xref: /titanic_50/usr/src/uts/common/inet/ip/ip6_ire.c (revision edafac1f8203a7de1490688213c118b03215c89d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 1990 Mentat Inc.
27  */
28 
29 /*
30  * This file contains routines that manipulate Internet Routing Entries (IREs).
31  */
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/stropts.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 
38 #include <sys/systm.h>
39 #include <sys/param.h>
40 #include <sys/socket.h>
41 #include <net/if.h>
42 #include <net/route.h>
43 #include <netinet/in.h>
44 #include <net/if_dl.h>
45 #include <netinet/ip6.h>
46 #include <netinet/icmp6.h>
47 
48 #include <inet/common.h>
49 #include <inet/mi.h>
50 #include <inet/ip.h>
51 #include <inet/ip6.h>
52 #include <inet/ip_ndp.h>
53 #include <inet/ip_if.h>
54 #include <inet/ip_ire.h>
55 #include <inet/ipclassifier.h>
56 #include <inet/nd.h>
57 #include <sys/kmem.h>
58 #include <sys/zone.h>
59 
60 #include <sys/tsol/label.h>
61 #include <sys/tsol/tnet.h>
62 
63 #define	IS_DEFAULT_ROUTE_V6(ire)	\
64 	(((ire)->ire_type & IRE_DEFAULT) || \
65 	    (((ire)->ire_type & IRE_INTERFACE) && \
66 	    (IN6_IS_ADDR_UNSPECIFIED(&(ire)->ire_addr_v6))))
67 
68 static	ire_t	ire_null;
69 
70 static ire_t *
71 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
72     const in6_addr_t *gateway, int type, const ill_t *ill,
73     zoneid_t zoneid, const ts_label_t *tsl, int flags,
74     ip_stack_t *ipst);
75 
76 /*
77  * Initialize the ire that is specific to IPv6 part and call
78  * ire_init_common to finish it.
79  * Returns zero or errno.
80  */
81 int
82 ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, const in6_addr_t *v6mask,
83     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill,
84     zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
85 {
86 	int error;
87 
88 	/*
89 	 * Reject IRE security attmakeribute creation/initialization
90 	 * if system is not running in Trusted mode.
91 	 */
92 	if (gc != NULL && !is_system_labeled())
93 		return (EINVAL);
94 
95 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_alloced);
96 	if (v6addr != NULL)
97 		ire->ire_addr_v6 = *v6addr;
98 	if (v6gateway != NULL)
99 		ire->ire_gateway_addr_v6 = *v6gateway;
100 
101 	/* Make sure we don't have stray values in some fields */
102 	switch (type) {
103 	case IRE_LOOPBACK:
104 	case IRE_HOST:
105 	case IRE_LOCAL:
106 	case IRE_IF_CLONE:
107 		ire->ire_mask_v6 = ipv6_all_ones;
108 		ire->ire_masklen = IPV6_ABITS;
109 		break;
110 	case IRE_PREFIX:
111 	case IRE_DEFAULT:
112 	case IRE_IF_RESOLVER:
113 	case IRE_IF_NORESOLVER:
114 		if (v6mask != NULL) {
115 			ire->ire_mask_v6 = *v6mask;
116 			ire->ire_masklen =
117 			    ip_mask_to_plen_v6(&ire->ire_mask_v6);
118 		}
119 		break;
120 	case IRE_MULTICAST:
121 	case IRE_NOROUTE:
122 		ASSERT(v6mask == NULL);
123 		break;
124 	default:
125 		ASSERT(0);
126 		return (EINVAL);
127 	}
128 
129 	error = ire_init_common(ire, type, ill, zoneid, flags, IPV6_VERSION,
130 	    gc, ipst);
131 	if (error != NULL)
132 		return (error);
133 
134 	/* Determine which function pointers to use */
135 	ire->ire_postfragfn = ip_xmit;		/* Common case */
136 
137 	switch (ire->ire_type) {
138 	case IRE_LOCAL:
139 		ire->ire_sendfn = ire_send_local_v6;
140 		ire->ire_recvfn = ire_recv_local_v6;
141 		ASSERT(ire->ire_ill != NULL);
142 		if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
143 			ire->ire_recvfn = ire_recv_noaccept_v6;
144 		break;
145 	case IRE_LOOPBACK:
146 		ire->ire_sendfn = ire_send_local_v6;
147 		ire->ire_recvfn = ire_recv_loopback_v6;
148 		break;
149 	case IRE_MULTICAST:
150 		ire->ire_postfragfn = ip_postfrag_loopcheck;
151 		ire->ire_sendfn = ire_send_multicast_v6;
152 		ire->ire_recvfn = ire_recv_multicast_v6;
153 		break;
154 	default:
155 		/*
156 		 * For IRE_IF_ALL and IRE_OFFLINK we forward received
157 		 * packets by default.
158 		 */
159 		ire->ire_sendfn = ire_send_wire_v6;
160 		ire->ire_recvfn = ire_recv_forward_v6;
161 		break;
162 	}
163 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
164 		ire->ire_sendfn = ire_send_noroute_v6;
165 		ire->ire_recvfn = ire_recv_noroute_v6;
166 	} else if (ire->ire_flags & RTF_MULTIRT) {
167 		ire->ire_postfragfn = ip_postfrag_multirt_v6;
168 		ire->ire_sendfn = ire_send_multirt_v6;
169 		ire->ire_recvfn = ire_recv_multirt_v6;
170 	}
171 	ire->ire_nce_capable = ire_determine_nce_capable(ire);
172 	return (0);
173 }
174 
175 /*
176  * ire_create_v6 is called to allocate and initialize a new IRE.
177  *
178  * NOTE : This is called as writer sometimes though not required
179  * by this function.
180  */
181 /* ARGSUSED */
182 ire_t *
183 ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask,
184     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill, zoneid_t zoneid,
185     uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
186 {
187 	ire_t	*ire;
188 	int	error;
189 
190 	ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr));
191 
192 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
193 	if (ire == NULL) {
194 		DTRACE_PROBE(kmem__cache__alloc);
195 		return (NULL);
196 	}
197 	*ire = ire_null;
198 
199 	error = ire_init_v6(ire, v6addr, v6mask, v6gateway,
200 	    type, ill, zoneid, flags, gc, ipst);
201 
202 	if (error != 0) {
203 		DTRACE_PROBE2(ire__init__v6, ire_t *, ire, int, error);
204 		kmem_cache_free(ire_cache, ire);
205 		return (NULL);
206 	}
207 	return (ire);
208 }
209 
210 /*
211  * Find the ill matching a multicast group.
212  * Allows different routes for multicast addresses
213  * in the unicast routing table (akin to FF::0/8 but could be more specific)
214  * which point at different interfaces. This is used when IPV6_MULTICAST_IF
215  * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't
216  * specify the interface to join on.
217  *
218  * Supports link-local addresses by using ire_route_recursive which follows
219  * the ill when recursing.
220  *
221  * To handle CGTP, since we don't have a separate IRE_MULTICAST for each group
222  * and the MULTIRT property can be different for different groups, we
223  * extract RTF_MULTIRT from the special unicast route added for a group
224  * with CGTP and pass that back in the multirtp argument.
