xref: /titanic_50/usr/src/uts/common/inet/ip/ip6_if.c (revision e65e5c2d2f32a99e8c5f740cabae9075dab03ce7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 1990 Mentat Inc.
27  */
28 
29 /*
30  * This file contains the interface control functions for IPv6.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/stream.h>
36 #include <sys/dlpi.h>
37 #include <sys/stropts.h>
38 #include <sys/ddi.h>
39 #include <sys/cmn_err.h>
40 #include <sys/kstat.h>
41 #include <sys/debug.h>
42 #include <sys/zone.h>
43 #include <sys/policy.h>
44 
45 #include <sys/systm.h>
46 #include <sys/param.h>
47 #include <sys/socket.h>
48 #include <sys/isa_defs.h>
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/route.h>
52 #include <netinet/in.h>
53 #include <netinet/igmp_var.h>
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 
57 #include <inet/common.h>
58 #include <inet/nd.h>
59 #include <inet/mib2.h>
60 #include <inet/ip.h>
61 #include <inet/ip6.h>
62 #include <inet/ip_multi.h>
63 #include <inet/ip_ire.h>
64 #include <inet/ip_rts.h>
65 #include <inet/ip_ndp.h>
66 #include <inet/ip_if.h>
67 #include <inet/ip6_asp.h>
68 #include <inet/ipclassifier.h>
69 #include <inet/sctp_ip.h>
70 
71 #include <sys/tsol/tndb.h>
72 #include <sys/tsol/tnet.h>
73 
74 static in6_addr_t	ipv6_ll_template =
75 			{(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0};
76 
77 static ipif_t *
78 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
79     ip_stack_t *ipst);
80 
81 static int	ipif_add_ires_v6(ipif_t *, boolean_t);
82 
83 /*
84  * This function is called when an application does not specify an interface
85  * to be used for multicast traffic.  It calls ire_lookup_multi_v6() to look
86  * for an interface route for the specified multicast group.  Doing
87  * this allows the administrator to add prefix routes for multicast to
88  * indicate which interface to be used for multicast traffic in the above
89  * scenario.  The route could be for all multicast (ff00::/8), for a single
90  * multicast group (a /128 route) or anything in between.  If there is no
91  * such multicast route, we just find any multicast capable interface and
92  * return it.
93  *
94  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
95  * unicast table. This is used by CGTP.
96  */
97 ill_t *
98 ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid, ip_stack_t *ipst,
99     boolean_t *multirtp, in6_addr_t *setsrcp)
100 {
101 	ill_t	*ill;
102 
103 	ill = ire_lookup_multi_ill_v6(group, zoneid, ipst, multirtp, setsrcp);
104 	if (ill != NULL)
105 		return (ill);
106 
107 	return (ill_lookup_multicast(ipst, zoneid, B_TRUE));
108 }
109 
110 /*
111  * Look for an ipif with the specified interface address and destination.
112  * The destination address is used only for matching point-to-point interfaces.
113  */
114 static ipif_t *
115 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
116     ip_stack_t *ipst)
117 {
118 	ipif_t	*ipif;
119 	ill_t	*ill;
120 	ill_walk_context_t ctx;
121 
122 	/*
123 	 * First match all the point-to-point interfaces
124 	 * before looking at non-point-to-point interfaces.
125 	 * This is done to avoid returning non-point-to-point
126 	 * ipif instead of unnumbered point-to-point ipif.
127 	 */
128 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
129 	ill = ILL_START_WALK_V6(&ctx, ipst);
130 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
131 		mutex_enter(&ill->ill_lock);
132 		for (ipif = ill->ill_ipif; ipif != NULL;
133 		    ipif = ipif->ipif_next) {
134 			/* Allow the ipif to be down */
135 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
136 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
137 			    if_addr)) &&
138 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
139 			    dst))) {
140 				if (!IPIF_IS_CONDEMNED(ipif)) {
141 					ipif_refhold_locked(ipif);
142 					mutex_exit(&ill->ill_lock);
143 					rw_exit(&ipst->ips_ill_g_lock);
144 					return (ipif);
145 				}
146 			}
147 		}
148 		mutex_exit(&ill->ill_lock);
149 	}
150 	rw_exit(&ipst->ips_ill_g_lock);
151 	/* lookup the ipif based on interface address */
152 	ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, ipst);
153 	ASSERT(ipif == NULL || ipif->ipif_isv6);
154 	return (ipif);
155 }
156 
157 /*
158  * Common function for ipif_lookup_addr_v6() and ipif_lookup_addr_exact_v6().
159  */
160 static ipif_t *
161 ipif_lookup_addr_common_v6(const in6_addr_t *addr, ill_t *match_ill,
162     uint32_t match_flags, zoneid_t zoneid, ip_stack_t *ipst)
163 {
164 	ipif_t	*ipif;
165 	ill_t	*ill;
166 	boolean_t  ptp = B_FALSE;
167 	ill_walk_context_t ctx;
168 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
169 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
170 
171 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
172 	/*
173 	 * Repeat twice, first based on local addresses and
174 	 * next time for pointopoint.
175 	 */
176 repeat:
177 	ill = ILL_START_WALK_V6(&ctx, ipst);
178 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
179 		if (match_ill != NULL && ill != match_ill &&
180 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
181 			continue;
182 		}
183 		mutex_enter(&ill->ill_lock);
184 		for (ipif = ill->ill_ipif; ipif != NULL;
185 		    ipif = ipif->ipif_next) {
186 			if (zoneid != ALL_ZONES &&
187 			    ipif->ipif_zoneid != zoneid &&
188 			    ipif->ipif_zoneid != ALL_ZONES)
189 				continue;
190 
191 			if (no_duplicate &&
192 			    !(ipif->ipif_flags & IPIF_UP)) {
193 				continue;
194 			}
195 
196 			/* Allow the ipif to be down */
197 			if ((!ptp && (IN6_ARE_ADDR_EQUAL(
198 			    &ipif->ipif_v6lcl_addr, addr) &&
199 			    (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
200 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
201 			    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
202 			    addr))) {
203 				if (!IPIF_IS_CONDEMNED(ipif)) {
204 					ipif_refhold_locked(ipif);
205 					mutex_exit(&ill->ill_lock);
206 					rw_exit(&ipst->ips_ill_g_lock);
207 					return (ipif);
208 				}
209 			}
210 		}
211 		mutex_exit(&ill->ill_lock);
212 	}
213 
214 	/* If we already did the ptp case, then we are done */
215 	if (ptp) {
216 		rw_exit(&ipst->ips_ill_g_lock);
217 		return (NULL);
218 	}
219 	ptp = B_TRUE;
220 	goto repeat;
221 }
222 
223 /*
224  * Lookup an ipif with the specified address.  For point-to-point links we
225  * look for matches on either the destination address or the local address,
226  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
227  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
228  * (or illgrp if `match_ill' is in an IPMP group).
229  */
230 ipif_t *
231 ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid,
232     ip_stack_t *ipst)
233 {
234 	return (ipif_lookup_addr_common_v6(addr, match_ill, IPIF_MATCH_ILLGRP,
235 	    zoneid, ipst));
236 }
237 
238 /*
239  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
240  * except that we will only return an address if it is not marked as
241  * IPIF_DUPLICATE
242  */
243 ipif_t *
244 ipif_lookup_addr_nondup_v6(const in6_addr_t *addr, ill_t *match_ill,
245     zoneid_t zoneid, ip_stack_t *ipst)
246 {
247 	return (ipif_lookup_addr_common_v6(addr, match_ill,
248 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), zoneid,
249 	    ipst));
250 }
251 
252 /*
253  * Special abbreviated version of ipif_lookup_addr_v6() that doesn't match
254  * `match_ill' across the IPMP group.  This function is only needed in some
255  * corner-cases; almost everything should use ipif_lookup_addr_v6().
256  */
257 ipif_t *
258 ipif_lookup_addr_exact_v6(const in6_addr_t *addr, ill_t *match_ill,
259     ip_stack_t *ipst)
260 {
261 	ASSERT(match_ill != NULL);
262 	return (ipif_lookup_addr_common_v6(addr, match_ill, 0, ALL_ZONES,
263 	    ipst));
264 }
265 
266 /*
267  * Look for an ipif with the specified address. For point-point links
268  * we look for matches on either the destination address and the local
269  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
270  * is set.
271  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
272  * ill (or illgrp if `match_ill' is in an IPMP group).
273  * Return the zoneid for the ipif. ALL_ZONES if none found.
274  */
275 zoneid_t
276 ipif_lookup_addr_zoneid_v6(const in6_addr_t *addr, ill_t *match_ill,
277     ip_stack_t *ipst)
278 {
279 	ipif_t	*ipif;
280 	ill_t	*ill;
281 	boolean_t  ptp = B_FALSE;
282 	ill_walk_context_t ctx;
283 	zoneid_t	zoneid;
284 
285 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
286 	/*
287 	 * Repeat twice, first based on local addresses and
288 	 * next time for pointopoint.
289 	 */
290 repeat:
291 	ill = ILL_START_WALK_V6(&ctx, ipst);
292 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
293 		if (match_ill != NULL && ill != match_ill &&
294 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
295 			continue;
296 		}
297 		mutex_enter(&ill->ill_lock);
298 		for (ipif = ill->ill_ipif; ipif != NULL;
299 		    ipif = ipif->ipif_next) {
300 			/* Allow the ipif to be down */
301 			if ((!ptp && (IN6_ARE_ADDR_EQUAL(
302 			    &ipif->ipif_v6lcl_addr, addr) &&
303 			    (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
304 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
305 			    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
306 			    addr)) &&
307 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
308 				zoneid = ipif->ipif_zoneid;
309 				mutex_exit(&ill->ill_lock);
310 				rw_exit(&ipst->ips_ill_g_lock);
311 				/*
312 				 * If ipif_zoneid was ALL_ZONES then we have
313 				 * a trusted extensions shared IP address.
314 				 * In that case GLOBAL_ZONEID works to send.
315 				 */
316 				if (zoneid == ALL_ZONES)
317 					zoneid = GLOBAL_ZONEID;
318 				return (zoneid);
319 			}
320 		}
321 		mutex_exit(&ill->ill_lock);
322 	}
323 
324 	/* If we already did the ptp case, then we are done */
325 	if (ptp) {
326 		rw_exit(&ipst->ips_ill_g_lock);
327 		return (ALL_ZONES);
328 	}
329 	ptp = B_TRUE;
330 	goto repeat;
331 }
332 
333 /*
334  * Perform various checks to verify that an address would make sense as a local
335  * interface address.  This is currently only called when an attempt is made
336  * to set a local address.
337  *
338  * Does not allow a v4-mapped address, an address that equals the subnet
339  * anycast address, ... a multicast address, ...
340  */
341 boolean_t
342 ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
343 {
344 	in6_addr_t subnet;
345 
346 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
347 		return (B_TRUE);	/* Allow all zeros */
348 
349 	/*
350 	 * Don't allow all zeroes or host part, but allow
351 	 * all ones netmask.
352 	 */
353 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
354 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
355 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
356 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
357 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) ||
358 	    IN6_IS_ADDR_MULTICAST(addr))
359 		return (B_FALSE);
360 
361 	return (B_TRUE);
362 }
363 
364 /*
365  * Perform various checks to verify that an address would make sense as a
366  * remote/subnet interface address.
367  */
368 boolean_t
369 ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
370 {
371 	in6_addr_t subnet;
372 
373 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
374 		return (B_TRUE);	/* Allow all zeros */
375 
376 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
377 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
378 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
379 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
380 	    IN6_IS_ADDR_MULTICAST(addr) ||
381 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))))
382 		return (B_FALSE);
383 
384 	return (B_TRUE);
385 }
386 
387 /*
388  * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table.
389  * ill is passed in to associate it with the correct interface
390  * (for link-local destinations and gateways).
391  * If ire_arg is set, then we return the held IRE in that location.
392  */
393 /* ARGSUSED1 */
394 int
395 ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
396     const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags,
397     ill_t *ill, ire_t **ire_arg, struct rtsa_s *sp, ip_stack_t *ipst,
398     zoneid_t zoneid)
399 {
400 	ire_t	*ire, *nire;
401 	ire_t	*gw_ire = NULL;
402 	ipif_t	*ipif;
403 	uint_t	type;
404 	int	match_flags = MATCH_IRE_TYPE;
405 	tsol_gc_t *gc = NULL;
406 	tsol_gcgrp_t *gcgrp = NULL;
407 	boolean_t gcgrp_xtraref = B_FALSE;
408 	boolean_t unbound = B_FALSE;
409 
410 	if (ire_arg != NULL)
411 		*ire_arg = NULL;
412 
413 	/*
414 	 * Prevent routes with a zero gateway from being created (since
415 	 * interfaces can currently be plumbed and brought up with no assigned
416 	 * address).
