		 * be present.
5439 		 *
5440 		 * At this point we don't know whether the ill is v4 or v6.
5441 		 * We will know this whan the SIOCSLIFNAME happens and
5442 		 * the correct value for ill_isv6 will be assigned in
5443 		 * ipif_set_values(). We need to hold the ill lock and
5444 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5445 		 * the wakeup.
5446 		 */
5447 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5448 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5449 		mutex_enter(&ill->ill_lock);
5450 		ASSERT(ill->ill_dlpi_style_set == 0);
5451 		ill->ill_dlpi_style_set = 1;
5452 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5453 		cv_broadcast(&ill->ill_cv);
5454 		mutex_exit(&ill->ill_lock);
5455 		freemsg(mp);
5456 		return;
5457 	}
5458 	ASSERT(ill->ill_ipif != NULL);
5459 	/*
5460 	 * We know whether it is IPv4 or IPv6 now, as this is the
5461 	 * second DL_INFO_ACK we are recieving in response to the
5462 	 * DL_INFO_REQ sent in ipif_set_values.
5463 	 */
5464 	if (ill->ill_isv6)
5465 		ill->ill_sap = IP6_DL_SAP;
5466 	else
5467 		ill->ill_sap = IP_DL_SAP;
5468 	/*
5469 	 * Set ipif_mtu which is used to set the IRE's
5470 	 * ire_max_frag value. The driver could have sent
5471 	 * a different mtu from what it sent last time. No
5472 	 * need to call ipif_mtu_change because IREs have
5473 	 * not yet been created.
5474 	 */
5475 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5476 	/*
5477 	 * Clear all the flags that were set based on ill_bcast_addr_length
5478 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5479 	 * changed now and we need to re-evaluate.
5480 	 */
5481 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5482 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5483 
5484 	/*
5485 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5486 	 * changed now.
5487 	 */
5488 	if (ill->ill_bcast_addr_length == 0) {
5489 		if (ill->ill_resolver_mp != NULL)
5490 			freemsg(ill->ill_resolver_mp);
5491 		if (ill->ill_bcast_mp != NULL)
5492 			freemsg(ill->ill_bcast_mp);
5493 		if (ill->ill_flags & ILLF_XRESOLV)
5494 			ill->ill_net_type = IRE_IF_RESOLVER;
5495 		else
5496 			ill->ill_net_type = IRE_IF_NORESOLVER;
5497 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5498 		    ill->ill_phys_addr_length,
5499 		    ill->ill_sap,
5500 		    ill->ill_sap_length);
5501 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5502 
5503 		if (ill->ill_isv6)
5504 			/*
5505 			 * Note: xresolv interfaces will eventually need NOARP
5506 			 * set here as well, but that will require those
5507 			 * external resolvers to have some knowledge of
5508 			 * that flag and act appropriately. Not to be changed
5509 			 * at present.
5510 			 */
5511 			ill->ill_flags |= ILLF_NONUD;
5512 		else
5513 			ill->ill_flags |= ILLF_NOARP;
5514 
5515 		if (ill->ill_phys_addr_length == 0) {
5516 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5517 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5518 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5519 			} else {
5520 				/* pt-pt supports multicast. */
5521 				ill->ill_flags |= ILLF_MULTICAST;
5522 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5523 			}
5524 		}
5525 	} else {
5526 		ill->ill_net_type = IRE_IF_RESOLVER;
5527 		if (ill->ill_bcast_mp != NULL)
5528 			freemsg(ill->ill_bcast_mp);
5529 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5530 		    ill->ill_bcast_addr_length, ill->ill_sap,
5531 		    ill->ill_sap_length);
5532 		/*
5533 		 * Later detect lack of DLPI driver multicast
5534 		 * capability by catching DL_ENABMULTI errors in
5535 		 * ip_rput_dlpi.
5536 		 */
5537 		ill->ill_flags |= ILLF_MULTICAST;
5538 		if (!ill->ill_isv6)
5539 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5540 	}
5541 	/* By default an interface does not support any CoS marking */
5542 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5543 
5544 	/*
5545 	 * If we get QoS information in DL_INFO_ACK, the device supports
5546 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5547 	 */
5548 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5549 	    dlia->dl_qos_length);
5550 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5551 		ill->ill_flags |= ILLF_COS_ENABLED;
5552 	}
5553 
5554 	/* Clear any previous error indication. */
5555 	ill->ill_error = 0;
5556 	freemsg(mp);
5557 }
5558 
5559 /*
5560  * Perform various checks to verify that an address would make sense as a
5561  * local, remote, or subnet interface address.
5562  */
5563 static boolean_t
5564 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5565 {
5566 	ipaddr_t	net_mask;
5567 
5568 	/*
5569 	 * Don't allow all zeroes, all ones or experimental address, but allow
5570 	 * all ones netmask.
5571 	 */
5572 	if ((net_mask = ip_net_mask(addr)) == 0)
5573 		return (B_FALSE);
5574 	/* A given netmask overrides the "guess" netmask */
5575 	if (subnet_mask != 0)
5576 		net_mask = subnet_mask;
5577 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5578 	    (addr == (addr | ~net_mask)))) {
5579 		return (B_FALSE);
5580 	}
5581 	if (CLASSD(addr))
5582 		return (B_FALSE);
5583 
5584 	return (B_TRUE);
5585 }
5586 
5587 /*
5588  * ipif_lookup_group
5589  * Returns held ipif
5590  */
5591 ipif_t *
5592 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid)
5593 {
5594 	ire_t	*ire;
5595 	ipif_t	*ipif;
5596 
5597 	ire = ire_lookup_multi(group, zoneid);
5598 	if (ire == NULL)
5599 		return (NULL);
5600 	ipif = ire->ire_ipif;
5601 	ipif_refhold(ipif);
5602 	ire_refrele(ire);
5603 	return (ipif);
5604 }
5605 
5606 /*
5607  * Look for an ipif with the specified interface address and destination.
5608  * The destination address is used only for matching point-to-point interfaces.
5609  */
5610 ipif_t *
5611 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5612     ipsq_func_t func, int *error)
5613 {
5614 	ipif_t	*ipif;
5615 	ill_t	*ill;
5616 	ill_walk_context_t ctx;
5617 	ipsq_t	*ipsq;
5618 
5619 	if (error != NULL)
5620 		*error = 0;
5621 
5622 	/*
5623 	 * First match all the point-to-point interfaces
5624 	 * before looking at non-point-to-point interfaces.
5625 	 * This is done to avoid returning non-point-to-point
5626 	 * ipif instead of unnumbered point-to-point ipif.
5627 	 */
5628 	rw_enter(&ill_g_lock, RW_READER);
5629 	ill = ILL_START_WALK_V4(&ctx);
5630 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5631 		GRAB_CONN_LOCK(q);
5632 		mutex_enter(&ill->ill_lock);
5633 		for (ipif = ill->ill_ipif; ipif != NULL;
5634 		    ipif = ipif->ipif_next) {
5635 			/* Allow the ipif to be down */
5636 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5637 			    (ipif->ipif_lcl_addr == if_addr) &&
5638 			    (ipif->ipif_pp_dst_addr == dst)) {
5639 				/*
5640 				 * The block comment at the start of ipif_down
5641 				 * explains the use of the macros used below
5642 				 */
5643 				if (IPIF_CAN_LOOKUP(ipif)) {
5644 					ipif_refhold_locked(ipif);
5645 					mutex_exit(&ill->ill_lock);
5646 					RELEASE_CONN_LOCK(q);
5647 					rw_exit(&ill_g_lock);
5648 					return (ipif);
5649 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5650 					ipsq = ill->ill_phyint->phyint_ipsq;
5651 					mutex_enter(&ipsq->ipsq_lock);
5652 					mutex_exit(&ill->ill_lock);
5653 					rw_exit(&ill_g_lock);
5654 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5655 						ill);
5656 					mutex_exit(&ipsq->ipsq_lock);
5657 					RELEASE_CONN_LOCK(q);
5658 					*error = EINPROGRESS;
5659 					return (NULL);
5660 				}
5661 			}
5662 		}
5663 		mutex_exit(&ill->ill_lock);
5664 		RELEASE_CONN_LOCK(q);
5665 	}
5666 	rw_exit(&ill_g_lock);
5667 
5668 	/* lookup the ipif based on interface address */
5669 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error);
5670 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
5671 	return (ipif);
5672 }
5673 
5674 /*
5675  * Look for an ipif with the specified address. For point-point links
5676  * we look for matches on either the destination address and the local
5677  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5678  * is set.
5679  * Matches on a specific ill if match_ill is set.
5680  */
5681 ipif_t *
5682 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
5683     mblk_t *mp, ipsq_func_t func, int *error)
5684 {
5685 	ipif_t  *ipif;
5686 	ill_t   *ill;
5687 	boolean_t ptp = B_FALSE;
5688 	ipsq_t	*ipsq;
5689 	ill_walk_context_t	ctx;
5690 
5691 	if (error != NULL)
5692 		*error = 0;
5693 
5694 	rw_enter(&ill_g_lock, RW_READER);
5695 	/*
5696 	 * Repeat twice, first based on local addresses and
5697 	 * next time for pointopoint.
5698 	 */
5699 repeat:
5700 	ill = ILL_START_WALK_V4(&ctx);
5701 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5702 		if (match_ill != NULL && ill != match_ill) {
5703 			continue;
5704 		}
5705 		GRAB_CONN_LOCK(q);
5706 		mutex_enter(&ill->ill_lock);
5707 		for (ipif = ill->ill_ipif; ipif != NULL;
5708 		    ipif = ipif->ipif_next) {
5709 			if (zoneid != ALL_ZONES &&
5710 			    zoneid != ipif->ipif_zoneid &&
5711 			    ipif->ipif_zoneid != ALL_ZONES)
5712 				continue;
5713 			/* Allow the ipif to be down */
5714 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5715 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5716 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5717 			    (ipif->ipif_pp_dst_addr == addr))) {
5718 				/*
5719 				 * The block comment at the start of ipif_down
5720 				 * explains the use of the macros used below
5721 				 */
5722 				if (IPIF_CAN_LOOKUP(ipif)) {
5723 					ipif_refhold_locked(ipif);
5724 					mutex_exit(&ill->ill_lock);
5725 					RELEASE_CONN_LOCK(q);
5726 					rw_exit(&ill_g_lock);
5727 					return (ipif);
5728 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5729 					ipsq = ill->ill_phyint->phyint_ipsq;
5730 					mutex_enter(&ipsq->ipsq_lock);
5731 					mutex_exit(&ill->ill_lock);
5732 					rw_exit(&ill_g_lock);
5733 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5734 						ill);
5735 					mutex_exit(&ipsq->ipsq_lock);
5736 					RELEASE_CONN_LOCK(q);
5737 					*error = EINPROGRESS;
5738 					return (NULL);
5739 				}
5740 			}
5741 		}
5742 		mutex_exit(&ill->ill_lock);
5743 		RELEASE_CONN_LOCK(q);
5744 	}
5745 
5746 	/* If we already did the ptp case, then we are done */
5747 	if (ptp) {
5748 		rw_exit(&ill_g_lock);
5749 		if (error != NULL)
5750 			*error = ENXIO;
5751 		return (NULL);
5752 	}
5753 	ptp = B_TRUE;
5754 	goto repeat;
5755 }
5756 
5757 /*
5758  * Look for an ipif with the specified address. For point-point links
5759  * we look for matches on either the destination address and the local
5760  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5761  * is set.
5762  * Matches on a specific ill if match_ill is set.
5763  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
5764  */
5765 zoneid_t
5766 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill)
5767 {
5768 	zoneid_t zoneid;
5769 	ipif_t  *ipif;
5770 	ill_t   *ill;
5771 	boolean_t ptp = B_FALSE;
5772 	ill_walk_context_t	ctx;
5773 
5774 	rw_enter(&ill_g_lock, RW_READER);
5775 	/*
5776 	 * Repeat twice, first based on local addresses and
5777 	 * next time for pointopoint.
5778 	 */
5779 repeat:
5780 	ill = ILL_START_WALK_V4(&ctx);
5781 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5782 		if (match_ill != NULL && ill != match_ill) {
5783 			continue;
5784 		}
5785 		mutex_enter(&ill->ill_lock);
5786 		for (ipif = ill->ill_ipif; ipif != NULL;
5787 		    ipif = ipif->ipif_next) {
5788 			/* Allow the ipif to be down */
5789 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5790 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5791 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5792 			    (ipif->ipif_pp_dst_addr == addr)) &&
5793 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
5794 				zoneid = ipif->ipif_zoneid;
5795 				mutex_exit(&ill->ill_lock);
5796 				rw_exit(&ill_g_lock);
5797 				/*
5798 				 * If ipif_zoneid was ALL_ZONES then we have
5799 				 * a trusted extensions shared IP address.
5800 				 * In that case GLOBAL_ZONEID works to send.
5801 				 */
5802 				if (zoneid == ALL_ZONES)
5803 					zoneid = GLOBAL_ZONEID;
5804 				return (zoneid);
5805 			}
5806 		}
5807 		mutex_exit(&ill->ill_lock);
5808 	}
5809 
5810 	/* If we already did the ptp case, then we are done */
5811 	if (ptp) {
5812 		rw_exit(&ill_g_lock);
5813 		return (ALL_ZONES);
5814 	}
5815 	ptp = B_TRUE;
5816 	goto repeat;
5817 }
5818 
5819 /*
5820  * Look for an ipif that matches the specified remote address i.e. the
5821  * ipif that would receive the specified packet.
5822  * First look for directly connected interfaces and then do a recursive
5823  * IRE lookup and pick the first ipif corresponding to the source address in the
5824  * ire.
5825  * Returns: held ipif
5826  */
5827 ipif_t *
5828 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
5829 {
5830 	ipif_t	*ipif;
5831 	ire_t	*ire;
5832 
5833 	ASSERT(!ill->ill_isv6);
5834 
5835 	/*
5836 	 * Someone could be changing this ipif currently or change it
5837 	 * after we return this. Thus  a few packets could use the old
5838 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
5839 	 * will atomically be updated or cleaned up with the new value
5840 	 * Thus we don't need a lock to check the flags or other attrs below.
5841 	 */
5842 	mutex_enter(&ill->ill_lock);
5843 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
5844 		if (!IPIF_CAN_LOOKUP(ipif))
5845 			continue;
5846 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
5847 		    ipif->ipif_zoneid != ALL_ZONES)
5848 			continue;
5849 		/* Allow the ipif to be down */
5850 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
5851 			if ((ipif->ipif_pp_dst_addr == addr) ||
5852 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
5853 			    ipif->ipif_lcl_addr == addr)) {
5854 				ipif_refhold_locked(ipif);
5855 				mutex_exit(&ill->ill_lock);
5856 				return (ipif);
5857 			}
5858 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
5859 			ipif_refhold_locked(ipif);
5860 			mutex_exit(&ill->ill_lock);
5861 			return (ipif);
5862 		}
5863 	}
5864 	mutex_exit(&ill->ill_lock);
5865 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
5866 	    NULL, MATCH_IRE_RECURSIVE);
5867 	if (ire != NULL) {
5868 		/*
5869 		 * The callers of this function wants to know the
5870 		 * interface on which they have to send the replies
5871 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
5872 		 * derived from different ills, we really don't care
5873 		 * what we return here.
5874 		 */
5875 		ipif = ire->ire_ipif;
5876 		if (ipif != NULL) {
5877 			ipif_refhold(ipif);
5878 			ire_refrele(ire);
5879 			return (ipif);
5880 		}
5881 		ire_refrele(ire);
5882 	}
5883 	/* Pick the first interface */
5884 	ipif = ipif_get_next_ipif(NULL, ill);
5885 	return (ipif);
5886 }
5887 
5888 /*
5889  * This func does not prevent refcnt from increasing. But if
5890  * the caller has taken steps to that effect, then this func
5891  * can be used to determine whether the ill has become quiescent
5892  */
5893 boolean_t
5894 ill_is_quiescent(ill_t *ill)
5895 {
5896 	ipif_t	*ipif;
5897 
5898 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5899 
5900 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
5901 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
5902 			return (B_FALSE);
5903 		}
5904 	}
5905 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
5906 	    ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 ||
5907 	    ill->ill_mrtun_refcnt != 0) {
5908 		return (B_FALSE);
5909 	}
5910 	return (B_TRUE);
5911 }
5912 
5913 /*
5914  * This func does not prevent refcnt from increasing. But if
5915  * the caller has taken steps to that effect, then this func
5916  * can be used to determine whether the ipif has become quiescent
5917  */
5918 static boolean_t
5919 ipif_is_quiescent(ipif_t *ipif)
5920 {
5921 	ill_t *ill;
5922 
5923 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5924 
5925 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
5926 		return (B_FALSE);
5927 	}
5928 
5929 	ill = ipif->ipif_ill;
5930 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
5931 	    ill->ill_logical_down) {
5932 		return (B_TRUE);
5933 	}
5934 
5935 	/* This is the last ipif going down or being deleted on this ill */
5936 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
5937 		return (B_FALSE);
5938 	}
5939 
5940 	return (B_TRUE);
5941 }
5942 
5943 /*
5944  * This func does not prevent refcnt from increasing. But if
5945  * the caller has taken steps to that effect, then this func
5946  * can be used to determine whether the ipifs marked with IPIF_MOVING
5947  * have become quiescent and can be moved in a failover/failback.
5948  */
5949 static ipif_t *
5950 ill_quiescent_to_move(ill_t *ill)
5951 {
5952 	ipif_t  *ipif;
5953 
5954 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5955 
5956 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
5957 		if (ipif->ipif_state_flags & IPIF_MOVING) {
5958 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
5959 				return (ipif);
5960 			}
5961 		}
5962 	}
5963 	return (NULL);
5964 }
5965 
5966 /*
5967  * The ipif/ill/ire has been refreled. Do the tail processing.
5968  * Determine if the ipif or ill in question has become quiescent and if so
5969  * wakeup close and/or restart any queued pending ioctl that is waiting
5970  * for the ipif_down (or ill_down)
5971  */
5972 void
5973 ipif_ill_refrele_tail(ill_t *ill)
5974 {
5975 	mblk_t	*mp;
5976 	conn_t	*connp;
5977 	ipsq_t	*ipsq;
5978 	ipif_t	*ipif;
5979 
5980 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5981 
5982 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
5983 	    ill_is_quiescent(ill)) {
5984 		/* ill_close may be waiting */
5985 		cv_broadcast(&ill->ill_cv);
5986 	}
5987 
5988 	/* ipsq can't change because ill_lock  is held */
5989 	ipsq = ill->ill_phyint->phyint_ipsq;
5990 	if (ipsq->ipsq_waitfor == 0) {
5991 		/* Not waiting for anything, just return. */
5992 		mutex_exit(&ill->ill_lock);
5993 		return;
5994 	}
5995 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
5996 		ipsq->ipsq_pending_ipif != NULL);
5997 	/*
5998 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
5999 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6000 	 * be zero for restarting an ioctl that ends up downing the ill.
6001 	 */
6002 	ipif = ipsq->ipsq_pending_ipif;
6003 	if (ipif->ipif_ill != ill) {
6004 		/* The ioctl is pending on some other ill. */
6005 		mutex_exit(&ill->ill_lock);
6006 		return;
6007 	}
6008 
6009 	switch (ipsq->ipsq_waitfor) {
6010 	case IPIF_DOWN:
6011 	case IPIF_FREE:
6012 		if (!ipif_is_quiescent(ipif)) {
6013 			mutex_exit(&ill->ill_lock);
6014 			return;
6015 		}
6016 		break;
6017 
6018 	case ILL_DOWN:
6019 	case ILL_FREE:
6020 		/*
6021 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6022 		 * waits synchronously in ip_close, and no message is queued in
6023 		 * ipsq_pending_mp at all in this case
6024 		 */
6025 		if (!ill_is_quiescent(ill)) {
6026 			mutex_exit(&ill->ill_lock);
6027 			return;
6028 		}
6029 
6030 		break;
6031 
6032 	case ILL_MOVE_OK:
6033 		if (ill_quiescent_to_move(ill) != NULL) {
6034 			mutex_exit(&ill->ill_lock);
6035 			return;
6036 		}
6037 
6038 		break;
6039 	default:
6040 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6041 		    (void *)ipsq, ipsq->ipsq_waitfor);
6042 	}
6043 
6044 	/*
6045 	 * Incr refcnt for the qwriter_ip call below which
6046 	 * does a refrele
6047 	 */
6048 	ill_refhold_locked(ill);
6049 	mutex_exit(&ill->ill_lock);
6050 
6051 	mp = ipsq_pending_mp_get(ipsq, &connp);
6052 	ASSERT(mp != NULL);
6053 
6054 	switch (mp->b_datap->db_type) {
6055 	case M_ERROR:
6056 	case M_HANGUP:
6057 		(void) qwriter_ip(NULL, ill, ill->ill_rq, mp,
6058 		    ipif_all_down_tail, CUR_OP, B_TRUE);
6059 		return;
6060 
6061 	case M_IOCTL:
6062 	case M_IOCDATA:
6063 		(void) qwriter_ip(NULL, ill,
6064 		    (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp,
6065 		    ip_reprocess_ioctl, CUR_OP, B_TRUE);
6066 		return;
6067 
6068 	default:
6069 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6070 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6071 	}
6072 }
6073 
6074 #ifdef ILL_DEBUG
6075 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6076 void
6077 th_trace_rrecord(th_trace_t *th_trace)
6078 {
6079 	tr_buf_t *tr_buf;
6080 	uint_t lastref;
6081 
6082 	lastref = th_trace->th_trace_lastref;
6083 	lastref++;
6084 	if (lastref == TR_BUF_MAX)
6085 		lastref = 0;
6086 	th_trace->th_trace_lastref = lastref;
6087 	tr_buf = &th_trace->th_trbuf[lastref];
6088 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH);
6089 }
6090 
6091 th_trace_t *
6092 th_trace_ipif_lookup(ipif_t *ipif)
6093 {
6094 	int bucket_id;
6095 	th_trace_t *th_trace;
6096 
6097 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6098 
6099 	bucket_id = IP_TR_HASH(curthread);
6100 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6101 
6102 	for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL;
6103 	    th_trace = th_trace->th_next) {
6104 		if (th_trace->th_id == curthread)
6105 			return (th_trace);
6106 	}
6107 	return (NULL);
6108 }
6109 
6110 void
6111 ipif_trace_ref(ipif_t *ipif)
6112 {
6113 	int bucket_id;
6114 	th_trace_t *th_trace;
6115 
6116 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6117 
6118 	if (ipif->ipif_trace_disable)
6119 		return;
6120 
6121 	/*
6122 	 * Attempt to locate the trace buffer for the curthread.
6123 	 * If it does not exist, then allocate a new trace buffer
6124 	 * and link it in list of trace bufs for this ipif, at the head
6125 	 */
6126 	th_trace = th_trace_ipif_lookup(ipif);
6127 	if (th_trace == NULL) {
6128 		bucket_id = IP_TR_HASH(curthread);
6129 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6130 		    KM_NOSLEEP);
6131 		if (th_trace == NULL) {
6132 			ipif->ipif_trace_disable = B_TRUE;
6133 			ipif_trace_cleanup(ipif);
6134 			return;
6135 		}
6136 		th_trace->th_id = curthread;
6137 		th_trace->th_next = ipif->ipif_trace[bucket_id];
6138 		th_trace->th_prev = &ipif->ipif_trace[bucket_id];
6139 		if (th_trace->th_next != NULL)
6140 			th_trace->th_next->th_prev = &th_trace->th_next;
6141 		ipif->ipif_trace[bucket_id] = th_trace;
6142 	}
6143 	ASSERT(th_trace->th_refcnt >= 0 &&
6144 		th_trace->th_refcnt < TR_BUF_MAX -1);
6145 	th_trace->th_refcnt++;
6146 	th_trace_rrecord(th_trace);
6147 }
6148 
6149 void
6150 ipif_untrace_ref(ipif_t *ipif)
6151 {
6152 	th_trace_t *th_trace;
6153 
6154 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6155 
6156 	if (ipif->ipif_trace_disable)
6157 		return;
6158 	th_trace = th_trace_ipif_lookup(ipif);
6159 	ASSERT(th_trace != NULL);
6160 	ASSERT(th_trace->th_refcnt > 0);
6161 
6162 	th_trace->th_refcnt--;
6163 	th_trace_rrecord(th_trace);
6164 }
6165 
6166 th_trace_t *
6167 th_trace_ill_lookup(ill_t *ill)
6168 {
6169 	th_trace_t *th_trace;
6170 	int bucket_id;
6171 
6172 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6173 
6174 	bucket_id = IP_TR_HASH(curthread);
6175 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6176 
6177 	for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL;
6178 	    th_trace = th_trace->th_next) {
6179 		if (th_trace->th_id == curthread)
6180 			return (th_trace);
6181 	}
6182 	return (NULL);
6183 }
6184 
6185 void
6186 ill_trace_ref(ill_t *ill)
6187 {
6188 	int bucket_id;
6189 	th_trace_t *th_trace;
6190 
6191 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6192 	if (ill->ill_trace_disable)
6193 		return;
6194 	/*
6195 	 * Attempt to locate the trace buffer for the curthread.
6196 	 * If it does not exist, then allocate a new trace buffer
6197 	 * and link it in list of trace bufs for this ill, at the head
6198 	 */
6199 	th_trace = th_trace_ill_lookup(ill);
6200 	if (th_trace == NULL) {
6201 		bucket_id = IP_TR_HASH(curthread);
6202 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6203 		    KM_NOSLEEP);
6204 		if (th_trace == NULL) {
6205 			ill->ill_trace_disable = B_TRUE;
6206 			ill_trace_cleanup(ill);
6207 			return;
6208 		}
6209 		th_trace->th_id = curthread;
6210 		th_trace->th_next = ill->ill_trace[bucket_id];
6211 		th_trace->th_prev = &ill->ill_trace[bucket_id];
6212 		if (th_trace->th_next != NULL)
6213 			th_trace->th_next->th_prev = &th_trace->th_next;
6214 		ill->ill_trace[bucket_id] = th_trace;
6215 	}
6216 	ASSERT(th_trace->th_refcnt >= 0 &&
6217 		th_trace->th_refcnt < TR_BUF_MAX - 1);
6218 
6219 	th_trace->th_refcnt++;
6220 	th_trace_rrecord(th_trace);
6221 }
6222 
6223 void
6224 ill_untrace_ref(ill_t *ill)
6225 {
6226 	th_trace_t *th_trace;
6227 
6228 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6229 
6230 	if (ill->ill_trace_disable)
6231 		return;
6232 	th_trace = th_trace_ill_lookup(ill);
6233 	ASSERT(th_trace != NULL);
6234 	ASSERT(th_trace->th_refcnt > 0);
6235 
6236 	th_trace->th_refcnt--;
6237 	th_trace_rrecord(th_trace);
6238 }
6239 
6240 /*
6241  * Verify that this thread has no refs to the ipif and free
6242  * the trace buffers
6243  */
6244 /* ARGSUSED */
6245 void
6246 ipif_thread_exit(ipif_t *ipif, void *dummy)
6247 {
6248 	th_trace_t *th_trace;
6249 
6250 	mutex_enter(&ipif->ipif_ill->ill_lock);
6251 
6252 	th_trace = th_trace_ipif_lookup(ipif);
6253 	if (th_trace == NULL) {
6254 		mutex_exit(&ipif->ipif_ill->ill_lock);
6255 		return;
6256 	}
6257 	ASSERT(th_trace->th_refcnt == 0);
6258 	/* unlink th_trace and free it */
6259 	*th_trace->th_prev = th_trace->th_next;
6260 	if (th_trace->th_next != NULL)
6261 		th_trace->th_next->th_prev = th_trace->th_prev;
6262 	th_trace->th_next = NULL;
6263 	th_trace->th_prev = NULL;
6264 	kmem_free(th_trace, sizeof (th_trace_t));
6265 
6266 	mutex_exit(&ipif->ipif_ill->ill_lock);
6267 }
6268 
6269 /*
6270  * Verify that this thread has no refs to the ill and free
6271  * the trace buffers
6272  */
6273 /* ARGSUSED */
6274 void
6275 ill_thread_exit(ill_t *ill, void *dummy)
6276 {
6277 	th_trace_t *th_trace;
6278 
6279 	mutex_enter(&ill->ill_lock);
6280 
6281 	th_trace = th_trace_ill_lookup(ill);
6282 	if (th_trace == NULL) {
6283 		mutex_exit(&ill->ill_lock);
6284 		return;
6285 	}
6286 	ASSERT(th_trace->th_refcnt == 0);
6287 	/* unlink th_trace and free it */
6288 	*th_trace->th_prev = th_trace->th_next;
6289 	if (th_trace->th_next != NULL)
6290 		th_trace->th_next->th_prev = th_trace->th_prev;
6291 	th_trace->th_next = NULL;
6292 	th_trace->th_prev = NULL;
6293 	kmem_free(th_trace, sizeof (th_trace_t));
6294 
6295 	mutex_exit(&ill->ill_lock);
6296 }
6297 #endif
6298 
6299 #ifdef ILL_DEBUG
6300 void
6301 ip_thread_exit(void)
6302 {
6303 	ill_t	*ill;
6304 	ipif_t	*ipif;
6305 	ill_walk_context_t	ctx;
6306 
6307 	rw_enter(&ill_g_lock, RW_READER);
6308 	ill = ILL_START_WALK_ALL(&ctx);
6309 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6310 		for (ipif = ill->ill_ipif; ipif != NULL;
6311 		    ipif = ipif->ipif_next) {
6312 			ipif_thread_exit(ipif, NULL);
6313 		}
6314 		ill_thread_exit(ill, NULL);
6315 	}
6316 	rw_exit(&ill_g_lock);
6317 
6318 	ire_walk(ire_thread_exit, NULL);
6319 	ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE);
6320 	ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE);
6321 }
6322 
6323 /*
6324  * Called when ipif is unplumbed or when memory alloc fails
6325  */
6326 void
6327 ipif_trace_cleanup(ipif_t *ipif)
6328 {
6329 	int	i;
6330 	th_trace_t	*th_trace;
6331 	th_trace_t	*th_trace_next;
6332 
6333 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6334 		for (th_trace = ipif->ipif_trace[i]; th_trace != NULL;
6335 		    th_trace = th_trace_next) {
6336 			th_trace_next = th_trace->th_next;
6337 			kmem_free(th_trace, sizeof (th_trace_t));
6338 		}
6339 		ipif->ipif_trace[i] = NULL;
6340 	}
6341 }
6342 
6343 /*
6344  * Called when ill is unplumbed or when memory alloc fails
6345  */
6346 void
6347 ill_trace_cleanup(ill_t *ill)
6348 {
6349 	int	i;
6350 	th_trace_t	*th_trace;
6351 	th_trace_t	*th_trace_next;
6352 
6353 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6354 		for (th_trace = ill->ill_trace[i]; th_trace != NULL;
6355 		    th_trace = th_trace_next) {
6356 			th_trace_next = th_trace->th_next;
6357 			kmem_free(th_trace, sizeof (th_trace_t));
6358 		}
6359 		ill->ill_trace[i] = NULL;
6360 	}
6361 }
6362 
6363 #else
6364 void ip_thread_exit(void) {}
6365 #endif
6366 
6367 void
6368 ipif_refhold_locked(ipif_t *ipif)
6369 {
6370 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6371 	ipif->ipif_refcnt++;
6372 	IPIF_TRACE_REF(ipif);
6373 }
6374 
6375 void
6376 ipif_refhold(ipif_t *ipif)
6377 {
6378 	ill_t	*ill;
6379 
6380 	ill = ipif->ipif_ill;
6381 	mutex_enter(&ill->ill_lock);
6382 	ipif->ipif_refcnt++;
6383 	IPIF_TRACE_REF(ipif);
6384 	mutex_exit(&ill->ill_lock);
6385 }
6386 
6387 /*
6388  * Must not be called while holding any locks. Otherwise if this is
6389  * the last reference to be released there is a chance of recursive mutex
6390  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6391  * to restart an ioctl.
6392  */
6393 void
6394 ipif_refrele(ipif_t *ipif)
6395 {
6396 	ill_t	*ill;
6397 
6398 	ill = ipif->ipif_ill;
6399 
6400 	mutex_enter(&ill->ill_lock);
6401 	ASSERT(ipif->ipif_refcnt != 0);
6402 	ipif->ipif_refcnt--;
6403 	IPIF_UNTRACE_REF(ipif);
6404 	if (ipif->ipif_refcnt != 0) {
6405 		mutex_exit(&ill->ill_lock);
6406 		return;
6407 	}
6408 
6409 	/* Drops the ill_lock */
6410 	ipif_ill_refrele_tail(ill);
6411 }
6412 
6413 ipif_t *
6414 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6415 {
6416 	ipif_t	*ipif;
6417 
6418 	mutex_enter(&ill->ill_lock);
6419 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6420 	    ipif != NULL; ipif = ipif->ipif_next) {
6421 		if (!IPIF_CAN_LOOKUP(ipif))
6422 			continue;
6423 		ipif_refhold_locked(ipif);
6424 		mutex_exit(&ill->ill_lock);
6425 		return (ipif);
6426 	}
6427 	mutex_exit(&ill->ill_lock);
6428 	return (NULL);
6429 }
6430 
6431 /*
6432  * TODO: make this table extendible at run time
6433  * Return a pointer to the mac type info for 'mac_type'
6434  */
6435 static ip_m_t *
6436 ip_m_lookup(t_uscalar_t mac_type)
6437 {
6438 	ip_m_t	*ipm;
6439 
6440 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6441 		if (ipm->ip_m_mac_type == mac_type)
6442 			return (ipm);
6443 	return (NULL);
6444 }
6445 
6446 /*
6447  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6448  * ipif_arg is passed in to associate it with the correct interface.
6449  * We may need to restart this operation if the ipif cannot be looked up
6450  * due to an exclusive operation that is currently in progress. The restart
6451  * entry point is specified by 'func'
6452  */
6453 int
6454 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6455     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
6456     ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp,
6457     ipsq_func_t func, struct rtsa_s *sp)
6458 {
6459 	ire_t	*ire;
6460 	ire_t	*gw_ire = NULL;
6461 	ipif_t	*ipif = NULL;
6462 	boolean_t ipif_refheld = B_FALSE;
6463 	uint_t	type;
6464 	int	match_flags = MATCH_IRE_TYPE;
6465 	int	error;
6466 	tsol_gc_t *gc = NULL;
6467 	tsol_gcgrp_t *gcgrp = NULL;
6468 	boolean_t gcgrp_xtraref = B_FALSE;
6469 
6470 	ip1dbg(("ip_rt_add:"));
6471 
6472 	if (ire_arg != NULL)
6473 		*ire_arg = NULL;
6474 
6475 	/*
6476 	 * If this is the case of RTF_HOST being set, then we set the netmask
6477 	 * to all ones (regardless if one was supplied).
6478 	 */
6479 	if (flags & RTF_HOST)
6480 		mask = IP_HOST_MASK;
6481 
6482 	/*
6483 	 * Prevent routes with a zero gateway from being created (since
6484 	 * interfaces can currently be plumbed and brought up no assigned
6485 	 * address).
6486 	 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0.
6487 	 */
6488 	if (gw_addr == 0 && src_ipif == NULL)
6489 		return (ENETUNREACH);
6490 	/*
6491 	 * Get the ipif, if any, corresponding to the gw_addr
6492 	 */
6493 	if (gw_addr != 0) {
6494 		ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func,
6495 		    &error);
6496 		if (ipif != NULL) {
6497 			if (IS_VNI(ipif->ipif_ill)) {
6498 				ipif_refrele(ipif);
6499 				return (EINVAL);
6500 			}
6501 			ipif_refheld = B_TRUE;
6502 		} else if (error == EINPROGRESS) {
6503 			ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6504 			return (EINPROGRESS);
6505 		} else {
6506 			error = 0;
6507 		}
6508 	}
6509 
6510 	if (ipif != NULL) {
6511 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6512 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6513 	} else {
6514 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6515 	}
6516 
6517 	/*
6518 	 * GateD will attempt to create routes with a loopback interface
6519 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6520 	 * these routes to be added, but create them as interface routes
6521 	 * since the gateway is an interface address.
6522 	 */
6523 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6524 		flags &= ~RTF_GATEWAY;
6525 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6526 		    mask == IP_HOST_MASK) {
6527 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6528 			    ALL_ZONES, NULL, match_flags);
6529 			if (ire != NULL) {
6530 				ire_refrele(ire);
6531 				if (ipif_refheld)
6532 					ipif_refrele(ipif);
6533 				return (EEXIST);
6534 			}
6535 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6536 			    "for 0x%x\n", (void *)ipif,
6537 			    ipif->ipif_ire_type,
6538 			    ntohl(ipif->ipif_lcl_addr)));
6539 			ire = ire_create(
6540 			    (uchar_t *)&dst_addr,	/* dest address */
6541 			    (uchar_t *)&mask,		/* mask */
6542 			    (uchar_t *)&ipif->ipif_src_addr,
6543 			    NULL,			/* no gateway */
6544 			    NULL,
6545 			    &ipif->ipif_mtu,
6546 			    NULL,
6547 			    ipif->ipif_rq,		/* recv-from queue */
6548 			    NULL,			/* no send-to queue */
6549 			    ipif->ipif_ire_type,	/* LOOPBACK */
6550 			    NULL,
6551 			    ipif,
6552 			    NULL,
6553 			    0,
6554 			    0,
6555 			    0,
6556 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6557 			    RTF_PRIVATE : 0,
6558 			    &ire_uinfo_null,
6559 			    NULL,
6560 			    NULL);
6561 
6562 			if (ire == NULL) {
6563 				if (ipif_refheld)
6564 					ipif_refrele(ipif);
6565 				return (ENOMEM);
6566 			}
6567 			error = ire_add(&ire, q, mp, func, B_FALSE);
6568 			if (error == 0)
6569 				goto save_ire;
6570 			if (ipif_refheld)
6571 				ipif_refrele(ipif);
6572 			return (error);
6573 
6574 		}
6575 	}
6576 
6577 	/*
6578 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6579 	 * and the gateway address provided is one of the system's interface
6580 	 * addresses.  By using the routing socket interface and supplying an
6581 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6582 	 * specifying an interface route to be created is available which uses
6583 	 * the interface index that specifies the outgoing interface rather than
6584 	 * the address of an outgoing interface (which may not be able to
6585 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6586 	 * flag, routes can be specified which not only specify the next-hop to
6587 	 * be used when routing to a certain prefix, but also which outgoing
6588 	 * interface should be used.
6589 	 *
6590 	 * Previously, interfaces would have unique addresses assigned to them
6591 	 * and so the address assigned to a particular interface could be used
6592 	 * to identify a particular interface.  One exception to this was the
6593 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6594 	 *
6595 	 * With the advent of IPv6 and its link-local addresses, this
6596 	 * restriction was relaxed and interfaces could share addresses between
6597 	 * themselves.  In fact, typically all of the link-local interfaces on
6598 	 * an IPv6 node or router will have the same link-local address.  In
6599 	 * order to differentiate between these interfaces, the use of an
6600 	 * interface index is necessary and this index can be carried inside a
6601 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6602 	 * of using the interface index, however, is that all of the ipif's that
6603 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6604 	 * cannot be used to differentiate between ipif's (or logical
6605 	 * interfaces) that belong to the same ill (physical interface).
6606 	 *
6607 	 * For example, in the following case involving IPv4 interfaces and
6608 	 * logical interfaces
6609 	 *
6610 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6611 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6612 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6613 	 *
6614 	 * the ipif's corresponding to each of these interface routes can be
6615 	 * uniquely identified by the "gateway" (actually interface address).
6616 	 *
6617 	 * In this case involving multiple IPv6 default routes to a particular
6618 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6619 	 * default route is of interest:
6620 	 *
6621 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6622 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6623 	 */
6624 
6625 	/* RTF_GATEWAY not set */
6626 	if (!(flags & RTF_GATEWAY)) {
6627 		queue_t	*stq;
6628 		queue_t	*rfq = NULL;
6629 		ill_t	*in_ill = NULL;
6630 
6631 		if (sp != NULL) {
6632 			ip2dbg(("ip_rt_add: gateway security attributes "
6633 			    "cannot be set with interface route\n"));
6634 			if (ipif_refheld)
6635 				ipif_refrele(ipif);
6636 			return (EINVAL);
6637 		}
6638 
6639 		/*
6640 		 * As the interface index specified with the RTA_IFP sockaddr is
6641 		 * the same for all ipif's off of an ill, the matching logic
6642 		 * below uses MATCH_IRE_ILL if such an index was specified.
6643 		 * This means that routes sharing the same prefix when added
6644 		 * using a RTA_IFP sockaddr must have distinct interface
6645 		 * indices (namely, they must be on distinct ill's).
6646 		 *
6647 		 * On the other hand, since the gateway address will usually be
6648 		 * different for each ipif on the system, the matching logic
6649 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6650 		 * route.  This means that interface routes for the same prefix
6651 		 * can be created if they belong to distinct ipif's and if a
6652 		 * RTA_IFP sockaddr is not present.
6653 		 */
6654 		if (ipif_arg != NULL) {
6655 			if (ipif_refheld)  {
6656 				ipif_refrele(ipif);
6657 				ipif_refheld = B_FALSE;
6658 			}
6659 			ipif = ipif_arg;
6660 			match_flags |= MATCH_IRE_ILL;
6661 		} else {
6662 			/*
6663 			 * Check the ipif corresponding to the gw_addr
6664 			 */
6665 			if (ipif == NULL)
6666 				return (ENETUNREACH);
6667 			match_flags |= MATCH_IRE_IPIF;
6668 		}
6669 		ASSERT(ipif != NULL);
6670 		/*
6671 		 * If src_ipif is not NULL, we have to create
6672 		 * an ire with non-null ire_in_ill value
6673 		 */
6674 		if (src_ipif != NULL) {
6675 			in_ill = src_ipif->ipif_ill;
6676 		}
6677 
6678 		/*
6679 		 * We check for an existing entry at this point.
6680 		 *
6681 		 * Since a netmask isn't passed in via the ioctl interface
6682 		 * (SIOCADDRT), we don't check for a matching netmask in that
6683 		 * case.
6684 		 */
6685 		if (!ioctl_msg)
6686 			match_flags |= MATCH_IRE_MASK;
6687 		if (src_ipif != NULL) {
6688 			/* Look up in the special table */
6689 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
6690 			    ipif, src_ipif->ipif_ill, match_flags);
6691 		} else {
6692 			ire = ire_ftable_lookup(dst_addr, mask, 0,
6693 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
6694 			    NULL, match_flags);
6695 		}
6696 		if (ire != NULL) {
6697 			ire_refrele(ire);
6698 			if (ipif_refheld)
6699 				ipif_refrele(ipif);
6700 			return (EEXIST);
6701 		}
6702 
6703 		if (src_ipif != NULL) {
6704 			/*
6705 			 * Create the special ire for the IRE table
6706 			 * which hangs out of ire_in_ill. This ire
6707 			 * is in-between IRE_CACHE and IRE_INTERFACE.
6708 			 * Thus rfq is non-NULL.
6709 			 */
6710 			rfq = ipif->ipif_rq;
6711 		}
6712 		/* Create the usual interface ires */
6713 
6714 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
6715 		    ? ipif->ipif_rq : ipif->ipif_wq;
6716 
6717 		/*
6718 		 * Create a copy of the IRE_LOOPBACK,
6719 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
6720 		 * the modified address and netmask.
6721 		 */
6722 		ire = ire_create(
6723 		    (uchar_t *)&dst_addr,
6724 		    (uint8_t *)&mask,
6725 		    (uint8_t *)&ipif->ipif_src_addr,
6726 		    NULL,
6727 		    NULL,
6728 		    &ipif->ipif_mtu,
6729 		    NULL,
6730 		    rfq,
6731 		    stq,
6732 		    ipif->ipif_net_type,
6733 		    ipif->ipif_resolver_mp,
6734 		    ipif,
6735 		    in_ill,
6736 		    0,
6737 		    0,
6738 		    0,
6739 		    flags,
6740 		    &ire_uinfo_null,
6741 		    NULL,
6742 		    NULL);
6743 		if (ire == NULL) {
6744 			if (ipif_refheld)
6745 				ipif_refrele(ipif);
6746 			return (ENOMEM);
6747 		}
6748 
6749 		/*
6750 		 * Some software (for example, GateD and Sun Cluster) attempts
6751 		 * to create (what amount to) IRE_PREFIX routes with the
6752 		 * loopback address as the gateway.  This is primarily done to
6753 		 * set up prefixes with the RTF_REJECT flag set (for example,
6754 		 * when generating aggregate routes.)
6755 		 *
6756 		 * If the IRE type (as defined by ipif->ipif_net_type) is
6757 		 * IRE_LOOPBACK, then we map the request into a
6758 		 * IRE_IF_NORESOLVER.
6759 		 *
6760 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
6761 		 * routine, but rather using ire_create() directly.
6762 		 *
6763 		 */
6764 		if (ipif->ipif_net_type == IRE_LOOPBACK)
6765 			ire->ire_type = IRE_IF_NORESOLVER;
6766 
6767 		error = ire_add(&ire, q, mp, func, B_FALSE);
6768 		if (error == 0)
6769 			goto save_ire;
6770 
6771 		/*
6772 		 * In the result of failure, ire_add() will have already
6773 		 * deleted the ire in question, so there is no need to
6774 		 * do that here.
6775 		 */
6776 		if (ipif_refheld)
6777 			ipif_refrele(ipif);
6778 		return (error);
6779 	}
6780 	if (ipif_refheld) {
6781 		ipif_refrele(ipif);
6782 		ipif_refheld = B_FALSE;
6783 	}
6784 
6785 	if (src_ipif != NULL) {
6786 		/* RTA_SRCIFP is not supported on RTF_GATEWAY */
6787 		ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n"));
6788 		return (EINVAL);
6789 	}
6790 	/*
6791 	 * Get an interface IRE for the specified gateway.
6792 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
6793 	 * gateway, it is currently unreachable and we fail the request
6794 	 * accordingly.
6795 	 */
6796 	ipif = ipif_arg;
6797 	if (ipif_arg != NULL)
6798 		match_flags |= MATCH_IRE_ILL;
6799 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
6800 	    ALL_ZONES, 0, NULL, match_flags);
6801 	if (gw_ire == NULL)
6802 		return (ENETUNREACH);
6803 
6804 	/*
6805 	 * We create one of three types of IREs as a result of this request
6806 	 * based on the netmask.  A netmask of all ones (which is automatically
6807 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
6808 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
6809 	 * created.  Otherwise, an IRE_PREFIX route is created for the
6810 	 * destination prefix.
6811 	 */
6812 	if (mask == IP_HOST_MASK)
6813 		type = IRE_HOST;
6814 	else if (mask == 0)
6815 		type = IRE_DEFAULT;
6816 	else
6817 		type = IRE_PREFIX;
6818 
6819 	/* check for a duplicate entry */
6820 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
6821 	    NULL, ALL_ZONES, 0, NULL,
6822 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW);
6823 	if (ire != NULL) {
6824 		ire_refrele(gw_ire);
6825 		ire_refrele(ire);
6826 		return (EEXIST);
6827 	}
6828 
6829 	/* Security attribute exists */
6830 	if (sp != NULL) {
6831 		tsol_gcgrp_addr_t ga;
6832 
6833 		/* find or create the gateway credentials group */
6834 		ga.ga_af = AF_INET;
6835 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
6836 
6837 		/* we hold reference to it upon success */
6838 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
6839 		if (gcgrp == NULL) {
6840 			ire_refrele(gw_ire);
6841 			return (ENOMEM);
6842 		}
6843 
6844 		/*
6845 		 * Create and add the security attribute to the group; a
6846 		 * reference to the group is made upon allocating a new
6847 		 * entry successfully.  If it finds an already-existing
6848 		 * entry for the security attribute in the group, it simply
6849 		 * returns it and no new reference is made to the group.
6850 		 */
6851 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
6852 		if (gc == NULL) {
6853 			/* release reference held by gcgrp_lookup */
6854 			GCGRP_REFRELE(gcgrp);
6855 			ire_refrele(gw_ire);
6856 			return (ENOMEM);
6857 		}
6858 	}
6859 
6860 	/* Create the IRE. */
6861 	ire = ire_create(
6862 	    (uchar_t *)&dst_addr,		/* dest address */
6863 	    (uchar_t *)&mask,			/* mask */
6864 	    /* src address assigned by the caller? */
6865 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
6866 		(flags & RTF_SETSRC)) ?  &src_addr : NULL),
6867 	    (uchar_t *)&gw_addr,		/* gateway address */
6868 	    NULL,				/* no in-srcaddress */
6869 	    &gw_ire->ire_max_frag,
6870 	    NULL,				/* no Fast Path header */
6871 	    NULL,				/* no recv-from queue */
6872 	    NULL,				/* no send-to queue */
6873 	    (ushort_t)type,			/* IRE type */
6874 	    NULL,
6875 	    ipif_arg,
6876 	    NULL,
6877 	    0,
6878 	    0,
6879 	    0,
6880 	    flags,
6881 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
6882 	    gc,					/* security attribute */
6883 	    NULL);
6884 	/*
6885 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
6886 	 * reference to the 'gcgrp'. We can now release the extra reference
6887 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
6888 	 */
6889 	if (gcgrp_xtraref)
6890 		GCGRP_REFRELE(gcgrp);
6891 	if (ire == NULL) {
6892 		if (gc != NULL)
6893 			GC_REFRELE(gc);
6894 		ire_refrele(gw_ire);
6895 		return (ENOMEM);
6896 	}
6897 
6898 	/*
6899 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
6900 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
6901 	 */
6902 
6903 	/* Add the new IRE. */
6904 	error = ire_add(&ire, q, mp, func, B_FALSE);
6905 	if (error != 0) {
6906 		/*
6907 		 * In the result of failure, ire_add() will have already
6908 		 * deleted the ire in question, so there is no need to
6909 		 * do that here.
6910 		 */
6911 		ire_refrele(gw_ire);
6912 		return (error);
6913 	}
6914 
6915 	if (flags & RTF_MULTIRT) {
6916 		/*
6917 		 * Invoke the CGTP (multirouting) filtering module
6918 		 * to add the dst address in the filtering database.
6919 		 * Replicated inbound packets coming from that address
6920 		 * will be filtered to discard the duplicates.
6921 		 * It is not necessary to call the CGTP filter hook
6922 		 * when the dst address is a broadcast or multicast,
6923 		 * because an IP source address cannot be a broadcast
6924 		 * or a multicast.
6925 		 */
6926 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
6927 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
6928 		if (ire_dst != NULL) {
6929 			ip_cgtp_bcast_add(ire, ire_dst);
6930 			ire_refrele(ire_dst);
6931 			goto save_ire;
6932 		}
6933 		if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) {
6934 			int res = ip_cgtp_filter_ops->cfo_add_dest_v4(
6935 			    ire->ire_addr,
6936 			    ire->ire_gateway_addr,
6937 			    ire->ire_src_addr,
6938 			    gw_ire->ire_src_addr);
6939 			if (res != 0) {
6940 				ire_refrele(gw_ire);
6941 				ire_delete(ire);
6942 				return (res);
6943 			}
6944 		}
6945 	}
6946 
6947 	/*
6948 	 * Now that the prefix IRE entry has been created, delete any
6949 	 * existing gateway IRE cache entries as well as any IRE caches
6950 	 * using the gateway, and force them to be created through
6951 	 * ip_newroute.
6952 	 */
6953 	if (gc != NULL) {
6954 		ASSERT(gcgrp != NULL);
6955 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES);
6956 	}
6957 
6958 save_ire:
6959 	if (gw_ire != NULL) {
6960 		ire_refrele(gw_ire);
6961 	}
6962 	/*
6963 	 * We do not do save_ire for the routes added with RTA_SRCIFP
6964 	 * flag. This route is only added and deleted by mipagent.
6965 	 * So, for simplicity of design, we refrain from saving
6966 	 * ires that are created with srcif value. This may change
6967 	 * in future if we find more usage of srcifp feature.
6968 	 */
6969 	if (ipif != NULL && src_ipif == NULL) {
6970 		/*
6971 		 * Save enough information so that we can recreate the IRE if
6972 		 * the interface goes down and then up.  The metrics associated
6973 		 * with the route will be saved as well when rts_setmetrics() is
6974 		 * called after the IRE has been created.  In the case where
6975 		 * memory cannot be allocated, none of this information will be
6976 		 * saved.
6977 		 */
6978 		ipif_save_ire(ipif, ire);
6979 	}
6980 	if (ioctl_msg)
6981 		ip_rts_rtmsg(RTM_OLDADD, ire, 0);
6982 	if (ire_arg != NULL) {
6983 		/*
6984 		 * Store the ire that was successfully added into where ire_arg
6985 		 * points to so that callers don't have to look it up
6986 		 * themselves (but they are responsible for ire_refrele()ing
6987 		 * the ire when they are finished with it).
6988 		 */
6989 		*ire_arg = ire;
6990 	} else {
6991 		ire_refrele(ire);		/* Held in ire_add */
6992 	}
6993 	if (ipif_refheld)
6994 		ipif_refrele(ipif);
6995 	return (0);
6996 }
6997 
6998 /*
6999  * ip_rt_delete is called to delete an IPv4 route.
7000  * ipif_arg is passed in to associate it with the correct interface.
7001  * src_ipif is passed to associate the incoming interface of the packet.
7002  * We may need to restart this operation if the ipif cannot be looked up
7003  * due to an exclusive operation that is currently in progress. The restart
7004  * entry point is specified by 'func'
7005  */
7006 /* ARGSUSED4 */
7007 int
7008 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7009     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
7010     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func)
7011 {
7012 	ire_t	*ire = NULL;
7013 	ipif_t	*ipif;
7014 	boolean_t ipif_refheld = B_FALSE;
7015 	uint_t	type;
7016 	uint_t	match_flags = MATCH_IRE_TYPE;
7017 	int	err = 0;
7018 
7019 	ip1dbg(("ip_rt_delete:"));
7020 	/*
7021 	 * If this is the case of RTF_HOST being set, then we set the netmask
7022 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7023 	 */
7024 	if (flags & RTF_HOST) {
7025 		mask = IP_HOST_MASK;
7026 		match_flags |= MATCH_IRE_MASK;
7027 	} else if (rtm_addrs & RTA_NETMASK) {
7028 		match_flags |= MATCH_IRE_MASK;
7029 	}
7030 
7031 	/*
7032 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7033 	 * we check if the gateway address is one of our interfaces first,
7034 	 * and fall back on RTF_GATEWAY routes.
7035 	 *
7036 	 * This makes it possible to delete an original
7037 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7038 	 *
7039 	 * As the interface index specified with the RTA_IFP sockaddr is the
7040 	 * same for all ipif's off of an ill, the matching logic below uses
7041 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7042 	 * sharing the same prefix and interface index as the the route
7043 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7044 	 * is specified in the request.
7045 	 *
7046 	 * On the other hand, since the gateway address will usually be
7047 	 * different for each ipif on the system, the matching logic
7048 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7049 	 * route.  This means that interface routes for the same prefix can be
7050 	 * uniquely identified if they belong to distinct ipif's and if a
7051 	 * RTA_IFP sockaddr is not present.
7052 	 *
7053 	 * For more detail on specifying routes by gateway address and by
7054 	 * interface index, see the comments in ip_rt_add().
7055 	 * gw_addr could be zero in some cases when both RTA_SRCIFP and
7056 	 * RTA_IFP are specified. If RTA_SRCIFP is specified and  both
7057 	 * RTA_IFP and gateway_addr are NULL/zero, then delete will not
7058 	 * succeed.
7059 	 */
7060 	if (src_ipif != NULL) {
7061 		if (ipif_arg == NULL && gw_addr != 0) {
7062 			ipif_arg = ipif_lookup_interface(gw_addr, dst_addr,
7063 			    q, mp, func, &err);
7064 			if (ipif_arg != NULL)
7065 				ipif_refheld = B_TRUE;
7066 		}
7067 		if (ipif_arg == NULL) {
7068 			err = (err == EINPROGRESS) ? err : ESRCH;
7069 			return (err);
7070 		}
7071 		ipif = ipif_arg;
7072 	} else {
7073 		ipif = ipif_lookup_interface(gw_addr, dst_addr,
7074 			    q, mp, func, &err);
7075 		if (ipif != NULL)
7076 			ipif_refheld = B_TRUE;
7077 		else if (err == EINPROGRESS)
7078 			return (err);
7079 		else
7080 			err = 0;
7081 	}
7082 	if (ipif != NULL) {
7083 		if (ipif_arg != NULL) {
7084 			if (ipif_refheld) {
7085 				ipif_refrele(ipif);
7086 				ipif_refheld = B_FALSE;
7087 			}
7088 			ipif = ipif_arg;
7089 			match_flags |= MATCH_IRE_ILL;
7090 		} else {
7091 			match_flags |= MATCH_IRE_IPIF;
7092 		}
7093 		if (src_ipif != NULL) {
7094 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
7095 			    ipif, src_ipif->ipif_ill, match_flags);
7096 		} else {
7097 			if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7098 				ire = ire_ctable_lookup(dst_addr, 0,
7099 				    IRE_LOOPBACK, ipif, ALL_ZONES, NULL,
7100 				    match_flags);
7101 			}
7102 			if (ire == NULL) {
7103 				ire = ire_ftable_lookup(dst_addr, mask, 0,
7104 				    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
7105 				    NULL, match_flags);
7106 			}
7107 		}
7108 	}
7109 
7110 	if (ire == NULL) {
7111 		/*
7112 		 * At this point, the gateway address is not one of our own
7113 		 * addresses or a matching interface route was not found.  We
7114 		 * set the IRE type to lookup based on whether
7115 		 * this is a host route, a default route or just a prefix.
7116 		 *
7117 		 * If an ipif_arg was passed in, then the lookup is based on an
7118 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7119 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7120 		 * set as the route being looked up is not a traditional
7121 		 * interface route.
7122 		 * Since we do not add gateway route with srcipif, we don't
7123 		 * expect to find it either.
7124 		 */
7125 		if (src_ipif != NULL) {
7126 			if (ipif_refheld)
7127 				ipif_refrele(ipif);
7128 			return (ESRCH);
7129 		} else {
7130 			match_flags &= ~MATCH_IRE_IPIF;
7131 			match_flags |= MATCH_IRE_GW;
7132 			if (ipif_arg != NULL)
7133 				match_flags |= MATCH_IRE_ILL;
7134 			if (mask == IP_HOST_MASK)
7135 				type = IRE_HOST;
7136 			else if (mask == 0)
7137 				type = IRE_DEFAULT;
7138 			else
7139 				type = IRE_PREFIX;
7140 			ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type,
7141 			    ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags);
7142 		}
7143 	}
7144 
7145 	if (ipif_refheld)
7146 		ipif_refrele(ipif);
7147 
7148 	/* ipif is not refheld anymore */
7149 	if (ire == NULL)
7150 		return (ESRCH);
7151 
7152 	if (ire->ire_flags & RTF_MULTIRT) {
7153 		/*
7154 		 * Invoke the CGTP (multirouting) filtering module
7155 		 * to remove the dst address from the filtering database.
7156 		 * Packets coming from that address will no longer be
7157 		 * filtered to remove duplicates.
7158 		 */
7159 		if (ip_cgtp_filter_ops != NULL) {
7160 			err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr,
7161 			    ire->ire_gateway_addr);
7162 		}
7163 		ip_cgtp_bcast_delete(ire);
7164 	}
7165 
7166 	ipif = ire->ire_ipif;
7167 	/*
7168 	 * Removing from ipif_saved_ire_mp is not necessary
7169 	 * when src_ipif being non-NULL. ip_rt_add does not
7170 	 * save the ires which src_ipif being non-NULL.
7171 	 */
7172 	if (ipif != NULL && src_ipif == NULL) {
7173 		ipif_remove_ire(ipif, ire);
7174 	}
7175 	if (ioctl_msg)
7176 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0);
7177 	ire_delete(ire);
7178 	ire_refrele(ire);
7179 	return (err);
7180 }
7181 
7182 /*
7183  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7184  */
7185 /* ARGSUSED */
7186 int
7187 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7188     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7189 {
7190 	ipaddr_t dst_addr;
7191 	ipaddr_t gw_addr;
7192 	ipaddr_t mask;
7193 	int error = 0;
7194 	mblk_t *mp1;
7195 	struct rtentry *rt;
7196 	ipif_t *ipif = NULL;
7197 
7198 	ip1dbg(("ip_siocaddrt:"));
7199 	/* Existence of mp1 verified in ip_wput_nondata */
7200 	mp1 = mp->b_cont->b_cont;
7201 	rt = (struct rtentry *)mp1->b_rptr;
7202 
7203 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7204 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7205 
7206 	/*
7207 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7208 	 * to a particular host address.  In this case, we set the netmask to
7209 	 * all ones for the particular destination address.  Otherwise,
7210 	 * determine the netmask to be used based on dst_addr and the interfaces
7211 	 * in use.
7212 	 */
7213 	if (rt->rt_flags & RTF_HOST) {
7214 		mask = IP_HOST_MASK;
7215 	} else {
7216 		/*
7217 		 * Note that ip_subnet_mask returns a zero mask in the case of
7218 		 * default (an all-zeroes address).
7219 		 */
7220 		mask = ip_subnet_mask(dst_addr, &ipif);
7221 	}
7222 
7223 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7224 	    NULL, B_TRUE, q, mp, ip_process_ioctl, NULL);
7225 	if (ipif != NULL)
7226 		ipif_refrele(ipif);
7227 	return (error);
7228 }
7229 
7230 /*
7231  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7232  */
7233 /* ARGSUSED */
7234 int
7235 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7236     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7237 {
7238 	ipaddr_t dst_addr;
7239 	ipaddr_t gw_addr;
7240 	ipaddr_t mask;
7241 	int error;
7242 	mblk_t *mp1;
7243 	struct rtentry *rt;
7244 	ipif_t *ipif = NULL;
7245 
7246 	ip1dbg(("ip_siocdelrt:"));
7247 	/* Existence of mp1 verified in ip_wput_nondata */
7248 	mp1 = mp->b_cont->b_cont;
7249 	rt = (struct rtentry *)mp1->b_rptr;
7250 
7251 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7252 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7253 
7254 	/*
7255 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7256 	 * to a particular host address.  In this case, we set the netmask to
7257 	 * all ones for the particular destination address.  Otherwise,
7258 	 * determine the netmask to be used based on dst_addr and the interfaces
7259 	 * in use.
7260 	 */
7261 	if (rt->rt_flags & RTF_HOST) {
7262 		mask = IP_HOST_MASK;
7263 	} else {
7264 		/*
7265 		 * Note that ip_subnet_mask returns a zero mask in the case of
7266 		 * default (an all-zeroes address).
7267 		 */
7268 		mask = ip_subnet_mask(dst_addr, &ipif);
7269 	}
7270 
7271 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7272 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL,
7273 	    B_TRUE, q, mp, ip_process_ioctl);
7274 	if (ipif != NULL)
7275 		ipif_refrele(ipif);
7276 	return (error);
7277 }
7278 
7279 /*
7280  * Enqueue the mp onto the ipsq, chained by b_next.
7281  * b_prev stores the function to be executed later, and b_queue the queue
7282  * where this mp originated.
7283  */
7284 void
7285 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7286     ill_t *pending_ill)
7287 {
7288 	conn_t	*connp = NULL;
7289 
7290 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7291 	ASSERT(func != NULL);
7292 
7293 	mp->b_queue = q;
7294 	mp->b_prev = (void *)func;
7295 	mp->b_next = NULL;
7296 
7297 	switch (type) {
7298 	case CUR_OP:
7299 		if (ipsq->ipsq_mptail != NULL) {
7300 			ASSERT(ipsq->ipsq_mphead != NULL);
7301 			ipsq->ipsq_mptail->b_next = mp;
7302 		} else {
7303 			ASSERT(ipsq->ipsq_mphead == NULL);
7304 			ipsq->ipsq_mphead = mp;
7305 		}
7306 		ipsq->ipsq_mptail = mp;
7307 		break;
7308 
7309 	case NEW_OP:
7310 		if (ipsq->ipsq_xopq_mptail != NULL) {
7311 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7312 			ipsq->ipsq_xopq_mptail->b_next = mp;
7313 		} else {
7314 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7315 			ipsq->ipsq_xopq_mphead = mp;
7316 		}
7317 		ipsq->ipsq_xopq_mptail = mp;
7318 		break;
7319 	default:
7320 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7321 	}
7322 
7323 	if (CONN_Q(q) && pending_ill != NULL) {
7324 		connp = Q_TO_CONN(q);
7325 
7326 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7327 		connp->conn_oper_pending_ill = pending_ill;
7328 	}
7329 }
7330 
7331 /*
7332  * Return the mp at the head of the ipsq. After emptying the ipsq
7333  * look at the next ioctl, if this ioctl is complete. Otherwise
7334  * return, we will resume when we complete the current ioctl.
7335  * The current ioctl will wait till it gets a response from the
7336  * driver below.
7337  */
7338 static mblk_t *
7339 ipsq_dq(ipsq_t *ipsq)
7340 {
7341 	mblk_t	*mp;
7342 
7343 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7344 
7345 	mp = ipsq->ipsq_mphead;
7346 	if (mp != NULL) {
7347 		ipsq->ipsq_mphead = mp->b_next;
7348 		if (ipsq->ipsq_mphead == NULL)
7349 			ipsq->ipsq_mptail = NULL;
7350 		mp->b_next = NULL;
7351 		return (mp);
7352 	}
7353 	if (ipsq->ipsq_current_ipif != NULL)
7354 		return (NULL);
7355 	mp = ipsq->ipsq_xopq_mphead;
7356 	if (mp != NULL) {
7357 		ipsq->ipsq_xopq_mphead = mp->b_next;
7358 		if (ipsq->ipsq_xopq_mphead == NULL)
7359 			ipsq->ipsq_xopq_mptail = NULL;
7360 		mp->b_next = NULL;
7361 		return (mp);
7362 	}
7363 	return (NULL);
7364 }
7365 
7366 /*
7367  * Enter the ipsq corresponding to ill, by waiting synchronously till
7368  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7369  * will have to drain completely before ipsq_enter returns success.
7370  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7371  * and the ipsq_exit logic will start the next enqueued ioctl after
7372  * completion of the current ioctl. If 'force' is used, we don't wait
7373  * for the enqueued ioctls. This is needed when a conn_close wants to
7374  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7375  * of an ill can also use this option. But we dont' use it currently.
7376  */
7377 #define	ENTER_SQ_WAIT_TICKS 100
7378 boolean_t
7379 ipsq_enter(ill_t *ill, boolean_t force)
7380 {
7381 	ipsq_t	*ipsq;
7382 	boolean_t waited_enough = B_FALSE;
7383 
7384 	/*
7385 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7386 	 * Since the <ill-ipsq> assocs could change while we wait for the
7387 	 * writer, it is easier to wait on a fixed global rather than try to
7388 	 * cv_wait on a changing ipsq.
7389 	 */
7390 	mutex_enter(&ill->ill_lock);
7391 	for (;;) {
7392 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7393 			mutex_exit(&ill->ill_lock);
7394 			return (B_FALSE);
7395 		}
7396 
7397 		ipsq = ill->ill_phyint->phyint_ipsq;
7398 		mutex_enter(&ipsq->ipsq_lock);
7399 		if (ipsq->ipsq_writer == NULL &&
7400 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7401 			break;
7402 		} else if (ipsq->ipsq_writer != NULL) {
7403 			mutex_exit(&ipsq->ipsq_lock);
7404 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7405 		} else {
7406 			mutex_exit(&ipsq->ipsq_lock);
7407 			if (force) {
7408 				(void) cv_timedwait(&ill->ill_cv,
7409 				    &ill->ill_lock,
7410 				    lbolt + ENTER_SQ_WAIT_TICKS);
7411 				waited_enough = B_TRUE;
7412 				continue;
7413 			} else {
7414 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7415 			}
7416 		}
7417 	}
7418 
7419 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7420 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7421 	ipsq->ipsq_writer = curthread;
7422 	ipsq->ipsq_reentry_cnt++;
7423 #ifdef ILL_DEBUG
7424 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7425 #endif
7426 	mutex_exit(&ipsq->ipsq_lock);
7427 	mutex_exit(&ill->ill_lock);
7428 	return (B_TRUE);
7429 }
7430 
7431 /*
7432  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7433  * certain critical operations like plumbing (i.e. most set ioctls),
7434  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7435  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7436  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7437  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7438  * threads executing in the ipsq. Responses from the driver pertain to the
7439  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7440  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7441  *
7442  * If a thread does not want to reenter the ipsq when it is already writer,
7443  * it must make sure that the specified reentry point to be called later
7444  * when the ipsq is empty, nor any code path starting from the specified reentry
7445  * point must never ever try to enter the ipsq again. Otherwise it can lead
7446  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7447  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7448  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7449  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7450  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7451  * ioctl if the current ioctl has completed. If the current ioctl is still
7452  * in progress it simply returns. The current ioctl could be waiting for
7453  * a response from another module (arp_ or the driver or could be waiting for
7454  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7455  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7456  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7457  * ipsq_current_ipif is clear which happens only on ioctl completion.
7458  */
7459 
7460 /*
7461  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7462  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7463  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7464  * completion.
7465  */
7466 ipsq_t *
7467 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7468     ipsq_func_t func, int type, boolean_t reentry_ok)
7469 {
7470 	ipsq_t	*ipsq;
7471 
7472 	/* Only 1 of ipif or ill can be specified */
7473 	ASSERT((ipif != NULL) ^ (ill != NULL));
7474 	if (ipif != NULL)
7475 		ill = ipif->ipif_ill;
7476 
7477 	/*
7478 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7479 	 * ipsq of an ill can't change when ill_lock is held.
7480 	 */
7481 	GRAB_CONN_LOCK(q);
7482 	mutex_enter(&ill->ill_lock);
7483 	ipsq = ill->ill_phyint->phyint_ipsq;
7484 	mutex_enter(&ipsq->ipsq_lock);
7485 
7486 	/*
7487 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7488 	 *    (Note: If the caller does not specify reentry_ok then neither
7489 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7490 	 *    again. Otherwise it can lead to an infinite loop
7491 	 * 2. Enter the ipsq if there is no current writer and this attempted
7492 	 *    entry is part of the current ioctl or operation
7493 	 * 3. Enter the ipsq if there is no current writer and this is a new
7494 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7495 	 *    empty and there is no ioctl (or operation) currently in progress
7496 	 */
7497 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7498 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7499 	    ipsq->ipsq_current_ipif == NULL))) ||
7500 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7501 		/* Success. */
7502 		ipsq->ipsq_reentry_cnt++;
7503 		ipsq->ipsq_writer = curthread;
7504 		mutex_exit(&ipsq->ipsq_lock);
7505 		mutex_exit(&ill->ill_lock);
7506 		RELEASE_CONN_LOCK(q);
7507 #ifdef ILL_DEBUG
7508 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7509 #endif
7510 		return (ipsq);
7511 	}
7512 
7513 	ipsq_enq(ipsq, q, mp, func, type, ill);
7514 
7515 	mutex_exit(&ipsq->ipsq_lock);
7516 	mutex_exit(&ill->ill_lock);
7517 	RELEASE_CONN_LOCK(q);
7518 	return (NULL);
7519 }
7520 
7521 /*
7522  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7523  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7524  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7525  * completion.
7526  *
7527  * This function does a refrele on the ipif/ill.
7528  */
7529 void
7530 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7531     ipsq_func_t func, int type, boolean_t reentry_ok)
7532 {
7533 	ipsq_t	*ipsq;
7534 
7535 	ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok);
7536 	/*
7537 	 * Caller must have done a refhold on the ipif. ipif_refrele
7538 	 * happens on the passed ipif. We can do this since we are
7539 	 * already exclusive, or we won't access ipif henceforth, Both
7540 	 * this func and caller will just return if we ipsq_try_enter
7541 	 * fails above. This is needed because func needs to
7542 	 * see the correct refcount. Eg. removeif can work only then.
7543 	 */
7544 	if (ipif != NULL)
7545 		ipif_refrele(ipif);
7546 	else
7547 		ill_refrele(ill);
7548 	if (ipsq != NULL) {
7549 		(*func)(ipsq, q, mp, NULL);
7550 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
7551 	}
7552 }
7553 
7554 /*
7555  * If there are more than ILL_GRP_CNT ills in a group,
7556  * we use kmem alloc'd buffers, else use the stack
7557  */
7558 #define	ILL_GRP_CNT	14
7559 /*
7560  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7561  * Called by a thread that is currently exclusive on this ipsq.
7562  */
7563 void
7564 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7565 {
7566 	queue_t	*q;
7567 	mblk_t	*mp;
7568 	ipsq_func_t	func;
7569 	int	next;
7570 	ill_t	**ill_list = NULL;
7571 	size_t	ill_list_size = 0;
7572 	int	cnt = 0;
7573 	boolean_t need_ipsq_free = B_FALSE;
7574 
7575 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7576 	mutex_enter(&ipsq->ipsq_lock);
7577 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7578 	if (ipsq->ipsq_reentry_cnt != 1) {
7579 		ipsq->ipsq_reentry_cnt--;
7580 		mutex_exit(&ipsq->ipsq_lock);
7581 		return;
7582 	}
7583 
7584 	mp = ipsq_dq(ipsq);
7585 	while (mp != NULL) {
7586 again:
7587 		mutex_exit(&ipsq->ipsq_lock);
7588 		func = (ipsq_func_t)mp->b_prev;
7589 		q = (queue_t *)mp->b_queue;
7590 		mp->b_prev = NULL;
7591 		mp->b_queue = NULL;
7592 
7593 		/*
7594 		 * If 'q' is an conn queue, it is valid, since we did a
7595 		 * a refhold on the connp, at the start of the ioctl.
7596 		 * If 'q' is an ill queue, it is valid, since close of an
7597 		 * ill will clean up the 'ipsq'.
7598 		 */
7599 		(*func)(ipsq, q, mp, NULL);
7600 
7601 		mutex_enter(&ipsq->ipsq_lock);
7602 		mp = ipsq_dq(ipsq);
7603 	}
7604 
7605 	mutex_exit(&ipsq->ipsq_lock);
7606 
7607 	/*
7608 	 * Need to grab the locks in the right order. Need to
7609 	 * atomically check (under ipsq_lock) that there are no
7610 	 * messages before relinquishing the ipsq. Also need to
7611 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
7612 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7613 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7614 	 * to grab ill_g_lock as writer.
7615 	 */
7616 	rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER);
7617 
7618 	/* ipsq_refs can't change while ill_g_lock is held as reader */
7619 	if (ipsq->ipsq_refs != 0) {
7620 		/* At most 2 ills v4/v6 per phyint */
7621 		cnt = ipsq->ipsq_refs << 1;
7622 		ill_list_size = cnt * sizeof (ill_t *);
7623 		/*
7624 		 * If memory allocation fails, we will do the split
7625 		 * the next time ipsq_exit is called for whatever reason.
7626 		 * As long as the ipsq_split flag is set the need to
7627 		 * split is remembered.
7628 		 */
7629 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7630 		if (ill_list != NULL)
7631 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7632 	}
7633 	mutex_enter(&ipsq->ipsq_lock);
7634 	mp = ipsq_dq(ipsq);
7635 	if (mp != NULL) {
7636 		/* oops, some message has landed up, we can't get out */
7637 		if (ill_list != NULL)
7638 			ill_unlock_ills(ill_list, cnt);
7639 		rw_exit(&ill_g_lock);
7640 		if (ill_list != NULL)
7641 			kmem_free(ill_list, ill_list_size);
7642 		ill_list = NULL;
7643 		ill_list_size = 0;
7644 		cnt = 0;
7645 		goto again;
7646 	}
7647 
7648 	/*
7649 	 * Split only if no ioctl is pending and if memory alloc succeeded
7650 	 * above.
7651 	 */
7652 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7653 		ill_list != NULL) {
7654 		/*
7655 		 * No new ill can join this ipsq since we are holding the
7656 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7657 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
7658 		 * If so we will retry on the next ipsq_exit.
7659 		 */
7660 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
7661 	}
7662 
7663 	/*
7664 	 * We are holding the ipsq lock, hence no new messages can
7665 	 * land up on the ipsq, and there are no messages currently.
7666 	 * Now safe to get out. Wake up waiters and relinquish ipsq
7667 	 * atomically while holding ill locks.
7668 	 */
7669 	ipsq->ipsq_writer = NULL;
7670 	ipsq->ipsq_reentry_cnt--;
7671 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7672 #ifdef ILL_DEBUG
7673 	ipsq->ipsq_depth = 0;
7674 #endif
7675 	mutex_exit(&ipsq->ipsq_lock);
7676 	/*
7677 	 * For IPMP this should wake up all ills in this ipsq.
7678 	 * We need to hold the ill_lock while waking up waiters to
7679 	 * avoid missed wakeups. But there is no need to acquire all
7680 	 * the ill locks and then wakeup. If we have not acquired all
7681 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
7682 	 * wakes up ills one at a time after getting the right ill_lock
7683 	 */
7684 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
7685 	if (ill_list != NULL)
7686 		ill_unlock_ills(ill_list, cnt);
7687 	if (ipsq->ipsq_refs == 0)
7688 		need_ipsq_free = B_TRUE;
7689 	rw_exit(&ill_g_lock);
7690 	if (ill_list != 0)
7691 		kmem_free(ill_list, ill_list_size);
7692 
7693 	if (need_ipsq_free) {
7694 		/*
7695 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
7696 		 * looked up. ipsq can be looked up only thru ill or phyint
7697 		 * and there are no ills/phyint on this ipsq.