225  * This is used in ip_set_destination etc to set ixa_postfragfn for multicast.
226  * We have a setsrcp argument for the same reason.
227  */
228 ill_t *
229 ire_lookup_multi_ill_v6(const in6_addr_t *group, zoneid_t zoneid,
230     ip_stack_t *ipst, boolean_t *multirtp, in6_addr_t *setsrcp)
231 {
232 	ire_t	*ire;
233 	ill_t	*ill;
234 
235 	ire = ire_route_recursive_v6(group, 0, NULL, zoneid, NULL,
236 	    MATCH_IRE_DSTONLY, IRR_NONE, 0, ipst, setsrcp, NULL, NULL);
237 	ASSERT(ire != NULL);
238 
239 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
240 		ire_refrele(ire);
241 		return (NULL);
242 	}
243 
244 	if (multirtp != NULL)
245 		*multirtp = (ire->ire_flags & RTF_MULTIRT) != 0;
246 
247 	ill = ire_nexthop_ill(ire);
248 	ire_refrele(ire);
249 	return (ill);
250 }
251 
252 /*
253  * This function takes a mask and returns number of bits set in the
254  * mask (the represented prefix length).  Assumes a contiguous mask.
255  */
256 int
257 ip_mask_to_plen_v6(const in6_addr_t *v6mask)
258 {
259 	int		bits;
260 	int		plen = IPV6_ABITS;
261 	int		i;
262 
263 	for (i = 3; i >= 0; i--) {
264 		if (v6mask->s6_addr32[i] == 0) {
265 			plen -= 32;
266 			continue;
267 		}
268 		bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1;
269 		if (bits == 0)
270 			break;
271 		plen -= bits;
272 	}
273 
274 	return (plen);
275 }
276 
277 /*
278  * Convert a prefix length to the mask for that prefix.
279  * Returns the argument bitmask.
280  */
281 in6_addr_t *
282 ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask)
283 {
284 	uint32_t *ptr;
285 
286 	if (plen < 0 || plen > IPV6_ABITS)
287 		return (NULL);
288 	*bitmask = ipv6_all_zeros;
289 	if (plen == 0)
290 		return (bitmask);
291 
292 	ptr = (uint32_t *)bitmask;
293 	while (plen > 32) {
294 		*ptr++ = 0xffffffffU;
295 		plen -= 32;
296 	}
297 	*ptr = htonl(0xffffffffU << (32 - plen));
298 	return (bitmask);
299 }
300 
301 /*
302  * Add a fully initialized IPv6 IRE to the forwarding table.
303  * This returns NULL on failure, or a held IRE on success.
304  * Normally the returned IRE is the same as the argument. But a different
305  * IRE will be returned if the added IRE is deemed identical to an existing
306  * one. In that case ire_identical_ref will be increased.
307  * The caller always needs to do an ire_refrele() on the returned IRE.
308  */
309 ire_t *
310 ire_add_v6(ire_t *ire)
311 {
312 	ire_t	*ire1;
313 	int	mask_table_index;
314 	irb_t	*irb_ptr;
315 	ire_t	**irep;
316 	int	match_flags;
317 	int	error;
318 	ip_stack_t	*ipst = ire->ire_ipst;
319 
320 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
321 
322 	/* Make sure the address is properly masked. */
323 	V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6);
324 
325 	mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6);
326 	if ((ipst->ips_ip_forwarding_table_v6[mask_table_index]) == NULL) {
327 		irb_t *ptr;
328 		int i;
329 
330 		ptr = (irb_t *)mi_zalloc((ipst->ips_ip6_ftable_hash_size *
331 		    sizeof (irb_t)));
332 		if (ptr == NULL) {
333 			ire_delete(ire);
334 			return (NULL);
335 		}
336 		for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
337 			rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL);
338 			ptr[i].irb_ipst = ipst;
339 		}
340 		mutex_enter(&ipst->ips_ire_ft_init_lock);
341 		if (ipst->ips_ip_forwarding_table_v6[mask_table_index] ==
342 		    NULL) {
343 			ipst->ips_ip_forwarding_table_v6[mask_table_index] =
344 			    ptr;
345 			mutex_exit(&ipst->ips_ire_ft_init_lock);
346 		} else {
347 			/*
348 			 * Some other thread won the race in
349 			 * initializing the forwarding table at the
350 			 * same index.
351 			 */
352 			mutex_exit(&ipst->ips_ire_ft_init_lock);
353 			for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
354 				rw_destroy(&ptr[i].irb_lock);
355 			}
356 			mi_free(ptr);
357 		}
358 	}
359 	irb_ptr = &(ipst->ips_ip_forwarding_table_v6[mask_table_index][
360 	    IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6,
361 	    ipst->ips_ip6_ftable_hash_size)]);
362 
363 	match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
364 	if (ire->ire_ill != NULL)
365 		match_flags |= MATCH_IRE_ILL;
366 	/*
367 	 * Start the atomic add of the ire. Grab the bucket lock and the
368 	 * ill lock. Check for condemned.
369 	 */
370 	error = ire_atomic_start(irb_ptr, ire);
371 	if (error != 0) {
372 		ire_delete(ire);
373 		return (NULL);
374 	}
375 
376 	/*
377 	 * If we are creating a hidden IRE, make sure we search for
378 	 * hidden IREs when searching for duplicates below.
379 	 * Otherwise, we might find an IRE on some other interface
380 	 * that's not marked hidden.
381 	 */
382 	if (ire->ire_testhidden)
383 		match_flags |= MATCH_IRE_TESTHIDDEN;
384 
385 	/*
386 	 * Atomically check for duplicate and insert in the table.
387 	 */
388 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
389 		if (IRE_IS_CONDEMNED(ire1))
390 			continue;
391 		/*
392 		 * Here we need an exact match on zoneid, i.e.,
393 		 * ire_match_args doesn't fit.
394 		 */
395 		if (ire1->ire_zoneid != ire->ire_zoneid)
396 			continue;
397 
398 		if (ire1->ire_type != ire->ire_type)
399 			continue;
400 
401 		/*
402 		 * Note: We do not allow multiple routes that differ only
403 		 * in the gateway security attributes; such routes are
404 		 * considered duplicates.
405 		 * To change that we explicitly have to treat them as
406 		 * different here.
407 		 */
408 		if (ire_match_args_v6(ire1, &ire->ire_addr_v6,
409 		    &ire->ire_mask_v6, &ire->ire_gateway_addr_v6,
410 		    ire->ire_type, ire->ire_ill, ire->ire_zoneid, NULL,
411 		    match_flags)) {
412 			/*
413 			 * Return the old ire after doing a REFHOLD.
414 			 * As most of the callers continue to use the IRE
415 			 * after adding, we return a held ire. This will
416 			 * avoid a lookup in the caller again. If the callers
417 			 * don't want to use it, they need to do a REFRELE.