417 	 */
418 	if (IN6_IS_ADDR_UNSPECIFIED(gw_addr))
419 		return (ENETUNREACH);
420 
421 	/*
422 	 * If this is the case of RTF_HOST being set, then we set the netmask
423 	 * to all ones (regardless if one was supplied).
424 	 */
425 	if (flags & RTF_HOST)
426 		mask = &ipv6_all_ones;
427 
428 	/*
429 	 * Get the ipif, if any, corresponding to the gw_addr
430 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
431 	 * we match on the gatway and destination to handle unnumbered pt-pt
432 	 * interfaces.
433 	 */
434 	if (ill != NULL)
435 		ipif = ipif_lookup_addr_v6(gw_addr, ill, ALL_ZONES, ipst);
436 	else
437 		ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst);
438 	if (ipif != NULL) {
439 		if (IS_VNI(ipif->ipif_ill)) {
440 			ipif_refrele(ipif);
441 			return (EINVAL);
442 		}
443 	}
444 
445 	/*
446 	 * GateD will attempt to create routes with a loopback interface
447 	 * address as the gateway and with RTF_GATEWAY set.  We allow
448 	 * these routes to be added, but create them as interface routes
449 	 * since the gateway is an interface address.
450 	 */
451 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
452 		flags &= ~RTF_GATEWAY;
453 		if (IN6_ARE_ADDR_EQUAL(gw_addr, &ipv6_loopback) &&
454 		    IN6_ARE_ADDR_EQUAL(dst_addr, &ipv6_loopback) &&
455 		    IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) {
456 			ire = ire_ftable_lookup_v6(dst_addr, 0, 0, IRE_LOOPBACK,
457 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
458 			    NULL);
459 			if (ire != NULL) {
460 				ire_refrele(ire);
461 				ipif_refrele(ipif);
462 				return (EEXIST);
463 			}
464 			ip1dbg(("ip_rt_add_v6: 0x%p creating IRE 0x%x"
465 			    "for 0x%x\n", (void *)ipif,
466 			    ipif->ipif_ire_type,
467 			    ntohl(ipif->ipif_lcl_addr)));
468 			ire = ire_create_v6(
469 			    dst_addr,
470 			    mask,
471 			    NULL,
472 			    ipif->ipif_ire_type,	/* LOOPBACK */
473 			    ipif->ipif_ill,
474 			    zoneid,
475 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
476 			    NULL,
477 			    ipst);
478 
479 			if (ire == NULL) {
480 				ipif_refrele(ipif);
481 				return (ENOMEM);
482 			}
483 			/* src address assigned by the caller? */
484 			if ((flags & RTF_SETSRC) &&
485 			    !IN6_IS_ADDR_UNSPECIFIED(src_addr))
486 				ire->ire_setsrc_addr_v6 = *src_addr;
487 
488 			nire = ire_add(ire);
489 			if (nire == NULL) {
490 				/*
491 				 * In the result of failure, ire_add() will have
492 				 * already deleted the ire in question, so there
493 				 * is no need to do that here.
494 				 */
495 				ipif_refrele(ipif);
496 				return (ENOMEM);
497 			}
498 			/*
499 			 * Check if it was a duplicate entry. This handles
500 			 * the case of two racing route adds for the same route
501 			 */
502 			if (nire != ire) {
503 				ASSERT(nire->ire_identical_ref > 1);
504 				ire_delete(nire);
505 				ire_refrele(nire);
506 				ipif_refrele(ipif);
507 				return (EEXIST);
508 			}
509 			ire = nire;
510 			goto save_ire;
511 		}
512 	}
513 
514 	/*
515 	 * The routes for multicast with CGTP are quite special in that
516 	 * the gateway is the local interface address, yet RTF_GATEWAY
517 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
518 	 * this undocumented and unusual use of multicast routes.
519 	 */
520 	if ((flags & RTF_MULTIRT) && ipif != NULL)
521 		flags &= ~RTF_GATEWAY;
522 
523 	/*
524 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
525 	 * and the gateway address provided is one of the system's interface
526 	 * addresses.  By using the routing socket interface and supplying an
527 	 * RTA_IFP sockaddr with an interface index, an alternate method of
528 	 * specifying an interface route to be created is available which uses
529 	 * the interface index that specifies the outgoing interface rather than
530 	 * the address of an outgoing interface (which may not be able to
531 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
532 	 * flag, routes can be specified which not only specify the next-hop to
533 	 * be used when routing to a certain prefix, but also which outgoing
534 	 * interface should be used.
535 	 *
536 	 * Previously, interfaces would have unique addresses assigned to them
537 	 * and so the address assigned to a particular interface could be used
538 	 * to identify a particular interface.  One exception to this was the
539 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
540 	 *
541 	 * With the advent of IPv6 and its link-local addresses, this
542 	 * restriction was relaxed and interfaces could share addresses between
543 	 * themselves.  In fact, typically all of the link-local interfaces on
544 	 * an IPv6 node or router will have the same link-local address.  In
545 	 * order to differentiate between these interfaces, the use of an
546 	 * interface index is necessary and this index can be carried inside a
547 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
548 	 * of using the interface index, however, is that all of the ipif's that
549 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
550 	 * cannot be used to differentiate between ipif's (or logical
551 	 * interfaces) that belong to the same ill (physical interface).
552 	 *
553 	 * For example, in the following case involving IPv4 interfaces and
554 	 * logical interfaces
555 	 *
556 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
557 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
558 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
559 	 *
560 	 * the ipif's corresponding to each of these interface routes can be
561 	 * uniquely identified by the "gateway" (actually interface address).
562 	 *
563 	 * In this case involving multiple IPv6 default routes to a particular
564 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
565 	 * default route is of interest:
566 	 *
567 	 *	default		fe80::123:4567:89ab:cdef	U	if0
568 	 *	default		fe80::123:4567:89ab:cdef	U	if1
569 	 */
570 
571 	/* RTF_GATEWAY not set */
572 	if (!(flags & RTF_GATEWAY)) {
573 		if (sp != NULL) {
574 			ip2dbg(("ip_rt_add_v6: gateway security attributes "
575 			    "cannot be set with interface route\n"));
576 			if (ipif != NULL)
577 				ipif_refrele(ipif);
578 			return (EINVAL);
579 		}
580 
581 		/*
582 		 * Whether or not ill (RTA_IFP) is set, we require that
583 		 * the gateway is one of our local addresses.
584 		 */
585 		if (ipif == NULL)
586 			return (ENETUNREACH);
587 
588 		/*
589 		 * We use MATCH_IRE_ILL here. If the caller specified an
590 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
591 		 * we use the ill derived from the gateway address.
592 		 * We can always match the gateway address since we record it
593 		 * in ire_gateway_addr.
594 		 * We don't allow RTA_IFP to specify a different ill than the
595 		 * one matching the ipif to make sure we can delete the route.
596 		 */
597 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
598 		if (ill == NULL) {
599 			ill = ipif->ipif_ill;
600 		} else if (ill != ipif->ipif_ill) {
601 			ipif_refrele(ipif);
602 			return (EINVAL);
603 		}
604 
605 		/*
606 		 * We check for an existing entry at this point.
607 		 */
608 		match_flags |= MATCH_IRE_MASK;
609 		ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr,
610 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
611 		    NULL);
612 		if (ire != NULL) {
613 			ire_refrele(ire);
614 			ipif_refrele(ipif);
615 			return (EEXIST);
616 		}
617 
618 		/*
619 		 * Some software (for example, GateD and Sun Cluster) attempts
620 		 * to create (what amount to) IRE_PREFIX routes with the
621 		 * loopback address as the gateway.  This is primarily done to
622 		 * set up prefixes with the RTF_REJECT flag set (for example,
623 		 * when generating aggregate routes). We also OR in the
624 		 * RTF_BLACKHOLE flag as these interface routes, by
625 		 * definition, can only be that.
626 		 *
627 		 * If the IRE type (as defined by ill->ill_net_type) would be
628 		 * IRE_LOOPBACK, then we map the request into a
629 		 * IRE_IF_NORESOLVER.
630 		 *
631 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
632 		 * routine, but rather using ire_create_v6() directly.
633 		 */
634 		type = ill->ill_net_type;
635 		if (type == IRE_LOOPBACK) {
636 			type = IRE_IF_NORESOLVER;
637 			flags |= RTF_BLACKHOLE;
638 		}
639 
640 		/*
641 		 * Create a copy of the IRE_IF_NORESOLVER or
642 		 * IRE_IF_RESOLVER with the modified address, netmask, and
643 		 * gateway.
644 		 */
645 		ire = ire_create_v6(
646 		    dst_addr,
647 		    mask,
648 		    gw_addr,
649 		    type,
650 		    ill,
651 		    zoneid,
652 		    flags,
653 		    NULL,
654 		    ipst);
655 		if (ire == NULL) {
656 			ipif_refrele(ipif);
657 			return (ENOMEM);
658 		}
659 
660 		/* src address assigned by the caller? */
661 		if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr))
662 			ire->ire_setsrc_addr_v6 = *src_addr;
663 
664 		nire = ire_add(ire);
665 		if (nire == NULL) {
666 			/*
667 			 * In the result of failure, ire_add() will have
668 			 * already deleted the ire in question, so there
669 			 * is no need to do that here.
670 			 */
671 			ipif_refrele(ipif);
672 			return (ENOMEM);
673 		}
674 		/*
675 		 * Check if it was a duplicate entry. This handles
676 		 * the case of two racing route adds for the same route
677 		 */
678 		if (nire != ire) {
679 			ASSERT(nire->ire_identical_ref > 1);
680 			ire_delete(nire);
681 			ire_refrele(nire);
682 			ipif_refrele(ipif);
683 			return (EEXIST);
684 		}
685 		ire = nire;
686 		goto save_ire;
687 	}
688 
689 	/*
690 	 * Get an interface IRE for the specified gateway.
691 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
692 	 * gateway, it is currently unreachable and we fail the request
693 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
694 	 * is an IRE_LOCAL or IRE_LOOPBACK.
695 	 * If RTA_IFP was specified we look on that particular ill.
696 	 */
697 	if (ill != NULL)
698 		match_flags |= MATCH_IRE_ILL;
699 
700 	/* Check whether the gateway is reachable. */
701 again:
702 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
703 	if (flags & RTF_INDIRECT)
704 		type |= IRE_OFFLINK;
705 
706 	gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, type, ill,
707 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
708 	if (gw_ire == NULL) {
709 		/*
710 		 * With IPMP, we allow host routes to influence in.mpathd's
711 		 * target selection.  However, if the test addresses are on
712 		 * their own network, the above lookup will fail since the
713 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
714 		 * hidden test IREs to be found and try again.
715 		 */
716 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
717 			match_flags |= MATCH_IRE_TESTHIDDEN;
718 			goto again;
719 		}
720 		if (ipif != NULL)
721 			ipif_refrele(ipif);
722 		return (ENETUNREACH);
723 	}
724 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
725 		ire_refrele(gw_ire);
726 		if (ipif != NULL)
727 			ipif_refrele(ipif);
728 		return (ENETUNREACH);
729 	}
730 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
731 		unbound = B_TRUE;
732 		if (ipst->ips_ipv6_strict_src_multihoming > 0)
733 			ill = gw_ire->ire_ill;
734 	}
735 
736 	/*
737 	 * We create one of three types of IREs as a result of this request
738 	 * based on the netmask.  A netmask of all ones (which is automatically
739 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
740 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
741 	 * created.  Otherwise, an IRE_PREFIX route is created for the
742 	 * destination prefix.
743 	 */
744 	if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
745 		type = IRE_HOST;
746 	else if (IN6_IS_ADDR_UNSPECIFIED(mask))
747 		type = IRE_DEFAULT;
748 	else
749 		type = IRE_PREFIX;
750 
751 	/* check for a duplicate entry */
752 	ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ill,
753 	    ALL_ZONES, NULL,
754 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 0, ipst, NULL);
755 	if (ire != NULL) {
756 		if (ipif != NULL)
757 			ipif_refrele(ipif);
758 		ire_refrele(gw_ire);
759 		ire_refrele(ire);
760 		return (EEXIST);
761 	}
762 
763 	/* Security attribute exists */
764 	if (sp != NULL) {
765 		tsol_gcgrp_addr_t ga;
766 
767 		/* find or create the gateway credentials group */
768 		ga.ga_af = AF_INET6;
769 		ga.ga_addr = *gw_addr;
770 
771 		/* we hold reference to it upon success */
772 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
773 		if (gcgrp == NULL) {
774 			if (ipif != NULL)
775 				ipif_refrele(ipif);
776 			ire_refrele(gw_ire);
777 			return (ENOMEM);
778 		}
779 
780 		/*
781 		 * Create and add the security attribute to the group; a
782 		 * reference to the group is made upon allocating a new
783 		 * entry successfully.  If it finds an already-existing
784 		 * entry for the security attribute in the group, it simply
785 		 * returns it and no new reference is made to the group.
