1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1272 TUN_CMD, ip_sioctl_tunparam, NULL }, 1273 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1274 IPI_PRIV | IPI_WR, 1275 TUN_CMD, ip_sioctl_tunparam, NULL }, 1276 1277 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1278 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1280 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1281 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1282 1283 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1284 1285 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1286 LIF_CMD, ip_sioctl_get_binding, NULL }, 1287 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1288 IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1290 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1291 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1292 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1293 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1294 1295 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1296 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 1300 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 1302 /* These are handled in ip_sioctl_copyin_setup itself */ 1303 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1304 MISC_CMD, NULL, NULL }, 1305 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1306 MISC_CMD, NULL, NULL }, 1307 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1308 1309 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1310 ip_sioctl_get_lifconf, NULL }, 1311 1312 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1315 XARP_CMD, ip_sioctl_arp, NULL }, 1316 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1317 XARP_CMD, ip_sioctl_arp, NULL }, 1318 1319 /* SIOCPOPSOCKFS is not handled by IP */ 1320 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1321 1322 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1323 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1324 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1325 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1326 ip_sioctl_slifzone_restart }, 1327 /* 172-174 are SCTP ioctls and not handled by IP */ 1328 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1329 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1330 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1331 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1332 IPI_GET_CMD, LIF_CMD, 1333 ip_sioctl_get_lifusesrc, 0 }, 1334 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1335 IPI_PRIV | IPI_WR, 1336 LIF_CMD, ip_sioctl_slifusesrc, 1337 NULL }, 1338 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1339 ip_sioctl_get_lifsrcof, NULL }, 1340 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1345 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1346 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1347 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1348 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* SIOCSENABLESDP is handled by SDP */ 1350 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1351 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1352 }; 1353 1354 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1355 1356 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1357 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1358 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1359 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1360 TUN_CMD, ip_sioctl_tunparam, NULL }, 1361 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1365 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1366 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1367 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1368 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1369 MISC_CMD, mrt_ioctl}, 1370 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1371 MISC_CMD, mrt_ioctl}, 1372 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1373 MISC_CMD, mrt_ioctl} 1374 }; 1375 1376 int ip_misc_ioctl_count = 1377 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1378 1379 int conn_drain_nthreads; /* Number of drainers reqd. */ 1380 /* Settable in /etc/system */ 1381 /* Defined in ip_ire.c */ 1382 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1383 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1384 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1385 1386 static nv_t ire_nv_arr[] = { 1387 { IRE_BROADCAST, "BROADCAST" }, 1388 { IRE_LOCAL, "LOCAL" }, 1389 { IRE_LOOPBACK, "LOOPBACK" }, 1390 { IRE_CACHE, "CACHE" }, 1391 { IRE_DEFAULT, "DEFAULT" }, 1392 { IRE_PREFIX, "PREFIX" }, 1393 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1394 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1395 { IRE_HOST, "HOST" }, 1396 { 0 } 1397 }; 1398 1399 nv_t *ire_nv_tbl = ire_nv_arr; 1400 1401 /* Simple ICMP IP Header Template */ 1402 static ipha_t icmp_ipha = { 1403 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1404 }; 1405 1406 struct module_info ip_mod_info = { 1407 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1408 IP_MOD_LOWAT 1409 }; 1410 1411 /* 1412 * Duplicate static symbols within a module confuses mdb; so we avoid the 1413 * problem by making the symbols here distinct from those in udp.c. 1414 */ 1415 1416 /* 1417 * Entry points for IP as a device and as a module. 1418 * FIXME: down the road we might want a separate module and driver qinit. 1419 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1420 */ 1421 static struct qinit iprinitv4 = { 1422 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1423 &ip_mod_info 1424 }; 1425 1426 struct qinit iprinitv6 = { 1427 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1428 &ip_mod_info 1429 }; 1430 1431 static struct qinit ipwinitv4 = { 1432 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1433 &ip_mod_info 1434 }; 1435 1436 struct qinit ipwinitv6 = { 1437 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1438 &ip_mod_info 1439 }; 1440 1441 static struct qinit iplrinit = { 1442 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1443 &ip_mod_info 1444 }; 1445 1446 static struct qinit iplwinit = { 1447 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1448 &ip_mod_info 1449 }; 1450 1451 /* For AF_INET aka /dev/ip */ 1452 struct streamtab ipinfov4 = { 1453 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1454 }; 1455 1456 /* For AF_INET6 aka /dev/ip6 */ 1457 struct streamtab ipinfov6 = { 1458 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 1465 /* 1466 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1467 * ip_rput_v6(), ip_output(), etc. If the message 1468 * block already has a M_CTL at the front of it, then simply set the zoneid 1469 * appropriately. 1470 */ 1471 mblk_t * 1472 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1473 { 1474 mblk_t *first_mp; 1475 ipsec_out_t *io; 1476 1477 ASSERT(zoneid != ALL_ZONES); 1478 if (mp->b_datap->db_type == M_CTL) { 1479 io = (ipsec_out_t *)mp->b_rptr; 1480 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1481 io->ipsec_out_zoneid = zoneid; 1482 return (mp); 1483 } 1484 1485 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1486 if (first_mp == NULL) 1487 return (NULL); 1488 io = (ipsec_out_t *)first_mp->b_rptr; 1489 /* This is not a secure packet */ 1490 io->ipsec_out_secure = B_FALSE; 1491 io->ipsec_out_zoneid = zoneid; 1492 first_mp->b_cont = mp; 1493 return (first_mp); 1494 } 1495 1496 /* 1497 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1498 */ 1499 mblk_t * 1500 ip_copymsg(mblk_t *mp) 1501 { 1502 mblk_t *nmp; 1503 ipsec_info_t *in; 1504 1505 if (mp->b_datap->db_type != M_CTL) 1506 return (copymsg(mp)); 1507 1508 in = (ipsec_info_t *)mp->b_rptr; 1509 1510 /* 1511 * Note that M_CTL is also used for delivering ICMP error messages 1512 * upstream to transport layers. 1513 */ 1514 if (in->ipsec_info_type != IPSEC_OUT && 1515 in->ipsec_info_type != IPSEC_IN) 1516 return (copymsg(mp)); 1517 1518 nmp = copymsg(mp->b_cont); 1519 1520 if (in->ipsec_info_type == IPSEC_OUT) { 1521 return (ipsec_out_tag(mp, nmp, 1522 ((ipsec_out_t *)in)->ipsec_out_ns)); 1523 } else { 1524 return (ipsec_in_tag(mp, nmp, 1525 ((ipsec_in_t *)in)->ipsec_in_ns)); 1526 } 1527 } 1528 1529 /* Generate an ICMP fragmentation needed message. */ 1530 static void 1531 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1532 ip_stack_t *ipst) 1533 { 1534 icmph_t icmph; 1535 mblk_t *first_mp; 1536 boolean_t mctl_present; 1537 1538 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1539 1540 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1541 if (mctl_present) 1542 freeb(first_mp); 1543 return; 1544 } 1545 1546 bzero(&icmph, sizeof (icmph_t)); 1547 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1548 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1549 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1552 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1553 ipst); 1554 } 1555 1556 /* 1557 * icmp_inbound deals with ICMP messages in the following ways. 1558 * 1559 * 1) It needs to send a reply back and possibly delivering it 1560 * to the "interested" upper clients. 1561 * 2) It needs to send it to the upper clients only. 1562 * 3) It needs to change some values in IP only. 1563 * 4) It needs to change some values in IP and upper layers e.g TCP. 1564 * 1565 * We need to accomodate icmp messages coming in clear until we get 1566 * everything secure from the wire. If icmp_accept_clear_messages 1567 * is zero we check with the global policy and act accordingly. If 1568 * it is non-zero, we accept the message without any checks. But 1569 * *this does not mean* that this will be delivered to the upper 1570 * clients. By accepting we might send replies back, change our MTU 1571 * value etc. but delivery to the ULP/clients depends on their policy 1572 * dispositions. 1573 * 1574 * We handle the above 4 cases in the context of IPsec in the 1575 * following way : 1576 * 1577 * 1) Send the reply back in the same way as the request came in. 1578 * If it came in encrypted, it goes out encrypted. If it came in 1579 * clear, it goes out in clear. Thus, this will prevent chosen 1580 * plain text attack. 1581 * 2) The client may or may not expect things to come in secure. 1582 * If it comes in secure, the policy constraints are checked 1583 * before delivering it to the upper layers. If it comes in 1584 * clear, ipsec_inbound_accept_clear will decide whether to 1585 * accept this in clear or not. In both the cases, if the returned 1586 * message (IP header + 8 bytes) that caused the icmp message has 1587 * AH/ESP headers, it is sent up to AH/ESP for validation before 1588 * sending up. If there are only 8 bytes of returned message, then 1589 * upper client will not be notified. 1590 * 3) Check with global policy to see whether it matches the constaints. 1591 * But this will be done only if icmp_accept_messages_in_clear is 1592 * zero. 1593 * 4) If we need to change both in IP and ULP, then the decision taken 1594 * while affecting the values in IP and while delivering up to TCP 1595 * should be the same. 1596 * 1597 * There are two cases. 1598 * 1599 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1600 * failed), we will not deliver it to the ULP, even though they 1601 * are *willing* to accept in *clear*. This is fine as our global 1602 * disposition to icmp messages asks us reject the datagram. 1603 * 1604 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1605 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1606 * to deliver it to ULP (policy failed), it can lead to 1607 * consistency problems. The cases known at this time are 1608 * ICMP_DESTINATION_UNREACHABLE messages with following code 1609 * values : 1610 * 1611 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1612 * and Upper layer rejects. Then the communication will 1613 * come to a stop. This is solved by making similar decisions 1614 * at both levels. Currently, when we are unable to deliver 1615 * to the Upper Layer (due to policy failures) while IP has 1616 * adjusted ire_max_frag, the next outbound datagram would 1617 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1618 * will be with the right level of protection. Thus the right 1619 * value will be communicated even if we are not able to 1620 * communicate when we get from the wire initially. But this 1621 * assumes there would be at least one outbound datagram after 1622 * IP has adjusted its ire_max_frag value. To make things 1623 * simpler, we accept in clear after the validation of 1624 * AH/ESP headers. 1625 * 1626 * - Other ICMP ERRORS : We may not be able to deliver it to the 1627 * upper layer depending on the level of protection the upper 1628 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1629 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1630 * should be accepted in clear when the Upper layer expects secure. 1631 * Thus the communication may get aborted by some bad ICMP 1632 * packets. 1633 * 1634 * IPQoS Notes: 1635 * The only instance when a packet is sent for processing is when there 1636 * isn't an ICMP client and if we are interested in it. 1637 * If there is a client, IPPF processing will take place in the 1638 * ip_fanout_proto routine. 1639 * 1640 * Zones notes: 1641 * The packet is only processed in the context of the specified zone: typically 1642 * only this zone will reply to an echo request, and only interested clients in 1643 * this zone will receive a copy of the packet. This means that the caller must 1644 * call icmp_inbound() for each relevant zone. 1645 */ 1646 static void 1647 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1648 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1649 ill_t *recv_ill, zoneid_t zoneid) 1650 { 1651 icmph_t *icmph; 1652 ipha_t *ipha; 1653 int iph_hdr_length; 1654 int hdr_length; 1655 boolean_t interested; 1656 uint32_t ts; 1657 uchar_t *wptr; 1658 ipif_t *ipif; 1659 mblk_t *first_mp; 1660 ipsec_in_t *ii; 1661 timestruc_t now; 1662 uint32_t ill_index; 1663 ip_stack_t *ipst; 1664 1665 ASSERT(ill != NULL); 1666 ipst = ill->ill_ipst; 1667 1668 first_mp = mp; 1669 if (mctl_present) { 1670 mp = first_mp->b_cont; 1671 ASSERT(mp != NULL); 1672 } 1673 1674 ipha = (ipha_t *)mp->b_rptr; 1675 if (ipst->ips_icmp_accept_clear_messages == 0) { 1676 first_mp = ipsec_check_global_policy(first_mp, NULL, 1677 ipha, NULL, mctl_present, ipst->ips_netstack); 1678 if (first_mp == NULL) 1679 return; 1680 } 1681 1682 /* 1683 * On a labeled system, we have to check whether the zone itself is 1684 * permitted to receive raw traffic. 1685 */ 1686 if (is_system_labeled()) { 1687 if (zoneid == ALL_ZONES) 1688 zoneid = tsol_packet_to_zoneid(mp); 1689 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1690 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1691 zoneid)); 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 } 1697 1698 /* 1699 * We have accepted the ICMP message. It means that we will 1700 * respond to the packet if needed. It may not be delivered 1701 * to the upper client depending on the policy constraints 1702 * and the disposition in ipsec_inbound_accept_clear. 1703 */ 1704 1705 ASSERT(ill != NULL); 1706 1707 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1708 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1709 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1710 /* Last chance to get real. */ 1711 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1713 freemsg(first_mp); 1714 return; 1715 } 1716 /* Refresh iph following the pullup. */ 1717 ipha = (ipha_t *)mp->b_rptr; 1718 } 1719 /* ICMP header checksum, including checksum field, should be zero. */ 1720 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1721 IP_CSUM(mp, iph_hdr_length, 0)) { 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1723 freemsg(first_mp); 1724 return; 1725 } 1726 /* The IP header will always be a multiple of four bytes */ 1727 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1728 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1729 icmph->icmph_code)); 1730 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1731 /* We will set "interested" to "true" if we want a copy */ 1732 interested = B_FALSE; 1733 switch (icmph->icmph_type) { 1734 case ICMP_ECHO_REPLY: 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1736 break; 1737 case ICMP_DEST_UNREACHABLE: 1738 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1739 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1740 interested = B_TRUE; /* Pass up to transport */ 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1742 break; 1743 case ICMP_SOURCE_QUENCH: 1744 interested = B_TRUE; /* Pass up to transport */ 1745 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1746 break; 1747 case ICMP_REDIRECT: 1748 if (!ipst->ips_ip_ignore_redirect) 1749 interested = B_TRUE; 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1751 break; 1752 case ICMP_ECHO_REQUEST: 1753 /* 1754 * Whether to respond to echo requests that come in as IP 1755 * broadcasts or as IP multicast is subject to debate 1756 * (what isn't?). We aim to please, you pick it. 1757 * Default is do it. 1758 */ 1759 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1760 /* unicast: always respond */ 1761 interested = B_TRUE; 1762 } else if (CLASSD(ipha->ipha_dst)) { 1763 /* multicast: respond based on tunable */ 1764 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1765 } else if (broadcast) { 1766 /* broadcast: respond based on tunable */ 1767 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1768 } 1769 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1770 break; 1771 case ICMP_ROUTER_ADVERTISEMENT: 1772 case ICMP_ROUTER_SOLICITATION: 1773 break; 1774 case ICMP_TIME_EXCEEDED: 1775 interested = B_TRUE; /* Pass up to transport */ 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1777 break; 1778 case ICMP_PARAM_PROBLEM: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1781 break; 1782 case ICMP_TIME_STAMP_REQUEST: 1783 /* Response to Time Stamp Requests is local policy. */ 1784 if (ipst->ips_ip_g_resp_to_timestamp && 1785 /* So is whether to respond if it was an IP broadcast. */ 1786 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1787 int tstamp_len = 3 * sizeof (uint32_t); 1788 1789 if (wptr + tstamp_len > mp->b_wptr) { 1790 if (!pullupmsg(mp, wptr + tstamp_len - 1791 mp->b_rptr)) { 1792 BUMP_MIB(ill->ill_ip_mib, 1793 ipIfStatsInDiscards); 1794 freemsg(first_mp); 1795 return; 1796 } 1797 /* Refresh ipha following the pullup. */ 1798 ipha = (ipha_t *)mp->b_rptr; 1799 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1800 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1801 } 1802 interested = B_TRUE; 1803 } 1804 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1805 break; 1806 case ICMP_TIME_STAMP_REPLY: 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1808 break; 1809 case ICMP_INFO_REQUEST: 1810 /* Per RFC 1122 3.2.2.7, ignore this. */ 1811 case ICMP_INFO_REPLY: 1812 break; 1813 case ICMP_ADDRESS_MASK_REQUEST: 1814 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1815 !broadcast) && 1816 /* TODO m_pullup of complete header? */ 1817 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1818 interested = B_TRUE; 1819 } 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1821 break; 1822 case ICMP_ADDRESS_MASK_REPLY: 1823 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1824 break; 1825 default: 1826 interested = B_TRUE; /* Pass up to transport */ 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1828 break; 1829 } 1830 /* See if there is an ICMP client. */ 1831 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1832 /* If there is an ICMP client and we want one too, copy it. */ 1833 mblk_t *first_mp1; 1834 1835 if (!interested) { 1836 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1837 ip_policy, recv_ill, zoneid); 1838 return; 1839 } 1840 first_mp1 = ip_copymsg(first_mp); 1841 if (first_mp1 != NULL) { 1842 ip_fanout_proto(q, first_mp1, ill, ipha, 1843 0, mctl_present, ip_policy, recv_ill, zoneid); 1844 } 1845 } else if (!interested) { 1846 freemsg(first_mp); 1847 return; 1848 } else { 1849 /* 1850 * Initiate policy processing for this packet if ip_policy 1851 * is true. 1852 */ 1853 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1854 ill_index = ill->ill_phyint->phyint_ifindex; 1855 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1856 if (mp == NULL) { 1857 if (mctl_present) { 1858 freeb(first_mp); 1859 } 1860 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1861 return; 1862 } 1863 } 1864 } 1865 /* We want to do something with it. */ 1866 /* Check db_ref to make sure we can modify the packet. */ 1867 if (mp->b_datap->db_ref > 1) { 1868 mblk_t *first_mp1; 1869 1870 first_mp1 = ip_copymsg(first_mp); 1871 freemsg(first_mp); 1872 if (!first_mp1) { 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1874 return; 1875 } 1876 first_mp = first_mp1; 1877 if (mctl_present) { 1878 mp = first_mp->b_cont; 1879 ASSERT(mp != NULL); 1880 } else { 1881 mp = first_mp; 1882 } 1883 ipha = (ipha_t *)mp->b_rptr; 1884 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1885 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1886 } 1887 switch (icmph->icmph_type) { 1888 case ICMP_ADDRESS_MASK_REQUEST: 1889 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1890 if (ipif == NULL) { 1891 freemsg(first_mp); 1892 return; 1893 } 1894 /* 1895 * outging interface must be IPv4 1896 */ 1897 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1898 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1899 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1900 ipif_refrele(ipif); 1901 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1902 break; 1903 case ICMP_ECHO_REQUEST: 1904 icmph->icmph_type = ICMP_ECHO_REPLY; 1905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1906 break; 1907 case ICMP_TIME_STAMP_REQUEST: { 1908 uint32_t *tsp; 1909 1910 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1911 tsp = (uint32_t *)wptr; 1912 tsp++; /* Skip past 'originate time' */ 1913 /* Compute # of milliseconds since midnight */ 1914 gethrestime(&now); 1915 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1916 now.tv_nsec / (NANOSEC / MILLISEC); 1917 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1918 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1919 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1920 break; 1921 } 1922 default: 1923 ipha = (ipha_t *)&icmph[1]; 1924 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1925 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1931 ipha = (ipha_t *)&icmph[1]; 1932 } 1933 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1935 freemsg(first_mp); 1936 return; 1937 } 1938 hdr_length = IPH_HDR_LENGTH(ipha); 1939 if (hdr_length < sizeof (ipha_t)) { 1940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1941 freemsg(first_mp); 1942 return; 1943 } 1944 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1945 if (!pullupmsg(mp, 1946 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1952 ipha = (ipha_t *)&icmph[1]; 1953 } 1954 switch (icmph->icmph_type) { 1955 case ICMP_REDIRECT: 1956 /* 1957 * As there is no upper client to deliver, we don't 1958 * need the first_mp any more. 1959 */ 1960 if (mctl_present) { 1961 freeb(first_mp); 1962 } 1963 icmp_redirect(ill, mp); 1964 return; 1965 case ICMP_DEST_UNREACHABLE: 1966 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1967 if (!icmp_inbound_too_big(icmph, ipha, ill, 1968 zoneid, mp, iph_hdr_length, ipst)) { 1969 freemsg(first_mp); 1970 return; 1971 } 1972 /* 1973 * icmp_inbound_too_big() may alter mp. 1974 * Resynch ipha and icmph accordingly. 1975 */ 1976 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1977 ipha = (ipha_t *)&icmph[1]; 1978 } 1979 /* FALLTHRU */ 1980 default : 1981 /* 1982 * IPQoS notes: Since we have already done IPQoS 1983 * processing we don't want to do it again in 1984 * the fanout routines called by 1985 * icmp_inbound_error_fanout, hence the last 1986 * argument, ip_policy, is B_FALSE. 1987 */ 1988 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1989 ipha, iph_hdr_length, hdr_length, mctl_present, 1990 B_FALSE, recv_ill, zoneid); 1991 } 1992 return; 1993 } 1994 /* Send out an ICMP packet */ 1995 icmph->icmph_checksum = 0; 1996 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1997 if (broadcast || CLASSD(ipha->ipha_dst)) { 1998 ipif_t *ipif_chosen; 1999 /* 2000 * Make it look like it was directed to us, so we don't look 2001 * like a fool with a broadcast or multicast source address. 2002 */ 2003 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2004 /* 2005 * Make sure that we haven't grabbed an interface that's DOWN. 2006 */ 2007 if (ipif != NULL) { 2008 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2009 ipha->ipha_src, zoneid); 2010 if (ipif_chosen != NULL) { 2011 ipif_refrele(ipif); 2012 ipif = ipif_chosen; 2013 } 2014 } 2015 if (ipif == NULL) { 2016 ip0dbg(("icmp_inbound: " 2017 "No source for broadcast/multicast:\n" 2018 "\tsrc 0x%x dst 0x%x ill %p " 2019 "ipif_lcl_addr 0x%x\n", 2020 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2021 (void *)ill, 2022 ill->ill_ipif->ipif_lcl_addr)); 2023 freemsg(first_mp); 2024 return; 2025 } 2026 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2027 ipha->ipha_dst = ipif->ipif_src_addr; 2028 ipif_refrele(ipif); 2029 } 2030 /* Reset time to live. */ 2031 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2032 { 2033 /* Swap source and destination addresses */ 2034 ipaddr_t tmp; 2035 2036 tmp = ipha->ipha_src; 2037 ipha->ipha_src = ipha->ipha_dst; 2038 ipha->ipha_dst = tmp; 2039 } 2040 ipha->ipha_ident = 0; 2041 if (!IS_SIMPLE_IPH(ipha)) 2042 icmp_options_update(ipha); 2043 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 first_mp->b_cont = mp; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } 2067 ii->ipsec_in_zoneid = zoneid; 2068 ASSERT(zoneid != ALL_ZONES); 2069 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2071 return; 2072 } 2073 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2074 put(WR(q), first_mp); 2075 } 2076 2077 static ipaddr_t 2078 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2079 { 2080 conn_t *connp; 2081 connf_t *connfp; 2082 ipaddr_t nexthop_addr = INADDR_ANY; 2083 int hdr_length = IPH_HDR_LENGTH(ipha); 2084 uint16_t *up; 2085 uint32_t ports; 2086 ip_stack_t *ipst = ill->ill_ipst; 2087 2088 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2089 switch (ipha->ipha_protocol) { 2090 case IPPROTO_TCP: 2091 { 2092 tcph_t *tcph; 2093 2094 /* do a reverse lookup */ 2095 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2096 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2097 TCPS_LISTEN, ipst); 2098 break; 2099 } 2100 case IPPROTO_UDP: 2101 { 2102 uint32_t dstport, srcport; 2103 2104 ((uint16_t *)&ports)[0] = up[1]; 2105 ((uint16_t *)&ports)[1] = up[0]; 2106 2107 /* Extract ports in net byte order */ 2108 dstport = htons(ntohl(ports) & 0xFFFF); 2109 srcport = htons(ntohl(ports) >> 16); 2110 2111 connfp = &ipst->ips_ipcl_udp_fanout[ 2112 IPCL_UDP_HASH(dstport, ipst)]; 2113 mutex_enter(&connfp->connf_lock); 2114 connp = connfp->connf_head; 2115 2116 /* do a reverse lookup */ 2117 while ((connp != NULL) && 2118 (!IPCL_UDP_MATCH(connp, dstport, 2119 ipha->ipha_src, srcport, ipha->ipha_dst) || 2120 !IPCL_ZONE_MATCH(connp, zoneid))) { 2121 connp = connp->conn_next; 2122 } 2123 if (connp != NULL) 2124 CONN_INC_REF(connp); 2125 mutex_exit(&connfp->connf_lock); 2126 break; 2127 } 2128 case IPPROTO_SCTP: 2129 { 2130 in6_addr_t map_src, map_dst; 2131 2132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2133 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2134 ((uint16_t *)&ports)[0] = up[1]; 2135 ((uint16_t *)&ports)[1] = up[0]; 2136 2137 connp = sctp_find_conn(&map_src, &map_dst, ports, 2138 zoneid, ipst->ips_netstack->netstack_sctp); 2139 if (connp == NULL) { 2140 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2141 zoneid, ports, ipha, ipst); 2142 } else { 2143 CONN_INC_REF(connp); 2144 SCTP_REFRELE(CONN2SCTP(connp)); 2145 } 2146 break; 2147 } 2148 default: 2149 { 2150 ipha_t ripha; 2151 2152 ripha.ipha_src = ipha->ipha_dst; 2153 ripha.ipha_dst = ipha->ipha_src; 2154 ripha.ipha_protocol = ipha->ipha_protocol; 2155 2156 connfp = &ipst->ips_ipcl_proto_fanout[ 2157 ipha->ipha_protocol]; 2158 mutex_enter(&connfp->connf_lock); 2159 connp = connfp->connf_head; 2160 for (connp = connfp->connf_head; connp != NULL; 2161 connp = connp->conn_next) { 2162 if (IPCL_PROTO_MATCH(connp, 2163 ipha->ipha_protocol, &ripha, ill, 2164 0, zoneid)) { 2165 CONN_INC_REF(connp); 2166 break; 2167 } 2168 } 2169 mutex_exit(&connfp->connf_lock); 2170 } 2171 } 2172 if (connp != NULL) { 2173 if (connp->conn_nexthop_set) 2174 nexthop_addr = connp->conn_nexthop_v4; 2175 CONN_DEC_REF(connp); 2176 } 2177 return (nexthop_addr); 2178 } 2179 2180 /* Table from RFC 1191 */ 2181 static int icmp_frag_size_table[] = 2182 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2183 2184 /* 2185 * Process received ICMP Packet too big. 2186 * After updating any IRE it does the fanout to any matching transport streams. 2187 * Assumes the message has been pulled up till the IP header that caused 2188 * the error. 2189 * 2190 * Returns B_FALSE on failure and B_TRUE on success. 2191 */ 2192 static boolean_t 2193 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2194 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2195 ip_stack_t *ipst) 2196 { 2197 ire_t *ire, *first_ire; 2198 int mtu, orig_mtu; 2199 int hdr_length; 2200 ipaddr_t nexthop_addr; 2201 boolean_t disable_pmtud; 2202 2203 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2204 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2205 ASSERT(ill != NULL); 2206 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 2209 /* Drop if the original packet contained a source route */ 2210 if (ip_source_route_included(ipha)) { 2211 return (B_FALSE); 2212 } 2213 /* 2214 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2215 * header. 2216 */ 2217 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2218 mp->b_wptr) { 2219 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2220 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2222 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2223 return (B_FALSE); 2224 } 2225 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2226 ipha = (ipha_t *)&icmph[1]; 2227 } 2228 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2229 if (nexthop_addr != INADDR_ANY) { 2230 /* nexthop set */ 2231 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2232 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2233 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2234 } else { 2235 /* nexthop not set */ 2236 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2237 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2238 } 2239 2240 if (!first_ire) { 2241 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2242 ntohl(ipha->ipha_dst))); 2243 return (B_FALSE); 2244 } 2245 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 orig_mtu = mtu; 2249 disable_pmtud = B_FALSE; 2250 2251 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2252 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2253 ire = ire->ire_next) { 2254 /* 2255 * Look for the connection to which this ICMP message is 2256 * directed. If it has the IP_NEXTHOP option set, then the 2257 * search is limited to IREs with the MATCH_IRE_PRIVATE 2258 * option. Else the search is limited to regular IREs. 2259 */ 2260 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != ire->ire_gateway_addr)) || 2262 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2263 (nexthop_addr != INADDR_ANY))) 2264 continue; 2265 2266 mutex_enter(&ire->ire_lock); 2267 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2268 uint32_t length; 2269 int i; 2270 2271 /* 2272 * Use the table from RFC 1191 to figure out 2273 * the next "plateau" based on the length in 2274 * the original IP packet. 2275 */ 2276 length = ntohs(ipha->ipha_length); 2277 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2278 uint32_t, length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 length -= hdr_length; 2287 } 2288 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2289 if (length > icmp_frag_size_table[i]) 2290 break; 2291 } 2292 if (i == A_CNT(icmp_frag_size_table)) { 2293 /* Smaller than 68! */ 2294 disable_pmtud = B_TRUE; 2295 mtu = ipst->ips_ip_pmtu_min; 2296 } else { 2297 mtu = icmp_frag_size_table[i]; 2298 if (mtu < ipst->ips_ip_pmtu_min) { 2299 mtu = ipst->ips_ip_pmtu_min; 2300 disable_pmtud = B_TRUE; 2301 } 2302 } 2303 /* Fool the ULP into believing our guessed PMTU. */ 2304 icmph->icmph_du_zero = 0; 2305 icmph->icmph_du_mtu = htons(mtu); 2306 } 2307 if (disable_pmtud) 2308 ire->ire_frag_flag = 0; 2309 /* Reduce the IRE max frag value as advised. */ 2310 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2311 if (ire->ire_max_frag == mtu) { 2312 /* Decreased it */ 2313 ire->ire_marks |= IRE_MARK_PMTU; 2314 } 2315 mutex_exit(&ire->ire_lock); 2316 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2317 ire, int, orig_mtu, int, mtu); 2318 } 2319 rw_exit(&first_ire->ire_bucket->irb_lock); 2320 ire_refrele(first_ire); 2321 return (B_TRUE); 2322 } 2323 2324 /* 2325 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2326 * calls this function. 2327 */ 2328 static mblk_t * 2329 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2330 { 2331 ipha_t *ipha; 2332 icmph_t *icmph; 2333 ipha_t *in_ipha; 2334 int length; 2335 2336 ASSERT(mp->b_datap->db_type == M_DATA); 2337 2338 /* 2339 * For Self-encapsulated packets, we added an extra IP header 2340 * without the options. Inner IP header is the one from which 2341 * the outer IP header was formed. Thus, we need to remove the 2342 * outer IP header. To do this, we pullup the whole message 2343 * and overlay whatever follows the outer IP header over the 2344 * outer IP header. 2345 */ 2346 2347 if (!pullupmsg(mp, -1)) 2348 return (NULL); 2349 2350 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2351 ipha = (ipha_t *)&icmph[1]; 2352 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2353 2354 /* 2355 * The length that we want to overlay is following the inner 2356 * IP header. Subtracting the IP header + icmp header + outer 2357 * IP header's length should give us the length that we want to 2358 * overlay. 2359 */ 2360 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2361 hdr_length; 2362 /* 2363 * Overlay whatever follows the inner header over the 2364 * outer header. 2365 */ 2366 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2367 2368 /* Set the wptr to account for the outer header */ 2369 mp->b_wptr -= hdr_length; 2370 return (mp); 2371 } 2372 2373 /* 2374 * Try to pass the ICMP message upstream in case the ULP cares. 2375 * 2376 * If the packet that caused the ICMP error is secure, we send 2377 * it to AH/ESP to make sure that the attached packet has a 2378 * valid association. ipha in the code below points to the 2379 * IP header of the packet that caused the error. 2380 * 2381 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2382 * in the context of IPsec. Normally we tell the upper layer 2383 * whenever we send the ire (including ip_bind), the IPsec header 2384 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2385 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2386 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2387 * same thing. As TCP has the IPsec options size that needs to be 2388 * adjusted, we just pass the MTU unchanged. 2389 * 2390 * IFN could have been generated locally or by some router. 2391 * 2392 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2393 * This happens because IP adjusted its value of MTU on an 2394 * earlier IFN message and could not tell the upper layer, 2395 * the new adjusted value of MTU e.g. Packet was encrypted 2396 * or there was not enough information to fanout to upper 2397 * layers. Thus on the next outbound datagram, ip_wput_ire 2398 * generates the IFN, where IPsec processing has *not* been 2399 * done. 2400 * 2401 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2402 * could have generated this. This happens because ire_max_frag 2403 * value in IP was set to a new value, while the IPsec processing 2404 * was being done and after we made the fragmentation check in 2405 * ip_wput_ire. Thus on return from IPsec processing, 2406 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2407 * and generates the IFN. As IPsec processing is over, we fanout 2408 * to AH/ESP to remove the header. 2409 * 2410 * In both these cases, ipsec_in_loopback will be set indicating 2411 * that IFN was generated locally. 2412 * 2413 * ROUTER : IFN could be secure or non-secure. 2414 * 2415 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2416 * packet in error has AH/ESP headers to validate the AH/ESP 2417 * headers. AH/ESP will verify whether there is a valid SA or 2418 * not and send it back. We will fanout again if we have more 2419 * data in the packet. 2420 * 2421 * If the packet in error does not have AH/ESP, we handle it 2422 * like any other case. 2423 * 2424 * * NON_SECURE : If the packet in error has AH/ESP headers, 2425 * we attach a dummy ipsec_in and send it up to AH/ESP 2426 * for validation. AH/ESP will verify whether there is a 2427 * valid SA or not and send it back. We will fanout again if 2428 * we have more data in the packet. 2429 * 2430 * If the packet in error does not have AH/ESP, we handle it 2431 * like any other case. 2432 */ 2433 static void 2434 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2435 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2436 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2437 zoneid_t zoneid) 2438 { 2439 uint16_t *up; /* Pointer to ports in ULP header */ 2440 uint32_t ports; /* reversed ports for fanout */ 2441 ipha_t ripha; /* With reversed addresses */ 2442 mblk_t *first_mp; 2443 ipsec_in_t *ii; 2444 tcph_t *tcph; 2445 conn_t *connp; 2446 ip_stack_t *ipst; 2447 2448 ASSERT(ill != NULL); 2449 2450 ASSERT(recv_ill != NULL); 2451 ipst = recv_ill->ill_ipst; 2452 2453 first_mp = mp; 2454 if (mctl_present) { 2455 mp = first_mp->b_cont; 2456 ASSERT(mp != NULL); 2457 2458 ii = (ipsec_in_t *)first_mp->b_rptr; 2459 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2460 } else { 2461 ii = NULL; 2462 } 2463 2464 switch (ipha->ipha_protocol) { 2465 case IPPROTO_UDP: 2466 /* 2467 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2468 * transport header. 2469 */ 2470 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2471 mp->b_wptr) { 2472 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2473 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2474 goto discard_pkt; 2475 } 2476 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2477 ipha = (ipha_t *)&icmph[1]; 2478 } 2479 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2480 2481 /* 2482 * Attempt to find a client stream based on port. 2483 * Note that we do a reverse lookup since the header is 2484 * in the form we sent it out. 2485 * The ripha header is only used for the IP_UDP_MATCH and we 2486 * only set the src and dst addresses and protocol. 2487 */ 2488 ripha.ipha_src = ipha->ipha_dst; 2489 ripha.ipha_dst = ipha->ipha_src; 2490 ripha.ipha_protocol = ipha->ipha_protocol; 2491 ((uint16_t *)&ports)[0] = up[1]; 2492 ((uint16_t *)&ports)[1] = up[0]; 2493 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2494 ntohl(ipha->ipha_src), ntohs(up[0]), 2495 ntohl(ipha->ipha_dst), ntohs(up[1]), 2496 icmph->icmph_type, icmph->icmph_code)); 2497 2498 /* Have to change db_type after any pullupmsg */ 2499 DB_TYPE(mp) = M_CTL; 2500 2501 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2502 mctl_present, ip_policy, recv_ill, zoneid); 2503 return; 2504 2505 case IPPROTO_TCP: 2506 /* 2507 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2508 * transport header. 2509 */ 2510 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2511 mp->b_wptr) { 2512 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2513 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2514 goto discard_pkt; 2515 } 2516 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2517 ipha = (ipha_t *)&icmph[1]; 2518 } 2519 /* 2520 * Find a TCP client stream for this packet. 2521 * Note that we do a reverse lookup since the header is 2522 * in the form we sent it out. 2523 */ 2524 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2525 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2526 ipst); 2527 if (connp == NULL) 2528 goto discard_pkt; 2529 2530 /* Have to change db_type after any pullupmsg */ 2531 DB_TYPE(mp) = M_CTL; 2532 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2533 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2534 return; 2535 2536 case IPPROTO_SCTP: 2537 /* 2538 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2539 * transport header. 2540 */ 2541 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2542 mp->b_wptr) { 2543 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2544 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2545 goto discard_pkt; 2546 } 2547 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2548 ipha = (ipha_t *)&icmph[1]; 2549 } 2550 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2551 /* 2552 * Find a SCTP client stream for this packet. 2553 * Note that we do a reverse lookup since the header is 2554 * in the form we sent it out. 2555 * The ripha header is only used for the matching and we 2556 * only set the src and dst addresses, protocol, and version. 2557 */ 2558 ripha.ipha_src = ipha->ipha_dst; 2559 ripha.ipha_dst = ipha->ipha_src; 2560 ripha.ipha_protocol = ipha->ipha_protocol; 2561 ripha.ipha_version_and_hdr_length = 2562 ipha->ipha_version_and_hdr_length; 2563 ((uint16_t *)&ports)[0] = up[1]; 2564 ((uint16_t *)&ports)[1] = up[0]; 2565 2566 /* Have to change db_type after any pullupmsg */ 2567 DB_TYPE(mp) = M_CTL; 2568 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2569 mctl_present, ip_policy, zoneid); 2570 return; 2571 2572 case IPPROTO_ESP: 2573 case IPPROTO_AH: { 2574 int ipsec_rc; 2575 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2576 2577 /* 2578 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2579 * We will re-use the IPSEC_IN if it is already present as 2580 * AH/ESP will not affect any fields in the IPSEC_IN for 2581 * ICMP errors. If there is no IPSEC_IN, allocate a new 2582 * one and attach it in the front. 2583 */ 2584 if (ii != NULL) { 2585 /* 2586 * ip_fanout_proto_again converts the ICMP errors 2587 * that come back from AH/ESP to M_DATA so that 2588 * if it is non-AH/ESP and we do a pullupmsg in 2589 * this function, it would work. Convert it back 2590 * to M_CTL before we send up as this is a ICMP 2591 * error. This could have been generated locally or 2592 * by some router. Validate the inner IPsec 2593 * headers. 2594 * 2595 * NOTE : ill_index is used by ip_fanout_proto_again 2596 * to locate the ill. 2597 */ 2598 ASSERT(ill != NULL); 2599 ii->ipsec_in_ill_index = 2600 ill->ill_phyint->phyint_ifindex; 2601 ii->ipsec_in_rill_index = 2602 recv_ill->ill_phyint->phyint_ifindex; 2603 DB_TYPE(first_mp->b_cont) = M_CTL; 2604 } else { 2605 /* 2606 * IPSEC_IN is not present. We attach a ipsec_in 2607 * message and send up to IPsec for validating 2608 * and removing the IPsec headers. Clear 2609 * ipsec_in_secure so that when we return 2610 * from IPsec, we don't mistakenly think that this 2611 * is a secure packet came from the network. 2612 * 2613 * NOTE : ill_index is used by ip_fanout_proto_again 2614 * to locate the ill. 2615 */ 2616 ASSERT(first_mp == mp); 2617 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2618 if (first_mp == NULL) { 2619 freemsg(mp); 2620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2621 return; 2622 } 2623 ii = (ipsec_in_t *)first_mp->b_rptr; 2624 2625 /* This is not a secure packet */ 2626 ii->ipsec_in_secure = B_FALSE; 2627 first_mp->b_cont = mp; 2628 DB_TYPE(mp) = M_CTL; 2629 ASSERT(ill != NULL); 2630 ii->ipsec_in_ill_index = 2631 ill->ill_phyint->phyint_ifindex; 2632 ii->ipsec_in_rill_index = 2633 recv_ill->ill_phyint->phyint_ifindex; 2634 } 2635 ip2dbg(("icmp_inbound_error: ipsec\n")); 2636 2637 if (!ipsec_loaded(ipss)) { 2638 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2639 return; 2640 } 2641 2642 if (ipha->ipha_protocol == IPPROTO_ESP) 2643 ipsec_rc = ipsecesp_icmp_error(first_mp); 2644 else 2645 ipsec_rc = ipsecah_icmp_error(first_mp); 2646 if (ipsec_rc == IPSEC_STATUS_FAILED) 2647 return; 2648 2649 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2650 return; 2651 } 2652 default: 2653 /* 2654 * The ripha header is only used for the lookup and we 2655 * only set the src and dst addresses and protocol. 2656 */ 2657 ripha.ipha_src = ipha->ipha_dst; 2658 ripha.ipha_dst = ipha->ipha_src; 2659 ripha.ipha_protocol = ipha->ipha_protocol; 2660 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2661 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2662 ntohl(ipha->ipha_dst), 2663 icmph->icmph_type, icmph->icmph_code)); 2664 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2665 ipha_t *in_ipha; 2666 2667 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2668 mp->b_wptr) { 2669 if (!pullupmsg(mp, (uchar_t *)ipha + 2670 hdr_length + sizeof (ipha_t) - 2671 mp->b_rptr)) { 2672 goto discard_pkt; 2673 } 2674 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2675 ipha = (ipha_t *)&icmph[1]; 2676 } 2677 /* 2678 * Caller has verified that length has to be 2679 * at least the size of IP header. 2680 */ 2681 ASSERT(hdr_length >= sizeof (ipha_t)); 2682 /* 2683 * Check the sanity of the inner IP header like 2684 * we did for the outer header. 2685 */ 2686 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2687 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2688 goto discard_pkt; 2689 } 2690 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2691 goto discard_pkt; 2692 } 2693 /* Check for Self-encapsulated tunnels */ 2694 if (in_ipha->ipha_src == ipha->ipha_src && 2695 in_ipha->ipha_dst == ipha->ipha_dst) { 2696 2697 mp = icmp_inbound_self_encap_error(mp, 2698 iph_hdr_length, hdr_length); 2699 if (mp == NULL) 2700 goto discard_pkt; 2701 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2702 ipha = (ipha_t *)&icmph[1]; 2703 hdr_length = IPH_HDR_LENGTH(ipha); 2704 /* 2705 * The packet in error is self-encapsualted. 2706 * And we are finding it further encapsulated 2707 * which we could not have possibly generated. 2708 */ 2709 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2710 goto discard_pkt; 2711 } 2712 icmp_inbound_error_fanout(q, ill, first_mp, 2713 icmph, ipha, iph_hdr_length, hdr_length, 2714 mctl_present, ip_policy, recv_ill, zoneid); 2715 return; 2716 } 2717 } 2718 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2719 ipha->ipha_protocol == IPPROTO_IPV6) && 2720 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2721 ii != NULL && 2722 ii->ipsec_in_loopback && 2723 ii->ipsec_in_secure) { 2724 /* 2725 * For IP tunnels that get a looped-back 2726 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2727 * reported new MTU to take into account the IPsec 2728 * headers protecting this configured tunnel. 2729 * 2730 * This allows the tunnel module (tun.c) to blindly 2731 * accept the MTU reported in an ICMP "too big" 2732 * message. 2733 * 2734 * Non-looped back ICMP messages will just be 2735 * handled by the security protocols (if needed), 2736 * and the first subsequent packet will hit this 2737 * path. 2738 */ 2739 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2740 ipsec_in_extra_length(first_mp)); 2741 } 2742 /* Have to change db_type after any pullupmsg */ 2743 DB_TYPE(mp) = M_CTL; 2744 2745 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2746 ip_policy, recv_ill, zoneid); 2747 return; 2748 } 2749 /* NOTREACHED */ 2750 discard_pkt: 2751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2752 drop_pkt:; 2753 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2754 freemsg(first_mp); 2755 } 2756 2757 /* 2758 * Common IP options parser. 2759 * 2760 * Setup routine: fill in *optp with options-parsing state, then 2761 * tail-call ipoptp_next to return the first option. 2762 */ 2763 uint8_t 2764 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2765 { 2766 uint32_t totallen; /* total length of all options */ 2767 2768 totallen = ipha->ipha_version_and_hdr_length - 2769 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2770 totallen <<= 2; 2771 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2772 optp->ipoptp_end = optp->ipoptp_next + totallen; 2773 optp->ipoptp_flags = 0; 2774 return (ipoptp_next(optp)); 2775 } 2776 2777 /* 2778 * Common IP options parser: extract next option. 2779 */ 2780 uint8_t 2781 ipoptp_next(ipoptp_t *optp) 2782 { 2783 uint8_t *end = optp->ipoptp_end; 2784 uint8_t *cur = optp->ipoptp_next; 2785 uint8_t opt, len, pointer; 2786 2787 /* 2788 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2789 * has been corrupted. 2790 */ 2791 ASSERT(cur <= end); 2792 2793 if (cur == end) 2794 return (IPOPT_EOL); 2795 2796 opt = cur[IPOPT_OPTVAL]; 2797 2798 /* 2799 * Skip any NOP options. 2800 */ 2801 while (opt == IPOPT_NOP) { 2802 cur++; 2803 if (cur == end) 2804 return (IPOPT_EOL); 2805 opt = cur[IPOPT_OPTVAL]; 2806 } 2807 2808 if (opt == IPOPT_EOL) 2809 return (IPOPT_EOL); 2810 2811 /* 2812 * Option requiring a length. 2813 */ 2814 if ((cur + 1) >= end) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 len = cur[IPOPT_OLEN]; 2819 if (len < 2) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (IPOPT_EOL); 2822 } 2823 optp->ipoptp_cur = cur; 2824 optp->ipoptp_len = len; 2825 optp->ipoptp_next = cur + len; 2826 if (cur + len > end) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 2831 /* 2832 * For the options which require a pointer field, make sure 2833 * its there, and make sure it points to either something 2834 * inside this option, or the end of the option. 2835 */ 2836 switch (opt) { 2837 case IPOPT_RR: 2838 case IPOPT_TS: 2839 case IPOPT_LSRR: 2840 case IPOPT_SSRR: 2841 if (len <= IPOPT_OFFSET) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (opt); 2844 } 2845 pointer = cur[IPOPT_OFFSET]; 2846 if (pointer - 1 > len) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (opt); 2849 } 2850 break; 2851 } 2852 2853 /* 2854 * Sanity check the pointer field based on the type of the 2855 * option. 2856 */ 2857 switch (opt) { 2858 case IPOPT_RR: 2859 case IPOPT_SSRR: 2860 case IPOPT_LSRR: 2861 if (pointer < IPOPT_MINOFF_SR) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 break; 2864 case IPOPT_TS: 2865 if (pointer < IPOPT_MINOFF_IT) 2866 optp->ipoptp_flags |= IPOPTP_ERROR; 2867 /* 2868 * Note that the Internet Timestamp option also 2869 * contains two four bit fields (the Overflow field, 2870 * and the Flag field), which follow the pointer 2871 * field. We don't need to check that these fields 2872 * fall within the length of the option because this 2873 * was implicitely done above. We've checked that the 2874 * pointer value is at least IPOPT_MINOFF_IT, and that 2875 * it falls within the option. Since IPOPT_MINOFF_IT > 2876 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2877 */ 2878 ASSERT(len > IPOPT_POS_OV_FLG); 2879 break; 2880 } 2881 2882 return (opt); 2883 } 2884 2885 /* 2886 * Use the outgoing IP header to create an IP_OPTIONS option the way 2887 * it was passed down from the application. 2888 */ 2889 int 2890 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2891 { 2892 ipoptp_t opts; 2893 const uchar_t *opt; 2894 uint8_t optval; 2895 uint8_t optlen; 2896 uint32_t len = 0; 2897 uchar_t *buf1 = buf; 2898 2899 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2900 len += IP_ADDR_LEN; 2901 bzero(buf1, IP_ADDR_LEN); 2902 2903 /* 2904 * OK to cast away const here, as we don't store through the returned 2905 * opts.ipoptp_cur pointer. 2906 */ 2907 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2908 optval != IPOPT_EOL; 2909 optval = ipoptp_next(&opts)) { 2910 int off; 2911 2912 opt = opts.ipoptp_cur; 2913 optlen = opts.ipoptp_len; 2914 switch (optval) { 2915 case IPOPT_SSRR: 2916 case IPOPT_LSRR: 2917 2918 /* 2919 * Insert ipha_dst as the first entry in the source 2920 * route and move down the entries on step. 2921 * The last entry gets placed at buf1. 2922 */ 2923 buf[IPOPT_OPTVAL] = optval; 2924 buf[IPOPT_OLEN] = optlen; 2925 buf[IPOPT_OFFSET] = optlen; 2926 2927 off = optlen - IP_ADDR_LEN; 2928 if (off < 0) { 2929 /* No entries in source route */ 2930 break; 2931 } 2932 /* Last entry in source route */ 2933 bcopy(opt + off, buf1, IP_ADDR_LEN); 2934 off -= IP_ADDR_LEN; 2935 2936 while (off > 0) { 2937 bcopy(opt + off, 2938 buf + off + IP_ADDR_LEN, 2939 IP_ADDR_LEN); 2940 off -= IP_ADDR_LEN; 2941 } 2942 /* ipha_dst into first slot */ 2943 bcopy(&ipha->ipha_dst, 2944 buf + off + IP_ADDR_LEN, 2945 IP_ADDR_LEN); 2946 buf += optlen; 2947 len += optlen; 2948 break; 2949 2950 case IPOPT_COMSEC: 2951 case IPOPT_SECURITY: 2952 /* if passing up a label is not ok, then remove */ 2953 if (is_system_labeled()) 2954 break; 2955 /* FALLTHROUGH */ 2956 default: 2957 bcopy(opt, buf, optlen); 2958 buf += optlen; 2959 len += optlen; 2960 break; 2961 } 2962 } 2963 done: 2964 /* Pad the resulting options */ 2965 while (len & 0x3) { 2966 *buf++ = IPOPT_EOL; 2967 len++; 2968 } 2969 return (len); 2970 } 2971 2972 /* 2973 * Update any record route or timestamp options to include this host. 2974 * Reverse any source route option. 2975 * This routine assumes that the options are well formed i.e. that they 2976 * have already been checked. 2977 */ 2978 static void 2979 icmp_options_update(ipha_t *ipha) 2980 { 2981 ipoptp_t opts; 2982 uchar_t *opt; 2983 uint8_t optval; 2984 ipaddr_t src; /* Our local address */ 2985 ipaddr_t dst; 2986 2987 ip2dbg(("icmp_options_update\n")); 2988 src = ipha->ipha_src; 2989 dst = ipha->ipha_dst; 2990 2991 for (optval = ipoptp_first(&opts, ipha); 2992 optval != IPOPT_EOL; 2993 optval = ipoptp_next(&opts)) { 2994 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2995 opt = opts.ipoptp_cur; 2996 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2997 optval, opts.ipoptp_len)); 2998 switch (optval) { 2999 int off1, off2; 3000 case IPOPT_SSRR: 3001 case IPOPT_LSRR: 3002 /* 3003 * Reverse the source route. The first entry 3004 * should be the next to last one in the current 3005 * source route (the last entry is our address). 3006 * The last entry should be the final destination. 3007 */ 3008 off1 = IPOPT_MINOFF_SR - 1; 3009 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3010 if (off2 < 0) { 3011 /* No entries in source route */ 3012 ip1dbg(( 3013 "icmp_options_update: bad src route\n")); 3014 break; 3015 } 3016 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3017 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3018 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3019 off2 -= IP_ADDR_LEN; 3020 3021 while (off1 < off2) { 3022 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3023 bcopy((char *)opt + off2, (char *)opt + off1, 3024 IP_ADDR_LEN); 3025 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3026 off1 += IP_ADDR_LEN; 3027 off2 -= IP_ADDR_LEN; 3028 } 3029 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3030 break; 3031 } 3032 } 3033 } 3034 3035 /* 3036 * Process received ICMP Redirect messages. 3037 */ 3038 static void 3039 icmp_redirect(ill_t *ill, mblk_t *mp) 3040 { 3041 ipha_t *ipha; 3042 int iph_hdr_length; 3043 icmph_t *icmph; 3044 ipha_t *ipha_err; 3045 ire_t *ire; 3046 ire_t *prev_ire; 3047 ire_t *save_ire; 3048 ipaddr_t src, dst, gateway; 3049 iulp_t ulp_info = { 0 }; 3050 int error; 3051 ip_stack_t *ipst; 3052 3053 ASSERT(ill != NULL); 3054 ipst = ill->ill_ipst; 3055 3056 ipha = (ipha_t *)mp->b_rptr; 3057 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3058 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3059 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3060 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3061 freemsg(mp); 3062 return; 3063 } 3064 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3065 ipha_err = (ipha_t *)&icmph[1]; 3066 src = ipha->ipha_src; 3067 dst = ipha_err->ipha_dst; 3068 gateway = icmph->icmph_rd_gateway; 3069 /* Make sure the new gateway is reachable somehow. */ 3070 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3071 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3072 /* 3073 * Make sure we had a route for the dest in question and that 3074 * that route was pointing to the old gateway (the source of the 3075 * redirect packet.) 3076 */ 3077 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3078 NULL, MATCH_IRE_GW, ipst); 3079 /* 3080 * Check that 3081 * the redirect was not from ourselves 3082 * the new gateway and the old gateway are directly reachable 3083 */ 3084 if (!prev_ire || 3085 !ire || 3086 ire->ire_type == IRE_LOCAL) { 3087 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3088 freemsg(mp); 3089 if (ire != NULL) 3090 ire_refrele(ire); 3091 if (prev_ire != NULL) 3092 ire_refrele(prev_ire); 3093 return; 3094 } 3095 3096 /* 3097 * Should we use the old ULP info to create the new gateway? From 3098 * a user's perspective, we should inherit the info so that it 3099 * is a "smooth" transition. If we do not do that, then new 3100 * connections going thru the new gateway will have no route metrics, 3101 * which is counter-intuitive to user. From a network point of 3102 * view, this may or may not make sense even though the new gateway 3103 * is still directly connected to us so the route metrics should not 3104 * change much. 3105 * 3106 * But if the old ire_uinfo is not initialized, we do another 3107 * recursive lookup on the dest using the new gateway. There may 3108 * be a route to that. If so, use it to initialize the redirect 3109 * route. 3110 */ 3111 if (prev_ire->ire_uinfo.iulp_set) { 3112 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3113 } else { 3114 ire_t *tmp_ire; 3115 ire_t *sire; 3116 3117 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3118 ALL_ZONES, 0, NULL, 3119 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3120 ipst); 3121 if (sire != NULL) { 3122 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3123 /* 3124 * If sire != NULL, ire_ftable_lookup() should not 3125 * return a NULL value. 3126 */ 3127 ASSERT(tmp_ire != NULL); 3128 ire_refrele(tmp_ire); 3129 ire_refrele(sire); 3130 } else if (tmp_ire != NULL) { 3131 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3132 sizeof (iulp_t)); 3133 ire_refrele(tmp_ire); 3134 } 3135 } 3136 if (prev_ire->ire_type == IRE_CACHE) 3137 ire_delete(prev_ire); 3138 ire_refrele(prev_ire); 3139 /* 3140 * TODO: more precise handling for cases 0, 2, 3, the latter two 3141 * require TOS routing 3142 */ 3143 switch (icmph->icmph_code) { 3144 case 0: 3145 case 1: 3146 /* TODO: TOS specificity for cases 2 and 3 */ 3147 case 2: 3148 case 3: 3149 break; 3150 default: 3151 freemsg(mp); 3152 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3153 ire_refrele(ire); 3154 return; 3155 } 3156 /* 3157 * Create a Route Association. This will allow us to remember that 3158 * someone we believe told us to use the particular gateway. 3159 */ 3160 save_ire = ire; 3161 ire = ire_create( 3162 (uchar_t *)&dst, /* dest addr */ 3163 (uchar_t *)&ip_g_all_ones, /* mask */ 3164 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3165 (uchar_t *)&gateway, /* gateway addr */ 3166 &save_ire->ire_max_frag, /* max frag */ 3167 NULL, /* no src nce */ 3168 NULL, /* no rfq */ 3169 NULL, /* no stq */ 3170 IRE_HOST, 3171 NULL, /* ipif */ 3172 0, /* cmask */ 3173 0, /* phandle */ 3174 0, /* ihandle */ 3175 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3176 &ulp_info, 3177 NULL, /* tsol_gc_t */ 3178 NULL, /* gcgrp */ 3179 ipst); 3180 3181 if (ire == NULL) { 3182 freemsg(mp); 3183 ire_refrele(save_ire); 3184 return; 3185 } 3186 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3187 ire_refrele(save_ire); 3188 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3189 3190 if (error == 0) { 3191 ire_refrele(ire); /* Held in ire_add_v4 */ 3192 /* tell routing sockets that we received a redirect */ 3193 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3194 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3195 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3196 } 3197 3198 /* 3199 * Delete any existing IRE_HOST type redirect ires for this destination. 3200 * This together with the added IRE has the effect of 3201 * modifying an existing redirect. 3202 */ 3203 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3204 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3205 if (prev_ire != NULL) { 3206 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 } 3210 3211 freemsg(mp); 3212 } 3213 3214 /* 3215 * Generate an ICMP parameter problem message. 3216 */ 3217 static void 3218 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3219 ip_stack_t *ipst) 3220 { 3221 icmph_t icmph; 3222 boolean_t mctl_present; 3223 mblk_t *first_mp; 3224 3225 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3226 3227 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3228 if (mctl_present) 3229 freeb(first_mp); 3230 return; 3231 } 3232 3233 bzero(&icmph, sizeof (icmph_t)); 3234 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3235 icmph.icmph_pp_ptr = ptr; 3236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3237 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3238 ipst); 3239 } 3240 3241 /* 3242 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3243 * the ICMP header pointed to by "stuff". (May be called as writer.) 3244 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3245 * an icmp error packet can be sent. 3246 * Assigns an appropriate source address to the packet. If ipha_dst is 3247 * one of our addresses use it for source. Otherwise pick a source based 3248 * on a route lookup back to ipha_src. 3249 * Note that ipha_src must be set here since the 3250 * packet is likely to arrive on an ill queue in ip_wput() which will 3251 * not set a source address. 3252 */ 3253 static void 3254 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3255 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3256 { 3257 ipaddr_t dst; 3258 icmph_t *icmph; 3259 ipha_t *ipha; 3260 uint_t len_needed; 3261 size_t msg_len; 3262 mblk_t *mp1; 3263 ipaddr_t src; 3264 ire_t *ire; 3265 mblk_t *ipsec_mp; 3266 ipsec_out_t *io = NULL; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPsec processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 /* 3305 * Clear out ipsec_out_proc_begin, so we do a fresh 3306 * ire lookup. 3307 */ 3308 io->ipsec_out_proc_begin = B_FALSE; 3309 } 3310 ASSERT(zoneid != ALL_ZONES); 3311 /* 3312 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3313 * initialized. We need to do that now. 3314 */ 3315 io->ipsec_out_zoneid = zoneid; 3316 } else { 3317 /* 3318 * This is in clear. The icmp message we are building 3319 * here should go out in clear. 3320 * 3321 * Pardon the convolution of it all, but it's easier to 3322 * allocate a "use cleartext" IPSEC_IN message and convert 3323 * it than it is to allocate a new one. 3324 */ 3325 ipsec_in_t *ii; 3326 ASSERT(DB_TYPE(mp) == M_DATA); 3327 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3328 if (ipsec_mp == NULL) { 3329 freemsg(mp); 3330 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3331 return; 3332 } 3333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3334 3335 /* This is not a secure packet */ 3336 ii->ipsec_in_secure = B_FALSE; 3337 /* 3338 * For trusted extensions using a shared IP address we can 3339 * send using any zoneid. 3340 */ 3341 if (zoneid == ALL_ZONES) 3342 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3343 else 3344 ii->ipsec_in_zoneid = zoneid; 3345 ipsec_mp->b_cont = mp; 3346 ipha = (ipha_t *)mp->b_rptr; 3347 /* 3348 * Convert the IPSEC_IN to IPSEC_OUT. 3349 */ 3350 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3351 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3352 return; 3353 } 3354 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3355 } 3356 3357 /* Remember our eventual destination */ 3358 dst = ipha->ipha_src; 3359 3360 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3361 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3362 if (ire != NULL && 3363 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3364 src = ipha->ipha_dst; 3365 } else { 3366 if (ire != NULL) 3367 ire_refrele(ire); 3368 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3369 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3370 ipst); 3371 if (ire == NULL) { 3372 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3373 freemsg(ipsec_mp); 3374 return; 3375 } 3376 src = ire->ire_src_addr; 3377 } 3378 3379 if (ire != NULL) 3380 ire_refrele(ire); 3381 3382 /* 3383 * Check if we can send back more then 8 bytes in addition to 3384 * the IP header. We try to send 64 bytes of data and the internal 3385 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3386 */ 3387 len_needed = IPH_HDR_LENGTH(ipha); 3388 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3389 ipha->ipha_protocol == IPPROTO_IPV6) { 3390 3391 if (!pullupmsg(mp, -1)) { 3392 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3393 freemsg(ipsec_mp); 3394 return; 3395 } 3396 ipha = (ipha_t *)mp->b_rptr; 3397 3398 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3399 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3400 len_needed)); 3401 } else { 3402 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3403 3404 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3405 len_needed += ip_hdr_length_v6(mp, ip6h); 3406 } 3407 } 3408 len_needed += ipst->ips_ip_icmp_return; 3409 msg_len = msgdsize(mp); 3410 if (msg_len > len_needed) { 3411 (void) adjmsg(mp, len_needed - msg_len); 3412 msg_len = len_needed; 3413 } 3414 /* Make sure we propagate the cred/label for TX */ 3415 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3416 if (mp1 == NULL) { 3417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3418 freemsg(ipsec_mp); 3419 return; 3420 } 3421 mp1->b_cont = mp; 3422 mp = mp1; 3423 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3424 ipsec_mp->b_rptr == (uint8_t *)io && 3425 io->ipsec_out_type == IPSEC_OUT); 3426 ipsec_mp->b_cont = mp; 3427 3428 /* 3429 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3430 * node generates be accepted in peace by all on-host destinations. 3431 * If we do NOT assume that all on-host destinations trust 3432 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3433 * (Look for ipsec_out_icmp_loopback). 3434 */ 3435 io->ipsec_out_icmp_loopback = B_TRUE; 3436 3437 ipha = (ipha_t *)mp->b_rptr; 3438 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3439 *ipha = icmp_ipha; 3440 ipha->ipha_src = src; 3441 ipha->ipha_dst = dst; 3442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3443 msg_len += sizeof (icmp_ipha) + len; 3444 if (msg_len > IP_MAXPACKET) { 3445 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3446 msg_len = IP_MAXPACKET; 3447 } 3448 ipha->ipha_length = htons((uint16_t)msg_len); 3449 icmph = (icmph_t *)&ipha[1]; 3450 bcopy(stuff, icmph, len); 3451 icmph->icmph_checksum = 0; 3452 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3453 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3454 put(q, ipsec_mp); 3455 } 3456 3457 /* 3458 * Determine if an ICMP error packet can be sent given the rate limit. 3459 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3460 * in milliseconds) and a burst size. Burst size number of packets can 3461 * be sent arbitrarely closely spaced. 3462 * The state is tracked using two variables to implement an approximate 3463 * token bucket filter: 3464 * icmp_pkt_err_last - lbolt value when the last burst started 3465 * icmp_pkt_err_sent - number of packets sent in current burst 3466 */ 3467 boolean_t 3468 icmp_err_rate_limit(ip_stack_t *ipst) 3469 { 3470 clock_t now = TICK_TO_MSEC(lbolt); 3471 uint_t refilled; /* Number of packets refilled in tbf since last */ 3472 /* Guard against changes by loading into local variable */ 3473 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3474 3475 if (err_interval == 0) 3476 return (B_FALSE); 3477 3478 if (ipst->ips_icmp_pkt_err_last > now) { 3479 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3480 ipst->ips_icmp_pkt_err_last = 0; 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } 3483 /* 3484 * If we are in a burst update the token bucket filter. 3485 * Update the "last" time to be close to "now" but make sure 3486 * we don't loose precision. 3487 */ 3488 if (ipst->ips_icmp_pkt_err_sent != 0) { 3489 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3490 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } else { 3493 ipst->ips_icmp_pkt_err_sent -= refilled; 3494 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3495 } 3496 } 3497 if (ipst->ips_icmp_pkt_err_sent == 0) { 3498 /* Start of new burst */ 3499 ipst->ips_icmp_pkt_err_last = now; 3500 } 3501 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3502 ipst->ips_icmp_pkt_err_sent++; 3503 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3504 ipst->ips_icmp_pkt_err_sent)); 3505 return (B_FALSE); 3506 } 3507 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3508 return (B_TRUE); 3509 } 3510 3511 /* 3512 * Check if it is ok to send an IPv4 ICMP error packet in 3513 * response to the IPv4 packet in mp. 3514 * Free the message and return null if no 3515 * ICMP error packet should be sent. 3516 */ 3517 static mblk_t * 3518 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3519 { 3520 icmph_t *icmph; 3521 ipha_t *ipha; 3522 uint_t len_needed; 3523 ire_t *src_ire; 3524 ire_t *dst_ire; 3525 3526 if (!mp) 3527 return (NULL); 3528 ipha = (ipha_t *)mp->b_rptr; 3529 if (ip_csum_hdr(ipha)) { 3530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3531 freemsg(mp); 3532 return (NULL); 3533 } 3534 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3535 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3536 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 if (src_ire != NULL || dst_ire != NULL || 3539 CLASSD(ipha->ipha_dst) || 3540 CLASSD(ipha->ipha_src) || 3541 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3542 /* Note: only errors to the fragment with offset 0 */ 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 if (src_ire != NULL) 3546 ire_refrele(src_ire); 3547 if (dst_ire != NULL) 3548 ire_refrele(dst_ire); 3549 return (NULL); 3550 } 3551 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3552 /* 3553 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3554 * errors in response to any ICMP errors. 3555 */ 3556 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3557 if (mp->b_wptr - mp->b_rptr < len_needed) { 3558 if (!pullupmsg(mp, len_needed)) { 3559 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3560 freemsg(mp); 3561 return (NULL); 3562 } 3563 ipha = (ipha_t *)mp->b_rptr; 3564 } 3565 icmph = (icmph_t *) 3566 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3567 switch (icmph->icmph_type) { 3568 case ICMP_DEST_UNREACHABLE: 3569 case ICMP_SOURCE_QUENCH: 3570 case ICMP_TIME_EXCEEDED: 3571 case ICMP_PARAM_PROBLEM: 3572 case ICMP_REDIRECT: 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 return (NULL); 3576 default: 3577 break; 3578 } 3579 } 3580 /* 3581 * If this is a labeled system, then check to see if we're allowed to 3582 * send a response to this particular sender. If not, then just drop. 3583 */ 3584 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3585 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 if (icmp_err_rate_limit(ipst)) { 3591 /* 3592 * Only send ICMP error packets every so often. 3593 * This should be done on a per port/source basis, 3594 * but for now this will suffice. 3595 */ 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 return (mp); 3600 } 3601 3602 /* 3603 * Generate an ICMP redirect message. 3604 */ 3605 static void 3606 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3607 { 3608 icmph_t icmph; 3609 3610 /* 3611 * We are called from ip_rput where we could 3612 * not have attached an IPSEC_IN. 3613 */ 3614 ASSERT(mp->b_datap->db_type == M_DATA); 3615 3616 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3617 return; 3618 } 3619 3620 bzero(&icmph, sizeof (icmph_t)); 3621 icmph.icmph_type = ICMP_REDIRECT; 3622 icmph.icmph_code = 1; 3623 icmph.icmph_rd_gateway = gateway; 3624 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3625 /* Redirects sent by router, and router is global zone */ 3626 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3627 } 3628 3629 /* 3630 * Generate an ICMP time exceeded message. 3631 */ 3632 void 3633 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3634 ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 boolean_t mctl_present; 3638 mblk_t *first_mp; 3639 3640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 if (mctl_present) 3644 freeb(first_mp); 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3650 icmph.icmph_code = code; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3652 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3653 ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP unreachable message. 3658 */ 3659 void 3660 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 mblk_t *first_mp; 3665 boolean_t mctl_present; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3679 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3680 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3681 zoneid, ipst); 3682 } 3683 3684 /* 3685 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3686 * duplicate. As long as someone else holds the address, the interface will 3687 * stay down. When that conflict goes away, the interface is brought back up. 3688 * This is done so that accidental shutdowns of addresses aren't made 3689 * permanent. Your server will recover from a failure. 3690 * 3691 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3692 * user space process (dhcpagent). 3693 * 3694 * Recovery completes if ARP reports that the address is now ours (via 3695 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3696 * 3697 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3698 */ 3699 static void 3700 ipif_dup_recovery(void *arg) 3701 { 3702 ipif_t *ipif = arg; 3703 ill_t *ill = ipif->ipif_ill; 3704 mblk_t *arp_add_mp; 3705 mblk_t *arp_del_mp; 3706 ip_stack_t *ipst = ill->ill_ipst; 3707 3708 ipif->ipif_recovery_id = 0; 3709 3710 /* 3711 * No lock needed for moving or condemned check, as this is just an 3712 * optimization. 