7698 		 */
7699 		ipsq_delete(ipsq);
7700 	}
7701 	/*
7702 	 * Now start any igmp or mld timers that could not be started
7703 	 * while inside the ipsq. The timers can't be started while inside
7704 	 * the ipsq, since igmp_start_timers may need to call untimeout()
7705 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
7706 	 * there could be a deadlock since the timeout handlers
7707 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
7708 	 * wait in ipsq_enter() trying to get the ipsq.
7709 	 *
7710 	 * However there is one exception to the above. If this thread is
7711 	 * itself the igmp/mld timeout handler thread, then we don't want
7712 	 * to start any new timer until the current handler is done. The
7713 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
7714 	 * all others pass B_TRUE.
7715 	 */
7716 	if (start_igmp_timer) {
7717 		mutex_enter(&igmp_timer_lock);
7718 		next = igmp_deferred_next;
7719 		igmp_deferred_next = INFINITY;
7720 		mutex_exit(&igmp_timer_lock);
7721 
7722 		if (next != INFINITY)
7723 			igmp_start_timers(next);
7724 	}
7725 
7726 	if (start_mld_timer) {
7727 		mutex_enter(&mld_timer_lock);
7728 		next = mld_deferred_next;
7729 		mld_deferred_next = INFINITY;
7730 		mutex_exit(&mld_timer_lock);
7731 
7732 		if (next != INFINITY)
7733 			mld_start_timers(next);
7734 	}
7735 }
7736 
7737 /*
7738  * The ill is closing. Flush all messages on the ipsq that originated
7739  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
7740  * for this ill since ipsq_enter could not have entered until then.
7741  * New messages can't be queued since the CONDEMNED flag is set.
7742  */
7743 static void
7744 ipsq_flush(ill_t *ill)
7745 {
7746 	queue_t	*q;
7747 	mblk_t	*prev;
7748 	mblk_t	*mp;
7749 	mblk_t	*mp_next;
7750 	ipsq_t	*ipsq;
7751 
7752 	ASSERT(IAM_WRITER_ILL(ill));
7753 	ipsq = ill->ill_phyint->phyint_ipsq;
7754 	/*
7755 	 * Flush any messages sent up by the driver.
7756 	 */
7757 	mutex_enter(&ipsq->ipsq_lock);
7758 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
7759 		mp_next = mp->b_next;
7760 		q = mp->b_queue;
7761 		if (q == ill->ill_rq || q == ill->ill_wq) {
7762 			/* Remove the mp from the ipsq */
7763 			if (prev == NULL)
7764 				ipsq->ipsq_mphead = mp->b_next;
7765 			else
7766 				prev->b_next = mp->b_next;
7767 			if (ipsq->ipsq_mptail == mp) {
7768 				ASSERT(mp_next == NULL);
7769 				ipsq->ipsq_mptail = prev;
7770 			}
7771 			inet_freemsg(mp);
7772 		} else {
7773 			prev = mp;
7774 		}
7775 	}
7776 	mutex_exit(&ipsq->ipsq_lock);
7777 	(void) ipsq_pending_mp_cleanup(ill, NULL);
7778 	ipsq_xopq_mp_cleanup(ill, NULL);
7779 	ill_pending_mp_cleanup(ill);
7780 }
7781 
7782 /*
7783  * Clean up one squeue element. ill_inuse_ref is protected by ill_lock.
7784  * The real cleanup happens behind the squeue via ip_squeue_clean function but
7785  * we need to protect ourselfs from 2 threads trying to cleanup at the same
7786  * time (possible with one port going down for aggr and someone tearing down the
7787  * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock
7788  * to indicate when the cleanup has started (1 ref) and when the cleanup
7789  * is done (0 ref). When a new ring gets assigned to squeue, we start by
7790  * putting 2 ref on ill_inuse_ref.
7791  */
7792 static void
7793 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring)
7794 {
7795 	conn_t *connp;
7796 	squeue_t *sqp;
7797 	mblk_t *mp;
7798 
7799 	ASSERT(rx_ring != NULL);
7800 
7801 	/* Just clean one squeue */
7802 	mutex_enter(&ill->ill_lock);
7803 	/*
7804 	 * Reset the ILL_SOFT_RING_ASSIGN bit so that
7805 	 * ip_squeue_soft_ring_affinty() will not go
7806 	 * ahead with assigning rings.
7807 	 */
7808 	ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN;
7809 	while (rx_ring->rr_ring_state == ILL_RING_INPROC)
7810 		/* Some operations pending on the ring. Wait */
7811 		cv_wait(&ill->ill_cv, &ill->ill_lock);
7812 
7813 	if (rx_ring->rr_ring_state != ILL_RING_INUSE) {
7814 		/*
7815 		 * Someone already trying to clean
7816 		 * this squeue or its already been cleaned.
7817 		 */
7818 		mutex_exit(&ill->ill_lock);
7819 		return;
7820 	}
7821 	sqp = rx_ring->rr_sqp;
7822 
7823 	if (sqp == NULL) {
7824 		/*
7825 		 * The rx_ring never had a squeue assigned to it.
7826 		 * We are under ill_lock so we can clean it up
7827 		 * here itself since no one can get to it.
7828 		 */
7829 		rx_ring->rr_blank = NULL;
7830 		rx_ring->rr_handle = NULL;
7831 		rx_ring->rr_sqp = NULL;
7832 		rx_ring->rr_ring_state = ILL_RING_FREE;
7833 		mutex_exit(&ill->ill_lock);
7834 		return;
7835 	}
7836 
7837 	/* Set the state that its being cleaned */
7838 	rx_ring->rr_ring_state = ILL_RING_BEING_FREED;
7839 	ASSERT(sqp != NULL);
7840 	mutex_exit(&ill->ill_lock);
7841 
7842 	/*
7843 	 * Use the preallocated ill_unbind_conn for this purpose
7844 	 */
7845 	connp = ill->ill_dls_capab->ill_unbind_conn;
7846 
7847 	ASSERT(!connp->conn_tcp->tcp_closemp.b_prev);
7848 	TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15);
7849 	if (connp->conn_tcp->tcp_closemp.b_prev == NULL)
7850 		connp->conn_tcp->tcp_closemp_used = 1;
7851 	else
7852 		connp->conn_tcp->tcp_closemp_used++;
7853 	mp = &connp->conn_tcp->tcp_closemp;
7854 	CONN_INC_REF(connp);
7855 	squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL);
7856 
7857 	mutex_enter(&ill->ill_lock);
7858 	while (rx_ring->rr_ring_state != ILL_RING_FREE)
7859 		cv_wait(&ill->ill_cv, &ill->ill_lock);
7860 
7861 	mutex_exit(&ill->ill_lock);
7862 }
7863 
7864 static void
7865 ipsq_clean_all(ill_t *ill)
7866 {
7867 	int idx;
7868 
7869 	/*
7870 	 * No need to clean if poll_capab isn't set for this ill
7871 	 */
7872 	if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)))
7873 		return;
7874 
7875 	for (idx = 0; idx < ILL_MAX_RINGS; idx++) {
7876 		ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx];
7877 		ipsq_clean_ring(ill, ipr);
7878 	}
7879 
7880 	ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING);
7881 }
7882 
7883 /* ARGSUSED */
7884 int
7885 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
7886     ip_ioctl_cmd_t *ipip, void *ifreq)
7887 {
7888 	ill_t	*ill;
7889 	struct lifreq	*lifr = (struct lifreq *)ifreq;
7890 	boolean_t isv6;
7891 	conn_t	*connp;
7892 
7893 	connp = Q_TO_CONN(q);
7894 	isv6 = connp->conn_af_isv6;
7895 	/*
7896 	 * Set original index.
7897 	 * Failover and failback move logical interfaces
7898 	 * from one physical interface to another.  The
7899 	 * original index indicates the parent of a logical
7900 	 * interface, in other words, the physical interface
7901 	 * the logical interface will be moved back to on
7902 	 * failback.
7903 	 */
7904 
7905 	/*
7906 	 * Don't allow the original index to be changed
7907 	 * for non-failover addresses, autoconfigured
7908 	 * addresses, or IPv6 link local addresses.
7909 	 */
7910 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
7911 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
7912 		return (EINVAL);
7913 	}
7914 	/*
7915 	 * The new original index must be in use by some
7916 	 * physical interface.
7917 	 */
7918 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
7919 	    NULL, NULL);
7920 	if (ill == NULL)
7921 		return (ENXIO);
7922 	ill_refrele(ill);
7923 
7924 	ipif->ipif_orig_ifindex = lifr->lifr_index;
7925 	/*
7926 	 * When this ipif gets failed back, don't
7927 	 * preserve the original id, as it is no
7928 	 * longer applicable.
7929 	 */
7930 	ipif->ipif_orig_ipifid = 0;
7931 	/*
7932 	 * For IPv4, change the original index of any
7933 	 * multicast addresses associated with the
7934 	 * ipif to the new value.
7935 	 */
7936 	if (!isv6) {
7937 		ilm_t *ilm;
7938 
7939 		mutex_enter(&ipif->ipif_ill->ill_lock);
7940 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
7941 		    ilm = ilm->ilm_next) {
7942 			if (ilm->ilm_ipif == ipif) {
7943 				ilm->ilm_orig_ifindex = lifr->lifr_index;
7944 			}
7945 		}
7946 		mutex_exit(&ipif->ipif_ill->ill_lock);
7947 	}
7948 	return (0);
7949 }
7950 
7951 /* ARGSUSED */
7952 int
7953 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
7954     ip_ioctl_cmd_t *ipip, void *ifreq)
7955 {
7956 	struct lifreq *lifr = (struct lifreq *)ifreq;
7957 
7958 	/*
7959 	 * Get the original interface index i.e the one
7960 	 * before FAILOVER if it ever happened.
7961 	 */
7962 	lifr->lifr_index = ipif->ipif_orig_ifindex;
7963 	return (0);
7964 }
7965 
7966 /*
7967  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
7968  * refhold and return the associated ipif
7969  */
7970 int
7971 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func)
7972 {
7973 	boolean_t exists;
7974 	struct iftun_req *ta;
7975 	ipif_t	*ipif;
7976 	ill_t	*ill;
7977 	boolean_t isv6;
7978 	mblk_t	*mp1;
7979 	int	error;
7980 	conn_t	*connp;
7981 
7982 	/* Existence verified in ip_wput_nondata */
7983 	mp1 = mp->b_cont->b_cont;
7984 	ta = (struct iftun_req *)mp1->b_rptr;
7985 	/*
7986 	 * Null terminate the string to protect against buffer
7987 	 * overrun. String was generated by user code and may not
7988 	 * be trusted.
7989 	 */
7990 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
7991 
7992 	connp = Q_TO_CONN(q);
7993 	isv6 = connp->conn_af_isv6;
7994 
7995 	/* Disallows implicit create */
7996 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
7997 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
7998 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error);
7999 	if (ipif == NULL)
8000 		return (error);
8001 
8002 	if (ipif->ipif_id != 0) {
8003 		/*
8004 		 * We really don't want to set/get tunnel parameters
8005 		 * on virtual tunnel interfaces.  Only allow the
8006 		 * base tunnel to do these.
8007 		 */
8008 		ipif_refrele(ipif);
8009 		return (EINVAL);
8010 	}
8011 
8012 	/*
8013 	 * Send down to tunnel mod for ioctl processing.
8014 	 * Will finish ioctl in ip_rput_other().
8015 	 */
8016 	ill = ipif->ipif_ill;
8017 	if (ill->ill_net_type == IRE_LOOPBACK) {
8018 		ipif_refrele(ipif);
8019 		return (EOPNOTSUPP);
8020 	}
8021 
8022 	if (ill->ill_wq == NULL) {
8023 		ipif_refrele(ipif);
8024 		return (ENXIO);
8025 	}
8026 	/*
8027 	 * Mark the ioctl as coming from an IPv6 interface for
8028 	 * tun's convenience.
8029 	 */
8030 	if (ill->ill_isv6)
8031 		ta->ifta_flags |= 0x80000000;
8032 	*ipifp = ipif;
8033 	return (0);
8034 }
8035 
8036 /*
8037  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8038  * and return the associated ipif.
8039  * Return value:
8040  *	Non zero: An error has occurred. ci may not be filled out.
8041  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8042  *	a held ipif in ci.ci_ipif.
8043  */
8044 int
8045 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags,
8046     cmd_info_t *ci, ipsq_func_t func)
8047 {
8048 	sin_t		*sin;
8049 	sin6_t		*sin6;
8050 	char		*name;
8051 	struct ifreq    *ifr;
8052 	struct lifreq    *lifr;
8053 	ipif_t		*ipif = NULL;
8054 	ill_t		*ill;
8055 	conn_t		*connp;
8056 	boolean_t	isv6;
8057 	struct iocblk   *iocp = (struct iocblk *)mp->b_rptr;
8058 	boolean_t	exists;
8059 	int		err;
8060 	mblk_t		*mp1;
8061 	zoneid_t	zoneid;
8062 
8063 	if (q->q_next != NULL) {
8064 		ill = (ill_t *)q->q_ptr;
8065 		isv6 = ill->ill_isv6;
8066 		connp = NULL;
8067 		zoneid = ALL_ZONES;
8068 	} else {
8069 		ill = NULL;
8070 		connp = Q_TO_CONN(q);
8071 		isv6 = connp->conn_af_isv6;
8072 		zoneid = connp->conn_zoneid;
8073 		if (zoneid == GLOBAL_ZONEID) {
8074 			/* global zone can access ipifs in all zones */
8075 			zoneid = ALL_ZONES;
8076 		}
8077 	}
8078 
8079 	/* Has been checked in ip_wput_nondata */
8080 	mp1 = mp->b_cont->b_cont;
8081 
8082 
8083 	if (cmd_type == IF_CMD) {
8084 		/* This a old style SIOC[GS]IF* command */
8085 		ifr = (struct ifreq *)mp1->b_rptr;
8086 		/*
8087 		 * Null terminate the string to protect against buffer
8088 		 * overrun. String was generated by user code and may not
8089 		 * be trusted.
8090 		 */
8091 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8092 		sin = (sin_t *)&ifr->ifr_addr;
8093 		name = ifr->ifr_name;
8094 		ci->ci_sin = sin;
8095 		ci->ci_sin6 = NULL;
8096 		ci->ci_lifr = (struct lifreq *)ifr;
8097 	} else {
8098 		/* This a new style SIOC[GS]LIF* command */
8099 		ASSERT(cmd_type == LIF_CMD);
8100 		lifr = (struct lifreq *)mp1->b_rptr;
8101 		/*
8102 		 * Null terminate the string to protect against buffer
8103 		 * overrun. String was generated by user code and may not
8104 		 * be trusted.
8105 		 */
8106 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8107 		name = lifr->lifr_name;
8108 		sin = (sin_t *)&lifr->lifr_addr;
8109 		sin6 = (sin6_t *)&lifr->lifr_addr;
8110 		if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) {
8111 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8112 			    LIFNAMSIZ);
8113 		}
8114 		ci->ci_sin = sin;
8115 		ci->ci_sin6 = sin6;
8116 		ci->ci_lifr = lifr;
8117 	}
8118 
8119 
8120 	if (iocp->ioc_cmd == SIOCSLIFNAME) {
8121 		/*
8122 		 * The ioctl will be failed if the ioctl comes down
8123 		 * an conn stream
8124 		 */
8125 		if (ill == NULL) {
8126 			/*
8127 			 * Not an ill queue, return EINVAL same as the
8128 			 * old error code.
8129 			 */
8130 			return (ENXIO);
8131 		}
8132 		ipif = ill->ill_ipif;
8133 		ipif_refhold(ipif);
8134 	} else {
8135 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8136 		    &exists, isv6, zoneid,
8137 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err);
8138 		if (ipif == NULL) {
8139 			if (err == EINPROGRESS)
8140 				return (err);
8141 			if (iocp->ioc_cmd == SIOCLIFFAILOVER ||
8142 			    iocp->ioc_cmd == SIOCLIFFAILBACK) {
8143 				/*
8144 				 * Need to try both v4 and v6 since this
8145 				 * ioctl can come down either v4 or v6
8146 				 * socket. The lifreq.lifr_family passed
8147 				 * down by this ioctl is AF_UNSPEC.
8148 				 */
8149 				ipif = ipif_lookup_on_name(name,
8150 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8151 				    zoneid, (connp == NULL) ? q :
8152 				    CONNP_TO_WQ(connp), mp, func, &err);
8153 				if (err == EINPROGRESS)
8154 					return (err);
8155 			}
8156 			err = 0;	/* Ensure we don't use it below */
8157 		}
8158 	}
8159 
8160 	/*
8161 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8162 	 */
8163 	if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) {
8164 		ipif_refrele(ipif);
8165 		return (ENXIO);
8166 	}
8167 
8168 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8169 	    name[0] == '\0') {
8170 		/*
8171 		 * Handle a or a SIOC?IF* with a null name
8172 		 * during plumb (on the ill queue before the I_PLINK).
8173 		 */
8174 		ipif = ill->ill_ipif;
8175 		ipif_refhold(ipif);
8176 	}
8177 
8178 	if (ipif == NULL)
8179 		return (ENXIO);
8180 
8181 	/*
8182 	 * Allow only GET operations if this ipif has been created
8183 	 * temporarily due to a MOVE operation.
8184 	 */
8185 	if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) {
8186 		ipif_refrele(ipif);
8187 		return (EINVAL);
8188 	}
8189 
8190 	ci->ci_ipif = ipif;
8191 	return (0);
8192 }
8193 
8194 /*
8195  * Return the total number of ipifs.
8196  */
8197 static uint_t
8198 ip_get_numifs(zoneid_t zoneid)
8199 {
8200 	uint_t numifs = 0;
8201 	ill_t	*ill;
8202 	ill_walk_context_t	ctx;
8203 	ipif_t	*ipif;
8204 
8205 	rw_enter(&ill_g_lock, RW_READER);
8206 	ill = ILL_START_WALK_V4(&ctx);
8207 
8208 	while (ill != NULL) {
8209 		for (ipif = ill->ill_ipif; ipif != NULL;
8210 		    ipif = ipif->ipif_next) {
8211 			if (ipif->ipif_zoneid == zoneid ||
8212 			    ipif->ipif_zoneid == ALL_ZONES)
8213 				numifs++;
8214 		}
8215 		ill = ill_next(&ctx, ill);
8216 	}
8217 	rw_exit(&ill_g_lock);
8218 	return (numifs);
8219 }
8220 
8221 /*
8222  * Return the total number of ipifs.
8223  */
8224 static uint_t
8225 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid)
8226 {
8227 	uint_t numifs = 0;
8228 	ill_t	*ill;
8229 	ipif_t	*ipif;
8230 	ill_walk_context_t	ctx;
8231 
8232 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8233 
8234 	rw_enter(&ill_g_lock, RW_READER);
8235 	if (family == AF_INET)
8236 		ill = ILL_START_WALK_V4(&ctx);
8237 	else if (family == AF_INET6)
8238 		ill = ILL_START_WALK_V6(&ctx);
8239 	else
8240 		ill = ILL_START_WALK_ALL(&ctx);
8241 
8242 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8243 		for (ipif = ill->ill_ipif; ipif != NULL;
8244 		    ipif = ipif->ipif_next) {
8245 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8246 			    !(lifn_flags & LIFC_NOXMIT))
8247 				continue;
8248 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8249 			    !(lifn_flags & LIFC_TEMPORARY))
8250 				continue;
8251 			if (((ipif->ipif_flags &
8252 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8253 			    IPIF_DEPRECATED)) ||
8254 			    (ill->ill_phyint->phyint_flags &
8255 			    PHYI_LOOPBACK) ||
8256 			    !(ipif->ipif_flags & IPIF_UP)) &&
8257 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8258 				continue;
8259 
8260 			if (zoneid != ipif->ipif_zoneid &&
8261 			    ipif->ipif_zoneid != ALL_ZONES &&
8262 			    (zoneid != GLOBAL_ZONEID ||
8263 			    !(lifn_flags & LIFC_ALLZONES)))
8264 				continue;
8265 
8266 			numifs++;
8267 		}
8268 	}
8269 	rw_exit(&ill_g_lock);
8270 	return (numifs);
8271 }
8272 
8273 uint_t
8274 ip_get_lifsrcofnum(ill_t *ill)
8275 {
8276 	uint_t numifs = 0;
8277 	ill_t	*ill_head = ill;
8278 
8279 	/*
8280 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8281 	 * other thread may be trying to relink the ILLs in this usesrc group
8282 	 * and adjusting the ill_usesrc_grp_next pointers
8283 	 */
8284 	rw_enter(&ill_g_usesrc_lock, RW_READER);
8285 	if ((ill->ill_usesrc_ifindex == 0) &&
8286 	    (ill->ill_usesrc_grp_next != NULL)) {
8287 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8288 		    ill = ill->ill_usesrc_grp_next)
8289 			numifs++;
8290 	}
8291 	rw_exit(&ill_g_usesrc_lock);
8292 
8293 	return (numifs);
8294 }
8295 
8296 /* Null values are passed in for ipif, sin, and ifreq */
8297 /* ARGSUSED */
8298 int
8299 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8300     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8301 {
8302 	int *nump;
8303 
8304 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8305 
8306 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8307 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8308 
8309 	*nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid);
8310 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8311 	return (0);
8312 }
8313 
8314 /* Null values are passed in for ipif, sin, and ifreq */
8315 /* ARGSUSED */
8316 int
8317 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8318     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8319 {
8320 	struct lifnum *lifn;
8321 	mblk_t	*mp1;
8322 
8323 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8324 
8325 	/* Existence checked in ip_wput_nondata */
8326 	mp1 = mp->b_cont->b_cont;
8327 
8328 	lifn = (struct lifnum *)mp1->b_rptr;
8329 	switch (lifn->lifn_family) {
8330 	case AF_UNSPEC:
8331 	case AF_INET:
8332 	case AF_INET6:
8333 		break;
8334 	default:
8335 		return (EAFNOSUPPORT);
8336 	}
8337 
8338 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8339 	    Q_TO_CONN(q)->conn_zoneid);
8340 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8341 	return (0);
8342 }
8343 
8344 /* ARGSUSED */
8345 int
8346 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8347     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8348 {
8349 	STRUCT_HANDLE(ifconf, ifc);
8350 	mblk_t *mp1;
8351 	struct iocblk *iocp;
8352 	struct ifreq *ifr;
8353 	ill_walk_context_t	ctx;
8354 	ill_t	*ill;
8355 	ipif_t	*ipif;
8356 	struct sockaddr_in *sin;
8357 	int32_t	ifclen;
8358 	zoneid_t zoneid;
8359 
8360 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8361 
8362 	ip1dbg(("ip_sioctl_get_ifconf"));
8363 	/* Existence verified in ip_wput_nondata */
8364 	mp1 = mp->b_cont->b_cont;
8365 	iocp = (struct iocblk *)mp->b_rptr;
8366 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8367 
8368 	/*
8369 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8370 	 * the user buffer address and length into which the list of struct
8371 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8372 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8373 	 * the SIOCGIFCONF operation was redefined to simply provide
8374 	 * a large output buffer into which we are supposed to jam the ifreq
8375 	 * array.  The same ioctl command code was used, despite the fact that
8376 	 * both the applications and the kernel code had to change, thus making
8377 	 * it impossible to support both interfaces.
8378 	 *
8379 	 * For reasons not good enough to try to explain, the following
8380 	 * algorithm is used for deciding what to do with one of these:
8381 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8382 	 * form with the output buffer coming down as the continuation message.
8383 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8384 	 * and we have to copy in the ifconf structure to find out how big the
8385 	 * output buffer is and where to copy out to.  Sure no problem...
8386 	 *
8387 	 */
8388 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8389 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8390 		int numifs = 0;
8391 		size_t ifc_bufsize;
8392 
8393 		/*
8394 		 * Must be (better be!) continuation of a TRANSPARENT
8395 		 * IOCTL.  We just copied in the ifconf structure.
8396 		 */
8397 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8398 		    (struct ifconf *)mp1->b_rptr);
8399 
8400 		/*
8401 		 * Allocate a buffer to hold requested information.
8402 		 *
8403 		 * If ifc_len is larger than what is needed, we only
8404 		 * allocate what we will use.
8405 		 *
8406 		 * If ifc_len is smaller than what is needed, return
8407 		 * EINVAL.
8408 		 *
8409 		 * XXX: the ill_t structure can hava 2 counters, for
8410 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8411 		 * number of interfaces for a device, so we don't need
8412 		 * to count them here...
8413 		 */
8414 		numifs = ip_get_numifs(zoneid);
8415 
8416 		ifclen = STRUCT_FGET(ifc, ifc_len);
8417 		ifc_bufsize = numifs * sizeof (struct ifreq);
8418 		if (ifc_bufsize > ifclen) {
8419 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8420 				/* old behaviour */
8421 				return (EINVAL);
8422 			} else {
8423 				ifc_bufsize = ifclen;
8424 			}
8425 		}
8426 
8427 		mp1 = mi_copyout_alloc(q, mp,
8428 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8429 		if (mp1 == NULL)
8430 			return (ENOMEM);
8431 
8432 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8433 	}
8434 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8435 	/*
8436 	 * the SIOCGIFCONF ioctl only knows about
8437 	 * IPv4 addresses, so don't try to tell
8438 	 * it about interfaces with IPv6-only
8439 	 * addresses. (Last parm 'isv6' is B_FALSE)
8440 	 */
8441 
8442 	ifr = (struct ifreq *)mp1->b_rptr;
8443 
8444 	rw_enter(&ill_g_lock, RW_READER);
8445 	ill = ILL_START_WALK_V4(&ctx);
8446 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8447 		for (ipif = ill->ill_ipif; ipif != NULL;
8448 		    ipif = ipif->ipif_next) {
8449 			if (zoneid != ipif->ipif_zoneid &&
8450 			    ipif->ipif_zoneid != ALL_ZONES)
8451 				continue;
8452 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8453 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8454 					/* old behaviour */
8455 					rw_exit(&ill_g_lock);
8456 					return (EINVAL);
8457 				} else {
8458 					goto if_copydone;
8459 				}
8460 			}
8461 			(void) ipif_get_name(ipif,
8462 			    ifr->ifr_name,
8463 			    sizeof (ifr->ifr_name));
8464 			sin = (sin_t *)&ifr->ifr_addr;
8465 			*sin = sin_null;
8466 			sin->sin_family = AF_INET;
8467 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8468 			ifr++;
8469 		}
8470 	}
8471 if_copydone:
8472 	rw_exit(&ill_g_lock);
8473 	mp1->b_wptr = (uchar_t *)ifr;
8474 
8475 	if (STRUCT_BUF(ifc) != NULL) {
8476 		STRUCT_FSET(ifc, ifc_len,
8477 			(int)((uchar_t *)ifr - mp1->b_rptr));
8478 	}
8479 	return (0);
8480 }
8481 
8482 /*
8483  * Get the interfaces using the address hosted on the interface passed in,
8484  * as a source adddress
8485  */
8486 /* ARGSUSED */
8487 int
8488 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8489     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8490 {
8491 	mblk_t *mp1;
8492 	ill_t	*ill, *ill_head;
8493 	ipif_t	*ipif, *orig_ipif;
8494 	int	numlifs = 0;
8495 	size_t	lifs_bufsize, lifsmaxlen;
8496 	struct	lifreq *lifr;
8497 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8498 	uint_t	ifindex;
8499 	zoneid_t zoneid;
8500 	int err = 0;
8501 	boolean_t isv6 = B_FALSE;
8502 	struct	sockaddr_in	*sin;
8503 	struct	sockaddr_in6	*sin6;
8504 
8505 	STRUCT_HANDLE(lifsrcof, lifs);
8506 
8507 	ASSERT(q->q_next == NULL);
8508 
8509 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8510 
8511 	/* Existence verified in ip_wput_nondata */
8512 	mp1 = mp->b_cont->b_cont;
8513 
8514 	/*
8515 	 * Must be (better be!) continuation of a TRANSPARENT
8516 	 * IOCTL.  We just copied in the lifsrcof structure.
8517 	 */
8518 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8519 	    (struct lifsrcof *)mp1->b_rptr);
8520 
8521 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8522 		return (EINVAL);
8523 
8524 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8525 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8526 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8527 	    ip_process_ioctl, &err);
8528 	if (ipif == NULL) {
8529 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8530 		    ifindex));
8531 		return (err);
8532 	}
8533 
8534 
8535 	/* Allocate a buffer to hold requested information */
8536 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8537 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8538 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8539 	/* The actual size needed is always returned in lifs_len */
8540 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8541 
8542 	/* If the amount we need is more than what is passed in, abort */
8543 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8544 		ipif_refrele(ipif);
8545 		return (0);
8546 	}
8547 
8548 	mp1 = mi_copyout_alloc(q, mp,
8549 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8550 	if (mp1 == NULL) {
8551 		ipif_refrele(ipif);
8552 		return (ENOMEM);
8553 	}
8554 
8555 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8556 	bzero(mp1->b_rptr, lifs_bufsize);
8557 
8558 	lifr = (struct lifreq *)mp1->b_rptr;
8559 
8560 	ill = ill_head = ipif->ipif_ill;
8561 	orig_ipif = ipif;
8562 
8563 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8564 	rw_enter(&ill_g_usesrc_lock, RW_READER);
8565 	rw_enter(&ill_g_lock, RW_READER);
8566 
8567 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8568 	for (; (ill != NULL) && (ill != ill_head);
8569 	    ill = ill->ill_usesrc_grp_next) {
8570 
8571 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8572 			break;
8573 
8574 		ipif = ill->ill_ipif;
8575 		(void) ipif_get_name(ipif,
8576 		    lifr->lifr_name, sizeof (lifr->lifr_name));
8577 		if (ipif->ipif_isv6) {
8578 			sin6 = (sin6_t *)&lifr->lifr_addr;
8579 			*sin6 = sin6_null;
8580 			sin6->sin6_family = AF_INET6;
8581 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8582 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8583 			    &ipif->ipif_v6net_mask);
8584 		} else {
8585 			sin = (sin_t *)&lifr->lifr_addr;
8586 			*sin = sin_null;
8587 			sin->sin_family = AF_INET;
8588 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8589 			lifr->lifr_addrlen = ip_mask_to_plen(
8590 			    ipif->ipif_net_mask);
8591 		}
8592 		lifr++;
8593 	}
8594 	rw_exit(&ill_g_usesrc_lock);
8595 	rw_exit(&ill_g_lock);
8596 	ipif_refrele(orig_ipif);
8597 	mp1->b_wptr = (uchar_t *)lifr;
8598 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8599 
8600 	return (0);
8601 }
8602 
8603 /* ARGSUSED */
8604 int
8605 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8606     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8607 {
8608 	mblk_t *mp1;
8609 	int	list;
8610 	ill_t	*ill;
8611 	ipif_t	*ipif;
8612 	int	flags;
8613 	int	numlifs = 0;
8614 	size_t	lifc_bufsize;
8615 	struct	lifreq *lifr;
8616 	sa_family_t	family;
8617 	struct	sockaddr_in	*sin;
8618 	struct	sockaddr_in6	*sin6;
8619 	ill_walk_context_t	ctx;
8620 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8621 	int32_t	lifclen;
8622 	zoneid_t zoneid;
8623 	STRUCT_HANDLE(lifconf, lifc);
8624 
8625 	ip1dbg(("ip_sioctl_get_lifconf"));
8626 
8627 	ASSERT(q->q_next == NULL);
8628 
8629 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8630 
8631 	/* Existence verified in ip_wput_nondata */
8632 	mp1 = mp->b_cont->b_cont;
8633 
8634 	/*
8635 	 * An extended version of SIOCGIFCONF that takes an
8636 	 * additional address family and flags field.
8637 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8638 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8639 	 * interfaces are omitted.
8640 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8641 	 * unless LIFC_TEMPORARY is specified.
8642 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8643 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8644 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8645 	 * has priority over LIFC_NOXMIT.
8646 	 */
8647 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8648 
8649 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8650 		return (EINVAL);
8651 
8652 	/*
8653 	 * Must be (better be!) continuation of a TRANSPARENT
8654 	 * IOCTL.  We just copied in the lifconf structure.
8655 	 */
8656 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8657 
8658 	family = STRUCT_FGET(lifc, lifc_family);
8659 	flags = STRUCT_FGET(lifc, lifc_flags);
8660 
8661 	switch (family) {
8662 	case AF_UNSPEC:
8663 		/*
8664 		 * walk all ILL's.
8665 		 */
8666 		list = MAX_G_HEADS;
8667 		break;
8668 	case AF_INET:
8669 		/*
8670 		 * walk only IPV4 ILL's.
8671 		 */
8672 		list = IP_V4_G_HEAD;
8673 		break;
8674 	case AF_INET6:
8675 		/*
8676 		 * walk only IPV6 ILL's.
8677 		 */
8678 		list = IP_V6_G_HEAD;
8679 		break;
8680 	default:
8681 		return (EAFNOSUPPORT);
8682 	}
8683 
8684 	/*
8685 	 * Allocate a buffer to hold requested information.
8686 	 *
8687 	 * If lifc_len is larger than what is needed, we only
8688 	 * allocate what we will use.
8689 	 *
8690 	 * If lifc_len is smaller than what is needed, return
8691 	 * EINVAL.
8692 	 */
8693 	numlifs = ip_get_numlifs(family, flags, zoneid);
8694 	lifc_bufsize = numlifs * sizeof (struct lifreq);
8695 	lifclen = STRUCT_FGET(lifc, lifc_len);
8696 	if (lifc_bufsize > lifclen) {
8697 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8698 			return (EINVAL);
8699 		else
8700 			lifc_bufsize = lifclen;
8701 	}
8702 
8703 	mp1 = mi_copyout_alloc(q, mp,
8704 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8705 	if (mp1 == NULL)
8706 		return (ENOMEM);
8707 
8708 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8709 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8710 
8711 	lifr = (struct lifreq *)mp1->b_rptr;
8712 
8713 	rw_enter(&ill_g_lock, RW_READER);
8714 	ill = ill_first(list, list, &ctx);
8715 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8716 		for (ipif = ill->ill_ipif; ipif != NULL;
8717 		    ipif = ipif->ipif_next) {
8718 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8719 			    !(flags & LIFC_NOXMIT))
8720 				continue;
8721 
8722 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8723 			    !(flags & LIFC_TEMPORARY))
8724 				continue;
8725 
8726 			if (((ipif->ipif_flags &
8727 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8728 			    IPIF_DEPRECATED)) ||
8729 			    (ill->ill_phyint->phyint_flags &
8730 			    PHYI_LOOPBACK) ||
8731 			    !(ipif->ipif_flags & IPIF_UP)) &&
8732 			    (flags & LIFC_EXTERNAL_SOURCE))
8733 				continue;
8734 
8735 			if (zoneid != ipif->ipif_zoneid &&
8736 			    ipif->ipif_zoneid != ALL_ZONES &&
8737 			    (zoneid != GLOBAL_ZONEID ||
8738 			    !(flags & LIFC_ALLZONES)))
8739 				continue;
8740 
8741 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8742 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8743 					rw_exit(&ill_g_lock);
8744 					return (EINVAL);
8745 				} else {
8746 					goto lif_copydone;
8747 				}
8748 			}
8749 
8750 			(void) ipif_get_name(ipif,
8751 				lifr->lifr_name,
8752 				sizeof (lifr->lifr_name));
8753 			if (ipif->ipif_isv6) {
8754 				sin6 = (sin6_t *)&lifr->lifr_addr;
8755 				*sin6 = sin6_null;
8756 				sin6->sin6_family = AF_INET6;
8757 				sin6->sin6_addr =
8758 				ipif->ipif_v6lcl_addr;
8759 				lifr->lifr_addrlen =
8760 				ip_mask_to_plen_v6(
8761 				    &ipif->ipif_v6net_mask);
8762 			} else {
8763 				sin = (sin_t *)&lifr->lifr_addr;
8764 				*sin = sin_null;
8765 				sin->sin_family = AF_INET;
8766 				sin->sin_addr.s_addr =
8767 				    ipif->ipif_lcl_addr;
8768 				lifr->lifr_addrlen =
8769 				    ip_mask_to_plen(
8770 				    ipif->ipif_net_mask);
8771 			}
8772 			lifr++;
8773 		}
8774 	}
8775 lif_copydone:
8776 	rw_exit(&ill_g_lock);
8777 
8778 	mp1->b_wptr = (uchar_t *)lifr;
8779 	if (STRUCT_BUF(lifc) != NULL) {
8780 		STRUCT_FSET(lifc, lifc_len,
8781 			(int)((uchar_t *)lifr - mp1->b_rptr));
8782 	}
8783 	return (0);
8784 }
8785 
8786 /* ARGSUSED */
8787 int
8788 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
8789     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8790 {
8791 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8792 	ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
8793 	return (0);
8794 }
8795 
8796 static void
8797 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
8798 {
8799 	ip6_asp_t *table;
8800 	size_t table_size;
8801 	mblk_t *data_mp;
8802 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8803 
8804 	/* These two ioctls are I_STR only */
8805 	if (iocp->ioc_count == TRANSPARENT) {
8806 		miocnak(q, mp, 0, EINVAL);
8807 		return;
8808 	}
8809 
8810 	data_mp = mp->b_cont;
8811 	if (data_mp == NULL) {
8812 		/* The user passed us a NULL argument */
8813 		table = NULL;
8814 		table_size = iocp->ioc_count;
8815 	} else {
8816 		/*
8817 		 * The user provided a table.  The stream head
8818 		 * may have copied in the user data in chunks,
8819 		 * so make sure everything is pulled up
8820 		 * properly.
8821 		 */
8822 		if (MBLKL(data_mp) < iocp->ioc_count) {
8823 			mblk_t *new_data_mp;
8824 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
8825 			    NULL) {
8826 				miocnak(q, mp, 0, ENOMEM);
8827 				return;
8828 			}
8829 			freemsg(data_mp);
8830 			data_mp = new_data_mp;
8831 			mp->b_cont = data_mp;
8832 		}
8833 		table = (ip6_asp_t *)data_mp->b_rptr;
8834 		table_size = iocp->ioc_count;
8835 	}
8836 
8837 	switch (iocp->ioc_cmd) {
8838 	case SIOCGIP6ADDRPOLICY:
8839 		iocp->ioc_rval = ip6_asp_get(table, table_size);
8840 		if (iocp->ioc_rval == -1)
8841 			iocp->ioc_error = EINVAL;
8842 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8843 		else if (table != NULL &&
8844 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
8845 			ip6_asp_t *src = table;
8846 			ip6_asp32_t *dst = (void *)table;
8847 			int count = table_size / sizeof (ip6_asp_t);
8848 			int i;
8849 
8850 			/*
8851 			 * We need to do an in-place shrink of the array
8852 			 * to match the alignment attributes of the
8853 			 * 32-bit ABI looking at it.
8854 			 */
8855 			/* LINTED: logical expression always true: op "||" */
8856 			ASSERT(sizeof (*src) > sizeof (*dst));
8857 			for (i = 1; i < count; i++)
8858 				bcopy(src + i, dst + i, sizeof (*dst));
8859 		}
8860 #endif
8861 		break;
8862 
8863 	case SIOCSIP6ADDRPOLICY:
8864 		ASSERT(mp->b_prev == NULL);
8865 		mp->b_prev = (void *)q;
8866 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8867 		/*
8868 		 * We pass in the datamodel here so that the ip6_asp_replace()
8869 		 * routine can handle converting from 32-bit to native formats
8870 		 * where necessary.
8871 		 *
8872 		 * A better way to handle this might be to convert the inbound
8873 		 * data structure here, and hang it off a new 'mp'; thus the
8874 		 * ip6_asp_replace() logic would always be dealing with native
8875 		 * format data structures..
8876 		 *
8877 		 * (An even simpler way to handle these ioctls is to just
8878 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
8879 		 * and just recompile everything that depends on it.)
8880 		 */
8881 #endif
8882 		ip6_asp_replace(mp, table, table_size, B_FALSE,
8883 		    iocp->ioc_flag & IOC_MODELS);
8884 		return;
8885 	}
8886 
8887 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
8888 	qreply(q, mp);
8889 }
8890 
8891 static void
8892 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
8893 {
8894 	mblk_t 		*data_mp;
8895 	struct dstinforeq	*dir;
8896 	uint8_t		*end, *cur;
8897 	in6_addr_t	*daddr, *saddr;
8898 	ipaddr_t	v4daddr;
8899 	ire_t		*ire;
8900 	char		*slabel, *dlabel;
8901 	boolean_t	isipv4;
8902 	int		match_ire;
8903 	ill_t		*dst_ill;
8904 	ipif_t		*src_ipif, *ire_ipif;
8905 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8906 	zoneid_t	zoneid;
8907 
8908 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8909 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8910 
8911 	/*
8912 	 * This ioctl is I_STR only, and must have a
8913 	 * data mblk following the M_IOCTL mblk.
8914 	 */
8915 	data_mp = mp->b_cont;
8916 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
8917 		miocnak(q, mp, 0, EINVAL);
8918 		return;
8919 	}
8920 
8921 	if (MBLKL(data_mp) < iocp->ioc_count) {
8922 		mblk_t *new_data_mp;
8923 
8924 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
8925 			miocnak(q, mp, 0, ENOMEM);
8926 			return;
8927 		}
8928 		freemsg(data_mp);
8929 		data_mp = new_data_mp;
8930 		mp->b_cont = data_mp;
8931 	}
8932 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
8933 
8934 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
8935 	    end - cur >= sizeof (struct dstinforeq);
8936 	    cur += sizeof (struct dstinforeq)) {
8937 		dir = (struct dstinforeq *)cur;
8938 		daddr = &dir->dir_daddr;
8939 		saddr = &dir->dir_saddr;
8940 
8941 		/*
8942 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
8943 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
8944 		 * and ipif_select_source[_v6]() do not.
8945 		 */
8946 		dir->dir_dscope = ip_addr_scope_v6(daddr);
8947 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence);
8948 
8949 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
8950 		if (isipv4) {
8951 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
8952 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
8953 			    0, NULL, NULL, zoneid, 0, NULL, match_ire);
8954 		} else {
8955 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
8956 			    0, NULL, NULL, zoneid, 0, NULL, match_ire);
8957 		}
8958 		if (ire == NULL) {
8959 			dir->dir_dreachable = 0;
8960 
8961 			/* move on to next dst addr */
8962 			continue;
8963 		}
8964 		dir->dir_dreachable = 1;
8965 
8966 		ire_ipif = ire->ire_ipif;
8967 		if (ire_ipif == NULL)
8968 			goto next_dst;
8969 
8970 		/*
8971 		 * We expect to get back an interface ire or a
8972 		 * gateway ire cache entry.  For both types, the
8973 		 * output interface is ire_ipif->ipif_ill.
8974 		 */
8975 		dst_ill = ire_ipif->ipif_ill;
8976 		dir->dir_dmactype = dst_ill->ill_mactype;
8977 
8978 		if (isipv4) {
8979 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
8980 		} else {
8981 			src_ipif = ipif_select_source_v6(dst_ill,
8982 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
8983 			    zoneid);
8984 		}
8985 		if (src_ipif == NULL)
8986 			goto next_dst;
8987 
8988 		*saddr = src_ipif->ipif_v6lcl_addr;
8989 		dir->dir_sscope = ip_addr_scope_v6(saddr);
8990 		slabel = ip6_asp_lookup(saddr, NULL);
8991 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
8992 		dir->dir_sdeprecated =
8993 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
8994 		ipif_refrele(src_ipif);
8995 next_dst:
8996 		ire_refrele(ire);
8997 	}
8998 	miocack(q, mp, iocp->ioc_count, 0);
8999 }
9000 
9001 
9002 /*
9003  * Check if this is an address assigned to this machine.
9004  * Skips interfaces that are down by using ire checks.
9005  * Translates mapped addresses to v4 addresses and then
9006  * treats them as such, returning true if the v4 address
9007  * associated with this mapped address is configured.
9008  * Note: Applications will have to be careful what they do
9009  * with the response; use of mapped addresses limits
9010  * what can be done with the socket, especially with
9011  * respect to socket options and ioctls - neither IPv4
9012  * options nor IPv6 sticky options/ancillary data options
9013  * may be used.
9014  */
9015 /* ARGSUSED */
9016 int
9017 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9018     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9019 {
9020 	struct sioc_addrreq *sia;
9021 	sin_t *sin;
9022 	ire_t *ire;
9023 	mblk_t *mp1;
9024 	zoneid_t zoneid;
9025 
9026 	ip1dbg(("ip_sioctl_tmyaddr"));
9027 
9028 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9029 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9030 
9031 	/* Existence verified in ip_wput_nondata */
9032 	mp1 = mp->b_cont->b_cont;
9033 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9034 	sin = (sin_t *)&sia->sa_addr;
9035 	switch (sin->sin_family) {
9036 	case AF_INET6: {
9037 		sin6_t *sin6 = (sin6_t *)sin;
9038 
9039 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9040 			ipaddr_t v4_addr;
9041 
9042 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9043 			    v4_addr);
9044 			ire = ire_ctable_lookup(v4_addr, 0,
9045 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9046 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY);
9047 		} else {
9048 			in6_addr_t v6addr;
9049 
9050 			v6addr = sin6->sin6_addr;
9051 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9052 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9053 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY);
9054 		}
9055 		break;
9056 	}
9057 	case AF_INET: {
9058 		ipaddr_t v4addr;
9059 
9060 		v4addr = sin->sin_addr.s_addr;
9061 		ire = ire_ctable_lookup(v4addr, 0,
9062 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9063 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY);
9064 		break;
9065 	}
9066 	default:
9067 		return (EAFNOSUPPORT);
9068 	}
9069 	if (ire != NULL) {
9070 		sia->sa_res = 1;
9071 		ire_refrele(ire);
9072 	} else {
9073 		sia->sa_res = 0;
9074 	}
9075 	return (0);
9076 }
9077 
9078 /*
9079  * Check if this is an address assigned on-link i.e. neighbor,
9080  * and makes sure it's reachable from the current zone.
9081  * Returns true for my addresses as well.
9082  * Translates mapped addresses to v4 addresses and then
9083  * treats them as such, returning true if the v4 address
9084  * associated with this mapped address is configured.
9085  * Note: Applications will have to be careful what they do
9086  * with the response; use of mapped addresses limits
9087  * what can be done with the socket, especially with
9088  * respect to socket options and ioctls - neither IPv4
9089  * options nor IPv6 sticky options/ancillary data options
9090  * may be used.
9091  */
9092 /* ARGSUSED */
9093 int
9094 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9095     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9096 {
9097 	struct sioc_addrreq *sia;
9098 	sin_t *sin;
9099 	mblk_t	*mp1;
9100 	ire_t *ire = NULL;
9101 	zoneid_t zoneid;
9102 
9103 	ip1dbg(("ip_sioctl_tonlink"));
9104 
9105 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9106 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9107 
9108 	/* Existence verified in ip_wput_nondata */
9109 	mp1 = mp->b_cont->b_cont;
9110 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9111 	sin = (sin_t *)&sia->sa_addr;
9112 
9113 	/*
9114 	 * Match addresses with a zero gateway field to avoid
9115 	 * routes going through a router.
9116 	 * Exclude broadcast and multicast addresses.
9117 	 */
9118 	switch (sin->sin_family) {
9119 	case AF_INET6: {
9120 		sin6_t *sin6 = (sin6_t *)sin;
9121 
9122 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9123 			ipaddr_t v4_addr;
9124 
9125 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9126 			    v4_addr);
9127 			if (!CLASSD(v4_addr)) {
9128 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9129 				    NULL, NULL, zoneid, NULL,
9130 				    MATCH_IRE_GW);
9131 			}
9132 		} else {
9133 			in6_addr_t v6addr;
9134 			in6_addr_t v6gw;
9135 
9136 			v6addr = sin6->sin6_addr;
9137 			v6gw = ipv6_all_zeros;
9138 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9139 				ire = ire_route_lookup_v6(&v6addr, 0,
9140 				    &v6gw, 0, NULL, NULL, zoneid,
9141 				    NULL, MATCH_IRE_GW);
9142 			}
9143 		}
9144 		break;
9145 	}
9146 	case AF_INET: {
9147 		ipaddr_t v4addr;
9148 
9149 		v4addr = sin->sin_addr.s_addr;
9150 		if (!CLASSD(v4addr)) {
9151 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9152 			    NULL, NULL, zoneid, NULL,
9153 			    MATCH_IRE_GW);
9154 		}
9155 		break;
9156 	}
9157 	default:
9158 		return (EAFNOSUPPORT);
9159 	}
9160 	sia->sa_res = 0;
9161 	if (ire != NULL) {
9162 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9163 		    IRE_LOCAL|IRE_LOOPBACK)) {
9164 			sia->sa_res = 1;
9165 		}
9166 		ire_refrele(ire);
9167 	}
9168 	return (0);
9169 }
9170 
9171 /*
9172  * TBD: implement when kernel maintaines a list of site prefixes.
9173  */
9174 /* ARGSUSED */
9175 int
9176 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9177     ip_ioctl_cmd_t *ipip, void *ifreq)
9178 {
9179 	return (ENXIO);
9180 }
9181 
9182 /* ARGSUSED */
9183 int
9184 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9185     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9186 {
9187 	ill_t  		*ill;
9188 	mblk_t		*mp1;
9189 	conn_t		*connp;
9190 	boolean_t	success;
9191 
9192 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9193 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9194 	/* ioctl comes down on an conn */
9195 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9196 	connp = Q_TO_CONN(q);
9197 
9198 	mp->b_datap->db_type = M_IOCTL;
9199 
9200 	/*
9201 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9202 	 * The original mp contains contaminated b_next values due to 'mi',
9203 	 * which is needed to do the mi_copy_done. Unfortunately if we
9204 	 * send down the original mblk itself and if we are popped due to an
9205 	 * an unplumb before the response comes back from tunnel,
9206 	 * the streamhead (which does a freemsg) will see this contaminated
9207 	 * message and the assertion in freemsg about non-null b_next/b_prev
9208 	 * will panic a DEBUG kernel.
9209 	 */
9210 	mp1 = copymsg(mp);
9211 	if (mp1 == NULL)
9212 		return (ENOMEM);
9213 
9214 	ill = ipif->ipif_ill;
9215 	mutex_enter(&connp->conn_lock);
9216 	mutex_enter(&ill->ill_lock);
9217 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9218 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9219 		    mp, 0);
9220 	} else {
9221 		success = ill_pending_mp_add(ill, connp, mp);
9222 	}
9223 	mutex_exit(&ill->ill_lock);
9224 	mutex_exit(&connp->conn_lock);
9225 
9226 	if (success) {
9227 		ip1dbg(("sending down tunparam request "));
9228 		putnext(ill->ill_wq, mp1);
9229 		return (EINPROGRESS);
9230 	} else {
9231 		/* The conn has started closing */
9232 		freemsg(mp1);
9233 		return (EINTR);
9234 	}
9235 }
9236 
9237 static int
9238 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin,
9239     boolean_t x_arp_ioctl, boolean_t if_arp_ioctl)
9240 {
9241 	mblk_t *mp1;
9242 	mblk_t *mp2;
9243 	mblk_t *pending_mp;
9244 	ipaddr_t ipaddr;
9245 	area_t *area;
9246 	struct iocblk *iocp;
9247 	conn_t *connp;
9248 	struct arpreq *ar;
9249 	struct xarpreq *xar;
9250 	boolean_t success;
9251 	int flags, alength;
9252 	char *lladdr;
9253 
9254 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9255 	connp = Q_TO_CONN(q);
9256 
9257 	iocp = (struct iocblk *)mp->b_rptr;
9258 	/*
9259 	 * ill has already been set depending on whether
9260 	 * bsd style or interface style ioctl.
9261 	 */
9262 	ASSERT(ill != NULL);
9263 
9264 	/*
9265 	 * Is this one of the new SIOC*XARP ioctls?
9266 	 */
9267 	if (x_arp_ioctl) {
9268 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9269 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9270 		ar = NULL;
9271 
9272 		flags = xar->xarp_flags;
9273 		lladdr = LLADDR(&xar->xarp_ha);
9274 		/*
9275 		 * Validate against user's link layer address length
9276 		 * input and name and addr length limits.
9277 		 */
9278 		alength = ill->ill_phys_addr_length;
9279 		if (iocp->ioc_cmd == SIOCSXARP) {
9280 			if (alength != xar->xarp_ha.sdl_alen ||
9281 			    (alength + xar->xarp_ha.sdl_nlen >
9282 			    sizeof (xar->xarp_ha.sdl_data)))
9283 				return (EINVAL);
9284 		}
9285 	} else {
9286 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9287 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9288 		xar = NULL;
9289 
9290 		flags = ar->arp_flags;
9291 		lladdr = ar->arp_ha.sa_data;
9292 		/*
9293 		 * Theoretically, the sa_family could tell us what link
9294 		 * layer type this operation is trying to deal with. By
9295 		 * common usage AF_UNSPEC means ethernet. We'll assume
9296 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9297 		 * for now. Our new SIOC*XARP ioctls can be used more
9298 		 * generally.
9299 		 *
9300 		 * If the underlying media happens to have a non 6 byte
9301 		 * address, arp module will fail set/get, but the del
9302 		 * operation will succeed.
9303 		 */
9304 		alength = 6;
9305 		if ((iocp->ioc_cmd != SIOCDARP) &&
9306 		    (alength != ill->ill_phys_addr_length)) {
9307 			return (EINVAL);
9308 		}
9309 	}
9310 
9311 	/*
9312 	 * We are going to pass up to ARP a packet chain that looks
9313 	 * like:
9314 	 *
9315 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9316 	 *
9317 	 * Get a copy of the original IOCTL mblk to head the chain,
9318 	 * to be sent up (in mp1). Also get another copy to store
9319 	 * in the ill_pending_mp list, for matching the response
9320 	 * when it comes back from ARP.
9321 	 */
9322 	mp1 = copyb(mp);
9323 	pending_mp = copymsg(mp);
9324 	if (mp1 == NULL || pending_mp == NULL) {
9325 		if (mp1 != NULL)
9326 			freeb(mp1);
9327 		if (pending_mp != NULL)
9328 			inet_freemsg(pending_mp);
9329 		return (ENOMEM);
9330 	}
9331 
9332 	ipaddr = sin->sin_addr.s_addr;
9333 
9334 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9335 	    (caddr_t)&ipaddr);
9336 	if (mp2 == NULL) {
9337 		freeb(mp1);
9338 		inet_freemsg(pending_mp);
9339 		return (ENOMEM);
9340 	}
9341 	/* Put together the chain. */
9342 	mp1->b_cont = mp2;
9343 	mp1->b_datap->db_type = M_IOCTL;
9344 	mp2->b_cont = mp;
9345 	mp2->b_datap->db_type = M_DATA;
9346 
9347 	iocp = (struct iocblk *)mp1->b_rptr;
9348 
9349 	/*
9350 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9351 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9352 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9353 	 * ioc_count field; set ioc_count to be correct.
9354 	 */
9355 	iocp->ioc_count = MBLKL(mp1->b_cont);
9356 
9357 	/*
9358 	 * Set the proper command in the ARP message.
9359 	 * Convert the SIOC{G|S|D}ARP calls into our
9360 	 * AR_ENTRY_xxx calls.
9361 	 */
9362 	area = (area_t *)mp2->b_rptr;
9363 	switch (iocp->ioc_cmd) {
9364 	case SIOCDARP:
9365 	case SIOCDXARP:
9366 		/*
9367 		 * We defer deleting the corresponding IRE until
9368 		 * we return from arp.
9369 		 */
9370 		area->area_cmd = AR_ENTRY_DELETE;
9371 		area->area_proto_mask_offset = 0;
9372 		break;
9373 	case SIOCGARP:
9374 	case SIOCGXARP:
9375 		area->area_cmd = AR_ENTRY_SQUERY;
9376 		area->area_proto_mask_offset = 0;
9377 		break;
9378 	case SIOCSARP:
9379 	case SIOCSXARP: {
9380 		/*
9381 		 * Delete the corresponding ire to make sure IP will
9382 		 * pick up any change from arp.
9383 		 */
9384 		if (!if_arp_ioctl) {
9385 			(void) ip_ire_clookup_and_delete(ipaddr, NULL);
9386 			break;
9387 		} else {
9388 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9389 			if (ipif != NULL) {
9390 				(void) ip_ire_clookup_and_delete(ipaddr, ipif);
9391 				ipif_refrele(ipif);
9392 			}
9393 			break;
9394 		}
9395 	}
9396 	}
9397 	iocp->ioc_cmd = area->area_cmd;
9398 
9399 	/*
9400 	 * Before sending 'mp' to ARP, we have to clear the b_next
9401 	 * and b_prev. Otherwise if STREAMS encounters such a message
9402 	 * in freemsg(), (because ARP can close any time) it can cause
9403 	 * a panic. But mi code needs the b_next and b_prev values of
9404 	 * mp->b_cont, to complete the ioctl. So we store it here
9405 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9406 	 * when the response comes down from ARP.
9407 	 */
9408 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9409 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9410 	mp->b_cont->b_next = NULL;
9411 	mp->b_cont->b_prev = NULL;
9412 
9413 	mutex_enter(&connp->conn_lock);
9414 	mutex_enter(&ill->ill_lock);
9415 	/* conn has not yet started closing, hence this can't fail */
9416 	success = ill_pending_mp_add(ill, connp, pending_mp);
9417 	ASSERT(success);
9418 	mutex_exit(&ill->ill_lock);
9419 	mutex_exit(&connp->conn_lock);
9420 
9421 	/*
9422 	 * Fill in the rest of the ARP operation fields.
9423 	 */
9424 	area->area_hw_addr_length = alength;
9425 	bcopy(lladdr,
9426 	    (char *)area + area->area_hw_addr_offset,
9427 	    area->area_hw_addr_length);
9428 	/* Translate the flags. */
9429 	if (flags & ATF_PERM)
9430 		area->area_flags |= ACE_F_PERMANENT;
9431 	if (flags & ATF_PUBL)
9432 		area->area_flags |= ACE_F_PUBLISH;
9433 	if (flags & ATF_AUTHORITY)
9434 		area->area_flags |= ACE_F_AUTHORITY;
9435 
9436 	/*
9437 	 * Up to ARP it goes.  The response will come
9438 	 * back in ip_wput as an M_IOCACK message, and
9439 	 * will be handed to ip_sioctl_iocack for
9440 	 * completion.
9441 	 */
9442 	putnext(ill->ill_rq, mp1);
9443 	return (EINPROGRESS);
9444 }
9445 
9446 /* ARGSUSED */
9447 int
9448 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9449     ip_ioctl_cmd_t *ipip, void *ifreq)
9450 {
9451 	struct xarpreq *xar;
9452 	boolean_t isv6;
9453 	mblk_t	*mp1;
9454 	int	err;
9455 	conn_t	*connp;
9456 	int ifnamelen;
9457 	ire_t	*ire = NULL;
9458 	ill_t	*ill = NULL;
9459 	struct sockaddr_in *sin;
9460 	boolean_t if_arp_ioctl = B_FALSE;
9461 
9462 	/* ioctl comes down on an conn */
9463 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9464 	connp = Q_TO_CONN(q);
9465 	isv6 = connp->conn_af_isv6;
9466 
9467 	/* Existance verified in ip_wput_nondata */
9468 	mp1 = mp->b_cont->b_cont;
9469 
9470 	ASSERT(MBLKL(mp1) >= sizeof (*xar));
9471 	xar = (struct xarpreq *)mp1->b_rptr;
9472 	sin = (sin_t *)&xar->xarp_pa;
9473 
9474 	if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) ||
9475 	    (xar->xarp_pa.ss_family != AF_INET))
9476 		return (ENXIO);
9477 
9478 	ifnamelen = xar->xarp_ha.sdl_nlen;
9479 	if (ifnamelen != 0) {
9480 		char	*cptr, cval;
9481 
9482 		if (ifnamelen >= LIFNAMSIZ)
9483 			return (EINVAL);
9484 
9485 		/*
9486 		 * Instead of bcopying a bunch of bytes,
9487 		 * null-terminate the string in-situ.
9488 		 */
9489 		cptr = xar->xarp_ha.sdl_data + ifnamelen;
9490 		cval = *cptr;
9491 		*cptr = '\0';
9492 		ill = ill_lookup_on_name(xar->xarp_ha.sdl_data,
9493 		    B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl,
9494 		    &err, NULL);
9495 		*cptr = cval;
9496 		if (ill == NULL)
9497 			return (err);
9498 		if (ill->ill_net_type != IRE_IF_RESOLVER) {
9499 			ill_refrele(ill);
9500 			return (ENXIO);
9501 		}
9502 
9503 		if_arp_ioctl = B_TRUE;
9504 	} else {
9505 		/*
9506 		 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves
9507 		 * as an extended BSD ioctl. The kernel uses the IP address
9508 		 * to figure out the network interface.
9509 		 */
9510 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL);
9511 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9512 		    ((ill = ire_to_ill(ire)) == NULL) ||
9513 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9514 			if (ire != NULL)
9515 				ire_refrele(ire);
9516 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9517 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9518 			    NULL, MATCH_IRE_TYPE);
9519 			if ((ire == NULL) ||
9520 			    ((ill = ire_to_ill(ire)) == NULL)) {
9521 				if (ire != NULL)
9522 					ire_refrele(ire);
9523 				return (ENXIO);
9524 			}
9525 		}
9526 		ASSERT(ire != NULL && ill != NULL);
9527 	}
9528 
9529 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl);
9530 	if (if_arp_ioctl)
9531 		ill_refrele(ill);
9532 	if (ire != NULL)
9533 		ire_refrele(ire);
9534 
9535 	return (err);
9536 }
9537 
9538 /*
9539  * ARP IOCTLs.
9540  * How does IP get in the business of fronting ARP configuration/queries?
9541  * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9542  * are by tradition passed in through a datagram socket.  That lands in IP.
9543  * As it happens, this is just as well since the interface is quite crude in
9544  * that it passes in no information about protocol or hardware types, or
9545  * interface association.  After making the protocol assumption, IP is in
9546  * the position to look up the name of the ILL, which ARP will need, and
9547  * format a request that can be handled by ARP.	 The request is passed up
9548  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9549  * back a response.  ARP supports its own set of more general IOCTLs, in
9550  * case anyone is interested.
9551  */
9552 /* ARGSUSED */
9553 int
9554 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9555     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9556 {
9557 	struct arpreq *ar;
9558 	struct sockaddr_in *sin;
9559 	ire_t	*ire;
9560 	boolean_t isv6;
9561 	mblk_t	*mp1;
9562 	int	err;
9563 	conn_t	*connp;
9564 	ill_t	*ill;
9565 
9566 	/* ioctl comes down on an conn */
9567 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9568 	connp = Q_TO_CONN(q);
9569 	isv6 = connp->conn_af_isv6;
9570 	if (isv6)
9571 		return (ENXIO);
9572 
9573 	/* Existance verified in ip_wput_nondata */
9574 	mp1 = mp->b_cont->b_cont;
9575 
9576 	ar = (struct arpreq *)mp1->b_rptr;
9577 	sin = (sin_t *)&ar->arp_pa;
9578 
9579 	/*
9580 	 * We need to let ARP know on which interface the IP
9581 	 * address has an ARP mapping. In the IPMP case, a
9582 	 * simple forwarding table lookup will return the
9583 	 * IRE_IF_RESOLVER for the first interface in the group,
9584 	 * which might not be the interface on which the
9585 	 * requested IP address was resolved due to the ill
9586 	 * selection algorithm (see ip_newroute_get_dst_ill()).
9587 	 * So we do a cache table lookup first: if the IRE cache
9588 	 * entry for the IP address is still there, it will
9589 	 * contain the ill pointer for the right interface, so
9590 	 * we use that. If the cache entry has been flushed, we
9591 	 * fall back to the forwarding table lookup. This should
9592 	 * be rare enough since IRE cache entries have a longer
9593 	 * life expectancy than ARP cache entries.
9594 	 */
9595 	ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL);
9596 	if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9597 	    ((ill = ire_to_ill(ire)) == NULL)) {
9598 		if (ire != NULL)
9599 			ire_refrele(ire);
9600 		ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9601 		    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9602 		    NULL, MATCH_IRE_TYPE);
9603 		if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) {
9604 			if (ire != NULL)
9605 				ire_refrele(ire);
9606 			return (ENXIO);
9607 		}
9608 	}
9609 	ASSERT(ire != NULL && ill != NULL);
9610 
9611 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE);
9612 	ire_refrele(ire);
9613 	return (err);
9614 }
9615 
9616 /*
9617  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9618  * atomically set/clear the muxids. Also complete the ioctl by acking or
9619  * naking it.  Note that the code is structured such that the link type,
9620  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9621  * its clones use the persistent link, while pppd(1M) and perhaps many
9622  * other daemons may use non-persistent link.  When combined with some
9623  * ill_t states, linking and unlinking lower streams may be used as
9624  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9625  */
9626 /* ARGSUSED */
9627 void
9628 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9629 {
9630 	mblk_t *mp1;
9631 	mblk_t *mp2;
9632 	struct linkblk *li;
9633 	queue_t	*ipwq;
9634 	char	*name;
9635 	struct qinit *qinfo;
9636 	struct ipmx_s *ipmxp;
9637 	ill_t	*ill = NULL;
9638 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9639 	int	err = 0;
9640 	boolean_t	entered_ipsq = B_FALSE;
9641 	boolean_t islink;
9642 	queue_t *dwq = NULL;
9643 
9644 	ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK ||
9645 	    iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK);
9646 
9647 	islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ?
9648 	    B_TRUE : B_FALSE;
9649 
9650 	mp1 = mp->b_cont;	/* This is the linkblk info */
9651 	li = (struct linkblk *)mp1->b_rptr;
9652 
9653 	/*
9654 	 * ARP has added this special mblk, and the utility is asking us
9655 	 * to perform consistency checks, and also atomically set the
9656 	 * muxid. Ifconfig is an example.  It achieves this by using
9657 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9658 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9659 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9660 	 * and other comments in this routine for more details.
9661 	 */
9662 	mp2 = mp1->b_cont;	/* This is added by ARP */
9663 
9664 	/*
9665 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9666 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9667 	 * get the special mblk above.  For backward compatibility, we just
9668 	 * return success.  The utility will use SIOCSLIFMUXID to store
9669 	 * the muxids.  This is not atomic, and can leave the streams
9670 	 * unplumbable if the utility is interrrupted, before it does the
9671 	 * SIOCSLIFMUXID.
9672 	 */
9673 	if (mp2 == NULL) {
9674 		/*
9675 		 * At this point we don't know whether or not this is the
9676 		 * IP module stream or the ARP device stream.  We need to
9677 		 * walk the lower stream in order to find this out, since
9678 		 * the capability negotiation is done only on the IP module
9679 		 * stream.  IP module instance is identified by the module
9680 		 * name IP, non-null q_next, and it's wput not being ip_lwput.
9681 		 * STREAMS ensures that the lower stream (l_qbot) will not
9682 		 * vanish until this ioctl completes. So we can safely walk
9683 		 * the stream or refer to the q_ptr.
9684 		 */
9685 		ipwq = li->l_qbot;
9686 		while (ipwq != NULL) {
9687 			qinfo = ipwq->q_qinfo;
9688 			name = qinfo->qi_minfo->mi_idname;
9689 			if (name != NULL && name[0] != NULL &&
9690 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
9691 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
9692 			    (ipwq->q_next != NULL)) {
9693 				break;
9694 			}
9695 			ipwq = ipwq->q_next;
9696 		}
9697 		/*
9698 		 * This looks like an IP module stream, so trigger
9699 		 * the capability reset or re-negotiation if necessary.
9700 		 */
9701 		if (ipwq != NULL) {
9702 			ill = ipwq->q_ptr;
9703 			ASSERT(ill != NULL);
9704 
9705 			if (ipsq == NULL) {
9706 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
9707 				    ip_sioctl_plink, NEW_OP, B_TRUE);
9708 				if (ipsq == NULL)
9709 					return;
9710 				entered_ipsq = B_TRUE;
9711 			}
9712 			ASSERT(IAM_WRITER_ILL(ill));
9713 			/*
9714 			 * Store the upper read queue of the module
9715 			 * immediately below IP, and count the total
9716 			 * number of lower modules.  Do this only
9717 			 * for I_PLINK or I_LINK event.
9718 			 */
9719 			ill->ill_lmod_rq = NULL;
9720 			ill->ill_lmod_cnt = 0;
9721 			if (islink && (dwq = ipwq->q_next) != NULL) {
9722 				ill->ill_lmod_rq = RD(dwq);
9723 
9724 				while (dwq != NULL) {
9725 					ill->ill_lmod_cnt++;
9726 					dwq = dwq->q_next;
9727 				}
9728 			}
9729 			/*
9730 			 * There's no point in resetting or re-negotiating if
9731 			 * we are not bound to the driver, so only do this if
9732 			 * the DLPI state is idle (up); we assume such state
9733 			 * since ill_ipif_up_count gets incremented in
9734 			 * ipif_up_done(), which is after we are bound to the
9735 			 * driver.  Note that in the case of logical
9736 			 * interfaces, IP won't rebind to the driver unless
9737 			 * the ill_ipif_up_count is 0, meaning that all other
9738 			 * IP interfaces (including the main ipif) are in the
9739 			 * down state.  Because of this, we use such counter
9740 			 * as an indicator, instead of relying on the IPIF_UP
9741 			 * flag, which is per ipif instance.
9742 			 */
9743 			if (ill->ill_ipif_up_count > 0) {
9744 				if (islink)
9745 					ill_capability_probe(ill);
9746 				else
9747 					ill_capability_reset(ill);
9748 			}
9749 		}
9750 		goto done;
9751 	}
9752 
9753 	/*
9754 	 * This is an I_{P}LINK sent down by ifconfig on
9755 	 * /dev/arp. ARP has appended this last (3rd) mblk,
9756 	 * giving more info. STREAMS ensures that the lower
9757 	 * stream (l_qbot) will not vanish until this ioctl
9758 	 * completes. So we can safely walk the stream or refer
9759 	 * to the q_ptr.
9760 	 */
9761 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
9762 	if (ipmxp->ipmx_arpdev_stream) {
9763 		/*
9764 		 * The operation is occuring on the arp-device
9765 		 * stream.
9766 		 */
9767 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9768 		    q, mp, ip_sioctl_plink, &err, NULL);
9769 		if (ill == NULL) {
9770 			if (err == EINPROGRESS) {
9771 				return;
9772 			} else {
9773 				err = EINVAL;
9774 				goto done;
9775 			}
9776 		}
9777 
9778 		if (ipsq == NULL) {
9779 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9780 			    NEW_OP, B_TRUE);
9781 			if (ipsq == NULL) {
9782 				ill_refrele(ill);
9783 				return;
9784 			}
9785 			entered_ipsq = B_TRUE;
9786 		}
9787 		ASSERT(IAM_WRITER_ILL(ill));
9788 		ill_refrele(ill);
9789 		/*
9790 		 * To ensure consistency between IP and ARP,
9791 		 * the following LIFO scheme is used in
9792 		 * plink/punlink. (IP first, ARP last).
9793 		 * This is because the muxid's are stored
9794 		 * in the IP stream on the ill.
9795 		 *
9796 		 * I_{P}LINK: ifconfig plinks the IP stream before
9797 		 * plinking the ARP stream. On an arp-dev
9798 		 * stream, IP checks that it is not yet
9799 		 * plinked, and it also checks that the
9800 		 * corresponding IP stream is already plinked.
9801 		 *
9802 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream
9803 		 * before punlinking the IP stream. IP does
9804 		 * not allow punlink of the IP stream unless
9805 		 * the arp stream has been punlinked.
9806 		 *
9807 		 */
9808 		if ((islink &&
9809 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9810 		    (!islink &&
9811 		    ill->ill_arp_muxid != li->l_index)) {
9812 			err = EINVAL;
9813 			goto done;
9814 		}
9815 		if (islink) {
9816 			ill->ill_arp_muxid = li->l_index;
9817 		} else {
9818 			ill->ill_arp_muxid = 0;
9819 		}
9820 	} else {
9821 		/*
9822 		 * This must be the IP module stream with or
9823 		 * without arp. Walk the stream and locate the
9824 		 * IP module. An IP module instance is
9825 		 * identified by the module name IP, non-null
9826 		 * q_next, and it's wput not being ip_lwput.
9827 		 */
9828 		ipwq = li->l_qbot;
9829 		while (ipwq != NULL) {
9830 			qinfo = ipwq->q_qinfo;
9831 			name = qinfo->qi_minfo->mi_idname;
9832 			if (name != NULL && name[0] != NULL &&
9833 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
9834 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
9835 			    (ipwq->q_next != NULL)) {
9836 				break;
9837 			}
9838 			ipwq = ipwq->q_next;
9839 		}
9840 		if (ipwq != NULL) {
9841 			ill = ipwq->q_ptr;
9842 			ASSERT(ill != NULL);
9843 
9844 			if (ipsq == NULL) {
9845 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
9846 				    ip_sioctl_plink, NEW_OP, B_TRUE);
9847 				if (ipsq == NULL)
9848 					return;
9849 				entered_ipsq = B_TRUE;
9850 			}
9851 			ASSERT(IAM_WRITER_ILL(ill));
9852 			/*
9853 			 * Return error if the ip_mux_id is
9854 			 * non-zero and command is I_{P}LINK.
9855 			 * If command is I_{P}UNLINK, return
9856 			 * error if the arp-devstr is not
9857 			 * yet punlinked.
9858 			 */
9859 			if ((islink && ill->ill_ip_muxid != 0) ||
9860 			    (!islink && ill->ill_arp_muxid != 0)) {
9861 				err = EINVAL;
9862 				goto done;
9863 			}
9864 			ill->ill_lmod_rq = NULL;
9865 			ill->ill_lmod_cnt = 0;
9866 			if (islink) {
9867 				/*
9868 				 * Store the upper read queue of the module
9869 				 * immediately below IP, and count the total
9870 				 * number of lower modules.
9871 				 */
9872 				if ((dwq = ipwq->q_next) != NULL) {
9873 					ill->ill_lmod_rq = RD(dwq);
9874 
9875 					while (dwq != NULL) {
9876 						ill->ill_lmod_cnt++;
9877 						dwq = dwq->q_next;
9878 					}
9879 				}
9880 				ill->ill_ip_muxid = li->l_index;
9881 			} else {
9882 				ill->ill_ip_muxid = 0;
9883 			}
9884 
9885 			/*
9886 			 * See comments above about resetting/re-
9887 			 * negotiating driver sub-capabilities.
9888 			 */
9889 			if (ill->ill_ipif_up_count > 0) {
9890 				if (islink)
9891 					ill_capability_probe(ill);
9892 				else
9893 					ill_capability_reset(ill);
9894 			}
9895 		}
9896 	}
9897 done:
9898 	iocp->ioc_count = 0;
9899 	iocp->ioc_error = err;
9900 	if (err == 0)
9901 		mp->b_datap->db_type = M_IOCACK;
9902 	else
9903 		mp->b_datap->db_type = M_IOCNAK;
9904 	qreply(q, mp);
9905 
9906 	/* Conn was refheld in ip_sioctl_copyin_setup */
9907 	if (CONN_Q(q))
9908 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9909 	if (entered_ipsq)
9910 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
9911 }
9912 
9913 /*
9914  * Search the ioctl command in the ioctl tables and return a pointer
9915  * to the ioctl command information. The ioctl command tables are
9916  * static and fully populated at compile time.
9917  */
9918 ip_ioctl_cmd_t *
9919 ip_sioctl_lookup(int ioc_cmd)
9920 {
9921 	int index;
9922 	ip_ioctl_cmd_t *ipip;
9923 	ip_ioctl_cmd_t *ipip_end;
9924 
9925 	if (ioc_cmd == IPI_DONTCARE)
9926 		return (NULL);
9927 
9928 	/*
9929 	 * Do a 2 step search. First search the indexed table
9930 	 * based on the least significant byte of the ioctl cmd.
9931 	 * If we don't find a match, then search the misc table
9932 	 * serially.
9933 	 */
9934 	index = ioc_cmd & 0xFF;
9935 	if (index < ip_ndx_ioctl_count) {
9936 		ipip = &ip_ndx_ioctl_table[index];
9937 		if (ipip->ipi_cmd == ioc_cmd) {
9938 			/* Found a match in the ndx table */
9939 			return (ipip);
9940 		}
9941 	}
9942 
9943 	/* Search the misc table */
9944 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
9945 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
9946 		if (ipip->ipi_cmd == ioc_cmd)
9947 			/* Found a match in the misc table */
9948 			return (ipip);
9949 	}
9950 
9951 	return (NULL);
9952 }
9953 
9954 /*
9955  * Wrapper function for resuming deferred ioctl processing
9956  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9957  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9958  */
9959 /* ARGSUSED */
9960 void
9961 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9962     void *dummy_arg)
9963 {
9964 	ip_sioctl_copyin_setup(q, mp);
9965 }
9966 
9967 /*
9968  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
9969  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
9970  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9971  * We establish here the size of the block to be copied in.  mi_copyin
9972  * arranges for this to happen, an processing continues in ip_wput with
9973  * an M_IOCDATA message.
9974  */
9975 void
9976 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9977 {
9978 	int	copyin_size;
9979 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9980 	ip_ioctl_cmd_t *ipip;
9981 	cred_t *cr;
9982 
9983 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9984 	if (ipip == NULL) {
9985 		/*
9986 		 * The ioctl is not one we understand or own.
9987 		 * Pass it along to be processed down stream,
9988 		 * if this is a module instance of IP, else nak
9989 		 * the ioctl.
9990 		 */
9991 		if (q->q_next == NULL) {
9992 			goto nak;
9993 		} else {
9994 			putnext(q, mp);
9995 			return;
9996 		}
9997 	}
9998 
9999 	/*
10000 	 * If this is deferred, then we will do all the checks when we
10001 	 * come back.
