xref: /titanic_50/usr/src/uts/common/inet/ip/ip6_ire.c (revision bba9e99ca8b1c0ead08de153667f8e4f78da4b2c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 1990 Mentat Inc.
27  */
28 
29 /*
30  * This file contains routines that manipulate Internet Routing Entries (IREs).
31  */
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/stropts.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 
38 #include <sys/systm.h>
39 #include <sys/param.h>
40 #include <sys/socket.h>
41 #include <net/if.h>
42 #include <net/route.h>
43 #include <netinet/in.h>
44 #include <net/if_dl.h>
45 #include <netinet/ip6.h>
46 #include <netinet/icmp6.h>
47 
48 #include <inet/common.h>
49 #include <inet/mi.h>
50 #include <inet/ip.h>
51 #include <inet/ip6.h>
52 #include <inet/ip_ndp.h>
53 #include <inet/ip_if.h>
54 #include <inet/ip_ire.h>
55 #include <inet/ipclassifier.h>
56 #include <inet/nd.h>
57 #include <sys/kmem.h>
58 #include <sys/zone.h>
59 
60 #include <sys/tsol/label.h>
61 #include <sys/tsol/tnet.h>
62 
63 #define	IS_DEFAULT_ROUTE_V6(ire)	\
64 	(((ire)->ire_type & IRE_DEFAULT) || \
65 	    (((ire)->ire_type & IRE_INTERFACE) && \
66 	    (IN6_IS_ADDR_UNSPECIFIED(&(ire)->ire_addr_v6))))
67 
68 static	ire_t	ire_null;
69 
70 static ire_t *
71 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
72     const in6_addr_t *gateway, int type, const ill_t *ill,
73     zoneid_t zoneid, const ts_label_t *tsl, int flags,
74     ip_stack_t *ipst);
75 
76 /*
77  * Initialize the ire that is specific to IPv6 part and call
78  * ire_init_common to finish it.
79  * Returns zero or errno.
80  */
81 int
82 ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, const in6_addr_t *v6mask,
83     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill,
84     zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
85 {
86 	int error;
87 
88 	/*
89 	 * Reject IRE security attmakeribute creation/initialization
90 	 * if system is not running in Trusted mode.
91 	 */
92 	if (gc != NULL && !is_system_labeled())
93 		return (EINVAL);
94 
95 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_alloced);
96 	if (v6addr != NULL)
97 		ire->ire_addr_v6 = *v6addr;
98 	if (v6gateway != NULL)
99 		ire->ire_gateway_addr_v6 = *v6gateway;
100 
101 	/* Make sure we don't have stray values in some fields */
102 	switch (type) {
103 	case IRE_LOOPBACK:
104 		ire->ire_gateway_addr_v6 = ire->ire_addr_v6;
105 		/* FALLTHRU */
106 	case IRE_HOST:
107 	case IRE_LOCAL:
108 	case IRE_IF_CLONE:
109 		ire->ire_mask_v6 = ipv6_all_ones;
110 		ire->ire_masklen = IPV6_ABITS;
111 		break;
112 	case IRE_PREFIX:
113 	case IRE_DEFAULT:
114 	case IRE_IF_RESOLVER:
115 	case IRE_IF_NORESOLVER:
116 		if (v6mask != NULL) {
117 			ire->ire_mask_v6 = *v6mask;
118 			ire->ire_masklen =
119 			    ip_mask_to_plen_v6(&ire->ire_mask_v6);
120 		}
121 		break;
122 	case IRE_MULTICAST:
123 	case IRE_NOROUTE:
124 		ASSERT(v6mask == NULL);
125 		break;
126 	default:
127 		ASSERT(0);
128 		return (EINVAL);
129 	}
130 
131 	error = ire_init_common(ire, type, ill, zoneid, flags, IPV6_VERSION,
132 	    gc, ipst);
133 	if (error != NULL)
134 		return (error);
135 
136 	/* Determine which function pointers to use */
137 	ire->ire_postfragfn = ip_xmit;		/* Common case */
138 
139 	switch (ire->ire_type) {
140 	case IRE_LOCAL:
141 		ire->ire_sendfn = ire_send_local_v6;
142 		ire->ire_recvfn = ire_recv_local_v6;
143 		ASSERT(ire->ire_ill != NULL);
144 		if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
145 			ire->ire_recvfn = ire_recv_noaccept_v6;
146 		break;
147 	case IRE_LOOPBACK:
148 		ire->ire_sendfn = ire_send_local_v6;
149 		ire->ire_recvfn = ire_recv_loopback_v6;
150 		break;
151 	case IRE_MULTICAST:
152 		ire->ire_postfragfn = ip_postfrag_loopcheck;
153 		ire->ire_sendfn = ire_send_multicast_v6;
154 		ire->ire_recvfn = ire_recv_multicast_v6;
155 		break;
156 	default:
157 		/*
158 		 * For IRE_IF_ALL and IRE_OFFLINK we forward received
159 		 * packets by default.
160 		 */
161 		ire->ire_sendfn = ire_send_wire_v6;
162 		ire->ire_recvfn = ire_recv_forward_v6;
163 		break;
164 	}
165 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
166 		ire->ire_sendfn = ire_send_noroute_v6;
167 		ire->ire_recvfn = ire_recv_noroute_v6;
168 	} else if (ire->ire_flags & RTF_MULTIRT) {
169 		ire->ire_postfragfn = ip_postfrag_multirt_v6;
170 		ire->ire_sendfn = ire_send_multirt_v6;
171 		ire->ire_recvfn = ire_recv_multirt_v6;
172 	}
173 	ire->ire_nce_capable = ire_determine_nce_capable(ire);
174 	return (0);
175 }
176 
177 /*
178  * ire_create_v6 is called to allocate and initialize a new IRE.
179  *
180  * NOTE : This is called as writer sometimes though not required
181  * by this function.
182  */
183 /* ARGSUSED */
184 ire_t *
185 ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask,
186     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill, zoneid_t zoneid,
187     uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
188 {
189 	ire_t	*ire;
190 	int	error;
191 
192 	ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr));
193 
194 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
195 	if (ire == NULL) {
196 		DTRACE_PROBE(kmem__cache__alloc);
197 		return (NULL);
198 	}
199 	*ire = ire_null;
200 
201 	error = ire_init_v6(ire, v6addr, v6mask, v6gateway,
202 	    type, ill, zoneid, flags, gc, ipst);
203 
204 	if (error != 0) {
205 		DTRACE_PROBE2(ire__init__v6, ire_t *, ire, int, error);
206 		kmem_cache_free(ire_cache, ire);
207 		return (NULL);
208 	}
209 	return (ire);
210 }
211 
212 /*
213  * Find the ill matching a multicast group.
214  * Allows different routes for multicast addresses
215  * in the unicast routing table (akin to FF::0/8 but could be more specific)
216  * which point at different interfaces. This is used when IPV6_MULTICAST_IF
217  * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't
218  * specify the interface to join on.
219  *
220  * Supports link-local addresses by using ire_route_recursive which follows
221  * the ill when recursing.