3713 */ 3714 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3715 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3716 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3717 /* No reason to try to bring this address back. */ 3718 return; 3719 } 3720 3721 /* ACE_F_UNVERIFIED restarts DAD */ 3722 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3723 goto alloc_fail; 3724 3725 if (ipif->ipif_arp_del_mp == NULL) { 3726 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3727 goto alloc_fail; 3728 ipif->ipif_arp_del_mp = arp_del_mp; 3729 } 3730 3731 putnext(ill->ill_rq, arp_add_mp); 3732 return; 3733 3734 alloc_fail: 3735 /* 3736 * On allocation failure, just restart the timer. Note that the ipif 3737 * is down here, so no other thread could be trying to start a recovery 3738 * timer. The ill_lock protects the condemned flag and the recovery 3739 * timer ID. 3740 */ 3741 freemsg(arp_add_mp); 3742 mutex_enter(&ill->ill_lock); 3743 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3744 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3745 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3746 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3747 } 3748 mutex_exit(&ill->ill_lock); 3749 } 3750 3751 /* 3752 * This is for exclusive changes due to ARP. Either tear down an interface due 3753 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3754 */ 3755 /* ARGSUSED */ 3756 static void 3757 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3758 { 3759 ill_t *ill = rq->q_ptr; 3760 arh_t *arh; 3761 ipaddr_t src; 3762 ipif_t *ipif; 3763 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3764 char hbuf[MAC_STR_LEN]; 3765 char sbuf[INET_ADDRSTRLEN]; 3766 const char *failtype; 3767 boolean_t bring_up; 3768 ip_stack_t *ipst = ill->ill_ipst; 3769 3770 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3771 case AR_CN_READY: 3772 failtype = NULL; 3773 bring_up = B_TRUE; 3774 break; 3775 case AR_CN_FAILED: 3776 failtype = "in use"; 3777 bring_up = B_FALSE; 3778 break; 3779 default: 3780 failtype = "claimed"; 3781 bring_up = B_FALSE; 3782 break; 3783 } 3784 3785 arh = (arh_t *)mp->b_cont->b_rptr; 3786 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3787 3788 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3789 sizeof (hbuf)); 3790 (void) ip_dot_addr(src, sbuf); 3791 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3792 3793 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3794 ipif->ipif_lcl_addr != src) { 3795 continue; 3796 } 3797 3798 /* 3799 * If we failed on a recovery probe, then restart the timer to 3800 * try again later. 3801 */ 3802 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3803 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3804 ill->ill_net_type == IRE_IF_RESOLVER && 3805 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3806 ipst->ips_ip_dup_recovery > 0 && 3807 ipif->ipif_recovery_id == 0) { 3808 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3809 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3810 continue; 3811 } 3812 3813 /* 3814 * If what we're trying to do has already been done, then do 3815 * nothing. 3816 */ 3817 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3818 continue; 3819 3820 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3821 3822 if (failtype == NULL) { 3823 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3824 ibuf); 3825 } else { 3826 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3827 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3828 } 3829 3830 if (bring_up) { 3831 ASSERT(ill->ill_dl_up); 3832 /* 3833 * Free up the ARP delete message so we can allocate 3834 * a fresh one through the normal path. 3835 */ 3836 freemsg(ipif->ipif_arp_del_mp); 3837 ipif->ipif_arp_del_mp = NULL; 3838 if (ipif_resolver_up(ipif, Res_act_initial) != 3839 EINPROGRESS) { 3840 ipif->ipif_addr_ready = 1; 3841 (void) ipif_up_done(ipif); 3842 ASSERT(ill->ill_move_ipif == NULL); 3843 } 3844 continue; 3845 } 3846 3847 mutex_enter(&ill->ill_lock); 3848 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3849 ipif->ipif_flags |= IPIF_DUPLICATE; 3850 ill->ill_ipif_dup_count++; 3851 mutex_exit(&ill->ill_lock); 3852 /* 3853 * Already exclusive on the ill; no need to handle deferred 3854 * processing here. 3855 */ 3856 (void) ipif_down(ipif, NULL, NULL); 3857 ipif_down_tail(ipif); 3858 mutex_enter(&ill->ill_lock); 3859 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3860 ill->ill_net_type == IRE_IF_RESOLVER && 3861 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3862 ipst->ips_ip_dup_recovery > 0) { 3863 ASSERT(ipif->ipif_recovery_id == 0); 3864 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3865 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3866 } 3867 mutex_exit(&ill->ill_lock); 3868 } 3869 freemsg(mp); 3870 } 3871 3872 /* ARGSUSED */ 3873 static void 3874 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3875 { 3876 ill_t *ill = rq->q_ptr; 3877 arh_t *arh; 3878 ipaddr_t src; 3879 ipif_t *ipif; 3880 3881 arh = (arh_t *)mp->b_cont->b_rptr; 3882 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3883 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3884 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3885 (void) ipif_resolver_up(ipif, Res_act_defend); 3886 } 3887 freemsg(mp); 3888 } 3889 3890 /* 3891 * News from ARP. ARP sends notification of interesting events down 3892 * to its clients using M_CTL messages with the interesting ARP packet 3893 * attached via b_cont. 3894 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3895 * queue as opposed to ARP sending the message to all the clients, i.e. all 3896 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3897 * table if a cache IRE is found to delete all the entries for the address in 3898 * the packet. 3899 */ 3900 static void 3901 ip_arp_news(queue_t *q, mblk_t *mp) 3902 { 3903 arcn_t *arcn; 3904 arh_t *arh; 3905 ire_t *ire = NULL; 3906 char hbuf[MAC_STR_LEN]; 3907 char sbuf[INET_ADDRSTRLEN]; 3908 ipaddr_t src; 3909 in6_addr_t v6src; 3910 boolean_t isv6 = B_FALSE; 3911 ipif_t *ipif; 3912 ill_t *ill; 3913 ip_stack_t *ipst; 3914 3915 if (CONN_Q(q)) { 3916 conn_t *connp = Q_TO_CONN(q); 3917 3918 ipst = connp->conn_netstack->netstack_ip; 3919 } else { 3920 ill_t *ill = (ill_t *)q->q_ptr; 3921 3922 ipst = ill->ill_ipst; 3923 } 3924 3925 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3926 if (q->q_next) { 3927 putnext(q, mp); 3928 } else 3929 freemsg(mp); 3930 return; 3931 } 3932 arh = (arh_t *)mp->b_cont->b_rptr; 3933 /* Is it one we are interested in? */ 3934 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3935 isv6 = B_TRUE; 3936 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3937 IPV6_ADDR_LEN); 3938 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3939 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3940 IP_ADDR_LEN); 3941 } else { 3942 freemsg(mp); 3943 return; 3944 } 3945 3946 ill = q->q_ptr; 3947 3948 arcn = (arcn_t *)mp->b_rptr; 3949 switch (arcn->arcn_code) { 3950 case AR_CN_BOGON: 3951 /* 3952 * Someone is sending ARP packets with a source protocol 3953 * address that we have published and for which we believe our 3954 * entry is authoritative and (when ill_arp_extend is set) 3955 * verified to be unique on the network. 3956 * 3957 * The ARP module internally handles the cases where the sender 3958 * is just probing (for DAD) and where the hardware address of 3959 * a non-authoritative entry has changed. Thus, these are the 3960 * real conflicts, and we have to do resolution. 3961 * 3962 * We back away quickly from the address if it's from DHCP or 3963 * otherwise temporary and hasn't been used recently (or at 3964 * all). We'd like to include "deprecated" addresses here as 3965 * well (as there's no real reason to defend something we're 3966 * discarding), but IPMP "reuses" this flag to mean something 3967 * other than the standard meaning. 3968 * 3969 * If the ARP module above is not extended (meaning that it 3970 * doesn't know how to defend the address), then we just log 3971 * the problem as we always did and continue on. It's not 3972 * right, but there's little else we can do, and those old ATM 3973 * users are going away anyway. 3974 */ 3975 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3976 hbuf, sizeof (hbuf)); 3977 (void) ip_dot_addr(src, sbuf); 3978 if (isv6) { 3979 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3980 ipst); 3981 } else { 3982 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3983 } 3984 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3985 uint32_t now; 3986 uint32_t maxage; 3987 clock_t lused; 3988 uint_t maxdefense; 3989 uint_t defs; 3990 3991 /* 3992 * First, figure out if this address hasn't been used 3993 * in a while. If it hasn't, then it's a better 3994 * candidate for abandoning. 3995 */ 3996 ipif = ire->ire_ipif; 3997 ASSERT(ipif != NULL); 3998 now = gethrestime_sec(); 3999 maxage = now - ire->ire_create_time; 4000 if (maxage > ipst->ips_ip_max_temp_idle) 4001 maxage = ipst->ips_ip_max_temp_idle; 4002 lused = drv_hztousec(ddi_get_lbolt() - 4003 ire->ire_last_used_time) / MICROSEC + 1; 4004 if (lused >= maxage && (ipif->ipif_flags & 4005 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4006 maxdefense = ipst->ips_ip_max_temp_defend; 4007 else 4008 maxdefense = ipst->ips_ip_max_defend; 4009 4010 /* 4011 * Now figure out how many times we've defended 4012 * ourselves. Ignore defenses that happened long in 4013 * the past. 4014 */ 4015 mutex_enter(&ire->ire_lock); 4016 if ((defs = ire->ire_defense_count) > 0 && 4017 now - ire->ire_defense_time > 4018 ipst->ips_ip_defend_interval) { 4019 ire->ire_defense_count = defs = 0; 4020 } 4021 ire->ire_defense_count++; 4022 ire->ire_defense_time = now; 4023 mutex_exit(&ire->ire_lock); 4024 ill_refhold(ill); 4025 ire_refrele(ire); 4026 4027 /* 4028 * If we've defended ourselves too many times already, 4029 * then give up and tear down the interface(s) using 4030 * this address. Otherwise, defend by sending out a 4031 * gratuitous ARP. 4032 */ 4033 if (defs >= maxdefense && ill->ill_arp_extend) { 4034 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4035 B_FALSE); 4036 } else { 4037 cmn_err(CE_WARN, 4038 "node %s is using our IP address %s on %s", 4039 hbuf, sbuf, ill->ill_name); 4040 /* 4041 * If this is an old (ATM) ARP module, then 4042 * don't try to defend the address. Remain 4043 * compatible with the old behavior. Defend 4044 * only with new ARP. 4045 */ 4046 if (ill->ill_arp_extend) { 4047 qwriter_ip(ill, q, mp, ip_arp_defend, 4048 NEW_OP, B_FALSE); 4049 } else { 4050 ill_refrele(ill); 4051 } 4052 } 4053 return; 4054 } 4055 cmn_err(CE_WARN, 4056 "proxy ARP problem? Node '%s' is using %s on %s", 4057 hbuf, sbuf, ill->ill_name); 4058 if (ire != NULL) 4059 ire_refrele(ire); 4060 break; 4061 case AR_CN_ANNOUNCE: 4062 if (isv6) { 4063 /* 4064 * For XRESOLV interfaces. 4065 * Delete the IRE cache entry and NCE for this 4066 * v6 address 4067 */ 4068 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4069 /* 4070 * If v6src is a non-zero, it's a router address 4071 * as below. Do the same sort of thing to clean 4072 * out off-net IRE_CACHE entries that go through 4073 * the router. 4074 */ 4075 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4076 ire_walk_v6(ire_delete_cache_gw_v6, 4077 (char *)&v6src, ALL_ZONES, ipst); 4078 } 4079 } else { 4080 nce_hw_map_t hwm; 4081 4082 /* 4083 * ARP gives us a copy of any packet where it thinks 4084 * the address has changed, so that we can update our 4085 * caches. We're responsible for caching known answers 4086 * in the current design. We check whether the 4087 * hardware address really has changed in all of our 4088 * entries that have cached this mapping, and if so, we 4089 * blow them away. This way we will immediately pick 4090 * up the rare case of a host changing hardware 4091 * address. 4092 */ 4093 if (src == 0) 4094 break; 4095 hwm.hwm_addr = src; 4096 hwm.hwm_hwlen = arh->arh_hlen; 4097 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4098 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4099 ndp_walk_common(ipst->ips_ndp4, NULL, 4100 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4101 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4102 } 4103 break; 4104 case AR_CN_READY: 4105 /* No external v6 resolver has a contract to use this */ 4106 if (isv6) 4107 break; 4108 /* If the link is down, we'll retry this later */ 4109 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4110 break; 4111 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4112 NULL, NULL, ipst); 4113 if (ipif != NULL) { 4114 /* 4115 * If this is a duplicate recovery, then we now need to 4116 * go exclusive to bring this thing back up. 4117 */ 4118 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4119 IPIF_DUPLICATE) { 4120 ipif_refrele(ipif); 4121 ill_refhold(ill); 4122 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4123 B_FALSE); 4124 return; 4125 } 4126 /* 4127 * If this is the first notice that this address is 4128 * ready, then let the user know now. 4129 */ 4130 if ((ipif->ipif_flags & IPIF_UP) && 4131 !ipif->ipif_addr_ready) { 4132 ipif_mask_reply(ipif); 4133 ipif_up_notify(ipif); 4134 } 4135 ipif->ipif_addr_ready = 1; 4136 ipif_refrele(ipif); 4137 } 4138 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4139 if (ire != NULL) { 4140 ire->ire_defense_count = 0; 4141 ire_refrele(ire); 4142 } 4143 break; 4144 case AR_CN_FAILED: 4145 /* No external v6 resolver has a contract to use this */ 4146 if (isv6) 4147 break; 4148 if (!ill->ill_arp_extend) { 4149 (void) mac_colon_addr((uint8_t *)(arh + 1), 4150 arh->arh_hlen, hbuf, sizeof (hbuf)); 4151 (void) ip_dot_addr(src, sbuf); 4152 4153 cmn_err(CE_WARN, 4154 "node %s is using our IP address %s on %s", 4155 hbuf, sbuf, ill->ill_name); 4156 break; 4157 } 4158 ill_refhold(ill); 4159 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4160 return; 4161 } 4162 freemsg(mp); 4163 } 4164 4165 /* 4166 * Create a mblk suitable for carrying the interface index and/or source link 4167 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4168 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4169 * application. 4170 */ 4171 mblk_t * 4172 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4173 ip_stack_t *ipst) 4174 { 4175 mblk_t *mp; 4176 ip_pktinfo_t *pinfo; 4177 ipha_t *ipha; 4178 struct ether_header *pether; 4179 boolean_t ipmp_ill_held = B_FALSE; 4180 4181 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4182 if (mp == NULL) { 4183 ip1dbg(("ip_add_info: allocation failure.\n")); 4184 return (data_mp); 4185 } 4186 4187 ipha = (ipha_t *)data_mp->b_rptr; 4188 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4189 bzero(pinfo, sizeof (ip_pktinfo_t)); 4190 pinfo->ip_pkt_flags = (uchar_t)flags; 4191 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4192 4193 pether = (struct ether_header *)((char *)ipha 4194 - sizeof (struct ether_header)); 4195 4196 /* 4197 * Make sure the interface is an ethernet type, since this option 4198 * is currently supported only on this type of interface. Also make 4199 * sure we are pointing correctly above db_base. 4200 */ 4201 if ((flags & IPF_RECVSLLA) && 4202 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4203 (ill->ill_type == IFT_ETHER) && 4204 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4205 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4206 bcopy(pether->ether_shost.ether_addr_octet, 4207 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4208 } else { 4209 /* 4210 * Clear the bit. Indicate to upper layer that IP is not 4211 * sending this ancillary info. 4212 */ 4213 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4214 } 4215 4216 /* 4217 * If `ill' is in an IPMP group, use the IPMP ill to determine 4218 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4219 * IPF_RECVADDR support on test addresses is not needed.) 4220 * 4221 * Note that `ill' may already be an IPMP ill if e.g. we're 4222 * processing a packet looped back to an IPMP data address 4223 * (since those IRE_LOCALs are tied to IPMP ills). 4224 */ 4225 if (IS_UNDER_IPMP(ill)) { 4226 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4227 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4228 freemsg(mp); 4229 return (data_mp); 4230 } 4231 ipmp_ill_held = B_TRUE; 4232 } 4233 4234 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4235 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4236 if (flags & IPF_RECVADDR) { 4237 ipif_t *ipif; 4238 ire_t *ire; 4239 4240 /* 4241 * Only valid for V4 4242 */ 4243 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4244 (IPV4_VERSION << 4)); 4245 4246 ipif = ipif_get_next_ipif(NULL, ill); 4247 if (ipif != NULL) { 4248 /* 4249 * Since a decision has already been made to deliver the 4250 * packet, there is no need to test for SECATTR and 4251 * ZONEONLY. 4252 * When a multicast packet is transmitted 4253 * a cache entry is created for the multicast address. 4254 * When delivering a copy of the packet or when new 4255 * packets are received we do not want to match on the 4256 * cached entry so explicitly match on 4257 * IRE_LOCAL and IRE_LOOPBACK 4258 */ 4259 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4260 IRE_LOCAL | IRE_LOOPBACK, 4261 ipif, zoneid, NULL, 4262 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4263 if (ire == NULL) { 4264 /* 4265 * packet must have come on a different 4266 * interface. 4267 * Since a decision has already been made to 4268 * deliver the packet, there is no need to test 4269 * for SECATTR and ZONEONLY. 4270 * Only match on local and broadcast ire's. 4271 * See detailed comment above. 4272 */ 4273 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4274 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4275 NULL, MATCH_IRE_TYPE, ipst); 4276 } 4277 4278 if (ire == NULL) { 4279 /* 4280 * This is either a multicast packet or 4281 * the address has been removed since 4282 * the packet was received. 4283 * Return INADDR_ANY so that normal source 4284 * selection occurs for the response. 4285 */ 4286 4287 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4288 } else { 4289 pinfo->ip_pkt_match_addr.s_addr = 4290 ire->ire_src_addr; 4291 ire_refrele(ire); 4292 } 4293 ipif_refrele(ipif); 4294 } else { 4295 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4296 } 4297 } 4298 4299 if (ipmp_ill_held) 4300 ill_refrele(ill); 4301 4302 mp->b_datap->db_type = M_CTL; 4303 mp->b_wptr += sizeof (ip_pktinfo_t); 4304 mp->b_cont = data_mp; 4305 4306 return (mp); 4307 } 4308 4309 /* 4310 * Used to determine the most accurate cred_t to use for TX. 4311 * First priority is SCM_UCRED having set the label in the message, 4312 * which is used for MLP on UDP. Second priority is the open credentials 4313 * with the peer's label (aka conn_effective_cred), which is needed for 4314 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4315 */ 4316 cred_t * 4317 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4318 { 4319 cred_t *cr; 4320 4321 cr = msg_getcred(mp, pidp); 4322 if (cr != NULL && crgetlabel(cr) != NULL) 4323 return (cr); 4324 *pidp = NOPID; 4325 return (CONN_CRED(connp)); 4326 } 4327 4328 /* 4329 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4330 * part of the bind request. 4331 */ 4332 4333 boolean_t 4334 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4335 { 4336 ipsec_in_t *ii; 4337 4338 ASSERT(policy_mp != NULL); 4339 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4340 4341 ii = (ipsec_in_t *)policy_mp->b_rptr; 4342 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4343 4344 connp->conn_policy = ii->ipsec_in_policy; 4345 ii->ipsec_in_policy = NULL; 4346 4347 if (ii->ipsec_in_action != NULL) { 4348 if (connp->conn_latch == NULL) { 4349 connp->conn_latch = iplatch_create(); 4350 if (connp->conn_latch == NULL) 4351 return (B_FALSE); 4352 } 4353 ipsec_latch_inbound(connp->conn_latch, ii); 4354 } 4355 return (B_TRUE); 4356 } 4357 4358 static void 4359 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4360 { 4361 /* 4362 * Pass the IPsec headers size in ire_ipsec_overhead. 4363 * We can't do this in ip_bind_get_ire because the policy 4364 * may not have been inherited at that point in time and hence 4365 * conn_out_enforce_policy may not be set. 4366 */ 4367 if (ire_requested && connp->conn_out_enforce_policy && 4368 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4369 ire_t *ire = (ire_t *)mp->b_rptr; 4370 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4371 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4372 } 4373 } 4374 4375 /* 4376 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4377 * and to arrange for power-fanout assist. The ULP is identified by 4378 * adding a single byte at the end of the original bind message. 4379 * A ULP other than UDP or TCP that wishes to be recognized passes 4380 * down a bind with a zero length address. 4381 * 4382 * The binding works as follows: 4383 * - A zero byte address means just bind to the protocol. 4384 * - A four byte address is treated as a request to validate 4385 * that the address is a valid local address, appropriate for 4386 * an application to bind to. This does not affect any fanout 4387 * information in IP. 4388 * - A sizeof sin_t byte address is used to bind to only the local address 4389 * and port. 4390 * - A sizeof ipa_conn_t byte address contains complete fanout information 4391 * consisting of local and remote addresses and ports. In 4392 * this case, the addresses are both validated as appropriate 4393 * for this operation, and, if so, the information is retained 4394 * for use in the inbound fanout. 4395 * 4396 * The ULP (except in the zero-length bind) can append an 4397 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4398 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4399 * a copy of the source or destination IRE (source for local bind; 4400 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4401 * policy information contained should be copied on to the conn. 4402 * 4403 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4404 */ 4405 mblk_t * 4406 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4407 { 4408 ssize_t len; 4409 struct T_bind_req *tbr; 4410 sin_t *sin; 4411 ipa_conn_t *ac; 4412 uchar_t *ucp; 4413 mblk_t *mp1; 4414 boolean_t ire_requested; 4415 int error = 0; 4416 int protocol; 4417 ipa_conn_x_t *acx; 4418 cred_t *cr; 4419 4420 /* 4421 * All Solaris components should pass a db_credp 4422 * for this TPI message, hence we ASSERT. 4423 * But in case there is some other M_PROTO that looks 4424 * like a TPI message sent by some other kernel 4425 * component, we check and return an error. 4426 */ 4427 cr = msg_getcred(mp, NULL); 4428 ASSERT(cr != NULL); 4429 if (cr == NULL) { 4430 error = EINVAL; 4431 goto bad_addr; 4432 } 4433 4434 ASSERT(!connp->conn_af_isv6); 4435 connp->conn_pkt_isv6 = B_FALSE; 4436 4437 len = MBLKL(mp); 4438 if (len < (sizeof (*tbr) + 1)) { 4439 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4440 "ip_bind: bogus msg, len %ld", len); 4441 /* XXX: Need to return something better */ 4442 goto bad_addr; 4443 } 4444 /* Back up and extract the protocol identifier. */ 4445 mp->b_wptr--; 4446 protocol = *mp->b_wptr & 0xFF; 4447 tbr = (struct T_bind_req *)mp->b_rptr; 4448 /* Reset the message type in preparation for shipping it back. */ 4449 DB_TYPE(mp) = M_PCPROTO; 4450 4451 connp->conn_ulp = (uint8_t)protocol; 4452 4453 /* 4454 * Check for a zero length address. This is from a protocol that 4455 * wants to register to receive all packets of its type. 4456 */ 4457 if (tbr->ADDR_length == 0) { 4458 /* 4459 * These protocols are now intercepted in ip_bind_v6(). 4460 * Reject protocol-level binds here for now. 4461 * 4462 * For SCTP raw socket, ICMP sends down a bind with sin_t 4463 * so that the protocol type cannot be SCTP. 4464 */ 4465 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4466 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4467 goto bad_addr; 4468 } 4469 4470 /* 4471 * 4472 * The udp module never sends down a zero-length address, 4473 * and allowing this on a labeled system will break MLP 4474 * functionality. 4475 */ 4476 if (is_system_labeled() && protocol == IPPROTO_UDP) 4477 goto bad_addr; 4478 4479 if (connp->conn_mac_exempt) 4480 goto bad_addr; 4481 4482 /* No hash here really. The table is big enough. */ 4483 connp->conn_srcv6 = ipv6_all_zeros; 4484 4485 ipcl_proto_insert(connp, protocol); 4486 4487 tbr->PRIM_type = T_BIND_ACK; 4488 return (mp); 4489 } 4490 4491 /* Extract the address pointer from the message. */ 4492 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4493 tbr->ADDR_length); 4494 if (ucp == NULL) { 4495 ip1dbg(("ip_bind: no address\n")); 4496 goto bad_addr; 4497 } 4498 if (!OK_32PTR(ucp)) { 4499 ip1dbg(("ip_bind: unaligned address\n")); 4500 goto bad_addr; 4501 } 4502 /* 4503 * Check for trailing mps. 4504 */ 4505 4506 mp1 = mp->b_cont; 4507 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4508 4509 switch (tbr->ADDR_length) { 4510 default: 4511 ip1dbg(("ip_bind: bad address length %d\n", 4512 (int)tbr->ADDR_length)); 4513 goto bad_addr; 4514 4515 case IP_ADDR_LEN: 4516 /* Verification of local address only */ 4517 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4518 *(ipaddr_t *)ucp, 0, B_FALSE); 4519 break; 4520 4521 case sizeof (sin_t): 4522 sin = (sin_t *)ucp; 4523 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4524 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4525 break; 4526 4527 case sizeof (ipa_conn_t): 4528 ac = (ipa_conn_t *)ucp; 4529 /* For raw socket, the local port is not set. */ 4530 if (ac->ac_lport == 0) 4531 ac->ac_lport = connp->conn_lport; 4532 /* Always verify destination reachability. */ 4533 error = ip_bind_connected_v4(connp, &mp1, protocol, 4534 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4535 B_TRUE, B_TRUE, cr); 4536 break; 4537 4538 case sizeof (ipa_conn_x_t): 4539 acx = (ipa_conn_x_t *)ucp; 4540 /* 4541 * Whether or not to verify destination reachability depends 4542 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4543 */ 4544 error = ip_bind_connected_v4(connp, &mp1, protocol, 4545 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4546 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4547 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4548 break; 4549 } 4550 ASSERT(error != EINPROGRESS); 4551 if (error != 0) 4552 goto bad_addr; 4553 4554 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4555 4556 /* Send it home. */ 4557 mp->b_datap->db_type = M_PCPROTO; 4558 tbr->PRIM_type = T_BIND_ACK; 4559 return (mp); 4560 4561 bad_addr: 4562 /* 4563 * If error = -1 then we generate a TBADADDR - otherwise error is 4564 * a unix errno. 4565 */ 4566 if (error > 0) 4567 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4568 else 4569 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4570 return (mp); 4571 } 4572 4573 /* 4574 * Here address is verified to be a valid local address. 4575 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4576 * address is also considered a valid local address. 4577 * In the case of a broadcast/multicast address, however, the 4578 * upper protocol is expected to reset the src address 4579 * to 0 if it sees a IRE_BROADCAST type returned so that 4580 * no packets are emitted with broadcast/multicast address as 4581 * source address (that violates hosts requirements RFC 1122) 4582 * The addresses valid for bind are: 4583 * (1) - INADDR_ANY (0) 4584 * (2) - IP address of an UP interface 4585 * (3) - IP address of a DOWN interface 4586 * (4) - valid local IP broadcast addresses. In this case 4587 * the conn will only receive packets destined to 4588 * the specified broadcast address. 4589 * (5) - a multicast address. In this case 4590 * the conn will only receive packets destined to 4591 * the specified multicast address. Note: the 4592 * application still has to issue an 4593 * IP_ADD_MEMBERSHIP socket option. 4594 * 4595 * On error, return -1 for TBADADDR otherwise pass the 4596 * errno with TSYSERR reply. 4597 * 4598 * In all the above cases, the bound address must be valid in the current zone. 4599 * When the address is loopback, multicast or broadcast, there might be many 4600 * matching IREs so bind has to look up based on the zone. 4601 * 4602 * Note: lport is in network byte order. 4603 * 4604 */ 4605 int 4606 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4607 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4608 { 4609 int error = 0; 4610 ire_t *src_ire; 4611 zoneid_t zoneid; 4612 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4613 mblk_t *mp = NULL; 4614 boolean_t ire_requested = B_FALSE; 4615 boolean_t ipsec_policy_set = B_FALSE; 4616 4617 if (mpp) 4618 mp = *mpp; 4619 4620 if (mp != NULL) { 4621 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4622 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4623 } 4624 4625 /* 4626 * If it was previously connected, conn_fully_bound would have 4627 * been set. 4628 */ 4629 connp->conn_fully_bound = B_FALSE; 4630 4631 src_ire = NULL; 4632 4633 zoneid = IPCL_ZONEID(connp); 4634 4635 if (src_addr) { 4636 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4637 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4638 /* 4639 * If an address other than 0.0.0.0 is requested, 4640 * we verify that it is a valid address for bind 4641 * Note: Following code is in if-else-if form for 4642 * readability compared to a condition check. 4643 */ 4644 /* LINTED - statement has no consequence */ 4645 if (IRE_IS_LOCAL(src_ire)) { 4646 /* 4647 * (2) Bind to address of local UP interface 4648 */ 4649 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4650 /* 4651 * (4) Bind to broadcast address 4652 * Note: permitted only from transports that 4653 * request IRE 4654 */ 4655 if (!ire_requested) 4656 error = EADDRNOTAVAIL; 4657 } else { 4658 /* 4659 * (3) Bind to address of local DOWN interface 4660 * (ipif_lookup_addr() looks up all interfaces 4661 * but we do not get here for UP interfaces 4662 * - case (2) above) 4663 */ 4664 /* LINTED - statement has no consequent */ 4665 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4666 /* The address exists */ 4667 } else if (CLASSD(src_addr)) { 4668 error = 0; 4669 if (src_ire != NULL) 4670 ire_refrele(src_ire); 4671 /* 4672 * (5) bind to multicast address. 4673 * Fake out the IRE returned to upper 4674 * layer to be a broadcast IRE. 4675 */ 4676 src_ire = ire_ctable_lookup( 4677 INADDR_BROADCAST, INADDR_ANY, 4678 IRE_BROADCAST, NULL, zoneid, NULL, 4679 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4680 ipst); 4681 if (src_ire == NULL || !ire_requested) 4682 error = EADDRNOTAVAIL; 4683 } else { 4684 /* 4685 * Not a valid address for bind 4686 */ 4687 error = EADDRNOTAVAIL; 4688 } 4689 } 4690 if (error) { 4691 /* Red Alert! Attempting to be a bogon! */ 4692 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4693 ntohl(src_addr))); 4694 goto bad_addr; 4695 } 4696 } 4697 4698 /* 4699 * Allow setting new policies. For example, disconnects come 4700 * down as ipa_t bind. As we would have set conn_policy_cached 4701 * to B_TRUE before, we should set it to B_FALSE, so that policy 4702 * can change after the disconnect. 4703 */ 4704 connp->conn_policy_cached = B_FALSE; 4705 4706 /* 4707 * If not fanout_insert this was just an address verification 4708 */ 4709 if (fanout_insert) { 4710 /* 4711 * The addresses have been verified. Time to insert in 4712 * the correct fanout list. 4713 */ 4714 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4715 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4716 connp->conn_lport = lport; 4717 connp->conn_fport = 0; 4718 /* 4719 * Do we need to add a check to reject Multicast packets 4720 */ 4721 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4722 } 4723 4724 if (error == 0) { 4725 if (ire_requested) { 4726 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4727 error = -1; 4728 /* Falls through to bad_addr */ 4729 } 4730 } else if (ipsec_policy_set) { 4731 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4732 error = -1; 4733 /* Falls through to bad_addr */ 4734 } 4735 } 4736 } 4737 bad_addr: 4738 if (error != 0) { 4739 if (connp->conn_anon_port) { 4740 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4741 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4742 B_FALSE); 4743 } 4744 connp->conn_mlp_type = mlptSingle; 4745 } 4746 if (src_ire != NULL) 4747 IRE_REFRELE(src_ire); 4748 return (error); 4749 } 4750 4751 int 4752 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4753 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4754 { 4755 int error; 4756 mblk_t *mp = NULL; 4757 boolean_t ire_requested; 4758 4759 if (ire_mpp) 4760 mp = *ire_mpp; 4761 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4762 4763 ASSERT(!connp->conn_af_isv6); 4764 connp->conn_pkt_isv6 = B_FALSE; 4765 connp->conn_ulp = protocol; 4766 4767 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4768 fanout_insert); 4769 if (error == 0) { 4770 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4771 ire_requested); 4772 } else if (error < 0) { 4773 error = -TBADADDR; 4774 } 4775 return (error); 4776 } 4777 4778 /* 4779 * Verify that both the source and destination addresses 4780 * are valid. If verify_dst is false, then the destination address may be 4781 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4782 * destination reachability, while tunnels do not. 4783 * Note that we allow connect to broadcast and multicast 4784 * addresses when ire_requested is set. Thus the ULP 4785 * has to check for IRE_BROADCAST and multicast. 4786 * 4787 * Returns zero if ok. 4788 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4789 * (for use with TSYSERR reply). 4790 * 4791 * Note: lport and fport are in network byte order. 4792 */ 4793 int 4794 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4795 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4796 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4797 { 4798 4799 ire_t *src_ire; 4800 ire_t *dst_ire; 4801 int error = 0; 4802 ire_t *sire = NULL; 4803 ire_t *md_dst_ire = NULL; 4804 ire_t *lso_dst_ire = NULL; 4805 ill_t *ill = NULL; 4806 zoneid_t zoneid; 4807 ipaddr_t src_addr = *src_addrp; 4808 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4809 mblk_t *mp = NULL; 4810 boolean_t ire_requested = B_FALSE; 4811 boolean_t ipsec_policy_set = B_FALSE; 4812 ts_label_t *tsl = NULL; 4813 cred_t *effective_cred = NULL; 4814 4815 if (mpp) 4816 mp = *mpp; 4817 4818 if (mp != NULL) { 4819 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4820 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4821 } 4822 4823 src_ire = dst_ire = NULL; 4824 4825 /* 4826 * If we never got a disconnect before, clear it now. 4827 */ 4828 connp->conn_fully_bound = B_FALSE; 4829 4830 zoneid = IPCL_ZONEID(connp); 4831 4832 /* 4833 * Check whether Trusted Solaris policy allows communication with this 4834 * host, and pretend that the destination is unreachable if not. 4835 * 4836 * This is never a problem for TCP, since that transport is known to 4837 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4838 * handling. If the remote is unreachable, it will be detected at that 4839 * point, so there's no reason to check it here. 4840 * 4841 * Note that for sendto (and other datagram-oriented friends), this 4842 * check is done as part of the data path label computation instead. 4843 * The check here is just to make non-TCP connect() report the right 4844 * error. 4845 */ 4846 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4847 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4848 connp->conn_mac_exempt, &effective_cred)) != 0) { 4849 if (ip_debug > 2) { 4850 pr_addr_dbg( 4851 "ip_bind_connected_v4:" 4852 " no label for dst %s\n", 4853 AF_INET, &dst_addr); 4854 } 4855 goto bad_addr; 4856 } 4857 4858 /* 4859 * tsol_check_dest() may have created a new cred with 4860 * a modified security label. Use that cred if it exists 4861 * for ire lookups. 4862 */ 4863 if (effective_cred == NULL) { 4864 tsl = crgetlabel(cr); 4865 } else { 4866 tsl = crgetlabel(effective_cred); 4867 } 4868 } 4869 4870 if (CLASSD(dst_addr)) { 4871 /* Pick up an IRE_BROADCAST */ 4872 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4873 NULL, zoneid, tsl, 4874 (MATCH_IRE_RECURSIVE | 4875 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4876 MATCH_IRE_SECATTR), ipst); 4877 } else { 4878 /* 4879 * If conn_dontroute is set or if conn_nexthop_set is set, 4880 * and onlink ipif is not found set ENETUNREACH error. 4881 */ 4882 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4883 ipif_t *ipif; 4884 4885 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4886 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4887 if (ipif == NULL) { 4888 error = ENETUNREACH; 4889 goto bad_addr; 4890 } 4891 ipif_refrele(ipif); 4892 } 4893 4894 if (connp->conn_nexthop_set) { 4895 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4896 0, 0, NULL, NULL, zoneid, tsl, 4897 MATCH_IRE_SECATTR, ipst); 4898 } else { 4899 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4900 &sire, zoneid, tsl, 4901 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4902 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4903 MATCH_IRE_SECATTR), ipst); 4904 } 4905 } 4906 /* 4907 * dst_ire can't be a broadcast when not ire_requested. 4908 * We also prevent ire's with src address INADDR_ANY to 4909 * be used, which are created temporarily for 4910 * sending out packets from endpoints that have 4911 * conn_unspec_src set. If verify_dst is true, the destination must be 4912 * reachable. If verify_dst is false, the destination needn't be 4913 * reachable. 4914 * 4915 * If we match on a reject or black hole, then we've got a 4916 * local failure. May as well fail out the connect() attempt, 4917 * since it's never going to succeed. 4918 */ 4919 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4920 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4921 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4922 /* 4923 * If we're verifying destination reachability, we always want 4924 * to complain here. 4925 * 4926 * If we're not verifying destination reachability but the 4927 * destination has a route, we still want to fail on the 4928 * temporary address and broadcast address tests. 4929 */ 4930 if (verify_dst || (dst_ire != NULL)) { 4931 if (ip_debug > 2) { 4932 pr_addr_dbg("ip_bind_connected_v4:" 4933 "bad connected dst %s\n", 4934 AF_INET, &dst_addr); 4935 } 4936 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4937 error = ENETUNREACH; 4938 else 4939 error = EHOSTUNREACH; 4940 goto bad_addr; 4941 } 4942 } 4943 4944 /* 4945 * If the app does a connect(), it means that it will most likely 4946 * send more than 1 packet to the destination. It makes sense 4947 * to clear the temporary flag. 4948 */ 4949 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4950 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4951 irb_t *irb = dst_ire->ire_bucket; 4952 4953 rw_enter(&irb->irb_lock, RW_WRITER); 4954 /* 4955 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4956 * the lock to guarantee irb_tmp_ire_cnt. 4957 */ 4958 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4959 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4960 irb->irb_tmp_ire_cnt--; 4961 } 4962 rw_exit(&irb->irb_lock); 4963 } 4964 4965 /* 4966 * See if we should notify ULP about LSO/MDT; we do this whether or not 4967 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4968 * eligibility tests for passive connects are handled separately 4969 * through tcp_adapt_ire(). We do this before the source address 4970 * selection, because dst_ire may change after a call to 4971 * ipif_select_source(). This is a best-effort check, as the 4972 * packet for this connection may not actually go through 4973 * dst_ire->ire_stq, and the exact IRE can only be known after 4974 * calling ip_newroute(). This is why we further check on the 4975 * IRE during LSO/Multidata packet transmission in 4976 * tcp_lsosend()/tcp_multisend(). 4977 */ 4978 if (!ipsec_policy_set && dst_ire != NULL && 4979 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4980 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4981 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4982 lso_dst_ire = dst_ire; 4983 IRE_REFHOLD(lso_dst_ire); 4984 } else if (ipst->ips_ip_multidata_outbound && 4985 ILL_MDT_CAPABLE(ill)) { 4986 md_dst_ire = dst_ire; 4987 IRE_REFHOLD(md_dst_ire); 4988 } 4989 } 4990 4991 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4992 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4993 /* 4994 * If the IRE belongs to a different zone, look for a matching 4995 * route in the forwarding table and use the source address from 4996 * that route. 4997 */ 4998 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4999 zoneid, 0, NULL, 5000 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 5001 MATCH_IRE_RJ_BHOLE, ipst); 5002 if (src_ire == NULL) { 5003 error = EHOSTUNREACH; 5004 goto bad_addr; 5005 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 5006 if (!(src_ire->ire_type & IRE_HOST)) 5007 error = ENETUNREACH; 5008 else 5009 error = EHOSTUNREACH; 5010 goto bad_addr; 5011 } 5012 if (src_addr == INADDR_ANY) 5013 src_addr = src_ire->ire_src_addr; 5014 ire_refrele(src_ire); 5015 src_ire = NULL; 5016 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 5017 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5018 src_addr = sire->ire_src_addr; 5019 ire_refrele(dst_ire); 5020 dst_ire = sire; 5021 sire = NULL; 5022 } else { 5023 /* 5024 * Pick a source address so that a proper inbound 5025 * load spreading would happen. 5026 */ 5027 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5028 ipif_t *src_ipif = NULL; 5029 ire_t *ipif_ire; 5030 5031 /* 5032 * Supply a local source address such that inbound 5033 * load spreading happens. 5034 * 5035 * Determine the best source address on this ill for 5036 * the destination. 5037 * 5038 * 1) For broadcast, we should return a broadcast ire 5039 * found above so that upper layers know that the 5040 * destination address is a broadcast address. 5041 * 5042 * 2) If the ipif is DEPRECATED, select a better 5043 * source address. Similarly, if the ipif is on 5044 * the IPMP meta-interface, pick a source address 5045 * at random to improve inbound load spreading. 5046 * 5047 * 3) If the outgoing interface is part of a usesrc 5048 * group, then try selecting a source address from 5049 * the usesrc ILL. 5050 */ 5051 if ((dst_ire->ire_zoneid != zoneid && 5052 dst_ire->ire_zoneid != ALL_ZONES) || 5053 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5054 (!(dst_ire->ire_type & IRE_BROADCAST) && 5055 (IS_IPMP(ire_ill) || 5056 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5057 (ire_ill->ill_usesrc_ifindex != 0)))) { 5058 /* 5059 * If the destination is reachable via a 5060 * given gateway, the selected source address 5061 * should be in the same subnet as the gateway. 5062 * Otherwise, the destination is not reachable. 5063 * 5064 * If there are no interfaces on the same subnet 5065 * as the destination, ipif_select_source gives 5066 * first non-deprecated interface which might be 5067 * on a different subnet than the gateway. 5068 * This is not desirable. Hence pass the dst_ire 5069 * source address to ipif_select_source. 5070 * It is sure that the destination is reachable 5071 * with the dst_ire source address subnet. 5072 * So passing dst_ire source address to 5073 * ipif_select_source will make sure that the 5074 * selected source will be on the same subnet 5075 * as dst_ire source address. 5076 */ 5077 ipaddr_t saddr = 5078 dst_ire->ire_ipif->ipif_src_addr; 5079 src_ipif = ipif_select_source(ire_ill, 5080 saddr, zoneid); 5081 if (src_ipif != NULL) { 5082 if (IS_VNI(src_ipif->ipif_ill)) { 5083 /* 5084 * For VNI there is no 5085 * interface route 5086 */ 5087 src_addr = 5088 src_ipif->ipif_src_addr; 5089 } else { 5090 ipif_ire = 5091 ipif_to_ire(src_ipif); 5092 if (ipif_ire != NULL) { 5093 IRE_REFRELE(dst_ire); 5094 dst_ire = ipif_ire; 5095 } 5096 src_addr = 5097 dst_ire->ire_src_addr; 5098 } 5099 ipif_refrele(src_ipif); 5100 } else { 5101 src_addr = dst_ire->ire_src_addr; 5102 } 5103 } else { 5104 src_addr = dst_ire->ire_src_addr; 5105 } 5106 } 5107 } 5108 5109 /* 5110 * We do ire_route_lookup() here (and not 5111 * interface lookup as we assert that 5112 * src_addr should only come from an 5113 * UP interface for hard binding. 5114 */ 5115 ASSERT(src_ire == NULL); 5116 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5117 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5118 /* src_ire must be a local|loopback */ 5119 if (!IRE_IS_LOCAL(src_ire)) { 5120 if (ip_debug > 2) { 5121 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5122 "src %s\n", AF_INET, &src_addr); 5123 } 5124 error = EADDRNOTAVAIL; 5125 goto bad_addr; 5126 } 5127 5128 /* 5129 * If the source address is a loopback address, the 5130 * destination had best be local or multicast. 5131 * The transports that can't handle multicast will reject 5132 * those addresses. 5133 */ 5134 if (src_ire->ire_type == IRE_LOOPBACK && 5135 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5136 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5137 error = -1; 5138 goto bad_addr; 5139 } 5140 5141 /* 5142 * Allow setting new policies. For example, disconnects come 5143 * down as ipa_t bind. As we would have set conn_policy_cached 5144 * to B_TRUE before, we should set it to B_FALSE, so that policy 5145 * can change after the disconnect. 5146 */ 5147 connp->conn_policy_cached = B_FALSE; 5148 5149 /* 5150 * Set the conn addresses/ports immediately, so the IPsec policy calls 5151 * can handle their passed-in conn's. 5152 */ 5153 5154 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5155 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5156 connp->conn_lport = lport; 5157 connp->conn_fport = fport; 5158 *src_addrp = src_addr; 5159 5160 ASSERT(!(ipsec_policy_set && ire_requested)); 5161 if (ire_requested) { 5162 iulp_t *ulp_info = NULL; 5163 5164 /* 5165 * Note that sire will not be NULL if this is an off-link 5166 * connection and there is not cache for that dest yet. 5167 * 5168 * XXX Because of an existing bug, if there are multiple 5169 * default routes, the IRE returned now may not be the actual 5170 * default route used (default routes are chosen in a 5171 * round robin fashion). So if the metrics for different 5172 * default routes are different, we may return the wrong 5173 * metrics. This will not be a problem if the existing 5174 * bug is fixed. 5175 */ 5176 if (sire != NULL) { 5177 ulp_info = &(sire->ire_uinfo); 5178 } 5179 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5180 error = -1; 5181 goto bad_addr; 5182 } 5183 mp = *mpp; 5184 } else if (ipsec_policy_set) { 5185 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5186 error = -1; 5187 goto bad_addr; 5188 } 5189 } 5190 5191 /* 5192 * Cache IPsec policy in this conn. If we have per-socket policy, 5193 * we'll cache that. If we don't, we'll inherit global policy. 5194 * 5195 * We can't insert until the conn reflects the policy. Note that 5196 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5197 * connections where we don't have a policy. This is to prevent 5198 * global policy lookups in the inbound path. 5199 * 5200 * If we insert before we set conn_policy_cached, 5201 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5202 * because global policy cound be non-empty. We normally call 5203 * ipsec_check_policy() for conn_policy_cached connections only if 5204 * ipc_in_enforce_policy is set. But in this case, 5205 * conn_policy_cached can get set anytime since we made the 5206 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5207 * called, which will make the above assumption false. Thus, we 5208 * need to insert after we set conn_policy_cached. 5209 */ 5210 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5211 goto bad_addr; 5212 5213 if (fanout_insert) { 5214 /* 5215 * The addresses have been verified. Time to insert in 5216 * the correct fanout list. 5217 */ 5218 error = ipcl_conn_insert(connp, protocol, src_addr, 5219 dst_addr, connp->conn_ports); 5220 } 5221 5222 if (error == 0) { 5223 connp->conn_fully_bound = B_TRUE; 5224 /* 5225 * Our initial checks for LSO/MDT have passed; the IRE is not 5226 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5227 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5228 * ip_xxinfo_return(), which performs further checks 5229 * against them and upon success, returns the LSO/MDT info 5230 * mblk which we will attach to the bind acknowledgment. 5231 */ 5232 if (lso_dst_ire != NULL) { 5233 mblk_t *lsoinfo_mp; 5234 5235 ASSERT(ill->ill_lso_capab != NULL); 5236 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5237 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5238 if (mp == NULL) { 5239 *mpp = lsoinfo_mp; 5240 } else { 5241 linkb(mp, lsoinfo_mp); 5242 } 5243 } 5244 } else if (md_dst_ire != NULL) { 5245 mblk_t *mdinfo_mp; 5246 5247 ASSERT(ill->ill_mdt_capab != NULL); 5248 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5249 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5250 if (mp == NULL) { 5251 *mpp = mdinfo_mp; 5252 } else { 5253 linkb(mp, mdinfo_mp); 5254 } 5255 } 5256 } 5257 } 5258 bad_addr: 5259 if (ipsec_policy_set) { 5260 ASSERT(mp != NULL); 5261 freeb(mp); 5262 /* 5263 * As of now assume that nothing else accompanies 5264 * IPSEC_POLICY_SET. 5265 */ 5266 *mpp = NULL; 5267 } 5268 if (src_ire != NULL) 5269 IRE_REFRELE(src_ire); 5270 if (dst_ire != NULL) 5271 IRE_REFRELE(dst_ire); 5272 if (sire != NULL) 5273 IRE_REFRELE(sire); 5274 if (md_dst_ire != NULL) 5275 IRE_REFRELE(md_dst_ire); 5276 if (lso_dst_ire != NULL) 5277 IRE_REFRELE(lso_dst_ire); 5278 if (effective_cred != NULL) 5279 crfree(effective_cred); 5280 return (error); 5281 } 5282 5283 int 5284 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5285 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5286 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5287 { 5288 int error; 5289 mblk_t *mp = NULL; 5290 boolean_t ire_requested; 5291 5292 if (ire_mpp) 5293 mp = *ire_mpp; 5294 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5295 5296 ASSERT(!connp->conn_af_isv6); 5297 connp->conn_pkt_isv6 = B_FALSE; 5298 connp->conn_ulp = protocol; 5299 5300 /* For raw socket, the local port is not set. */ 5301 if (lport == 0) 5302 lport = connp->conn_lport; 5303 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5304 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5305 if (error == 0) { 5306 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5307 ire_requested); 5308 } else if (error < 0) { 5309 error = -TBADADDR; 5310 } 5311 return (error); 5312 } 5313 5314 /* 5315 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5316 * Prefers dst_ire over src_ire. 5317 */ 5318 static boolean_t 5319 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5320 { 5321 mblk_t *mp = *mpp; 5322 ire_t *ret_ire; 5323 5324 ASSERT(mp != NULL); 5325 5326 if (ire != NULL) { 5327 /* 5328 * mp initialized above to IRE_DB_REQ_TYPE 5329 * appended mblk. Its <upper protocol>'s 5330 * job to make sure there is room. 5331 */ 5332 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5333 return (B_FALSE); 5334 5335 mp->b_datap->db_type = IRE_DB_TYPE; 5336 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5337 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5338 ret_ire = (ire_t *)mp->b_rptr; 5339 /* 5340 * Pass the latest setting of the ip_path_mtu_discovery and 5341 * copy the ulp info if any. 5342 */ 5343 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5344 IPH_DF : 0; 5345 if (ulp_info != NULL) { 5346 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5347 sizeof (iulp_t)); 5348 } 5349 ret_ire->ire_mp = mp; 5350 } else { 5351 /* 5352 * No IRE was found. Remove IRE mblk. 5353 */ 5354 *mpp = mp->b_cont; 5355 freeb(mp); 5356 } 5357 return (B_TRUE); 5358 } 5359 5360 /* 5361 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5362 * the final piece where we don't. Return a pointer to the first mblk in the 5363 * result, and update the pointer to the next mblk to chew on. If anything 5364 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5365 * NULL pointer. 5366 */ 5367 mblk_t * 5368 ip_carve_mp(mblk_t **mpp, ssize_t len) 5369 { 5370 mblk_t *mp0; 5371 mblk_t *mp1; 5372 mblk_t *mp2; 5373 5374 if (!len || !mpp || !(mp0 = *mpp)) 5375 return (NULL); 5376 /* If we aren't going to consume the first mblk, we need a dup. */ 5377 if (mp0->b_wptr - mp0->b_rptr > len) { 5378 mp1 = dupb(mp0); 5379 if (mp1) { 5380 /* Partition the data between the two mblks. */ 5381 mp1->b_wptr = mp1->b_rptr + len; 5382 mp0->b_rptr = mp1->b_wptr; 5383 /* 5384 * after adjustments if mblk not consumed is now 5385 * unaligned, try to align it. If this fails free 5386 * all messages and let upper layer recover. 5387 */ 5388 if (!OK_32PTR(mp0->b_rptr)) { 5389 if (!pullupmsg(mp0, -1)) { 5390 freemsg(mp0); 5391 freemsg(mp1); 5392 *mpp = NULL; 5393 return (NULL); 5394 } 5395 } 5396 } 5397 return (mp1); 5398 } 5399 /* Eat through as many mblks as we need to get len bytes. */ 5400 len -= mp0->b_wptr - mp0->b_rptr; 5401 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5402 if (mp2->b_wptr - mp2->b_rptr > len) { 5403 /* 5404 * We won't consume the entire last mblk. Like 5405 * above, dup and partition it. 5406 */ 5407 mp1->b_cont = dupb(mp2); 5408 mp1 = mp1->b_cont; 5409 if (!mp1) { 5410 /* 5411 * Trouble. Rather than go to a lot of 5412 * trouble to clean up, we free the messages. 5413 * This won't be any worse than losing it on 5414 * the wire. 5415 */ 5416 freemsg(mp0); 5417 freemsg(mp2); 5418 *mpp = NULL; 5419 return (NULL); 5420 } 5421 mp1->b_wptr = mp1->b_rptr + len; 5422 mp2->b_rptr = mp1->b_wptr; 5423 /* 5424 * after adjustments if mblk not consumed is now 5425 * unaligned, try to align it. If this fails free 5426 * all messages and let upper layer recover. 5427 */ 5428 if (!OK_32PTR(mp2->b_rptr)) { 5429 if (!pullupmsg(mp2, -1)) { 5430 freemsg(mp0); 5431 freemsg(mp2); 5432 *mpp = NULL; 5433 return (NULL); 5434 } 5435 } 5436 *mpp = mp2; 5437 return (mp0); 5438 } 5439 /* Decrement len by the amount we just got. */ 5440 len -= mp2->b_wptr - mp2->b_rptr; 5441 } 5442 /* 5443 * len should be reduced to zero now. If not our caller has 5444 * screwed up. 5445 */ 5446 if (len) { 5447 /* Shouldn't happen! */ 5448 freemsg(mp0); 5449 *mpp = NULL; 5450 return (NULL); 5451 } 5452 /* 5453 * We consumed up to exactly the end of an mblk. Detach the part 5454 * we are returning from the rest of the chain. 5455 */ 5456 mp1->b_cont = NULL; 5457 *mpp = mp2; 5458 return (mp0); 5459 } 5460 5461 /* The ill stream is being unplumbed. Called from ip_close */ 5462 int 5463 ip_modclose(ill_t *ill) 5464 { 5465 boolean_t success; 5466 ipsq_t *ipsq; 5467 ipif_t *ipif; 5468 queue_t *q = ill->ill_rq; 5469 ip_stack_t *ipst = ill->ill_ipst; 5470 int i; 5471 5472 /* 5473 * The punlink prior to this may have initiated a capability 5474 * negotiation. But ipsq_enter will block until that finishes or 5475 * times out. 5476 */ 5477 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5478 5479 /* 5480 * Open/close/push/pop is guaranteed to be single threaded 5481 * per stream by STREAMS. FS guarantees that all references 5482 * from top are gone before close is called. So there can't 5483 * be another close thread that has set CONDEMNED on this ill. 5484 * and cause ipsq_enter to return failure. 5485 */ 5486 ASSERT(success); 5487 ipsq = ill->ill_phyint->phyint_ipsq; 5488 5489 /* 5490 * Mark it condemned. No new reference will be made to this ill. 5491 * Lookup functions will return an error. Threads that try to 5492 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5493 * that the refcnt will drop down to zero. 5494 */ 5495 mutex_enter(&ill->ill_lock); 5496 ill->ill_state_flags |= ILL_CONDEMNED; 5497 for (ipif = ill->ill_ipif; ipif != NULL; 5498 ipif = ipif->ipif_next) { 5499 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5500 } 5501 /* 5502 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5503 * returns error if ILL_CONDEMNED is set 5504 */ 5505 cv_broadcast(&ill->ill_cv); 5506 mutex_exit(&ill->ill_lock); 5507 5508 /* 5509 * Send all the deferred DLPI messages downstream which came in 5510 * during the small window right before ipsq_enter(). We do this 5511 * without waiting for the ACKs because all the ACKs for M_PROTO 5512 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5513 */ 5514 ill_dlpi_send_deferred(ill); 5515 5516 /* 5517 * Shut down fragmentation reassembly. 5518 * ill_frag_timer won't start a timer again. 5519 * Now cancel any existing timer 5520 */ 5521 (void) untimeout(ill->ill_frag_timer_id); 5522 (void) ill_frag_timeout(ill, 0); 5523 5524 /* 5525 * Call ill_delete to bring down the ipifs, ilms and ill on 5526 * this ill. Then wait for the refcnts to drop to zero. 5527 * ill_is_freeable checks whether the ill is really quiescent. 5528 * Then make sure that threads that are waiting to enter the 5529 * ipsq have seen the error returned by ipsq_enter and have 5530 * gone away. Then we call ill_delete_tail which does the 5531 * DL_UNBIND_REQ with the driver and then qprocsoff. 5532 */ 5533 ill_delete(ill); 5534 mutex_enter(&ill->ill_lock); 5535 while (!ill_is_freeable(ill)) 5536 cv_wait(&ill->ill_cv, &ill->ill_lock); 5537 while (ill->ill_waiters) 5538 cv_wait(&ill->ill_cv, &ill->ill_lock); 5539 5540 mutex_exit(&ill->ill_lock); 5541 5542 /* 5543 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5544 * it held until the end of the function since the cleanup 5545 * below needs to be able to use the ip_stack_t. 5546 */ 5547 netstack_hold(ipst->ips_netstack); 5548 5549 /* qprocsoff is done via ill_delete_tail */ 5550 ill_delete_tail(ill); 5551 ASSERT(ill->ill_ipst == NULL); 5552 5553 /* 5554 * Walk through all upper (conn) streams and qenable 5555 * those that have queued data. 5556 * close synchronization needs this to 5557 * be done to ensure that all upper layers blocked 5558 * due to flow control to the closing device 5559 * get unblocked. 5560 */ 5561 ip1dbg(("ip_wsrv: walking\n")); 5562 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5563 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5564 } 5565 5566 mutex_enter(&ipst->ips_ip_mi_lock); 5567 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5568 mutex_exit(&ipst->ips_ip_mi_lock); 5569 5570 /* 5571 * credp could be null if the open didn't succeed and ip_modopen 5572 * itself calls ip_close. 5573 */ 5574 if (ill->ill_credp != NULL) 5575 crfree(ill->ill_credp); 5576 5577 /* 5578 * Now we are done with the module close pieces that 5579 * need the netstack_t. 5580 */ 5581 netstack_rele(ipst->ips_netstack); 5582 5583 mi_close_free((IDP)ill); 5584 q->q_ptr = WR(q)->q_ptr = NULL; 5585 5586 ipsq_exit(ipsq); 5587 5588 return (0); 5589 } 5590 5591 /* 5592 * This is called as part of close() for IP, UDP, ICMP, and RTS 5593 * in order to quiesce the conn. 5594 */ 5595 void 5596 ip_quiesce_conn(conn_t *connp) 5597 { 5598 boolean_t drain_cleanup_reqd = B_FALSE; 5599 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5600 boolean_t ilg_cleanup_reqd = B_FALSE; 5601 ip_stack_t *ipst; 5602 5603 ASSERT(!IPCL_IS_TCP(connp)); 5604 ipst = connp->conn_netstack->netstack_ip; 5605 5606 /* 5607 * Mark the conn as closing, and this conn must not be 5608 * inserted in future into any list. Eg. conn_drain_insert(), 5609 * won't insert this conn into the conn_drain_list. 5610 * Similarly ill_pending_mp_add() will not add any mp to 5611 * the pending mp list, after this conn has started closing. 5612 * 5613 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5614 * cannot get set henceforth. 5615 */ 5616 mutex_enter(&connp->conn_lock); 5617 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5618 connp->conn_state_flags |= CONN_CLOSING; 5619 if (connp->conn_idl != NULL) 5620 drain_cleanup_reqd = B_TRUE; 5621 if (connp->conn_oper_pending_ill != NULL) 5622 conn_ioctl_cleanup_reqd = B_TRUE; 5623 if (connp->conn_dhcpinit_ill != NULL) { 5624 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5625 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5626 connp->conn_dhcpinit_ill = NULL; 5627 } 5628 if (connp->conn_ilg_inuse != 0) 5629 ilg_cleanup_reqd = B_TRUE; 5630 mutex_exit(&connp->conn_lock); 5631 5632 if (conn_ioctl_cleanup_reqd) 5633 conn_ioctl_cleanup(connp); 5634 5635 if (is_system_labeled() && connp->conn_anon_port) { 5636 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5637 connp->conn_mlp_type, connp->conn_ulp, 5638 ntohs(connp->conn_lport), B_FALSE); 5639 connp->conn_anon_port = 0; 5640 } 5641 connp->conn_mlp_type = mlptSingle; 5642 5643 /* 5644 * Remove this conn from any fanout list it is on. 5645 * and then wait for any threads currently operating 5646 * on this endpoint to finish 5647 */ 5648 ipcl_hash_remove(connp); 5649 5650 /* 5651 * Remove this conn from the drain list, and do 5652 * any other cleanup that may be required. 5653 * (Only non-tcp streams may have a non-null conn_idl. 5654 * TCP streams are never flow controlled, and 5655 * conn_idl will be null) 5656 */ 5657 if (drain_cleanup_reqd) 5658 conn_drain_tail(connp, B_TRUE); 5659 5660 if (connp == ipst->ips_ip_g_mrouter) 5661 (void) ip_mrouter_done(NULL, ipst); 5662 5663 if (ilg_cleanup_reqd) 5664 ilg_delete_all(connp); 5665 5666 conn_delete_ire(connp, NULL); 5667 5668 /* 5669 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5670 * callers from write side can't be there now because close 5671 * is in progress. The only other caller is ipcl_walk 5672 * which checks for the condemned flag. 5673 */ 5674 mutex_enter(&connp->conn_lock); 5675 connp->conn_state_flags |= CONN_CONDEMNED; 5676 while (connp->conn_ref != 1) 5677 cv_wait(&connp->conn_cv, &connp->conn_lock); 5678 connp->conn_state_flags |= CONN_QUIESCED; 5679 mutex_exit(&connp->conn_lock); 5680 } 5681 5682 /* ARGSUSED */ 5683 int 5684 ip_close(queue_t *q, int flags) 5685 { 5686 conn_t *connp; 5687 5688 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5689 5690 /* 5691 * Call the appropriate delete routine depending on whether this is 5692 * a module or device. 5693 */ 5694 if (WR(q)->q_next != NULL) { 5695 /* This is a module close */ 5696 return (ip_modclose((ill_t *)q->q_ptr)); 5697 } 5698 5699 connp = q->q_ptr; 5700 ip_quiesce_conn(connp); 5701 5702 qprocsoff(q); 5703 5704 /* 5705 * Now we are truly single threaded on this stream, and can 5706 * delete the things hanging off the connp, and finally the connp. 5707 * We removed this connp from the fanout list, it cannot be 5708 * accessed thru the fanouts, and we already waited for the 5709 * conn_ref to drop to 0. We are already in close, so 5710 * there cannot be any other thread from the top. qprocsoff 5711 * has completed, and service has completed or won't run in 5712 * future. 5713 */ 5714 ASSERT(connp->conn_ref == 1); 5715 5716 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5717 5718 connp->conn_ref--; 5719 ipcl_conn_destroy(connp); 5720 5721 q->q_ptr = WR(q)->q_ptr = NULL; 5722 return (0); 5723 } 5724 5725 /* 5726 * Wapper around putnext() so that ip_rts_request can merely use 5727 * conn_recv. 5728 */ 5729 /*ARGSUSED2*/ 5730 static void 5731 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5732 { 5733 conn_t *connp = (conn_t *)arg1; 5734 5735 putnext(connp->conn_rq, mp); 5736 } 5737 5738 /* 5739 * Called when the module is about to be unloaded 5740 */ 5741 void 5742 ip_ddi_destroy(void) 5743 { 5744 tnet_fini(); 5745 5746 icmp_ddi_g_destroy(); 5747 rts_ddi_g_destroy(); 5748 udp_ddi_g_destroy(); 5749 sctp_ddi_g_destroy(); 5750 tcp_ddi_g_destroy(); 5751 ipsec_policy_g_destroy(); 5752 ipcl_g_destroy(); 5753 ip_net_g_destroy(); 5754 ip_ire_g_fini(); 5755 inet_minor_destroy(ip_minor_arena_sa); 5756 #if defined(_LP64) 5757 inet_minor_destroy(ip_minor_arena_la); 5758 #endif 5759 5760 #ifdef DEBUG 5761 list_destroy(&ip_thread_list); 5762 rw_destroy(&ip_thread_rwlock); 5763 tsd_destroy(&ip_thread_data); 5764 #endif 5765 5766 netstack_unregister(NS_IP); 5767 } 5768 5769 /* 5770 * First step in cleanup. 5771 */ 5772 /* ARGSUSED */ 5773 static void 5774 ip_stack_shutdown(netstackid_t stackid, void *arg) 5775 { 5776 ip_stack_t *ipst = (ip_stack_t *)arg; 5777 5778 #ifdef NS_DEBUG 5779 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5780 #endif 5781 5782 /* Get rid of loopback interfaces and their IREs */ 5783 ip_loopback_cleanup(ipst); 5784 5785 /* 5786 * The *_hook_shutdown()s start the process of notifying any 5787 * consumers that things are going away.... nothing is destroyed. 5788 */ 5789 ipv4_hook_shutdown(ipst); 5790 ipv6_hook_shutdown(ipst); 5791 5792 mutex_enter(&ipst->ips_capab_taskq_lock); 5793 ipst->ips_capab_taskq_quit = B_TRUE; 5794 cv_signal(&ipst->ips_capab_taskq_cv); 5795 mutex_exit(&ipst->ips_capab_taskq_lock); 5796 5797 mutex_enter(&ipst->ips_mrt_lock); 5798 ipst->ips_mrt_flags |= IP_MRT_STOP; 5799 cv_signal(&ipst->ips_mrt_cv); 5800 mutex_exit(&ipst->ips_mrt_lock); 5801 } 5802 5803 /* 5804 * Free the IP stack instance. 5805 */ 5806 static void 5807 ip_stack_fini(netstackid_t stackid, void *arg) 5808 { 5809 ip_stack_t *ipst = (ip_stack_t *)arg; 5810 int ret; 5811 5812 #ifdef NS_DEBUG 5813 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5814 #endif 5815 /* 5816 * At this point, all of the notifications that the events and 5817 * protocols are going away have been run, meaning that we can 5818 * now set about starting to clean things up. 5819 */ 5820 ipv4_hook_destroy(ipst); 5821 ipv6_hook_destroy(ipst); 5822 ip_net_destroy(ipst); 5823 5824 mutex_destroy(&ipst->ips_capab_taskq_lock); 5825 cv_destroy(&ipst->ips_capab_taskq_cv); 5826 list_destroy(&ipst->ips_capab_taskq_list); 5827 5828 mutex_enter(&ipst->ips_mrt_lock); 5829 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5830 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5831 mutex_destroy(&ipst->ips_mrt_lock); 5832 cv_destroy(&ipst->ips_mrt_cv); 5833 cv_destroy(&ipst->ips_mrt_done_cv); 5834 5835 ipmp_destroy(ipst); 5836 rw_destroy(&ipst->ips_srcid_lock); 5837 5838 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5839 ipst->ips_ip_mibkp = NULL; 5840 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5841 ipst->ips_icmp_mibkp = NULL; 5842 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5843 ipst->ips_ip_kstat = NULL; 5844 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5845 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5846 ipst->ips_ip6_kstat = NULL; 5847 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5848 5849 nd_free(&ipst->ips_ip_g_nd); 5850 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5851 ipst->ips_param_arr = NULL; 5852 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5853 ipst->ips_ndp_arr = NULL; 5854 5855 ip_mrouter_stack_destroy(ipst); 5856 5857 mutex_destroy(&ipst->ips_ip_mi_lock); 5858 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5859 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5860 rw_destroy(&ipst->ips_ip_g_nd_lock); 5861 5862 ret = untimeout(ipst->ips_igmp_timeout_id); 5863 if (ret == -1) { 5864 ASSERT(ipst->ips_igmp_timeout_id == 0); 5865 } else { 5866 ASSERT(ipst->ips_igmp_timeout_id != 0); 5867 ipst->ips_igmp_timeout_id = 0; 5868 } 5869 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5874 ipst->ips_igmp_slowtimeout_id = 0; 5875 } 5876 ret = untimeout(ipst->ips_mld_timeout_id); 5877 if (ret == -1) { 5878 ASSERT(ipst->ips_mld_timeout_id == 0); 5879 } else { 5880 ASSERT(ipst->ips_mld_timeout_id != 0); 5881 ipst->ips_mld_timeout_id = 0; 5882 } 5883 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5884 if (ret == -1) { 5885 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5886 } else { 5887 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5888 ipst->ips_mld_slowtimeout_id = 0; 5889 } 5890 ret = untimeout(ipst->ips_ip_ire_expire_id); 5891 if (ret == -1) { 5892 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5893 } else { 5894 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5895 ipst->ips_ip_ire_expire_id = 0; 5896 } 5897 5898 mutex_destroy(&ipst->ips_igmp_timer_lock); 5899 mutex_destroy(&ipst->ips_mld_timer_lock); 5900 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5901 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5902 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5903 rw_destroy(&ipst->ips_ill_g_lock); 5904 5905 ipobs_fini(ipst); 5906 ip_ire_fini(ipst); 5907 ip6_asp_free(ipst); 5908 conn_drain_fini(ipst); 5909 ipcl_destroy(ipst); 5910 5911 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5912 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5913 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5914 ipst->ips_ndp4 = NULL; 5915 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5916 ipst->ips_ndp6 = NULL; 5917 5918 if (ipst->ips_loopback_ksp != NULL) { 5919 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5920 ipst->ips_loopback_ksp = NULL; 5921 } 5922 5923 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5924 ipst->ips_phyint_g_list = NULL; 5925 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5926 ipst->ips_ill_g_heads = NULL; 5927 5928 ldi_ident_release(ipst->ips_ldi_ident); 5929 kmem_free(ipst, sizeof (*ipst)); 5930 } 5931 5932 /* 5933 * This function is called from the TSD destructor, and is used to debug 5934 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5935 * details. 5936 */ 5937 static void 5938 ip_thread_exit(void *phash) 5939 { 5940 th_hash_t *thh = phash; 5941 5942 rw_enter(&ip_thread_rwlock, RW_WRITER); 5943 list_remove(&ip_thread_list, thh); 5944 rw_exit(&ip_thread_rwlock); 5945 mod_hash_destroy_hash(thh->thh_hash); 5946 kmem_free(thh, sizeof (*thh)); 5947 } 5948 5949 /* 5950 * Called when the IP kernel module is loaded into the kernel 5951 */ 5952 void 5953 ip_ddi_init(void) 5954 { 5955 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5956 5957 /* 5958 * For IP and TCP the minor numbers should start from 2 since we have 4 5959 * initial devices: ip, ip6, tcp, tcp6. 5960 */ 5961 /* 5962 * If this is a 64-bit kernel, then create two separate arenas - 5963 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5964 * other for socket apps in the range 2^^18 through 2^^32-1. 5965 */ 5966 ip_minor_arena_la = NULL; 5967 ip_minor_arena_sa = NULL; 5968 #if defined(_LP64) 5969 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5970 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5971 cmn_err(CE_PANIC, 5972 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5973 } 5974 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5975 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5976 cmn_err(CE_PANIC, 5977 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5978 } 5979 #else 5980 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5981 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5982 cmn_err(CE_PANIC, 5983 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5984 } 5985 #endif 5986 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5987 5988 ipcl_g_init(); 5989 ip_ire_g_init(); 5990 ip_net_g_init(); 5991 5992 #ifdef DEBUG 5993 tsd_create(&ip_thread_data, ip_thread_exit); 5994 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5995 list_create(&ip_thread_list, sizeof (th_hash_t), 5996 offsetof(th_hash_t, thh_link)); 5997 #endif 5998 5999 /* 6000 * We want to be informed each time a stack is created or 6001 * destroyed in the kernel, so we can maintain the 6002 * set of udp_stack_t's. 6003 */ 6004 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 6005 ip_stack_fini); 6006 6007 ipsec_policy_g_init(); 6008 tcp_ddi_g_init(); 6009 sctp_ddi_g_init(); 6010 6011 tnet_init(); 6012 6013 udp_ddi_g_init(); 6014 rts_ddi_g_init(); 6015 icmp_ddi_g_init(); 6016 } 6017 6018 /* 6019 * Initialize the IP stack instance. 6020 */ 6021 static void * 6022 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6023 { 6024 ip_stack_t *ipst; 6025 ipparam_t *pa; 6026 ipndp_t *na; 6027 major_t major; 6028 6029 #ifdef NS_DEBUG 6030 printf("ip_stack_init(stack %d)\n", stackid); 6031 #endif 6032 6033 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6034 ipst->ips_netstack = ns; 6035 6036 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6037 KM_SLEEP); 6038 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6039 KM_SLEEP); 6040 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6041 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6042 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6043 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6044 6045 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6046 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6047 ipst->ips_igmp_deferred_next = INFINITY; 6048 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6049 ipst->ips_mld_deferred_next = INFINITY; 6050 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6051 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6052 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6053 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6054 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6055 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6056 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6057 6058 ipcl_init(ipst); 6059 ip_ire_init(ipst); 6060 ip6_asp_init(ipst); 6061 ipif_init(ipst); 6062 conn_drain_init(ipst); 6063 ip_mrouter_stack_init(ipst); 6064 6065 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6066 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6067 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 6068 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 6069 6070 ipst->ips_ip_multirt_log_interval = 1000; 6071 6072 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6073 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6074 ipst->ips_ill_index = 1; 6075 6076 ipst->ips_saved_ip_g_forward = -1; 6077 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6078 6079 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6080 ipst->ips_param_arr = pa; 6081 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6082 6083 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6084 ipst->ips_ndp_arr = na; 6085 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6086 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6087 (caddr_t)&ipst->ips_ip_g_forward; 6088 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6089 (caddr_t)&ipst->ips_ipv6_forward; 6090 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6091 "ip_cgtp_filter") == 0); 6092 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6093 (caddr_t)&ipst->ips_ip_cgtp_filter; 6094 6095 (void) ip_param_register(&ipst->ips_ip_g_nd, 6096 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6097 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6098 6099 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6100 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6101 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6102 ipst->ips_ip6_kstat = 6103 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6104 6105 ipst->ips_ip_src_id = 1; 6106 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6107 6108 ipobs_init(ipst); 6109 ip_net_init(ipst, ns); 6110 ipv4_hook_init(ipst); 6111 ipv6_hook_init(ipst); 6112 ipmp_init(ipst); 6113 6114 /* 6115 * Create the taskq dispatcher thread and initialize related stuff. 