786 		 */
787 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
788 		if (gc == NULL) {
789 			/* release reference held by gcgrp_lookup */
790 			GCGRP_REFRELE(gcgrp);
791 			if (ipif != NULL)
792 				ipif_refrele(ipif);
793 			ire_refrele(gw_ire);
794 			return (ENOMEM);
795 		}
796 	}
797 
798 	/* Create the IRE. */
799 	ire = ire_create_v6(
800 	    dst_addr,				/* dest address */
801 	    mask,				/* mask */
802 	    gw_addr,				/* gateway address */
803 	    (ushort_t)type,			/* IRE type */
804 	    ill,
805 	    zoneid,
806 	    flags,
807 	    gc,					/* security attribute */
808 	    ipst);
809 
810 	/*
811 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
812 	 * reference to the 'gcgrp'. We can now release the extra reference
813 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
814 	 */
815 	if (gcgrp_xtraref)
816 		GCGRP_REFRELE(gcgrp);
817 	if (ire == NULL) {
818 		if (gc != NULL)
819 			GC_REFRELE(gc);
820 		if (ipif != NULL)
821 			ipif_refrele(ipif);
822 		ire_refrele(gw_ire);
823 		return (ENOMEM);
824 	}
825 
826 	/* src address assigned by the caller? */
827 	if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr))
828 		ire->ire_setsrc_addr_v6 = *src_addr;
829 
830 	ire->ire_unbound = unbound;
831 
832 	/*
833 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
834 	 * SUN/OS socket stuff does but do we really want to allow ::0 ?
835 	 */
836 
837 	/* Add the new IRE. */
838 	nire = ire_add(ire);
839 	if (nire == NULL) {
840 		/*
841 		 * In the result of failure, ire_add() will have
842 		 * already deleted the ire in question, so there
843 		 * is no need to do that here.
844 		 */
845 		if (ipif != NULL)
846 			ipif_refrele(ipif);
847 		ire_refrele(gw_ire);
848 		return (ENOMEM);
849 	}
850 	/*
851 	 * Check if it was a duplicate entry. This handles
852 	 * the case of two racing route adds for the same route
853 	 */
854 	if (nire != ire) {
855 		ASSERT(nire->ire_identical_ref > 1);
856 		ire_delete(nire);
857 		ire_refrele(nire);
858 		if (ipif != NULL)
859 			ipif_refrele(ipif);
860 		ire_refrele(gw_ire);
861 		return (EEXIST);
862 	}
863 	ire = nire;
864 
865 	if (flags & RTF_MULTIRT) {
866 		/*
867 		 * Invoke the CGTP (multirouting) filtering module
868 		 * to add the dst address in the filtering database.
869 		 * Replicated inbound packets coming from that address
870 		 * will be filtered to discard the duplicates.
871 		 * It is not necessary to call the CGTP filter hook
872 		 * when the dst address is a multicast, because an
873 		 * IP source address cannot be a multicast.
874 		 */
875 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
876 		    !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) {
877 			int res;
878 			ipif_t *src_ipif;
879 
880 			/* Find the source address corresponding to gw_ire */
881 			src_ipif = ipif_lookup_addr_v6(
882 			    &gw_ire->ire_gateway_addr_v6, NULL, zoneid, ipst);
883 			if (src_ipif != NULL) {
884 				res = ipst->ips_ip_cgtp_filter_ops->
885 				    cfo_add_dest_v6(
886 				    ipst->ips_netstack->netstack_stackid,
887 				    &ire->ire_addr_v6,
888 				    &ire->ire_gateway_addr_v6,
889 				    &ire->ire_setsrc_addr_v6,
890 				    &src_ipif->ipif_v6lcl_addr);
891 				ipif_refrele(src_ipif);
892 			} else {
893 				res = EADDRNOTAVAIL;
894 			}
895 			if (res != 0) {
896 				if (ipif != NULL)
897 					ipif_refrele(ipif);
898 				ire_refrele(gw_ire);
899 				ire_delete(ire);
900 				ire_refrele(ire);	/* Held in ire_add */
901 				return (res);
902 			}
903 		}
904 	}
905 
906 save_ire:
907 	if (gw_ire != NULL) {
908 		ire_refrele(gw_ire);
909 		gw_ire = NULL;
910 	}
911 	if (ire->ire_ill != NULL) {
912 		/*
913 		 * Save enough information so that we can recreate the IRE if
914 		 * the ILL goes down and then up.  The metrics associated
915 		 * with the route will be saved as well when rts_setmetrics() is
916 		 * called after the IRE has been created.  In the case where
917 		 * memory cannot be allocated, none of this information will be
918 		 * saved.
919 		 */
920 		ill_save_ire(ire->ire_ill, ire);
921 	}
922 
923 	if (ire_arg != NULL) {
924 		/*
925 		 * Store the ire that was successfully added into where ire_arg
926 		 * points to so that callers don't have to look it up
927 		 * themselves (but they are responsible for ire_refrele()ing
928 		 * the ire when they are finished with it).
929 		 */
930 		*ire_arg = ire;
931 	} else {
932 		ire_refrele(ire);		/* Held in ire_add */
933 	}
934 	if (ipif != NULL)
935 		ipif_refrele(ipif);
936 	return (0);
937 }
938 
939 /*
940  * ip_rt_delete_v6 is called to delete an IPv6 route.
941  * ill is passed in to associate it with the correct interface.
942  * (for link-local destinations and gateways).
943  */
944 /* ARGSUSED4 */
945 int
946 ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
947     const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ill_t *ill,
948     ip_stack_t *ipst, zoneid_t zoneid)
949 {
950 	ire_t	*ire = NULL;
951 	ipif_t	*ipif;
952 	uint_t	type;
953 	uint_t	match_flags = MATCH_IRE_TYPE;
954 	int	err = 0;
955 
956 	/*
957 	 * If this is the case of RTF_HOST being set, then we set the netmask
958 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
959 	 */
960 	if (flags & RTF_HOST) {
961 		mask = &ipv6_all_ones;
962 		match_flags |= MATCH_IRE_MASK;
963 	} else if (rtm_addrs & RTA_NETMASK) {
964 		match_flags |= MATCH_IRE_MASK;
965 	}
966 
967 	/*
968 	 * Note that RTF_GATEWAY is never set on a delete, therefore
969 	 * we check if the gateway address is one of our interfaces first,
970 	 * and fall back on RTF_GATEWAY routes.
971 	 *
972 	 * This makes it possible to delete an original
973 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
974 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
975 	 * and those can not be deleted here.
976 	 *
977 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
978 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
979 	 * otherwise we use the ill derived from the gateway address.
980 	 * We can always match the gateway address since we record it
981 	 * in ire_gateway_addr.
982 	 *
983 	 * For more detail on specifying routes by gateway address and by
984 	 * interface index, see the comments in ip_rt_add_v6().
985 	 */
986 	ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst);
987 	if (ipif != NULL) {
988 		ill_t	*ill_match;
989 
990 		if (ill != NULL)
991 			ill_match = ill;
992 		else
993 			ill_match = ipif->ipif_ill;
994 
995 		match_flags |= MATCH_IRE_ILL;
996 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
997 			ire = ire_ftable_lookup_v6(dst_addr, mask, 0,
998 			    IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
999 			    match_flags, 0, ipst, NULL);
1000 		}
1001 		if (ire == NULL) {
1002 			match_flags |= MATCH_IRE_GW;
1003 			ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr,
1004 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
1005 			    match_flags, 0, ipst, NULL);
1006 		}
1007 		/* Avoid deleting routes created by kernel from an ipif */
1008 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
1009 			ire_refrele(ire);
1010 			ire = NULL;
1011 		}
1012 
1013 		/* Restore in case we didn't find a match */
1014 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
1015 	}
1016 
1017 	if (ire == NULL) {
1018 		/*
1019 		 * At this point, the gateway address is not one of our own
1020 		 * addresses or a matching interface route was not found.  We
1021 		 * set the IRE type to lookup based on whether
1022 		 * this is a host route, a default route or just a prefix.
1023 		 *
1024 		 * If an ill was passed in, then the lookup is based on an
1025 		 * interface index so MATCH_IRE_ILL is added to match_flags.
1026 		 */
1027 		match_flags |= MATCH_IRE_GW;
1028 		if (ill != NULL)
1029 			match_flags |= MATCH_IRE_ILL;
1030 		if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
1031 			type = IRE_HOST;
1032 		else if (IN6_IS_ADDR_UNSPECIFIED(mask))
1033 			type = IRE_DEFAULT;
1034 		else
1035 			type = IRE_PREFIX;
1036 		ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type,
1037 		    ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
1038 	}
1039 
1040 	if (ipif != NULL) {
1041 		ipif_refrele(ipif);
1042 		ipif = NULL;
1043 	}
1044 	if (ire == NULL)
1045 		return (ESRCH);
1046 
1047 	if (ire->ire_flags & RTF_MULTIRT) {
1048 		/*
1049 		 * Invoke the CGTP (multirouting) filtering module
1050 		 * to remove the dst address from the filtering database.
1051 		 * Packets coming from that address will no longer be
1052 		 * filtered to remove duplicates.
1053 		 */
1054 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
1055 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v6(
1056 			    ipst->ips_netstack->netstack_stackid,
1057 			    &ire->ire_addr_v6, &ire->ire_gateway_addr_v6);
1058 		}
1059 	}
1060 
1061 	ill = ire->ire_ill;
1062 	if (ill != NULL)
1063 		ill_remove_saved_ire(ill, ire);
1064 	ire_delete(ire);
1065 	ire_refrele(ire);
1066 	return (err);
1067 }
1068 
1069 /*
1070  * Derive an interface id from the link layer address.
1071  */
1072 void
1073 ill_setdefaulttoken(ill_t *ill)
1074 {
1075 	if (!ill->ill_manual_token) {
1076 		bzero(&ill->ill_token, sizeof (ill->ill_token));
1077 		MEDIA_V6INTFID(ill->ill_media, ill, &ill->ill_token);
1078 		ill->ill_token_length = IPV6_TOKEN_LEN;
1079 	}
1080 }
1081 
1082 void
1083 ill_setdesttoken(ill_t *ill)
1084 {
1085 	bzero(&ill->ill_dest_token, sizeof (ill->ill_dest_token));
1086 	MEDIA_V6DESTINTFID(ill->ill_media, ill, &ill->ill_dest_token);
1087 }
1088 
1089 /*
1090  * Create a link-local address from a token.
1091  */
1092 static void
1093 ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token)
1094 {
1095 	int i;
1096 
1097 	for (i = 0; i < 4; i++) {
1098 		dest->s6_addr32[i] =
1099 		    token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i];
1100 	}
1101 }
1102 
1103 /*
1104  * Set a default IPv6 address for a 6to4 tunnel interface 2002:<tsrc>::1/16
1105  */
1106 static void
1107 ipif_set6to4addr(ipif_t *ipif)
1108 {
1109 	ill_t		*ill = ipif->ipif_ill;
1110 	struct in_addr	v4phys;
1111 
1112 	ASSERT(ill->ill_mactype == DL_6TO4);
1113 	ASSERT(ill->ill_phys_addr_length == sizeof (struct in_addr));
1114 	ASSERT(ipif->ipif_isv6);
1115 
1116 	if (ipif->ipif_flags & IPIF_UP)
1117 		return;
1118 
1119 	(void) ip_plen_to_mask_v6(16, &ipif->ipif_v6net_mask);
1120 	bcopy(ill->ill_phys_addr, &v4phys, sizeof (struct in_addr));
1121 	IN6_V4ADDR_TO_6TO4(&v4phys, &ipif->ipif_v6lcl_addr);
1122 	V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
1123 	    ipif->ipif_v6subnet);
1124 }
1125 
1126 /*
1127  * Is it not possible to set the link local address?
1128  * The address can be set if the token is set, and the token
1129  * isn't too long.
1130  * Return B_TRUE if the address can't be set, or B_FALSE if it can.
1131  */
1132 boolean_t
1133 ipif_cant_setlinklocal(ipif_t *ipif)
1134 {
1135 	ill_t *ill = ipif->ipif_ill;
1136 
1137 	if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) ||
1138 	    ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN)
1139 		return (B_TRUE);
1140 
1141 	return (B_FALSE);
1142 }
1143 
1144 /*
1145  * Generate a link-local address from the token.
1146  */
1147 void
1148 ipif_setlinklocal(ipif_t *ipif)
1149 {
1150 	ill_t		*ill = ipif->ipif_ill;
1151 	in6_addr_t	ov6addr;
1152 
1153 	ASSERT(IAM_WRITER_ILL(ill));
1154 
1155 	/*
1156 	 * ill_manual_linklocal is set when the link-local address was
1157 	 * manually configured.
1158 	 */
1159 	if (ill->ill_manual_linklocal)
1160 		return;
1161 
1162 	/*
1163 	 * IPv6 interfaces over 6to4 tunnels are special.  They do not have
1164 	 * link-local addresses, but instead have a single automatically
1165 	 * generated global address.