10002 	 */
10003 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10004 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) {
10005 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10006 		return;
10007 	}
10008 
10009 	/*
10010 	 * Only allow a very small subset of IP ioctls on this stream if
10011 	 * IP is a module and not a driver. Allowing ioctls to be processed
10012 	 * in this case may cause assert failures or data corruption.
10013 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10014 	 * ioctls allowed on an IP module stream, after which this stream
10015 	 * normally becomes a multiplexor (at which time the stream head
10016 	 * will fail all ioctls).
10017 	 */
10018 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10019 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10020 			/*
10021 			 * Pass common Streams ioctls which the IP
10022 			 * module does not own or consume along to
10023 			 * be processed down stream.
10024 			 */
10025 			putnext(q, mp);
10026 			return;
10027 		} else {
10028 			goto nak;
10029 		}
10030 	}
10031 
10032 	/* Make sure we have ioctl data to process. */
10033 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10034 		goto nak;
10035 
10036 	/*
10037 	 * Prefer dblk credential over ioctl credential; some synthesized
10038 	 * ioctls have kcred set because there's no way to crhold()
10039 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10040 	 * the framework; the caller of ioctl needs to hold the reference
10041 	 * for the duration of the call).
10042 	 */
10043 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10044 
10045 	/* Make sure normal users don't send down privileged ioctls */
10046 	if ((ipip->ipi_flags & IPI_PRIV) &&
10047 	    (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) {
10048 		/* We checked the privilege earlier but log it here */
10049 		miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE));
10050 		return;
10051 	}
10052 
10053 	/*
10054 	 * The ioctl command tables can only encode fixed length
10055 	 * ioctl data. If the length is variable, the table will
10056 	 * encode the length as zero. Such special cases are handled
10057 	 * below in the switch.
10058 	 */
10059 	if (ipip->ipi_copyin_size != 0) {
10060 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10061 		return;
10062 	}
10063 
10064 	switch (iocp->ioc_cmd) {
10065 	case O_SIOCGIFCONF:
10066 	case SIOCGIFCONF:
10067 		/*
10068 		 * This IOCTL is hilarious.  See comments in
10069 		 * ip_sioctl_get_ifconf for the story.
10070 		 */
10071 		if (iocp->ioc_count == TRANSPARENT)
10072 			copyin_size = SIZEOF_STRUCT(ifconf,
10073 			    iocp->ioc_flag);
10074 		else
10075 			copyin_size = iocp->ioc_count;
10076 		mi_copyin(q, mp, NULL, copyin_size);
10077 		return;
10078 
10079 	case O_SIOCGLIFCONF:
10080 	case SIOCGLIFCONF:
10081 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10082 		mi_copyin(q, mp, NULL, copyin_size);
10083 		return;
10084 
10085 	case SIOCGLIFSRCOF:
10086 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10087 		mi_copyin(q, mp, NULL, copyin_size);
10088 		return;
10089 	case SIOCGIP6ADDRPOLICY:
10090 		ip_sioctl_ip6addrpolicy(q, mp);
10091 		ip6_asp_table_refrele();
10092 		return;
10093 
10094 	case SIOCSIP6ADDRPOLICY:
10095 		ip_sioctl_ip6addrpolicy(q, mp);
10096 		return;
10097 
10098 	case SIOCGDSTINFO:
10099 		ip_sioctl_dstinfo(q, mp);
10100 		ip6_asp_table_refrele();
10101 		return;
10102 
10103 	case I_PLINK:
10104 	case I_PUNLINK:
10105 	case I_LINK:
10106 	case I_UNLINK:
10107 		/*
10108 		 * We treat non-persistent link similarly as the persistent
10109 		 * link case, in terms of plumbing/unplumbing, as well as
10110 		 * dynamic re-plumbing events indicator.  See comments
10111 		 * in ip_sioctl_plink() for more.
10112 		 *
10113 		 * Request can be enqueued in the 'ipsq' while waiting
10114 		 * to become exclusive. So bump up the conn ref.
10115 		 */
10116 		if (CONN_Q(q))
10117 			CONN_INC_REF(Q_TO_CONN(q));
10118 		ip_sioctl_plink(NULL, q, mp, NULL);
10119 		return;
10120 
10121 	case ND_GET:
10122 	case ND_SET:
10123 		/*
10124 		 * Use of the nd table requires holding the reader lock.
10125 		 * Modifying the nd table thru nd_load/nd_unload requires
10126 		 * the writer lock.
10127 		 */
10128 		rw_enter(&ip_g_nd_lock, RW_READER);
10129 		if (nd_getset(q, ip_g_nd, mp)) {
10130 			rw_exit(&ip_g_nd_lock);
10131 
10132 			if (iocp->ioc_error)
10133 				iocp->ioc_count = 0;
10134 			mp->b_datap->db_type = M_IOCACK;
10135 			qreply(q, mp);
10136 			return;
10137 		}
10138 		rw_exit(&ip_g_nd_lock);
10139 		/*
10140 		 * We don't understand this subioctl of ND_GET / ND_SET.
10141 		 * Maybe intended for some driver / module below us
10142 		 */
10143 		if (q->q_next) {
10144 			putnext(q, mp);
10145 		} else {
10146 			iocp->ioc_error = ENOENT;
10147 			mp->b_datap->db_type = M_IOCNAK;
10148 			iocp->ioc_count = 0;
10149 			qreply(q, mp);
10150 		}
10151 		return;
10152 
10153 	case IP_IOCTL:
10154 		ip_wput_ioctl(q, mp);
10155 		return;
10156 	default:
10157 		cmn_err(CE_PANIC, "should not happen ");
10158 	}
10159 nak:
10160 	if (mp->b_cont != NULL) {
10161 		freemsg(mp->b_cont);
10162 		mp->b_cont = NULL;
10163 	}
10164 	iocp->ioc_error = EINVAL;
10165 	mp->b_datap->db_type = M_IOCNAK;
10166 	iocp->ioc_count = 0;
10167 	qreply(q, mp);
10168 }
10169 
10170 /* ip_wput hands off ARP IOCTL responses to us */
10171 void
10172 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10173 {
10174 	struct arpreq *ar;
10175 	struct xarpreq *xar;
10176 	area_t	*area;
10177 	mblk_t	*area_mp;
10178 	struct iocblk *iocp;
10179 	mblk_t	*orig_ioc_mp, *tmp;
10180 	struct iocblk	*orig_iocp;
10181 	ill_t *ill;
10182 	conn_t *connp = NULL;
10183 	uint_t ioc_id;
10184 	mblk_t *pending_mp;
10185 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10186 	int *flagsp;
10187 	char *storage = NULL;
10188 	sin_t *sin;
10189 	ipaddr_t addr;
10190 	int err;
10191 
10192 	ill = q->q_ptr;
10193 	ASSERT(ill != NULL);
10194 
10195 	/*
10196 	 * We should get back from ARP a packet chain that looks like:
10197 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10198 	 */
10199 	if (!(area_mp = mp->b_cont) ||
10200 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10201 	    !(orig_ioc_mp = area_mp->b_cont) ||
10202 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10203 		freemsg(mp);
10204 		return;
10205 	}
10206 
10207 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10208 
10209 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10210 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10211 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10212 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10213 		x_arp_ioctl = B_TRUE;
10214 		xar = (struct xarpreq *)tmp->b_rptr;
10215 		sin = (sin_t *)&xar->xarp_pa;
10216 		flagsp = &xar->xarp_flags;
10217 		storage = xar->xarp_ha.sdl_data;
10218 		if (xar->xarp_ha.sdl_nlen != 0)
10219 			ifx_arp_ioctl = B_TRUE;
10220 	} else {
10221 		ar = (struct arpreq *)tmp->b_rptr;
10222 		sin = (sin_t *)&ar->arp_pa;
10223 		flagsp = &ar->arp_flags;
10224 		storage = ar->arp_ha.sa_data;
10225 	}
10226 
10227 	iocp = (struct iocblk *)mp->b_rptr;
10228 
10229 	/*
10230 	 * Pick out the originating queue based on the ioc_id.
10231 	 */
10232 	ioc_id = iocp->ioc_id;
10233 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10234 	if (pending_mp == NULL) {
10235 		ASSERT(connp == NULL);
10236 		inet_freemsg(mp);
10237 		return;
10238 	}
10239 	ASSERT(connp != NULL);
10240 	q = CONNP_TO_WQ(connp);
10241 
10242 	/* Uncouple the internally generated IOCTL from the original one */
10243 	area = (area_t *)area_mp->b_rptr;
10244 	area_mp->b_cont = NULL;
10245 
10246 	/*
10247 	 * Restore the b_next and b_prev used by mi code. This is needed
10248 	 * to complete the ioctl using mi* functions. We stored them in
10249 	 * the pending mp prior to sending the request to ARP.
10250 	 */
10251 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10252 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10253 	inet_freemsg(pending_mp);
10254 
10255 	/*
10256 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10257 	 * Catch the case where there is an IRE_CACHE by no entry in the
10258 	 * arp table.
10259 	 */
10260 	addr = sin->sin_addr.s_addr;
10261 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10262 		ire_t			*ire;
10263 		dl_unitdata_req_t	*dlup;
10264 		mblk_t			*llmp;
10265 		int			addr_len;
10266 		ill_t			*ipsqill = NULL;
10267 
10268 		if (ifx_arp_ioctl) {
10269 			/*
10270 			 * There's no need to lookup the ill, since
10271 			 * we've already done that when we started
10272 			 * processing the ioctl and sent the message
10273 			 * to ARP on that ill.  So use the ill that
10274 			 * is stored in q->q_ptr.
10275 			 */
10276 			ipsqill = ill;
10277 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10278 			    ipsqill->ill_ipif, ALL_ZONES,
10279 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL);
10280 		} else {
10281 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10282 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
10283 			if (ire != NULL)
10284 				ipsqill = ire_to_ill(ire);
10285 		}
10286 
10287 		if ((x_arp_ioctl) && (ipsqill != NULL))
10288 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10289 
10290 		if (ire != NULL) {
10291 			/*
10292 			 * Since the ire obtained from cachetable is used for
10293 			 * mac addr copying below, treat an incomplete ire as if
10294 			 * as if we never found it.
10295 			 */
10296 			if (ire->ire_nce != NULL &&
10297 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10298 				ire_refrele(ire);
10299 				ire = NULL;
10300 				ipsqill = NULL;
10301 				goto errack;
10302 			}
10303 			*flagsp = ATF_INUSE;
10304 			llmp = (ire->ire_nce != NULL ?
10305 			    ire->ire_nce->nce_res_mp : NULL);
10306 			if (llmp != NULL && ipsqill != NULL) {
10307 				uchar_t *macaddr;
10308 
10309 				addr_len = ipsqill->ill_phys_addr_length;
10310 				if (x_arp_ioctl && ((addr_len +
10311 				    ipsqill->ill_name_length) >
10312 				    sizeof (xar->xarp_ha.sdl_data))) {
10313 					ire_refrele(ire);
10314 					freemsg(mp);
10315 					ip_ioctl_finish(q, orig_ioc_mp,
10316 					    EINVAL, NO_COPYOUT, NULL, NULL);
10317 					return;
10318 				}
10319 				*flagsp |= ATF_COM;
10320 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10321 				if (ipsqill->ill_sap_length < 0)
10322 					macaddr = llmp->b_rptr +
10323 					    dlup->dl_dest_addr_offset;
10324 				else
10325 					macaddr = llmp->b_rptr +
10326 					    dlup->dl_dest_addr_offset +
10327 					    ipsqill->ill_sap_length;
10328 				/*
10329 				 * For SIOCGARP, MAC address length
10330 				 * validation has already been done
10331 				 * before the ioctl was issued to ARP to
10332 				 * allow it to progress only on 6 byte
10333 				 * addressable (ethernet like) media. Thus
10334 				 * the mac address copying can not overwrite
10335 				 * the sa_data area below.
10336 				 */
10337 				bcopy(macaddr, storage, addr_len);
10338 			}
10339 			/* Ditch the internal IOCTL. */
10340 			freemsg(mp);
10341 			ire_refrele(ire);
10342 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL);
10343 			return;
10344 		}
10345 	}
10346 
10347 	/*
10348 	 * Delete the coresponding IRE_CACHE if any.
10349 	 * Reset the error if there was one (in case there was no entry
10350 	 * in arp.)
10351 	 */
10352 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10353 		ipif_t *ipintf = NULL;
10354 
10355 		if (ifx_arp_ioctl) {
10356 			/*
10357 			 * There's no need to lookup the ill, since
10358 			 * we've already done that when we started
10359 			 * processing the ioctl and sent the message
10360 			 * to ARP on that ill.  So use the ill that
10361 			 * is stored in q->q_ptr.
10362 			 */
10363 			ipintf = ill->ill_ipif;
10364 		}
10365 		if (ip_ire_clookup_and_delete(addr, ipintf)) {
10366 			/*
10367 			 * The address in "addr" may be an entry for a
10368 			 * router. If that's true, then any off-net
10369 			 * IRE_CACHE entries that go through the router
10370 			 * with address "addr" must be clobbered. Use
10371 			 * ire_walk to achieve this goal.
10372 			 */
10373 			if (ifx_arp_ioctl)
10374 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10375 				    ire_delete_cache_gw, (char *)&addr, ill);
10376 			else
10377 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10378 				    ALL_ZONES);
10379 			iocp->ioc_error = 0;
10380 		}
10381 	}
10382 errack:
10383 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10384 		err = iocp->ioc_error;
10385 		freemsg(mp);
10386 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL);
10387 		return;
10388 	}
10389 
10390 	/*
10391 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10392 	 * the area_t into the struct {x}arpreq.
10393 	 */
10394 	if (x_arp_ioctl) {
10395 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10396 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10397 		    sizeof (xar->xarp_ha.sdl_data)) {
10398 			freemsg(mp);
10399 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL,
10400 			    NO_COPYOUT, NULL, NULL);
10401 			return;
10402 		}
10403 	}
10404 	*flagsp = ATF_INUSE;
10405 	if (area->area_flags & ACE_F_PERMANENT)
10406 		*flagsp |= ATF_PERM;
10407 	if (area->area_flags & ACE_F_PUBLISH)
10408 		*flagsp |= ATF_PUBL;
10409 	if (area->area_flags & ACE_F_AUTHORITY)
10410 		*flagsp |= ATF_AUTHORITY;
10411 	if (area->area_hw_addr_length != 0) {
10412 		*flagsp |= ATF_COM;
10413 		/*
10414 		 * For SIOCGARP, MAC address length validation has
10415 		 * already been done before the ioctl was issued to ARP
10416 		 * to allow it to progress only on 6 byte addressable
10417 		 * (ethernet like) media. Thus the mac address copying
10418 		 * can not overwrite the sa_data area below.
10419 		 */
10420 		bcopy((char *)area + area->area_hw_addr_offset,
10421 		    storage, area->area_hw_addr_length);
10422 	}
10423 
10424 	/* Ditch the internal IOCTL. */
10425 	freemsg(mp);
10426 	/* Complete the original. */
10427 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL);
10428 }
10429 
10430 /*
10431  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10432  * interface) create the next available logical interface for this
10433  * physical interface.
10434  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10435  * ipif with the specified name.
10436  *
10437  * If the address family is not AF_UNSPEC then set the address as well.
10438  *
10439  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10440  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10441  *
10442  * Executed as a writer on the ill or ill group.
10443  * So no lock is needed to traverse the ipif chain, or examine the
10444  * phyint flags.
10445  */
10446 /* ARGSUSED */
10447 int
10448 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10449     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10450 {
10451 	mblk_t	*mp1;
10452 	struct lifreq *lifr;
10453 	boolean_t	isv6;
10454 	boolean_t	exists;
10455 	char 	*name;
10456 	char	*endp;
10457 	char	*cp;
10458 	int	namelen;
10459 	ipif_t	*ipif;
10460 	long	id;
10461 	ipsq_t	*ipsq;
10462 	ill_t	*ill;
10463 	sin_t	*sin;
10464 	int	err = 0;
10465 	boolean_t found_sep = B_FALSE;
10466 	conn_t	*connp;
10467 	zoneid_t zoneid;
10468 	int	orig_ifindex = 0;
10469 
10470 	ip1dbg(("ip_sioctl_addif\n"));
10471 	/* Existence of mp1 has been checked in ip_wput_nondata */
10472 	mp1 = mp->b_cont->b_cont;
10473 	/*
10474 	 * Null terminate the string to protect against buffer
10475 	 * overrun. String was generated by user code and may not
10476 	 * be trusted.
10477 	 */
10478 	lifr = (struct lifreq *)mp1->b_rptr;
10479 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10480 	name = lifr->lifr_name;
10481 	ASSERT(CONN_Q(q));
10482 	connp = Q_TO_CONN(q);
10483 	isv6 = connp->conn_af_isv6;
10484 	zoneid = connp->conn_zoneid;
10485 	namelen = mi_strlen(name);
10486 	if (namelen == 0)
10487 		return (EINVAL);
10488 
10489 	exists = B_FALSE;
10490 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10491 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10492 		/*
10493 		 * Allow creating lo0 using SIOCLIFADDIF.
10494 		 * can't be any other writer thread. So can pass null below
10495 		 * for the last 4 args to ipif_lookup_name.
10496 		 */
10497 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen,
10498 		    B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL);
10499 		/* Prevent any further action */
10500 		if (ipif == NULL) {
10501 			return (ENOBUFS);
10502 		} else if (!exists) {
10503 			/* We created the ipif now and as writer */
10504 			ipif_refrele(ipif);
10505 			return (0);
10506 		} else {
10507 			ill = ipif->ipif_ill;
10508 			ill_refhold(ill);
10509 			ipif_refrele(ipif);
10510 		}
10511 	} else {
10512 		/* Look for a colon in the name. */
10513 		endp = &name[namelen];
10514 		for (cp = endp; --cp > name; ) {
10515 			if (*cp == IPIF_SEPARATOR_CHAR) {
10516 				found_sep = B_TRUE;
10517 				/*
10518 				 * Reject any non-decimal aliases for plumbing
10519 				 * of logical interfaces. Aliases with leading
10520 				 * zeroes are also rejected as they introduce
10521 				 * ambiguity in the naming of the interfaces.
10522 				 * Comparing with "0" takes care of all such
10523 				 * cases.
10524 				 */
10525 				if ((strncmp("0", cp+1, 1)) == 0)
10526 					return (EINVAL);
10527 
10528 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10529 				    id <= 0 || *endp != '\0') {
10530 					return (EINVAL);
10531 				}
10532 				*cp = '\0';
10533 				break;
10534 			}
10535 		}
10536 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10537 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL);
10538 		if (found_sep)
10539 			*cp = IPIF_SEPARATOR_CHAR;
10540 		if (ill == NULL)
10541 			return (err);
10542 	}
10543 
10544 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10545 	    B_TRUE);
10546 
10547 	/*
10548 	 * Release the refhold due to the lookup, now that we are excl
10549 	 * or we are just returning
10550 	 */
10551 	ill_refrele(ill);
10552 
10553 	if (ipsq == NULL)
10554 		return (EINPROGRESS);
10555 
10556 	/*
10557 	 * If the interface is failed, inactive or offlined, look for a working
10558 	 * interface in the ill group and create the ipif there. If we can't
10559 	 * find a good interface, create the ipif anyway so that in.mpathd can
10560 	 * move it to the first repaired interface.
10561 	 */
10562 	if ((ill->ill_phyint->phyint_flags &
10563 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10564 	    ill->ill_phyint->phyint_groupname_len != 0) {
10565 		phyint_t *phyi;
10566 		char *groupname = ill->ill_phyint->phyint_groupname;
10567 
10568 		/*
10569 		 * We're looking for a working interface, but it doesn't matter
10570 		 * if it's up or down; so instead of following the group lists,
10571 		 * we look at each physical interface and compare the groupname.
10572 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
10573 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
10574 		 * Otherwise we create the ipif on the failed interface.
10575 		 */
10576 		rw_enter(&ill_g_lock, RW_READER);
10577 		phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index);
10578 		for (; phyi != NULL;
10579 		    phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index,
10580 		    phyi, AVL_AFTER)) {
10581 			if (phyi->phyint_groupname_len == 0)
10582 				continue;
10583 			ASSERT(phyi->phyint_groupname != NULL);
10584 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
10585 			    !(phyi->phyint_flags &
10586 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10587 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
10588 			    (phyi->phyint_illv4 != NULL))) {
10589 				break;
10590 			}
10591 		}
10592 		rw_exit(&ill_g_lock);
10593 
10594 		if (phyi != NULL) {
10595 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
10596 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
10597 			    phyi->phyint_illv4);
10598 		}
10599 	}
10600 
10601 	/*
10602 	 * We are now exclusive on the ipsq, so an ill move will be serialized
10603 	 * before or after us.
10604 	 */
10605 	ASSERT(IAM_WRITER_ILL(ill));
10606 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10607 
10608 	if (found_sep && orig_ifindex == 0) {
10609 		/* Now see if there is an IPIF with this unit number. */
10610 		for (ipif = ill->ill_ipif; ipif != NULL;
10611 		    ipif = ipif->ipif_next) {
10612 			if (ipif->ipif_id == id) {
10613 				err = EEXIST;
10614 				goto done;
10615 			}
10616 		}
10617 	}
10618 
10619 	/*
10620 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10621 	 * of lo0. We never come here when we plumb lo0:0. It
10622 	 * happens in ipif_lookup_on_name.
10623 	 * The specified unit number is ignored when we create the ipif on a
10624 	 * different interface. However, we save it in ipif_orig_ipifid below so
10625 	 * that the ipif fails back to the right position.
10626 	 */
10627 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
10628 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
10629 		err = ENOBUFS;
10630 		goto done;
10631 	}
10632 
10633 	/* Return created name with ioctl */
10634 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10635 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10636 	ip1dbg(("created %s\n", lifr->lifr_name));
10637 
10638 	/* Set address */
10639 	sin = (sin_t *)&lifr->lifr_addr;
10640 	if (sin->sin_family != AF_UNSPEC) {
10641 		err = ip_sioctl_addr(ipif, sin, q, mp,
10642 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10643 	}
10644 
10645 	/* Set ifindex and unit number for failback */
10646 	if (err == 0 && orig_ifindex != 0) {
10647 		ipif->ipif_orig_ifindex = orig_ifindex;
10648 		if (found_sep) {
10649 			ipif->ipif_orig_ipifid = id;
10650 		}
10651 	}
10652 
10653 done:
10654 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
10655 	return (err);
10656 }
10657 
10658 /*
10659  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10660  * interface) delete it based on the IP address (on this physical interface).
10661  * Otherwise delete it based on the ipif_id.
10662  * Also, special handling to allow a removeif of lo0.
10663  */
10664 /* ARGSUSED */
10665 int
10666 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10667     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10668 {
10669 	conn_t		*connp;
10670 	ill_t		*ill = ipif->ipif_ill;
10671 	boolean_t	 success;
10672 
10673 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10674 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10675 	ASSERT(IAM_WRITER_IPIF(ipif));
10676 
10677 	connp = Q_TO_CONN(q);
10678 	/*
10679 	 * Special case for unplumbing lo0 (the loopback physical interface).
10680 	 * If unplumbing lo0, the incoming address structure has been
10681 	 * initialized to all zeros. When unplumbing lo0, all its logical
10682 	 * interfaces must be removed too.
10683 	 *
10684 	 * Note that this interface may be called to remove a specific
10685 	 * loopback logical interface (eg, lo0:1). But in that case
10686 	 * ipif->ipif_id != 0 so that the code path for that case is the
10687 	 * same as any other interface (meaning it skips the code directly
10688 	 * below).
10689 	 */
10690 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10691 		if (sin->sin_family == AF_UNSPEC &&
10692 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10693 			/*
10694 			 * Mark it condemned. No new ref. will be made to ill.
10695 			 */
10696 			mutex_enter(&ill->ill_lock);
10697 			ill->ill_state_flags |= ILL_CONDEMNED;
10698 			for (ipif = ill->ill_ipif; ipif != NULL;
10699 			    ipif = ipif->ipif_next) {
10700 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
10701 			}
10702 			mutex_exit(&ill->ill_lock);
10703 
10704 			ipif = ill->ill_ipif;
10705 			/* unplumb the loopback interface */
10706 			ill_delete(ill);
10707 			mutex_enter(&connp->conn_lock);
10708 			mutex_enter(&ill->ill_lock);
10709 			ASSERT(ill->ill_group == NULL);
10710 
10711 			/* Are any references to this ill active */
10712 			if (ill_is_quiescent(ill)) {
10713 				mutex_exit(&ill->ill_lock);
10714 				mutex_exit(&connp->conn_lock);
10715 				ill_delete_tail(ill);
10716 				mi_free(ill);
10717 				return (0);
10718 			}
10719 			success = ipsq_pending_mp_add(connp, ipif,
10720 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
10721 			mutex_exit(&connp->conn_lock);
10722 			mutex_exit(&ill->ill_lock);
10723 			if (success)
10724 				return (EINPROGRESS);
10725 			else
10726 				return (EINTR);
10727 		}
10728 	}
10729 
10730 	/*
10731 	 * We are exclusive on the ipsq, so an ill move will be serialized
10732 	 * before or after us.
10733 	 */
10734 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10735 
10736 	if (ipif->ipif_id == 0) {
10737 		/* Find based on address */
10738 		if (ipif->ipif_isv6) {
10739 			sin6_t *sin6;
10740 
10741 			if (sin->sin_family != AF_INET6)
10742 				return (EAFNOSUPPORT);
10743 
10744 			sin6 = (sin6_t *)sin;
10745 			/* We are a writer, so we should be able to lookup */
10746 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10747 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL);
10748 			if (ipif == NULL) {
10749 				/*
10750 				 * Maybe the address in on another interface in
10751 				 * the same IPMP group? We check this below.
10752 				 */
10753 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10754 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL);
10755 			}
10756 		} else {
10757 			ipaddr_t addr;
10758 
10759 			if (sin->sin_family != AF_INET)
10760 				return (EAFNOSUPPORT);
10761 
10762 			addr = sin->sin_addr.s_addr;
10763 			/* We are a writer, so we should be able to lookup */
10764 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
10765 			    NULL, NULL, NULL);
10766 			if (ipif == NULL) {
10767 				/*
10768 				 * Maybe the address in on another interface in
10769 				 * the same IPMP group? We check this below.
10770 				 */
10771 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
10772 				    NULL, NULL, NULL, NULL);
10773 			}
10774 		}
10775 		if (ipif == NULL) {
10776 			return (EADDRNOTAVAIL);
10777 		}
10778 		/*
10779 		 * When the address to be removed is hosted on a different
10780 		 * interface, we check if the interface is in the same IPMP
10781 		 * group as the specified one; if so we proceed with the
10782 		 * removal.
10783 		 * ill->ill_group is NULL when the ill is down, so we have to
10784 		 * compare the group names instead.
10785 		 */
10786 		if (ipif->ipif_ill != ill &&
10787 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
10788 		    ill->ill_phyint->phyint_groupname_len == 0 ||
10789 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
10790 		    ill->ill_phyint->phyint_groupname) != 0)) {
10791 			ipif_refrele(ipif);
10792 			return (EADDRNOTAVAIL);
10793 		}
10794 
10795 		/* This is a writer */
10796 		ipif_refrele(ipif);
10797 	}
10798 
10799 	/*
10800 	 * Can not delete instance zero since it is tied to the ill.
10801 	 */
10802 	if (ipif->ipif_id == 0)
10803 		return (EBUSY);
10804 
10805 	mutex_enter(&ill->ill_lock);
10806 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
10807 	mutex_exit(&ill->ill_lock);
10808 
10809 	ipif_free(ipif);
10810 
10811 	mutex_enter(&connp->conn_lock);
10812 	mutex_enter(&ill->ill_lock);
10813 
10814 	/* Are any references to this ipif active */
10815 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
10816 		mutex_exit(&ill->ill_lock);
10817 		mutex_exit(&connp->conn_lock);
10818 		ipif_non_duplicate(ipif);
10819 		ipif_down_tail(ipif);
10820 		ipif_free_tail(ipif);
10821 		return (0);
10822 	}
10823 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10824 	    IPIF_FREE);
10825 	mutex_exit(&ill->ill_lock);
10826 	mutex_exit(&connp->conn_lock);
10827 	if (success)
10828 		return (EINPROGRESS);
10829 	else
10830 		return (EINTR);
10831 }
10832 
10833 /*
10834  * Restart the removeif ioctl. The refcnt has gone down to 0.
10835  * The ipif is already condemned. So can't find it thru lookups.
10836  */
10837 /* ARGSUSED */
10838 int
10839 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10840     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10841 {
10842 	ill_t *ill;
10843 
10844 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10845 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10846 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10847 		ill = ipif->ipif_ill;
10848 		ASSERT(IAM_WRITER_ILL(ill));
10849 		ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) &&
10850 		    (ill->ill_state_flags & IPIF_CONDEMNED));
10851 		ill_delete_tail(ill);
10852 		mi_free(ill);
10853 		return (0);
10854 	}
10855 
10856 	ill = ipif->ipif_ill;
10857 	ASSERT(IAM_WRITER_IPIF(ipif));
10858 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10859 
10860 	ipif_non_duplicate(ipif);
10861 	ipif_down_tail(ipif);
10862 	ipif_free_tail(ipif);
10863 
10864 	ILL_UNMARK_CHANGING(ill);
10865 	return (0);
10866 }
10867 
10868 /*
10869  * Set the local interface address.
10870  * Allow an address of all zero when the interface is down.
10871  */
10872 /* ARGSUSED */
10873 int
10874 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10875     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10876 {
10877 	int err = 0;
10878 	in6_addr_t v6addr;
10879 	boolean_t need_up = B_FALSE;
10880 
10881 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
10882 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10883 
10884 	ASSERT(IAM_WRITER_IPIF(ipif));
10885 
10886 	if (ipif->ipif_isv6) {
10887 		sin6_t *sin6;
10888 		ill_t *ill;
10889 		phyint_t *phyi;
10890 
10891 		if (sin->sin_family != AF_INET6)
10892 			return (EAFNOSUPPORT);
10893 
10894 		sin6 = (sin6_t *)sin;
10895 		v6addr = sin6->sin6_addr;
10896 		ill = ipif->ipif_ill;
10897 		phyi = ill->ill_phyint;
10898 
10899 		/*
10900 		 * Enforce that true multicast interfaces have a link-local
10901 		 * address for logical unit 0.
10902 		 */
10903 		if (ipif->ipif_id == 0 &&
10904 		    (ill->ill_flags & ILLF_MULTICAST) &&
10905 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
10906 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
10907 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
10908 			return (EADDRNOTAVAIL);
10909 		}
10910 
10911 		/*
10912 		 * up interfaces shouldn't have the unspecified address
10913 		 * unless they also have the IPIF_NOLOCAL flags set and
10914 		 * have a subnet assigned.
10915 		 */
10916 		if ((ipif->ipif_flags & IPIF_UP) &&
10917 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
10918 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
10919 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
10920 			return (EADDRNOTAVAIL);
10921 		}
10922 
10923 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10924 			return (EADDRNOTAVAIL);
10925 	} else {
10926 		ipaddr_t addr;
10927 
10928 		if (sin->sin_family != AF_INET)
10929 			return (EAFNOSUPPORT);
10930 
10931 		addr = sin->sin_addr.s_addr;
10932 
10933 		/* Allow 0 as the local address. */
10934 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
10935 			return (EADDRNOTAVAIL);
10936 
10937 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10938 	}
10939 
10940 
10941 	/*
10942 	 * Even if there is no change we redo things just to rerun
10943 	 * ipif_set_default.
10944 	 */
10945 	if (ipif->ipif_flags & IPIF_UP) {
10946 		/*
10947 		 * Setting a new local address, make sure
10948 		 * we have net and subnet bcast ire's for
10949 		 * the old address if we need them.
10950 		 */
10951 		if (!ipif->ipif_isv6)
10952 			ipif_check_bcast_ires(ipif);
10953 		/*
10954 		 * If the interface is already marked up,
10955 		 * we call ipif_down which will take care
10956 		 * of ditching any IREs that have been set
10957 		 * up based on the old interface address.
10958 		 */
10959 		err = ipif_logical_down(ipif, q, mp);
10960 		if (err == EINPROGRESS)
10961 			return (err);
10962 		ipif_down_tail(ipif);
10963 		need_up = 1;
10964 	}
10965 
10966 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
10967 	return (err);
10968 }
10969 
10970 int
10971 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10972     boolean_t need_up)
10973 {
10974 	in6_addr_t v6addr;
10975 	ipaddr_t addr;
10976 	sin6_t	*sin6;
10977 	int	sinlen;
10978 	int	err = 0;
10979 	ill_t	*ill = ipif->ipif_ill;
10980 	boolean_t need_dl_down;
10981 	boolean_t need_arp_down;
10982 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10983 
10984 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
10985 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10986 	ASSERT(IAM_WRITER_IPIF(ipif));
10987 
10988 	/* Must cancel any pending timer before taking the ill_lock */
10989 	if (ipif->ipif_recovery_id != 0)
10990 		(void) untimeout(ipif->ipif_recovery_id);
10991 	ipif->ipif_recovery_id = 0;
10992 
10993 	if (ipif->ipif_isv6) {
10994 		sin6 = (sin6_t *)sin;
10995 		v6addr = sin6->sin6_addr;
10996 		sinlen = sizeof (struct sockaddr_in6);
10997 	} else {
10998 		addr = sin->sin_addr.s_addr;
10999 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11000 		sinlen = sizeof (struct sockaddr_in);
11001 	}
11002 	mutex_enter(&ill->ill_lock);
11003 	ipif->ipif_v6lcl_addr = v6addr;
11004 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11005 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11006 	} else {
11007 		ipif->ipif_v6src_addr = v6addr;
11008 	}
11009 	ipif->ipif_addr_ready = 0;
11010 
11011 	/*
11012 	 * If the interface was previously marked as a duplicate, then since
11013 	 * we've now got a "new" address, it should no longer be considered a
11014 	 * duplicate -- even if the "new" address is the same as the old one.
11015 	 * Note that if all ipifs are down, we may have a pending ARP down
11016 	 * event to handle.  This is because we want to recover from duplicates
11017 	 * and thus delay tearing down ARP until the duplicates have been
11018 	 * removed or disabled.
11019 	 */
11020 	need_dl_down = need_arp_down = B_FALSE;
11021 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11022 		need_arp_down = !need_up;
11023 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11024 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11025 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11026 			need_dl_down = B_TRUE;
11027 		}
11028 	}
11029 
11030 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11031 	    !ill->ill_is_6to4tun) {
11032 		queue_t *wqp = ill->ill_wq;
11033 
11034 		/*
11035 		 * The local address of this interface is a 6to4 address,
11036 		 * check if this interface is in fact a 6to4 tunnel or just
11037 		 * an interface configured with a 6to4 address.  We are only
11038 		 * interested in the former.
11039 		 */
11040 		if (wqp != NULL) {
11041 			while ((wqp->q_next != NULL) &&
11042 			    (wqp->q_next->q_qinfo != NULL) &&
11043 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11044 
11045 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11046 				    == TUN6TO4_MODID) {
11047 					/* set for use in IP */
11048 					ill->ill_is_6to4tun = 1;
11049 					break;
11050 				}
11051 				wqp = wqp->q_next;
11052 			}
11053 		}
11054 	}
11055 
11056 	ipif_set_default(ipif);
11057 
11058 	/*
11059 	 * When publishing an interface address change event, we only notify
11060 	 * the event listeners of the new address.  It is assumed that if they
11061 	 * actively care about the addresses assigned that they will have
11062 	 * already discovered the previous address assigned (if there was one.)
11063 	 *
11064 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11065 	 */
11066 	if (iocp->ioc_cmd != SIOCLIFADDIF) {
11067 		hook_nic_event_t *info;
11068 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11069 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11070 			    "attached for %s\n", info->hne_event,
11071 			    ill->ill_name));
11072 			if (info->hne_data != NULL)
11073 				kmem_free(info->hne_data, info->hne_datalen);
11074 			kmem_free(info, sizeof (hook_nic_event_t));
11075 		}
11076 
11077 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11078 		if (info != NULL) {
11079 			info->hne_nic =
11080 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
11081 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11082 			info->hne_event = NE_ADDRESS_CHANGE;
11083 			info->hne_family = ipif->ipif_isv6 ? ipv6 : ipv4;
11084 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11085 			if (info->hne_data != NULL) {
11086 				info->hne_datalen = sinlen;
11087 				bcopy(sin, info->hne_data, sinlen);
11088 			} else {
11089 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11090 				    "address information for ADDRESS_CHANGE nic"
11091 				    " event of %s (ENOMEM)\n",
11092 				    ipif->ipif_ill->ill_name));
11093 				kmem_free(info, sizeof (hook_nic_event_t));
11094 			}
11095 		} else
11096 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11097 			    "ADDRESS_CHANGE nic event information for %s "
11098 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11099 
11100 		ipif->ipif_ill->ill_nic_event_info = info;
11101 	}
11102 
11103 	mutex_exit(&ipif->ipif_ill->ill_lock);
11104 
11105 	if (need_up) {
11106 		/*
11107 		 * Now bring the interface back up.  If this
11108 		 * is the only IPIF for the ILL, ipif_up
11109 		 * will have to re-bind to the device, so
11110 		 * we may get back EINPROGRESS, in which
11111 		 * case, this IOCTL will get completed in
11112 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11113 		 */
11114 		err = ipif_up(ipif, q, mp);
11115 	} else {
11116 		/*
11117 		 * Update the IPIF list in SCTP, ipif_up_done() will do it
11118 		 * if need_up is true.
11119 		 */
11120 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11121 	}
11122 
11123 	if (need_dl_down)
11124 		ill_dl_down(ill);
11125 	if (need_arp_down)
11126 		ipif_arp_down(ipif);
11127 
11128 	return (err);
11129 }
11130 
11131 
11132 /*
11133  * Restart entry point to restart the address set operation after the
11134  * refcounts have dropped to zero.
11135  */
11136 /* ARGSUSED */
11137 int
11138 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11139     ip_ioctl_cmd_t *ipip, void *ifreq)
11140 {
11141 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11142 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11143 	ASSERT(IAM_WRITER_IPIF(ipif));
11144 	ipif_down_tail(ipif);
11145 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11146 }
11147 
11148 /* ARGSUSED */
11149 int
11150 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11151     ip_ioctl_cmd_t *ipip, void *if_req)
11152 {
11153 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11154 	struct lifreq *lifr = (struct lifreq *)if_req;
11155 
11156 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11157 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11158 	/*
11159 	 * The net mask and address can't change since we have a
11160 	 * reference to the ipif. So no lock is necessary.
11161 	 */
11162 	if (ipif->ipif_isv6) {
11163 		*sin6 = sin6_null;
11164 		sin6->sin6_family = AF_INET6;
11165 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11166 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11167 		lifr->lifr_addrlen =
11168 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11169 	} else {
11170 		*sin = sin_null;
11171 		sin->sin_family = AF_INET;
11172 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11173 		if (ipip->ipi_cmd_type == LIF_CMD) {
11174 			lifr->lifr_addrlen =
11175 			    ip_mask_to_plen(ipif->ipif_net_mask);
11176 		}
11177 	}
11178 	return (0);
11179 }
11180 
11181 /*
11182  * Set the destination address for a pt-pt interface.
11183  */
11184 /* ARGSUSED */
11185 int
11186 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11187     ip_ioctl_cmd_t *ipip, void *if_req)
11188 {
11189 	int err = 0;
11190 	in6_addr_t v6addr;
11191 	boolean_t need_up = B_FALSE;
11192 
11193 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11194 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11195 	ASSERT(IAM_WRITER_IPIF(ipif));
11196 
11197 	if (ipif->ipif_isv6) {
11198 		sin6_t *sin6;
11199 
11200 		if (sin->sin_family != AF_INET6)
11201 			return (EAFNOSUPPORT);
11202 
11203 		sin6 = (sin6_t *)sin;
11204 		v6addr = sin6->sin6_addr;
11205 
11206 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11207 			return (EADDRNOTAVAIL);
11208 	} else {
11209 		ipaddr_t addr;
11210 
11211 		if (sin->sin_family != AF_INET)
11212 			return (EAFNOSUPPORT);
11213 
11214 		addr = sin->sin_addr.s_addr;
11215 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11216 			return (EADDRNOTAVAIL);
11217 
11218 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11219 	}
11220 
11221 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11222 		return (0);	/* No change */
11223 
11224 	if (ipif->ipif_flags & IPIF_UP) {
11225 		/*
11226 		 * If the interface is already marked up,
11227 		 * we call ipif_down which will take care
11228 		 * of ditching any IREs that have been set
11229 		 * up based on the old pp dst address.
11230 		 */
11231 		err = ipif_logical_down(ipif, q, mp);
11232 		if (err == EINPROGRESS)
11233 			return (err);
11234 		ipif_down_tail(ipif);
11235 		need_up = B_TRUE;
11236 	}
11237 	/*
11238 	 * could return EINPROGRESS. If so ioctl will complete in
11239 	 * ip_rput_dlpi_writer
11240 	 */
11241 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11242 	return (err);
11243 }
11244 
11245 static int
11246 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11247     boolean_t need_up)
11248 {
11249 	in6_addr_t v6addr;
11250 	ill_t	*ill = ipif->ipif_ill;
11251 	int	err = 0;
11252 	boolean_t need_dl_down;
11253 	boolean_t need_arp_down;
11254 
11255 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11256 	    ipif->ipif_id, (void *)ipif));
11257 
11258 	/* Must cancel any pending timer before taking the ill_lock */
11259 	if (ipif->ipif_recovery_id != 0)
11260 		(void) untimeout(ipif->ipif_recovery_id);
11261 	ipif->ipif_recovery_id = 0;
11262 
11263 	if (ipif->ipif_isv6) {
11264 		sin6_t *sin6;
11265 
11266 		sin6 = (sin6_t *)sin;
11267 		v6addr = sin6->sin6_addr;
11268 	} else {
11269 		ipaddr_t addr;
11270 
11271 		addr = sin->sin_addr.s_addr;
11272 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11273 	}
11274 	mutex_enter(&ill->ill_lock);
11275 	/* Set point to point destination address. */
11276 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11277 		/*
11278 		 * Allow this as a means of creating logical
11279 		 * pt-pt interfaces on top of e.g. an Ethernet.
11280 		 * XXX Undocumented HACK for testing.
11281 		 * pt-pt interfaces are created with NUD disabled.
11282 		 */
11283 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11284 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11285 		if (ipif->ipif_isv6)
11286 			ill->ill_flags |= ILLF_NONUD;
11287 	}
11288 
11289 	/*
11290 	 * If the interface was previously marked as a duplicate, then since
11291 	 * we've now got a "new" address, it should no longer be considered a
11292 	 * duplicate -- even if the "new" address is the same as the old one.
11293 	 * Note that if all ipifs are down, we may have a pending ARP down
11294 	 * event to handle.
11295 	 */
11296 	need_dl_down = need_arp_down = B_FALSE;
11297 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11298 		need_arp_down = !need_up;
11299 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11300 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11301 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11302 			need_dl_down = B_TRUE;
11303 		}
11304 	}
11305 
11306 	/* Set the new address. */
11307 	ipif->ipif_v6pp_dst_addr = v6addr;
11308 	/* Make sure subnet tracks pp_dst */
11309 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11310 	mutex_exit(&ill->ill_lock);
11311 
11312 	if (need_up) {
11313 		/*
11314 		 * Now bring the interface back up.  If this
11315 		 * is the only IPIF for the ILL, ipif_up
11316 		 * will have to re-bind to the device, so
11317 		 * we may get back EINPROGRESS, in which
11318 		 * case, this IOCTL will get completed in
11319 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11320 		 */
11321 		err = ipif_up(ipif, q, mp);
11322 	}
11323 
11324 	if (need_dl_down)
11325 		ill_dl_down(ill);
11326 
11327 	if (need_arp_down)
11328 		ipif_arp_down(ipif);
11329 	return (err);
11330 }
11331 
11332 /*
11333  * Restart entry point to restart the dstaddress set operation after the
11334  * refcounts have dropped to zero.
11335  */
11336 /* ARGSUSED */
11337 int
11338 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11339     ip_ioctl_cmd_t *ipip, void *ifreq)
11340 {
11341 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11342 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11343 	ipif_down_tail(ipif);
11344 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11345 }
11346 
11347 /* ARGSUSED */
11348 int
11349 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11350     ip_ioctl_cmd_t *ipip, void *if_req)
11351 {
11352 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11353 
11354 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11355 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11356 	/*
11357 	 * Get point to point destination address. The addresses can't
11358 	 * change since we hold a reference to the ipif.
11359 	 */
11360 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11361 		return (EADDRNOTAVAIL);
11362 
11363 	if (ipif->ipif_isv6) {
11364 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11365 		*sin6 = sin6_null;
11366 		sin6->sin6_family = AF_INET6;
11367 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11368 	} else {
11369 		*sin = sin_null;
11370 		sin->sin_family = AF_INET;
11371 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11372 	}
11373 	return (0);
11374 }
11375 
11376 /*
11377  * part of ipmp, make this func return the active/inactive state and
11378  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11379  */
11380 /*
11381  * This function either sets or clears the IFF_INACTIVE flag.
11382  *
11383  * As long as there are some addresses or multicast memberships on the
11384  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11385  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11386  * will be used for outbound packets.
11387  *
11388  * Caller needs to verify the validity of setting IFF_INACTIVE.
11389  */
11390 static void
11391 phyint_inactive(phyint_t *phyi)
11392 {
11393 	ill_t *ill_v4;
11394 	ill_t *ill_v6;
11395 	ipif_t *ipif;
11396 	ilm_t *ilm;
11397 
11398 	ill_v4 = phyi->phyint_illv4;
11399 	ill_v6 = phyi->phyint_illv6;
11400 
11401 	/*
11402 	 * No need for a lock while traversing the list since iam
11403 	 * a writer
11404 	 */
11405 	if (ill_v4 != NULL) {
11406 		ASSERT(IAM_WRITER_ILL(ill_v4));
11407 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11408 		    ipif = ipif->ipif_next) {
11409 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11410 				mutex_enter(&phyi->phyint_lock);
11411 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11412 				mutex_exit(&phyi->phyint_lock);
11413 				return;
11414 			}
11415 		}
11416 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11417 		    ilm = ilm->ilm_next) {
11418 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11419 				mutex_enter(&phyi->phyint_lock);
11420 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11421 				mutex_exit(&phyi->phyint_lock);
11422 				return;
11423 			}
11424 		}
11425 	}
11426 	if (ill_v6 != NULL) {
11427 		ill_v6 = phyi->phyint_illv6;
11428 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11429 		    ipif = ipif->ipif_next) {
11430 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11431 				mutex_enter(&phyi->phyint_lock);
11432 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11433 				mutex_exit(&phyi->phyint_lock);
11434 				return;
11435 			}
11436 		}
11437 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11438 		    ilm = ilm->ilm_next) {
11439 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11440 				mutex_enter(&phyi->phyint_lock);
11441 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11442 				mutex_exit(&phyi->phyint_lock);
11443 				return;
11444 			}
11445 		}
11446 	}
11447 	mutex_enter(&phyi->phyint_lock);
11448 	phyi->phyint_flags |= PHYI_INACTIVE;
11449 	mutex_exit(&phyi->phyint_lock);
11450 }
11451 
11452 /*
11453  * This function is called only when the phyint flags change. Currently
11454  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11455  * that we can select a good ill.
11456  */
11457 static void
11458 ip_redo_nomination(phyint_t *phyi)
11459 {
11460 	ill_t *ill_v4;
11461 
11462 	ill_v4 = phyi->phyint_illv4;
11463 
11464 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11465 		ASSERT(IAM_WRITER_ILL(ill_v4));
11466 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11467 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11468 	}
11469 }
11470 
11471 /*
11472  * Heuristic to check if ill is INACTIVE.
11473  * Checks if ill has an ipif with an usable ip address.
11474  *
11475  * Return values:
11476  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11477  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11478  */
11479 static boolean_t
11480 ill_is_inactive(ill_t *ill)
11481 {
11482 	ipif_t *ipif;
11483 
11484 	/* Check whether it is in an IPMP group */
11485 	if (ill->ill_phyint->phyint_groupname == NULL)
11486 		return (B_FALSE);
11487 
11488 	if (ill->ill_ipif_up_count == 0)
11489 		return (B_TRUE);
11490 
11491 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11492 		uint64_t flags = ipif->ipif_flags;
11493 
11494 		/*
11495 		 * This ipif is usable if it is IPIF_UP and not a
11496 		 * dedicated test address.  A dedicated test address
11497 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11498 		 * (note in particular that V6 test addresses are
11499 		 * link-local data addresses and thus are marked
11500 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11501 		 */
11502 		if ((flags & IPIF_UP) &&
11503 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11504 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11505 			return (B_FALSE);
11506 	}
11507 	return (B_TRUE);
11508 }
11509 
11510 /*
11511  * Set interface flags.
11512  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11513  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11514  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11515  *
11516  * NOTE : We really don't enforce that ipif_id zero should be used
11517  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11518  *	  is because applications generally does SICGLIFFLAGS and
11519  *	  ORs in the new flags (that affects the logical) and does a
11520  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11521  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11522  *	  flags that will be turned on is correct with respect to
11523  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11524  */
11525 /* ARGSUSED */
11526 int
11527 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11528     ip_ioctl_cmd_t *ipip, void *if_req)
11529 {
11530 	uint64_t turn_on;
11531 	uint64_t turn_off;
11532 	int	err;
11533 	boolean_t need_up = B_FALSE;
11534 	phyint_t *phyi;
11535 	ill_t *ill;
11536 	uint64_t intf_flags;
11537 	boolean_t phyint_flags_modified = B_FALSE;
11538 	uint64_t flags;
11539 	struct ifreq *ifr;
11540 	struct lifreq *lifr;
11541 	boolean_t set_linklocal = B_FALSE;
11542 	boolean_t zero_source = B_FALSE;
11543 
11544 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11545 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11546 
11547 	ASSERT(IAM_WRITER_IPIF(ipif));
11548 
11549 	ill = ipif->ipif_ill;
11550 	phyi = ill->ill_phyint;
11551 
11552 	if (ipip->ipi_cmd_type == IF_CMD) {
11553 		ifr = (struct ifreq *)if_req;
11554 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11555 	} else {
11556 		lifr = (struct lifreq *)if_req;
11557 		flags = lifr->lifr_flags;
11558 	}
11559 
11560 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11561 
11562 	/*
11563 	 * Has the flags been set correctly till now ?
11564 	 */
11565 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11566 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11567 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11568 	/*
11569 	 * Compare the new flags to the old, and partition
11570 	 * into those coming on and those going off.
11571 	 * For the 16 bit command keep the bits above bit 16 unchanged.
11572 	 */
11573 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11574 		flags |= intf_flags & ~0xFFFF;
11575 
11576 	/*
11577 	 * First check which bits will change and then which will
11578 	 * go on and off
11579 	 */
11580 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
11581 	if (!turn_on)
11582 		return (0);	/* No change */
11583 
11584 	turn_off = intf_flags & turn_on;
11585 	turn_on ^= turn_off;
11586 	err = 0;
11587 
11588 	/*
11589 	 * Don't allow any bits belonging to the logical interface
11590 	 * to be set or cleared on the replacement ipif that was
11591 	 * created temporarily during a MOVE.
11592 	 */
11593 	if (ipif->ipif_replace_zero &&
11594 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
11595 		return (EINVAL);
11596 	}
11597 
11598 	/*
11599 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11600 	 * IPv6 interfaces.
11601 	 */
11602 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11603 		return (EINVAL);
11604 
11605 	/*
11606 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11607 	 * interfaces.  It makes no sense in that context.
11608 	 */
11609 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11610 		return (EINVAL);
11611 
11612 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11613 		zero_source = B_TRUE;
11614 
11615 	/*
11616 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11617 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11618 	 * If the link local address isn't set, and can be set, it will get
11619 	 * set later on in this function.
11620 	 */
11621 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11622 	    (flags & IFF_UP) && !zero_source &&
11623 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11624 		if (ipif_cant_setlinklocal(ipif))
11625 			return (EINVAL);
11626 		set_linklocal = B_TRUE;
11627 	}
11628 
11629 	/*
11630 	 * ILL cannot be part of a usesrc group and and IPMP group at the
11631 	 * same time. No need to grab ill_g_usesrc_lock here, see
11632 	 * synchronization notes in ip.c
11633 	 */
11634 	if (turn_on & PHYI_STANDBY &&
11635 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
11636 		return (EINVAL);
11637 	}
11638 
11639 	/*
11640 	 * If we modify physical interface flags, we'll potentially need to
11641 	 * send up two routing socket messages for the changes (one for the
11642 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11643 	 */
11644 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11645 		phyint_flags_modified = B_TRUE;
11646 
11647 	/*
11648 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
11649 	 * we need to flush the IRE_CACHES belonging to this ill.
11650 	 * We handle this case here without doing the DOWN/UP dance
11651 	 * like it is done for other flags. If some other flags are
11652 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
11653 	 * below will handle it by bringing it down and then
11654 	 * bringing it UP.
11655 	 */
11656 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
11657 		ill_t *ill_v4, *ill_v6;
11658 
11659 		ill_v4 = phyi->phyint_illv4;
11660 		ill_v6 = phyi->phyint_illv6;
11661 
11662 		/*
11663 		 * First set the INACTIVE flag if needed. Then delete the ires.
11664 		 * ire_add will atomically prevent creating new IRE_CACHEs
11665 		 * unless hidden flag is set.
11666 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
11667 		 */
11668 		if ((turn_on & PHYI_FAILED) &&
11669 		    ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) {
11670 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
11671 			phyi->phyint_flags &= ~PHYI_INACTIVE;
11672 		}
11673 		if ((turn_off & PHYI_FAILED) &&
11674 		    ((intf_flags & PHYI_STANDBY) ||
11675 		    (!ipmp_enable_failback && ill_is_inactive(ill)))) {
11676 			phyint_inactive(phyi);
11677 		}
11678 
11679 		if (turn_on & PHYI_STANDBY) {
11680 			/*
11681 			 * We implicitly set INACTIVE only when STANDBY is set.
11682 			 * INACTIVE is also set on non-STANDBY phyint when user
11683 			 * disables FAILBACK using configuration file.
11684 			 * Do not allow STANDBY to be set on such INACTIVE
11685 			 * phyint
11686 			 */
11687 			if (phyi->phyint_flags & PHYI_INACTIVE)
11688 				return (EINVAL);
11689 			if (!(phyi->phyint_flags & PHYI_FAILED))
11690 				phyint_inactive(phyi);
11691 		}
11692 		if (turn_off & PHYI_STANDBY) {
11693 			if (ipmp_enable_failback) {
11694 				/*
11695 				 * Reset PHYI_INACTIVE.
11696 				 */
11697 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11698 			} else if (ill_is_inactive(ill) &&
11699 			    !(phyi->phyint_flags & PHYI_FAILED)) {
11700 				/*
11701 				 * Need to set INACTIVE, when user sets
11702 				 * STANDBY on a non-STANDBY phyint and
11703 				 * later resets STANDBY
11704 				 */
11705 				phyint_inactive(phyi);
11706 			}
11707 		}
11708 		/*
11709 		 * We should always send up a message so that the
11710 		 * daemons come to know of it. Note that the zeroth
11711 		 * interface can be down and the check below for IPIF_UP
11712 		 * will not make sense as we are actually setting
11713 		 * a phyint flag here. We assume that the ipif used
11714 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
11715 		 * send up any message for non-zero ipifs).
11716 		 */
11717 		phyint_flags_modified = B_TRUE;
11718 
11719 		if (ill_v4 != NULL) {
11720 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11721 			    IRE_CACHE, ill_stq_cache_delete,
11722 			    (char *)ill_v4, ill_v4);
11723 			illgrp_reset_schednext(ill_v4);
11724 		}
11725 		if (ill_v6 != NULL) {
11726 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11727 			    IRE_CACHE, ill_stq_cache_delete,
11728 			    (char *)ill_v6, ill_v6);
11729 			illgrp_reset_schednext(ill_v6);
11730 		}
11731 	}
11732 
11733 	/*
11734 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
11735 	 * status of the interface and, if the interface is part of an IPMP
11736 	 * group, all other interfaces that are part of the same IPMP
11737 	 * group.
11738 	 */
11739 	if ((turn_on | turn_off) & ILLF_ROUTER) {
11740 		(void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0),
11741 		    (caddr_t)ill);
11742 	}
11743 
11744 	/*
11745 	 * If the interface is not UP and we are not going to
11746 	 * bring it UP, record the flags and return. When the
11747 	 * interface comes UP later, the right actions will be
11748 	 * taken.
11749 	 */
11750 	if (!(ipif->ipif_flags & IPIF_UP) &&
11751 	    !(turn_on & IPIF_UP)) {
11752 		/* Record new flags in their respective places. */
11753 		mutex_enter(&ill->ill_lock);
11754 		mutex_enter(&ill->ill_phyint->phyint_lock);
11755 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11756 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11757 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11758 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11759 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11760 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11761 		mutex_exit(&ill->ill_lock);
11762 		mutex_exit(&ill->ill_phyint->phyint_lock);
11763 
11764 		/*
11765 		 * We do the broadcast and nomination here rather
11766 		 * than waiting for a FAILOVER/FAILBACK to happen. In
11767 		 * the case of FAILBACK from INACTIVE standby to the
11768 		 * interface that has been repaired, PHYI_FAILED has not
11769 		 * been cleared yet. If there are only two interfaces in
11770 		 * that group, all we have is a FAILED and INACTIVE
11771 		 * interface. If we do the nomination soon after a failback,
11772 		 * the broadcast nomination code would select the
11773 		 * INACTIVE interface for receiving broadcasts as FAILED is
11774 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
11775 		 * receive broadcast packets, we need to redo nomination
11776 		 * when the FAILED is cleared here. Thus, in general we
11777 		 * always do the nomination here for FAILED, STANDBY
11778 		 * and OFFLINE.
11779 		 */
11780 		if (((turn_on | turn_off) &
11781 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
11782 			ip_redo_nomination(phyi);
11783 		}
11784 		if (phyint_flags_modified) {
11785 			if (phyi->phyint_illv4 != NULL) {
11786 				ip_rts_ifmsg(phyi->phyint_illv4->
11787 				    ill_ipif);
11788 			}
11789 			if (phyi->phyint_illv6 != NULL) {
11790 				ip_rts_ifmsg(phyi->phyint_illv6->
11791 				    ill_ipif);
11792 			}
11793 		}
11794 		return (0);
11795 	} else if (set_linklocal || zero_source) {
11796 		mutex_enter(&ill->ill_lock);
11797 		if (set_linklocal)
11798 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11799 		if (zero_source)
11800 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11801 		mutex_exit(&ill->ill_lock);
11802 	}
11803 
11804 	/*
11805 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
11806 	 * or point-to-point interfaces with an unspecified destination. We do
11807 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11808 	 * have a subnet assigned, which is how in.ndpd currently manages its
11809 	 * onlink prefix list when no addresses are configured with those
11810 	 * prefixes.
11811 	 */
11812 	if (ipif->ipif_isv6 &&
11813 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11814 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11815 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11816 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11817 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11818 		return (EINVAL);
11819 	}
11820 
11821 	/*
11822 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11823 	 * from being brought up.
11824 	 */
11825 	if (!ipif->ipif_isv6 &&
11826 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11827 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11828 		return (EINVAL);
11829 	}
11830 
11831 	/*
11832 	 * The only flag changes that we currently take specific action on
11833 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
11834 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
11835 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
11836 	 * the flags and bringing it back up again.
11837 	 */
11838 	if ((turn_on|turn_off) &
11839 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11840 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
11841 		/*
11842 		 * Taking this ipif down, make sure we have
11843 		 * valid net and subnet bcast ire's for other
11844 		 * logical interfaces, if we need them.
11845 		 */
11846 		if (!ipif->ipif_isv6)
11847 			ipif_check_bcast_ires(ipif);
11848 
11849 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11850 		    !(turn_off & IPIF_UP)) {
11851 			need_up = B_TRUE;
11852 			if (ipif->ipif_flags & IPIF_UP)
11853 				ill->ill_logical_down = 1;
11854 			turn_on &= ~IPIF_UP;
11855 		}
11856 		err = ipif_down(ipif, q, mp);
11857 		ip1dbg(("ipif_down returns %d err ", err));
11858 		if (err == EINPROGRESS)
11859 			return (err);
11860 		ipif_down_tail(ipif);
11861 	}
11862 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
11863 }
11864 
11865 static int
11866 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
11867     boolean_t need_up)
11868 {
11869 	ill_t	*ill;
11870 	phyint_t *phyi;
11871 	uint64_t turn_on;
11872 	uint64_t turn_off;
11873 	uint64_t intf_flags;
11874 	boolean_t phyint_flags_modified = B_FALSE;
11875 	int	err = 0;
11876 	boolean_t set_linklocal = B_FALSE;
11877 	boolean_t zero_source = B_FALSE;
11878 
11879 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
11880 		ipif->ipif_ill->ill_name, ipif->ipif_id));
11881 
11882 	ASSERT(IAM_WRITER_IPIF(ipif));
11883 
11884 	ill = ipif->ipif_ill;
11885 	phyi = ill->ill_phyint;
11886 
11887 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11888 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
11889 
11890 	turn_off = intf_flags & turn_on;
11891 	turn_on ^= turn_off;
11892 
11893 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
11894 		phyint_flags_modified = B_TRUE;
11895 
11896 	/*
11897 	 * Now we change the flags. Track current value of
11898 	 * other flags in their respective places.
11899 	 */
11900 	mutex_enter(&ill->ill_lock);
11901 	mutex_enter(&phyi->phyint_lock);
11902 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11903 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11904 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11905 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11906 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11907 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11908 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
11909 		set_linklocal = B_TRUE;
11910 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
11911 	}
11912 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
11913 		zero_source = B_TRUE;
11914 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
11915 	}
11916 	mutex_exit(&ill->ill_lock);
11917 	mutex_exit(&phyi->phyint_lock);
11918 
11919 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
11920 		ip_redo_nomination(phyi);
11921 
11922 	if (set_linklocal)
11923 		(void) ipif_setlinklocal(ipif);
11924 
11925 	if (zero_source)
11926 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11927 	else
11928 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
11929 
11930 	if (need_up) {
11931 		/*
11932 		 * XXX ipif_up really does not know whether a phyint flags
11933 		 * was modified or not. So, it sends up information on
11934 		 * only one routing sockets message. As we don't bring up
11935 		 * the interface and also set STANDBY/FAILED simultaneously
11936 		 * it should be okay.
11937 		 */
11938 		err = ipif_up(ipif, q, mp);
11939 	} else {
11940 		/*
11941 		 * Make sure routing socket sees all changes to the flags.
11942 		 * ipif_up_done* handles this when we use ipif_up.
11943 		 */
11944 		if (phyint_flags_modified) {
11945 			if (phyi->phyint_illv4 != NULL) {
11946 				ip_rts_ifmsg(phyi->phyint_illv4->
11947 				    ill_ipif);
11948 			}
11949 			if (phyi->phyint_illv6 != NULL) {
11950 				ip_rts_ifmsg(phyi->phyint_illv6->
11951 				    ill_ipif);
11952 			}
11953 		} else {
11954 			ip_rts_ifmsg(ipif);
11955 		}
11956 	}
11957 	return (err);
11958 }
11959 
11960 /*
11961  * Restart entry point to restart the flags restart operation after the
11962  * refcounts have dropped to zero.
11963  */
11964 /* ARGSUSED */
11965 int
11966 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11967     ip_ioctl_cmd_t *ipip, void *if_req)
11968 {
11969 	int	err;
11970 	struct ifreq *ifr = (struct ifreq *)if_req;
11971 	struct lifreq *lifr = (struct lifreq *)if_req;
11972 
11973 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
11974 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11975 
11976 	ipif_down_tail(ipif);
11977 	if (ipip->ipi_cmd_type == IF_CMD) {
11978 		/*
11979 		 * Since ip_sioctl_flags expects an int and ifr_flags
11980 		 * is a short we need to cast ifr_flags into an int
11981 		 * to avoid having sign extension cause bits to get
11982 		 * set that should not be.
11983 		 */
11984 		err = ip_sioctl_flags_tail(ipif,
11985 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
11986 		    q, mp, B_TRUE);
11987 	} else {
11988 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
11989 		    q, mp, B_TRUE);
11990 	}
11991 	return (err);
11992 }
11993 
11994 /* ARGSUSED */
11995 int
11996 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11997     ip_ioctl_cmd_t *ipip, void *if_req)
11998 {
11999 	/*
12000 	 * Has the flags been set correctly till now ?
12001 	 */
12002 	ill_t *ill = ipif->ipif_ill;
12003 	phyint_t *phyi = ill->ill_phyint;
12004 
12005 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12006 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12007 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12008 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12009 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12010 
12011 	/*
12012 	 * Need a lock since some flags can be set even when there are
12013 	 * references to the ipif.
12014 	 */
12015 	mutex_enter(&ill->ill_lock);
12016 	if (ipip->ipi_cmd_type == IF_CMD) {
12017 		struct ifreq *ifr = (struct ifreq *)if_req;
12018 
12019 		/* Get interface flags (low 16 only). */
12020 		ifr->ifr_flags = ((ipif->ipif_flags |
12021 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12022 	} else {
12023 		struct lifreq *lifr = (struct lifreq *)if_req;
12024 
12025 		/* Get interface flags. */
12026 		lifr->lifr_flags = ipif->ipif_flags |
12027 		    ill->ill_flags | phyi->phyint_flags;
12028 	}
12029 	mutex_exit(&ill->ill_lock);
12030 	return (0);
12031 }
12032 
12033 /* ARGSUSED */
12034 int
12035 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12036     ip_ioctl_cmd_t *ipip, void *if_req)
12037 {
12038 	int mtu;
12039 	int ip_min_mtu;
12040 	struct ifreq	*ifr;
12041 	struct lifreq *lifr;
12042 	ire_t	*ire;
12043 
12044 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12045 	    ipif->ipif_id, (void *)ipif));
12046 	if (ipip->ipi_cmd_type == IF_CMD) {
12047 		ifr = (struct ifreq *)if_req;
12048 		mtu = ifr->ifr_metric;
12049 	} else {
12050 		lifr = (struct lifreq *)if_req;
12051 		mtu = lifr->lifr_mtu;
12052 	}
12053 
12054 	if (ipif->ipif_isv6)
12055 		ip_min_mtu = IPV6_MIN_MTU;
12056 	else
12057 		ip_min_mtu = IP_MIN_MTU;
12058 
12059 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12060 		return (EINVAL);
12061 
12062 	/*
12063 	 * Change the MTU size in all relevant ire's.
12064 	 * Mtu change Vs. new ire creation - protocol below.
12065 	 * First change ipif_mtu and the ire_max_frag of the
12066 	 * interface ire. Then do an ire walk and change the
12067 	 * ire_max_frag of all affected ires. During ire_add
12068 	 * under the bucket lock, set the ire_max_frag of the
12069 	 * new ire being created from the ipif/ire from which
12070 	 * it is being derived. If an mtu change happens after
12071 	 * the ire is added, the new ire will be cleaned up.
12072 	 * Conversely if the mtu change happens before the ire
12073 	 * is added, ire_add will see the new value of the mtu.
12074 	 */
12075 	ipif->ipif_mtu = mtu;
12076 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12077 
12078 	if (ipif->ipif_isv6)
12079 		ire = ipif_to_ire_v6(ipif);
12080 	else
12081 		ire = ipif_to_ire(ipif);
12082 	if (ire != NULL) {
12083 		ire->ire_max_frag = ipif->ipif_mtu;
12084 		ire_refrele(ire);
12085 	}
12086 	if (ipif->ipif_flags & IPIF_UP) {
12087 		if (ipif->ipif_isv6)
12088 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES);
12089 		else
12090 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES);
12091 	}
12092 	/* Update the MTU in SCTP's list */
12093 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12094 	return (0);
12095 }
12096 
12097 /* Get interface MTU. */
12098 /* ARGSUSED */
12099 int
12100 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12101 	ip_ioctl_cmd_t *ipip, void *if_req)
12102 {
12103 	struct ifreq	*ifr;
12104 	struct lifreq	*lifr;
12105 
12106 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12107 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12108 	if (ipip->ipi_cmd_type == IF_CMD) {
12109 		ifr = (struct ifreq *)if_req;
12110 		ifr->ifr_metric = ipif->ipif_mtu;
12111 	} else {
12112 		lifr = (struct lifreq *)if_req;
12113 		lifr->lifr_mtu = ipif->ipif_mtu;
12114 	}
12115 	return (0);
12116 }
12117 
12118 /* Set interface broadcast address. */
12119 /* ARGSUSED2 */
12120 int
12121 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12122 	ip_ioctl_cmd_t *ipip, void *if_req)
12123 {
12124 	ipaddr_t addr;
12125 	ire_t	*ire;
12126 
12127 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12128 	    ipif->ipif_id));
12129 
12130 	ASSERT(IAM_WRITER_IPIF(ipif));
12131 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12132 		return (EADDRNOTAVAIL);
12133 
12134 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12135 
12136 	if (sin->sin_family != AF_INET)
12137 		return (EAFNOSUPPORT);
12138 
12139 	addr = sin->sin_addr.s_addr;
12140 	if (ipif->ipif_flags & IPIF_UP) {
12141 		/*
12142 		 * If we are already up, make sure the new
12143 		 * broadcast address makes sense.  If it does,
12144 		 * there should be an IRE for it already.
12145 		 * Don't match on ipif, only on the ill
12146 		 * since we are sharing these now. Don't use
12147 		 * MATCH_IRE_ILL_GROUP as we are looking for
12148 		 * the broadcast ire on this ill and each ill
12149 		 * in the group has its own broadcast ire.
12150 		 */
12151 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12152 		    ipif, ALL_ZONES, NULL,
12153 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE));
12154 		if (ire == NULL) {
12155 			return (EINVAL);
12156 		} else {
12157 			ire_refrele(ire);
12158 		}
12159 	}
12160 	/*
12161 	 * Changing the broadcast addr for this ipif.
12162 	 * Make sure we have valid net and subnet bcast
12163 	 * ire's for other logical interfaces, if needed.
12164 	 */
12165 	if (addr != ipif->ipif_brd_addr)
12166 		ipif_check_bcast_ires(ipif);
12167 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12168 	return (0);
12169 }
12170 
12171 /* Get interface broadcast address. */
12172 /* ARGSUSED */
12173 int
12174 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12175     ip_ioctl_cmd_t *ipip, void *if_req)
12176 {
12177 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12178 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12179 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12180 		return (EADDRNOTAVAIL);
12181 
12182 	/* IPIF_BROADCAST not possible with IPv6 */
12183 	ASSERT(!ipif->ipif_isv6);
12184 	*sin = sin_null;
12185 	sin->sin_family = AF_INET;
12186 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12187 	return (0);
12188 }
12189 
12190 /*
12191  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12192  */
12193 /* ARGSUSED */
12194 int
12195 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12196     ip_ioctl_cmd_t *ipip, void *if_req)
12197 {
12198 	int err = 0;
12199 	in6_addr_t v6mask;
12200 
12201 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12202 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12203 
12204 	ASSERT(IAM_WRITER_IPIF(ipif));
12205 
12206 	if (ipif->ipif_isv6) {
12207 		sin6_t *sin6;
12208 
12209 		if (sin->sin_family != AF_INET6)
12210 			return (EAFNOSUPPORT);
12211 
12212 		sin6 = (sin6_t *)sin;
12213 		v6mask = sin6->sin6_addr;
12214 	} else {
12215 		ipaddr_t mask;
12216 
12217 		if (sin->sin_family != AF_INET)
12218 			return (EAFNOSUPPORT);
12219 
12220 		mask = sin->sin_addr.s_addr;
12221 		V4MASK_TO_V6(mask, v6mask);
12222 	}
12223 
12224 	/*
12225 	 * No big deal if the interface isn't already up, or the mask
12226 	 * isn't really changing, or this is pt-pt.
12227 	 */
12228 	if (!(ipif->ipif_flags & IPIF_UP) ||
12229 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12230 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12231 		ipif->ipif_v6net_mask = v6mask;
12232 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12233 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12234 			    ipif->ipif_v6net_mask,
12235 			    ipif->ipif_v6subnet);
12236 		}
12237 		return (0);
12238 	}
12239 	/*
12240 	 * Make sure we have valid net and subnet broadcast ire's
12241 	 * for the old netmask, if needed by other logical interfaces.
12242 	 */
12243 	if (!ipif->ipif_isv6)
12244 		ipif_check_bcast_ires(ipif);
12245 
12246 	err = ipif_logical_down(ipif, q, mp);
12247 	if (err == EINPROGRESS)
12248 		return (err);
12249 	ipif_down_tail(ipif);
12250 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12251 	return (err);
12252 }
12253 
12254 static int
12255 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12256 {
12257 	in6_addr_t v6mask;
12258 	int err = 0;
12259 
12260 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12261 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12262 
12263 	if (ipif->ipif_isv6) {
12264 		sin6_t *sin6;
12265 
12266 		sin6 = (sin6_t *)sin;
12267 		v6mask = sin6->sin6_addr;
12268 	} else {
12269 		ipaddr_t mask;
12270 
12271 		mask = sin->sin_addr.s_addr;
12272 		V4MASK_TO_V6(mask, v6mask);
12273 	}
12274 
12275 	ipif->ipif_v6net_mask = v6mask;
12276 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12277 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12278 		    ipif->ipif_v6subnet);
12279 	}
12280 	err = ipif_up(ipif, q, mp);
12281 
12282 	if (err == 0 || err == EINPROGRESS) {
12283 		/*
12284 		 * The interface must be DL_BOUND if this packet has to
12285 		 * go out on the wire. Since we only go through a logical
12286 		 * down and are bound with the driver during an internal
12287 		 * down/up that is satisfied.
12288 		 */
12289 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12290 			/* Potentially broadcast an address mask reply. */
12291 			ipif_mask_reply(ipif);
12292 		}
12293 	}
12294 	return (err);
12295 }
12296 
12297 /* ARGSUSED */
12298 int
12299 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12300     ip_ioctl_cmd_t *ipip, void *if_req)
12301 {
12302 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12303 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12304 	ipif_down_tail(ipif);
12305 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12306 }
12307 
12308 /* Get interface net mask. */
12309 /* ARGSUSED */
12310 int
12311 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12312     ip_ioctl_cmd_t *ipip, void *if_req)
12313 {
12314 	struct lifreq *lifr = (struct lifreq *)if_req;
12315 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12316 
12317 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12318 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12319 
12320 	/*
12321 	 * net mask can't change since we have a reference to the ipif.
12322 	 */
12323 	if (ipif->ipif_isv6) {
12324 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12325 		*sin6 = sin6_null;
12326 		sin6->sin6_family = AF_INET6;
12327 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12328 		lifr->lifr_addrlen =
12329 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12330 	} else {
12331 		*sin = sin_null;
12332 		sin->sin_family = AF_INET;
12333 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12334 		if (ipip->ipi_cmd_type == LIF_CMD) {
12335 			lifr->lifr_addrlen =
12336 			    ip_mask_to_plen(ipif->ipif_net_mask);
12337 		}
12338 	}
12339 	return (0);
12340 }
12341 
12342 /* ARGSUSED */
12343 int
12344 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12345     ip_ioctl_cmd_t *ipip, void *if_req)
12346 {
12347 
12348 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12349 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12350 	/*
12351 	 * Set interface metric.  We don't use this for
12352 	 * anything but we keep track of it in case it is
12353 	 * important to routing applications or such.
12354 	 */
12355 	if (ipip->ipi_cmd_type == IF_CMD) {
12356 		struct ifreq    *ifr;
12357 
12358 		ifr = (struct ifreq *)if_req;
12359 		ipif->ipif_metric = ifr->ifr_metric;
12360 	} else {
12361 		struct lifreq   *lifr;
12362 
12363 		lifr = (struct lifreq *)if_req;
12364 		ipif->ipif_metric = lifr->lifr_metric;
12365 	}
12366 	return (0);
12367 }
12368 
12369 
12370 /* ARGSUSED */
12371 int
12372 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12373     ip_ioctl_cmd_t *ipip, void *if_req)
12374 {
12375 
12376 	/* Get interface metric. */
12377 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12378 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12379 	if (ipip->ipi_cmd_type == IF_CMD) {
12380 		struct ifreq    *ifr;
12381 
12382 		ifr = (struct ifreq *)if_req;
12383 		ifr->ifr_metric = ipif->ipif_metric;
12384 	} else {
12385 		struct lifreq   *lifr;
12386 
12387 		lifr = (struct lifreq *)if_req;
12388 		lifr->lifr_metric = ipif->ipif_metric;
12389 	}
12390 
12391 	return (0);
12392 }
12393 
12394 /* ARGSUSED */
12395 int
12396 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12397     ip_ioctl_cmd_t *ipip, void *if_req)
12398 {
12399 
12400 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12401 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12402 	/*
12403 	 * Set the muxid returned from I_PLINK.
12404 	 */
12405 	if (ipip->ipi_cmd_type == IF_CMD) {
12406 		struct ifreq *ifr = (struct ifreq *)if_req;
12407 
12408 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12409 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12410 	} else {
12411 		struct lifreq *lifr = (struct lifreq *)if_req;
12412 
12413 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12414 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12415 	}
12416 	return (0);
12417 }
12418 
12419 /* ARGSUSED */
12420 int
12421 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12422     ip_ioctl_cmd_t *ipip, void *if_req)
12423 {
12424 
12425 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12426 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12427 	/*
12428 	 * Get the muxid saved in ill for I_PUNLINK.
12429 	 */
12430 	if (ipip->ipi_cmd_type == IF_CMD) {
12431 		struct ifreq *ifr = (struct ifreq *)if_req;
12432 
12433 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12434 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12435 	} else {
12436 		struct lifreq *lifr = (struct lifreq *)if_req;
12437 
12438 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12439 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12440 	}
12441 	return (0);
12442 }
12443 
12444 /*
12445  * Set the subnet prefix. Does not modify the broadcast address.