222  *
223  * To handle CGTP, since we don't have a separate IRE_MULTICAST for each group
224  * and the MULTIRT property can be different for different groups, we
225  * extract RTF_MULTIRT from the special unicast route added for a group
226  * with CGTP and pass that back in the multirtp argument.
227  * This is used in ip_set_destination etc to set ixa_postfragfn for multicast.
228  * We have a setsrcp argument for the same reason.
229  */
230 ill_t *
231 ire_lookup_multi_ill_v6(const in6_addr_t *group, zoneid_t zoneid,
232     ip_stack_t *ipst, boolean_t *multirtp, in6_addr_t *setsrcp)
233 {
234 	ire_t	*ire;
235 	ill_t	*ill;
236 
237 	ire = ire_route_recursive_v6(group, 0, NULL, zoneid, NULL,
238 	    MATCH_IRE_DSTONLY, IRR_NONE, 0, ipst, setsrcp, NULL, NULL);
239 	ASSERT(ire != NULL);
240 
241 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
242 		ire_refrele(ire);
243 		return (NULL);
244 	}
245 
246 	if (multirtp != NULL)
247 		*multirtp = (ire->ire_flags & RTF_MULTIRT) != 0;
248 
249 	ill = ire_nexthop_ill(ire);
250 	ire_refrele(ire);
251 	return (ill);
252 }
253 
254 /*
255  * This function takes a mask and returns number of bits set in the
256  * mask (the represented prefix length).  Assumes a contiguous mask.
257  */
258 int
259 ip_mask_to_plen_v6(const in6_addr_t *v6mask)
260 {
261 	int		bits;
262 	int		plen = IPV6_ABITS;
263 	int		i;
264 
265 	for (i = 3; i >= 0; i--) {
266 		if (v6mask->s6_addr32[i] == 0) {
267 			plen -= 32;
268 			continue;
269 		}
270 		bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1;
271 		if (bits == 0)
272 			break;
273 		plen -= bits;
274 	}
275 
276 	return (plen);
277 }
278 
279 /*
280  * Convert a prefix length to the mask for that prefix.
281  * Returns the argument bitmask.
282  */
283 in6_addr_t *
284 ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask)
285 {
286 	uint32_t *ptr;
287 
288 	if (plen < 0 || plen > IPV6_ABITS)
289 		return (NULL);
290 	*bitmask = ipv6_all_zeros;
291 	if (plen == 0)
292 		return (bitmask);
293 
294 	ptr = (uint32_t *)bitmask;
295 	while (plen > 32) {
296 		*ptr++ = 0xffffffffU;
297 		plen -= 32;
298 	}
299 	*ptr = htonl(0xffffffffU << (32 - plen));
300 	return (bitmask);
301 }
302 
303 /*
304  * Add a fully initialized IPv6 IRE to the forwarding table.
305  * This returns NULL on failure, or a held IRE on success.
306  * Normally the returned IRE is the same as the argument. But a different
307  * IRE will be returned if the added IRE is deemed identical to an existing
308  * one. In that case ire_identical_ref will be increased.
309  * The caller always needs to do an ire_refrele() on the returned IRE.
310  */
311 ire_t *
312 ire_add_v6(ire_t *ire)
313 {
314 	ire_t	*ire1;
315 	int	mask_table_index;
316 	irb_t	*irb_ptr;
317 	ire_t	**irep;
318 	int	match_flags;
319 	int	error;
320 	ip_stack_t	*ipst = ire->ire_ipst;
321 
322 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
323 
324 	/* Make sure the address is properly masked. */
325 	V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6);
326 
327 	mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6);
328 	if ((ipst->ips_ip_forwarding_table_v6[mask_table_index]) == NULL) {
329 		irb_t *ptr;
330 		int i;
331 
332 		ptr = (irb_t *)mi_zalloc((ipst->ips_ip6_ftable_hash_size *
333 		    sizeof (irb_t)));
334 		if (ptr == NULL) {
335 			ire_delete(ire);
336 			return (NULL);
337 		}
338 		for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
339 			rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL);
340 			ptr[i].irb_ipst = ipst;
341 		}
342 		mutex_enter(&ipst->ips_ire_ft_init_lock);
343 		if (ipst->ips_ip_forwarding_table_v6[mask_table_index] ==
344 		    NULL) {
345 			ipst->ips_ip_forwarding_table_v6[mask_table_index] =
346 			    ptr;
347 			mutex_exit(&ipst->ips_ire_ft_init_lock);
348 		} else {
349 			/*
350 			 * Some other thread won the race in
351 			 * initializing the forwarding table at the
352 			 * same index.
353 			 */
354 			mutex_exit(&ipst->ips_ire_ft_init_lock);
355 			for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
356 				rw_destroy(&ptr[i].irb_lock);
357 			}
358 			mi_free(ptr);
359 		}
360 	}
361 	irb_ptr = &(ipst->ips_ip_forwarding_table_v6[mask_table_index][
362 	    IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6,
363 	    ipst->ips_ip6_ftable_hash_size)]);
364 
365 	match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
366 	if (ire->ire_ill != NULL)
367 		match_flags |= MATCH_IRE_ILL;
368 	/*
369 	 * Start the atomic add of the ire. Grab the bucket lock and the
370 	 * ill lock. Check for condemned.
371 	 */
372 	error = ire_atomic_start(irb_ptr, ire);
373 	if (error != 0) {
374 		ire_delete(ire);
375 		return (NULL);
376 	}
377 
378 	/*
379 	 * If we are creating a hidden IRE, make sure we search for
380 	 * hidden IREs when searching for duplicates below.
381 	 * Otherwise, we might find an IRE on some other interface
382 	 * that's not marked hidden.
383 	 */
384 	if (ire->ire_testhidden)
385 		match_flags |= MATCH_IRE_TESTHIDDEN;
386 
387 	/*
388 	 * Atomically check for duplicate and insert in the table.
389 	 */
390 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
391 		if (IRE_IS_CONDEMNED(ire1))
392 			continue;
393 		/*
394 		 * Here we need an exact match on zoneid, i.e.,
395 		 * ire_match_args doesn't fit.
396 		 */
397 		if (ire1->ire_zoneid != ire->ire_zoneid)
398 			continue;
399 
400 		if (ire1->ire_type != ire->ire_type)
401 			continue;
402 
403 		/*
404 		 * Note: We do not allow multiple routes that differ only
405 		 * in the gateway security attributes; such routes are
406 		 * considered duplicates.
407 		 * To change that we explicitly have to treat them as
408 		 * different here.
409 		 */
410 		if (ire_match_args_v6(ire1, &ire->ire_addr_v6,
411 		    &ire->ire_mask_v6, &ire->ire_gateway_addr_v6,
412 		    ire->ire_type, ire->ire_ill, ire->ire_zoneid, NULL,
413 		    match_flags)) {
414 			/*
415 			 * Return the old ire after doing a REFHOLD.