1166 	 */
1167 	if (ill->ill_mactype == DL_6TO4) {
1168 		ipif_set6to4addr(ipif);
1169 		return;
1170 	}
1171 
1172 	if (ipif_cant_setlinklocal(ipif))
1173 		return;
1174 
1175 	ov6addr = ipif->ipif_v6lcl_addr;
1176 	ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token);
1177 	sctp_update_ipif_addr(ipif, ov6addr);
1178 	(void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask);
1179 	if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) {
1180 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
1181 		    ipif->ipif_v6subnet);
1182 	}
1183 
1184 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
1185 }
1186 
1187 /*
1188  * Generate a destination link-local address for a point-to-point IPv6
1189  * interface with a destination interface id (IP tunnels are such interfaces)
1190  * based on the destination token.
1191  */
1192 void
1193 ipif_setdestlinklocal(ipif_t *ipif)
1194 {
1195 	ill_t	*ill = ipif->ipif_ill;
1196 
1197 	ASSERT(IAM_WRITER_ILL(ill));
1198 
1199 	if (ill->ill_manual_dst_linklocal)
1200 		return;
1201 
1202 	if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_dest_token))
1203 		return;
1204 
1205 	ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, &ill->ill_dest_token);
1206 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
1207 }
1208 
1209 /*
1210  * Get the resolver set up for a new ipif.  (Always called as writer.)
1211  */
1212 int
1213 ipif_ndp_up(ipif_t *ipif, boolean_t initial)
1214 {
1215 	ill_t		*ill = ipif->ipif_ill;
1216 	int		err = 0;
1217 	nce_t		*nce = NULL;
1218 	boolean_t	added_ipif = B_FALSE;
1219 
1220 	DTRACE_PROBE3(ipif__downup, char *, "ipif_ndp_up",
1221 	    ill_t *, ill, ipif_t *, ipif);
1222 	ip1dbg(("ipif_ndp_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
1223 
1224 	if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) ||
1225 	    (!(ill->ill_net_type & IRE_INTERFACE))) {
1226 		ipif->ipif_addr_ready = 1;
1227 		return (0);
1228 	}
1229 
1230 	if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) {
1231 		uint16_t	flags;
1232 		uint16_t	state;
1233 		uchar_t		*hw_addr;
1234 		ill_t		*bound_ill;
1235 		ipmp_illgrp_t	*illg = ill->ill_grp;
1236 		uint_t		hw_addr_len;
1237 
1238 		flags = NCE_F_MYADDR | NCE_F_NONUD | NCE_F_PUBLISH |
1239 		    NCE_F_AUTHORITY;
1240 		if (ill->ill_flags & ILLF_ROUTER)
1241 			flags |= NCE_F_ISROUTER;
1242 
1243 		if (ipif->ipif_flags & IPIF_ANYCAST)
1244 			flags |= NCE_F_ANYCAST;
1245 
1246 		if (IS_IPMP(ill)) {
1247 			ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
1248 			/*
1249 			 * If we're here via ipif_up(), then the ipif won't be
1250 			 * bound yet -- add it to the group, which will bind
1251 			 * it if possible.  (We would add it in ipif_up(), but
1252 			 * deleting on failure there is gruesome.)  If we're
1253 			 * here via ipmp_ill_bind_ipif(), then the ipif has
1254 			 * already been added to the group and we just need to
1255 			 * use the binding.
1256 			 */
1257 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
1258 				bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
1259 				if (bound_ill == NULL) {
1260 					/*
1261 					 * We couldn't bind the ipif to an ill
1262 					 * yet, so we have nothing to publish.
1263 					 * Set ipif_addr_ready so that this
1264 					 * address can be used locally for now.
1265 					 * The routing socket message will be
1266 					 * sent from ipif_up_done_v6().
1267 					 */
1268 					ipif->ipif_addr_ready = 1;
1269 					return (0);
1270 				}
1271 				added_ipif = B_TRUE;
1272 			}
1273 			hw_addr = bound_ill->ill_nd_lla;
1274 			hw_addr_len = bound_ill->ill_phys_addr_length;
1275 		} else {
1276 			bound_ill = ill;
1277 			hw_addr = ill->ill_nd_lla;
1278 			hw_addr_len = ill->ill_phys_addr_length;
1279 		}
1280 
1281 		/*
1282 		 * If this is an initial bring-up (or the ipif was never
1283 		 * completely brought up), do DAD.  Otherwise, we're here
1284 		 * because IPMP has rebound an address to this ill: send
1285 		 * unsolicited advertisements to inform others.
1286 		 */
1287 		if (initial || !ipif->ipif_addr_ready) {
1288 			/* Causes Duplicate Address Detection to run */
1289 			state = ND_PROBE;
1290 		} else {
1291 			state = ND_REACHABLE;
1292 			flags |= NCE_F_UNSOL_ADV;
1293 		}
1294 
1295 retry:
1296 		err = nce_lookup_then_add_v6(ill, hw_addr, hw_addr_len,
1297 		    &ipif->ipif_v6lcl_addr, flags, state, &nce);
1298 		switch (err) {
1299 		case 0:
1300 			ip1dbg(("ipif_ndp_up: NCE created for %s\n",
1301 			    ill->ill_name));
1302 			ipif->ipif_addr_ready = 1;
1303 			ipif->ipif_added_nce = 1;
1304 			nce->nce_ipif_cnt++;
1305 			break;
1306 		case EINPROGRESS:
1307 			ip1dbg(("ipif_ndp_up: running DAD now for %s\n",
1308 			    ill->ill_name));
1309 			ipif->ipif_added_nce = 1;
1310 			nce->nce_ipif_cnt++;
1311 			break;
1312 		case EEXIST:
1313 			ip1dbg(("ipif_ndp_up: NCE already exists for %s\n",
1314 			    ill->ill_name));
1315 			if (!NCE_MYADDR(nce->nce_common)) {
1316 				/*
1317 				 * A leftover nce from before this address
1318 				 * existed
1319 				 */
1320 				ncec_delete(nce->nce_common);
1321 				nce_refrele(nce);
1322 				nce = NULL;
1323 				goto retry;
1324 			}
1325 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
1326 				nce_refrele(nce);
1327 				nce = NULL;
1328 				ip1dbg(("ipif_ndp_up: NCE already exists "
1329 				    "for %s\n", ill->ill_name));
1330 				goto fail;
1331 			}
1332 			/*
1333 			 * Duplicate local addresses are permissible for
1334 			 * IPIF_POINTOPOINT interfaces which will get marked
1335 			 * IPIF_UNNUMBERED later in
1336 			 * ip_addr_availability_check().
1337 			 *
1338 			 * The nce_ipif_cnt field tracks the number of
1339 			 * ipifs that have nce_addr as their local address.
1340 			 */
1341 			ipif->ipif_addr_ready = 1;
1342 			ipif->ipif_added_nce = 1;
1343 			nce->nce_ipif_cnt++;
1344 			err = 0;
1345 			break;
1346 		default:
1347 			ip1dbg(("ipif_ndp_up: NCE creation failed for %s\n",
1348 			    ill->ill_name));
1349 			goto fail;
1350 		}
1351 	} else {
1352 		/* No local NCE for this entry */
1353 		ipif->ipif_addr_ready = 1;
1354 	}
1355 	if (nce != NULL)
1356 		nce_refrele(nce);
1357 	return (0);
1358 fail:
1359 	if (added_ipif)
1360 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
1361 
1362 	return (err);
1363 }
1364 
1365 /* Remove all cache entries for this logical interface */
1366 void
1367 ipif_ndp_down(ipif_t *ipif)
1368 {
1369 	ipif_nce_down(ipif);
1370 }
1371 
1372 /*
1373  * Return the scope of the given IPv6 address.  If the address is an
1374  * IPv4 mapped IPv6 address, return the scope of the corresponding
1375  * IPv4 address.
1376  */
1377 in6addr_scope_t
1378 ip_addr_scope_v6(const in6_addr_t *addr)
1379 {
1380 	static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT;
1381 
1382 	if (IN6_IS_ADDR_V4MAPPED(addr)) {
1383 		in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr)));
1384 		if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1385 		    (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET)
1386 			return (IP6_SCOPE_LINKLOCAL);
1387 		if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET ||
1388 		    (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET ||
1389 		    (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET)
1390 			return (IP6_SCOPE_SITELOCAL);
1391 		return (IP6_SCOPE_GLOBAL);
1392 	}
1393 
1394 	if (IN6_IS_ADDR_MULTICAST(addr))
1395 		return (IN6_ADDR_MC_SCOPE(addr));
1396 
1397 	/* link-local and loopback addresses are of link-local scope */
1398 	if (IN6_IS_ADDR_LINKLOCAL(addr) ||
1399 	    IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback))
1400 		return (IP6_SCOPE_LINKLOCAL);
1401 	if (IN6_IS_ADDR_SITELOCAL(addr))
1402 		return (IP6_SCOPE_SITELOCAL);
1403 	return (IP6_SCOPE_GLOBAL);
1404 }
1405 
1406 
1407 /*
1408  * Returns the length of the common prefix of a1 and a2, as per
1409  * CommonPrefixLen() defined in RFC 3484.
1410  */
1411 static int
1412 ip_common_prefix_v6(const in6_addr_t *a1, const in6_addr_t *a2)
1413 {
1414 	int i;
1415 	uint32_t a1val, a2val, mask;
1416 
1417 	for (i = 0; i < 4; i++) {
1418 		if ((a1val = a1->s6_addr32[i]) != (a2val = a2->s6_addr32[i])) {
1419 			a1val ^= a2val;
1420 			i *= 32;
1421 			mask = 0x80000000u;
1422 			while (!(a1val & mask)) {
1423 				mask >>= 1;
1424 				i++;
1425 			}
1426 			return (i);
1427 		}
1428 	}
1429 	return (IPV6_ABITS);
1430 }
1431 
1432 #define	IPIF_VALID_IPV6_SOURCE(ipif) \
1433 	(((ipif)->ipif_flags & IPIF_UP) && \
1434 	!((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) && \
1435 	!((ipif)->ipif_ill->ill_flags & ILLF_NOACCEPT))
1436 
1437 /* source address candidate */
1438 typedef struct candidate {
1439 	ipif_t		*cand_ipif;
1440 	/* The properties of this candidate */
1441 	boolean_t	cand_isdst;
1442 	boolean_t	cand_isdst_set;
1443 	in6addr_scope_t	cand_scope;
1444 	boolean_t	cand_scope_set;
1445 	boolean_t	cand_isdeprecated;
1446 	boolean_t	cand_isdeprecated_set;
1447 	boolean_t	cand_ispreferred;
1448 	boolean_t	cand_ispreferred_set;
1449 	boolean_t	cand_matchedinterface;
1450 	boolean_t	cand_matchedinterface_set;
1451 	boolean_t	cand_matchedlabel;
1452 	boolean_t	cand_matchedlabel_set;
1453 	boolean_t	cand_istmp;
1454 	boolean_t	cand_istmp_set;
1455 	int		cand_common_pref;
1456 	boolean_t	cand_common_pref_set;
1457 	boolean_t	cand_pref_eq;
1458 	boolean_t	cand_pref_eq_set;
1459 	int		cand_pref_len;
1460 	boolean_t	cand_pref_len_set;
1461 } cand_t;
1462 #define	cand_srcaddr	cand_ipif->ipif_v6lcl_addr
1463 #define	cand_mask	cand_ipif->ipif_v6net_mask
1464 #define	cand_flags	cand_ipif->ipif_flags
1465 #define	cand_ill	cand_ipif->ipif_ill
1466 #define	cand_zoneid	cand_ipif->ipif_zoneid
1467 
1468 /* information about the destination for source address selection */
1469 typedef struct dstinfo {
1470 	const in6_addr_t	*dst_addr;
1471 	ill_t			*dst_ill;
1472 	uint_t			dst_restrict_ill;
1473 	boolean_t		dst_prefer_src_tmp;
1474 	in6addr_scope_t		dst_scope;
1475 	char			*dst_label;
1476 } dstinfo_t;
1477 
1478 /*
1479  * The following functions are rules used to select a source address in
1480  * ipif_select_source_v6().  Each rule compares a current candidate (cc)
1481  * against the best candidate (bc).  Each rule has three possible outcomes;
1482  * the candidate is preferred over the best candidate (CAND_PREFER), the
1483  * candidate is not preferred over the best candidate (CAND_AVOID), or the
1484  * candidate is of equal value as the best candidate (CAND_TIE).
1485  *
1486  * These rules are part of a greater "Default Address Selection for IPv6"
1487  * sheme, which is standards based work coming out of the IETF ipv6 working
1488  * group.  The IETF document defines both IPv6 source address selection and
1489  * destination address ordering.  The rules defined here implement the IPv6
1490  * source address selection.  Destination address ordering is done by
1491  * libnsl, and uses a similar set of rules to implement the sorting.
1492  *
1493  * Most of the rules are defined by the RFC and are not typically altered.  The
1494  * last rule, number 8, has language that allows for local preferences.  In the
1495  * scheme below, this means that new Solaris rules should normally go between
1496  * rule_ifprefix and rule_prefix.