12446  */
12447 /* ARGSUSED */
12448 int
12449 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12450     ip_ioctl_cmd_t *ipip, void *if_req)
12451 {
12452 	int err = 0;
12453 	in6_addr_t v6addr;
12454 	in6_addr_t v6mask;
12455 	boolean_t need_up = B_FALSE;
12456 	int addrlen;
12457 
12458 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12459 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12460 
12461 	ASSERT(IAM_WRITER_IPIF(ipif));
12462 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12463 
12464 	if (ipif->ipif_isv6) {
12465 		sin6_t *sin6;
12466 
12467 		if (sin->sin_family != AF_INET6)
12468 			return (EAFNOSUPPORT);
12469 
12470 		sin6 = (sin6_t *)sin;
12471 		v6addr = sin6->sin6_addr;
12472 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12473 			return (EADDRNOTAVAIL);
12474 	} else {
12475 		ipaddr_t addr;
12476 
12477 		if (sin->sin_family != AF_INET)
12478 			return (EAFNOSUPPORT);
12479 
12480 		addr = sin->sin_addr.s_addr;
12481 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12482 			return (EADDRNOTAVAIL);
12483 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12484 		/* Add 96 bits */
12485 		addrlen += IPV6_ABITS - IP_ABITS;
12486 	}
12487 
12488 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12489 		return (EINVAL);
12490 
12491 	/* Check if bits in the address is set past the mask */
12492 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12493 		return (EINVAL);
12494 
12495 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12496 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12497 		return (0);	/* No change */
12498 
12499 	if (ipif->ipif_flags & IPIF_UP) {
12500 		/*
12501 		 * If the interface is already marked up,
12502 		 * we call ipif_down which will take care
12503 		 * of ditching any IREs that have been set
12504 		 * up based on the old interface address.
12505 		 */
12506 		err = ipif_logical_down(ipif, q, mp);
12507 		if (err == EINPROGRESS)
12508 			return (err);
12509 		ipif_down_tail(ipif);
12510 		need_up = B_TRUE;
12511 	}
12512 
12513 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12514 	return (err);
12515 }
12516 
12517 static int
12518 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12519     queue_t *q, mblk_t *mp, boolean_t need_up)
12520 {
12521 	ill_t	*ill = ipif->ipif_ill;
12522 	int	err = 0;
12523 
12524 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12525 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12526 
12527 	/* Set the new address. */
12528 	mutex_enter(&ill->ill_lock);
12529 	ipif->ipif_v6net_mask = v6mask;
12530 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12531 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12532 		    ipif->ipif_v6subnet);
12533 	}
12534 	mutex_exit(&ill->ill_lock);
12535 
12536 	if (need_up) {
12537 		/*
12538 		 * Now bring the interface back up.  If this
12539 		 * is the only IPIF for the ILL, ipif_up
12540 		 * will have to re-bind to the device, so
12541 		 * we may get back EINPROGRESS, in which
12542 		 * case, this IOCTL will get completed in
12543 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12544 		 */
12545 		err = ipif_up(ipif, q, mp);
12546 		if (err == EINPROGRESS)
12547 			return (err);
12548 	}
12549 	return (err);
12550 }
12551 
12552 /* ARGSUSED */
12553 int
12554 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12555     ip_ioctl_cmd_t *ipip, void *if_req)
12556 {
12557 	int	addrlen;
12558 	in6_addr_t v6addr;
12559 	in6_addr_t v6mask;
12560 	struct lifreq *lifr = (struct lifreq *)if_req;
12561 
12562 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12563 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12564 	ipif_down_tail(ipif);
12565 
12566 	addrlen = lifr->lifr_addrlen;
12567 	if (ipif->ipif_isv6) {
12568 		sin6_t *sin6;
12569 
12570 		sin6 = (sin6_t *)sin;
12571 		v6addr = sin6->sin6_addr;
12572 	} else {
12573 		ipaddr_t addr;
12574 
12575 		addr = sin->sin_addr.s_addr;
12576 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12577 		addrlen += IPV6_ABITS - IP_ABITS;
12578 	}
12579 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12580 
12581 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12582 }
12583 
12584 /* ARGSUSED */
12585 int
12586 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12587     ip_ioctl_cmd_t *ipip, void *if_req)
12588 {
12589 	struct lifreq *lifr = (struct lifreq *)if_req;
12590 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12591 
12592 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12593 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12594 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12595 
12596 	if (ipif->ipif_isv6) {
12597 		*sin6 = sin6_null;
12598 		sin6->sin6_family = AF_INET6;
12599 		sin6->sin6_addr = ipif->ipif_v6subnet;
12600 		lifr->lifr_addrlen =
12601 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12602 	} else {
12603 		*sin = sin_null;
12604 		sin->sin_family = AF_INET;
12605 		sin->sin_addr.s_addr = ipif->ipif_subnet;
12606 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12607 	}
12608 	return (0);
12609 }
12610 
12611 /*
12612  * Set the IPv6 address token.
12613  */
12614 /* ARGSUSED */
12615 int
12616 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12617     ip_ioctl_cmd_t *ipi, void *if_req)
12618 {
12619 	ill_t *ill = ipif->ipif_ill;
12620 	int err;
12621 	in6_addr_t v6addr;
12622 	in6_addr_t v6mask;
12623 	boolean_t need_up = B_FALSE;
12624 	int i;
12625 	sin6_t *sin6 = (sin6_t *)sin;
12626 	struct lifreq *lifr = (struct lifreq *)if_req;
12627 	int addrlen;
12628 
12629 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12630 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12631 	ASSERT(IAM_WRITER_IPIF(ipif));
12632 
12633 	addrlen = lifr->lifr_addrlen;
12634 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12635 	if (ipif->ipif_id != 0)
12636 		return (EINVAL);
12637 
12638 	if (!ipif->ipif_isv6)
12639 		return (EINVAL);
12640 
12641 	if (addrlen > IPV6_ABITS)
12642 		return (EINVAL);
12643 
12644 	v6addr = sin6->sin6_addr;
12645 
12646 	/*
12647 	 * The length of the token is the length from the end.  To get
12648 	 * the proper mask for this, compute the mask of the bits not
12649 	 * in the token; ie. the prefix, and then xor to get the mask.
12650 	 */
12651 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12652 		return (EINVAL);
12653 	for (i = 0; i < 4; i++) {
12654 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12655 	}
12656 
12657 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12658 	    ill->ill_token_length == addrlen)
12659 		return (0);	/* No change */
12660 
12661 	if (ipif->ipif_flags & IPIF_UP) {
12662 		err = ipif_logical_down(ipif, q, mp);
12663 		if (err == EINPROGRESS)
12664 			return (err);
12665 		ipif_down_tail(ipif);
12666 		need_up = B_TRUE;
12667 	}
12668 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12669 	return (err);
12670 }
12671 
12672 static int
12673 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12674     mblk_t *mp, boolean_t need_up)
12675 {
12676 	in6_addr_t v6addr;
12677 	in6_addr_t v6mask;
12678 	ill_t	*ill = ipif->ipif_ill;
12679 	int	i;
12680 	int	err = 0;
12681 
12682 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12683 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12684 	v6addr = sin6->sin6_addr;
12685 	/*
12686 	 * The length of the token is the length from the end.  To get
12687 	 * the proper mask for this, compute the mask of the bits not
12688 	 * in the token; ie. the prefix, and then xor to get the mask.
12689 	 */
12690 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12691 	for (i = 0; i < 4; i++)
12692 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12693 
12694 	mutex_enter(&ill->ill_lock);
12695 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12696 	ill->ill_token_length = addrlen;
12697 	mutex_exit(&ill->ill_lock);
12698 
12699 	if (need_up) {
12700 		/*
12701 		 * Now bring the interface back up.  If this
12702 		 * is the only IPIF for the ILL, ipif_up
12703 		 * will have to re-bind to the device, so
12704 		 * we may get back EINPROGRESS, in which
12705 		 * case, this IOCTL will get completed in
12706 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12707 		 */
12708 		err = ipif_up(ipif, q, mp);
12709 		if (err == EINPROGRESS)
12710 			return (err);
12711 	}
12712 	return (err);
12713 }
12714 
12715 /* ARGSUSED */
12716 int
12717 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12718     ip_ioctl_cmd_t *ipi, void *if_req)
12719 {
12720 	ill_t *ill;
12721 	sin6_t *sin6 = (sin6_t *)sin;
12722 	struct lifreq *lifr = (struct lifreq *)if_req;
12723 
12724 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12725 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12726 	if (ipif->ipif_id != 0)
12727 		return (EINVAL);
12728 
12729 	ill = ipif->ipif_ill;
12730 	if (!ill->ill_isv6)
12731 		return (ENXIO);
12732 
12733 	*sin6 = sin6_null;
12734 	sin6->sin6_family = AF_INET6;
12735 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12736 	sin6->sin6_addr = ill->ill_token;
12737 	lifr->lifr_addrlen = ill->ill_token_length;
12738 	return (0);
12739 }
12740 
12741 /*
12742  * Set (hardware) link specific information that might override
12743  * what was acquired through the DL_INFO_ACK.
12744  * The logic is as follows.
12745  *
12746  * become exclusive
12747  * set CHANGING flag
12748  * change mtu on affected IREs
12749  * clear CHANGING flag
12750  *
12751  * An ire add that occurs before the CHANGING flag is set will have its mtu
12752  * changed by the ip_sioctl_lnkinfo.
12753  *
12754  * During the time the CHANGING flag is set, no new ires will be added to the
12755  * bucket, and ire add will fail (due the CHANGING flag).
12756  *
12757  * An ire add that occurs after the CHANGING flag is set will have the right mtu
12758  * before it is added to the bucket.
12759  *
12760  * Obviously only 1 thread can set the CHANGING flag and we need to become
12761  * exclusive to set the flag.
12762  */
12763 /* ARGSUSED */
12764 int
12765 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12766     ip_ioctl_cmd_t *ipi, void *if_req)
12767 {
12768 	ill_t		*ill = ipif->ipif_ill;
12769 	ipif_t		*nipif;
12770 	int		ip_min_mtu;
12771 	boolean_t	mtu_walk = B_FALSE;
12772 	struct lifreq	*lifr = (struct lifreq *)if_req;
12773 	lif_ifinfo_req_t *lir;
12774 	ire_t		*ire;
12775 
12776 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12777 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12778 	lir = &lifr->lifr_ifinfo;
12779 	ASSERT(IAM_WRITER_IPIF(ipif));
12780 
12781 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12782 	if (ipif->ipif_id != 0)
12783 		return (EINVAL);
12784 
12785 	/* Set interface MTU. */
12786 	if (ipif->ipif_isv6)
12787 		ip_min_mtu = IPV6_MIN_MTU;
12788 	else
12789 		ip_min_mtu = IP_MIN_MTU;
12790 
12791 	/*
12792 	 * Verify values before we set anything. Allow zero to
12793 	 * mean unspecified.
12794 	 */
12795 	if (lir->lir_maxmtu != 0 &&
12796 	    (lir->lir_maxmtu > ill->ill_max_frag ||
12797 	    lir->lir_maxmtu < ip_min_mtu))
12798 		return (EINVAL);
12799 	if (lir->lir_reachtime != 0 &&
12800 	    lir->lir_reachtime > ND_MAX_REACHTIME)
12801 		return (EINVAL);
12802 	if (lir->lir_reachretrans != 0 &&
12803 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12804 		return (EINVAL);
12805 
12806 	mutex_enter(&ill->ill_lock);
12807 	ill->ill_state_flags |= ILL_CHANGING;
12808 	for (nipif = ill->ill_ipif; nipif != NULL;
12809 	    nipif = nipif->ipif_next) {
12810 		nipif->ipif_state_flags |= IPIF_CHANGING;
12811 	}
12812 
12813 	mutex_exit(&ill->ill_lock);
12814 
12815 	if (lir->lir_maxmtu != 0) {
12816 		ill->ill_max_mtu = lir->lir_maxmtu;
12817 		ill->ill_mtu_userspecified = 1;
12818 		mtu_walk = B_TRUE;
12819 	}
12820 
12821 	if (lir->lir_reachtime != 0)
12822 		ill->ill_reachable_time = lir->lir_reachtime;
12823 
12824 	if (lir->lir_reachretrans != 0)
12825 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12826 
12827 	ill->ill_max_hops = lir->lir_maxhops;
12828 
12829 	ill->ill_max_buf = ND_MAX_Q;
12830 
12831 	if (mtu_walk) {
12832 		/*
12833 		 * Set the MTU on all ipifs associated with this ill except
12834 		 * for those whose MTU was fixed via SIOCSLIFMTU.
12835 		 */
12836 		for (nipif = ill->ill_ipif; nipif != NULL;
12837 		    nipif = nipif->ipif_next) {
12838 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
12839 				continue;
12840 
12841 			nipif->ipif_mtu = ill->ill_max_mtu;
12842 
12843 			if (!(nipif->ipif_flags & IPIF_UP))
12844 				continue;
12845 
12846 			if (nipif->ipif_isv6)
12847 				ire = ipif_to_ire_v6(nipif);
12848 			else
12849 				ire = ipif_to_ire(nipif);
12850 			if (ire != NULL) {
12851 				ire->ire_max_frag = ipif->ipif_mtu;
12852 				ire_refrele(ire);
12853 			}
12854 			if (ill->ill_isv6) {
12855 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
12856 				    ipif_mtu_change, (char *)nipif,
12857 				    ill);
12858 			} else {
12859 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
12860 				    ipif_mtu_change, (char *)nipif,
12861 				    ill);
12862 			}
12863 		}
12864 	}
12865 
12866 	mutex_enter(&ill->ill_lock);
12867 	for (nipif = ill->ill_ipif; nipif != NULL;
12868 	    nipif = nipif->ipif_next) {
12869 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
12870 	}
12871 	ILL_UNMARK_CHANGING(ill);
12872 	mutex_exit(&ill->ill_lock);
12873 
12874 	return (0);
12875 }
12876 
12877 /* ARGSUSED */
12878 int
12879 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12880     ip_ioctl_cmd_t *ipi, void *if_req)
12881 {
12882 	struct lif_ifinfo_req *lir;
12883 	ill_t *ill = ipif->ipif_ill;
12884 
12885 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
12886 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12887 	if (ipif->ipif_id != 0)
12888 		return (EINVAL);
12889 
12890 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
12891 	lir->lir_maxhops = ill->ill_max_hops;
12892 	lir->lir_reachtime = ill->ill_reachable_time;
12893 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
12894 	lir->lir_maxmtu = ill->ill_max_mtu;
12895 
12896 	return (0);
12897 }
12898 
12899 /*
12900  * Return best guess as to the subnet mask for the specified address.
12901  * Based on the subnet masks for all the configured interfaces.
12902  *
12903  * We end up returning a zero mask in the case of default, multicast or
12904  * experimental.
12905  */
12906 static ipaddr_t
12907 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp)
12908 {
12909 	ipaddr_t net_mask;
12910 	ill_t	*ill;
12911 	ipif_t	*ipif;
12912 	ill_walk_context_t ctx;
12913 	ipif_t	*fallback_ipif = NULL;
12914 
12915 	net_mask = ip_net_mask(addr);
12916 	if (net_mask == 0) {
12917 		*ipifp = NULL;
12918 		return (0);
12919 	}
12920 
12921 	/* Let's check to see if this is maybe a local subnet route. */
12922 	/* this function only applies to IPv4 interfaces */
12923 	rw_enter(&ill_g_lock, RW_READER);
12924 	ill = ILL_START_WALK_V4(&ctx);
12925 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
12926 		mutex_enter(&ill->ill_lock);
12927 		for (ipif = ill->ill_ipif; ipif != NULL;
12928 		    ipif = ipif->ipif_next) {
12929 			if (!IPIF_CAN_LOOKUP(ipif))
12930 				continue;
12931 			if (!(ipif->ipif_flags & IPIF_UP))
12932 				continue;
12933 			if ((ipif->ipif_subnet & net_mask) ==
12934 			    (addr & net_mask)) {
12935 				/*
12936 				 * Don't trust pt-pt interfaces if there are
12937 				 * other interfaces.
12938 				 */
12939 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
12940 					if (fallback_ipif == NULL) {
12941 						ipif_refhold_locked(ipif);
12942 						fallback_ipif = ipif;
12943 					}
12944 					continue;
12945 				}
12946 
12947 				/*
12948 				 * Fine. Just assume the same net mask as the
12949 				 * directly attached subnet interface is using.
12950 				 */
12951 				ipif_refhold_locked(ipif);
12952 				mutex_exit(&ill->ill_lock);
12953 				rw_exit(&ill_g_lock);
12954 				if (fallback_ipif != NULL)
12955 					ipif_refrele(fallback_ipif);
12956 				*ipifp = ipif;
12957 				return (ipif->ipif_net_mask);
12958 			}
12959 		}
12960 		mutex_exit(&ill->ill_lock);
12961 	}
12962 	rw_exit(&ill_g_lock);
12963 
12964 	*ipifp = fallback_ipif;
12965 	return ((fallback_ipif != NULL) ?
12966 	    fallback_ipif->ipif_net_mask : net_mask);
12967 }
12968 
12969 /*
12970  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
12971  */
12972 static void
12973 ip_wput_ioctl(queue_t *q, mblk_t *mp)
12974 {
12975 	IOCP	iocp;
12976 	ipft_t	*ipft;
12977 	ipllc_t	*ipllc;
12978 	mblk_t	*mp1;
12979 	cred_t	*cr;
12980 	int	error = 0;
12981 	conn_t	*connp;
12982 
12983 	ip1dbg(("ip_wput_ioctl"));
12984 	iocp = (IOCP)mp->b_rptr;
12985 	mp1 = mp->b_cont;
12986 	if (mp1 == NULL) {
12987 		iocp->ioc_error = EINVAL;
12988 		mp->b_datap->db_type = M_IOCNAK;
12989 		iocp->ioc_count = 0;
12990 		qreply(q, mp);
12991 		return;
12992 	}
12993 
12994 	/*
12995 	 * These IOCTLs provide various control capabilities to
12996 	 * upstream agents such as ULPs and processes.	There
12997 	 * are currently two such IOCTLs implemented.  They
12998 	 * are used by TCP to provide update information for
12999 	 * existing IREs and to forcibly delete an IRE for a
13000 	 * host that is not responding, thereby forcing an
13001 	 * attempt at a new route.
13002 	 */
13003 	iocp->ioc_error = EINVAL;
13004 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13005 		goto done;
13006 
13007 	ipllc = (ipllc_t *)mp1->b_rptr;
13008 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13009 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13010 			break;
13011 	}
13012 	/*
13013 	 * prefer credential from mblk over ioctl;
13014 	 * see ip_sioctl_copyin_setup
13015 	 */
13016 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13017 
13018 	/*
13019 	 * Refhold the conn in case the request gets queued up in some lookup
13020 	 */
13021 	ASSERT(CONN_Q(q));
13022 	connp = Q_TO_CONN(q);
13023 	CONN_INC_REF(connp);
13024 	if (ipft->ipft_pfi &&
13025 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13026 		pullupmsg(mp1, ipft->ipft_min_size))) {
13027 		error = (*ipft->ipft_pfi)(q,
13028 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13029 	}
13030 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13031 		/*
13032 		 * CONN_OPER_PENDING_DONE happens in the function called
13033 		 * through ipft_pfi above.
13034 		 */
13035 		return;
13036 	}
13037 
13038 	CONN_OPER_PENDING_DONE(connp);
13039 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13040 		freemsg(mp);
13041 		return;
13042 	}
13043 	iocp->ioc_error = error;
13044 
13045 done:
13046 	mp->b_datap->db_type = M_IOCACK;
13047 	if (iocp->ioc_error)
13048 		iocp->ioc_count = 0;
13049 	qreply(q, mp);
13050 }
13051 
13052 /*
13053  * Lookup an ipif using the sequence id (ipif_seqid)
13054  */
13055 ipif_t *
13056 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13057 {
13058 	ipif_t *ipif;
13059 
13060 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13061 
13062 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13063 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13064 			return (ipif);
13065 	}
13066 	return (NULL);
13067 }
13068 
13069 uint64_t ipif_g_seqid;
13070 
13071 /*
13072  * Assign a unique id for the ipif. This is used later when we send
13073  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13074  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13075  * IRE is added, we verify that ipif has not disappeared.
13076  */
13077 
13078 static void
13079 ipif_assign_seqid(ipif_t *ipif)
13080 {
13081 	ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1);
13082 }
13083 
13084 /*
13085  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13086  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13087  * be inserted into the first space available in the list. The value of
13088  * ipif_id will then be set to the appropriate value for its position.
13089  */
13090 static int
13091 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13092 {
13093 	ill_t *ill;
13094 	ipif_t *tipif;
13095 	ipif_t **tipifp;
13096 	int id;
13097 
13098 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13099 	    IAM_WRITER_IPIF(ipif));
13100 
13101 	ill = ipif->ipif_ill;
13102 	ASSERT(ill != NULL);
13103 
13104 	/*
13105 	 * In the case of lo0:0 we already hold the ill_g_lock.
13106 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13107 	 * ipif_insert. Another such caller is ipif_move.
13108 	 */
13109 	if (acquire_g_lock)
13110 		rw_enter(&ill_g_lock, RW_WRITER);
13111 	if (acquire_ill_lock)
13112 		mutex_enter(&ill->ill_lock);
13113 	id = ipif->ipif_id;
13114 	tipifp = &(ill->ill_ipif);
13115 	if (id == -1) {	/* need to find a real id */
13116 		id = 0;
13117 		while ((tipif = *tipifp) != NULL) {
13118 			ASSERT(tipif->ipif_id >= id);
13119 			if (tipif->ipif_id != id)
13120 				break; /* non-consecutive id */
13121 			id++;
13122 			tipifp = &(tipif->ipif_next);
13123 		}
13124 		/* limit number of logical interfaces */
13125 		if (id >= ip_addrs_per_if) {
13126 			if (acquire_ill_lock)
13127 				mutex_exit(&ill->ill_lock);
13128 			if (acquire_g_lock)
13129 				rw_exit(&ill_g_lock);
13130 			return (-1);
13131 		}
13132 		ipif->ipif_id = id; /* assign new id */
13133 	} else if (id < ip_addrs_per_if) {
13134 		/* we have a real id; insert ipif in the right place */
13135 		while ((tipif = *tipifp) != NULL) {
13136 			ASSERT(tipif->ipif_id != id);
13137 			if (tipif->ipif_id > id)
13138 				break; /* found correct location */
13139 			tipifp = &(tipif->ipif_next);
13140 		}
13141 	} else {
13142 		if (acquire_ill_lock)
13143 			mutex_exit(&ill->ill_lock);
13144 		if (acquire_g_lock)
13145 			rw_exit(&ill_g_lock);
13146 		return (-1);
13147 	}
13148 
13149 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13150 
13151 	ipif->ipif_next = tipif;
13152 	*tipifp = ipif;
13153 	if (acquire_ill_lock)
13154 		mutex_exit(&ill->ill_lock);
13155 	if (acquire_g_lock)
13156 		rw_exit(&ill_g_lock);
13157 	return (0);
13158 }
13159 
13160 /*
13161  * Allocate and initialize a new interface control structure.  (Always
13162  * called as writer.)
13163  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13164  * is not part of the global linked list of ills. ipif_seqid is unique
13165  * in the system and to preserve the uniqueness, it is assigned only
13166  * when ill becomes part of the global list. At that point ill will
13167  * have a name. If it doesn't get assigned here, it will get assigned
13168  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13169  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13170  * the interface flags or any other information from the DL_INFO_ACK for
13171  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13172  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13173  * second DL_INFO_ACK comes in from the driver.
13174  */
13175 static ipif_t *
13176 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13177 {
13178 	ipif_t	*ipif;
13179 	phyint_t *phyi;
13180 
13181 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13182 	    ill->ill_name, id, (void *)ill));
13183 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13184 
13185 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13186 		return (NULL);
13187 	*ipif = ipif_zero;	/* start clean */
13188 
13189 	ipif->ipif_ill = ill;
13190 	ipif->ipif_id = id;	/* could be -1 */
13191 	ipif->ipif_zoneid = GLOBAL_ZONEID;
13192 
13193 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13194 
13195 	ipif->ipif_refcnt = 0;
13196 	ipif->ipif_saved_ire_cnt = 0;
13197 
13198 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13199 		mi_free(ipif);
13200 		return (NULL);
13201 	}
13202 	/* -1 id should have been replaced by real id */
13203 	id = ipif->ipif_id;
13204 	ASSERT(id >= 0);
13205 
13206 	if (ill->ill_name[0] != '\0') {
13207 		ipif_assign_seqid(ipif);
13208 		if (ill->ill_phyint->phyint_ifindex != 0)
13209 			sctp_update_ipif(ipif, SCTP_IPIF_INSERT);
13210 	}
13211 	/*
13212 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13213 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13214 	 * ioctl sets ipif_orig_ipifid to zero.
13215 	 */
13216 	ipif->ipif_orig_ipifid = id;
13217 
13218 	/*
13219 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13220 	 * The ipif is still not up and can't be looked up until the
13221 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13222 	 */
13223 	mutex_enter(&ill->ill_lock);
13224 	mutex_enter(&ill->ill_phyint->phyint_lock);
13225 	/*
13226 	 * Set the running flag when logical interface zero is created.
13227 	 * For subsequent logical interfaces, a DLPI link down
13228 	 * notification message may have cleared the running flag to
13229 	 * indicate the link is down, so we shouldn't just blindly set it.
13230 	 */
13231 	if (id == 0)
13232 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13233 	ipif->ipif_ire_type = ire_type;
13234 	phyi = ill->ill_phyint;
13235 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13236 
13237 	if (ipif->ipif_isv6) {
13238 		ill->ill_flags |= ILLF_IPV6;
13239 	} else {
13240 		ipaddr_t inaddr_any = INADDR_ANY;
13241 
13242 		ill->ill_flags |= ILLF_IPV4;
13243 
13244 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13245 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13246 		    &ipif->ipif_v6lcl_addr);
13247 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13248 		    &ipif->ipif_v6src_addr);
13249 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13250 		    &ipif->ipif_v6subnet);
13251 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13252 		    &ipif->ipif_v6net_mask);
13253 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13254 		    &ipif->ipif_v6brd_addr);
13255 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13256 		    &ipif->ipif_v6pp_dst_addr);
13257 	}
13258 
13259 	/*
13260 	 * Don't set the interface flags etc. now, will do it in
13261 	 * ip_ll_subnet_defaults.
13262 	 */
13263 	if (!initialize) {
13264 		mutex_exit(&ill->ill_lock);
13265 		mutex_exit(&ill->ill_phyint->phyint_lock);
13266 		return (ipif);
13267 	}
13268 	ipif->ipif_mtu = ill->ill_max_mtu;
13269 
13270 	if (ill->ill_bcast_addr_length != 0) {
13271 		/*
13272 		 * Later detect lack of DLPI driver multicast
13273 		 * capability by catching DL_ENABMULTI errors in
13274 		 * ip_rput_dlpi.
13275 		 */
13276 		ill->ill_flags |= ILLF_MULTICAST;
13277 		if (!ipif->ipif_isv6)
13278 			ipif->ipif_flags |= IPIF_BROADCAST;
13279 	} else {
13280 		if (ill->ill_net_type != IRE_LOOPBACK) {
13281 			if (ipif->ipif_isv6)
13282 				/*
13283 				 * Note: xresolv interfaces will eventually need
13284 				 * NOARP set here as well, but that will require
13285 				 * those external resolvers to have some
13286 				 * knowledge of that flag and act appropriately.
13287 				 * Not to be changed at present.
13288 				 */
13289 				ill->ill_flags |= ILLF_NONUD;
13290 			else
13291 				ill->ill_flags |= ILLF_NOARP;
13292 		}
13293 		if (ill->ill_phys_addr_length == 0) {
13294 			if (ill->ill_media &&
13295 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13296 				ipif->ipif_flags |= IPIF_NOXMIT;
13297 				phyi->phyint_flags |= PHYI_VIRTUAL;
13298 			} else {
13299 				/* pt-pt supports multicast. */
13300 				ill->ill_flags |= ILLF_MULTICAST;
13301 				if (ill->ill_net_type == IRE_LOOPBACK) {
13302 					phyi->phyint_flags |=
13303 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13304 				} else {
13305 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13306 				}
13307 			}
13308 		}
13309 	}
13310 	mutex_exit(&ill->ill_lock);
13311 	mutex_exit(&ill->ill_phyint->phyint_lock);
13312 	return (ipif);
13313 }
13314 
13315 /*
13316  * If appropriate, send a message up to the resolver delete the entry
13317  * for the address of this interface which is going out of business.
13318  * (Always called as writer).
13319  *
13320  * NOTE : We need to check for NULL mps as some of the fields are
13321  *	  initialized only for some interface types. See ipif_resolver_up()
13322  *	  for details.
13323  */
13324 void
13325 ipif_arp_down(ipif_t *ipif)
13326 {
13327 	mblk_t	*mp;
13328 	ill_t	*ill = ipif->ipif_ill;
13329 
13330 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13331 	ASSERT(IAM_WRITER_IPIF(ipif));
13332 
13333 	/* Delete the mapping for the local address */
13334 	mp = ipif->ipif_arp_del_mp;
13335 	if (mp != NULL) {
13336 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13337 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13338 		putnext(ill->ill_rq, mp);
13339 		ipif->ipif_arp_del_mp = NULL;
13340 	}
13341 
13342 	/*
13343 	 * If this is the last ipif that is going down and there are no
13344 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13345 	 * clean up ARP completely.
13346 	 */
13347 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13348 
13349 		/* Send up AR_INTERFACE_DOWN message */
13350 		mp = ill->ill_arp_down_mp;
13351 		if (mp != NULL) {
13352 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13353 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13354 			    ipif->ipif_id));
13355 			putnext(ill->ill_rq, mp);
13356 			ill->ill_arp_down_mp = NULL;
13357 		}
13358 
13359 		/* Tell ARP to delete the multicast mappings */
13360 		mp = ill->ill_arp_del_mapping_mp;
13361 		if (mp != NULL) {
13362 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13363 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13364 			    ipif->ipif_id));
13365 			putnext(ill->ill_rq, mp);
13366 			ill->ill_arp_del_mapping_mp = NULL;
13367 		}
13368 	}
13369 }
13370 
13371 /*
13372  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13373  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13374  * that it wants the add_mp allocated in this function to be returned
13375  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13376  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13377  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13378  * as it does a ipif_arp_down after calling this function - which will
13379  * remove what we add here.
13380  *
13381  * Returns -1 on failures and 0 on success.
13382  */
13383 int
13384 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13385 {
13386 	mblk_t	*del_mp = NULL;
13387 	mblk_t *add_mp = NULL;
13388 	mblk_t *mp;
13389 	ill_t	*ill = ipif->ipif_ill;
13390 	phyint_t *phyi = ill->ill_phyint;
13391 	ipaddr_t addr, mask, extract_mask = 0;
13392 	arma_t	*arma;
13393 	uint8_t *maddr, *bphys_addr;
13394 	uint32_t hw_start;
13395 	dl_unitdata_req_t *dlur;
13396 
13397 	ASSERT(IAM_WRITER_IPIF(ipif));
13398 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13399 		return (0);
13400 
13401 	/*
13402 	 * Delete the existing mapping from ARP. Normally ipif_down
13403 	 * -> ipif_arp_down should send this up to ARP. The only
13404 	 * reason we would find this when we are switching from
13405 	 * Multicast to Broadcast where we did not do a down.
13406 	 */
13407 	mp = ill->ill_arp_del_mapping_mp;
13408 	if (mp != NULL) {
13409 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13410 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13411 		putnext(ill->ill_rq, mp);
13412 		ill->ill_arp_del_mapping_mp = NULL;
13413 	}
13414 
13415 	if (arp_add_mapping_mp != NULL)
13416 		*arp_add_mapping_mp = NULL;
13417 
13418 	/*
13419 	 * Check that the address is not to long for the constant
13420 	 * length reserved in the template arma_t.
13421 	 */
13422 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13423 		return (-1);
13424 
13425 	/* Add mapping mblk */
13426 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13427 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13428 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13429 	    (caddr_t)&addr);
13430 	if (add_mp == NULL)
13431 		return (-1);
13432 	arma = (arma_t *)add_mp->b_rptr;
13433 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13434 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13435 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13436 
13437 	/*
13438 	 * Determine the broadcast address.
13439 	 */
13440 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13441 	if (ill->ill_sap_length < 0)
13442 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13443 	else
13444 		bphys_addr = (uchar_t *)dlur +
13445 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13446 	/*
13447 	 * Check PHYI_MULTI_BCAST and length of physical
13448 	 * address to determine if we use the mapping or the
13449 	 * broadcast address.
13450 	 */
13451 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13452 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13453 		    bphys_addr, maddr, &hw_start, &extract_mask))
13454 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13455 
13456 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13457 	    (ill->ill_flags & ILLF_MULTICAST)) {
13458 		/* Make sure this will not match the "exact" entry. */
13459 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13460 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13461 		    (caddr_t)&addr);
13462 		if (del_mp == NULL) {
13463 			freemsg(add_mp);
13464 			return (-1);
13465 		}
13466 		bcopy(&extract_mask, (char *)arma +
13467 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13468 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13469 			/* Use link-layer broadcast address for MULTI_BCAST */
13470 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13471 			ip2dbg(("ipif_arp_setup_multicast: adding"
13472 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13473 		} else {
13474 			arma->arma_hw_mapping_start = hw_start;
13475 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13476 			    " ARP setup for %s\n", ill->ill_name));
13477 		}
13478 	} else {
13479 		freemsg(add_mp);
13480 		ASSERT(del_mp == NULL);
13481 		/* It is neither MULTICAST nor MULTI_BCAST */
13482 		return (0);
13483 	}
13484 	ASSERT(add_mp != NULL && del_mp != NULL);
13485 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13486 	ill->ill_arp_del_mapping_mp = del_mp;
13487 	if (arp_add_mapping_mp != NULL) {
13488 		/* The caller just wants the mblks allocated */
13489 		*arp_add_mapping_mp = add_mp;
13490 	} else {
13491 		/* The caller wants us to send it to arp */
13492 		putnext(ill->ill_rq, add_mp);
13493 	}
13494 	return (0);
13495 }
13496 
13497 /*
13498  * Get the resolver set up for a new interface address.
13499  * (Always called as writer.)
13500  * Called both for IPv4 and IPv6 interfaces,
13501  * though it only sets up the resolver for v6
13502  * if it's an xresolv interface (one using an external resolver).
13503  * Honors ILLF_NOARP.
13504  * The enumerated value res_act is used to tune the behavior.
13505  * If set to Res_act_initial, then we set up all the resolver
13506  * structures for a new interface.  If set to Res_act_move, then
13507  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13508  * interfaces; this is called by ip_rput_dlpi_writer() to handle
13509  * asynchronous hardware address change notification.  If set to
13510  * Res_act_defend, then we tell ARP that it needs to send a single
13511  * gratuitous message in defense of the address.
13512  * Returns error on failure.
13513  */
13514 int
13515 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13516 {
13517 	caddr_t	addr;
13518 	mblk_t	*arp_up_mp = NULL;
13519 	mblk_t	*arp_down_mp = NULL;
13520 	mblk_t	*arp_add_mp = NULL;
13521 	mblk_t	*arp_del_mp = NULL;
13522 	mblk_t	*arp_add_mapping_mp = NULL;
13523 	mblk_t	*arp_del_mapping_mp = NULL;
13524 	ill_t	*ill = ipif->ipif_ill;
13525 	uchar_t	*area_p = NULL;
13526 	uchar_t	*ared_p = NULL;
13527 	int	err = ENOMEM;
13528 	boolean_t was_dup;
13529 
13530 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13531 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13532 	ASSERT(IAM_WRITER_IPIF(ipif));
13533 
13534 	was_dup = B_FALSE;
13535 	if (res_act == Res_act_initial) {
13536 		ipif->ipif_addr_ready = 0;
13537 		/*
13538 		 * We're bringing an interface up here.  There's no way that we
13539 		 * should need to shut down ARP now.
13540 		 */
13541 		mutex_enter(&ill->ill_lock);
13542 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13543 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13544 			ill->ill_ipif_dup_count--;
13545 			was_dup = B_TRUE;
13546 		}
13547 		mutex_exit(&ill->ill_lock);
13548 	}
13549 	if (ipif->ipif_recovery_id != 0)
13550 		(void) untimeout(ipif->ipif_recovery_id);
13551 	ipif->ipif_recovery_id = 0;
13552 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13553 		ipif->ipif_addr_ready = 1;
13554 		return (0);
13555 	}
13556 	/* NDP will set the ipif_addr_ready flag when it's ready */
13557 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13558 		return (0);
13559 
13560 	if (ill->ill_isv6) {
13561 		/*
13562 		 * External resolver for IPv6
13563 		 */
13564 		ASSERT(res_act == Res_act_initial);
13565 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
13566 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
13567 			area_p = (uchar_t *)&ip6_area_template;
13568 			ared_p = (uchar_t *)&ip6_ared_template;
13569 		}
13570 	} else {
13571 		/*
13572 		 * IPv4 arp case. If the ARP stream has already started
13573 		 * closing, fail this request for ARP bringup. Else
13574 		 * record the fact that an ARP bringup is pending.
13575 		 */
13576 		mutex_enter(&ill->ill_lock);
13577 		if (ill->ill_arp_closing) {
13578 			mutex_exit(&ill->ill_lock);
13579 			err = EINVAL;
13580 			goto failed;
13581 		} else {
13582 			if (ill->ill_ipif_up_count == 0 &&
13583 			    ill->ill_ipif_dup_count == 0 && !was_dup)
13584 				ill->ill_arp_bringup_pending = 1;
13585 			mutex_exit(&ill->ill_lock);
13586 		}
13587 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
13588 			addr = (caddr_t)&ipif->ipif_lcl_addr;
13589 			area_p = (uchar_t *)&ip_area_template;
13590 			ared_p = (uchar_t *)&ip_ared_template;
13591 		}
13592 	}
13593 
13594 	/*
13595 	 * Add an entry for the local address in ARP only if it
13596 	 * is not UNNUMBERED and the address is not INADDR_ANY.
13597 	 */
13598 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
13599 		area_t *area;
13600 
13601 		/* Now ask ARP to publish our address. */
13602 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
13603 		if (arp_add_mp == NULL)
13604 			goto failed;
13605 		area = (area_t *)arp_add_mp->b_rptr;
13606 		if (res_act != Res_act_initial) {
13607 			/*
13608 			 * Copy the new hardware address and length into
13609 			 * arp_add_mp to be sent to ARP.
13610 			 */
13611 			area->area_hw_addr_length =
13612 			    ill->ill_phys_addr_length;
13613 			bcopy((char *)ill->ill_phys_addr,
13614 			    ((char *)area + area->area_hw_addr_offset),
13615 			    area->area_hw_addr_length);
13616 		}
13617 
13618 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
13619 		    ACE_F_MYADDR;
13620 
13621 		if (res_act == Res_act_defend) {
13622 			area->area_flags |= ACE_F_DEFEND;
13623 			/*
13624 			 * If we're just defending our address now, then
13625 			 * there's no need to set up ARP multicast mappings.
13626 			 * The publish command is enough.
13627 			 */
13628 			goto done;
13629 		}
13630 
13631 		if (res_act != Res_act_initial)
13632 			goto arp_setup_multicast;
13633 
13634 		/*
13635 		 * Allocate an ARP deletion message so we know we can tell ARP
13636 		 * when the interface goes down.
13637 		 */
13638 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
13639 		if (arp_del_mp == NULL)
13640 			goto failed;
13641 
13642 	} else {
13643 		if (res_act != Res_act_initial)
13644 			goto done;
13645 	}
13646 	/*
13647 	 * Need to bring up ARP or setup multicast mapping only
13648 	 * when the first interface is coming UP.
13649 	 */
13650 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
13651 	    was_dup) {
13652 		goto done;
13653 	}
13654 
13655 	/*
13656 	 * Allocate an ARP down message (to be saved) and an ARP up
13657 	 * message.
13658 	 */
13659 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13660 	if (arp_down_mp == NULL)
13661 		goto failed;
13662 
13663 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13664 	if (arp_up_mp == NULL)
13665 		goto failed;
13666 
13667 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13668 		goto done;
13669 
13670 arp_setup_multicast:
13671 	/*
13672 	 * Setup the multicast mappings. This function initializes
13673 	 * ill_arp_del_mapping_mp also. This does not need to be done for
13674 	 * IPv6.
13675 	 */
13676 	if (!ill->ill_isv6) {
13677 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13678 		if (err != 0)
13679 			goto failed;
13680 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13681 		ASSERT(arp_add_mapping_mp != NULL);
13682 	}
13683 
13684 done:
13685 	if (arp_del_mp != NULL) {
13686 		ASSERT(ipif->ipif_arp_del_mp == NULL);
13687 		ipif->ipif_arp_del_mp = arp_del_mp;
13688 	}
13689 	if (arp_down_mp != NULL) {
13690 		ASSERT(ill->ill_arp_down_mp == NULL);
13691 		ill->ill_arp_down_mp = arp_down_mp;
13692 	}
13693 	if (arp_del_mapping_mp != NULL) {
13694 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13695 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13696 	}
13697 	if (arp_up_mp != NULL) {
13698 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13699 		    ill->ill_name, ipif->ipif_id));
13700 		putnext(ill->ill_rq, arp_up_mp);
13701 	}
13702 	if (arp_add_mp != NULL) {
13703 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13704 		    ill->ill_name, ipif->ipif_id));
13705 		/*
13706 		 * If it's an extended ARP implementation, then we'll wait to
13707 		 * hear that DAD has finished before using the interface.
13708 		 */
13709 		if (!ill->ill_arp_extend)
13710 			ipif->ipif_addr_ready = 1;
13711 		putnext(ill->ill_rq, arp_add_mp);
13712 	} else {
13713 		ipif->ipif_addr_ready = 1;
13714 	}
13715 	if (arp_add_mapping_mp != NULL) {
13716 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13717 		    ill->ill_name, ipif->ipif_id));
13718 		putnext(ill->ill_rq, arp_add_mapping_mp);
13719 	}
13720 	if (res_act != Res_act_initial)
13721 		return (0);
13722 
13723 	if (ill->ill_flags & ILLF_NOARP)
13724 		err = ill_arp_off(ill);
13725 	else
13726 		err = ill_arp_on(ill);
13727 	if (err != 0) {
13728 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
13729 		freemsg(ipif->ipif_arp_del_mp);
13730 		freemsg(ill->ill_arp_down_mp);
13731 		freemsg(ill->ill_arp_del_mapping_mp);
13732 		ipif->ipif_arp_del_mp = NULL;
13733 		ill->ill_arp_down_mp = NULL;
13734 		ill->ill_arp_del_mapping_mp = NULL;
13735 		return (err);
13736 	}
13737 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
13738 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13739 
13740 failed:
13741 	ip1dbg(("ipif_resolver_up: FAILED\n"));
13742 	freemsg(arp_add_mp);
13743 	freemsg(arp_del_mp);
13744 	freemsg(arp_add_mapping_mp);
13745 	freemsg(arp_up_mp);
13746 	freemsg(arp_down_mp);
13747 	ill->ill_arp_bringup_pending = 0;
13748 	return (err);
13749 }
13750 
13751 /*
13752  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13753  * just gone back up.
13754  */
13755 static void
13756 ipif_arp_start_dad(ipif_t *ipif)
13757 {
13758 	ill_t *ill = ipif->ipif_ill;
13759 	mblk_t *arp_add_mp;
13760 	area_t *area;
13761 
13762 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13763 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13764 	    ipif->ipif_lcl_addr == INADDR_ANY ||
13765 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
13766 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
13767 		/*
13768 		 * If we can't contact ARP for some reason, that's not really a
13769 		 * problem.  Just send out the routing socket notification that
13770 		 * DAD completion would have done, and continue.
13771 		 */
13772 		ipif_mask_reply(ipif);
13773 		ip_rts_ifmsg(ipif);
13774 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13775 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13776 		ipif->ipif_addr_ready = 1;
13777 		return;
13778 	}
13779 
13780 	/* Setting the 'unverified' flag restarts DAD */
13781 	area = (area_t *)arp_add_mp->b_rptr;
13782 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
13783 	    ACE_F_UNVERIFIED;
13784 	putnext(ill->ill_rq, arp_add_mp);
13785 }
13786 
13787 static void
13788 ipif_ndp_start_dad(ipif_t *ipif)
13789 {
13790 	nce_t *nce;
13791 
13792 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
13793 	if (nce == NULL)
13794 		return;
13795 
13796 	if (!ndp_restart_dad(nce)) {
13797 		/*
13798 		 * If we can't restart DAD for some reason, that's not really a
13799 		 * problem.  Just send out the routing socket notification that
13800 		 * DAD completion would have done, and continue.
13801 		 */
13802 		ip_rts_ifmsg(ipif);
13803 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13804 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13805 		ipif->ipif_addr_ready = 1;
13806 	}
13807 	NCE_REFRELE(nce);
13808 }
13809 
13810 /*
13811  * Restart duplicate address detection on all interfaces on the given ill.
13812  *
13813  * This is called when an interface transitions from down to up
13814  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13815  *
13816  * Note that since the underlying physical link has transitioned, we must cause
13817  * at least one routing socket message to be sent here, either via DAD
13818  * completion or just by default on the first ipif.  (If we don't do this, then
13819  * in.mpathd will see long delays when doing link-based failure recovery.)
13820  */
13821 void
13822 ill_restart_dad(ill_t *ill, boolean_t went_up)
13823 {
13824 	ipif_t *ipif;
13825 
13826 	if (ill == NULL)
13827 		return;
13828 
13829 	/*
13830 	 * If layer two doesn't support duplicate address detection, then just
13831 	 * send the routing socket message now and be done with it.
13832 	 */
13833 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
13834 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
13835 		ip_rts_ifmsg(ill->ill_ipif);
13836 		return;
13837 	}
13838 
13839 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13840 		if (went_up) {
13841 			if (ipif->ipif_flags & IPIF_UP) {
13842 				if (ill->ill_isv6)
13843 					ipif_ndp_start_dad(ipif);
13844 				else
13845 					ipif_arp_start_dad(ipif);
13846 			} else if (ill->ill_isv6 &&
13847 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
13848 				/*
13849 				 * For IPv4, the ARP module itself will
13850 				 * automatically start the DAD process when it
13851 				 * sees DL_NOTE_LINK_UP.  We respond to the
13852 				 * AR_CN_READY at the completion of that task.
13853 				 * For IPv6, we must kick off the bring-up
13854 				 * process now.
13855 				 */
13856 				ndp_do_recovery(ipif);
13857 			} else {
13858 				/*
13859 				 * Unfortunately, the first ipif is "special"
13860 				 * and represents the underlying ill in the
13861 				 * routing socket messages.  Thus, when this
13862 				 * one ipif is down, we must still notify so
13863 				 * that the user knows the IFF_RUNNING status
13864 				 * change.  (If the first ipif is up, then
13865 				 * we'll handle eventual routing socket
13866 				 * notification via DAD completion.)
13867 				 */
13868 				if (ipif == ill->ill_ipif)
13869 					ip_rts_ifmsg(ill->ill_ipif);
13870 			}
13871 		} else {
13872 			/*
13873 			 * After link down, we'll need to send a new routing
13874 			 * message when the link comes back, so clear
13875 			 * ipif_addr_ready.
13876 			 */
13877 			ipif->ipif_addr_ready = 0;
13878 		}
13879 	}
13880 
13881 	/*
13882 	 * If we've torn down links, then notify the user right away.
13883 	 */
13884 	if (!went_up)
13885 		ip_rts_ifmsg(ill->ill_ipif);
13886 }
13887 
13888 /*
13889  * Wakeup all threads waiting to enter the ipsq, and sleeping
13890  * on any of the ills in this ipsq. The ill_lock of the ill
13891  * must be held so that waiters don't miss wakeups
13892  */
13893 static void
13894 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
13895 {
13896 	phyint_t *phyint;
13897 
13898 	phyint = ipsq->ipsq_phyint_list;
13899 	while (phyint != NULL) {
13900 		if (phyint->phyint_illv4) {
13901 			if (!caller_holds_lock)
13902 				mutex_enter(&phyint->phyint_illv4->ill_lock);
13903 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
13904 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
13905 			if (!caller_holds_lock)
13906 				mutex_exit(&phyint->phyint_illv4->ill_lock);
13907 		}
13908 		if (phyint->phyint_illv6) {
13909 			if (!caller_holds_lock)
13910 				mutex_enter(&phyint->phyint_illv6->ill_lock);
13911 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
13912 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
13913 			if (!caller_holds_lock)
13914 				mutex_exit(&phyint->phyint_illv6->ill_lock);
13915 		}
13916 		phyint = phyint->phyint_ipsq_next;
13917 	}
13918 }
13919 
13920 static ipsq_t *
13921 ipsq_create(char *groupname)
13922 {
13923 	ipsq_t	*ipsq;
13924 
13925 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
13926 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
13927 	if (ipsq == NULL) {
13928 		return (NULL);
13929 	}
13930 
13931 	if (groupname != NULL)
13932 		(void) strcpy(ipsq->ipsq_name, groupname);
13933 	else
13934 		ipsq->ipsq_name[0] = '\0';
13935 
13936 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
13937 	ipsq->ipsq_flags |= IPSQ_GROUP;
13938 	ipsq->ipsq_next = ipsq_g_head;
13939 	ipsq_g_head = ipsq;
13940 	return (ipsq);
13941 }
13942 
13943 /*
13944  * Return an ipsq correspoding to the groupname. If 'create' is true
13945  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
13946  * uniquely with an IPMP group. However during IPMP groupname operations,
13947  * multiple IPMP groups may be associated with a single ipsq. But no
13948  * IPMP group can be associated with more than 1 ipsq at any time.
13949  * For example
13950  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
13951  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
13952  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
13953  *
13954  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
13955  * status shown below during the execution of the above command.
13956  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
13957  *
13958  * After the completion of the above groupname command we return to the stable
13959  * state shown below.
13960  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
13961  *	hme4			mpk17-85	ipsq2	mpk17-85	1
13962  *
13963  * Because of the above, we don't search based on the ipsq_name since that
13964  * would miss the correct ipsq during certain windows as shown above.
13965  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
13966  * natural state.
13967  */
13968 static ipsq_t *
13969 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq)
13970 {
13971 	ipsq_t	*ipsq;
13972 	int	group_len;
13973 	phyint_t *phyint;
13974 
13975 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
13976 
13977 	group_len = strlen(groupname);
13978 	ASSERT(group_len != 0);
13979 	group_len++;
13980 
13981 	for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) {
13982 		/*
13983 		 * When an ipsq is being split, and ill_split_ipsq
13984 		 * calls this function, we exclude it from being considered.
13985 		 */
13986 		if (ipsq == exclude_ipsq)
13987 			continue;
13988 
13989 		/*
13990 		 * Compare against the ipsq_name. The groupname change happens
13991 		 * in 2 phases. The 1st phase merges the from group into
13992 		 * the to group's ipsq, by calling ill_merge_groups and restarts
13993 		 * the ioctl. The 2nd phase then locates the ipsq again thru
13994 		 * ipsq_name. At this point the phyint_groupname has not been
13995 		 * updated.
13996 		 */
13997 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
13998 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
13999 			/*
14000 			 * Verify that an ipmp groupname is exactly
14001 			 * part of 1 ipsq and is not found in any other
14002 			 * ipsq.
14003 			 */
14004 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) ==
14005 			    NULL);
14006 			return (ipsq);
14007 		}
14008 
14009 		/*
14010 		 * Comparison against ipsq_name alone is not sufficient.
14011 		 * In the case when groups are currently being
14012 		 * merged, the ipsq could hold other IPMP groups temporarily.
14013 		 * so we walk the phyint list and compare against the
14014 		 * phyint_groupname as well.
14015 		 */
14016 		phyint = ipsq->ipsq_phyint_list;
14017 		while (phyint != NULL) {
14018 			if ((group_len == phyint->phyint_groupname_len) &&
14019 			    (bcmp(phyint->phyint_groupname, groupname,
14020 			    group_len) == 0)) {
14021 				/*
14022 				 * Verify that an ipmp groupname is exactly
14023 				 * part of 1 ipsq and is not found in any other
14024 				 * ipsq.
14025 				 */
14026 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq)
14027 					== NULL);
14028 				return (ipsq);
14029 			}
14030 			phyint = phyint->phyint_ipsq_next;
14031 		}
14032 	}
14033 	if (create)
14034 		ipsq = ipsq_create(groupname);
14035 	return (ipsq);
14036 }
14037 
14038 static void
14039 ipsq_delete(ipsq_t *ipsq)
14040 {
14041 	ipsq_t *nipsq;
14042 	ipsq_t *pipsq = NULL;
14043 
14044 	/*
14045 	 * We don't hold the ipsq lock, but we are sure no new
14046 	 * messages can land up, since the ipsq_refs is zero.
14047 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14048 	 * is associated with this ipsq. (Lookups are based on ill_name
14049 	 * or phyint_group_name)
14050 	 */
14051 	ASSERT(ipsq->ipsq_refs == 0);
14052 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14053 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14054 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14055 		/*
14056 		 * This is not the ipsq of an IPMP group.
14057 		 */
14058 		kmem_free(ipsq, sizeof (ipsq_t));
14059 		return;
14060 	}
14061 
14062 	rw_enter(&ill_g_lock, RW_WRITER);
14063 
14064 	/*
14065 	 * Locate the ipsq  before we can remove it from
14066 	 * the singly linked list of ipsq's.
14067 	 */
14068 	for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) {
14069 		if (nipsq == ipsq) {
14070 			break;
14071 		}
14072 		pipsq = nipsq;
14073 	}
14074 
14075 	ASSERT(nipsq == ipsq);
14076 
14077 	/* unlink ipsq from the list */
14078 	if (pipsq != NULL)
14079 		pipsq->ipsq_next = ipsq->ipsq_next;
14080 	else
14081 		ipsq_g_head = ipsq->ipsq_next;
14082 	kmem_free(ipsq, sizeof (ipsq_t));
14083 	rw_exit(&ill_g_lock);
14084 }
14085 
14086 static void
14087 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14088     queue_t *q)
14089 
14090 {
14091 
14092 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14093 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14094 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14095 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14096 	ASSERT(current_mp != NULL);
14097 
14098 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14099 		NEW_OP, NULL);
14100 
14101 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14102 	    new_ipsq->ipsq_xopq_mphead != NULL);
14103 
14104 	/*
14105 	 * move from old ipsq to the new ipsq.
14106 	 */
14107 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14108 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14109 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14110 
14111 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14112 }
14113 
14114 void
14115 ill_group_cleanup(ill_t *ill)
14116 {
14117 	ill_t *ill_v4;
14118 	ill_t *ill_v6;
14119 	ipif_t *ipif;
14120 
14121 	ill_v4 = ill->ill_phyint->phyint_illv4;
14122 	ill_v6 = ill->ill_phyint->phyint_illv6;
14123 
14124 	if (ill_v4 != NULL) {
14125 		mutex_enter(&ill_v4->ill_lock);
14126 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14127 		    ipif = ipif->ipif_next) {
14128 			IPIF_UNMARK_MOVING(ipif);
14129 		}
14130 		ill_v4->ill_up_ipifs = B_FALSE;
14131 		mutex_exit(&ill_v4->ill_lock);
14132 	}
14133 
14134 	if (ill_v6 != NULL) {
14135 		mutex_enter(&ill_v6->ill_lock);
14136 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14137 		    ipif = ipif->ipif_next) {
14138 			IPIF_UNMARK_MOVING(ipif);
14139 		}
14140 		ill_v6->ill_up_ipifs = B_FALSE;
14141 		mutex_exit(&ill_v6->ill_lock);
14142 	}
14143 }
14144 /*
14145  * This function is called when an ill has had a change in its group status
14146  * to bring up all the ipifs that were up before the change.
14147  */
14148 int
14149 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14150 {
14151 	ipif_t *ipif;
14152 	ill_t *ill_v4;
14153 	ill_t *ill_v6;
14154 	ill_t *from_ill;
14155 	int err = 0;
14156 
14157 
14158 	ASSERT(IAM_WRITER_ILL(ill));
14159 
14160 	/*
14161 	 * Except for ipif_state_flags and ill_state_flags the other
14162 	 * fields of the ipif/ill that are modified below are protected
14163 	 * implicitly since we are a writer. We would have tried to down
14164 	 * even an ipif that was already down, in ill_down_ipifs. So we
14165 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14166 	 */
14167 	ill_v4 = ill->ill_phyint->phyint_illv4;
14168 	ill_v6 = ill->ill_phyint->phyint_illv6;
14169 	if (ill_v4 != NULL) {
14170 		ill_v4->ill_up_ipifs = B_TRUE;
14171 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14172 		    ipif = ipif->ipif_next) {
14173 			mutex_enter(&ill_v4->ill_lock);
14174 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14175 			IPIF_UNMARK_MOVING(ipif);
14176 			mutex_exit(&ill_v4->ill_lock);
14177 			if (ipif->ipif_was_up) {
14178 				if (!(ipif->ipif_flags & IPIF_UP))
14179 					err = ipif_up(ipif, q, mp);
14180 				ipif->ipif_was_up = B_FALSE;
14181 				if (err != 0) {
14182 					/*
14183 					 * Can there be any other error ?
14184 					 */
14185 					ASSERT(err == EINPROGRESS);
14186 					return (err);
14187 				}
14188 			}
14189 		}
14190 		mutex_enter(&ill_v4->ill_lock);
14191 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14192 		mutex_exit(&ill_v4->ill_lock);
14193 		ill_v4->ill_up_ipifs = B_FALSE;
14194 		if (ill_v4->ill_move_in_progress) {
14195 			ASSERT(ill_v4->ill_move_peer != NULL);
14196 			ill_v4->ill_move_in_progress = B_FALSE;
14197 			from_ill = ill_v4->ill_move_peer;
14198 			from_ill->ill_move_in_progress = B_FALSE;
14199 			from_ill->ill_move_peer = NULL;
14200 			mutex_enter(&from_ill->ill_lock);
14201 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14202 			mutex_exit(&from_ill->ill_lock);
14203 			if (ill_v6 == NULL) {
14204 				if (from_ill->ill_phyint->phyint_flags &
14205 				    PHYI_STANDBY) {
14206 					phyint_inactive(from_ill->ill_phyint);
14207 				}
14208 				if (ill_v4->ill_phyint->phyint_flags &
14209 				    PHYI_STANDBY) {
14210 					phyint_inactive(ill_v4->ill_phyint);
14211 				}
14212 			}
14213 			ill_v4->ill_move_peer = NULL;
14214 		}
14215 	}
14216 
14217 	if (ill_v6 != NULL) {
14218 		ill_v6->ill_up_ipifs = B_TRUE;
14219 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14220 		    ipif = ipif->ipif_next) {
14221 			mutex_enter(&ill_v6->ill_lock);
14222 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14223 			IPIF_UNMARK_MOVING(ipif);
14224 			mutex_exit(&ill_v6->ill_lock);
14225 			if (ipif->ipif_was_up) {
14226 				if (!(ipif->ipif_flags & IPIF_UP))
14227 					err = ipif_up(ipif, q, mp);
14228 				ipif->ipif_was_up = B_FALSE;
14229 				if (err != 0) {
14230 					/*
14231 					 * Can there be any other error ?
14232 					 */
14233 					ASSERT(err == EINPROGRESS);
14234 					return (err);
14235 				}
14236 			}
14237 		}
14238 		mutex_enter(&ill_v6->ill_lock);
14239 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14240 		mutex_exit(&ill_v6->ill_lock);
14241 		ill_v6->ill_up_ipifs = B_FALSE;
14242 		if (ill_v6->ill_move_in_progress) {
14243 			ASSERT(ill_v6->ill_move_peer != NULL);
14244 			ill_v6->ill_move_in_progress = B_FALSE;
14245 			from_ill = ill_v6->ill_move_peer;
14246 			from_ill->ill_move_in_progress = B_FALSE;
14247 			from_ill->ill_move_peer = NULL;
14248 			mutex_enter(&from_ill->ill_lock);
14249 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14250 			mutex_exit(&from_ill->ill_lock);
14251 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14252 				phyint_inactive(from_ill->ill_phyint);
14253 			}
14254 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14255 				phyint_inactive(ill_v6->ill_phyint);
14256 			}
14257 			ill_v6->ill_move_peer = NULL;
14258 		}
14259 	}
14260 	return (0);
14261 }
14262 
14263 /*
14264  * bring down all the approriate ipifs.
14265  */
14266 /* ARGSUSED */
14267 static void
14268 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14269 {
14270 	ipif_t *ipif;
14271 
14272 	ASSERT(IAM_WRITER_ILL(ill));
14273 
14274 	/*
14275 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14276 	 * are modified below are protected implicitly since we are a writer
14277 	 */
14278 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14279 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14280 			continue;
14281 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14282 			/*
14283 			 * We go through the ipif_down logic even if the ipif
14284 			 * is already down, since routes can be added based
14285 			 * on down ipifs. Going through ipif_down once again
14286 			 * will delete any IREs created based on these routes.
14287 			 */
14288 			if (ipif->ipif_flags & IPIF_UP)
14289 				ipif->ipif_was_up = B_TRUE;
14290 			/*
14291 			 * If called with chk_nofailover true ipif is moving.
14292 			 */
14293 			mutex_enter(&ill->ill_lock);
14294 			if (chk_nofailover) {
14295 				ipif->ipif_state_flags |=
14296 					IPIF_MOVING | IPIF_CHANGING;
14297 			} else {
14298 				ipif->ipif_state_flags |= IPIF_CHANGING;
14299 			}
14300 			mutex_exit(&ill->ill_lock);
14301 			/*
14302 			 * Need to re-create net/subnet bcast ires if
14303 			 * they are dependent on ipif.
14304 			 */
14305 			if (!ipif->ipif_isv6)
14306 				ipif_check_bcast_ires(ipif);
14307 			(void) ipif_logical_down(ipif, NULL, NULL);
14308 			ipif_non_duplicate(ipif);
14309 			ipif_down_tail(ipif);
14310 			/*
14311 			 * We don't do ipif_multicast_down for IPv4 in
14312 			 * ipif_down. We need to set this so that
14313 			 * ipif_multicast_up will join the
14314 			 * ALLHOSTS_GROUP on to_ill.
14315 			 */
14316 			ipif->ipif_multicast_up = B_FALSE;
14317 		}
14318 	}
14319 }
14320 
14321 #define	IPSQ_INC_REF(ipsq)	{			\
14322 	ASSERT(RW_WRITE_HELD(&ill_g_lock));		\
14323 	(ipsq)->ipsq_refs++;				\
14324 }
14325 
14326 #define	IPSQ_DEC_REF(ipsq)	{			\
14327 	ASSERT(RW_WRITE_HELD(&ill_g_lock));		\
14328 	(ipsq)->ipsq_refs--;				\
14329 	if ((ipsq)->ipsq_refs == 0)				\
14330 		(ipsq)->ipsq_name[0] = '\0'; 		\
14331 }
14332 
14333 /*
14334  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14335  * new_ipsq.
14336  */
14337 static void
14338 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq)
14339 {
14340 	phyint_t *phyint;
14341 	phyint_t *next_phyint;
14342 
14343 	/*
14344 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14345 	 * writer and the ill_lock of the ill in question. Also the dest
14346 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14347 	 */
14348 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
14349 
14350 	phyint = cur_ipsq->ipsq_phyint_list;
14351 	cur_ipsq->ipsq_phyint_list = NULL;
14352 	while (phyint != NULL) {
14353 		next_phyint = phyint->phyint_ipsq_next;
14354 		IPSQ_DEC_REF(cur_ipsq);
14355 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14356 		new_ipsq->ipsq_phyint_list = phyint;
14357 		IPSQ_INC_REF(new_ipsq);
14358 		phyint->phyint_ipsq = new_ipsq;
14359 		phyint = next_phyint;
14360 	}
14361 }
14362 
14363 #define	SPLIT_SUCCESS		0
14364 #define	SPLIT_NOT_NEEDED	1
14365 #define	SPLIT_FAILED		2
14366 
14367 int
14368 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry)
14369 {
14370 	ipsq_t *newipsq = NULL;
14371 
14372 	/*
14373 	 * Assertions denote pre-requisites for changing the ipsq of
14374 	 * a phyint
14375 	 */
14376 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
14377 	/*
14378 	 * <ill-phyint> assocs can't change while ill_g_lock
14379 	 * is held as writer. See ill_phyint_reinit()
14380 	 */
14381 	ASSERT(phyint->phyint_illv4 == NULL ||
14382 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14383 	ASSERT(phyint->phyint_illv6 == NULL ||
14384 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14385 
14386 	if ((phyint->phyint_groupname_len !=
14387 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14388 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14389 	    phyint->phyint_groupname_len) != 0)) {
14390 		/*
14391 		 * Once we fail in creating a new ipsq due to memory shortage,
14392 		 * don't attempt to create new ipsq again, based on another
14393 		 * phyint, since we want all phyints belonging to an IPMP group
14394 		 * to be in the same ipsq even in the event of mem alloc fails.
14395 		 */
14396 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14397 		    cur_ipsq);
14398 		if (newipsq == NULL) {
14399 			/* Memory allocation failure */
14400 			return (SPLIT_FAILED);
14401 		} else {
14402 			/* ipsq_refs protected by ill_g_lock (writer) */
14403 			IPSQ_DEC_REF(cur_ipsq);
14404 			phyint->phyint_ipsq = newipsq;
14405 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14406 			newipsq->ipsq_phyint_list = phyint;
14407 			IPSQ_INC_REF(newipsq);
14408 			return (SPLIT_SUCCESS);
14409 		}
14410 	}
14411 	return (SPLIT_NOT_NEEDED);
14412 }
14413 
14414 /*
14415  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14416  * to do this split
14417  */
14418 static int
14419 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq)
14420 {
14421 	ipsq_t *newipsq;
14422 
14423 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
14424 	/*
14425 	 * <ill-phyint> assocs can't change while ill_g_lock
14426 	 * is held as writer. See ill_phyint_reinit()
14427 	 */
14428 
14429 	ASSERT(phyint->phyint_illv4 == NULL ||
14430 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14431 	ASSERT(phyint->phyint_illv6 == NULL ||
14432 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14433 
14434 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14435 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14436 		/*
14437 		 * ipsq_init failed due to no memory
14438 		 * caller will use the same ipsq
14439 		 */
14440 		return (SPLIT_FAILED);
14441 	}
14442 
14443 	/* ipsq_ref is protected by ill_g_lock (writer) */
14444 	IPSQ_DEC_REF(cur_ipsq);
14445 
14446 	/*
14447 	 * This is a new ipsq that is unknown to the world.
14448 	 * So we don't need to hold ipsq_lock,
14449 	 */
14450 	newipsq = phyint->phyint_ipsq;
14451 	newipsq->ipsq_writer = NULL;
14452 	newipsq->ipsq_reentry_cnt--;
14453 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14454 #ifdef ILL_DEBUG
14455 	newipsq->ipsq_depth = 0;
14456 #endif
14457 
14458 	return (SPLIT_SUCCESS);
14459 }
14460 
14461 /*
14462  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14463  * ipsq's representing their individual groups or themselves. Return
14464  * whether split needs to be retried again later.
14465  */
14466 static boolean_t
14467 ill_split_ipsq(ipsq_t *cur_ipsq)
14468 {
14469 	phyint_t *phyint;
14470 	phyint_t *next_phyint;
14471 	int	error;
14472 	boolean_t need_retry = B_FALSE;
14473 
14474 	phyint = cur_ipsq->ipsq_phyint_list;
14475 	cur_ipsq->ipsq_phyint_list = NULL;
14476 	while (phyint != NULL) {
14477 		next_phyint = phyint->phyint_ipsq_next;
14478 		/*
14479 		 * 'created' will tell us whether the callee actually
14480 		 * created an ipsq. Lack of memory may force the callee
14481 		 * to return without creating an ipsq.
14482 		 */
14483 		if (phyint->phyint_groupname == NULL) {
14484 			error = ill_split_to_own_ipsq(phyint, cur_ipsq);
14485 		} else {
14486 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14487 					need_retry);
14488 		}
14489 
14490 		switch (error) {
14491 		case SPLIT_FAILED:
14492 			need_retry = B_TRUE;
14493 			/* FALLTHRU */
14494 		case SPLIT_NOT_NEEDED:
14495 			/*
14496 			 * Keep it on the list.
14497 			 */
14498 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14499 			cur_ipsq->ipsq_phyint_list = phyint;
14500 			break;
14501 		case SPLIT_SUCCESS:
14502 			break;
14503 		default:
14504 			ASSERT(0);
14505 		}
14506 
14507 		phyint = next_phyint;
14508 	}
14509 	return (need_retry);
14510 }
14511 
14512 /*
14513  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14514  * and return the ills in the list. This list will be
14515  * needed to unlock all the ills later on by the caller.
14516  * The <ill-ipsq> associations could change between the
14517  * lock and unlock. Hence the unlock can't traverse the
14518  * ipsq to get the list of ills.
14519  */
14520 static int
14521 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14522 {
14523 	int	cnt = 0;
14524 	phyint_t	*phyint;
14525 
14526 	/*
14527 	 * The caller holds ill_g_lock to ensure that the ill memberships
14528 	 * of the ipsq don't change
14529 	 */
14530 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
14531 
14532 	phyint = ipsq->ipsq_phyint_list;
14533 	while (phyint != NULL) {
14534 		if (phyint->phyint_illv4 != NULL) {
14535 			ASSERT(cnt < list_max);
14536 			list[cnt++] = phyint->phyint_illv4;
14537 		}
14538 		if (phyint->phyint_illv6 != NULL) {
14539 			ASSERT(cnt < list_max);
14540 			list[cnt++] = phyint->phyint_illv6;
14541 		}
14542 		phyint = phyint->phyint_ipsq_next;
14543 	}
14544 	ill_lock_ills(list, cnt);
14545 	return (cnt);
14546 }
14547 
14548 void
14549 ill_lock_ills(ill_t **list, int cnt)
14550 {
14551 	int	i;
14552 
14553 	if (cnt > 1) {
14554 		boolean_t try_again;
14555 		do {
14556 			try_again = B_FALSE;
14557 			for (i = 0; i < cnt - 1; i++) {
14558 				if (list[i] < list[i + 1]) {
14559 					ill_t	*tmp;
14560 
14561 					/* swap the elements */
14562 					tmp = list[i];
14563 					list[i] = list[i + 1];
14564 					list[i + 1] = tmp;
14565 					try_again = B_TRUE;
14566 				}
14567 			}
14568 		} while (try_again);
14569 	}
14570 
14571 	for (i = 0; i < cnt; i++) {
14572 		if (i == 0) {
14573 			if (list[i] != NULL)
14574 				mutex_enter(&list[i]->ill_lock);
14575 			else
14576 				return;
14577 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14578 			mutex_enter(&list[i]->ill_lock);
14579 		}
14580 	}
14581 }
14582 
14583 void
14584 ill_unlock_ills(ill_t **list, int cnt)
14585 {
14586 	int	i;
14587 
14588 	for (i = 0; i < cnt; i++) {
14589 		if ((i == 0) && (list[i] != NULL)) {
14590 			mutex_exit(&list[i]->ill_lock);
14591 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14592 			mutex_exit(&list[i]->ill_lock);
14593 		}
14594 	}
14595 }
14596 
14597 /*
14598  * Merge all the ills from 1 ipsq group into another ipsq group.
14599  * The source ipsq group is specified by the ipsq associated with
14600  * 'from_ill'. The destination ipsq group is specified by the ipsq
14601  * associated with 'to_ill' or 'groupname' respectively.
14602  * Note that ipsq itself does not have a reference count mechanism
14603  * and functions don't look up an ipsq and pass it around. Instead
14604  * functions pass around an ill or groupname, and the ipsq is looked
14605  * up from the ill or groupname and the required operation performed
14606  * atomically with the lookup on the ipsq.
14607  */
14608 static int
14609 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
14610     queue_t *q)
14611 {
14612 	ipsq_t *old_ipsq;
14613 	ipsq_t *new_ipsq;
14614 	ill_t	**ill_list;
14615 	int	cnt;
14616 	size_t	ill_list_size;
14617 	boolean_t became_writer_on_new_sq = B_FALSE;
14618 
14619 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
14620 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
14621 
14622 	/*
14623 	 * Need to hold ill_g_lock as writer and also the ill_lock to
14624 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
14625 	 * ipsq_lock to prevent new messages from landing on an ipsq.
14626 	 */
14627 	rw_enter(&ill_g_lock, RW_WRITER);
14628 
14629 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
14630 	if (groupname != NULL)
14631 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL);
14632 	else {
14633 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
14634 	}
14635 
14636 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
14637 
14638 	/*
14639 	 * both groups are on the same ipsq.
14640 	 */
14641 	if (old_ipsq == new_ipsq) {
14642 		rw_exit(&ill_g_lock);
14643 		return (0);
14644 	}
14645 
14646 	cnt = old_ipsq->ipsq_refs << 1;
14647 	ill_list_size = cnt * sizeof (ill_t *);
14648 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
14649 	if (ill_list == NULL) {
14650 		rw_exit(&ill_g_lock);
14651 		return (ENOMEM);
14652 	}
14653 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
14654 
14655 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
14656 	mutex_enter(&new_ipsq->ipsq_lock);
14657 	if ((new_ipsq->ipsq_writer == NULL &&
14658 		new_ipsq->ipsq_current_ipif == NULL) ||
14659 	    (new_ipsq->ipsq_writer == curthread)) {
14660 		new_ipsq->ipsq_writer = curthread;
14661 		new_ipsq->ipsq_reentry_cnt++;
14662 		became_writer_on_new_sq = B_TRUE;
14663 	}
14664 
14665 	/*
14666 	 * We are holding ill_g_lock as writer and all the ill locks of
14667 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
14668 	 * message can land up on the old ipsq even though we don't hold the
14669 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
14670 	 */
14671 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
14672 
14673 	/*
14674 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
14675 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
14676 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
14677 	 */
14678 	ill_merge_ipsq(old_ipsq, new_ipsq);
14679 
14680 	/*
14681 	 * Mark the new ipsq as needing a split since it is currently
14682 	 * being shared by more than 1 IPMP group. The split will
14683 	 * occur at the end of ipsq_exit
14684 	 */
14685 	new_ipsq->ipsq_split = B_TRUE;
14686 
14687 	/* Now release all the locks */
14688 	mutex_exit(&new_ipsq->ipsq_lock);
14689 	ill_unlock_ills(ill_list, cnt);
14690 	rw_exit(&ill_g_lock);
14691 
14692 	kmem_free(ill_list, ill_list_size);
14693 
14694 	/*
14695 	 * If we succeeded in becoming writer on the new ipsq, then
14696 	 * drain the new ipsq and start processing  all enqueued messages
14697 	 * including the current ioctl we are processing which is either
14698 	 * a set groupname or failover/failback.
14699 	 */
14700 	if (became_writer_on_new_sq)
14701 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
14702 
14703 	/*
14704 	 * syncq has been changed and all the messages have been moved.
14705 	 */
14706 	mutex_enter(&old_ipsq->ipsq_lock);
14707 	old_ipsq->ipsq_current_ipif = NULL;
14708 	mutex_exit(&old_ipsq->ipsq_lock);
14709 	return (EINPROGRESS);
14710 }
14711 
14712 /*
14713  * Delete and add the loopback copy and non-loopback copy of
14714  * the BROADCAST ire corresponding to ill and addr. Used to
14715  * group broadcast ires together when ill becomes part of
14716  * a group.
14717  *
14718  * This function is also called when ill is leaving the group
14719  * so that the ires belonging to the group gets re-grouped.
14720  */
14721 static void
14722 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
14723 {
14724 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
14725 	ire_t **ire_ptpn = &ire_head;
14726 
14727 	/*
14728 	 * The loopback and non-loopback IREs are inserted in the order in which
14729 	 * they're found, on the basis that they are correctly ordered (loopback
14730 	 * first).
14731 	 */
14732 	for (;;) {
14733 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
14734 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL);
14735 		if (ire == NULL)
14736 			break;
14737 
14738 		/*
14739 		 * we are passing in KM_SLEEP because it is not easy to
14740 		 * go back to a sane state in case of memory failure.
14741 		 */
14742 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
14743 		ASSERT(nire != NULL);
14744 		bzero(nire, sizeof (ire_t));
14745 		/*
14746 		 * Don't use ire_max_frag directly since we don't
14747 		 * hold on to 'ire' until we add the new ire 'nire' and
14748 		 * we don't want the new ire to have a dangling reference
14749 		 * to 'ire'. The ire_max_frag of a broadcast ire must
14750 		 * be in sync with the ipif_mtu of the associate ipif.
14751 		 * For eg. this happens as a result of SIOCSLIFNAME,
14752 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
14753 		 * the driver. A change in ire_max_frag triggered as
14754 		 * as a result of path mtu discovery, or due to an
14755 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
14756 		 * route change -mtu command does not apply to broadcast ires.