6116 */ 6117 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6118 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6119 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6120 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6121 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6122 offsetof(mblk_t, b_next)); 6123 6124 /* 6125 * Create the mcast_restart_timers_thread() worker thread. 6126 */ 6127 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6128 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6129 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6130 ipst->ips_mrt_thread = thread_create(NULL, 0, 6131 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6132 6133 major = mod_name_to_major(INET_NAME); 6134 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6135 return (ipst); 6136 } 6137 6138 /* 6139 * Allocate and initialize a DLPI template of the specified length. (May be 6140 * called as writer.) 6141 */ 6142 mblk_t * 6143 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6144 { 6145 mblk_t *mp; 6146 6147 mp = allocb(len, BPRI_MED); 6148 if (!mp) 6149 return (NULL); 6150 6151 /* 6152 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6153 * of which we don't seem to use) are sent with M_PCPROTO, and 6154 * that other DLPI are M_PROTO. 6155 */ 6156 if (prim == DL_INFO_REQ) { 6157 mp->b_datap->db_type = M_PCPROTO; 6158 } else { 6159 mp->b_datap->db_type = M_PROTO; 6160 } 6161 6162 mp->b_wptr = mp->b_rptr + len; 6163 bzero(mp->b_rptr, len); 6164 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6165 return (mp); 6166 } 6167 6168 /* 6169 * Allocate and initialize a DLPI notification. (May be called as writer.) 6170 */ 6171 mblk_t * 6172 ip_dlnotify_alloc(uint_t notification, uint_t data) 6173 { 6174 dl_notify_ind_t *notifyp; 6175 mblk_t *mp; 6176 6177 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6178 return (NULL); 6179 6180 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6181 notifyp->dl_notification = notification; 6182 notifyp->dl_data = data; 6183 return (mp); 6184 } 6185 6186 /* 6187 * Debug formatting routine. Returns a character string representation of the 6188 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6189 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6190 * 6191 * Once the ndd table-printing interfaces are removed, this can be changed to 6192 * standard dotted-decimal form. 6193 */ 6194 char * 6195 ip_dot_addr(ipaddr_t addr, char *buf) 6196 { 6197 uint8_t *ap = (uint8_t *)&addr; 6198 6199 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6200 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6201 return (buf); 6202 } 6203 6204 /* 6205 * Write the given MAC address as a printable string in the usual colon- 6206 * separated format. 6207 */ 6208 const char * 6209 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6210 { 6211 char *bp; 6212 6213 if (alen == 0 || buflen < 4) 6214 return ("?"); 6215 bp = buf; 6216 for (;;) { 6217 /* 6218 * If there are more MAC address bytes available, but we won't 6219 * have any room to print them, then add "..." to the string 6220 * instead. See below for the 'magic number' explanation. 6221 */ 6222 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6223 (void) strcpy(bp, "..."); 6224 break; 6225 } 6226 (void) sprintf(bp, "%02x", *addr++); 6227 bp += 2; 6228 if (--alen == 0) 6229 break; 6230 *bp++ = ':'; 6231 buflen -= 3; 6232 /* 6233 * At this point, based on the first 'if' statement above, 6234 * either alen == 1 and buflen >= 3, or alen > 1 and 6235 * buflen >= 4. The first case leaves room for the final "xx" 6236 * number and trailing NUL byte. The second leaves room for at 6237 * least "...". Thus the apparently 'magic' numbers chosen for 6238 * that statement. 6239 */ 6240 } 6241 return (buf); 6242 } 6243 6244 /* 6245 * Send an ICMP error after patching up the packet appropriately. Returns 6246 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6247 */ 6248 static boolean_t 6249 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6250 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6251 zoneid_t zoneid, ip_stack_t *ipst) 6252 { 6253 ipha_t *ipha; 6254 mblk_t *first_mp; 6255 boolean_t secure; 6256 unsigned char db_type; 6257 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6258 6259 first_mp = mp; 6260 if (mctl_present) { 6261 mp = mp->b_cont; 6262 secure = ipsec_in_is_secure(first_mp); 6263 ASSERT(mp != NULL); 6264 } else { 6265 /* 6266 * If this is an ICMP error being reported - which goes 6267 * up as M_CTLs, we need to convert them to M_DATA till 6268 * we finish checking with global policy because 6269 * ipsec_check_global_policy() assumes M_DATA as clear 6270 * and M_CTL as secure. 6271 */ 6272 db_type = DB_TYPE(mp); 6273 DB_TYPE(mp) = M_DATA; 6274 secure = B_FALSE; 6275 } 6276 /* 6277 * We are generating an icmp error for some inbound packet. 6278 * Called from all ip_fanout_(udp, tcp, proto) functions. 6279 * Before we generate an error, check with global policy 6280 * to see whether this is allowed to enter the system. As 6281 * there is no "conn", we are checking with global policy. 6282 */ 6283 ipha = (ipha_t *)mp->b_rptr; 6284 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6285 first_mp = ipsec_check_global_policy(first_mp, NULL, 6286 ipha, NULL, mctl_present, ipst->ips_netstack); 6287 if (first_mp == NULL) 6288 return (B_FALSE); 6289 } 6290 6291 if (!mctl_present) 6292 DB_TYPE(mp) = db_type; 6293 6294 if (flags & IP_FF_SEND_ICMP) { 6295 if (flags & IP_FF_HDR_COMPLETE) { 6296 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6297 freemsg(first_mp); 6298 return (B_TRUE); 6299 } 6300 } 6301 if (flags & IP_FF_CKSUM) { 6302 /* 6303 * Have to correct checksum since 6304 * the packet might have been 6305 * fragmented and the reassembly code in ip_rput 6306 * does not restore the IP checksum. 6307 */ 6308 ipha->ipha_hdr_checksum = 0; 6309 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6310 } 6311 switch (icmp_type) { 6312 case ICMP_DEST_UNREACHABLE: 6313 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6314 ipst); 6315 break; 6316 default: 6317 freemsg(first_mp); 6318 break; 6319 } 6320 } else { 6321 freemsg(first_mp); 6322 return (B_FALSE); 6323 } 6324 6325 return (B_TRUE); 6326 } 6327 6328 /* 6329 * Used to send an ICMP error message when a packet is received for 6330 * a protocol that is not supported. The mblk passed as argument 6331 * is consumed by this function. 6332 */ 6333 void 6334 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6335 ip_stack_t *ipst) 6336 { 6337 mblk_t *mp; 6338 ipha_t *ipha; 6339 ill_t *ill; 6340 ipsec_in_t *ii; 6341 6342 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6343 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6344 6345 mp = ipsec_mp->b_cont; 6346 ipsec_mp->b_cont = NULL; 6347 ipha = (ipha_t *)mp->b_rptr; 6348 /* Get ill from index in ipsec_in_t. */ 6349 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6350 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6351 ipst); 6352 if (ill != NULL) { 6353 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6354 if (ip_fanout_send_icmp(q, mp, flags, 6355 ICMP_DEST_UNREACHABLE, 6356 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6357 BUMP_MIB(ill->ill_ip_mib, 6358 ipIfStatsInUnknownProtos); 6359 } 6360 } else { 6361 if (ip_fanout_send_icmp_v6(q, mp, flags, 6362 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6363 0, B_FALSE, zoneid, ipst)) { 6364 BUMP_MIB(ill->ill_ip_mib, 6365 ipIfStatsInUnknownProtos); 6366 } 6367 } 6368 ill_refrele(ill); 6369 } else { /* re-link for the freemsg() below. */ 6370 ipsec_mp->b_cont = mp; 6371 } 6372 6373 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6374 freemsg(ipsec_mp); 6375 } 6376 6377 /* 6378 * See if the inbound datagram has had IPsec processing applied to it. 6379 */ 6380 boolean_t 6381 ipsec_in_is_secure(mblk_t *ipsec_mp) 6382 { 6383 ipsec_in_t *ii; 6384 6385 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6386 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6387 6388 if (ii->ipsec_in_loopback) { 6389 return (ii->ipsec_in_secure); 6390 } else { 6391 return (ii->ipsec_in_ah_sa != NULL || 6392 ii->ipsec_in_esp_sa != NULL || 6393 ii->ipsec_in_decaps); 6394 } 6395 } 6396 6397 /* 6398 * Handle protocols with which IP is less intimate. There 6399 * can be more than one stream bound to a particular 6400 * protocol. When this is the case, normally each one gets a copy 6401 * of any incoming packets. 6402 * 6403 * IPsec NOTE : 6404 * 6405 * Don't allow a secure packet going up a non-secure connection. 6406 * We don't allow this because 6407 * 6408 * 1) Reply might go out in clear which will be dropped at 6409 * the sending side. 6410 * 2) If the reply goes out in clear it will give the 6411 * adversary enough information for getting the key in 6412 * most of the cases. 6413 * 6414 * Moreover getting a secure packet when we expect clear 6415 * implies that SA's were added without checking for 6416 * policy on both ends. This should not happen once ISAKMP 6417 * is used to negotiate SAs as SAs will be added only after 6418 * verifying the policy. 6419 * 6420 * NOTE : If the packet was tunneled and not multicast we only send 6421 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6422 * back to delivering packets to AF_INET6 raw sockets. 6423 * 6424 * IPQoS Notes: 6425 * Once we have determined the client, invoke IPPF processing. 6426 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6427 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6428 * ip_policy will be false. 6429 * 6430 * Zones notes: 6431 * Currently only applications in the global zone can create raw sockets for 6432 * protocols other than ICMP. So unlike the broadcast / multicast case of 6433 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6434 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6435 */ 6436 static void 6437 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6438 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6439 zoneid_t zoneid) 6440 { 6441 queue_t *rq; 6442 mblk_t *mp1, *first_mp1; 6443 uint_t protocol = ipha->ipha_protocol; 6444 ipaddr_t dst; 6445 boolean_t one_only; 6446 mblk_t *first_mp = mp; 6447 boolean_t secure; 6448 uint32_t ill_index; 6449 conn_t *connp, *first_connp, *next_connp; 6450 connf_t *connfp; 6451 boolean_t shared_addr; 6452 mib2_ipIfStatsEntry_t *mibptr; 6453 ip_stack_t *ipst = recv_ill->ill_ipst; 6454 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6455 6456 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6457 if (mctl_present) { 6458 mp = first_mp->b_cont; 6459 secure = ipsec_in_is_secure(first_mp); 6460 ASSERT(mp != NULL); 6461 } else { 6462 secure = B_FALSE; 6463 } 6464 dst = ipha->ipha_dst; 6465 /* 6466 * If the packet was tunneled and not multicast we only send to it 6467 * the first match. 6468 */ 6469 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6470 !CLASSD(dst)); 6471 6472 shared_addr = (zoneid == ALL_ZONES); 6473 if (shared_addr) { 6474 /* 6475 * We don't allow multilevel ports for raw IP, so no need to 6476 * check for that here. 6477 */ 6478 zoneid = tsol_packet_to_zoneid(mp); 6479 } 6480 6481 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6482 mutex_enter(&connfp->connf_lock); 6483 connp = connfp->connf_head; 6484 for (connp = connfp->connf_head; connp != NULL; 6485 connp = connp->conn_next) { 6486 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6487 zoneid) && 6488 (!is_system_labeled() || 6489 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6490 connp))) { 6491 break; 6492 } 6493 } 6494 6495 if (connp == NULL) { 6496 /* 6497 * No one bound to these addresses. Is 6498 * there a client that wants all 6499 * unclaimed datagrams? 6500 */ 6501 mutex_exit(&connfp->connf_lock); 6502 /* 6503 * Check for IPPROTO_ENCAP... 6504 */ 6505 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6506 /* 6507 * If an IPsec mblk is here on a multicast 6508 * tunnel (using ip_mroute stuff), check policy here, 6509 * THEN ship off to ip_mroute_decap(). 6510 * 6511 * BTW, If I match a configured IP-in-IP 6512 * tunnel, this path will not be reached, and 6513 * ip_mroute_decap will never be called. 6514 */ 6515 first_mp = ipsec_check_global_policy(first_mp, connp, 6516 ipha, NULL, mctl_present, ipst->ips_netstack); 6517 if (first_mp != NULL) { 6518 if (mctl_present) 6519 freeb(first_mp); 6520 ip_mroute_decap(q, mp, ill); 6521 } /* Else we already freed everything! */ 6522 } else { 6523 /* 6524 * Otherwise send an ICMP protocol unreachable. 6525 */ 6526 if (ip_fanout_send_icmp(q, first_mp, flags, 6527 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6528 mctl_present, zoneid, ipst)) { 6529 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6530 } 6531 } 6532 return; 6533 } 6534 6535 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6536 6537 CONN_INC_REF(connp); 6538 first_connp = connp; 6539 6540 /* 6541 * Only send message to one tunnel driver by immediately 6542 * terminating the loop. 6543 */ 6544 connp = one_only ? NULL : connp->conn_next; 6545 6546 for (;;) { 6547 while (connp != NULL) { 6548 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6549 flags, zoneid) && 6550 (!is_system_labeled() || 6551 tsol_receive_local(mp, &dst, IPV4_VERSION, 6552 shared_addr, connp))) 6553 break; 6554 connp = connp->conn_next; 6555 } 6556 6557 /* 6558 * Copy the packet. 6559 */ 6560 if (connp == NULL || 6561 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6562 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6563 /* 6564 * No more interested clients or memory 6565 * allocation failed 6566 */ 6567 connp = first_connp; 6568 break; 6569 } 6570 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6571 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6572 CONN_INC_REF(connp); 6573 mutex_exit(&connfp->connf_lock); 6574 rq = connp->conn_rq; 6575 6576 /* 6577 * Check flow control 6578 */ 6579 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6580 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6581 if (flags & IP_FF_RAWIP) { 6582 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6583 } else { 6584 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6585 } 6586 6587 freemsg(first_mp1); 6588 } else { 6589 /* 6590 * Don't enforce here if we're an actual tunnel - 6591 * let "tun" do it instead. 6592 */ 6593 if (!IPCL_IS_IPTUN(connp) && 6594 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6595 secure)) { 6596 first_mp1 = ipsec_check_inbound_policy 6597 (first_mp1, connp, ipha, NULL, 6598 mctl_present); 6599 } 6600 if (first_mp1 != NULL) { 6601 int in_flags = 0; 6602 /* 6603 * ip_fanout_proto also gets called from 6604 * icmp_inbound_error_fanout, in which case 6605 * the msg type is M_CTL. Don't add info 6606 * in this case for the time being. In future 6607 * when there is a need for knowing the 6608 * inbound iface index for ICMP error msgs, 6609 * then this can be changed. 6610 */ 6611 if (connp->conn_recvif) 6612 in_flags = IPF_RECVIF; 6613 /* 6614 * The ULP may support IP_RECVPKTINFO for both 6615 * IP v4 and v6 so pass the appropriate argument 6616 * based on conn IP version. 6617 */ 6618 if (connp->conn_ip_recvpktinfo) { 6619 if (connp->conn_af_isv6) { 6620 /* 6621 * V6 only needs index 6622 */ 6623 in_flags |= IPF_RECVIF; 6624 } else { 6625 /* 6626 * V4 needs index + 6627 * matching address. 6628 */ 6629 in_flags |= IPF_RECVADDR; 6630 } 6631 } 6632 if ((in_flags != 0) && 6633 (mp->b_datap->db_type != M_CTL)) { 6634 /* 6635 * the actual data will be 6636 * contained in b_cont upon 6637 * successful return of the 6638 * following call else 6639 * original mblk is returned 6640 */ 6641 ASSERT(recv_ill != NULL); 6642 mp1 = ip_add_info(mp1, recv_ill, 6643 in_flags, IPCL_ZONEID(connp), ipst); 6644 } 6645 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6646 if (mctl_present) 6647 freeb(first_mp1); 6648 (connp->conn_recv)(connp, mp1, NULL); 6649 } 6650 } 6651 mutex_enter(&connfp->connf_lock); 6652 /* Follow the next pointer before releasing the conn. */ 6653 next_connp = connp->conn_next; 6654 CONN_DEC_REF(connp); 6655 connp = next_connp; 6656 } 6657 6658 /* Last one. Send it upstream. */ 6659 mutex_exit(&connfp->connf_lock); 6660 6661 /* 6662 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6663 * will be set to false. 6664 */ 6665 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6666 ill_index = ill->ill_phyint->phyint_ifindex; 6667 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6668 if (mp == NULL) { 6669 CONN_DEC_REF(connp); 6670 if (mctl_present) { 6671 freeb(first_mp); 6672 } 6673 return; 6674 } 6675 } 6676 6677 rq = connp->conn_rq; 6678 /* 6679 * Check flow control 6680 */ 6681 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6682 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6683 if (flags & IP_FF_RAWIP) { 6684 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6685 } else { 6686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6687 } 6688 6689 freemsg(first_mp); 6690 } else { 6691 if (IPCL_IS_IPTUN(connp)) { 6692 /* 6693 * Tunneled packet. We enforce policy in the tunnel 6694 * module itself. 6695 * 6696 * Send the WHOLE packet up (incl. IPSEC_IN) without 6697 * a policy check. 6698 * FIXME to use conn_recv for tun later. 6699 */ 6700 putnext(rq, first_mp); 6701 CONN_DEC_REF(connp); 6702 return; 6703 } 6704 6705 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6706 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6707 ipha, NULL, mctl_present); 6708 } 6709 6710 if (first_mp != NULL) { 6711 int in_flags = 0; 6712 6713 /* 6714 * ip_fanout_proto also gets called 6715 * from icmp_inbound_error_fanout, in 6716 * which case the msg type is M_CTL. 6717 * Don't add info in this case for time 6718 * being. In future when there is a 6719 * need for knowing the inbound iface 6720 * index for ICMP error msgs, then this 6721 * can be changed 6722 */ 6723 if (connp->conn_recvif) 6724 in_flags = IPF_RECVIF; 6725 if (connp->conn_ip_recvpktinfo) { 6726 if (connp->conn_af_isv6) { 6727 /* 6728 * V6 only needs index 6729 */ 6730 in_flags |= IPF_RECVIF; 6731 } else { 6732 /* 6733 * V4 needs index + 6734 * matching address. 6735 */ 6736 in_flags |= IPF_RECVADDR; 6737 } 6738 } 6739 if ((in_flags != 0) && 6740 (mp->b_datap->db_type != M_CTL)) { 6741 6742 /* 6743 * the actual data will be contained in 6744 * b_cont upon successful return 6745 * of the following call else original 6746 * mblk is returned 6747 */ 6748 ASSERT(recv_ill != NULL); 6749 mp = ip_add_info(mp, recv_ill, 6750 in_flags, IPCL_ZONEID(connp), ipst); 6751 } 6752 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6753 (connp->conn_recv)(connp, mp, NULL); 6754 if (mctl_present) 6755 freeb(first_mp); 6756 } 6757 } 6758 CONN_DEC_REF(connp); 6759 } 6760 6761 /* 6762 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6763 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6764 * the correct squeue, in this case the same squeue as a valid listener with 6765 * no current connection state for the packet we are processing. The function 6766 * is called for synchronizing both IPv4 and IPv6. 6767 */ 6768 void 6769 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6770 tcp_stack_t *tcps, conn_t *connp) 6771 { 6772 mblk_t *rst_mp; 6773 tcp_xmit_reset_event_t *eventp; 6774 6775 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6776 6777 if (rst_mp == NULL) { 6778 freemsg(mp); 6779 return; 6780 } 6781 6782 rst_mp->b_datap->db_type = M_PROTO; 6783 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6784 6785 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6786 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6787 eventp->tcp_xre_iphdrlen = hdrlen; 6788 eventp->tcp_xre_zoneid = zoneid; 6789 eventp->tcp_xre_tcps = tcps; 6790 6791 rst_mp->b_cont = mp; 6792 mp = rst_mp; 6793 6794 /* 6795 * Increment the connref, this ref will be released by the squeue 6796 * framework. 6797 */ 6798 CONN_INC_REF(connp); 6799 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6800 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6801 } 6802 6803 /* 6804 * Fanout for TCP packets 6805 * The caller puts <fport, lport> in the ports parameter. 6806 * 6807 * IPQoS Notes 6808 * Before sending it to the client, invoke IPPF processing. 6809 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6810 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6811 * ip_policy is false. 6812 */ 6813 static void 6814 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6815 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6816 { 6817 mblk_t *first_mp; 6818 boolean_t secure; 6819 uint32_t ill_index; 6820 int ip_hdr_len; 6821 tcph_t *tcph; 6822 boolean_t syn_present = B_FALSE; 6823 conn_t *connp; 6824 ip_stack_t *ipst = recv_ill->ill_ipst; 6825 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6826 6827 ASSERT(recv_ill != NULL); 6828 6829 first_mp = mp; 6830 if (mctl_present) { 6831 ASSERT(first_mp->b_datap->db_type == M_CTL); 6832 mp = first_mp->b_cont; 6833 secure = ipsec_in_is_secure(first_mp); 6834 ASSERT(mp != NULL); 6835 } else { 6836 secure = B_FALSE; 6837 } 6838 6839 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6840 6841 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6842 zoneid, ipst)) == NULL) { 6843 /* 6844 * No connected connection or listener. Send a 6845 * TH_RST via tcp_xmit_listeners_reset. 6846 */ 6847 6848 /* Initiate IPPf processing, if needed. */ 6849 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6850 uint32_t ill_index; 6851 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6852 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6853 if (first_mp == NULL) 6854 return; 6855 } 6856 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6857 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6858 zoneid)); 6859 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6860 ipst->ips_netstack->netstack_tcp, NULL); 6861 return; 6862 } 6863 6864 /* 6865 * Allocate the SYN for the TCP connection here itself 6866 */ 6867 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6868 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6869 if (IPCL_IS_TCP(connp)) { 6870 squeue_t *sqp; 6871 6872 /* 6873 * If the queue belongs to a conn, and fused tcp 6874 * loopback is enabled, assign the eager's squeue 6875 * to be that of the active connect's. Note that 6876 * we don't check for IP_FF_LOOPBACK here since this 6877 * routine gets called only for loopback (unlike the 6878 * IPv6 counterpart). 6879 */ 6880 if (do_tcp_fusion && 6881 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6882 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6883 !secure && 6884 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6885 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6886 sqp = Q_TO_CONN(q)->conn_sqp; 6887 } else { 6888 sqp = IP_SQUEUE_GET(lbolt); 6889 } 6890 6891 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6892 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6893 syn_present = B_TRUE; 6894 } 6895 } 6896 6897 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6898 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6899 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6900 if ((flags & TH_RST) || (flags & TH_URG)) { 6901 CONN_DEC_REF(connp); 6902 freemsg(first_mp); 6903 return; 6904 } 6905 if (flags & TH_ACK) { 6906 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6907 ipst->ips_netstack->netstack_tcp, connp); 6908 CONN_DEC_REF(connp); 6909 return; 6910 } 6911 6912 CONN_DEC_REF(connp); 6913 freemsg(first_mp); 6914 return; 6915 } 6916 6917 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6918 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6919 NULL, mctl_present); 6920 if (first_mp == NULL) { 6921 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6922 CONN_DEC_REF(connp); 6923 return; 6924 } 6925 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6926 ASSERT(syn_present); 6927 if (mctl_present) { 6928 ASSERT(first_mp != mp); 6929 first_mp->b_datap->db_struioflag |= 6930 STRUIO_POLICY; 6931 } else { 6932 ASSERT(first_mp == mp); 6933 mp->b_datap->db_struioflag &= 6934 ~STRUIO_EAGER; 6935 mp->b_datap->db_struioflag |= 6936 STRUIO_POLICY; 6937 } 6938 } else { 6939 /* 6940 * Discard first_mp early since we're dealing with a 6941 * fully-connected conn_t and tcp doesn't do policy in 6942 * this case. 6943 */ 6944 if (mctl_present) { 6945 freeb(first_mp); 6946 mctl_present = B_FALSE; 6947 } 6948 first_mp = mp; 6949 } 6950 } 6951 6952 /* 6953 * Initiate policy processing here if needed. If we get here from 6954 * icmp_inbound_error_fanout, ip_policy is false. 6955 */ 6956 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6957 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6958 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6959 if (mp == NULL) { 6960 CONN_DEC_REF(connp); 6961 if (mctl_present) 6962 freeb(first_mp); 6963 return; 6964 } else if (mctl_present) { 6965 ASSERT(first_mp != mp); 6966 first_mp->b_cont = mp; 6967 } else { 6968 first_mp = mp; 6969 } 6970 } 6971 6972 /* Handle socket options. */ 6973 if (!syn_present && 6974 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6975 /* Add header */ 6976 ASSERT(recv_ill != NULL); 6977 /* 6978 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6979 * IPF_RECVIF. 6980 */ 6981 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6982 ipst); 6983 if (mp == NULL) { 6984 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6985 CONN_DEC_REF(connp); 6986 if (mctl_present) 6987 freeb(first_mp); 6988 return; 6989 } else if (mctl_present) { 6990 /* 6991 * ip_add_info might return a new mp. 6992 */ 6993 ASSERT(first_mp != mp); 6994 first_mp->b_cont = mp; 6995 } else { 6996 first_mp = mp; 6997 } 6998 } 6999 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 7000 if (IPCL_IS_TCP(connp)) { 7001 /* do not drain, certain use cases can blow the stack */ 7002 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 7003 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 7004 } else { 7005 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 7006 (connp->conn_recv)(connp, first_mp, NULL); 7007 CONN_DEC_REF(connp); 7008 } 7009 } 7010 7011 /* 7012 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 7013 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 7014 * is not consumed. 7015 * 7016 * One of four things can happen, all of which affect the passed-in mblk: 7017 * 7018 * 1.) ICMP messages that go through here just get returned TRUE. 7019 * 7020 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 7021 * 7022 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7023 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7024 * 7025 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7026 */ 7027 static boolean_t 7028 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7029 ipsec_stack_t *ipss) 7030 { 7031 int shift, plen, iph_len; 7032 ipha_t *ipha; 7033 udpha_t *udpha; 7034 uint32_t *spi; 7035 uint32_t esp_ports; 7036 uint8_t *orptr; 7037 boolean_t free_ire; 7038 7039 if (DB_TYPE(mp) == M_CTL) { 7040 /* 7041 * ICMP message with UDP inside. Don't bother stripping, just 7042 * send it up. 7043 * 7044 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7045 * to ignore errors set by ICMP anyway ('cause they might be 7046 * forged), but that's the app's decision, not ours. 7047 */ 7048 7049 /* Bunch of reality checks for DEBUG kernels... */ 7050 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7051 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7052 7053 return (B_TRUE); 7054 } 7055 7056 ipha = (ipha_t *)mp->b_rptr; 7057 iph_len = IPH_HDR_LENGTH(ipha); 7058 plen = ntohs(ipha->ipha_length); 7059 7060 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7061 /* 7062 * Most likely a keepalive for the benefit of an intervening 7063 * NAT. These aren't for us, per se, so drop it. 7064 * 7065 * RFC 3947/8 doesn't say for sure what to do for 2-3 7066 * byte packets (keepalives are 1-byte), but we'll drop them 7067 * also. 7068 */ 7069 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7070 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7071 return (B_FALSE); 7072 } 7073 7074 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7075 /* might as well pull it all up - it might be ESP. */ 7076 if (!pullupmsg(mp, -1)) { 7077 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7078 DROPPER(ipss, ipds_esp_nomem), 7079 &ipss->ipsec_dropper); 7080 return (B_FALSE); 7081 } 7082 7083 ipha = (ipha_t *)mp->b_rptr; 7084 } 7085 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7086 if (*spi == 0) { 7087 /* UDP packet - remove 0-spi. */ 7088 shift = sizeof (uint32_t); 7089 } else { 7090 /* ESP-in-UDP packet - reduce to ESP. */ 7091 ipha->ipha_protocol = IPPROTO_ESP; 7092 shift = sizeof (udpha_t); 7093 } 7094 7095 /* Fix IP header */ 7096 ipha->ipha_length = htons(plen - shift); 7097 ipha->ipha_hdr_checksum = 0; 7098 7099 orptr = mp->b_rptr; 7100 mp->b_rptr += shift; 7101 7102 udpha = (udpha_t *)(orptr + iph_len); 7103 if (*spi == 0) { 7104 ASSERT((uint8_t *)ipha == orptr); 7105 udpha->uha_length = htons(plen - shift - iph_len); 7106 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7107 esp_ports = 0; 7108 } else { 7109 esp_ports = *((uint32_t *)udpha); 7110 ASSERT(esp_ports != 0); 7111 } 7112 ovbcopy(orptr, orptr + shift, iph_len); 7113 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7114 ipha = (ipha_t *)(orptr + shift); 7115 7116 free_ire = (ire == NULL); 7117 if (free_ire) { 7118 /* Re-acquire ire. */ 7119 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7120 ipss->ipsec_netstack->netstack_ip); 7121 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7122 if (ire != NULL) 7123 ire_refrele(ire); 7124 /* 7125 * Do a regular freemsg(), as this is an IP 7126 * error (no local route) not an IPsec one. 7127 */ 7128 freemsg(mp); 7129 } 7130 } 7131 7132 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7133 if (free_ire) 7134 ire_refrele(ire); 7135 } 7136 7137 return (esp_ports == 0); 7138 } 7139 7140 /* 7141 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7142 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7143 * Caller is responsible for dropping references to the conn, and freeing 7144 * first_mp. 7145 * 7146 * IPQoS Notes 7147 * Before sending it to the client, invoke IPPF processing. Policy processing 7148 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7149 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7150 * ip_wput_local, ip_policy is false. 7151 */ 7152 static void 7153 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7154 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7155 boolean_t ip_policy) 7156 { 7157 boolean_t mctl_present = (first_mp != NULL); 7158 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7159 uint32_t ill_index; 7160 ip_stack_t *ipst = recv_ill->ill_ipst; 7161 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7162 7163 ASSERT(ill != NULL); 7164 7165 if (mctl_present) 7166 first_mp->b_cont = mp; 7167 else 7168 first_mp = mp; 7169 7170 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7171 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7172 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7173 freemsg(first_mp); 7174 return; 7175 } 7176 7177 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7178 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7179 NULL, mctl_present); 7180 /* Freed by ipsec_check_inbound_policy(). */ 7181 if (first_mp == NULL) { 7182 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7183 return; 7184 } 7185 } 7186 if (mctl_present) 7187 freeb(first_mp); 7188 7189 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7190 if (connp->conn_udp->udp_nat_t_endpoint) { 7191 if (mctl_present) { 7192 /* mctl_present *shouldn't* happen. */ 7193 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7194 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7195 &ipss->ipsec_dropper); 7196 return; 7197 } 7198 7199 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7200 return; 7201 } 7202 7203 /* Handle options. */ 7204 if (connp->conn_recvif) 7205 in_flags = IPF_RECVIF; 7206 /* 7207 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7208 * passed to ip_add_info is based on IP version of connp. 7209 */ 7210 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7211 if (connp->conn_af_isv6) { 7212 /* 7213 * V6 only needs index 7214 */ 7215 in_flags |= IPF_RECVIF; 7216 } else { 7217 /* 7218 * V4 needs index + matching address. 7219 */ 7220 in_flags |= IPF_RECVADDR; 7221 } 7222 } 7223 7224 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7225 in_flags |= IPF_RECVSLLA; 7226 7227 /* 7228 * Initiate IPPF processing here, if needed. Note first_mp won't be 7229 * freed if the packet is dropped. The caller will do so. 7230 */ 7231 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7232 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7233 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7234 if (mp == NULL) { 7235 return; 7236 } 7237 } 7238 if ((in_flags != 0) && 7239 (mp->b_datap->db_type != M_CTL)) { 7240 /* 7241 * The actual data will be contained in b_cont 7242 * upon successful return of the following call 7243 * else original mblk is returned 7244 */ 7245 ASSERT(recv_ill != NULL); 7246 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7247 ipst); 7248 } 7249 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7250 /* Send it upstream */ 7251 (connp->conn_recv)(connp, mp, NULL); 7252 } 7253 7254 /* 7255 * Fanout for UDP packets. 7256 * The caller puts <fport, lport> in the ports parameter. 7257 * 7258 * If SO_REUSEADDR is set all multicast and broadcast packets 7259 * will be delivered to all streams bound to the same port. 7260 * 7261 * Zones notes: 7262 * Multicast and broadcast packets will be distributed to streams in all zones. 7263 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7264 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7265 * packets. To maintain this behavior with multiple zones, the conns are grouped 7266 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7267 * each zone. If unset, all the following conns in the same zone are skipped. 7268 */ 7269 static void 7270 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7271 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7272 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7273 { 7274 uint32_t dstport, srcport; 7275 ipaddr_t dst; 7276 mblk_t *first_mp; 7277 boolean_t secure; 7278 in6_addr_t v6src; 7279 conn_t *connp; 7280 connf_t *connfp; 7281 conn_t *first_connp; 7282 conn_t *next_connp; 7283 mblk_t *mp1, *first_mp1; 7284 ipaddr_t src; 7285 zoneid_t last_zoneid; 7286 boolean_t reuseaddr; 7287 boolean_t shared_addr; 7288 boolean_t unlabeled; 7289 ip_stack_t *ipst; 7290 7291 ASSERT(recv_ill != NULL); 7292 ipst = recv_ill->ill_ipst; 7293 7294 first_mp = mp; 7295 if (mctl_present) { 7296 mp = first_mp->b_cont; 7297 first_mp->b_cont = NULL; 7298 secure = ipsec_in_is_secure(first_mp); 7299 ASSERT(mp != NULL); 7300 } else { 7301 first_mp = NULL; 7302 secure = B_FALSE; 7303 } 7304 7305 /* Extract ports in net byte order */ 7306 dstport = htons(ntohl(ports) & 0xFFFF); 7307 srcport = htons(ntohl(ports) >> 16); 7308 dst = ipha->ipha_dst; 7309 src = ipha->ipha_src; 7310 7311 unlabeled = B_FALSE; 7312 if (is_system_labeled()) 7313 /* Cred cannot be null on IPv4 */ 7314 unlabeled = (msg_getlabel(mp)->tsl_flags & 7315 TSLF_UNLABELED) != 0; 7316 shared_addr = (zoneid == ALL_ZONES); 7317 if (shared_addr) { 7318 /* 7319 * No need to handle exclusive-stack zones since ALL_ZONES 7320 * only applies to the shared stack. 7321 */ 7322 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7323 /* 7324 * If no shared MLP is found, tsol_mlp_findzone returns 7325 * ALL_ZONES. In that case, we assume it's SLP, and 7326 * search for the zone based on the packet label. 7327 * 7328 * If there is such a zone, we prefer to find a 7329 * connection in it. Otherwise, we look for a 7330 * MAC-exempt connection in any zone whose label 7331 * dominates the default label on the packet. 7332 */ 7333 if (zoneid == ALL_ZONES) 7334 zoneid = tsol_packet_to_zoneid(mp); 7335 else 7336 unlabeled = B_FALSE; 7337 } 7338 7339 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7340 mutex_enter(&connfp->connf_lock); 7341 connp = connfp->connf_head; 7342 if (!broadcast && !CLASSD(dst)) { 7343 /* 7344 * Not broadcast or multicast. Send to the one (first) 7345 * client we find. No need to check conn_wantpacket() 7346 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7347 * IPv4 unicast packets. 7348 */ 7349 while ((connp != NULL) && 7350 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7351 (!IPCL_ZONE_MATCH(connp, zoneid) && 7352 !(unlabeled && connp->conn_mac_exempt && shared_addr)))) { 7353 /* 7354 * We keep searching since the conn did not match, 7355 * or its zone did not match and it is not either 7356 * an allzones conn or a mac exempt conn (if the 7357 * sender is unlabeled.) 7358 */ 7359 connp = connp->conn_next; 7360 } 7361 7362 if (connp == NULL || 7363 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7364 goto notfound; 7365 7366 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7367 7368 if (is_system_labeled() && 7369 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7370 connp)) 7371 goto notfound; 7372 7373 CONN_INC_REF(connp); 7374 mutex_exit(&connfp->connf_lock); 7375 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7376 flags, recv_ill, ip_policy); 7377 IP_STAT(ipst, ip_udp_fannorm); 7378 CONN_DEC_REF(connp); 7379 return; 7380 } 7381 7382 /* 7383 * Broadcast and multicast case 7384 * 7385 * Need to check conn_wantpacket(). 7386 * If SO_REUSEADDR has been set on the first we send the 7387 * packet to all clients that have joined the group and 7388 * match the port. 7389 */ 7390 7391 while (connp != NULL) { 7392 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7393 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7394 (!is_system_labeled() || 7395 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7396 connp))) 7397 break; 7398 connp = connp->conn_next; 7399 } 7400 7401 if (connp == NULL || 7402 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7403 goto notfound; 7404 7405 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7406 7407 first_connp = connp; 7408 /* 7409 * When SO_REUSEADDR is not set, send the packet only to the first 7410 * matching connection in its zone by keeping track of the zoneid. 7411 */ 7412 reuseaddr = first_connp->conn_reuseaddr; 7413 last_zoneid = first_connp->conn_zoneid; 7414 7415 CONN_INC_REF(connp); 7416 connp = connp->conn_next; 7417 for (;;) { 7418 while (connp != NULL) { 7419 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7420 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7421 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7422 (!is_system_labeled() || 7423 tsol_receive_local(mp, &dst, IPV4_VERSION, 7424 shared_addr, connp))) 7425 break; 7426 connp = connp->conn_next; 7427 } 7428 /* 7429 * Just copy the data part alone. The mctl part is 7430 * needed just for verifying policy and it is never 7431 * sent up. 7432 */ 7433 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7434 ((mp1 = copymsg(mp)) == NULL))) { 7435 /* 7436 * No more interested clients or memory 7437 * allocation failed 7438 */ 7439 connp = first_connp; 7440 break; 7441 } 7442 if (connp->conn_zoneid != last_zoneid) { 7443 /* 7444 * Update the zoneid so that the packet isn't sent to 7445 * any more conns in the same zone unless SO_REUSEADDR 7446 * is set. 7447 */ 7448 reuseaddr = connp->conn_reuseaddr; 7449 last_zoneid = connp->conn_zoneid; 7450 } 7451 if (first_mp != NULL) { 7452 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7453 ipsec_info_type == IPSEC_IN); 7454 first_mp1 = ipsec_in_tag(first_mp, NULL, 7455 ipst->ips_netstack); 7456 if (first_mp1 == NULL) { 7457 freemsg(mp1); 7458 connp = first_connp; 7459 break; 7460 } 7461 } else { 7462 first_mp1 = NULL; 7463 } 7464 CONN_INC_REF(connp); 7465 mutex_exit(&connfp->connf_lock); 7466 /* 7467 * IPQoS notes: We don't send the packet for policy 7468 * processing here, will do it for the last one (below). 7469 * i.e. we do it per-packet now, but if we do policy 7470 * processing per-conn, then we would need to do it 7471 * here too. 7472 */ 7473 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7474 ipha, flags, recv_ill, B_FALSE); 7475 mutex_enter(&connfp->connf_lock); 7476 /* Follow the next pointer before releasing the conn. */ 7477 next_connp = connp->conn_next; 7478 IP_STAT(ipst, ip_udp_fanmb); 7479 CONN_DEC_REF(connp); 7480 connp = next_connp; 7481 } 7482 7483 /* Last one. Send it upstream. */ 7484 mutex_exit(&connfp->connf_lock); 7485 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7486 recv_ill, ip_policy); 7487 IP_STAT(ipst, ip_udp_fanmb); 7488 CONN_DEC_REF(connp); 7489 return; 7490 7491 notfound: 7492 7493 mutex_exit(&connfp->connf_lock); 7494 IP_STAT(ipst, ip_udp_fanothers); 7495 /* 7496 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7497 * have already been matched above, since they live in the IPv4 7498 * fanout tables. This implies we only need to 7499 * check for IPv6 in6addr_any endpoints here. 7500 * Thus we compare using ipv6_all_zeros instead of the destination 7501 * address, except for the multicast group membership lookup which 7502 * uses the IPv4 destination. 7503 */ 7504 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7505 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7506 mutex_enter(&connfp->connf_lock); 7507 connp = connfp->connf_head; 7508 if (!broadcast && !CLASSD(dst)) { 7509 while (connp != NULL) { 7510 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7511 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7512 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7513 !connp->conn_ipv6_v6only) 7514 break; 7515 connp = connp->conn_next; 7516 } 7517 7518 if (connp != NULL && is_system_labeled() && 7519 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7520 connp)) 7521 connp = NULL; 7522 7523 if (connp == NULL || 7524 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7525 /* 7526 * No one bound to this port. Is 7527 * there a client that wants all 7528 * unclaimed datagrams? 7529 */ 7530 mutex_exit(&connfp->connf_lock); 7531 7532 if (mctl_present) 7533 first_mp->b_cont = mp; 7534 else 7535 first_mp = mp; 7536 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7537 connf_head != NULL) { 7538 ip_fanout_proto(q, first_mp, ill, ipha, 7539 flags | IP_FF_RAWIP, mctl_present, 7540 ip_policy, recv_ill, zoneid); 7541 } else { 7542 if (ip_fanout_send_icmp(q, first_mp, flags, 7543 ICMP_DEST_UNREACHABLE, 7544 ICMP_PORT_UNREACHABLE, 7545 mctl_present, zoneid, ipst)) { 7546 BUMP_MIB(ill->ill_ip_mib, 7547 udpIfStatsNoPorts); 7548 } 7549 } 7550 return; 7551 } 7552 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7553 7554 CONN_INC_REF(connp); 7555 mutex_exit(&connfp->connf_lock); 7556 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7557 flags, recv_ill, ip_policy); 7558 CONN_DEC_REF(connp); 7559 return; 7560 } 7561 /* 7562 * IPv4 multicast packet being delivered to an AF_INET6 7563 * in6addr_any endpoint. 7564 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7565 * and not conn_wantpacket_v6() since any multicast membership is 7566 * for an IPv4-mapped multicast address. 7567 * The packet is sent to all clients in all zones that have joined the 7568 * group and match the port. 7569 */ 7570 while (connp != NULL) { 7571 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7572 srcport, v6src) && 7573 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7574 (!is_system_labeled() || 7575 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7576 connp))) 7577 break; 7578 connp = connp->conn_next; 7579 } 7580 7581 if (connp == NULL || 7582 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7583 /* 7584 * No one bound to this port. Is 7585 * there a client that wants all 7586 * unclaimed datagrams? 7587 */ 7588 mutex_exit(&connfp->connf_lock); 7589 7590 if (mctl_present) 7591 first_mp->b_cont = mp; 7592 else 7593 first_mp = mp; 7594 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7595 NULL) { 7596 ip_fanout_proto(q, first_mp, ill, ipha, 7597 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7598 recv_ill, zoneid); 7599 } else { 7600 /* 7601 * We used to attempt to send an icmp error here, but 7602 * since this is known to be a multicast packet 7603 * and we don't send icmp errors in response to 7604 * multicast, just drop the packet and give up sooner. 7605 */ 7606 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7607 freemsg(first_mp); 7608 } 7609 return; 7610 } 7611 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7612 7613 first_connp = connp; 7614 7615 CONN_INC_REF(connp); 7616 connp = connp->conn_next; 7617 for (;;) { 7618 while (connp != NULL) { 7619 if (IPCL_UDP_MATCH_V6(connp, dstport, 7620 ipv6_all_zeros, srcport, v6src) && 7621 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7622 (!is_system_labeled() || 7623 tsol_receive_local(mp, &dst, IPV4_VERSION, 7624 shared_addr, connp))) 7625 break; 7626 connp = connp->conn_next; 7627 } 7628 /* 7629 * Just copy the data part alone. The mctl part is 7630 * needed just for verifying policy and it is never 7631 * sent up. 7632 */ 7633 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7634 ((mp1 = copymsg(mp)) == NULL))) { 7635 /* 7636 * No more intested clients or memory 7637 * allocation failed 7638 */ 7639 connp = first_connp; 7640 break; 7641 } 7642 if (first_mp != NULL) { 7643 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7644 ipsec_info_type == IPSEC_IN); 7645 first_mp1 = ipsec_in_tag(first_mp, NULL, 7646 ipst->ips_netstack); 7647 if (first_mp1 == NULL) { 7648 freemsg(mp1); 7649 connp = first_connp; 7650 break; 7651 } 7652 } else { 7653 first_mp1 = NULL; 7654 } 7655 CONN_INC_REF(connp); 7656 mutex_exit(&connfp->connf_lock); 7657 /* 7658 * IPQoS notes: We don't send the packet for policy 7659 * processing here, will do it for the last one (below). 7660 * i.e. we do it per-packet now, but if we do policy 7661 * processing per-conn, then we would need to do it 7662 * here too. 7663 */ 7664 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7665 ipha, flags, recv_ill, B_FALSE); 7666 mutex_enter(&connfp->connf_lock); 7667 /* Follow the next pointer before releasing the conn. */ 7668 next_connp = connp->conn_next; 7669 CONN_DEC_REF(connp); 7670 connp = next_connp; 7671 } 7672 7673 /* Last one. Send it upstream. */ 7674 mutex_exit(&connfp->connf_lock); 7675 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7676 recv_ill, ip_policy); 7677 CONN_DEC_REF(connp); 7678 } 7679 7680 /* 7681 * Complete the ip_wput header so that it 7682 * is possible to generate ICMP 7683 * errors. 7684 */ 7685 int 7686 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7687 { 7688 ire_t *ire; 7689 7690 if (ipha->ipha_src == INADDR_ANY) { 7691 ire = ire_lookup_local(zoneid, ipst); 7692 if (ire == NULL) { 7693 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7694 return (1); 7695 } 7696 ipha->ipha_src = ire->ire_addr; 7697 ire_refrele(ire); 7698 } 7699 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7700 ipha->ipha_hdr_checksum = 0; 7701 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7702 return (0); 7703 } 7704 7705 /* 7706 * Nobody should be sending 7707 * packets up this stream 7708 */ 7709 static void 7710 ip_lrput(queue_t *q, mblk_t *mp) 7711 { 7712 mblk_t *mp1; 7713 7714 switch (mp->b_datap->db_type) { 7715 case M_FLUSH: 7716 /* Turn around */ 7717 if (*mp->b_rptr & FLUSHW) { 7718 *mp->b_rptr &= ~FLUSHR; 7719 qreply(q, mp); 7720 return; 7721 } 7722 break; 7723 } 7724 /* Could receive messages that passed through ar_rput */ 7725 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7726 mp1->b_prev = mp1->b_next = NULL; 7727 freemsg(mp); 7728 } 7729 7730 /* Nobody should be sending packets down this stream */ 7731 /* ARGSUSED */ 7732 void 7733 ip_lwput(queue_t *q, mblk_t *mp) 7734 { 7735 freemsg(mp); 7736 } 7737 7738 /* 7739 * Move the first hop in any source route to ipha_dst and remove that part of 7740 * the source route. Called by other protocols. Errors in option formatting 7741 * are ignored - will be handled by ip_wput_options Return the final 7742 * destination (either ipha_dst or the last entry in a source route.) 7743 */ 7744 ipaddr_t 7745 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7746 { 7747 ipoptp_t opts; 7748 uchar_t *opt; 7749 uint8_t optval; 7750 uint8_t optlen; 7751 ipaddr_t dst; 7752 int i; 7753 ire_t *ire; 7754 ip_stack_t *ipst = ns->netstack_ip; 7755 7756 ip2dbg(("ip_massage_options\n")); 7757 dst = ipha->ipha_dst; 7758 for (optval = ipoptp_first(&opts, ipha); 7759 optval != IPOPT_EOL; 7760 optval = ipoptp_next(&opts)) { 7761 opt = opts.ipoptp_cur; 7762 switch (optval) { 7763 uint8_t off; 7764 case IPOPT_SSRR: 7765 case IPOPT_LSRR: 7766 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7767 ip1dbg(("ip_massage_options: bad src route\n")); 7768 break; 7769 } 7770 optlen = opts.ipoptp_len; 7771 off = opt[IPOPT_OFFSET]; 7772 off--; 7773 redo_srr: 7774 if (optlen < IP_ADDR_LEN || 7775 off > optlen - IP_ADDR_LEN) { 7776 /* End of source route */ 7777 ip1dbg(("ip_massage_options: end of SR\n")); 7778 break; 7779 } 7780 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7781 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7782 ntohl(dst))); 7783 /* 7784 * Check if our address is present more than 7785 * once as consecutive hops in source route. 7786 * XXX verify per-interface ip_forwarding 7787 * for source route? 7788 */ 7789 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7790 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7791 if (ire != NULL) { 7792 ire_refrele(ire); 7793 off += IP_ADDR_LEN; 7794 goto redo_srr; 7795 } 7796 if (dst == htonl(INADDR_LOOPBACK)) { 7797 ip1dbg(("ip_massage_options: loopback addr in " 7798 "source route!\n")); 7799 break; 7800 } 7801 /* 7802 * Update ipha_dst to be the first hop and remove the 7803 * first hop from the source route (by overwriting 7804 * part of the option with NOP options). 7805 */ 7806 ipha->ipha_dst = dst; 7807 /* Put the last entry in dst */ 7808 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7809 3; 7810 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7811 7812 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7813 ntohl(dst))); 7814 /* Move down and overwrite */ 7815 opt[IP_ADDR_LEN] = opt[0]; 7816 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7817 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7818 for (i = 0; i < IP_ADDR_LEN; i++) 7819 opt[i] = IPOPT_NOP; 7820 break; 7821 } 7822 } 7823 return (dst); 7824 } 7825 7826 /* 7827 * Return the network mask 7828 * associated with the specified address. 7829 */ 7830 ipaddr_t 7831 ip_net_mask(ipaddr_t addr) 7832 { 7833 uchar_t *up = (uchar_t *)&addr; 7834 ipaddr_t mask = 0; 7835 uchar_t *maskp = (uchar_t *)&mask; 7836 7837 #if defined(__i386) || defined(__amd64) 7838 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7839 #endif 7840 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7841 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7842 #endif 7843 if (CLASSD(addr)) { 7844 maskp[0] = 0xF0; 7845 return (mask); 7846 } 7847 7848 /* We assume Class E default netmask to be 32 */ 7849 if (CLASSE(addr)) 7850 return (0xffffffffU); 7851 7852 if (addr == 0) 7853 return (0); 7854 maskp[0] = 0xFF; 7855 if ((up[0] & 0x80) == 0) 7856 return (mask); 7857 7858 maskp[1] = 0xFF; 7859 if ((up[0] & 0xC0) == 0x80) 7860 return (mask); 7861 7862 maskp[2] = 0xFF; 7863 if ((up[0] & 0xE0) == 0xC0) 7864 return (mask); 7865 7866 /* Otherwise return no mask */ 7867 return ((ipaddr_t)0); 7868 } 7869 7870 /* 7871 * Helper ill lookup function used by IPsec. 7872 */ 7873 ill_t * 7874 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7875 { 7876 ill_t *ret_ill; 7877 7878 ASSERT(ifindex != 0); 7879 7880 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7881 ipst); 7882 if (ret_ill == NULL) { 7883 if (isv6) { 7884 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7885 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7886 ifindex)); 7887 } else { 7888 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7889 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7890 ifindex)); 7891 } 7892 freemsg(first_mp); 7893 return (NULL); 7894 } 7895 return (ret_ill); 7896 } 7897 7898 /* 7899 * IPv4 - 7900 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7901 * out a packet to a destination address for which we do not have specific 7902 * (or sufficient) routing information. 7903 * 7904 * NOTE : These are the scopes of some of the variables that point at IRE, 7905 * which needs to be followed while making any future modifications 7906 * to avoid memory leaks. 7907 * 7908 * - ire and sire are the entries looked up initially by 7909 * ire_ftable_lookup. 7910 * - ipif_ire is used to hold the interface ire associated with 7911 * the new cache ire. But it's scope is limited, so we always REFRELE 7912 * it before branching out to error paths. 7913 * - save_ire is initialized before ire_create, so that ire returned 7914 * by ire_create will not over-write the ire. We REFRELE save_ire 7915 * before breaking out of the switch. 7916 * 7917 * Thus on failures, we have to REFRELE only ire and sire, if they 7918 * are not NULL. 7919 */ 7920 void 7921 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7922 zoneid_t zoneid, ip_stack_t *ipst) 7923 { 7924 areq_t *areq; 7925 ipaddr_t gw = 0; 7926 ire_t *ire = NULL; 7927 mblk_t *res_mp; 7928 ipaddr_t *addrp; 7929 ipaddr_t nexthop_addr; 7930 ipif_t *src_ipif = NULL; 7931 ill_t *dst_ill = NULL; 7932 ipha_t *ipha; 7933 ire_t *sire = NULL; 7934 mblk_t *first_mp; 7935 ire_t *save_ire; 7936 ushort_t ire_marks = 0; 7937 boolean_t mctl_present; 7938 ipsec_out_t *io; 7939 mblk_t *saved_mp; 7940 mblk_t *copy_mp = NULL; 7941 mblk_t *xmit_mp = NULL; 7942 ipaddr_t save_dst; 7943 uint32_t multirt_flags = 7944 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7945 boolean_t multirt_is_resolvable; 7946 boolean_t multirt_resolve_next; 7947 boolean_t unspec_src; 7948 boolean_t ip_nexthop = B_FALSE; 7949 tsol_ire_gw_secattr_t *attrp = NULL; 7950 tsol_gcgrp_t *gcgrp = NULL; 7951 tsol_gcgrp_addr_t ga; 7952 int multirt_res_failures = 0; 7953 int multirt_res_attempts = 0; 7954 int multirt_already_resolved = 0; 7955 boolean_t multirt_no_icmp_error = B_FALSE; 7956 7957 if (ip_debug > 2) { 7958 /* ip1dbg */ 7959 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7960 } 7961 7962 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7963 if (mctl_present) { 7964 io = (ipsec_out_t *)first_mp->b_rptr; 7965 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7966 ASSERT(zoneid == io->ipsec_out_zoneid); 7967 ASSERT(zoneid != ALL_ZONES); 7968 } 7969 7970 ipha = (ipha_t *)mp->b_rptr; 7971 7972 /* All multicast lookups come through ip_newroute_ipif() */ 7973 if (CLASSD(dst)) { 7974 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7975 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7976 freemsg(first_mp); 7977 return; 7978 } 7979 7980 if (mctl_present && io->ipsec_out_ip_nexthop) { 7981 ip_nexthop = B_TRUE; 7982 nexthop_addr = io->ipsec_out_nexthop_addr; 7983 } 7984 /* 7985 * If this IRE is created for forwarding or it is not for 7986 * traffic for congestion controlled protocols, mark it as temporary. 7987 */ 7988 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7989 ire_marks |= IRE_MARK_TEMPORARY; 7990 7991 /* 7992 * Get what we can from ire_ftable_lookup which will follow an IRE 7993 * chain until it gets the most specific information available. 7994 * For example, we know that there is no IRE_CACHE for this dest, 7995 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7996 * ire_ftable_lookup will look up the gateway, etc. 7997 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7998 * to the destination, of equal netmask length in the forward table, 7999 * will be recursively explored. If no information is available 8000 * for the final gateway of that route, we force the returned ire 8001 * to be equal to sire using MATCH_IRE_PARENT. 8002 * At least, in this case we have a starting point (in the buckets) 8003 * to look for other routes to the destination in the forward table. 8004 * This is actually used only for multirouting, where a list 8005 * of routes has to be processed in sequence. 8006 * 8007 * In the process of coming up with the most specific information, 8008 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8009 * for the gateway (i.e., one for which the ire_nce->nce_state is 8010 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8011 * Two caveats when handling incomplete ire's in ip_newroute: 8012 * - we should be careful when accessing its ire_nce (specifically 8013 * the nce_res_mp) ast it might change underneath our feet, and, 8014 * - not all legacy code path callers are prepared to handle 8015 * incomplete ire's, so we should not create/add incomplete 8016 * ire_cache entries here. (See discussion about temporary solution 8017 * further below). 8018 * 8019 * In order to minimize packet dropping, and to preserve existing 8020 * behavior, we treat this case as if there were no IRE_CACHE for the 8021 * gateway, and instead use the IF_RESOLVER ire to send out 8022 * another request to ARP (this is achieved by passing the 8023 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8024 * arp response comes back in ip_wput_nondata, we will create 8025 * a per-dst ire_cache that has an ND_COMPLETE ire. 8026 * 8027 * Note that this is a temporary solution; the correct solution is 8028 * to create an incomplete per-dst ire_cache entry, and send the 8029 * packet out when the gw's nce is resolved. In order to achieve this, 8030 * all packet processing must have been completed prior to calling 8031 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8032 * to be modified to accomodate this solution. 8033 */ 8034 if (ip_nexthop) { 8035 /* 8036 * The first time we come here, we look for an IRE_INTERFACE 8037 * entry for the specified nexthop, set the dst to be the 8038 * nexthop address and create an IRE_CACHE entry for the 8039 * nexthop. The next time around, we are able to find an 8040 * IRE_CACHE entry for the nexthop, set the gateway to be the 8041 * nexthop address and create an IRE_CACHE entry for the 8042 * destination address via the specified nexthop. 8043 */ 8044 ire = ire_cache_lookup(nexthop_addr, zoneid, 8045 msg_getlabel(mp), ipst); 8046 if (ire != NULL) { 8047 gw = nexthop_addr; 8048 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8049 } else { 8050 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8051 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8052 msg_getlabel(mp), 8053 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8054 ipst); 8055 if (ire != NULL) { 8056 dst = nexthop_addr; 8057 } 8058 } 8059 } else { 8060 ire = ire_ftable_lookup(dst, 0, 0, 0, 8061 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8062 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8063 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8064 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8065 ipst); 8066 } 8067 8068 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8069 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8070 8071 /* 8072 * This loop is run only once in most cases. 8073 * We loop to resolve further routes only when the destination 8074 * can be reached through multiple RTF_MULTIRT-flagged ires. 8075 */ 8076 do { 8077 /* Clear the previous iteration's values */ 8078 if (src_ipif != NULL) { 8079 ipif_refrele(src_ipif); 8080 src_ipif = NULL; 8081 } 8082 if (dst_ill != NULL) { 8083 ill_refrele(dst_ill); 8084 dst_ill = NULL; 8085 } 8086 8087 multirt_resolve_next = B_FALSE; 8088 /* 8089 * We check if packets have to be multirouted. 8090 * In this case, given the current <ire, sire> couple, 8091 * we look for the next suitable <ire, sire>. 8092 * This check is done in ire_multirt_lookup(), 8093 * which applies various criteria to find the next route 8094 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8095 * unchanged if it detects it has not been tried yet. 8096 */ 8097 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8098 ip3dbg(("ip_newroute: starting next_resolution " 8099 "with first_mp %p, tag %d\n", 8100 (void *)first_mp, 8101 MULTIRT_DEBUG_TAGGED(first_mp))); 8102 8103 ASSERT(sire != NULL); 8104 multirt_is_resolvable = 8105 ire_multirt_lookup(&ire, &sire, multirt_flags, 8106 &multirt_already_resolved, msg_getlabel(mp), ipst); 8107 8108 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8109 "multirt_already_resolved %d, " 8110 "multirt_res_attempts %d, multirt_res_failures %d, " 8111 "ire %p, sire %p\n", multirt_is_resolvable, 8112 multirt_already_resolved, multirt_res_attempts, 8113 multirt_res_failures, (void *)ire, (void *)sire)); 8114 8115 if (!multirt_is_resolvable) { 8116 /* 8117 * No more multirt route to resolve; give up 8118 * (all routes resolved or no more 8119 * resolvable routes). 8120 */ 8121 if (ire != NULL) { 8122 ire_refrele(ire); 8123 ire = NULL; 8124 } 8125 /* 8126 * Generate ICMP error only if all attempts to 8127 * resolve multirt route failed and there is no 8128 * already resolved one. Don't generate ICMP 8129 * error when: 8130 * 8131 * 1) there was no attempt to resolve 8132 * 2) at least one attempt passed 8133 * 3) a multirt route is already resolved 8134 * 8135 * Case 1) may occur due to multiple 8136 * resolution attempts during single 8137 * ip_multirt_resolution_interval. 8138 * 8139 * Case 2-3) means that CGTP destination is 8140 * reachable via one link so we don't want to 8141 * generate ICMP host unreachable error. 8142 */ 8143 if (multirt_res_attempts == 0 || 8144 multirt_res_failures < 8145 multirt_res_attempts || 8146 multirt_already_resolved > 0) 8147 multirt_no_icmp_error = B_TRUE; 8148 } else { 8149 ASSERT(sire != NULL); 8150 ASSERT(ire != NULL); 8151 8152 multirt_res_attempts++; 8153 } 8154 } 8155 8156 if (ire == NULL) { 8157 if (ip_debug > 3) { 8158 /* ip2dbg */ 8159 pr_addr_dbg("ip_newroute: " 8160 "can't resolve %s\n", AF_INET, &dst); 8161 } 8162 ip3dbg(("ip_newroute: " 8163 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8164 (void *)ire, (void *)sire, 8165 (int)multirt_no_icmp_error)); 8166 8167 if (sire != NULL) { 8168 ire_refrele(sire); 8169 sire = NULL; 8170 } 8171 8172 if (multirt_no_icmp_error) { 8173 /* There is no need to report an ICMP error. */ 8174 MULTIRT_DEBUG_UNTAG(first_mp); 8175 freemsg(first_mp); 8176 return; 8177 } 8178 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8179 RTA_DST, ipst); 8180 goto icmp_err_ret; 8181 } 8182 8183 /* 8184 * Verify that the returned IRE does not have either 8185 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8186 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8187 */ 8188 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8189 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8190 goto icmp_err_ret; 8191 } 8192 /* 8193 * Increment the ire_ob_pkt_count field for ire if it is an 8194 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8195 * increment the same for the parent IRE, sire, if it is some 8196 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8197 */ 8198 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8199 UPDATE_OB_PKT_COUNT(ire); 8200 ire->ire_last_used_time = lbolt; 8201 } 8202 8203 if (sire != NULL) { 8204 gw = sire->ire_gateway_addr; 8205 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8206 IRE_INTERFACE)) == 0); 8207 UPDATE_OB_PKT_COUNT(sire); 8208 sire->ire_last_used_time = lbolt; 8209 } 8210 /* 8211 * We have a route to reach the destination. Find the 8212 * appropriate ill, then get a source address using 8213 * ipif_select_source(). 8214 * 8215 * If we are here trying to create an IRE_CACHE for an offlink 8216 * destination and have an IRE_CACHE entry for VNI, then use 8217 * ire_stq instead since VNI's queue is a black hole. 8218 */ 8219 if ((ire->ire_type == IRE_CACHE) && 8220 IS_VNI(ire->ire_ipif->ipif_ill)) { 8221 dst_ill = ire->ire_stq->q_ptr; 8222 ill_refhold(dst_ill); 8223 } else { 8224 ill_t *ill = ire->ire_ipif->ipif_ill; 8225 8226 if (IS_IPMP(ill)) { 8227 dst_ill = 8228 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8229 } else { 8230 dst_ill = ill; 8231 ill_refhold(dst_ill); 8232 } 8233 } 8234 8235 if (dst_ill == NULL) { 8236 if (ip_debug > 2) { 8237 pr_addr_dbg("ip_newroute: no dst " 8238 "ill for dst %s\n", AF_INET, &dst); 8239 } 8240 goto icmp_err_ret; 8241 } 8242 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8243 8244 /* 8245 * Pick the best source address from dst_ill. 8246 * 8247 * 1) Try to pick the source address from the destination 8248 * route. Clustering assumes that when we have multiple 8249 * prefixes hosted on an interface, the prefix of the 8250 * source address matches the prefix of the destination 8251 * route. We do this only if the address is not 8252 * DEPRECATED. 8253 * 8254 * 2) If the conn is in a different zone than the ire, we 8255 * need to pick a source address from the right zone. 8256 */ 8257 ASSERT(src_ipif == NULL); 8258 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8259 /* 8260 * The RTF_SETSRC flag is set in the parent ire (sire). 8261 * Check that the ipif matching the requested source 8262 * address still exists. 8263 */ 8264 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8265 zoneid, NULL, NULL, NULL, NULL, ipst); 8266 } 8267 8268 unspec_src = (connp != NULL && connp->conn_unspec_src); 8269 8270 if (src_ipif == NULL && 8271 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8272 ire_marks |= IRE_MARK_USESRC_CHECK; 8273 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8274 IS_IPMP(ire->ire_ipif->ipif_ill) || 8275 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8276 (connp != NULL && ire->ire_zoneid != zoneid && 8277 ire->ire_zoneid != ALL_ZONES) || 8278 (dst_ill->ill_usesrc_ifindex != 0)) { 8279 /* 8280 * If the destination is reachable via a 8281 * given gateway, the selected source address 8282 * should be in the same subnet as the gateway. 8283 * Otherwise, the destination is not reachable. 8284 * 8285 * If there are no interfaces on the same subnet 8286 * as the destination, ipif_select_source gives 8287 * first non-deprecated interface which might be 8288 * on a different subnet than the gateway. 8289 * This is not desirable. Hence pass the dst_ire 8290 * source address to ipif_select_source. 8291 * It is sure that the destination is reachable 8292 * with the dst_ire source address subnet. 8293 * So passing dst_ire source address to 8294 * ipif_select_source will make sure that the 8295 * selected source will be on the same subnet 8296 * as dst_ire source address. 8297 */ 8298 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8299 8300 src_ipif = ipif_select_source(dst_ill, saddr, 8301 zoneid); 8302 if (src_ipif == NULL) { 8303 /* 8304 * In the case of multirouting, it may 8305 * happen that ipif_select_source fails 8306 * as DAD may disallow use of the 8307 * particular source interface. Anyway, 8308 * we need to continue and attempt to 8309 * resolve other multirt routes. 8310 */ 8311 if ((sire != NULL) && 8312 (sire->ire_flags & RTF_MULTIRT)) { 8313 ire_refrele(ire); 8314 ire = NULL; 8315 multirt_resolve_next = B_TRUE; 8316 multirt_res_failures++; 8317 continue; 8318 } 8319 8320 if (ip_debug > 2) { 8321 pr_addr_dbg("ip_newroute: " 8322 "no src for dst %s ", 8323 AF_INET, &dst); 8324 printf("on interface %s\n", 8325 dst_ill->ill_name); 8326 } 8327 goto icmp_err_ret; 8328 } 8329 } else { 8330 src_ipif = ire->ire_ipif; 8331 ASSERT(src_ipif != NULL); 8332 /* hold src_ipif for uniformity */ 8333 ipif_refhold(src_ipif); 8334 } 8335 } 8336 8337 /* 8338 * Assign a source address while we have the conn. 8339 * We can't have ip_wput_ire pick a source address when the 8340 * packet returns from arp since we need to look at 8341 * conn_unspec_src and conn_zoneid, and we lose the conn when 8342 * going through arp. 8343 * 8344 * NOTE : ip_newroute_v6 does not have this piece of code as 8345 * it uses ip6i to store this information. 8346 */ 8347 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8348 ipha->ipha_src = src_ipif->ipif_src_addr; 8349 8350 if (ip_debug > 3) { 8351 /* ip2dbg */ 8352 pr_addr_dbg("ip_newroute: first hop %s\n", 8353 AF_INET, &gw); 8354 } 8355 ip2dbg(("\tire type %s (%d)\n", 8356 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8357 8358 /* 8359 * The TTL of multirouted packets is bounded by the 8360 * ip_multirt_ttl ndd variable. 8361 */ 8362 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8363 /* Force TTL of multirouted packets */ 8364 if ((ipst->ips_ip_multirt_ttl > 0) && 8365 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8366 ip2dbg(("ip_newroute: forcing multirt TTL " 8367 "to %d (was %d), dst 0x%08x\n", 8368 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8369 ntohl(sire->ire_addr))); 8370 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8371 } 8372 } 8373 /* 8374 * At this point in ip_newroute(), ire is either the 8375 * IRE_CACHE of the next-hop gateway for an off-subnet 8376 * destination or an IRE_INTERFACE type that should be used 8377 * to resolve an on-subnet destination or an on-subnet 8378 * next-hop gateway. 8379 * 8380 * In the IRE_CACHE case, we have the following : 8381 * 8382 * 1) src_ipif - used for getting a source address. 8383 * 8384 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8385 * means packets using this IRE_CACHE will go out on 8386 * dst_ill. 8387 * 8388 * 3) The IRE sire will point to the prefix that is the 8389 * longest matching route for the destination. These 8390 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8391 * 8392 * The newly created IRE_CACHE entry for the off-subnet 8393 * destination is tied to both the prefix route and the 8394 * interface route used to resolve the next-hop gateway 8395 * via the ire_phandle and ire_ihandle fields, 8396 * respectively. 8397 * 8398 * In the IRE_INTERFACE case, we have the following : 8399 * 8400 * 1) src_ipif - used for getting a source address. 8401 * 8402 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8403 * means packets using the IRE_CACHE that we will build 8404 * here will go out on dst_ill. 8405 * 8406 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8407 * to be created will only be tied to the IRE_INTERFACE 8408 * that was derived from the ire_ihandle field. 8409 * 8410 * If sire is non-NULL, it means the destination is 8411 * off-link and we will first create the IRE_CACHE for the 8412 * gateway. Next time through ip_newroute, we will create 8413 * the IRE_CACHE for the final destination as described 8414 * above. 8415 * 8416 * In both cases, after the current resolution has been 8417 * completed (or possibly initialised, in the IRE_INTERFACE 8418 * case), the loop may be re-entered to attempt the resolution 8419 * of another RTF_MULTIRT route. 8420 * 8421 * When an IRE_CACHE entry for the off-subnet destination is 8422 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8423 * for further processing in emission loops. 8424 */ 8425 save_ire = ire; 8426 switch (ire->ire_type) { 8427 case IRE_CACHE: { 8428 ire_t *ipif_ire; 8429 8430 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8431 if (gw == 0) 8432 gw = ire->ire_gateway_addr; 8433 /* 8434 * We need 3 ire's to create a new cache ire for an 8435 * off-link destination from the cache ire of the 8436 * gateway. 8437 * 8438 * 1. The prefix ire 'sire' (Note that this does 8439 * not apply to the conn_nexthop_set case) 8440 * 2. The cache ire of the gateway 'ire' 8441 * 3. The interface ire 'ipif_ire' 8442 * 8443 * We have (1) and (2). We lookup (3) below. 8444 * 8445 * If there is no interface route to the gateway, 8446 * it is a race condition, where we found the cache 8447 * but the interface route has been deleted. 8448 */ 8449 if (ip_nexthop) { 8450 ipif_ire = ire_ihandle_lookup_onlink(ire); 8451 } else { 8452 ipif_ire = 8453 ire_ihandle_lookup_offlink(ire, sire); 8454 } 8455 if (ipif_ire == NULL) { 8456 ip1dbg(("ip_newroute: " 8457 "ire_ihandle_lookup_offlink failed\n")); 8458 goto icmp_err_ret; 8459 } 8460 8461 /* 8462 * Check cached gateway IRE for any security 8463 * attributes; if found, associate the gateway 8464 * credentials group to the destination IRE. 8465 */ 8466 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8467 mutex_enter(&attrp->igsa_lock); 8468 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8469 GCGRP_REFHOLD(gcgrp); 8470 mutex_exit(&attrp->igsa_lock); 8471 } 8472 8473 /* 8474 * XXX For the source of the resolver mp, 8475 * we are using the same DL_UNITDATA_REQ 8476 * (from save_ire->ire_nce->nce_res_mp) 8477 * though the save_ire is not pointing at the same ill. 8478 * This is incorrect. We need to send it up to the 8479 * resolver to get the right res_mp. For ethernets 8480 * this may be okay (ill_type == DL_ETHER). 8481 */ 8482 8483 ire = ire_create( 8484 (uchar_t *)&dst, /* dest address */ 8485 (uchar_t *)&ip_g_all_ones, /* mask */ 8486 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8487 (uchar_t *)&gw, /* gateway address */ 8488 &save_ire->ire_max_frag, 8489 save_ire->ire_nce, /* src nce */ 8490 dst_ill->ill_rq, /* recv-from queue */ 8491 dst_ill->ill_wq, /* send-to queue */ 8492 IRE_CACHE, /* IRE type */ 8493 src_ipif, 8494 (sire != NULL) ? 8495 sire->ire_mask : 0, /* Parent mask */ 8496 (sire != NULL) ? 8497 sire->ire_phandle : 0, /* Parent handle */ 8498 ipif_ire->ire_ihandle, /* Interface handle */ 8499 (sire != NULL) ? (sire->ire_flags & 8500 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8501 (sire != NULL) ? 8502 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8503 NULL, 8504 gcgrp, 8505 ipst); 8506 8507 if (ire == NULL) { 8508 if (gcgrp != NULL) { 8509 GCGRP_REFRELE(gcgrp); 8510 gcgrp = NULL; 8511 } 8512 ire_refrele(ipif_ire); 8513 ire_refrele(save_ire); 8514 break; 8515 } 8516 8517 /* reference now held by IRE */ 8518 gcgrp = NULL; 8519 8520 ire->ire_marks |= ire_marks; 8521 8522 /* 8523 * Prevent sire and ipif_ire from getting deleted. 8524 * The newly created ire is tied to both of them via 8525 * the phandle and ihandle respectively. 8526 */ 8527 if (sire != NULL) { 8528 IRB_REFHOLD(sire->ire_bucket); 8529 /* Has it been removed already ? */ 8530 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8531 IRB_REFRELE(sire->ire_bucket); 8532 ire_refrele(ipif_ire); 8533 ire_refrele(save_ire); 8534 break; 8535 } 8536 } 8537 8538 IRB_REFHOLD(ipif_ire->ire_bucket); 8539 /* Has it been removed already ? */ 8540 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8541 IRB_REFRELE(ipif_ire->ire_bucket); 8542 if (sire != NULL) 8543 IRB_REFRELE(sire->ire_bucket); 8544 ire_refrele(ipif_ire); 8545 ire_refrele(save_ire); 8546 break; 8547 } 8548 8549 xmit_mp = first_mp; 8550 /* 8551 * In the case of multirouting, a copy 8552 * of the packet is done before its sending. 