418 			 */
419 			ip1dbg(("found dup ire existing %p new %p",
420 			    (void *)ire1, (void *)ire));
421 			ire_refhold(ire1);
422 			atomic_add_32(&ire1->ire_identical_ref, 1);
423 			ire_atomic_end(irb_ptr, ire);
424 			ire_delete(ire);
425 			return (ire1);
426 		}
427 	}
428 
429 	/*
430 	 * Normally we do head insertion since most things do not care about
431 	 * the order of the IREs in the bucket.
432 	 * However, due to shared-IP zones (and restrict_interzone_loopback)
433 	 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
434 	 * address. For that reason we do tail insertion for IRE_IF_CLONE.
435 	 */
436 	irep = (ire_t **)irb_ptr;
437 	if (ire->ire_type & IRE_IF_CLONE) {
438 		while ((ire1 = *irep) != NULL)
439 			irep = &ire1->ire_next;
440 	}
441 	/* Insert at *irep */
442 	ire1 = *irep;
443 	if (ire1 != NULL)
444 		ire1->ire_ptpn = &ire->ire_next;
445 	ire->ire_next = ire1;
446 	/* Link the new one in. */
447 	ire->ire_ptpn = irep;
448 	/*
449 	 * ire_walk routines de-reference ire_next without holding
450 	 * a lock. Before we point to the new ire, we want to make
451 	 * sure the store that sets the ire_next of the new ire
452 	 * reaches global visibility, so that ire_walk routines
453 	 * don't see a truncated list of ires i.e if the ire_next
454 	 * of the new ire gets set after we do "*irep = ire" due
455 	 * to re-ordering, the ire_walk thread will see a NULL
456 	 * once it accesses the ire_next of the new ire.
457 	 * membar_producer() makes sure that the following store
458 	 * happens *after* all of the above stores.
459 	 */
460 	membar_producer();
461 	*irep = ire;
462 	ire->ire_bucket = irb_ptr;
463 	/*
464 	 * We return a bumped up IRE above. Keep it symmetrical
465 	 * so that the callers will always have to release. This
466 	 * helps the callers of this function because they continue
467 	 * to use the IRE after adding and hence they don't have to
468 	 * lookup again after we return the IRE.
469 	 *
470 	 * NOTE : We don't have to use atomics as this is appearing
471 	 * in the list for the first time and no one else can bump
472 	 * up the reference count on this yet.
473 	 */
474 	ire_refhold_locked(ire);
475 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_inserted);
476 	irb_ptr->irb_ire_cnt++;
477 
478 	if (ire->ire_ill != NULL) {
479 		DTRACE_PROBE3(ill__incr__cnt, (ill_t *), ire->ire_ill,
480 		    (char *), "ire", (void *), ire);
481 		ire->ire_ill->ill_ire_cnt++;
482 		ASSERT(ire->ire_ill->ill_ire_cnt != 0);	/* Wraparound */
483 	}
484 	ire_atomic_end(irb_ptr, ire);
485 
486 	/* Make any caching of the IREs be notified or updated */
487 	ire_flush_cache_v6(ire, IRE_FLUSH_ADD);
488 
489 	return (ire);
490 }
491 
492 /*
493  * Search for all HOST REDIRECT routes that are
494  * pointing at the specified gateway and
495  * delete them. This routine is called only
496  * when a default gateway is going away.
497  */
498 static void
499 ire_delete_host_redirects_v6(const in6_addr_t *gateway, ip_stack_t *ipst)
500 {
501 	irb_t *irb_ptr;
502 	irb_t *irb;
503 	ire_t *ire;
504 	in6_addr_t gw_addr_v6;
505 	int i;
506 
507 	/* get the hash table for HOST routes */
508 	irb_ptr = ipst->ips_ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)];
509 	if (irb_ptr == NULL)
510 		return;
511 	for (i = 0; (i < ipst->ips_ip6_ftable_hash_size); i++) {
512 		irb = &irb_ptr[i];
513 		irb_refhold(irb);
514 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
515 			if (!(ire->ire_flags & RTF_DYNAMIC))
516 				continue;
517 			mutex_enter(&ire->ire_lock);
518 			gw_addr_v6 = ire->ire_gateway_addr_v6;
519 			mutex_exit(&ire->ire_lock);
520 			if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway))
521 				ire_delete(ire);
522 		}
523 		irb_refrele(irb);
524 	}
525 }
526 
527 /*
528  * Delete the specified IRE.
529  * All calls should use ire_delete().
530  * Sometimes called as writer though not required by this function.
531  *
532  * NOTE : This function is called only if the ire was added
533  * in the list.
534  */
535 void
536 ire_delete_v6(ire_t *ire)
537 {
538 	in6_addr_t gw_addr_v6;
539 	ip_stack_t	*ipst = ire->ire_ipst;
540 
541 	/*
542 	 * Make sure ire_generation increases from ire_flush_cache happen
543 	 * after any lookup/reader has read ire_generation.
544 	 * Since the rw_enter makes us wait until any lookup/reader has
545 	 * completed we can exit the lock immediately.
546 	 */
547 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
548 	rw_exit(&ipst->ips_ip6_ire_head_lock);
549 
550 	ASSERT(ire->ire_refcnt >= 1);
551 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
552 
553 	ire_flush_cache_v6(ire, IRE_FLUSH_DELETE);
554 
555 	if (ire->ire_type == IRE_DEFAULT) {
556 		/*
557 		 * when a default gateway is going away
558 		 * delete all the host redirects pointing at that
559 		 * gateway.
560 		 */
561 		mutex_enter(&ire->ire_lock);
562 		gw_addr_v6 = ire->ire_gateway_addr_v6;
563 		mutex_exit(&ire->ire_lock);
564 		ire_delete_host_redirects_v6(&gw_addr_v6, ipst);
565 	}
566 
567 	/*
568 	 * If we are deleting an IRE_INTERFACE then we make sure we also
569 	 * delete any IRE_IF_CLONE that has been created from it.
570 	 * Those are always in ire_dep_children.
571 	 */
572 	if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0)
573 		ire_dep_delete_if_clone(ire);
574 
575 	/* Remove from parent dependencies and child */
576 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
577 	if (ire->ire_dep_parent != NULL) {
578 		ire_dep_remove(ire);
579 	}
580 	while (ire->ire_dep_children != NULL)
581 		ire_dep_remove(ire->ire_dep_children);
582 	rw_exit(&ipst->ips_ire_dep_lock);
583 }
584 
585 /*
586  * When an IRE is added or deleted this routine is called to make sure
587  * any caching of IRE information is notified or updated.
588  *
589  * The flag argument indicates if the flush request is due to addition
590  * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
591  * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
592  */
593 void
594 ire_flush_cache_v6(ire_t *ire, int flag)
595 {
596 	ip_stack_t *ipst = ire->ire_ipst;
597 
598 	/*
599 	 * IRE_IF_CLONE ire's don't provide any new information
600 	 * than the parent from which they are cloned, so don't
601 	 * perturb the generation numbers.
602 	 */
603 	if (ire->ire_type & IRE_IF_CLONE)
604 		return;
605 
606 	/*
607 	 * Ensure that an ire_add during a lookup serializes the updates of
608 	 * the generation numbers under ire_head_lock so that the lookup gets
609 	 * either the old ire and old generation number, or a new ire and new
610 	 * generation number.