1497  */
1498 typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t;
1499 typedef	rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *,
1500     ip_stack_t *);
1501 
1502 /* Prefer an address if it is equal to the destination address. */
1503 /* ARGSUSED3 */
1504 static rule_res_t
1505 rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1506 {
1507 	if (!bc->cand_isdst_set) {
1508 		bc->cand_isdst =
1509 		    IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr);
1510 		bc->cand_isdst_set = B_TRUE;
1511 	}
1512 
1513 	cc->cand_isdst =
1514 	    IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr);
1515 	cc->cand_isdst_set = B_TRUE;
1516 
1517 	if (cc->cand_isdst == bc->cand_isdst)
1518 		return (CAND_TIE);
1519 	else if (cc->cand_isdst)
1520 		return (CAND_PREFER);
1521 	else
1522 		return (CAND_AVOID);
1523 }
1524 
1525 /*
1526  * Prefer addresses that are of closest scope to the destination.  Always
1527  * prefer addresses that are of greater scope than the destination over
1528  * those that are of lesser scope than the destination.
1529  */
1530 /* ARGSUSED3 */
1531 static rule_res_t
1532 rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1533 {
1534 	if (!bc->cand_scope_set) {
1535 		bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr);
1536 		bc->cand_scope_set = B_TRUE;
1537 	}
1538 
1539 	cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr);
1540 	cc->cand_scope_set = B_TRUE;
1541 
1542 	if (cc->cand_scope < bc->cand_scope) {
1543 		if (cc->cand_scope < dstinfo->dst_scope)
1544 			return (CAND_AVOID);
1545 		else
1546 			return (CAND_PREFER);
1547 	} else if (bc->cand_scope < cc->cand_scope) {
1548 		if (bc->cand_scope < dstinfo->dst_scope)
1549 			return (CAND_PREFER);
1550 		else
1551 			return (CAND_AVOID);
1552 	} else {
1553 		return (CAND_TIE);
1554 	}
1555 }
1556 
1557 /*
1558  * Prefer non-deprecated source addresses.
1559  */
1560 /* ARGSUSED2 */
1561 static rule_res_t
1562 rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1563     ip_stack_t *ipst)
1564 {
1565 	if (!bc->cand_isdeprecated_set) {
1566 		bc->cand_isdeprecated =
1567 		    ((bc->cand_flags & IPIF_DEPRECATED) != 0);
1568 		bc->cand_isdeprecated_set = B_TRUE;
1569 	}
1570 
1571 	cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0);
1572 	cc->cand_isdeprecated_set = B_TRUE;
1573 
1574 	if (bc->cand_isdeprecated == cc->cand_isdeprecated)
1575 		return (CAND_TIE);
1576 	else if (cc->cand_isdeprecated)
1577 		return (CAND_AVOID);
1578 	else
1579 		return (CAND_PREFER);
1580 }
1581 
1582 /*
1583  * Prefer source addresses that have the IPIF_PREFERRED flag set.  This
1584  * rule must be before rule_interface because the flag could be set on any
1585  * interface, not just the interface being used for outgoing packets (for
1586  * example, the IFF_PREFERRED could be set on an address assigned to the
1587  * loopback interface).
1588  */
1589 /* ARGSUSED2 */
1590 static rule_res_t
1591 rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1592     ip_stack_t *ipst)
1593 {
1594 	if (!bc->cand_ispreferred_set) {
1595 		bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0);
1596 		bc->cand_ispreferred_set = B_TRUE;
1597 	}
1598 
1599 	cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0);
1600 	cc->cand_ispreferred_set = B_TRUE;
1601 
1602 	if (bc->cand_ispreferred == cc->cand_ispreferred)
1603 		return (CAND_TIE);
1604 	else if (cc->cand_ispreferred)
1605 		return (CAND_PREFER);
1606 	else
1607 		return (CAND_AVOID);
1608 }
1609 
1610 /*
1611  * Prefer source addresses that are assigned to the outgoing interface.
1612  */
1613 /* ARGSUSED3 */
1614 static rule_res_t
1615 rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1616     ip_stack_t *ipst)
1617 {
1618 	ill_t *dstill = dstinfo->dst_ill;
1619 
1620 	/*
1621 	 * If dstinfo->dst_restrict_ill is set, this rule is unnecessary
1622 	 * since we know all candidates will be on the same link.
1623 	 */
1624 	if (dstinfo->dst_restrict_ill)
1625 		return (CAND_TIE);
1626 
1627 	if (!bc->cand_matchedinterface_set) {
1628 		bc->cand_matchedinterface = bc->cand_ill == dstill;
1629 		bc->cand_matchedinterface_set = B_TRUE;
1630 	}
1631 
1632 	cc->cand_matchedinterface = cc->cand_ill == dstill;
1633 	cc->cand_matchedinterface_set = B_TRUE;
1634 
1635 	if (bc->cand_matchedinterface == cc->cand_matchedinterface)
1636 		return (CAND_TIE);
1637 	else if (cc->cand_matchedinterface)
1638 		return (CAND_PREFER);
1639 	else
1640 		return (CAND_AVOID);
1641 }
1642 
1643 /*
1644  * Prefer source addresses whose label matches the destination's label.
1645  */
1646 static rule_res_t
1647 rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1648 {
1649 	char *label;
1650 
1651 	if (!bc->cand_matchedlabel_set) {
1652 		label = ip6_asp_lookup(&bc->cand_srcaddr, NULL, ipst);
1653 		bc->cand_matchedlabel =
1654 		    ip6_asp_labelcmp(label, dstinfo->dst_label);
1655 		bc->cand_matchedlabel_set = B_TRUE;
1656 	}
1657 
1658 	label = ip6_asp_lookup(&cc->cand_srcaddr, NULL, ipst);
1659 	cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label);
1660 	cc->cand_matchedlabel_set = B_TRUE;
1661 
1662 	if (bc->cand_matchedlabel == cc->cand_matchedlabel)
1663 		return (CAND_TIE);
1664 	else if (cc->cand_matchedlabel)
1665 		return (CAND_PREFER);
1666 	else
1667 		return (CAND_AVOID);
1668 }
1669 
1670 /*
1671  * Prefer public addresses over temporary ones.  An application can reverse
1672  * the logic of this rule and prefer temporary addresses by using the
1673  * IPV6_SRC_PREFERENCES socket option.
1674  */
1675 /* ARGSUSED3 */
1676 static rule_res_t
1677 rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1678     ip_stack_t *ipst)
1679 {
1680 	if (!bc->cand_istmp_set) {
1681 		bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0);
1682 		bc->cand_istmp_set = B_TRUE;
1683 	}
1684 
1685 	cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0);
1686 	cc->cand_istmp_set = B_TRUE;
1687 
1688 	if (bc->cand_istmp == cc->cand_istmp)
1689 		return (CAND_TIE);
1690 
1691 	if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp)
1692 		return (CAND_PREFER);
1693 	else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp)
1694 		return (CAND_PREFER);
1695 	else
1696 		return (CAND_AVOID);
1697 }
1698 
1699 /*
1700  * Prefer source addresses with longer matching prefix with the destination
1701  * under the interface mask.  This gets us on the same subnet before applying
1702  * any Solaris-specific rules.
1703  */
1704 /* ARGSUSED3 */
1705 static rule_res_t
1706 rule_ifprefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1707     ip_stack_t *ipst)
1708 {
1709 	if (!bc->cand_pref_eq_set) {
1710 		bc->cand_pref_eq = V6_MASK_EQ_2(bc->cand_srcaddr,
1711 		    bc->cand_mask, *dstinfo->dst_addr);
1712 		bc->cand_pref_eq_set = B_TRUE;
1713 	}
1714 
1715 	cc->cand_pref_eq = V6_MASK_EQ_2(cc->cand_srcaddr, cc->cand_mask,
1716 	    *dstinfo->dst_addr);
1717 	cc->cand_pref_eq_set = B_TRUE;
1718 
1719 	if (bc->cand_pref_eq) {
1720 		if (cc->cand_pref_eq) {
1721 			if (!bc->cand_pref_len_set) {
1722 				bc->cand_pref_len =
1723 				    ip_mask_to_plen_v6(&bc->cand_mask);
1724 				bc->cand_pref_len_set = B_TRUE;
1725 			}
1726 			cc->cand_pref_len = ip_mask_to_plen_v6(&cc->cand_mask);
1727 			cc->cand_pref_len_set = B_TRUE;
1728 			if (bc->cand_pref_len == cc->cand_pref_len)
1729 				return (CAND_TIE);
1730 			else if (bc->cand_pref_len > cc->cand_pref_len)
1731 				return (CAND_AVOID);
1732 			else
1733 				return (CAND_PREFER);
1734 		} else {
1735 			return (CAND_AVOID);
1736 		}
1737 	} else {
1738 		if (cc->cand_pref_eq)
1739 			return (CAND_PREFER);
1740 		else
1741 			return (CAND_TIE);
1742 	}
1743 }
1744 
1745 /*
1746  * Prefer to use zone-specific addresses when possible instead of all-zones
1747  * addresses.
1748  */
1749 /* ARGSUSED2 */
1750 static rule_res_t
1751 rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1752     ip_stack_t *ipst)
1753 {
1754 	if ((bc->cand_zoneid == ALL_ZONES) ==
1755 	    (cc->cand_zoneid == ALL_ZONES))
1756 		return (CAND_TIE);
1757 	else if (cc->cand_zoneid == ALL_ZONES)
1758 		return (CAND_AVOID);
1759 	else
1760 		return (CAND_PREFER);
1761 }
1762 
1763 /*
1764  * Prefer to use DHCPv6 (first) and static addresses (second) when possible
1765  * instead of statelessly autoconfigured addresses.
1766  *
1767  * This is done after trying all other preferences (and before the final tie
1768  * breaker) so that, if all else is equal, we select addresses configured by
1769  * DHCPv6 over other addresses.  We presume that DHCPv6 addresses, unlike
1770  * stateless autoconfigured addresses, are deliberately configured by an
1771  * administrator, and thus are correctly set up in DNS and network packet
1772  * filters.
1773  */
1774 /* ARGSUSED2 */
1775 static rule_res_t
1776 rule_addr_type(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1777     ip_stack_t *ipst)
1778 {
1779 #define	ATYPE(x)	\
1780 	((x) & IPIF_DHCPRUNNING) ? 1 : ((x) & IPIF_ADDRCONF) ? 3 : 2
1781 	int bcval = ATYPE(bc->cand_flags);
1782 	int ccval = ATYPE(cc->cand_flags);
1783 #undef ATYPE
1784 
1785 	if (bcval == ccval)
1786 		return (CAND_TIE);
1787 	else if (ccval < bcval)
1788 		return (CAND_PREFER);
1789 	else
1790 		return (CAND_AVOID);
1791 }
1792 
1793 /*
1794  * Prefer source addresses with longer matching prefix with the destination.
1795  * We do the longest matching prefix calculation by doing an xor of both
1796  * addresses with the destination, and pick the address with the longest string
1797  * of leading zeros, as per CommonPrefixLen() defined in RFC 3484.
1798  */
1799 /* ARGSUSED3 */
1800 static rule_res_t
1801 rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1802 {
1803 	if (!bc->cand_common_pref_set) {
1804 		bc->cand_common_pref = ip_common_prefix_v6(&bc->cand_srcaddr,
1805 		    dstinfo->dst_addr);
1806 		bc->cand_common_pref_set = B_TRUE;
1807 	}
1808 
1809 	cc->cand_common_pref = ip_common_prefix_v6(&cc->cand_srcaddr,
1810 	    dstinfo->dst_addr);
1811 	cc->cand_common_pref_set = B_TRUE;
1812 
1813 	if (bc->cand_common_pref == cc->cand_common_pref)
1814 		return (CAND_TIE);
1815 	else if (bc->cand_common_pref > cc->cand_common_pref)
1816 		return (CAND_AVOID);
1817 	else
1818 		return (CAND_PREFER);
1819 }
1820 
1821 /*
1822  * Last rule: we must pick something, so just prefer the current best
1823  * candidate.
1824  */
1825 /* ARGSUSED */
1826 static rule_res_t
1827 rule_must_be_last(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1828     ip_stack_t *ipst)
1829 {
1830 	return (CAND_AVOID);
1831 }
1832 
1833 /*
1834  * Determine the best source address given a destination address and a
1835  * destination ill.  If no suitable source address is found, it returns
1836  * NULL. If there is a usable address pointed to by the usesrc
1837  * (i.e ill_usesrc_ifindex != 0) then return that first since it is more
1838  * fine grained (i.e per interface)
1839  *
1840  * This implementation is based on the "Default Address Selection for IPv6"
1841  * specification produced by the IETF IPv6 working group.  It has been
1842  * implemented so that the list of addresses is only traversed once (the
1843  * specification's algorithm could traverse the list of addresses once for
1844  * every rule).