8553 * The copy is used to attempt another 8554 * route resolution, in a next loop. 8555 */ 8556 if (ire->ire_flags & RTF_MULTIRT) { 8557 copy_mp = copymsg(first_mp); 8558 if (copy_mp != NULL) { 8559 xmit_mp = copy_mp; 8560 MULTIRT_DEBUG_TAG(first_mp); 8561 } 8562 } 8563 8564 ire_add_then_send(q, ire, xmit_mp); 8565 ire_refrele(save_ire); 8566 8567 /* Assert that sire is not deleted yet. */ 8568 if (sire != NULL) { 8569 ASSERT(sire->ire_ptpn != NULL); 8570 IRB_REFRELE(sire->ire_bucket); 8571 } 8572 8573 /* Assert that ipif_ire is not deleted yet. */ 8574 ASSERT(ipif_ire->ire_ptpn != NULL); 8575 IRB_REFRELE(ipif_ire->ire_bucket); 8576 ire_refrele(ipif_ire); 8577 8578 /* 8579 * If copy_mp is not NULL, multirouting was 8580 * requested. We loop to initiate a next 8581 * route resolution attempt, starting from sire. 8582 */ 8583 if (copy_mp != NULL) { 8584 /* 8585 * Search for the next unresolved 8586 * multirt route. 8587 */ 8588 copy_mp = NULL; 8589 ipif_ire = NULL; 8590 ire = NULL; 8591 multirt_resolve_next = B_TRUE; 8592 continue; 8593 } 8594 if (sire != NULL) 8595 ire_refrele(sire); 8596 ipif_refrele(src_ipif); 8597 ill_refrele(dst_ill); 8598 return; 8599 } 8600 case IRE_IF_NORESOLVER: { 8601 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8602 dst_ill->ill_resolver_mp == NULL) { 8603 ip1dbg(("ip_newroute: dst_ill %p " 8604 "for IRE_IF_NORESOLVER ire %p has " 8605 "no ill_resolver_mp\n", 8606 (void *)dst_ill, (void *)ire)); 8607 break; 8608 } 8609 8610 /* 8611 * TSol note: We are creating the ire cache for the 8612 * destination 'dst'. If 'dst' is offlink, going 8613 * through the first hop 'gw', the security attributes 8614 * of 'dst' must be set to point to the gateway 8615 * credentials of gateway 'gw'. If 'dst' is onlink, it 8616 * is possible that 'dst' is a potential gateway that is 8617 * referenced by some route that has some security 8618 * attributes. Thus in the former case, we need to do a 8619 * gcgrp_lookup of 'gw' while in the latter case we 8620 * need to do gcgrp_lookup of 'dst' itself. 8621 */ 8622 ga.ga_af = AF_INET; 8623 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8624 &ga.ga_addr); 8625 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8626 8627 ire = ire_create( 8628 (uchar_t *)&dst, /* dest address */ 8629 (uchar_t *)&ip_g_all_ones, /* mask */ 8630 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8631 (uchar_t *)&gw, /* gateway address */ 8632 &save_ire->ire_max_frag, 8633 NULL, /* no src nce */ 8634 dst_ill->ill_rq, /* recv-from queue */ 8635 dst_ill->ill_wq, /* send-to queue */ 8636 IRE_CACHE, 8637 src_ipif, 8638 save_ire->ire_mask, /* Parent mask */ 8639 (sire != NULL) ? /* Parent handle */ 8640 sire->ire_phandle : 0, 8641 save_ire->ire_ihandle, /* Interface handle */ 8642 (sire != NULL) ? sire->ire_flags & 8643 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8644 &(save_ire->ire_uinfo), 8645 NULL, 8646 gcgrp, 8647 ipst); 8648 8649 if (ire == NULL) { 8650 if (gcgrp != NULL) { 8651 GCGRP_REFRELE(gcgrp); 8652 gcgrp = NULL; 8653 } 8654 ire_refrele(save_ire); 8655 break; 8656 } 8657 8658 /* reference now held by IRE */ 8659 gcgrp = NULL; 8660 8661 ire->ire_marks |= ire_marks; 8662 8663 /* Prevent save_ire from getting deleted */ 8664 IRB_REFHOLD(save_ire->ire_bucket); 8665 /* Has it been removed already ? */ 8666 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8667 IRB_REFRELE(save_ire->ire_bucket); 8668 ire_refrele(save_ire); 8669 break; 8670 } 8671 8672 /* 8673 * In the case of multirouting, a copy 8674 * of the packet is made before it is sent. 8675 * The copy is used in the next 8676 * loop to attempt another resolution. 8677 */ 8678 xmit_mp = first_mp; 8679 if ((sire != NULL) && 8680 (sire->ire_flags & RTF_MULTIRT)) { 8681 copy_mp = copymsg(first_mp); 8682 if (copy_mp != NULL) { 8683 xmit_mp = copy_mp; 8684 MULTIRT_DEBUG_TAG(first_mp); 8685 } 8686 } 8687 ire_add_then_send(q, ire, xmit_mp); 8688 8689 /* Assert that it is not deleted yet. */ 8690 ASSERT(save_ire->ire_ptpn != NULL); 8691 IRB_REFRELE(save_ire->ire_bucket); 8692 ire_refrele(save_ire); 8693 8694 if (copy_mp != NULL) { 8695 /* 8696 * If we found a (no)resolver, we ignore any 8697 * trailing top priority IRE_CACHE in further 8698 * loops. This ensures that we do not omit any 8699 * (no)resolver. 8700 * This IRE_CACHE, if any, will be processed 8701 * by another thread entering ip_newroute(). 8702 * IRE_CACHE entries, if any, will be processed 8703 * by another thread entering ip_newroute(), 8704 * (upon resolver response, for instance). 8705 * This aims to force parallel multirt 8706 * resolutions as soon as a packet must be sent. 8707 * In the best case, after the tx of only one 8708 * packet, all reachable routes are resolved. 8709 * Otherwise, the resolution of all RTF_MULTIRT 8710 * routes would require several emissions. 8711 */ 8712 multirt_flags &= ~MULTIRT_CACHEGW; 8713 8714 /* 8715 * Search for the next unresolved multirt 8716 * route. 8717 */ 8718 copy_mp = NULL; 8719 save_ire = NULL; 8720 ire = NULL; 8721 multirt_resolve_next = B_TRUE; 8722 continue; 8723 } 8724 8725 /* 8726 * Don't need sire anymore 8727 */ 8728 if (sire != NULL) 8729 ire_refrele(sire); 8730 8731 ipif_refrele(src_ipif); 8732 ill_refrele(dst_ill); 8733 return; 8734 } 8735 case IRE_IF_RESOLVER: 8736 /* 8737 * We can't build an IRE_CACHE yet, but at least we 8738 * found a resolver that can help. 8739 */ 8740 res_mp = dst_ill->ill_resolver_mp; 8741 if (!OK_RESOLVER_MP(res_mp)) 8742 break; 8743 8744 /* 8745 * To be at this point in the code with a non-zero gw 8746 * means that dst is reachable through a gateway that 8747 * we have never resolved. By changing dst to the gw 8748 * addr we resolve the gateway first. 8749 * When ire_add_then_send() tries to put the IP dg 8750 * to dst, it will reenter ip_newroute() at which 8751 * time we will find the IRE_CACHE for the gw and 8752 * create another IRE_CACHE in case IRE_CACHE above. 8753 */ 8754 if (gw != INADDR_ANY) { 8755 /* 8756 * The source ipif that was determined above was 8757 * relative to the destination address, not the 8758 * gateway's. If src_ipif was not taken out of 8759 * the IRE_IF_RESOLVER entry, we'll need to call 8760 * ipif_select_source() again. 8761 */ 8762 if (src_ipif != ire->ire_ipif) { 8763 ipif_refrele(src_ipif); 8764 src_ipif = ipif_select_source(dst_ill, 8765 gw, zoneid); 8766 /* 8767 * In the case of multirouting, it may 8768 * happen that ipif_select_source fails 8769 * as DAD may disallow use of the 8770 * particular source interface. Anyway, 8771 * we need to continue and attempt to 8772 * resolve other multirt routes. 8773 */ 8774 if (src_ipif == NULL) { 8775 if (sire != NULL && 8776 (sire->ire_flags & 8777 RTF_MULTIRT)) { 8778 ire_refrele(ire); 8779 ire = NULL; 8780 multirt_resolve_next = 8781 B_TRUE; 8782 multirt_res_failures++; 8783 continue; 8784 } 8785 if (ip_debug > 2) { 8786 pr_addr_dbg( 8787 "ip_newroute: no " 8788 "src for gw %s ", 8789 AF_INET, &gw); 8790 printf("on " 8791 "interface %s\n", 8792 dst_ill->ill_name); 8793 } 8794 goto icmp_err_ret; 8795 } 8796 } 8797 save_dst = dst; 8798 dst = gw; 8799 gw = INADDR_ANY; 8800 } 8801 8802 /* 8803 * We obtain a partial IRE_CACHE which we will pass 8804 * along with the resolver query. When the response 8805 * comes back it will be there ready for us to add. 8806 * The ire_max_frag is atomically set under the 8807 * irebucket lock in ire_add_v[46]. 8808 */ 8809 8810 ire = ire_create_mp( 8811 (uchar_t *)&dst, /* dest address */ 8812 (uchar_t *)&ip_g_all_ones, /* mask */ 8813 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8814 (uchar_t *)&gw, /* gateway address */ 8815 NULL, /* ire_max_frag */ 8816 NULL, /* no src nce */ 8817 dst_ill->ill_rq, /* recv-from queue */ 8818 dst_ill->ill_wq, /* send-to queue */ 8819 IRE_CACHE, 8820 src_ipif, /* Interface ipif */ 8821 save_ire->ire_mask, /* Parent mask */ 8822 0, 8823 save_ire->ire_ihandle, /* Interface handle */ 8824 0, /* flags if any */ 8825 &(save_ire->ire_uinfo), 8826 NULL, 8827 NULL, 8828 ipst); 8829 8830 if (ire == NULL) { 8831 ire_refrele(save_ire); 8832 break; 8833 } 8834 8835 if ((sire != NULL) && 8836 (sire->ire_flags & RTF_MULTIRT)) { 8837 copy_mp = copymsg(first_mp); 8838 if (copy_mp != NULL) 8839 MULTIRT_DEBUG_TAG(copy_mp); 8840 } 8841 8842 ire->ire_marks |= ire_marks; 8843 8844 /* 8845 * Construct message chain for the resolver 8846 * of the form: 8847 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8848 * Packet could contain a IPSEC_OUT mp. 8849 * 8850 * NOTE : ire will be added later when the response 8851 * comes back from ARP. If the response does not 8852 * come back, ARP frees the packet. For this reason, 8853 * we can't REFHOLD the bucket of save_ire to prevent 8854 * deletions. We may not be able to REFRELE the bucket 8855 * if the response never comes back. Thus, before 8856 * adding the ire, ire_add_v4 will make sure that the 8857 * interface route does not get deleted. This is the 8858 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8859 * where we can always prevent deletions because of 8860 * the synchronous nature of adding IRES i.e 8861 * ire_add_then_send is called after creating the IRE. 8862 */ 8863 ASSERT(ire->ire_mp != NULL); 8864 ire->ire_mp->b_cont = first_mp; 8865 /* Have saved_mp handy, for cleanup if canput fails */ 8866 saved_mp = mp; 8867 mp = copyb(res_mp); 8868 if (mp == NULL) { 8869 /* Prepare for cleanup */ 8870 mp = saved_mp; /* pkt */ 8871 ire_delete(ire); /* ire_mp */ 8872 ire = NULL; 8873 ire_refrele(save_ire); 8874 if (copy_mp != NULL) { 8875 MULTIRT_DEBUG_UNTAG(copy_mp); 8876 freemsg(copy_mp); 8877 copy_mp = NULL; 8878 } 8879 break; 8880 } 8881 linkb(mp, ire->ire_mp); 8882 8883 /* 8884 * Fill in the source and dest addrs for the resolver. 8885 * NOTE: this depends on memory layouts imposed by 8886 * ill_init(). 8887 */ 8888 areq = (areq_t *)mp->b_rptr; 8889 addrp = (ipaddr_t *)((char *)areq + 8890 areq->areq_sender_addr_offset); 8891 *addrp = save_ire->ire_src_addr; 8892 8893 ire_refrele(save_ire); 8894 addrp = (ipaddr_t *)((char *)areq + 8895 areq->areq_target_addr_offset); 8896 *addrp = dst; 8897 /* Up to the resolver. */ 8898 if (canputnext(dst_ill->ill_rq) && 8899 !(dst_ill->ill_arp_closing)) { 8900 putnext(dst_ill->ill_rq, mp); 8901 ire = NULL; 8902 if (copy_mp != NULL) { 8903 /* 8904 * If we found a resolver, we ignore 8905 * any trailing top priority IRE_CACHE 8906 * in the further loops. This ensures 8907 * that we do not omit any resolver. 8908 * IRE_CACHE entries, if any, will be 8909 * processed next time we enter 8910 * ip_newroute(). 8911 */ 8912 multirt_flags &= ~MULTIRT_CACHEGW; 8913 /* 8914 * Search for the next unresolved 8915 * multirt route. 8916 */ 8917 first_mp = copy_mp; 8918 copy_mp = NULL; 8919 /* Prepare the next resolution loop. */ 8920 mp = first_mp; 8921 EXTRACT_PKT_MP(mp, first_mp, 8922 mctl_present); 8923 if (mctl_present) 8924 io = (ipsec_out_t *) 8925 first_mp->b_rptr; 8926 ipha = (ipha_t *)mp->b_rptr; 8927 8928 ASSERT(sire != NULL); 8929 8930 dst = save_dst; 8931 multirt_resolve_next = B_TRUE; 8932 continue; 8933 } 8934 8935 if (sire != NULL) 8936 ire_refrele(sire); 8937 8938 /* 8939 * The response will come back in ip_wput 8940 * with db_type IRE_DB_TYPE. 8941 */ 8942 ipif_refrele(src_ipif); 8943 ill_refrele(dst_ill); 8944 return; 8945 } else { 8946 /* Prepare for cleanup */ 8947 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8948 mp); 8949 mp->b_cont = NULL; 8950 freeb(mp); /* areq */ 8951 /* 8952 * this is an ire that is not added to the 8953 * cache. ire_freemblk will handle the release 8954 * of any resources associated with the ire. 8955 */ 8956 ire_delete(ire); /* ire_mp */ 8957 mp = saved_mp; /* pkt */ 8958 ire = NULL; 8959 if (copy_mp != NULL) { 8960 MULTIRT_DEBUG_UNTAG(copy_mp); 8961 freemsg(copy_mp); 8962 copy_mp = NULL; 8963 } 8964 break; 8965 } 8966 default: 8967 break; 8968 } 8969 } while (multirt_resolve_next); 8970 8971 ip1dbg(("ip_newroute: dropped\n")); 8972 /* Did this packet originate externally? */ 8973 if (mp->b_prev) { 8974 mp->b_next = NULL; 8975 mp->b_prev = NULL; 8976 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8977 } else { 8978 if (dst_ill != NULL) { 8979 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8980 } else { 8981 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8982 } 8983 } 8984 ASSERT(copy_mp == NULL); 8985 MULTIRT_DEBUG_UNTAG(first_mp); 8986 freemsg(first_mp); 8987 if (ire != NULL) 8988 ire_refrele(ire); 8989 if (sire != NULL) 8990 ire_refrele(sire); 8991 if (src_ipif != NULL) 8992 ipif_refrele(src_ipif); 8993 if (dst_ill != NULL) 8994 ill_refrele(dst_ill); 8995 return; 8996 8997 icmp_err_ret: 8998 ip1dbg(("ip_newroute: no route\n")); 8999 if (src_ipif != NULL) 9000 ipif_refrele(src_ipif); 9001 if (dst_ill != NULL) 9002 ill_refrele(dst_ill); 9003 if (sire != NULL) 9004 ire_refrele(sire); 9005 /* Did this packet originate externally? */ 9006 if (mp->b_prev) { 9007 mp->b_next = NULL; 9008 mp->b_prev = NULL; 9009 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9010 q = WR(q); 9011 } else { 9012 /* 9013 * There is no outgoing ill, so just increment the 9014 * system MIB. 9015 */ 9016 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9017 /* 9018 * Since ip_wput() isn't close to finished, we fill 9019 * in enough of the header for credible error reporting. 9020 */ 9021 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9022 /* Failed */ 9023 MULTIRT_DEBUG_UNTAG(first_mp); 9024 freemsg(first_mp); 9025 if (ire != NULL) 9026 ire_refrele(ire); 9027 return; 9028 } 9029 } 9030 9031 /* 9032 * At this point we will have ire only if RTF_BLACKHOLE 9033 * or RTF_REJECT flags are set on the IRE. It will not 9034 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9035 */ 9036 if (ire != NULL) { 9037 if (ire->ire_flags & RTF_BLACKHOLE) { 9038 ire_refrele(ire); 9039 MULTIRT_DEBUG_UNTAG(first_mp); 9040 freemsg(first_mp); 9041 return; 9042 } 9043 ire_refrele(ire); 9044 } 9045 if (ip_source_routed(ipha, ipst)) { 9046 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9047 zoneid, ipst); 9048 return; 9049 } 9050 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9051 } 9052 9053 ip_opt_info_t zero_info; 9054 9055 /* 9056 * IPv4 - 9057 * ip_newroute_ipif is called by ip_wput_multicast and 9058 * ip_rput_forward_multicast whenever we need to send 9059 * out a packet to a destination address for which we do not have specific 9060 * routing information. It is used when the packet will be sent out 9061 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9062 * socket option is set or icmp error message wants to go out on a particular 9063 * interface for a unicast packet. 9064 * 9065 * In most cases, the destination address is resolved thanks to the ipif 9066 * intrinsic resolver. However, there are some cases where the call to 9067 * ip_newroute_ipif must take into account the potential presence of 9068 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9069 * that uses the interface. This is specified through flags, 9070 * which can be a combination of: 9071 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9072 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9073 * and flags. Additionally, the packet source address has to be set to 9074 * the specified address. The caller is thus expected to set this flag 9075 * if the packet has no specific source address yet. 9076 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9077 * flag, the resulting ire will inherit the flag. All unresolved routes 9078 * to the destination must be explored in the same call to 9079 * ip_newroute_ipif(). 9080 */ 9081 static void 9082 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9083 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9084 { 9085 areq_t *areq; 9086 ire_t *ire = NULL; 9087 mblk_t *res_mp; 9088 ipaddr_t *addrp; 9089 mblk_t *first_mp; 9090 ire_t *save_ire = NULL; 9091 ipif_t *src_ipif = NULL; 9092 ushort_t ire_marks = 0; 9093 ill_t *dst_ill = NULL; 9094 ipha_t *ipha; 9095 mblk_t *saved_mp; 9096 ire_t *fire = NULL; 9097 mblk_t *copy_mp = NULL; 9098 boolean_t multirt_resolve_next; 9099 boolean_t unspec_src; 9100 ipaddr_t ipha_dst; 9101 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9102 9103 /* 9104 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9105 * here for uniformity 9106 */ 9107 ipif_refhold(ipif); 9108 9109 /* 9110 * This loop is run only once in most cases. 9111 * We loop to resolve further routes only when the destination 9112 * can be reached through multiple RTF_MULTIRT-flagged ires. 9113 */ 9114 do { 9115 if (dst_ill != NULL) { 9116 ill_refrele(dst_ill); 9117 dst_ill = NULL; 9118 } 9119 if (src_ipif != NULL) { 9120 ipif_refrele(src_ipif); 9121 src_ipif = NULL; 9122 } 9123 multirt_resolve_next = B_FALSE; 9124 9125 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9126 ipif->ipif_ill->ill_name)); 9127 9128 first_mp = mp; 9129 if (DB_TYPE(mp) == M_CTL) 9130 mp = mp->b_cont; 9131 ipha = (ipha_t *)mp->b_rptr; 9132 9133 /* 9134 * Save the packet destination address, we may need it after 9135 * the packet has been consumed. 9136 */ 9137 ipha_dst = ipha->ipha_dst; 9138 9139 /* 9140 * If the interface is a pt-pt interface we look for an 9141 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9142 * local_address and the pt-pt destination address. Otherwise 9143 * we just match the local address. 9144 * NOTE: dst could be different than ipha->ipha_dst in case 9145 * of sending igmp multicast packets over a point-to-point 9146 * connection. 9147 * Thus we must be careful enough to check ipha_dst to be a 9148 * multicast address, otherwise it will take xmit_if path for 9149 * multicast packets resulting into kernel stack overflow by 9150 * repeated calls to ip_newroute_ipif from ire_send(). 9151 */ 9152 if (CLASSD(ipha_dst) && 9153 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9154 goto err_ret; 9155 } 9156 9157 /* 9158 * We check if an IRE_OFFSUBNET for the addr that goes through 9159 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9160 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9161 * propagate its flags to the new ire. 9162 */ 9163 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9164 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9165 ip2dbg(("ip_newroute_ipif: " 9166 "ipif_lookup_multi_ire(" 9167 "ipif %p, dst %08x) = fire %p\n", 9168 (void *)ipif, ntohl(dst), (void *)fire)); 9169 } 9170 9171 /* 9172 * Note: While we pick a dst_ill we are really only 9173 * interested in the ill for load spreading. The source 9174 * ipif is determined by source address selection below. 9175 */ 9176 if (IS_IPMP(ipif->ipif_ill)) { 9177 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9178 9179 if (CLASSD(ipha_dst)) 9180 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9181 else 9182 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9183 } else { 9184 dst_ill = ipif->ipif_ill; 9185 ill_refhold(dst_ill); 9186 } 9187 9188 if (dst_ill == NULL) { 9189 if (ip_debug > 2) { 9190 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9191 "for dst %s\n", AF_INET, &dst); 9192 } 9193 goto err_ret; 9194 } 9195 9196 /* 9197 * Pick a source address preferring non-deprecated ones. 9198 * Unlike ip_newroute, we don't do any source address 9199 * selection here since for multicast it really does not help 9200 * in inbound load spreading as in the unicast case. 9201 */ 9202 if ((flags & RTF_SETSRC) && (fire != NULL) && 9203 (fire->ire_flags & RTF_SETSRC)) { 9204 /* 9205 * As requested by flags, an IRE_OFFSUBNET was looked up 9206 * on that interface. This ire has RTF_SETSRC flag, so 9207 * the source address of the packet must be changed. 9208 * Check that the ipif matching the requested source 9209 * address still exists. 9210 */ 9211 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9212 zoneid, NULL, NULL, NULL, NULL, ipst); 9213 } 9214 9215 unspec_src = (connp != NULL && connp->conn_unspec_src); 9216 9217 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9218 (IS_IPMP(ipif->ipif_ill) || 9219 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9220 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9221 (connp != NULL && ipif->ipif_zoneid != zoneid && 9222 ipif->ipif_zoneid != ALL_ZONES)) && 9223 (src_ipif == NULL) && 9224 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9225 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9226 if (src_ipif == NULL) { 9227 if (ip_debug > 2) { 9228 /* ip1dbg */ 9229 pr_addr_dbg("ip_newroute_ipif: " 9230 "no src for dst %s", 9231 AF_INET, &dst); 9232 } 9233 ip1dbg((" on interface %s\n", 9234 dst_ill->ill_name)); 9235 goto err_ret; 9236 } 9237 ipif_refrele(ipif); 9238 ipif = src_ipif; 9239 ipif_refhold(ipif); 9240 } 9241 if (src_ipif == NULL) { 9242 src_ipif = ipif; 9243 ipif_refhold(src_ipif); 9244 } 9245 9246 /* 9247 * Assign a source address while we have the conn. 9248 * We can't have ip_wput_ire pick a source address when the 9249 * packet returns from arp since conn_unspec_src might be set 9250 * and we lose the conn when going through arp. 9251 */ 9252 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9253 ipha->ipha_src = src_ipif->ipif_src_addr; 9254 9255 /* 9256 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9257 * that the outgoing interface does not have an interface ire. 9258 */ 9259 if (CLASSD(ipha_dst) && (connp == NULL || 9260 connp->conn_outgoing_ill == NULL) && 9261 infop->ip_opt_ill_index == 0) { 9262 /* ipif_to_ire returns an held ire */ 9263 ire = ipif_to_ire(ipif); 9264 if (ire == NULL) 9265 goto err_ret; 9266 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9267 goto err_ret; 9268 save_ire = ire; 9269 9270 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9271 "flags %04x\n", 9272 (void *)ire, (void *)ipif, flags)); 9273 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9274 (fire->ire_flags & RTF_MULTIRT)) { 9275 /* 9276 * As requested by flags, an IRE_OFFSUBNET was 9277 * looked up on that interface. This ire has 9278 * RTF_MULTIRT flag, so the resolution loop will 9279 * be re-entered to resolve additional routes on 9280 * other interfaces. For that purpose, a copy of 9281 * the packet is performed at this point. 9282 */ 9283 fire->ire_last_used_time = lbolt; 9284 copy_mp = copymsg(first_mp); 9285 if (copy_mp) { 9286 MULTIRT_DEBUG_TAG(copy_mp); 9287 } 9288 } 9289 if ((flags & RTF_SETSRC) && (fire != NULL) && 9290 (fire->ire_flags & RTF_SETSRC)) { 9291 /* 9292 * As requested by flags, an IRE_OFFSUBET was 9293 * looked up on that interface. This ire has 9294 * RTF_SETSRC flag, so the source address of the 9295 * packet must be changed. 9296 */ 9297 ipha->ipha_src = fire->ire_src_addr; 9298 } 9299 } else { 9300 /* 9301 * The only ways we can come here are: 9302 * 1) IP_BOUND_IF socket option is set 9303 * 2) SO_DONTROUTE socket option is set 9304 * 3) IP_PKTINFO option is passed in as ancillary data. 9305 * In all cases, the new ire will not be added 9306 * into cache table. 9307 */ 9308 ASSERT(connp == NULL || connp->conn_dontroute || 9309 connp->conn_outgoing_ill != NULL || 9310 infop->ip_opt_ill_index != 0); 9311 ire_marks |= IRE_MARK_NOADD; 9312 } 9313 9314 switch (ipif->ipif_net_type) { 9315 case IRE_IF_NORESOLVER: { 9316 /* We have what we need to build an IRE_CACHE. */ 9317 9318 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9319 (dst_ill->ill_resolver_mp == NULL)) { 9320 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9321 "for IRE_IF_NORESOLVER ire %p has " 9322 "no ill_resolver_mp\n", 9323 (void *)dst_ill, (void *)ire)); 9324 break; 9325 } 9326 9327 /* 9328 * The new ire inherits the IRE_OFFSUBNET flags 9329 * and source address, if this was requested. 9330 */ 9331 ire = ire_create( 9332 (uchar_t *)&dst, /* dest address */ 9333 (uchar_t *)&ip_g_all_ones, /* mask */ 9334 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9335 NULL, /* gateway address */ 9336 &ipif->ipif_mtu, 9337 NULL, /* no src nce */ 9338 dst_ill->ill_rq, /* recv-from queue */ 9339 dst_ill->ill_wq, /* send-to queue */ 9340 IRE_CACHE, 9341 src_ipif, 9342 (save_ire != NULL ? save_ire->ire_mask : 0), 9343 (fire != NULL) ? /* Parent handle */ 9344 fire->ire_phandle : 0, 9345 (save_ire != NULL) ? /* Interface handle */ 9346 save_ire->ire_ihandle : 0, 9347 (fire != NULL) ? 9348 (fire->ire_flags & 9349 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9350 (save_ire == NULL ? &ire_uinfo_null : 9351 &save_ire->ire_uinfo), 9352 NULL, 9353 NULL, 9354 ipst); 9355 9356 if (ire == NULL) { 9357 if (save_ire != NULL) 9358 ire_refrele(save_ire); 9359 break; 9360 } 9361 9362 ire->ire_marks |= ire_marks; 9363 9364 /* 9365 * If IRE_MARK_NOADD is set then we need to convert 9366 * the max_fragp to a useable value now. This is 9367 * normally done in ire_add_v[46]. We also need to 9368 * associate the ire with an nce (normally would be 9369 * done in ip_wput_nondata()). 9370 * 9371 * Note that IRE_MARK_NOADD packets created here 9372 * do not have a non-null ire_mp pointer. The null 9373 * value of ire_bucket indicates that they were 9374 * never added. 9375 */ 9376 if (ire->ire_marks & IRE_MARK_NOADD) { 9377 uint_t max_frag; 9378 9379 max_frag = *ire->ire_max_fragp; 9380 ire->ire_max_fragp = NULL; 9381 ire->ire_max_frag = max_frag; 9382 9383 if ((ire->ire_nce = ndp_lookup_v4( 9384 ire_to_ill(ire), 9385 (ire->ire_gateway_addr != INADDR_ANY ? 9386 &ire->ire_gateway_addr : &ire->ire_addr), 9387 B_FALSE)) == NULL) { 9388 if (save_ire != NULL) 9389 ire_refrele(save_ire); 9390 break; 9391 } 9392 ASSERT(ire->ire_nce->nce_state == 9393 ND_REACHABLE); 9394 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9395 } 9396 9397 /* Prevent save_ire from getting deleted */ 9398 if (save_ire != NULL) { 9399 IRB_REFHOLD(save_ire->ire_bucket); 9400 /* Has it been removed already ? */ 9401 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9402 IRB_REFRELE(save_ire->ire_bucket); 9403 ire_refrele(save_ire); 9404 break; 9405 } 9406 } 9407 9408 ire_add_then_send(q, ire, first_mp); 9409 9410 /* Assert that save_ire is not deleted yet. */ 9411 if (save_ire != NULL) { 9412 ASSERT(save_ire->ire_ptpn != NULL); 9413 IRB_REFRELE(save_ire->ire_bucket); 9414 ire_refrele(save_ire); 9415 save_ire = NULL; 9416 } 9417 if (fire != NULL) { 9418 ire_refrele(fire); 9419 fire = NULL; 9420 } 9421 9422 /* 9423 * the resolution loop is re-entered if this 9424 * was requested through flags and if we 9425 * actually are in a multirouting case. 9426 */ 9427 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9428 boolean_t need_resolve = 9429 ire_multirt_need_resolve(ipha_dst, 9430 msg_getlabel(copy_mp), ipst); 9431 if (!need_resolve) { 9432 MULTIRT_DEBUG_UNTAG(copy_mp); 9433 freemsg(copy_mp); 9434 copy_mp = NULL; 9435 } else { 9436 /* 9437 * ipif_lookup_group() calls 9438 * ire_lookup_multi() that uses 9439 * ire_ftable_lookup() to find 9440 * an IRE_INTERFACE for the group. 9441 * In the multirt case, 9442 * ire_lookup_multi() then invokes 9443 * ire_multirt_lookup() to find 9444 * the next resolvable ire. 9445 * As a result, we obtain an new 9446 * interface, derived from the 9447 * next ire. 9448 */ 9449 ipif_refrele(ipif); 9450 ipif = ipif_lookup_group(ipha_dst, 9451 zoneid, ipst); 9452 ip2dbg(("ip_newroute_ipif: " 9453 "multirt dst %08x, ipif %p\n", 9454 htonl(dst), (void *)ipif)); 9455 if (ipif != NULL) { 9456 mp = copy_mp; 9457 copy_mp = NULL; 9458 multirt_resolve_next = B_TRUE; 9459 continue; 9460 } else { 9461 freemsg(copy_mp); 9462 } 9463 } 9464 } 9465 if (ipif != NULL) 9466 ipif_refrele(ipif); 9467 ill_refrele(dst_ill); 9468 ipif_refrele(src_ipif); 9469 return; 9470 } 9471 case IRE_IF_RESOLVER: 9472 /* 9473 * We can't build an IRE_CACHE yet, but at least 9474 * we found a resolver that can help. 9475 */ 9476 res_mp = dst_ill->ill_resolver_mp; 9477 if (!OK_RESOLVER_MP(res_mp)) 9478 break; 9479 9480 /* 9481 * We obtain a partial IRE_CACHE which we will pass 9482 * along with the resolver query. When the response 9483 * comes back it will be there ready for us to add. 9484 * The new ire inherits the IRE_OFFSUBNET flags 9485 * and source address, if this was requested. 9486 * The ire_max_frag is atomically set under the 9487 * irebucket lock in ire_add_v[46]. Only in the 9488 * case of IRE_MARK_NOADD, we set it here itself. 9489 */ 9490 ire = ire_create_mp( 9491 (uchar_t *)&dst, /* dest address */ 9492 (uchar_t *)&ip_g_all_ones, /* mask */ 9493 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9494 NULL, /* gateway address */ 9495 (ire_marks & IRE_MARK_NOADD) ? 9496 ipif->ipif_mtu : 0, /* max_frag */ 9497 NULL, /* no src nce */ 9498 dst_ill->ill_rq, /* recv-from queue */ 9499 dst_ill->ill_wq, /* send-to queue */ 9500 IRE_CACHE, 9501 src_ipif, 9502 (save_ire != NULL ? save_ire->ire_mask : 0), 9503 (fire != NULL) ? /* Parent handle */ 9504 fire->ire_phandle : 0, 9505 (save_ire != NULL) ? /* Interface handle */ 9506 save_ire->ire_ihandle : 0, 9507 (fire != NULL) ? /* flags if any */ 9508 (fire->ire_flags & 9509 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9510 (save_ire == NULL ? &ire_uinfo_null : 9511 &save_ire->ire_uinfo), 9512 NULL, 9513 NULL, 9514 ipst); 9515 9516 if (save_ire != NULL) { 9517 ire_refrele(save_ire); 9518 save_ire = NULL; 9519 } 9520 if (ire == NULL) 9521 break; 9522 9523 ire->ire_marks |= ire_marks; 9524 /* 9525 * Construct message chain for the resolver of the 9526 * form: 9527 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9528 * 9529 * NOTE : ire will be added later when the response 9530 * comes back from ARP. If the response does not 9531 * come back, ARP frees the packet. For this reason, 9532 * we can't REFHOLD the bucket of save_ire to prevent 9533 * deletions. We may not be able to REFRELE the 9534 * bucket if the response never comes back. 9535 * Thus, before adding the ire, ire_add_v4 will make 9536 * sure that the interface route does not get deleted. 9537 * This is the only case unlike ip_newroute_v6, 9538 * ip_newroute_ipif_v6 where we can always prevent 9539 * deletions because ire_add_then_send is called after 9540 * creating the IRE. 9541 * If IRE_MARK_NOADD is set, then ire_add_then_send 9542 * does not add this IRE into the IRE CACHE. 9543 */ 9544 ASSERT(ire->ire_mp != NULL); 9545 ire->ire_mp->b_cont = first_mp; 9546 /* Have saved_mp handy, for cleanup if canput fails */ 9547 saved_mp = mp; 9548 mp = copyb(res_mp); 9549 if (mp == NULL) { 9550 /* Prepare for cleanup */ 9551 mp = saved_mp; /* pkt */ 9552 ire_delete(ire); /* ire_mp */ 9553 ire = NULL; 9554 if (copy_mp != NULL) { 9555 MULTIRT_DEBUG_UNTAG(copy_mp); 9556 freemsg(copy_mp); 9557 copy_mp = NULL; 9558 } 9559 break; 9560 } 9561 linkb(mp, ire->ire_mp); 9562 9563 /* 9564 * Fill in the source and dest addrs for the resolver. 9565 * NOTE: this depends on memory layouts imposed by 9566 * ill_init(). There are corner cases above where we 9567 * might've created the IRE with an INADDR_ANY source 9568 * address (e.g., if the zeroth ipif on an underlying 9569 * ill in an IPMP group is 0.0.0.0, but another ipif 9570 * on the ill has a usable test address). If so, tell 9571 * ARP to use ipha_src as its sender address. 9572 */ 9573 areq = (areq_t *)mp->b_rptr; 9574 addrp = (ipaddr_t *)((char *)areq + 9575 areq->areq_sender_addr_offset); 9576 if (ire->ire_src_addr != INADDR_ANY) 9577 *addrp = ire->ire_src_addr; 9578 else 9579 *addrp = ipha->ipha_src; 9580 addrp = (ipaddr_t *)((char *)areq + 9581 areq->areq_target_addr_offset); 9582 *addrp = dst; 9583 /* Up to the resolver. */ 9584 if (canputnext(dst_ill->ill_rq) && 9585 !(dst_ill->ill_arp_closing)) { 9586 putnext(dst_ill->ill_rq, mp); 9587 /* 9588 * The response will come back in ip_wput 9589 * with db_type IRE_DB_TYPE. 9590 */ 9591 } else { 9592 mp->b_cont = NULL; 9593 freeb(mp); /* areq */ 9594 ire_delete(ire); /* ire_mp */ 9595 saved_mp->b_next = NULL; 9596 saved_mp->b_prev = NULL; 9597 freemsg(first_mp); /* pkt */ 9598 ip2dbg(("ip_newroute_ipif: dropped\n")); 9599 } 9600 9601 if (fire != NULL) { 9602 ire_refrele(fire); 9603 fire = NULL; 9604 } 9605 9606 /* 9607 * The resolution loop is re-entered if this was 9608 * requested through flags and we actually are 9609 * in a multirouting case. 9610 */ 9611 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9612 boolean_t need_resolve = 9613 ire_multirt_need_resolve(ipha_dst, 9614 msg_getlabel(copy_mp), ipst); 9615 if (!need_resolve) { 9616 MULTIRT_DEBUG_UNTAG(copy_mp); 9617 freemsg(copy_mp); 9618 copy_mp = NULL; 9619 } else { 9620 /* 9621 * ipif_lookup_group() calls 9622 * ire_lookup_multi() that uses 9623 * ire_ftable_lookup() to find 9624 * an IRE_INTERFACE for the group. 9625 * In the multirt case, 9626 * ire_lookup_multi() then invokes 9627 * ire_multirt_lookup() to find 9628 * the next resolvable ire. 9629 * As a result, we obtain an new 9630 * interface, derived from the 9631 * next ire. 9632 */ 9633 ipif_refrele(ipif); 9634 ipif = ipif_lookup_group(ipha_dst, 9635 zoneid, ipst); 9636 if (ipif != NULL) { 9637 mp = copy_mp; 9638 copy_mp = NULL; 9639 multirt_resolve_next = B_TRUE; 9640 continue; 9641 } else { 9642 freemsg(copy_mp); 9643 } 9644 } 9645 } 9646 if (ipif != NULL) 9647 ipif_refrele(ipif); 9648 ill_refrele(dst_ill); 9649 ipif_refrele(src_ipif); 9650 return; 9651 default: 9652 break; 9653 } 9654 } while (multirt_resolve_next); 9655 9656 err_ret: 9657 ip2dbg(("ip_newroute_ipif: dropped\n")); 9658 if (fire != NULL) 9659 ire_refrele(fire); 9660 ipif_refrele(ipif); 9661 /* Did this packet originate externally? */ 9662 if (dst_ill != NULL) 9663 ill_refrele(dst_ill); 9664 if (src_ipif != NULL) 9665 ipif_refrele(src_ipif); 9666 if (mp->b_prev || mp->b_next) { 9667 mp->b_next = NULL; 9668 mp->b_prev = NULL; 9669 } else { 9670 /* 9671 * Since ip_wput() isn't close to finished, we fill 9672 * in enough of the header for credible error reporting. 9673 */ 9674 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9675 /* Failed */ 9676 freemsg(first_mp); 9677 if (ire != NULL) 9678 ire_refrele(ire); 9679 return; 9680 } 9681 } 9682 /* 9683 * At this point we will have ire only if RTF_BLACKHOLE 9684 * or RTF_REJECT flags are set on the IRE. It will not 9685 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9686 */ 9687 if (ire != NULL) { 9688 if (ire->ire_flags & RTF_BLACKHOLE) { 9689 ire_refrele(ire); 9690 freemsg(first_mp); 9691 return; 9692 } 9693 ire_refrele(ire); 9694 } 9695 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9696 } 9697 9698 /* Name/Value Table Lookup Routine */ 9699 char * 9700 ip_nv_lookup(nv_t *nv, int value) 9701 { 9702 if (!nv) 9703 return (NULL); 9704 for (; nv->nv_name; nv++) { 9705 if (nv->nv_value == value) 9706 return (nv->nv_name); 9707 } 9708 return ("unknown"); 9709 } 9710 9711 /* 9712 * This is a module open, i.e. this is a control stream for access 9713 * to a DLPI device. We allocate an ill_t as the instance data in 9714 * this case. 9715 */ 9716 int 9717 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9718 { 9719 ill_t *ill; 9720 int err; 9721 zoneid_t zoneid; 9722 netstack_t *ns; 9723 ip_stack_t *ipst; 9724 9725 /* 9726 * Prevent unprivileged processes from pushing IP so that 9727 * they can't send raw IP. 9728 */ 9729 if (secpolicy_net_rawaccess(credp) != 0) 9730 return (EPERM); 9731 9732 ns = netstack_find_by_cred(credp); 9733 ASSERT(ns != NULL); 9734 ipst = ns->netstack_ip; 9735 ASSERT(ipst != NULL); 9736 9737 /* 9738 * For exclusive stacks we set the zoneid to zero 9739 * to make IP operate as if in the global zone. 9740 */ 9741 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9742 zoneid = GLOBAL_ZONEID; 9743 else 9744 zoneid = crgetzoneid(credp); 9745 9746 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9747 q->q_ptr = WR(q)->q_ptr = ill; 9748 ill->ill_ipst = ipst; 9749 ill->ill_zoneid = zoneid; 9750 9751 /* 9752 * ill_init initializes the ill fields and then sends down 9753 * down a DL_INFO_REQ after calling qprocson. 9754 */ 9755 err = ill_init(q, ill); 9756 if (err != 0) { 9757 mi_free(ill); 9758 netstack_rele(ipst->ips_netstack); 9759 q->q_ptr = NULL; 9760 WR(q)->q_ptr = NULL; 9761 return (err); 9762 } 9763 9764 /* ill_init initializes the ipsq marking this thread as writer */ 9765 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9766 /* Wait for the DL_INFO_ACK */ 9767 mutex_enter(&ill->ill_lock); 9768 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9769 /* 9770 * Return value of 0 indicates a pending signal. 9771 */ 9772 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9773 if (err == 0) { 9774 mutex_exit(&ill->ill_lock); 9775 (void) ip_close(q, 0); 9776 return (EINTR); 9777 } 9778 } 9779 mutex_exit(&ill->ill_lock); 9780 9781 /* 9782 * ip_rput_other could have set an error in ill_error on 9783 * receipt of M_ERROR. 9784 */ 9785 9786 err = ill->ill_error; 9787 if (err != 0) { 9788 (void) ip_close(q, 0); 9789 return (err); 9790 } 9791 9792 ill->ill_credp = credp; 9793 crhold(credp); 9794 9795 mutex_enter(&ipst->ips_ip_mi_lock); 9796 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9797 credp); 9798 mutex_exit(&ipst->ips_ip_mi_lock); 9799 if (err) { 9800 (void) ip_close(q, 0); 9801 return (err); 9802 } 9803 return (0); 9804 } 9805 9806 /* For /dev/ip aka AF_INET open */ 9807 int 9808 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9809 { 9810 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9811 } 9812 9813 /* For /dev/ip6 aka AF_INET6 open */ 9814 int 9815 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9816 { 9817 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9818 } 9819 9820 /* IP open routine. */ 9821 int 9822 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9823 boolean_t isv6) 9824 { 9825 conn_t *connp; 9826 major_t maj; 9827 zoneid_t zoneid; 9828 netstack_t *ns; 9829 ip_stack_t *ipst; 9830 9831 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9832 9833 /* Allow reopen. */ 9834 if (q->q_ptr != NULL) 9835 return (0); 9836 9837 if (sflag & MODOPEN) { 9838 /* This is a module open */ 9839 return (ip_modopen(q, devp, flag, sflag, credp)); 9840 } 9841 9842 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9843 /* 9844 * Non streams based socket looking for a stream 9845 * to access IP 9846 */ 9847 return (ip_helper_stream_setup(q, devp, flag, sflag, 9848 credp, isv6)); 9849 } 9850 9851 ns = netstack_find_by_cred(credp); 9852 ASSERT(ns != NULL); 9853 ipst = ns->netstack_ip; 9854 ASSERT(ipst != NULL); 9855 9856 /* 9857 * For exclusive stacks we set the zoneid to zero 9858 * to make IP operate as if in the global zone. 9859 */ 9860 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9861 zoneid = GLOBAL_ZONEID; 9862 else 9863 zoneid = crgetzoneid(credp); 9864 9865 /* 9866 * We are opening as a device. This is an IP client stream, and we 9867 * allocate an conn_t as the instance data. 9868 */ 9869 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9870 9871 /* 9872 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9873 * done by netstack_find_by_cred() 9874 */ 9875 netstack_rele(ipst->ips_netstack); 9876 9877 connp->conn_zoneid = zoneid; 9878 connp->conn_sqp = NULL; 9879 connp->conn_initial_sqp = NULL; 9880 connp->conn_final_sqp = NULL; 9881 9882 connp->conn_upq = q; 9883 q->q_ptr = WR(q)->q_ptr = connp; 9884 9885 if (flag & SO_SOCKSTR) 9886 connp->conn_flags |= IPCL_SOCKET; 9887 9888 /* Minor tells us which /dev entry was opened */ 9889 if (isv6) { 9890 connp->conn_flags |= IPCL_ISV6; 9891 connp->conn_af_isv6 = B_TRUE; 9892 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9893 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9894 } else { 9895 connp->conn_af_isv6 = B_FALSE; 9896 connp->conn_pkt_isv6 = B_FALSE; 9897 } 9898 9899 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9900 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9901 connp->conn_minor_arena = ip_minor_arena_la; 9902 } else { 9903 /* 9904 * Either minor numbers in the large arena were exhausted 9905 * or a non socket application is doing the open. 9906 * Try to allocate from the small arena. 9907 */ 9908 if ((connp->conn_dev = 9909 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9910 /* CONN_DEC_REF takes care of netstack_rele() */ 9911 q->q_ptr = WR(q)->q_ptr = NULL; 9912 CONN_DEC_REF(connp); 9913 return (EBUSY); 9914 } 9915 connp->conn_minor_arena = ip_minor_arena_sa; 9916 } 9917 9918 maj = getemajor(*devp); 9919 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9920 9921 /* 9922 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9923 */ 9924 connp->conn_cred = credp; 9925 9926 /* 9927 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9928 */ 9929 connp->conn_recv = ip_conn_input; 9930 9931 crhold(connp->conn_cred); 9932 9933 /* 9934 * If the caller has the process-wide flag set, then default to MAC 9935 * exempt mode. This allows read-down to unlabeled hosts. 9936 */ 9937 if (getpflags(NET_MAC_AWARE, credp) != 0) 9938 connp->conn_mac_exempt = B_TRUE; 9939 9940 connp->conn_rq = q; 9941 connp->conn_wq = WR(q); 9942 9943 /* Non-zero default values */ 9944 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9945 9946 /* 9947 * Make the conn globally visible to walkers 9948 */ 9949 ASSERT(connp->conn_ref == 1); 9950 mutex_enter(&connp->conn_lock); 9951 connp->conn_state_flags &= ~CONN_INCIPIENT; 9952 mutex_exit(&connp->conn_lock); 9953 9954 qprocson(q); 9955 9956 return (0); 9957 } 9958 9959 /* 9960 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9961 * Note that there is no race since either ip_output function works - it 9962 * is just an optimization to enter the best ip_output routine directly. 9963 */ 9964 void 9965 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9966 ip_stack_t *ipst) 9967 { 9968 if (isv6) { 9969 if (bump_mib) { 9970 BUMP_MIB(&ipst->ips_ip6_mib, 9971 ipIfStatsOutSwitchIPVersion); 9972 } 9973 connp->conn_send = ip_output_v6; 9974 connp->conn_pkt_isv6 = B_TRUE; 9975 } else { 9976 if (bump_mib) { 9977 BUMP_MIB(&ipst->ips_ip_mib, 9978 ipIfStatsOutSwitchIPVersion); 9979 } 9980 connp->conn_send = ip_output; 9981 connp->conn_pkt_isv6 = B_FALSE; 9982 } 9983 9984 } 9985 9986 /* 9987 * See if IPsec needs loading because of the options in mp. 9988 */ 9989 static boolean_t 9990 ipsec_opt_present(mblk_t *mp) 9991 { 9992 uint8_t *optcp, *next_optcp, *opt_endcp; 9993 struct opthdr *opt; 9994 struct T_opthdr *topt; 9995 int opthdr_len; 9996 t_uscalar_t optname, optlevel; 9997 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9998 ipsec_req_t *ipsr; 9999 10000 /* 10001 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10002 * return TRUE. 10003 */ 10004 10005 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10006 opt_endcp = optcp + tor->OPT_length; 10007 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10008 opthdr_len = sizeof (struct T_opthdr); 10009 } else { /* O_OPTMGMT_REQ */ 10010 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10011 opthdr_len = sizeof (struct opthdr); 10012 } 10013 for (; optcp < opt_endcp; optcp = next_optcp) { 10014 if (optcp + opthdr_len > opt_endcp) 10015 return (B_FALSE); /* Not enough option header. */ 10016 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10017 topt = (struct T_opthdr *)optcp; 10018 optlevel = topt->level; 10019 optname = topt->name; 10020 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10021 } else { 10022 opt = (struct opthdr *)optcp; 10023 optlevel = opt->level; 10024 optname = opt->name; 10025 next_optcp = optcp + opthdr_len + 10026 _TPI_ALIGN_OPT(opt->len); 10027 } 10028 if ((next_optcp < optcp) || /* wraparound pointer space */ 10029 ((next_optcp >= opt_endcp) && /* last option bad len */ 10030 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10031 return (B_FALSE); /* bad option buffer */ 10032 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10033 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10034 /* 10035 * Check to see if it's an all-bypass or all-zeroes 10036 * IPsec request. Don't bother loading IPsec if 10037 * the socket doesn't want to use it. (A good example 10038 * is a bypass request.) 10039 * 10040 * Basically, if any of the non-NEVER bits are set, 10041 * load IPsec. 10042 */ 10043 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10044 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10045 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10046 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10047 != 0) 10048 return (B_TRUE); 10049 } 10050 } 10051 return (B_FALSE); 10052 } 10053 10054 /* 10055 * If conn is is waiting for ipsec to finish loading, kick it. 10056 */ 10057 /* ARGSUSED */ 10058 static void 10059 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10060 { 10061 t_scalar_t optreq_prim; 10062 mblk_t *mp; 10063 cred_t *cr; 10064 int err = 0; 10065 10066 /* 10067 * This function is called, after ipsec loading is complete. 10068 * Since IP checks exclusively and atomically (i.e it prevents 10069 * ipsec load from completing until ip_optcom_req completes) 10070 * whether ipsec load is complete, there cannot be a race with IP 10071 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10072 */ 10073 mutex_enter(&connp->conn_lock); 10074 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10075 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10076 mp = connp->conn_ipsec_opt_mp; 10077 connp->conn_ipsec_opt_mp = NULL; 10078 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10079 mutex_exit(&connp->conn_lock); 10080 10081 /* 10082 * All Solaris components should pass a db_credp 10083 * for this TPI message, hence we ASSERT. 10084 * But in case there is some other M_PROTO that looks 10085 * like a TPI message sent by some other kernel 10086 * component, we check and return an error. 10087 */ 10088 cr = msg_getcred(mp, NULL); 10089 ASSERT(cr != NULL); 10090 if (cr == NULL) { 10091 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10092 if (mp != NULL) 10093 qreply(connp->conn_wq, mp); 10094 return; 10095 } 10096 10097 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10098 10099 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10100 if (optreq_prim == T_OPTMGMT_REQ) { 10101 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10102 &ip_opt_obj, B_FALSE); 10103 } else { 10104 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10105 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10106 &ip_opt_obj, B_FALSE); 10107 } 10108 if (err != EINPROGRESS) 10109 CONN_OPER_PENDING_DONE(connp); 10110 return; 10111 } 10112 mutex_exit(&connp->conn_lock); 10113 } 10114 10115 /* 10116 * Called from the ipsec_loader thread, outside any perimeter, to tell 10117 * ip qenable any of the queues waiting for the ipsec loader to 10118 * complete. 10119 */ 10120 void 10121 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10122 { 10123 netstack_t *ns = ipss->ipsec_netstack; 10124 10125 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10126 } 10127 10128 /* 10129 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10130 * determines the grp on which it has to become exclusive, queues the mp 10131 * and IPSQ draining restarts the optmgmt 10132 */ 10133 static boolean_t 10134 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10135 { 10136 conn_t *connp = Q_TO_CONN(q); 10137 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10138 10139 /* 10140 * Take IPsec requests and treat them special. 10141 */ 10142 if (ipsec_opt_present(mp)) { 10143 /* First check if IPsec is loaded. */ 10144 mutex_enter(&ipss->ipsec_loader_lock); 10145 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10146 mutex_exit(&ipss->ipsec_loader_lock); 10147 return (B_FALSE); 10148 } 10149 mutex_enter(&connp->conn_lock); 10150 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10151 10152 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10153 connp->conn_ipsec_opt_mp = mp; 10154 mutex_exit(&connp->conn_lock); 10155 mutex_exit(&ipss->ipsec_loader_lock); 10156 10157 ipsec_loader_loadnow(ipss); 10158 return (B_TRUE); 10159 } 10160 return (B_FALSE); 10161 } 10162 10163 /* 10164 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10165 * all of them are copied to the conn_t. If the req is "zero", the policy is 10166 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10167 * fields. 10168 * We keep only the latest setting of the policy and thus policy setting 10169 * is not incremental/cumulative. 10170 * 10171 * Requests to set policies with multiple alternative actions will 10172 * go through a different API. 10173 */ 10174 int 10175 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10176 { 10177 uint_t ah_req = 0; 10178 uint_t esp_req = 0; 10179 uint_t se_req = 0; 10180 ipsec_selkey_t sel; 10181 ipsec_act_t *actp = NULL; 10182 uint_t nact; 10183 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10184 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10185 ipsec_policy_root_t *pr; 10186 ipsec_policy_head_t *ph; 10187 int fam; 10188 boolean_t is_pol_reset; 10189 int error = 0; 10190 netstack_t *ns = connp->conn_netstack; 10191 ip_stack_t *ipst = ns->netstack_ip; 10192 ipsec_stack_t *ipss = ns->netstack_ipsec; 10193 10194 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10195 10196 /* 10197 * The IP_SEC_OPT option does not allow variable length parameters, 10198 * hence a request cannot be NULL. 10199 */ 10200 if (req == NULL) 10201 return (EINVAL); 10202 10203 ah_req = req->ipsr_ah_req; 10204 esp_req = req->ipsr_esp_req; 10205 se_req = req->ipsr_self_encap_req; 10206 10207 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10208 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10209 return (EINVAL); 10210 10211 /* 10212 * Are we dealing with a request to reset the policy (i.e. 10213 * zero requests). 10214 */ 10215 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10216 (esp_req & REQ_MASK) == 0 && 10217 (se_req & REQ_MASK) == 0); 10218 10219 if (!is_pol_reset) { 10220 /* 10221 * If we couldn't load IPsec, fail with "protocol 10222 * not supported". 10223 * IPsec may not have been loaded for a request with zero 10224 * policies, so we don't fail in this case. 10225 */ 10226 mutex_enter(&ipss->ipsec_loader_lock); 10227 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10228 mutex_exit(&ipss->ipsec_loader_lock); 10229 return (EPROTONOSUPPORT); 10230 } 10231 mutex_exit(&ipss->ipsec_loader_lock); 10232 10233 /* 10234 * Test for valid requests. Invalid algorithms 10235 * need to be tested by IPsec code because new 10236 * algorithms can be added dynamically. 10237 */ 10238 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10239 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10240 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10241 return (EINVAL); 10242 } 10243 10244 /* 10245 * Only privileged users can issue these 10246 * requests. 10247 */ 10248 if (((ah_req & IPSEC_PREF_NEVER) || 10249 (esp_req & IPSEC_PREF_NEVER) || 10250 (se_req & IPSEC_PREF_NEVER)) && 10251 secpolicy_ip_config(cr, B_FALSE) != 0) { 10252 return (EPERM); 10253 } 10254 10255 /* 10256 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10257 * are mutually exclusive. 10258 */ 10259 if (((ah_req & REQ_MASK) == REQ_MASK) || 10260 ((esp_req & REQ_MASK) == REQ_MASK) || 10261 ((se_req & REQ_MASK) == REQ_MASK)) { 10262 /* Both of them are set */ 10263 return (EINVAL); 10264 } 10265 } 10266 10267 mutex_enter(&connp->conn_lock); 10268 10269 /* 10270 * If we have already cached policies in ip_bind_connected*(), don't 10271 * let them change now. We cache policies for connections 10272 * whose src,dst [addr, port] is known. 10273 */ 10274 if (connp->conn_policy_cached) { 10275 mutex_exit(&connp->conn_lock); 10276 return (EINVAL); 10277 } 10278 10279 /* 10280 * We have a zero policies, reset the connection policy if already 10281 * set. This will cause the connection to inherit the 10282 * global policy, if any. 10283 */ 10284 if (is_pol_reset) { 10285 if (connp->conn_policy != NULL) { 10286 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10287 connp->conn_policy = NULL; 10288 } 10289 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10290 connp->conn_in_enforce_policy = B_FALSE; 10291 connp->conn_out_enforce_policy = B_FALSE; 10292 mutex_exit(&connp->conn_lock); 10293 return (0); 10294 } 10295 10296 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10297 ipst->ips_netstack); 10298 if (ph == NULL) 10299 goto enomem; 10300 10301 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10302 if (actp == NULL) 10303 goto enomem; 10304 10305 /* 10306 * Always allocate IPv4 policy entries, since they can also 10307 * apply to ipv6 sockets being used in ipv4-compat mode. 10308 */ 10309 bzero(&sel, sizeof (sel)); 10310 sel.ipsl_valid = IPSL_IPV4; 10311 10312 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10313 ipst->ips_netstack); 10314 if (pin4 == NULL) 10315 goto enomem; 10316 10317 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10318 ipst->ips_netstack); 10319 if (pout4 == NULL) 10320 goto enomem; 10321 10322 if (connp->conn_af_isv6) { 10323 /* 10324 * We're looking at a v6 socket, also allocate the 10325 * v6-specific entries... 10326 */ 10327 sel.ipsl_valid = IPSL_IPV6; 10328 pin6 = ipsec_policy_create(&sel, actp, nact, 10329 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10330 if (pin6 == NULL) 10331 goto enomem; 10332 10333 pout6 = ipsec_policy_create(&sel, actp, nact, 10334 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10335 if (pout6 == NULL) 10336 goto enomem; 10337 10338 /* 10339 * .. and file them away in the right place. 10340 */ 10341 fam = IPSEC_AF_V6; 10342 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10343 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10344 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10345 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10346 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10347 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10348 } 10349 10350 ipsec_actvec_free(actp, nact); 10351 10352 /* 10353 * File the v4 policies. 10354 */ 10355 fam = IPSEC_AF_V4; 10356 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10357 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10358 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10359 10360 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10361 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10362 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10363 10364 /* 10365 * If the requests need security, set enforce_policy. 10366 * If the requests are IPSEC_PREF_NEVER, one should 10367 * still set conn_out_enforce_policy so that an ipsec_out 10368 * gets attached in ip_wput. This is needed so that 10369 * for connections that we don't cache policy in ip_bind, 10370 * if global policy matches in ip_wput_attach_policy, we 10371 * don't wrongly inherit global policy. Similarly, we need 10372 * to set conn_in_enforce_policy also so that we don't verify 10373 * policy wrongly. 10374 */ 10375 if ((ah_req & REQ_MASK) != 0 || 10376 (esp_req & REQ_MASK) != 0 || 10377 (se_req & REQ_MASK) != 0) { 10378 connp->conn_in_enforce_policy = B_TRUE; 10379 connp->conn_out_enforce_policy = B_TRUE; 10380 connp->conn_flags |= IPCL_CHECK_POLICY; 10381 } 10382 10383 mutex_exit(&connp->conn_lock); 10384 return (error); 10385 #undef REQ_MASK 10386 10387 /* 10388 * Common memory-allocation-failure exit path. 10389 */ 10390 enomem: 10391 mutex_exit(&connp->conn_lock); 10392 if (actp != NULL) 10393 ipsec_actvec_free(actp, nact); 10394 if (pin4 != NULL) 10395 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10396 if (pout4 != NULL) 10397 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10398 if (pin6 != NULL) 10399 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10400 if (pout6 != NULL) 10401 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10402 return (ENOMEM); 10403 } 10404 10405 /* 10406 * Only for options that pass in an IP addr. Currently only V4 options 10407 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10408 * So this function assumes level is IPPROTO_IP 10409 */ 10410 int 10411 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10412 mblk_t *first_mp) 10413 { 10414 ipif_t *ipif = NULL; 10415 int error; 10416 ill_t *ill; 10417 int zoneid; 10418 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10419 10420 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10421 10422 if (addr != INADDR_ANY || checkonly) { 10423 ASSERT(connp != NULL); 10424 zoneid = IPCL_ZONEID(connp); 10425 if (option == IP_NEXTHOP) { 10426 ipif = ipif_lookup_onlink_addr(addr, 10427 connp->conn_zoneid, ipst); 10428 } else { 10429 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10430 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10431 &error, ipst); 10432 } 10433 if (ipif == NULL) { 10434 if (error == EINPROGRESS) 10435 return (error); 10436 if ((option == IP_MULTICAST_IF) || 10437 (option == IP_NEXTHOP)) 10438 return (EHOSTUNREACH); 10439 else 10440 return (EINVAL); 10441 } else if (checkonly) { 10442 if (option == IP_MULTICAST_IF) { 10443 ill = ipif->ipif_ill; 10444 /* not supported by the virtual network iface */ 10445 if (IS_VNI(ill)) { 10446 ipif_refrele(ipif); 10447 return (EINVAL); 10448 } 10449 } 10450 ipif_refrele(ipif); 10451 return (0); 10452 } 10453 ill = ipif->ipif_ill; 10454 mutex_enter(&connp->conn_lock); 10455 mutex_enter(&ill->ill_lock); 10456 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10457 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10458 mutex_exit(&ill->ill_lock); 10459 mutex_exit(&connp->conn_lock); 10460 ipif_refrele(ipif); 10461 return (option == IP_MULTICAST_IF ? 10462 EHOSTUNREACH : EINVAL); 10463 } 10464 } else { 10465 mutex_enter(&connp->conn_lock); 10466 } 10467 10468 /* None of the options below are supported on the VNI */ 10469 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10470 mutex_exit(&ill->ill_lock); 10471 mutex_exit(&connp->conn_lock); 10472 ipif_refrele(ipif); 10473 return (EINVAL); 10474 } 10475 10476 switch (option) { 10477 case IP_MULTICAST_IF: 10478 connp->conn_multicast_ipif = ipif; 10479 break; 10480 case IP_NEXTHOP: 10481 connp->conn_nexthop_v4 = addr; 10482 connp->conn_nexthop_set = B_TRUE; 10483 break; 10484 } 10485 10486 if (ipif != NULL) { 10487 mutex_exit(&ill->ill_lock); 10488 mutex_exit(&connp->conn_lock); 10489 ipif_refrele(ipif); 10490 return (0); 10491 } 10492 mutex_exit(&connp->conn_lock); 10493 /* We succeded in cleared the option */ 10494 return (0); 10495 } 10496 10497 /* 10498 * For options that pass in an ifindex specifying the ill. V6 options always 10499 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10500 */ 10501 int 10502 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10503 int level, int option, mblk_t *first_mp) 10504 { 10505 ill_t *ill = NULL; 10506 int error = 0; 10507 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10508 10509 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10510 if (ifindex != 0) { 10511 ASSERT(connp != NULL); 10512 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10513 first_mp, ip_restart_optmgmt, &error, ipst); 10514 if (ill != NULL) { 10515 if (checkonly) { 10516 /* not supported by the virtual network iface */ 10517 if (IS_VNI(ill)) { 10518 ill_refrele(ill); 10519 return (EINVAL); 10520 } 10521 ill_refrele(ill); 10522 return (0); 10523 } 10524 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10525 0, NULL)) { 10526 ill_refrele(ill); 10527 ill = NULL; 10528 mutex_enter(&connp->conn_lock); 10529 goto setit; 10530 } 10531 mutex_enter(&connp->conn_lock); 10532 mutex_enter(&ill->ill_lock); 10533 if (ill->ill_state_flags & ILL_CONDEMNED) { 10534 mutex_exit(&ill->ill_lock); 10535 mutex_exit(&connp->conn_lock); 10536 ill_refrele(ill); 10537 ill = NULL; 10538 mutex_enter(&connp->conn_lock); 10539 } 10540 goto setit; 10541 } else if (error == EINPROGRESS) { 10542 return (error); 10543 } else { 10544 error = 0; 10545 } 10546 } 10547 mutex_enter(&connp->conn_lock); 10548 setit: 10549 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10550 10551 /* 10552 * The options below assume that the ILL (if any) transmits and/or 10553 * receives traffic. Neither of which is true for the virtual network 10554 * interface, so fail setting these on a VNI. 10555 */ 10556 if (IS_VNI(ill)) { 10557 ASSERT(ill != NULL); 10558 mutex_exit(&ill->ill_lock); 10559 mutex_exit(&connp->conn_lock); 10560 ill_refrele(ill); 10561 return (EINVAL); 10562 } 10563 10564 if (level == IPPROTO_IP) { 10565 switch (option) { 10566 case IP_BOUND_IF: 10567 connp->conn_incoming_ill = ill; 10568 connp->conn_outgoing_ill = ill; 10569 break; 10570 10571 case IP_MULTICAST_IF: 10572 /* 10573 * This option is an internal special. The socket 10574 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10575 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10576 * specifies an ifindex and we try first on V6 ill's. 10577 * If we don't find one, we they try using on v4 ill's 10578 * intenally and we come here. 10579 */ 10580 if (!checkonly && ill != NULL) { 10581 ipif_t *ipif; 10582 ipif = ill->ill_ipif; 10583 10584 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10585 mutex_exit(&ill->ill_lock); 10586 mutex_exit(&connp->conn_lock); 10587 ill_refrele(ill); 10588 ill = NULL; 10589 mutex_enter(&connp->conn_lock); 10590 } else { 10591 connp->conn_multicast_ipif = ipif; 10592 } 10593 } 10594 break; 10595 10596 case IP_DHCPINIT_IF: 10597 if (connp->conn_dhcpinit_ill != NULL) { 10598 /* 10599 * We've locked the conn so conn_cleanup_ill() 10600 * cannot clear conn_dhcpinit_ill -- so it's 10601 * safe to access the ill. 10602 */ 10603 ill_t *oill = connp->conn_dhcpinit_ill; 10604 10605 ASSERT(oill->ill_dhcpinit != 0); 10606 atomic_dec_32(&oill->ill_dhcpinit); 10607 connp->conn_dhcpinit_ill = NULL; 10608 } 10609 10610 if (ill != NULL) { 10611 connp->conn_dhcpinit_ill = ill; 10612 atomic_inc_32(&ill->ill_dhcpinit); 10613 } 10614 break; 10615 } 10616 } else { 10617 switch (option) { 10618 case IPV6_BOUND_IF: 10619 connp->conn_incoming_ill = ill; 10620 connp->conn_outgoing_ill = ill; 10621 break; 10622 10623 case IPV6_MULTICAST_IF: 10624 /* 10625 * Set conn_multicast_ill to be the IPv6 ill. 10626 * Set conn_multicast_ipif to be an IPv4 ipif 10627 * for ifindex to make IPv4 mapped addresses 10628 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10629 * Even if no IPv6 ill exists for the ifindex 10630 * we need to check for an IPv4 ifindex in order 10631 * for this to work with mapped addresses. In that 10632 * case only set conn_multicast_ipif. 10633 */ 10634 if (!checkonly) { 10635 if (ifindex == 0) { 10636 connp->conn_multicast_ill = NULL; 10637 connp->conn_multicast_ipif = NULL; 10638 } else if (ill != NULL) { 10639 connp->conn_multicast_ill = ill; 10640 } 10641 } 10642 break; 10643 } 10644 } 10645 10646 if (ill != NULL) { 10647 mutex_exit(&ill->ill_lock); 10648 mutex_exit(&connp->conn_lock); 10649 ill_refrele(ill); 10650 return (0); 10651 } 10652 mutex_exit(&connp->conn_lock); 10653 /* 10654 * We succeeded in clearing the option (ifindex == 0) or failed to 10655 * locate the ill and could not set the option (ifindex != 0) 10656 */ 10657 return (ifindex == 0 ? 0 : EINVAL); 10658 } 10659 10660 /* This routine sets socket options. */ 10661 /* ARGSUSED */ 10662 int 10663 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10664 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10665 void *dummy, cred_t *cr, mblk_t *first_mp) 10666 { 10667 int *i1 = (int *)invalp; 10668 conn_t *connp = Q_TO_CONN(q); 10669 int error = 0; 10670 boolean_t checkonly; 10671 ire_t *ire; 10672 boolean_t found; 10673 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10674 10675 switch (optset_context) { 10676 10677 case SETFN_OPTCOM_CHECKONLY: 10678 checkonly = B_TRUE; 10679 /* 10680 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10681 * inlen != 0 implies value supplied and 10682 * we have to "pretend" to set it. 10683 * inlen == 0 implies that there is no 10684 * value part in T_CHECK request and just validation 10685 * done elsewhere should be enough, we just return here. 10686 */ 10687 if (inlen == 0) { 10688 *outlenp = 0; 10689 return (0); 10690 } 10691 break; 10692 case SETFN_OPTCOM_NEGOTIATE: 10693 case SETFN_UD_NEGOTIATE: 10694 case SETFN_CONN_NEGOTIATE: 10695 checkonly = B_FALSE; 10696 break; 10697 default: 10698 /* 10699 * We should never get here 10700 */ 10701 *outlenp = 0; 10702 return (EINVAL); 10703 } 10704 10705 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10706 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10707 10708 /* 10709 * For fixed length options, no sanity check 10710 * of passed in length is done. It is assumed *_optcom_req() 10711 * routines do the right thing. 10712 */ 10713 10714 switch (level) { 10715 case SOL_SOCKET: 10716 /* 10717 * conn_lock protects the bitfields, and is used to 10718 * set the fields atomically. 10719 */ 10720 switch (name) { 10721 case SO_BROADCAST: 10722 if (!checkonly) { 10723 /* TODO: use value someplace? */ 10724 mutex_enter(&connp->conn_lock); 10725 connp->conn_broadcast = *i1 ? 1 : 0; 10726 mutex_exit(&connp->conn_lock); 10727 } 10728 break; /* goto sizeof (int) option return */ 10729 case SO_USELOOPBACK: 10730 if (!checkonly) { 10731 /* TODO: use value someplace? */ 10732 mutex_enter(&connp->conn_lock); 10733 connp->conn_loopback = *i1 ? 1 : 0; 10734 mutex_exit(&connp->conn_lock); 10735 } 10736 break; /* goto sizeof (int) option return */ 10737 case SO_DONTROUTE: 10738 if (!checkonly) { 10739 mutex_enter(&connp->conn_lock); 10740 connp->conn_dontroute = *i1 ? 1 : 0; 10741 mutex_exit(&connp->conn_lock); 10742 } 10743 break; /* goto sizeof (int) option return */ 10744 case SO_REUSEADDR: 10745 if (!checkonly) { 10746 mutex_enter(&connp->conn_lock); 10747 connp->conn_reuseaddr = *i1 ? 1 : 0; 10748 mutex_exit(&connp->conn_lock); 10749 } 10750 break; /* goto sizeof (int) option return */ 10751 case SO_PROTOTYPE: 10752 if (!checkonly) { 10753 mutex_enter(&connp->conn_lock); 10754 connp->conn_proto = *i1; 10755 mutex_exit(&connp->conn_lock); 10756 } 10757 break; /* goto sizeof (int) option return */ 10758 case SO_ALLZONES: 10759 if (!checkonly) { 10760 mutex_enter(&connp->conn_lock); 10761 if (IPCL_IS_BOUND(connp)) { 10762 mutex_exit(&connp->conn_lock); 10763 return (EINVAL); 10764 } 10765 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10766 mutex_exit(&connp->conn_lock); 10767 } 10768 break; /* goto sizeof (int) option return */ 10769 case SO_ANON_MLP: 10770 if (!checkonly) { 10771 mutex_enter(&connp->conn_lock); 10772 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10773 mutex_exit(&connp->conn_lock); 10774 } 10775 break; /* goto sizeof (int) option return */ 10776 case SO_MAC_EXEMPT: 10777 if (secpolicy_net_mac_aware(cr) != 0 || 10778 IPCL_IS_BOUND(connp)) 10779 return (EACCES); 10780 if (!checkonly) { 10781 mutex_enter(&connp->conn_lock); 10782 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10783 mutex_exit(&connp->conn_lock); 10784 } 10785 break; /* goto sizeof (int) option return */ 10786 default: 10787 /* 10788 * "soft" error (negative) 10789 * option not handled at this level 10790 * Note: Do not modify *outlenp 10791 */ 10792 return (-EINVAL); 10793 } 10794 break; 10795 case IPPROTO_IP: 10796 switch (name) { 10797 case IP_NEXTHOP: 10798 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10799 return (EPERM); 10800 /* FALLTHRU */ 10801 case IP_MULTICAST_IF: { 10802 ipaddr_t addr = *i1; 10803 10804 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10805 first_mp); 10806 if (error != 0) 10807 return (error); 10808 break; /* goto sizeof (int) option return */ 10809 } 10810 10811 case IP_MULTICAST_TTL: 10812 /* Recorded in transport above IP */ 10813 *outvalp = *invalp; 10814 *outlenp = sizeof (uchar_t); 10815 return (0); 10816 case IP_MULTICAST_LOOP: 10817 if (!checkonly) { 10818 mutex_enter(&connp->conn_lock); 10819 connp->conn_multicast_loop = *invalp ? 1 : 0; 10820 mutex_exit(&connp->conn_lock); 10821 } 10822 *outvalp = *invalp; 10823 *outlenp = sizeof (uchar_t); 10824 return (0); 10825 case IP_ADD_MEMBERSHIP: 10826 case MCAST_JOIN_GROUP: 10827 case IP_DROP_MEMBERSHIP: 10828 case MCAST_LEAVE_GROUP: { 10829 struct ip_mreq *mreqp; 10830 struct group_req *greqp; 10831 ire_t *ire; 10832 boolean_t done = B_FALSE; 10833 ipaddr_t group, ifaddr; 10834 struct sockaddr_in *sin; 10835 uint32_t *ifindexp; 10836 boolean_t mcast_opt = B_TRUE; 10837 mcast_record_t fmode; 10838 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10839 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10840 10841 switch (name) { 10842 case IP_ADD_MEMBERSHIP: 10843 mcast_opt = B_FALSE; 10844 /* FALLTHRU */ 10845 case MCAST_JOIN_GROUP: 10846 fmode = MODE_IS_EXCLUDE; 10847 optfn = ip_opt_add_group; 10848 break; 10849 10850 case IP_DROP_MEMBERSHIP: 10851 mcast_opt = B_FALSE; 10852 /* FALLTHRU */ 10853 case MCAST_LEAVE_GROUP: 10854 fmode = MODE_IS_INCLUDE; 10855 optfn = ip_opt_delete_group; 10856 break; 10857 } 10858 10859 if (mcast_opt) { 10860 greqp = (struct group_req *)i1; 10861 sin = (struct sockaddr_in *)&greqp->gr_group; 10862 if (sin->sin_family != AF_INET) { 10863 *outlenp = 0; 10864 return (ENOPROTOOPT); 10865 } 10866 group = (ipaddr_t)sin->sin_addr.s_addr; 10867 ifaddr = INADDR_ANY; 10868 ifindexp = &greqp->gr_interface; 10869 } else { 10870 mreqp = (struct ip_mreq *)i1; 10871 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10872 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10873 ifindexp = NULL; 10874 } 10875 10876 /* 10877 * In the multirouting case, we need to replicate 10878 * the request on all interfaces that will take part 10879 * in replication. We do so because multirouting is 10880 * reflective, thus we will probably receive multi- 10881 * casts on those interfaces. 10882 * The ip_multirt_apply_membership() succeeds if the 10883 * operation succeeds on at least one interface. 10884 */ 10885 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10886 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10887 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10888 if (ire != NULL) { 10889 if (ire->ire_flags & RTF_MULTIRT) { 10890 error = ip_multirt_apply_membership( 10891 optfn, ire, connp, checkonly, group, 10892 fmode, INADDR_ANY, first_mp); 10893 done = B_TRUE; 10894 } 10895 ire_refrele(ire); 10896 } 10897 if (!done) { 10898 error = optfn(connp, checkonly, group, ifaddr, 10899 ifindexp, fmode, INADDR_ANY, first_mp); 10900 } 10901 if (error) { 10902 /* 10903 * EINPROGRESS is a soft error, needs retry 10904 * so don't make *outlenp zero. 10905 */ 10906 if (error != EINPROGRESS) 10907 *outlenp = 0; 10908 return (error); 10909 } 10910 /* OK return - copy input buffer into output buffer */ 10911 if (invalp != outvalp) { 10912 /* don't trust bcopy for identical src/dst */ 10913 bcopy(invalp, outvalp, inlen); 10914 } 10915 *outlenp = inlen; 10916 return (0); 10917 } 10918 case IP_BLOCK_SOURCE: 10919 case IP_UNBLOCK_SOURCE: 10920 case IP_ADD_SOURCE_MEMBERSHIP: 10921 case IP_DROP_SOURCE_MEMBERSHIP: 10922 case MCAST_BLOCK_SOURCE: 10923 case MCAST_UNBLOCK_SOURCE: 10924 case MCAST_JOIN_SOURCE_GROUP: 10925 case MCAST_LEAVE_SOURCE_GROUP: { 10926 struct ip_mreq_source *imreqp; 10927 struct group_source_req *gsreqp; 10928 in_addr_t grp, src, ifaddr = INADDR_ANY; 10929 uint32_t ifindex = 0; 10930 mcast_record_t fmode; 10931 struct sockaddr_in *sin; 10932 ire_t *ire; 10933 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10934 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10935 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10936 10937 switch (name) { 10938 case IP_BLOCK_SOURCE: 10939 mcast_opt = B_FALSE; 10940 /* FALLTHRU */ 10941 case MCAST_BLOCK_SOURCE: 10942 fmode = MODE_IS_EXCLUDE; 10943 optfn = ip_opt_add_group; 10944 break; 10945 10946 case IP_UNBLOCK_SOURCE: 10947 mcast_opt = B_FALSE; 10948 /* FALLTHRU */ 10949 case MCAST_UNBLOCK_SOURCE: 10950 fmode = MODE_IS_EXCLUDE; 10951 optfn = ip_opt_delete_group; 10952 break; 10953 10954 case IP_ADD_SOURCE_MEMBERSHIP: 10955 mcast_opt = B_FALSE; 10956 /* FALLTHRU */ 10957 case MCAST_JOIN_SOURCE_GROUP: 10958 fmode = MODE_IS_INCLUDE; 10959 optfn = ip_opt_add_group; 10960 break; 10961 10962 case IP_DROP_SOURCE_MEMBERSHIP: 10963 mcast_opt = B_FALSE; 10964 /* FALLTHRU */ 10965 case MCAST_LEAVE_SOURCE_GROUP: 10966 fmode = MODE_IS_INCLUDE; 10967 optfn = ip_opt_delete_group; 10968 break; 10969 } 10970 10971 if (mcast_opt) { 10972 gsreqp = (struct group_source_req *)i1; 10973 if (gsreqp->gsr_group.ss_family != AF_INET) { 10974 *outlenp = 0; 10975 return (ENOPROTOOPT); 10976 } 10977 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10978 grp = (ipaddr_t)sin->sin_addr.s_addr; 10979 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10980 src = (ipaddr_t)sin->sin_addr.s_addr; 10981 ifindex = gsreqp->gsr_interface; 10982 } else { 10983 imreqp = (struct ip_mreq_source *)i1; 10984 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10985 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10986 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10987 } 10988 10989 /* 10990 * In the multirouting case, we need to replicate 10991 * the request as noted in the mcast cases above. 10992 */ 10993 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10994 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10995 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10996 if (ire != NULL) { 10997 if (ire->ire_flags & RTF_MULTIRT) { 10998 error = ip_multirt_apply_membership( 10999 optfn, ire, connp, checkonly, grp, 11000 fmode, src, first_mp); 11001 done = B_TRUE; 11002 } 11003 ire_refrele(ire); 11004 } 11005 if (!done) { 11006 error = optfn(connp, checkonly, grp, ifaddr, 11007 &ifindex, fmode, src, first_mp); 11008 } 11009 if (error != 0) { 11010 /* 11011 * EINPROGRESS is a soft error, needs retry 11012 * so don't make *outlenp zero. 11013 */ 11014 if (error != EINPROGRESS) 11015 *outlenp = 0; 11016 return (error); 11017 } 11018 /* OK return - copy input buffer into output buffer */ 11019 if (invalp != outvalp) { 11020 bcopy(invalp, outvalp, inlen); 11021 } 11022 *outlenp = inlen; 11023 return (0); 11024 } 11025 case IP_SEC_OPT: 11026 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11027 if (error != 0) { 11028 *outlenp = 0; 11029 return (error); 11030 } 11031 break; 11032 case IP_HDRINCL: 11033 case IP_OPTIONS: 11034 case T_IP_OPTIONS: 11035 case IP_TOS: 11036 case T_IP_TOS: 11037 case IP_TTL: 11038 case IP_RECVDSTADDR: 11039 case IP_RECVOPTS: 11040 /* OK return - copy input buffer into output buffer */ 11041 if (invalp != outvalp) { 11042 /* don't trust bcopy for identical src/dst */ 11043 bcopy(invalp, outvalp, inlen); 11044 } 11045 *outlenp = inlen; 11046 return (0); 11047 case IP_RECVIF: 11048 /* Retrieve the inbound interface index */ 11049 if (!checkonly) { 11050 mutex_enter(&connp->conn_lock); 11051 connp->conn_recvif = *i1 ? 1 : 0; 11052 mutex_exit(&connp->conn_lock); 11053 } 11054 break; /* goto sizeof (int) option return */ 11055 case IP_RECVPKTINFO: 11056 if (!checkonly) { 11057 mutex_enter(&connp->conn_lock); 11058 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11059 mutex_exit(&connp->conn_lock); 11060 } 11061 break; /* goto sizeof (int) option return */ 11062 case IP_RECVSLLA: 11063 /* Retrieve the source link layer address */ 11064 if (!checkonly) { 11065 mutex_enter(&connp->conn_lock); 11066 connp->conn_recvslla = *i1 ? 