611 	 */
612 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
613 
614 	/*
615 	 * If a route was just added, we need to notify everybody that
616 	 * has cached an IRE_NOROUTE since there might now be a better
617 	 * route for them.
618 	 */
619 	if (flag == IRE_FLUSH_ADD) {
620 		ire_increment_generation(ipst->ips_ire_reject_v6);
621 		ire_increment_generation(ipst->ips_ire_blackhole_v6);
622 	}
623 
624 	/* Adding a default can't otherwise provide a better route */
625 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
626 		rw_exit(&ipst->ips_ip6_ire_head_lock);
627 		return;
628 	}
629 
630 	switch (flag) {
631 	case IRE_FLUSH_DELETE:
632 	case IRE_FLUSH_GWCHANGE:
633 		/*
634 		 * Update ire_generation for all ire_dep_children chains
635 		 * starting with this IRE
636 		 */
637 		ire_dep_incr_generation(ire);
638 		break;
639 	case IRE_FLUSH_ADD: {
640 		in6_addr_t	addr;
641 		in6_addr_t	mask;
642 		ip_stack_t	*ipst = ire->ire_ipst;
643 		uint_t		masklen;
644 
645 		/*
646 		 * Find an IRE which is a shorter match than the ire to be added
647 		 * For any such IRE (which we repeat) we update the
648 		 * ire_generation the same way as in the delete case.
649 		 */
650 		addr = ire->ire_addr_v6;
651 		mask = ire->ire_mask_v6;
652 		masklen = ip_mask_to_plen_v6(&mask);
653 
654 		ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0, NULL,
655 		    ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
656 		while (ire != NULL) {
657 			/* We need to handle all in the same bucket */
658 			irb_increment_generation(ire->ire_bucket);
659 
660 			mask = ire->ire_mask_v6;
661 			ASSERT(masklen > ip_mask_to_plen_v6(&mask));
662 			masklen = ip_mask_to_plen_v6(&mask);
663 			ire_refrele(ire);
664 			ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0,
665 			    NULL, ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
666 		}
667 		}
668 		break;
669 	}
670 	rw_exit(&ipst->ips_ip6_ire_head_lock);
671 }
672 
673 /*
674  * Matches the arguments passed with the values in the ire.
675  *
676  * Note: for match types that match using "ill" passed in, ill
677  * must be checked for non-NULL before calling this routine.
678  */
679 boolean_t
680 ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask,
681     const in6_addr_t *gateway, int type, const ill_t *ill, zoneid_t zoneid,
682     const ts_label_t *tsl, int match_flags)
683 {
684 	in6_addr_t masked_addr;
685 	in6_addr_t gw_addr_v6;
686 	ill_t *ire_ill = NULL, *dst_ill;
687 	ip_stack_t *ipst = ire->ire_ipst;
688 
689 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
690 	ASSERT(addr != NULL);
691 	ASSERT(mask != NULL);
692 	ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL);
693 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) ||
694 	    (ill != NULL && ill->ill_isv6));
695 
696 	/*
697 	 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it
698 	 * is in fact hidden, to ensure the caller gets the right one.
699 	 */
700 	if (ire->ire_testhidden) {
701 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))
702 			return (B_FALSE);
703 	}
704 
705 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
706 	    ire->ire_zoneid != ALL_ZONES) {
707 		/*
708 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
709 		 * does not match that of ire_zoneid, a failure to
710 		 * match is reported at this point. Otherwise, since some IREs
711 		 * that are available in the global zone can be used in local
712 		 * zones, additional checks need to be performed:
713 		 *
714 		 * IRE_LOOPBACK
715 		 *	entries should never be matched in this situation.
716 		 *	Each zone has its own IRE_LOOPBACK.
717 		 *
718 		 * IRE_LOCAL
719 		 *	We allow them for any zoneid. ire_route_recursive
720 		 *	does additional checks when
721 		 *	ip_restrict_interzone_loopback is set.
722 		 *
723 		 * If ill_usesrc_ifindex is set
724 		 *	Then we check if the zone has a valid source address
725 		 *	on the usesrc ill.
726 		 *
727 		 * If ire_ill is set, then check that the zone has an ipif
728 		 *	on that ill.
729 		 *
730 		 * Outside of this function (in ire_round_robin) we check
731 		 * that any IRE_OFFLINK has a gateway that reachable from the
732 		 * zone when we have multiple choices (ECMP).
733 		 */
734 		if (match_flags & MATCH_IRE_ZONEONLY)
735 			return (B_FALSE);
736 		if (ire->ire_type & IRE_LOOPBACK)
737 			return (B_FALSE);
738 
739 		if (ire->ire_type & IRE_LOCAL)
740 			goto matchit;
741 
742 		/*
743 		 * The normal case of IRE_ONLINK has a matching zoneid.
744 		 * Here we handle the case when shared-IP zones have been
745 		 * configured with IP addresses on vniN. In that case it
746 		 * is ok for traffic from a zone to use IRE_ONLINK routes
747 		 * if the ill has a usesrc pointing at vniN
748 		 * Applies to IRE_INTERFACE.
749 		 */
750 		dst_ill = ire->ire_ill;
751 		if (ire->ire_type & IRE_ONLINK) {
752 			uint_t	ifindex;
753 
754 			/*
755 			 * Note there is no IRE_INTERFACE on vniN thus
756 			 * can't do an IRE lookup for a matching route.
757 			 */
758 			ifindex = dst_ill->ill_usesrc_ifindex;
759 			if (ifindex == 0)
760 				return (B_FALSE);
761 
762 			/*
763 			 * If there is a usable source address in the
764 			 * zone, then it's ok to return this IRE_INTERFACE
765 			 */
766 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
767 			    zoneid, ipst)) {
768 				ip3dbg(("ire_match_args: no usrsrc for zone"
769 				    " dst_ill %p\n", (void *)dst_ill));
770 				return (B_FALSE);
771 			}
772 		}
773 		/*
774 		 * For example, with
775 		 * route add 11.0.0.0 gw1 -ifp bge0
776 		 * route add 11.0.0.0 gw2 -ifp bge1
777 		 * this code would differentiate based on
778 		 * where the sending zone has addresses.
779 		 * Only if the zone has an address on bge0 can it use the first
780 		 * route. It isn't clear if this behavior is documented
781 		 * anywhere.
782 		 */
783 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
784 			ipif_t	*tipif;
785 
786 			mutex_enter(&dst_ill->ill_lock);
787 			for (tipif = dst_ill->ill_ipif;
788 			    tipif != NULL; tipif = tipif->ipif_next) {
789 				if (!IPIF_IS_CONDEMNED(tipif) &&
790 				    (tipif->ipif_flags & IPIF_UP) &&
791 				    (tipif->ipif_zoneid == zoneid ||
792 				    tipif->ipif_zoneid == ALL_ZONES))
793 					break;
794 			}
795 			mutex_exit(&dst_ill->ill_lock);
796 			if (tipif == NULL)
797 				return (B_FALSE);
798 		}
799 	}
800 
801 matchit:
802 	ire_ill = ire->ire_ill;
803 	if (match_flags & MATCH_IRE_GW) {
804 		mutex_enter(&ire->ire_lock);
805 		gw_addr_v6 = ire->ire_gateway_addr_v6;
806 		mutex_exit(&ire->ire_lock);
807 	}
808 	if (match_flags & MATCH_IRE_ILL) {
809 
810 		/*
811 		 * If asked to match an ill, we *must* match
812 		 * on the ire_ill for ipmp test addresses, or
813 		 * any of the ill in the group for data addresses.