1845  *
1846  * The restrict_ill argument restricts the algorithm to choose a source
1847  * address that is assigned to the destination ill.  This is used when
1848  * the destination address is a link-local or multicast address, and when
1849  * ipv6_strict_dst_multihoming is turned on.
1850  *
1851  * src_prefs is the caller's set of source address preferences.  If source
1852  * address selection is being called to determine the source address of a
1853  * connected socket (from ip_set_destination_v6()), then the preferences are
1854  * taken from conn_ixa->ixa_src_preferences.  These preferences can be set on a
1855  * per-socket basis using the IPV6_SRC_PREFERENCES socket option.  The only
1856  * preference currently implemented is for rfc3041 temporary addresses.
1857  */
1858 ipif_t *
1859 ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst,
1860     boolean_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid,
1861     boolean_t allow_usesrc, boolean_t *notreadyp)
1862 {
1863 	dstinfo_t	dstinfo;
1864 	char		dstr[INET6_ADDRSTRLEN];
1865 	char		sstr[INET6_ADDRSTRLEN];
1866 	ipif_t		*ipif, *start_ipif, *next_ipif;
1867 	ill_t		*ill, *usesrc_ill = NULL, *ipmp_ill = NULL;
1868 	ill_walk_context_t	ctx;
1869 	cand_t		best_c;	/* The best candidate */
1870 	cand_t		curr_c;	/* The current candidate */
1871 	uint_t		index;
1872 	boolean_t	first_candidate = B_TRUE;
1873 	rule_res_t	rule_result;
1874 	tsol_tpc_t	*src_rhtp, *dst_rhtp;
1875 	ip_stack_t	*ipst = dstill->ill_ipst;
1876 
1877 	/*
1878 	 * The list of ordering rules.  They are applied in the order they
1879 	 * appear in the list.
1880 	 *
1881 	 * Solaris doesn't currently support Mobile IPv6, so there's no
1882 	 * rule_mipv6 corresponding to rule 4 in the specification.
1883 	 */
1884 	rulef_t	rules[] = {
1885 		rule_isdst,
1886 		rule_scope,
1887 		rule_deprecated,
1888 		rule_preferred,
1889 		rule_interface,
1890 		rule_label,
1891 		rule_temporary,
1892 		rule_ifprefix,			/* local rules after this */
1893 		rule_zone_specific,
1894 		rule_addr_type,
1895 		rule_prefix,			/* local rules before this */
1896 		rule_must_be_last,		/* must always be last */
1897 		NULL
1898 	};
1899 
1900 	ASSERT(dstill->ill_isv6);
1901 	ASSERT(!IN6_IS_ADDR_V4MAPPED(dst));
1902 
1903 	/*
1904 	 * Check if there is a usable src address pointed to by the
1905 	 * usesrc ifindex. This has higher precedence since it is
1906 	 * finer grained (i.e per interface) v/s being system wide.
1907 	 */
1908 	if (dstill->ill_usesrc_ifindex != 0 && allow_usesrc) {
1909 		if ((usesrc_ill =
1910 		    ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE,
1911 		    ipst)) != NULL) {
1912 			dstinfo.dst_ill = usesrc_ill;
1913 		} else {
1914 			return (NULL);
1915 		}
1916 	} else if (IS_UNDER_IPMP(dstill)) {
1917 		/*
1918 		 * Test addresses should never be used for source address
1919 		 * selection, so if we were passed an underlying ill, switch
1920 		 * to the IPMP meta-interface.
1921 		 */
1922 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(dstill)) != NULL)
1923 			dstinfo.dst_ill = ipmp_ill;
1924 		else
1925 			return (NULL);
1926 	} else {
1927 		dstinfo.dst_ill = dstill;
1928 	}
1929 
1930 	/*
1931 	 * If we're dealing with an unlabeled destination on a labeled system,
1932 	 * make sure that we ignore source addresses that are incompatible with
1933 	 * the destination's default label.  That destination's default label
1934 	 * must dominate the minimum label on the source address.
1935 	 *
1936 	 * (Note that this has to do with Trusted Solaris.  It's not related to
1937 	 * the labels described by ip6_asp_lookup.)
1938 	 */
1939 	dst_rhtp = NULL;
1940 	if (is_system_labeled()) {
1941 		dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE);
1942 		if (dst_rhtp == NULL)
1943 			return (NULL);
1944 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
1945 			TPC_RELE(dst_rhtp);
1946 			dst_rhtp = NULL;
1947 		}
1948 	}
1949 
1950 	dstinfo.dst_addr = dst;
1951 	dstinfo.dst_scope = ip_addr_scope_v6(dst);
1952 	dstinfo.dst_label = ip6_asp_lookup(dst, NULL, ipst);
1953 	dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0);
1954 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
1955 	/*
1956 	 * Section three of the I-D states that for multicast and
1957 	 * link-local destinations, the candidate set must be restricted to
1958 	 * an interface that is on the same link as the outgoing interface.
1959 	 * Also, when ipv6_strict_dst_multihoming is turned on, always
1960 	 * restrict the source address to the destination link as doing
1961 	 * otherwise will almost certainly cause problems.
1962 	 */
1963 	if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) ||
1964 	    ipst->ips_ipv6_strict_dst_multihoming || usesrc_ill != NULL) {
1965 		dstinfo.dst_restrict_ill = B_TRUE;
1966 	} else {
1967 		dstinfo.dst_restrict_ill = restrict_ill;
1968 	}
1969 
1970 	bzero(&best_c, sizeof (cand_t));
1971 
1972 	/*
1973 	 * Take a pass through the list of IPv6 interfaces to choose the best
1974 	 * possible source address.  If restrict_ill is set, just use dst_ill.
1975 	 */
1976 	if (dstinfo.dst_restrict_ill)
1977 		ill = dstinfo.dst_ill;
1978 	else
1979 		ill = ILL_START_WALK_V6(&ctx, ipst);
1980 
1981 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
1982 		ASSERT(ill->ill_isv6);
1983 
1984 		/*
1985 		 * Test addresses should never be used for source address
1986 		 * selection, so ignore underlying ills.
1987 		 */
1988 		if (IS_UNDER_IPMP(ill))
1989 			continue;
1990 
1991 		if (ill->ill_ipif == NULL)
1992 			continue;
1993 		/*
1994 		 * For source address selection, we treat the ipif list as
1995 		 * circular and continue until we get back to where we
1996 		 * started.  This allows IPMP to vary source address selection
1997 		 * (which improves inbound load spreading) by caching its last
1998 		 * ending point and starting from there.  NOTE: we don't have
1999 		 * to worry about ill_src_ipif changing ills since that can't
2000 		 * happen on the IPMP ill.
2001 		 */
2002 		start_ipif = ill->ill_ipif;
2003 		if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
2004 			start_ipif = ill->ill_src_ipif;
2005 
2006 		ipif = start_ipif;
2007 		do {
2008 			if ((next_ipif = ipif->ipif_next) == NULL)
2009 				next_ipif = ill->ill_ipif;
2010 
2011 			if (!IPIF_VALID_IPV6_SOURCE(ipif))
2012 				continue;
2013 
2014 			if (!ipif->ipif_addr_ready) {
2015 				if (notreadyp != NULL)
2016 					*notreadyp = B_TRUE;
2017 				continue;
2018 			}
2019 
2020 			if (zoneid != ALL_ZONES &&
2021 			    ipif->ipif_zoneid != zoneid &&
2022 			    ipif->ipif_zoneid != ALL_ZONES)
2023 				continue;
2024 
2025 			/*
2026 			 * Check compatibility of local address for
2027 			 * destination's default label if we're on a labeled
2028 			 * system.  Incompatible addresses can't be used at
2029 			 * all and must be skipped over.
2030 			 */
2031 			if (dst_rhtp != NULL) {
2032 				boolean_t incompat;
2033 
2034 				src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr,
2035 				    IPV6_VERSION, B_FALSE);
2036 				if (src_rhtp == NULL)
2037 					continue;
2038 				incompat =
2039 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
2040 				    src_rhtp->tpc_tp.tp_doi !=
2041 				    dst_rhtp->tpc_tp.tp_doi ||
2042 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
2043 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
2044 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
2045 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
2046 				TPC_RELE(src_rhtp);
2047 				if (incompat)
2048 					continue;
2049 			}
2050 
2051 			if (first_candidate) {
2052 				/*
2053 				 * This is first valid address in the list.
2054 				 * It is automatically the best candidate
2055 				 * so far.
2056 				 */
2057 				best_c.cand_ipif = ipif;
2058 				first_candidate = B_FALSE;
2059 				continue;
2060 			}
2061 
2062 			bzero(&curr_c, sizeof (cand_t));
2063 			curr_c.cand_ipif = ipif;
2064 
2065 			/*
2066 			 * Compare this current candidate (curr_c) with the
2067 			 * best candidate (best_c) by applying the
2068 			 * comparison rules in order until one breaks the
2069 			 * tie.
2070 			 */
2071 			for (index = 0; rules[index] != NULL; index++) {
2072 				/* Apply a comparison rule. */
2073 				rule_result = (rules[index])(&best_c, &curr_c,
2074 				    &dstinfo, ipst);
2075 				if (rule_result == CAND_AVOID) {
2076 					/*
2077 					 * The best candidate is still the
2078 					 * best candidate.  Forget about
2079 					 * this current candidate and go on
2080 					 * to the next one.
2081 					 */
2082 					break;
2083 				} else if (rule_result == CAND_PREFER) {
2084 					/*
2085 					 * This candidate is prefered.  It
2086 					 * becomes the best candidate so
2087 					 * far.  Go on to the next address.
2088 					 */
2089 					best_c = curr_c;
2090 					break;
2091 				}
2092 				/* We have a tie, apply the next rule. */
2093 			}
2094 
2095 			/*
2096 			 * The last rule must be a tie breaker rule and
2097 			 * must never produce a tie.  At this point, the
2098 			 * candidate should have either been rejected, or
2099 			 * have been prefered as the best candidate so far.
2100 			 */
2101 			ASSERT(rule_result != CAND_TIE);
2102 		} while ((ipif = next_ipif) != start_ipif);
2103 
2104 		/*
2105 		 * For IPMP, update the source ipif rotor to the next ipif,
2106 		 * provided we can look it up.  (We must not use it if it's
2107 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
2108 		 * ipif_free() checked ill_src_ipif.)
2109 		 */
2110 		if (IS_IPMP(ill) && ipif != NULL) {
2111 			mutex_enter(&ipif->ipif_ill->ill_lock);
2112 			next_ipif = ipif->ipif_next;
2113 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
2114 				ill->ill_src_ipif = next_ipif;
2115 			else
2116 				ill->ill_src_ipif = NULL;
2117 			mutex_exit(&ipif->ipif_ill->ill_lock);
2118 		}
2119 
2120 		/*
2121 		 * Only one ill to consider if dst_restrict_ill is set.
2122 		 */
2123 		if (dstinfo.dst_restrict_ill)
2124 			break;
2125 	}
2126 
2127 	ipif = best_c.cand_ipif;
2128 	ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n",
2129 	    dstinfo.dst_ill->ill_name,
2130 	    inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)),
2131 	    (ipif == NULL ? "NULL" :
2132 	    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr)))));
2133 
2134 	if (usesrc_ill != NULL)
2135 		ill_refrele(usesrc_ill);
2136 
2137 	if (ipmp_ill != NULL)
2138 		ill_refrele(ipmp_ill);
2139 
2140 	if (dst_rhtp != NULL)
2141 		TPC_RELE(dst_rhtp);
2142 
2143 	if (ipif == NULL) {
2144 		rw_exit(&ipst->ips_ill_g_lock);
2145 		return (NULL);
2146 	}
2147 
2148 	mutex_enter(&ipif->ipif_ill->ill_lock);
2149 	if (!IPIF_IS_CONDEMNED(ipif)) {
2150 		ipif_refhold_locked(ipif);
2151 		mutex_exit(&ipif->ipif_ill->ill_lock);
2152 		rw_exit(&ipst->ips_ill_g_lock);
2153 		return (ipif);
2154 	}
2155 	mutex_exit(&ipif->ipif_ill->ill_lock);
2156 	rw_exit(&ipst->ips_ill_g_lock);
2157 	ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p"
2158 	    " returning null \n", (void *)ipif));
2159 
2160 	return (NULL);
2161 }
2162 
2163 /*
2164  * Pick a source address based on the destination ill and an optional setsrc
2165  * address.
2166  * The result is stored in srcp. If generation is set, then put the source
2167  * generation number there before we look for the source address (to avoid
2168  * missing changes in the set of source addresses.
2169  * If flagsp is set, then us it to pass back ipif_flags.
2170  *
2171  * If the caller wants to cache the returned source address and detect when
2172  * that might be stale, the caller should pass in a generation argument,
2173  * which the caller can later compare against ips_src_generation
2174  *
2175  * The precedence order for selecting an IPv6 source address is:
2176  *  - RTF_SETSRC on the first ire in the recursive lookup always wins.