1 : 0; 11067 mutex_exit(&connp->conn_lock); 11068 } 11069 break; /* goto sizeof (int) option return */ 11070 case MRT_INIT: 11071 case MRT_DONE: 11072 case MRT_ADD_VIF: 11073 case MRT_DEL_VIF: 11074 case MRT_ADD_MFC: 11075 case MRT_DEL_MFC: 11076 case MRT_ASSERT: 11077 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11078 *outlenp = 0; 11079 return (error); 11080 } 11081 error = ip_mrouter_set((int)name, q, checkonly, 11082 (uchar_t *)invalp, inlen, first_mp); 11083 if (error) { 11084 *outlenp = 0; 11085 return (error); 11086 } 11087 /* OK return - copy input buffer into output buffer */ 11088 if (invalp != outvalp) { 11089 /* don't trust bcopy for identical src/dst */ 11090 bcopy(invalp, outvalp, inlen); 11091 } 11092 *outlenp = inlen; 11093 return (0); 11094 case IP_BOUND_IF: 11095 case IP_DHCPINIT_IF: 11096 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11097 level, name, first_mp); 11098 if (error != 0) 11099 return (error); 11100 break; /* goto sizeof (int) option return */ 11101 11102 case IP_UNSPEC_SRC: 11103 /* Allow sending with a zero source address */ 11104 if (!checkonly) { 11105 mutex_enter(&connp->conn_lock); 11106 connp->conn_unspec_src = *i1 ? 1 : 0; 11107 mutex_exit(&connp->conn_lock); 11108 } 11109 break; /* goto sizeof (int) option return */ 11110 default: 11111 /* 11112 * "soft" error (negative) 11113 * option not handled at this level 11114 * Note: Do not modify *outlenp 11115 */ 11116 return (-EINVAL); 11117 } 11118 break; 11119 case IPPROTO_IPV6: 11120 switch (name) { 11121 case IPV6_BOUND_IF: 11122 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11123 level, name, first_mp); 11124 if (error != 0) 11125 return (error); 11126 break; /* goto sizeof (int) option return */ 11127 11128 case IPV6_MULTICAST_IF: 11129 /* 11130 * The only possible errors are EINPROGRESS and 11131 * EINVAL. EINPROGRESS will be restarted and is not 11132 * a hard error. We call this option on both V4 and V6 11133 * If both return EINVAL, then this call returns 11134 * EINVAL. If at least one of them succeeds we 11135 * return success. 11136 */ 11137 found = B_FALSE; 11138 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11139 level, name, first_mp); 11140 if (error == EINPROGRESS) 11141 return (error); 11142 if (error == 0) 11143 found = B_TRUE; 11144 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11145 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11146 if (error == 0) 11147 found = B_TRUE; 11148 if (!found) 11149 return (error); 11150 break; /* goto sizeof (int) option return */ 11151 11152 case IPV6_MULTICAST_HOPS: 11153 /* Recorded in transport above IP */ 11154 break; /* goto sizeof (int) option return */ 11155 case IPV6_MULTICAST_LOOP: 11156 if (!checkonly) { 11157 mutex_enter(&connp->conn_lock); 11158 connp->conn_multicast_loop = *i1; 11159 mutex_exit(&connp->conn_lock); 11160 } 11161 break; /* goto sizeof (int) option return */ 11162 case IPV6_JOIN_GROUP: 11163 case MCAST_JOIN_GROUP: 11164 case IPV6_LEAVE_GROUP: 11165 case MCAST_LEAVE_GROUP: { 11166 struct ipv6_mreq *ip_mreqp; 11167 struct group_req *greqp; 11168 ire_t *ire; 11169 boolean_t done = B_FALSE; 11170 in6_addr_t groupv6; 11171 uint32_t ifindex; 11172 boolean_t mcast_opt = B_TRUE; 11173 mcast_record_t fmode; 11174 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11175 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11176 11177 switch (name) { 11178 case IPV6_JOIN_GROUP: 11179 mcast_opt = B_FALSE; 11180 /* FALLTHRU */ 11181 case MCAST_JOIN_GROUP: 11182 fmode = MODE_IS_EXCLUDE; 11183 optfn = ip_opt_add_group_v6; 11184 break; 11185 11186 case IPV6_LEAVE_GROUP: 11187 mcast_opt = B_FALSE; 11188 /* FALLTHRU */ 11189 case MCAST_LEAVE_GROUP: 11190 fmode = MODE_IS_INCLUDE; 11191 optfn = ip_opt_delete_group_v6; 11192 break; 11193 } 11194 11195 if (mcast_opt) { 11196 struct sockaddr_in *sin; 11197 struct sockaddr_in6 *sin6; 11198 greqp = (struct group_req *)i1; 11199 if (greqp->gr_group.ss_family == AF_INET) { 11200 sin = (struct sockaddr_in *) 11201 &(greqp->gr_group); 11202 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11203 &groupv6); 11204 } else { 11205 sin6 = (struct sockaddr_in6 *) 11206 &(greqp->gr_group); 11207 groupv6 = sin6->sin6_addr; 11208 } 11209 ifindex = greqp->gr_interface; 11210 } else { 11211 ip_mreqp = (struct ipv6_mreq *)i1; 11212 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11213 ifindex = ip_mreqp->ipv6mr_interface; 11214 } 11215 /* 11216 * In the multirouting case, we need to replicate 11217 * the request on all interfaces that will take part 11218 * in replication. We do so because multirouting is 11219 * reflective, thus we will probably receive multi- 11220 * casts on those interfaces. 11221 * The ip_multirt_apply_membership_v6() succeeds if 11222 * the operation succeeds on at least one interface. 11223 */ 11224 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11225 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11226 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11227 if (ire != NULL) { 11228 if (ire->ire_flags & RTF_MULTIRT) { 11229 error = ip_multirt_apply_membership_v6( 11230 optfn, ire, connp, checkonly, 11231 &groupv6, fmode, &ipv6_all_zeros, 11232 first_mp); 11233 done = B_TRUE; 11234 } 11235 ire_refrele(ire); 11236 } 11237 if (!done) { 11238 error = optfn(connp, checkonly, &groupv6, 11239 ifindex, fmode, &ipv6_all_zeros, first_mp); 11240 } 11241 if (error) { 11242 /* 11243 * EINPROGRESS is a soft error, needs retry 11244 * so don't make *outlenp zero. 11245 */ 11246 if (error != EINPROGRESS) 11247 *outlenp = 0; 11248 return (error); 11249 } 11250 /* OK return - copy input buffer into output buffer */ 11251 if (invalp != outvalp) { 11252 /* don't trust bcopy for identical src/dst */ 11253 bcopy(invalp, outvalp, inlen); 11254 } 11255 *outlenp = inlen; 11256 return (0); 11257 } 11258 case MCAST_BLOCK_SOURCE: 11259 case MCAST_UNBLOCK_SOURCE: 11260 case MCAST_JOIN_SOURCE_GROUP: 11261 case MCAST_LEAVE_SOURCE_GROUP: { 11262 struct group_source_req *gsreqp; 11263 in6_addr_t v6grp, v6src; 11264 uint32_t ifindex; 11265 mcast_record_t fmode; 11266 ire_t *ire; 11267 boolean_t done = B_FALSE; 11268 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11269 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11270 11271 switch (name) { 11272 case MCAST_BLOCK_SOURCE: 11273 fmode = MODE_IS_EXCLUDE; 11274 optfn = ip_opt_add_group_v6; 11275 break; 11276 case MCAST_UNBLOCK_SOURCE: 11277 fmode = MODE_IS_EXCLUDE; 11278 optfn = ip_opt_delete_group_v6; 11279 break; 11280 case MCAST_JOIN_SOURCE_GROUP: 11281 fmode = MODE_IS_INCLUDE; 11282 optfn = ip_opt_add_group_v6; 11283 break; 11284 case MCAST_LEAVE_SOURCE_GROUP: 11285 fmode = MODE_IS_INCLUDE; 11286 optfn = ip_opt_delete_group_v6; 11287 break; 11288 } 11289 11290 gsreqp = (struct group_source_req *)i1; 11291 ifindex = gsreqp->gsr_interface; 11292 if (gsreqp->gsr_group.ss_family == AF_INET) { 11293 struct sockaddr_in *s; 11294 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11295 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11296 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11297 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11298 } else { 11299 struct sockaddr_in6 *s6; 11300 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11301 v6grp = s6->sin6_addr; 11302 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11303 v6src = s6->sin6_addr; 11304 } 11305 11306 /* 11307 * In the multirouting case, we need to replicate 11308 * the request as noted in the mcast cases above. 11309 */ 11310 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11311 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11312 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11313 if (ire != NULL) { 11314 if (ire->ire_flags & RTF_MULTIRT) { 11315 error = ip_multirt_apply_membership_v6( 11316 optfn, ire, connp, checkonly, 11317 &v6grp, fmode, &v6src, first_mp); 11318 done = B_TRUE; 11319 } 11320 ire_refrele(ire); 11321 } 11322 if (!done) { 11323 error = optfn(connp, checkonly, &v6grp, 11324 ifindex, fmode, &v6src, first_mp); 11325 } 11326 if (error != 0) { 11327 /* 11328 * EINPROGRESS is a soft error, needs retry 11329 * so don't make *outlenp zero. 11330 */ 11331 if (error != EINPROGRESS) 11332 *outlenp = 0; 11333 return (error); 11334 } 11335 /* OK return - copy input buffer into output buffer */ 11336 if (invalp != outvalp) { 11337 bcopy(invalp, outvalp, inlen); 11338 } 11339 *outlenp = inlen; 11340 return (0); 11341 } 11342 case IPV6_UNICAST_HOPS: 11343 /* Recorded in transport above IP */ 11344 break; /* goto sizeof (int) option return */ 11345 case IPV6_UNSPEC_SRC: 11346 /* Allow sending with a zero source address */ 11347 if (!checkonly) { 11348 mutex_enter(&connp->conn_lock); 11349 connp->conn_unspec_src = *i1 ? 1 : 0; 11350 mutex_exit(&connp->conn_lock); 11351 } 11352 break; /* goto sizeof (int) option return */ 11353 case IPV6_RECVPKTINFO: 11354 if (!checkonly) { 11355 mutex_enter(&connp->conn_lock); 11356 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11357 mutex_exit(&connp->conn_lock); 11358 } 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_RECVTCLASS: 11361 if (!checkonly) { 11362 if (*i1 < 0 || *i1 > 1) { 11363 return (EINVAL); 11364 } 11365 mutex_enter(&connp->conn_lock); 11366 connp->conn_ipv6_recvtclass = *i1; 11367 mutex_exit(&connp->conn_lock); 11368 } 11369 break; 11370 case IPV6_RECVPATHMTU: 11371 if (!checkonly) { 11372 if (*i1 < 0 || *i1 > 1) { 11373 return (EINVAL); 11374 } 11375 mutex_enter(&connp->conn_lock); 11376 connp->conn_ipv6_recvpathmtu = *i1; 11377 mutex_exit(&connp->conn_lock); 11378 } 11379 break; 11380 case IPV6_RECVHOPLIMIT: 11381 if (!checkonly) { 11382 mutex_enter(&connp->conn_lock); 11383 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11384 mutex_exit(&connp->conn_lock); 11385 } 11386 break; /* goto sizeof (int) option return */ 11387 case IPV6_RECVHOPOPTS: 11388 if (!checkonly) { 11389 mutex_enter(&connp->conn_lock); 11390 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11391 mutex_exit(&connp->conn_lock); 11392 } 11393 break; /* goto sizeof (int) option return */ 11394 case IPV6_RECVDSTOPTS: 11395 if (!checkonly) { 11396 mutex_enter(&connp->conn_lock); 11397 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11398 mutex_exit(&connp->conn_lock); 11399 } 11400 break; /* goto sizeof (int) option return */ 11401 case IPV6_RECVRTHDR: 11402 if (!checkonly) { 11403 mutex_enter(&connp->conn_lock); 11404 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11405 mutex_exit(&connp->conn_lock); 11406 } 11407 break; /* goto sizeof (int) option return */ 11408 case IPV6_RECVRTHDRDSTOPTS: 11409 if (!checkonly) { 11410 mutex_enter(&connp->conn_lock); 11411 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11412 mutex_exit(&connp->conn_lock); 11413 } 11414 break; /* goto sizeof (int) option return */ 11415 case IPV6_PKTINFO: 11416 if (inlen == 0) 11417 return (-EINVAL); /* clearing option */ 11418 error = ip6_set_pktinfo(cr, connp, 11419 (struct in6_pktinfo *)invalp); 11420 if (error != 0) 11421 *outlenp = 0; 11422 else 11423 *outlenp = inlen; 11424 return (error); 11425 case IPV6_NEXTHOP: { 11426 struct sockaddr_in6 *sin6; 11427 11428 /* Verify that the nexthop is reachable */ 11429 if (inlen == 0) 11430 return (-EINVAL); /* clearing option */ 11431 11432 sin6 = (struct sockaddr_in6 *)invalp; 11433 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11434 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11435 NULL, MATCH_IRE_DEFAULT, ipst); 11436 11437 if (ire == NULL) { 11438 *outlenp = 0; 11439 return (EHOSTUNREACH); 11440 } 11441 ire_refrele(ire); 11442 return (-EINVAL); 11443 } 11444 case IPV6_SEC_OPT: 11445 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11446 if (error != 0) { 11447 *outlenp = 0; 11448 return (error); 11449 } 11450 break; 11451 case IPV6_SRC_PREFERENCES: { 11452 /* 11453 * This is implemented strictly in the ip module 11454 * (here and in tcp_opt_*() to accomodate tcp 11455 * sockets). Modules above ip pass this option 11456 * down here since ip is the only one that needs to 11457 * be aware of source address preferences. 11458 * 11459 * This socket option only affects connected 11460 * sockets that haven't already bound to a specific 11461 * IPv6 address. In other words, sockets that 11462 * don't call bind() with an address other than the 11463 * unspecified address and that call connect(). 11464 * ip_bind_connected_v6() passes these preferences 11465 * to the ipif_select_source_v6() function. 11466 */ 11467 if (inlen != sizeof (uint32_t)) 11468 return (EINVAL); 11469 error = ip6_set_src_preferences(connp, 11470 *(uint32_t *)invalp); 11471 if (error != 0) { 11472 *outlenp = 0; 11473 return (error); 11474 } else { 11475 *outlenp = sizeof (uint32_t); 11476 } 11477 break; 11478 } 11479 case IPV6_V6ONLY: 11480 if (*i1 < 0 || *i1 > 1) { 11481 return (EINVAL); 11482 } 11483 mutex_enter(&connp->conn_lock); 11484 connp->conn_ipv6_v6only = *i1; 11485 mutex_exit(&connp->conn_lock); 11486 break; 11487 default: 11488 return (-EINVAL); 11489 } 11490 break; 11491 default: 11492 /* 11493 * "soft" error (negative) 11494 * option not handled at this level 11495 * Note: Do not modify *outlenp 11496 */ 11497 return (-EINVAL); 11498 } 11499 /* 11500 * Common case of return from an option that is sizeof (int) 11501 */ 11502 *(int *)outvalp = *i1; 11503 *outlenp = sizeof (int); 11504 return (0); 11505 } 11506 11507 /* 11508 * This routine gets default values of certain options whose default 11509 * values are maintained by protocol specific code 11510 */ 11511 /* ARGSUSED */ 11512 int 11513 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11514 { 11515 int *i1 = (int *)ptr; 11516 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11517 11518 switch (level) { 11519 case IPPROTO_IP: 11520 switch (name) { 11521 case IP_MULTICAST_TTL: 11522 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11523 return (sizeof (uchar_t)); 11524 case IP_MULTICAST_LOOP: 11525 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11526 return (sizeof (uchar_t)); 11527 default: 11528 return (-1); 11529 } 11530 case IPPROTO_IPV6: 11531 switch (name) { 11532 case IPV6_UNICAST_HOPS: 11533 *i1 = ipst->ips_ipv6_def_hops; 11534 return (sizeof (int)); 11535 case IPV6_MULTICAST_HOPS: 11536 *i1 = IP_DEFAULT_MULTICAST_TTL; 11537 return (sizeof (int)); 11538 case IPV6_MULTICAST_LOOP: 11539 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11540 return (sizeof (int)); 11541 case IPV6_V6ONLY: 11542 *i1 = 1; 11543 return (sizeof (int)); 11544 default: 11545 return (-1); 11546 } 11547 default: 11548 return (-1); 11549 } 11550 /* NOTREACHED */ 11551 } 11552 11553 /* 11554 * Given a destination address and a pointer to where to put the information 11555 * this routine fills in the mtuinfo. 11556 */ 11557 int 11558 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11559 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11560 { 11561 ire_t *ire; 11562 ip_stack_t *ipst = ns->netstack_ip; 11563 11564 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11565 return (-1); 11566 11567 bzero(mtuinfo, sizeof (*mtuinfo)); 11568 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11569 mtuinfo->ip6m_addr.sin6_port = port; 11570 mtuinfo->ip6m_addr.sin6_addr = *in6; 11571 11572 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11573 if (ire != NULL) { 11574 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11575 ire_refrele(ire); 11576 } else { 11577 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11578 } 11579 return (sizeof (struct ip6_mtuinfo)); 11580 } 11581 11582 /* 11583 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11584 * checking of cred and that ip_g_mrouter is set should be done and 11585 * isn't. This doesn't matter as the error checking is done properly for the 11586 * other MRT options coming in through ip_opt_set. 11587 */ 11588 int 11589 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11590 { 11591 conn_t *connp = Q_TO_CONN(q); 11592 ipsec_req_t *req = (ipsec_req_t *)ptr; 11593 11594 switch (level) { 11595 case IPPROTO_IP: 11596 switch (name) { 11597 case MRT_VERSION: 11598 case MRT_ASSERT: 11599 (void) ip_mrouter_get(name, q, ptr); 11600 return (sizeof (int)); 11601 case IP_SEC_OPT: 11602 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11603 case IP_NEXTHOP: 11604 if (connp->conn_nexthop_set) { 11605 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11606 return (sizeof (ipaddr_t)); 11607 } else 11608 return (0); 11609 case IP_RECVPKTINFO: 11610 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11611 return (sizeof (int)); 11612 default: 11613 break; 11614 } 11615 break; 11616 case IPPROTO_IPV6: 11617 switch (name) { 11618 case IPV6_SEC_OPT: 11619 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11620 case IPV6_SRC_PREFERENCES: { 11621 return (ip6_get_src_preferences(connp, 11622 (uint32_t *)ptr)); 11623 } 11624 case IPV6_V6ONLY: 11625 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11626 return (sizeof (int)); 11627 case IPV6_PATHMTU: 11628 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11629 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11630 default: 11631 break; 11632 } 11633 break; 11634 default: 11635 break; 11636 } 11637 return (-1); 11638 } 11639 /* Named Dispatch routine to get a current value out of our parameter table. */ 11640 /* ARGSUSED */ 11641 static int 11642 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11643 { 11644 ipparam_t *ippa = (ipparam_t *)cp; 11645 11646 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11647 return (0); 11648 } 11649 11650 /* ARGSUSED */ 11651 static int 11652 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11653 { 11654 11655 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11656 return (0); 11657 } 11658 11659 /* 11660 * Set ip{,6}_forwarding values. This means walking through all of the 11661 * ill's and toggling their forwarding values. 11662 */ 11663 /* ARGSUSED */ 11664 static int 11665 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11666 { 11667 long new_value; 11668 int *forwarding_value = (int *)cp; 11669 ill_t *ill; 11670 boolean_t isv6; 11671 ill_walk_context_t ctx; 11672 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11673 11674 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11675 11676 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11677 new_value < 0 || new_value > 1) { 11678 return (EINVAL); 11679 } 11680 11681 *forwarding_value = new_value; 11682 11683 /* 11684 * Regardless of the current value of ip_forwarding, set all per-ill 11685 * values of ip_forwarding to the value being set. 11686 * 11687 * Bring all the ill's up to date with the new global value. 11688 */ 11689 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11690 11691 if (isv6) 11692 ill = ILL_START_WALK_V6(&ctx, ipst); 11693 else 11694 ill = ILL_START_WALK_V4(&ctx, ipst); 11695 11696 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11697 (void) ill_forward_set(ill, new_value != 0); 11698 11699 rw_exit(&ipst->ips_ill_g_lock); 11700 return (0); 11701 } 11702 11703 /* 11704 * Walk through the param array specified registering each element with the 11705 * Named Dispatch handler. This is called only during init. So it is ok 11706 * not to acquire any locks 11707 */ 11708 static boolean_t 11709 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11710 ipndp_t *ipnd, size_t ipnd_cnt) 11711 { 11712 for (; ippa_cnt-- > 0; ippa++) { 11713 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11714 if (!nd_load(ndp, ippa->ip_param_name, 11715 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11716 nd_free(ndp); 11717 return (B_FALSE); 11718 } 11719 } 11720 } 11721 11722 for (; ipnd_cnt-- > 0; ipnd++) { 11723 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11724 if (!nd_load(ndp, ipnd->ip_ndp_name, 11725 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11726 ipnd->ip_ndp_data)) { 11727 nd_free(ndp); 11728 return (B_FALSE); 11729 } 11730 } 11731 } 11732 11733 return (B_TRUE); 11734 } 11735 11736 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11737 /* ARGSUSED */ 11738 static int 11739 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11740 { 11741 long new_value; 11742 ipparam_t *ippa = (ipparam_t *)cp; 11743 11744 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11745 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11746 return (EINVAL); 11747 } 11748 ippa->ip_param_value = new_value; 11749 return (0); 11750 } 11751 11752 /* 11753 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11754 * When an ipf is passed here for the first time, if 11755 * we already have in-order fragments on the queue, we convert from the fast- 11756 * path reassembly scheme to the hard-case scheme. From then on, additional 11757 * fragments are reassembled here. We keep track of the start and end offsets 11758 * of each piece, and the number of holes in the chain. When the hole count 11759 * goes to zero, we are done! 11760 * 11761 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11762 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11763 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11764 * after the call to ip_reassemble(). 11765 */ 11766 int 11767 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11768 size_t msg_len) 11769 { 11770 uint_t end; 11771 mblk_t *next_mp; 11772 mblk_t *mp1; 11773 uint_t offset; 11774 boolean_t incr_dups = B_TRUE; 11775 boolean_t offset_zero_seen = B_FALSE; 11776 boolean_t pkt_boundary_checked = B_FALSE; 11777 11778 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11779 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11780 11781 /* Add in byte count */ 11782 ipf->ipf_count += msg_len; 11783 if (ipf->ipf_end) { 11784 /* 11785 * We were part way through in-order reassembly, but now there 11786 * is a hole. We walk through messages already queued, and 11787 * mark them for hard case reassembly. We know that up till 11788 * now they were in order starting from offset zero. 11789 */ 11790 offset = 0; 11791 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11792 IP_REASS_SET_START(mp1, offset); 11793 if (offset == 0) { 11794 ASSERT(ipf->ipf_nf_hdr_len != 0); 11795 offset = -ipf->ipf_nf_hdr_len; 11796 } 11797 offset += mp1->b_wptr - mp1->b_rptr; 11798 IP_REASS_SET_END(mp1, offset); 11799 } 11800 /* One hole at the end. */ 11801 ipf->ipf_hole_cnt = 1; 11802 /* Brand it as a hard case, forever. */ 11803 ipf->ipf_end = 0; 11804 } 11805 /* Walk through all the new pieces. */ 11806 do { 11807 end = start + (mp->b_wptr - mp->b_rptr); 11808 /* 11809 * If start is 0, decrease 'end' only for the first mblk of 11810 * the fragment. Otherwise 'end' can get wrong value in the 11811 * second pass of the loop if first mblk is exactly the 11812 * size of ipf_nf_hdr_len. 11813 */ 11814 if (start == 0 && !offset_zero_seen) { 11815 /* First segment */ 11816 ASSERT(ipf->ipf_nf_hdr_len != 0); 11817 end -= ipf->ipf_nf_hdr_len; 11818 offset_zero_seen = B_TRUE; 11819 } 11820 next_mp = mp->b_cont; 11821 /* 11822 * We are checking to see if there is any interesing data 11823 * to process. If there isn't and the mblk isn't the 11824 * one which carries the unfragmentable header then we 11825 * drop it. It's possible to have just the unfragmentable 11826 * header come through without any data. That needs to be 11827 * saved. 11828 * 11829 * If the assert at the top of this function holds then the 11830 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11831 * is infrequently traveled enough that the test is left in 11832 * to protect against future code changes which break that 11833 * invariant. 11834 */ 11835 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11836 /* Empty. Blast it. */ 11837 IP_REASS_SET_START(mp, 0); 11838 IP_REASS_SET_END(mp, 0); 11839 /* 11840 * If the ipf points to the mblk we are about to free, 11841 * update ipf to point to the next mblk (or NULL 11842 * if none). 11843 */ 11844 if (ipf->ipf_mp->b_cont == mp) 11845 ipf->ipf_mp->b_cont = next_mp; 11846 freeb(mp); 11847 continue; 11848 } 11849 mp->b_cont = NULL; 11850 IP_REASS_SET_START(mp, start); 11851 IP_REASS_SET_END(mp, end); 11852 if (!ipf->ipf_tail_mp) { 11853 ipf->ipf_tail_mp = mp; 11854 ipf->ipf_mp->b_cont = mp; 11855 if (start == 0 || !more) { 11856 ipf->ipf_hole_cnt = 1; 11857 /* 11858 * if the first fragment comes in more than one 11859 * mblk, this loop will be executed for each 11860 * mblk. Need to adjust hole count so exiting 11861 * this routine will leave hole count at 1. 11862 */ 11863 if (next_mp) 11864 ipf->ipf_hole_cnt++; 11865 } else 11866 ipf->ipf_hole_cnt = 2; 11867 continue; 11868 } else if (ipf->ipf_last_frag_seen && !more && 11869 !pkt_boundary_checked) { 11870 /* 11871 * We check datagram boundary only if this fragment 11872 * claims to be the last fragment and we have seen a 11873 * last fragment in the past too. We do this only 11874 * once for a given fragment. 11875 * 11876 * start cannot be 0 here as fragments with start=0 11877 * and MF=0 gets handled as a complete packet. These 11878 * fragments should not reach here. 11879 */ 11880 11881 if (start + msgdsize(mp) != 11882 IP_REASS_END(ipf->ipf_tail_mp)) { 11883 /* 11884 * We have two fragments both of which claim 11885 * to be the last fragment but gives conflicting 11886 * information about the whole datagram size. 11887 * Something fishy is going on. Drop the 11888 * fragment and free up the reassembly list. 11889 */ 11890 return (IP_REASS_FAILED); 11891 } 11892 11893 /* 11894 * We shouldn't come to this code block again for this 11895 * particular fragment. 11896 */ 11897 pkt_boundary_checked = B_TRUE; 11898 } 11899 11900 /* New stuff at or beyond tail? */ 11901 offset = IP_REASS_END(ipf->ipf_tail_mp); 11902 if (start >= offset) { 11903 if (ipf->ipf_last_frag_seen) { 11904 /* current fragment is beyond last fragment */ 11905 return (IP_REASS_FAILED); 11906 } 11907 /* Link it on end. */ 11908 ipf->ipf_tail_mp->b_cont = mp; 11909 ipf->ipf_tail_mp = mp; 11910 if (more) { 11911 if (start != offset) 11912 ipf->ipf_hole_cnt++; 11913 } else if (start == offset && next_mp == NULL) 11914 ipf->ipf_hole_cnt--; 11915 continue; 11916 } 11917 mp1 = ipf->ipf_mp->b_cont; 11918 offset = IP_REASS_START(mp1); 11919 /* New stuff at the front? */ 11920 if (start < offset) { 11921 if (start == 0) { 11922 if (end >= offset) { 11923 /* Nailed the hole at the begining. */ 11924 ipf->ipf_hole_cnt--; 11925 } 11926 } else if (end < offset) { 11927 /* 11928 * A hole, stuff, and a hole where there used 11929 * to be just a hole. 11930 */ 11931 ipf->ipf_hole_cnt++; 11932 } 11933 mp->b_cont = mp1; 11934 /* Check for overlap. */ 11935 while (end > offset) { 11936 if (end < IP_REASS_END(mp1)) { 11937 mp->b_wptr -= end - offset; 11938 IP_REASS_SET_END(mp, offset); 11939 BUMP_MIB(ill->ill_ip_mib, 11940 ipIfStatsReasmPartDups); 11941 break; 11942 } 11943 /* Did we cover another hole? */ 11944 if ((mp1->b_cont && 11945 IP_REASS_END(mp1) != 11946 IP_REASS_START(mp1->b_cont) && 11947 end >= IP_REASS_START(mp1->b_cont)) || 11948 (!ipf->ipf_last_frag_seen && !more)) { 11949 ipf->ipf_hole_cnt--; 11950 } 11951 /* Clip out mp1. */ 11952 if ((mp->b_cont = mp1->b_cont) == NULL) { 11953 /* 11954 * After clipping out mp1, this guy 11955 * is now hanging off the end. 11956 */ 11957 ipf->ipf_tail_mp = mp; 11958 } 11959 IP_REASS_SET_START(mp1, 0); 11960 IP_REASS_SET_END(mp1, 0); 11961 /* Subtract byte count */ 11962 ipf->ipf_count -= mp1->b_datap->db_lim - 11963 mp1->b_datap->db_base; 11964 freeb(mp1); 11965 BUMP_MIB(ill->ill_ip_mib, 11966 ipIfStatsReasmPartDups); 11967 mp1 = mp->b_cont; 11968 if (!mp1) 11969 break; 11970 offset = IP_REASS_START(mp1); 11971 } 11972 ipf->ipf_mp->b_cont = mp; 11973 continue; 11974 } 11975 /* 11976 * The new piece starts somewhere between the start of the head 11977 * and before the end of the tail. 11978 */ 11979 for (; mp1; mp1 = mp1->b_cont) { 11980 offset = IP_REASS_END(mp1); 11981 if (start < offset) { 11982 if (end <= offset) { 11983 /* Nothing new. */ 11984 IP_REASS_SET_START(mp, 0); 11985 IP_REASS_SET_END(mp, 0); 11986 /* Subtract byte count */ 11987 ipf->ipf_count -= mp->b_datap->db_lim - 11988 mp->b_datap->db_base; 11989 if (incr_dups) { 11990 ipf->ipf_num_dups++; 11991 incr_dups = B_FALSE; 11992 } 11993 freeb(mp); 11994 BUMP_MIB(ill->ill_ip_mib, 11995 ipIfStatsReasmDuplicates); 11996 break; 11997 } 11998 /* 11999 * Trim redundant stuff off beginning of new 12000 * piece. 12001 */ 12002 IP_REASS_SET_START(mp, offset); 12003 mp->b_rptr += offset - start; 12004 BUMP_MIB(ill->ill_ip_mib, 12005 ipIfStatsReasmPartDups); 12006 start = offset; 12007 if (!mp1->b_cont) { 12008 /* 12009 * After trimming, this guy is now 12010 * hanging off the end. 12011 */ 12012 mp1->b_cont = mp; 12013 ipf->ipf_tail_mp = mp; 12014 if (!more) { 12015 ipf->ipf_hole_cnt--; 12016 } 12017 break; 12018 } 12019 } 12020 if (start >= IP_REASS_START(mp1->b_cont)) 12021 continue; 12022 /* Fill a hole */ 12023 if (start > offset) 12024 ipf->ipf_hole_cnt++; 12025 mp->b_cont = mp1->b_cont; 12026 mp1->b_cont = mp; 12027 mp1 = mp->b_cont; 12028 offset = IP_REASS_START(mp1); 12029 if (end >= offset) { 12030 ipf->ipf_hole_cnt--; 12031 /* Check for overlap. */ 12032 while (end > offset) { 12033 if (end < IP_REASS_END(mp1)) { 12034 mp->b_wptr -= end - offset; 12035 IP_REASS_SET_END(mp, offset); 12036 /* 12037 * TODO we might bump 12038 * this up twice if there is 12039 * overlap at both ends. 12040 */ 12041 BUMP_MIB(ill->ill_ip_mib, 12042 ipIfStatsReasmPartDups); 12043 break; 12044 } 12045 /* Did we cover another hole? */ 12046 if ((mp1->b_cont && 12047 IP_REASS_END(mp1) 12048 != IP_REASS_START(mp1->b_cont) && 12049 end >= 12050 IP_REASS_START(mp1->b_cont)) || 12051 (!ipf->ipf_last_frag_seen && 12052 !more)) { 12053 ipf->ipf_hole_cnt--; 12054 } 12055 /* Clip out mp1. */ 12056 if ((mp->b_cont = mp1->b_cont) == 12057 NULL) { 12058 /* 12059 * After clipping out mp1, 12060 * this guy is now hanging 12061 * off the end. 12062 */ 12063 ipf->ipf_tail_mp = mp; 12064 } 12065 IP_REASS_SET_START(mp1, 0); 12066 IP_REASS_SET_END(mp1, 0); 12067 /* Subtract byte count */ 12068 ipf->ipf_count -= 12069 mp1->b_datap->db_lim - 12070 mp1->b_datap->db_base; 12071 freeb(mp1); 12072 BUMP_MIB(ill->ill_ip_mib, 12073 ipIfStatsReasmPartDups); 12074 mp1 = mp->b_cont; 12075 if (!mp1) 12076 break; 12077 offset = IP_REASS_START(mp1); 12078 } 12079 } 12080 break; 12081 } 12082 } while (start = end, mp = next_mp); 12083 12084 /* Fragment just processed could be the last one. Remember this fact */ 12085 if (!more) 12086 ipf->ipf_last_frag_seen = B_TRUE; 12087 12088 /* Still got holes? */ 12089 if (ipf->ipf_hole_cnt) 12090 return (IP_REASS_PARTIAL); 12091 /* Clean up overloaded fields to avoid upstream disasters. */ 12092 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12093 IP_REASS_SET_START(mp1, 0); 12094 IP_REASS_SET_END(mp1, 0); 12095 } 12096 return (IP_REASS_COMPLETE); 12097 } 12098 12099 /* 12100 * ipsec processing for the fast path, used for input UDP Packets 12101 * Returns true if ready for passup to UDP. 12102 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12103 * was an ESP-in-UDP packet, etc.). 12104 */ 12105 static boolean_t 12106 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12107 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12108 { 12109 uint32_t ill_index; 12110 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12111 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12112 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12113 udp_t *udp = connp->conn_udp; 12114 12115 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12116 /* The ill_index of the incoming ILL */ 12117 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12118 12119 /* pass packet up to the transport */ 12120 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12121 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12122 NULL, mctl_present); 12123 if (*first_mpp == NULL) { 12124 return (B_FALSE); 12125 } 12126 } 12127 12128 /* Initiate IPPF processing for fastpath UDP */ 12129 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12130 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12131 if (*mpp == NULL) { 12132 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12133 "deferred/dropped during IPPF processing\n")); 12134 return (B_FALSE); 12135 } 12136 } 12137 /* 12138 * Remove 0-spi if it's 0, or move everything behind 12139 * the UDP header over it and forward to ESP via 12140 * ip_proto_input(). 12141 */ 12142 if (udp->udp_nat_t_endpoint) { 12143 if (mctl_present) { 12144 /* mctl_present *shouldn't* happen. */ 12145 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12146 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12147 &ipss->ipsec_dropper); 12148 *first_mpp = NULL; 12149 return (B_FALSE); 12150 } 12151 12152 /* "ill" is "recv_ill" in actuality. */ 12153 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12154 return (B_FALSE); 12155 12156 /* Else continue like a normal UDP packet. */ 12157 } 12158 12159 /* 12160 * We make the checks as below since we are in the fast path 12161 * and want to minimize the number of checks if the IP_RECVIF and/or 12162 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12163 */ 12164 if (connp->conn_recvif || connp->conn_recvslla || 12165 connp->conn_ip_recvpktinfo) { 12166 if (connp->conn_recvif) { 12167 in_flags = IPF_RECVIF; 12168 } 12169 /* 12170 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12171 * so the flag passed to ip_add_info is based on IP version 12172 * of connp. 12173 */ 12174 if (connp->conn_ip_recvpktinfo) { 12175 if (connp->conn_af_isv6) { 12176 /* 12177 * V6 only needs index 12178 */ 12179 in_flags |= IPF_RECVIF; 12180 } else { 12181 /* 12182 * V4 needs index + matching address. 12183 */ 12184 in_flags |= IPF_RECVADDR; 12185 } 12186 } 12187 if (connp->conn_recvslla) { 12188 in_flags |= IPF_RECVSLLA; 12189 } 12190 /* 12191 * since in_flags are being set ill will be 12192 * referenced in ip_add_info, so it better not 12193 * be NULL. 12194 */ 12195 /* 12196 * the actual data will be contained in b_cont 12197 * upon successful return of the following call. 12198 * If the call fails then the original mblk is 12199 * returned. 12200 */ 12201 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12202 ipst); 12203 } 12204 12205 return (B_TRUE); 12206 } 12207 12208 /* 12209 * Fragmentation reassembly. Each ILL has a hash table for 12210 * queuing packets undergoing reassembly for all IPIFs 12211 * associated with the ILL. The hash is based on the packet 12212 * IP ident field. The ILL frag hash table was allocated 12213 * as a timer block at the time the ILL was created. Whenever 12214 * there is anything on the reassembly queue, the timer will 12215 * be running. Returns B_TRUE if successful else B_FALSE; 12216 * frees mp on failure. 12217 */ 12218 static boolean_t 12219 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12220 uint32_t *cksum_val, uint16_t *cksum_flags) 12221 { 12222 uint32_t frag_offset_flags; 12223 mblk_t *mp = *mpp; 12224 mblk_t *t_mp; 12225 ipaddr_t dst; 12226 uint8_t proto = ipha->ipha_protocol; 12227 uint32_t sum_val; 12228 uint16_t sum_flags; 12229 ipf_t *ipf; 12230 ipf_t **ipfp; 12231 ipfb_t *ipfb; 12232 uint16_t ident; 12233 uint32_t offset; 12234 ipaddr_t src; 12235 uint_t hdr_length; 12236 uint32_t end; 12237 mblk_t *mp1; 12238 mblk_t *tail_mp; 12239 size_t count; 12240 size_t msg_len; 12241 uint8_t ecn_info = 0; 12242 uint32_t packet_size; 12243 boolean_t pruned = B_FALSE; 12244 ip_stack_t *ipst = ill->ill_ipst; 12245 12246 if (cksum_val != NULL) 12247 *cksum_val = 0; 12248 if (cksum_flags != NULL) 12249 *cksum_flags = 0; 12250 12251 /* 12252 * Drop the fragmented as early as possible, if 12253 * we don't have resource(s) to re-assemble. 12254 */ 12255 if (ipst->ips_ip_reass_queue_bytes == 0) { 12256 freemsg(mp); 12257 return (B_FALSE); 12258 } 12259 12260 /* Check for fragmentation offset; return if there's none */ 12261 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12262 (IPH_MF | IPH_OFFSET)) == 0) 12263 return (B_TRUE); 12264 12265 /* 12266 * We utilize hardware computed checksum info only for UDP since 12267 * IP fragmentation is a normal occurrence for the protocol. In 12268 * addition, checksum offload support for IP fragments carrying 12269 * UDP payload is commonly implemented across network adapters. 12270 */ 12271 ASSERT(recv_ill != NULL); 12272 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12273 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12274 mblk_t *mp1 = mp->b_cont; 12275 int32_t len; 12276 12277 /* Record checksum information from the packet */ 12278 sum_val = (uint32_t)DB_CKSUM16(mp); 12279 sum_flags = DB_CKSUMFLAGS(mp); 12280 12281 /* IP payload offset from beginning of mblk */ 12282 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12283 12284 if ((sum_flags & HCK_PARTIALCKSUM) && 12285 (mp1 == NULL || mp1->b_cont == NULL) && 12286 offset >= DB_CKSUMSTART(mp) && 12287 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12288 uint32_t adj; 12289 /* 12290 * Partial checksum has been calculated by hardware 12291 * and attached to the packet; in addition, any 12292 * prepended extraneous data is even byte aligned. 12293 * If any such data exists, we adjust the checksum; 12294 * this would also handle any postpended data. 12295 */ 12296 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12297 mp, mp1, len, adj); 12298 12299 /* One's complement subtract extraneous checksum */ 12300 if (adj >= sum_val) 12301 sum_val = ~(adj - sum_val) & 0xFFFF; 12302 else 12303 sum_val -= adj; 12304 } 12305 } else { 12306 sum_val = 0; 12307 sum_flags = 0; 12308 } 12309 12310 /* Clear hardware checksumming flag */ 12311 DB_CKSUMFLAGS(mp) = 0; 12312 12313 ident = ipha->ipha_ident; 12314 offset = (frag_offset_flags << 3) & 0xFFFF; 12315 src = ipha->ipha_src; 12316 dst = ipha->ipha_dst; 12317 hdr_length = IPH_HDR_LENGTH(ipha); 12318 end = ntohs(ipha->ipha_length) - hdr_length; 12319 12320 /* If end == 0 then we have a packet with no data, so just free it */ 12321 if (end == 0) { 12322 freemsg(mp); 12323 return (B_FALSE); 12324 } 12325 12326 /* Record the ECN field info. */ 12327 ecn_info = (ipha->ipha_type_of_service & 0x3); 12328 if (offset != 0) { 12329 /* 12330 * If this isn't the first piece, strip the header, and 12331 * add the offset to the end value. 12332 */ 12333 mp->b_rptr += hdr_length; 12334 end += offset; 12335 } 12336 12337 msg_len = MBLKSIZE(mp); 12338 tail_mp = mp; 12339 while (tail_mp->b_cont != NULL) { 12340 tail_mp = tail_mp->b_cont; 12341 msg_len += MBLKSIZE(tail_mp); 12342 } 12343 12344 /* If the reassembly list for this ILL will get too big, prune it */ 12345 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12346 ipst->ips_ip_reass_queue_bytes) { 12347 ill_frag_prune(ill, 12348 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12349 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12350 pruned = B_TRUE; 12351 } 12352 12353 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12354 mutex_enter(&ipfb->ipfb_lock); 12355 12356 ipfp = &ipfb->ipfb_ipf; 12357 /* Try to find an existing fragment queue for this packet. */ 12358 for (;;) { 12359 ipf = ipfp[0]; 12360 if (ipf != NULL) { 12361 /* 12362 * It has to match on ident and src/dst address. 12363 */ 12364 if (ipf->ipf_ident == ident && 12365 ipf->ipf_src == src && 12366 ipf->ipf_dst == dst && 12367 ipf->ipf_protocol == proto) { 12368 /* 12369 * If we have received too many 12370 * duplicate fragments for this packet 12371 * free it. 12372 */ 12373 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12374 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12375 freemsg(mp); 12376 mutex_exit(&ipfb->ipfb_lock); 12377 return (B_FALSE); 12378 } 12379 /* Found it. */ 12380 break; 12381 } 12382 ipfp = &ipf->ipf_hash_next; 12383 continue; 12384 } 12385 12386 /* 12387 * If we pruned the list, do we want to store this new 12388 * fragment?. We apply an optimization here based on the 12389 * fact that most fragments will be received in order. 12390 * So if the offset of this incoming fragment is zero, 12391 * it is the first fragment of a new packet. We will 12392 * keep it. Otherwise drop the fragment, as we have 12393 * probably pruned the packet already (since the 12394 * packet cannot be found). 12395 */ 12396 if (pruned && offset != 0) { 12397 mutex_exit(&ipfb->ipfb_lock); 12398 freemsg(mp); 12399 return (B_FALSE); 12400 } 12401 12402 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12403 /* 12404 * Too many fragmented packets in this hash 12405 * bucket. Free the oldest. 12406 */ 12407 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12408 } 12409 12410 /* New guy. Allocate a frag message. */ 12411 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12412 if (mp1 == NULL) { 12413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12414 freemsg(mp); 12415 reass_done: 12416 mutex_exit(&ipfb->ipfb_lock); 12417 return (B_FALSE); 12418 } 12419 12420 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12421 mp1->b_cont = mp; 12422 12423 /* Initialize the fragment header. */ 12424 ipf = (ipf_t *)mp1->b_rptr; 12425 ipf->ipf_mp = mp1; 12426 ipf->ipf_ptphn = ipfp; 12427 ipfp[0] = ipf; 12428 ipf->ipf_hash_next = NULL; 12429 ipf->ipf_ident = ident; 12430 ipf->ipf_protocol = proto; 12431 ipf->ipf_src = src; 12432 ipf->ipf_dst = dst; 12433 ipf->ipf_nf_hdr_len = 0; 12434 /* Record reassembly start time. */ 12435 ipf->ipf_timestamp = gethrestime_sec(); 12436 /* Record ipf generation and account for frag header */ 12437 ipf->ipf_gen = ill->ill_ipf_gen++; 12438 ipf->ipf_count = MBLKSIZE(mp1); 12439 ipf->ipf_last_frag_seen = B_FALSE; 12440 ipf->ipf_ecn = ecn_info; 12441 ipf->ipf_num_dups = 0; 12442 ipfb->ipfb_frag_pkts++; 12443 ipf->ipf_checksum = 0; 12444 ipf->ipf_checksum_flags = 0; 12445 12446 /* Store checksum value in fragment header */ 12447 if (sum_flags != 0) { 12448 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12449 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12450 ipf->ipf_checksum = sum_val; 12451 ipf->ipf_checksum_flags = sum_flags; 12452 } 12453 12454 /* 12455 * We handle reassembly two ways. In the easy case, 12456 * where all the fragments show up in order, we do 12457 * minimal bookkeeping, and just clip new pieces on 12458 * the end. If we ever see a hole, then we go off 12459 * to ip_reassemble which has to mark the pieces and 12460 * keep track of the number of holes, etc. Obviously, 12461 * the point of having both mechanisms is so we can 12462 * handle the easy case as efficiently as possible. 12463 */ 12464 if (offset == 0) { 12465 /* Easy case, in-order reassembly so far. */ 12466 ipf->ipf_count += msg_len; 12467 ipf->ipf_tail_mp = tail_mp; 12468 /* 12469 * Keep track of next expected offset in 12470 * ipf_end. 12471 */ 12472 ipf->ipf_end = end; 12473 ipf->ipf_nf_hdr_len = hdr_length; 12474 } else { 12475 /* Hard case, hole at the beginning. */ 12476 ipf->ipf_tail_mp = NULL; 12477 /* 12478 * ipf_end == 0 means that we have given up 12479 * on easy reassembly. 12480 */ 12481 ipf->ipf_end = 0; 12482 12483 /* Forget checksum offload from now on */ 12484 ipf->ipf_checksum_flags = 0; 12485 12486 /* 12487 * ipf_hole_cnt is set by ip_reassemble. 12488 * ipf_count is updated by ip_reassemble. 12489 * No need to check for return value here 12490 * as we don't expect reassembly to complete 12491 * or fail for the first fragment itself. 12492 */ 12493 (void) ip_reassemble(mp, ipf, 12494 (frag_offset_flags & IPH_OFFSET) << 3, 12495 (frag_offset_flags & IPH_MF), ill, msg_len); 12496 } 12497 /* Update per ipfb and ill byte counts */ 12498 ipfb->ipfb_count += ipf->ipf_count; 12499 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12500 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12501 /* If the frag timer wasn't already going, start it. */ 12502 mutex_enter(&ill->ill_lock); 12503 ill_frag_timer_start(ill); 12504 mutex_exit(&ill->ill_lock); 12505 goto reass_done; 12506 } 12507 12508 /* 12509 * If the packet's flag has changed (it could be coming up 12510 * from an interface different than the previous, therefore 12511 * possibly different checksum capability), then forget about 12512 * any stored checksum states. Otherwise add the value to 12513 * the existing one stored in the fragment header. 12514 */ 12515 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12516 sum_val += ipf->ipf_checksum; 12517 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12518 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12519 ipf->ipf_checksum = sum_val; 12520 } else if (ipf->ipf_checksum_flags != 0) { 12521 /* Forget checksum offload from now on */ 12522 ipf->ipf_checksum_flags = 0; 12523 } 12524 12525 /* 12526 * We have a new piece of a datagram which is already being 12527 * reassembled. Update the ECN info if all IP fragments 12528 * are ECN capable. If there is one which is not, clear 12529 * all the info. If there is at least one which has CE 12530 * code point, IP needs to report that up to transport. 12531 */ 12532 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12533 if (ecn_info == IPH_ECN_CE) 12534 ipf->ipf_ecn = IPH_ECN_CE; 12535 } else { 12536 ipf->ipf_ecn = IPH_ECN_NECT; 12537 } 12538 if (offset && ipf->ipf_end == offset) { 12539 /* The new fragment fits at the end */ 12540 ipf->ipf_tail_mp->b_cont = mp; 12541 /* Update the byte count */ 12542 ipf->ipf_count += msg_len; 12543 /* Update per ipfb and ill byte counts */ 12544 ipfb->ipfb_count += msg_len; 12545 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12546 atomic_add_32(&ill->ill_frag_count, msg_len); 12547 if (frag_offset_flags & IPH_MF) { 12548 /* More to come. */ 12549 ipf->ipf_end = end; 12550 ipf->ipf_tail_mp = tail_mp; 12551 goto reass_done; 12552 } 12553 } else { 12554 /* Go do the hard cases. */ 12555 int ret; 12556 12557 if (offset == 0) 12558 ipf->ipf_nf_hdr_len = hdr_length; 12559 12560 /* Save current byte count */ 12561 count = ipf->ipf_count; 12562 ret = ip_reassemble(mp, ipf, 12563 (frag_offset_flags & IPH_OFFSET) << 3, 12564 (frag_offset_flags & IPH_MF), ill, msg_len); 12565 /* Count of bytes added and subtracted (freeb()ed) */ 12566 count = ipf->ipf_count - count; 12567 if (count) { 12568 /* Update per ipfb and ill byte counts */ 12569 ipfb->ipfb_count += count; 12570 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12571 atomic_add_32(&ill->ill_frag_count, count); 12572 } 12573 if (ret == IP_REASS_PARTIAL) { 12574 goto reass_done; 12575 } else if (ret == IP_REASS_FAILED) { 12576 /* Reassembly failed. Free up all resources */ 12577 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12578 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12579 IP_REASS_SET_START(t_mp, 0); 12580 IP_REASS_SET_END(t_mp, 0); 12581 } 12582 freemsg(mp); 12583 goto reass_done; 12584 } 12585 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12586 } 12587 /* 12588 * We have completed reassembly. Unhook the frag header from 12589 * the reassembly list. 12590 * 12591 * Before we free the frag header, record the ECN info 12592 * to report back to the transport. 12593 */ 12594 ecn_info = ipf->ipf_ecn; 12595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12596 ipfp = ipf->ipf_ptphn; 12597 12598 /* We need to supply these to caller */ 12599 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12600 sum_val = ipf->ipf_checksum; 12601 else 12602 sum_val = 0; 12603 12604 mp1 = ipf->ipf_mp; 12605 count = ipf->ipf_count; 12606 ipf = ipf->ipf_hash_next; 12607 if (ipf != NULL) 12608 ipf->ipf_ptphn = ipfp; 12609 ipfp[0] = ipf; 12610 atomic_add_32(&ill->ill_frag_count, -count); 12611 ASSERT(ipfb->ipfb_count >= count); 12612 ipfb->ipfb_count -= count; 12613 ipfb->ipfb_frag_pkts--; 12614 mutex_exit(&ipfb->ipfb_lock); 12615 /* Ditch the frag header. */ 12616 mp = mp1->b_cont; 12617 12618 freeb(mp1); 12619 12620 /* Restore original IP length in header. */ 12621 packet_size = (uint32_t)msgdsize(mp); 12622 if (packet_size > IP_MAXPACKET) { 12623 freemsg(mp); 12624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12625 return (B_FALSE); 12626 } 12627 12628 if (DB_REF(mp) > 1) { 12629 mblk_t *mp2 = copymsg(mp); 12630 12631 freemsg(mp); 12632 if (mp2 == NULL) { 12633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12634 return (B_FALSE); 12635 } 12636 mp = mp2; 12637 } 12638 ipha = (ipha_t *)mp->b_rptr; 12639 12640 ipha->ipha_length = htons((uint16_t)packet_size); 12641 /* We're now complete, zip the frag state */ 12642 ipha->ipha_fragment_offset_and_flags = 0; 12643 /* Record the ECN info. */ 12644 ipha->ipha_type_of_service &= 0xFC; 12645 ipha->ipha_type_of_service |= ecn_info; 12646 *mpp = mp; 12647 12648 /* Reassembly is successful; return checksum information if needed */ 12649 if (cksum_val != NULL) 12650 *cksum_val = sum_val; 12651 if (cksum_flags != NULL) 12652 *cksum_flags = sum_flags; 12653 12654 return (B_TRUE); 12655 } 12656 12657 /* 12658 * Perform ip header check sum update local options. 12659 * return B_TRUE if all is well, else return B_FALSE and release 12660 * the mp. caller is responsible for decrementing ire ref cnt. 12661 */ 12662 static boolean_t 12663 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12664 ip_stack_t *ipst) 12665 { 12666 mblk_t *first_mp; 12667 boolean_t mctl_present; 12668 uint16_t sum; 12669 12670 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12671 /* 12672 * Don't do the checksum if it has gone through AH/ESP 12673 * processing. 12674 */ 12675 if (!mctl_present) { 12676 sum = ip_csum_hdr(ipha); 12677 if (sum != 0) { 12678 if (ill != NULL) { 12679 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12680 } else { 12681 BUMP_MIB(&ipst->ips_ip_mib, 12682 ipIfStatsInCksumErrs); 12683 } 12684 freemsg(first_mp); 12685 return (B_FALSE); 12686 } 12687 } 12688 12689 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12690 if (mctl_present) 12691 freeb(first_mp); 12692 return (B_FALSE); 12693 } 12694 12695 return (B_TRUE); 12696 } 12697 12698 /* 12699 * All udp packet are delivered to the local host via this routine. 12700 */ 12701 void 12702 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12703 ill_t *recv_ill) 12704 { 12705 uint32_t sum; 12706 uint32_t u1; 12707 boolean_t mctl_present; 12708 conn_t *connp; 12709 mblk_t *first_mp; 12710 uint16_t *up; 12711 ill_t *ill = (ill_t *)q->q_ptr; 12712 uint16_t reass_hck_flags = 0; 12713 ip_stack_t *ipst; 12714 12715 ASSERT(recv_ill != NULL); 12716 ipst = recv_ill->ill_ipst; 12717 12718 #define rptr ((uchar_t *)ipha) 12719 12720 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12721 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12722 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12723 ASSERT(ill != NULL); 12724 12725 /* 12726 * FAST PATH for udp packets 12727 */ 12728 12729 /* u1 is # words of IP options */ 12730 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12731 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12732 12733 /* IP options present */ 12734 if (u1 != 0) 12735 goto ipoptions; 12736 12737 /* Check the IP header checksum. */ 12738 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12739 /* Clear the IP header h/w cksum flag */ 12740 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12741 } else if (!mctl_present) { 12742 /* 12743 * Don't verify header checksum if this packet is coming 12744 * back from AH/ESP as we already did it. 12745 */ 12746 #define uph ((uint16_t *)ipha) 12747 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12748 uph[6] + uph[7] + uph[8] + uph[9]; 12749 #undef uph 12750 /* finish doing IP checksum */ 12751 sum = (sum & 0xFFFF) + (sum >> 16); 12752 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12753 if (sum != 0 && sum != 0xFFFF) { 12754 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12755 freemsg(first_mp); 12756 return; 12757 } 12758 } 12759 12760 /* 12761 * Count for SNMP of inbound packets for ire. 12762 * if mctl is present this might be a secure packet and 12763 * has already been counted for in ip_proto_input(). 12764 */ 12765 if (!mctl_present) { 12766 UPDATE_IB_PKT_COUNT(ire); 12767 ire->ire_last_used_time = lbolt; 12768 } 12769 12770 /* packet part of fragmented IP packet? */ 12771 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12772 if (u1 & (IPH_MF | IPH_OFFSET)) { 12773 goto fragmented; 12774 } 12775 12776 /* u1 = IP header length (20 bytes) */ 12777 u1 = IP_SIMPLE_HDR_LENGTH; 12778 12779 /* packet does not contain complete IP & UDP headers */ 12780 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12781 goto udppullup; 12782 12783 /* up points to UDP header */ 12784 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12785 #define iphs ((uint16_t *)ipha) 12786 12787 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12788 if (up[3] != 0) { 12789 mblk_t *mp1 = mp->b_cont; 12790 boolean_t cksum_err; 12791 uint16_t hck_flags = 0; 12792 12793 /* Pseudo-header checksum */ 12794 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12795 iphs[9] + up[2]; 12796 12797 /* 12798 * Revert to software checksum calculation if the interface 12799 * isn't capable of checksum offload or if IPsec is present. 12800 */ 12801 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12802 hck_flags = DB_CKSUMFLAGS(mp); 12803 12804 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12805 IP_STAT(ipst, ip_in_sw_cksum); 12806 12807 IP_CKSUM_RECV(hck_flags, u1, 12808 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12809 (int32_t)((uchar_t *)up - rptr), 12810 mp, mp1, cksum_err); 12811 12812 if (cksum_err) { 12813 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12814 if (hck_flags & HCK_FULLCKSUM) 12815 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12816 else if (hck_flags & HCK_PARTIALCKSUM) 12817 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12818 else 12819 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12820 12821 freemsg(first_mp); 12822 return; 12823 } 12824 } 12825 12826 /* Non-fragmented broadcast or multicast packet? */ 12827 if (ire->ire_type == IRE_BROADCAST) 12828 goto udpslowpath; 12829 12830 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12831 ire->ire_zoneid, ipst)) != NULL) { 12832 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12833 IP_STAT(ipst, ip_udp_fast_path); 12834 12835 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12836 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12837 freemsg(mp); 12838 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12839 } else { 12840 if (!mctl_present) { 12841 BUMP_MIB(ill->ill_ip_mib, 12842 ipIfStatsHCInDelivers); 12843 } 12844 /* 12845 * mp and first_mp can change. 12846 */ 12847 if (ip_udp_check(q, connp, recv_ill, 12848 ipha, &mp, &first_mp, mctl_present, ire)) { 12849 /* Send it upstream */ 12850 (connp->conn_recv)(connp, mp, NULL); 12851 } 12852 } 12853 /* 12854 * freeb() cannot deal with null mblk being passed 12855 * in and first_mp can be set to null in the call 12856 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12857 */ 12858 if (mctl_present && first_mp != NULL) { 12859 freeb(first_mp); 12860 } 12861 CONN_DEC_REF(connp); 12862 return; 12863 } 12864 12865 /* 12866 * if we got here we know the packet is not fragmented and 12867 * has no options. The classifier could not find a conn_t and 12868 * most likely its an icmp packet so send it through slow path. 12869 */ 12870 12871 goto udpslowpath; 12872 12873 ipoptions: 12874 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12875 goto slow_done; 12876 } 12877 12878 UPDATE_IB_PKT_COUNT(ire); 12879 ire->ire_last_used_time = lbolt; 12880 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12881 if (u1 & (IPH_MF | IPH_OFFSET)) { 12882 fragmented: 12883 /* 12884 * "sum" and "reass_hck_flags" are non-zero if the 12885 * reassembled packet has a valid hardware computed 12886 * checksum information associated with it. 12887 */ 12888 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12889 &reass_hck_flags)) { 12890 goto slow_done; 12891 } 12892 12893 /* 12894 * Make sure that first_mp points back to mp as 12895 * the mp we came in with could have changed in 12896 * ip_rput_fragment(). 12897 */ 12898 ASSERT(!mctl_present); 12899 ipha = (ipha_t *)mp->b_rptr; 12900 first_mp = mp; 12901 } 12902 12903 /* Now we have a complete datagram, destined for this machine. */ 12904 u1 = IPH_HDR_LENGTH(ipha); 12905 /* Pull up the UDP header, if necessary. */ 12906 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12907 udppullup: 12908 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12909 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12910 freemsg(first_mp); 12911 goto slow_done; 12912 } 12913 ipha = (ipha_t *)mp->b_rptr; 12914 } 12915 12916 /* 12917 * Validate the checksum for the reassembled packet; for the 12918 * pullup case we calculate the payload checksum in software. 12919 */ 12920 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12921 if (up[3] != 0) { 12922 boolean_t cksum_err; 12923 12924 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12925 IP_STAT(ipst, ip_in_sw_cksum); 12926 12927 IP_CKSUM_RECV_REASS(reass_hck_flags, 12928 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12929 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12930 iphs[9] + up[2], sum, cksum_err); 12931 12932 if (cksum_err) { 12933 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12934 12935 if (reass_hck_flags & HCK_FULLCKSUM) 12936 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12937 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12938 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12939 else 12940 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12941 12942 freemsg(first_mp); 12943 goto slow_done; 12944 } 12945 } 12946 udpslowpath: 12947 12948 /* Clear hardware checksum flag to be safe */ 12949 DB_CKSUMFLAGS(mp) = 0; 12950 12951 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12952 (ire->ire_type == IRE_BROADCAST), 12953 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12954 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12955 12956 slow_done: 12957 IP_STAT(ipst, ip_udp_slow_path); 12958 return; 12959 12960 #undef iphs 12961 #undef rptr 12962 } 12963 12964 /* ARGSUSED */ 12965 static mblk_t * 12966 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12967 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12968 ill_rx_ring_t *ill_ring) 12969 { 12970 conn_t *connp; 12971 uint32_t sum; 12972 uint32_t u1; 12973 uint16_t *up; 12974 int offset; 12975 ssize_t len; 12976 mblk_t *mp1; 12977 boolean_t syn_present = B_FALSE; 12978 tcph_t *tcph; 12979 uint_t tcph_flags; 12980 uint_t ip_hdr_len; 12981 ill_t *ill = (ill_t *)q->q_ptr; 12982 zoneid_t zoneid = ire->ire_zoneid; 12983 boolean_t cksum_err; 12984 uint16_t hck_flags = 0; 12985 ip_stack_t *ipst = recv_ill->ill_ipst; 12986 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12987 12988 #define rptr ((uchar_t *)ipha) 12989 12990 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12991 ASSERT(ill != NULL); 12992 12993 /* 12994 * FAST PATH for tcp packets 12995 */ 12996 12997 /* u1 is # words of IP options */ 12998 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12999 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13000 13001 /* IP options present */ 13002 if (u1) { 13003 goto ipoptions; 13004 } else if (!mctl_present) { 13005 /* Check the IP header checksum. */ 13006 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 13007 /* Clear the IP header h/w cksum flag */ 13008 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13009 } else if (!mctl_present) { 13010 /* 13011 * Don't verify header checksum if this packet 13012 * is coming back from AH/ESP as we already did it. 13013 */ 13014 #define uph ((uint16_t *)ipha) 13015 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13016 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13017 #undef uph 13018 /* finish doing IP checksum */ 13019 sum = (sum & 0xFFFF) + (sum >> 16); 13020 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13021 if (sum != 0 && sum != 0xFFFF) { 13022 BUMP_MIB(ill->ill_ip_mib, 13023 ipIfStatsInCksumErrs); 13024 goto error; 13025 } 13026 } 13027 } 13028 13029 if (!mctl_present) { 13030 UPDATE_IB_PKT_COUNT(ire); 13031 ire->ire_last_used_time = lbolt; 13032 } 13033 13034 /* packet part of fragmented IP packet? */ 13035 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13036 if (u1 & (IPH_MF | IPH_OFFSET)) { 13037 goto fragmented; 13038 } 13039 13040 /* u1 = IP header length (20 bytes) */ 13041 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13042 13043 /* does packet contain IP+TCP headers? */ 13044 len = mp->b_wptr - rptr; 13045 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13046 IP_STAT(ipst, ip_tcppullup); 13047 goto tcppullup; 13048 } 13049 13050 /* TCP options present? */ 13051 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13052 13053 /* 13054 * If options need to be pulled up, then goto tcpoptions. 13055 * otherwise we are still in the fast path 13056 */ 13057 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13058 IP_STAT(ipst, ip_tcpoptions); 13059 goto tcpoptions; 13060 } 13061 13062 /* multiple mblks of tcp data? */ 13063 if ((mp1 = mp->b_cont) != NULL) { 13064 IP_STAT(ipst, ip_multipkttcp); 13065 len += msgdsize(mp1); 13066 } 13067 13068 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13069 13070 /* part of pseudo checksum */ 13071 13072 /* TCP datagram length */ 13073 u1 = len - IP_SIMPLE_HDR_LENGTH; 13074 13075 #define iphs ((uint16_t *)ipha) 13076 13077 #ifdef _BIG_ENDIAN 13078 u1 += IPPROTO_TCP; 13079 #else 13080 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13081 #endif 13082 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13083 13084 /* 13085 * Revert to software checksum calculation if the interface 13086 * isn't capable of checksum offload or if IPsec is present. 13087 */ 13088 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13089 hck_flags = DB_CKSUMFLAGS(mp); 13090 13091 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13092 IP_STAT(ipst, ip_in_sw_cksum); 13093 13094 IP_CKSUM_RECV(hck_flags, u1, 13095 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13096 (int32_t)((uchar_t *)up - rptr), 13097 mp, mp1, cksum_err); 13098 13099 if (cksum_err) { 13100 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13101 13102 if (hck_flags & HCK_FULLCKSUM) 13103 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13104 else if (hck_flags & HCK_PARTIALCKSUM) 13105 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13106 else 13107 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13108 13109 goto error; 13110 } 13111 13112 try_again: 13113 13114 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13115 zoneid, ipst)) == NULL) { 13116 /* Send the TH_RST */ 13117 goto no_conn; 13118 } 13119 13120 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13121 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13122 13123 /* 13124 * TCP FAST PATH for AF_INET socket. 13125 * 13126 * TCP fast path to avoid extra work. An AF_INET socket type 13127 * does not have facility to receive extra information via 13128 * ip_process or ip_add_info. Also, when the connection was 13129 * established, we made a check if this connection is impacted 13130 * by any global IPsec policy or per connection policy (a 13131 * policy that comes in effect later will not apply to this 13132 * connection). Since all this can be determined at the 13133 * connection establishment time, a quick check of flags 13134 * can avoid extra work. 13135 */ 13136 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13137 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13138 ASSERT(first_mp == mp); 13139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13140 if (tcph_flags != (TH_SYN | TH_ACK)) { 13141 SET_SQUEUE(mp, tcp_rput_data, connp); 13142 return (mp); 13143 } 13144 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13145 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13146 SET_SQUEUE(mp, tcp_input, connp); 13147 return (mp); 13148 } 13149 13150 if (tcph_flags == TH_SYN) { 13151 if (IPCL_IS_TCP(connp)) { 13152 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13153 DB_CKSUMSTART(mp) = 13154 (intptr_t)ip_squeue_get(ill_ring); 13155 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13156 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13157 BUMP_MIB(ill->ill_ip_mib, 13158 ipIfStatsHCInDelivers); 13159 SET_SQUEUE(mp, connp->conn_recv, connp); 13160 return (mp); 13161 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13162 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13163 BUMP_MIB(ill->ill_ip_mib, 13164 ipIfStatsHCInDelivers); 13165 ip_squeue_enter_unbound++; 13166 SET_SQUEUE(mp, tcp_conn_request_unbound, 13167 connp); 13168 return (mp); 13169 } 13170 syn_present = B_TRUE; 13171 } 13172 } 13173 13174 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13175 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13176 13177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13178 /* No need to send this packet to TCP */ 13179 if ((flags & TH_RST) || (flags & TH_URG)) { 13180 CONN_DEC_REF(connp); 13181 freemsg(first_mp); 13182 return (NULL); 13183 } 13184 if (flags & TH_ACK) { 13185 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13186 ipst->ips_netstack->netstack_tcp, connp); 13187 CONN_DEC_REF(connp); 13188 return (NULL); 13189 } 13190 13191 CONN_DEC_REF(connp); 13192 freemsg(first_mp); 13193 return (NULL); 13194 } 13195 13196 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13197 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13198 ipha, NULL, mctl_present); 13199 if (first_mp == NULL) { 13200 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13201 CONN_DEC_REF(connp); 13202 return (NULL); 13203 } 13204 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13205 ASSERT(syn_present); 13206 if (mctl_present) { 13207 ASSERT(first_mp != mp); 13208 first_mp->b_datap->db_struioflag |= 13209 STRUIO_POLICY; 13210 } else { 13211 ASSERT(first_mp == mp); 13212 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13213 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13214 } 13215 } else { 13216 /* 13217 * Discard first_mp early since we're dealing with a 13218 * fully-connected conn_t and tcp doesn't do policy in 13219 * this case. 13220 */ 13221 if (mctl_present) { 13222 freeb(first_mp); 13223 mctl_present = B_FALSE; 13224 } 13225 first_mp = mp; 13226 } 13227 } 13228 13229 /* Initiate IPPF processing for fastpath */ 13230 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13231 uint32_t ill_index; 13232 13233 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13234 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13235 if (mp == NULL) { 13236 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13237 "deferred/dropped during IPPF processing\n")); 13238 CONN_DEC_REF(connp); 13239 if (mctl_present) 13240 freeb(first_mp); 13241 return (NULL); 13242 } else if (mctl_present) { 13243 /* 13244 * ip_process might return a new mp. 13245 */ 13246 ASSERT(first_mp != mp); 13247 first_mp->b_cont = mp; 13248 } else { 13249 first_mp = mp; 13250 } 13251 13252 } 13253 13254 if (!syn_present && connp->conn_ip_recvpktinfo) { 13255 /* 13256 * TCP does not support IP_RECVPKTINFO for v4 so lets 13257 * make sure IPF_RECVIF is passed to ip_add_info. 13258 */ 13259 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13260 IPCL_ZONEID(connp), ipst); 13261 if (mp == NULL) { 13262 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13263 CONN_DEC_REF(connp); 13264 if (mctl_present) 13265 freeb(first_mp); 13266 return (NULL); 13267 } else if (mctl_present) { 13268 /* 13269 * ip_add_info might return a new mp. 13270 */ 13271 ASSERT(first_mp != mp); 13272 first_mp->b_cont = mp; 13273 } else { 13274 first_mp = mp; 13275 } 13276 } 13277 13278 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13279 if (IPCL_IS_TCP(connp)) { 13280 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13281 return (first_mp); 13282 } else { 13283 /* SOCK_RAW, IPPROTO_TCP case */ 13284 (connp->conn_recv)(connp, first_mp, NULL); 13285 CONN_DEC_REF(connp); 13286 return (NULL); 13287 } 13288 13289 no_conn: 13290 /* Initiate IPPf processing, if needed. */ 13291 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13292 uint32_t ill_index; 13293 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13294 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13295 if (first_mp == NULL) { 13296 return (NULL); 13297 } 13298 } 13299 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13300 13301 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13302 ipst->ips_netstack->netstack_tcp, NULL); 13303 return (NULL); 13304 ipoptions: 13305 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13306 goto slow_done; 13307 } 13308 13309 UPDATE_IB_PKT_COUNT(ire); 13310 ire->ire_last_used_time = lbolt; 13311 13312 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13313 if (u1 & (IPH_MF | IPH_OFFSET)) { 13314 fragmented: 13315 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13316 if (mctl_present) 13317 freeb(first_mp); 13318 goto slow_done; 13319 } 13320 /* 13321 * Make sure that first_mp points back to mp as 13322 * the mp we came in with could have changed in 13323 * ip_rput_fragment(). 13324 */ 13325 ASSERT(!mctl_present); 13326 ipha = (ipha_t *)mp->b_rptr; 13327 first_mp = mp; 13328 } 13329 13330 /* Now we have a complete datagram, destined for this machine. */ 13331 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13332 13333 len = mp->b_wptr - mp->b_rptr; 13334 /* Pull up a minimal TCP header, if necessary. */ 13335 if (len < (u1 + 20)) { 13336 tcppullup: 13337 if (!pullupmsg(mp, u1 + 20)) { 13338 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13339 goto error; 13340 } 13341 ipha = (ipha_t *)mp->b_rptr; 13342 len = mp->b_wptr - mp->b_rptr; 13343 } 13344 13345 /* 13346 * Extract the offset field from the TCP header. As usual, we 13347 * try to help the compiler more than the reader. 13348 */ 13349 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13350 if (offset != 5) { 13351 tcpoptions: 13352 if (offset < 5) { 13353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13354 goto error; 13355 } 13356 /* 13357 * There must be TCP options. 13358 * Make sure we can grab them. 13359 */ 13360 offset <<= 2; 13361 offset += u1; 13362 if (len < offset) { 13363 if (!pullupmsg(mp, offset)) { 13364 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13365 goto error; 13366 } 13367 ipha = (ipha_t *)mp->b_rptr; 13368 len = mp->b_wptr - rptr; 13369 } 13370 } 13371 13372 /* Get the total packet length in len, including headers. */ 13373 if (mp->b_cont) 13374 len = msgdsize(mp); 13375 13376 /* 13377 * Check the TCP checksum by pulling together the pseudo- 13378 * header checksum, and passing it to ip_csum to be added in 13379 * with the TCP datagram. 13380 * 13381 * Since we are not using the hwcksum if available we must 13382 * clear the flag. We may come here via tcppullup or tcpoptions. 13383 * If either of these fails along the way the mblk is freed. 13384 * If this logic ever changes and mblk is reused to say send 13385 * ICMP's back, then this flag may need to be cleared in 13386 * other places as well. 13387 */ 13388 DB_CKSUMFLAGS(mp) = 0; 13389 13390 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13391 13392 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13393 #ifdef _BIG_ENDIAN 13394 u1 += IPPROTO_TCP; 13395 #else 13396 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13397 #endif 13398 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13399 /* 13400 * Not M_DATA mblk or its a dup, so do the checksum now. 13401 */ 13402 IP_STAT(ipst, ip_in_sw_cksum); 13403 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13404 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13405 goto error; 13406 } 13407 13408 IP_STAT(ipst, ip_tcp_slow_path); 13409 goto try_again; 13410 #undef iphs 13411 #undef rptr 13412 13413 error: 13414 freemsg(first_mp); 13415 slow_done: 13416 return (NULL); 13417 } 13418 13419 /* ARGSUSED */ 13420 static void 13421 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13422 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13423 { 13424 conn_t *connp; 13425 uint32_t sum; 13426 uint32_t u1; 13427 ssize_t len; 13428 sctp_hdr_t *sctph; 13429 zoneid_t zoneid = ire->ire_zoneid; 13430 uint32_t pktsum; 13431 uint32_t calcsum; 13432 uint32_t ports; 13433 in6_addr_t map_src, map_dst; 13434 ill_t *ill = (ill_t *)q->q_ptr; 13435 ip_stack_t *ipst; 13436 sctp_stack_t *sctps; 13437 boolean_t sctp_csum_err = B_FALSE; 13438 13439 ASSERT(recv_ill != NULL); 13440 ipst = recv_ill->ill_ipst; 13441 sctps = ipst->ips_netstack->netstack_sctp; 13442 13443 #define rptr ((uchar_t *)ipha) 13444 13445 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13446 ASSERT(ill != NULL); 13447 13448 /* u1 is # words of IP options */ 13449 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13450 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13451 13452 /* IP options present */ 13453 if (u1 > 0) { 13454 goto ipoptions; 13455 } else { 13456 /* Check the IP header checksum. */ 13457 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13458 !mctl_present) { 13459 #define uph ((uint16_t *)ipha) 13460 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13461 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13462 #undef uph 13463 /* finish doing IP checksum */ 13464 sum = (sum & 0xFFFF) + (sum >> 16); 13465 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13466 /* 13467 * Don't verify header checksum if this packet 13468 * is coming back from AH/ESP as we already did it. 13469 */ 13470 if (sum != 0 && sum != 0xFFFF) { 13471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13472 goto error; 13473 } 13474 } 13475 /* 13476 * Since there is no SCTP h/w cksum support yet, just 13477 * clear the flag. 13478 */ 13479 DB_CKSUMFLAGS(mp) = 0; 13480 } 13481 13482 /* 13483 * Don't verify header checksum if this packet is coming 13484 * back from AH/ESP as we already did it. 13485 */ 13486 if (!mctl_present) { 13487 UPDATE_IB_PKT_COUNT(ire); 13488 ire->ire_last_used_time = lbolt; 13489 } 13490 13491 /* packet part of fragmented IP packet? */ 13492 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13493 if (u1 & (IPH_MF | IPH_OFFSET)) 13494 goto fragmented; 13495 13496 /* u1 = IP header length (20 bytes) */ 13497 u1 = IP_SIMPLE_HDR_LENGTH; 13498 13499 find_sctp_client: 13500 /* Pullup if we don't have the sctp common header. */ 13501 len = MBLKL(mp); 13502 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13503 if (mp->b_cont == NULL || 13504 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13505 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13506 goto error; 13507 } 13508 ipha = (ipha_t *)mp->b_rptr; 13509 len = MBLKL(mp); 13510 } 13511 13512 sctph = (sctp_hdr_t *)(rptr + u1); 13513 #ifdef DEBUG 13514 if (!skip_sctp_cksum) { 13515 #endif 13516 pktsum = sctph->sh_chksum; 13517 sctph->sh_chksum = 0; 13518 calcsum = sctp_cksum(mp, u1); 13519 sctph->sh_chksum = pktsum; 13520 if (calcsum != pktsum) 13521 sctp_csum_err = B_TRUE; 13522 #ifdef DEBUG /* skip_sctp_cksum */ 13523 } 13524 #endif 13525 /* get the ports */ 13526 ports = *(uint32_t *)&sctph->sh_sport; 13527 13528 IRE_REFRELE(ire); 13529 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13530 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13531 if (sctp_csum_err) { 13532 /* 13533 * No potential sctp checksum errors go to the Sun 13534 * sctp stack however they might be Adler-32 summed 13535 * packets a userland stack bound to a raw IP socket 13536 * could reasonably use. Note though that Adler-32 is 13537 * a long deprecated algorithm and customer sctp 13538 * networks should eventually migrate to CRC-32 at 13539 * which time this facility should be removed. 