14757 		 *
14758 		 * XXX We need a recovery strategy here if ire_init fails
14759 		 */
14760 		if (ire_init(nire,
14761 		    (uchar_t *)&ire->ire_addr,
14762 		    (uchar_t *)&ire->ire_mask,
14763 		    (uchar_t *)&ire->ire_src_addr,
14764 		    (uchar_t *)&ire->ire_gateway_addr,
14765 		    (uchar_t *)&ire->ire_in_src_addr,
14766 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
14767 			&ire->ire_ipif->ipif_mtu,
14768 		    (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL),
14769 		    ire->ire_rfq,
14770 		    ire->ire_stq,
14771 		    ire->ire_type,
14772 		    (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL),
14773 		    ire->ire_ipif,
14774 		    ire->ire_in_ill,
14775 		    ire->ire_cmask,
14776 		    ire->ire_phandle,
14777 		    ire->ire_ihandle,
14778 		    ire->ire_flags,
14779 		    &ire->ire_uinfo,
14780 		    NULL,
14781 		    NULL) == NULL) {
14782 			cmn_err(CE_PANIC, "ire_init() failed");
14783 		}
14784 		ire_delete(ire);
14785 		ire_refrele(ire);
14786 
14787 		/*
14788 		 * The newly created IREs are inserted at the tail of the list
14789 		 * starting with ire_head. As we've just allocated them no one
14790 		 * knows about them so it's safe.
14791 		 */
14792 		*ire_ptpn = nire;
14793 		ire_ptpn = &nire->ire_next;
14794 	}
14795 
14796 	for (nire = ire_head; nire != NULL; nire = nire_next) {
14797 		int error;
14798 		ire_t *oire;
14799 		/* unlink the IRE from our list before calling ire_add() */
14800 		nire_next = nire->ire_next;
14801 		nire->ire_next = NULL;
14802 
14803 		/* ire_add adds the ire at the right place in the list */
14804 		oire = nire;
14805 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
14806 		ASSERT(error == 0);
14807 		ASSERT(oire == nire);
14808 		ire_refrele(nire);	/* Held in ire_add */
14809 	}
14810 }
14811 
14812 /*
14813  * This function is usually called when an ill is inserted in
14814  * a group and all the ipifs are already UP. As all the ipifs
14815  * are already UP, the broadcast ires have already been created
14816  * and been inserted. But, ire_add_v4 would not have grouped properly.
14817  * We need to re-group for the benefit of ip_wput_ire which
14818  * expects BROADCAST ires to be grouped properly to avoid sending
14819  * more than one copy of the broadcast packet per group.
14820  *
14821  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
14822  *	  because when ipif_up_done ends up calling this, ires have
14823  *        already been added before illgrp_insert i.e before ill_group
14824  *	  has been initialized.
14825  */
14826 static void
14827 ill_group_bcast_for_xmit(ill_t *ill)
14828 {
14829 	ill_group_t *illgrp;
14830 	ipif_t *ipif;
14831 	ipaddr_t addr;
14832 	ipaddr_t net_mask;
14833 	ipaddr_t subnet_netmask;
14834 
14835 	illgrp = ill->ill_group;
14836 
14837 	/*
14838 	 * This function is called even when an ill is deleted from
14839 	 * the group. Hence, illgrp could be null.
14840 	 */
14841 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
14842 		return;
14843 
14844 	/*
14845 	 * Delete all the BROADCAST ires matching this ill and add
14846 	 * them back. This time, ire_add_v4 should take care of
14847 	 * grouping them with others because ill is part of the
14848 	 * group.
14849 	 */
14850 	ill_bcast_delete_and_add(ill, 0);
14851 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
14852 
14853 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14854 
14855 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14856 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14857 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14858 		} else {
14859 			net_mask = htonl(IN_CLASSA_NET);
14860 		}
14861 		addr = net_mask & ipif->ipif_subnet;
14862 		ill_bcast_delete_and_add(ill, addr);
14863 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
14864 
14865 		subnet_netmask = ipif->ipif_net_mask;
14866 		addr = ipif->ipif_subnet;
14867 		ill_bcast_delete_and_add(ill, addr);
14868 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
14869 	}
14870 }
14871 
14872 /*
14873  * This function is called from illgrp_delete when ill is being deleted
14874  * from the group.
14875  *
14876  * As ill is not there in the group anymore, any address belonging
14877  * to this ill should be cleared of IRE_MARK_NORECV.
14878  */
14879 static void
14880 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
14881 {
14882 	ire_t *ire;
14883 	irb_t *irb;
14884 
14885 	ASSERT(ill->ill_group == NULL);
14886 
14887 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
14888 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL);
14889 
14890 	if (ire != NULL) {
14891 		/*
14892 		 * IPMP and plumbing operations are serialized on the ipsq, so
14893 		 * no one will insert or delete a broadcast ire under our feet.
14894 		 */
14895 		irb = ire->ire_bucket;
14896 		rw_enter(&irb->irb_lock, RW_READER);
14897 		ire_refrele(ire);
14898 
14899 		for (; ire != NULL; ire = ire->ire_next) {
14900 			if (ire->ire_addr != addr)
14901 				break;
14902 			if (ire_to_ill(ire) != ill)
14903 				continue;
14904 
14905 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
14906 			ire->ire_marks &= ~IRE_MARK_NORECV;
14907 		}
14908 		rw_exit(&irb->irb_lock);
14909 	}
14910 }
14911 
14912 /*
14913  * This function must be called only after the broadcast ires
14914  * have been grouped together. For a given address addr, nominate
14915  * only one of the ires whose interface is not FAILED or OFFLINE.
14916  *
14917  * This is also called when an ipif goes down, so that we can nominate
14918  * a different ire with the same address for receiving.
14919  */
14920 static void
14921 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr)
14922 {
14923 	irb_t *irb;
14924 	ire_t *ire;
14925 	ire_t *ire1;
14926 	ire_t *save_ire;
14927 	ire_t **irep = NULL;
14928 	boolean_t first = B_TRUE;
14929 	ire_t *clear_ire = NULL;
14930 	ire_t *start_ire = NULL;
14931 	ire_t	*new_lb_ire;
14932 	ire_t	*new_nlb_ire;
14933 	boolean_t new_lb_ire_used = B_FALSE;
14934 	boolean_t new_nlb_ire_used = B_FALSE;
14935 	uint64_t match_flags;
14936 	uint64_t phyi_flags;
14937 	boolean_t fallback = B_FALSE;
14938 
14939 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
14940 	    NULL, MATCH_IRE_TYPE);
14941 	/*
14942 	 * We may not be able to find some ires if a previous
14943 	 * ire_create failed. This happens when an ipif goes
14944 	 * down and we are unable to create BROADCAST ires due
14945 	 * to memory failure. Thus, we have to check for NULL
14946 	 * below. This should handle the case for LOOPBACK,
14947 	 * POINTOPOINT and interfaces with some POINTOPOINT
14948 	 * logicals for which there are no BROADCAST ires.
14949 	 */
14950 	if (ire == NULL)
14951 		return;
14952 	/*
14953 	 * Currently IRE_BROADCASTS are deleted when an ipif
14954 	 * goes down which runs exclusively. Thus, setting
14955 	 * IRE_MARK_RCVD should not race with ire_delete marking
14956 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
14957 	 * be consistent with other parts of the code that walks
14958 	 * a given bucket.
14959 	 */
14960 	save_ire = ire;
14961 	irb = ire->ire_bucket;
14962 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
14963 	if (new_lb_ire == NULL) {
14964 		ire_refrele(ire);
14965 		return;
14966 	}
14967 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
14968 	if (new_nlb_ire == NULL) {
14969 		ire_refrele(ire);
14970 		kmem_cache_free(ire_cache, new_lb_ire);
14971 		return;
14972 	}
14973 	IRB_REFHOLD(irb);
14974 	rw_enter(&irb->irb_lock, RW_WRITER);
14975 	/*
14976 	 * Get to the first ire matching the address and the
14977 	 * group. If the address does not match we are done
14978 	 * as we could not find the IRE. If the address matches
14979 	 * we should get to the first one matching the group.
14980 	 */
14981 	while (ire != NULL) {
14982 		if (ire->ire_addr != addr ||
14983 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
14984 			break;
14985 		}
14986 		ire = ire->ire_next;
14987 	}
14988 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
14989 	start_ire = ire;
14990 redo:
14991 	while (ire != NULL && ire->ire_addr == addr &&
14992 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
14993 		/*
14994 		 * The first ire for any address within a group
14995 		 * should always be the one with IRE_MARK_NORECV cleared
14996 		 * so that ip_wput_ire can avoid searching for one.
14997 		 * Note down the insertion point which will be used
14998 		 * later.
14999 		 */
15000 		if (first && (irep == NULL))
15001 			irep = ire->ire_ptpn;
15002 		/*
15003 		 * PHYI_FAILED is set when the interface fails.
15004 		 * This interface might have become good, but the
15005 		 * daemon has not yet detected. We should still
15006 		 * not receive on this. PHYI_OFFLINE should never
15007 		 * be picked as this has been offlined and soon
15008 		 * be removed.
15009 		 */
15010 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15011 		if (phyi_flags & PHYI_OFFLINE) {
15012 			ire->ire_marks |= IRE_MARK_NORECV;
15013 			ire = ire->ire_next;
15014 			continue;
15015 		}
15016 		if (phyi_flags & match_flags) {
15017 			ire->ire_marks |= IRE_MARK_NORECV;
15018 			ire = ire->ire_next;
15019 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15020 			    PHYI_INACTIVE) {
15021 				fallback = B_TRUE;
15022 			}
15023 			continue;
15024 		}
15025 		if (first) {
15026 			/*
15027 			 * We will move this to the front of the list later
15028 			 * on.
15029 			 */
15030 			clear_ire = ire;
15031 			ire->ire_marks &= ~IRE_MARK_NORECV;
15032 		} else {
15033 			ire->ire_marks |= IRE_MARK_NORECV;
15034 		}
15035 		first = B_FALSE;
15036 		ire = ire->ire_next;
15037 	}
15038 	/*
15039 	 * If we never nominated anybody, try nominating at least
15040 	 * an INACTIVE, if we found one. Do it only once though.
15041 	 */
15042 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15043 	    fallback) {
15044 		match_flags = PHYI_FAILED;
15045 		ire = start_ire;
15046 		irep = NULL;
15047 		goto redo;
15048 	}
15049 	ire_refrele(save_ire);
15050 
15051 	/*
15052 	 * irep non-NULL indicates that we entered the while loop
15053 	 * above. If clear_ire is at the insertion point, we don't
15054 	 * have to do anything. clear_ire will be NULL if all the
15055 	 * interfaces are failed.
15056 	 *
15057 	 * We cannot unlink and reinsert the ire at the right place
15058 	 * in the list since there can be other walkers of this bucket.
15059 	 * Instead we delete and recreate the ire
15060 	 */
15061 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15062 		ire_t *clear_ire_stq = NULL;
15063 		mblk_t *fp_mp = NULL, *res_mp = NULL;
15064 
15065 		bzero(new_lb_ire, sizeof (ire_t));
15066 		if (clear_ire->ire_nce != NULL) {
15067 			fp_mp = clear_ire->ire_nce->nce_fp_mp;
15068 			res_mp = clear_ire->ire_nce->nce_res_mp;
15069 		}
15070 		/* XXX We need a recovery strategy here. */
15071 		if (ire_init(new_lb_ire,
15072 		    (uchar_t *)&clear_ire->ire_addr,
15073 		    (uchar_t *)&clear_ire->ire_mask,
15074 		    (uchar_t *)&clear_ire->ire_src_addr,
15075 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15076 		    (uchar_t *)&clear_ire->ire_in_src_addr,
15077 		    &clear_ire->ire_max_frag,
15078 		    fp_mp,
15079 		    clear_ire->ire_rfq,
15080 		    clear_ire->ire_stq,
15081 		    clear_ire->ire_type,
15082 		    res_mp,
15083 		    clear_ire->ire_ipif,
15084 		    clear_ire->ire_in_ill,
15085 		    clear_ire->ire_cmask,
15086 		    clear_ire->ire_phandle,
15087 		    clear_ire->ire_ihandle,
15088 		    clear_ire->ire_flags,
15089 		    &clear_ire->ire_uinfo,
15090 		    NULL,
15091 		    NULL) == NULL)
15092 			cmn_err(CE_PANIC, "ire_init() failed");
15093 		if (clear_ire->ire_stq == NULL) {
15094 			ire_t *ire_next = clear_ire->ire_next;
15095 			if (ire_next != NULL &&
15096 			    ire_next->ire_stq != NULL &&
15097 			    ire_next->ire_addr == clear_ire->ire_addr &&
15098 			    ire_next->ire_ipif->ipif_ill ==
15099 			    clear_ire->ire_ipif->ipif_ill) {
15100 				clear_ire_stq = ire_next;
15101 
15102 				bzero(new_nlb_ire, sizeof (ire_t));
15103 				if (clear_ire_stq->ire_nce != NULL) {
15104 					fp_mp =
15105 					    clear_ire_stq->ire_nce->nce_fp_mp;
15106 					res_mp =
15107 					    clear_ire_stq->ire_nce->nce_res_mp;
15108 				} else {
15109 					fp_mp = res_mp = NULL;
15110 				}
15111 				/* XXX We need a recovery strategy here. */
15112 				if (ire_init(new_nlb_ire,
15113 				    (uchar_t *)&clear_ire_stq->ire_addr,
15114 				    (uchar_t *)&clear_ire_stq->ire_mask,
15115 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15116 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15117 				    (uchar_t *)&clear_ire_stq->ire_in_src_addr,
15118 				    &clear_ire_stq->ire_max_frag,
15119 				    fp_mp,
15120 				    clear_ire_stq->ire_rfq,
15121 				    clear_ire_stq->ire_stq,
15122 				    clear_ire_stq->ire_type,
15123 				    res_mp,
15124 				    clear_ire_stq->ire_ipif,
15125 				    clear_ire_stq->ire_in_ill,
15126 				    clear_ire_stq->ire_cmask,
15127 				    clear_ire_stq->ire_phandle,
15128 				    clear_ire_stq->ire_ihandle,
15129 				    clear_ire_stq->ire_flags,
15130 				    &clear_ire_stq->ire_uinfo,
15131 				    NULL,
15132 				    NULL) == NULL)
15133 					cmn_err(CE_PANIC, "ire_init() failed");
15134 			}
15135 		}
15136 
15137 		/*
15138 		 * Delete the ire. We can't call ire_delete() since
15139 		 * we are holding the bucket lock. We can't release the
15140 		 * bucket lock since we can't allow irep to change. So just
15141 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15142 		 * ire from the list and do the refrele.
15143 		 */
15144 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15145 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15146 
15147 		if (clear_ire_stq != NULL) {
15148 			ire_fastpath_list_delete(
15149 			    (ill_t *)clear_ire_stq->ire_stq->q_ptr,
15150 			    clear_ire_stq);
15151 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15152 		}
15153 
15154 		/*
15155 		 * Also take care of otherfields like ib/ob pkt count
15156 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15157 		 */
15158 
15159 		/* Add the new ire's. Insert at *irep */
15160 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15161 		ire1 = *irep;
15162 		if (ire1 != NULL)
15163 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15164 		new_lb_ire->ire_next = ire1;
15165 		/* Link the new one in. */
15166 		new_lb_ire->ire_ptpn = irep;
15167 		membar_producer();
15168 		*irep = new_lb_ire;
15169 		new_lb_ire_used = B_TRUE;
15170 		BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted);
15171 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15172 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15173 
15174 		if (clear_ire_stq != NULL) {
15175 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15176 			irep = &new_lb_ire->ire_next;
15177 			/* Add the new ire. Insert at *irep */
15178 			ire1 = *irep;
15179 			if (ire1 != NULL)
15180 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15181 			new_nlb_ire->ire_next = ire1;
15182 			/* Link the new one in. */
15183 			new_nlb_ire->ire_ptpn = irep;
15184 			membar_producer();
15185 			*irep = new_nlb_ire;
15186 			new_nlb_ire_used = B_TRUE;
15187 			BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted);
15188 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15189 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15190 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15191 		}
15192 	}
15193 	rw_exit(&irb->irb_lock);
15194 	if (!new_lb_ire_used)
15195 		kmem_cache_free(ire_cache, new_lb_ire);
15196 	if (!new_nlb_ire_used)
15197 		kmem_cache_free(ire_cache, new_nlb_ire);
15198 	IRB_REFRELE(irb);
15199 }
15200 
15201 /*
15202  * Whenever an ipif goes down we have to renominate a different
15203  * broadcast ire to receive. Whenever an ipif comes up, we need
15204  * to make sure that we have only one nominated to receive.
15205  */
15206 static void
15207 ipif_renominate_bcast(ipif_t *ipif)
15208 {
15209 	ill_t *ill = ipif->ipif_ill;
15210 	ipaddr_t subnet_addr;
15211 	ipaddr_t net_addr;
15212 	ipaddr_t net_mask = 0;
15213 	ipaddr_t subnet_netmask;
15214 	ipaddr_t addr;
15215 	ill_group_t *illgrp;
15216 
15217 	illgrp = ill->ill_group;
15218 	/*
15219 	 * If this is the last ipif going down, it might take
15220 	 * the ill out of the group. In that case ipif_down ->
15221 	 * illgrp_delete takes care of doing the nomination.
15222 	 * ipif_down does not call for this case.
15223 	 */
15224 	ASSERT(illgrp != NULL);
15225 
15226 	/* There could not have been any ires associated with this */
15227 	if (ipif->ipif_subnet == 0)
15228 		return;
15229 
15230 	ill_mark_bcast(illgrp, 0);
15231 	ill_mark_bcast(illgrp, INADDR_BROADCAST);
15232 
15233 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15234 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15235 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15236 	} else {
15237 		net_mask = htonl(IN_CLASSA_NET);
15238 	}
15239 	addr = net_mask & ipif->ipif_subnet;
15240 	ill_mark_bcast(illgrp, addr);
15241 
15242 	net_addr = ~net_mask | addr;
15243 	ill_mark_bcast(illgrp, net_addr);
15244 
15245 	subnet_netmask = ipif->ipif_net_mask;
15246 	addr = ipif->ipif_subnet;
15247 	ill_mark_bcast(illgrp, addr);
15248 
15249 	subnet_addr = ~subnet_netmask | addr;
15250 	ill_mark_bcast(illgrp, subnet_addr);
15251 }
15252 
15253 /*
15254  * Whenever we form or delete ill groups, we need to nominate one set of
15255  * BROADCAST ires for receiving in the group.
15256  *
15257  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15258  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15259  *    for ill_ipif_up_count to be non-zero. This is the only case where
15260  *    ill_ipif_up_count is zero and we would still find the ires.
15261  *
15262  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15263  *    ipif is UP and we just have to do the nomination.
15264  *
15265  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15266  *    from the group. So, we have to do the nomination.
15267  *
15268  * Because of (3), there could be just one ill in the group. But we have
15269  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15270  * Thus, this function does not optimize when there is only one ill as
15271  * it is not correct for (3).
15272  */
15273 static void
15274 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15275 {
15276 	ill_t *ill;
15277 	ipif_t *ipif;
15278 	ipaddr_t subnet_addr;
15279 	ipaddr_t prev_subnet_addr = 0;
15280 	ipaddr_t net_addr;
15281 	ipaddr_t prev_net_addr = 0;
15282 	ipaddr_t net_mask = 0;
15283 	ipaddr_t subnet_netmask;
15284 	ipaddr_t addr;
15285 
15286 	/*
15287 	 * When the last memeber is leaving, there is nothing to
15288 	 * nominate.
15289 	 */
15290 	if (illgrp->illgrp_ill_count == 0) {
15291 		ASSERT(illgrp->illgrp_ill == NULL);
15292 		return;
15293 	}
15294 
15295 	ill = illgrp->illgrp_ill;
15296 	ASSERT(!ill->ill_isv6);
15297 	/*
15298 	 * We assume that ires with same address and belonging to the
15299 	 * same group, has been grouped together. Nominating a *single*
15300 	 * ill in the group for sending and receiving broadcast is done
15301 	 * by making sure that the first BROADCAST ire (which will be
15302 	 * the one returned by ire_ctable_lookup for ip_rput and the
15303 	 * one that will be used in ip_wput_ire) will be the one that
15304 	 * will not have IRE_MARK_NORECV set.
15305 	 *
15306 	 * 1) ip_rput checks and discards packets received on ires marked
15307 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15308 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15309 	 *    first ire in the group for every broadcast address in the group.
15310 	 *    ip_rput will accept packets only on the first ire i.e only
15311 	 *    one copy of the ill.
15312 	 *
15313 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15314 	 *    packet for the whole group. It needs to send out on the ill
15315 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15316 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15317 	 *    the copy echoed back on other port where the ire is not marked
15318 	 *    with IRE_MARK_NORECV.
15319 	 *
15320 	 * Note that we just need to have the first IRE either loopback or
15321 	 * non-loopback (either of them may not exist if ire_create failed
15322 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15323 	 * always hit the first one and hence will always accept one copy.
15324 	 *
15325 	 * We have a broadcast ire per ill for all the unique prefixes
15326 	 * hosted on that ill. As we don't have a way of knowing the
15327 	 * unique prefixes on a given ill and hence in the whole group,
15328 	 * we just call ill_mark_bcast on all the prefixes that exist
15329 	 * in the group. For the common case of one prefix, the code
15330 	 * below optimizes by remebering the last address used for
15331 	 * markng. In the case of multiple prefixes, this will still
15332 	 * optimize depending the order of prefixes.
15333 	 *
15334 	 * The only unique address across the whole group is 0.0.0.0 and
15335 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15336 	 * the first ire in the bucket for receiving and disables the
15337 	 * others.
15338 	 */
15339 	ill_mark_bcast(illgrp, 0);
15340 	ill_mark_bcast(illgrp, INADDR_BROADCAST);
15341 	for (; ill != NULL; ill = ill->ill_group_next) {
15342 
15343 		for (ipif = ill->ill_ipif; ipif != NULL;
15344 		    ipif = ipif->ipif_next) {
15345 
15346 			if (!(ipif->ipif_flags & IPIF_UP) ||
15347 			    ipif->ipif_subnet == 0) {
15348 				continue;
15349 			}
15350 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15351 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15352 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15353 			} else {
15354 				net_mask = htonl(IN_CLASSA_NET);
15355 			}
15356 			addr = net_mask & ipif->ipif_subnet;
15357 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15358 				ill_mark_bcast(illgrp, addr);
15359 				net_addr = ~net_mask | addr;
15360 				ill_mark_bcast(illgrp, net_addr);
15361 			}
15362 			prev_net_addr = addr;
15363 
15364 			subnet_netmask = ipif->ipif_net_mask;
15365 			addr = ipif->ipif_subnet;
15366 			if (prev_subnet_addr == 0 ||
15367 			    prev_subnet_addr != addr) {
15368 				ill_mark_bcast(illgrp, addr);
15369 				subnet_addr = ~subnet_netmask | addr;
15370 				ill_mark_bcast(illgrp, subnet_addr);
15371 			}
15372 			prev_subnet_addr = addr;
15373 		}
15374 	}
15375 }
15376 
15377 /*
15378  * This function is called while forming ill groups.
15379  *
15380  * Currently, we handle only allmulti groups. We want to join
15381  * allmulti on only one of the ills in the groups. In future,
15382  * when we have link aggregation, we may have to join normal
15383  * multicast groups on multiple ills as switch does inbound load
15384  * balancing. Following are the functions that calls this
15385  * function :
15386  *
15387  * 1) ill_recover_multicast : Interface is coming back UP.
15388  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15389  *    will call ill_recover_multicast to recover all the multicast
15390  *    groups. We need to make sure that only one member is joined
15391  *    in the ill group.
15392  *
15393  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15394  *    Somebody is joining allmulti. We need to make sure that only one
15395  *    member is joined in the group.
15396  *
15397  * 3) illgrp_insert : If allmulti has already joined, we need to make
15398  *    sure that only one member is joined in the group.
15399  *
15400  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15401  *    allmulti who we have nominated. We need to pick someother ill.
15402  *
15403  * 5) illgrp_delete : The ill we nominated is leaving the group,
15404  *    we need to pick a new ill to join the group.
15405  *
15406  * For (1), (2), (5) - we just have to check whether there is
15407  * a good ill joined in the group. If we could not find any ills
15408  * joined the group, we should join.
15409  *
15410  * For (4), the one that was nominated to receive, left the group.
15411  * There could be nobody joined in the group when this function is
15412  * called.
15413  *
15414  * For (3) - we need to explicitly check whether there are multiple
15415  * ills joined in the group.
15416  *
15417  * For simplicity, we don't differentiate any of the above cases. We
15418  * just leave the group if it is joined on any of them and join on
15419  * the first good ill.
15420  */
15421 int
15422 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15423 {
15424 	ilm_t *ilm;
15425 	ill_t *ill;
15426 	ill_t *fallback_inactive_ill = NULL;
15427 	ill_t *fallback_failed_ill = NULL;
15428 	int ret = 0;
15429 
15430 	/*
15431 	 * Leave the allmulti on all the ills and start fresh.
15432 	 */
15433 	for (ill = illgrp->illgrp_ill; ill != NULL;
15434 	    ill = ill->ill_group_next) {
15435 		if (ill->ill_join_allmulti)
15436 			(void) ip_leave_allmulti(ill->ill_ipif);
15437 	}
15438 
15439 	/*
15440 	 * Choose a good ill. Fallback to inactive or failed if
15441 	 * none available. We need to fallback to FAILED in the
15442 	 * case where we have 2 interfaces in a group - where
15443 	 * one of them is failed and another is a good one and
15444 	 * the good one (not marked inactive) is leaving the group.
15445 	 */
15446 	ret = 0;
15447 	for (ill = illgrp->illgrp_ill; ill != NULL;
15448 	    ill = ill->ill_group_next) {
15449 		/* Never pick an offline interface */
15450 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15451 			continue;
15452 
15453 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15454 			fallback_failed_ill = ill;
15455 			continue;
15456 		}
15457 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15458 			fallback_inactive_ill = ill;
15459 			continue;
15460 		}
15461 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15462 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15463 				ret = ip_join_allmulti(ill->ill_ipif);
15464 				/*
15465 				 * ip_join_allmulti can fail because of memory
15466 				 * failures. So, make sure we join at least
15467 				 * on one ill.
15468 				 */
15469 				if (ill->ill_join_allmulti)
15470 					return (0);
15471 			}
15472 		}
15473 	}
15474 	if (ret != 0) {
15475 		/*
15476 		 * If we tried nominating above and failed to do so,
15477 		 * return error. We might have tried multiple times.
15478 		 * But, return the latest error.
15479 		 */
15480 		return (ret);
15481 	}
15482 	if ((ill = fallback_inactive_ill) != NULL) {
15483 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15484 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15485 				ret = ip_join_allmulti(ill->ill_ipif);
15486 				return (ret);
15487 			}
15488 		}
15489 	} else if ((ill = fallback_failed_ill) != NULL) {
15490 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15491 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15492 				ret = ip_join_allmulti(ill->ill_ipif);
15493 				return (ret);
15494 			}
15495 		}
15496 	}
15497 	return (0);
15498 }
15499 
15500 /*
15501  * This function is called from illgrp_delete after it is
15502  * deleted from the group to reschedule responsibilities
15503  * to a different ill.
15504  */
15505 static void
15506 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
15507 {
15508 	ilm_t	*ilm;
15509 	ipif_t	*ipif;
15510 	ipaddr_t subnet_addr;
15511 	ipaddr_t net_addr;
15512 	ipaddr_t net_mask = 0;
15513 	ipaddr_t subnet_netmask;
15514 	ipaddr_t addr;
15515 
15516 	ASSERT(ill->ill_group == NULL);
15517 	/*
15518 	 * Broadcast Responsibility:
15519 	 *
15520 	 * 1. If this ill has been nominated for receiving broadcast
15521 	 * packets, we need to find a new one. Before we find a new
15522 	 * one, we need to re-group the ires that are part of this new
15523 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
15524 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
15525 	 * thing for us.
15526 	 *
15527 	 * 2. If this ill was not nominated for receiving broadcast
15528 	 * packets, we need to clear the IRE_MARK_NORECV flag
15529 	 * so that we continue to send up broadcast packets.
15530 	 */
15531 	if (!ill->ill_isv6) {
15532 		/*
15533 		 * Case 1 above : No optimization here. Just redo the
15534 		 * nomination.
15535 		 */
15536 		ill_group_bcast_for_xmit(ill);
15537 		ill_nominate_bcast_rcv(illgrp);
15538 
15539 		/*
15540 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
15541 		 */
15542 		ill_clear_bcast_mark(ill, 0);
15543 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
15544 
15545 		for (ipif = ill->ill_ipif; ipif != NULL;
15546 		    ipif = ipif->ipif_next) {
15547 
15548 			if (!(ipif->ipif_flags & IPIF_UP) ||
15549 			    ipif->ipif_subnet == 0) {
15550 				continue;
15551 			}
15552 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15553 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15554 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15555 			} else {
15556 				net_mask = htonl(IN_CLASSA_NET);
15557 			}
15558 			addr = net_mask & ipif->ipif_subnet;
15559 			ill_clear_bcast_mark(ill, addr);
15560 
15561 			net_addr = ~net_mask | addr;
15562 			ill_clear_bcast_mark(ill, net_addr);
15563 
15564 			subnet_netmask = ipif->ipif_net_mask;
15565 			addr = ipif->ipif_subnet;
15566 			ill_clear_bcast_mark(ill, addr);
15567 
15568 			subnet_addr = ~subnet_netmask | addr;
15569 			ill_clear_bcast_mark(ill, subnet_addr);
15570 		}
15571 	}
15572 
15573 	/*
15574 	 * Multicast Responsibility.
15575 	 *
15576 	 * If we have joined allmulti on this one, find a new member
15577 	 * in the group to join allmulti. As this ill is already part
15578 	 * of allmulti, we don't have to join on this one.
15579 	 *
15580 	 * If we have not joined allmulti on this one, there is no
15581 	 * responsibility to handoff. But we need to take new
15582 	 * responsibility i.e, join allmulti on this one if we need
15583 	 * to.
15584 	 */
15585 	if (ill->ill_join_allmulti) {
15586 		(void) ill_nominate_mcast_rcv(illgrp);
15587 	} else {
15588 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15589 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15590 				(void) ip_join_allmulti(ill->ill_ipif);
15591 				break;
15592 			}
15593 		}
15594 	}
15595 
15596 	/*
15597 	 * We intentionally do the flushing of IRE_CACHES only matching
15598 	 * on the ill and not on groups. Note that we are already deleted
15599 	 * from the group.
15600 	 *
15601 	 * This will make sure that all IRE_CACHES whose stq is pointing
15602 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
15603 	 * deleted and IRE_CACHES that are not pointing at this ill will
15604 	 * be left alone.
15605 	 */
15606 	if (ill->ill_isv6) {
15607 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15608 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15609 	} else {
15610 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15611 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15612 	}
15613 
15614 	/*
15615 	 * Some conn may have cached one of the IREs deleted above. By removing
15616 	 * the ire reference, we clean up the extra reference to the ill held in
15617 	 * ire->ire_stq.
15618 	 */
15619 	ipcl_walk(conn_cleanup_stale_ire, NULL);
15620 
15621 	/*
15622 	 * Re-do source address selection for all the members in the
15623 	 * group, if they borrowed source address from one of the ipifs
15624 	 * in this ill.
15625 	 */
15626 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15627 		if (ill->ill_isv6) {
15628 			ipif_update_other_ipifs_v6(ipif, illgrp);
15629 		} else {
15630 			ipif_update_other_ipifs(ipif, illgrp);
15631 		}
15632 	}
15633 }
15634 
15635 /*
15636  * Delete the ill from the group. The caller makes sure that it is
15637  * in a group and it okay to delete from the group. So, we always
15638  * delete here.
15639  */
15640 static void
15641 illgrp_delete(ill_t *ill)
15642 {
15643 	ill_group_t *illgrp;
15644 	ill_group_t *tmpg;
15645 	ill_t *tmp_ill;
15646 
15647 	/*
15648 	 * Reset illgrp_ill_schednext if it was pointing at us.
15649 	 * We need to do this before we set ill_group to NULL.
15650 	 */
15651 	rw_enter(&ill_g_lock, RW_WRITER);
15652 	mutex_enter(&ill->ill_lock);
15653 
15654 	illgrp_reset_schednext(ill);
15655 
15656 	illgrp = ill->ill_group;
15657 
15658 	/* Delete the ill from illgrp. */
15659 	if (illgrp->illgrp_ill == ill) {
15660 		illgrp->illgrp_ill = ill->ill_group_next;
15661 	} else {
15662 		tmp_ill = illgrp->illgrp_ill;
15663 		while (tmp_ill->ill_group_next != ill) {
15664 			tmp_ill = tmp_ill->ill_group_next;
15665 			ASSERT(tmp_ill != NULL);
15666 		}
15667 		tmp_ill->ill_group_next = ill->ill_group_next;
15668 	}
15669 	ill->ill_group = NULL;
15670 	ill->ill_group_next = NULL;
15671 
15672 	illgrp->illgrp_ill_count--;
15673 	mutex_exit(&ill->ill_lock);
15674 	rw_exit(&ill_g_lock);
15675 
15676 	/*
15677 	 * As this ill is leaving the group, we need to hand off
15678 	 * the responsibilities to the other ills in the group, if
15679 	 * this ill had some responsibilities.
15680 	 */
15681 
15682 	ill_handoff_responsibility(ill, illgrp);
15683 
15684 	rw_enter(&ill_g_lock, RW_WRITER);
15685 
15686 	if (illgrp->illgrp_ill_count == 0) {
15687 
15688 		ASSERT(illgrp->illgrp_ill == NULL);
15689 		if (ill->ill_isv6) {
15690 			if (illgrp == illgrp_head_v6) {
15691 				illgrp_head_v6 = illgrp->illgrp_next;
15692 			} else {
15693 				tmpg = illgrp_head_v6;
15694 				while (tmpg->illgrp_next != illgrp) {
15695 					tmpg = tmpg->illgrp_next;
15696 					ASSERT(tmpg != NULL);
15697 				}
15698 				tmpg->illgrp_next = illgrp->illgrp_next;
15699 			}
15700 		} else {
15701 			if (illgrp == illgrp_head_v4) {
15702 				illgrp_head_v4 = illgrp->illgrp_next;
15703 			} else {
15704 				tmpg = illgrp_head_v4;
15705 				while (tmpg->illgrp_next != illgrp) {
15706 					tmpg = tmpg->illgrp_next;
15707 					ASSERT(tmpg != NULL);
15708 				}
15709 				tmpg->illgrp_next = illgrp->illgrp_next;
15710 			}
15711 		}
15712 		mutex_destroy(&illgrp->illgrp_lock);
15713 		mi_free(illgrp);
15714 	}
15715 	rw_exit(&ill_g_lock);
15716 
15717 	/*
15718 	 * Even though the ill is out of the group its not necessary
15719 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
15720 	 * We will split the ipsq when phyint_groupname is set to NULL.
15721 	 */
15722 
15723 	/*
15724 	 * Send a routing sockets message if we are deleting from
15725 	 * groups with names.
15726 	 */
15727 	if (ill->ill_phyint->phyint_groupname_len != 0)
15728 		ip_rts_ifmsg(ill->ill_ipif);
15729 }
15730 
15731 /*
15732  * Re-do source address selection. This is normally called when
15733  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
15734  * ipif comes up.
15735  */
15736 void
15737 ill_update_source_selection(ill_t *ill)
15738 {
15739 	ipif_t *ipif;
15740 
15741 	ASSERT(IAM_WRITER_ILL(ill));
15742 
15743 	if (ill->ill_group != NULL)
15744 		ill = ill->ill_group->illgrp_ill;
15745 
15746 	for (; ill != NULL; ill = ill->ill_group_next) {
15747 		for (ipif = ill->ill_ipif; ipif != NULL;
15748 		    ipif = ipif->ipif_next) {
15749 			if (ill->ill_isv6)
15750 				ipif_recreate_interface_routes_v6(NULL, ipif);
15751 			else
15752 				ipif_recreate_interface_routes(NULL, ipif);
15753 		}
15754 	}
15755 }
15756 
15757 /*
15758  * Insert ill in a group headed by illgrp_head. The caller can either
15759  * pass a groupname in which case we search for a group with the
15760  * same name to insert in or pass a group to insert in. This function
15761  * would only search groups with names.
15762  *
15763  * NOTE : The caller should make sure that there is at least one ipif
15764  *	  UP on this ill so that illgrp_scheduler can pick this ill
15765  *	  for outbound packets. If ill_ipif_up_count is zero, we have
15766  *	  already sent a DL_UNBIND to the driver and we don't want to
15767  *	  send anymore packets. We don't assert for ipif_up_count
15768  *	  to be greater than zero, because ipif_up_done wants to call
15769  *	  this function before bumping up the ipif_up_count. See
15770  *	  ipif_up_done() for details.
15771  */
15772 int
15773 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
15774     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
15775 {
15776 	ill_group_t *illgrp;
15777 	ill_t *prev_ill;
15778 	phyint_t *phyi;
15779 
15780 	ASSERT(ill->ill_group == NULL);
15781 
15782 	rw_enter(&ill_g_lock, RW_WRITER);
15783 	mutex_enter(&ill->ill_lock);
15784 
15785 	if (groupname != NULL) {
15786 		/*
15787 		 * Look for a group with a matching groupname to insert.
15788 		 */
15789 		for (illgrp = *illgrp_head; illgrp != NULL;
15790 		    illgrp = illgrp->illgrp_next) {
15791 
15792 			ill_t *tmp_ill;
15793 
15794 			/*
15795 			 * If we have an ill_group_t in the list which has
15796 			 * no ill_t assigned then we must be in the process of
15797 			 * removing this group. We skip this as illgrp_delete()
15798 			 * will remove it from the list.
15799 			 */
15800 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
15801 				ASSERT(illgrp->illgrp_ill_count == 0);
15802 				continue;
15803 			}
15804 
15805 			ASSERT(tmp_ill->ill_phyint != NULL);
15806 			phyi = tmp_ill->ill_phyint;
15807 			/*
15808 			 * Look at groups which has names only.
15809 			 */
15810 			if (phyi->phyint_groupname_len == 0)
15811 				continue;
15812 			/*
15813 			 * Names are stored in the phyint common to both
15814 			 * IPv4 and IPv6.
15815 			 */
15816 			if (mi_strcmp(phyi->phyint_groupname,
15817 			    groupname) == 0) {
15818 				break;
15819 			}
15820 		}
15821 	} else {
15822 		/*
15823 		 * If the caller passes in a NULL "grp_to_insert", we
15824 		 * allocate one below and insert this singleton.
15825 		 */
15826 		illgrp = grp_to_insert;
15827 	}
15828 
15829 	ill->ill_group_next = NULL;
15830 
15831 	if (illgrp == NULL) {
15832 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
15833 		if (illgrp == NULL) {
15834 			return (ENOMEM);
15835 		}
15836 		illgrp->illgrp_next = *illgrp_head;
15837 		*illgrp_head = illgrp;
15838 		illgrp->illgrp_ill = ill;
15839 		illgrp->illgrp_ill_count = 1;
15840 		ill->ill_group = illgrp;
15841 		/*
15842 		 * Used in illgrp_scheduler to protect multiple threads
15843 		 * from traversing the list.
15844 		 */
15845 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
15846 	} else {
15847 		ASSERT(ill->ill_net_type ==
15848 		    illgrp->illgrp_ill->ill_net_type);
15849 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
15850 
15851 		/* Insert ill at tail of this group */
15852 		prev_ill = illgrp->illgrp_ill;
15853 		while (prev_ill->ill_group_next != NULL)
15854 			prev_ill = prev_ill->ill_group_next;
15855 		prev_ill->ill_group_next = ill;
15856 		ill->ill_group = illgrp;
15857 		illgrp->illgrp_ill_count++;
15858 		/*
15859 		 * Inherit group properties. Currently only forwarding
15860 		 * is the property we try to keep the same with all the
15861 		 * ills. When there are more, we will abstract this into
15862 		 * a function.
15863 		 */
15864 		ill->ill_flags &= ~ILLF_ROUTER;
15865 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
15866 	}
15867 	mutex_exit(&ill->ill_lock);
15868 	rw_exit(&ill_g_lock);
15869 
15870 	/*
15871 	 * 1) When ipif_up_done() calls this function, ipif_up_count
15872 	 *    may be zero as it has not yet been bumped. But the ires
15873 	 *    have already been added. So, we do the nomination here
15874 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
15875 	 *    for ill_ipif_up_count != 0. Thus we don't check for
15876 	 *    ill_ipif_up_count here while nominating broadcast ires for
15877 	 *    receive.
15878 	 *
15879 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
15880 	 *    to group them properly as ire_add() has already happened
15881 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
15882 	 *    case, we need to do it here anyway.
15883 	 */
15884 	if (!ill->ill_isv6) {
15885 		ill_group_bcast_for_xmit(ill);
15886 		ill_nominate_bcast_rcv(illgrp);
15887 	}
15888 
15889 	if (!ipif_is_coming_up) {
15890 		/*
15891 		 * When ipif_up_done() calls this function, the multicast
15892 		 * groups have not been joined yet. So, there is no point in
15893 		 * nomination. ip_join_allmulti will handle groups when
15894 		 * ill_recover_multicast is called from ipif_up_done() later.
15895 		 */
15896 		(void) ill_nominate_mcast_rcv(illgrp);
15897 		/*
15898 		 * ipif_up_done calls ill_update_source_selection
15899 		 * anyway. Moreover, we don't want to re-create
15900 		 * interface routes while ipif_up_done() still has reference
15901 		 * to them. Refer to ipif_up_done() for more details.
15902 		 */
15903 		ill_update_source_selection(ill);
15904 	}
15905 
15906 	/*
15907 	 * Send a routing sockets message if we are inserting into
15908 	 * groups with names.
15909 	 */
15910 	if (groupname != NULL)
15911 		ip_rts_ifmsg(ill->ill_ipif);
15912 	return (0);
15913 }
15914 
15915 /*
15916  * Return the first phyint matching the groupname. There could
15917  * be more than one when there are ill groups.
15918  *
15919  * Needs work: called only from ip_sioctl_groupname
15920  */
15921 static phyint_t *
15922 phyint_lookup_group(char *groupname)
15923 {
15924 	phyint_t *phyi;
15925 
15926 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
15927 	/*
15928 	 * Group names are stored in the phyint - a common structure
15929 	 * to both IPv4 and IPv6.
15930 	 */
15931 	phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index);
15932 	for (; phyi != NULL;
15933 	    phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index,
15934 	    phyi, AVL_AFTER)) {
15935 		if (phyi->phyint_groupname_len == 0)
15936 			continue;
15937 		ASSERT(phyi->phyint_groupname != NULL);
15938 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
15939 			return (phyi);
15940 	}
15941 	return (NULL);
15942 }
15943 
15944 
15945 
15946 /*
15947  * MT notes on creation and deletion of IPMP groups
15948  *
15949  * Creation and deletion of IPMP groups introduce the need to merge or
15950  * split the associated serialization objects i.e the ipsq's. Normally all
15951  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
15952  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
15953  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
15954  * is a need to change the <ill-ipsq> association and we have to operate on both
15955  * the source and destination IPMP groups. For eg. attempting to set the
15956  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
15957  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
15958  * source or destination IPMP group are mapped to a single ipsq for executing
15959  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
15960  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
15961  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
15962  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
15963  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
15964  * ipsq has to be examined for redoing the <ill-ipsq> associations.
15965  *
15966  * In the above example the ioctl handling code locates the current ipsq of hme0
15967  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
15968  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
15969  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
15970  * the destination ipsq. If the destination ipsq is not busy, it also enters
15971  * the destination ipsq exclusively. Now the actual groupname setting operation
15972  * can proceed. If the destination ipsq is busy, the operation is enqueued
15973  * on the destination (merged) ipsq and will be handled in the unwind from
15974  * ipsq_exit.
15975  *
15976  * To prevent other threads accessing the ill while the group name change is
15977  * in progres, we bring down the ipifs which also removes the ill from the
15978  * group. The group is changed in phyint and when the first ipif on the ill
15979  * is brought up, the ill is inserted into the right IPMP group by
15980  * illgrp_insert.
15981  */
15982 /* ARGSUSED */
15983 int
15984 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15985     ip_ioctl_cmd_t *ipip, void *ifreq)
15986 {
15987 	int i;
15988 	char *tmp;
15989 	int namelen;
15990 	ill_t *ill = ipif->ipif_ill;
15991 	ill_t *ill_v4, *ill_v6;
15992 	int err = 0;
15993 	phyint_t *phyi;
15994 	phyint_t *phyi_tmp;
15995 	struct lifreq *lifr;
15996 	mblk_t	*mp1;
15997 	char *groupname;
15998 	ipsq_t *ipsq;
15999 
16000 	ASSERT(IAM_WRITER_IPIF(ipif));
16001 
16002 	/* Existance verified in ip_wput_nondata */
16003 	mp1 = mp->b_cont->b_cont;
16004 	lifr = (struct lifreq *)mp1->b_rptr;
16005 	groupname = lifr->lifr_groupname;
16006 
16007 	if (ipif->ipif_id != 0)
16008 		return (EINVAL);
16009 
16010 	phyi = ill->ill_phyint;
16011 	ASSERT(phyi != NULL);
16012 
16013 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16014 		return (EINVAL);
16015 
16016 	tmp = groupname;
16017 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16018 		;
16019 
16020 	if (i == LIFNAMSIZ) {
16021 		/* no null termination */
16022 		return (EINVAL);
16023 	}
16024 
16025 	/*
16026 	 * Calculate the namelen exclusive of the null
16027 	 * termination character.
16028 	 */
16029 	namelen = tmp - groupname;
16030 
16031 	ill_v4 = phyi->phyint_illv4;
16032 	ill_v6 = phyi->phyint_illv6;
16033 
16034 	/*
16035 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16036 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16037 	 * synchronization notes in ip.c
16038 	 */
16039 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16040 		return (EINVAL);
16041 	}
16042 
16043 	/*
16044 	 * mark the ill as changing.
16045 	 * this should queue all new requests on the syncq.
16046 	 */
16047 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16048 
16049 	if (ill_v4 != NULL)
16050 		ill_v4->ill_state_flags |= ILL_CHANGING;
16051 	if (ill_v6 != NULL)
16052 		ill_v6->ill_state_flags |= ILL_CHANGING;
16053 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16054 
16055 	if (namelen == 0) {
16056 		/*
16057 		 * Null string means remove this interface from the
16058 		 * existing group.
16059 		 */
16060 		if (phyi->phyint_groupname_len == 0) {
16061 			/*
16062 			 * Never was in a group.
16063 			 */
16064 			err = 0;
16065 			goto done;
16066 		}
16067 
16068 		/*
16069 		 * IPv4 or IPv6 may be temporarily out of the group when all
16070 		 * the ipifs are down. Thus, we need to check for ill_group to
16071 		 * be non-NULL.
16072 		 */
16073 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16074 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16075 			mutex_enter(&ill_v4->ill_lock);
16076 			if (!ill_is_quiescent(ill_v4)) {
16077 				/*
16078 				 * ipsq_pending_mp_add will not fail since
16079 				 * connp is NULL
16080 				 */
16081 				(void) ipsq_pending_mp_add(NULL,
16082 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16083 				mutex_exit(&ill_v4->ill_lock);
16084 				err = EINPROGRESS;
16085 				goto done;
16086 			}
16087 			mutex_exit(&ill_v4->ill_lock);
16088 		}
16089 
16090 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16091 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16092 			mutex_enter(&ill_v6->ill_lock);
16093 			if (!ill_is_quiescent(ill_v6)) {
16094 				(void) ipsq_pending_mp_add(NULL,
16095 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16096 				mutex_exit(&ill_v6->ill_lock);
16097 				err = EINPROGRESS;
16098 				goto done;
16099 			}
16100 			mutex_exit(&ill_v6->ill_lock);
16101 		}
16102 
16103 		rw_enter(&ill_g_lock, RW_WRITER);
16104 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16105 		mutex_enter(&phyi->phyint_lock);
16106 		ASSERT(phyi->phyint_groupname != NULL);
16107 		mi_free(phyi->phyint_groupname);
16108 		phyi->phyint_groupname = NULL;
16109 		phyi->phyint_groupname_len = 0;
16110 		mutex_exit(&phyi->phyint_lock);
16111 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16112 		rw_exit(&ill_g_lock);
16113 		err = ill_up_ipifs(ill, q, mp);
16114 
16115 		/*
16116 		 * set the split flag so that the ipsq can be split
16117 		 */
16118 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16119 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16120 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16121 
16122 	} else {
16123 		if (phyi->phyint_groupname_len != 0) {
16124 			ASSERT(phyi->phyint_groupname != NULL);
16125 			/* Are we inserting in the same group ? */
16126 			if (mi_strcmp(groupname,
16127 			    phyi->phyint_groupname) == 0) {
16128 				err = 0;
16129 				goto done;
16130 			}
16131 		}
16132 
16133 		rw_enter(&ill_g_lock, RW_READER);
16134 		/*
16135 		 * Merge ipsq for the group's.
16136 		 * This check is here as multiple groups/ills might be
16137 		 * sharing the same ipsq.
16138 		 * If we have to merege than the operation is restarted
16139 		 * on the new ipsq.
16140 		 */
16141 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL);
16142 		if (phyi->phyint_ipsq != ipsq) {
16143 			rw_exit(&ill_g_lock);
16144 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16145 			goto done;
16146 		}
16147 		/*
16148 		 * Running exclusive on new ipsq.
16149 		 */
16150 
16151 		ASSERT(ipsq != NULL);
16152 		ASSERT(ipsq->ipsq_writer == curthread);
16153 
16154 		/*
16155 		 * Check whether the ill_type and ill_net_type matches before
16156 		 * we allocate any memory so that the cleanup is easier.
16157 		 *
16158 		 * We can't group dissimilar ones as we can't load spread
16159 		 * packets across the group because of potential link-level
16160 		 * header differences.
16161 		 */
16162 		phyi_tmp = phyint_lookup_group(groupname);
16163 		if (phyi_tmp != NULL) {
16164 			if ((ill_v4 != NULL &&
16165 			    phyi_tmp->phyint_illv4 != NULL) &&
16166 			    ((ill_v4->ill_net_type !=
16167 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16168 			    (ill_v4->ill_type !=
16169 			    phyi_tmp->phyint_illv4->ill_type))) {
16170 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16171 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16172 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16173 				rw_exit(&ill_g_lock);
16174 				return (EINVAL);
16175 			}
16176 			if ((ill_v6 != NULL &&
16177 			    phyi_tmp->phyint_illv6 != NULL) &&
16178 			    ((ill_v6->ill_net_type !=
16179 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16180 			    (ill_v6->ill_type !=
16181 			    phyi_tmp->phyint_illv6->ill_type))) {
16182 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16183 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16184 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16185 				rw_exit(&ill_g_lock);
16186 				return (EINVAL);
16187 			}
16188 		}
16189 
16190 		rw_exit(&ill_g_lock);
16191 
16192 		/*
16193 		 * bring down all v4 ipifs.
16194 		 */
16195 		if (ill_v4 != NULL) {
16196 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16197 		}
16198 
16199 		/*
16200 		 * bring down all v6 ipifs.
16201 		 */
16202 		if (ill_v6 != NULL) {
16203 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16204 		}
16205 
16206 		/*
16207 		 * make sure all ipifs are down and there are no active
16208 		 * references. Call to ipsq_pending_mp_add will not fail
16209 		 * since connp is NULL.
16210 		 */
16211 		if (ill_v4 != NULL) {
16212 			mutex_enter(&ill_v4->ill_lock);
16213 			if (!ill_is_quiescent(ill_v4)) {
16214 				(void) ipsq_pending_mp_add(NULL,
16215 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16216 				mutex_exit(&ill_v4->ill_lock);
16217 				err = EINPROGRESS;
16218 				goto done;
16219 			}
16220 			mutex_exit(&ill_v4->ill_lock);
16221 		}
16222 
16223 		if (ill_v6 != NULL) {
16224 			mutex_enter(&ill_v6->ill_lock);
16225 			if (!ill_is_quiescent(ill_v6)) {
16226 				(void) ipsq_pending_mp_add(NULL,
16227 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16228 				mutex_exit(&ill_v6->ill_lock);
16229 				err = EINPROGRESS;
16230 				goto done;
16231 			}
16232 			mutex_exit(&ill_v6->ill_lock);
16233 		}
16234 
16235 		/*
16236 		 * allocate including space for null terminator
16237 		 * before we insert.
16238 		 */
16239 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16240 		if (tmp == NULL)
16241 			return (ENOMEM);
16242 
16243 		rw_enter(&ill_g_lock, RW_WRITER);
16244 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16245 		mutex_enter(&phyi->phyint_lock);
16246 		if (phyi->phyint_groupname_len != 0) {
16247 			ASSERT(phyi->phyint_groupname != NULL);
16248 			mi_free(phyi->phyint_groupname);
16249 		}
16250 
16251 		/*
16252 		 * setup the new group name.
16253 		 */
16254 		phyi->phyint_groupname = tmp;
16255 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16256 		phyi->phyint_groupname_len = namelen + 1;
16257 		mutex_exit(&phyi->phyint_lock);
16258 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16259 		rw_exit(&ill_g_lock);
16260 
16261 		err = ill_up_ipifs(ill, q, mp);
16262 	}
16263 
16264 done:
16265 	/*
16266 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16267 	 */
16268 	if (err != EINPROGRESS) {
16269 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16270 		if (ill_v4 != NULL)
16271 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16272 		if (ill_v6 != NULL)
16273 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16274 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16275 	}
16276 	return (err);
16277 }
16278 
16279 /* ARGSUSED */
16280 int
16281 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16282     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16283 {
16284 	ill_t *ill;
16285 	phyint_t *phyi;
16286 	struct lifreq *lifr;
16287 	mblk_t	*mp1;
16288 
16289 	/* Existence verified in ip_wput_nondata */
16290 	mp1 = mp->b_cont->b_cont;
16291 	lifr = (struct lifreq *)mp1->b_rptr;
16292 	ill = ipif->ipif_ill;
16293 	phyi = ill->ill_phyint;
16294 
16295 	lifr->lifr_groupname[0] = '\0';
16296 	/*
16297 	 * ill_group may be null if all the interfaces
16298 	 * are down. But still, the phyint should always
16299 	 * hold the name.
16300 	 */
16301 	if (phyi->phyint_groupname_len != 0) {
16302 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16303 		    phyi->phyint_groupname_len);
16304 	}
16305 
16306 	return (0);
16307 }
16308 
16309 
16310 typedef struct conn_move_s {
16311 	ill_t	*cm_from_ill;
16312 	ill_t	*cm_to_ill;
16313 	int	cm_ifindex;
16314 } conn_move_t;
16315 
16316 /*
16317  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16318  */
16319 static void
16320 conn_move(conn_t *connp, caddr_t arg)
16321 {
16322 	conn_move_t *connm;
16323 	int ifindex;
16324 	int i;
16325 	ill_t *from_ill;
16326 	ill_t *to_ill;
16327 	ilg_t *ilg;
16328 	ilm_t *ret_ilm;
16329 
16330 	connm = (conn_move_t *)arg;
16331 	ifindex = connm->cm_ifindex;
16332 	from_ill = connm->cm_from_ill;
16333 	to_ill = connm->cm_to_ill;
16334 
16335 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16336 
16337 	/* All multicast fields protected by conn_lock */
16338 	mutex_enter(&connp->conn_lock);
16339 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16340 	if ((connp->conn_outgoing_ill == from_ill) &&
16341 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16342 		connp->conn_outgoing_ill = to_ill;
16343 		connp->conn_incoming_ill = to_ill;
16344 	}
16345 
16346 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16347 
16348 	if ((connp->conn_multicast_ill == from_ill) &&
16349 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16350 		connp->conn_multicast_ill = connm->cm_to_ill;
16351 	}
16352 
16353 	/* Change IP_XMIT_IF associations */
16354 	if ((connp->conn_xmit_if_ill == from_ill) &&
16355 	    (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
16356 		connp->conn_xmit_if_ill = to_ill;
16357 	}
16358 	/*
16359 	 * Change the ilg_ill to point to the new one. This assumes
16360 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
16361 	 * has been told to receive packets on this interface.
16362 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16363 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
16364 	 * some ilms may not have moved. We check to see whether
16365 	 * the ilms have moved to to_ill. We can't check on from_ill
16366 	 * as in the process of moving, we could have split an ilm
16367 	 * in to two - which has the same orig_ifindex and v6group.
16368 	 *
16369 	 * For IPv4, ilg_ipif moves implicitly. The code below really
16370 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16371 	 */
16372 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16373 		ilg = &connp->conn_ilg[i];
16374 		if ((ilg->ilg_ill == from_ill) &&
16375 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16376 			/* ifindex != 0 indicates failback */
16377 			if (ifindex != 0) {
16378 				connp->conn_ilg[i].ilg_ill = to_ill;
16379 				continue;
16380 			}
16381 
16382 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16383 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16384 			    connp->conn_zoneid);
16385 
16386 			if (ret_ilm != NULL)
16387 				connp->conn_ilg[i].ilg_ill = to_ill;
16388 		}
16389 	}
16390 	mutex_exit(&connp->conn_lock);
16391 }
16392 
16393 static void
16394 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16395 {
16396 	conn_move_t connm;
16397 
16398 	connm.cm_from_ill = from_ill;
16399 	connm.cm_to_ill = to_ill;
16400 	connm.cm_ifindex = ifindex;
16401 
16402 	ipcl_walk(conn_move, (caddr_t)&connm);
16403 }
16404 
16405 /*
16406  * ilm has been moved from from_ill to to_ill.
16407  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16408  * appropriately.
16409  *
16410  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
16411  *	  the code there de-references ipif_ill to get the ill to
16412  *	  send multicast requests. It does not work as ipif is on its
16413  *	  move and already moved when this function is called.
16414  *	  Thus, we need to use from_ill and to_ill send down multicast
16415  *	  requests.
16416  */
16417 static void
16418 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
16419 {
16420 	ipif_t *ipif;
16421 	ilm_t *ilm;
16422 
16423 	/*
16424 	 * See whether we need to send down DL_ENABMULTI_REQ on
16425 	 * to_ill as ilm has just been added.
16426 	 */
16427 	ASSERT(IAM_WRITER_ILL(to_ill));
16428 	ASSERT(IAM_WRITER_ILL(from_ill));
16429 
16430 	ILM_WALKER_HOLD(to_ill);
16431 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16432 
16433 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
16434 			continue;
16435 		/*
16436 		 * no locks held, ill/ipif cannot dissappear as long
16437 		 * as we are writer.
16438 		 */
16439 		ipif = to_ill->ill_ipif;
16440 		/*
16441 		 * No need to hold any lock as we are the writer and this
16442 		 * can only be changed by a writer.
16443 		 */
16444 		ilm->ilm_is_new = B_FALSE;
16445 
16446 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
16447 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16448 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
16449 			    "resolver\n"));
16450 			continue;		/* Must be IRE_IF_NORESOLVER */
16451 		}
16452 
16453 
16454 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16455 			ip1dbg(("ilm_send_multicast_reqs: "
16456 			    "to_ill MULTI_BCAST\n"));
16457 			goto from;
16458 		}
16459 
16460 		if (to_ill->ill_isv6)
16461 			mld_joingroup(ilm);
16462 		else
16463 			igmp_joingroup(ilm);
16464 
16465 		if (to_ill->ill_ipif_up_count == 0) {
16466 			/*
16467 			 * Nobody there. All multicast addresses will be
16468 			 * re-joined when we get the DL_BIND_ACK bringing the
16469 			 * interface up.
16470 			 */
16471 			ilm->ilm_notify_driver = B_FALSE;
16472 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
16473 			goto from;
16474 		}
16475 
16476 		/*
16477 		 * For allmulti address, we want to join on only one interface.
16478 		 * Checking for ilm_numentries_v6 is not correct as you may
16479 		 * find an ilm with zero address on to_ill, but we may not
16480 		 * have nominated to_ill for receiving. Thus, if we have
16481 		 * nominated from_ill (ill_join_allmulti is set), nominate
16482 		 * only if to_ill is not already nominated (to_ill normally
16483 		 * should not have been nominated if "from_ill" has already
16484 		 * been nominated. As we don't prevent failovers from happening
16485 		 * across groups, we don't assert).
16486 		 */
16487 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16488 			/*
16489 			 * There is no need to hold ill locks as we are
16490 			 * writer on both ills and when ill_join_allmulti
16491 			 * is changed the thread is always a writer.
16492 			 */
16493 			if (from_ill->ill_join_allmulti &&
16494 			    !to_ill->ill_join_allmulti) {
16495 				(void) ip_join_allmulti(to_ill->ill_ipif);
16496 			}
16497 		} else if (ilm->ilm_notify_driver) {
16498 
16499 			/*
16500 			 * This is a newly moved ilm so we need to tell the
16501 			 * driver about the new group. There can be more than
16502 			 * one ilm's for the same group in the list each with a
16503 			 * different orig_ifindex. We have to inform the driver
16504 			 * once. In ilm_move_v[4,6] we only set the flag
16505 			 * ilm_notify_driver for the first ilm.
16506 			 */
16507 
16508 			(void) ip_ll_send_enabmulti_req(to_ill,
16509 			    &ilm->ilm_v6addr);
16510 		}
16511 
16512 		ilm->ilm_notify_driver = B_FALSE;
16513 
16514 		/*
16515 		 * See whether we need to send down DL_DISABMULTI_REQ on
16516 		 * from_ill as ilm has just been removed.
16517 		 */
16518 from:
16519 		ipif = from_ill->ill_ipif;
16520 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
16521 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16522 			ip1dbg(("ilm_send_multicast_reqs: "
16523 			    "from_ill not resolver\n"));
16524 			continue;		/* Must be IRE_IF_NORESOLVER */
16525 		}
16526 
16527 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16528 			ip1dbg(("ilm_send_multicast_reqs: "
16529 			    "from_ill MULTI_BCAST\n"));
16530 			continue;
16531 		}
16532 
16533 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16534 			if (from_ill->ill_join_allmulti)
16535 			    (void) ip_leave_allmulti(from_ill->ill_ipif);
16536 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
16537 			(void) ip_ll_send_disabmulti_req(from_ill,
16538 		    &ilm->ilm_v6addr);
16539 		}
16540 	}
16541 	ILM_WALKER_RELE(to_ill);
16542 }
16543 
16544 /*
16545  * This function is called when all multicast memberships needs
16546  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
16547  * called only once unlike the IPv4 counterpart where it is called after
16548  * every logical interface is moved. The reason is due to multicast
16549  * memberships are joined using an interface address in IPv4 while in
16550  * IPv6, interface index is used.
16551  */
16552 static void
16553 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
16554 {
16555 	ilm_t	*ilm;
16556 	ilm_t	*ilm_next;
16557 	ilm_t	*new_ilm;
16558 	ilm_t	**ilmp;
16559 	int	count;
16560 	char buf[INET6_ADDRSTRLEN];
16561 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
16562 
16563 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
16564 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
16565 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
16566 
16567 	if (ifindex == 0) {
16568 		/*
16569 		 * Form the solicited node mcast address which is used later.
16570 		 */
16571 		ipif_t *ipif;
16572 
16573 		ipif = from_ill->ill_ipif;
16574 		ASSERT(ipif->ipif_id == 0);
16575 
16576 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
16577 	}
16578 
16579 	ilmp = &from_ill->ill_ilm;
16580 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
16581 		ilm_next = ilm->ilm_next;
16582 
16583 		if (ilm->ilm_flags & ILM_DELETED) {
16584 			ilmp = &ilm->ilm_next;
16585 			continue;
16586 		}
16587 
16588 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
16589 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
16590 		ASSERT(ilm->ilm_orig_ifindex != 0);
16591 		if (ilm->ilm_orig_ifindex == ifindex) {
16592 			/*
16593 			 * We are failing back multicast memberships.
16594 			 * If the same ilm exists in to_ill, it means somebody
16595 			 * has joined the same group there e.g. ff02::1
16596 			 * is joined within the kernel when the interfaces
16597 			 * came UP.
16598 			 */
16599 			ASSERT(ilm->ilm_ipif == NULL);
16600 			if (new_ilm != NULL) {
16601 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16602 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16603 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16604 					new_ilm->ilm_is_new = B_TRUE;
16605 				}
16606 			} else {
16607 				/*
16608 				 * check if we can just move the ilm
16609 				 */
16610 				if (from_ill->ill_ilm_walker_cnt != 0) {
16611 					/*
16612 					 * We have walkers we cannot move
16613 					 * the ilm, so allocate a new ilm,
16614 					 * this (old) ilm will be marked
16615 					 * ILM_DELETED at the end of the loop
16616 					 * and will be freed when the
16617 					 * last walker exits.
16618 					 */
16619 					new_ilm = (ilm_t *)mi_zalloc
16620 					    (sizeof (ilm_t));
16621 					if (new_ilm == NULL) {
16622 						ip0dbg(("ilm_move_v6: "
16623 						    "FAILBACK of IPv6"
16624 						    " multicast address %s : "
16625 						    "from %s to"
16626 						    " %s failed : ENOMEM \n",
16627 						    inet_ntop(AF_INET6,
16628 						    &ilm->ilm_v6addr, buf,
16629 						    sizeof (buf)),
16630 						    from_ill->ill_name,
16631 						    to_ill->ill_name));
16632 
16633 							ilmp = &ilm->ilm_next;
16634 							continue;
16635 					}
16636 					*new_ilm = *ilm;
16637 					/*
16638 					 * we don't want new_ilm linked to
16639 					 * ilm's filter list.
16640 					 */
16641 					new_ilm->ilm_filter = NULL;
16642 				} else {
16643 					/*
16644 					 * No walkers we can move the ilm.
16645 					 * lets take it out of the list.
16646 					 */
16647 					*ilmp = ilm->ilm_next;
16648 					ilm->ilm_next = NULL;
16649 					new_ilm = ilm;
16650 				}
16651 
16652 				/*
16653 				 * if this is the first ilm for the group
16654 				 * set ilm_notify_driver so that we notify the
16655 				 * driver in ilm_send_multicast_reqs.
16656 				 */
16657 				if (ilm_lookup_ill_v6(to_ill,
16658 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16659 					new_ilm->ilm_notify_driver = B_TRUE;
16660 
16661 				new_ilm->ilm_ill = to_ill;
16662 				/* Add to the to_ill's list */
16663 				new_ilm->ilm_next = to_ill->ill_ilm;
16664 				to_ill->ill_ilm = new_ilm;
16665 				/*
16666 				 * set the flag so that mld_joingroup is
16667 				 * called in ilm_send_multicast_reqs().
16668 				 */
16669 				new_ilm->ilm_is_new = B_TRUE;
16670 			}
16671 			goto bottom;
16672 		} else if (ifindex != 0) {
16673 			/*
16674 			 * If this is FAILBACK (ifindex != 0) and the ifindex
16675 			 * has not matched above, look at the next ilm.
16676 			 */
16677 			ilmp = &ilm->ilm_next;
16678 			continue;
16679 		}
16680 		/*
16681 		 * If we are here, it means ifindex is 0. Failover
16682 		 * everything.
16683 		 *
16684 		 * We need to handle solicited node mcast address
16685 		 * and all_nodes mcast address differently as they
16686 		 * are joined witin the kenrel (ipif_multicast_up)
16687 		 * and potentially from the userland. We are called
16688 		 * after the ipifs of from_ill has been moved.
16689 		 * If we still find ilms on ill with solicited node
16690 		 * mcast address or all_nodes mcast address, it must
16691 		 * belong to the UP interface that has not moved e.g.
16692 		 * ipif_id 0 with the link local prefix does not move.
16693 		 * We join this on the new ill accounting for all the
16694 		 * userland memberships so that applications don't
16695 		 * see any failure.
16696 		 *
16697 		 * We need to make sure that we account only for the
16698 		 * solicited node and all node multicast addresses
16699 		 * that was brought UP on these. In the case of
16700 		 * a failover from A to B, we might have ilms belonging
16701 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
16702 		 * for the membership from the userland. If we are failing
16703 		 * over from B to C now, we will find the ones belonging
16704 		 * to A on B. These don't account for the ill_ipif_up_count.
16705 		 * They just move from B to C. The check below on
16706 		 * ilm_orig_ifindex ensures that.
16707 		 */
16708 		if ((ilm->ilm_orig_ifindex ==
16709 		    from_ill->ill_phyint->phyint_ifindex) &&
16710 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
16711 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
16712 		    &ilm->ilm_v6addr))) {
16713 			ASSERT(ilm->ilm_refcnt > 0);
16714 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
16715 			/*
16716 			 * For indentation reasons, we are not using a
16717 			 * "else" here.
16718 			 */
16719 			if (count == 0) {
16720 				ilmp = &ilm->ilm_next;
16721 				continue;
16722 			}
16723 			ilm->ilm_refcnt -= count;
16724 			if (new_ilm != NULL) {
16725 				/*
16726 				 * Can find one with the same
16727 				 * ilm_orig_ifindex, if we are failing
16728 				 * over to a STANDBY. This happens
16729 				 * when somebody wants to join a group
16730 				 * on a STANDBY interface and we
16731 				 * internally join on a different one.
16732 				 * If we had joined on from_ill then, a
16733 				 * failover now will find a new ilm
16734 				 * with this index.
16735 				 */
16736 				ip1dbg(("ilm_move_v6: FAILOVER, found"
16737 				    " new ilm on %s, group address %s\n",
16738 				    to_ill->ill_name,
16739 				    inet_ntop(AF_INET6,
16740 				    &ilm->ilm_v6addr, buf,
16741 				    sizeof (buf))));
16742 				new_ilm->ilm_refcnt += count;
16743 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16744 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16745 					new_ilm->ilm_is_new = B_TRUE;
16746 				}
16747 			} else {
16748 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
16749 				if (new_ilm == NULL) {
16750 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
16751 					    " multicast address %s : from %s to"
16752 					    " %s failed : ENOMEM \n",
16753 					    inet_ntop(AF_INET6,
16754 					    &ilm->ilm_v6addr, buf,
16755 					    sizeof (buf)), from_ill->ill_name,
16756 					    to_ill->ill_name));
16757 					ilmp = &ilm->ilm_next;
16758 					continue;
16759 				}
16760 				*new_ilm = *ilm;
16761 				new_ilm->ilm_filter = NULL;
16762 				new_ilm->ilm_refcnt = count;
16763 				new_ilm->ilm_timer = INFINITY;
16764 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
16765 				new_ilm->ilm_is_new = B_TRUE;
16766 				/*
16767 				 * If the to_ill has not joined this
16768 				 * group we need to tell the driver in
16769 				 * ill_send_multicast_reqs.
16770 				 */
16771 				if (ilm_lookup_ill_v6(to_ill,
16772 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16773 					new_ilm->ilm_notify_driver = B_TRUE;
16774 
16775 				new_ilm->ilm_ill = to_ill;
16776 				/* Add to the to_ill's list */
16777 				new_ilm->ilm_next = to_ill->ill_ilm;
16778 				to_ill->ill_ilm = new_ilm;
16779 				ASSERT(new_ilm->ilm_ipif == NULL);
16780 			}
16781 			if (ilm->ilm_refcnt == 0) {
16782 				goto bottom;
16783 			} else {
16784 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
16785 				CLEAR_SLIST(new_ilm->ilm_filter);
16786 				ilmp = &ilm->ilm_next;
16787 			}
16788 			continue;
16789 		} else {
16790 			/*
16791 			 * ifindex = 0 means, move everything pointing at
16792 			 * from_ill. We are doing this becuase ill has
16793 			 * either FAILED or became INACTIVE.
16794 			 *
16795 			 * As we would like to move things later back to
16796 			 * from_ill, we want to retain the identity of this
16797 			 * ilm. Thus, we don't blindly increment the reference
16798 			 * count on the ilms matching the address alone. We
16799 			 * need to match on the ilm_orig_index also. new_ilm
16800 			 * was obtained by matching ilm_orig_index also.
16801 			 */
16802 			if (new_ilm != NULL) {
16803 				/*
16804 				 * This is possible only if a previous restore
16805 				 * was incomplete i.e restore to
16806 				 * ilm_orig_ifindex left some ilms because
16807 				 * of some failures. Thus when we are failing
16808 				 * again, we might find our old friends there.
16809 				 */
16810 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
16811 				    " on %s, group address %s\n",
16812 				    to_ill->ill_name,
16813 				    inet_ntop(AF_INET6,
16814 				    &ilm->ilm_v6addr, buf,
16815 				    sizeof (buf))));
16816 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16817 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16818 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16819 					new_ilm->ilm_is_new = B_TRUE;
16820 				}
16821 			} else {
16822 				if (from_ill->ill_ilm_walker_cnt != 0) {
16823 					new_ilm = (ilm_t *)
16824 					    mi_zalloc(sizeof (ilm_t));
16825 					if (new_ilm == NULL) {
16826 						ip0dbg(("ilm_move_v6: "
16827 						    "FAILOVER of IPv6"
16828 						    " multicast address %s : "
16829 						    "from %s to"
16830 						    " %s failed : ENOMEM \n",
16831 						    inet_ntop(AF_INET6,
16832 						    &ilm->ilm_v6addr, buf,
16833 						    sizeof (buf)),
16834 						    from_ill->ill_name,
16835 						    to_ill->ill_name));
16836 
16837 							ilmp = &ilm->ilm_next;
16838 							continue;
16839 					}
16840 					*new_ilm = *ilm;
16841 					new_ilm->ilm_filter = NULL;
16842 				} else {
16843 					*ilmp = ilm->ilm_next;
16844 					new_ilm = ilm;
16845 				}
16846 				/*
16847 				 * If the to_ill has not joined this
16848 				 * group we need to tell the driver in
16849 				 * ill_send_multicast_reqs.
16850 				 */
16851 				if (ilm_lookup_ill_v6(to_ill,
16852 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16853 					new_ilm->ilm_notify_driver = B_TRUE;
16854 
16855 				/* Add to the to_ill's list */
16856 				new_ilm->ilm_next = to_ill->ill_ilm;
16857 				to_ill->ill_ilm = new_ilm;
16858 				ASSERT(ilm->ilm_ipif == NULL);
16859 				new_ilm->ilm_ill = to_ill;
16860 				new_ilm->ilm_is_new = B_TRUE;
16861 			}
16862 
16863 		}
16864 
16865 bottom:
16866 		/*
16867 		 * Revert multicast filter state to (EXCLUDE, NULL).
16868 		 * new_ilm->ilm_is_new should already be set if needed.
16869 		 */
16870 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
16871 		CLEAR_SLIST(new_ilm->ilm_filter);
16872 		/*
16873 		 * We allocated/got a new ilm, free the old one.
16874 		 */
16875 		if (new_ilm != ilm) {
16876 			if (from_ill->ill_ilm_walker_cnt == 0) {
16877 				*ilmp = ilm->ilm_next;
16878 				ilm->ilm_next = NULL;
16879 				FREE_SLIST(ilm->ilm_filter);
16880 				FREE_SLIST(ilm->ilm_pendsrcs);
16881 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
16882 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
16883 				mi_free((char *)ilm);
16884 			} else {
16885 				ilm->ilm_flags |= ILM_DELETED;
16886 				from_ill->ill_ilm_cleanup_reqd = 1;
16887 				ilmp = &ilm->ilm_next;
16888 			}
16889 		}
16890 	}
16891 }
16892 
16893 /*
16894  * Move all the multicast memberships to to_ill. Called when
16895  * an ipif moves from "from_ill" to "to_ill". This function is slightly
16896  * different from IPv6 counterpart as multicast memberships are associated
16897  * with ills in IPv6. This function is called after every ipif is moved
16898  * unlike IPv6, where it is moved only once.
16899  */
16900 static void
16901 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
16902 {
16903 	ilm_t	*ilm;
16904 	ilm_t	*ilm_next;
16905 	ilm_t	*new_ilm;
16906 	ilm_t	**ilmp;
16907 
16908 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
16909 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
16910 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
16911 
16912 	ilmp = &from_ill->ill_ilm;
16913 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
16914 		ilm_next = ilm->ilm_next;
16915 
16916 		if (ilm->ilm_flags & ILM_DELETED) {
16917 			ilmp = &ilm->ilm_next;
16918 			continue;
16919 		}
16920 
16921 		ASSERT(ilm->ilm_ipif != NULL);
16922 
16923 		if (ilm->ilm_ipif != ipif) {
16924 			ilmp = &ilm->ilm_next;
16925 			continue;
16926 		}
16927 
16928 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
16929 		    htonl(INADDR_ALLHOSTS_GROUP)) {
16930 			/*
16931 			 * We joined this in ipif_multicast_up
16932 			 * and we never did an ipif_multicast_down
16933 			 * for IPv4. If nobody else from the userland
16934 			 * has reference, we free the ilm, and later
16935 			 * when this ipif comes up on the new ill,
16936 			 * we will join this again.
16937 			 */
16938 			if (--ilm->ilm_refcnt == 0)
16939 				goto delete_ilm;
16940 
16941 			new_ilm = ilm_lookup_ipif(ipif,
16942 			    V4_PART_OF_V6(ilm->ilm_v6addr));
16943 			if (new_ilm != NULL) {
16944 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16945 				/*
16946 				 * We still need to deal with the from_ill.
16947 				 */
16948 				new_ilm->ilm_is_new = B_TRUE;
16949 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
16950 				CLEAR_SLIST(new_ilm->ilm_filter);
16951 				goto delete_ilm;
16952 			}
16953 			/*
16954 			 * If we could not find one e.g. ipif is
16955 			 * still down on to_ill, we add this ilm
16956 			 * on ill_new to preserve the reference
16957 			 * count.
16958 			 */
16959 		}
16960 		/*
16961 		 * When ipifs move, ilms always move with it
16962 		 * to the NEW ill. Thus we should never be
16963 		 * able to find ilm till we really move it here.