2177  *  - If usrsrc is set, swap the ill to be the usesrc one.
2178  *  - If IPMP is used on the ill, select a random address from the most
2179  *    preferred ones below:
2180  * That is followed by the long list of IPv6 source address selection rules
2181  * starting with rule_isdst(), rule_scope(), etc.
2182  *
2183  * We have lower preference for ALL_ZONES IP addresses,
2184  * as they pose problems with unlabeled destinations.
2185  *
2186  * Note that when multiple IP addresses match e.g., with rule_scope() we pick
2187  * the first one if IPMP is not in use. With IPMP we randomize.
2188  */
2189 int
2190 ip_select_source_v6(ill_t *ill, const in6_addr_t *setsrc, const in6_addr_t *dst,
2191     zoneid_t zoneid, ip_stack_t *ipst, uint_t restrict_ill, uint32_t src_prefs,
2192     in6_addr_t *srcp, uint32_t *generation, uint64_t *flagsp)
2193 {
2194 	ipif_t *ipif;
2195 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
2196 
2197 	if (flagsp != NULL)
2198 		*flagsp = 0;
2199 
2200 	/*
2201 	 * Need to grab the generation number before we check to
2202 	 * avoid a race with a change to the set of local addresses.
2203 	 * No lock needed since the thread which updates the set of local
2204 	 * addresses use ipif/ill locks and exit those (hence a store memory
2205 	 * barrier) before doing the atomic increase of ips_src_generation.
2206 	 */
2207 	if (generation != NULL) {
2208 		*generation = ipst->ips_src_generation;
2209 	}
2210 
2211 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
2212 	if (setsrc != NULL && !IN6_IS_ADDR_UNSPECIFIED(setsrc)) {
2213 		*srcp = *setsrc;
2214 		return (0);
2215 	}
2216 
2217 	ipif = ipif_select_source_v6(ill, dst, restrict_ill, src_prefs, zoneid,
2218 	    B_TRUE, &notready);
2219 	if (ipif == NULL) {
2220 		if (notready)
2221 			return (ENETDOWN);
2222 		else
2223 			return (EADDRNOTAVAIL);
2224 	}
2225 	*srcp = ipif->ipif_v6lcl_addr;
2226 	if (flagsp != NULL)
2227 		*flagsp = ipif->ipif_flags;
2228 	ipif_refrele(ipif);
2229 	return (0);
2230 }
2231 
2232 /*
2233  * Perform an attach and bind to get phys addr plus info_req for
2234  * the physical device.
2235  * q and mp represents an ioctl which will be queued waiting for
2236  * completion of the DLPI message exchange.
2237  * MUST be called on an ill queue.
2238  *
2239  * Returns EINPROGRESS when mp has been consumed by queueing it.
2240  * The ioctl will complete in ip_rput.
2241  */
2242 int
2243 ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
2244 {
2245 	mblk_t	*v6token_mp = NULL;
2246 	mblk_t	*v6lla_mp = NULL;
2247 	mblk_t	*dest_mp = NULL;
2248 	mblk_t	*phys_mp = NULL;
2249 	mblk_t	*info_mp = NULL;
2250 	mblk_t	*attach_mp = NULL;
2251 	mblk_t	*bind_mp = NULL;
2252 	mblk_t	*unbind_mp = NULL;
2253 	mblk_t	*notify_mp = NULL;
2254 	mblk_t  *capab_mp = NULL;
2255 
2256 	ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id));
2257 	ASSERT(ill->ill_dlpi_style_set);
2258 	ASSERT(WR(q)->q_next != NULL);
2259 
2260 	if (ill->ill_isv6) {
2261 		v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2262 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2263 		if (v6token_mp == NULL)
2264 			goto bad;
2265 		((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type =
2266 		    DL_IPV6_TOKEN;
2267 
2268 		v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2269 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2270 		if (v6lla_mp == NULL)
2271 			goto bad;
2272 		((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type =
2273 		    DL_IPV6_LINK_LAYER_ADDR;
2274 	}
2275 
2276 	if (ill->ill_mactype == DL_IPV4 || ill->ill_mactype == DL_IPV6) {
2277 		dest_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2278 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2279 		if (dest_mp == NULL)
2280 			goto bad;
2281 		((dl_phys_addr_req_t *)dest_mp->b_rptr)->dl_addr_type =
2282 		    DL_CURR_DEST_ADDR;
2283 	}
2284 
2285 	/*
2286 	 * Allocate a DL_NOTIFY_REQ and set the notifications we want.
2287 	 */
2288 	notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long),
2289 	    DL_NOTIFY_REQ);
2290 	if (notify_mp == NULL)
2291 		goto bad;
2292 	((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications =
2293 	    (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH |
2294 	    DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG |
2295 	    DL_NOTE_PROMISC_ON_PHYS | DL_NOTE_PROMISC_OFF_PHYS |
2296 	    DL_NOTE_REPLUMB);
2297 
2298 	phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2299 	    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2300 	if (phys_mp == NULL)
2301 		goto bad;
2302 	((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type =
2303 	    DL_CURR_PHYS_ADDR;
2304 
2305 	info_mp = ip_dlpi_alloc(
2306 	    sizeof (dl_info_req_t) + sizeof (dl_info_ack_t),
2307 	    DL_INFO_REQ);
2308 	if (info_mp == NULL)
2309 		goto bad;
2310 
2311 	ASSERT(ill->ill_dlpi_capab_state == IDCS_UNKNOWN);
2312 	capab_mp = ip_dlpi_alloc(sizeof (dl_capability_req_t),
2313 	    DL_CAPABILITY_REQ);
2314 	if (capab_mp == NULL)
2315 		goto bad;
2316 
2317 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
2318 	    DL_BIND_REQ);
2319 	if (bind_mp == NULL)
2320 		goto bad;
2321 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
2322 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
2323 
2324 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
2325 	if (unbind_mp == NULL)
2326 		goto bad;
2327 
2328 	/* If we need to attach, pre-alloc and initialize the mblk */
2329 	if (ill->ill_needs_attach) {
2330 		attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t),
2331 		    DL_ATTACH_REQ);
2332 		if (attach_mp == NULL)
2333 			goto bad;
2334 		((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa;
2335 	}
2336 
2337 	/*
2338 	 * Here we are going to delay the ioctl ack until after
2339 	 * ACKs from DL_PHYS_ADDR_REQ. So need to save the
2340 	 * original ioctl message before sending the requests
2341 	 */
2342 	mutex_enter(&ill->ill_lock);
2343 	/* ipsq_pending_mp_add won't fail since we pass in a NULL connp */
2344 	(void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0);
2345 	/*
2346 	 * Set ill_phys_addr_pend to zero. It will be set to the addr_type of
2347 	 * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will
2348 	 * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd.
2349 	 */
2350 	ill->ill_phys_addr_pend = 0;
2351 	mutex_exit(&ill->ill_lock);
2352 
2353 	if (attach_mp != NULL) {
2354 		ip1dbg(("ill_dl_phys: attach\n"));
2355 		ill_dlpi_send(ill, attach_mp);
2356 	}
2357 	ill_dlpi_send(ill, bind_mp);
2358 	ill_dlpi_send(ill, info_mp);
2359 
2360 	/*
2361 	 * Send the capability request to get the VRRP capability information.
2362 	 */
2363 	ill_capability_send(ill, capab_mp);
2364 
2365 	if (v6token_mp != NULL)
2366 		ill_dlpi_send(ill, v6token_mp);
2367 	if (v6lla_mp != NULL)
2368 		ill_dlpi_send(ill, v6lla_mp);
2369 	if (dest_mp != NULL)
2370 		ill_dlpi_send(ill, dest_mp);
2371 	ill_dlpi_send(ill, phys_mp);
2372 	ill_dlpi_send(ill, notify_mp);
2373 	ill_dlpi_send(ill, unbind_mp);
2374 
2375 	/*
2376 	 * This operation will complete in ip_rput_dlpi_writer with either
2377 	 * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK.
2378 	 */
2379 	return (EINPROGRESS);
2380 bad:
2381 	freemsg(v6token_mp);
2382 	freemsg(v6lla_mp);
2383 	freemsg(dest_mp);
2384 	freemsg(phys_mp);
2385 	freemsg(info_mp);
2386 	freemsg(attach_mp);
2387 	freemsg(bind_mp);
2388 	freemsg(capab_mp);
2389 	freemsg(unbind_mp);
2390 	freemsg(notify_mp);
2391 	return (ENOMEM);
2392 }
2393 
2394 /* Add room for tcp+ip headers */
2395 uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20;
2396 
2397 /*
2398  * DLPI is up.
2399  * Create all the IREs associated with an interface bring up multicast.
2400  * Set the interface flag and finish other initialization
2401  * that potentially had to be differed to after DL_BIND_ACK.
2402  */
2403 int
2404 ipif_up_done_v6(ipif_t *ipif)
2405 {
2406 	ill_t	*ill = ipif->ipif_ill;
2407 	int	err;
2408 	boolean_t loopback = B_FALSE;
2409 
2410 	ip1dbg(("ipif_up_done_v6(%s:%u)\n",
2411 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
2412 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done_v6",
2413 	    ill_t *, ill, ipif_t *, ipif);
2414 
2415 	/* Check if this is a loopback interface */
2416 	if (ipif->ipif_ill->ill_wq == NULL)
2417 		loopback = B_TRUE;
2418 
2419 	ASSERT(ipif->ipif_isv6);
2420 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
2421 
2422 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
2423 		nce_t *loop_nce = NULL;
2424 		uint16_t flags = (NCE_F_MYADDR | NCE_F_NONUD | NCE_F_AUTHORITY);
2425 
2426 		/*
2427 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
2428 		 * ipif_lookup_on_name(), but in the case of zones we can have
2429 		 * several loopback addresses on lo0. So all the interfaces with
2430 		 * loopback addresses need to be marked IRE_LOOPBACK.
2431 		 */
2432 		if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback))
2433 			ipif->ipif_ire_type = IRE_LOOPBACK;
2434 		else
2435 			ipif->ipif_ire_type = IRE_LOCAL;
2436 		if (ill->ill_net_type != IRE_LOOPBACK)
2437 			flags |= NCE_F_PUBLISH;
2438 		err = nce_lookup_then_add_v6(ill, NULL,
2439 		    ill->ill_phys_addr_length,
2440 		    &ipif->ipif_v6lcl_addr, flags, ND_REACHABLE, &loop_nce);
2441 
2442 		/* A shared-IP zone sees EEXIST for lo0:N */
2443 		if (err == 0 || err == EEXIST) {
2444 			ipif->ipif_added_nce = 1;
2445 			loop_nce->nce_ipif_cnt++;
2446 			nce_refrele(loop_nce);
2447 			err = 0;
2448 		} else {
2449 			ASSERT(loop_nce == NULL);
2450 			return (err);
2451 		}
2452 	}
2453 
2454 	err = ipif_add_ires_v6(ipif, loopback);
2455 	if (err != 0) {
2456 		/*
2457 		 * See comments about return value from
2458 		 * ipif_addr_availability_check() in ipif_add_ires_v6().
2459 		 */
2460 		if (err != EADDRINUSE) {
2461 			ipif_ndp_down(ipif);
2462 		} else {
2463 			/*
2464 			 * Make IPMP aware of the deleted ipif so that
2465 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
2466 			 * can be completed. Note that we do not want to
2467 			 * destroy the nce that was created on the ipmp_ill
2468 			 * for the active copy of the duplicate address in
2469 			 * use.
2470 			 */
2471 			if (IS_IPMP(ill))
2472 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
2473 			err = EADDRNOTAVAIL;
2474 		}
2475 		return (err);
2476 	}
2477 
2478 	if (ill->ill_ipif_up_count == 1 && !loopback) {
2479 		/* Recover any additional IREs entries for this ill */
2480 		(void) ill_recover_saved_ire(ill);
2481 	}
2482 
2483 	if (ill->ill_need_recover_multicast) {
2484 		/*
2485 		 * Need to recover all multicast memberships in the driver.
2486 		 * This had to be deferred until we had attached.
2487 		 */
2488 		ill_recover_multicast(ill);
2489 	}
2490 
2491 	if (ill->ill_ipif_up_count == 1) {
2492 		/*
2493 		 * Since the interface is now up, it may now be active.
2494 		 */
2495 		if (IS_UNDER_IPMP(ill))
2496 			ipmp_ill_refresh_active(ill);
2497 	}
2498 
2499 	/* Join the allhosts multicast address and the solicited node MC */
2500 	ipif_multicast_up(ipif);
2501 
2502 	/* Perhaps ilgs should use this ill */
2503 	update_conn_ill(NULL, ill->ill_ipst);
2504 
2505 	if (ipif->ipif_addr_ready)
2506 		ipif_up_notify(ipif);
2507 
2508 	return (0);
2509 }
2510 
2511 /*
2512  * Add the IREs associated with the ipif.