13540 */ 13541 flags |= IP_FF_SCTP_CSUM_ERR; 13542 goto no_conn; 13543 } 13544 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13545 sctps)) == NULL) { 13546 /* Check for raw socket or OOTB handling */ 13547 goto no_conn; 13548 } 13549 13550 /* Found a client; up it goes */ 13551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13552 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13553 return; 13554 13555 no_conn: 13556 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13557 ports, mctl_present, flags, B_TRUE, zoneid); 13558 return; 13559 13560 ipoptions: 13561 DB_CKSUMFLAGS(mp) = 0; 13562 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13563 goto slow_done; 13564 13565 UPDATE_IB_PKT_COUNT(ire); 13566 ire->ire_last_used_time = lbolt; 13567 13568 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13569 if (u1 & (IPH_MF | IPH_OFFSET)) { 13570 fragmented: 13571 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13572 goto slow_done; 13573 /* 13574 * Make sure that first_mp points back to mp as 13575 * the mp we came in with could have changed in 13576 * ip_rput_fragment(). 13577 */ 13578 ASSERT(!mctl_present); 13579 ipha = (ipha_t *)mp->b_rptr; 13580 first_mp = mp; 13581 } 13582 13583 /* Now we have a complete datagram, destined for this machine. */ 13584 u1 = IPH_HDR_LENGTH(ipha); 13585 goto find_sctp_client; 13586 #undef iphs 13587 #undef rptr 13588 13589 error: 13590 freemsg(first_mp); 13591 slow_done: 13592 IRE_REFRELE(ire); 13593 } 13594 13595 #define VER_BITS 0xF0 13596 #define VERSION_6 0x60 13597 13598 static boolean_t 13599 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13600 ipaddr_t *dstp, ip_stack_t *ipst) 13601 { 13602 uint_t opt_len; 13603 ipha_t *ipha; 13604 ssize_t len; 13605 uint_t pkt_len; 13606 13607 ASSERT(ill != NULL); 13608 IP_STAT(ipst, ip_ipoptions); 13609 ipha = *iphapp; 13610 13611 #define rptr ((uchar_t *)ipha) 13612 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13613 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13615 freemsg(mp); 13616 return (B_FALSE); 13617 } 13618 13619 /* multiple mblk or too short */ 13620 pkt_len = ntohs(ipha->ipha_length); 13621 13622 /* Get the number of words of IP options in the IP header. */ 13623 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13624 if (opt_len) { 13625 /* IP Options present! Validate and process. */ 13626 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13628 goto done; 13629 } 13630 /* 13631 * Recompute complete header length and make sure we 13632 * have access to all of it. 13633 */ 13634 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13635 if (len > (mp->b_wptr - rptr)) { 13636 if (len > pkt_len) { 13637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13638 goto done; 13639 } 13640 if (!pullupmsg(mp, len)) { 13641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13642 goto done; 13643 } 13644 ipha = (ipha_t *)mp->b_rptr; 13645 } 13646 /* 13647 * Go off to ip_rput_options which returns the next hop 13648 * destination address, which may have been affected 13649 * by source routing. 13650 */ 13651 IP_STAT(ipst, ip_opt); 13652 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13654 return (B_FALSE); 13655 } 13656 } 13657 *iphapp = ipha; 13658 return (B_TRUE); 13659 done: 13660 /* clear b_prev - used by ip_mroute_decap */ 13661 mp->b_prev = NULL; 13662 freemsg(mp); 13663 return (B_FALSE); 13664 #undef rptr 13665 } 13666 13667 /* 13668 * Deal with the fact that there is no ire for the destination. 13669 */ 13670 static ire_t * 13671 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13672 { 13673 ipha_t *ipha; 13674 ill_t *ill; 13675 ire_t *ire; 13676 ip_stack_t *ipst; 13677 enum ire_forward_action ret_action; 13678 13679 ipha = (ipha_t *)mp->b_rptr; 13680 ill = (ill_t *)q->q_ptr; 13681 13682 ASSERT(ill != NULL); 13683 ipst = ill->ill_ipst; 13684 13685 /* 13686 * No IRE for this destination, so it can't be for us. 13687 * Unless we are forwarding, drop the packet. 13688 * We have to let source routed packets through 13689 * since we don't yet know if they are 'ping -l' 13690 * packets i.e. if they will go out over the 13691 * same interface as they came in on. 13692 */ 13693 if (ll_multicast) { 13694 freemsg(mp); 13695 return (NULL); 13696 } 13697 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13699 freemsg(mp); 13700 return (NULL); 13701 } 13702 13703 /* 13704 * Mark this packet as having originated externally. 13705 * 13706 * For non-forwarding code path, ire_send later double 13707 * checks this interface to see if it is still exists 13708 * post-ARP resolution. 13709 * 13710 * Also, IPQOS uses this to differentiate between 13711 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13712 * QOS packet processing in ip_wput_attach_llhdr(). 13713 * The QoS module can mark the b_band for a fastpath message 13714 * or the dl_priority field in a unitdata_req header for 13715 * CoS marking. This info can only be found in 13716 * ip_wput_attach_llhdr(). 13717 */ 13718 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13719 /* 13720 * Clear the indication that this may have a hardware checksum 13721 * as we are not using it 13722 */ 13723 DB_CKSUMFLAGS(mp) = 0; 13724 13725 ire = ire_forward(dst, &ret_action, NULL, NULL, 13726 msg_getlabel(mp), ipst); 13727 13728 if (ire == NULL && ret_action == Forward_check_multirt) { 13729 /* Let ip_newroute handle CGTP */ 13730 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13731 return (NULL); 13732 } 13733 13734 if (ire != NULL) 13735 return (ire); 13736 13737 mp->b_prev = mp->b_next = 0; 13738 13739 if (ret_action == Forward_blackhole) { 13740 freemsg(mp); 13741 return (NULL); 13742 } 13743 /* send icmp unreachable */ 13744 q = WR(q); 13745 /* Sent by forwarding path, and router is global zone */ 13746 if (ip_source_routed(ipha, ipst)) { 13747 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13748 GLOBAL_ZONEID, ipst); 13749 } else { 13750 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13751 ipst); 13752 } 13753 13754 return (NULL); 13755 13756 } 13757 13758 /* 13759 * check ip header length and align it. 13760 */ 13761 static boolean_t 13762 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13763 { 13764 ssize_t len; 13765 ill_t *ill; 13766 ipha_t *ipha; 13767 13768 len = MBLKL(mp); 13769 13770 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13771 ill = (ill_t *)q->q_ptr; 13772 13773 if (!OK_32PTR(mp->b_rptr)) 13774 IP_STAT(ipst, ip_notaligned1); 13775 else 13776 IP_STAT(ipst, ip_notaligned2); 13777 /* Guard against bogus device drivers */ 13778 if (len < 0) { 13779 /* clear b_prev - used by ip_mroute_decap */ 13780 mp->b_prev = NULL; 13781 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13782 freemsg(mp); 13783 return (B_FALSE); 13784 } 13785 13786 if (ip_rput_pullups++ == 0) { 13787 ipha = (ipha_t *)mp->b_rptr; 13788 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13789 "ip_check_and_align_header: %s forced us to " 13790 " pullup pkt, hdr len %ld, hdr addr %p", 13791 ill->ill_name, len, (void *)ipha); 13792 } 13793 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13794 /* clear b_prev - used by ip_mroute_decap */ 13795 mp->b_prev = NULL; 13796 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13797 freemsg(mp); 13798 return (B_FALSE); 13799 } 13800 } 13801 return (B_TRUE); 13802 } 13803 13804 /* 13805 * Handle the situation where a packet came in on `ill' but matched an IRE 13806 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13807 * for interface statistics. 13808 */ 13809 ire_t * 13810 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13811 { 13812 ire_t *new_ire; 13813 ill_t *ire_ill; 13814 uint_t ifindex; 13815 ip_stack_t *ipst = ill->ill_ipst; 13816 boolean_t strict_check = B_FALSE; 13817 13818 /* 13819 * IPMP common case: if IRE and ILL are in the same group, there's no 13820 * issue (e.g. packet received on an underlying interface matched an 13821 * IRE_LOCAL on its associated group interface). 13822 */ 13823 if (ire->ire_rfq != NULL && 13824 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13825 return (ire); 13826 } 13827 13828 /* 13829 * Do another ire lookup here, using the ingress ill, to see if the 13830 * interface is in a usesrc group. 13831 * As long as the ills belong to the same group, we don't consider 13832 * them to be arriving on the wrong interface. Thus, if the switch 13833 * is doing inbound load spreading, we won't drop packets when the 13834 * ip*_strict_dst_multihoming switch is on. 13835 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13836 * where the local address may not be unique. In this case we were 13837 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13838 * actually returned. The new lookup, which is more specific, should 13839 * only find the IRE_LOCAL associated with the ingress ill if one 13840 * exists. 13841 */ 13842 13843 if (ire->ire_ipversion == IPV4_VERSION) { 13844 if (ipst->ips_ip_strict_dst_multihoming) 13845 strict_check = B_TRUE; 13846 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13847 ill->ill_ipif, ALL_ZONES, NULL, 13848 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13849 } else { 13850 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13851 if (ipst->ips_ipv6_strict_dst_multihoming) 13852 strict_check = B_TRUE; 13853 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13854 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13855 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13856 } 13857 /* 13858 * If the same ire that was returned in ip_input() is found then this 13859 * is an indication that usesrc groups are in use. The packet 13860 * arrived on a different ill in the group than the one associated with 13861 * the destination address. If a different ire was found then the same 13862 * IP address must be hosted on multiple ills. This is possible with 13863 * unnumbered point2point interfaces. We switch to use this new ire in 13864 * order to have accurate interface statistics. 13865 */ 13866 if (new_ire != NULL) { 13867 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13868 ire_refrele(ire); 13869 ire = new_ire; 13870 } else { 13871 ire_refrele(new_ire); 13872 } 13873 return (ire); 13874 } else if ((ire->ire_rfq == NULL) && 13875 (ire->ire_ipversion == IPV4_VERSION)) { 13876 /* 13877 * The best match could have been the original ire which 13878 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13879 * the strict multihoming checks are irrelevant as we consider 13880 * local addresses hosted on lo0 to be interface agnostic. We 13881 * only expect a null ire_rfq on IREs which are associated with 13882 * lo0 hence we can return now. 13883 */ 13884 return (ire); 13885 } 13886 13887 /* 13888 * Chase pointers once and store locally. 13889 */ 13890 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13891 (ill_t *)(ire->ire_rfq->q_ptr); 13892 ifindex = ill->ill_usesrc_ifindex; 13893 13894 /* 13895 * Check if it's a legal address on the 'usesrc' interface. 13896 */ 13897 if ((ifindex != 0) && (ire_ill != NULL) && 13898 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13899 return (ire); 13900 } 13901 13902 /* 13903 * If the ip*_strict_dst_multihoming switch is on then we can 13904 * only accept this packet if the interface is marked as routing. 13905 */ 13906 if (!(strict_check)) 13907 return (ire); 13908 13909 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13910 ILLF_ROUTER) != 0) { 13911 return (ire); 13912 } 13913 13914 ire_refrele(ire); 13915 return (NULL); 13916 } 13917 13918 /* 13919 * 13920 * This is the fast forward path. If we are here, we dont need to 13921 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13922 * needed to find the nexthop in this case is much simpler 13923 */ 13924 ire_t * 13925 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13926 { 13927 ipha_t *ipha; 13928 ire_t *src_ire; 13929 ill_t *stq_ill; 13930 uint_t hlen; 13931 uint_t pkt_len; 13932 uint32_t sum; 13933 queue_t *dev_q; 13934 ip_stack_t *ipst = ill->ill_ipst; 13935 mblk_t *fpmp; 13936 enum ire_forward_action ret_action; 13937 13938 ipha = (ipha_t *)mp->b_rptr; 13939 13940 if (ire != NULL && 13941 ire->ire_zoneid != GLOBAL_ZONEID && 13942 ire->ire_zoneid != ALL_ZONES) { 13943 /* 13944 * Should only use IREs that are visible to the global 13945 * zone for forwarding. 13946 */ 13947 ire_refrele(ire); 13948 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13949 /* 13950 * ire_cache_lookup() can return ire of IRE_LOCAL in 13951 * transient cases. In such case, just drop the packet 13952 */ 13953 if (ire->ire_type != IRE_CACHE) 13954 goto drop; 13955 } 13956 13957 /* 13958 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13959 * The loopback address check for both src and dst has already 13960 * been checked in ip_input 13961 */ 13962 13963 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13965 goto drop; 13966 } 13967 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13968 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13969 13970 if (src_ire != NULL) { 13971 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13972 ire_refrele(src_ire); 13973 goto drop; 13974 } 13975 13976 /* No ire cache of nexthop. So first create one */ 13977 if (ire == NULL) { 13978 13979 ire = ire_forward_simple(dst, &ret_action, ipst); 13980 13981 /* 13982 * We only come to ip_fast_forward if ip_cgtp_filter 13983 * is not set. So ire_forward() should not return with 13984 * Forward_check_multirt as the next action. 13985 */ 13986 ASSERT(ret_action != Forward_check_multirt); 13987 if (ire == NULL) { 13988 /* An attempt was made to forward the packet */ 13989 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13990 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13991 mp->b_prev = mp->b_next = 0; 13992 /* send icmp unreachable */ 13993 /* Sent by forwarding path, and router is global zone */ 13994 if (ret_action == Forward_ret_icmp_err) { 13995 if (ip_source_routed(ipha, ipst)) { 13996 icmp_unreachable(ill->ill_wq, mp, 13997 ICMP_SOURCE_ROUTE_FAILED, 13998 GLOBAL_ZONEID, ipst); 13999 } else { 14000 icmp_unreachable(ill->ill_wq, mp, 14001 ICMP_HOST_UNREACHABLE, 14002 GLOBAL_ZONEID, ipst); 14003 } 14004 } else { 14005 freemsg(mp); 14006 } 14007 return (NULL); 14008 } 14009 } 14010 14011 /* 14012 * Forwarding fastpath exception case: 14013 * If any of the following are true, we take the slowpath: 14014 * o forwarding is not enabled 14015 * o incoming and outgoing interface are the same, or in the same 14016 * IPMP group. 14017 * o corresponding ire is in incomplete state 14018 * o packet needs fragmentation 14019 * o ARP cache is not resolved 14020 * 14021 * The codeflow from here on is thus: 14022 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14023 */ 14024 pkt_len = ntohs(ipha->ipha_length); 14025 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14026 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14027 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 14028 (ire->ire_nce == NULL) || 14029 (pkt_len > ire->ire_max_frag) || 14030 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14031 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14032 ipha->ipha_ttl <= 1) { 14033 ip_rput_process_forward(ill->ill_rq, mp, ire, 14034 ipha, ill, B_FALSE, B_TRUE); 14035 return (ire); 14036 } 14037 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14038 14039 DTRACE_PROBE4(ip4__forwarding__start, 14040 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14041 14042 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14043 ipst->ips_ipv4firewall_forwarding, 14044 ill, stq_ill, ipha, mp, mp, 0, ipst); 14045 14046 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14047 14048 if (mp == NULL) 14049 goto drop; 14050 14051 mp->b_datap->db_struioun.cksum.flags = 0; 14052 /* Adjust the checksum to reflect the ttl decrement. */ 14053 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14054 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14055 ipha->ipha_ttl--; 14056 14057 /* 14058 * Write the link layer header. We can do this safely here, 14059 * because we have already tested to make sure that the IP 14060 * policy is not set, and that we have a fast path destination 14061 * header. 14062 */ 14063 mp->b_rptr -= hlen; 14064 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14065 14066 UPDATE_IB_PKT_COUNT(ire); 14067 ire->ire_last_used_time = lbolt; 14068 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14069 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14070 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14071 14072 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14073 dev_q = ire->ire_stq->q_next; 14074 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14075 goto indiscard; 14076 } 14077 14078 DTRACE_PROBE4(ip4__physical__out__start, 14079 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14080 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14081 ipst->ips_ipv4firewall_physical_out, 14082 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14083 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14084 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14085 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14086 ip6_t *, NULL, int, 0); 14087 14088 if (mp != NULL) { 14089 if (ipst->ips_ipobs_enabled) { 14090 zoneid_t szone; 14091 14092 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14093 ipst, ALL_ZONES); 14094 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14095 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14096 } 14097 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14098 } 14099 return (ire); 14100 14101 indiscard: 14102 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14103 drop: 14104 if (mp != NULL) 14105 freemsg(mp); 14106 return (ire); 14107 14108 } 14109 14110 /* 14111 * This function is called in the forwarding slowpath, when 14112 * either the ire lacks the link-layer address, or the packet needs 14113 * further processing(eg. fragmentation), before transmission. 14114 */ 14115 14116 static void 14117 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14118 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14119 { 14120 queue_t *dev_q; 14121 ire_t *src_ire; 14122 ip_stack_t *ipst = ill->ill_ipst; 14123 boolean_t same_illgrp = B_FALSE; 14124 14125 ASSERT(ire->ire_stq != NULL); 14126 14127 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14128 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14129 14130 /* 14131 * If the caller of this function is ip_fast_forward() skip the 14132 * next three checks as it does not apply. 14133 */ 14134 if (from_ip_fast_forward) 14135 goto skip; 14136 14137 if (ll_multicast != 0) { 14138 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14139 goto drop_pkt; 14140 } 14141 14142 /* 14143 * check if ipha_src is a broadcast address. Note that this 14144 * check is redundant when we get here from ip_fast_forward() 14145 * which has already done this check. However, since we can 14146 * also get here from ip_rput_process_broadcast() or, for 14147 * for the slow path through ip_fast_forward(), we perform 14148 * the check again for code-reusability 14149 */ 14150 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14151 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14152 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14153 if (src_ire != NULL) 14154 ire_refrele(src_ire); 14155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14156 ip2dbg(("ip_rput_process_forward: Received packet with" 14157 " bad src/dst address on %s\n", ill->ill_name)); 14158 goto drop_pkt; 14159 } 14160 14161 /* 14162 * Check if we want to forward this one at this time. 14163 * We allow source routed packets on a host provided that 14164 * they go out the same ill or illgrp as they came in on. 14165 * 14166 * XXX To be quicker, we may wish to not chase pointers to 14167 * get the ILLF_ROUTER flag and instead store the 14168 * forwarding policy in the ire. An unfortunate 14169 * side-effect of that would be requiring an ire flush 14170 * whenever the ILLF_ROUTER flag changes. 14171 */ 14172 skip: 14173 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14174 14175 if (((ill->ill_flags & 14176 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14177 !(ip_source_routed(ipha, ipst) && 14178 (ire->ire_rfq == q || same_illgrp))) { 14179 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14180 if (ip_source_routed(ipha, ipst)) { 14181 q = WR(q); 14182 /* 14183 * Clear the indication that this may have 14184 * hardware checksum as we are not using it. 14185 */ 14186 DB_CKSUMFLAGS(mp) = 0; 14187 /* Sent by forwarding path, and router is global zone */ 14188 icmp_unreachable(q, mp, 14189 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14190 return; 14191 } 14192 goto drop_pkt; 14193 } 14194 14195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14196 14197 /* Packet is being forwarded. Turning off hwcksum flag. */ 14198 DB_CKSUMFLAGS(mp) = 0; 14199 if (ipst->ips_ip_g_send_redirects) { 14200 /* 14201 * Check whether the incoming interface and outgoing 14202 * interface is part of the same group. If so, 14203 * send redirects. 14204 * 14205 * Check the source address to see if it originated 14206 * on the same logical subnet it is going back out on. 14207 * If so, we should be able to send it a redirect. 14208 * Avoid sending a redirect if the destination 14209 * is directly connected (i.e., ipha_dst is the same 14210 * as ire_gateway_addr or the ire_addr of the 14211 * nexthop IRE_CACHE ), or if the packet was source 14212 * routed out this interface. 14213 */ 14214 ipaddr_t src, nhop; 14215 mblk_t *mp1; 14216 ire_t *nhop_ire = NULL; 14217 14218 /* 14219 * Check whether ire_rfq and q are from the same ill or illgrp. 14220 * If so, send redirects. 14221 */ 14222 if ((ire->ire_rfq == q || same_illgrp) && 14223 !ip_source_routed(ipha, ipst)) { 14224 14225 nhop = (ire->ire_gateway_addr != 0 ? 14226 ire->ire_gateway_addr : ire->ire_addr); 14227 14228 if (ipha->ipha_dst == nhop) { 14229 /* 14230 * We avoid sending a redirect if the 14231 * destination is directly connected 14232 * because it is possible that multiple 14233 * IP subnets may have been configured on 14234 * the link, and the source may not 14235 * be on the same subnet as ip destination, 14236 * even though they are on the same 14237 * physical link. 14238 */ 14239 goto sendit; 14240 } 14241 14242 src = ipha->ipha_src; 14243 14244 /* 14245 * We look up the interface ire for the nexthop, 14246 * to see if ipha_src is in the same subnet 14247 * as the nexthop. 14248 * 14249 * Note that, if, in the future, IRE_CACHE entries 14250 * are obsoleted, this lookup will not be needed, 14251 * as the ire passed to this function will be the 14252 * same as the nhop_ire computed below. 14253 */ 14254 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14255 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14256 0, NULL, MATCH_IRE_TYPE, ipst); 14257 14258 if (nhop_ire != NULL) { 14259 if ((src & nhop_ire->ire_mask) == 14260 (nhop & nhop_ire->ire_mask)) { 14261 /* 14262 * The source is directly connected. 14263 * Just copy the ip header (which is 14264 * in the first mblk) 14265 */ 14266 mp1 = copyb(mp); 14267 if (mp1 != NULL) { 14268 icmp_send_redirect(WR(q), mp1, 14269 nhop, ipst); 14270 } 14271 } 14272 ire_refrele(nhop_ire); 14273 } 14274 } 14275 } 14276 sendit: 14277 dev_q = ire->ire_stq->q_next; 14278 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14279 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14280 freemsg(mp); 14281 return; 14282 } 14283 14284 ip_rput_forward(ire, ipha, mp, ill); 14285 return; 14286 14287 drop_pkt: 14288 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14289 freemsg(mp); 14290 } 14291 14292 ire_t * 14293 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14294 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14295 { 14296 queue_t *q; 14297 uint16_t hcksumflags; 14298 ip_stack_t *ipst = ill->ill_ipst; 14299 14300 q = *qp; 14301 14302 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14303 14304 /* 14305 * Clear the indication that this may have hardware 14306 * checksum as we are not using it for forwarding. 14307 */ 14308 hcksumflags = DB_CKSUMFLAGS(mp); 14309 DB_CKSUMFLAGS(mp) = 0; 14310 14311 /* 14312 * Directed broadcast forwarding: if the packet came in over a 14313 * different interface then it is routed out over we can forward it. 14314 */ 14315 if (ipha->ipha_protocol == IPPROTO_TCP) { 14316 ire_refrele(ire); 14317 freemsg(mp); 14318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14319 return (NULL); 14320 } 14321 /* 14322 * For multicast we have set dst to be INADDR_BROADCAST 14323 * for delivering to all STREAMS. 14324 */ 14325 if (!CLASSD(ipha->ipha_dst)) { 14326 ire_t *new_ire; 14327 ipif_t *ipif; 14328 14329 ipif = ipif_get_next_ipif(NULL, ill); 14330 if (ipif == NULL) { 14331 discard: ire_refrele(ire); 14332 freemsg(mp); 14333 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14334 return (NULL); 14335 } 14336 new_ire = ire_ctable_lookup(dst, 0, 0, 14337 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14338 ipif_refrele(ipif); 14339 14340 if (new_ire != NULL) { 14341 /* 14342 * If the matching IRE_BROADCAST is part of an IPMP 14343 * group, then drop the packet unless our ill has been 14344 * nominated to receive for the group. 14345 */ 14346 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14347 new_ire->ire_rfq != q) { 14348 ire_refrele(new_ire); 14349 goto discard; 14350 } 14351 14352 /* 14353 * In the special case of multirouted broadcast 14354 * packets, we unconditionally need to "gateway" 14355 * them to the appropriate interface here. 14356 * In the normal case, this cannot happen, because 14357 * there is no broadcast IRE tagged with the 14358 * RTF_MULTIRT flag. 14359 */ 14360 if (new_ire->ire_flags & RTF_MULTIRT) { 14361 ire_refrele(new_ire); 14362 if (ire->ire_rfq != NULL) { 14363 q = ire->ire_rfq; 14364 *qp = q; 14365 } 14366 } else { 14367 ire_refrele(ire); 14368 ire = new_ire; 14369 } 14370 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14371 if (!ipst->ips_ip_g_forward_directed_bcast) { 14372 /* 14373 * Free the message if 14374 * ip_g_forward_directed_bcast is turned 14375 * off for non-local broadcast. 14376 */ 14377 ire_refrele(ire); 14378 freemsg(mp); 14379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14380 return (NULL); 14381 } 14382 } else { 14383 /* 14384 * This CGTP packet successfully passed the 14385 * CGTP filter, but the related CGTP 14386 * broadcast IRE has not been found, 14387 * meaning that the redundant ipif is 14388 * probably down. However, if we discarded 14389 * this packet, its duplicate would be 14390 * filtered out by the CGTP filter so none 14391 * of them would get through. So we keep 14392 * going with this one. 14393 */ 14394 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14395 if (ire->ire_rfq != NULL) { 14396 q = ire->ire_rfq; 14397 *qp = q; 14398 } 14399 } 14400 } 14401 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14402 /* 14403 * Verify that there are not more then one 14404 * IRE_BROADCAST with this broadcast address which 14405 * has ire_stq set. 14406 * TODO: simplify, loop over all IRE's 14407 */ 14408 ire_t *ire1; 14409 int num_stq = 0; 14410 mblk_t *mp1; 14411 14412 /* Find the first one with ire_stq set */ 14413 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14414 for (ire1 = ire; ire1 && 14415 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14416 ire1 = ire1->ire_next) 14417 ; 14418 if (ire1) { 14419 ire_refrele(ire); 14420 ire = ire1; 14421 IRE_REFHOLD(ire); 14422 } 14423 14424 /* Check if there are additional ones with stq set */ 14425 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14426 if (ire->ire_addr != ire1->ire_addr) 14427 break; 14428 if (ire1->ire_stq) { 14429 num_stq++; 14430 break; 14431 } 14432 } 14433 rw_exit(&ire->ire_bucket->irb_lock); 14434 if (num_stq == 1 && ire->ire_stq != NULL) { 14435 ip1dbg(("ip_rput_process_broadcast: directed " 14436 "broadcast to 0x%x\n", 14437 ntohl(ire->ire_addr))); 14438 mp1 = copymsg(mp); 14439 if (mp1) { 14440 switch (ipha->ipha_protocol) { 14441 case IPPROTO_UDP: 14442 ip_udp_input(q, mp1, ipha, ire, ill); 14443 break; 14444 default: 14445 ip_proto_input(q, mp1, ipha, ire, ill, 14446 0); 14447 break; 14448 } 14449 } 14450 /* 14451 * Adjust ttl to 2 (1+1 - the forward engine 14452 * will decrement it by one. 14453 */ 14454 if (ip_csum_hdr(ipha)) { 14455 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14456 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14457 freemsg(mp); 14458 ire_refrele(ire); 14459 return (NULL); 14460 } 14461 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14462 ipha->ipha_hdr_checksum = 0; 14463 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14464 ip_rput_process_forward(q, mp, ire, ipha, 14465 ill, ll_multicast, B_FALSE); 14466 ire_refrele(ire); 14467 return (NULL); 14468 } 14469 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14470 ntohl(ire->ire_addr))); 14471 } 14472 14473 /* Restore any hardware checksum flags */ 14474 DB_CKSUMFLAGS(mp) = hcksumflags; 14475 return (ire); 14476 } 14477 14478 /* ARGSUSED */ 14479 static boolean_t 14480 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14481 int *ll_multicast, ipaddr_t *dstp) 14482 { 14483 ip_stack_t *ipst = ill->ill_ipst; 14484 14485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14486 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14487 ntohs(ipha->ipha_length)); 14488 14489 /* 14490 * So that we don't end up with dups, only one ill in an IPMP group is 14491 * nominated to receive multicast traffic. 14492 */ 14493 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14494 goto drop_pkt; 14495 14496 /* 14497 * Forward packets only if we have joined the allmulti 14498 * group on this interface. 14499 */ 14500 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14501 int retval; 14502 14503 /* 14504 * Clear the indication that this may have hardware 14505 * checksum as we are not using it. 14506 */ 14507 DB_CKSUMFLAGS(mp) = 0; 14508 retval = ip_mforward(ill, ipha, mp); 14509 /* ip_mforward updates mib variables if needed */ 14510 /* clear b_prev - used by ip_mroute_decap */ 14511 mp->b_prev = NULL; 14512 14513 switch (retval) { 14514 case 0: 14515 /* 14516 * pkt is okay and arrived on phyint. 14517 * 14518 * If we are running as a multicast router 14519 * we need to see all IGMP and/or PIM packets. 14520 */ 14521 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14522 (ipha->ipha_protocol == IPPROTO_PIM)) { 14523 goto done; 14524 } 14525 break; 14526 case -1: 14527 /* pkt is mal-formed, toss it */ 14528 goto drop_pkt; 14529 case 1: 14530 /* pkt is okay and arrived on a tunnel */ 14531 /* 14532 * If we are running a multicast router 14533 * we need to see all igmp packets. 14534 */ 14535 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14536 *dstp = INADDR_BROADCAST; 14537 *ll_multicast = 1; 14538 return (B_FALSE); 14539 } 14540 14541 goto drop_pkt; 14542 } 14543 } 14544 14545 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14546 /* 14547 * This might just be caused by the fact that 14548 * multiple IP Multicast addresses map to the same 14549 * link layer multicast - no need to increment counter! 14550 */ 14551 freemsg(mp); 14552 return (B_TRUE); 14553 } 14554 done: 14555 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14556 /* 14557 * This assumes the we deliver to all streams for multicast 14558 * and broadcast packets. 14559 */ 14560 *dstp = INADDR_BROADCAST; 14561 *ll_multicast = 1; 14562 return (B_FALSE); 14563 drop_pkt: 14564 ip2dbg(("ip_rput: drop pkt\n")); 14565 freemsg(mp); 14566 return (B_TRUE); 14567 } 14568 14569 /* 14570 * This function is used to both return an indication of whether or not 14571 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14572 * and in doing so, determine whether or not it is broadcast vs multicast. 14573 * For it to be a broadcast packet, we must have the appropriate mblk_t 14574 * hanging off the ill_t. If this is either not present or doesn't match 14575 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14576 * to be multicast. Thus NICs that have no broadcast address (or no 14577 * capability for one, such as point to point links) cannot return as 14578 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14579 * the return values simplifies the current use of the return value of this 14580 * function, which is to pass through the multicast/broadcast characteristic 14581 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14582 * changing the return value to some other symbol demands the appropriate 14583 * "translation" when hpe_flags is set prior to calling hook_run() for 14584 * packet events. 14585 */ 14586 int 14587 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14588 { 14589 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14590 mblk_t *bmp; 14591 14592 if (ind->dl_group_address) { 14593 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14594 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14595 MBLKL(mb) && 14596 (bmp = ill->ill_bcast_mp) != NULL) { 14597 dl_unitdata_req_t *dlur; 14598 uint8_t *bphys_addr; 14599 14600 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14601 if (ill->ill_sap_length < 0) 14602 bphys_addr = (uchar_t *)dlur + 14603 dlur->dl_dest_addr_offset; 14604 else 14605 bphys_addr = (uchar_t *)dlur + 14606 dlur->dl_dest_addr_offset + 14607 ill->ill_sap_length; 14608 14609 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14610 bphys_addr, ind->dl_dest_addr_length) == 0) { 14611 return (HPE_BROADCAST); 14612 } 14613 return (HPE_MULTICAST); 14614 } 14615 return (HPE_MULTICAST); 14616 } 14617 return (0); 14618 } 14619 14620 static boolean_t 14621 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14622 int *ll_multicast, mblk_t **mpp) 14623 { 14624 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14625 boolean_t must_copy = B_FALSE; 14626 struct iocblk *iocp; 14627 ipha_t *ipha; 14628 ip_stack_t *ipst = ill->ill_ipst; 14629 14630 #define rptr ((uchar_t *)ipha) 14631 14632 first_mp = *first_mpp; 14633 mp = *mpp; 14634 14635 ASSERT(first_mp == mp); 14636 14637 /* 14638 * if db_ref > 1 then copymsg and free original. Packet may be 14639 * changed and do not want other entity who has a reference to this 14640 * message to trip over the changes. This is a blind change because 14641 * trying to catch all places that might change packet is too 14642 * difficult (since it may be a module above this one) 14643 * 14644 * This corresponds to the non-fast path case. We walk down the full 14645 * chain in this case, and check the db_ref count of all the dblks, 14646 * and do a copymsg if required. It is possible that the db_ref counts 14647 * of the data blocks in the mblk chain can be different. 14648 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14649 * count of 1, followed by a M_DATA block with a ref count of 2, if 14650 * 'snoop' is running. 14651 */ 14652 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14653 if (mp1->b_datap->db_ref > 1) { 14654 must_copy = B_TRUE; 14655 break; 14656 } 14657 } 14658 14659 if (must_copy) { 14660 mp1 = copymsg(mp); 14661 if (mp1 == NULL) { 14662 for (mp1 = mp; mp1 != NULL; 14663 mp1 = mp1->b_cont) { 14664 mp1->b_next = NULL; 14665 mp1->b_prev = NULL; 14666 } 14667 freemsg(mp); 14668 if (ill != NULL) { 14669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14670 } else { 14671 BUMP_MIB(&ipst->ips_ip_mib, 14672 ipIfStatsInDiscards); 14673 } 14674 return (B_TRUE); 14675 } 14676 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14677 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14678 /* Copy b_prev - used by ip_mroute_decap */ 14679 to_mp->b_prev = from_mp->b_prev; 14680 from_mp->b_prev = NULL; 14681 } 14682 *first_mpp = first_mp = mp1; 14683 freemsg(mp); 14684 mp = mp1; 14685 *mpp = mp1; 14686 } 14687 14688 ipha = (ipha_t *)mp->b_rptr; 14689 14690 /* 14691 * previous code has a case for M_DATA. 14692 * We want to check how that happens. 14693 */ 14694 ASSERT(first_mp->b_datap->db_type != M_DATA); 14695 switch (first_mp->b_datap->db_type) { 14696 case M_PROTO: 14697 case M_PCPROTO: 14698 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14699 DL_UNITDATA_IND) { 14700 /* Go handle anything other than data elsewhere. */ 14701 ip_rput_dlpi(q, mp); 14702 return (B_TRUE); 14703 } 14704 14705 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14706 /* Ditch the DLPI header. */ 14707 mp1 = mp->b_cont; 14708 ASSERT(first_mp == mp); 14709 *first_mpp = mp1; 14710 freeb(mp); 14711 *mpp = mp1; 14712 return (B_FALSE); 14713 case M_IOCACK: 14714 ip1dbg(("got iocack ")); 14715 iocp = (struct iocblk *)mp->b_rptr; 14716 switch (iocp->ioc_cmd) { 14717 case DL_IOC_HDR_INFO: 14718 ill = (ill_t *)q->q_ptr; 14719 ill_fastpath_ack(ill, mp); 14720 return (B_TRUE); 14721 case SIOCSTUNPARAM: 14722 case OSIOCSTUNPARAM: 14723 /* Go through qwriter_ip */ 14724 break; 14725 case SIOCGTUNPARAM: 14726 case OSIOCGTUNPARAM: 14727 ip_rput_other(NULL, q, mp, NULL); 14728 return (B_TRUE); 14729 default: 14730 putnext(q, mp); 14731 return (B_TRUE); 14732 } 14733 /* FALLTHRU */ 14734 case M_ERROR: 14735 case M_HANGUP: 14736 /* 14737 * Since this is on the ill stream we unconditionally 14738 * bump up the refcount 14739 */ 14740 ill_refhold(ill); 14741 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14742 return (B_TRUE); 14743 case M_CTL: 14744 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14745 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14746 IPHADA_M_CTL)) { 14747 /* 14748 * It's an IPsec accelerated packet. 14749 * Make sure that the ill from which we received the 14750 * packet has enabled IPsec hardware acceleration. 14751 */ 14752 if (!(ill->ill_capabilities & 14753 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14754 /* IPsec kstats: bean counter */ 14755 freemsg(mp); 14756 return (B_TRUE); 14757 } 14758 14759 /* 14760 * Make mp point to the mblk following the M_CTL, 14761 * then process according to type of mp. 14762 * After this processing, first_mp will point to 14763 * the data-attributes and mp to the pkt following 14764 * the M_CTL. 14765 */ 14766 mp = first_mp->b_cont; 14767 if (mp == NULL) { 14768 freemsg(first_mp); 14769 return (B_TRUE); 14770 } 14771 /* 14772 * A Hardware Accelerated packet can only be M_DATA 14773 * ESP or AH packet. 14774 */ 14775 if (mp->b_datap->db_type != M_DATA) { 14776 /* non-M_DATA IPsec accelerated packet */ 14777 IPSECHW_DEBUG(IPSECHW_PKT, 14778 ("non-M_DATA IPsec accelerated pkt\n")); 14779 freemsg(first_mp); 14780 return (B_TRUE); 14781 } 14782 ipha = (ipha_t *)mp->b_rptr; 14783 if (ipha->ipha_protocol != IPPROTO_AH && 14784 ipha->ipha_protocol != IPPROTO_ESP) { 14785 IPSECHW_DEBUG(IPSECHW_PKT, 14786 ("non-M_DATA IPsec accelerated pkt\n")); 14787 freemsg(first_mp); 14788 return (B_TRUE); 14789 } 14790 *mpp = mp; 14791 return (B_FALSE); 14792 } 14793 putnext(q, mp); 14794 return (B_TRUE); 14795 case M_IOCNAK: 14796 ip1dbg(("got iocnak ")); 14797 iocp = (struct iocblk *)mp->b_rptr; 14798 switch (iocp->ioc_cmd) { 14799 case SIOCSTUNPARAM: 14800 case OSIOCSTUNPARAM: 14801 /* 14802 * Since this is on the ill stream we unconditionally 14803 * bump up the refcount 14804 */ 14805 ill_refhold(ill); 14806 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14807 return (B_TRUE); 14808 case DL_IOC_HDR_INFO: 14809 case SIOCGTUNPARAM: 14810 case OSIOCGTUNPARAM: 14811 ip_rput_other(NULL, q, mp, NULL); 14812 return (B_TRUE); 14813 default: 14814 break; 14815 } 14816 /* FALLTHRU */ 14817 default: 14818 putnext(q, mp); 14819 return (B_TRUE); 14820 } 14821 } 14822 14823 /* Read side put procedure. Packets coming from the wire arrive here. */ 14824 void 14825 ip_rput(queue_t *q, mblk_t *mp) 14826 { 14827 ill_t *ill; 14828 union DL_primitives *dl; 14829 14830 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14831 14832 ill = (ill_t *)q->q_ptr; 14833 14834 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14835 /* 14836 * If things are opening or closing, only accept high-priority 14837 * DLPI messages. (On open ill->ill_ipif has not yet been 14838 * created; on close, things hanging off the ill may have been 14839 * freed already.) 14840 */ 14841 dl = (union DL_primitives *)mp->b_rptr; 14842 if (DB_TYPE(mp) != M_PCPROTO || 14843 dl->dl_primitive == DL_UNITDATA_IND) { 14844 /* 14845 * SIOC[GS]TUNPARAM ioctls can come here. 14846 */ 14847 inet_freemsg(mp); 14848 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14849 "ip_rput_end: q %p (%S)", q, "uninit"); 14850 return; 14851 } 14852 } 14853 14854 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14855 "ip_rput_end: q %p (%S)", q, "end"); 14856 14857 ip_input(ill, NULL, mp, NULL); 14858 } 14859 14860 static mblk_t * 14861 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14862 { 14863 mblk_t *mp1; 14864 boolean_t adjusted = B_FALSE; 14865 ip_stack_t *ipst = ill->ill_ipst; 14866 14867 IP_STAT(ipst, ip_db_ref); 14868 /* 14869 * The IP_RECVSLLA option depends on having the 14870 * link layer header. First check that: 14871 * a> the underlying device is of type ether, 14872 * since this option is currently supported only 14873 * over ethernet. 14874 * b> there is enough room to copy over the link 14875 * layer header. 14876 * 14877 * Once the checks are done, adjust rptr so that 14878 * the link layer header will be copied via 14879 * copymsg. Note that, IFT_ETHER may be returned 14880 * by some non-ethernet drivers but in this case 14881 * the second check will fail. 14882 */ 14883 if (ill->ill_type == IFT_ETHER && 14884 (mp->b_rptr - mp->b_datap->db_base) >= 14885 sizeof (struct ether_header)) { 14886 mp->b_rptr -= sizeof (struct ether_header); 14887 adjusted = B_TRUE; 14888 } 14889 mp1 = copymsg(mp); 14890 14891 if (mp1 == NULL) { 14892 mp->b_next = NULL; 14893 /* clear b_prev - used by ip_mroute_decap */ 14894 mp->b_prev = NULL; 14895 freemsg(mp); 14896 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14897 return (NULL); 14898 } 14899 14900 if (adjusted) { 14901 /* 14902 * Copy is done. Restore the pointer in 14903 * the _new_ mblk 14904 */ 14905 mp1->b_rptr += sizeof (struct ether_header); 14906 } 14907 14908 /* Copy b_prev - used by ip_mroute_decap */ 14909 mp1->b_prev = mp->b_prev; 14910 mp->b_prev = NULL; 14911 14912 /* preserve the hardware checksum flags and data, if present */ 14913 if (DB_CKSUMFLAGS(mp) != 0) { 14914 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14915 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14916 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14917 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14918 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14919 } 14920 14921 freemsg(mp); 14922 return (mp1); 14923 } 14924 14925 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14926 if (tail != NULL) \ 14927 tail->b_next = mp; \ 14928 else \ 14929 head = mp; \ 14930 tail = mp; \ 14931 cnt++; \ 14932 } 14933 14934 /* 14935 * Direct read side procedure capable of dealing with chains. GLDv3 based 14936 * drivers call this function directly with mblk chains while STREAMS 14937 * read side procedure ip_rput() calls this for single packet with ip_ring 14938 * set to NULL to process one packet at a time. 14939 * 14940 * The ill will always be valid if this function is called directly from 14941 * the driver. 14942 * 14943 * If ip_input() is called from GLDv3: 14944 * 14945 * - This must be a non-VLAN IP stream. 14946 * - 'mp' is either an untagged or a special priority-tagged packet. 14947 * - Any VLAN tag that was in the MAC header has been stripped. 14948 * 14949 * If the IP header in packet is not 32-bit aligned, every message in the 14950 * chain will be aligned before further operations. This is required on SPARC 14951 * platform. 14952 */ 14953 /* ARGSUSED */ 14954 void 14955 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14956 struct mac_header_info_s *mhip) 14957 { 14958 ipaddr_t dst = NULL; 14959 ipaddr_t prev_dst; 14960 ire_t *ire = NULL; 14961 ipha_t *ipha; 14962 uint_t pkt_len; 14963 ssize_t len; 14964 uint_t opt_len; 14965 int ll_multicast; 14966 int cgtp_flt_pkt; 14967 queue_t *q = ill->ill_rq; 14968 squeue_t *curr_sqp = NULL; 14969 mblk_t *head = NULL; 14970 mblk_t *tail = NULL; 14971 mblk_t *first_mp; 14972 int cnt = 0; 14973 ip_stack_t *ipst = ill->ill_ipst; 14974 mblk_t *mp; 14975 mblk_t *dmp; 14976 uint8_t tag; 14977 14978 ASSERT(mp_chain != NULL); 14979 ASSERT(ill != NULL); 14980 14981 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14982 14983 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14984 14985 #define rptr ((uchar_t *)ipha) 14986 14987 while (mp_chain != NULL) { 14988 mp = mp_chain; 14989 mp_chain = mp_chain->b_next; 14990 mp->b_next = NULL; 14991 ll_multicast = 0; 14992 14993 /* 14994 * We do ire caching from one iteration to 14995 * another. In the event the packet chain contains 14996 * all packets from the same dst, this caching saves 14997 * an ire_cache_lookup for each of the succeeding 14998 * packets in a packet chain. 14999 */ 15000 prev_dst = dst; 15001 15002 /* 15003 * if db_ref > 1 then copymsg and free original. Packet 15004 * may be changed and we do not want the other entity 15005 * who has a reference to this message to trip over the 15006 * changes. This is a blind change because trying to 15007 * catch all places that might change the packet is too 15008 * difficult. 15009 * 15010 * This corresponds to the fast path case, where we have 15011 * a chain of M_DATA mblks. We check the db_ref count 15012 * of only the 1st data block in the mblk chain. There 15013 * doesn't seem to be a reason why a device driver would 15014 * send up data with varying db_ref counts in the mblk 15015 * chain. In any case the Fast path is a private 15016 * interface, and our drivers don't do such a thing. 15017 * Given the above assumption, there is no need to walk 15018 * down the entire mblk chain (which could have a 15019 * potential performance problem) 15020 * 15021 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 15022 * to here because of exclusive ip stacks and vnics. 15023 * Packets transmitted from exclusive stack over vnic 15024 * can have db_ref > 1 and when it gets looped back to 15025 * another vnic in a different zone, you have ip_input() 15026 * getting dblks with db_ref > 1. So if someone 15027 * complains of TCP performance under this scenario, 15028 * take a serious look here on the impact of copymsg(). 15029 */ 15030 15031 if (DB_REF(mp) > 1) { 15032 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 15033 continue; 15034 } 15035 15036 /* 15037 * Check and align the IP header. 15038 */ 15039 first_mp = mp; 15040 if (DB_TYPE(mp) == M_DATA) { 15041 dmp = mp; 15042 } else if (DB_TYPE(mp) == M_PROTO && 15043 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15044 dmp = mp->b_cont; 15045 } else { 15046 dmp = NULL; 15047 } 15048 if (dmp != NULL) { 15049 /* 15050 * IP header ptr not aligned? 15051 * OR IP header not complete in first mblk 15052 */ 15053 if (!OK_32PTR(dmp->b_rptr) || 15054 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15055 if (!ip_check_and_align_header(q, dmp, ipst)) 15056 continue; 15057 } 15058 } 15059 15060 /* 15061 * ip_input fast path 15062 */ 15063 15064 /* mblk type is not M_DATA */ 15065 if (DB_TYPE(mp) != M_DATA) { 15066 if (ip_rput_process_notdata(q, &first_mp, ill, 15067 &ll_multicast, &mp)) 15068 continue; 15069 15070 /* 15071 * The only way we can get here is if we had a 15072 * packet that was either a DL_UNITDATA_IND or 15073 * an M_CTL for an IPsec accelerated packet. 15074 * 15075 * In either case, the first_mp will point to 15076 * the leading M_PROTO or M_CTL. 15077 */ 15078 ASSERT(first_mp != NULL); 15079 } else if (mhip != NULL) { 15080 /* 15081 * ll_multicast is set here so that it is ready 15082 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15083 * manipulates ll_multicast in the same fashion when 15084 * called from ip_rput_process_notdata. 15085 */ 15086 switch (mhip->mhi_dsttype) { 15087 case MAC_ADDRTYPE_MULTICAST : 15088 ll_multicast = HPE_MULTICAST; 15089 break; 15090 case MAC_ADDRTYPE_BROADCAST : 15091 ll_multicast = HPE_BROADCAST; 15092 break; 15093 default : 15094 break; 15095 } 15096 } 15097 15098 /* Only M_DATA can come here and it is always aligned */ 15099 ASSERT(DB_TYPE(mp) == M_DATA); 15100 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15101 15102 ipha = (ipha_t *)mp->b_rptr; 15103 len = mp->b_wptr - rptr; 15104 pkt_len = ntohs(ipha->ipha_length); 15105 15106 /* 15107 * We must count all incoming packets, even if they end 15108 * up being dropped later on. 15109 */ 15110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15111 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15112 15113 /* multiple mblk or too short */ 15114 len -= pkt_len; 15115 if (len != 0) { 15116 /* 15117 * Make sure we have data length consistent 15118 * with the IP header. 15119 */ 15120 if (mp->b_cont == NULL) { 15121 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15122 BUMP_MIB(ill->ill_ip_mib, 15123 ipIfStatsInHdrErrors); 15124 ip2dbg(("ip_input: drop pkt\n")); 15125 freemsg(mp); 15126 continue; 15127 } 15128 mp->b_wptr = rptr + pkt_len; 15129 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15130 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15131 BUMP_MIB(ill->ill_ip_mib, 15132 ipIfStatsInHdrErrors); 15133 ip2dbg(("ip_input: drop pkt\n")); 15134 freemsg(mp); 15135 continue; 15136 } 15137 (void) adjmsg(mp, -len); 15138 /* 15139 * As the message len was adjusted, invalidate 15140 * any hw checksum here. This will force IP to 15141 * calculate the checksum in sw, but only for 15142 * this packet. 15143 */ 15144 DB_CKSUMFLAGS(mp) = 0; 15145 IP_STAT(ipst, ip_multimblk3); 15146 } 15147 } 15148 15149 /* Obtain the dst of the current packet */ 15150 dst = ipha->ipha_dst; 15151 15152 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15153 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15154 ipha, ip6_t *, NULL, int, 0); 15155 15156 /* 15157 * The following test for loopback is faster than 15158 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15159 * operations. 15160 * Note that these addresses are always in network byte order 15161 */ 15162 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15163 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15164 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15165 freemsg(mp); 15166 continue; 15167 } 15168 15169 /* 15170 * The event for packets being received from a 'physical' 15171 * interface is placed after validation of the source and/or 15172 * destination address as being local so that packets can be 15173 * redirected to loopback addresses using ipnat. 15174 */ 15175 DTRACE_PROBE4(ip4__physical__in__start, 15176 ill_t *, ill, ill_t *, NULL, 15177 ipha_t *, ipha, mblk_t *, first_mp); 15178 15179 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15180 ipst->ips_ipv4firewall_physical_in, 15181 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15182 15183 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15184 15185 if (first_mp == NULL) { 15186 continue; 15187 } 15188 dst = ipha->ipha_dst; 15189 /* 15190 * Attach any necessary label information to 15191 * this packet 15192 */ 15193 if (is_system_labeled() && 15194 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15196 freemsg(mp); 15197 continue; 15198 } 15199 15200 if (ipst->ips_ipobs_enabled) { 15201 zoneid_t dzone; 15202 15203 /* 15204 * On the inbound path the src zone will be unknown as 15205 * this packet has come from the wire. 15206 */ 15207 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15208 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15209 ill, IPV4_VERSION, 0, ipst); 15210 } 15211 15212 /* 15213 * Reuse the cached ire only if the ipha_dst of the previous 15214 * packet is the same as the current packet AND it is not 15215 * INADDR_ANY. 15216 */ 15217 if (!(dst == prev_dst && dst != INADDR_ANY) && 15218 (ire != NULL)) { 15219 ire_refrele(ire); 15220 ire = NULL; 15221 } 15222 15223 opt_len = ipha->ipha_version_and_hdr_length - 15224 IP_SIMPLE_HDR_VERSION; 15225 15226 /* 15227 * Check to see if we can take the fastpath. 15228 * That is possible if the following conditions are met 15229 * o Tsol disabled 15230 * o CGTP disabled 15231 * o ipp_action_count is 0 15232 * o no options in the packet 15233 * o not a RSVP packet 15234 * o not a multicast packet 15235 * o ill not in IP_DHCPINIT_IF mode 15236 */ 15237 if (!is_system_labeled() && 15238 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15239 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15240 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15241 if (ire == NULL) 15242 ire = ire_cache_lookup_simple(dst, ipst); 15243 /* 15244 * Unless forwarding is enabled, dont call 15245 * ip_fast_forward(). Incoming packet is for forwarding 15246 */ 15247 if ((ill->ill_flags & ILLF_ROUTER) && 15248 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15249 ire = ip_fast_forward(ire, dst, ill, mp); 15250 continue; 15251 } 15252 /* incoming packet is for local consumption */ 15253 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15254 goto local; 15255 } 15256 15257 /* 15258 * Disable ire caching for anything more complex 15259 * than the simple fast path case we checked for above. 15260 */ 15261 if (ire != NULL) { 15262 ire_refrele(ire); 15263 ire = NULL; 15264 } 15265 15266 /* 15267 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15268 * server to unicast DHCP packets to a DHCP client using the 15269 * IP address it is offering to the client. This can be 15270 * disabled through the "broadcast bit", but not all DHCP 15271 * servers honor that bit. Therefore, to interoperate with as 15272 * many DHCP servers as possible, the DHCP client allows the 15273 * server to unicast, but we treat those packets as broadcast 15274 * here. Note that we don't rewrite the packet itself since 15275 * (a) that would mess up the checksums and (b) the DHCP 15276 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15277 * hand it the packet regardless. 15278 */ 15279 if (ill->ill_dhcpinit != 0 && 15280 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15281 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15282 udpha_t *udpha; 15283 15284 /* 15285 * Reload ipha since pullupmsg() can change b_rptr. 15286 */ 15287 ipha = (ipha_t *)mp->b_rptr; 15288 udpha = (udpha_t *)&ipha[1]; 15289 15290 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15291 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15292 mblk_t *, mp); 15293 dst = INADDR_BROADCAST; 15294 } 15295 } 15296 15297 /* Full-blown slow path */ 15298 if (opt_len != 0) { 15299 if (len != 0) 15300 IP_STAT(ipst, ip_multimblk4); 15301 else 15302 IP_STAT(ipst, ip_ipoptions); 15303 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15304 &dst, ipst)) 15305 continue; 15306 } 15307 15308 /* 15309 * Invoke the CGTP (multirouting) filtering module to process 15310 * the incoming packet. Packets identified as duplicates 15311 * must be discarded. Filtering is active only if the 15312 * the ip_cgtp_filter ndd variable is non-zero. 15313 */ 15314 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15315 if (ipst->ips_ip_cgtp_filter && 15316 ipst->ips_ip_cgtp_filter_ops != NULL) { 15317 netstackid_t stackid; 15318 15319 stackid = ipst->ips_netstack->netstack_stackid; 15320 cgtp_flt_pkt = 15321 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15322 ill->ill_phyint->phyint_ifindex, mp); 15323 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15324 freemsg(first_mp); 15325 continue; 15326 } 15327 } 15328 15329 /* 15330 * If rsvpd is running, let RSVP daemon handle its processing 15331 * and forwarding of RSVP multicast/unicast packets. 15332 * If rsvpd is not running but mrouted is running, RSVP 15333 * multicast packets are forwarded as multicast traffic 15334 * and RSVP unicast packets are forwarded by unicast router. 15335 * If neither rsvpd nor mrouted is running, RSVP multicast 15336 * packets are not forwarded, but the unicast packets are 15337 * forwarded like unicast traffic. 15338 */ 15339 if (ipha->ipha_protocol == IPPROTO_RSVP && 15340 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15341 NULL) { 15342 /* RSVP packet and rsvpd running. Treat as ours */ 15343 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15344 /* 15345 * This assumes that we deliver to all streams for 15346 * multicast and broadcast packets. 15347 * We have to force ll_multicast to 1 to handle the 15348 * M_DATA messages passed in from ip_mroute_decap. 15349 */ 15350 dst = INADDR_BROADCAST; 15351 ll_multicast = 1; 15352 } else if (CLASSD(dst)) { 15353 /* packet is multicast */ 15354 mp->b_next = NULL; 15355 if (ip_rput_process_multicast(q, mp, ill, ipha, 15356 &ll_multicast, &dst)) 15357 continue; 15358 } 15359 15360 if (ire == NULL) { 15361 ire = ire_cache_lookup(dst, ALL_ZONES, 15362 msg_getlabel(mp), ipst); 15363 } 15364 15365 if (ire != NULL && ire->ire_stq != NULL && 15366 ire->ire_zoneid != GLOBAL_ZONEID && 15367 ire->ire_zoneid != ALL_ZONES) { 15368 /* 15369 * Should only use IREs that are visible from the 15370 * global zone for forwarding. 15371 */ 15372 ire_refrele(ire); 15373 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15374 msg_getlabel(mp), ipst); 15375 } 15376 15377 if (ire == NULL) { 15378 /* 15379 * No IRE for this destination, so it can't be for us. 15380 * Unless we are forwarding, drop the packet. 15381 * We have to let source routed packets through 15382 * since we don't yet know if they are 'ping -l' 15383 * packets i.e. if they will go out over the 15384 * same interface as they came in on. 15385 */ 15386 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15387 if (ire == NULL) 15388 continue; 15389 } 15390 15391 /* 15392 * Broadcast IRE may indicate either broadcast or 15393 * multicast packet 15394 */ 15395 if (ire->ire_type == IRE_BROADCAST) { 15396 /* 15397 * Skip broadcast checks if packet is UDP multicast; 15398 * we'd rather not enter ip_rput_process_broadcast() 15399 * unless the packet is broadcast for real, since 15400 * that routine is a no-op for multicast. 15401 */ 15402 if (ipha->ipha_protocol != IPPROTO_UDP || 15403 !CLASSD(ipha->ipha_dst)) { 15404 ire = ip_rput_process_broadcast(&q, mp, 15405 ire, ipha, ill, dst, cgtp_flt_pkt, 15406 ll_multicast); 15407 if (ire == NULL) 15408 continue; 15409 } 15410 } else if (ire->ire_stq != NULL) { 15411 /* fowarding? */ 15412 ip_rput_process_forward(q, mp, ire, ipha, ill, 15413 ll_multicast, B_FALSE); 15414 /* ip_rput_process_forward consumed the packet */ 15415 continue; 15416 } 15417 15418 local: 15419 /* 15420 * If the queue in the ire is different to the ingress queue 15421 * then we need to check to see if we can accept the packet. 15422 * Note that for multicast packets and broadcast packets sent 15423 * to a broadcast address which is shared between multiple 15424 * interfaces we should not do this since we just got a random 15425 * broadcast ire. 15426 */ 15427 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15428 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15429 if (ire == NULL) { 15430 /* Drop packet */ 15431 BUMP_MIB(ill->ill_ip_mib, 15432 ipIfStatsForwProhibits); 15433 freemsg(mp); 15434 continue; 15435 } 15436 if (ire->ire_rfq != NULL) 15437 q = ire->ire_rfq; 15438 } 15439 15440 switch (ipha->ipha_protocol) { 15441 case IPPROTO_TCP: 15442 ASSERT(first_mp == mp); 15443 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15444 mp, 0, q, ip_ring)) != NULL) { 15445 if (curr_sqp == NULL) { 15446 curr_sqp = GET_SQUEUE(mp); 15447 ASSERT(cnt == 0); 15448 cnt++; 15449 head = tail = mp; 15450 } else if (curr_sqp == GET_SQUEUE(mp)) { 15451 ASSERT(tail != NULL); 15452 cnt++; 15453 tail->b_next = mp; 15454 tail = mp; 15455 } else { 15456 /* 15457 * A different squeue. Send the 15458 * chain for the previous squeue on 15459 * its way. This shouldn't happen 15460 * often unless interrupt binding 15461 * changes. 15462 */ 15463 IP_STAT(ipst, ip_input_multi_squeue); 15464 SQUEUE_ENTER(curr_sqp, head, 15465 tail, cnt, SQ_PROCESS, tag); 15466 curr_sqp = GET_SQUEUE(mp); 15467 head = mp; 15468 tail = mp; 15469 cnt = 1; 15470 } 15471 } 15472 continue; 15473 case IPPROTO_UDP: 15474 ASSERT(first_mp == mp); 15475 ip_udp_input(q, mp, ipha, ire, ill); 15476 continue; 15477 case IPPROTO_SCTP: 15478 ASSERT(first_mp == mp); 15479 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15480 q, dst); 15481 /* ire has been released by ip_sctp_input */ 15482 ire = NULL; 15483 continue; 15484 default: 15485 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15486 continue; 15487 } 15488 } 15489 15490 if (ire != NULL) 15491 ire_refrele(ire); 15492 15493 if (head != NULL) 15494 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15495 15496 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15497 "ip_input_end: q %p (%S)", q, "end"); 15498 #undef rptr 15499 } 15500 15501 /* 15502 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15503 * a chain of packets in the poll mode. The packets have gone through the 15504 * data link processing but not IP processing. For performance and latency 15505 * reasons, the squeue wants to process the chain in line instead of feeding 15506 * it back via ip_input path. 15507 * 15508 * So this is a light weight function which checks to see if the packets 15509 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15510 * but we still do the paranoid check) meant for local machine and we don't 15511 * have labels etc enabled. Packets that meet the criterion are returned to 15512 * the squeue and processed inline while the rest go via ip_input path. 15513 */ 15514 /*ARGSUSED*/ 15515 mblk_t * 15516 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15517 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15518 { 15519 mblk_t *mp; 15520 ipaddr_t dst = NULL; 15521 ipaddr_t prev_dst; 15522 ire_t *ire = NULL; 15523 ipha_t *ipha; 15524 uint_t pkt_len; 15525 ssize_t len; 15526 uint_t opt_len; 15527 queue_t *q = ill->ill_rq; 15528 squeue_t *curr_sqp; 15529 mblk_t *ahead = NULL; /* Accepted head */ 15530 mblk_t *atail = NULL; /* Accepted tail */ 15531 uint_t acnt = 0; /* Accepted count */ 15532 mblk_t *utail = NULL; /* Unaccepted head */ 15533 mblk_t *uhead = NULL; /* Unaccepted tail */ 15534 uint_t ucnt = 0; /* Unaccepted cnt */ 15535 ip_stack_t *ipst = ill->ill_ipst; 15536 15537 *cnt = 0; 15538 15539 ASSERT(ill != NULL); 15540 ASSERT(ip_ring != NULL); 15541 15542 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15543 15544 #define rptr ((uchar_t *)ipha) 15545 15546 while (mp_chain != NULL) { 15547 mp = mp_chain; 15548 mp_chain = mp_chain->b_next; 15549 mp->b_next = NULL; 15550 15551 /* 15552 * We do ire caching from one iteration to 15553 * another. In the event the packet chain contains 15554 * all packets from the same dst, this caching saves 15555 * an ire_cache_lookup for each of the succeeding 15556 * packets in a packet chain. 15557 */ 15558 prev_dst = dst; 15559 15560 ipha = (ipha_t *)mp->b_rptr; 15561 len = mp->b_wptr - rptr; 15562 15563 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15564 15565 /* 15566 * If it is a non TCP packet, or doesn't have H/W cksum, 15567 * or doesn't have min len, reject. 15568 */ 15569 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15570 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15571 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15572 continue; 15573 } 15574 15575 pkt_len = ntohs(ipha->ipha_length); 15576 if (len != pkt_len) { 15577 if (len > pkt_len) { 15578 mp->b_wptr = rptr + pkt_len; 15579 } else { 15580 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15581 continue; 15582 } 15583 } 15584 15585 opt_len = ipha->ipha_version_and_hdr_length - 15586 IP_SIMPLE_HDR_VERSION; 15587 dst = ipha->ipha_dst; 15588 15589 /* IP version bad or there are IP options */ 15590 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15591 mp, &ipha, &dst, ipst))) 15592 continue; 15593 15594 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15595 (ipst->ips_ip_cgtp_filter && 15596 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15597 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15598 continue; 15599 } 15600 15601 /* 15602 * Reuse the cached ire only if the ipha_dst of the previous 15603 * packet is the same as the current packet AND it is not 15604 * INADDR_ANY. 15605 */ 15606 if (!(dst == prev_dst && dst != INADDR_ANY) && 15607 (ire != NULL)) { 15608 ire_refrele(ire); 15609 ire = NULL; 15610 } 15611 15612 if (ire == NULL) 15613 ire = ire_cache_lookup_simple(dst, ipst); 15614 15615 /* 15616 * Unless forwarding is enabled, dont call 15617 * ip_fast_forward(). Incoming packet is for forwarding 15618 */ 15619 if ((ill->ill_flags & ILLF_ROUTER) && 15620 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15621 15622 DTRACE_PROBE4(ip4__physical__in__start, 15623 ill_t *, ill, ill_t *, NULL, 15624 ipha_t *, ipha, mblk_t *, mp); 15625 15626 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15627 ipst->ips_ipv4firewall_physical_in, 15628 ill, NULL, ipha, mp, mp, 0, ipst); 15629 15630 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15631 15632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15633 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15634 pkt_len); 15635 15636 if (mp != NULL) 15637 ire = ip_fast_forward(ire, dst, ill, mp); 15638 continue; 15639 } 15640 15641 /* incoming packet is for local consumption */ 15642 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15643 goto local_accept; 15644 15645 /* 15646 * Disable ire caching for anything more complex 15647 * than the simple fast path case we checked for above. 15648 */ 15649 if (ire != NULL) { 15650 ire_refrele(ire); 15651 ire = NULL; 15652 } 15653 15654 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15655 ipst); 15656 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15657 ire->ire_stq != NULL) { 15658 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15659 if (ire != NULL) { 15660 ire_refrele(ire); 15661 ire = NULL; 15662 } 15663 continue; 15664 } 15665 15666 local_accept: 15667 15668 if (ire->ire_rfq != q) { 15669 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15670 if (ire != NULL) { 15671 ire_refrele(ire); 15672 ire = NULL; 15673 } 15674 continue; 15675 } 15676 15677 /* 15678 * The event for packets being received from a 'physical' 15679 * interface is placed after validation of the source and/or 15680 * destination address as being local so that packets can be 15681 * redirected to loopback addresses using ipnat. 15682 */ 15683 DTRACE_PROBE4(ip4__physical__in__start, 15684 ill_t *, ill, ill_t *, NULL, 15685 ipha_t *, ipha, mblk_t *, mp); 15686 15687 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15688 ipst->ips_ipv4firewall_physical_in, 15689 ill, NULL, ipha, mp, mp, 0, ipst); 15690 15691 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15692 15693 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15694 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15695 15696 if (mp != NULL && 15697 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15698 0, q, ip_ring)) != NULL) { 15699 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15700 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15701 } else { 15702 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15703 SQ_FILL, SQTAG_IP_INPUT); 15704 } 15705 } 15706 } 15707 15708 if (ire != NULL) 15709 ire_refrele(ire); 15710 15711 if (uhead != NULL) 15712 ip_input(ill, ip_ring, uhead, NULL); 15713 15714 if (ahead != NULL) { 15715 *last = atail; 15716 *cnt = acnt; 15717 return (ahead); 15718 } 15719 15720 return (NULL); 15721 #undef rptr 15722 } 15723 15724 static void 15725 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15726 t_uscalar_t err) 15727 { 15728 if (dl_err == DL_SYSERR) { 15729 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15730 "%s: %s failed: DL_SYSERR (errno %u)\n", 15731 ill->ill_name, dl_primstr(prim), err); 15732 return; 15733 } 15734 15735 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15736 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15737 dl_errstr(dl_err)); 15738 } 15739 15740 /* 15741 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15742 * than DL_UNITDATA_IND messages. If we need to process this message 15743 * exclusively, we call qwriter_ip, in which case we also need to call 15744 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15745 */ 15746 void 15747 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15748 { 15749 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15750 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15751 ill_t *ill = q->q_ptr; 15752 t_uscalar_t prim = dloa->dl_primitive; 15753 t_uscalar_t reqprim = DL_PRIM_INVAL; 15754 15755 ip1dbg(("ip_rput_dlpi")); 15756 15757 /* 15758 * If we received an ACK but didn't send a request for it, then it 15759 * can't be part of any pending operation; discard up-front. 15760 */ 15761 switch (prim) { 15762 case DL_ERROR_ACK: 15763 reqprim = dlea->dl_error_primitive; 15764 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15765 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15766 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15767 dlea->dl_unix_errno)); 15768 break; 15769 case DL_OK_ACK: 15770 reqprim = dloa->dl_correct_primitive; 15771 break; 15772 case DL_INFO_ACK: 15773 reqprim = DL_INFO_REQ; 15774 break; 15775 case DL_BIND_ACK: 15776 reqprim = DL_BIND_REQ; 15777 break; 15778 case DL_PHYS_ADDR_ACK: 15779 reqprim = DL_PHYS_ADDR_REQ; 15780 break; 15781 case DL_NOTIFY_ACK: 15782 reqprim = DL_NOTIFY_REQ; 15783 break; 15784 case DL_CONTROL_ACK: 15785 reqprim = DL_CONTROL_REQ; 15786 break; 15787 case DL_CAPABILITY_ACK: 15788 reqprim = DL_CAPABILITY_REQ; 15789 break; 15790 } 15791 15792 if (prim != DL_NOTIFY_IND) { 15793 if (reqprim == DL_PRIM_INVAL || 15794 !ill_dlpi_pending(ill, reqprim)) { 15795 /* Not a DLPI message we support or expected */ 15796 freemsg(mp); 15797 return; 15798 } 15799 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15800 dl_primstr(reqprim))); 15801 } 15802 15803 switch (reqprim) { 15804 case DL_UNBIND_REQ: 15805 /* 15806 * NOTE: we mark the unbind as complete even if we got a 15807 * DL_ERROR_ACK, since there's not much else we can do. 15808 */ 15809 mutex_enter(&ill->ill_lock); 15810 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15811 cv_signal(&ill->ill_cv); 15812 mutex_exit(&ill->ill_lock); 15813 break; 15814 15815 case DL_ENABMULTI_REQ: 15816 if (prim == DL_OK_ACK) { 15817 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15818 ill->ill_dlpi_multicast_state = IDS_OK; 15819 } 15820 break; 15821 } 15822 15823 /* 15824 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15825 * need to become writer to continue to process it. Because an 15826 * exclusive operation doesn't complete until replies to all queued 15827 * DLPI messages have been received, we know we're in the middle of an 15828 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15829 * 15830 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15831 * Since this is on the ill stream we unconditionally bump up the 15832 * refcount without doing ILL_CAN_LOOKUP(). 15833 */ 15834 ill_refhold(ill); 15835 if (prim == DL_NOTIFY_IND) 15836 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15837 else 15838 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15839 } 15840 15841 /* 15842 * Handling of DLPI messages that require exclusive access to the ipsq. 15843 * 15844 * Need to do ill_pending_mp_release on ioctl completion, which could 15845 * happen here. (along with mi_copy_done) 15846 */ 15847 /* ARGSUSED */ 15848 static void 15849 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15850 { 15851 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15852 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15853 int err = 0; 15854 ill_t *ill; 15855 ipif_t *ipif = NULL; 15856 mblk_t *mp1 = NULL; 15857 conn_t *connp = NULL; 15858 t_uscalar_t paddrreq; 15859 mblk_t *mp_hw; 15860 boolean_t success; 15861 boolean_t ioctl_aborted = B_FALSE; 15862 boolean_t log = B_TRUE; 15863 ip_stack_t *ipst; 15864 15865 ip1dbg(("ip_rput_dlpi_writer ..")); 15866 ill = (ill_t *)q->q_ptr; 15867 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15868 ASSERT(IAM_WRITER_ILL(ill)); 15869 15870 ipst = ill->ill_ipst; 15871 15872 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15873 /* 15874 * The current ioctl could have been aborted by the user and a new 15875 * ioctl to bring up another ill could have started. We could still 15876 * get a response from the driver later. 15877 */ 15878 if (ipif != NULL && ipif->ipif_ill != ill) 15879 ioctl_aborted = B_TRUE; 15880 15881 switch (dloa->dl_primitive) { 15882 case DL_ERROR_ACK: 15883 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15884 dl_primstr(dlea->dl_error_primitive))); 15885 15886 switch (dlea->dl_error_primitive) { 15887 case DL_DISABMULTI_REQ: 15888 ill_dlpi_done(ill, dlea->dl_error_primitive); 15889 break; 15890 case DL_PROMISCON_REQ: 15891 case DL_PROMISCOFF_REQ: 15892 case DL_UNBIND_REQ: 15893 case DL_ATTACH_REQ: 15894 case DL_INFO_REQ: 15895 ill_dlpi_done(ill, dlea->dl_error_primitive); 15896 break; 15897 case DL_NOTIFY_REQ: 15898 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15899 log = B_FALSE; 15900 break; 15901 case DL_PHYS_ADDR_REQ: 15902 /* 15903 * For IPv6 only, there are two additional 15904 * phys_addr_req's sent to the driver to get the 15905 * IPv6 token and lla. This allows IP to acquire 15906 * the hardware address format for a given interface 15907 * without having built in knowledge of the hardware 15908 * address. ill_phys_addr_pend keeps track of the last 15909 * DL_PAR sent so we know which response we are 15910 * dealing with. ill_dlpi_done will update 15911 * ill_phys_addr_pend when it sends the next req. 15912 * We don't complete the IOCTL until all three DL_PARs 15913 * have been attempted, so set *_len to 0 and break. 