16964 		 */
16965 		ASSERT(ilm_lookup_ipif(ipif,
16966 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
16967 
16968 		if (from_ill->ill_ilm_walker_cnt != 0) {
16969 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
16970 			if (new_ilm == NULL) {
16971 				char buf[INET6_ADDRSTRLEN];
16972 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
16973 				    " multicast address %s : "
16974 				    "from %s to"
16975 				    " %s failed : ENOMEM \n",
16976 				    inet_ntop(AF_INET,
16977 				    &ilm->ilm_v6addr, buf,
16978 				    sizeof (buf)),
16979 				    from_ill->ill_name,
16980 				    to_ill->ill_name));
16981 
16982 				ilmp = &ilm->ilm_next;
16983 				continue;
16984 			}
16985 			*new_ilm = *ilm;
16986 			/* We don't want new_ilm linked to ilm's filter list */
16987 			new_ilm->ilm_filter = NULL;
16988 		} else {
16989 			/* Remove from the list */
16990 			*ilmp = ilm->ilm_next;
16991 			new_ilm = ilm;
16992 		}
16993 
16994 		/*
16995 		 * If we have never joined this group on the to_ill
16996 		 * make sure we tell the driver.
16997 		 */
16998 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
16999 		    ALL_ZONES) == NULL)
17000 			new_ilm->ilm_notify_driver = B_TRUE;
17001 
17002 		/* Add to the to_ill's list */
17003 		new_ilm->ilm_next = to_ill->ill_ilm;
17004 		to_ill->ill_ilm = new_ilm;
17005 		new_ilm->ilm_is_new = B_TRUE;
17006 
17007 		/*
17008 		 * Revert multicast filter state to (EXCLUDE, NULL)
17009 		 */
17010 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17011 		CLEAR_SLIST(new_ilm->ilm_filter);
17012 
17013 		/*
17014 		 * Delete only if we have allocated a new ilm.
17015 		 */
17016 		if (new_ilm != ilm) {
17017 delete_ilm:
17018 			if (from_ill->ill_ilm_walker_cnt == 0) {
17019 				/* Remove from the list */
17020 				*ilmp = ilm->ilm_next;
17021 				ilm->ilm_next = NULL;
17022 				FREE_SLIST(ilm->ilm_filter);
17023 				FREE_SLIST(ilm->ilm_pendsrcs);
17024 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17025 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17026 				mi_free((char *)ilm);
17027 			} else {
17028 				ilm->ilm_flags |= ILM_DELETED;
17029 				from_ill->ill_ilm_cleanup_reqd = 1;
17030 				ilmp = &ilm->ilm_next;
17031 			}
17032 		}
17033 	}
17034 }
17035 
17036 static uint_t
17037 ipif_get_id(ill_t *ill, uint_t id)
17038 {
17039 	uint_t	unit;
17040 	ipif_t	*tipif;
17041 	boolean_t found = B_FALSE;
17042 
17043 	/*
17044 	 * During failback, we want to go back to the same id
17045 	 * instead of the smallest id so that the original
17046 	 * configuration is maintained. id is non-zero in that
17047 	 * case.
17048 	 */
17049 	if (id != 0) {
17050 		/*
17051 		 * While failing back, if we still have an ipif with
17052 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17053 		 * as soon as we return from this function. It was
17054 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17055 		 * we can choose the smallest id. Thus we return zero
17056 		 * in that case ignoring the hint.
17057 		 */
17058 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17059 			return (0);
17060 		for (tipif = ill->ill_ipif; tipif != NULL;
17061 		    tipif = tipif->ipif_next) {
17062 			if (tipif->ipif_id == id) {
17063 				found = B_TRUE;
17064 				break;
17065 			}
17066 		}
17067 		/*
17068 		 * If somebody already plumbed another logical
17069 		 * with the same id, we won't be able to find it.
17070 		 */
17071 		if (!found)
17072 			return (id);
17073 	}
17074 	for (unit = 0; unit <= ip_addrs_per_if; unit++) {
17075 		found = B_FALSE;
17076 		for (tipif = ill->ill_ipif; tipif != NULL;
17077 		    tipif = tipif->ipif_next) {
17078 			if (tipif->ipif_id == unit) {
17079 				found = B_TRUE;
17080 				break;
17081 			}
17082 		}
17083 		if (!found)
17084 			break;
17085 	}
17086 	return (unit);
17087 }
17088 
17089 /* ARGSUSED */
17090 static int
17091 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17092     ipif_t **rep_ipif_ptr)
17093 {
17094 	ill_t	*from_ill;
17095 	ipif_t	*rep_ipif;
17096 	ipif_t	**ipifp;
17097 	uint_t	unit;
17098 	int err = 0;
17099 	ipif_t	*to_ipif;
17100 	struct iocblk	*iocp;
17101 	boolean_t failback_cmd;
17102 	boolean_t remove_ipif;
17103 	int	rc;
17104 
17105 	ASSERT(IAM_WRITER_ILL(to_ill));
17106 	ASSERT(IAM_WRITER_IPIF(ipif));
17107 
17108 	iocp = (struct iocblk *)mp->b_rptr;
17109 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17110 	remove_ipif = B_FALSE;
17111 
17112 	from_ill = ipif->ipif_ill;
17113 
17114 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17115 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17116 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
17117 
17118 	/*
17119 	 * Don't move LINK LOCAL addresses as they are tied to
17120 	 * physical interface.
17121 	 */
17122 	if (from_ill->ill_isv6 &&
17123 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17124 		ipif->ipif_was_up = B_FALSE;
17125 		IPIF_UNMARK_MOVING(ipif);
17126 		return (0);
17127 	}
17128 
17129 	/*
17130 	 * We set the ipif_id to maximum so that the search for
17131 	 * ipif_id will pick the lowest number i.e 0 in the
17132 	 * following 2 cases :
17133 	 *
17134 	 * 1) We have a replacement ipif at the head of to_ill.
17135 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17136 	 *    on to_ill and hence the MOVE might fail. We want to
17137 	 *    remove it only if we could move the ipif. Thus, by
17138 	 *    setting it to the MAX value, we make the search in
17139 	 *    ipif_get_id return the zeroth id.
17140 	 *
17141 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17142 	 *    we might just have a zero address plumbed on the ipif
17143 	 *    with zero id in the case of IPv4. We remove that while
17144 	 *    doing the failback. We want to remove it only if we
17145 	 *    could move the ipif. Thus, by setting it to the MAX
17146 	 *    value, we make the search in ipif_get_id return the
17147 	 *    zeroth id.
17148 	 *
17149 	 * Both (1) and (2) are done only when when we are moving
17150 	 * an ipif (either due to failover/failback) which originally
17151 	 * belonged to this interface i.e the ipif_orig_ifindex is
17152 	 * the same as to_ill's ifindex. This is needed so that
17153 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17154 	 * from B -> A (B is being removed from the group) and
17155 	 * FAILBACK from A -> B restores the original configuration.
17156 	 * Without the check for orig_ifindex, the second FAILOVER
17157 	 * could make the ipif belonging to B replace the A's zeroth
17158 	 * ipif and the subsequent failback re-creating the replacement
17159 	 * ipif again.
17160 	 *
17161 	 * NOTE : We created the replacement ipif when we did a
17162 	 * FAILOVER (See below). We could check for FAILBACK and
17163 	 * then look for replacement ipif to be removed. But we don't
17164 	 * want to do that because we wan't to allow the possibility
17165 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17166 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17167 	 * from B -> A.
17168 	 */
17169 	to_ipif = to_ill->ill_ipif;
17170 	if ((to_ill->ill_phyint->phyint_ifindex ==
17171 	    ipif->ipif_orig_ifindex) &&
17172 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17173 		ASSERT(to_ipif->ipif_id == 0);
17174 		remove_ipif = B_TRUE;
17175 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17176 	}
17177 	/*
17178 	 * Find the lowest logical unit number on the to_ill.
17179 	 * If we are failing back, try to get the original id
17180 	 * rather than the lowest one so that the original
17181 	 * configuration is maintained.
17182 	 *
17183 	 * XXX need a better scheme for this.
17184 	 */
17185 	if (failback_cmd) {
17186 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17187 	} else {
17188 		unit = ipif_get_id(to_ill, 0);
17189 	}
17190 
17191 	/* Reset back to zero in case we fail below */
17192 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17193 		to_ipif->ipif_id = 0;
17194 
17195 	if (unit == ip_addrs_per_if) {
17196 		ipif->ipif_was_up = B_FALSE;
17197 		IPIF_UNMARK_MOVING(ipif);
17198 		return (EINVAL);
17199 	}
17200 
17201 	/*
17202 	 * ipif is ready to move from "from_ill" to "to_ill".
17203 	 *
17204 	 * 1) If we are moving ipif with id zero, create a
17205 	 *    replacement ipif for this ipif on from_ill. If this fails
17206 	 *    fail the MOVE operation.
17207 	 *
17208 	 * 2) Remove the replacement ipif on to_ill if any.
17209 	 *    We could remove the replacement ipif when we are moving
17210 	 *    the ipif with id zero. But what if somebody already
17211 	 *    unplumbed it ? Thus we always remove it if it is present.
17212 	 *    We want to do it only if we are sure we are going to
17213 	 *    move the ipif to to_ill which is why there are no
17214 	 *    returns due to error till ipif is linked to to_ill.
17215 	 *    Note that the first ipif that we failback will always
17216 	 *    be zero if it is present.
17217 	 */
17218 	if (ipif->ipif_id == 0) {
17219 		ipaddr_t inaddr_any = INADDR_ANY;
17220 
17221 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17222 		if (rep_ipif == NULL) {
17223 			ipif->ipif_was_up = B_FALSE;
17224 			IPIF_UNMARK_MOVING(ipif);
17225 			return (ENOMEM);
17226 		}
17227 		*rep_ipif = ipif_zero;
17228 		/*
17229 		 * Before we put the ipif on the list, store the addresses
17230 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17231 		 * assumes so. This logic is not any different from what
17232 		 * ipif_allocate does.
17233 		 */
17234 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17235 		    &rep_ipif->ipif_v6lcl_addr);
17236 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17237 		    &rep_ipif->ipif_v6src_addr);
17238 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17239 		    &rep_ipif->ipif_v6subnet);
17240 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17241 		    &rep_ipif->ipif_v6net_mask);
17242 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17243 		    &rep_ipif->ipif_v6brd_addr);
17244 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17245 		    &rep_ipif->ipif_v6pp_dst_addr);
17246 		/*
17247 		 * We mark IPIF_NOFAILOVER so that this can never
17248 		 * move.
17249 		 */
17250 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17251 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17252 		rep_ipif->ipif_replace_zero = B_TRUE;
17253 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17254 		    MUTEX_DEFAULT, NULL);
17255 		rep_ipif->ipif_id = 0;
17256 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17257 		rep_ipif->ipif_ill = from_ill;
17258 		rep_ipif->ipif_orig_ifindex =
17259 		    from_ill->ill_phyint->phyint_ifindex;
17260 		/* Insert at head */
17261 		rep_ipif->ipif_next = from_ill->ill_ipif;
17262 		from_ill->ill_ipif = rep_ipif;
17263 		/*
17264 		 * We don't really care to let apps know about
17265 		 * this interface.
17266 		 */
17267 	}
17268 
17269 	if (remove_ipif) {
17270 		/*
17271 		 * We set to a max value above for this case to get
17272 		 * id zero. ASSERT that we did get one.
17273 		 */
17274 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17275 		rep_ipif = to_ipif;
17276 		to_ill->ill_ipif = rep_ipif->ipif_next;
17277 		rep_ipif->ipif_next = NULL;
17278 		/*
17279 		 * If some apps scanned and find this interface,
17280 		 * it is time to let them know, so that they can
17281 		 * delete it.
17282 		 */
17283 
17284 		*rep_ipif_ptr = rep_ipif;
17285 	}
17286 
17287 	/* Get it out of the ILL interface list. */
17288 	ipifp = &ipif->ipif_ill->ill_ipif;
17289 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
17290 		if (*ipifp == ipif) {
17291 			*ipifp = ipif->ipif_next;
17292 			break;
17293 		}
17294 	}
17295 
17296 	/* Assign the new ill */
17297 	ipif->ipif_ill = to_ill;
17298 	ipif->ipif_id = unit;
17299 	/* id has already been checked */
17300 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17301 	ASSERT(rc == 0);
17302 	/* Let SCTP update its list */
17303 	sctp_move_ipif(ipif, from_ill, to_ill);
17304 	/*
17305 	 * Handle the failover and failback of ipif_t between
17306 	 * ill_t that have differing maximum mtu values.
17307 	 */
17308 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17309 		if (ipif->ipif_saved_mtu == 0) {
17310 			/*
17311 			 * As this ipif_t is moving to an ill_t
17312 			 * that has a lower ill_max_mtu, its
17313 			 * ipif_mtu needs to be saved so it can
17314 			 * be restored during failback or during
17315 			 * failover to an ill_t which has a
17316 			 * higher ill_max_mtu.
17317 			 */
17318 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17319 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17320 		} else {
17321 			/*
17322 			 * The ipif_t is, once again, moving to
17323 			 * an ill_t that has a lower maximum mtu
17324 			 * value.
17325 			 */
17326 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17327 		}
17328 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17329 	    ipif->ipif_saved_mtu != 0) {
17330 		/*
17331 		 * The mtu of this ipif_t had to be reduced
17332 		 * during an earlier failover; this is an
17333 		 * opportunity for it to be increased (either as
17334 		 * part of another failover or a failback).
17335 		 */
17336 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17337 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17338 			ipif->ipif_saved_mtu = 0;
17339 		} else {
17340 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17341 		}
17342 	}
17343 
17344 	/*
17345 	 * We preserve all the other fields of the ipif including
17346 	 * ipif_saved_ire_mp. The routes that are saved here will
17347 	 * be recreated on the new interface and back on the old
17348 	 * interface when we move back.
17349 	 */
17350 	ASSERT(ipif->ipif_arp_del_mp == NULL);
17351 
17352 	return (err);
17353 }
17354 
17355 static int
17356 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17357     int ifindex, ipif_t **rep_ipif_ptr)
17358 {
17359 	ipif_t *mipif;
17360 	ipif_t *ipif_next;
17361 	int err;
17362 
17363 	/*
17364 	 * We don't really try to MOVE back things if some of the
17365 	 * operations fail. The daemon will take care of moving again
17366 	 * later on.
17367 	 */
17368 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17369 		ipif_next = mipif->ipif_next;
17370 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17371 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17372 
17373 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17374 
17375 			/*
17376 			 * When the MOVE fails, it is the job of the
17377 			 * application to take care of this properly
17378 			 * i.e try again if it is ENOMEM.
17379 			 */
17380 			if (mipif->ipif_ill != from_ill) {
17381 				/*
17382 				 * ipif has moved.
17383 				 *
17384 				 * Move the multicast memberships associated
17385 				 * with this ipif to the new ill. For IPv6, we
17386 				 * do it once after all the ipifs are moved
17387 				 * (in ill_move) as they are not associated
17388 				 * with ipifs.
17389 				 *
17390 				 * We need to move the ilms as the ipif has
17391 				 * already been moved to a new ill even
17392 				 * in the case of errors. Neither
17393 				 * ilm_free(ipif) will find the ilm
17394 				 * when somebody unplumbs this ipif nor
17395 				 * ilm_delete(ilm) will be able to find the
17396 				 * ilm, if we don't move now.
17397 				 */
17398 				if (!from_ill->ill_isv6)
17399 					ilm_move_v4(from_ill, to_ill, mipif);
17400 			}
17401 
17402 			if (err != 0)
17403 				return (err);
17404 		}
17405 	}
17406 	return (0);
17407 }
17408 
17409 static int
17410 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
17411 {
17412 	int ifindex;
17413 	int err;
17414 	struct iocblk	*iocp;
17415 	ipif_t	*ipif;
17416 	ipif_t *rep_ipif_ptr = NULL;
17417 	ipif_t	*from_ipif = NULL;
17418 	boolean_t check_rep_if = B_FALSE;
17419 
17420 	iocp = (struct iocblk *)mp->b_rptr;
17421 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
17422 		/*
17423 		 * Move everything pointing at from_ill to to_ill.
17424 		 * We acheive this by passing in 0 as ifindex.
17425 		 */
17426 		ifindex = 0;
17427 	} else {
17428 		/*
17429 		 * Move everything pointing at from_ill whose original
17430 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
17431 		 * We acheive this by passing in ifindex rather than 0.
17432 		 * Multicast vifs, ilgs move implicitly because ipifs move.
17433 		 */
17434 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
17435 		ifindex = to_ill->ill_phyint->phyint_ifindex;
17436 	}
17437 
17438 	/*
17439 	 * Determine if there is at least one ipif that would move from
17440 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
17441 	 * ipif (if it exists) on the to_ill would be consumed as a result of
17442 	 * the move, in which case we need to quiesce the replacement ipif also.
17443 	 */
17444 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
17445 	    from_ipif = from_ipif->ipif_next) {
17446 		if (((ifindex == 0) ||
17447 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
17448 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
17449 			check_rep_if = B_TRUE;
17450 			break;
17451 		}
17452 	}
17453 
17454 
17455 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
17456 
17457 	GRAB_ILL_LOCKS(from_ill, to_ill);
17458 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
17459 		(void) ipsq_pending_mp_add(NULL, ipif, q,
17460 		    mp, ILL_MOVE_OK);
17461 		RELEASE_ILL_LOCKS(from_ill, to_ill);
17462 		return (EINPROGRESS);
17463 	}
17464 
17465 	/* Check if the replacement ipif is quiescent to delete */
17466 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
17467 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
17468 		to_ill->ill_ipif->ipif_state_flags |=
17469 		    IPIF_MOVING | IPIF_CHANGING;
17470 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
17471 			(void) ipsq_pending_mp_add(NULL, ipif, q,
17472 			    mp, ILL_MOVE_OK);
17473 			RELEASE_ILL_LOCKS(from_ill, to_ill);
17474 			return (EINPROGRESS);
17475 		}
17476 	}
17477 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17478 
17479 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
17480 	rw_enter(&ill_g_lock, RW_WRITER);
17481 	GRAB_ILL_LOCKS(from_ill, to_ill);
17482 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
17483 
17484 	/* ilm_move is done inside ipif_move for IPv4 */
17485 	if (err == 0 && from_ill->ill_isv6)
17486 		ilm_move_v6(from_ill, to_ill, ifindex);
17487 
17488 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17489 	rw_exit(&ill_g_lock);
17490 
17491 	/*
17492 	 * send rts messages and multicast messages.
17493 	 */
17494 	if (rep_ipif_ptr != NULL) {
17495 		ip_rts_ifmsg(rep_ipif_ptr);
17496 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
17497 		IPIF_TRACE_CLEANUP(rep_ipif_ptr);
17498 		mi_free(rep_ipif_ptr);
17499 	}
17500 
17501 	conn_move_ill(from_ill, to_ill, ifindex);
17502 
17503 	return (err);
17504 }
17505 
17506 /*
17507  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
17508  * Also checks for the validity of the arguments.
17509  * Note: We are already exclusive inside the from group.
17510  * It is upto the caller to release refcnt on the to_ill's.
17511  */
17512 static int
17513 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
17514     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
17515 {
17516 	int dst_index;
17517 	ipif_t *ipif_v4, *ipif_v6;
17518 	struct lifreq *lifr;
17519 	mblk_t *mp1;
17520 	boolean_t exists;
17521 	sin_t	*sin;
17522 	int	err = 0;
17523 
17524 	if ((mp1 = mp->b_cont) == NULL)
17525 		return (EPROTO);
17526 
17527 	if ((mp1 = mp1->b_cont) == NULL)
17528 		return (EPROTO);
17529 
17530 	lifr = (struct lifreq *)mp1->b_rptr;
17531 	sin = (sin_t *)&lifr->lifr_addr;
17532 
17533 	/*
17534 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
17535 	 * specific operations.
17536 	 */
17537 	if (sin->sin_family != AF_UNSPEC)
17538 		return (EINVAL);
17539 
17540 	/*
17541 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
17542 	 * NULLs for the last 4 args and we know the lookup won't fail
17543 	 * with EINPROGRESS.
17544 	 */
17545 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
17546 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
17547 	    ALL_ZONES, NULL, NULL, NULL, NULL);
17548 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
17549 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
17550 	    ALL_ZONES, NULL, NULL, NULL, NULL);
17551 
17552 	if (ipif_v4 == NULL && ipif_v6 == NULL)
17553 		return (ENXIO);
17554 
17555 	if (ipif_v4 != NULL) {
17556 		ASSERT(ipif_v4->ipif_refcnt != 0);
17557 		if (ipif_v4->ipif_id != 0) {
17558 			err = EINVAL;
17559 			goto done;
17560 		}
17561 
17562 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
17563 		*ill_from_v4 = ipif_v4->ipif_ill;
17564 	}
17565 
17566 	if (ipif_v6 != NULL) {
17567 		ASSERT(ipif_v6->ipif_refcnt != 0);
17568 		if (ipif_v6->ipif_id != 0) {
17569 			err = EINVAL;
17570 			goto done;
17571 		}
17572 
17573 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
17574 		*ill_from_v6 = ipif_v6->ipif_ill;
17575 	}
17576 
17577 	err = 0;
17578 	dst_index = lifr->lifr_movetoindex;
17579 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
17580 	    q, mp, ip_process_ioctl, &err);
17581 	if (err != 0) {
17582 		/*
17583 		 * There could be only v6.
17584 		 */
17585 		if (err != ENXIO)
17586 			goto done;
17587 		err = 0;
17588 	}
17589 
17590 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
17591 	    q, mp, ip_process_ioctl, &err);
17592 	if (err != 0) {
17593 		if (err != ENXIO)
17594 			goto done;
17595 		if (*ill_to_v4 == NULL) {
17596 			err = ENXIO;
17597 			goto done;
17598 		}
17599 		err = 0;
17600 	}
17601 
17602 	/*
17603 	 * If we have something to MOVE i.e "from" not NULL,
17604 	 * "to" should be non-NULL.
17605 	 */
17606 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
17607 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
17608 		err = EINVAL;
17609 	}
17610 
17611 done:
17612 	if (ipif_v4 != NULL)
17613 		ipif_refrele(ipif_v4);
17614 	if (ipif_v6 != NULL)
17615 		ipif_refrele(ipif_v6);
17616 	return (err);
17617 }
17618 
17619 /*
17620  * FAILOVER and FAILBACK are modelled as MOVE operations.
17621  *
17622  * We don't check whether the MOVE is within the same group or
17623  * not, because this ioctl can be used as a generic mechanism
17624  * to failover from interface A to B, though things will function
17625  * only if they are really part of the same group. Moreover,
17626  * all ipifs may be down and hence temporarily out of the group.
17627  *
17628  * ipif's that need to be moved are first brought down; V4 ipifs are brought
17629  * down first and then V6.  For each we wait for the ipif's to become quiescent.
17630  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
17631  * have been deleted and there are no active references. Once quiescent the
17632  * ipif's are moved and brought up on the new ill.
17633  *
17634  * Normally the source ill and destination ill belong to the same IPMP group
17635  * and hence the same ipsq_t. In the event they don't belong to the same
17636  * same group the two ipsq's are first merged into one ipsq - that of the
17637  * to_ill. The multicast memberships on the source and destination ill cannot
17638  * change during the move operation since multicast joins/leaves also have to
17639  * execute on the same ipsq and are hence serialized.
17640  */
17641 /* ARGSUSED */
17642 int
17643 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17644     ip_ioctl_cmd_t *ipip, void *ifreq)
17645 {
17646 	ill_t *ill_to_v4 = NULL;
17647 	ill_t *ill_to_v6 = NULL;
17648 	ill_t *ill_from_v4 = NULL;
17649 	ill_t *ill_from_v6 = NULL;
17650 	int err = 0;
17651 
17652 	/*
17653 	 * setup from and to ill's, we can get EINPROGRESS only for
17654 	 * to_ill's.
17655 	 */
17656 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
17657 	    &ill_to_v4, &ill_to_v6);
17658 
17659 	if (err != 0) {
17660 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
17661 		goto done;
17662 	}
17663 
17664 	/*
17665 	 * nothing to do.
17666 	 */
17667 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
17668 		goto done;
17669 	}
17670 
17671 	/*
17672 	 * nothing to do.
17673 	 */
17674 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
17675 		goto done;
17676 	}
17677 
17678 	/*
17679 	 * Mark the ill as changing.
17680 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
17681 	 * in ill_up_ipifs in case of error they are cleared below.
17682 	 */
17683 
17684 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
17685 	if (ill_from_v4 != NULL)
17686 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
17687 	if (ill_from_v6 != NULL)
17688 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
17689 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
17690 
17691 	/*
17692 	 * Make sure that both src and dst are
17693 	 * in the same syncq group. If not make it happen.
17694 	 * We are not holding any locks because we are the writer
17695 	 * on the from_ipsq and we will hold locks in ill_merge_groups
17696 	 * to protect to_ipsq against changing.
17697 	 */
17698 	if (ill_from_v4 != NULL) {
17699 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
17700 		    ill_to_v4->ill_phyint->phyint_ipsq) {
17701 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
17702 			    NULL, mp, q);
17703 			goto err_ret;
17704 
17705 		}
17706 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
17707 	} else {
17708 
17709 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
17710 		    ill_to_v6->ill_phyint->phyint_ipsq) {
17711 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
17712 			    NULL, mp, q);
17713 			goto err_ret;
17714 
17715 		}
17716 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
17717 	}
17718 
17719 	/*
17720 	 * Now that the ipsq's have been merged and we are the writer
17721 	 * lets mark to_ill as changing as well.
17722 	 */
17723 
17724 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
17725 	if (ill_to_v4 != NULL)
17726 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
17727 	if (ill_to_v6 != NULL)
17728 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
17729 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
17730 
17731 	/*
17732 	 * Its ok for us to proceed with the move even if
17733 	 * ill_pending_mp is non null on one of the from ill's as the reply
17734 	 * should not be looking at the ipif, it should only care about the
17735 	 * ill itself.
17736 	 */
17737 
17738 	/*
17739 	 * lets move ipv4 first.
17740 	 */
17741 	if (ill_from_v4 != NULL) {
17742 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
17743 		ill_from_v4->ill_move_in_progress = B_TRUE;
17744 		ill_to_v4->ill_move_in_progress = B_TRUE;
17745 		ill_to_v4->ill_move_peer = ill_from_v4;
17746 		ill_from_v4->ill_move_peer = ill_to_v4;
17747 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
17748 	}
17749 
17750 	/*
17751 	 * Now lets move ipv6.
17752 	 */
17753 	if (err == 0 && ill_from_v6 != NULL) {
17754 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
17755 		ill_from_v6->ill_move_in_progress = B_TRUE;
17756 		ill_to_v6->ill_move_in_progress = B_TRUE;
17757 		ill_to_v6->ill_move_peer = ill_from_v6;
17758 		ill_from_v6->ill_move_peer = ill_to_v6;
17759 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
17760 	}
17761 
17762 err_ret:
17763 	/*
17764 	 * EINPROGRESS means we are waiting for the ipif's that need to be
17765 	 * moved to become quiescent.
17766 	 */
17767 	if (err == EINPROGRESS) {
17768 		goto done;
17769 	}
17770 
17771 	/*
17772 	 * if err is set ill_up_ipifs will not be called
17773 	 * lets clear the flags.
17774 	 */
17775 
17776 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
17777 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
17778 	/*
17779 	 * Some of the clearing may be redundant. But it is simple
17780 	 * not making any extra checks.
17781 	 */
17782 	if (ill_from_v6 != NULL) {
17783 		ill_from_v6->ill_move_in_progress = B_FALSE;
17784 		ill_from_v6->ill_move_peer = NULL;
17785 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
17786 	}
17787 	if (ill_from_v4 != NULL) {
17788 		ill_from_v4->ill_move_in_progress = B_FALSE;
17789 		ill_from_v4->ill_move_peer = NULL;
17790 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
17791 	}
17792 	if (ill_to_v6 != NULL) {
17793 		ill_to_v6->ill_move_in_progress = B_FALSE;
17794 		ill_to_v6->ill_move_peer = NULL;
17795 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
17796 	}
17797 	if (ill_to_v4 != NULL) {
17798 		ill_to_v4->ill_move_in_progress = B_FALSE;
17799 		ill_to_v4->ill_move_peer = NULL;
17800 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
17801 	}
17802 
17803 	/*
17804 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
17805 	 * Do this always to maintain proper state i.e even in case of errors.
17806 	 * As phyint_inactive looks at both v4 and v6 interfaces,
17807 	 * we need not call on both v4 and v6 interfaces.
17808 	 */
17809 	if (ill_from_v4 != NULL) {
17810 		if ((ill_from_v4->ill_phyint->phyint_flags &
17811 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
17812 			phyint_inactive(ill_from_v4->ill_phyint);
17813 		}
17814 	} else if (ill_from_v6 != NULL) {
17815 		if ((ill_from_v6->ill_phyint->phyint_flags &
17816 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
17817 			phyint_inactive(ill_from_v6->ill_phyint);
17818 		}
17819 	}
17820 
17821 	if (ill_to_v4 != NULL) {
17822 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
17823 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
17824 		}
17825 	} else if (ill_to_v6 != NULL) {
17826 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
17827 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
17828 		}
17829 	}
17830 
17831 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
17832 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
17833 
17834 no_err:
17835 	/*
17836 	 * lets bring the interfaces up on the to_ill.
17837 	 */
17838 	if (err == 0) {
17839 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
17840 		    q, mp);
17841 	}
17842 
17843 	if (err == 0) {
17844 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
17845 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
17846 
17847 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
17848 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
17849 	}
17850 done:
17851 
17852 	if (ill_to_v4 != NULL) {
17853 		ill_refrele(ill_to_v4);
17854 	}
17855 	if (ill_to_v6 != NULL) {
17856 		ill_refrele(ill_to_v6);
17857 	}
17858 
17859 	return (err);
17860 }
17861 
17862 static void
17863 ill_dl_down(ill_t *ill)
17864 {
17865 	/*
17866 	 * The ill is down; unbind but stay attached since we're still
17867 	 * associated with a PPA. If we have negotiated DLPI capabilites
17868 	 * with the data link service provider (IDS_OK) then reset them.
17869 	 * The interval between unbinding and rebinding is potentially
17870 	 * unbounded hence we cannot assume things will be the same.
17871 	 * The DLPI capabilities will be probed again when the data link
17872 	 * is brought up.
17873 	 */
17874 	mblk_t	*mp = ill->ill_unbind_mp;
17875 	hook_nic_event_t *info;
17876 
17877 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
17878 
17879 	ill->ill_unbind_mp = NULL;
17880 	if (mp != NULL) {
17881 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
17882 		    dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
17883 		    ill->ill_name));
17884 		mutex_enter(&ill->ill_lock);
17885 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
17886 		mutex_exit(&ill->ill_lock);
17887 		if (ill->ill_dlpi_capab_state == IDS_OK)
17888 			ill_capability_reset(ill);
17889 		ill_dlpi_send(ill, mp);
17890 	}
17891 
17892 	/*
17893 	 * Toss all of our multicast memberships.  We could keep them, but
17894 	 * then we'd have to do bookkeeping of any joins and leaves performed
17895 	 * by the application while the the interface is down (we can't just
17896 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
17897 	 * on a downed interface).
17898 	 */
17899 	ill_leave_multicast(ill);
17900 
17901 	mutex_enter(&ill->ill_lock);
17902 
17903 	ill->ill_dl_up = 0;
17904 
17905 	if ((info = ill->ill_nic_event_info) != NULL) {
17906 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
17907 		    info->hne_event, ill->ill_name));
17908 		if (info->hne_data != NULL)
17909 			kmem_free(info->hne_data, info->hne_datalen);
17910 		kmem_free(info, sizeof (hook_nic_event_t));
17911 	}
17912 
17913 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
17914 	if (info != NULL) {
17915 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
17916 		info->hne_lif = 0;
17917 		info->hne_event = NE_DOWN;
17918 		info->hne_data = NULL;
17919 		info->hne_datalen = 0;
17920 		info->hne_family = ill->ill_isv6 ? ipv6 : ipv4;
17921 	} else
17922 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
17923 		    "information for %s (ENOMEM)\n", ill->ill_name));
17924 
17925 	ill->ill_nic_event_info = info;
17926 
17927 	mutex_exit(&ill->ill_lock);
17928 }
17929 
17930 void
17931 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
17932 {
17933 	union DL_primitives *dlp;
17934 	t_uscalar_t prim;
17935 
17936 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
17937 
17938 	dlp = (union DL_primitives *)mp->b_rptr;
17939 	prim = dlp->dl_primitive;
17940 
17941 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
17942 		dlpi_prim_str(prim), prim, ill->ill_name));
17943 
17944 	switch (prim) {
17945 	case DL_PHYS_ADDR_REQ:
17946 	{
17947 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
17948 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
17949 		break;
17950 	}
17951 	case DL_BIND_REQ:
17952 		mutex_enter(&ill->ill_lock);
17953 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
17954 		mutex_exit(&ill->ill_lock);
17955 		break;
17956 	}
17957 
17958 	ill->ill_dlpi_pending = prim;
17959 
17960 	/*
17961 	 * Some drivers send M_FLUSH up to IP as part of unbind
17962 	 * request.  When this M_FLUSH is sent back to the driver,
17963 	 * this can go after we send the detach request if the
17964 	 * M_FLUSH ends up in IP's syncq. To avoid that, we reply
17965 	 * to the M_FLUSH in ip_rput and locally generate another
17966 	 * M_FLUSH for the correctness.  This will get freed in
17967 	 * ip_wput_nondata.
17968 	 */
17969 	if (prim == DL_UNBIND_REQ)
17970 		(void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW);
17971 
17972 	putnext(ill->ill_wq, mp);
17973 }
17974 
17975 /*
17976  * Send a DLPI control message to the driver but make sure there
17977  * is only one outstanding message. Uses ill_dlpi_pending to tell
17978  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
17979  * when an ACK or a NAK is received to process the next queued message.
17980  *
17981  * We don't protect ill_dlpi_pending with any lock. This is okay as
17982  * every place where its accessed, ip is exclusive while accessing
17983  * ill_dlpi_pending except when this function is called from ill_init()
17984  */
17985 void
17986 ill_dlpi_send(ill_t *ill, mblk_t *mp)
17987 {
17988 	mblk_t **mpp;
17989 
17990 	ASSERT(IAM_WRITER_ILL(ill));
17991 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
17992 
17993 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
17994 		/* Must queue message. Tail insertion */
17995 		mpp = &ill->ill_dlpi_deferred;
17996 		while (*mpp != NULL)
17997 			mpp = &((*mpp)->b_next);
17998 
17999 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18000 		    ill->ill_name));
18001 
18002 		*mpp = mp;
18003 		return;
18004 	}
18005 
18006 	ill_dlpi_dispatch(ill, mp);
18007 }
18008 
18009 /*
18010  * Called when an DLPI control message has been acked or nacked to
18011  * send down the next queued message (if any).
18012  */
18013 void
18014 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18015 {
18016 	mblk_t *mp;
18017 
18018 	ASSERT(IAM_WRITER_ILL(ill));
18019 
18020 	ASSERT(prim != DL_PRIM_INVAL);
18021 	if (ill->ill_dlpi_pending != prim) {
18022 		if (ill->ill_dlpi_pending == DL_PRIM_INVAL) {
18023 			(void) mi_strlog(ill->ill_rq, 1,
18024 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18025 			    "ill_dlpi_done: unsolicited ack for %s from %s\n",
18026 			    dlpi_prim_str(prim), ill->ill_name);
18027 		} else {
18028 			(void) mi_strlog(ill->ill_rq, 1,
18029 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18030 			    "ill_dlpi_done: unexpected ack for %s from %s "
18031 			    "(expecting ack for %s)\n",
18032 			    dlpi_prim_str(prim), ill->ill_name,
18033 			    dlpi_prim_str(ill->ill_dlpi_pending));
18034 		}
18035 		return;
18036 	}
18037 
18038 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18039 	    dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18040 
18041 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18042 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18043 		return;
18044 	}
18045 
18046 	ill->ill_dlpi_deferred = mp->b_next;
18047 	mp->b_next = NULL;
18048 
18049 	ill_dlpi_dispatch(ill, mp);
18050 }
18051 
18052 void
18053 conn_delete_ire(conn_t *connp, caddr_t arg)
18054 {
18055 	ipif_t	*ipif = (ipif_t *)arg;
18056 	ire_t	*ire;
18057 
18058 	/*
18059 	 * Look at the cached ires on conns which has pointers to ipifs.
18060 	 * We just call ire_refrele which clears up the reference
18061 	 * to ire. Called when a conn closes. Also called from ipif_free
18062 	 * to cleanup indirect references to the stale ipif via the cached ire.
18063 	 */
18064 	mutex_enter(&connp->conn_lock);
18065 	ire = connp->conn_ire_cache;
18066 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18067 		connp->conn_ire_cache = NULL;
18068 		mutex_exit(&connp->conn_lock);
18069 		IRE_REFRELE_NOTR(ire);
18070 		return;
18071 	}
18072 	mutex_exit(&connp->conn_lock);
18073 
18074 }
18075 
18076 /*
18077  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18078  * of IREs. Those IREs may have been previously cached in the conn structure.
18079  * This ipcl_walk() walker function releases all references to such IREs based
18080  * on the condemned flag.
18081  */
18082 /* ARGSUSED */
18083 void
18084 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18085 {
18086 	ire_t	*ire;
18087 
18088 	mutex_enter(&connp->conn_lock);
18089 	ire = connp->conn_ire_cache;
18090 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18091 		connp->conn_ire_cache = NULL;
18092 		mutex_exit(&connp->conn_lock);
18093 		IRE_REFRELE_NOTR(ire);
18094 		return;
18095 	}
18096 	mutex_exit(&connp->conn_lock);
18097 }
18098 
18099 /*
18100  * Take down a specific interface, but don't lose any information about it.
18101  * Also delete interface from its interface group (ifgrp).
18102  * (Always called as writer.)
18103  * This function goes through the down sequence even if the interface is
18104  * already down. There are 2 reasons.
18105  * a. Currently we permit interface routes that depend on down interfaces
18106  *    to be added. This behaviour itself is questionable. However it appears
18107  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18108  *    time. We go thru the cleanup in order to remove these routes.
18109  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18110  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18111  *    down, but we need to cleanup i.e. do ill_dl_down and
18112  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18113  *
18114  * IP-MT notes:
18115  *
18116  * Model of reference to interfaces.
18117  *
18118  * The following members in ipif_t track references to the ipif.
18119  *	int     ipif_refcnt;    Active reference count
18120  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18121  * The following members in ill_t track references to the ill.
18122  *	int             ill_refcnt;     active refcnt
18123  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18124  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18125  *
18126  * Reference to an ipif or ill can be obtained in any of the following ways.
18127  *
18128  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18129  * Pointers to ipif / ill from other data structures viz ire and conn.
18130  * Implicit reference to the ipif / ill by holding a reference to the ire.
18131  *
18132  * The ipif/ill lookup functions return a reference held ipif / ill.
18133  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18134  * This is a purely dynamic reference count associated with threads holding
18135  * references to the ipif / ill. Pointers from other structures do not
18136  * count towards this reference count.
18137  *
18138  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18139  * ipif/ill. This is incremented whenever a new ire is created referencing the
18140  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18141  * actually added to the ire hash table. The count is decremented in
18142  * ire_inactive where the ire is destroyed.
18143  *
18144  * nce's reference ill's thru nce_ill and the count of nce's associated with
18145  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18146  * ndp_add() where the nce is actually added to the table. Similarly it is
18147  * decremented in ndp_inactive where the nce is destroyed.
18148  *
18149  * Flow of ioctls involving interface down/up
18150  *
18151  * The following is the sequence of an attempt to set some critical flags on an
18152  * up interface.
18153  * ip_sioctl_flags
18154  * ipif_down
18155  * wait for ipif to be quiescent
18156  * ipif_down_tail
18157  * ip_sioctl_flags_tail
18158  *
18159  * All set ioctls that involve down/up sequence would have a skeleton similar
18160  * to the above. All the *tail functions are called after the refcounts have
18161  * dropped to the appropriate values.
18162  *
18163  * The mechanism to quiesce an ipif is as follows.
18164  *
18165  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18166  * on the ipif. Callers either pass a flag requesting wait or the lookup
18167  *  functions will return NULL.
18168  *
18169  * Delete all ires referencing this ipif
18170  *
18171  * Any thread attempting to do an ipif_refhold on an ipif that has been
18172  * obtained thru a cached pointer will first make sure that
18173  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18174  * increment the refcount.
18175  *
18176  * The above guarantees that the ipif refcount will eventually come down to
18177  * zero and the ipif will quiesce, once all threads that currently hold a
18178  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18179  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18180  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18181  * drop to zero.
18182  *
18183  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18184  *
18185  * Threads trying to lookup an ipif or ill can pass a flag requesting
18186  * wait and restart if the ipif / ill cannot be looked up currently.
18187  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18188  * failure if the ipif is currently undergoing an exclusive operation, and
18189  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18190  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18191  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18192  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18193  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18194  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18195  * until we release the ipsq_lock, even though the the ill/ipif state flags
18196  * can change after we drop the ill_lock.
18197  *
18198  * An attempt to send out a packet using an ipif that is currently
18199  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18200  * operation and restart it later when the exclusive condition on the ipif ends.
18201  * This is an example of not passing the wait flag to the lookup functions. For
18202  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18203  * out a multicast packet on that ipif will fail while the ipif is
18204  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18205  * currently IPIF_CHANGING will also fail.
18206  */
18207 int
18208 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18209 {
18210 	ill_t		*ill = ipif->ipif_ill;
18211 	phyint_t	*phyi;
18212 	conn_t		*connp;
18213 	boolean_t	success;
18214 	boolean_t	ipif_was_up = B_FALSE;
18215 
18216 	ASSERT(IAM_WRITER_IPIF(ipif));
18217 
18218 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18219 
18220 	if (ipif->ipif_flags & IPIF_UP) {
18221 		mutex_enter(&ill->ill_lock);
18222 		ipif->ipif_flags &= ~IPIF_UP;
18223 		ASSERT(ill->ill_ipif_up_count > 0);
18224 		--ill->ill_ipif_up_count;
18225 		mutex_exit(&ill->ill_lock);
18226 		ipif_was_up = B_TRUE;
18227 		/* Update status in SCTP's list */
18228 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18229 	}
18230 
18231 	/*
18232 	 * Blow away v6 memberships we established in ipif_multicast_up(); the
18233 	 * v4 ones are left alone (as is the ipif_multicast_up flag, so we
18234 	 * know not to rejoin when the interface is brought back up).
18235 	 */
18236 	if (ipif->ipif_isv6)
18237 		ipif_multicast_down(ipif);
18238 	/*
18239 	 * Remove from the mapping for __sin6_src_id. We insert only
18240 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18241 	 * stored as mapped addresses, we need to check for mapped
18242 	 * INADDR_ANY also.
18243 	 */
18244 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18245 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18246 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18247 		int err;
18248 
18249 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18250 		    ipif->ipif_zoneid);
18251 		if (err != 0) {
18252 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18253 		}
18254 	}
18255 
18256 	/*
18257 	 * Before we delete the ill from the group (if any), we need
18258 	 * to make sure that we delete all the routes dependent on
18259 	 * this and also any ipifs dependent on this ipif for
18260 	 * source address. We need to do before we delete from
18261 	 * the group because
18262 	 *
18263 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18264 	 *
18265 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18266 	 *    for re-doing source address selection. Note that
18267 	 *    ipif_select_source[_v6] called from
18268 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18269 	 *    because we have already marked down here i.e cleared
18270 	 *    IPIF_UP.
18271 	 */
18272 	if (ipif->ipif_isv6)
18273 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES);
18274 	else
18275 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES);
18276 
18277 	/*
18278 	 * Need to add these also to be saved and restored when the
18279 	 * ipif is brought down and up
18280 	 */
18281 	mutex_enter(&ire_mrtun_lock);
18282 	if (ire_mrtun_count != 0) {
18283 		mutex_exit(&ire_mrtun_lock);
18284 		ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire,
18285 		    (char *)ipif, NULL);
18286 	} else {
18287 		mutex_exit(&ire_mrtun_lock);
18288 	}
18289 
18290 	mutex_enter(&ire_srcif_table_lock);
18291 	if (ire_srcif_table_count > 0) {
18292 		mutex_exit(&ire_srcif_table_lock);
18293 		ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif);
18294 	} else {
18295 		mutex_exit(&ire_srcif_table_lock);
18296 	}
18297 
18298 	/*
18299 	 * Cleaning up the conn_ire_cache or conns must be done only after the
18300 	 * ires have been deleted above. Otherwise a thread could end up
18301 	 * caching an ire in a conn after we have finished the cleanup of the
18302 	 * conn. The caching is done after making sure that the ire is not yet
18303 	 * condemned. Also documented in the block comment above ip_output
18304 	 */
18305 	ipcl_walk(conn_cleanup_stale_ire, NULL);
18306 	/* Also, delete the ires cached in SCTP */
18307 	sctp_ire_cache_flush(ipif);
18308 
18309 	/* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */
18310 	nattymod_clean_ipif(ipif);
18311 
18312 	/*
18313 	 * Update any other ipifs which have used "our" local address as
18314 	 * a source address. This entails removing and recreating IRE_INTERFACE
18315 	 * entries for such ipifs.
18316 	 */
18317 	if (ipif->ipif_isv6)
18318 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18319 	else
18320 		ipif_update_other_ipifs(ipif, ill->ill_group);
18321 
18322 	if (ipif_was_up) {
18323 		/*
18324 		 * Check whether it is last ipif to leave this group.
18325 		 * If this is the last ipif to leave, we should remove
18326 		 * this ill from the group as ipif_select_source will not
18327 		 * be able to find any useful ipifs if this ill is selected
18328 		 * for load balancing.
18329 		 *
18330 		 * For nameless groups, we should call ifgrp_delete if this
18331 		 * belongs to some group. As this ipif is going down, we may
18332 		 * need to reconstruct groups.
18333 		 */
18334 		phyi = ill->ill_phyint;
18335 		/*
18336 		 * If the phyint_groupname_len is 0, it may or may not
18337 		 * be in the nameless group. If the phyint_groupname_len is
18338 		 * not 0, then this ill should be part of some group.
18339 		 * As we always insert this ill in the group if
18340 		 * phyint_groupname_len is not zero when the first ipif
18341 		 * comes up (in ipif_up_done), it should be in a group
18342 		 * when the namelen is not 0.
18343 		 *
18344 		 * NOTE : When we delete the ill from the group,it will
18345 		 * blow away all the IRE_CACHES pointing either at this ipif or
18346 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18347 		 * should be pointing at this ill.
18348 		 */
18349 		ASSERT(phyi->phyint_groupname_len == 0 ||
18350 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18351 
18352 		if (phyi->phyint_groupname_len != 0) {
18353 			if (ill->ill_ipif_up_count == 0)
18354 				illgrp_delete(ill);
18355 		}
18356 
18357 		/*
18358 		 * If we have deleted some of the broadcast ires associated
18359 		 * with this ipif, we need to re-nominate somebody else if
18360 		 * the ires that we deleted were the nominated ones.
18361 		 */
18362 		if (ill->ill_group != NULL && !ill->ill_isv6)
18363 			ipif_renominate_bcast(ipif);
18364 	}
18365 
18366 	/*
18367 	 * neighbor-discovery or arp entries for this interface.
18368 	 */
18369 	ipif_ndp_down(ipif);
18370 
18371 	/*
18372 	 * If mp is NULL the caller will wait for the appropriate refcnt.
18373 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
18374 	 * and ill_delete -> ipif_free -> ipif_down
18375 	 */
18376 	if (mp == NULL) {
18377 		ASSERT(q == NULL);
18378 		return (0);
18379 	}
18380 
18381 	if (CONN_Q(q)) {
18382 		connp = Q_TO_CONN(q);
18383 		mutex_enter(&connp->conn_lock);
18384 	} else {
18385 		connp = NULL;
18386 	}
18387 	mutex_enter(&ill->ill_lock);
18388 	/*
18389 	 * Are there any ire's pointing to this ipif that are still active ?
18390 	 * If this is the last ipif going down, are there any ire's pointing
18391 	 * to this ill that are still active ?
18392 	 */
18393 	if (ipif_is_quiescent(ipif)) {
18394 		mutex_exit(&ill->ill_lock);
18395 		if (connp != NULL)
18396 			mutex_exit(&connp->conn_lock);
18397 		return (0);
18398 	}
18399 
18400 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
18401 	    ill->ill_name, (void *)ill));
18402 	/*
18403 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
18404 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
18405 	 * which in turn is called by the last refrele on the ipif/ill/ire.
18406 	 */
18407 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
18408 	if (!success) {
18409 		/* The conn is closing. So just return */
18410 		ASSERT(connp != NULL);
18411 		mutex_exit(&ill->ill_lock);
18412 		mutex_exit(&connp->conn_lock);
18413 		return (EINTR);
18414 	}
18415 
18416 	mutex_exit(&ill->ill_lock);
18417 	if (connp != NULL)
18418 		mutex_exit(&connp->conn_lock);
18419 	return (EINPROGRESS);
18420 }
18421 
18422 void
18423 ipif_down_tail(ipif_t *ipif)
18424 {
18425 	ill_t	*ill = ipif->ipif_ill;
18426 
18427 	/*
18428 	 * Skip any loopback interface (null wq).
18429 	 * If this is the last logical interface on the ill
18430 	 * have ill_dl_down tell the driver we are gone (unbind)
18431 	 * Note that lun 0 can ipif_down even though
18432 	 * there are other logical units that are up.
18433 	 * This occurs e.g. when we change a "significant" IFF_ flag.
18434 	 */
18435 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
18436 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
18437 	    ill->ill_dl_up) {
18438 		ill_dl_down(ill);
18439 	}
18440 	ill->ill_logical_down = 0;
18441 
18442 	/*
18443 	 * Have to be after removing the routes in ipif_down_delete_ire.
18444 	 */
18445 	if (ipif->ipif_isv6) {
18446 		if (ill->ill_flags & ILLF_XRESOLV)
18447 			ipif_arp_down(ipif);
18448 	} else {
18449 		ipif_arp_down(ipif);
18450 	}
18451 
18452 	ip_rts_ifmsg(ipif);
18453 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
18454 }
18455 
18456 /*
18457  * Bring interface logically down without bringing the physical interface
18458  * down e.g. when the netmask is changed. This avoids long lasting link
18459  * negotiations between an ethernet interface and a certain switches.
18460  */
18461 static int
18462 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18463 {
18464 	/*
18465 	 * The ill_logical_down flag is a transient flag. It is set here
18466 	 * and is cleared once the down has completed in ipif_down_tail.
18467 	 * This flag does not indicate whether the ill stream is in the
18468 	 * DL_BOUND state with the driver. Instead this flag is used by
18469 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
18470 	 * the driver. The state of the ill stream i.e. whether it is
18471 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
18472 	 */
18473 	ipif->ipif_ill->ill_logical_down = 1;
18474 	return (ipif_down(ipif, q, mp));
18475 }
18476 
18477 /*
18478  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
18479  * If the usesrc client ILL is already part of a usesrc group or not,
18480  * in either case a ire_stq with the matching usesrc client ILL will
18481  * locate the IRE's that need to be deleted. We want IREs to be created
18482  * with the new source address.
18483  */
18484 static void
18485 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
18486 {
18487 	ill_t	*ucill = (ill_t *)ill_arg;
18488 
18489 	ASSERT(IAM_WRITER_ILL(ucill));
18490 
18491 	if (ire->ire_stq == NULL)
18492 		return;
18493 
18494 	if ((ire->ire_type == IRE_CACHE) &&
18495 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
18496 		ire_delete(ire);
18497 }
18498 
18499 /*
18500  * ire_walk routine to delete every IRE dependent on the interface
18501  * address that is going down.	(Always called as writer.)
18502  * Works for both v4 and v6.
18503  * In addition for checking for ire_ipif matches it also checks for
18504  * IRE_CACHE entries which have the same source address as the
18505  * disappearing ipif since ipif_select_source might have picked
18506  * that source. Note that ipif_down/ipif_update_other_ipifs takes
18507  * care of any IRE_INTERFACE with the disappearing source address.
18508  */
18509 static void
18510 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
18511 {
18512 	ipif_t	*ipif = (ipif_t *)ipif_arg;
18513 	ill_t *ire_ill;
18514 	ill_t *ipif_ill;
18515 
18516 	ASSERT(IAM_WRITER_IPIF(ipif));
18517 	if (ire->ire_ipif == NULL)
18518 		return;
18519 
18520 	/*
18521 	 * For IPv4, we derive source addresses for an IRE from ipif's
18522 	 * belonging to the same IPMP group as the IRE's outgoing
18523 	 * interface.  If an IRE's outgoing interface isn't in the
18524 	 * same IPMP group as a particular ipif, then that ipif
18525 	 * couldn't have been used as a source address for this IRE.
18526 	 *
18527 	 * For IPv6, source addresses are only restricted to the IPMP group
18528 	 * if the IRE is for a link-local address or a multicast address.
18529 	 * Otherwise, source addresses for an IRE can be chosen from
18530 	 * interfaces other than the the outgoing interface for that IRE.
18531 	 *
18532 	 * For source address selection details, see ipif_select_source()
18533 	 * and ipif_select_source_v6().
18534 	 */
18535 	if (ire->ire_ipversion == IPV4_VERSION ||
18536 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
18537 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
18538 		ire_ill = ire->ire_ipif->ipif_ill;
18539 		ipif_ill = ipif->ipif_ill;
18540 
18541 		if (ire_ill->ill_group != ipif_ill->ill_group) {
18542 			return;
18543 		}
18544 	}
18545 
18546 
18547 	if (ire->ire_ipif != ipif) {
18548 		/*
18549 		 * Look for a matching source address.
18550 		 */
18551 		if (ire->ire_type != IRE_CACHE)
18552 			return;
18553 		if (ipif->ipif_flags & IPIF_NOLOCAL)
18554 			return;
18555 
18556 		if (ire->ire_ipversion == IPV4_VERSION) {
18557 			if (ire->ire_src_addr != ipif->ipif_src_addr)
18558 				return;
18559 		} else {
18560 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
18561 			    &ipif->ipif_v6lcl_addr))
18562 				return;
18563 		}
18564 		ire_delete(ire);
18565 		return;
18566 	}
18567 	/*
18568 	 * ire_delete() will do an ire_flush_cache which will delete
18569 	 * all ire_ipif matches
18570 	 */
18571 	ire_delete(ire);
18572 }
18573 
18574 /*
18575  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
18576  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
18577  * 2) when an interface is brought up or down (on that ill).
18578  * This ensures that the IRE_CACHE entries don't retain stale source
18579  * address selection results.
18580  */
18581 void
18582 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
18583 {
18584 	ill_t	*ill = (ill_t *)ill_arg;
18585 	ill_t	*ipif_ill;
18586 
18587 	ASSERT(IAM_WRITER_ILL(ill));
18588 	/*
18589 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18590 	 * Hence this should be IRE_CACHE.
18591 	 */
18592 	ASSERT(ire->ire_type == IRE_CACHE);
18593 
18594 	/*
18595 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
18596 	 * We are only interested in IRE_CACHES that has borrowed
18597 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
18598 	 * for which we need to look at ire_ipif->ipif_ill match
18599 	 * with ill.
18600 	 */
18601 	ASSERT(ire->ire_ipif != NULL);
18602 	ipif_ill = ire->ire_ipif->ipif_ill;
18603 	if (ipif_ill == ill || (ill->ill_group != NULL &&
18604 	    ipif_ill->ill_group == ill->ill_group)) {
18605 		ire_delete(ire);
18606 	}
18607 }
18608 
18609 /*
18610  * Delete all the ire whose stq references ill_arg.
18611  */
18612 static void
18613 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
18614 {
18615 	ill_t	*ill = (ill_t *)ill_arg;
18616 	ill_t	*ire_ill;
18617 
18618 	ASSERT(IAM_WRITER_ILL(ill));
18619 	/*
18620 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18621 	 * Hence this should be IRE_CACHE.
18622 	 */
18623 	ASSERT(ire->ire_type == IRE_CACHE);
18624 
18625 	/*
18626 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18627 	 * matches ill. We are only interested in IRE_CACHES that
18628 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
18629 	 * filtering here.
18630 	 */
18631 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
18632 
18633 	if (ire_ill == ill)
18634 		ire_delete(ire);
18635 }
18636 
18637 /*
18638  * This is called when an ill leaves the group. We want to delete
18639  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
18640  * pointing at ill.
18641  */
18642 static void
18643 illgrp_cache_delete(ire_t *ire, char *ill_arg)
18644 {
18645 	ill_t	*ill = (ill_t *)ill_arg;
18646 
18647 	ASSERT(IAM_WRITER_ILL(ill));
18648 	ASSERT(ill->ill_group == NULL);
18649 	/*
18650 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18651 	 * Hence this should be IRE_CACHE.
18652 	 */
18653 	ASSERT(ire->ire_type == IRE_CACHE);
18654 	/*
18655 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18656 	 * matches ill. We are interested in both.
18657 	 */
18658 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
18659 	    (ire->ire_ipif->ipif_ill == ill));
18660 
18661 	ire_delete(ire);
18662 }
18663 
18664 /*
18665  * Initiate deallocate of an IPIF. Always called as writer. Called by
18666  * ill_delete or ip_sioctl_removeif.
18667  */
18668 static void
18669 ipif_free(ipif_t *ipif)
18670 {
18671 	ASSERT(IAM_WRITER_IPIF(ipif));
18672 
18673 	if (ipif->ipif_recovery_id != 0)
18674 		(void) untimeout(ipif->ipif_recovery_id);
18675 	ipif->ipif_recovery_id = 0;
18676 
18677 	/* Remove conn references */
18678 	reset_conn_ipif(ipif);
18679 
18680 	/*
18681 	 * Make sure we have valid net and subnet broadcast ire's for the
18682 	 * other ipif's which share them with this ipif.
18683 	 */
18684 	if (!ipif->ipif_isv6)
18685 		ipif_check_bcast_ires(ipif);
18686 
18687 	/*
18688 	 * Take down the interface. We can be called either from ill_delete
18689 	 * or from ip_sioctl_removeif.
18690 	 */
18691 	(void) ipif_down(ipif, NULL, NULL);
18692 
18693 	rw_enter(&ill_g_lock, RW_WRITER);
18694 	/* Remove pointers to this ill in the multicast routing tables */
18695 	reset_mrt_vif_ipif(ipif);
18696 	rw_exit(&ill_g_lock);
18697 }
18698 
18699 static void
18700 ipif_free_tail(ipif_t *ipif)
18701 {
18702 	mblk_t	*mp;
18703 	ipif_t	**ipifp;
18704 
18705 	/*
18706 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
18707 	 */
18708 	mutex_enter(&ipif->ipif_saved_ire_lock);
18709 	mp = ipif->ipif_saved_ire_mp;
18710 	ipif->ipif_saved_ire_mp = NULL;
18711 	mutex_exit(&ipif->ipif_saved_ire_lock);
18712 	freemsg(mp);
18713 
18714 	/*
18715 	 * Need to hold both ill_g_lock and ill_lock while
18716 	 * inserting or removing an ipif from the linked list
18717 	 * of ipifs hanging off the ill.
18718 	 */
18719 	rw_enter(&ill_g_lock, RW_WRITER);
18720 	/*
18721 	 * Remove all multicast memberships on the interface now.
18722 	 * This removes IPv4 multicast memberships joined within
18723 	 * the kernel as ipif_down does not do ipif_multicast_down
18724 	 * for IPv4. IPv6 is not handled here as the multicast memberships
18725 	 * are based on ill and not on ipif.
18726 	 */
18727 	ilm_free(ipif);
18728 
18729 	/*
18730 	 * Since we held the ill_g_lock while doing the ilm_free above,
18731 	 * we can assert the ilms were really deleted and not just marked
18732 	 * ILM_DELETED.
18733 	 */
18734 	ASSERT(ilm_walk_ipif(ipif) == 0);
18735 
18736 
18737 	IPIF_TRACE_CLEANUP(ipif);
18738 
18739 	/* Ask SCTP to take it out of it list */
18740 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
18741 
18742 	mutex_enter(&ipif->ipif_ill->ill_lock);
18743 	/* Get it out of the ILL interface list. */
18744 	ipifp = &ipif->ipif_ill->ill_ipif;
18745 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
18746 		if (*ipifp == ipif) {
18747 			*ipifp = ipif->ipif_next;
18748 			break;
18749 		}
18750 	}
18751 
18752 	mutex_exit(&ipif->ipif_ill->ill_lock);
18753 	rw_exit(&ill_g_lock);
18754 
18755 	mutex_destroy(&ipif->ipif_saved_ire_lock);
18756 
18757 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
18758 
18759 	/* Free the memory. */
18760 	mi_free((char *)ipif);
18761 }
18762 
18763 /*
18764  * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero,
18765  * "ill_name" otherwise.
18766  */
18767 char *
18768 ipif_get_name(const ipif_t *ipif, char *buf, int len)
18769 {
18770 	char	lbuf[32];
18771 	char	*name;
18772 	size_t	name_len;
18773 
18774 	buf[0] = '\0';
18775 	if (!ipif)
18776 		return (buf);
18777 	name = ipif->ipif_ill->ill_name;
18778 	name_len = ipif->ipif_ill->ill_name_length;
18779 	if (ipif->ipif_id != 0) {
18780 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
18781 		    ipif->ipif_id);
18782 		name = lbuf;
18783 		name_len = mi_strlen(name) + 1;
18784 	}
18785 	len -= 1;
18786 	buf[len] = '\0';
18787 	len = MIN(len, name_len);
18788 	bcopy(name, buf, len);
18789 	return (buf);
18790 }
18791 
18792 /*
18793  * Find an IPIF based on the name passed in.  Names can be of the
18794  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
18795  * The <phys> string can have forms like <dev><#> (e.g., le0),
18796  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
18797  * When there is no colon, the implied unit id is zero. <phys> must
18798  * correspond to the name of an ILL.  (May be called as writer.)
18799  */
18800 static ipif_t *
18801 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
18802     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
18803     mblk_t *mp, ipsq_func_t func, int *error)
18804 {
18805 	char	*cp;
18806 	char	*endp;
18807 	long	id;
18808 	ill_t	*ill;
18809 	ipif_t	*ipif;
18810 	uint_t	ire_type;
18811 	boolean_t did_alloc = B_FALSE;
18812 	ipsq_t	*ipsq;
18813 
18814 	if (error != NULL)
18815 		*error = 0;
18816 
18817 	/*
18818 	 * If the caller wants to us to create the ipif, make sure we have a
18819 	 * valid zoneid
18820 	 */
18821 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
18822 
18823 	if (namelen == 0) {
18824 		if (error != NULL)
18825 			*error = ENXIO;
18826 		return (NULL);
18827 	}
18828 
18829 	*exists = B_FALSE;
18830 	/* Look for a colon in the name. */
18831 	endp = &name[namelen];
18832 	for (cp = endp; --cp > name; ) {
18833 		if (*cp == IPIF_SEPARATOR_CHAR)
18834 			break;
18835 	}
18836 
18837 	if (*cp == IPIF_SEPARATOR_CHAR) {
18838 		/*
18839 		 * Reject any non-decimal aliases for logical
18840 		 * interfaces. Aliases with leading zeroes
18841 		 * are also rejected as they introduce ambiguity
18842 		 * in the naming of the interfaces.
18843 		 * In order to confirm with existing semantics,
18844 		 * and to not break any programs/script relying
18845 		 * on that behaviour, if<0>:0 is considered to be
18846 		 * a valid interface.
18847 		 *
18848 		 * If alias has two or more digits and the first
18849 		 * is zero, fail.
18850 		 */
18851 		if (&cp[2] < endp && cp[1] == '0')
18852 			return (NULL);
18853 	}
18854 
18855 	if (cp <= name) {
18856 		cp = endp;
18857 	} else {
18858 		*cp = '\0';
18859 	}
18860 
18861 	/*
18862 	 * Look up the ILL, based on the portion of the name
18863 	 * before the slash. ill_lookup_on_name returns a held ill.
18864 	 * Temporary to check whether ill exists already. If so
18865 	 * ill_lookup_on_name will clear it.
18866 	 */
18867 	ill = ill_lookup_on_name(name, do_alloc, isv6,
18868 	    q, mp, func, error, &did_alloc);
18869 	if (cp != endp)
18870 		*cp = IPIF_SEPARATOR_CHAR;
18871 	if (ill == NULL)
18872 		return (NULL);
18873 
18874 	/* Establish the unit number in the name. */
18875 	id = 0;
18876 	if (cp < endp && *endp == '\0') {
18877 		/* If there was a colon, the unit number follows. */
18878 		cp++;
18879 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
18880 			ill_refrele(ill);
18881 			if (error != NULL)
18882 				*error = ENXIO;
18883 			return (NULL);
18884 		}
18885 	}
18886 
18887 	GRAB_CONN_LOCK(q);
18888 	mutex_enter(&ill->ill_lock);
18889 	/* Now see if there is an IPIF with this unit number. */
18890 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
18891 		if (ipif->ipif_id == id) {
18892 			if (zoneid != ALL_ZONES &&
18893 			    zoneid != ipif->ipif_zoneid &&
18894 			    ipif->ipif_zoneid != ALL_ZONES) {
18895 				mutex_exit(&ill->ill_lock);
18896 				RELEASE_CONN_LOCK(q);
18897 				ill_refrele(ill);
18898 				if (error != NULL)
18899 					*error = ENXIO;
18900 				return (NULL);
18901 			}
18902 			/*
18903 			 * The block comment at the start of ipif_down
18904 			 * explains the use of the macros used below
18905 			 */
18906 			if (IPIF_CAN_LOOKUP(ipif)) {
18907 				ipif_refhold_locked(ipif);
18908 				mutex_exit(&ill->ill_lock);
18909 				if (!did_alloc)
18910 					*exists = B_TRUE;
18911 				/*
18912 				 * Drop locks before calling ill_refrele
18913 				 * since it can potentially call into
18914 				 * ipif_ill_refrele_tail which can end up
18915 				 * in trying to acquire any lock.
18916 				 */
18917 				RELEASE_CONN_LOCK(q);
18918 				ill_refrele(ill);
18919 				return (ipif);
18920 			} else if (IPIF_CAN_WAIT(ipif, q)) {
18921 				ipsq = ill->ill_phyint->phyint_ipsq;
18922 				mutex_enter(&ipsq->ipsq_lock);
18923 				mutex_exit(&ill->ill_lock);
18924 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
18925 				mutex_exit(&ipsq->ipsq_lock);
18926 				RELEASE_CONN_LOCK(q);
18927 				ill_refrele(ill);
18928 				*error = EINPROGRESS;
18929 				return (NULL);
18930 			}
18931 		}
18932 	}
18933 	RELEASE_CONN_LOCK(q);
18934 
18935 	if (!do_alloc) {
18936 		mutex_exit(&ill->ill_lock);
18937 		ill_refrele(ill);
18938 		if (error != NULL)
18939 			*error = ENXIO;
18940 		return (NULL);
18941 	}
18942 
18943 	/*
18944 	 * If none found, atomically allocate and return a new one.
18945 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
18946 	 * to support "receive only" use of lo0:1 etc. as is still done
18947 	 * below as an initial guess.
18948 	 * However, this is now likely to be overriden later in ipif_up_done()
18949 	 * when we know for sure what address has been configured on the
18950 	 * interface, since we might have more than one loopback interface
18951 	 * with a loopback address, e.g. in the case of zones, and all the
18952 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
18953 	 */
18954 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
18955 		ire_type = IRE_LOOPBACK;
18956 	else
18957 		ire_type = IRE_LOCAL;
18958 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
18959 	if (ipif != NULL)
18960 		ipif_refhold_locked(ipif);
18961 	else if (error != NULL)
18962 		*error = ENOMEM;
18963 	mutex_exit(&ill->ill_lock);
18964 	ill_refrele(ill);
18965 	return (ipif);
18966 }
18967 
18968 /*
18969  * This routine is called whenever a new address comes up on an ipif.  If
18970  * we are configured to respond to address mask requests, then we are supposed
18971  * to broadcast an address mask reply at this time.  This routine is also
18972  * called if we are already up, but a netmask change is made.  This is legal
18973  * but might not make the system manager very popular.	(May be called
18974  * as writer.)
18975  */
18976 void
18977 ipif_mask_reply(ipif_t *ipif)
18978 {
18979 	icmph_t	*icmph;
18980 	ipha_t	*ipha;
18981 	mblk_t	*mp;
18982 
18983 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
18984 
18985 	if (!ip_respond_to_address_mask_broadcast)
18986 		return;
18987 
18988 	/* ICMP mask reply is IPv4 only */
18989 	ASSERT(!ipif->ipif_isv6);
18990 	/* ICMP mask reply is not for a loopback interface */
18991 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
18992 
18993 	mp = allocb(REPLY_LEN, BPRI_HI);
18994 	if (mp == NULL)
18995 		return;
18996 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
18997 
18998 	ipha = (ipha_t *)mp->b_rptr;
18999 	bzero(ipha, REPLY_LEN);
19000 	*ipha = icmp_ipha;
19001 	ipha->ipha_ttl = ip_broadcast_ttl;
19002 	ipha->ipha_src = ipif->ipif_src_addr;
19003 	ipha->ipha_dst = ipif->ipif_brd_addr;
19004 	ipha->ipha_length = htons(REPLY_LEN);
19005 	ipha->ipha_ident = 0;
19006 
19007 	icmph = (icmph_t *)&ipha[1];
19008 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19009 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19010 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19011 	if (icmph->icmph_checksum == 0)
19012 		icmph->icmph_checksum = 0xffff;
19013 
19014 	put(ipif->ipif_wq, mp);
19015 
19016 #undef	REPLY_LEN
19017 }
19018 
19019 /*
19020  * When the mtu in the ipif changes, we call this routine through ire_walk
19021  * to update all the relevant IREs.
19022  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19023  */
19024 static void
19025 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19026 {
19027 	ipif_t *ipif = (ipif_t *)ipif_arg;
19028 
19029 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19030 		return;
19031 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19032 }
19033 
19034 /*
19035  * When the mtu in the ill changes, we call this routine through ire_walk
19036  * to update all the relevant IREs.
19037  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19038  */
19039 void
19040 ill_mtu_change(ire_t *ire, char *ill_arg)
19041 {
19042 	ill_t	*ill = (ill_t *)ill_arg;
19043 
19044 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19045 		return;
19046 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19047 }
19048 
19049 /*
19050  * Join the ipif specific multicast groups.
19051  * Must be called after a mapping has been set up in the resolver.  (Always
19052  * called as writer.)
19053  */
19054 void
19055 ipif_multicast_up(ipif_t *ipif)
19056 {
19057 	int err, index;
19058 	ill_t *ill;
19059 
19060 	ASSERT(IAM_WRITER_IPIF(ipif));
19061 
19062 	ill = ipif->ipif_ill;
19063 	index = ill->ill_phyint->phyint_ifindex;
19064 
19065 	ip1dbg(("ipif_multicast_up\n"));
19066 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19067 		return;
19068 
19069 	if (ipif->ipif_isv6) {
19070 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19071 			return;
19072 
19073 		/* Join the all hosts multicast address */
19074 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19075 		/*
19076 		 * Passing B_TRUE means we have to join the multicast
19077 		 * membership on this interface even though this is
19078 		 * FAILED. If we join on a different one in the group,
19079 		 * we will not be able to delete the membership later
19080 		 * as we currently don't track where we join when we
19081 		 * join within the kernel unlike applications where
19082 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19083 		 * for more on this.
19084 		 */
19085 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19086 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19087 		if (err != 0) {
19088 			ip0dbg(("ipif_multicast_up: "
19089 			    "all_hosts_mcast failed %d\n",
19090 			    err));
19091 			return;
19092 		}
19093 		/*
19094 		 * Enable multicast for the solicited node multicast address
19095 		 */
19096 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19097 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19098 
19099 			ipv6_multi.s6_addr32[3] |=
19100 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19101 
19102 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19103 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19104 			    NULL);
19105 			if (err != 0) {
19106 				ip0dbg(("ipif_multicast_up: solicited MC"
19107 				    " failed %d\n", err));
19108 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19109 				    ill, ill->ill_phyint->phyint_ifindex,
19110 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19111 				return;
19112 			}
19113 		}
19114 	} else {
19115 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19116 			return;
19117 
19118 		/* Join the all hosts multicast address */
19119 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19120 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19121 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19122 		if (err) {
19123 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19124 			return;
19125 		}
19126 	}
19127 	ipif->ipif_multicast_up = 1;
19128 }
19129 
19130 /*
19131  * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up();
19132  * any explicit memberships are blown away in ill_leave_multicast() when the
19133  * ill is brought down.
19134  */
19135 static void
19136 ipif_multicast_down(ipif_t *ipif)
19137 {
19138 	int err;
19139 
19140 	ASSERT(IAM_WRITER_IPIF(ipif));
19141 
19142 	ip1dbg(("ipif_multicast_down\n"));
19143 	if (!ipif->ipif_multicast_up)
19144 		return;
19145 
19146 	ASSERT(ipif->ipif_isv6);
19147 
19148 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19149 
19150 	/*
19151 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19152 	 * we should look for ilms on this ill rather than the ones that have
19153 	 * been failed over here.  They are here temporarily. As
19154 	 * ipif_multicast_up has joined on this ill, we should delete only
19155 	 * from this ill.
19156 	 */
19157 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19158 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19159 	    B_TRUE, B_TRUE);
19160 	if (err != 0) {
19161 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19162 		    err));
19163 	}
19164 	/*
19165 	 * Disable multicast for the solicited node multicast address
19166 	 */
19167 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19168 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19169 
19170 		ipv6_multi.s6_addr32[3] |=
19171 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19172 
19173 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19174 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19175 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19176 
19177 		if (err != 0) {
19178 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19179 			    err));
19180 		}
19181 	}
19182 
19183 	ipif->ipif_multicast_up = 0;
19184 }
19185 
19186 /*
19187  * Used when an interface comes up to recreate any extra routes on this
19188  * interface.
19189  */
19190 static ire_t **
19191 ipif_recover_ire(ipif_t *ipif)
19192 {
19193 	mblk_t	*mp;
19194 	ire_t	**ipif_saved_irep;
19195 	ire_t	**irep;
19196 
19197 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19198 	    ipif->ipif_id));
19199 
19200 	mutex_enter(&ipif->ipif_saved_ire_lock);
19201 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19202 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19203 	if (ipif_saved_irep == NULL) {
19204 		mutex_exit(&ipif->ipif_saved_ire_lock);
19205 		return (NULL);
19206 	}
19207 
19208 	irep = ipif_saved_irep;
19209 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19210 		ire_t		*ire;
19211 		queue_t		*rfq;
19212 		queue_t		*stq;
19213 		ifrt_t		*ifrt;
19214 		uchar_t		*src_addr;
19215 		uchar_t		*gateway_addr;
19216 		mblk_t		*resolver_mp;
19217 		ushort_t	type;
19218 
19219 		/*
19220 		 * When the ire was initially created and then added in
19221 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19222 		 * in the case of a traditional interface route, or as one of
19223 		 * the IRE_OFFSUBNET types (with the exception of
19224 		 * IRE_HOST types ire which is created by icmp_redirect() and
19225 		 * which we don't need to save or recover).  In the case where
19226 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19227 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19228 		 * to satisfy software like GateD and Sun Cluster which creates
19229 		 * routes using the the loopback interface's address as a
19230 		 * gateway.
19231 		 *
19232 		 * As ifrt->ifrt_type reflects the already updated ire_type and
19233 		 * since ire_create() expects that IRE_IF_NORESOLVER will have
19234 		 * a valid nce_res_mp field (which doesn't make sense for a
19235 		 * IRE_LOOPBACK), ire_create() will be called in the same way
19236 		 * here as in ip_rt_add(), namely using ipif->ipif_net_type when
19237 		 * the route looks like a traditional interface route (where
19238 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19239 		 * the saved ifrt->ifrt_type.  This means that in the case where
19240 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19241 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19242 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19243 		 */
19244 		ifrt = (ifrt_t *)mp->b_rptr;
19245 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19246 			rfq = NULL;
19247 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19248 			    ? ipif->ipif_rq : ipif->ipif_wq;
19249 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19250 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19251 			    : (uint8_t *)&ipif->ipif_src_addr;
19252 			gateway_addr = NULL;
19253 			resolver_mp = ipif->ipif_resolver_mp;
19254 			type = ipif->ipif_net_type;
19255 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19256 			/* Recover multiroute broadcast IRE. */
19257 			rfq = ipif->ipif_rq;
19258 			stq = ipif->ipif_wq;
19259 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19260 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19261 			    : (uint8_t *)&ipif->ipif_src_addr;
19262 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19263 			resolver_mp = ipif->ipif_bcast_mp;
19264 			type = ifrt->ifrt_type;
19265 		} else {
19266 			rfq = NULL;
19267 			stq = NULL;
19268 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19269 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19270 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19271 			resolver_mp = NULL;
19272 			type = ifrt->ifrt_type;
19273 		}
19274 
19275 		/*
19276 		 * Create a copy of the IRE with the saved address and netmask.
19277 		 */
19278 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19279 		    "0x%x/0x%x\n",
19280 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19281 		    ntohl(ifrt->ifrt_addr),
19282 		    ntohl(ifrt->ifrt_mask)));
19283 		ire = ire_create(
19284 		    (uint8_t *)&ifrt->ifrt_addr,
19285 		    (uint8_t *)&ifrt->ifrt_mask,
19286 		    src_addr,
19287 		    gateway_addr,
19288 		    NULL,
19289 		    &ifrt->ifrt_max_frag,
19290 		    NULL,
19291 		    rfq,
19292 		    stq,
19293 		    type,
19294 		    resolver_mp,
19295 		    ipif,
19296 		    NULL,
19297 		    0,
19298 		    0,
19299 		    0,
19300 		    ifrt->ifrt_flags,
19301 		    &ifrt->ifrt_iulp_info,
19302 		    NULL,
19303 		    NULL);
19304 
19305 		if (ire == NULL) {
19306 			mutex_exit(&ipif->ipif_saved_ire_lock);
19307 			kmem_free(ipif_saved_irep,
19308 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19309 			return (NULL);
19310 		}
19311 
19312 		/*
19313 		 * Some software (for example, GateD and Sun Cluster) attempts
19314 		 * to create (what amount to) IRE_PREFIX routes with the
19315 		 * loopback address as the gateway.  This is primarily done to
19316 		 * set up prefixes with the RTF_REJECT flag set (for example,
19317 		 * when generating aggregate routes.)