416 			 * As most of the callers continue to use the IRE
417 			 * after adding, we return a held ire. This will
418 			 * avoid a lookup in the caller again. If the callers
419 			 * don't want to use it, they need to do a REFRELE.
420 			 */
421 			ip1dbg(("found dup ire existing %p new %p",
422 			    (void *)ire1, (void *)ire));
423 			ire_refhold(ire1);
424 			atomic_add_32(&ire1->ire_identical_ref, 1);
425 			ire_atomic_end(irb_ptr, ire);
426 			ire_delete(ire);
427 			return (ire1);
428 		}
429 	}
430 
431 	/*
432 	 * Normally we do head insertion since most things do not care about
433 	 * the order of the IREs in the bucket.
434 	 * However, due to shared-IP zones (and restrict_interzone_loopback)
435 	 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
436 	 * address. For that reason we do tail insertion for IRE_IF_CLONE.
437 	 */
438 	irep = (ire_t **)irb_ptr;
439 	if (ire->ire_type & IRE_IF_CLONE) {
440 		while ((ire1 = *irep) != NULL)
441 			irep = &ire1->ire_next;
442 	}
443 	/* Insert at *irep */
444 	ire1 = *irep;
445 	if (ire1 != NULL)
446 		ire1->ire_ptpn = &ire->ire_next;
447 	ire->ire_next = ire1;
448 	/* Link the new one in. */
449 	ire->ire_ptpn = irep;
450 	/*
451 	 * ire_walk routines de-reference ire_next without holding
452 	 * a lock. Before we point to the new ire, we want to make
453 	 * sure the store that sets the ire_next of the new ire
454 	 * reaches global visibility, so that ire_walk routines
455 	 * don't see a truncated list of ires i.e if the ire_next
456 	 * of the new ire gets set after we do "*irep = ire" due
457 	 * to re-ordering, the ire_walk thread will see a NULL
458 	 * once it accesses the ire_next of the new ire.
459 	 * membar_producer() makes sure that the following store
460 	 * happens *after* all of the above stores.
461 	 */
462 	membar_producer();
463 	*irep = ire;
464 	ire->ire_bucket = irb_ptr;
465 	/*
466 	 * We return a bumped up IRE above. Keep it symmetrical
467 	 * so that the callers will always have to release. This
468 	 * helps the callers of this function because they continue
469 	 * to use the IRE after adding and hence they don't have to
470 	 * lookup again after we return the IRE.
471 	 *
472 	 * NOTE : We don't have to use atomics as this is appearing
473 	 * in the list for the first time and no one else can bump
474 	 * up the reference count on this yet.
475 	 */
476 	ire_refhold_locked(ire);
477 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_inserted);
478 	irb_ptr->irb_ire_cnt++;
479 
480 	if (ire->ire_ill != NULL) {
481 		DTRACE_PROBE3(ill__incr__cnt, (ill_t *), ire->ire_ill,
482 		    (char *), "ire", (void *), ire);
483 		ire->ire_ill->ill_ire_cnt++;
484 		ASSERT(ire->ire_ill->ill_ire_cnt != 0);	/* Wraparound */
485 	}
486 	ire_atomic_end(irb_ptr, ire);
487 
488 	/* Make any caching of the IREs be notified or updated */
489 	ire_flush_cache_v6(ire, IRE_FLUSH_ADD);
490 
491 	return (ire);
492 }
493 
494 /*
495  * Search for all HOST REDIRECT routes that are
496  * pointing at the specified gateway and
497  * delete them. This routine is called only
498  * when a default gateway is going away.
499  */
500 static void
501 ire_delete_host_redirects_v6(const in6_addr_t *gateway, ip_stack_t *ipst)
502 {
503 	irb_t *irb_ptr;
504 	irb_t *irb;
505 	ire_t *ire;
506 	in6_addr_t gw_addr_v6;
507 	int i;
508 
509 	/* get the hash table for HOST routes */
510 	irb_ptr = ipst->ips_ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)];
511 	if (irb_ptr == NULL)
512 		return;
513 	for (i = 0; (i < ipst->ips_ip6_ftable_hash_size); i++) {
514 		irb = &irb_ptr[i];
515 		irb_refhold(irb);
516 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
517 			if (!(ire->ire_flags & RTF_DYNAMIC))
518 				continue;
519 			mutex_enter(&ire->ire_lock);
520 			gw_addr_v6 = ire->ire_gateway_addr_v6;
521 			mutex_exit(&ire->ire_lock);
522 			if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway))
523 				ire_delete(ire);
524 		}
525 		irb_refrele(irb);
526 	}
527 }
528 
529 /*
530  * Delete the specified IRE.
531  * All calls should use ire_delete().
532  * Sometimes called as writer though not required by this function.
533  *
534  * NOTE : This function is called only if the ire was added
535  * in the list.
536  */
537 void
538 ire_delete_v6(ire_t *ire)
539 {
540 	in6_addr_t gw_addr_v6;
541 	ip_stack_t	*ipst = ire->ire_ipst;
542 
543 	/*
544 	 * Make sure ire_generation increases from ire_flush_cache happen
545 	 * after any lookup/reader has read ire_generation.
546 	 * Since the rw_enter makes us wait until any lookup/reader has
547 	 * completed we can exit the lock immediately.
548 	 */
549 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
550 	rw_exit(&ipst->ips_ip6_ire_head_lock);
551 
552 	ASSERT(ire->ire_refcnt >= 1);
553 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
554 
555 	ire_flush_cache_v6(ire, IRE_FLUSH_DELETE);
556 
557 	if (ire->ire_type == IRE_DEFAULT) {
558 		/*
559 		 * when a default gateway is going away
560 		 * delete all the host redirects pointing at that
561 		 * gateway.
562 		 */
563 		mutex_enter(&ire->ire_lock);
564 		gw_addr_v6 = ire->ire_gateway_addr_v6;
565 		mutex_exit(&ire->ire_lock);
566 		ire_delete_host_redirects_v6(&gw_addr_v6, ipst);
567 	}
568 
569 	/*
570 	 * If we are deleting an IRE_INTERFACE then we make sure we also
571 	 * delete any IRE_IF_CLONE that has been created from it.
572 	 * Those are always in ire_dep_children.
573 	 */
574 	if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0)
575 		ire_dep_delete_if_clone(ire);
576 
577 	/* Remove from parent dependencies and child */
578 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
579 	if (ire->ire_dep_parent != NULL) {
580 		ire_dep_remove(ire);
581 	}
582 	while (ire->ire_dep_children != NULL)
583 		ire_dep_remove(ire->ire_dep_children);
584 	rw_exit(&ipst->ips_ire_dep_lock);
585 }
586 
587 /*
588  * When an IRE is added or deleted this routine is called to make sure
589  * any caching of IRE information is notified or updated.
590  *
591  * The flag argument indicates if the flush request is due to addition
592  * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
593  * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
594  */
595 void
596 ire_flush_cache_v6(ire_t *ire, int flag)
597 {
598 	ip_stack_t *ipst = ire->ire_ipst;
599 
600 	/*
601 	 * IRE_IF_CLONE ire's don't provide any new information
602 	 * than the parent from which they are cloned, so don't
603 	 * perturb the generation numbers.