15914 */ 15915 paddrreq = ill->ill_phys_addr_pend; 15916 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15917 if (paddrreq == DL_IPV6_TOKEN) { 15918 ill->ill_token_length = 0; 15919 log = B_FALSE; 15920 break; 15921 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15922 ill->ill_nd_lla_len = 0; 15923 log = B_FALSE; 15924 break; 15925 } 15926 /* 15927 * Something went wrong with the DL_PHYS_ADDR_REQ. 15928 * We presumably have an IOCTL hanging out waiting 15929 * for completion. Find it and complete the IOCTL 15930 * with the error noted. 15931 * However, ill_dl_phys was called on an ill queue 15932 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15933 * set. But the ioctl is known to be pending on ill_wq. 15934 */ 15935 if (!ill->ill_ifname_pending) 15936 break; 15937 ill->ill_ifname_pending = 0; 15938 if (!ioctl_aborted) 15939 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15940 if (mp1 != NULL) { 15941 /* 15942 * This operation (SIOCSLIFNAME) must have 15943 * happened on the ill. Assert there is no conn 15944 */ 15945 ASSERT(connp == NULL); 15946 q = ill->ill_wq; 15947 } 15948 break; 15949 case DL_BIND_REQ: 15950 ill_dlpi_done(ill, DL_BIND_REQ); 15951 if (ill->ill_ifname_pending) 15952 break; 15953 /* 15954 * Something went wrong with the bind. We presumably 15955 * have an IOCTL hanging out waiting for completion. 15956 * Find it, take down the interface that was coming 15957 * up, and complete the IOCTL with the error noted. 15958 */ 15959 if (!ioctl_aborted) 15960 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15961 if (mp1 != NULL) { 15962 /* 15963 * This might be a result of a DL_NOTE_REPLUMB 15964 * notification. In that case, connp is NULL. 15965 */ 15966 if (connp != NULL) 15967 q = CONNP_TO_WQ(connp); 15968 15969 (void) ipif_down(ipif, NULL, NULL); 15970 /* error is set below the switch */ 15971 } 15972 break; 15973 case DL_ENABMULTI_REQ: 15974 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15975 15976 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15977 ill->ill_dlpi_multicast_state = IDS_FAILED; 15978 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15979 ipif_t *ipif; 15980 15981 printf("ip: joining multicasts failed (%d)" 15982 " on %s - will use link layer " 15983 "broadcasts for multicast\n", 15984 dlea->dl_errno, ill->ill_name); 15985 15986 /* 15987 * Set up the multicast mapping alone. 15988 * writer, so ok to access ill->ill_ipif 15989 * without any lock. 15990 */ 15991 ipif = ill->ill_ipif; 15992 mutex_enter(&ill->ill_phyint->phyint_lock); 15993 ill->ill_phyint->phyint_flags |= 15994 PHYI_MULTI_BCAST; 15995 mutex_exit(&ill->ill_phyint->phyint_lock); 15996 15997 if (!ill->ill_isv6) { 15998 (void) ipif_arp_setup_multicast(ipif, 15999 NULL); 16000 } else { 16001 (void) ipif_ndp_setup_multicast(ipif, 16002 NULL); 16003 } 16004 } 16005 freemsg(mp); /* Don't want to pass this up */ 16006 return; 16007 case DL_CONTROL_REQ: 16008 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16009 "DL_CONTROL_REQ\n")); 16010 ill_dlpi_done(ill, dlea->dl_error_primitive); 16011 freemsg(mp); 16012 return; 16013 case DL_CAPABILITY_REQ: 16014 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16015 "DL_CAPABILITY REQ\n")); 16016 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 16017 ill->ill_dlpi_capab_state = IDCS_FAILED; 16018 ill_capability_done(ill); 16019 freemsg(mp); 16020 return; 16021 } 16022 /* 16023 * Note the error for IOCTL completion (mp1 is set when 16024 * ready to complete ioctl). If ill_ifname_pending_err is 16025 * set, an error occured during plumbing (ill_ifname_pending), 16026 * so we want to report that error. 16027 * 16028 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 16029 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 16030 * expected to get errack'd if the driver doesn't support 16031 * these flags (e.g. ethernet). log will be set to B_FALSE 16032 * if these error conditions are encountered. 16033 */ 16034 if (mp1 != NULL) { 16035 if (ill->ill_ifname_pending_err != 0) { 16036 err = ill->ill_ifname_pending_err; 16037 ill->ill_ifname_pending_err = 0; 16038 } else { 16039 err = dlea->dl_unix_errno ? 16040 dlea->dl_unix_errno : ENXIO; 16041 } 16042 /* 16043 * If we're plumbing an interface and an error hasn't already 16044 * been saved, set ill_ifname_pending_err to the error passed 16045 * up. Ignore the error if log is B_FALSE (see comment above). 16046 */ 16047 } else if (log && ill->ill_ifname_pending && 16048 ill->ill_ifname_pending_err == 0) { 16049 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 16050 dlea->dl_unix_errno : ENXIO; 16051 } 16052 16053 if (log) 16054 ip_dlpi_error(ill, dlea->dl_error_primitive, 16055 dlea->dl_errno, dlea->dl_unix_errno); 16056 break; 16057 case DL_CAPABILITY_ACK: 16058 ill_capability_ack(ill, mp); 16059 /* 16060 * The message has been handed off to ill_capability_ack 16061 * and must not be freed below 16062 */ 16063 mp = NULL; 16064 break; 16065 16066 case DL_CONTROL_ACK: 16067 /* We treat all of these as "fire and forget" */ 16068 ill_dlpi_done(ill, DL_CONTROL_REQ); 16069 break; 16070 case DL_INFO_ACK: 16071 /* Call a routine to handle this one. */ 16072 ill_dlpi_done(ill, DL_INFO_REQ); 16073 ip_ll_subnet_defaults(ill, mp); 16074 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16075 return; 16076 case DL_BIND_ACK: 16077 /* 16078 * We should have an IOCTL waiting on this unless 16079 * sent by ill_dl_phys, in which case just return 16080 */ 16081 ill_dlpi_done(ill, DL_BIND_REQ); 16082 if (ill->ill_ifname_pending) 16083 break; 16084 16085 if (!ioctl_aborted) 16086 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16087 if (mp1 == NULL) 16088 break; 16089 /* 16090 * mp1 was added by ill_dl_up(). if that is a result of 16091 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16092 */ 16093 if (connp != NULL) 16094 q = CONNP_TO_WQ(connp); 16095 16096 /* 16097 * We are exclusive. So nothing can change even after 16098 * we get the pending mp. If need be we can put it back 16099 * and restart, as in calling ipif_arp_up() below. 16100 */ 16101 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16102 16103 mutex_enter(&ill->ill_lock); 16104 ill->ill_dl_up = 1; 16105 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16106 mutex_exit(&ill->ill_lock); 16107 16108 /* 16109 * Now bring up the resolver; when that is complete, we'll 16110 * create IREs. Note that we intentionally mirror what 16111 * ipif_up() would have done, because we got here by way of 16112 * ill_dl_up(), which stopped ipif_up()'s processing. 16113 */ 16114 if (ill->ill_isv6) { 16115 if (ill->ill_flags & ILLF_XRESOLV) { 16116 if (connp != NULL) 16117 mutex_enter(&connp->conn_lock); 16118 mutex_enter(&ill->ill_lock); 16119 success = ipsq_pending_mp_add(connp, ipif, q, 16120 mp1, 0); 16121 mutex_exit(&ill->ill_lock); 16122 if (connp != NULL) 16123 mutex_exit(&connp->conn_lock); 16124 if (success) { 16125 err = ipif_resolver_up(ipif, 16126 Res_act_initial); 16127 if (err == EINPROGRESS) { 16128 freemsg(mp); 16129 return; 16130 } 16131 ASSERT(err != 0); 16132 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16133 ASSERT(mp1 != NULL); 16134 } else { 16135 /* conn has started closing */ 16136 err = EINTR; 16137 } 16138 } else { /* Non XRESOLV interface */ 16139 (void) ipif_resolver_up(ipif, Res_act_initial); 16140 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16141 err = ipif_up_done_v6(ipif); 16142 } 16143 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16144 /* 16145 * ARP and other v4 external resolvers. 16146 * Leave the pending mblk intact so that 16147 * the ioctl completes in ip_rput(). 16148 */ 16149 if (connp != NULL) 16150 mutex_enter(&connp->conn_lock); 16151 mutex_enter(&ill->ill_lock); 16152 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16153 mutex_exit(&ill->ill_lock); 16154 if (connp != NULL) 16155 mutex_exit(&connp->conn_lock); 16156 if (success) { 16157 err = ipif_resolver_up(ipif, Res_act_initial); 16158 if (err == EINPROGRESS) { 16159 freemsg(mp); 16160 return; 16161 } 16162 ASSERT(err != 0); 16163 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16164 } else { 16165 /* The conn has started closing */ 16166 err = EINTR; 16167 } 16168 } else { 16169 /* 16170 * This one is complete. Reply to pending ioctl. 16171 */ 16172 (void) ipif_resolver_up(ipif, Res_act_initial); 16173 err = ipif_up_done(ipif); 16174 } 16175 16176 if ((err == 0) && (ill->ill_up_ipifs)) { 16177 err = ill_up_ipifs(ill, q, mp1); 16178 if (err == EINPROGRESS) { 16179 freemsg(mp); 16180 return; 16181 } 16182 } 16183 16184 /* 16185 * If we have a moved ipif to bring up, and everything has 16186 * succeeded to this point, bring it up on the IPMP ill. 16187 * Otherwise, leave it down -- the admin can try to bring it 16188 * up by hand if need be. 16189 */ 16190 if (ill->ill_move_ipif != NULL) { 16191 if (err != 0) { 16192 ill->ill_move_ipif = NULL; 16193 } else { 16194 ipif = ill->ill_move_ipif; 16195 ill->ill_move_ipif = NULL; 16196 err = ipif_up(ipif, q, mp1); 16197 if (err == EINPROGRESS) { 16198 freemsg(mp); 16199 return; 16200 } 16201 } 16202 } 16203 break; 16204 16205 case DL_NOTIFY_IND: { 16206 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16207 ire_t *ire; 16208 uint_t orig_mtu; 16209 boolean_t need_ire_walk_v4 = B_FALSE; 16210 boolean_t need_ire_walk_v6 = B_FALSE; 16211 16212 switch (notify->dl_notification) { 16213 case DL_NOTE_PHYS_ADDR: 16214 err = ill_set_phys_addr(ill, mp); 16215 break; 16216 16217 case DL_NOTE_REPLUMB: 16218 /* 16219 * Directly return after calling ill_replumb(). 16220 * Note that we should not free mp as it is reused 16221 * in the ill_replumb() function. 16222 */ 16223 err = ill_replumb(ill, mp); 16224 return; 16225 16226 case DL_NOTE_FASTPATH_FLUSH: 16227 ill_fastpath_flush(ill); 16228 break; 16229 16230 case DL_NOTE_SDU_SIZE: 16231 /* 16232 * Change the MTU size of the interface, of all 16233 * attached ipif's, and of all relevant ire's. The 16234 * new value's a uint32_t at notify->dl_data. 16235 * Mtu change Vs. new ire creation - protocol below. 16236 * 16237 * a Mark the ipif as IPIF_CHANGING. 16238 * b Set the new mtu in the ipif. 16239 * c Change the ire_max_frag on all affected ires 16240 * d Unmark the IPIF_CHANGING 16241 * 16242 * To see how the protocol works, assume an interface 16243 * route is also being added simultaneously by 16244 * ip_rt_add and let 'ipif' be the ipif referenced by 16245 * the ire. If the ire is created before step a, 16246 * it will be cleaned up by step c. If the ire is 16247 * created after step d, it will see the new value of 16248 * ipif_mtu. Any attempt to create the ire between 16249 * steps a to d will fail because of the IPIF_CHANGING 16250 * flag. Note that ire_create() is passed a pointer to 16251 * the ipif_mtu, and not the value. During ire_add 16252 * under the bucket lock, the ire_max_frag of the 16253 * new ire being created is set from the ipif/ire from 16254 * which it is being derived. 16255 */ 16256 mutex_enter(&ill->ill_lock); 16257 16258 orig_mtu = ill->ill_max_mtu; 16259 ill->ill_max_frag = (uint_t)notify->dl_data; 16260 ill->ill_max_mtu = (uint_t)notify->dl_data; 16261 16262 /* 16263 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16264 * clamp ill_max_mtu at it. 16265 */ 16266 if (ill->ill_user_mtu != 0 && 16267 ill->ill_user_mtu < ill->ill_max_mtu) 16268 ill->ill_max_mtu = ill->ill_user_mtu; 16269 16270 /* 16271 * If the MTU is unchanged, we're done. 16272 */ 16273 if (orig_mtu == ill->ill_max_mtu) { 16274 mutex_exit(&ill->ill_lock); 16275 break; 16276 } 16277 16278 if (ill->ill_isv6) { 16279 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16280 ill->ill_max_mtu = IPV6_MIN_MTU; 16281 } else { 16282 if (ill->ill_max_mtu < IP_MIN_MTU) 16283 ill->ill_max_mtu = IP_MIN_MTU; 16284 } 16285 for (ipif = ill->ill_ipif; ipif != NULL; 16286 ipif = ipif->ipif_next) { 16287 /* 16288 * Don't override the mtu if the user 16289 * has explicitly set it. 16290 */ 16291 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16292 continue; 16293 ipif->ipif_mtu = (uint_t)notify->dl_data; 16294 if (ipif->ipif_isv6) 16295 ire = ipif_to_ire_v6(ipif); 16296 else 16297 ire = ipif_to_ire(ipif); 16298 if (ire != NULL) { 16299 ire->ire_max_frag = ipif->ipif_mtu; 16300 ire_refrele(ire); 16301 } 16302 if (ipif->ipif_flags & IPIF_UP) { 16303 if (ill->ill_isv6) 16304 need_ire_walk_v6 = B_TRUE; 16305 else 16306 need_ire_walk_v4 = B_TRUE; 16307 } 16308 } 16309 mutex_exit(&ill->ill_lock); 16310 if (need_ire_walk_v4) 16311 ire_walk_v4(ill_mtu_change, (char *)ill, 16312 ALL_ZONES, ipst); 16313 if (need_ire_walk_v6) 16314 ire_walk_v6(ill_mtu_change, (char *)ill, 16315 ALL_ZONES, ipst); 16316 16317 /* 16318 * Refresh IPMP meta-interface MTU if necessary. 16319 */ 16320 if (IS_UNDER_IPMP(ill)) 16321 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16322 break; 16323 16324 case DL_NOTE_LINK_UP: 16325 case DL_NOTE_LINK_DOWN: { 16326 /* 16327 * We are writer. ill / phyint / ipsq assocs stable. 16328 * The RUNNING flag reflects the state of the link. 16329 */ 16330 phyint_t *phyint = ill->ill_phyint; 16331 uint64_t new_phyint_flags; 16332 boolean_t changed = B_FALSE; 16333 boolean_t went_up; 16334 16335 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16336 mutex_enter(&phyint->phyint_lock); 16337 16338 new_phyint_flags = went_up ? 16339 phyint->phyint_flags | PHYI_RUNNING : 16340 phyint->phyint_flags & ~PHYI_RUNNING; 16341 16342 if (IS_IPMP(ill)) { 16343 new_phyint_flags = went_up ? 16344 new_phyint_flags & ~PHYI_FAILED : 16345 new_phyint_flags | PHYI_FAILED; 16346 } 16347 16348 if (new_phyint_flags != phyint->phyint_flags) { 16349 phyint->phyint_flags = new_phyint_flags; 16350 changed = B_TRUE; 16351 } 16352 mutex_exit(&phyint->phyint_lock); 16353 /* 16354 * ill_restart_dad handles the DAD restart and routing 16355 * socket notification logic. 16356 */ 16357 if (changed) { 16358 ill_restart_dad(phyint->phyint_illv4, went_up); 16359 ill_restart_dad(phyint->phyint_illv6, went_up); 16360 } 16361 break; 16362 } 16363 case DL_NOTE_PROMISC_ON_PHYS: { 16364 phyint_t *phyint = ill->ill_phyint; 16365 16366 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16367 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16368 mutex_enter(&phyint->phyint_lock); 16369 phyint->phyint_flags |= PHYI_PROMISC; 16370 mutex_exit(&phyint->phyint_lock); 16371 break; 16372 } 16373 case DL_NOTE_PROMISC_OFF_PHYS: { 16374 phyint_t *phyint = ill->ill_phyint; 16375 16376 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16377 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16378 mutex_enter(&phyint->phyint_lock); 16379 phyint->phyint_flags &= ~PHYI_PROMISC; 16380 mutex_exit(&phyint->phyint_lock); 16381 break; 16382 } 16383 case DL_NOTE_CAPAB_RENEG: 16384 /* 16385 * Something changed on the driver side. 16386 * It wants us to renegotiate the capabilities 16387 * on this ill. One possible cause is the aggregation 16388 * interface under us where a port got added or 16389 * went away. 16390 * 16391 * If the capability negotiation is already done 16392 * or is in progress, reset the capabilities and 16393 * mark the ill's ill_capab_reneg to be B_TRUE, 16394 * so that when the ack comes back, we can start 16395 * the renegotiation process. 16396 * 16397 * Note that if ill_capab_reneg is already B_TRUE 16398 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16399 * the capability resetting request has been sent 16400 * and the renegotiation has not been started yet; 16401 * nothing needs to be done in this case. 16402 */ 16403 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16404 ill_capability_reset(ill, B_TRUE); 16405 ipsq_current_finish(ipsq); 16406 break; 16407 default: 16408 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16409 "type 0x%x for DL_NOTIFY_IND\n", 16410 notify->dl_notification)); 16411 break; 16412 } 16413 16414 /* 16415 * As this is an asynchronous operation, we 16416 * should not call ill_dlpi_done 16417 */ 16418 break; 16419 } 16420 case DL_NOTIFY_ACK: { 16421 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16422 16423 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16424 ill->ill_note_link = 1; 16425 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16426 break; 16427 } 16428 case DL_PHYS_ADDR_ACK: { 16429 /* 16430 * As part of plumbing the interface via SIOCSLIFNAME, 16431 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16432 * whose answers we receive here. As each answer is received, 16433 * we call ill_dlpi_done() to dispatch the next request as 16434 * we're processing the current one. Once all answers have 16435 * been received, we use ipsq_pending_mp_get() to dequeue the 16436 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16437 * is invoked from an ill queue, conn_oper_pending_ill is not 16438 * available, but we know the ioctl is pending on ill_wq.) 16439 */ 16440 uint_t paddrlen, paddroff; 16441 16442 paddrreq = ill->ill_phys_addr_pend; 16443 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16444 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16445 16446 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16447 if (paddrreq == DL_IPV6_TOKEN) { 16448 /* 16449 * bcopy to low-order bits of ill_token 16450 * 16451 * XXX Temporary hack - currently, all known tokens 16452 * are 64 bits, so I'll cheat for the moment. 16453 */ 16454 bcopy(mp->b_rptr + paddroff, 16455 &ill->ill_token.s6_addr32[2], paddrlen); 16456 ill->ill_token_length = paddrlen; 16457 break; 16458 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16459 ASSERT(ill->ill_nd_lla_mp == NULL); 16460 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16461 mp = NULL; 16462 break; 16463 } 16464 16465 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16466 ASSERT(ill->ill_phys_addr_mp == NULL); 16467 if (!ill->ill_ifname_pending) 16468 break; 16469 ill->ill_ifname_pending = 0; 16470 if (!ioctl_aborted) 16471 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16472 if (mp1 != NULL) { 16473 ASSERT(connp == NULL); 16474 q = ill->ill_wq; 16475 } 16476 /* 16477 * If any error acks received during the plumbing sequence, 16478 * ill_ifname_pending_err will be set. Break out and send up 16479 * the error to the pending ioctl. 16480 */ 16481 if (ill->ill_ifname_pending_err != 0) { 16482 err = ill->ill_ifname_pending_err; 16483 ill->ill_ifname_pending_err = 0; 16484 break; 16485 } 16486 16487 ill->ill_phys_addr_mp = mp; 16488 ill->ill_phys_addr = mp->b_rptr + paddroff; 16489 mp = NULL; 16490 16491 /* 16492 * If paddrlen is zero, the DLPI provider doesn't support 16493 * physical addresses. The other two tests were historical 16494 * workarounds for bugs in our former PPP implementation, but 16495 * now other things have grown dependencies on them -- e.g., 16496 * the tun module specifies a dl_addr_length of zero in its 16497 * DL_BIND_ACK, but then specifies an incorrect value in its 16498 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16499 * but only after careful testing ensures that all dependent 16500 * broken DLPI providers have been fixed. 16501 */ 16502 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16503 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16504 ill->ill_phys_addr = NULL; 16505 } else if (paddrlen != ill->ill_phys_addr_length) { 16506 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16507 paddrlen, ill->ill_phys_addr_length)); 16508 err = EINVAL; 16509 break; 16510 } 16511 16512 if (ill->ill_nd_lla_mp == NULL) { 16513 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16514 err = ENOMEM; 16515 break; 16516 } 16517 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16518 } 16519 16520 /* 16521 * Set the interface token. If the zeroth interface address 16522 * is unspecified, then set it to the link local address. 16523 */ 16524 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16525 (void) ill_setdefaulttoken(ill); 16526 16527 ASSERT(ill->ill_ipif->ipif_id == 0); 16528 if (ipif != NULL && 16529 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16530 (void) ipif_setlinklocal(ipif); 16531 } 16532 break; 16533 } 16534 case DL_OK_ACK: 16535 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16536 dl_primstr((int)dloa->dl_correct_primitive), 16537 dloa->dl_correct_primitive)); 16538 switch (dloa->dl_correct_primitive) { 16539 case DL_ENABMULTI_REQ: 16540 case DL_DISABMULTI_REQ: 16541 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16542 break; 16543 case DL_PROMISCON_REQ: 16544 case DL_PROMISCOFF_REQ: 16545 case DL_UNBIND_REQ: 16546 case DL_ATTACH_REQ: 16547 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16548 break; 16549 } 16550 break; 16551 default: 16552 break; 16553 } 16554 16555 freemsg(mp); 16556 if (mp1 == NULL) 16557 return; 16558 16559 /* 16560 * The operation must complete without EINPROGRESS since 16561 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16562 * the operation will be stuck forever inside the IPSQ. 16563 */ 16564 ASSERT(err != EINPROGRESS); 16565 16566 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16567 case 0: 16568 ipsq_current_finish(ipsq); 16569 break; 16570 16571 case SIOCSLIFNAME: 16572 case IF_UNITSEL: { 16573 ill_t *ill_other = ILL_OTHER(ill); 16574 16575 /* 16576 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16577 * ill has a peer which is in an IPMP group, then place ill 16578 * into the same group. One catch: although ifconfig plumbs 16579 * the appropriate IPMP meta-interface prior to plumbing this 16580 * ill, it is possible for multiple ifconfig applications to 16581 * race (or for another application to adjust plumbing), in 16582 * which case the IPMP meta-interface we need will be missing. 16583 * If so, kick the phyint out of the group. 16584 */ 16585 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16586 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16587 ipmp_illgrp_t *illg; 16588 16589 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16590 if (illg == NULL) 16591 ipmp_phyint_leave_grp(ill->ill_phyint); 16592 else 16593 ipmp_ill_join_illgrp(ill, illg); 16594 } 16595 16596 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16597 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16598 else 16599 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16600 break; 16601 } 16602 case SIOCLIFADDIF: 16603 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16604 break; 16605 16606 default: 16607 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16608 break; 16609 } 16610 } 16611 16612 /* 16613 * ip_rput_other is called by ip_rput to handle messages modifying the global 16614 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16615 */ 16616 /* ARGSUSED */ 16617 void 16618 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16619 { 16620 ill_t *ill = q->q_ptr; 16621 struct iocblk *iocp; 16622 mblk_t *mp1; 16623 conn_t *connp = NULL; 16624 16625 ip1dbg(("ip_rput_other ")); 16626 if (ipsq != NULL) { 16627 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16628 ASSERT(ipsq->ipsq_xop == 16629 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16630 } 16631 16632 switch (mp->b_datap->db_type) { 16633 case M_ERROR: 16634 case M_HANGUP: 16635 /* 16636 * The device has a problem. We force the ILL down. It can 16637 * be brought up again manually using SIOCSIFFLAGS (via 16638 * ifconfig or equivalent). 16639 */ 16640 ASSERT(ipsq != NULL); 16641 if (mp->b_rptr < mp->b_wptr) 16642 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16643 if (ill->ill_error == 0) 16644 ill->ill_error = ENXIO; 16645 if (!ill_down_start(q, mp)) 16646 return; 16647 ipif_all_down_tail(ipsq, q, mp, NULL); 16648 break; 16649 case M_IOCACK: 16650 iocp = (struct iocblk *)mp->b_rptr; 16651 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16652 switch (iocp->ioc_cmd) { 16653 case SIOCSTUNPARAM: 16654 case OSIOCSTUNPARAM: 16655 ASSERT(ipsq != NULL); 16656 /* 16657 * Finish socket ioctl passed through to tun. 16658 * We should have an IOCTL waiting on this. 16659 */ 16660 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16661 if (ill->ill_isv6) { 16662 struct iftun_req *ta; 16663 16664 /* 16665 * if a source or destination is 16666 * being set, try and set the link 16667 * local address for the tunnel 16668 */ 16669 ta = (struct iftun_req *)mp->b_cont-> 16670 b_cont->b_rptr; 16671 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16672 ipif_set_tun_llink(ill, ta); 16673 } 16674 16675 } 16676 if (mp1 != NULL) { 16677 /* 16678 * Now copy back the b_next/b_prev used by 16679 * mi code for the mi_copy* functions. 16680 * See ip_sioctl_tunparam() for the reason. 16681 * Also protect against missing b_cont. 16682 */ 16683 if (mp->b_cont != NULL) { 16684 mp->b_cont->b_next = 16685 mp1->b_cont->b_next; 16686 mp->b_cont->b_prev = 16687 mp1->b_cont->b_prev; 16688 } 16689 inet_freemsg(mp1); 16690 ASSERT(connp != NULL); 16691 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16692 iocp->ioc_error, NO_COPYOUT, ipsq); 16693 } else { 16694 ASSERT(connp == NULL); 16695 putnext(q, mp); 16696 } 16697 break; 16698 case SIOCGTUNPARAM: 16699 case OSIOCGTUNPARAM: 16700 /* 16701 * This is really M_IOCDATA from the tunnel driver. 16702 * convert back and complete the ioctl. 16703 * We should have an IOCTL waiting on this. 16704 */ 16705 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16706 if (mp1) { 16707 /* 16708 * Now copy back the b_next/b_prev used by 16709 * mi code for the mi_copy* functions. 16710 * See ip_sioctl_tunparam() for the reason. 16711 * Also protect against missing b_cont. 16712 */ 16713 if (mp->b_cont != NULL) { 16714 mp->b_cont->b_next = 16715 mp1->b_cont->b_next; 16716 mp->b_cont->b_prev = 16717 mp1->b_cont->b_prev; 16718 } 16719 inet_freemsg(mp1); 16720 if (iocp->ioc_error == 0) 16721 mp->b_datap->db_type = M_IOCDATA; 16722 ASSERT(connp != NULL); 16723 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16724 iocp->ioc_error, COPYOUT, NULL); 16725 } else { 16726 ASSERT(connp == NULL); 16727 putnext(q, mp); 16728 } 16729 break; 16730 default: 16731 break; 16732 } 16733 break; 16734 case M_IOCNAK: 16735 iocp = (struct iocblk *)mp->b_rptr; 16736 16737 switch (iocp->ioc_cmd) { 16738 int mode; 16739 16740 case DL_IOC_HDR_INFO: 16741 /* 16742 * If this was the first attempt, turn off the 16743 * fastpath probing. 16744 */ 16745 mutex_enter(&ill->ill_lock); 16746 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16747 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16748 mutex_exit(&ill->ill_lock); 16749 ill_fastpath_nack(ill); 16750 ip1dbg(("ip_rput: DLPI fastpath off on " 16751 "interface %s\n", 16752 ill->ill_name)); 16753 } else { 16754 mutex_exit(&ill->ill_lock); 16755 } 16756 freemsg(mp); 16757 break; 16758 case SIOCSTUNPARAM: 16759 case OSIOCSTUNPARAM: 16760 ASSERT(ipsq != NULL); 16761 /* 16762 * Finish socket ioctl passed through to tun 16763 * We should have an IOCTL waiting on this. 16764 */ 16765 /* FALLTHRU */ 16766 case SIOCGTUNPARAM: 16767 case OSIOCGTUNPARAM: 16768 /* 16769 * This is really M_IOCDATA from the tunnel driver. 16770 * convert back and complete the ioctl. 16771 * We should have an IOCTL waiting on this. 16772 */ 16773 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16774 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16775 mp1 = ill_pending_mp_get(ill, &connp, 16776 iocp->ioc_id); 16777 mode = COPYOUT; 16778 ipsq = NULL; 16779 } else { 16780 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16781 mode = NO_COPYOUT; 16782 } 16783 if (mp1 != NULL) { 16784 /* 16785 * Now copy back the b_next/b_prev used by 16786 * mi code for the mi_copy* functions. 16787 * See ip_sioctl_tunparam() for the reason. 16788 * Also protect against missing b_cont. 16789 */ 16790 if (mp->b_cont != NULL) { 16791 mp->b_cont->b_next = 16792 mp1->b_cont->b_next; 16793 mp->b_cont->b_prev = 16794 mp1->b_cont->b_prev; 16795 } 16796 inet_freemsg(mp1); 16797 if (iocp->ioc_error == 0) 16798 iocp->ioc_error = EINVAL; 16799 ASSERT(connp != NULL); 16800 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16801 iocp->ioc_error, mode, ipsq); 16802 } else { 16803 ASSERT(connp == NULL); 16804 putnext(q, mp); 16805 } 16806 break; 16807 default: 16808 break; 16809 } 16810 default: 16811 break; 16812 } 16813 } 16814 16815 /* 16816 * NOTE : This function does not ire_refrele the ire argument passed in. 16817 * 16818 * IPQoS notes 16819 * IP policy is invoked twice for a forwarded packet, once on the read side 16820 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16821 * enabled. An additional parameter, in_ill, has been added for this purpose. 16822 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16823 * because ip_mroute drops this information. 16824 * 16825 */ 16826 void 16827 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16828 { 16829 uint32_t old_pkt_len; 16830 uint32_t pkt_len; 16831 queue_t *q; 16832 uint32_t sum; 16833 #define rptr ((uchar_t *)ipha) 16834 uint32_t max_frag; 16835 uint32_t ill_index; 16836 ill_t *out_ill; 16837 mib2_ipIfStatsEntry_t *mibptr; 16838 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16839 16840 /* Get the ill_index of the incoming ILL */ 16841 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16842 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16843 16844 /* Initiate Read side IPPF processing */ 16845 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16846 ip_process(IPP_FWD_IN, &mp, ill_index); 16847 if (mp == NULL) { 16848 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16849 "during IPPF processing\n")); 16850 return; 16851 } 16852 } 16853 16854 /* Adjust the checksum to reflect the ttl decrement. */ 16855 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16856 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16857 16858 if (ipha->ipha_ttl-- <= 1) { 16859 if (ip_csum_hdr(ipha)) { 16860 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16861 goto drop_pkt; 16862 } 16863 /* 16864 * Note: ire_stq this will be NULL for multicast 16865 * datagrams using the long path through arp (the IRE 16866 * is not an IRE_CACHE). This should not cause 16867 * problems since we don't generate ICMP errors for 16868 * multicast packets. 16869 */ 16870 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16871 q = ire->ire_stq; 16872 if (q != NULL) { 16873 /* Sent by forwarding path, and router is global zone */ 16874 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16875 GLOBAL_ZONEID, ipst); 16876 } else 16877 freemsg(mp); 16878 return; 16879 } 16880 16881 /* 16882 * Don't forward if the interface is down 16883 */ 16884 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16885 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16886 ip2dbg(("ip_rput_forward:interface is down\n")); 16887 goto drop_pkt; 16888 } 16889 16890 /* Get the ill_index of the outgoing ILL */ 16891 out_ill = ire_to_ill(ire); 16892 ill_index = out_ill->ill_phyint->phyint_ifindex; 16893 16894 DTRACE_PROBE4(ip4__forwarding__start, 16895 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16896 16897 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16898 ipst->ips_ipv4firewall_forwarding, 16899 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16900 16901 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16902 16903 if (mp == NULL) 16904 return; 16905 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16906 16907 if (is_system_labeled()) { 16908 mblk_t *mp1; 16909 16910 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16911 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16912 goto drop_pkt; 16913 } 16914 /* Size may have changed */ 16915 mp = mp1; 16916 ipha = (ipha_t *)mp->b_rptr; 16917 pkt_len = ntohs(ipha->ipha_length); 16918 } 16919 16920 /* Check if there are options to update */ 16921 if (!IS_SIMPLE_IPH(ipha)) { 16922 if (ip_csum_hdr(ipha)) { 16923 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16924 goto drop_pkt; 16925 } 16926 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16927 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16928 return; 16929 } 16930 16931 ipha->ipha_hdr_checksum = 0; 16932 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16933 } 16934 max_frag = ire->ire_max_frag; 16935 if (pkt_len > max_frag) { 16936 /* 16937 * It needs fragging on its way out. We haven't 16938 * verified the header checksum yet. Since we 16939 * are going to put a surely good checksum in the 16940 * outgoing header, we have to make sure that it 16941 * was good coming in. 16942 */ 16943 if (ip_csum_hdr(ipha)) { 16944 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16945 goto drop_pkt; 16946 } 16947 /* Initiate Write side IPPF processing */ 16948 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16949 ip_process(IPP_FWD_OUT, &mp, ill_index); 16950 if (mp == NULL) { 16951 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16952 " during IPPF processing\n")); 16953 return; 16954 } 16955 } 16956 /* 16957 * Handle labeled packet resizing. 16958 * 16959 * If we have added a label, inform ip_wput_frag() of its 16960 * effect on the MTU for ICMP messages. 16961 */ 16962 if (pkt_len > old_pkt_len) { 16963 uint32_t secopt_size; 16964 16965 secopt_size = pkt_len - old_pkt_len; 16966 if (secopt_size < max_frag) 16967 max_frag -= secopt_size; 16968 } 16969 16970 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16971 GLOBAL_ZONEID, ipst, NULL); 16972 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16973 return; 16974 } 16975 16976 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16977 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16978 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16979 ipst->ips_ipv4firewall_physical_out, 16980 NULL, out_ill, ipha, mp, mp, 0, ipst); 16981 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16982 if (mp == NULL) 16983 return; 16984 16985 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16986 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16987 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16988 /* ip_xmit_v4 always consumes the packet */ 16989 return; 16990 16991 drop_pkt:; 16992 ip1dbg(("ip_rput_forward: drop pkt\n")); 16993 freemsg(mp); 16994 #undef rptr 16995 } 16996 16997 void 16998 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16999 { 17000 ire_t *ire; 17001 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17002 17003 ASSERT(!ipif->ipif_isv6); 17004 /* 17005 * Find an IRE which matches the destination and the outgoing 17006 * queue in the cache table. All we need is an IRE_CACHE which 17007 * is pointing at ipif->ipif_ill. 17008 */ 17009 if (ipif->ipif_flags & IPIF_POINTOPOINT) 17010 dst = ipif->ipif_pp_dst_addr; 17011 17012 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 17013 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 17014 if (ire == NULL) { 17015 /* 17016 * Mark this packet to make it be delivered to 17017 * ip_rput_forward after the new ire has been 17018 * created. 17019 */ 17020 mp->b_prev = NULL; 17021 mp->b_next = mp; 17022 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 17023 NULL, 0, GLOBAL_ZONEID, &zero_info); 17024 } else { 17025 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 17026 IRE_REFRELE(ire); 17027 } 17028 } 17029 17030 /* Update any source route, record route or timestamp options */ 17031 static int 17032 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 17033 { 17034 ipoptp_t opts; 17035 uchar_t *opt; 17036 uint8_t optval; 17037 uint8_t optlen; 17038 ipaddr_t dst; 17039 uint32_t ts; 17040 ire_t *dst_ire = NULL; 17041 ire_t *tmp_ire = NULL; 17042 timestruc_t now; 17043 17044 ip2dbg(("ip_rput_forward_options\n")); 17045 dst = ipha->ipha_dst; 17046 for (optval = ipoptp_first(&opts, ipha); 17047 optval != IPOPT_EOL; 17048 optval = ipoptp_next(&opts)) { 17049 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17050 opt = opts.ipoptp_cur; 17051 optlen = opts.ipoptp_len; 17052 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 17053 optval, opts.ipoptp_len)); 17054 switch (optval) { 17055 uint32_t off; 17056 case IPOPT_SSRR: 17057 case IPOPT_LSRR: 17058 /* Check if adminstratively disabled */ 17059 if (!ipst->ips_ip_forward_src_routed) { 17060 if (ire->ire_stq != NULL) { 17061 /* 17062 * Sent by forwarding path, and router 17063 * is global zone 17064 */ 17065 icmp_unreachable(ire->ire_stq, mp, 17066 ICMP_SOURCE_ROUTE_FAILED, 17067 GLOBAL_ZONEID, ipst); 17068 } else { 17069 ip0dbg(("ip_rput_forward_options: " 17070 "unable to send unreach\n")); 17071 freemsg(mp); 17072 } 17073 return (-1); 17074 } 17075 17076 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17077 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17078 if (dst_ire == NULL) { 17079 /* 17080 * Must be partial since ip_rput_options 17081 * checked for strict. 17082 */ 17083 break; 17084 } 17085 off = opt[IPOPT_OFFSET]; 17086 off--; 17087 redo_srr: 17088 if (optlen < IP_ADDR_LEN || 17089 off > optlen - IP_ADDR_LEN) { 17090 /* End of source route */ 17091 ip1dbg(( 17092 "ip_rput_forward_options: end of SR\n")); 17093 ire_refrele(dst_ire); 17094 break; 17095 } 17096 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17097 bcopy(&ire->ire_src_addr, (char *)opt + off, 17098 IP_ADDR_LEN); 17099 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17100 ntohl(dst))); 17101 17102 /* 17103 * Check if our address is present more than 17104 * once as consecutive hops in source route. 17105 */ 17106 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17107 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17108 if (tmp_ire != NULL) { 17109 ire_refrele(tmp_ire); 17110 off += IP_ADDR_LEN; 17111 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17112 goto redo_srr; 17113 } 17114 ipha->ipha_dst = dst; 17115 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17116 ire_refrele(dst_ire); 17117 break; 17118 case IPOPT_RR: 17119 off = opt[IPOPT_OFFSET]; 17120 off--; 17121 if (optlen < IP_ADDR_LEN || 17122 off > optlen - IP_ADDR_LEN) { 17123 /* No more room - ignore */ 17124 ip1dbg(( 17125 "ip_rput_forward_options: end of RR\n")); 17126 break; 17127 } 17128 bcopy(&ire->ire_src_addr, (char *)opt + off, 17129 IP_ADDR_LEN); 17130 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17131 break; 17132 case IPOPT_TS: 17133 /* Insert timestamp if there is room */ 17134 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17135 case IPOPT_TS_TSONLY: 17136 off = IPOPT_TS_TIMELEN; 17137 break; 17138 case IPOPT_TS_PRESPEC: 17139 case IPOPT_TS_PRESPEC_RFC791: 17140 /* Verify that the address matched */ 17141 off = opt[IPOPT_OFFSET] - 1; 17142 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17143 dst_ire = ire_ctable_lookup(dst, 0, 17144 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17145 MATCH_IRE_TYPE, ipst); 17146 if (dst_ire == NULL) { 17147 /* Not for us */ 17148 break; 17149 } 17150 ire_refrele(dst_ire); 17151 /* FALLTHRU */ 17152 case IPOPT_TS_TSANDADDR: 17153 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17154 break; 17155 default: 17156 /* 17157 * ip_*put_options should have already 17158 * dropped this packet. 17159 */ 17160 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17161 "unknown IT - bug in ip_rput_options?\n"); 17162 return (0); /* Keep "lint" happy */ 17163 } 17164 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17165 /* Increase overflow counter */ 17166 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17167 opt[IPOPT_POS_OV_FLG] = 17168 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17169 (off << 4)); 17170 break; 17171 } 17172 off = opt[IPOPT_OFFSET] - 1; 17173 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17174 case IPOPT_TS_PRESPEC: 17175 case IPOPT_TS_PRESPEC_RFC791: 17176 case IPOPT_TS_TSANDADDR: 17177 bcopy(&ire->ire_src_addr, 17178 (char *)opt + off, IP_ADDR_LEN); 17179 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17180 /* FALLTHRU */ 17181 case IPOPT_TS_TSONLY: 17182 off = opt[IPOPT_OFFSET] - 1; 17183 /* Compute # of milliseconds since midnight */ 17184 gethrestime(&now); 17185 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17186 now.tv_nsec / (NANOSEC / MILLISEC); 17187 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17188 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17189 break; 17190 } 17191 break; 17192 } 17193 } 17194 return (0); 17195 } 17196 17197 /* 17198 * This is called after processing at least one of AH/ESP headers. 17199 * 17200 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17201 * the actual, physical interface on which the packet was received, 17202 * but, when ip_strict_dst_multihoming is set to 1, could be the 17203 * interface which had the ipha_dst configured when the packet went 17204 * through ip_rput. The ill_index corresponding to the recv_ill 17205 * is saved in ipsec_in_rill_index 17206 * 17207 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17208 * cannot assume "ire" points to valid data for any IPv6 cases. 17209 */ 17210 void 17211 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17212 { 17213 mblk_t *mp; 17214 ipaddr_t dst; 17215 in6_addr_t *v6dstp; 17216 ipha_t *ipha; 17217 ip6_t *ip6h; 17218 ipsec_in_t *ii; 17219 boolean_t ill_need_rele = B_FALSE; 17220 boolean_t rill_need_rele = B_FALSE; 17221 boolean_t ire_need_rele = B_FALSE; 17222 netstack_t *ns; 17223 ip_stack_t *ipst; 17224 17225 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17226 ASSERT(ii->ipsec_in_ill_index != 0); 17227 ns = ii->ipsec_in_ns; 17228 ASSERT(ii->ipsec_in_ns != NULL); 17229 ipst = ns->netstack_ip; 17230 17231 mp = ipsec_mp->b_cont; 17232 ASSERT(mp != NULL); 17233 17234 if (ill == NULL) { 17235 ASSERT(recv_ill == NULL); 17236 /* 17237 * We need to get the original queue on which ip_rput_local 17238 * or ip_rput_data_v6 was called. 17239 */ 17240 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17241 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17242 ill_need_rele = B_TRUE; 17243 17244 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17245 recv_ill = ill_lookup_on_ifindex( 17246 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17247 NULL, NULL, NULL, NULL, ipst); 17248 rill_need_rele = B_TRUE; 17249 } else { 17250 recv_ill = ill; 17251 } 17252 17253 if ((ill == NULL) || (recv_ill == NULL)) { 17254 ip0dbg(("ip_fanout_proto_again: interface " 17255 "disappeared\n")); 17256 if (ill != NULL) 17257 ill_refrele(ill); 17258 if (recv_ill != NULL) 17259 ill_refrele(recv_ill); 17260 freemsg(ipsec_mp); 17261 return; 17262 } 17263 } 17264 17265 ASSERT(ill != NULL && recv_ill != NULL); 17266 17267 if (mp->b_datap->db_type == M_CTL) { 17268 /* 17269 * AH/ESP is returning the ICMP message after 17270 * removing their headers. Fanout again till 17271 * it gets to the right protocol. 17272 */ 17273 if (ii->ipsec_in_v4) { 17274 icmph_t *icmph; 17275 int iph_hdr_length; 17276 int hdr_length; 17277 17278 ipha = (ipha_t *)mp->b_rptr; 17279 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17280 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17281 ipha = (ipha_t *)&icmph[1]; 17282 hdr_length = IPH_HDR_LENGTH(ipha); 17283 /* 17284 * icmp_inbound_error_fanout may need to do pullupmsg. 17285 * Reset the type to M_DATA. 17286 */ 17287 mp->b_datap->db_type = M_DATA; 17288 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17289 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17290 B_FALSE, ill, ii->ipsec_in_zoneid); 17291 } else { 17292 icmp6_t *icmp6; 17293 int hdr_length; 17294 17295 ip6h = (ip6_t *)mp->b_rptr; 17296 /* Don't call hdr_length_v6() unless you have to. */ 17297 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17298 hdr_length = ip_hdr_length_v6(mp, ip6h); 17299 else 17300 hdr_length = IPV6_HDR_LEN; 17301 17302 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17303 /* 17304 * icmp_inbound_error_fanout_v6 may need to do 17305 * pullupmsg. Reset the type to M_DATA. 17306 */ 17307 mp->b_datap->db_type = M_DATA; 17308 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17309 ip6h, icmp6, ill, recv_ill, B_TRUE, 17310 ii->ipsec_in_zoneid); 17311 } 17312 if (ill_need_rele) 17313 ill_refrele(ill); 17314 if (rill_need_rele) 17315 ill_refrele(recv_ill); 17316 return; 17317 } 17318 17319 if (ii->ipsec_in_v4) { 17320 ipha = (ipha_t *)mp->b_rptr; 17321 dst = ipha->ipha_dst; 17322 if (CLASSD(dst)) { 17323 /* 17324 * Multicast has to be delivered to all streams. 17325 */ 17326 dst = INADDR_BROADCAST; 17327 } 17328 17329 if (ire == NULL) { 17330 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17331 msg_getlabel(mp), ipst); 17332 if (ire == NULL) { 17333 if (ill_need_rele) 17334 ill_refrele(ill); 17335 if (rill_need_rele) 17336 ill_refrele(recv_ill); 17337 ip1dbg(("ip_fanout_proto_again: " 17338 "IRE not found")); 17339 freemsg(ipsec_mp); 17340 return; 17341 } 17342 ire_need_rele = B_TRUE; 17343 } 17344 17345 switch (ipha->ipha_protocol) { 17346 case IPPROTO_UDP: 17347 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17348 recv_ill); 17349 if (ire_need_rele) 17350 ire_refrele(ire); 17351 break; 17352 case IPPROTO_TCP: 17353 if (!ire_need_rele) 17354 IRE_REFHOLD(ire); 17355 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17356 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17357 IRE_REFRELE(ire); 17358 if (mp != NULL) { 17359 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17360 mp, 1, SQ_PROCESS, 17361 SQTAG_IP_PROTO_AGAIN); 17362 } 17363 break; 17364 case IPPROTO_SCTP: 17365 if (!ire_need_rele) 17366 IRE_REFHOLD(ire); 17367 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17368 ipsec_mp, 0, ill->ill_rq, dst); 17369 break; 17370 default: 17371 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17372 recv_ill, 0); 17373 if (ire_need_rele) 17374 ire_refrele(ire); 17375 break; 17376 } 17377 } else { 17378 uint32_t rput_flags = 0; 17379 17380 ip6h = (ip6_t *)mp->b_rptr; 17381 v6dstp = &ip6h->ip6_dst; 17382 /* 17383 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17384 * address. 17385 * 17386 * Currently, we don't store that state in the IPSEC_IN 17387 * message, and we may need to. 17388 */ 17389 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17390 IP6_IN_LLMCAST : 0); 17391 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17392 NULL, NULL); 17393 } 17394 if (ill_need_rele) 17395 ill_refrele(ill); 17396 if (rill_need_rele) 17397 ill_refrele(recv_ill); 17398 } 17399 17400 /* 17401 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17402 * returns 'true' if there are still fragments left on the queue, in 17403 * which case we restart the timer. 17404 */ 17405 void 17406 ill_frag_timer(void *arg) 17407 { 17408 ill_t *ill = (ill_t *)arg; 17409 boolean_t frag_pending; 17410 ip_stack_t *ipst = ill->ill_ipst; 17411 time_t timeout; 17412 17413 mutex_enter(&ill->ill_lock); 17414 ASSERT(!ill->ill_fragtimer_executing); 17415 if (ill->ill_state_flags & ILL_CONDEMNED) { 17416 ill->ill_frag_timer_id = 0; 17417 mutex_exit(&ill->ill_lock); 17418 return; 17419 } 17420 ill->ill_fragtimer_executing = 1; 17421 mutex_exit(&ill->ill_lock); 17422 17423 if (ill->ill_isv6) 17424 timeout = ipst->ips_ipv6_frag_timeout; 17425 else 17426 timeout = ipst->ips_ip_g_frag_timeout; 17427 17428 frag_pending = ill_frag_timeout(ill, timeout); 17429 17430 /* 17431 * Restart the timer, if we have fragments pending or if someone 17432 * wanted us to be scheduled again. 17433 */ 17434 mutex_enter(&ill->ill_lock); 17435 ill->ill_fragtimer_executing = 0; 17436 ill->ill_frag_timer_id = 0; 17437 if (frag_pending || ill->ill_fragtimer_needrestart) 17438 ill_frag_timer_start(ill); 17439 mutex_exit(&ill->ill_lock); 17440 } 17441 17442 void 17443 ill_frag_timer_start(ill_t *ill) 17444 { 17445 ip_stack_t *ipst = ill->ill_ipst; 17446 clock_t timeo_ms; 17447 17448 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17449 17450 /* If the ill is closing or opening don't proceed */ 17451 if (ill->ill_state_flags & ILL_CONDEMNED) 17452 return; 17453 17454 if (ill->ill_fragtimer_executing) { 17455 /* 17456 * ill_frag_timer is currently executing. Just record the 17457 * the fact that we want the timer to be restarted. 17458 * ill_frag_timer will post a timeout before it returns, 17459 * ensuring it will be called again. 17460 */ 17461 ill->ill_fragtimer_needrestart = 1; 17462 return; 17463 } 17464 17465 if (ill->ill_frag_timer_id == 0) { 17466 if (ill->ill_isv6) 17467 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17468 else 17469 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17470 /* 17471 * The timer is neither running nor is the timeout handler 17472 * executing. Post a timeout so that ill_frag_timer will be 17473 * called 17474 */ 17475 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17476 MSEC_TO_TICK(timeo_ms >> 1)); 17477 ill->ill_fragtimer_needrestart = 0; 17478 } 17479 } 17480 17481 /* 17482 * This routine is needed for loopback when forwarding multicasts. 17483 * 17484 * IPQoS Notes: 17485 * IPPF processing is done in fanout routines. 17486 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17487 * processing for IPsec packets is done when it comes back in clear. 17488 * NOTE : The callers of this function need to do the ire_refrele for the 17489 * ire that is being passed in. 17490 */ 17491 void 17492 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17493 ill_t *recv_ill, uint32_t esp_udp_ports) 17494 { 17495 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17496 ill_t *ill = (ill_t *)q->q_ptr; 17497 uint32_t sum; 17498 uint32_t u1; 17499 uint32_t u2; 17500 int hdr_length; 17501 boolean_t mctl_present; 17502 mblk_t *first_mp = mp; 17503 mblk_t *hada_mp = NULL; 17504 ipha_t *inner_ipha; 17505 ip_stack_t *ipst; 17506 17507 ASSERT(recv_ill != NULL); 17508 ipst = recv_ill->ill_ipst; 17509 17510 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17511 "ip_rput_locl_start: q %p", q); 17512 17513 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17514 ASSERT(ill != NULL); 17515 17516 #define rptr ((uchar_t *)ipha) 17517 #define iphs ((uint16_t *)ipha) 17518 17519 /* 17520 * no UDP or TCP packet should come here anymore. 17521 */ 17522 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17523 ipha->ipha_protocol != IPPROTO_UDP); 17524 17525 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17526 if (mctl_present && 17527 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17528 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17529 17530 /* 17531 * It's an IPsec accelerated packet. 17532 * Keep a pointer to the data attributes around until 17533 * we allocate the ipsec_info_t. 17534 */ 17535 IPSECHW_DEBUG(IPSECHW_PKT, 17536 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17537 hada_mp = first_mp; 17538 hada_mp->b_cont = NULL; 17539 /* 17540 * Since it is accelerated, it comes directly from 17541 * the ill and the data attributes is followed by 17542 * the packet data. 17543 */ 17544 ASSERT(mp->b_datap->db_type != M_CTL); 17545 first_mp = mp; 17546 mctl_present = B_FALSE; 17547 } 17548 17549 /* 17550 * IF M_CTL is not present, then ipsec_in_is_secure 17551 * should return B_TRUE. There is a case where loopback 17552 * packets has an M_CTL in the front with all the 17553 * IPsec options set to IPSEC_PREF_NEVER - which means 17554 * ipsec_in_is_secure will return B_FALSE. As loopback 17555 * packets never comes here, it is safe to ASSERT the 17556 * following. 17557 */ 17558 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17559 17560 /* 17561 * Also, we should never have an mctl_present if this is an 17562 * ESP-in-UDP packet. 17563 */ 17564 ASSERT(!mctl_present || !esp_in_udp_packet); 17565 17566 /* u1 is # words of IP options */ 17567 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17568 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17569 17570 /* 17571 * Don't verify header checksum if we just removed UDP header or 17572 * packet is coming back from AH/ESP. 17573 */ 17574 if (!esp_in_udp_packet && !mctl_present) { 17575 if (u1) { 17576 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17577 if (hada_mp != NULL) 17578 freemsg(hada_mp); 17579 return; 17580 } 17581 } else { 17582 /* Check the IP header checksum. */ 17583 #define uph ((uint16_t *)ipha) 17584 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17585 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17586 #undef uph 17587 /* finish doing IP checksum */ 17588 sum = (sum & 0xFFFF) + (sum >> 16); 17589 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17590 if (sum && sum != 0xFFFF) { 17591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17592 goto drop_pkt; 17593 } 17594 } 17595 } 17596 17597 /* 17598 * Count for SNMP of inbound packets for ire. As ip_proto_input 17599 * might be called more than once for secure packets, count only 17600 * the first time. 17601 */ 17602 if (!mctl_present) { 17603 UPDATE_IB_PKT_COUNT(ire); 17604 ire->ire_last_used_time = lbolt; 17605 } 17606 17607 /* Check for fragmentation offset. */ 17608 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17609 u1 = u2 & (IPH_MF | IPH_OFFSET); 17610 if (u1) { 17611 /* 17612 * We re-assemble fragments before we do the AH/ESP 17613 * processing. Thus, M_CTL should not be present 17614 * while we are re-assembling. 17615 */ 17616 ASSERT(!mctl_present); 17617 ASSERT(first_mp == mp); 17618 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17619 return; 17620 17621 /* 17622 * Make sure that first_mp points back to mp as 17623 * the mp we came in with could have changed in 17624 * ip_rput_fragment(). 17625 */ 17626 ipha = (ipha_t *)mp->b_rptr; 17627 first_mp = mp; 17628 } 17629 17630 /* 17631 * Clear hardware checksumming flag as it is currently only 17632 * used by TCP and UDP. 17633 */ 17634 DB_CKSUMFLAGS(mp) = 0; 17635 17636 /* Now we have a complete datagram, destined for this machine. */ 17637 u1 = IPH_HDR_LENGTH(ipha); 17638 switch (ipha->ipha_protocol) { 17639 case IPPROTO_ICMP: { 17640 ire_t *ire_zone; 17641 ilm_t *ilm; 17642 mblk_t *mp1; 17643 zoneid_t last_zoneid; 17644 ilm_walker_t ilw; 17645 17646 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17647 ASSERT(ire->ire_type == IRE_BROADCAST); 17648 17649 /* 17650 * In the multicast case, applications may have joined 17651 * the group from different zones, so we need to deliver 17652 * the packet to each of them. Loop through the 17653 * multicast memberships structures (ilm) on the receive 17654 * ill and send a copy of the packet up each matching 17655 * one. However, we don't do this for multicasts sent on 17656 * the loopback interface (PHYI_LOOPBACK flag set) as 17657 * they must stay in the sender's zone. 17658 * 17659 * ilm_add_v6() ensures that ilms in the same zone are 17660 * contiguous in the ill_ilm list. We use this property 17661 * to avoid sending duplicates needed when two 17662 * applications in the same zone join the same group on 17663 * different logical interfaces: we ignore the ilm if 17664 * its zoneid is the same as the last matching one. 17665 * In addition, the sending of the packet for 17666 * ire_zoneid is delayed until all of the other ilms 17667 * have been exhausted. 17668 */ 17669 last_zoneid = -1; 17670 ilm = ilm_walker_start(&ilw, recv_ill); 17671 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17672 if (ipha->ipha_dst != ilm->ilm_addr || 17673 ilm->ilm_zoneid == last_zoneid || 17674 ilm->ilm_zoneid == ire->ire_zoneid || 17675 ilm->ilm_zoneid == ALL_ZONES || 17676 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17677 continue; 17678 mp1 = ip_copymsg(first_mp); 17679 if (mp1 == NULL) 17680 continue; 17681 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17682 0, sum, mctl_present, B_TRUE, 17683 recv_ill, ilm->ilm_zoneid); 17684 last_zoneid = ilm->ilm_zoneid; 17685 } 17686 ilm_walker_finish(&ilw); 17687 } else if (ire->ire_type == IRE_BROADCAST) { 17688 /* 17689 * In the broadcast case, there may be many zones 17690 * which need a copy of the packet delivered to them. 17691 * There is one IRE_BROADCAST per broadcast address 17692 * and per zone; we walk those using a helper function. 17693 * In addition, the sending of the packet for ire is 17694 * delayed until all of the other ires have been 17695 * processed. 17696 */ 17697 IRB_REFHOLD(ire->ire_bucket); 17698 ire_zone = NULL; 17699 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17700 ire)) != NULL) { 17701 mp1 = ip_copymsg(first_mp); 17702 if (mp1 == NULL) 17703 continue; 17704 17705 UPDATE_IB_PKT_COUNT(ire_zone); 17706 ire_zone->ire_last_used_time = lbolt; 17707 icmp_inbound(q, mp1, B_TRUE, ill, 17708 0, sum, mctl_present, B_TRUE, 17709 recv_ill, ire_zone->ire_zoneid); 17710 } 17711 IRB_REFRELE(ire->ire_bucket); 17712 } 17713 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17714 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17715 ire->ire_zoneid); 17716 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17717 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17718 return; 17719 } 17720 case IPPROTO_IGMP: 17721 /* 17722 * If we are not willing to accept IGMP packets in clear, 17723 * then check with global policy. 17724 */ 17725 if (ipst->ips_igmp_accept_clear_messages == 0) { 17726 first_mp = ipsec_check_global_policy(first_mp, NULL, 17727 ipha, NULL, mctl_present, ipst->ips_netstack); 17728 if (first_mp == NULL) 17729 return; 17730 } 17731 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17732 freemsg(first_mp); 17733 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17734 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17735 return; 17736 } 17737 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17738 /* Bad packet - discarded by igmp_input */ 17739 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17740 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17741 if (mctl_present) 17742 freeb(first_mp); 17743 return; 17744 } 17745 /* 17746 * igmp_input() may have returned the pulled up message. 17747 * So first_mp and ipha need to be reinitialized. 17748 */ 17749 ipha = (ipha_t *)mp->b_rptr; 17750 if (mctl_present) 17751 first_mp->b_cont = mp; 17752 else 17753 first_mp = mp; 17754 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17755 connf_head != NULL) { 17756 /* No user-level listener for IGMP packets */ 17757 goto drop_pkt; 17758 } 17759 /* deliver to local raw users */ 17760 break; 17761 case IPPROTO_PIM: 17762 /* 17763 * If we are not willing to accept PIM packets in clear, 17764 * then check with global policy. 17765 */ 17766 if (ipst->ips_pim_accept_clear_messages == 0) { 17767 first_mp = ipsec_check_global_policy(first_mp, NULL, 17768 ipha, NULL, mctl_present, ipst->ips_netstack); 17769 if (first_mp == NULL) 17770 return; 17771 } 17772 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17773 freemsg(first_mp); 17774 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17776 return; 17777 } 17778 if (pim_input(q, mp, ill) != 0) { 17779 /* Bad packet - discarded by pim_input */ 17780 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17781 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17782 if (mctl_present) 17783 freeb(first_mp); 17784 return; 17785 } 17786 17787 /* 17788 * pim_input() may have pulled up the message so ipha needs to 17789 * be reinitialized. 17790 */ 17791 ipha = (ipha_t *)mp->b_rptr; 17792 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17793 connf_head != NULL) { 17794 /* No user-level listener for PIM packets */ 17795 goto drop_pkt; 17796 } 17797 /* deliver to local raw users */ 17798 break; 17799 case IPPROTO_ENCAP: 17800 /* 17801 * Handle self-encapsulated packets (IP-in-IP where 17802 * the inner addresses == the outer addresses). 17803 */ 17804 hdr_length = IPH_HDR_LENGTH(ipha); 17805 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17806 mp->b_wptr) { 17807 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17808 sizeof (ipha_t) - mp->b_rptr)) { 17809 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17810 freemsg(first_mp); 17811 return; 17812 } 17813 ipha = (ipha_t *)mp->b_rptr; 17814 } 17815 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17816 /* 17817 * Check the sanity of the inner IP header. 17818 */ 17819 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17820 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17821 freemsg(first_mp); 17822 return; 17823 } 17824 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17825 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17826 freemsg(first_mp); 17827 return; 17828 } 17829 if (inner_ipha->ipha_src == ipha->ipha_src && 17830 inner_ipha->ipha_dst == ipha->ipha_dst) { 17831 ipsec_in_t *ii; 17832 17833 /* 17834 * Self-encapsulated tunnel packet. Remove 17835 * the outer IP header and fanout again. 17836 * We also need to make sure that the inner 17837 * header is pulled up until options. 17838 */ 17839 mp->b_rptr = (uchar_t *)inner_ipha; 17840 ipha = inner_ipha; 17841 hdr_length = IPH_HDR_LENGTH(ipha); 17842 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17843 if (!pullupmsg(mp, (uchar_t *)ipha + 17844 + hdr_length - mp->b_rptr)) { 17845 freemsg(first_mp); 17846 return; 17847 } 17848 ipha = (ipha_t *)mp->b_rptr; 17849 } 17850 if (hdr_length > sizeof (ipha_t)) { 17851 /* We got options on the inner packet. */ 17852 ipaddr_t dst = ipha->ipha_dst; 17853 17854 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17855 -1) { 17856 /* Bad options! */ 17857 return; 17858 } 17859 if (dst != ipha->ipha_dst) { 17860 /* 17861 * Someone put a source-route in 17862 * the inside header of a self- 17863 * encapsulated packet. Drop it 17864 * with extreme prejudice and let 17865 * the sender know. 17866 */ 17867 icmp_unreachable(q, first_mp, 17868 ICMP_SOURCE_ROUTE_FAILED, 17869 recv_ill->ill_zoneid, ipst); 17870 return; 17871 } 17872 } 17873 if (!mctl_present) { 17874 ASSERT(first_mp == mp); 17875 /* 17876 * This means that somebody is sending 17877 * Self-encapsualted packets without AH/ESP. 17878 * If AH/ESP was present, we would have already 17879 * allocated the first_mp. 17880 * 17881 * Send this packet to find a tunnel endpoint. 17882 * if I can't find one, an ICMP 17883 * PROTOCOL_UNREACHABLE will get sent. 17884 */ 17885 goto fanout; 17886 } 17887 /* 17888 * We generally store the ill_index if we need to 17889 * do IPsec processing as we lose the ill queue when 17890 * we come back. But in this case, we never should 17891 * have to store the ill_index here as it should have 17892 * been stored previously when we processed the 17893 * AH/ESP header in this routine or for non-ipsec 17894 * cases, we still have the queue. But for some bad 17895 * packets from the wire, we can get to IPsec after 17896 * this and we better store the index for that case. 17897 */ 17898 ill = (ill_t *)q->q_ptr; 17899 ii = (ipsec_in_t *)first_mp->b_rptr; 17900 ii->ipsec_in_ill_index = 17901 ill->ill_phyint->phyint_ifindex; 17902 ii->ipsec_in_rill_index = 17903 recv_ill->ill_phyint->phyint_ifindex; 17904 if (ii->ipsec_in_decaps) { 17905 /* 17906 * This packet is self-encapsulated multiple 17907 * times. We don't want to recurse infinitely. 17908 * To keep it simple, drop the packet. 17909 */ 17910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17911 freemsg(first_mp); 17912 return; 17913 } 17914 ii->ipsec_in_decaps = B_TRUE; 17915 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17916 ire); 17917 return; 17918 } 17919 break; 17920 case IPPROTO_AH: 17921 case IPPROTO_ESP: { 17922 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17923 17924 /* 17925 * Fast path for AH/ESP. If this is the first time 17926 * we are sending a datagram to AH/ESP, allocate 17927 * a IPSEC_IN message and prepend it. Otherwise, 17928 * just fanout. 17929 */ 17930 17931 int ipsec_rc; 17932 ipsec_in_t *ii; 17933 netstack_t *ns = ipst->ips_netstack; 17934 17935 IP_STAT(ipst, ipsec_proto_ahesp); 17936 if (!mctl_present) { 17937 ASSERT(first_mp == mp); 17938 first_mp = ipsec_in_alloc(B_TRUE, ns); 17939 if (first_mp == NULL) { 17940 ip1dbg(("ip_proto_input: IPSEC_IN " 17941 "allocation failure.\n")); 17942 freemsg(hada_mp); /* okay ifnull */ 17943 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17944 freemsg(mp); 17945 return; 17946 } 17947 /* 17948 * Store the ill_index so that when we come back 17949 * from IPsec we ride on the same queue. 17950 */ 17951 ill = (ill_t *)q->q_ptr; 17952 ii = (ipsec_in_t *)first_mp->b_rptr; 17953 ii->ipsec_in_ill_index = 17954 ill->ill_phyint->phyint_ifindex; 17955 ii->ipsec_in_rill_index = 17956 recv_ill->ill_phyint->phyint_ifindex; 17957 first_mp->b_cont = mp; 17958 /* 17959 * Cache hardware acceleration info. 17960 */ 17961 if (hada_mp != NULL) { 17962 IPSECHW_DEBUG(IPSECHW_PKT, 17963 ("ip_rput_local: caching data attr.\n")); 17964 ii->ipsec_in_accelerated = B_TRUE; 17965 ii->ipsec_in_da = hada_mp; 17966 hada_mp = NULL; 17967 } 17968 } else { 17969 ii = (ipsec_in_t *)first_mp->b_rptr; 17970 } 17971 17972 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17973 17974 if (!ipsec_loaded(ipss)) { 17975 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17976 ire->ire_zoneid, ipst); 17977 return; 17978 } 17979 17980 ns = ipst->ips_netstack; 17981 /* select inbound SA and have IPsec process the pkt */ 17982 if (ipha->ipha_protocol == IPPROTO_ESP) { 17983 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17984 boolean_t esp_in_udp_sa; 17985 if (esph == NULL) 17986 return; 17987 ASSERT(ii->ipsec_in_esp_sa != NULL); 17988 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17989 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17990 IPSA_F_NATT) != 0); 17991 /* 17992 * The following is a fancy, but quick, way of saying: 17993 * ESP-in-UDP SA and Raw ESP packet --> drop 17994 * OR 17995 * ESP SA and ESP-in-UDP packet --> drop 17996 */ 17997 if (esp_in_udp_sa != esp_in_udp_packet) { 17998 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17999 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 18000 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 18001 &ns->netstack_ipsec->ipsec_dropper); 18002 return; 18003 } 18004 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 18005 first_mp, esph); 18006 } else { 18007 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 18008 if (ah == NULL) 18009 return; 18010 ASSERT(ii->ipsec_in_ah_sa != NULL); 18011 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 18012 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 18013 first_mp, ah); 18014 } 18015 18016 switch (ipsec_rc) { 18017 case IPSEC_STATUS_SUCCESS: 18018 break; 18019 case IPSEC_STATUS_FAILED: 18020 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 18021 /* FALLTHRU */ 18022 case IPSEC_STATUS_PENDING: 18023 return; 18024 } 18025 /* we're done with IPsec processing, send it up */ 18026 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 18027 return; 18028 } 18029 default: 18030 break; 18031 } 18032 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 18033 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 18034 ire->ire_zoneid)); 18035 goto drop_pkt; 18036 } 18037 /* 18038 * Handle protocols with which IP is less intimate. There 18039 * can be more than one stream bound to a particular 18040 * protocol. When this is the case, each one gets a copy 18041 * of any incoming packets. 18042 */ 18043 fanout: 18044 ip_fanout_proto(q, first_mp, ill, ipha, 18045 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 18046 B_TRUE, recv_ill, ire->ire_zoneid); 18047 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18048 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 18049 return; 18050 18051 drop_pkt: 18052 freemsg(first_mp); 18053 if (hada_mp != NULL) 18054 freeb(hada_mp); 18055 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18056 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 18057 #undef rptr 18058 #undef iphs 18059 18060 } 18061 18062 /* 18063 * Update any source route, record route or timestamp options. 18064 * Check that we are at end of strict source route. 18065 * The options have already been checked for sanity in ip_rput_options(). 18066 */ 18067 static boolean_t 18068 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 18069 ip_stack_t *ipst) 18070 { 18071 ipoptp_t opts; 18072 uchar_t *opt; 18073 uint8_t optval; 18074 uint8_t optlen; 18075 ipaddr_t dst; 18076 uint32_t ts; 18077 ire_t *dst_ire; 18078 timestruc_t now; 18079 zoneid_t zoneid; 18080 ill_t *ill; 18081 18082 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18083 18084 ip2dbg(("ip_rput_local_options\n")); 18085 18086 for (optval = ipoptp_first(&opts, ipha); 18087 optval != IPOPT_EOL; 18088 optval = ipoptp_next(&opts)) { 18089 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18090 opt = opts.ipoptp_cur; 18091 optlen = opts.ipoptp_len; 18092 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18093 optval, optlen)); 18094 switch (optval) { 18095 uint32_t off; 18096 case IPOPT_SSRR: 18097 case IPOPT_LSRR: 18098 off = opt[IPOPT_OFFSET]; 18099 off--; 18100 if (optlen < IP_ADDR_LEN || 18101 off > optlen - IP_ADDR_LEN) { 18102 /* End of source route */ 18103 ip1dbg(("ip_rput_local_options: end of SR\n")); 18104 break; 18105 } 18106 /* 18107 * This will only happen if two consecutive entries 18108 * in the source route contains our address or if 18109 * it is a packet with a loose source route which 18110 * reaches us before consuming the whole source route 18111 */ 18112 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18113 if (optval == IPOPT_SSRR) { 18114 goto bad_src_route; 18115 } 18116 /* 18117 * Hack: instead of dropping the packet truncate the 18118 * source route to what has been used by filling the 18119 * rest with IPOPT_NOP. 18120 */ 18121 opt[IPOPT_OLEN] = (uint8_t)off; 18122 while (off < optlen) { 18123 opt[off++] = IPOPT_NOP; 18124 } 18125 break; 18126 case IPOPT_RR: 18127 off = opt[IPOPT_OFFSET]; 18128 off--; 18129 if (optlen < IP_ADDR_LEN || 18130 off > optlen - IP_ADDR_LEN) { 18131 /* No more room - ignore */ 18132 ip1dbg(( 18133 "ip_rput_local_options: end of RR\n")); 18134 break; 18135 } 18136 bcopy(&ire->ire_src_addr, (char *)opt + off, 18137 IP_ADDR_LEN); 18138 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18139 break; 18140 case IPOPT_TS: 18141 /* Insert timestamp if there is romm */ 18142 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18143 case IPOPT_TS_TSONLY: 18144 off = IPOPT_TS_TIMELEN; 18145 break; 18146 case IPOPT_TS_PRESPEC: 18147 case IPOPT_TS_PRESPEC_RFC791: 18148 /* Verify that the address matched */ 18149 off = opt[IPOPT_OFFSET] - 1; 18150 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18151 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18152 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18153 ipst); 18154 if (dst_ire == NULL) { 18155 /* Not for us */ 18156 break; 18157 } 18158 ire_refrele(dst_ire); 18159 /* FALLTHRU */ 18160 case IPOPT_TS_TSANDADDR: 18161 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18162 break; 18163 default: 18164 /* 18165 * ip_*put_options should have already 18166 * dropped this packet. 18167 */ 18168 cmn_err(CE_PANIC, "ip_rput_local_options: " 18169 "unknown IT - bug in ip_rput_options?\n"); 18170 return (B_TRUE); /* Keep "lint" happy */ 18171 } 18172 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18173 /* Increase overflow counter */ 18174 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18175 opt[IPOPT_POS_OV_FLG] = 18176 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18177 (off << 4)); 18178 break; 18179 } 18180 off = opt[IPOPT_OFFSET] - 1; 18181 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18182 case IPOPT_TS_PRESPEC: 18183 case IPOPT_TS_PRESPEC_RFC791: 18184 case IPOPT_TS_TSANDADDR: 18185 bcopy(&ire->ire_src_addr, (char *)opt + off, 18186 IP_ADDR_LEN); 18187 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18188 /* FALLTHRU */ 18189 case IPOPT_TS_TSONLY: 18190 off = opt[IPOPT_OFFSET] - 1; 18191 /* Compute # of milliseconds since midnight */ 18192 gethrestime(&now); 18193 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18194 now.tv_nsec / (NANOSEC / MILLISEC); 18195 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18196 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18197 break; 18198 } 18199 break; 18200 } 18201 } 18202 return (B_TRUE); 18203 18204 bad_src_route: 18205 q = WR(q); 18206 if (q->q_next != NULL) 18207 ill = q->q_ptr; 18208 else 18209 ill = NULL; 18210 18211 /* make sure we clear any indication of a hardware checksum */ 18212 DB_CKSUMFLAGS(mp) = 0; 18213 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18214 if (zoneid == ALL_ZONES) 18215 freemsg(mp); 18216 else 18217 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18218 return (B_FALSE); 18219 18220 } 18221 18222 /* 18223 * Process IP options in an inbound packet. If an option affects the 18224 * effective destination address, return the next hop address via dstp. 18225 * Returns -1 if something fails in which case an ICMP error has been sent 18226 * and mp freed. 18227 */ 18228 static int 18229 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18230 ip_stack_t *ipst) 18231 { 18232 ipoptp_t opts; 18233 uchar_t *opt; 18234 uint8_t optval; 18235 uint8_t optlen; 18236 ipaddr_t dst; 18237 intptr_t code = 0; 18238 ire_t *ire = NULL; 18239 zoneid_t zoneid; 18240 ill_t *ill; 18241 18242 ip2dbg(("ip_rput_options\n")); 18243 dst = ipha->ipha_dst; 18244 for (optval = ipoptp_first(&opts, ipha); 18245 optval != IPOPT_EOL; 18246 optval = ipoptp_next(&opts)) { 18247 opt = opts.ipoptp_cur; 18248 optlen = opts.ipoptp_len; 18249 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18250 optval, optlen)); 18251 /* 18252 * Note: we need to verify the checksum before we 18253 * modify anything thus this routine only extracts the next 18254 * hop dst from any source route. 18255 */ 18256 switch (optval) { 18257 uint32_t off; 18258 case IPOPT_SSRR: 18259 case IPOPT_LSRR: 18260 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18261 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18262 if (ire == NULL) { 18263 if (optval == IPOPT_SSRR) { 18264 ip1dbg(("ip_rput_options: not next" 18265 " strict source route 0x%x\n", 18266 ntohl(dst))); 18267 code = (char *)&ipha->ipha_dst - 18268 (char *)ipha; 18269 goto param_prob; /* RouterReq's */ 18270 } 18271 ip2dbg(("ip_rput_options: " 18272 "not next source route 0x%x\n", 18273 ntohl(dst))); 18274 break; 18275 } 18276 ire_refrele(ire); 18277 18278 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18279 ip1dbg(( 18280 "ip_rput_options: bad option offset\n")); 18281 code = (char *)&opt[IPOPT_OLEN] - 18282 (char *)ipha; 18283 goto param_prob; 18284 } 18285 off = opt[IPOPT_OFFSET]; 18286 off--; 18287 redo_srr: 18288 if (optlen < IP_ADDR_LEN || 18289 off > optlen - IP_ADDR_LEN) { 18290 /* End of source route */ 18291 ip1dbg(("ip_rput_options: end of SR\n")); 18292 break; 18293 } 18294 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18295 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18296 ntohl(dst))); 18297 18298 /* 18299 * Check if our address is present more than 18300 * once as consecutive hops in source route. 18301 * XXX verify per-interface ip_forwarding 18302 * for source route? 18303 */ 18304 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18305 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18306 18307 if (ire != NULL) { 18308 ire_refrele(ire); 18309 off += IP_ADDR_LEN; 18310 goto redo_srr; 18311 } 18312 18313 if (dst == htonl(INADDR_LOOPBACK)) { 18314 ip1dbg(("ip_rput_options: loopback addr in " 18315 "source route!