814 		 * If we don't, we may as well fail.
815 		 * However, we need an exception for IRE_LOCALs to ensure
816 		 * we loopback packets even sent to test addresses on different
817 		 * interfaces in the group.
818 		 */
819 		if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
820 		    !(ire->ire_type & IRE_LOCAL)) {
821 			if (ire->ire_ill != ill)
822 				return (B_FALSE);
823 		} else  {
824 			match_flags &= ~MATCH_IRE_TESTHIDDEN;
825 			/*
826 			 * We know that ill is not NULL, but ire_ill could be
827 			 * NULL
828 			 */
829 			if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
830 				return (B_FALSE);
831 		}
832 	}
833 	if (match_flags & MATCH_IRE_SRC_ILL) {
834 		if (ire_ill == NULL)
835 			return (B_FALSE);
836 		if (!IS_ON_SAME_LAN(ill, ire_ill)) {
837 			if (ire_ill->ill_usesrc_ifindex == 0 ||
838 			    (ire_ill->ill_usesrc_ifindex !=
839 			    ill->ill_phyint->phyint_ifindex))
840 				return (B_FALSE);
841 		}
842 	}
843 
844 	/* No ire_addr_v6 bits set past the mask */
845 	ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6,
846 	    ire->ire_addr_v6));
847 	V6_MASK_COPY(*addr, *mask, masked_addr);
848 	if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) &&
849 	    ((!(match_flags & MATCH_IRE_GW)) ||
850 	    IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) &&
851 	    ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
852 	    ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
853 	    ((!(match_flags & MATCH_IRE_MASK)) ||
854 	    (IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, mask))) &&
855 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
856 	    (!is_system_labeled()) ||
857 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
858 		/* We found the matched IRE */
859 		return (B_TRUE);
860 	}
861 	return (B_FALSE);
862 }
863 
864 /*
865  * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
866  * gateway address. If ill is non-NULL we also match on it.
867  * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
868  */
869 boolean_t
870 ire_gateway_ok_zone_v6(const in6_addr_t *gateway, zoneid_t zoneid, ill_t *ill,
871     const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
872 {
873 	ire_t	*ire;
874 	uint_t	match_flags;
875 
876 	if (lock_held)
877 		ASSERT(RW_READ_HELD(&ipst->ips_ip6_ire_head_lock));
878 	else
879 		rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
880 
881 	match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
882 	if (ill != NULL)
883 		match_flags |= MATCH_IRE_ILL;
884 
885 	ire = ire_ftable_lookup_impl_v6(gateway, &ipv6_all_zeros,
886 	    &ipv6_all_zeros, IRE_INTERFACE, ill, zoneid, tsl, match_flags,
887 	    ipst);
888 
889 	if (!lock_held)
890 		rw_exit(&ipst->ips_ip6_ire_head_lock);
891 	if (ire != NULL) {
892 		ire_refrele(ire);
893 		return (B_TRUE);
894 	} else {
895 		return (B_FALSE);
896 	}
897 }
898 
899 /*
900  * Lookup a route in forwarding table.
901  * specific lookup is indicated by passing the
902  * required parameters and indicating the
903  * match required in flag field.
904  *
905  * Supports link-local addresses by following the ipif/ill when recursing.
906  */
907 ire_t *
908 ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask,
909     const in6_addr_t *gateway, int type, const ill_t *ill,
910     zoneid_t zoneid, const ts_label_t *tsl, int flags,
911     uint32_t xmit_hint, ip_stack_t *ipst, uint_t *generationp)
912 {
913 	ire_t *ire = NULL;
914 
915 	ASSERT(addr != NULL);
916 	ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL);
917 	ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL);
918 	ASSERT(ill == NULL || ill->ill_isv6);
919 
920 	ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
921 
922 	/*
923 	 * ire_match_args_v6() will dereference ill if MATCH_IRE_ILL
924 	 * or MATCH_IRE_SRC_ILL is set.
925 	 */
926 	if ((flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL)) && (ill == NULL))
927 		return (NULL);
928 
929 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
930 	ire = ire_ftable_lookup_impl_v6(addr, mask, gateway, type, ill, zoneid,
931 	    tsl, flags, ipst);
932 	if (ire == NULL) {
933 		rw_exit(&ipst->ips_ip6_ire_head_lock);
934 		return (NULL);
935 	}
936 
937 	/*
938 	 * round-robin only if we have more than one route in the bucket.
939 	 * ips_ip_ecmp_behavior controls when we do ECMP
940 	 *	2:	always
941 	 *	1:	for IRE_DEFAULT and /0 IRE_INTERFACE
942 	 *	0:	never
943 	 *
944 	 * Note: if we found an IRE_IF_CLONE we won't look at the bucket with
945 	 * other ECMP IRE_INTERFACEs since the IRE_IF_CLONE is a /128 match
946 	 * and the IRE_INTERFACESs are likely to be shorter matches.
947 	 */
948 	if (ire->ire_bucket->irb_ire_cnt > 1 && !(flags & MATCH_IRE_GW)) {
949 		if (ipst->ips_ip_ecmp_behavior == 2 ||
950 		    (ipst->ips_ip_ecmp_behavior == 1 &&
951 		    IS_DEFAULT_ROUTE_V6(ire))) {
952 			ire_t	*next_ire;
953 			ire_ftable_args_t margs;
954 
955 			bzero(&margs, sizeof (margs));
956 			margs.ift_addr_v6 = *addr;
957 			if (mask != NULL)
958 				margs.ift_mask_v6 = *mask;
959 			if (gateway != NULL)
960 				margs.ift_gateway_v6 = *gateway;
961 			margs.ift_type = type;
962 			margs.ift_ill = ill;
963 			margs.ift_zoneid = zoneid;
964 			margs.ift_tsl = tsl;
965 			margs.ift_flags = flags;
966 
967 			next_ire = ire_round_robin(ire->ire_bucket, &margs,
968 			    xmit_hint, ire, ipst);
969 			if (next_ire == NULL) {
970 				/* keep ire if next_ire is null */
971 				goto done;
972 			}
973 			ire_refrele(ire);
974 			ire = next_ire;
975 		}
976 	}
977 
978 done:
979 	/* Return generation before dropping lock */
980 	if (generationp != NULL)
981 		*generationp = ire->ire_generation;
982 
983 	rw_exit(&ipst->ips_ip6_ire_head_lock);
984 
985 	/*
986 	 * For shared-IP zones we need additional checks to what was
987 	 * done in ire_match_args to make sure IRE_LOCALs are handled.