604 	 */
605 	if (ire->ire_type & IRE_IF_CLONE)
606 		return;
607 
608 	/*
609 	 * Ensure that an ire_add during a lookup serializes the updates of
610 	 * the generation numbers under ire_head_lock so that the lookup gets
611 	 * either the old ire and old generation number, or a new ire and new
612 	 * generation number.
613 	 */
614 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
615 
616 	/*
617 	 * If a route was just added, we need to notify everybody that
618 	 * has cached an IRE_NOROUTE since there might now be a better
619 	 * route for them.
620 	 */
621 	if (flag == IRE_FLUSH_ADD) {
622 		ire_increment_generation(ipst->ips_ire_reject_v6);
623 		ire_increment_generation(ipst->ips_ire_blackhole_v6);
624 	}
625 
626 	/* Adding a default can't otherwise provide a better route */
627 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
628 		rw_exit(&ipst->ips_ip6_ire_head_lock);
629 		return;
630 	}
631 
632 	switch (flag) {
633 	case IRE_FLUSH_DELETE:
634 	case IRE_FLUSH_GWCHANGE:
635 		/*
636 		 * Update ire_generation for all ire_dep_children chains
637 		 * starting with this IRE
638 		 */
639 		ire_dep_incr_generation(ire);
640 		break;
641 	case IRE_FLUSH_ADD: {
642 		in6_addr_t	addr;
643 		in6_addr_t	mask;
644 		ip_stack_t	*ipst = ire->ire_ipst;
645 		uint_t		masklen;
646 
647 		/*
648 		 * Find an IRE which is a shorter match than the ire to be added
649 		 * For any such IRE (which we repeat) we update the
650 		 * ire_generation the same way as in the delete case.
651 		 */
652 		addr = ire->ire_addr_v6;
653 		mask = ire->ire_mask_v6;
654 		masklen = ip_mask_to_plen_v6(&mask);
655 
656 		ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0, NULL,
657 		    ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
658 		while (ire != NULL) {
659 			/* We need to handle all in the same bucket */
660 			irb_increment_generation(ire->ire_bucket);
661 
662 			mask = ire->ire_mask_v6;
663 			ASSERT(masklen > ip_mask_to_plen_v6(&mask));
664 			masklen = ip_mask_to_plen_v6(&mask);
665 			ire_refrele(ire);
666 			ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0,
667 			    NULL, ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
668 		}
669 		}
670 		break;
671 	}
672 	rw_exit(&ipst->ips_ip6_ire_head_lock);
673 }
674 
675 /*
676  * Matches the arguments passed with the values in the ire.
677  *
678  * Note: for match types that match using "ill" passed in, ill
679  * must be checked for non-NULL before calling this routine.
680  */
681 boolean_t
682 ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask,
683     const in6_addr_t *gateway, int type, const ill_t *ill, zoneid_t zoneid,
684     const ts_label_t *tsl, int match_flags)
685 {
686 	in6_addr_t masked_addr;
687 	in6_addr_t gw_addr_v6;
688 	ill_t *ire_ill = NULL, *dst_ill;
689 	ip_stack_t *ipst = ire->ire_ipst;
690 
691 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
692 	ASSERT(addr != NULL);
693 	ASSERT(mask != NULL);
694 	ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL);
695 	ASSERT((!(match_flags & MATCH_IRE_ILL)) ||
696 	    (ill != NULL && ill->ill_isv6));
697 
698 	/*
699 	 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it
700 	 * is in fact hidden, to ensure the caller gets the right one.
701 	 */
702 	if (ire->ire_testhidden) {
703 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))
704 			return (B_FALSE);
705 	}
706 
707 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
708 	    ire->ire_zoneid != ALL_ZONES) {
709 		/*
710 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
711 		 * does not match that of ire_zoneid, a failure to
712 		 * match is reported at this point. Otherwise, since some IREs
713 		 * that are available in the global zone can be used in local
714 		 * zones, additional checks need to be performed:
715 		 *
716 		 * IRE_LOOPBACK
717 		 *	entries should never be matched in this situation.
718 		 *	Each zone has its own IRE_LOOPBACK.
719 		 *
720 		 * IRE_LOCAL
721 		 *	We allow them for any zoneid. ire_route_recursive
722 		 *	does additional checks when
723 		 *	ip_restrict_interzone_loopback is set.
724 		 *
725 		 * If ill_usesrc_ifindex is set
726 		 *	Then we check if the zone has a valid source address
727 		 *	on the usesrc ill.
728 		 *
729 		 * If ire_ill is set, then check that the zone has an ipif
730 		 *	on that ill.
731 		 *
732 		 * Outside of this function (in ire_round_robin) we check
733 		 * that any IRE_OFFLINK has a gateway that reachable from the
734 		 * zone when we have multiple choices (ECMP).
735 		 */
736 		if (match_flags & MATCH_IRE_ZONEONLY)
737 			return (B_FALSE);
738 		if (ire->ire_type & IRE_LOOPBACK)
739 			return (B_FALSE);
740 
741 		if (ire->ire_type & IRE_LOCAL)
742 			goto matchit;
743 
744 		/*
745 		 * The normal case of IRE_ONLINK has a matching zoneid.
746 		 * Here we handle the case when shared-IP zones have been
747 		 * configured with IP addresses on vniN. In that case it
748 		 * is ok for traffic from a zone to use IRE_ONLINK routes
749 		 * if the ill has a usesrc pointing at vniN
750 		 * Applies to IRE_INTERFACE.
751 		 */
752 		dst_ill = ire->ire_ill;
753 		if (ire->ire_type & IRE_ONLINK) {
754 			uint_t	ifindex;
755 
756 			/*
757 			 * Note there is no IRE_INTERFACE on vniN thus
758 			 * can't do an IRE lookup for a matching route.
759 			 */
760 			ifindex = dst_ill->ill_usesrc_ifindex;
761 			if (ifindex == 0)
762 				return (B_FALSE);
763 
764 			/*
765 			 * If there is a usable source address in the
766 			 * zone, then it's ok to return this IRE_INTERFACE
767 			 */
768 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
769 			    zoneid, ipst)) {
770 				ip3dbg(("ire_match_args: no usrsrc for zone"
771 				    " dst_ill %p\n", (void *)dst_ill));
772 				return (B_FALSE);
773 			}
774 		}
775 		/*
776 		 * For exampe, with
777 		 * route add 11.0.0.0 gw1 -ifp bge0
778 		 * route add 11.0.0.0 gw2 -ifp bge1
779 		 * this code would differentiate based on
780 		 * where the sending zone has addresses.
781 		 * Only if the zone has an address on bge0 can it use the first
782 		 * route. It isn't clear if this behavior is documented
783 		 * anywhere.