19318 		 *
19319 		 * If the IRE type (as defined by ipif->ipif_net_type) is
19320 		 * IRE_LOOPBACK, then we map the request into a
19321 		 * IRE_IF_NORESOLVER.
19322 		 */
19323 		if (ipif->ipif_net_type == IRE_LOOPBACK)
19324 			ire->ire_type = IRE_IF_NORESOLVER;
19325 		/*
19326 		 * ire held by ire_add, will be refreled' towards the
19327 		 * the end of ipif_up_done
19328 		 */
19329 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19330 		*irep = ire;
19331 		irep++;
19332 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19333 	}
19334 	mutex_exit(&ipif->ipif_saved_ire_lock);
19335 	return (ipif_saved_irep);
19336 }
19337 
19338 /*
19339  * Used to set the netmask and broadcast address to default values when the
19340  * interface is brought up.  (Always called as writer.)
19341  */
19342 static void
19343 ipif_set_default(ipif_t *ipif)
19344 {
19345 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19346 
19347 	if (!ipif->ipif_isv6) {
19348 		/*
19349 		 * Interface holds an IPv4 address. Default
19350 		 * mask is the natural netmask.
19351 		 */
19352 		if (!ipif->ipif_net_mask) {
19353 			ipaddr_t	v4mask;
19354 
19355 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
19356 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
19357 		}
19358 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19359 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19360 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19361 		} else {
19362 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19363 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19364 		}
19365 		/*
19366 		 * NOTE: SunOS 4.X does this even if the broadcast address
19367 		 * has been already set thus we do the same here.
19368 		 */
19369 		if (ipif->ipif_flags & IPIF_BROADCAST) {
19370 			ipaddr_t	v4addr;
19371 
19372 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
19373 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
19374 		}
19375 	} else {
19376 		/*
19377 		 * Interface holds an IPv6-only address.  Default
19378 		 * mask is all-ones.
19379 		 */
19380 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
19381 			ipif->ipif_v6net_mask = ipv6_all_ones;
19382 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19383 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19384 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19385 		} else {
19386 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19387 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19388 		}
19389 	}
19390 }
19391 
19392 /*
19393  * Return 0 if this address can be used as local address without causing
19394  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
19395  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
19396  * Special checks are needed to allow the same IPv6 link-local address
19397  * on different ills.
19398  * TODO: allowing the same site-local address on different ill's.
19399  */
19400 int
19401 ip_addr_availability_check(ipif_t *new_ipif)
19402 {
19403 	in6_addr_t our_v6addr;
19404 	ill_t *ill;
19405 	ipif_t *ipif;
19406 	ill_walk_context_t ctx;
19407 
19408 	ASSERT(IAM_WRITER_IPIF(new_ipif));
19409 	ASSERT(MUTEX_HELD(&ip_addr_avail_lock));
19410 	ASSERT(RW_READ_HELD(&ill_g_lock));
19411 
19412 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
19413 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
19414 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
19415 		return (0);
19416 
19417 	our_v6addr = new_ipif->ipif_v6lcl_addr;
19418 
19419 	if (new_ipif->ipif_isv6)
19420 		ill = ILL_START_WALK_V6(&ctx);
19421 	else
19422 		ill = ILL_START_WALK_V4(&ctx);
19423 
19424 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19425 		for (ipif = ill->ill_ipif; ipif != NULL;
19426 		    ipif = ipif->ipif_next) {
19427 			if ((ipif == new_ipif) ||
19428 			    !(ipif->ipif_flags & IPIF_UP) ||
19429 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
19430 				continue;
19431 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
19432 			    &our_v6addr)) {
19433 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
19434 				    new_ipif->ipif_flags |= IPIF_UNNUMBERED;
19435 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
19436 				    ipif->ipif_flags |= IPIF_UNNUMBERED;
19437 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
19438 				    new_ipif->ipif_ill != ill)
19439 					continue;
19440 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
19441 				    new_ipif->ipif_ill != ill)
19442 					continue;
19443 				else if (new_ipif->ipif_zoneid !=
19444 				    ipif->ipif_zoneid &&
19445 				    ipif->ipif_zoneid != ALL_ZONES &&
19446 				    (ill->ill_phyint->phyint_flags &
19447 				    PHYI_LOOPBACK))
19448 					continue;
19449 				else if (new_ipif->ipif_ill == ill)
19450 					return (EADDRINUSE);
19451 				else
19452 					return (EADDRNOTAVAIL);
19453 			}
19454 		}
19455 	}
19456 
19457 	return (0);
19458 }
19459 
19460 /*
19461  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
19462  * IREs for the ipif.
19463  * When the routine returns EINPROGRESS then mp has been consumed and
19464  * the ioctl will be acked from ip_rput_dlpi.
19465  */
19466 static int
19467 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
19468 {
19469 	ill_t	*ill = ipif->ipif_ill;
19470 	boolean_t isv6 = ipif->ipif_isv6;
19471 	int	err = 0;
19472 	boolean_t success;
19473 
19474 	ASSERT(IAM_WRITER_IPIF(ipif));
19475 
19476 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
19477 
19478 	/* Shouldn't get here if it is already up. */
19479 	if (ipif->ipif_flags & IPIF_UP)
19480 		return (EALREADY);
19481 
19482 	/* Skip arp/ndp for any loopback interface. */
19483 	if (ill->ill_wq != NULL) {
19484 		conn_t *connp = Q_TO_CONN(q);
19485 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
19486 
19487 		if (!ill->ill_dl_up) {
19488 			/*
19489 			 * ill_dl_up is not yet set. i.e. we are yet to
19490 			 * DL_BIND with the driver and this is the first
19491 			 * logical interface on the ill to become "up".
19492 			 * Tell the driver to get going (via DL_BIND_REQ).
19493 			 * Note that changing "significant" IFF_ flags
19494 			 * address/netmask etc cause a down/up dance, but
19495 			 * does not cause an unbind (DL_UNBIND) with the driver
19496 			 */
19497 			return (ill_dl_up(ill, ipif, mp, q));
19498 		}
19499 
19500 		/*
19501 		 * ipif_resolver_up may end up sending an
19502 		 * AR_INTERFACE_UP message to ARP, which would, in
19503 		 * turn send a DLPI message to the driver. ioctls are
19504 		 * serialized and so we cannot send more than one
19505 		 * interface up message at a time. If ipif_resolver_up
19506 		 * does send an interface up message to ARP, we get
19507 		 * EINPROGRESS and we will complete in ip_arp_done.
19508 		 */
19509 
19510 		ASSERT(connp != NULL);
19511 		ASSERT(ipsq->ipsq_pending_mp == NULL);
19512 		mutex_enter(&connp->conn_lock);
19513 		mutex_enter(&ill->ill_lock);
19514 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19515 		mutex_exit(&ill->ill_lock);
19516 		mutex_exit(&connp->conn_lock);
19517 		if (!success)
19518 			return (EINTR);
19519 
19520 		/*
19521 		 * Crank up IPv6 neighbor discovery
19522 		 * Unlike ARP, this should complete when
19523 		 * ipif_ndp_up returns. However, for
19524 		 * ILLF_XRESOLV interfaces we also send a
19525 		 * AR_INTERFACE_UP to the external resolver.
19526 		 * That ioctl will complete in ip_rput.
19527 		 */
19528 		if (isv6) {
19529 			err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr,
19530 			    B_FALSE);
19531 			if (err != 0) {
19532 				if (err != EINPROGRESS)
19533 					mp = ipsq_pending_mp_get(ipsq, &connp);
19534 				return (err);
19535 			}
19536 		}
19537 		/* Now, ARP */
19538 		err = ipif_resolver_up(ipif, Res_act_initial);
19539 		if (err == EINPROGRESS) {
19540 			/* We will complete it in ip_arp_done */
19541 			return (err);
19542 		}
19543 		mp = ipsq_pending_mp_get(ipsq, &connp);
19544 		ASSERT(mp != NULL);
19545 		if (err != 0)
19546 			return (err);
19547 	} else {
19548 		/*
19549 		 * Interfaces without underlying hardware don't do duplicate
19550 		 * address detection.
19551 		 */
19552 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
19553 		ipif->ipif_addr_ready = 1;
19554 	}
19555 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
19556 }
19557 
19558 /*
19559  * Perform a bind for the physical device.
19560  * When the routine returns EINPROGRESS then mp has been consumed and
19561  * the ioctl will be acked from ip_rput_dlpi.
19562  * Allocate an unbind message and save it until ipif_down.
19563  */
19564 static int
19565 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
19566 {
19567 	mblk_t	*areq_mp = NULL;
19568 	mblk_t	*bind_mp = NULL;
19569 	mblk_t	*unbind_mp = NULL;
19570 	conn_t	*connp;
19571 	boolean_t success;
19572 
19573 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
19574 	ASSERT(IAM_WRITER_ILL(ill));
19575 
19576 	ASSERT(mp != NULL);
19577 
19578 	/* Create a resolver cookie for ARP */
19579 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
19580 		areq_t		*areq;
19581 		uint16_t	sap_addr;
19582 
19583 		areq_mp = ill_arp_alloc(ill,
19584 			(uchar_t *)&ip_areq_template, 0);
19585 		if (areq_mp == NULL) {
19586 			return (ENOMEM);
19587 		}
19588 		freemsg(ill->ill_resolver_mp);
19589 		ill->ill_resolver_mp = areq_mp;
19590 		areq = (areq_t *)areq_mp->b_rptr;
19591 		sap_addr = ill->ill_sap;
19592 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
19593 		/*
19594 		 * Wait till we call ill_pending_mp_add to determine
19595 		 * the success before we free the ill_resolver_mp and
19596 		 * attach areq_mp in it's place.
19597 		 */
19598 	}
19599 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
19600 	    DL_BIND_REQ);
19601 	if (bind_mp == NULL)
19602 		goto bad;
19603 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
19604 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
19605 
19606 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
19607 	if (unbind_mp == NULL)
19608 		goto bad;
19609 
19610 	/*
19611 	 * Record state needed to complete this operation when the
19612 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
19613 	 */
19614 	if (WR(q)->q_next == NULL) {
19615 		connp = Q_TO_CONN(q);
19616 		mutex_enter(&connp->conn_lock);
19617 	} else {
19618 		connp = NULL;
19619 	}
19620 	mutex_enter(&ipif->ipif_ill->ill_lock);
19621 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19622 	mutex_exit(&ipif->ipif_ill->ill_lock);
19623 	if (connp != NULL)
19624 		mutex_exit(&connp->conn_lock);
19625 	if (!success)
19626 		goto bad;
19627 
19628 	/*
19629 	 * Save the unbind message for ill_dl_down(); it will be consumed when
19630 	 * the interface goes down.
19631 	 */
19632 	ASSERT(ill->ill_unbind_mp == NULL);
19633 	ill->ill_unbind_mp = unbind_mp;
19634 
19635 	ill_dlpi_send(ill, bind_mp);
19636 	/* Send down link-layer capabilities probe if not already done. */
19637 	ill_capability_probe(ill);
19638 
19639 	/*
19640 	 * Sysid used to rely on the fact that netboots set domainname
19641 	 * and the like. Now that miniroot boots aren't strictly netboots
19642 	 * and miniroot network configuration is driven from userland
19643 	 * these things still need to be set. This situation can be detected
19644 	 * by comparing the interface being configured here to the one
19645 	 * dhcack was set to reference by the boot loader. Once sysid is
19646 	 * converted to use dhcp_ipc_getinfo() this call can go away.
19647 	 */
19648 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
19649 	    (strcmp(ill->ill_name, dhcack) == 0) &&
19650 	    (strlen(srpc_domain) == 0)) {
19651 		if (dhcpinit() != 0)
19652 			cmn_err(CE_WARN, "no cached dhcp response");
19653 	}
19654 
19655 	/*
19656 	 * This operation will complete in ip_rput_dlpi with either
19657 	 * a DL_BIND_ACK or DL_ERROR_ACK.
19658 	 */
19659 	return (EINPROGRESS);
19660 bad:
19661 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
19662 	/*
19663 	 * We don't have to check for possible removal from illgrp
19664 	 * as we have not yet inserted in illgrp. For groups
19665 	 * without names, this ipif is still not UP and hence
19666 	 * this could not have possibly had any influence in forming
19667 	 * groups.
19668 	 */
19669 
19670 	if (bind_mp != NULL)
19671 		freemsg(bind_mp);
19672 	if (unbind_mp != NULL)
19673 		freemsg(unbind_mp);
19674 	return (ENOMEM);
19675 }
19676 
19677 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
19678 
19679 /*
19680  * DLPI and ARP is up.
19681  * Create all the IREs associated with an interface bring up multicast.
19682  * Set the interface flag and finish other initialization
19683  * that potentially had to be differed to after DL_BIND_ACK.
19684  */
19685 int
19686 ipif_up_done(ipif_t *ipif)
19687 {
19688 	ire_t	*ire_array[20];
19689 	ire_t	**irep = ire_array;
19690 	ire_t	**irep1;
19691 	ipaddr_t net_mask = 0;
19692 	ipaddr_t subnet_mask, route_mask;
19693 	ill_t	*ill = ipif->ipif_ill;
19694 	queue_t	*stq;
19695 	ipif_t	 *src_ipif;
19696 	ipif_t   *tmp_ipif;
19697 	boolean_t	flush_ire_cache = B_TRUE;
19698 	int	err = 0;
19699 	phyint_t *phyi;
19700 	ire_t	**ipif_saved_irep = NULL;
19701 	int ipif_saved_ire_cnt;
19702 	int	cnt;
19703 	boolean_t	src_ipif_held = B_FALSE;
19704 	boolean_t	ire_added = B_FALSE;
19705 	boolean_t	loopback = B_FALSE;
19706 
19707 	ip1dbg(("ipif_up_done(%s:%u)\n",
19708 		ipif->ipif_ill->ill_name, ipif->ipif_id));
19709 	/* Check if this is a loopback interface */
19710 	if (ipif->ipif_ill->ill_wq == NULL)
19711 		loopback = B_TRUE;
19712 
19713 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19714 	/*
19715 	 * If all other interfaces for this ill are down or DEPRECATED,
19716 	 * or otherwise unsuitable for source address selection, remove
19717 	 * any IRE_CACHE entries for this ill to make sure source
19718 	 * address selection gets to take this new ipif into account.
19719 	 * No need to hold ill_lock while traversing the ipif list since
19720 	 * we are writer
19721 	 */
19722 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
19723 		tmp_ipif = tmp_ipif->ipif_next) {
19724 		if (((tmp_ipif->ipif_flags &
19725 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
19726 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
19727 		    (tmp_ipif == ipif))
19728 			continue;
19729 		/* first useable pre-existing interface */
19730 		flush_ire_cache = B_FALSE;
19731 		break;
19732 	}
19733 	if (flush_ire_cache)
19734 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
19735 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
19736 
19737 	/*
19738 	 * Figure out which way the send-to queue should go.  Only
19739 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
19740 	 * should show up here.
19741 	 */
19742 	switch (ill->ill_net_type) {
19743 	case IRE_IF_RESOLVER:
19744 		stq = ill->ill_rq;
19745 		break;
19746 	case IRE_IF_NORESOLVER:
19747 	case IRE_LOOPBACK:
19748 		stq = ill->ill_wq;
19749 		break;
19750 	default:
19751 		return (EINVAL);
19752 	}
19753 
19754 	if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) {
19755 		/*
19756 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
19757 		 * ipif_lookup_on_name(), but in the case of zones we can have
19758 		 * several loopback addresses on lo0. So all the interfaces with
19759 		 * loopback addresses need to be marked IRE_LOOPBACK.
19760 		 */
19761 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
19762 		    htonl(INADDR_LOOPBACK))
19763 			ipif->ipif_ire_type = IRE_LOOPBACK;
19764 		else
19765 			ipif->ipif_ire_type = IRE_LOCAL;
19766 	}
19767 
19768 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
19769 		/*
19770 		 * Can't use our source address. Select a different
19771 		 * source address for the IRE_INTERFACE and IRE_LOCAL
19772 		 */
19773 		src_ipif = ipif_select_source(ipif->ipif_ill,
19774 		    ipif->ipif_subnet, ipif->ipif_zoneid);
19775 		if (src_ipif == NULL)
19776 			src_ipif = ipif;	/* Last resort */
19777 		else
19778 			src_ipif_held = B_TRUE;
19779 	} else {
19780 		src_ipif = ipif;
19781 	}
19782 
19783 	/* Create all the IREs associated with this interface */
19784 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
19785 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
19786 
19787 		/*
19788 		 * If we're on a labeled system then make sure that zone-
19789 		 * private addresses have proper remote host database entries.
19790 		 */
19791 		if (is_system_labeled() &&
19792 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
19793 		    !tsol_check_interface_address(ipif))
19794 			return (EINVAL);
19795 
19796 		/* Register the source address for __sin6_src_id */
19797 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
19798 		    ipif->ipif_zoneid);
19799 		if (err != 0) {
19800 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
19801 			return (err);
19802 		}
19803 
19804 		/* If the interface address is set, create the local IRE. */
19805 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
19806 			(void *)ipif,
19807 			ipif->ipif_ire_type,
19808 			ntohl(ipif->ipif_lcl_addr)));
19809 		*irep++ = ire_create(
19810 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
19811 		    (uchar_t *)&ip_g_all_ones,		/* mask */
19812 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
19813 		    NULL,				/* no gateway */
19814 		    NULL,
19815 		    &ip_loopback_mtuplus,		/* max frag size */
19816 		    NULL,
19817 		    ipif->ipif_rq,			/* recv-from queue */
19818 		    NULL,				/* no send-to queue */
19819 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
19820 		    NULL,
19821 		    ipif,
19822 		    NULL,
19823 		    0,
19824 		    0,
19825 		    0,
19826 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
19827 		    RTF_PRIVATE : 0,
19828 		    &ire_uinfo_null,
19829 		    NULL,
19830 		    NULL);
19831 	} else {
19832 		ip1dbg((
19833 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
19834 		    ipif->ipif_ire_type,
19835 		    ntohl(ipif->ipif_lcl_addr),
19836 		    (uint_t)ipif->ipif_flags));
19837 	}
19838 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
19839 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
19840 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
19841 	} else {
19842 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
19843 	}
19844 
19845 	subnet_mask = ipif->ipif_net_mask;
19846 
19847 	/*
19848 	 * If mask was not specified, use natural netmask of
19849 	 * interface address. Also, store this mask back into the
19850 	 * ipif struct.
19851 	 */
19852 	if (subnet_mask == 0) {
19853 		subnet_mask = net_mask;
19854 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
19855 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
19856 		    ipif->ipif_v6subnet);
19857 	}
19858 
19859 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
19860 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
19861 	    ipif->ipif_subnet != INADDR_ANY) {
19862 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19863 
19864 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19865 			route_mask = IP_HOST_MASK;
19866 		} else {
19867 			route_mask = subnet_mask;
19868 		}
19869 
19870 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
19871 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
19872 			(void *)ipif, (void *)ill,
19873 			ill->ill_net_type,
19874 			ntohl(ipif->ipif_subnet)));
19875 		*irep++ = ire_create(
19876 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
19877 		    (uchar_t *)&route_mask,		/* mask */
19878 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
19879 		    NULL,				/* no gateway */
19880 		    NULL,
19881 		    &ipif->ipif_mtu,			/* max frag */
19882 		    NULL,
19883 		    NULL,				/* no recv queue */
19884 		    stq,				/* send-to queue */
19885 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
19886 		    ill->ill_resolver_mp,		/* xmit header */
19887 		    ipif,
19888 		    NULL,
19889 		    0,
19890 		    0,
19891 		    0,
19892 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
19893 		    &ire_uinfo_null,
19894 		    NULL,
19895 		    NULL);
19896 	}
19897 
19898 	/*
19899 	 * If the interface address is set, create the broadcast IREs.
19900 	 *
19901 	 * ire_create_bcast checks if the proposed new IRE matches
19902 	 * any existing IRE's with the same physical interface (ILL).
19903 	 * This should get rid of duplicates.
19904 	 * ire_create_bcast also check IPIF_NOXMIT and does not create
19905 	 * any broadcast ires.
19906 	 */
19907 	if ((ipif->ipif_subnet != INADDR_ANY) &&
19908 	    (ipif->ipif_flags & IPIF_BROADCAST)) {
19909 		ipaddr_t addr;
19910 
19911 		ip1dbg(("ipif_up_done: creating broadcast IRE\n"));
19912 		irep = ire_check_and_create_bcast(ipif, 0, irep,
19913 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
19914 		irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep,
19915 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
19916 
19917 		/*
19918 		 * For backward compatibility, we need to create net
19919 		 * broadcast ire's based on the old "IP address class
19920 		 * system."  The reason is that some old machines only
19921 		 * respond to these class derived net broadcast.
19922 		 *
19923 		 * But we should not create these net broadcast ire's if
19924 		 * the subnet_mask is shorter than the IP address class based
19925 		 * derived netmask.  Otherwise, we may create a net
19926 		 * broadcast address which is the same as an IP address
19927 		 * on the subnet.  Then TCP will refuse to talk to that
19928 		 * address.
19929 		 *
19930 		 * Nor do we need IRE_BROADCAST ire's for the interface
19931 		 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that
19932 		 * interface is already created.  Creating these broadcast
19933 		 * ire's will only create confusion as the "addr" is going
19934 		 * to be same as that of the IP address of the interface.
19935 		 */
19936 		if (net_mask < subnet_mask) {
19937 			addr = net_mask & ipif->ipif_subnet;
19938 			irep = ire_check_and_create_bcast(ipif, addr, irep,
19939 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
19940 			irep = ire_check_and_create_bcast(ipif,
19941 			    ~net_mask | addr, irep,
19942 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
19943 		}
19944 
19945 		if (subnet_mask != 0xFFFFFFFF) {
19946 			addr = ipif->ipif_subnet;
19947 			irep = ire_check_and_create_bcast(ipif, addr, irep,
19948 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
19949 			irep = ire_check_and_create_bcast(ipif,
19950 			    ~subnet_mask|addr, irep,
19951 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
19952 		}
19953 	}
19954 
19955 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19956 
19957 	/* If an earlier ire_create failed, get out now */
19958 	for (irep1 = irep; irep1 > ire_array; ) {
19959 		irep1--;
19960 		if (*irep1 == NULL) {
19961 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
19962 			err = ENOMEM;
19963 			goto bad;
19964 		}
19965 	}
19966 
19967 	/*
19968 	 * Need to atomically check for ip_addr_availablity_check
19969 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
19970 	 * from group also.The ill_g_lock is grabbed as reader
19971 	 * just to make sure no new ills or new ipifs are being added
19972 	 * to the system while we are checking the uniqueness of addresses.
19973 	 */
19974 	rw_enter(&ill_g_lock, RW_READER);
19975 	mutex_enter(&ip_addr_avail_lock);
19976 	/* Mark it up, and increment counters. */
19977 	ipif->ipif_flags |= IPIF_UP;
19978 	ill->ill_ipif_up_count++;
19979 	err = ip_addr_availability_check(ipif);
19980 	mutex_exit(&ip_addr_avail_lock);
19981 	rw_exit(&ill_g_lock);
19982 
19983 	if (err != 0) {
19984 		/*
19985 		 * Our address may already be up on the same ill. In this case,
19986 		 * the ARP entry for our ipif replaced the one for the other
19987 		 * ipif. So we don't want to delete it (otherwise the other ipif
19988 		 * would be unable to send packets).
19989 		 * ip_addr_availability_check() identifies this case for us and
19990 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
19991 		 * which is the expected error code.
19992 		 */
19993 		if (err == EADDRINUSE) {
19994 			freemsg(ipif->ipif_arp_del_mp);
19995 			ipif->ipif_arp_del_mp = NULL;
19996 			err = EADDRNOTAVAIL;
19997 		}
19998 		ill->ill_ipif_up_count--;
19999 		ipif->ipif_flags &= ~IPIF_UP;
20000 		goto bad;
20001 	}
20002 
20003 	/*
20004 	 * Add in all newly created IREs.  ire_create_bcast() has
20005 	 * already checked for duplicates of the IRE_BROADCAST type.
20006 	 * We want to add before we call ifgrp_insert which wants
20007 	 * to know whether IRE_IF_RESOLVER exists or not.
20008 	 *
20009 	 * NOTE : We refrele the ire though we may branch to "bad"
20010 	 *	  later on where we do ire_delete. This is okay
20011 	 *	  because nobody can delete it as we are running
20012 	 *	  exclusively.
20013 	 */
20014 	for (irep1 = irep; irep1 > ire_array; ) {
20015 		irep1--;
20016 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20017 		/*
20018 		 * refheld by ire_add. refele towards the end of the func
20019 		 */
20020 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20021 	}
20022 	ire_added = B_TRUE;
20023 	/*
20024 	 * Form groups if possible.
20025 	 *
20026 	 * If we are supposed to be in a ill_group with a name, insert it
20027 	 * now as we know that at least one ipif is UP. Otherwise form
20028 	 * nameless groups.
20029 	 *
20030 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20031 	 * this ipif into the appropriate interface group, or create a
20032 	 * new one. If this is already in a nameless group, we try to form
20033 	 * a bigger group looking at other ills potentially sharing this
20034 	 * ipif's prefix.
20035 	 */
20036 	phyi = ill->ill_phyint;
20037 	if (phyi->phyint_groupname_len != 0) {
20038 		ASSERT(phyi->phyint_groupname != NULL);
20039 		if (ill->ill_ipif_up_count == 1) {
20040 			ASSERT(ill->ill_group == NULL);
20041 			err = illgrp_insert(&illgrp_head_v4, ill,
20042 			    phyi->phyint_groupname, NULL, B_TRUE);
20043 			if (err != 0) {
20044 				ip1dbg(("ipif_up_done: illgrp allocation "
20045 				    "failed, error %d\n", err));
20046 				goto bad;
20047 			}
20048 		}
20049 		ASSERT(ill->ill_group != NULL);
20050 	}
20051 
20052 	/*
20053 	 * When this is part of group, we need to make sure that
20054 	 * any broadcast ires created because of this ipif coming
20055 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20056 	 * so that we don't receive duplicate broadcast packets.
20057 	 */
20058 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20059 		ipif_renominate_bcast(ipif);
20060 
20061 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20062 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20063 	ipif_saved_irep = ipif_recover_ire(ipif);
20064 
20065 	if (!loopback) {
20066 		/*
20067 		 * If the broadcast address has been set, make sure it makes
20068 		 * sense based on the interface address.
20069 		 * Only match on ill since we are sharing broadcast addresses.
20070 		 */
20071 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20072 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20073 			ire_t	*ire;
20074 
20075 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20076 			    IRE_BROADCAST, ipif, ALL_ZONES,
20077 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20078 
20079 			if (ire == NULL) {
20080 				/*
20081 				 * If there isn't a matching broadcast IRE,
20082 				 * revert to the default for this netmask.
20083 				 */
20084 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20085 				mutex_enter(&ipif->ipif_ill->ill_lock);
20086 				ipif_set_default(ipif);
20087 				mutex_exit(&ipif->ipif_ill->ill_lock);
20088 			} else {
20089 				ire_refrele(ire);
20090 			}
20091 		}
20092 
20093 	}
20094 
20095 	/* This is the first interface on this ill */
20096 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20097 		/*
20098 		 * Need to recover all multicast memberships in the driver.
20099 		 * This had to be deferred until we had attached.
20100 		 */
20101 		ill_recover_multicast(ill);
20102 	}
20103 	/* Join the allhosts multicast address */
20104 	ipif_multicast_up(ipif);
20105 
20106 	if (!loopback) {
20107 		/*
20108 		 * See whether anybody else would benefit from the
20109 		 * new ipif that we added. We call this always rather
20110 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20111 		 * ipif is for the benefit of illgrp_insert (done above)
20112 		 * which does not do source address selection as it does
20113 		 * not want to re-create interface routes that we are
20114 		 * having reference to it here.
20115 		 */
20116 		ill_update_source_selection(ill);
20117 	}
20118 
20119 	for (irep1 = irep; irep1 > ire_array; ) {
20120 		irep1--;
20121 		if (*irep1 != NULL) {
20122 			/* was held in ire_add */
20123 			ire_refrele(*irep1);
20124 		}
20125 	}
20126 
20127 	cnt = ipif_saved_ire_cnt;
20128 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20129 		if (*irep1 != NULL) {
20130 			/* was held in ire_add */
20131 			ire_refrele(*irep1);
20132 		}
20133 	}
20134 
20135 	if (!loopback && ipif->ipif_addr_ready) {
20136 		/* Broadcast an address mask reply. */
20137 		ipif_mask_reply(ipif);
20138 	}
20139 	if (ipif_saved_irep != NULL) {
20140 		kmem_free(ipif_saved_irep,
20141 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20142 	}
20143 	if (src_ipif_held)
20144 		ipif_refrele(src_ipif);
20145 
20146 	/*
20147 	 * This had to be deferred until we had bound.  Tell routing sockets and
20148 	 * others that this interface is up if it looks like the address has
20149 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20150 	 * duplicate address detection to do its thing.
20151 	 */
20152 	if (ipif->ipif_addr_ready) {
20153 		ip_rts_ifmsg(ipif);
20154 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20155 		/* Let SCTP update the status for this ipif */
20156 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20157 	}
20158 	return (0);
20159 
20160 bad:
20161 	ip1dbg(("ipif_up_done: FAILED \n"));
20162 	/*
20163 	 * We don't have to bother removing from ill groups because
20164 	 *
20165 	 * 1) For groups with names, we insert only when the first ipif
20166 	 *    comes up. In that case if it fails, it will not be in any
20167 	 *    group. So, we need not try to remove for that case.
20168 	 *
20169 	 * 2) For groups without names, either we tried to insert ipif_ill
20170 	 *    in a group as singleton or found some other group to become
20171 	 *    a bigger group. For the former, if it fails we don't have
20172 	 *    anything to do as ipif_ill is not in the group and for the
20173 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20174 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20175 	 */
20176 	while (irep > ire_array) {
20177 		irep--;
20178 		if (*irep != NULL) {
20179 			ire_delete(*irep);
20180 			if (ire_added)
20181 				ire_refrele(*irep);
20182 		}
20183 	}
20184 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid);
20185 
20186 	if (ipif_saved_irep != NULL) {
20187 		kmem_free(ipif_saved_irep,
20188 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20189 	}
20190 	if (src_ipif_held)
20191 		ipif_refrele(src_ipif);
20192 
20193 	ipif_arp_down(ipif);
20194 	return (err);
20195 }
20196 
20197 /*
20198  * Turn off the ARP with the ILLF_NOARP flag.
20199  */
20200 static int
20201 ill_arp_off(ill_t *ill)
20202 {
20203 	mblk_t	*arp_off_mp = NULL;
20204 	mblk_t	*arp_on_mp = NULL;
20205 
20206 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20207 
20208 	ASSERT(IAM_WRITER_ILL(ill));
20209 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20210 
20211 	/*
20212 	 * If the on message is still around we've already done
20213 	 * an arp_off without doing an arp_on thus there is no
20214 	 * work needed.
20215 	 */
20216 	if (ill->ill_arp_on_mp != NULL)
20217 		return (0);
20218 
20219 	/*
20220 	 * Allocate an ARP on message (to be saved) and an ARP off message
20221 	 */
20222 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20223 	if (!arp_off_mp)
20224 		return (ENOMEM);
20225 
20226 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20227 	if (!arp_on_mp)
20228 		goto failed;
20229 
20230 	ASSERT(ill->ill_arp_on_mp == NULL);
20231 	ill->ill_arp_on_mp = arp_on_mp;
20232 
20233 	/* Send an AR_INTERFACE_OFF request */
20234 	putnext(ill->ill_rq, arp_off_mp);
20235 	return (0);
20236 failed:
20237 
20238 	if (arp_off_mp)
20239 		freemsg(arp_off_mp);
20240 	return (ENOMEM);
20241 }
20242 
20243 /*
20244  * Turn on ARP by turning off the ILLF_NOARP flag.
20245  */
20246 static int
20247 ill_arp_on(ill_t *ill)
20248 {
20249 	mblk_t	*mp;
20250 
20251 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20252 
20253 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20254 
20255 	ASSERT(IAM_WRITER_ILL(ill));
20256 	/*
20257 	 * Send an AR_INTERFACE_ON request if we have already done
20258 	 * an arp_off (which allocated the message).
20259 	 */
20260 	if (ill->ill_arp_on_mp != NULL) {
20261 		mp = ill->ill_arp_on_mp;
20262 		ill->ill_arp_on_mp = NULL;
20263 		putnext(ill->ill_rq, mp);
20264 	}
20265 	return (0);
20266 }
20267 
20268 /*
20269  * Called after either deleting ill from the group or when setting
20270  * FAILED or STANDBY on the interface.
20271  */
20272 static void
20273 illgrp_reset_schednext(ill_t *ill)
20274 {
20275 	ill_group_t *illgrp;
20276 	ill_t *save_ill;
20277 
20278 	ASSERT(IAM_WRITER_ILL(ill));
20279 	/*
20280 	 * When called from illgrp_delete, ill_group will be non-NULL.
20281 	 * But when called from ip_sioctl_flags, it could be NULL if
20282 	 * somebody is setting FAILED/INACTIVE on some interface which
20283 	 * is not part of a group.
20284 	 */
20285 	illgrp = ill->ill_group;
20286 	if (illgrp == NULL)
20287 		return;
20288 	if (illgrp->illgrp_ill_schednext != ill)
20289 		return;
20290 
20291 	illgrp->illgrp_ill_schednext = NULL;
20292 	save_ill = ill;
20293 	/*
20294 	 * Choose a good ill to be the next one for
20295 	 * outbound traffic. As the flags FAILED/STANDBY is
20296 	 * not yet marked when called from ip_sioctl_flags,
20297 	 * we check for ill separately.
20298 	 */
20299 	for (ill = illgrp->illgrp_ill; ill != NULL;
20300 	    ill = ill->ill_group_next) {
20301 		if ((ill != save_ill) &&
20302 		    !(ill->ill_phyint->phyint_flags &
20303 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20304 			illgrp->illgrp_ill_schednext = ill;
20305 			return;
20306 		}
20307 	}
20308 }
20309 
20310 /*
20311  * Given an ill, find the next ill in the group to be scheduled.
20312  * (This should be called by ip_newroute() before ire_create().)
20313  * The passed in ill may be pulled out of the group, after we have picked
20314  * up a different outgoing ill from the same group. However ire add will
20315  * atomically check this.
20316  */
20317 ill_t *
20318 illgrp_scheduler(ill_t *ill)
20319 {
20320 	ill_t *retill;
20321 	ill_group_t *illgrp;
20322 	int illcnt;
20323 	int i;
20324 	uint64_t flags;
20325 
20326 	/*
20327 	 * We don't use a lock to check for the ill_group. If this ill
20328 	 * is currently being inserted we may end up just returning this
20329 	 * ill itself. That is ok.
20330 	 */
20331 	if (ill->ill_group == NULL) {
20332 		ill_refhold(ill);
20333 		return (ill);
20334 	}
20335 
20336 	/*
20337 	 * Grab the ill_g_lock as reader to make sure we are dealing with
20338 	 * a set of stable ills. No ill can be added or deleted or change
20339 	 * group while we hold the reader lock.
20340 	 */
20341 	rw_enter(&ill_g_lock, RW_READER);
20342 	if ((illgrp = ill->ill_group) == NULL) {
20343 		rw_exit(&ill_g_lock);
20344 		ill_refhold(ill);
20345 		return (ill);
20346 	}
20347 
20348 	illcnt = illgrp->illgrp_ill_count;
20349 	mutex_enter(&illgrp->illgrp_lock);
20350 	retill = illgrp->illgrp_ill_schednext;
20351 
20352 	if (retill == NULL)
20353 		retill = illgrp->illgrp_ill;
20354 
20355 	/*
20356 	 * We do a circular search beginning at illgrp_ill_schednext
20357 	 * or illgrp_ill. We don't check the flags against the ill lock
20358 	 * since it can change anytime. The ire creation will be atomic
20359 	 * and will fail if the ill is FAILED or OFFLINE.
20360 	 */
20361 	for (i = 0; i < illcnt; i++) {
20362 		flags = retill->ill_phyint->phyint_flags;
20363 
20364 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
20365 		    ILL_CAN_LOOKUP(retill)) {
20366 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
20367 			ill_refhold(retill);
20368 			break;
20369 		}
20370 		retill = retill->ill_group_next;
20371 		if (retill == NULL)
20372 			retill = illgrp->illgrp_ill;
20373 	}
20374 	mutex_exit(&illgrp->illgrp_lock);
20375 	rw_exit(&ill_g_lock);
20376 
20377 	return (i == illcnt ? NULL : retill);
20378 }
20379 
20380 /*
20381  * Checks for availbility of a usable source address (if there is one) when the
20382  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
20383  * this selection is done regardless of the destination.
20384  */
20385 boolean_t
20386 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
20387 {
20388 	uint_t	ifindex;
20389 	ipif_t	*ipif = NULL;
20390 	ill_t	*uill;
20391 	boolean_t isv6;
20392 
20393 	ASSERT(ill != NULL);
20394 
20395 	isv6 = ill->ill_isv6;
20396 	ifindex = ill->ill_usesrc_ifindex;
20397 	if (ifindex != 0) {
20398 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
20399 		    NULL);
20400 		if (uill == NULL)
20401 			return (NULL);
20402 		mutex_enter(&uill->ill_lock);
20403 		for (ipif = uill->ill_ipif; ipif != NULL;
20404 		    ipif = ipif->ipif_next) {
20405 			if (!IPIF_CAN_LOOKUP(ipif))
20406 				continue;
20407 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20408 				continue;
20409 			if (!(ipif->ipif_flags & IPIF_UP))
20410 				continue;
20411 			if (ipif->ipif_zoneid != zoneid)
20412 				continue;
20413 			if ((isv6 &&
20414 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
20415 			    (ipif->ipif_lcl_addr == INADDR_ANY))
20416 				continue;
20417 			mutex_exit(&uill->ill_lock);
20418 			ill_refrele(uill);
20419 			return (B_TRUE);
20420 		}
20421 		mutex_exit(&uill->ill_lock);
20422 		ill_refrele(uill);
20423 	}
20424 	return (B_FALSE);
20425 }
20426 
20427 /*
20428  * Determine the best source address given a destination address and an ill.
20429  * Prefers non-deprecated over deprecated but will return a deprecated
20430  * address if there is no other choice. If there is a usable source address
20431  * on the interface pointed to by ill_usesrc_ifindex then that is given
20432  * first preference.
20433  *
20434  * Returns NULL if there is no suitable source address for the ill.
20435  * This only occurs when there is no valid source address for the ill.
20436  */
20437 ipif_t *
20438 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
20439 {
20440 	ipif_t *ipif;
20441 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
20442 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
20443 	int index = 0;
20444 	boolean_t wrapped = B_FALSE;
20445 	boolean_t same_subnet_only = B_FALSE;
20446 	boolean_t ipif_same_found, ipif_other_found;
20447 	boolean_t specific_found;
20448 	ill_t	*till, *usill = NULL;
20449 	tsol_tpc_t *src_rhtp, *dst_rhtp;
20450 
20451 	if (ill->ill_usesrc_ifindex != 0) {
20452 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE,
20453 		    NULL, NULL, NULL, NULL);
20454 		if (usill != NULL)
20455 			ill = usill;	/* Select source from usesrc ILL */
20456 		else
20457 			return (NULL);
20458 	}
20459 
20460 	/*
20461 	 * If we're dealing with an unlabeled destination on a labeled system,
20462 	 * make sure that we ignore source addresses that are incompatible with
20463 	 * the destination's default label.  That destination's default label
20464 	 * must dominate the minimum label on the source address.
20465 	 */
20466 	dst_rhtp = NULL;
20467 	if (is_system_labeled()) {
20468 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
20469 		if (dst_rhtp == NULL)
20470 			return (NULL);
20471 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
20472 			TPC_RELE(dst_rhtp);
20473 			dst_rhtp = NULL;
20474 		}
20475 	}
20476 
20477 	/*
20478 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
20479 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
20480 	 * After selecting the right ipif, under ill_lock make sure ipif is
20481 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
20482 	 * we retry. Inside the loop we still need to check for CONDEMNED,
20483 	 * but not under a lock.
20484 	 */
20485 	rw_enter(&ill_g_lock, RW_READER);
20486 
20487 retry:
20488 	till = ill;
20489 	ipif_arr[0] = NULL;
20490 
20491 	if (till->ill_group != NULL)
20492 		till = till->ill_group->illgrp_ill;
20493 
20494 	/*
20495 	 * Choose one good source address from each ill across the group.
20496 	 * If possible choose a source address in the same subnet as
20497 	 * the destination address.
20498 	 *
20499 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
20500 	 * This is okay because of the following.
20501 	 *
20502 	 *    If PHYI_FAILED is set and we still have non-deprecated
20503 	 *    addresses, it means the addresses have not yet been
20504 	 *    failed over to a different interface. We potentially
20505 	 *    select them to create IRE_CACHES, which will be later
20506 	 *    flushed when the addresses move over.
20507 	 *
20508 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
20509 	 *    addresses, it means either the user has configured them
20510 	 *    or PHYI_INACTIVE has not been cleared after the addresses
20511 	 *    been moved over. For the former, in.mpathd does a failover
20512 	 *    when the interface becomes INACTIVE and hence we should
20513 	 *    not find them. Once INACTIVE is set, we don't allow them
20514 	 *    to create logical interfaces anymore. For the latter, a
20515 	 *    flush will happen when INACTIVE is cleared which will
20516 	 *    flush the IRE_CACHES.
20517 	 *
20518 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
20519 	 *    over soon. We potentially select them to create IRE_CACHEs,
20520 	 *    which will be later flushed when the addresses move over.
20521 	 *
20522 	 * NOTE : As ipif_select_source is called to borrow source address
20523 	 * for an ipif that is part of a group, source address selection
20524 	 * will be re-done whenever the group changes i.e either an
20525 	 * insertion/deletion in the group.
20526 	 *
20527 	 * Fill ipif_arr[] with source addresses, using these rules:
20528 	 *
20529 	 *	1. At most one source address from a given ill ends up
20530 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
20531 	 *	   associated with a given ill ends up in ipif_arr[].
20532 	 *
20533 	 *	2. If there is at least one non-deprecated ipif in the
20534 	 *	   IPMP group with a source address on the same subnet as
20535 	 *	   our destination, then fill ipif_arr[] only with
20536 	 *	   source addresses on the same subnet as our destination.
20537 	 *	   Note that because of (1), only the first
20538 	 *	   non-deprecated ipif found with a source address
20539 	 *	   matching the destination ends up in ipif_arr[].
20540 	 *
20541 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
20542 	 *	   addresses not in the same subnet as our destination.
20543 	 *	   Again, because of (1), only the first off-subnet source
20544 	 *	   address will be chosen.
20545 	 *
20546 	 *	4. If there are no non-deprecated ipifs, then just use
20547 	 *	   the source address associated with the last deprecated
20548 	 *	   one we find that happens to be on the same subnet,
20549 	 *	   otherwise the first one not in the same subnet.
20550 	 */
20551 	specific_found = B_FALSE;
20552 	for (; till != NULL; till = till->ill_group_next) {
20553 		ipif_same_found = B_FALSE;
20554 		ipif_other_found = B_FALSE;
20555 		for (ipif = till->ill_ipif; ipif != NULL;
20556 		    ipif = ipif->ipif_next) {
20557 			if (!IPIF_CAN_LOOKUP(ipif))
20558 				continue;
20559 			/* Always skip NOLOCAL and ANYCAST interfaces */
20560 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20561 				continue;
20562 			if (!(ipif->ipif_flags & IPIF_UP) ||
20563 			    !ipif->ipif_addr_ready)
20564 				continue;
20565 			if (ipif->ipif_zoneid != zoneid &&
20566 			    ipif->ipif_zoneid != ALL_ZONES)
20567 				continue;
20568 			/*
20569 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
20570 			 * but are not valid as source addresses.
20571 			 */
20572 			if (ipif->ipif_lcl_addr == INADDR_ANY)
20573 				continue;
20574 
20575 			/*
20576 			 * Check compatibility of local address for
20577 			 * destination's default label if we're on a labeled
20578 			 * system.  Incompatible addresses can't be used at
20579 			 * all.
20580 			 */
20581 			if (dst_rhtp != NULL) {
20582 				boolean_t incompat;
20583 
20584 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
20585 				    IPV4_VERSION, B_FALSE);
20586 				if (src_rhtp == NULL)
20587 					continue;
20588 				incompat =
20589 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
20590 				    src_rhtp->tpc_tp.tp_doi !=
20591 				    dst_rhtp->tpc_tp.tp_doi ||
20592 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
20593 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
20594 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
20595 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
20596 				TPC_RELE(src_rhtp);
20597 				if (incompat)
20598 					continue;
20599 			}
20600 
20601 			/*
20602 			 * We prefer not to use all all-zones addresses, if we
20603 			 * can avoid it, as they pose problems with unlabeled
20604 			 * destinations.
20605 			 */
20606 			if (ipif->ipif_zoneid != ALL_ZONES) {
20607 				if (!specific_found &&
20608 				    (!same_subnet_only ||
20609 				    (ipif->ipif_net_mask & dst) ==
20610 				    ipif->ipif_subnet)) {
20611 					index = 0;
20612 					specific_found = B_TRUE;
20613 					ipif_other_found = B_FALSE;
20614 				}
20615 			} else {
20616 				if (specific_found)
20617 					continue;
20618 			}
20619 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
20620 				if (ipif_dep == NULL ||
20621 				    (ipif->ipif_net_mask & dst) ==
20622 				    ipif->ipif_subnet)
20623 					ipif_dep = ipif;
20624 				continue;
20625 			}
20626 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
20627 				/* found a source address in the same subnet */
20628 				if (!same_subnet_only) {
20629 					same_subnet_only = B_TRUE;
20630 					index = 0;
20631 				}
20632 				ipif_same_found = B_TRUE;
20633 			} else {
20634 				if (same_subnet_only || ipif_other_found)
20635 					continue;
20636 				ipif_other_found = B_TRUE;
20637 			}
20638 			ipif_arr[index++] = ipif;
20639 			if (index == MAX_IPIF_SELECT_SOURCE) {
20640 				wrapped = B_TRUE;
20641 				index = 0;
20642 			}
20643 			if (ipif_same_found)
20644 				break;
20645 		}
20646 	}
20647 
20648 	if (ipif_arr[0] == NULL) {
20649 		ipif = ipif_dep;
20650 	} else {
20651 		if (wrapped)
20652 			index = MAX_IPIF_SELECT_SOURCE;
20653 		ipif = ipif_arr[ipif_rand() % index];
20654 		ASSERT(ipif != NULL);
20655 	}
20656 
20657 	if (ipif != NULL) {
20658 		mutex_enter(&ipif->ipif_ill->ill_lock);
20659 		if (!IPIF_CAN_LOOKUP(ipif)) {
20660 			mutex_exit(&ipif->ipif_ill->ill_lock);
20661 			goto retry;
20662 		}
20663 		ipif_refhold_locked(ipif);
20664 		mutex_exit(&ipif->ipif_ill->ill_lock);
20665 	}
20666 
20667 	rw_exit(&ill_g_lock);
20668 	if (usill != NULL)
20669 		ill_refrele(usill);
20670 	if (dst_rhtp != NULL)
20671 		TPC_RELE(dst_rhtp);
20672 
20673 #ifdef DEBUG
20674 	if (ipif == NULL) {
20675 		char buf1[INET6_ADDRSTRLEN];
20676 
20677 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
20678 		    ill->ill_name,
20679 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
20680 	} else {
20681 		char buf1[INET6_ADDRSTRLEN];
20682 		char buf2[INET6_ADDRSTRLEN];
20683 
20684 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
20685 		    ipif->ipif_ill->ill_name,
20686 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
20687 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
20688 		    buf2, sizeof (buf2))));
20689 	}
20690 #endif /* DEBUG */
20691 	return (ipif);
20692 }
20693 
20694 
20695 /*
20696  * If old_ipif is not NULL, see if ipif was derived from old
20697  * ipif and if so, recreate the interface route by re-doing
20698  * source address selection. This happens when ipif_down ->
20699  * ipif_update_other_ipifs calls us.
20700  *
20701  * If old_ipif is NULL, just redo the source address selection
20702  * if needed. This happens when illgrp_insert or ipif_up_done
20703  * calls us.
20704  */
20705 static void
20706 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
20707 {
20708 	ire_t *ire;
20709 	ire_t *ipif_ire;
20710 	queue_t *stq;
20711 	ipif_t *nipif;
20712 	ill_t *ill;
20713 	boolean_t need_rele = B_FALSE;
20714 
20715 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
20716 	ASSERT(IAM_WRITER_IPIF(ipif));
20717 
20718 	ill = ipif->ipif_ill;
20719 	if (!(ipif->ipif_flags &
20720 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
20721 		/*
20722 		 * Can't possibly have borrowed the source
20723 		 * from old_ipif.
20724 		 */
20725 		return;
20726 	}
20727 
20728 	/*
20729 	 * Is there any work to be done? No work if the address
20730 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
20731 	 * ipif_select_source() does not borrow addresses from
20732 	 * NOLOCAL and ANYCAST interfaces).
20733 	 */
20734 	if ((old_ipif != NULL) &&
20735 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
20736 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
20737 	    (old_ipif->ipif_flags &
20738 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
20739 		return;
20740 	}
20741 
20742 	/*
20743 	 * Perform the same checks as when creating the
20744 	 * IRE_INTERFACE in ipif_up_done.
20745 	 */
20746 	if (!(ipif->ipif_flags & IPIF_UP))
20747 		return;
20748 
20749 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
20750 	    (ipif->ipif_subnet == INADDR_ANY))
20751 		return;
20752 
20753 	ipif_ire = ipif_to_ire(ipif);
20754 	if (ipif_ire == NULL)
20755 		return;
20756 
20757 	/*
20758 	 * We know that ipif uses some other source for its
20759 	 * IRE_INTERFACE. Is it using the source of this
20760 	 * old_ipif?
20761 	 */
20762 	if (old_ipif != NULL &&
20763 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
20764 		ire_refrele(ipif_ire);
20765 		return;
20766 	}
20767 	if (ip_debug > 2) {
20768 		/* ip1dbg */
20769 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
20770 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
20771 	}
20772 
20773 	stq = ipif_ire->ire_stq;
20774 
20775 	/*
20776 	 * Can't use our source address. Select a different
20777 	 * source address for the IRE_INTERFACE.
20778 	 */
20779 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
20780 	if (nipif == NULL) {
20781 		/* Last resort - all ipif's have IPIF_NOLOCAL */
20782 		nipif = ipif;
20783 	} else {
20784 		need_rele = B_TRUE;
20785 	}
20786 
20787 	ire = ire_create(
20788 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
20789 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
20790 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
20791 	    NULL,				/* no gateway */
20792 	    NULL,
20793 	    &ipif->ipif_mtu,			/* max frag */
20794 	    NULL,				/* fast path header */
20795 	    NULL,				/* no recv from queue */
20796 	    stq,				/* send-to queue */
20797 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20798 	    ill->ill_resolver_mp,		/* xmit header */
20799 	    ipif,
20800 	    NULL,
20801 	    0,
20802 	    0,
20803 	    0,
20804 	    0,
20805 	    &ire_uinfo_null,
20806 	    NULL,
20807 	    NULL);
20808 
20809 	if (ire != NULL) {
20810 		ire_t *ret_ire;
20811 		int error;
20812 
20813 		/*
20814 		 * We don't need ipif_ire anymore. We need to delete
20815 		 * before we add so that ire_add does not detect
20816 		 * duplicates.
20817 		 */
20818 		ire_delete(ipif_ire);
20819 		ret_ire = ire;
20820 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
20821 		ASSERT(error == 0);
20822 		ASSERT(ire == ret_ire);
20823 		/* Held in ire_add */
20824 		ire_refrele(ret_ire);
20825 	}
20826 	/*
20827 	 * Either we are falling through from above or could not
20828 	 * allocate a replacement.
20829 	 */
20830 	ire_refrele(ipif_ire);
20831 	if (need_rele)
20832 		ipif_refrele(nipif);
20833 }
20834 
20835 /*
20836  * This old_ipif is going away.
20837  *
20838  * Determine if any other ipif's is using our address as
20839  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
20840  * IPIF_DEPRECATED).
20841  * Find the IRE_INTERFACE for such ipifs and recreate them
20842  * to use an different source address following the rules in
20843  * ipif_up_done.
20844  *
20845  * This function takes an illgrp as an argument so that illgrp_delete
20846  * can call this to update source address even after deleting the
20847  * old_ipif->ipif_ill from the ill group.
20848  */
20849 static void
20850 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
20851 {
20852 	ipif_t *ipif;
20853 	ill_t *ill;
20854 	char	buf[INET6_ADDRSTRLEN];
20855 
20856 	ASSERT(IAM_WRITER_IPIF(old_ipif));
20857 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
20858 
20859 	ill = old_ipif->ipif_ill;
20860 
20861 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
20862 	    ill->ill_name,
20863 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
20864 	    buf, sizeof (buf))));
20865 	/*
20866 	 * If this part of a group, look at all ills as ipif_select_source
20867 	 * borrows source address across all the ills in the group.
20868 	 */
20869 	if (illgrp != NULL)
20870 		ill = illgrp->illgrp_ill;
20871 
20872 	for (; ill != NULL; ill = ill->ill_group_next) {
20873 		for (ipif = ill->ill_ipif; ipif != NULL;
20874 		    ipif = ipif->ipif_next) {
20875 
20876 			if (ipif == old_ipif)
20877 				continue;
20878 
20879 			ipif_recreate_interface_routes(old_ipif, ipif);
20880 		}
20881 	}
20882 }
20883 
20884 /* ARGSUSED */
20885 int
20886 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
20887 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
20888 {
20889 	/*
20890 	 * ill_phyint_reinit merged the v4 and v6 into a single
20891 	 * ipsq. Could also have become part of a ipmp group in the
20892 	 * process, and we might not have been able to complete the
20893 	 * operation in ipif_set_values, if we could not become
20894 	 * exclusive.  If so restart it here.
20895 	 */
20896 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
20897 }
20898 
20899 
20900 /* ARGSUSED */
20901 int
20902 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
20903     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
20904 {
20905 	queue_t		*q1 = q;
20906 	char 		*cp;
20907 	char		interf_name[LIFNAMSIZ];
20908 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
20909 
20910 	if (!q->q_next) {
20911 		ip1dbg((
20912 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
20913 		return (EINVAL);
20914 	}
20915 
20916 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
20917 		return (EALREADY);
20918 
20919 	do {
20920 		q1 = q1->q_next;
20921 	} while (q1->q_next);
20922 	cp = q1->q_qinfo->qi_minfo->mi_idname;
20923 	(void) sprintf(interf_name, "%s%d", cp, ppa);
20924 
20925 	/*
20926 	 * Here we are not going to delay the ioack until after
20927 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
20928 	 * original ioctl message before sending the requests.
20929 	 */
20930 	return (ipif_set_values(q, mp, interf_name, &ppa));
20931 }
20932 
20933 /* ARGSUSED */
20934 int
20935 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
20936     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
20937 {
20938 	return (ENXIO);
20939 }
20940 
20941 /*
20942  * Net and subnet broadcast ire's are now specific to the particular
20943  * physical interface (ill) and not to any one locigal interface (ipif).
20944  * However, if a particular logical interface is being taken down, it's
20945  * associated ire's will be taken down as well.  Hence, when we go to
20946  * take down or change the local address, broadcast address or netmask
20947  * of a specific logical interface, we must check to make sure that we
20948  * have valid net and subnet broadcast ire's for the other logical
20949  * interfaces which may have been shared with the logical interface
20950  * being brought down or changed.
20951  *
20952  * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it
20953  * is tied to the first interface coming UP. If that ipif is going down,
20954  * we need to recreate them on the next valid ipif.
20955  *
20956  * Note: assume that the ipif passed in is still up so that it's IRE
20957  * entries are still valid.
20958  */
20959 static void
20960 ipif_check_bcast_ires(ipif_t *test_ipif)
20961 {
20962 	ipif_t	*ipif;
20963 	ire_t	*test_subnet_ire, *test_net_ire;
20964 	ire_t	*test_allzero_ire, *test_allone_ire;
20965 	ire_t	*ire_array[12];
20966 	ire_t	**irep = &ire_array[0];
20967 	ire_t	**irep1;
20968 
20969 	ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask;
20970 	ipaddr_t test_net_addr, test_subnet_addr;
20971 	ipaddr_t test_net_mask, test_subnet_mask;
20972 	boolean_t need_net_bcast_ire = B_FALSE;
20973 	boolean_t need_subnet_bcast_ire = B_FALSE;
20974 	boolean_t allzero_bcast_ire_created = B_FALSE;
20975 	boolean_t allone_bcast_ire_created = B_FALSE;
20976 	boolean_t net_bcast_ire_created = B_FALSE;
20977 	boolean_t subnet_bcast_ire_created = B_FALSE;
20978 
20979 	ipif_t  *backup_ipif_net = (ipif_t *)NULL;
20980 	ipif_t  *backup_ipif_subnet = (ipif_t *)NULL;
20981 	ipif_t  *backup_ipif_allzeros = (ipif_t *)NULL;
20982 	ipif_t  *backup_ipif_allones = (ipif_t *)NULL;
20983 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
20984 
20985 	ASSERT(!test_ipif->ipif_isv6);
20986 	ASSERT(IAM_WRITER_IPIF(test_ipif));
20987 
20988 	/*
20989 	 * No broadcast IREs for the LOOPBACK interface
20990 	 * or others such as point to point and IPIF_NOXMIT.
20991 	 */
20992 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
20993 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
20994 		return;
20995 
20996 	test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST,
20997 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
20998 
20999 	test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST,
21000 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
21001 
21002 	test_net_mask = ip_net_mask(test_ipif->ipif_subnet);
21003 	test_subnet_mask = test_ipif->ipif_net_mask;
21004 
21005 	/*
21006 	 * If no net mask set, assume the default based on net class.
21007 	 */
21008 	if (test_subnet_mask == 0)
21009 		test_subnet_mask = test_net_mask;
21010 
21011 	/*
21012 	 * Check if there is a network broadcast ire associated with this ipif
21013 	 */
21014 	test_net_addr = test_net_mask  & test_ipif->ipif_subnet;
21015 	test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST,
21016 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
21017 
21018 	/*
21019 	 * Check if there is a subnet broadcast IRE associated with this ipif
21020 	 */
21021 	test_subnet_addr = test_subnet_mask  & test_ipif->ipif_subnet;
21022 	test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST,
21023 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
21024 
21025 	/*
21026 	 * No broadcast ire's associated with this ipif.
21027 	 */
21028 	if ((test_subnet_ire == NULL) && (test_net_ire == NULL) &&
21029 	    (test_allzero_ire == NULL) && (test_allone_ire == NULL)) {
21030 		return;
21031 	}
21032 
21033 	/*
21034 	 * We have established which bcast ires have to be replaced.
21035 	 * Next we try to locate ipifs that match there ires.
21036 	 * The rules are simple: If we find an ipif that matches on the subnet
21037 	 * address it will also match on the net address, the allzeros and
21038 	 * allones address. Any ipif that matches only on the net address will
21039 	 * also match the allzeros and allones addresses.
21040 	 * The other criterion is the ipif_flags. We look for non-deprecated
21041 	 * (and non-anycast and non-nolocal) ipifs as the best choice.
21042 	 * ipifs with check_flags matching (deprecated, etc) are used only
21043 	 * if good ipifs are not available. While looping, we save existing
21044 	 * deprecated ipifs as backup_ipif.
21045 	 * We loop through all the ipifs for this ill looking for ipifs
21046 	 * whose broadcast addr match the ipif passed in, but do not have
21047 	 * their own broadcast ires. For creating 0.0.0.0 and
21048 	 * 255.255.255.255 we just need an ipif on this ill to create.
21049 	 */
21050 	for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL;
21051 	    ipif = ipif->ipif_next) {
21052 
21053 		ASSERT(!ipif->ipif_isv6);
21054 		/*
21055 		 * Already checked the ipif passed in.
21056 		 */
21057 		if (ipif == test_ipif) {
21058 			continue;
21059 		}
21060 
21061 		/*
21062 		 * We only need to recreate broadcast ires if another ipif in
21063 		 * the same zone uses them. The new ires must be created in the
21064 		 * same zone.
21065 		 */
21066 		if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) {
21067 			continue;
21068 		}
21069 
21070 		/*
21071 		 * Only interested in logical interfaces with valid local
21072 		 * addresses or with the ability to broadcast.
21073 		 */
21074 		if ((ipif->ipif_subnet == 0) ||
21075 		    !(ipif->ipif_flags & IPIF_BROADCAST) ||
21076 		    (ipif->ipif_flags & IPIF_NOXMIT) ||
21077 		    !(ipif->ipif_flags & IPIF_UP)) {
21078 			continue;
21079 		}
21080 		/*
21081 		 * Check if there is a net broadcast ire for this
21082 		 * net address.  If it turns out that the ipif we are
21083 		 * about to take down owns this ire, we must make a
21084 		 * new one because it is potentially going away.
21085 		 */
21086 		if (test_net_ire && (!net_bcast_ire_created)) {
21087 			net_mask = ip_net_mask(ipif->ipif_subnet);
21088 			net_addr = net_mask & ipif->ipif_subnet;
21089 			if (net_addr == test_net_addr) {
21090 				need_net_bcast_ire = B_TRUE;
21091 				/*
21092 				 * Use DEPRECATED ipif only if no good
21093 				 * ires are available. subnet_addr is
21094 				 * a better match than net_addr.
21095 				 */
21096 				if ((ipif->ipif_flags & check_flags) &&
21097 				    (backup_ipif_net == NULL)) {
21098 					backup_ipif_net = ipif;
21099 				}
21100 			}
21101 		}
21102 		/*
21103 		 * Check if there is a subnet broadcast ire for this
21104 		 * net address.  If it turns out that the ipif we are
21105 		 * about to take down owns this ire, we must make a
21106 		 * new one because it is potentially going away.
21107 		 */
21108 		if (test_subnet_ire && (!subnet_bcast_ire_created)) {
21109 			subnet_mask = ipif->ipif_net_mask;
21110 			subnet_addr = ipif->ipif_subnet;
21111 			if (subnet_addr == test_subnet_addr) {
21112 				need_subnet_bcast_ire = B_TRUE;
21113 				if ((ipif->ipif_flags & check_flags) &&
21114 				    (backup_ipif_subnet == NULL)) {
21115 					backup_ipif_subnet = ipif;
21116 				}
21117 			}
21118 		}
21119 
21120 
21121 		/* Short circuit here if this ipif is deprecated */
21122 		if (ipif->ipif_flags & check_flags) {
21123 			if ((test_allzero_ire != NULL) &&
21124 			    (!allzero_bcast_ire_created) &&
21125 			    (backup_ipif_allzeros == NULL)) {
21126 				backup_ipif_allzeros = ipif;
21127 			}
21128 			if ((test_allone_ire != NULL) &&
21129 			    (!allone_bcast_ire_created) &&
21130 			    (backup_ipif_allones == NULL)) {
21131 				backup_ipif_allones = ipif;
21132 			}
21133 			continue;
21134 		}
21135 
21136 		/*
21137 		 * Found an ipif which has the same broadcast ire as the
21138 		 * ipif passed in and the ipif passed in "owns" the ire.
21139 		 * Create new broadcast ire's for this broadcast addr.
21140 		 */
21141 		if (need_net_bcast_ire && !net_bcast_ire_created) {
21142 			irep = ire_create_bcast(ipif, net_addr, irep);
21143 			irep = ire_create_bcast(ipif,
21144 			    ~net_mask | net_addr, irep);
21145 			net_bcast_ire_created = B_TRUE;
21146 		}
21147 		if (need_subnet_bcast_ire && !subnet_bcast_ire_created) {
21148 			irep = ire_create_bcast(ipif, subnet_addr, irep);
21149 			irep = ire_create_bcast(ipif,
21150 			    ~subnet_mask | subnet_addr, irep);
21151 			subnet_bcast_ire_created = B_TRUE;
21152 		}
21153 		if (test_allzero_ire != NULL && !allzero_bcast_ire_created) {
21154 			irep = ire_create_bcast(ipif, 0, irep);
21155 			allzero_bcast_ire_created = B_TRUE;
21156 		}
21157 		if (test_allone_ire != NULL && !allone_bcast_ire_created) {
21158 			irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep);
21159 			allone_bcast_ire_created = B_TRUE;
21160 		}
21161 		/*
21162 		 * Once we have created all the appropriate ires, we
21163 		 * just break out of this loop to add what we have created.
21164 		 * This has been indented similar to ire_match_args for
21165 		 * readability.
21166 		 */
21167 		if (((test_net_ire == NULL) ||
21168 			(net_bcast_ire_created)) &&
21169 		    ((test_subnet_ire == NULL) ||
21170 			(subnet_bcast_ire_created)) &&
21171 		    ((test_allzero_ire == NULL) ||
21172 			(allzero_bcast_ire_created)) &&
21173 		    ((test_allone_ire == NULL) ||
21174 			(allone_bcast_ire_created))) {
21175 			break;
21176 		}
21177 	}
21178 
21179 	/*
21180 	 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs
21181 	 * exist. 6 pairs of bcast ires are needed.
21182 	 * Note - the old ires are deleted in ipif_down.
21183 	 */
21184 	if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) {
21185 		ipif = backup_ipif_net;
21186 		irep = ire_create_bcast(ipif, net_addr, irep);
21187 		irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep);
21188 		net_bcast_ire_created = B_TRUE;
21189 	}
21190 	if (need_subnet_bcast_ire && !subnet_bcast_ire_created &&
21191 	    backup_ipif_subnet) {
21192 		ipif = backup_ipif_subnet;
21193 		irep = ire_create_bcast(ipif, subnet_addr, irep);
21194 		irep = ire_create_bcast(ipif,
21195 		    ~subnet_mask | subnet_addr, irep);
21196 		subnet_bcast_ire_created = B_TRUE;
21197 	}
21198 	if (test_allzero_ire != NULL && !allzero_bcast_ire_created &&
21199 	    backup_ipif_allzeros) {
21200 		irep = ire_create_bcast(backup_ipif_allzeros, 0, irep);
21201 		allzero_bcast_ire_created = B_TRUE;
21202 	}
21203 	if (test_allone_ire != NULL && !allone_bcast_ire_created &&
21204 	    backup_ipif_allones) {
21205 		irep = ire_create_bcast(backup_ipif_allones,
21206 		    INADDR_BROADCAST, irep);
21207 		allone_bcast_ire_created = B_TRUE;
21208 	}
21209 
21210 	/*
21211 	 * If we can't create all of them, don't add any of them.
21212 	 * Code in ip_wput_ire and ire_to_ill assumes that we
21213 	 * always have a non-loopback copy and loopback copy
21214 	 * for a given address.
21215 	 */
21216 	for (irep1 = irep; irep1 > ire_array; ) {
21217 		irep1--;
21218 		if (*irep1 == NULL) {
21219 			ip0dbg(("ipif_check_bcast_ires: can't create "
21220 			    "IRE_BROADCAST, memory allocation failure\n"));
21221 			while (irep > ire_array) {
21222 				irep--;
21223 				if (*irep != NULL)
21224 					ire_delete(*irep);
21225 			}
21226 			goto bad;
21227 		}
21228 	}
21229 	for (irep1 = irep; irep1 > ire_array; ) {
21230 		int error;
21231 
21232 		irep1--;
21233 		error = ire_add(irep1, NULL, NULL, NULL, B_FALSE);
21234 		if (error == 0) {
21235 			ire_refrele(*irep1);		/* Held in ire_add */
21236 		}
21237 	}
21238 bad:
21239 	if (test_allzero_ire != NULL)
21240 		ire_refrele(test_allzero_ire);
21241 	if (test_allone_ire != NULL)
21242 		ire_refrele(test_allone_ire);
21243 	if (test_net_ire != NULL)
21244 		ire_refrele(test_net_ire);
21245 	if (test_subnet_ire != NULL)
21246 		ire_refrele(test_subnet_ire);
21247 }
21248 
21249 /*
21250  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21251  * from lifr_flags and the name from lifr_name.
21252  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21253  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21254  * Returns EINPROGRESS when mp has been consumed by queueing it on
21255  * ill_pending_mp and the ioctl will complete in ip_rput.
21256  */
21257 /* ARGSUSED */
21258 int
21259 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21260     ip_ioctl_cmd_t *ipip, void *if_req)
21261 {
21262 	int	err;
21263 	ill_t	*ill;
21264 	struct lifreq *lifr = (struct lifreq *)if_req;
21265 
21266 	ASSERT(ipif != NULL);
21267 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21268 	ASSERT(q->q_next != NULL);
21269 
21270 	ill = (ill_t *)q->q_ptr;
21271 	/*
21272 	 * If we are not writer on 'q' then this interface exists already
21273 	 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif.
21274 	 * So return EALREADY
21275 	 */
21276 	if (ill != ipif->ipif_ill)
21277 		return (EALREADY);
21278 
21279 	if (ill->ill_name[0] != '\0')
21280 		return (EALREADY);
21281 
21282 	/*
21283 	 * Set all the flags. Allows all kinds of override. Provide some
21284 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21285 	 * unless there is either multicast/broadcast support in the driver
21286 	 * or it is a pt-pt link.
21287 	 */
21288 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21289 		/* Meaningless to IP thus don't allow them to be set. */
21290 		ip1dbg(("ip_setname: EINVAL 1\n"));
21291 		return (EINVAL);
21292 	}
21293 	/*
21294 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21295 	 * ill_bcast_addr_length info.
21296 	 */
21297 	if (!ill->ill_needs_attach &&
21298 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
21299 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21300 	    ill->ill_bcast_addr_length == 0)) {
21301 		/* Link not broadcast/pt-pt capable i.e. no multicast */
21302 		ip1dbg(("ip_setname: EINVAL 2\n"));
21303 		return (EINVAL);
21304 	}
21305 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
21306 	    ((lifr->lifr_flags & IFF_IPV6) ||
21307 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21308 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
21309 		ip1dbg(("ip_setname: EINVAL 3\n"));
21310 		return (EINVAL);
21311 	}
21312 	if (lifr->lifr_flags & IFF_UP) {
21313 		/* Can only be set with SIOCSLIFFLAGS */
21314 		ip1dbg(("ip_setname: EINVAL 4\n"));
21315 		return (EINVAL);
21316 	}
21317 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21318 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21319 		ip1dbg(("ip_setname: EINVAL 5\n"));
21320 		return (EINVAL);
21321 	}
21322 	/*
21323 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21324 	 */
21325 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
21326 	    !(lifr->lifr_flags & IFF_IPV6) &&
21327 	    !(ipif->ipif_isv6)) {
21328 		ip1dbg(("ip_setname: EINVAL 6\n"));
21329 		return (EINVAL);
21330 	}
21331 
21332 	/*
21333 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
21334 	 * we have all the flags here. So, we assign rather than we OR.
21335 	 * We can't OR the flags here because we don't want to set
21336 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
21337 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
21338 	 * on lifr_flags value here.
21339 	 */
21340 	/*
21341 	 * This ill has not been inserted into the global list.
21342 	 * So we are still single threaded and don't need any lock
21343 	 */
21344 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
21345 	    ~IFF_DUPLICATE;
21346 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
21347 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
21348 
21349 	/* We started off as V4. */
21350 	if (ill->ill_flags & ILLF_IPV6) {
21351 		ill->ill_phyint->phyint_illv6 = ill;
21352 		ill->ill_phyint->phyint_illv4 = NULL;
21353 	}
21354 	err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
21355 	return (err);
21356 }
21357 
21358 /* ARGSUSED */
21359 int
21360 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21361     ip_ioctl_cmd_t *ipip, void *if_req)
21362 {
21363 	/*
21364 	 * ill_phyint_reinit merged the v4 and v6 into a single
21365 	 * ipsq. Could also have become part of a ipmp group in the
21366 	 * process, and we might not have been able to complete the
21367 	 * slifname in ipif_set_values, if we could not become
21368 	 * exclusive.  If so restart it here
21369 	 */
21370 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21371 }
21372 
21373 /*
21374  * Return a pointer to the ipif which matches the index, IP version type and
21375  * zoneid.
21376  */
21377 ipif_t *
21378 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
21379     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
21380 {
21381 	ill_t	*ill;
21382 	ipsq_t  *ipsq;
21383 	phyint_t *phyi;
21384 	ipif_t	*ipif;
21385 
21386 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
21387 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
21388 
21389 	if (err != NULL)
21390 		*err = 0;
21391 
21392 	/*
21393 	 * Indexes are stored in the phyint - a common structure
21394 	 * to both IPv4 and IPv6.
21395 	 */
21396 
21397 	rw_enter(&ill_g_lock, RW_READER);
21398 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index,
21399 	    (void *) &index, NULL);
21400 	if (phyi != NULL) {
21401 		ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4;
21402 		if (ill == NULL) {
21403 			rw_exit(&ill_g_lock);
21404 			if (err != NULL)
21405 				*err = ENXIO;
21406 			return (NULL);
21407 		}
21408 		GRAB_CONN_LOCK(q);
21409 		mutex_enter(&ill->ill_lock);
21410 		if (ILL_CAN_LOOKUP(ill)) {
21411 			for (ipif = ill->ill_ipif; ipif != NULL;
21412 			    ipif = ipif->ipif_next) {
21413 				if (IPIF_CAN_LOOKUP(ipif) &&
21414 				    (zoneid == ALL_ZONES ||
21415 				    zoneid == ipif->ipif_zoneid ||
21416 				    ipif->ipif_zoneid == ALL_ZONES)) {
21417 					ipif_refhold_locked(ipif);
21418 					mutex_exit(&ill->ill_lock);
21419 					RELEASE_CONN_LOCK(q);
21420 					rw_exit(&ill_g_lock);
21421 					return (ipif);
21422 				}
21423 			}
21424 		} else if (ILL_CAN_WAIT(ill, q)) {
21425 			ipsq = ill->ill_phyint->phyint_ipsq;
21426 			mutex_enter(&ipsq->ipsq_lock);
21427 			rw_exit(&ill_g_lock);
21428 			mutex_exit(&ill->ill_lock);
21429 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
21430 			mutex_exit(&ipsq->ipsq_lock);
21431 			RELEASE_CONN_LOCK(q);
21432 			*err = EINPROGRESS;
21433 			return (NULL);
21434 		}
21435 		mutex_exit(&ill->ill_lock);
21436 		RELEASE_CONN_LOCK(q);
21437 	}
21438 	rw_exit(&ill_g_lock);
21439 	if (err != NULL)
21440 		*err = ENXIO;
21441 	return (NULL);
21442 }
21443 
21444 typedef struct conn_change_s {
21445 	uint_t cc_old_ifindex;
21446 	uint_t cc_new_ifindex;
21447 } conn_change_t;
21448 
21449 /*
21450  * ipcl_walk function for changing interface index.
21451  */
21452 static void
21453 conn_change_ifindex(conn_t *connp, caddr_t arg)
21454 {
21455 	conn_change_t *connc;
21456 	uint_t old_ifindex;
21457 	uint_t new_ifindex;
21458 	int i;
21459 	ilg_t *ilg;
21460 
21461 	connc = (conn_change_t *)arg;
21462 	old_ifindex = connc->cc_old_ifindex;
21463 	new_ifindex = connc->cc_new_ifindex;
21464 
21465 	if (connp->conn_orig_bound_ifindex == old_ifindex)
21466 		connp->conn_orig_bound_ifindex = new_ifindex;
21467 
21468 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
21469 		connp->conn_orig_multicast_ifindex = new_ifindex;
21470 
21471 	if (connp->conn_orig_xmit_ifindex == old_ifindex)
21472 		connp->conn_orig_xmit_ifindex = new_ifindex;
21473 
21474 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
21475 		ilg = &connp->conn_ilg[i];
21476 		if (ilg->ilg_orig_ifindex == old_ifindex)
21477 			ilg->ilg_orig_ifindex = new_ifindex;
21478 	}
21479 }
21480 
21481 /*
21482  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
21483  * to new_index if it matches the old_index.
21484  *
21485  * Failovers typically happen within a group of ills. But somebody
21486  * can remove an ill from the group after a failover happened. If
21487  * we are setting the ifindex after this, we potentially need to
21488  * look at all the ills rather than just the ones in the group.
21489  * We cut down the work by looking at matching ill_net_types
21490  * and ill_types as we could not possibly grouped them together.
21491  */
21492 static void
21493 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
21494 {
21495 	ill_t *ill;
21496 	ipif_t *ipif;
21497 	uint_t old_ifindex;
21498 	uint_t new_ifindex;
21499 	ilm_t *ilm;
21500 	ill_walk_context_t ctx;
21501 
21502 	old_ifindex = connc->cc_old_ifindex;
21503 	new_ifindex = connc->cc_new_ifindex;
21504 
21505 	rw_enter(&ill_g_lock, RW_READER);
21506 	ill = ILL_START_WALK_ALL(&ctx);
21507 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
21508 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
21509 			(ill_orig->ill_type != ill->ill_type)) {
21510 			continue;
21511 		}
21512 		for (ipif = ill->ill_ipif; ipif != NULL;
21513 				ipif = ipif->ipif_next) {
21514 			if (ipif->ipif_orig_ifindex == old_ifindex)
21515 				ipif->ipif_orig_ifindex = new_ifindex;
21516 		}
21517 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
21518 			if (ilm->ilm_orig_ifindex == old_ifindex)
21519 				ilm->ilm_orig_ifindex = new_ifindex;
21520 		}
21521 	}
21522 	rw_exit(&ill_g_lock);
21523 }
21524 
21525 /*
21526  * We first need to ensure that the new index is unique, and
21527  * then carry the change across both v4 and v6 ill representation
21528  * of the physical interface.