2513  * Those MUST be explicitly removed in ipif_delete_ires_v6.
2514  */
2515 static int
2516 ipif_add_ires_v6(ipif_t *ipif, boolean_t loopback)
2517 {
2518 	ill_t		*ill = ipif->ipif_ill;
2519 	ip_stack_t	*ipst = ill->ill_ipst;
2520 	in6_addr_t	v6addr;
2521 	in6_addr_t	route_mask;
2522 	int		err;
2523 	char		buf[INET6_ADDRSTRLEN];
2524 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
2525 	ire_t		*ire_if = NULL;
2526 	in6_addr_t	*gw;
2527 
2528 	if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
2529 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
2530 
2531 		/*
2532 		 * If we're on a labeled system then make sure that zone-
2533 		 * private addresses have proper remote host database entries.
2534 		 */
2535 		if (is_system_labeled() &&
2536 		    ipif->ipif_ire_type != IRE_LOOPBACK) {
2537 			if (ip6opt_ls == 0) {
2538 				cmn_err(CE_WARN, "IPv6 not enabled "
2539 				    "via /etc/system");
2540 				return (EINVAL);
2541 			}
2542 			if (!tsol_check_interface_address(ipif))
2543 				return (EINVAL);
2544 		}
2545 
2546 		if (loopback)
2547 			gw = &ipif->ipif_v6lcl_addr;
2548 		else
2549 			gw = NULL;
2550 
2551 		/* Register the source address for __sin6_src_id */
2552 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
2553 		    ipif->ipif_zoneid, ipst);
2554 		if (err != 0) {
2555 			ip0dbg(("ipif_add_ires_v6: srcid_insert %d\n", err));
2556 			return (err);
2557 		}
2558 		/*
2559 		 * If the interface address is set, create the LOCAL
2560 		 * or LOOPBACK IRE.
2561 		 */
2562 		ip1dbg(("ipif_add_ires_v6: creating IRE %d for %s\n",
2563 		    ipif->ipif_ire_type,
2564 		    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr,
2565 		    buf, sizeof (buf))));
2566 
2567 		ire_local = ire_create_v6(
2568 		    &ipif->ipif_v6lcl_addr,		/* dest address */
2569 		    &ipv6_all_ones,			/* mask */
2570 		    gw,					/* gateway */
2571 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
2572 		    ipif->ipif_ill,			/* interface */
2573 		    ipif->ipif_zoneid,
2574 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
2575 		    RTF_PRIVATE : 0) | RTF_KERNEL,
2576 		    NULL,
2577 		    ipst);
2578 		if (ire_local == NULL) {
2579 			ip1dbg(("ipif_up_done_v6: NULL ire_local\n"));
2580 			err = ENOMEM;
2581 			goto bad;
2582 		}
2583 	}
2584 
2585 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
2586 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
2587 	    !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) &&
2588 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) {
2589 		/* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */
2590 		v6addr = ipif->ipif_v6subnet;
2591 
2592 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
2593 			route_mask = ipv6_all_ones;
2594 		} else {
2595 			route_mask = ipif->ipif_v6net_mask;
2596 		}
2597 
2598 		ip1dbg(("ipif_add_ires_v6: creating if IRE %d for %s\n",
2599 		    ill->ill_net_type,
2600 		    inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf))));
2601 
2602 		ire_if = ire_create_v6(
2603 		    &v6addr,			/* dest pref */
2604 		    &route_mask,		/* mask */
2605 		    &ipif->ipif_v6lcl_addr,	/* gateway */
2606 		    ill->ill_net_type,		/* IF_[NO]RESOLVER */
2607 		    ipif->ipif_ill,
2608 		    ipif->ipif_zoneid,
2609 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
2610 		    RTF_PRIVATE : 0) | RTF_KERNEL,
2611 		    NULL,
2612 		    ipst);
2613 		if (ire_if == NULL) {
2614 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
2615 			err = ENOMEM;
2616 			goto bad;
2617 		}
2618 	}
2619 
2620 	/*
2621 	 * Need to atomically check for IP address availability under
2622 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
2623 	 * ills or new ipifs can be added while we are checking availability.
2624 	 */
2625 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2626 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
2627 	ill->ill_ipif_up_count++;
2628 	ipif->ipif_flags |= IPIF_UP;
2629 	err = ip_addr_availability_check(ipif);
2630 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
2631 	rw_exit(&ipst->ips_ill_g_lock);
2632 
2633 	if (err != 0) {
2634 		/*
2635 		 * Our address may already be up on the same ill. In this case,
2636 		 * the external resolver entry for our ipif replaced the one for
2637 		 * the other ipif. So we don't want to delete it (otherwise the
2638 		 * other ipif would be unable to send packets).
2639 		 * ip_addr_availability_check() identifies this case for us and
2640 		 * returns EADDRINUSE; Caller must  turn it into EADDRNOTAVAIL
2641 		 * which is the expected error code.
2642 		 *
2643 		 * Note that ipif_ndp_down() will only delete the nce in the
2644 		 * case when the nce_ipif_cnt drops to 0.
2645 		 */
2646 		ill->ill_ipif_up_count--;
2647 		ipif->ipif_flags &= ~IPIF_UP;
2648 		goto bad;
2649 	}
2650 
2651 	/*
2652 	 * Add in all newly created IREs.
2653 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
2654 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
2655 	 * a /128 route.
2656 	 */
2657 	if (ire_if != NULL) {
2658 		ire_if = ire_add(ire_if);
2659 		if (ire_if == NULL) {
2660 			err = ENOMEM;
2661 			goto bad2;
2662 		}
2663 #ifdef DEBUG
2664 		ire_refhold_notr(ire_if);
2665 		ire_refrele(ire_if);
2666 #endif
2667 	}
2668 	if (ire_local != NULL) {
2669 		ire_local = ire_add(ire_local);
2670 		if (ire_local == NULL) {
2671 			err = ENOMEM;
2672 			goto bad2;
2673 		}
2674 #ifdef DEBUG
2675 		ire_refhold_notr(ire_local);
2676 		ire_refrele(ire_local);
2677 #endif
2678 	}
2679 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2680 	if (ire_local != NULL)
2681 		ipif->ipif_ire_local = ire_local;
2682 	if (ire_if != NULL)
2683 		ipif->ipif_ire_if = ire_if;
2684 	rw_exit(&ipst->ips_ill_g_lock);
2685 	ire_local = NULL;
2686 	ire_if = NULL;
2687 
2688 	if (ipif->ipif_addr_ready)
2689 		ipif_up_notify(ipif);
2690 	return (0);
2691 
2692 bad2:
2693 	ill->ill_ipif_up_count--;
2694 	ipif->ipif_flags &= ~IPIF_UP;
2695 
2696 bad:
2697 	if (ire_local != NULL)
2698 		ire_delete(ire_local);
2699 	if (ire_if != NULL)
2700 		ire_delete(ire_if);
2701 
2702 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2703 	ire_local = ipif->ipif_ire_local;
2704 	ipif->ipif_ire_local = NULL;
2705 	ire_if = ipif->ipif_ire_if;
2706 	ipif->ipif_ire_if = NULL;
2707 	rw_exit(&ipst->ips_ill_g_lock);
2708 	if (ire_local != NULL) {
2709 		ire_delete(ire_local);
2710 		ire_refrele_notr(ire_local);
2711 	}
2712 	if (ire_if != NULL) {
2713 		ire_delete(ire_if);
2714 		ire_refrele_notr(ire_if);
2715 	}
2716 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
2717 
2718 	return (err);
2719 }
2720 
2721 /* Remove all the IREs created by ipif_add_ires_v6 */
2722 void
2723 ipif_delete_ires_v6(ipif_t *ipif)
2724 {
2725 	ill_t		*ill = ipif->ipif_ill;
2726 	ip_stack_t	*ipst = ill->ill_ipst;
2727 	ire_t		*ire;
2728 
2729 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2730 	ire = ipif->ipif_ire_local;
2731 	ipif->ipif_ire_local = NULL;
2732 	rw_exit(&ipst->ips_ill_g_lock);
2733 	if (ire != NULL) {
2734 		/*
2735 		 * Move count to ipif so we don't loose the count due to
2736 		 * a down/up dance.
2737 		 */
2738 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
2739 
2740 		ire_delete(ire);
2741 		ire_refrele_notr(ire);
2742 	}
2743 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2744 	ire = ipif->ipif_ire_if;
2745 	ipif->ipif_ire_if = NULL;
2746 	rw_exit(&ipst->ips_ill_g_lock);
2747 	if (ire != NULL) {
2748 		ire_delete(ire);
2749 		ire_refrele_notr(ire);
2750 	}
2751 }
2752 
2753 /*
2754  * Delete an ND entry if it exists.
2755  */
2756 /* ARGSUSED */
2757 int
2758 ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2759     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2760 {
2761 	sin6_t		*sin6;
2762 	struct lifreq	*lifr;
2763 	lif_nd_req_t	*lnr;
2764 	ill_t		*ill = ipif->ipif_ill;
2765 	nce_t		*nce;
2766 
2767 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2768 	lnr = &lifr->lifr_nd;
2769 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2770 	if (ipif->ipif_id != 0)
2771 		return (EINVAL);
2772 
2773 	if (!ipif->ipif_isv6)
2774 		return (EINVAL);
2775 
2776 	if (lnr->lnr_addr.ss_family != AF_INET6)
2777 		return (EAFNOSUPPORT);
2778 
2779 	sin6 = (sin6_t *)&lnr->lnr_addr;
2780 
2781 	/*
2782 	 * Since ND mappings must be consistent across an IPMP group, prohibit
2783 	 * deleting ND mappings on underlying interfaces.
2784 	 * Don't allow deletion of mappings for local addresses.
2785 	 */
2786 	if (IS_UNDER_IPMP(ill))
2787 		return (EPERM);
2788 
2789 	nce = nce_lookup_v6(ill, &sin6->sin6_addr);
2790 	if (nce == NULL)
2791 		return (ESRCH);
2792 
2793 	if (NCE_MYADDR(nce->nce_common)) {
2794 		nce_refrele(nce);
2795 		return (EPERM);
2796 	}
2797 
2798 	/*
2799 	 * delete the nce_common which will also delete the nces on any
2800 	 * under_ill in the case of ipmp.
2801 	 */
2802 	ncec_delete(nce->nce_common);
2803 	nce_refrele(nce);
2804 	return (0);
2805 }
2806 
2807 /*
2808  * Return nbr cache info.
2809  */
2810 /* ARGSUSED */
2811 int
2812 ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2813     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2814 {
2815 	ill_t		*ill = ipif->ipif_ill;
2816 	struct lifreq	*lifr;
2817 	lif_nd_req_t	*lnr;
2818 
2819 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2820 	lnr = &lifr->lifr_nd;
2821 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2822 	if (ipif->ipif_id != 0)
2823 		return (EINVAL);
2824 
2825 	if (!ipif->ipif_isv6)
2826 		return (EINVAL);
2827 
2828 	if (lnr->lnr_addr.ss_family != AF_INET6)
2829 		return (EAFNOSUPPORT);
2830 
2831 	if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr))
2832 		return (EINVAL);
2833 
2834 	return (ndp_query(ill, lnr));
2835 }
2836 
2837 /*
2838  * Perform an update of the nd entry for the specified address.
2839  */
2840 /* ARGSUSED */
2841 int
2842 ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2843     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2844 {
2845 	sin6_t		*sin6;
2846 	ill_t		*ill = ipif->ipif_ill;
2847 	struct	lifreq	*lifr;
2848 	lif_nd_req_t	*lnr;
2849 	ire_t		*ire;
2850 
2851 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2852 	lnr = &lifr->lifr_nd;
2853 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2854 	if (ipif->ipif_id != 0)
2855 		return (EINVAL);
2856 
2857 	if (!ipif->ipif_isv6)
2858 		return (EINVAL);
2859 
2860 	if (lnr->lnr_addr.ss_family != AF_INET6)
2861 		return (EAFNOSUPPORT);
2862 
2863 	sin6 = (sin6_t *)&lnr->lnr_addr;
2864 
2865 	/*
2866 	 * Since ND mappings must be consistent across an IPMP group, prohibit
2867 	 * updating ND mappings on underlying interfaces.  Also, since ND
2868 	 * mappings for IPMP data addresses are owned by IP itself, prohibit
2869 	 * updating them.
2870 	 */
2871 	if (IS_UNDER_IPMP(ill))
2872 		return (EPERM);
2873 
2874 	if (IS_IPMP(ill)) {
2875 		ire = ire_ftable_lookup_v6(&sin6->sin6_addr, NULL, NULL,
2876 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
2877 		    MATCH_IRE_TYPE | MATCH_IRE_ILL, 0, ill->ill_ipst, NULL);
2878 		if (ire != NULL) {
2879 			ire_refrele(ire);
2880 			return (EPERM);
2881 		}
2882 	}
2883 
2884 	return (ndp_sioc_update(ill, lnr));
2885 }
2886