784 		 */
785 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
786 			ipif_t	*tipif;
787 
788 			mutex_enter(&dst_ill->ill_lock);
789 			for (tipif = dst_ill->ill_ipif;
790 			    tipif != NULL; tipif = tipif->ipif_next) {
791 				if (!IPIF_IS_CONDEMNED(tipif) &&
792 				    (tipif->ipif_flags & IPIF_UP) &&
793 				    (tipif->ipif_zoneid == zoneid ||
794 				    tipif->ipif_zoneid == ALL_ZONES))
795 					break;
796 			}
797 			mutex_exit(&dst_ill->ill_lock);
798 			if (tipif == NULL)
799 				return (B_FALSE);
800 		}
801 	}
802 
803 matchit:
804 	if (match_flags & MATCH_IRE_GW) {
805 		mutex_enter(&ire->ire_lock);
806 		gw_addr_v6 = ire->ire_gateway_addr_v6;
807 		mutex_exit(&ire->ire_lock);
808 	}
809 	if (match_flags & MATCH_IRE_ILL) {
810 		ire_ill = ire->ire_ill;
811 
812 		/*
813 		 * If asked to match an ill, we *must* match
814 		 * on the ire_ill for ipmp test addresses, or
815 		 * any of the ill in the group for data addresses.
816 		 * If we don't, we may as well fail.
817 		 * However, we need an exception for IRE_LOCALs to ensure
818 		 * we loopback packets even sent to test addresses on different
819 		 * interfaces in the group.
820 		 */
821 		if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
822 		    !(ire->ire_type & IRE_LOCAL)) {
823 			if (ire->ire_ill != ill)
824 				return (B_FALSE);
825 		} else  {
826 			match_flags &= ~MATCH_IRE_TESTHIDDEN;
827 			/*
828 			 * We know that ill is not NULL, but ire_ill could be
829 			 * NULL
830 			 */
831 			if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
832 				return (B_FALSE);
833 		}
834 	}
835 	/* No ire_addr_v6 bits set past the mask */
836 	ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6,
837 	    ire->ire_addr_v6));
838 	V6_MASK_COPY(*addr, *mask, masked_addr);
839 	if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) &&
840 	    ((!(match_flags & MATCH_IRE_GW)) ||
841 	    IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) &&
842 	    ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
843 	    ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
844 	    ((!(match_flags & MATCH_IRE_MASK)) ||
845 	    (IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, mask))) &&
846 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
847 	    (!is_system_labeled()) ||
848 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
849 		/* We found the matched IRE */
850 		return (B_TRUE);
851 	}
852 	return (B_FALSE);
853 }
854 
855 /*
856  * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
857  * gateway address. If ill is non-NULL we also match on it.
858  * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
859  */
860 boolean_t
861 ire_gateway_ok_zone_v6(const in6_addr_t *gateway, zoneid_t zoneid, ill_t *ill,
862     const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
863 {
864 	ire_t	*ire;
865 	uint_t	match_flags;
866 
867 	if (lock_held)
868 		ASSERT(RW_READ_HELD(&ipst->ips_ip6_ire_head_lock));
869 	else
870 		rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
871 
872 	match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
873 	if (ill != NULL)
874 		match_flags |= MATCH_IRE_ILL;
875 
876 	ire = ire_ftable_lookup_impl_v6(gateway, &ipv6_all_zeros,
877 	    &ipv6_all_zeros, IRE_INTERFACE, ill, zoneid, tsl, match_flags,
878 	    ipst);
879 
880 	if (!lock_held)
881 		rw_exit(&ipst->ips_ip6_ire_head_lock);
882 	if (ire != NULL) {
883 		ire_refrele(ire);
884 		return (B_TRUE);
885 	} else {
886 		return (B_FALSE);
887 	}
888 }
889 
890 /*
891  * Lookup a route in forwarding table.
892  * specific lookup is indicated by passing the
893  * required parameters and indicating the
894  * match required in flag field.
895  *
896  * Supports link-local addresses by following the ipif/ill when recursing.
897  */
898 ire_t *
899 ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask,
900     const in6_addr_t *gateway, int type, const ill_t *ill,
901     zoneid_t zoneid, const ts_label_t *tsl, int flags,
902     uint32_t xmit_hint, ip_stack_t *ipst, uint_t *generationp)
903 {
904 	ire_t *ire = NULL;
905 
906 	ASSERT(addr != NULL);
907 	ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL);
908 	ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL);
909 	ASSERT(ill == NULL || ill->ill_isv6);
910 
911 	ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
912 
913 	/*
914 	 * ire_match_args_v6() will dereference ill if MATCH_IRE_ILL
915 	 * is set.
916 	 */
917 	if ((flags & (MATCH_IRE_ILL)) && (ill == NULL))
918 		return (NULL);
919 
920 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
921 	ire = ire_ftable_lookup_impl_v6(addr, mask, gateway, type, ill, zoneid,
922 	    tsl, flags, ipst);
923 	if (ire == NULL) {
924 		rw_exit(&ipst->ips_ip6_ire_head_lock);
925 		return (NULL);
926 	}
927 
928 	/*
929 	 * round-robin only if we have more than one route in the bucket.
930 	 * ips_ip_ecmp_behavior controls when we do ECMP
931 	 *	2:	always
932 	 *	1:	for IRE_DEFAULT and /0 IRE_INTERFACE
933 	 *	0:	never
934 	 *
935 	 * Note: if we found an IRE_IF_CLONE we won't look at the bucket with
936 	 * other ECMP IRE_INTERFACEs since the IRE_IF_CLONE is a /128 match
937 	 * and the IRE_INTERFACESs are likely to be shorter matches.
938 	 */
939 	if (ire->ire_bucket->irb_ire_cnt > 1 && !(flags & MATCH_IRE_GW)) {
940 		if (ipst->ips_ip_ecmp_behavior == 2 ||
941 		    (ipst->ips_ip_ecmp_behavior == 1 &&
942 		    IS_DEFAULT_ROUTE_V6(ire))) {
943 			ire_t	*next_ire;
944 			ire_ftable_args_t margs;
945 
946 			bzero(&margs, sizeof (margs));
947 			margs.ift_addr_v6 = *addr;
948 			if (mask != NULL)
949 				margs.ift_mask_v6 = *mask;
950 			if (gateway != NULL)
951 				margs.ift_gateway_v6 = *gateway;
952 			margs.ift_type = type;
953 			margs.ift_ill = ill;
954 			margs.ift_zoneid = zoneid;
955 			margs.ift_tsl = tsl;
956 			margs.ift_flags = flags;
957 
958 			next_ire = ire_round_robin(ire->ire_bucket, &margs,
959 			    xmit_hint, ire, ipst);
960 			if (next_ire == NULL) {
961 				/* keep ire if next_ire is null */
962 				goto done;
963 			}
964 			ire_refrele(ire);
965 			ire = next_ire;
966 		}
967 	}
968 
969 done:
970 	/* Return generation before dropping lock */
971 	if (generationp != NULL)
972 		*generationp = ire->ire_generation;
973 
974 	rw_exit(&ipst->ips_ip6_ire_head_lock);
975 
976 	/*
977 	 * For shared-IP zones we need additional checks to what was
978 	 * done in ire_match_args to make sure IRE_LOCALs are handled.