988 	 *
989 	 * When ip_restrict_interzone_loopback is set, then
990 	 * we ensure that IRE_LOCAL are only used for loopback
991 	 * between zones when the logical "Ethernet" would
992 	 * have looped them back. That is, if in the absense of
993 	 * the IRE_LOCAL we would have sent to packet out the
994 	 * same ill.
995 	 */
996 	if ((ire->ire_type & IRE_LOCAL) && zoneid != ALL_ZONES &&
997 	    ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES &&
998 	    ipst->ips_ip_restrict_interzone_loopback) {
999 		ire = ire_alt_local(ire, zoneid, tsl, ill, generationp);
1000 		ASSERT(ire != NULL);
1001 	}
1002 
1003 	return (ire);
1004 }
1005 
1006 /*
1007  * Look up a single ire. The caller holds either the read or write lock.
1008  */
1009 ire_t *
1010 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
1011     const in6_addr_t *gateway, int type, const ill_t *ill,
1012     zoneid_t zoneid, const ts_label_t *tsl, int flags,
1013     ip_stack_t *ipst)
1014 {
1015 	irb_t *irb_ptr;
1016 	ire_t *ire = NULL;
1017 	int i;
1018 
1019 	ASSERT(RW_LOCK_HELD(&ipst->ips_ip6_ire_head_lock));
1020 
1021 	/*
1022 	 * If the mask is known, the lookup
1023 	 * is simple, if the mask is not known
1024 	 * we need to search.
1025 	 */
1026 	if (flags & MATCH_IRE_MASK) {
1027 		uint_t masklen;
1028 
1029 		masklen = ip_mask_to_plen_v6(mask);
1030 		if (ipst->ips_ip_forwarding_table_v6[masklen] == NULL) {
1031 			return (NULL);
1032 		}
1033 		irb_ptr = &(ipst->ips_ip_forwarding_table_v6[masklen][
1034 		    IRE_ADDR_MASK_HASH_V6(*addr, *mask,
1035 		    ipst->ips_ip6_ftable_hash_size)]);
1036 		rw_enter(&irb_ptr->irb_lock, RW_READER);
1037 		for (ire = irb_ptr->irb_ire; ire != NULL;
1038 		    ire = ire->ire_next) {
1039 			if (IRE_IS_CONDEMNED(ire))
1040 				continue;
1041 			if (ire_match_args_v6(ire, addr, mask, gateway, type,
1042 			    ill, zoneid, tsl, flags))
1043 				goto found_ire;
1044 		}
1045 		rw_exit(&irb_ptr->irb_lock);
1046 	} else {
1047 		uint_t masklen;
1048 
1049 		/*
1050 		 * In this case we don't know the mask, we need to
1051 		 * search the table assuming different mask sizes.
1052 		 */
1053 		if (flags & MATCH_IRE_SHORTERMASK) {
1054 			masklen = ip_mask_to_plen_v6(mask);
1055 			if (masklen == 0) {
1056 				/* Nothing shorter than zero */
1057 				return (NULL);
1058 			}
1059 			masklen--;
1060 		} else {
1061 			masklen = IP6_MASK_TABLE_SIZE - 1;
1062 		}
1063 
1064 		for (i = masklen; i >= 0; i--) {
1065 			in6_addr_t tmpmask;
1066 
1067 			if ((ipst->ips_ip_forwarding_table_v6[i]) == NULL)
1068 				continue;
1069 			(void) ip_plen_to_mask_v6(i, &tmpmask);
1070 			irb_ptr = &ipst->ips_ip_forwarding_table_v6[i][
1071 			    IRE_ADDR_MASK_HASH_V6(*addr, tmpmask,
1072 			    ipst->ips_ip6_ftable_hash_size)];
1073 			rw_enter(&irb_ptr->irb_lock, RW_READER);
1074 			for (ire = irb_ptr->irb_ire; ire != NULL;
1075 			    ire = ire->ire_next) {
1076 				if (IRE_IS_CONDEMNED(ire))
1077 					continue;
1078 				if (ire_match_args_v6(ire, addr,
1079 				    &ire->ire_mask_v6, gateway, type, ill,
1080 				    zoneid, tsl, flags))
1081 					goto found_ire;
1082 			}
1083 			rw_exit(&irb_ptr->irb_lock);
1084 		}
1085 	}
1086 	ASSERT(ire == NULL);
1087 	ip1dbg(("ire_ftable_lookup_v6: returning NULL ire"));
1088 	return (NULL);
1089 
1090 found_ire:
1091 	ire_refhold(ire);
1092 	rw_exit(&irb_ptr->irb_lock);
1093 	return (ire);
1094 }
1095 
1096 
1097 /*
1098  * This function is called by
1099  * ip_input/ire_route_recursive when doing a route lookup on only the
1100  * destination address.
1101  *
1102  * The optimizations of this function over ire_ftable_lookup are:
1103  *	o removing unnecessary flag matching
1104  *	o doing longest prefix match instead of overloading it further
1105  *	  with the unnecessary "best_prefix_match"
1106  *
1107  * If no route is found we return IRE_NOROUTE.
1108  */
1109 ire_t *
1110 ire_ftable_lookup_simple_v6(const in6_addr_t *addr, uint32_t xmit_hint,
1111     ip_stack_t *ipst, uint_t *generationp)
1112 {
1113 	ire_t	*ire;
1114 
1115 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL, ALL_ZONES, NULL,
1116 	    MATCH_IRE_DSTONLY, xmit_hint, ipst, generationp);
1117 	if (ire == NULL) {
1118 		ire = ire_reject(ipst, B_TRUE);
1119 		if (generationp != NULL)
1120 			*generationp = IRE_GENERATION_VERIFY;
1121 	}
1122 	/* ftable_lookup did round robin */
1123 	return (ire);
1124 }
1125 
1126 ire_t *
1127 ip_select_route_v6(const in6_addr_t *dst, const in6_addr_t src,
1128     ip_xmit_attr_t *ixa, uint_t *generationp, in6_addr_t *setsrcp,
1129     int *errorp, boolean_t *multirtp)
1130 {
1131 	ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4));
1132 
1133 	return (ip_select_route(dst, src, ixa, generationp, setsrcp, errorp,
1134 	    multirtp));
1135 }
1136 
1137 /*
1138  * Recursively look for a route to the destination. Can also match on
1139  * the zoneid, ill, and label. Used for the data paths. See also
1140  * ire_route_recursive_dstonly.
1141  *
1142  * If IRR_ALLOCATE is not set then we will only inspect the existing IREs; never
1143  * create an IRE_IF_CLONE. This is used on the receive side when we are not
1144  * forwarding.
1145  * If IRR_INCOMPLETE is set then we return the IRE even if we can't correctly
1146  * resolve the gateway.
1147  *
1148  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1149  * instead.
1150  *
1151  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1152  * is an error.
1153  * Allow at most one RTF_INDIRECT.