21529  */
21530 /* ARGSUSED */
21531 int
21532 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21533     ip_ioctl_cmd_t *ipip, void *ifreq)
21534 {
21535 	ill_t		*ill;
21536 	ill_t		*ill_other;
21537 	phyint_t	*phyi;
21538 	int		old_index;
21539 	conn_change_t	connc;
21540 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21541 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21542 	uint_t	index;
21543 	ill_t	*ill_v4;
21544 	ill_t	*ill_v6;
21545 
21546 	if (ipip->ipi_cmd_type == IF_CMD)
21547 		index = ifr->ifr_index;
21548 	else
21549 		index = lifr->lifr_index;
21550 
21551 	/*
21552 	 * Only allow on physical interface. Also, index zero is illegal.
21553 	 *
21554 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
21555 	 *
21556 	 * 1) If PHYI_FAILED is set, a failover could have happened which
21557 	 *    implies a possible failback might have to happen. As failback
21558 	 *    depends on the old index, we should fail setting the index.
21559 	 *
21560 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
21561 	 *    any addresses or multicast memberships are failed over to
21562 	 *    a non-STANDBY interface. As failback depends on the old
21563 	 *    index, we should fail setting the index for this case also.
21564 	 *
21565 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
21566 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
21567 	 */
21568 	ill = ipif->ipif_ill;
21569 	phyi = ill->ill_phyint;
21570 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
21571 	    ipif->ipif_id != 0 || index == 0) {
21572 		return (EINVAL);
21573 	}
21574 	old_index = phyi->phyint_ifindex;
21575 
21576 	/* If the index is not changing, no work to do */
21577 	if (old_index == index)
21578 		return (0);
21579 
21580 	/*
21581 	 * Use ill_lookup_on_ifindex to determine if the
21582 	 * new index is unused and if so allow the change.
21583 	 */
21584 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL);
21585 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL);
21586 	if (ill_v6 != NULL || ill_v4 != NULL) {
21587 		if (ill_v4 != NULL)
21588 			ill_refrele(ill_v4);
21589 		if (ill_v6 != NULL)
21590 			ill_refrele(ill_v6);
21591 		return (EBUSY);
21592 	}
21593 
21594 	/*
21595 	 * The new index is unused. Set it in the phyint.
21596 	 * Locate the other ill so that we can send a routing
21597 	 * sockets message.
21598 	 */
21599 	if (ill->ill_isv6) {
21600 		ill_other = phyi->phyint_illv4;
21601 	} else {
21602 		ill_other = phyi->phyint_illv6;
21603 	}
21604 
21605 	phyi->phyint_ifindex = index;
21606 
21607 	connc.cc_old_ifindex = old_index;
21608 	connc.cc_new_ifindex = index;
21609 	ip_change_ifindex(ill, &connc);
21610 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc);
21611 
21612 	/* Send the routing sockets message */
21613 	ip_rts_ifmsg(ipif);
21614 	if (ill_other != NULL)
21615 		ip_rts_ifmsg(ill_other->ill_ipif);
21616 
21617 	return (0);
21618 }
21619 
21620 /* ARGSUSED */
21621 int
21622 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21623     ip_ioctl_cmd_t *ipip, void *ifreq)
21624 {
21625 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21626 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21627 
21628 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
21629 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21630 	/* Get the interface index */
21631 	if (ipip->ipi_cmd_type == IF_CMD) {
21632 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21633 	} else {
21634 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21635 	}
21636 	return (0);
21637 }
21638 
21639 /* ARGSUSED */
21640 int
21641 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21642     ip_ioctl_cmd_t *ipip, void *ifreq)
21643 {
21644 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21645 
21646 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
21647 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21648 	/* Get the interface zone */
21649 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21650 	lifr->lifr_zoneid = ipif->ipif_zoneid;
21651 	return (0);
21652 }
21653 
21654 /*
21655  * Set the zoneid of an interface.
21656  */
21657 /* ARGSUSED */
21658 int
21659 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21660     ip_ioctl_cmd_t *ipip, void *ifreq)
21661 {
21662 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21663 	int err = 0;
21664 	boolean_t need_up = B_FALSE;
21665 	zone_t *zptr;
21666 	zone_status_t status;
21667 	zoneid_t zoneid;
21668 
21669 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21670 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
21671 		if (!is_system_labeled())
21672 			return (ENOTSUP);
21673 		zoneid = GLOBAL_ZONEID;
21674 	}
21675 
21676 	/* cannot assign instance zero to a non-global zone */
21677 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
21678 		return (ENOTSUP);
21679 
21680 	/*
21681 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
21682 	 * the event of a race with the zone shutdown processing, since IP
21683 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
21684 	 * interface will be cleaned up even if the zone is shut down
21685 	 * immediately after the status check. If the interface can't be brought
21686 	 * down right away, and the zone is shut down before the restart
21687 	 * function is called, we resolve the possible races by rechecking the
21688 	 * zone status in the restart function.
21689 	 */
21690 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
21691 		return (EINVAL);
21692 	status = zone_status_get(zptr);
21693 	zone_rele(zptr);
21694 
21695 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
21696 		return (EINVAL);
21697 
21698 	if (ipif->ipif_flags & IPIF_UP) {
21699 		/*
21700 		 * If the interface is already marked up,
21701 		 * we call ipif_down which will take care
21702 		 * of ditching any IREs that have been set
21703 		 * up based on the old interface address.
21704 		 */
21705 		err = ipif_logical_down(ipif, q, mp);
21706 		if (err == EINPROGRESS)
21707 			return (err);
21708 		ipif_down_tail(ipif);
21709 		need_up = B_TRUE;
21710 	}
21711 
21712 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
21713 	return (err);
21714 }
21715 
21716 static int
21717 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
21718     queue_t *q, mblk_t *mp, boolean_t need_up)
21719 {
21720 	int	err = 0;
21721 
21722 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
21723 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21724 
21725 	/* Set the new zone id. */
21726 	ipif->ipif_zoneid = zoneid;
21727 
21728 	/* Update sctp list */
21729 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
21730 
21731 	if (need_up) {
21732 		/*
21733 		 * Now bring the interface back up.  If this
21734 		 * is the only IPIF for the ILL, ipif_up
21735 		 * will have to re-bind to the device, so
21736 		 * we may get back EINPROGRESS, in which
21737 		 * case, this IOCTL will get completed in
21738 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
21739 		 */
21740 		err = ipif_up(ipif, q, mp);
21741 	}
21742 	return (err);
21743 }
21744 
21745 /* ARGSUSED */
21746 int
21747 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21748     ip_ioctl_cmd_t *ipip, void *if_req)
21749 {
21750 	struct lifreq *lifr = (struct lifreq *)if_req;
21751 	zoneid_t zoneid;
21752 	zone_t *zptr;
21753 	zone_status_t status;
21754 
21755 	ASSERT(ipif->ipif_id != 0);
21756 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21757 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
21758 		zoneid = GLOBAL_ZONEID;
21759 
21760 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
21761 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21762 
21763 	/*
21764 	 * We recheck the zone status to resolve the following race condition:
21765 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
21766 	 * 2) hme0:1 is up and can't be brought down right away;
21767 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
21768 	 * 3) zone "myzone" is halted; the zone status switches to
21769 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
21770 	 * the interfaces to remove - hme0:1 is not returned because it's not
21771 	 * yet in "myzone", so it won't be removed;
21772 	 * 4) the restart function for SIOCSLIFZONE is called; without the
21773 	 * status check here, we would have hme0:1 in "myzone" after it's been
21774 	 * destroyed.
21775 	 * Note that if the status check fails, we need to bring the interface
21776 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
21777 	 * ipif_up_done[_v6]().
21778 	 */
21779 	status = ZONE_IS_UNINITIALIZED;
21780 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
21781 		status = zone_status_get(zptr);
21782 		zone_rele(zptr);
21783 	}
21784 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
21785 		if (ipif->ipif_isv6) {
21786 			(void) ipif_up_done_v6(ipif);
21787 		} else {
21788 			(void) ipif_up_done(ipif);
21789 		}
21790 		return (EINVAL);
21791 	}
21792 
21793 	ipif_down_tail(ipif);
21794 
21795 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
21796 	    B_TRUE));
21797 }
21798 
21799 /* ARGSUSED */
21800 int
21801 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21802 	ip_ioctl_cmd_t *ipip, void *ifreq)
21803 {
21804 	struct lifreq	*lifr = ifreq;
21805 
21806 	ASSERT(q->q_next == NULL);
21807 	ASSERT(CONN_Q(q));
21808 
21809 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
21810 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21811 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
21812 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
21813 
21814 	return (0);
21815 }
21816 
21817 
21818 /* Find the previous ILL in this usesrc group */
21819 static ill_t *
21820 ill_prev_usesrc(ill_t *uill)
21821 {
21822 	ill_t *ill;
21823 
21824 	for (ill = uill->ill_usesrc_grp_next;
21825 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
21826 	    ill = ill->ill_usesrc_grp_next)
21827 		/* do nothing */;
21828 	return (ill);
21829 }
21830 
21831 /*
21832  * Release all members of the usesrc group. This routine is called
21833  * from ill_delete when the interface being unplumbed is the
21834  * group head.
21835  */
21836 static void
21837 ill_disband_usesrc_group(ill_t *uill)
21838 {
21839 	ill_t *next_ill, *tmp_ill;
21840 	ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock));
21841 	next_ill = uill->ill_usesrc_grp_next;
21842 
21843 	do {
21844 		ASSERT(next_ill != NULL);
21845 		tmp_ill = next_ill->ill_usesrc_grp_next;
21846 		ASSERT(tmp_ill != NULL);
21847 		next_ill->ill_usesrc_grp_next = NULL;
21848 		next_ill->ill_usesrc_ifindex = 0;
21849 		next_ill = tmp_ill;
21850 	} while (next_ill->ill_usesrc_ifindex != 0);
21851 	uill->ill_usesrc_grp_next = NULL;
21852 }
21853 
21854 /*
21855  * Remove the client usesrc ILL from the list and relink to a new list
21856  */
21857 int
21858 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
21859 {
21860 	ill_t *ill, *tmp_ill;
21861 
21862 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
21863 	    (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock));
21864 
21865 	/*
21866 	 * Check if the usesrc client ILL passed in is not already
21867 	 * in use as a usesrc ILL i.e one whose source address is
21868 	 * in use OR a usesrc ILL is not already in use as a usesrc
21869 	 * client ILL
21870 	 */
21871 	if ((ucill->ill_usesrc_ifindex == 0) ||
21872 	    (uill->ill_usesrc_ifindex != 0)) {
21873 		return (-1);
21874 	}
21875 
21876 	ill = ill_prev_usesrc(ucill);
21877 	ASSERT(ill->ill_usesrc_grp_next != NULL);
21878 
21879 	/* Remove from the current list */
21880 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
21881 		/* Only two elements in the list */
21882 		ASSERT(ill->ill_usesrc_ifindex == 0);
21883 		ill->ill_usesrc_grp_next = NULL;
21884 	} else {
21885 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
21886 	}
21887 
21888 	if (ifindex == 0) {
21889 		ucill->ill_usesrc_ifindex = 0;
21890 		ucill->ill_usesrc_grp_next = NULL;
21891 		return (0);
21892 	}
21893 
21894 	ucill->ill_usesrc_ifindex = ifindex;
21895 	tmp_ill = uill->ill_usesrc_grp_next;
21896 	uill->ill_usesrc_grp_next = ucill;
21897 	ucill->ill_usesrc_grp_next =
21898 	    (tmp_ill != NULL) ? tmp_ill : uill;
21899 	return (0);
21900 }
21901 
21902 /*
21903  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
21904  * ip.c for locking details.
21905  */
21906 /* ARGSUSED */
21907 int
21908 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21909     ip_ioctl_cmd_t *ipip, void *ifreq)
21910 {
21911 	struct lifreq *lifr = (struct lifreq *)ifreq;
21912 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
21913 	    ill_flag_changed = B_FALSE;
21914 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
21915 	int err = 0, ret;
21916 	uint_t ifindex;
21917 	phyint_t *us_phyint, *us_cli_phyint;
21918 	ipsq_t *ipsq = NULL;
21919 
21920 	ASSERT(IAM_WRITER_IPIF(ipif));
21921 	ASSERT(q->q_next == NULL);
21922 	ASSERT(CONN_Q(q));
21923 
21924 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
21925 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
21926 
21927 	ASSERT(us_cli_phyint != NULL);
21928 
21929 	/*
21930 	 * If the client ILL is being used for IPMP, abort.
21931 	 * Note, this can be done before ipsq_try_enter since we are already
21932 	 * exclusive on this ILL
21933 	 */
21934 	if ((us_cli_phyint->phyint_groupname != NULL) ||
21935 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
21936 		return (EINVAL);
21937 	}
21938 
21939 	ifindex = lifr->lifr_index;
21940 	if (ifindex == 0) {
21941 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
21942 			/* non usesrc group interface, nothing to reset */
21943 			return (0);
21944 		}
21945 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
21946 		/* valid reset request */
21947 		reset_flg = B_TRUE;
21948 	}
21949 
21950 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
21951 	    ip_process_ioctl, &err);
21952 
21953 	if (usesrc_ill == NULL) {
21954 		return (err);
21955 	}
21956 
21957 	/*
21958 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
21959 	 * group nor can either of the interfaces be used for standy. So
21960 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
21961 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
21962 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
21963 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
21964 	 * the usesrc_cli_ill
21965 	 */
21966 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
21967 	    NEW_OP, B_TRUE);
21968 	if (ipsq == NULL) {
21969 		err = EINPROGRESS;
21970 		/* Operation enqueued on the ipsq of the usesrc ILL */
21971 		goto done;
21972 	}
21973 
21974 	/* Check if the usesrc_ill is used for IPMP */
21975 	us_phyint = usesrc_ill->ill_phyint;
21976 	if ((us_phyint->phyint_groupname != NULL) ||
21977 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
21978 		err = EINVAL;
21979 		goto done;
21980 	}
21981 
21982 	/*
21983 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
21984 	 * already a client then return EINVAL
21985 	 */
21986 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
21987 		err = EINVAL;
21988 		goto done;
21989 	}
21990 
21991 	/*
21992 	 * If the ill_usesrc_ifindex field is already set to what it needs to
21993 	 * be then this is a duplicate operation.
21994 	 */
21995 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
21996 		err = 0;
21997 		goto done;
21998 	}
21999 
22000 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22001 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22002 	    usesrc_ill->ill_isv6));
22003 
22004 	/*
22005 	 * The next step ensures that no new ires will be created referencing
22006 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22007 	 * we go through an ire walk deleting all ire caches that reference
22008 	 * the client ill. New ires referencing the client ill that are added
22009 	 * to the ire table before the ILL_CHANGING flag is set, will be
22010 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22011 	 * the client ill while the ILL_CHANGING flag is set will be failed
22012 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22013 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22014 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22015 	 * belong to the same usesrc group.
22016 	 */
22017 	mutex_enter(&usesrc_cli_ill->ill_lock);
22018 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22019 	mutex_exit(&usesrc_cli_ill->ill_lock);
22020 	ill_flag_changed = B_TRUE;
22021 
22022 	if (ipif->ipif_isv6)
22023 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22024 		    ALL_ZONES);
22025 	else
22026 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22027 		    ALL_ZONES);
22028 
22029 	/*
22030 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22031 	 * and the ill_usesrc_ifindex fields
22032 	 */
22033 	rw_enter(&ill_g_usesrc_lock, RW_WRITER);
22034 
22035 	if (reset_flg) {
22036 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22037 		if (ret != 0) {
22038 			err = EINVAL;
22039 		}
22040 		rw_exit(&ill_g_usesrc_lock);
22041 		goto done;
22042 	}
22043 
22044 	/*
22045 	 * Four possibilities to consider:
22046 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22047 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22048 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22049 	 * 4. Both are part of their respective usesrc groups
22050 	 */
22051 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22052 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22053 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22054 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22055 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22056 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22057 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22058 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22059 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22060 		/* Insert at head of list */
22061 		usesrc_cli_ill->ill_usesrc_grp_next =
22062 		    usesrc_ill->ill_usesrc_grp_next;
22063 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22064 	} else {
22065 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22066 		    ifindex);
22067 		if (ret != 0)
22068 			err = EINVAL;
22069 	}
22070 	rw_exit(&ill_g_usesrc_lock);
22071 
22072 done:
22073 	if (ill_flag_changed) {
22074 		mutex_enter(&usesrc_cli_ill->ill_lock);
22075 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22076 		mutex_exit(&usesrc_cli_ill->ill_lock);
22077 	}
22078 	if (ipsq != NULL)
22079 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22080 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22081 	ill_refrele(usesrc_ill);
22082 	return (err);
22083 }
22084 
22085 /*
22086  * comparison function used by avl.
22087  */
22088 static int
22089 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22090 {
22091 
22092 	uint_t index;
22093 
22094 	ASSERT(phyip != NULL && index_ptr != NULL);
22095 
22096 	index = *((uint_t *)index_ptr);
22097 	/*
22098 	 * let the phyint with the lowest index be on top.
22099 	 */
22100 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22101 		return (1);
22102 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22103 		return (-1);
22104 	return (0);
22105 }
22106 
22107 /*
22108  * comparison function used by avl.
22109  */
22110 static int
22111 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22112 {
22113 	ill_t *ill;
22114 	int res = 0;
22115 
22116 	ASSERT(phyip != NULL && name_ptr != NULL);
22117 
22118 	if (((phyint_t *)phyip)->phyint_illv4)
22119 		ill = ((phyint_t *)phyip)->phyint_illv4;
22120 	else
22121 		ill = ((phyint_t *)phyip)->phyint_illv6;
22122 	ASSERT(ill != NULL);
22123 
22124 	res = strcmp(ill->ill_name, (char *)name_ptr);
22125 	if (res > 0)
22126 		return (1);
22127 	else if (res < 0)
22128 		return (-1);
22129 	return (0);
22130 }
22131 /*
22132  * This function is called from ill_delete when the ill is being
22133  * unplumbed. We remove the reference from the phyint and we also
22134  * free the phyint when there are no more references to it.
22135  */
22136 static void
22137 ill_phyint_free(ill_t *ill)
22138 {
22139 	phyint_t *phyi;
22140 	phyint_t *next_phyint;
22141 	ipsq_t *cur_ipsq;
22142 
22143 	ASSERT(ill->ill_phyint != NULL);
22144 
22145 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
22146 	phyi = ill->ill_phyint;
22147 	ill->ill_phyint = NULL;
22148 	/*
22149 	 * ill_init allocates a phyint always to store the copy
22150 	 * of flags relevant to phyint. At that point in time, we could
22151 	 * not assign the name and hence phyint_illv4/v6 could not be
22152 	 * initialized. Later in ipif_set_values, we assign the name to
22153 	 * the ill, at which point in time we assign phyint_illv4/v6.
22154 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22155 	 */
22156 	if (ill->ill_flags & ILLF_IPV6) {
22157 		phyi->phyint_illv6 = NULL;
22158 	} else {
22159 		phyi->phyint_illv4 = NULL;
22160 	}
22161 	/*
22162 	 * ipif_down removes it from the group when the last ipif goes
22163 	 * down.
22164 	 */
22165 	ASSERT(ill->ill_group == NULL);
22166 
22167 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22168 		return;
22169 
22170 	/*
22171 	 * Make sure this phyint was put in the list.
22172 	 */
22173 	if (phyi->phyint_ifindex > 0) {
22174 		avl_remove(&phyint_g_list.phyint_list_avl_by_index,
22175 		    phyi);
22176 		avl_remove(&phyint_g_list.phyint_list_avl_by_name,
22177 		    phyi);
22178 	}
22179 	/*
22180 	 * remove phyint from the ipsq list.
22181 	 */
22182 	cur_ipsq = phyi->phyint_ipsq;
22183 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22184 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22185 	} else {
22186 		next_phyint = cur_ipsq->ipsq_phyint_list;
22187 		while (next_phyint != NULL) {
22188 			if (next_phyint->phyint_ipsq_next == phyi) {
22189 				next_phyint->phyint_ipsq_next =
22190 					phyi->phyint_ipsq_next;
22191 				break;
22192 			}
22193 			next_phyint = next_phyint->phyint_ipsq_next;
22194 		}
22195 		ASSERT(next_phyint != NULL);
22196 	}
22197 	IPSQ_DEC_REF(cur_ipsq);
22198 
22199 	if (phyi->phyint_groupname_len != 0) {
22200 		ASSERT(phyi->phyint_groupname != NULL);
22201 		mi_free(phyi->phyint_groupname);
22202 	}
22203 	mi_free(phyi);
22204 }
22205 
22206 /*
22207  * Attach the ill to the phyint structure which can be shared by both
22208  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22209  * function is called from ipif_set_values and ill_lookup_on_name (for
22210  * loopback) where we know the name of the ill. We lookup the ill and if
22211  * there is one present already with the name use that phyint. Otherwise
22212  * reuse the one allocated by ill_init.
22213  */
22214 static void
22215 ill_phyint_reinit(ill_t *ill)
22216 {
22217 	boolean_t isv6 = ill->ill_isv6;
22218 	phyint_t *phyi_old;
22219 	phyint_t *phyi;
22220 	avl_index_t where = 0;
22221 	ill_t	*ill_other = NULL;
22222 	ipsq_t	*ipsq;
22223 
22224 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
22225 
22226 	phyi_old = ill->ill_phyint;
22227 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22228 	    phyi_old->phyint_illv6 == NULL));
22229 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22230 	    phyi_old->phyint_illv4 == NULL));
22231 	ASSERT(phyi_old->phyint_ifindex == 0);
22232 
22233 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name,
22234 	    ill->ill_name, &where);
22235 
22236 	/*
22237 	 * 1. We grabbed the ill_g_lock before inserting this ill into
22238 	 *    the global list of ills. So no other thread could have located
22239 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
22240 	 * 2. Now locate the other protocol instance of this ill.
22241 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
22242 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22243 	 *    of neither ill can change.
22244 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22245 	 *    other ill.
22246 	 * 5. Release all locks.
22247 	 */
22248 
22249 	/*
22250 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22251 	 * we are initializing IPv4.
22252 	 */
22253 	if (phyi != NULL) {
22254 		ill_other = (isv6) ? phyi->phyint_illv4 :
22255 		    phyi->phyint_illv6;
22256 		ASSERT(ill_other->ill_phyint != NULL);
22257 		ASSERT((isv6 && !ill_other->ill_isv6) ||
22258 		    (!isv6 && ill_other->ill_isv6));
22259 		GRAB_ILL_LOCKS(ill, ill_other);
22260 		/*
22261 		 * We are potentially throwing away phyint_flags which
22262 		 * could be different from the one that we obtain from
22263 		 * ill_other->ill_phyint. But it is okay as we are assuming
22264 		 * that the state maintained within IP is correct.
22265 		 */
22266 		mutex_enter(&phyi->phyint_lock);
22267 		if (isv6) {
22268 			ASSERT(phyi->phyint_illv6 == NULL);
22269 			phyi->phyint_illv6 = ill;
22270 		} else {
22271 			ASSERT(phyi->phyint_illv4 == NULL);
22272 			phyi->phyint_illv4 = ill;
22273 		}
22274 		/*
22275 		 * This is a new ill, currently undergoing SLIFNAME
22276 		 * So we could not have joined an IPMP group until now.
22277 		 */
22278 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22279 		    phyi_old->phyint_groupname == NULL);
22280 
22281 		/*
22282 		 * This phyi_old is going away. Decref ipsq_refs and
22283 		 * assert it is zero. The ipsq itself will be freed in
22284 		 * ipsq_exit
22285 		 */
22286 		ipsq = phyi_old->phyint_ipsq;
22287 		IPSQ_DEC_REF(ipsq);
22288 		ASSERT(ipsq->ipsq_refs == 0);
22289 		/* Get the singleton phyint out of the ipsq list */
22290 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
22291 		ipsq->ipsq_phyint_list = NULL;
22292 		phyi_old->phyint_illv4 = NULL;
22293 		phyi_old->phyint_illv6 = NULL;
22294 		mi_free(phyi_old);
22295 	} else {
22296 		mutex_enter(&ill->ill_lock);
22297 		/*
22298 		 * We don't need to acquire any lock, since
22299 		 * the ill is not yet visible globally  and we
22300 		 * have not yet released the ill_g_lock.
22301 		 */
22302 		phyi = phyi_old;
22303 		mutex_enter(&phyi->phyint_lock);
22304 		/* XXX We need a recovery strategy here. */
22305 		if (!phyint_assign_ifindex(phyi))
22306 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22307 
22308 		avl_insert(&phyint_g_list.phyint_list_avl_by_name,
22309 		    (void *)phyi, where);
22310 
22311 		(void) avl_find(&phyint_g_list.phyint_list_avl_by_index,
22312 		    &phyi->phyint_ifindex, &where);
22313 		avl_insert(&phyint_g_list.phyint_list_avl_by_index,
22314 		    (void *)phyi, where);
22315 	}
22316 
22317 	/*
22318 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
22319 	 * pending mp is not affected because that is per ill basis.
22320 	 */
22321 	ill->ill_phyint = phyi;
22322 
22323 	/*
22324 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
22325 	 * We do this here as when the first ipif was allocated,
22326 	 * ipif_allocate does not know the right interface index.
22327 	 */
22328 
22329 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
22330 	/*
22331 	 * Now that the phyint's ifindex has been assigned, complete the
22332 	 * remaining
22333 	 */
22334 	if (ill->ill_isv6) {
22335 		ill->ill_ip6_mib->ipv6IfIndex =
22336 		    ill->ill_phyint->phyint_ifindex;
22337 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
22338 		    ill->ill_phyint->phyint_ifindex;
22339 	}
22340 
22341 	/*
22342 	 * Generate an event within the hooks framework to indicate that
22343 	 * a new interface has just been added to IP.  For this event to
22344 	 * be generated, the network interface must, at least, have an
22345 	 * ifindex assigned to it.
22346 	 *
22347 	 * This needs to be run inside the ill_g_lock perimeter to ensure
22348 	 * that the ordering of delivered events to listeners matches the
22349 	 * order of them in the kernel.
22350 	 *
22351 	 * This function could be called from ill_lookup_on_name. In that case
22352 	 * the interface is loopback "lo", which will not generate a NIC event.
22353 	 */
22354 	if (ill->ill_name_length <= 2 ||
22355 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
22356 		hook_nic_event_t *info;
22357 		if ((info = ill->ill_nic_event_info) != NULL) {
22358 			ip2dbg(("ill_phyint_reinit: unexpected nic event %d "
22359 			    "attached for %s\n", info->hne_event,
22360 			    ill->ill_name));
22361 			if (info->hne_data != NULL)
22362 				kmem_free(info->hne_data, info->hne_datalen);
22363 			kmem_free(info, sizeof (hook_nic_event_t));
22364 		}
22365 
22366 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
22367 		if (info != NULL) {
22368 			info->hne_nic = ill->ill_phyint->phyint_ifindex;
22369 			info->hne_lif = 0;
22370 			info->hne_event = NE_PLUMB;
22371 			info->hne_family = ill->ill_isv6 ? ipv6 : ipv4;
22372 			info->hne_data = kmem_alloc(ill->ill_name_length,
22373 			    KM_NOSLEEP);
22374 			if (info->hne_data != NULL) {
22375 				info->hne_datalen = ill->ill_name_length;
22376 				bcopy(ill->ill_name, info->hne_data,
22377 				    info->hne_datalen);
22378 			} else {
22379 				ip2dbg(("ill_phyint_reinit: could not attach "
22380 				    "ill_name information for PLUMB nic event "
22381 				    "of %s (ENOMEM)\n", ill->ill_name));
22382 				kmem_free(info, sizeof (hook_nic_event_t));
22383 			}
22384 		} else
22385 			ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic "
22386 			    "event information for %s (ENOMEM)\n",
22387 			    ill->ill_name));
22388 
22389 		ill->ill_nic_event_info = info;
22390 	}
22391 
22392 	RELEASE_ILL_LOCKS(ill, ill_other);
22393 	mutex_exit(&phyi->phyint_lock);
22394 }
22395 
22396 /*
22397  * Notify any downstream modules of the name of this interface.
22398  * An M_IOCTL is used even though we don't expect a successful reply.
22399  * Any reply message from the driver (presumably an M_IOCNAK) will
22400  * eventually get discarded somewhere upstream.  The message format is
22401  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
22402  * to IP.
22403  */
22404 static void
22405 ip_ifname_notify(ill_t *ill, queue_t *q)
22406 {
22407 	mblk_t *mp1, *mp2;
22408 	struct iocblk *iocp;
22409 	struct lifreq *lifr;
22410 
22411 	mp1 = mkiocb(SIOCSLIFNAME);
22412 	if (mp1 == NULL)
22413 		return;
22414 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
22415 	if (mp2 == NULL) {
22416 		freeb(mp1);
22417 		return;
22418 	}
22419 
22420 	mp1->b_cont = mp2;
22421 	iocp = (struct iocblk *)mp1->b_rptr;
22422 	iocp->ioc_count = sizeof (struct lifreq);
22423 
22424 	lifr = (struct lifreq *)mp2->b_rptr;
22425 	mp2->b_wptr += sizeof (struct lifreq);
22426 	bzero(lifr, sizeof (struct lifreq));
22427 
22428 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
22429 	lifr->lifr_ppa = ill->ill_ppa;
22430 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
22431 
22432 	putnext(q, mp1);
22433 }
22434 
22435 static boolean_t ip_trash_timer_started = B_FALSE;
22436 
22437 static int
22438 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
22439 {
22440 	int err;
22441 
22442 	/* Set the obsolete NDD per-interface forwarding name. */
22443 	err = ill_set_ndd_name(ill);
22444 	if (err != 0) {
22445 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
22446 		    err);
22447 	}
22448 
22449 	/* Tell downstream modules where they are. */
22450 	ip_ifname_notify(ill, q);
22451 
22452 	/*
22453 	 * ill_dl_phys returns EINPROGRESS in the usual case.
22454 	 * Error cases are ENOMEM ...
22455 	 */
22456 	err = ill_dl_phys(ill, ipif, mp, q);
22457 
22458 	/*
22459 	 * If there is no IRE expiration timer running, get one started.
22460 	 * igmp and mld timers will be triggered by the first multicast
22461 	 */
22462 	if (!ip_trash_timer_started) {
22463 		/*
22464 		 * acquire the lock and check again.
22465 		 */
22466 		mutex_enter(&ip_trash_timer_lock);
22467 		if (!ip_trash_timer_started) {
22468 			ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL,
22469 			    MSEC_TO_TICK(ip_timer_interval));
22470 			ip_trash_timer_started = B_TRUE;
22471 		}
22472 		mutex_exit(&ip_trash_timer_lock);
22473 	}
22474 
22475 	if (ill->ill_isv6) {
22476 		mutex_enter(&mld_slowtimeout_lock);
22477 		if (mld_slowtimeout_id == 0) {
22478 			mld_slowtimeout_id = timeout(mld_slowtimo, NULL,
22479 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22480 		}
22481 		mutex_exit(&mld_slowtimeout_lock);
22482 	} else {
22483 		mutex_enter(&igmp_slowtimeout_lock);
22484 		if (igmp_slowtimeout_id == 0) {
22485 			igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL,
22486 				MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22487 		}
22488 		mutex_exit(&igmp_slowtimeout_lock);
22489 	}
22490 
22491 	return (err);
22492 }
22493 
22494 /*
22495  * Common routine for ppa and ifname setting. Should be called exclusive.
22496  *
22497  * Returns EINPROGRESS when mp has been consumed by queueing it on
22498  * ill_pending_mp and the ioctl will complete in ip_rput.
22499  *
22500  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
22501  * the new name and new ppa in lifr_name and lifr_ppa respectively.
22502  * For SLIFNAME, we pass these values back to the userland.
22503  */
22504 static int
22505 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
22506 {
22507 	ill_t	*ill;
22508 	ipif_t	*ipif;
22509 	ipsq_t	*ipsq;
22510 	char	*ppa_ptr;
22511 	char	*old_ptr;
22512 	char	old_char;
22513 	int	error;
22514 
22515 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
22516 	ASSERT(q->q_next != NULL);
22517 	ASSERT(interf_name != NULL);
22518 
22519 	ill = (ill_t *)q->q_ptr;
22520 
22521 	ASSERT(ill->ill_name[0] == '\0');
22522 	ASSERT(IAM_WRITER_ILL(ill));
22523 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
22524 	ASSERT(ill->ill_ppa == UINT_MAX);
22525 
22526 	/* The ppa is sent down by ifconfig or is chosen */
22527 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
22528 		return (EINVAL);
22529 	}
22530 
22531 	/*
22532 	 * make sure ppa passed in is same as ppa in the name.
22533 	 * This check is not made when ppa == UINT_MAX in that case ppa
22534 	 * in the name could be anything. System will choose a ppa and
22535 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
22536 	 */
22537 	if (*new_ppa_ptr != UINT_MAX) {
22538 		/* stoi changes the pointer */
22539 		old_ptr = ppa_ptr;
22540 		/*
22541 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
22542 		 * (they don't have an externally visible ppa).  We assign one
22543 		 * here so that we can manage the interface.  Note that in
22544 		 * the past this value was always 0 for DLPI 1 drivers.
22545 		 */
22546 		if (*new_ppa_ptr == 0)
22547 			*new_ppa_ptr = stoi(&old_ptr);
22548 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
22549 			return (EINVAL);
22550 	}
22551 	/*
22552 	 * terminate string before ppa
22553 	 * save char at that location.
22554 	 */
22555 	old_char = ppa_ptr[0];
22556 	ppa_ptr[0] = '\0';
22557 
22558 	ill->ill_ppa = *new_ppa_ptr;
22559 	/*
22560 	 * Finish as much work now as possible before calling ill_glist_insert
22561 	 * which makes the ill globally visible and also merges it with the
22562 	 * other protocol instance of this phyint. The remaining work is
22563 	 * done after entering the ipsq which may happen sometime later.
22564 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
22565 	 */
22566 	ipif = ill->ill_ipif;
22567 
22568 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
22569 	ipif_assign_seqid(ipif);
22570 
22571 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
22572 		ill->ill_flags |= ILLF_IPV4;
22573 
22574 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
22575 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
22576 
22577 	if (ill->ill_flags & ILLF_IPV6) {
22578 
22579 		ill->ill_isv6 = B_TRUE;
22580 		if (ill->ill_rq != NULL) {
22581 			ill->ill_rq->q_qinfo = &rinit_ipv6;
22582 			ill->ill_wq->q_qinfo = &winit_ipv6;
22583 		}
22584 
22585 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
22586 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
22587 		ipif->ipif_v6src_addr = ipv6_all_zeros;
22588 		ipif->ipif_v6subnet = ipv6_all_zeros;
22589 		ipif->ipif_v6net_mask = ipv6_all_zeros;
22590 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
22591 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
22592 		/*
22593 		 * point-to-point or Non-mulicast capable
22594 		 * interfaces won't do NUD unless explicitly
22595 		 * configured to do so.
22596 		 */
22597 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
22598 		    !(ill->ill_flags & ILLF_MULTICAST)) {
22599 			ill->ill_flags |= ILLF_NONUD;
22600 		}
22601 		/* Make sure IPv4 specific flag is not set on IPv6 if */
22602 		if (ill->ill_flags & ILLF_NOARP) {
22603 			/*
22604 			 * Note: xresolv interfaces will eventually need
22605 			 * NOARP set here as well, but that will require
22606 			 * those external resolvers to have some
22607 			 * knowledge of that flag and act appropriately.
22608 			 * Not to be changed at present.
22609 			 */
22610 			ill->ill_flags &= ~ILLF_NOARP;
22611 		}
22612 		/*
22613 		 * Set the ILLF_ROUTER flag according to the global
22614 		 * IPv6 forwarding policy.
22615 		 */
22616 		if (ipv6_forward != 0)
22617 			ill->ill_flags |= ILLF_ROUTER;
22618 	} else if (ill->ill_flags & ILLF_IPV4) {
22619 		ill->ill_isv6 = B_FALSE;
22620 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
22621 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
22622 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
22623 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
22624 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
22625 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
22626 		/*
22627 		 * Set the ILLF_ROUTER flag according to the global
22628 		 * IPv4 forwarding policy.
22629 		 */
22630 		if (ip_g_forward != 0)
22631 			ill->ill_flags |= ILLF_ROUTER;
22632 	}
22633 
22634 	ASSERT(ill->ill_phyint != NULL);
22635 
22636 	/*
22637 	 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will
22638 	 * be completed in ill_glist_insert -> ill_phyint_reinit
22639 	 */
22640 	if (ill->ill_isv6) {
22641 		/* allocate v6 mib */
22642 		if (!ill_allocate_mibs(ill))
22643 			return (ENOMEM);
22644 	}
22645 
22646 	/*
22647 	 * Pick a default sap until we get the DL_INFO_ACK back from
22648 	 * the driver.
22649 	 */
22650 	if (ill->ill_sap == 0) {
22651 		if (ill->ill_isv6)
22652 			ill->ill_sap  = IP6_DL_SAP;
22653 		else
22654 			ill->ill_sap  = IP_DL_SAP;
22655 	}
22656 
22657 	ill->ill_ifname_pending = 1;
22658 	ill->ill_ifname_pending_err = 0;
22659 
22660 	ill_refhold(ill);
22661 	rw_enter(&ill_g_lock, RW_WRITER);
22662 	if ((error = ill_glist_insert(ill, interf_name,
22663 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
22664 		ill->ill_ppa = UINT_MAX;
22665 		ill->ill_name[0] = '\0';
22666 		/*
22667 		 * undo null termination done above.
22668 		 */
22669 		ppa_ptr[0] = old_char;
22670 		rw_exit(&ill_g_lock);
22671 		ill_refrele(ill);
22672 		return (error);
22673 	}
22674 
22675 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
22676 
22677 	/*
22678 	 * When we return the buffer pointed to by interf_name should contain
22679 	 * the same name as in ill_name.
22680 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
22681 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
22682 	 * so copy full name and update the ppa ptr.
22683 	 * When ppa passed in != UINT_MAX all values are correct just undo
22684 	 * null termination, this saves a bcopy.
22685 	 */
22686 	if (*new_ppa_ptr == UINT_MAX) {
22687 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
22688 		*new_ppa_ptr = ill->ill_ppa;
22689 	} else {
22690 		/*
22691 		 * undo null termination done above.
22692 		 */
22693 		ppa_ptr[0] = old_char;
22694 	}
22695 
22696 	/* Let SCTP know about this ILL */
22697 	sctp_update_ill(ill, SCTP_ILL_INSERT);
22698 
22699 	/* and also about the first ipif */
22700 	sctp_update_ipif(ipif, SCTP_IPIF_INSERT);
22701 
22702 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
22703 	    B_TRUE);
22704 
22705 	rw_exit(&ill_g_lock);
22706 	ill_refrele(ill);
22707 	if (ipsq == NULL)
22708 		return (EINPROGRESS);
22709 
22710 	/*
22711 	 * Need to set the ipsq_current_ipif now, if we have changed ipsq
22712 	 * due to the phyint merge in ill_phyint_reinit.
22713 	 */
22714 	ASSERT(ipsq->ipsq_current_ipif == NULL ||
22715 		ipsq->ipsq_current_ipif == ipif);
22716 	ipsq->ipsq_current_ipif = ipif;
22717 	ipsq->ipsq_last_cmd = SIOCSLIFNAME;
22718 	error = ipif_set_values_tail(ill, ipif, mp, q);
22719 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
22720 	if (error != 0 && error != EINPROGRESS) {
22721 		/*
22722 		 * restore previous values
22723 		 */
22724 		ill->ill_isv6 = B_FALSE;
22725 	}
22726 	return (error);
22727 }
22728 
22729 
22730 extern void (*ip_cleanup_func)(void);
22731 
22732 void
22733 ipif_init(void)
22734 {
22735 	hrtime_t hrt;
22736 	int i;
22737 
22738 	/*
22739 	 * Can't call drv_getparm here as it is too early in the boot.
22740 	 * As we use ipif_src_random just for picking a different
22741 	 * source address everytime, this need not be really random.
22742 	 */
22743 	hrt = gethrtime();
22744 	ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
22745 
22746 	for (i = 0; i < MAX_G_HEADS; i++) {
22747 		ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i];
22748 		ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i];
22749 	}
22750 
22751 	avl_create(&phyint_g_list.phyint_list_avl_by_index,
22752 	    ill_phyint_compare_index,
22753 	    sizeof (phyint_t),
22754 	    offsetof(struct phyint, phyint_avl_by_index));
22755 	avl_create(&phyint_g_list.phyint_list_avl_by_name,
22756 	    ill_phyint_compare_name,
22757 	    sizeof (phyint_t),
22758 	    offsetof(struct phyint, phyint_avl_by_name));
22759 
22760 	ip_cleanup_func = ip_thread_exit;
22761 }
22762 
22763 /*
22764  * This is called by ip_rt_add when src_addr value is other than zero.
22765  * src_addr signifies the source address of the incoming packet. For
22766  * reverse tunnel route we need to create a source addr based routing
22767  * table. This routine creates ip_mrtun_table if it's empty and then
22768  * it adds the route entry hashed by source address. It verifies that
22769  * the outgoing interface is always a non-resolver interface (tunnel).
22770  */
22771 int
22772 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg,
22773     ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func)
22774 {
22775 	ire_t   *ire;
22776 	ire_t	*save_ire;
22777 	ipif_t  *ipif;
22778 	ill_t   *in_ill = NULL;
22779 	ill_t	*out_ill;
22780 	queue_t	*stq;
22781 	mblk_t	*dlureq_mp;
22782 	int	error;
22783 
22784 	if (ire_arg != NULL)
22785 		*ire_arg = NULL;
22786 	ASSERT(in_src_addr != INADDR_ANY);
22787 
22788 	ipif = ipif_arg;
22789 	if (ipif != NULL) {
22790 		out_ill = ipif->ipif_ill;
22791 	} else {
22792 		ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n"));
22793 		return (EINVAL);
22794 	}
22795 
22796 	if (src_ipif == NULL) {
22797 		ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n"));
22798 		return (EINVAL);
22799 	}
22800 	in_ill = src_ipif->ipif_ill;
22801 
22802 	/*
22803 	 * Check for duplicates. We don't need to
22804 	 * match out_ill, because the uniqueness of
22805 	 * a route is only dependent on src_addr and
22806 	 * in_ill.
22807 	 */
22808 	ire = ire_mrtun_lookup(in_src_addr, in_ill);
22809 	if (ire != NULL) {
22810 		ire_refrele(ire);
22811 		return (EEXIST);
22812 	}
22813 	if (ipif->ipif_net_type != IRE_IF_NORESOLVER) {
22814 		ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n",
22815 		    ipif->ipif_net_type));
22816 		return (EINVAL);
22817 	}
22818 
22819 	stq = ipif->ipif_wq;
22820 	ASSERT(stq != NULL);
22821 
22822 	/*
22823 	 * The outgoing interface must be non-resolver
22824 	 * interface.
22825 	 */
22826 	dlureq_mp = ill_dlur_gen(NULL,
22827 	    out_ill->ill_phys_addr_length, out_ill->ill_sap,
22828 	    out_ill->ill_sap_length);
22829 
22830 	if (dlureq_mp == NULL) {
22831 		ip1dbg(("ip_newroute: dlureq_mp NULL\n"));
22832 		return (ENOMEM);
22833 	}
22834 
22835 	/* Create the IRE. */
22836 
22837 	ire = ire_create(
22838 	    NULL,				/* Zero dst addr */
22839 	    NULL,				/* Zero mask */
22840 	    NULL,				/* Zero gateway addr */
22841 	    NULL,				/* Zero ipif_src addr */
22842 	    (uint8_t *)&in_src_addr,		/* in_src-addr */
22843 	    &ipif->ipif_mtu,
22844 	    NULL,
22845 	    NULL,				/* rfq */
22846 	    stq,
22847 	    IRE_MIPRTUN,
22848 	    dlureq_mp,
22849 	    ipif,
22850 	    in_ill,
22851 	    0,
22852 	    0,
22853 	    0,
22854 	    flags,
22855 	    &ire_uinfo_null,
22856 	    NULL,
22857 	    NULL);
22858 
22859 	if (ire == NULL) {
22860 		freeb(dlureq_mp);
22861 		return (ENOMEM);
22862 	}
22863 	ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n",
22864 	    ire->ire_type));
22865 	save_ire = ire;
22866 	ASSERT(save_ire != NULL);
22867 	error = ire_add_mrtun(&ire, q, mp, func);
22868 	/*
22869 	 * If ire_add_mrtun() failed, the ire passed in was freed
22870 	 * so there is no need to do so here.
22871 	 */
22872 	if (error != 0) {
22873 		return (error);
22874 	}
22875 
22876 	/* Duplicate check */
22877 	if (ire != save_ire) {
22878 		/* route already exists by now */
22879 		ire_refrele(ire);
22880 		return (EEXIST);
22881 	}
22882 
22883 	if (ire_arg != NULL) {
22884 		/*
22885 		 * Store the ire that was just added. the caller
22886 		 * ip_rts_request responsible for doing ire_refrele()
22887 		 * on it.
22888 		 */
22889 		*ire_arg = ire;
22890 	} else {
22891 		ire_refrele(ire);	/* held in ire_add_mrtun */
22892 	}
22893 
22894 	return (0);
22895 }
22896 
22897 /*
22898  * It is called by ip_rt_delete() only when mipagent requests to delete
22899  * a reverse tunnel route that was added by ip_mrtun_rt_add() before.
22900  */
22901 
22902 int
22903 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif)
22904 {
22905 	ire_t   *ire = NULL;
22906 
22907 	if (in_src_addr == INADDR_ANY)
22908 		return (EINVAL);
22909 	if (src_ipif == NULL)
22910 		return (EINVAL);
22911 
22912 	/* search if this route exists in the ip_mrtun_table */
22913 	ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill);
22914 	if (ire == NULL) {
22915 		ip2dbg(("ip_mrtun_rt_delete: ire not found\n"));
22916 		return (ESRCH);
22917 	}
22918 	ire_delete(ire);
22919 	ire_refrele(ire);
22920 	return (0);
22921 }
22922 
22923 /*
22924  * Lookup the ipif corresponding to the onlink destination address. For
22925  * point-to-point interfaces, it matches with remote endpoint destination
22926  * address. For point-to-multipoint interfaces it only tries to match the
22927  * destination with the interface's subnet address. The longest, most specific
22928  * match is found to take care of such rare network configurations like -
22929  * le0: 129.146.1.1/16
22930  * le1: 129.146.2.2/24
22931  * It is used only by SO_DONTROUTE at the moment.
22932  */
22933 ipif_t *
22934 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid)
22935 {
22936 	ipif_t	*ipif, *best_ipif;
22937 	ill_t	*ill;
22938 	ill_walk_context_t ctx;
22939 
22940 	ASSERT(zoneid != ALL_ZONES);
22941 	best_ipif = NULL;
22942 
22943 	rw_enter(&ill_g_lock, RW_READER);
22944 	ill = ILL_START_WALK_V4(&ctx);
22945 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
22946 		mutex_enter(&ill->ill_lock);
22947 		for (ipif = ill->ill_ipif; ipif != NULL;
22948 		    ipif = ipif->ipif_next) {
22949 			if (!IPIF_CAN_LOOKUP(ipif))
22950 				continue;
22951 			if (ipif->ipif_zoneid != zoneid &&
22952 			    ipif->ipif_zoneid != ALL_ZONES)
22953 				continue;
22954 			/*
22955 			 * Point-to-point case. Look for exact match with
22956 			 * destination address.
22957 			 */
22958 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
22959 				if (ipif->ipif_pp_dst_addr == addr) {
22960 					ipif_refhold_locked(ipif);
22961 					mutex_exit(&ill->ill_lock);
22962 					rw_exit(&ill_g_lock);
22963 					if (best_ipif != NULL)
22964 						ipif_refrele(best_ipif);
22965 					return (ipif);
22966 				}
22967 			} else if (ipif->ipif_subnet == (addr &
22968 			    ipif->ipif_net_mask)) {
22969 				/*
22970 				 * Point-to-multipoint case. Looping through to
22971 				 * find the most specific match. If there are
22972 				 * multiple best match ipif's then prefer ipif's
22973 				 * that are UP. If there is only one best match
22974 				 * ipif and it is DOWN we must still return it.
22975 				 */
22976 				if ((best_ipif == NULL) ||
22977 				    (ipif->ipif_net_mask >
22978 				    best_ipif->ipif_net_mask) ||
22979 				    ((ipif->ipif_net_mask ==
22980 				    best_ipif->ipif_net_mask) &&
22981 				    ((ipif->ipif_flags & IPIF_UP) &&
22982 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
22983 					ipif_refhold_locked(ipif);
22984 					mutex_exit(&ill->ill_lock);
22985 					rw_exit(&ill_g_lock);
22986 					if (best_ipif != NULL)
22987 						ipif_refrele(best_ipif);
22988 					best_ipif = ipif;
22989 					rw_enter(&ill_g_lock, RW_READER);
22990 					mutex_enter(&ill->ill_lock);
22991 				}
22992 			}
22993 		}
22994 		mutex_exit(&ill->ill_lock);
22995 	}
22996 	rw_exit(&ill_g_lock);
22997 	return (best_ipif);
22998 }
22999 
23000 
23001 /*
23002  * Save enough information so that we can recreate the IRE if
23003  * the interface goes down and then up.
23004  */
23005 static void
23006 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23007 {
23008 	mblk_t	*save_mp;
23009 
23010 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23011 	if (save_mp != NULL) {
23012 		ifrt_t	*ifrt;
23013 
23014 		save_mp->b_wptr += sizeof (ifrt_t);
23015 		ifrt = (ifrt_t *)save_mp->b_rptr;
23016 		bzero(ifrt, sizeof (ifrt_t));
23017 		ifrt->ifrt_type = ire->ire_type;
23018 		ifrt->ifrt_addr = ire->ire_addr;
23019 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23020 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23021 		ifrt->ifrt_mask = ire->ire_mask;
23022 		ifrt->ifrt_flags = ire->ire_flags;
23023 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23024 		mutex_enter(&ipif->ipif_saved_ire_lock);
23025 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23026 		ipif->ipif_saved_ire_mp = save_mp;
23027 		ipif->ipif_saved_ire_cnt++;
23028 		mutex_exit(&ipif->ipif_saved_ire_lock);
23029 	}
23030 }
23031 
23032 
23033 static void
23034 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23035 {
23036 	mblk_t	**mpp;
23037 	mblk_t	*mp;
23038 	ifrt_t	*ifrt;
23039 
23040 	/* Remove from ipif_saved_ire_mp list if it is there */
23041 	mutex_enter(&ipif->ipif_saved_ire_lock);
23042 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23043 	    mpp = &(*mpp)->b_cont) {
23044 		/*
23045 		 * On a given ipif, the triple of address, gateway and
23046 		 * mask is unique for each saved IRE (in the case of
23047 		 * ordinary interface routes, the gateway address is
23048 		 * all-zeroes).
23049 		 */
23050 		mp = *mpp;
23051 		ifrt = (ifrt_t *)mp->b_rptr;
23052 		if (ifrt->ifrt_addr == ire->ire_addr &&
23053 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23054 		    ifrt->ifrt_mask == ire->ire_mask) {
23055 			*mpp = mp->b_cont;
23056 			ipif->ipif_saved_ire_cnt--;
23057 			freeb(mp);
23058 			break;
23059 		}
23060 	}
23061 	mutex_exit(&ipif->ipif_saved_ire_lock);
23062 }
23063 
23064 
23065 /*
23066  * IP multirouting broadcast routes handling
23067  * Append CGTP broadcast IREs to regular ones created
23068  * at ifconfig time.
23069  */
23070 static void
23071 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst)
23072 {
23073 	ire_t *ire_prim;
23074 
23075 	ASSERT(ire != NULL);
23076 	ASSERT(ire_dst != NULL);
23077 
23078 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23079 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
23080 	if (ire_prim != NULL) {
23081 		/*
23082 		 * We are in the special case of broadcasts for
23083 		 * CGTP. We add an IRE_BROADCAST that holds
23084 		 * the RTF_MULTIRT flag, the destination
23085 		 * address of ire_dst and the low level
23086 		 * info of ire_prim. In other words, CGTP
23087 		 * broadcast is added to the redundant ipif.
23088 		 */
23089 		ipif_t *ipif_prim;
23090 		ire_t  *bcast_ire;
23091 
23092 		ipif_prim = ire_prim->ire_ipif;
23093 
23094 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23095 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23096 		    (void *)ire_dst, (void *)ire_prim,
23097 		    (void *)ipif_prim));
23098 
23099 		bcast_ire = ire_create(
23100 		    (uchar_t *)&ire->ire_addr,
23101 		    (uchar_t *)&ip_g_all_ones,
23102 		    (uchar_t *)&ire_dst->ire_src_addr,
23103 		    (uchar_t *)&ire->ire_gateway_addr,
23104 		    NULL,
23105 		    &ipif_prim->ipif_mtu,
23106 		    NULL,
23107 		    ipif_prim->ipif_rq,
23108 		    ipif_prim->ipif_wq,
23109 		    IRE_BROADCAST,
23110 		    ipif_prim->ipif_bcast_mp,
23111 		    ipif_prim,
23112 		    NULL,
23113 		    0,
23114 		    0,
23115 		    0,
23116 		    ire->ire_flags,
23117 		    &ire_uinfo_null,
23118 		    NULL,
23119 		    NULL);
23120 
23121 		if (bcast_ire != NULL) {
23122 
23123 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23124 			    B_FALSE) == 0) {
23125 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23126 				    "added bcast_ire %p\n",
23127 				    (void *)bcast_ire));
23128 
23129 				ipif_save_ire(bcast_ire->ire_ipif,
23130 				    bcast_ire);
23131 				ire_refrele(bcast_ire);
23132 			}
23133 		}
23134 		ire_refrele(ire_prim);
23135 	}
23136 }
23137 
23138 
23139 /*
23140  * IP multirouting broadcast routes handling
23141  * Remove the broadcast ire
23142  */
23143 static void
23144 ip_cgtp_bcast_delete(ire_t *ire)
23145 {
23146 	ire_t *ire_dst;
23147 
23148 	ASSERT(ire != NULL);
23149 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23150 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
23151 	if (ire_dst != NULL) {
23152 		ire_t *ire_prim;
23153 
23154 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23155 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
23156 		if (ire_prim != NULL) {
23157 			ipif_t *ipif_prim;
23158 			ire_t  *bcast_ire;
23159 
23160 			ipif_prim = ire_prim->ire_ipif;
23161 
23162 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
23163 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23164 			    (void *)ire_dst, (void *)ire_prim,
23165 			    (void *)ipif_prim));
23166 
23167 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
23168 			    ire->ire_gateway_addr,
23169 			    IRE_BROADCAST,
23170 			    ipif_prim, ALL_ZONES,
23171 			    NULL,
23172 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23173 			    MATCH_IRE_MASK);
23174 
23175 			if (bcast_ire != NULL) {
23176 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
23177 				    "looked up bcast_ire %p\n",
23178 				    (void *)bcast_ire));
23179 				ipif_remove_ire(bcast_ire->ire_ipif,
23180 					bcast_ire);
23181 				ire_delete(bcast_ire);
23182 			}
23183 			ire_refrele(ire_prim);
23184 		}
23185 		ire_refrele(ire_dst);
23186 	}
23187 }
23188 
23189 /*
23190  * IPsec hardware acceleration capabilities related functions.
23191  */
23192 
23193 /*
23194  * Free a per-ill IPsec capabilities structure.
23195  */
23196 static void
23197 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23198 {
23199 	if (capab->auth_hw_algs != NULL)
23200 		kmem_free(capab->auth_hw_algs, capab->algs_size);
23201 	if (capab->encr_hw_algs != NULL)
23202 		kmem_free(capab->encr_hw_algs, capab->algs_size);
23203 	if (capab->encr_algparm != NULL)
23204 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23205 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
23206 }
23207 
23208 /*
23209  * Allocate a new per-ill IPsec capabilities structure. This structure
23210  * is specific to an IPsec protocol (AH or ESP). It is implemented as
23211  * an array which specifies, for each algorithm, whether this algorithm
23212  * is supported by the ill or not.
23213  */
23214 static ill_ipsec_capab_t *
23215 ill_ipsec_capab_alloc(void)
23216 {
23217 	ill_ipsec_capab_t *capab;
23218 	uint_t nelems;
23219 
23220 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23221 	if (capab == NULL)
23222 		return (NULL);
23223 
23224 	/* we need one bit per algorithm */
23225 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23226 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23227 
23228 	/* allocate memory to store algorithm flags */
23229 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23230 	if (capab->encr_hw_algs == NULL)
23231 		goto nomem;
23232 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23233 	if (capab->auth_hw_algs == NULL)
23234 		goto nomem;
23235 	/*
23236 	 * Leave encr_algparm NULL for now since we won't need it half
23237 	 * the time
23238 	 */
23239 	return (capab);
23240 
23241 nomem:
23242 	ill_ipsec_capab_free(capab);
23243 	return (NULL);
23244 }
23245 
23246 /*
23247  * Resize capability array.  Since we're exclusive, this is OK.
23248  */
23249 static boolean_t
23250 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
23251 {
23252 	ipsec_capab_algparm_t *nalp, *oalp;
23253 	uint32_t olen, nlen;
23254 
23255 	oalp = capab->encr_algparm;
23256 	olen = capab->encr_algparm_size;
23257 
23258 	if (oalp != NULL) {
23259 		if (algid < capab->encr_algparm_end)
23260 			return (B_TRUE);
23261 	}
23262 
23263 	nlen = (algid + 1) * sizeof (*nalp);
23264 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
23265 	if (nalp == NULL)
23266 		return (B_FALSE);
23267 
23268 	if (oalp != NULL) {
23269 		bcopy(oalp, nalp, olen);
23270 		kmem_free(oalp, olen);
23271 	}
23272 	capab->encr_algparm = nalp;
23273 	capab->encr_algparm_size = nlen;
23274 	capab->encr_algparm_end = algid + 1;
23275 
23276 	return (B_TRUE);
23277 }
23278 
23279 /*
23280  * Compare the capabilities of the specified ill with the protocol
23281  * and algorithms specified by the SA passed as argument.
23282  * If they match, returns B_TRUE, B_FALSE if they do not match.
23283  *
23284  * The ill can be passed as a pointer to it, or by specifying its index
23285  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
23286  *
23287  * Called by ipsec_out_is_accelerated() do decide whether an outbound
23288  * packet is eligible for hardware acceleration, and by
23289  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
23290  * to a particular ill.
23291  */
23292 boolean_t
23293 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
23294     ipsa_t *sa)
23295 {
23296 	boolean_t sa_isv6;
23297 	uint_t algid;
23298 	struct ill_ipsec_capab_s *cpp;
23299 	boolean_t need_refrele = B_FALSE;
23300 
23301 	if (ill == NULL) {
23302 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
23303 		    NULL, NULL, NULL);
23304 		if (ill == NULL) {
23305 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
23306 			return (B_FALSE);
23307 		}
23308 		need_refrele = B_TRUE;
23309 	}
23310 
23311 	/*
23312 	 * Use the address length specified by the SA to determine
23313 	 * if it corresponds to a IPv6 address, and fail the matching
23314 	 * if the isv6 flag passed as argument does not match.
23315 	 * Note: this check is used for SADB capability checking before
23316 	 * sending SA information to an ill.
23317 	 */
23318 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
23319 	if (sa_isv6 != ill_isv6)
23320 		/* protocol mismatch */
23321 		goto done;
23322 
23323 	/*
23324 	 * Check if the ill supports the protocol, algorithm(s) and
23325 	 * key size(s) specified by the SA, and get the pointers to
23326 	 * the algorithms supported by the ill.
23327 	 */
23328 	switch (sa->ipsa_type) {
23329 
23330 	case SADB_SATYPE_ESP:
23331 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
23332 			/* ill does not support ESP acceleration */
23333 			goto done;
23334 		cpp = ill->ill_ipsec_capab_esp;
23335 		algid = sa->ipsa_auth_alg;
23336 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
23337 			goto done;
23338 		algid = sa->ipsa_encr_alg;
23339 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
23340 			goto done;
23341 		if (algid < cpp->encr_algparm_end) {
23342 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
23343 			if (sa->ipsa_encrkeybits < alp->minkeylen)
23344 				goto done;
23345 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
23346 				goto done;
23347 		}
23348 		break;
23349 
23350 	case SADB_SATYPE_AH:
23351 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
23352 			/* ill does not support AH acceleration */
23353 			goto done;
23354 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
23355 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
23356 			goto done;
23357 		break;
23358 	}
23359 
23360 	if (need_refrele)
23361 		ill_refrele(ill);
23362 	return (B_TRUE);
23363 done:
23364 	if (need_refrele)
23365 		ill_refrele(ill);
23366 	return (B_FALSE);
23367 }
23368 
23369 
23370 /*
23371  * Add a new ill to the list of IPsec capable ills.
23372  * Called from ill_capability_ipsec_ack() when an ACK was received
23373  * indicating that IPsec hardware processing was enabled for an ill.
23374  *
23375  * ill must point to the ill for which acceleration was enabled.
23376  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
23377  */
23378 static void
23379 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
23380 {
23381 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
23382 	uint_t sa_type;
23383 	uint_t ipproto;
23384 
23385 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
23386 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
23387 
23388 	switch (dl_cap) {
23389 	case DL_CAPAB_IPSEC_AH:
23390 		sa_type = SADB_SATYPE_AH;
23391 		ills = &ipsec_capab_ills_ah;
23392 		ipproto = IPPROTO_AH;
23393 		break;
23394 	case DL_CAPAB_IPSEC_ESP:
23395 		sa_type = SADB_SATYPE_ESP;
23396 		ills = &ipsec_capab_ills_esp;
23397 		ipproto = IPPROTO_ESP;
23398 		break;
23399 	}
23400 
23401 	rw_enter(&ipsec_capab_ills_lock, RW_WRITER);
23402 
23403 	/*
23404 	 * Add ill index to list of hardware accelerators. If
23405 	 * already in list, do nothing.
23406 	 */
23407 	for (cur_ill = *ills; cur_ill != NULL &&
23408 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
23409 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
23410 		;
23411 
23412 	if (cur_ill == NULL) {
23413 		/* if this is a new entry for this ill */
23414 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
23415 		if (new_ill == NULL) {
23416 			rw_exit(&ipsec_capab_ills_lock);
23417 			return;
23418 		}
23419 
23420 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
23421 		new_ill->ill_isv6 = ill->ill_isv6;
23422 		new_ill->next = *ills;
23423 		*ills = new_ill;
23424 	} else if (!sadb_resync) {
23425 		/* not resync'ing SADB and an entry exists for this ill */
23426 		rw_exit(&ipsec_capab_ills_lock);
23427 		return;
23428 	}
23429 
23430 	rw_exit(&ipsec_capab_ills_lock);
23431 
23432 	if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
23433 		/*
23434 		 * IPsec module for protocol loaded, initiate dump
23435 		 * of the SADB to this ill.
23436 		 */
23437 		sadb_ill_download(ill, sa_type);
23438 }
23439 
23440 /*
23441  * Remove an ill from the list of IPsec capable ills.
23442  */
23443 static void
23444 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
23445 {
23446 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
23447 
23448 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
23449 	    dl_cap == DL_CAPAB_IPSEC_ESP);
23450 
23451 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah :
23452 	    &ipsec_capab_ills_esp;
23453 
23454 	rw_enter(&ipsec_capab_ills_lock, RW_WRITER);
23455 
23456 	prev_ill = NULL;
23457 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
23458 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
23459 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
23460 		;
23461 	if (cur_ill == NULL) {
23462 		/* entry not found */
23463 		rw_exit(&ipsec_capab_ills_lock);
23464 		return;
23465 	}
23466 	if (prev_ill == NULL) {
23467 		/* entry at front of list */
23468 		*ills = NULL;
23469 	} else {
23470 		prev_ill->next = cur_ill->next;
23471 	}
23472 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
23473 	rw_exit(&ipsec_capab_ills_lock);
23474 }
23475 
23476 
23477 /*
23478  * Handling of DL_CONTROL_REQ messages that must be sent down to
23479  * an ill while having exclusive access.
23480  */
23481 /* ARGSUSED */
23482 static void
23483 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
23484 {
23485 	ill_t *ill = (ill_t *)q->q_ptr;
23486 
23487 	ill_dlpi_send(ill, mp);
23488 }
23489 
23490 
23491 /*
23492  * Called by SADB to send a DL_CONTROL_REQ message to every ill
23493  * supporting the specified IPsec protocol acceleration.
23494  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
23495  * We free the mblk and, if sa is non-null, release the held referece.
23496  */
23497 void
23498 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa)
23499 {
23500 	ipsec_capab_ill_t *ici, *cur_ici;
23501 	ill_t *ill;
23502 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
23503 
23504 	ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah :
23505 	    ipsec_capab_ills_esp;
23506 
23507 	rw_enter(&ipsec_capab_ills_lock, RW_READER);
23508 
23509 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
23510 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
23511 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL);
23512 
23513 		/*
23514 		 * Handle the case where the ill goes away while the SADB is
23515 		 * attempting to send messages.  If it's going away, it's
23516 		 * nuking its shadow SADB, so we don't care..
23517 		 */
23518 
23519 		if (ill == NULL)
23520 			continue;
23521 
23522 		if (sa != NULL) {
23523 			/*
23524 			 * Make sure capabilities match before
23525 			 * sending SA to ill.
23526 			 */
23527 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
23528 			    cur_ici->ill_isv6, sa)) {
23529 				ill_refrele(ill);
23530 				continue;
23531 			}
23532 
23533 			mutex_enter(&sa->ipsa_lock);
23534 			sa->ipsa_flags |= IPSA_F_HW;
23535 			mutex_exit(&sa->ipsa_lock);
23536 		}
23537 
23538 		/*
23539 		 * Copy template message, and add it to the front
23540 		 * of the mblk ship list. We want to avoid holding
23541 		 * the ipsec_capab_ills_lock while sending the
23542 		 * message to the ills.
23543 		 *
23544 		 * The b_next and b_prev are temporarily used
23545 		 * to build a list of mblks to be sent down, and to
23546 		 * save the ill to which they must be sent.
23547 		 */
23548 		nmp = copymsg(mp);
23549 		if (nmp == NULL) {
23550 			ill_refrele(ill);
23551 			continue;
23552 		}
23553 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
23554 		nmp->b_next = mp_ship_list;
23555 		mp_ship_list = nmp;
23556 		nmp->b_prev = (mblk_t *)ill;
23557 	}
23558 
23559 	rw_exit(&ipsec_capab_ills_lock);
23560 
23561 	nmp = mp_ship_list;
23562 	while (nmp != NULL) {
23563 		/* restore the mblk to a sane state */
23564 		next_mp = nmp->b_next;
23565 		nmp->b_next = NULL;
23566 		ill = (ill_t *)nmp->b_prev;
23567 		nmp->b_prev = NULL;
23568 
23569 		/*
23570 		 * Ship the mblk to the ill, must be exclusive. Keep the
23571 		 * reference to the ill as qwriter_ip() does a ill_referele().
23572 		 */
23573 		(void) qwriter_ip(NULL, ill, ill->ill_wq, nmp,
23574 		    ill_ipsec_capab_send_writer, NEW_OP, B_TRUE);
23575 
23576 		nmp = next_mp;
23577 	}
23578 
23579 	if (sa != NULL)
23580 		IPSA_REFRELE(sa);
23581 	freemsg(mp);
23582 }
23583 
23584 
23585 /*
23586  * Derive an interface id from the link layer address.
23587  * Knows about IEEE 802 and IEEE EUI-64 mappings.
23588  */
23589 static boolean_t
23590 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23591 {
23592 	char		*addr;
23593 
23594 	if (phys_length != ETHERADDRL)
23595 		return (B_FALSE);
23596 
23597 	/* Form EUI-64 like address */
23598 	addr = (char *)&v6addr->s6_addr32[2];
23599 	bcopy((char *)phys_addr, addr, 3);
23600 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
23601 	addr[3] = (char)0xff;
23602 	addr[4] = (char)0xfe;
23603 	bcopy((char *)phys_addr + 3, addr + 5, 3);
23604 	return (B_TRUE);
23605 }
23606 
23607 /* ARGSUSED */
23608 static boolean_t
23609 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23610 {
23611 	return (B_FALSE);
23612 }
23613 
23614 /* ARGSUSED */
23615 static boolean_t
23616 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23617     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23618 {
23619 	/*
23620 	 * Multicast address mappings used over Ethernet/802.X.
23621 	 * This address is used as a base for mappings.
23622 	 */
23623 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
23624 	    0x00, 0x00, 0x00};
23625 
23626 	/*
23627 	 * Extract low order 32 bits from IPv6 multicast address.
23628 	 * Or that into the link layer address, starting from the
23629 	 * second byte.
23630 	 */
23631 	*hw_start = 2;
23632 	v6_extract_mask->s6_addr32[0] = 0;
23633 	v6_extract_mask->s6_addr32[1] = 0;
23634 	v6_extract_mask->s6_addr32[2] = 0;
23635 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23636 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
23637 	return (B_TRUE);
23638 }
23639 
23640 /*
23641  * Indicate by return value whether multicast is supported. If not,
23642  * this code should not touch/change any parameters.
23643  */
23644 /* ARGSUSED */
23645 static boolean_t
23646 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23647     uint32_t *hw_start, ipaddr_t *extract_mask)
23648 {
23649 	/*
23650 	 * Multicast address mappings used over Ethernet/802.X.
23651 	 * This address is used as a base for mappings.
23652 	 */
23653 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
23654 	    0x00, 0x00, 0x00 };
23655 
23656 	if (phys_length != ETHERADDRL)
23657 		return (B_FALSE);
23658 
23659 	*extract_mask = htonl(0x007fffff);
23660 	*hw_start = 2;
23661 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
23662 	return (B_TRUE);
23663 }
23664 
23665 /*
23666  * Derive IPoIB interface id from the link layer address.
23667  */
23668 static boolean_t
23669 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23670 {
23671 	char		*addr;
23672 
23673 	if (phys_length != 20)
23674 		return (B_FALSE);
23675 	addr = (char *)&v6addr->s6_addr32[2];
23676 	bcopy(phys_addr + 12, addr, 8);
23677 	/*
23678 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
23679 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
23680 	 * rules. In these cases, the IBA considers these GUIDs to be in
23681 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
23682 	 * required; vendors are required not to assign global EUI-64's
23683 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
23684 	 * of the interface identifier. Whether the GUID is in modified
23685 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
23686 	 * bit set to 1.
23687 	 */
23688 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
23689 	return (B_TRUE);
23690 }
23691 
23692 /*
23693  * Note on mapping from multicast IP addresses to IPoIB multicast link
23694  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
23695  * The format of an IPoIB multicast address is:
23696  *
23697  *  4 byte QPN      Scope Sign.  Pkey
23698  * +--------------------------------------------+
23699  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
23700  * +--------------------------------------------+
23701  *
23702  * The Scope and Pkey components are properties of the IBA port and
23703  * network interface. They can be ascertained from the broadcast address.
23704  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
23705  */
23706 
23707 static boolean_t
23708 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23709     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23710 {
23711 	/*
23712 	 * Base IPoIB IPv6 multicast address used for mappings.
23713 	 * Does not contain the IBA scope/Pkey values.
23714 	 */
23715 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23716 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
23717 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23718 
23719 	/*
23720 	 * Extract low order 80 bits from IPv6 multicast address.
23721 	 * Or that into the link layer address, starting from the
23722 	 * sixth byte.
23723 	 */
23724 	*hw_start = 6;
23725 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
23726 
23727 	/*
23728 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23729 	 */
23730 	*(maddr + 5) = *(bphys_addr + 5);
23731 	*(maddr + 8) = *(bphys_addr + 8);
23732 	*(maddr + 9) = *(bphys_addr + 9);
23733 
23734 	v6_extract_mask->s6_addr32[0] = 0;
23735 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
23736 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
23737 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23738 	return (B_TRUE);
23739 }
23740 
23741 static boolean_t
23742 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23743     uint32_t *hw_start, ipaddr_t *extract_mask)
23744 {
23745 	/*
23746 	 * Base IPoIB IPv4 multicast address used for mappings.
23747 	 * Does not contain the IBA scope/Pkey values.
23748 	 */
23749 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23750 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
23751 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23752 
23753 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
23754 		return (B_FALSE);
23755 
23756 	/*
23757 	 * Extract low order 28 bits from IPv4 multicast address.
23758 	 * Or that into the link layer address, starting from the
23759 	 * sixteenth byte.
23760 	 */
23761 	*extract_mask = htonl(0x0fffffff);
23762 	*hw_start = 16;
23763 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
23764 
23765 	/*
23766 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23767 	 */
23768 	*(maddr + 5) = *(bphys_addr + 5);
23769 	*(maddr + 8) = *(bphys_addr + 8);
23770 	*(maddr + 9) = *(bphys_addr + 9);
23771 	return (B_TRUE);
23772 }
23773 
23774 /*
23775  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
23776  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
23777  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
23778  * the link-local address is preferred.
23779  */
23780 boolean_t
23781 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23782 {
23783 	ipif_t	*ipif;
23784 	ipif_t	*maybe_ipif = NULL;
23785 
23786 	mutex_enter(&ill->ill_lock);
23787 	if (ill->ill_state_flags & ILL_CONDEMNED) {
23788 		mutex_exit(&ill->ill_lock);
23789 		if (ipifp != NULL)
23790 			*ipifp = NULL;
23791 		return (B_FALSE);
23792 	}
23793 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
23794 		if (!IPIF_CAN_LOOKUP(ipif))
23795 			continue;
23796 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
23797 		    ipif->ipif_zoneid != ALL_ZONES)
23798 			continue;
23799 		if ((ipif->ipif_flags & flags) != flags)
23800 			continue;
23801 
23802 		if (ipifp == NULL) {
23803 			mutex_exit(&ill->ill_lock);
23804 			ASSERT(maybe_ipif == NULL);
23805 			return (B_TRUE);
23806 		}
23807 		if (!ill->ill_isv6 ||
23808 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
23809 			ipif_refhold_locked(ipif);
23810 			mutex_exit(&ill->ill_lock);
23811 			*ipifp = ipif;
23812 			return (B_TRUE);
23813 		}
23814 		if (maybe_ipif == NULL)
23815 			maybe_ipif = ipif;
23816 	}
23817 	if (ipifp != NULL) {
23818 		if (maybe_ipif != NULL)
23819 			ipif_refhold_locked(maybe_ipif);
23820 		*ipifp = maybe_ipif;
23821 	}
23822 	mutex_exit(&ill->ill_lock);
23823 	return (maybe_ipif != NULL);
23824 }
23825 
23826 /*
23827  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
23828  */
23829 boolean_t
23830 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23831 {
23832 	ill_t *illg;
23833 
23834 	/*
23835 	 * We look at the passed-in ill first without grabbing ill_g_lock.
23836 	 */
23837 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
23838 		return (B_TRUE);
23839 	}
23840 	rw_enter(&ill_g_lock, RW_READER);
23841 	if (ill->ill_group == NULL) {
23842 		/* ill not in a group */
23843 		rw_exit(&ill_g_lock);
23844 		return (B_FALSE);
23845 	}
23846 
23847 	/*
23848 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
23849 	 * group. We need to look for an ipif in the zone on all the ills in the
23850 	 * group.
23851 	 */
23852 	illg = ill->ill_group->illgrp_ill;
23853 	do {
23854 		/*
23855 		 * We don't call ipif_lookup_zoneid() on ill as we already know
23856 		 * that it's not there.
23857 		 */
23858 		if (illg != ill &&
23859 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
23860 			break;
23861 		}
23862 	} while ((illg = illg->ill_group_next) != NULL);
23863 	rw_exit(&ill_g_lock);
23864 	return (illg != NULL);
23865 }
23866 
23867 /*
23868  * Check if this ill is only being used to send ICMP probes for IPMP
23869  */
23870 boolean_t
23871 ill_is_probeonly(ill_t *ill)
23872 {
23873 	/*
23874 	 * Check if the interface is FAILED, or INACTIVE
23875 	 */
23876 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
23877 		return (B_TRUE);
23878 
23879 	return (B_FALSE);
23880 }
23881 
23882 /*
23883  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
23884  * If a pointer to an ipif_t is returned then the caller will need to do
23885  * an ill_refrele().
23886  */
23887 ipif_t *
23888 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6)
23889 {
23890 	ipif_t *ipif;
23891 	ill_t *ill;
23892 
23893 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL);
23894 
23895 	if (ill == NULL)
23896 		return (NULL);
23897 
23898 	mutex_enter(&ill->ill_lock);
23899 	if (ill->ill_state_flags & ILL_CONDEMNED) {
23900 		mutex_exit(&ill->ill_lock);
23901 		ill_refrele(ill);
23902 		return (NULL);
23903 	}
23904 
23905 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
23906 		if (!IPIF_CAN_LOOKUP(ipif))
23907 			continue;
23908 		if (lifidx == ipif->ipif_id) {
23909 			ipif_refhold_locked(ipif);
23910 			break;
23911 		}
23912 	}
23913 
23914 	mutex_exit(&ill->ill_lock);
23915 	ill_refrele(ill);
23916 	return (ipif);
23917 }
23918