979 	 *
980 	 * When ip_restrict_interzone_loopback is set, then
981 	 * we ensure that IRE_LOCAL are only used for loopback
982 	 * between zones when the logical "Ethernet" would
983 	 * have looped them back. That is, if in the absense of
984 	 * the IRE_LOCAL we would have sent to packet out the
985 	 * same ill.
986 	 */
987 	if ((ire->ire_type & IRE_LOCAL) && zoneid != ALL_ZONES &&
988 	    ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES &&
989 	    ipst->ips_ip_restrict_interzone_loopback) {
990 		ire = ire_alt_local(ire, zoneid, tsl, ill, generationp);
991 		ASSERT(ire != NULL);
992 	}
993 
994 	return (ire);
995 }
996 
997 /*
998  * Look up a single ire. The caller holds either the read or write lock.
999  */
1000 ire_t *
1001 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
1002     const in6_addr_t *gateway, int type, const ill_t *ill,
1003     zoneid_t zoneid, const ts_label_t *tsl, int flags,
1004     ip_stack_t *ipst)
1005 {
1006 	irb_t *irb_ptr;
1007 	ire_t *ire = NULL;
1008 	int i;
1009 
1010 	ASSERT(RW_LOCK_HELD(&ipst->ips_ip6_ire_head_lock));
1011 
1012 	/*
1013 	 * If the mask is known, the lookup
1014 	 * is simple, if the mask is not known
1015 	 * we need to search.
1016 	 */
1017 	if (flags & MATCH_IRE_MASK) {
1018 		uint_t masklen;
1019 
1020 		masklen = ip_mask_to_plen_v6(mask);
1021 		if (ipst->ips_ip_forwarding_table_v6[masklen] == NULL) {
1022 			return (NULL);
1023 		}
1024 		irb_ptr = &(ipst->ips_ip_forwarding_table_v6[masklen][
1025 		    IRE_ADDR_MASK_HASH_V6(*addr, *mask,
1026 		    ipst->ips_ip6_ftable_hash_size)]);
1027 		rw_enter(&irb_ptr->irb_lock, RW_READER);
1028 		for (ire = irb_ptr->irb_ire; ire != NULL;
1029 		    ire = ire->ire_next) {
1030 			if (IRE_IS_CONDEMNED(ire))
1031 				continue;
1032 			if (ire_match_args_v6(ire, addr, mask, gateway, type,
1033 			    ill, zoneid, tsl, flags))
1034 				goto found_ire;
1035 		}
1036 		rw_exit(&irb_ptr->irb_lock);
1037 	} else {
1038 		uint_t masklen;
1039 
1040 		/*
1041 		 * In this case we don't know the mask, we need to
1042 		 * search the table assuming different mask sizes.
1043 		 */
1044 		if (flags & MATCH_IRE_SHORTERMASK) {
1045 			masklen = ip_mask_to_plen_v6(mask);
1046 			if (masklen == 0) {
1047 				/* Nothing shorter than zero */
1048 				return (NULL);
1049 			}
1050 			masklen--;
1051 		} else {
1052 			masklen = IP6_MASK_TABLE_SIZE - 1;
1053 		}
1054 
1055 		for (i = masklen; i >= 0; i--) {
1056 			in6_addr_t tmpmask;
1057 
1058 			if ((ipst->ips_ip_forwarding_table_v6[i]) == NULL)
1059 				continue;
1060 			(void) ip_plen_to_mask_v6(i, &tmpmask);
1061 			irb_ptr = &ipst->ips_ip_forwarding_table_v6[i][
1062 			    IRE_ADDR_MASK_HASH_V6(*addr, tmpmask,
1063 			    ipst->ips_ip6_ftable_hash_size)];
1064 			rw_enter(&irb_ptr->irb_lock, RW_READER);
1065 			for (ire = irb_ptr->irb_ire; ire != NULL;
1066 			    ire = ire->ire_next) {
1067 				if (IRE_IS_CONDEMNED(ire))
1068 					continue;
1069 				if (ire_match_args_v6(ire, addr,
1070 				    &ire->ire_mask_v6, gateway, type, ill,
1071 				    zoneid, tsl, flags))
1072 					goto found_ire;
1073 			}
1074 			rw_exit(&irb_ptr->irb_lock);
1075 		}
1076 	}
1077 	ASSERT(ire == NULL);
1078 	ip1dbg(("ire_ftable_lookup_v6: returning NULL ire"));
1079 	return (NULL);
1080 
1081 found_ire:
1082 	ire_refhold(ire);
1083 	rw_exit(&irb_ptr->irb_lock);
1084 	return (ire);
1085 }
1086 
1087 
1088 /*
1089  * This function is called by
1090  * ip_input/ire_route_recursive when doing a route lookup on only the
1091  * destination address.
1092  *
1093  * The optimizations of this function over ire_ftable_lookup are:
1094  *	o removing unnecessary flag matching
1095  *	o doing longest prefix match instead of overloading it further
1096  *	  with the unnecessary "best_prefix_match"
1097  *
1098  * If no route is found we return IRE_NOROUTE.
1099  */
1100 ire_t *
1101 ire_ftable_lookup_simple_v6(const in6_addr_t *addr, uint32_t xmit_hint,
1102     ip_stack_t *ipst, uint_t *generationp)
1103 {
1104 	ire_t	*ire;
1105 
1106 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL, ALL_ZONES, NULL,
1107 	    MATCH_IRE_DSTONLY, xmit_hint, ipst, generationp);
1108 	if (ire == NULL) {
1109 		ire = ire_reject(ipst, B_TRUE);
1110 		if (generationp != NULL)
1111 			*generationp = IRE_GENERATION_VERIFY;
1112 	}
1113 	/* ftable_lookup did round robin */
1114 	return (ire);
1115 }
1116 
1117 ire_t *
1118 ip_select_route_v6(const in6_addr_t *dst, ip_xmit_attr_t *ixa,
1119     uint_t *generationp, in6_addr_t *setsrcp, int *errorp, boolean_t *multirtp)
1120 {
1121 	ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4));
1122 
1123 	return (ip_select_route(dst, ixa, generationp, setsrcp, errorp,
1124 	    multirtp));
1125 }
1126 
1127 /*
1128  * Recursively look for a route to the destination. Can also match on
1129  * the zoneid, ill, and label. Used for the data paths. See also
1130  * ire_route_recursive_dstonly.
1131  *
1132  * If ill is set this means we will match it by adding MATCH_IRE_ILL.
1133  *
1134  * If IRR_ALLOCATE is not set then we will only inspect the existing IREs; never
1135  * create an IRE_IF_CLONE. This is used on the receive side when we are not
1136  * forwarding.
1137  * If IRR_INCOMPLETE is set then we return the IRE even if we can't correctly
1138  * resolve the gateway.
1139  *
1140  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1141  * instead.
1142  *
1143  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1144  * is an error.
1145  * Allow at most one RTF_INDIRECT.