1154  */
1155 ire_t *
1156 ire_route_recursive_impl_v6(ire_t *ire,
1157     const in6_addr_t *nexthop, uint_t ire_type, const ill_t *ill_arg,
1158     zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1159     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1160     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1161 {
1162 	int		i, j;
1163 	in6_addr_t	v6nexthop = *nexthop;
1164 	ire_t		*ires[MAX_IRE_RECURSION];
1165 	uint_t		generation;
1166 	uint_t		generations[MAX_IRE_RECURSION];
1167 	boolean_t	need_refrele = B_FALSE;
1168 	boolean_t	invalidate = B_FALSE;
1169 	int		prefs[MAX_IRE_RECURSION];
1170 	ill_t		*ill = NULL;
1171 
1172 	if (setsrcp != NULL)
1173 		ASSERT(IN6_IS_ADDR_UNSPECIFIED(setsrcp));
1174 	if (gwattrp != NULL)
1175 		ASSERT(*gwattrp == NULL);
1176 
1177 	/*
1178 	 * We iterate up to three times to resolve a route, even though
1179 	 * we have four slots in the array. The extra slot is for an
1180 	 * IRE_IF_CLONE we might need to create.
1181 	 */
1182 	i = 0;
1183 	while (i < MAX_IRE_RECURSION - 1) {
1184 		/* ire_ftable_lookup handles round-robin/ECMP */
1185 		if (ire == NULL) {
1186 			ire = ire_ftable_lookup_v6(&v6nexthop, 0, 0, ire_type,
1187 			    (ill != NULL ? ill : ill_arg), zoneid, tsl,
1188 			    match_args, xmit_hint, ipst, &generation);
1189 		} else {
1190 			/* Caller passed it; extra hold since we will rele */
1191 			ire_refhold(ire);
1192 			if (generationp != NULL)
1193 				generation = *generationp;
1194 			else
1195 				generation = IRE_GENERATION_VERIFY;
1196 		}
1197 
1198 		if (ire == NULL)
1199 			ire = ire_reject(ipst, B_TRUE);
1200 
1201 		/* Need to return the ire with RTF_REJECT|BLACKHOLE */
1202 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
1203 			goto error;
1204 
1205 		ASSERT(!(ire->ire_type & IRE_MULTICAST)); /* Not in ftable */
1206 
1207 		if (i != 0) {
1208 			prefs[i] = ire_pref(ire);
1209 			/*
1210 			 * Don't allow anything unusual past the first
1211 			 * iteration.
1212 			 */
1213 			if ((ire->ire_type &
1214 			    (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) ||
1215 			    prefs[i] <= prefs[i-1]) {
1216 				ire_refrele(ire);
1217 				if (irr_flags & IRR_INCOMPLETE) {
1218 					ire = ires[0];
1219 					ire_refhold(ire);
1220 				} else {
1221 					ire = ire_reject(ipst, B_TRUE);
1222 				}
1223 				goto error;
1224 			}
1225 		}
1226 		/* We have a usable IRE */
1227 		ires[i] = ire;
1228 		generations[i] = generation;
1229 		i++;
1230 
1231 		/* The first RTF_SETSRC address is passed back if setsrcp */
1232 		if ((ire->ire_flags & RTF_SETSRC) &&
1233 		    setsrcp != NULL && IN6_IS_ADDR_UNSPECIFIED(setsrcp)) {
1234 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(
1235 			    &ire->ire_setsrc_addr_v6));
1236 			*setsrcp = ire->ire_setsrc_addr_v6;
1237 		}
1238 
1239 		/* The first ire_gw_secattr is passed back if gwattrp */
1240 		if (ire->ire_gw_secattr != NULL &&
1241 		    gwattrp != NULL && *gwattrp == NULL)
1242 			*gwattrp = ire->ire_gw_secattr;
1243 
1244 		/*
1245 		 * Check if we have a short-cut pointer to an IRE for this
1246 		 * destination, and that the cached dependency isn't stale.
1247 		 * In that case we've rejoined an existing tree towards a
1248 		 * parent, thus we don't need to continue the loop to
1249 		 * discover the rest of the tree.
1250 		 */
1251 		mutex_enter(&ire->ire_lock);
1252 		if (ire->ire_dep_parent != NULL &&
1253 		    ire->ire_dep_parent->ire_generation ==
1254 		    ire->ire_dep_parent_generation) {
1255 			mutex_exit(&ire->ire_lock);
1256 			ire = NULL;
1257 			goto done;
1258 		}
1259 		mutex_exit(&ire->ire_lock);
1260 
1261 		/*
1262 		 * If this type should have an ire_nce_cache (even if it
1263 		 * doesn't yet have one) then we are done. Includes
1264 		 * IRE_INTERFACE with a full 128 bit mask.
1265 		 */
1266 		if (ire->ire_nce_capable) {
1267 			ire = NULL;
1268 			goto done;
1269 		}
1270 		ASSERT(!(ire->ire_type & IRE_IF_CLONE));
1271 		/*
1272 		 * For an IRE_INTERFACE we create an IRE_IF_CLONE for this
1273 		 * particular destination
1274 		 */
1275 		if (ire->ire_type & IRE_INTERFACE) {
1276 			ire_t		*clone;
1277 
1278 			ASSERT(ire->ire_masklen != IPV6_ABITS);
1279 
1280 			/*
1281 			 * In the case of ip_input and ILLF_FORWARDING not
1282 			 * being set, and in the case of RTM_GET, there is
1283 			 * no point in allocating an IRE_IF_CLONE. We return
1284 			 * the IRE_INTERFACE. Note that !IRR_ALLOCATE can
1285 			 * result in a ire_dep_parent which is IRE_IF_*
1286 			 * without an IRE_IF_CLONE.
1287 			 * We recover from that when we need to send packets
1288 			 * by ensuring that the generations become
1289 			 * IRE_GENERATION_VERIFY in this case.
1290 			 */
1291 			if (!(irr_flags & IRR_ALLOCATE)) {
1292 				invalidate = B_TRUE;
1293 				ire = NULL;
1294 				goto done;
1295 			}
1296 
1297 			clone = ire_create_if_clone(ire, &v6nexthop,
1298 			    &generation);
1299 			if (clone == NULL) {
1300 				/*
1301 				 * Temporary failure - no memory.
1302 				 * Don't want caller to cache IRE_NOROUTE.
1303 				 */
1304 				invalidate = B_TRUE;
1305 				ire = ire_blackhole(ipst, B_TRUE);
1306 				goto error;
1307 			}
1308 			/*
1309 			 * Make clone next to last entry and the
1310 			 * IRE_INTERFACE the last in the dependency
1311 			 * chain since the clone depends on the
1312 			 * IRE_INTERFACE.
1313 			 */
1314 			ASSERT(i >= 1);
1315 			ASSERT(i < MAX_IRE_RECURSION);
1316 
1317 			ires[i] = ires[i-1];
1318 			generations[i] = generations[i-1];
1319 			ires[i-1] = clone;
1320 			generations[i-1] = generation;
1321 			i++;
1322 
1323 			ire = NULL;
1324 			goto done;
1325 		}
1326 
1327 		/*
1328 		 * We only match on the type and optionally ILL when
1329 		 * recursing. The type match is used by some callers
1330 		 * to exclude certain types (such as IRE_IF_CLONE or
1331 		 * IRE_LOCAL|IRE_LOOPBACK).
1332 		 *
1333 		 * In the MATCH_IRE_SRC_ILL case, ill_arg may be the 'srcof'
1334 		 * ire->ire_ill, and we want to find the IRE_INTERFACE for
1335 		 * ire_ill, so we set ill to the ire_ill
1336 		 */
1337 		match_args &= MATCH_IRE_TYPE;
1338 		v6nexthop = ire->ire_gateway_addr_v6;
1339 		if (ill == NULL && ire->ire_ill != NULL) {
1340 			ill = ire->ire_ill;
1341 			need_refrele = B_TRUE;
1342 			ill_refhold(ill);
1343 			match_args |= MATCH_IRE_ILL;
1344 		}
1345 		/*
1346 		 * We set the prefs[i] value above if i > 0. We've already
1347 		 * done i++ so i is one in the case of the first time around.
1348 		 */
1349 		if (i == 1)
1350 			prefs[0] = ire_pref(ire);
1351 		ire = NULL;
1352 	}
1353 	ASSERT(ire == NULL);
1354 	ire = ire_reject(ipst, B_TRUE);
1355 
1356 error:
1357 	ASSERT(ire != NULL);
1358 	if (need_refrele)
1359 		ill_refrele(ill);
1360 
1361 	/*
1362 	 * In the case of MULTIRT we want to try a different IRE the next
1363 	 * time. We let the next packet retry in that case.
1364 	 */
1365 	if (i > 0 && (ires[0]->ire_flags & RTF_MULTIRT))
1366 		(void) ire_no_good(ires[0]);
1367 
1368 cleanup:
1369 	/* cleanup ires[i] */
1370 	ire_dep_unbuild(ires, i);
1371 	for (j = 0; j < i; j++)
1372 		ire_refrele(ires[j]);
1373 
1374 	ASSERT((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
1375 	    (irr_flags & IRR_INCOMPLETE));
1376 	/*
1377 	 * Use IRE_GENERATION_VERIFY to ensure that ip_output will redo the
1378 	 * ip_select_route since the reject or lack of memory might be gone.
1379 	 */
1380 	if (generationp != NULL)
1381 		*generationp = IRE_GENERATION_VERIFY;
1382 	return (ire);
1383 
1384 done:
1385 	ASSERT(ire == NULL);
1386 	if (need_refrele)
1387 		ill_refrele(ill);
1388 
1389 	/* Build dependencies */
1390 	if (i > 1 && !ire_dep_build(ires, generations, i)) {
1391 		/* Something in chain was condemned; tear it apart */
1392 		ire = ire_blackhole(ipst, B_TRUE);
1393 		goto cleanup;
1394 	}
1395 
1396 	/*
1397 	 * Release all refholds except the one for ires[0] that we
1398 	 * will return to the caller.
1399 	 */
1400 	for (j = 1; j < i; j++)
1401 		ire_refrele(ires[j]);
1402 
1403 	if (invalidate) {
1404 		/*
1405 		 * Since we needed to allocate but couldn't we need to make
1406 		 * sure that the dependency chain is rebuilt the next time.
1407 		 */
1408 		ire_dep_invalidate_generations(ires[0]);
1409 		generation = IRE_GENERATION_VERIFY;
1410 	} else {
1411 		/*
1412 		 * IREs can have been added or deleted while we did the
1413 		 * recursive lookup and we can't catch those until we've built
1414 		 * the dependencies. We verify the stored
1415 		 * ire_dep_parent_generation to catch any such changes and
1416 		 * return IRE_GENERATION_VERIFY (which will cause
1417 		 * ip_select_route to be called again so we can redo the
1418 		 * recursive lookup next time we send a packet.
1419 		 */
1420 		if (ires[0]->ire_dep_parent == NULL)
1421 			generation = ires[0]->ire_generation;
1422 		else
1423 			generation = ire_dep_validate_generations(ires[0]);
1424 		if (generations[0] != ires[0]->ire_generation) {
1425 			/* Something changed at the top */
1426 			generation = IRE_GENERATION_VERIFY;
1427 		}
1428 	}
1429 	if (generationp != NULL)
1430 		*generationp = generation;
1431 
1432 	return (ires[0]);
1433 }
1434 
1435 ire_t *
1436 ire_route_recursive_v6(const in6_addr_t *nexthop, uint_t ire_type,
1437     const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1438     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1439     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1440 {
1441 	return (ire_route_recursive_impl_v6(NULL, nexthop, ire_type, ill,
1442 	    zoneid, tsl, match_args, irr_flags, xmit_hint, ipst, setsrcp,
1443 	    gwattrp, generationp));
1444 }
1445 
1446 /*
1447  * Recursively look for a route to the destination.
1448  * We only handle a destination match here, yet we have the same arguments
1449  * as the full match to allow function pointers to select between the two.
1450  *
1451  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1452  * instead.
1453  *
1454  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1455  * is an error.
1456  * Allow at most one RTF_INDIRECT.
1457  */
1458 ire_t *
1459 ire_route_recursive_dstonly_v6(const in6_addr_t *nexthop, uint_t irr_flags,
1460     uint32_t xmit_hint, ip_stack_t *ipst)
1461 {
1462 	ire_t	*ire;
1463 	ire_t	*ire1;
1464 	uint_t	generation;
1465 
1466 	/* ire_ftable_lookup handles round-robin/ECMP */
1467 	ire = ire_ftable_lookup_simple_v6(nexthop, xmit_hint, ipst,
1468 	    &generation);
1469 	ASSERT(ire != NULL);
1470 
1471 	/*
1472 	 * If this type should have an ire_nce_cache (even if it
1473 	 * doesn't yet have one) then we are done. Includes
1474 	 * IRE_INTERFACE with a full 128 bit mask.
1475 	 */
1476 	if (ire->ire_nce_capable)
1477 		return (ire);
1478 
1479 	/*
1480 	 * If the IRE has a current cached parent we know that the whole
1481 	 * parent chain is current, hence we don't need to discover and
1482 	 * build any dependencies by doing a recursive lookup.
1483 	 */
1484 	mutex_enter(&ire->ire_lock);
1485 	if (ire->ire_dep_parent != NULL &&
1486 	    ire->ire_dep_parent->ire_generation ==
1487 	    ire->ire_dep_parent_generation) {
1488 		mutex_exit(&ire->ire_lock);
1489 		return (ire);
1490 	}
1491 	mutex_exit(&ire->ire_lock);
1492 
1493 	/*
1494 	 * Fallback to loop in the normal code starting with the ire
1495 	 * we found. Normally this would return the same ire.
1496 	 */
1497 	ire1 = ire_route_recursive_impl_v6(ire, nexthop, 0, NULL, ALL_ZONES,
1498 	    NULL, MATCH_IRE_DSTONLY, irr_flags, xmit_hint, ipst, NULL, NULL,
1499 	    &generation);
1500 	ire_refrele(ire);
1501 	return (ire1);
1502 }
1503