1146  */
1147 ire_t *
1148 ire_route_recursive_impl_v6(ire_t *ire,
1149     const in6_addr_t *nexthop, uint_t ire_type, const ill_t *ill_arg,
1150     zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1151     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1152     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1153 {
1154 	int		i, j;
1155 	in6_addr_t	v6nexthop = *nexthop;
1156 	ire_t		*ires[MAX_IRE_RECURSION];
1157 	uint_t		generation;
1158 	uint_t		generations[MAX_IRE_RECURSION];
1159 	boolean_t	need_refrele = B_FALSE;
1160 	boolean_t	invalidate = B_FALSE;
1161 	int		prefs[MAX_IRE_RECURSION];
1162 	ill_t		*ill = NULL;
1163 
1164 	if (setsrcp != NULL)
1165 		ASSERT(IN6_IS_ADDR_UNSPECIFIED(setsrcp));
1166 	if (gwattrp != NULL)
1167 		ASSERT(*gwattrp == NULL);
1168 
1169 	if (ill_arg != NULL)
1170 		match_args |= MATCH_IRE_ILL;
1171 
1172 	/*
1173 	 * We iterate up to three times to resolve a route, even though
1174 	 * we have four slots in the array. The extra slot is for an
1175 	 * IRE_IF_CLONE we might need to create.
1176 	 */
1177 	i = 0;
1178 	while (i < MAX_IRE_RECURSION - 1) {
1179 		/* ire_ftable_lookup handles round-robin/ECMP */
1180 		if (ire == NULL) {
1181 			ire = ire_ftable_lookup_v6(&v6nexthop, 0, 0, ire_type,
1182 			    (ill_arg != NULL ? ill_arg : ill), zoneid, tsl,
1183 			    match_args, xmit_hint, ipst, &generation);
1184 		} else {
1185 			/* Caller passed it; extra hold since we will rele */
1186 			ire_refhold(ire);
1187 			if (generationp != NULL)
1188 				generation = *generationp;
1189 			else
1190 				generation = IRE_GENERATION_VERIFY;
1191 		}
1192 
1193 		if (ire == NULL)
1194 			ire = ire_reject(ipst, B_TRUE);
1195 
1196 		/* Need to return the ire with RTF_REJECT|BLACKHOLE */
1197 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
1198 			goto error;
1199 
1200 		ASSERT(!(ire->ire_type & IRE_MULTICAST)); /* Not in ftable */
1201 
1202 		if (i != 0) {
1203 			prefs[i] = ire_pref(ire);
1204 			/*
1205 			 * Don't allow anything unusual past the first
1206 			 * iteration.
1207 			 */
1208 			if ((ire->ire_type &
1209 			    (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) ||
1210 			    prefs[i] <= prefs[i-1]) {
1211 				ire_refrele(ire);
1212 				if (irr_flags & IRR_INCOMPLETE) {
1213 					ire = ires[0];
1214 					ire_refhold(ire);
1215 				} else {
1216 					ire = ire_reject(ipst, B_TRUE);
1217 				}
1218 				goto error;
1219 			}
1220 		}
1221 		/* We have a usable IRE */
1222 		ires[i] = ire;
1223 		generations[i] = generation;
1224 		i++;
1225 
1226 		/* The first RTF_SETSRC address is passed back if setsrcp */
1227 		if ((ire->ire_flags & RTF_SETSRC) &&
1228 		    setsrcp != NULL && IN6_IS_ADDR_UNSPECIFIED(setsrcp)) {
1229 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(
1230 			    &ire->ire_setsrc_addr_v6));
1231 			*setsrcp = ire->ire_setsrc_addr_v6;
1232 		}
1233 
1234 		/* The first ire_gw_secattr is passed back if gwattrp */
1235 		if (ire->ire_gw_secattr != NULL &&
1236 		    gwattrp != NULL && *gwattrp == NULL)
1237 			*gwattrp = ire->ire_gw_secattr;
1238 
1239 		/*
1240 		 * Check if we have a short-cut pointer to an IRE for this
1241 		 * destination, and that the cached dependency isn't stale.
1242 		 * In that case we've rejoined an existing tree towards a
1243 		 * parent, thus we don't need to continue the loop to
1244 		 * discover the rest of the tree.
1245 		 */
1246 		mutex_enter(&ire->ire_lock);
1247 		if (ire->ire_dep_parent != NULL &&
1248 		    ire->ire_dep_parent->ire_generation ==
1249 		    ire->ire_dep_parent_generation) {
1250 			mutex_exit(&ire->ire_lock);
1251 			ire = NULL;
1252 			goto done;
1253 		}
1254 		mutex_exit(&ire->ire_lock);
1255 
1256 		/*
1257 		 * If this type should have an ire_nce_cache (even if it
1258 		 * doesn't yet have one) then we are done. Includes
1259 		 * IRE_INTERFACE with a full 128 bit mask.
1260 		 */
1261 		if (ire->ire_nce_capable) {
1262 			ire = NULL;
1263 			goto done;
1264 		}
1265 		ASSERT(!(ire->ire_type & IRE_IF_CLONE));
1266 		/*
1267 		 * For an IRE_INTERFACE we create an IRE_IF_CLONE for this
1268 		 * particular destination
1269 		 */
1270 		if (ire->ire_type & IRE_INTERFACE) {
1271 			ire_t		*clone;
1272 
1273 			ASSERT(ire->ire_masklen != IPV6_ABITS);
1274 
1275 			/*
1276 			 * In the case of ip_input and ILLF_FORWARDING not
1277 			 * being set, and in the case of RTM_GET, there is
1278 			 * no point in allocating an IRE_IF_CLONE. We return
1279 			 * the IRE_INTERFACE. Note that !IRR_ALLOCATE can
1280 			 * result in a ire_dep_parent which is IRE_IF_*
1281 			 * without an IRE_IF_CLONE.
1282 			 * We recover from that when we need to send packets
1283 			 * by ensuring that the generations become
1284 			 * IRE_GENERATION_VERIFY in this case.
1285 			 */
1286 			if (!(irr_flags & IRR_ALLOCATE)) {
1287 				invalidate = B_TRUE;
1288 				ire = NULL;
1289 				goto done;
1290 			}
1291 
1292 			clone = ire_create_if_clone(ire, &v6nexthop,
1293 			    &generation);
1294 			if (clone == NULL) {
1295 				/*
1296 				 * Temporary failure - no memory.
1297 				 * Don't want caller to cache IRE_NOROUTE.
1298 				 */
1299 				invalidate = B_TRUE;
1300 				ire = ire_blackhole(ipst, B_TRUE);
1301 				goto error;
1302 			}
1303 			/*
1304 			 * Make clone next to last entry and the
1305 			 * IRE_INTERFACE the last in the dependency
1306 			 * chain since the clone depends on the
1307 			 * IRE_INTERFACE.
1308 			 */
1309 			ASSERT(i >= 1);
1310 			ASSERT(i < MAX_IRE_RECURSION);
1311 
1312 			ires[i] = ires[i-1];
1313 			generations[i] = generations[i-1];
1314 			ires[i-1] = clone;
1315 			generations[i-1] = generation;
1316 			i++;
1317 
1318 			ire = NULL;
1319 			goto done;
1320 		}
1321 
1322 		/*
1323 		 * We only match on the type and optionally ILL when
1324 		 * recursing. The type match is used by some callers
1325 		 * to exclude certain types (such as IRE_IF_CLONE or
1326 		 * IRE_LOCAL|IRE_LOOPBACK).
1327 		 */
1328 		match_args &= MATCH_IRE_TYPE;
1329 		v6nexthop = ire->ire_gateway_addr_v6;
1330 		if (ill == NULL && ire->ire_ill != NULL) {
1331 			ill = ire->ire_ill;
1332 			need_refrele = B_TRUE;
1333 			ill_refhold(ill);
1334 			match_args |= MATCH_IRE_ILL;
1335 		}
1336 		/*
1337 		 * We set the prefs[i] value above if i > 0. We've already
1338 		 * done i++ so i is one in the case of the first time around.
1339 		 */
1340 		if (i == 1)
1341 			prefs[0] = ire_pref(ire);
1342 		ire = NULL;
1343 	}
1344 	ASSERT(ire == NULL);
1345 	ire = ire_reject(ipst, B_TRUE);
1346 
1347 error:
1348 	ASSERT(ire != NULL);
1349 	if (need_refrele)
1350 		ill_refrele(ill);
1351 
1352 	/*
1353 	 * In the case of MULTIRT we want to try a different IRE the next
1354 	 * time. We let the next packet retry in that case.
1355 	 */
1356 	if (i > 0 && (ires[0]->ire_flags & RTF_MULTIRT))
1357 		(void) ire_no_good(ires[0]);
1358 
1359 cleanup:
1360 	/* cleanup ires[i] */
1361 	ire_dep_unbuild(ires, i);
1362 	for (j = 0; j < i; j++)
1363 		ire_refrele(ires[j]);
1364 
1365 	ASSERT((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
1366 	    (irr_flags & IRR_INCOMPLETE));
1367 	/*
1368 	 * Use IRE_GENERATION_VERIFY to ensure that ip_output will redo the
1369 	 * ip_select_route since the reject or lack of memory might be gone.
1370 	 */
1371 	if (generationp != NULL)
1372 		*generationp = IRE_GENERATION_VERIFY;
1373 	return (ire);
1374 
1375 done:
1376 	ASSERT(ire == NULL);
1377 	if (need_refrele)
1378 		ill_refrele(ill);
1379 
1380 	/* Build dependencies */
1381 	if (i > 1 && !ire_dep_build(ires, generations, i)) {
1382 		/* Something in chain was condemned; tear it apart */
1383 		ire = ire_blackhole(ipst, B_TRUE);
1384 		goto cleanup;
1385 	}
1386 
1387 	/*
1388 	 * Release all refholds except the one for ires[0] that we
1389 	 * will return to the caller.
1390 	 */
1391 	for (j = 1; j < i; j++)
1392 		ire_refrele(ires[j]);
1393 
1394 	if (invalidate) {
1395 		/*
1396 		 * Since we needed to allocate but couldn't we need to make
1397 		 * sure that the dependency chain is rebuilt the next time.
1398 		 */
1399 		ire_dep_invalidate_generations(ires[0]);
1400 		generation = IRE_GENERATION_VERIFY;
1401 	} else {
1402 		/*
1403 		 * IREs can have been added or deleted while we did the
1404 		 * recursive lookup and we can't catch those until we've built
1405 		 * the dependencies. We verify the stored
1406 		 * ire_dep_parent_generation to catch any such changes and
1407 		 * return IRE_GENERATION_VERIFY (which will cause
1408 		 * ip_select_route to be called again so we can redo the
1409 		 * recursive lookup next time we send a packet.
1410 		 */
1411 		if (ires[0]->ire_dep_parent == NULL)
1412 			generation = ires[0]->ire_generation;
1413 		else
1414 			generation = ire_dep_validate_generations(ires[0]);
1415 		if (generations[0] != ires[0]->ire_generation) {
1416 			/* Something changed at the top */
1417 			generation = IRE_GENERATION_VERIFY;
1418 		}
1419 	}
1420 	if (generationp != NULL)
1421 		*generationp = generation;
1422 
1423 	return (ires[0]);
1424 }
1425 
1426 ire_t *
1427 ire_route_recursive_v6(const in6_addr_t *nexthop, uint_t ire_type,
1428     const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1429     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1430     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1431 {
1432 	return (ire_route_recursive_impl_v6(NULL, nexthop, ire_type, ill,
1433 	    zoneid, tsl, match_args, irr_flags, xmit_hint, ipst, setsrcp,
1434 	    gwattrp, generationp));
1435 }
1436 
1437 /*
1438  * Recursively look for a route to the destination.
1439  * We only handle a destination match here, yet we have the same arguments
1440  * as the full match to allow function pointers to select between the two.
1441  *
1442  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1443  * instead.
1444  *
1445  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1446  * is an error.
1447  * Allow at most one RTF_INDIRECT.
1448  */
1449 ire_t *
1450 ire_route_recursive_dstonly_v6(const in6_addr_t *nexthop, uint_t irr_flags,
1451     uint32_t xmit_hint, ip_stack_t *ipst)
1452 {
1453 	ire_t	*ire;
1454 	ire_t	*ire1;
1455 	uint_t	generation;
1456 
1457 	/* ire_ftable_lookup handles round-robin/ECMP */
1458 	ire = ire_ftable_lookup_simple_v6(nexthop, xmit_hint, ipst,
1459 	    &generation);
1460 	ASSERT(ire != NULL);
1461 
1462 	/*
1463 	 * If this type should have an ire_nce_cache (even if it
1464 	 * doesn't yet have one) then we are done. Includes
1465 	 * IRE_INTERFACE with a full 128 bit mask.
1466 	 */
1467 	if (ire->ire_nce_capable)
1468 		return (ire);
1469 
1470 	/*
1471 	 * If the IRE has a current cached parent we know that the whole
1472 	 * parent chain is current, hence we don't need to discover and
1473 	 * build any dependencies by doing a recursive lookup.
1474 	 */
1475 	mutex_enter(&ire->ire_lock);
1476 	if (ire->ire_dep_parent != NULL &&
1477 	    ire->ire_dep_parent->ire_generation ==
1478 	    ire->ire_dep_parent_generation) {
1479 		mutex_exit(&ire->ire_lock);
1480 		return (ire);
1481 	}
1482 	mutex_exit(&ire->ire_lock);
1483 
1484 	/*
1485 	 * Fallback to loop in the normal code starting with the ire
1486 	 * we found. Normally this would return the same ire.
1487 	 */
1488 	ire1 = ire_route_recursive_impl_v6(ire, nexthop, 0, NULL, ALL_ZONES,
1489 	    NULL, MATCH_IRE_DSTONLY, irr_flags, xmit_hint, ipst, NULL, NULL,
1490 	    &generation);
1491 	ire_refrele(ire);
1492 	return (ire1);
1493 }
1494