\n")); 18316 goto bad_src_route; 18317 } 18318 /* 18319 * For strict: verify that dst is directly 18320 * reachable. 18321 */ 18322 if (optval == IPOPT_SSRR) { 18323 ire = ire_ftable_lookup(dst, 0, 0, 18324 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18325 msg_getlabel(mp), 18326 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18327 if (ire == NULL) { 18328 ip1dbg(("ip_rput_options: SSRR not " 18329 "directly reachable: 0x%x\n", 18330 ntohl(dst))); 18331 goto bad_src_route; 18332 } 18333 ire_refrele(ire); 18334 } 18335 /* 18336 * Defer update of the offset and the record route 18337 * until the packet is forwarded. 18338 */ 18339 break; 18340 case IPOPT_RR: 18341 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18342 ip1dbg(( 18343 "ip_rput_options: bad option offset\n")); 18344 code = (char *)&opt[IPOPT_OLEN] - 18345 (char *)ipha; 18346 goto param_prob; 18347 } 18348 break; 18349 case IPOPT_TS: 18350 /* 18351 * Verify that length >= 5 and that there is either 18352 * room for another timestamp or that the overflow 18353 * counter is not maxed out. 18354 */ 18355 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18356 if (optlen < IPOPT_MINLEN_IT) { 18357 goto param_prob; 18358 } 18359 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18360 ip1dbg(( 18361 "ip_rput_options: bad option offset\n")); 18362 code = (char *)&opt[IPOPT_OFFSET] - 18363 (char *)ipha; 18364 goto param_prob; 18365 } 18366 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18367 case IPOPT_TS_TSONLY: 18368 off = IPOPT_TS_TIMELEN; 18369 break; 18370 case IPOPT_TS_TSANDADDR: 18371 case IPOPT_TS_PRESPEC: 18372 case IPOPT_TS_PRESPEC_RFC791: 18373 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18374 break; 18375 default: 18376 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18377 (char *)ipha; 18378 goto param_prob; 18379 } 18380 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18381 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18382 /* 18383 * No room and the overflow counter is 15 18384 * already. 18385 */ 18386 goto param_prob; 18387 } 18388 break; 18389 } 18390 } 18391 18392 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18393 *dstp = dst; 18394 return (0); 18395 } 18396 18397 ip1dbg(("ip_rput_options: error processing IP options.")); 18398 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18399 18400 param_prob: 18401 q = WR(q); 18402 if (q->q_next != NULL) 18403 ill = q->q_ptr; 18404 else 18405 ill = NULL; 18406 18407 /* make sure we clear any indication of a hardware checksum */ 18408 DB_CKSUMFLAGS(mp) = 0; 18409 /* Don't know whether this is for non-global or global/forwarding */ 18410 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18411 if (zoneid == ALL_ZONES) 18412 freemsg(mp); 18413 else 18414 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18415 return (-1); 18416 18417 bad_src_route: 18418 q = WR(q); 18419 if (q->q_next != NULL) 18420 ill = q->q_ptr; 18421 else 18422 ill = NULL; 18423 18424 /* make sure we clear any indication of a hardware checksum */ 18425 DB_CKSUMFLAGS(mp) = 0; 18426 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18427 if (zoneid == ALL_ZONES) 18428 freemsg(mp); 18429 else 18430 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18431 return (-1); 18432 } 18433 18434 /* 18435 * IP & ICMP info in >=14 msg's ... 18436 * - ip fixed part (mib2_ip_t) 18437 * - icmp fixed part (mib2_icmp_t) 18438 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18439 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18440 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18441 * - ipRouteAttributeTable (ip 102) labeled routes 18442 * - ip multicast membership (ip_member_t) 18443 * - ip multicast source filtering (ip_grpsrc_t) 18444 * - igmp fixed part (struct igmpstat) 18445 * - multicast routing stats (struct mrtstat) 18446 * - multicast routing vifs (array of struct vifctl) 18447 * - multicast routing routes (array of struct mfcctl) 18448 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18449 * One per ill plus one generic 18450 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18451 * One per ill plus one generic 18452 * - ipv6RouteEntry all IPv6 IREs 18453 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18454 * - ipv6NetToMediaEntry all Neighbor Cache entries 18455 * - ipv6AddrEntry all IPv6 ipifs 18456 * - ipv6 multicast membership (ipv6_member_t) 18457 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18458 * 18459 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18460 * 18461 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18462 * already filled in by the caller. 18463 * Return value of 0 indicates that no messages were sent and caller 18464 * should free mpctl. 18465 */ 18466 int 18467 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18468 { 18469 ip_stack_t *ipst; 18470 sctp_stack_t *sctps; 18471 18472 if (q->q_next != NULL) { 18473 ipst = ILLQ_TO_IPST(q); 18474 } else { 18475 ipst = CONNQ_TO_IPST(q); 18476 } 18477 ASSERT(ipst != NULL); 18478 sctps = ipst->ips_netstack->netstack_sctp; 18479 18480 if (mpctl == NULL || mpctl->b_cont == NULL) { 18481 return (0); 18482 } 18483 18484 /* 18485 * For the purposes of the (broken) packet shell use 18486 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18487 * to make TCP and UDP appear first in the list of mib items. 18488 * TBD: We could expand this and use it in netstat so that 18489 * the kernel doesn't have to produce large tables (connections, 18490 * routes, etc) when netstat only wants the statistics or a particular 18491 * table. 18492 */ 18493 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18494 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18495 return (1); 18496 } 18497 } 18498 18499 if (level != MIB2_TCP) { 18500 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18501 return (1); 18502 } 18503 } 18504 18505 if (level != MIB2_UDP) { 18506 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18507 return (1); 18508 } 18509 } 18510 18511 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18512 ipst)) == NULL) { 18513 return (1); 18514 } 18515 18516 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18517 return (1); 18518 } 18519 18520 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18521 return (1); 18522 } 18523 18524 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18525 return (1); 18526 } 18527 18528 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18529 return (1); 18530 } 18531 18532 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18533 return (1); 18534 } 18535 18536 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18537 return (1); 18538 } 18539 18540 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18541 return (1); 18542 } 18543 18544 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18545 return (1); 18546 } 18547 18548 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18549 return (1); 18550 } 18551 18552 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18553 return (1); 18554 } 18555 18556 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18557 return (1); 18558 } 18559 18560 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18561 return (1); 18562 } 18563 18564 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18565 return (1); 18566 } 18567 18568 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18569 if (mpctl == NULL) 18570 return (1); 18571 18572 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18573 if (mpctl == NULL) 18574 return (1); 18575 18576 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18577 return (1); 18578 } 18579 freemsg(mpctl); 18580 return (1); 18581 } 18582 18583 /* Get global (legacy) IPv4 statistics */ 18584 static mblk_t * 18585 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18586 ip_stack_t *ipst) 18587 { 18588 mib2_ip_t old_ip_mib; 18589 struct opthdr *optp; 18590 mblk_t *mp2ctl; 18591 18592 /* 18593 * make a copy of the original message 18594 */ 18595 mp2ctl = copymsg(mpctl); 18596 18597 /* fixed length IP structure... */ 18598 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18599 optp->level = MIB2_IP; 18600 optp->name = 0; 18601 SET_MIB(old_ip_mib.ipForwarding, 18602 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18603 SET_MIB(old_ip_mib.ipDefaultTTL, 18604 (uint32_t)ipst->ips_ip_def_ttl); 18605 SET_MIB(old_ip_mib.ipReasmTimeout, 18606 ipst->ips_ip_g_frag_timeout); 18607 SET_MIB(old_ip_mib.ipAddrEntrySize, 18608 sizeof (mib2_ipAddrEntry_t)); 18609 SET_MIB(old_ip_mib.ipRouteEntrySize, 18610 sizeof (mib2_ipRouteEntry_t)); 18611 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18612 sizeof (mib2_ipNetToMediaEntry_t)); 18613 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18614 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18615 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18616 sizeof (mib2_ipAttributeEntry_t)); 18617 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18618 18619 /* 18620 * Grab the statistics from the new IP MIB 18621 */ 18622 SET_MIB(old_ip_mib.ipInReceives, 18623 (uint32_t)ipmib->ipIfStatsHCInReceives); 18624 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18625 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18626 SET_MIB(old_ip_mib.ipForwDatagrams, 18627 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18628 SET_MIB(old_ip_mib.ipInUnknownProtos, 18629 ipmib->ipIfStatsInUnknownProtos); 18630 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18631 SET_MIB(old_ip_mib.ipInDelivers, 18632 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18633 SET_MIB(old_ip_mib.ipOutRequests, 18634 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18635 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18636 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18637 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18638 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18639 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18640 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18641 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18642 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18643 18644 /* ipRoutingDiscards is not being used */ 18645 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18646 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18647 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18648 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18649 SET_MIB(old_ip_mib.ipReasmDuplicates, 18650 ipmib->ipIfStatsReasmDuplicates); 18651 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18652 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18653 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18654 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18655 SET_MIB(old_ip_mib.rawipInOverflows, 18656 ipmib->rawipIfStatsInOverflows); 18657 18658 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18659 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18660 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18661 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18662 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18663 ipmib->ipIfStatsOutSwitchIPVersion); 18664 18665 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18666 (int)sizeof (old_ip_mib))) { 18667 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18668 (uint_t)sizeof (old_ip_mib))); 18669 } 18670 18671 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18672 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18673 (int)optp->level, (int)optp->name, (int)optp->len)); 18674 qreply(q, mpctl); 18675 return (mp2ctl); 18676 } 18677 18678 /* Per interface IPv4 statistics */ 18679 static mblk_t * 18680 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18681 { 18682 struct opthdr *optp; 18683 mblk_t *mp2ctl; 18684 ill_t *ill; 18685 ill_walk_context_t ctx; 18686 mblk_t *mp_tail = NULL; 18687 mib2_ipIfStatsEntry_t global_ip_mib; 18688 18689 /* 18690 * Make a copy of the original message 18691 */ 18692 mp2ctl = copymsg(mpctl); 18693 18694 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18695 optp->level = MIB2_IP; 18696 optp->name = MIB2_IP_TRAFFIC_STATS; 18697 /* Include "unknown interface" ip_mib */ 18698 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18699 ipst->ips_ip_mib.ipIfStatsIfIndex = 18700 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18701 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18702 (ipst->ips_ip_g_forward ? 1 : 2)); 18703 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18704 (uint32_t)ipst->ips_ip_def_ttl); 18705 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18706 sizeof (mib2_ipIfStatsEntry_t)); 18707 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18708 sizeof (mib2_ipAddrEntry_t)); 18709 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18710 sizeof (mib2_ipRouteEntry_t)); 18711 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18712 sizeof (mib2_ipNetToMediaEntry_t)); 18713 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18714 sizeof (ip_member_t)); 18715 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18716 sizeof (ip_grpsrc_t)); 18717 18718 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18719 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18720 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18721 "failed to allocate %u bytes\n", 18722 (uint_t)sizeof (ipst->ips_ip_mib))); 18723 } 18724 18725 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18726 18727 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18728 ill = ILL_START_WALK_V4(&ctx, ipst); 18729 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18730 ill->ill_ip_mib->ipIfStatsIfIndex = 18731 ill->ill_phyint->phyint_ifindex; 18732 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18733 (ipst->ips_ip_g_forward ? 1 : 2)); 18734 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18735 (uint32_t)ipst->ips_ip_def_ttl); 18736 18737 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18738 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18739 (char *)ill->ill_ip_mib, 18740 (int)sizeof (*ill->ill_ip_mib))) { 18741 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18742 "failed to allocate %u bytes\n", 18743 (uint_t)sizeof (*ill->ill_ip_mib))); 18744 } 18745 } 18746 rw_exit(&ipst->ips_ill_g_lock); 18747 18748 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18749 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18750 "level %d, name %d, len %d\n", 18751 (int)optp->level, (int)optp->name, (int)optp->len)); 18752 qreply(q, mpctl); 18753 18754 if (mp2ctl == NULL) 18755 return (NULL); 18756 18757 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18758 } 18759 18760 /* Global IPv4 ICMP statistics */ 18761 static mblk_t * 18762 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18763 { 18764 struct opthdr *optp; 18765 mblk_t *mp2ctl; 18766 18767 /* 18768 * Make a copy of the original message 18769 */ 18770 mp2ctl = copymsg(mpctl); 18771 18772 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18773 optp->level = MIB2_ICMP; 18774 optp->name = 0; 18775 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18776 (int)sizeof (ipst->ips_icmp_mib))) { 18777 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18778 (uint_t)sizeof (ipst->ips_icmp_mib))); 18779 } 18780 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18781 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18782 (int)optp->level, (int)optp->name, (int)optp->len)); 18783 qreply(q, mpctl); 18784 return (mp2ctl); 18785 } 18786 18787 /* Global IPv4 IGMP statistics */ 18788 static mblk_t * 18789 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18790 { 18791 struct opthdr *optp; 18792 mblk_t *mp2ctl; 18793 18794 /* 18795 * make a copy of the original message 18796 */ 18797 mp2ctl = copymsg(mpctl); 18798 18799 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18800 optp->level = EXPER_IGMP; 18801 optp->name = 0; 18802 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18803 (int)sizeof (ipst->ips_igmpstat))) { 18804 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18805 (uint_t)sizeof (ipst->ips_igmpstat))); 18806 } 18807 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18808 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18809 (int)optp->level, (int)optp->name, (int)optp->len)); 18810 qreply(q, mpctl); 18811 return (mp2ctl); 18812 } 18813 18814 /* Global IPv4 Multicast Routing statistics */ 18815 static mblk_t * 18816 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18817 { 18818 struct opthdr *optp; 18819 mblk_t *mp2ctl; 18820 18821 /* 18822 * make a copy of the original message 18823 */ 18824 mp2ctl = copymsg(mpctl); 18825 18826 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18827 optp->level = EXPER_DVMRP; 18828 optp->name = 0; 18829 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18830 ip0dbg(("ip_mroute_stats: failed\n")); 18831 } 18832 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18833 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18834 (int)optp->level, (int)optp->name, (int)optp->len)); 18835 qreply(q, mpctl); 18836 return (mp2ctl); 18837 } 18838 18839 /* IPv4 address information */ 18840 static mblk_t * 18841 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18842 { 18843 struct opthdr *optp; 18844 mblk_t *mp2ctl; 18845 mblk_t *mp_tail = NULL; 18846 ill_t *ill; 18847 ipif_t *ipif; 18848 uint_t bitval; 18849 mib2_ipAddrEntry_t mae; 18850 zoneid_t zoneid; 18851 ill_walk_context_t ctx; 18852 18853 /* 18854 * make a copy of the original message 18855 */ 18856 mp2ctl = copymsg(mpctl); 18857 18858 /* ipAddrEntryTable */ 18859 18860 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18861 optp->level = MIB2_IP; 18862 optp->name = MIB2_IP_ADDR; 18863 zoneid = Q_TO_CONN(q)->conn_zoneid; 18864 18865 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18866 ill = ILL_START_WALK_V4(&ctx, ipst); 18867 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18868 for (ipif = ill->ill_ipif; ipif != NULL; 18869 ipif = ipif->ipif_next) { 18870 if (ipif->ipif_zoneid != zoneid && 18871 ipif->ipif_zoneid != ALL_ZONES) 18872 continue; 18873 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18874 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18875 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18876 18877 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18878 OCTET_LENGTH); 18879 mae.ipAdEntIfIndex.o_length = 18880 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18881 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18882 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18883 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18884 mae.ipAdEntInfo.ae_subnet_len = 18885 ip_mask_to_plen(ipif->ipif_net_mask); 18886 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18887 for (bitval = 1; 18888 bitval && 18889 !(bitval & ipif->ipif_brd_addr); 18890 bitval <<= 1) 18891 noop; 18892 mae.ipAdEntBcastAddr = bitval; 18893 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18894 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18895 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18896 mae.ipAdEntInfo.ae_broadcast_addr = 18897 ipif->ipif_brd_addr; 18898 mae.ipAdEntInfo.ae_pp_dst_addr = 18899 ipif->ipif_pp_dst_addr; 18900 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18901 ill->ill_flags | ill->ill_phyint->phyint_flags; 18902 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18903 18904 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18905 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18906 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18907 "allocate %u bytes\n", 18908 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18909 } 18910 } 18911 } 18912 rw_exit(&ipst->ips_ill_g_lock); 18913 18914 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18915 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18916 (int)optp->level, (int)optp->name, (int)optp->len)); 18917 qreply(q, mpctl); 18918 return (mp2ctl); 18919 } 18920 18921 /* IPv6 address information */ 18922 static mblk_t * 18923 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18924 { 18925 struct opthdr *optp; 18926 mblk_t *mp2ctl; 18927 mblk_t *mp_tail = NULL; 18928 ill_t *ill; 18929 ipif_t *ipif; 18930 mib2_ipv6AddrEntry_t mae6; 18931 zoneid_t zoneid; 18932 ill_walk_context_t ctx; 18933 18934 /* 18935 * make a copy of the original message 18936 */ 18937 mp2ctl = copymsg(mpctl); 18938 18939 /* ipv6AddrEntryTable */ 18940 18941 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18942 optp->level = MIB2_IP6; 18943 optp->name = MIB2_IP6_ADDR; 18944 zoneid = Q_TO_CONN(q)->conn_zoneid; 18945 18946 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18947 ill = ILL_START_WALK_V6(&ctx, ipst); 18948 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18949 for (ipif = ill->ill_ipif; ipif != NULL; 18950 ipif = ipif->ipif_next) { 18951 if (ipif->ipif_zoneid != zoneid && 18952 ipif->ipif_zoneid != ALL_ZONES) 18953 continue; 18954 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18955 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18956 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18957 18958 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18959 OCTET_LENGTH); 18960 mae6.ipv6AddrIfIndex.o_length = 18961 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18962 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18963 mae6.ipv6AddrPfxLength = 18964 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18965 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18966 mae6.ipv6AddrInfo.ae_subnet_len = 18967 mae6.ipv6AddrPfxLength; 18968 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18969 18970 /* Type: stateless(1), stateful(2), unknown(3) */ 18971 if (ipif->ipif_flags & IPIF_ADDRCONF) 18972 mae6.ipv6AddrType = 1; 18973 else 18974 mae6.ipv6AddrType = 2; 18975 /* Anycast: true(1), false(2) */ 18976 if (ipif->ipif_flags & IPIF_ANYCAST) 18977 mae6.ipv6AddrAnycastFlag = 1; 18978 else 18979 mae6.ipv6AddrAnycastFlag = 2; 18980 18981 /* 18982 * Address status: preferred(1), deprecated(2), 18983 * invalid(3), inaccessible(4), unknown(5) 18984 */ 18985 if (ipif->ipif_flags & IPIF_NOLOCAL) 18986 mae6.ipv6AddrStatus = 3; 18987 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18988 mae6.ipv6AddrStatus = 2; 18989 else 18990 mae6.ipv6AddrStatus = 1; 18991 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18992 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18993 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18994 ipif->ipif_v6pp_dst_addr; 18995 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18996 ill->ill_flags | ill->ill_phyint->phyint_flags; 18997 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18998 mae6.ipv6AddrIdentifier = ill->ill_token; 18999 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 19000 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 19001 mae6.ipv6AddrRetransmitTime = 19002 ill->ill_reachable_retrans_time; 19003 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19004 (char *)&mae6, 19005 (int)sizeof (mib2_ipv6AddrEntry_t))) { 19006 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 19007 "allocate %u bytes\n", 19008 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 19009 } 19010 } 19011 } 19012 rw_exit(&ipst->ips_ill_g_lock); 19013 19014 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19015 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 19016 (int)optp->level, (int)optp->name, (int)optp->len)); 19017 qreply(q, mpctl); 19018 return (mp2ctl); 19019 } 19020 19021 /* IPv4 multicast group membership. */ 19022 static mblk_t * 19023 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19024 { 19025 struct opthdr *optp; 19026 mblk_t *mp2ctl; 19027 ill_t *ill; 19028 ipif_t *ipif; 19029 ilm_t *ilm; 19030 ip_member_t ipm; 19031 mblk_t *mp_tail = NULL; 19032 ill_walk_context_t ctx; 19033 zoneid_t zoneid; 19034 ilm_walker_t ilw; 19035 19036 /* 19037 * make a copy of the original message 19038 */ 19039 mp2ctl = copymsg(mpctl); 19040 zoneid = Q_TO_CONN(q)->conn_zoneid; 19041 19042 /* ipGroupMember table */ 19043 optp = (struct opthdr *)&mpctl->b_rptr[ 19044 sizeof (struct T_optmgmt_ack)]; 19045 optp->level = MIB2_IP; 19046 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 19047 19048 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19049 ill = ILL_START_WALK_V4(&ctx, ipst); 19050 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19051 if (IS_UNDER_IPMP(ill)) 19052 continue; 19053 19054 ilm = ilm_walker_start(&ilw, ill); 19055 for (ipif = ill->ill_ipif; ipif != NULL; 19056 ipif = ipif->ipif_next) { 19057 if (ipif->ipif_zoneid != zoneid && 19058 ipif->ipif_zoneid != ALL_ZONES) 19059 continue; /* not this zone */ 19060 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 19061 OCTET_LENGTH); 19062 ipm.ipGroupMemberIfIndex.o_length = 19063 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 19064 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19065 ASSERT(ilm->ilm_ipif != NULL); 19066 ASSERT(ilm->ilm_ill == NULL); 19067 if (ilm->ilm_ipif != ipif) 19068 continue; 19069 ipm.ipGroupMemberAddress = ilm->ilm_addr; 19070 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 19071 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 19072 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19073 (char *)&ipm, (int)sizeof (ipm))) { 19074 ip1dbg(("ip_snmp_get_mib2_ip_group: " 19075 "failed to allocate %u bytes\n", 19076 (uint_t)sizeof (ipm))); 19077 } 19078 } 19079 } 19080 ilm_walker_finish(&ilw); 19081 } 19082 rw_exit(&ipst->ips_ill_g_lock); 19083 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19084 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19085 (int)optp->level, (int)optp->name, (int)optp->len)); 19086 qreply(q, mpctl); 19087 return (mp2ctl); 19088 } 19089 19090 /* IPv6 multicast group membership. */ 19091 static mblk_t * 19092 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19093 { 19094 struct opthdr *optp; 19095 mblk_t *mp2ctl; 19096 ill_t *ill; 19097 ilm_t *ilm; 19098 ipv6_member_t ipm6; 19099 mblk_t *mp_tail = NULL; 19100 ill_walk_context_t ctx; 19101 zoneid_t zoneid; 19102 ilm_walker_t ilw; 19103 19104 /* 19105 * make a copy of the original message 19106 */ 19107 mp2ctl = copymsg(mpctl); 19108 zoneid = Q_TO_CONN(q)->conn_zoneid; 19109 19110 /* ip6GroupMember table */ 19111 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19112 optp->level = MIB2_IP6; 19113 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19114 19115 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19116 ill = ILL_START_WALK_V6(&ctx, ipst); 19117 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19118 if (IS_UNDER_IPMP(ill)) 19119 continue; 19120 19121 ilm = ilm_walker_start(&ilw, ill); 19122 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19123 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19124 ASSERT(ilm->ilm_ipif == NULL); 19125 ASSERT(ilm->ilm_ill != NULL); 19126 if (ilm->ilm_zoneid != zoneid) 19127 continue; /* not this zone */ 19128 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19129 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19130 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19131 if (!snmp_append_data2(mpctl->b_cont, 19132 &mp_tail, 19133 (char *)&ipm6, (int)sizeof (ipm6))) { 19134 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19135 "failed to allocate %u bytes\n", 19136 (uint_t)sizeof (ipm6))); 19137 } 19138 } 19139 ilm_walker_finish(&ilw); 19140 } 19141 rw_exit(&ipst->ips_ill_g_lock); 19142 19143 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19144 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19145 (int)optp->level, (int)optp->name, (int)optp->len)); 19146 qreply(q, mpctl); 19147 return (mp2ctl); 19148 } 19149 19150 /* IP multicast filtered sources */ 19151 static mblk_t * 19152 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19153 { 19154 struct opthdr *optp; 19155 mblk_t *mp2ctl; 19156 ill_t *ill; 19157 ipif_t *ipif; 19158 ilm_t *ilm; 19159 ip_grpsrc_t ips; 19160 mblk_t *mp_tail = NULL; 19161 ill_walk_context_t ctx; 19162 zoneid_t zoneid; 19163 int i; 19164 slist_t *sl; 19165 ilm_walker_t ilw; 19166 19167 /* 19168 * make a copy of the original message 19169 */ 19170 mp2ctl = copymsg(mpctl); 19171 zoneid = Q_TO_CONN(q)->conn_zoneid; 19172 19173 /* ipGroupSource table */ 19174 optp = (struct opthdr *)&mpctl->b_rptr[ 19175 sizeof (struct T_optmgmt_ack)]; 19176 optp->level = MIB2_IP; 19177 optp->name = EXPER_IP_GROUP_SOURCES; 19178 19179 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19180 ill = ILL_START_WALK_V4(&ctx, ipst); 19181 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19182 if (IS_UNDER_IPMP(ill)) 19183 continue; 19184 19185 ilm = ilm_walker_start(&ilw, ill); 19186 for (ipif = ill->ill_ipif; ipif != NULL; 19187 ipif = ipif->ipif_next) { 19188 if (ipif->ipif_zoneid != zoneid) 19189 continue; /* not this zone */ 19190 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19191 OCTET_LENGTH); 19192 ips.ipGroupSourceIfIndex.o_length = 19193 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19194 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19195 ASSERT(ilm->ilm_ipif != NULL); 19196 ASSERT(ilm->ilm_ill == NULL); 19197 sl = ilm->ilm_filter; 19198 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19199 continue; 19200 ips.ipGroupSourceGroup = ilm->ilm_addr; 19201 for (i = 0; i < sl->sl_numsrc; i++) { 19202 if (!IN6_IS_ADDR_V4MAPPED( 19203 &sl->sl_addr[i])) 19204 continue; 19205 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19206 ips.ipGroupSourceAddress); 19207 if (snmp_append_data2(mpctl->b_cont, 19208 &mp_tail, (char *)&ips, 19209 (int)sizeof (ips)) == 0) { 19210 ip1dbg(("ip_snmp_get_mib2_" 19211 "ip_group_src: failed to " 19212 "allocate %u bytes\n", 19213 (uint_t)sizeof (ips))); 19214 } 19215 } 19216 } 19217 } 19218 ilm_walker_finish(&ilw); 19219 } 19220 rw_exit(&ipst->ips_ill_g_lock); 19221 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19222 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19223 (int)optp->level, (int)optp->name, (int)optp->len)); 19224 qreply(q, mpctl); 19225 return (mp2ctl); 19226 } 19227 19228 /* IPv6 multicast filtered sources. */ 19229 static mblk_t * 19230 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19231 { 19232 struct opthdr *optp; 19233 mblk_t *mp2ctl; 19234 ill_t *ill; 19235 ilm_t *ilm; 19236 ipv6_grpsrc_t ips6; 19237 mblk_t *mp_tail = NULL; 19238 ill_walk_context_t ctx; 19239 zoneid_t zoneid; 19240 int i; 19241 slist_t *sl; 19242 ilm_walker_t ilw; 19243 19244 /* 19245 * make a copy of the original message 19246 */ 19247 mp2ctl = copymsg(mpctl); 19248 zoneid = Q_TO_CONN(q)->conn_zoneid; 19249 19250 /* ip6GroupMember table */ 19251 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19252 optp->level = MIB2_IP6; 19253 optp->name = EXPER_IP6_GROUP_SOURCES; 19254 19255 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19256 ill = ILL_START_WALK_V6(&ctx, ipst); 19257 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19258 if (IS_UNDER_IPMP(ill)) 19259 continue; 19260 19261 ilm = ilm_walker_start(&ilw, ill); 19262 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19263 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19264 ASSERT(ilm->ilm_ipif == NULL); 19265 ASSERT(ilm->ilm_ill != NULL); 19266 sl = ilm->ilm_filter; 19267 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19268 continue; 19269 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19270 for (i = 0; i < sl->sl_numsrc; i++) { 19271 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19272 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19273 (char *)&ips6, (int)sizeof (ips6))) { 19274 ip1dbg(("ip_snmp_get_mib2_ip6_" 19275 "group_src: failed to allocate " 19276 "%u bytes\n", 19277 (uint_t)sizeof (ips6))); 19278 } 19279 } 19280 } 19281 ilm_walker_finish(&ilw); 19282 } 19283 rw_exit(&ipst->ips_ill_g_lock); 19284 19285 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19286 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19287 (int)optp->level, (int)optp->name, (int)optp->len)); 19288 qreply(q, mpctl); 19289 return (mp2ctl); 19290 } 19291 19292 /* Multicast routing virtual interface table. */ 19293 static mblk_t * 19294 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19295 { 19296 struct opthdr *optp; 19297 mblk_t *mp2ctl; 19298 19299 /* 19300 * make a copy of the original message 19301 */ 19302 mp2ctl = copymsg(mpctl); 19303 19304 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19305 optp->level = EXPER_DVMRP; 19306 optp->name = EXPER_DVMRP_VIF; 19307 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19308 ip0dbg(("ip_mroute_vif: failed\n")); 19309 } 19310 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19311 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19312 (int)optp->level, (int)optp->name, (int)optp->len)); 19313 qreply(q, mpctl); 19314 return (mp2ctl); 19315 } 19316 19317 /* Multicast routing table. */ 19318 static mblk_t * 19319 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19320 { 19321 struct opthdr *optp; 19322 mblk_t *mp2ctl; 19323 19324 /* 19325 * make a copy of the original message 19326 */ 19327 mp2ctl = copymsg(mpctl); 19328 19329 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19330 optp->level = EXPER_DVMRP; 19331 optp->name = EXPER_DVMRP_MRT; 19332 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19333 ip0dbg(("ip_mroute_mrt: failed\n")); 19334 } 19335 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19336 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19337 (int)optp->level, (int)optp->name, (int)optp->len)); 19338 qreply(q, mpctl); 19339 return (mp2ctl); 19340 } 19341 19342 /* 19343 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19344 * in one IRE walk. 19345 */ 19346 static mblk_t * 19347 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19348 ip_stack_t *ipst) 19349 { 19350 struct opthdr *optp; 19351 mblk_t *mp2ctl; /* Returned */ 19352 mblk_t *mp3ctl; /* nettomedia */ 19353 mblk_t *mp4ctl; /* routeattrs */ 19354 iproutedata_t ird; 19355 zoneid_t zoneid; 19356 19357 /* 19358 * make copies of the original message 19359 * - mp2ctl is returned unchanged to the caller for his use 19360 * - mpctl is sent upstream as ipRouteEntryTable 19361 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19362 * - mp4ctl is sent upstream as ipRouteAttributeTable 19363 */ 19364 mp2ctl = copymsg(mpctl); 19365 mp3ctl = copymsg(mpctl); 19366 mp4ctl = copymsg(mpctl); 19367 if (mp3ctl == NULL || mp4ctl == NULL) { 19368 freemsg(mp4ctl); 19369 freemsg(mp3ctl); 19370 freemsg(mp2ctl); 19371 freemsg(mpctl); 19372 return (NULL); 19373 } 19374 19375 bzero(&ird, sizeof (ird)); 19376 19377 ird.ird_route.lp_head = mpctl->b_cont; 19378 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19379 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19380 /* 19381 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19382 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19383 * intended a temporary solution until a proper MIB API is provided 19384 * that provides complete filtering/caller-opt-in. 19385 */ 19386 if (level == EXPER_IP_AND_TESTHIDDEN) 19387 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19388 19389 zoneid = Q_TO_CONN(q)->conn_zoneid; 19390 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19391 19392 /* ipRouteEntryTable in mpctl */ 19393 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19394 optp->level = MIB2_IP; 19395 optp->name = MIB2_IP_ROUTE; 19396 optp->len = msgdsize(ird.ird_route.lp_head); 19397 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19398 (int)optp->level, (int)optp->name, (int)optp->len)); 19399 qreply(q, mpctl); 19400 19401 /* ipNetToMediaEntryTable in mp3ctl */ 19402 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19403 optp->level = MIB2_IP; 19404 optp->name = MIB2_IP_MEDIA; 19405 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19406 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19407 (int)optp->level, (int)optp->name, (int)optp->len)); 19408 qreply(q, mp3ctl); 19409 19410 /* ipRouteAttributeTable in mp4ctl */ 19411 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19412 optp->level = MIB2_IP; 19413 optp->name = EXPER_IP_RTATTR; 19414 optp->len = msgdsize(ird.ird_attrs.lp_head); 19415 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19416 (int)optp->level, (int)optp->name, (int)optp->len)); 19417 if (optp->len == 0) 19418 freemsg(mp4ctl); 19419 else 19420 qreply(q, mp4ctl); 19421 19422 return (mp2ctl); 19423 } 19424 19425 /* 19426 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19427 * ipv6NetToMediaEntryTable in an NDP walk. 19428 */ 19429 static mblk_t * 19430 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19431 ip_stack_t *ipst) 19432 { 19433 struct opthdr *optp; 19434 mblk_t *mp2ctl; /* Returned */ 19435 mblk_t *mp3ctl; /* nettomedia */ 19436 mblk_t *mp4ctl; /* routeattrs */ 19437 iproutedata_t ird; 19438 zoneid_t zoneid; 19439 19440 /* 19441 * make copies of the original message 19442 * - mp2ctl is returned unchanged to the caller for his use 19443 * - mpctl is sent upstream as ipv6RouteEntryTable 19444 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19445 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19446 */ 19447 mp2ctl = copymsg(mpctl); 19448 mp3ctl = copymsg(mpctl); 19449 mp4ctl = copymsg(mpctl); 19450 if (mp3ctl == NULL || mp4ctl == NULL) { 19451 freemsg(mp4ctl); 19452 freemsg(mp3ctl); 19453 freemsg(mp2ctl); 19454 freemsg(mpctl); 19455 return (NULL); 19456 } 19457 19458 bzero(&ird, sizeof (ird)); 19459 19460 ird.ird_route.lp_head = mpctl->b_cont; 19461 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19462 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19463 /* 19464 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19465 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19466 * intended a temporary solution until a proper MIB API is provided 19467 * that provides complete filtering/caller-opt-in. 19468 */ 19469 if (level == EXPER_IP_AND_TESTHIDDEN) 19470 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19471 19472 zoneid = Q_TO_CONN(q)->conn_zoneid; 19473 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19474 19475 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19476 optp->level = MIB2_IP6; 19477 optp->name = MIB2_IP6_ROUTE; 19478 optp->len = msgdsize(ird.ird_route.lp_head); 19479 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19480 (int)optp->level, (int)optp->name, (int)optp->len)); 19481 qreply(q, mpctl); 19482 19483 /* ipv6NetToMediaEntryTable in mp3ctl */ 19484 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19485 19486 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19487 optp->level = MIB2_IP6; 19488 optp->name = MIB2_IP6_MEDIA; 19489 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19490 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19491 (int)optp->level, (int)optp->name, (int)optp->len)); 19492 qreply(q, mp3ctl); 19493 19494 /* ipv6RouteAttributeTable in mp4ctl */ 19495 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19496 optp->level = MIB2_IP6; 19497 optp->name = EXPER_IP_RTATTR; 19498 optp->len = msgdsize(ird.ird_attrs.lp_head); 19499 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19500 (int)optp->level, (int)optp->name, (int)optp->len)); 19501 if (optp->len == 0) 19502 freemsg(mp4ctl); 19503 else 19504 qreply(q, mp4ctl); 19505 19506 return (mp2ctl); 19507 } 19508 19509 /* 19510 * IPv6 mib: One per ill 19511 */ 19512 static mblk_t * 19513 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19514 { 19515 struct opthdr *optp; 19516 mblk_t *mp2ctl; 19517 ill_t *ill; 19518 ill_walk_context_t ctx; 19519 mblk_t *mp_tail = NULL; 19520 19521 /* 19522 * Make a copy of the original message 19523 */ 19524 mp2ctl = copymsg(mpctl); 19525 19526 /* fixed length IPv6 structure ... */ 19527 19528 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19529 optp->level = MIB2_IP6; 19530 optp->name = 0; 19531 /* Include "unknown interface" ip6_mib */ 19532 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19533 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19534 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19535 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19536 ipst->ips_ipv6_forward ? 1 : 2); 19537 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19538 ipst->ips_ipv6_def_hops); 19539 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19540 sizeof (mib2_ipIfStatsEntry_t)); 19541 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19542 sizeof (mib2_ipv6AddrEntry_t)); 19543 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19544 sizeof (mib2_ipv6RouteEntry_t)); 19545 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19546 sizeof (mib2_ipv6NetToMediaEntry_t)); 19547 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19548 sizeof (ipv6_member_t)); 19549 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19550 sizeof (ipv6_grpsrc_t)); 19551 19552 /* 19553 * Synchronize 64- and 32-bit counters 19554 */ 19555 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19556 ipIfStatsHCInReceives); 19557 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19558 ipIfStatsHCInDelivers); 19559 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19560 ipIfStatsHCOutRequests); 19561 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19562 ipIfStatsHCOutForwDatagrams); 19563 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19564 ipIfStatsHCOutMcastPkts); 19565 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19566 ipIfStatsHCInMcastPkts); 19567 19568 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19569 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19570 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19571 (uint_t)sizeof (ipst->ips_ip6_mib))); 19572 } 19573 19574 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19575 ill = ILL_START_WALK_V6(&ctx, ipst); 19576 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19577 ill->ill_ip_mib->ipIfStatsIfIndex = 19578 ill->ill_phyint->phyint_ifindex; 19579 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19580 ipst->ips_ipv6_forward ? 1 : 2); 19581 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19582 ill->ill_max_hops); 19583 19584 /* 19585 * Synchronize 64- and 32-bit counters 19586 */ 19587 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19588 ipIfStatsHCInReceives); 19589 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19590 ipIfStatsHCInDelivers); 19591 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19592 ipIfStatsHCOutRequests); 19593 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19594 ipIfStatsHCOutForwDatagrams); 19595 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19596 ipIfStatsHCOutMcastPkts); 19597 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19598 ipIfStatsHCInMcastPkts); 19599 19600 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19601 (char *)ill->ill_ip_mib, 19602 (int)sizeof (*ill->ill_ip_mib))) { 19603 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19604 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19605 } 19606 } 19607 rw_exit(&ipst->ips_ill_g_lock); 19608 19609 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19610 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19611 (int)optp->level, (int)optp->name, (int)optp->len)); 19612 qreply(q, mpctl); 19613 return (mp2ctl); 19614 } 19615 19616 /* 19617 * ICMPv6 mib: One per ill 19618 */ 19619 static mblk_t * 19620 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19621 { 19622 struct opthdr *optp; 19623 mblk_t *mp2ctl; 19624 ill_t *ill; 19625 ill_walk_context_t ctx; 19626 mblk_t *mp_tail = NULL; 19627 /* 19628 * Make a copy of the original message 19629 */ 19630 mp2ctl = copymsg(mpctl); 19631 19632 /* fixed length ICMPv6 structure ... */ 19633 19634 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19635 optp->level = MIB2_ICMP6; 19636 optp->name = 0; 19637 /* Include "unknown interface" icmp6_mib */ 19638 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19639 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19640 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19641 sizeof (mib2_ipv6IfIcmpEntry_t); 19642 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19643 (char *)&ipst->ips_icmp6_mib, 19644 (int)sizeof (ipst->ips_icmp6_mib))) { 19645 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19646 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19647 } 19648 19649 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19650 ill = ILL_START_WALK_V6(&ctx, ipst); 19651 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19652 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19653 ill->ill_phyint->phyint_ifindex; 19654 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19655 (char *)ill->ill_icmp6_mib, 19656 (int)sizeof (*ill->ill_icmp6_mib))) { 19657 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19658 "%u bytes\n", 19659 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19660 } 19661 } 19662 rw_exit(&ipst->ips_ill_g_lock); 19663 19664 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19665 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19666 (int)optp->level, (int)optp->name, (int)optp->len)); 19667 qreply(q, mpctl); 19668 return (mp2ctl); 19669 } 19670 19671 /* 19672 * ire_walk routine to create both ipRouteEntryTable and 19673 * ipRouteAttributeTable in one IRE walk 19674 */ 19675 static void 19676 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19677 { 19678 ill_t *ill; 19679 ipif_t *ipif; 19680 mib2_ipRouteEntry_t *re; 19681 mib2_ipAttributeEntry_t *iae, *iaeptr; 19682 ipaddr_t gw_addr; 19683 tsol_ire_gw_secattr_t *attrp; 19684 tsol_gc_t *gc = NULL; 19685 tsol_gcgrp_t *gcgrp = NULL; 19686 uint_t sacnt = 0; 19687 int i; 19688 19689 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19690 19691 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19692 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19693 return; 19694 } 19695 19696 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19697 return; 19698 19699 if ((attrp = ire->ire_gw_secattr) != NULL) { 19700 mutex_enter(&attrp->igsa_lock); 19701 if ((gc = attrp->igsa_gc) != NULL) { 19702 gcgrp = gc->gc_grp; 19703 ASSERT(gcgrp != NULL); 19704 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19705 sacnt = 1; 19706 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19707 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19708 gc = gcgrp->gcgrp_head; 19709 sacnt = gcgrp->gcgrp_count; 19710 } 19711 mutex_exit(&attrp->igsa_lock); 19712 19713 /* do nothing if there's no gc to report */ 19714 if (gc == NULL) { 19715 ASSERT(sacnt == 0); 19716 if (gcgrp != NULL) { 19717 /* we might as well drop the lock now */ 19718 rw_exit(&gcgrp->gcgrp_rwlock); 19719 gcgrp = NULL; 19720 } 19721 attrp = NULL; 19722 } 19723 19724 ASSERT(gc == NULL || (gcgrp != NULL && 19725 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19726 } 19727 ASSERT(sacnt == 0 || gc != NULL); 19728 19729 if (sacnt != 0 && 19730 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19731 kmem_free(re, sizeof (*re)); 19732 rw_exit(&gcgrp->gcgrp_rwlock); 19733 return; 19734 } 19735 19736 /* 19737 * Return all IRE types for route table... let caller pick and choose 19738 */ 19739 re->ipRouteDest = ire->ire_addr; 19740 ipif = ire->ire_ipif; 19741 re->ipRouteIfIndex.o_length = 0; 19742 if (ire->ire_type == IRE_CACHE) { 19743 ill = (ill_t *)ire->ire_stq->q_ptr; 19744 re->ipRouteIfIndex.o_length = 19745 ill->ill_name_length == 0 ? 0 : 19746 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19747 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19748 re->ipRouteIfIndex.o_length); 19749 } else if (ipif != NULL) { 19750 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19751 re->ipRouteIfIndex.o_length = 19752 mi_strlen(re->ipRouteIfIndex.o_bytes); 19753 } 19754 re->ipRouteMetric1 = -1; 19755 re->ipRouteMetric2 = -1; 19756 re->ipRouteMetric3 = -1; 19757 re->ipRouteMetric4 = -1; 19758 19759 gw_addr = ire->ire_gateway_addr; 19760 19761 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19762 re->ipRouteNextHop = ire->ire_src_addr; 19763 else 19764 re->ipRouteNextHop = gw_addr; 19765 /* indirect(4), direct(3), or invalid(2) */ 19766 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19767 re->ipRouteType = 2; 19768 else 19769 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19770 re->ipRouteProto = -1; 19771 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19772 re->ipRouteMask = ire->ire_mask; 19773 re->ipRouteMetric5 = -1; 19774 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19775 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19776 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19777 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19778 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19779 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19780 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19781 re->ipRouteInfo.re_flags = ire->ire_flags; 19782 19783 if (ire->ire_flags & RTF_DYNAMIC) { 19784 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19785 } else { 19786 re->ipRouteInfo.re_ire_type = ire->ire_type; 19787 } 19788 19789 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19790 (char *)re, (int)sizeof (*re))) { 19791 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19792 (uint_t)sizeof (*re))); 19793 } 19794 19795 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19796 iaeptr->iae_routeidx = ird->ird_idx; 19797 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19798 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19799 } 19800 19801 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19802 (char *)iae, sacnt * sizeof (*iae))) { 19803 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19804 (unsigned)(sacnt * sizeof (*iae)))); 19805 } 19806 19807 /* bump route index for next pass */ 19808 ird->ird_idx++; 19809 19810 kmem_free(re, sizeof (*re)); 19811 if (sacnt != 0) 19812 kmem_free(iae, sacnt * sizeof (*iae)); 19813 19814 if (gcgrp != NULL) 19815 rw_exit(&gcgrp->gcgrp_rwlock); 19816 } 19817 19818 /* 19819 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19820 */ 19821 static void 19822 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19823 { 19824 ill_t *ill; 19825 ipif_t *ipif; 19826 mib2_ipv6RouteEntry_t *re; 19827 mib2_ipAttributeEntry_t *iae, *iaeptr; 19828 in6_addr_t gw_addr_v6; 19829 tsol_ire_gw_secattr_t *attrp; 19830 tsol_gc_t *gc = NULL; 19831 tsol_gcgrp_t *gcgrp = NULL; 19832 uint_t sacnt = 0; 19833 int i; 19834 19835 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19836 19837 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19838 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19839 return; 19840 } 19841 19842 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19843 return; 19844 19845 if ((attrp = ire->ire_gw_secattr) != NULL) { 19846 mutex_enter(&attrp->igsa_lock); 19847 if ((gc = attrp->igsa_gc) != NULL) { 19848 gcgrp = gc->gc_grp; 19849 ASSERT(gcgrp != NULL); 19850 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19851 sacnt = 1; 19852 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19853 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19854 gc = gcgrp->gcgrp_head; 19855 sacnt = gcgrp->gcgrp_count; 19856 } 19857 mutex_exit(&attrp->igsa_lock); 19858 19859 /* do nothing if there's no gc to report */ 19860 if (gc == NULL) { 19861 ASSERT(sacnt == 0); 19862 if (gcgrp != NULL) { 19863 /* we might as well drop the lock now */ 19864 rw_exit(&gcgrp->gcgrp_rwlock); 19865 gcgrp = NULL; 19866 } 19867 attrp = NULL; 19868 } 19869 19870 ASSERT(gc == NULL || (gcgrp != NULL && 19871 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19872 } 19873 ASSERT(sacnt == 0 || gc != NULL); 19874 19875 if (sacnt != 0 && 19876 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19877 kmem_free(re, sizeof (*re)); 19878 rw_exit(&gcgrp->gcgrp_rwlock); 19879 return; 19880 } 19881 19882 /* 19883 * Return all IRE types for route table... let caller pick and choose 19884 */ 19885 re->ipv6RouteDest = ire->ire_addr_v6; 19886 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19887 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19888 re->ipv6RouteIfIndex.o_length = 0; 19889 ipif = ire->ire_ipif; 19890 if (ire->ire_type == IRE_CACHE) { 19891 ill = (ill_t *)ire->ire_stq->q_ptr; 19892 re->ipv6RouteIfIndex.o_length = 19893 ill->ill_name_length == 0 ? 0 : 19894 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19895 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19896 re->ipv6RouteIfIndex.o_length); 19897 } else if (ipif != NULL) { 19898 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19899 re->ipv6RouteIfIndex.o_length = 19900 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19901 } 19902 19903 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19904 19905 mutex_enter(&ire->ire_lock); 19906 gw_addr_v6 = ire->ire_gateway_addr_v6; 19907 mutex_exit(&ire->ire_lock); 19908 19909 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19910 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19911 else 19912 re->ipv6RouteNextHop = gw_addr_v6; 19913 19914 /* remote(4), local(3), or discard(2) */ 19915 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19916 re->ipv6RouteType = 2; 19917 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19918 re->ipv6RouteType = 3; 19919 else 19920 re->ipv6RouteType = 4; 19921 19922 re->ipv6RouteProtocol = -1; 19923 re->ipv6RoutePolicy = 0; 19924 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19925 re->ipv6RouteNextHopRDI = 0; 19926 re->ipv6RouteWeight = 0; 19927 re->ipv6RouteMetric = 0; 19928 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19929 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19930 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19931 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19932 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19933 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19934 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19935 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19936 19937 if (ire->ire_flags & RTF_DYNAMIC) { 19938 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19939 } else { 19940 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19941 } 19942 19943 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19944 (char *)re, (int)sizeof (*re))) { 19945 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19946 (uint_t)sizeof (*re))); 19947 } 19948 19949 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19950 iaeptr->iae_routeidx = ird->ird_idx; 19951 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19952 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19953 } 19954 19955 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19956 (char *)iae, sacnt * sizeof (*iae))) { 19957 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19958 (unsigned)(sacnt * sizeof (*iae)))); 19959 } 19960 19961 /* bump route index for next pass */ 19962 ird->ird_idx++; 19963 19964 kmem_free(re, sizeof (*re)); 19965 if (sacnt != 0) 19966 kmem_free(iae, sacnt * sizeof (*iae)); 19967 19968 if (gcgrp != NULL) 19969 rw_exit(&gcgrp->gcgrp_rwlock); 19970 } 19971 19972 /* 19973 * ndp_walk routine to create ipv6NetToMediaEntryTable 19974 */ 19975 static int 19976 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19977 { 19978 ill_t *ill; 19979 mib2_ipv6NetToMediaEntry_t ntme; 19980 dl_unitdata_req_t *dl; 19981 19982 ill = nce->nce_ill; 19983 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19984 return (0); 19985 19986 /* 19987 * Neighbor cache entry attached to IRE with on-link 19988 * destination. 19989 */ 19990 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19991 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19992 if ((ill->ill_flags & ILLF_XRESOLV) && 19993 (nce->nce_res_mp != NULL)) { 19994 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19995 ntme.ipv6NetToMediaPhysAddress.o_length = 19996 dl->dl_dest_addr_length; 19997 } else { 19998 ntme.ipv6NetToMediaPhysAddress.o_length = 19999 ill->ill_phys_addr_length; 20000 } 20001 if (nce->nce_res_mp != NULL) { 20002 bcopy((char *)nce->nce_res_mp->b_rptr + 20003 NCE_LL_ADDR_OFFSET(ill), 20004 ntme.ipv6NetToMediaPhysAddress.o_bytes, 20005 ntme.ipv6NetToMediaPhysAddress.o_length); 20006 } else { 20007 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 20008 ill->ill_phys_addr_length); 20009 } 20010 /* 20011 * Note: Returns ND_* states. Should be: 20012 * reachable(1), stale(2), delay(3), probe(4), 20013 * invalid(5), unknown(6) 20014 */ 20015 ntme.ipv6NetToMediaState = nce->nce_state; 20016 ntme.ipv6NetToMediaLastUpdated = 0; 20017 20018 /* other(1), dynamic(2), static(3), local(4) */ 20019 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 20020 ntme.ipv6NetToMediaType = 4; 20021 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 20022 ntme.ipv6NetToMediaType = 1; 20023 } else { 20024 ntme.ipv6NetToMediaType = 2; 20025 } 20026 20027 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 20028 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 20029 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 20030 (uint_t)sizeof (ntme))); 20031 } 20032 return (0); 20033 } 20034 20035 /* 20036 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 20037 */ 20038 /* ARGSUSED */ 20039 int 20040 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 20041 { 20042 switch (level) { 20043 case MIB2_IP: 20044 case MIB2_ICMP: 20045 switch (name) { 20046 default: 20047 break; 20048 } 20049 return (1); 20050 default: 20051 return (1); 20052 } 20053 } 20054 20055 /* 20056 * When there exists both a 64- and 32-bit counter of a particular type 20057 * (i.e., InReceives), only the 64-bit counters are added. 20058 */ 20059 void 20060 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 20061 { 20062 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 20063 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 20064 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 20065 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 20066 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 20067 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 20068 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 20069 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 20070 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 20071 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 20072 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 20073 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 20074 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 20075 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 20076 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 20077 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 20078 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 20079 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 20080 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 20081 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 20082 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 20083 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 20084 o2->ipIfStatsInWrongIPVersion); 20085 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20086 o2->ipIfStatsInWrongIPVersion); 20087 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20088 o2->ipIfStatsOutSwitchIPVersion); 20089 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20090 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20091 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20092 o2->ipIfStatsHCInForwDatagrams); 20093 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20094 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20095 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20096 o2->ipIfStatsHCOutForwDatagrams); 20097 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20098 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20099 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20100 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20101 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20102 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20103 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20104 o2->ipIfStatsHCOutMcastOctets); 20105 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20106 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20107 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20108 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20109 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20110 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20111 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20112 } 20113 20114 void 20115 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20116 { 20117 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20118 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20119 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20120 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20121 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20122 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20123 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20124 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20125 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20126 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20127 o2->ipv6IfIcmpInRouterSolicits); 20128 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20129 o2->ipv6IfIcmpInRouterAdvertisements); 20130 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20131 o2->ipv6IfIcmpInNeighborSolicits); 20132 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20133 o2->ipv6IfIcmpInNeighborAdvertisements); 20134 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20135 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20136 o2->ipv6IfIcmpInGroupMembQueries); 20137 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20138 o2->ipv6IfIcmpInGroupMembResponses); 20139 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20140 o2->ipv6IfIcmpInGroupMembReductions); 20141 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20142 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20143 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20144 o2->ipv6IfIcmpOutDestUnreachs); 20145 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20146 o2->ipv6IfIcmpOutAdminProhibs); 20147 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20148 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20149 o2->ipv6IfIcmpOutParmProblems); 20150 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20151 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20152 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20153 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20154 o2->ipv6IfIcmpOutRouterSolicits); 20155 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20156 o2->ipv6IfIcmpOutRouterAdvertisements); 20157 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20158 o2->ipv6IfIcmpOutNeighborSolicits); 20159 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20160 o2->ipv6IfIcmpOutNeighborAdvertisements); 20161 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20162 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20163 o2->ipv6IfIcmpOutGroupMembQueries); 20164 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20165 o2->ipv6IfIcmpOutGroupMembResponses); 20166 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20167 o2->ipv6IfIcmpOutGroupMembReductions); 20168 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20169 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20170 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20171 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20172 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20173 o2->ipv6IfIcmpInBadNeighborSolicitations); 20174 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20175 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20176 o2->ipv6IfIcmpInGroupMembTotal); 20177 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20178 o2->ipv6IfIcmpInGroupMembBadQueries); 20179 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20180 o2->ipv6IfIcmpInGroupMembBadReports); 20181 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20182 o2->ipv6IfIcmpInGroupMembOurReports); 20183 } 20184 20185 /* 20186 * Called before the options are updated to check if this packet will 20187 * be source routed from here. 20188 * This routine assumes that the options are well formed i.e. that they 20189 * have already been checked. 20190 */ 20191 static boolean_t 20192 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20193 { 20194 ipoptp_t opts; 20195 uchar_t *opt; 20196 uint8_t optval; 20197 uint8_t optlen; 20198 ipaddr_t dst; 20199 ire_t *ire; 20200 20201 if (IS_SIMPLE_IPH(ipha)) { 20202 ip2dbg(("not source routed\n")); 20203 return (B_FALSE); 20204 } 20205 dst = ipha->ipha_dst; 20206 for (optval = ipoptp_first(&opts, ipha); 20207 optval != IPOPT_EOL; 20208 optval = ipoptp_next(&opts)) { 20209 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20210 opt = opts.ipoptp_cur; 20211 optlen = opts.ipoptp_len; 20212 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20213 optval, optlen)); 20214 switch (optval) { 20215 uint32_t off; 20216 case IPOPT_SSRR: 20217 case IPOPT_LSRR: 20218 /* 20219 * If dst is one of our addresses and there are some 20220 * entries left in the source route return (true). 20221 */ 20222 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20223 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20224 if (ire == NULL) { 20225 ip2dbg(("ip_source_routed: not next" 20226 " source route 0x%x\n", 20227 ntohl(dst))); 20228 return (B_FALSE); 20229 } 20230 ire_refrele(ire); 20231 off = opt[IPOPT_OFFSET]; 20232 off--; 20233 if (optlen < IP_ADDR_LEN || 20234 off > optlen - IP_ADDR_LEN) { 20235 /* End of source route */ 20236 ip1dbg(("ip_source_routed: end of SR\n")); 20237 return (B_FALSE); 20238 } 20239 return (B_TRUE); 20240 } 20241 } 20242 ip2dbg(("not source routed\n")); 20243 return (B_FALSE); 20244 } 20245 20246 /* 20247 * Check if the packet contains any source route. 20248 */ 20249 static boolean_t 20250 ip_source_route_included(ipha_t *ipha) 20251 { 20252 ipoptp_t opts; 20253 uint8_t optval; 20254 20255 if (IS_SIMPLE_IPH(ipha)) 20256 return (B_FALSE); 20257 for (optval = ipoptp_first(&opts, ipha); 20258 optval != IPOPT_EOL; 20259 optval = ipoptp_next(&opts)) { 20260 switch (optval) { 20261 case IPOPT_SSRR: 20262 case IPOPT_LSRR: 20263 return (B_TRUE); 20264 } 20265 } 20266 return (B_FALSE); 20267 } 20268 20269 /* 20270 * Called when the IRE expiration timer fires. 20271 */ 20272 void 20273 ip_trash_timer_expire(void *args) 20274 { 20275 int flush_flag = 0; 20276 ire_expire_arg_t iea; 20277 ip_stack_t *ipst = (ip_stack_t *)args; 20278 20279 iea.iea_ipst = ipst; /* No netstack_hold */ 20280 20281 /* 20282 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20283 * This lock makes sure that a new invocation of this function 20284 * that occurs due to an almost immediate timer firing will not 20285 * progress beyond this point until the current invocation is done 20286 */ 20287 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20288 ipst->ips_ip_ire_expire_id = 0; 20289 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20290 20291 /* Periodic timer */ 20292 if (ipst->ips_ip_ire_arp_time_elapsed >= 20293 ipst->ips_ip_ire_arp_interval) { 20294 /* 20295 * Remove all IRE_CACHE entries since they might 20296 * contain arp information. 20297 */ 20298 flush_flag |= FLUSH_ARP_TIME; 20299 ipst->ips_ip_ire_arp_time_elapsed = 0; 20300 IP_STAT(ipst, ip_ire_arp_timer_expired); 20301 } 20302 if (ipst->ips_ip_ire_rd_time_elapsed >= 20303 ipst->ips_ip_ire_redir_interval) { 20304 /* Remove all redirects */ 20305 flush_flag |= FLUSH_REDIRECT_TIME; 20306 ipst->ips_ip_ire_rd_time_elapsed = 0; 20307 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20308 } 20309 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20310 ipst->ips_ip_ire_pathmtu_interval) { 20311 /* Increase path mtu */ 20312 flush_flag |= FLUSH_MTU_TIME; 20313 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20314 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20315 } 20316 20317 /* 20318 * Optimize for the case when there are no redirects in the 20319 * ftable, that is, no need to walk the ftable in that case. 20320 */ 20321 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20322 iea.iea_flush_flag = flush_flag; 20323 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20324 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20325 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20326 NULL, ALL_ZONES, ipst); 20327 } 20328 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20329 ipst->ips_ip_redirect_cnt > 0) { 20330 iea.iea_flush_flag = flush_flag; 20331 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20332 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20333 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20334 } 20335 if (flush_flag & FLUSH_MTU_TIME) { 20336 /* 20337 * Walk all IPv6 IRE's and update them 20338 * Note that ARP and redirect timers are not 20339 * needed since NUD handles stale entries. 20340 */ 20341 flush_flag = FLUSH_MTU_TIME; 20342 iea.iea_flush_flag = flush_flag; 20343 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20344 ALL_ZONES, ipst); 20345 } 20346 20347 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20348 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20349 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20350 20351 /* 20352 * Hold the lock to serialize timeout calls and prevent 20353 * stale values in ip_ire_expire_id. Otherwise it is possible 20354 * for the timer to fire and a new invocation of this function 20355 * to start before the return value of timeout has been stored 20356 * in ip_ire_expire_id by the current invocation. 20357 */ 20358 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20359 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20360 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20361 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20362 } 20363 20364 /* 20365 * Called by the memory allocator subsystem directly, when the system 20366 * is running low on memory. 20367 */ 20368 /* ARGSUSED */ 20369 void 20370 ip_trash_ire_reclaim(void *args) 20371 { 20372 netstack_handle_t nh; 20373 netstack_t *ns; 20374 20375 netstack_next_init(&nh); 20376 while ((ns = netstack_next(&nh)) != NULL) { 20377 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20378 netstack_rele(ns); 20379 } 20380 netstack_next_fini(&nh); 20381 } 20382 20383 static void 20384 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20385 { 20386 ire_cache_count_t icc; 20387 ire_cache_reclaim_t icr; 20388 ncc_cache_count_t ncc; 20389 nce_cache_reclaim_t ncr; 20390 uint_t delete_cnt; 20391 /* 20392 * Memory reclaim call back. 20393 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20394 * Then, with a target of freeing 1/Nth of IRE_CACHE 20395 * entries, determine what fraction to free for 20396 * each category of IRE_CACHE entries giving absolute priority 20397 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20398 * entry will be freed unless all offlink entries are freed). 20399 */ 20400 icc.icc_total = 0; 20401 icc.icc_unused = 0; 20402 icc.icc_offlink = 0; 20403 icc.icc_pmtu = 0; 20404 icc.icc_onlink = 0; 20405 ire_walk(ire_cache_count, (char *)&icc, ipst); 20406 20407 /* 20408 * Free NCEs for IPv6 like the onlink ires. 20409 */ 20410 ncc.ncc_total = 0; 20411 ncc.ncc_host = 0; 20412 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20413 20414 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20415 icc.icc_pmtu + icc.icc_onlink); 20416 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20417 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20418 if (delete_cnt == 0) 20419 return; 20420 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20421 /* Always delete all unused offlink entries */ 20422 icr.icr_ipst = ipst; 20423 icr.icr_unused = 1; 20424 if (delete_cnt <= icc.icc_unused) { 20425 /* 20426 * Only need to free unused entries. In other words, 20427 * there are enough unused entries to free to meet our 20428 * target number of freed ire cache entries. 20429 */ 20430 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20431 ncr.ncr_host = 0; 20432 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20433 /* 20434 * Only need to free unused entries, plus a fraction of offlink 20435 * entries. It follows from the first if statement that 20436 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20437 */ 20438 delete_cnt -= icc.icc_unused; 20439 /* Round up # deleted by truncating fraction */ 20440 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20441 icr.icr_pmtu = icr.icr_onlink = 0; 20442 ncr.ncr_host = 0; 20443 } else if (delete_cnt <= 20444 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20445 /* 20446 * Free all unused and offlink entries, plus a fraction of 20447 * pmtu entries. It follows from the previous if statement 20448 * that icc_pmtu is non-zero, and that 20449 * delete_cnt != icc_unused + icc_offlink. 20450 */ 20451 icr.icr_offlink = 1; 20452 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20453 /* Round up # deleted by truncating fraction */ 20454 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20455 icr.icr_onlink = 0; 20456 ncr.ncr_host = 0; 20457 } else { 20458 /* 20459 * Free all unused, offlink, and pmtu entries, plus a fraction 20460 * of onlink entries. If we're here, then we know that 20461 * icc_onlink is non-zero, and that 20462 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20463 */ 20464 icr.icr_offlink = icr.icr_pmtu = 1; 20465 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20466 icc.icc_pmtu; 20467 /* Round up # deleted by truncating fraction */ 20468 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20469 /* Using the same delete fraction as for onlink IREs */ 20470 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20471 } 20472 #ifdef DEBUG 20473 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20474 "fractions %d/%d/%d/%d\n", 20475 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20476 icc.icc_unused, icc.icc_offlink, 20477 icc.icc_pmtu, icc.icc_onlink, 20478 icr.icr_unused, icr.icr_offlink, 20479 icr.icr_pmtu, icr.icr_onlink)); 20480 #endif 20481 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20482 if (ncr.ncr_host != 0) 20483 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20484 (uchar_t *)&ncr, ipst); 20485 #ifdef DEBUG 20486 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20487 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20488 ire_walk(ire_cache_count, (char *)&icc, ipst); 20489 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20490 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20491 icc.icc_pmtu, icc.icc_onlink)); 20492 #endif 20493 } 20494 20495 /* 20496 * ip_unbind is called when a copy of an unbind request is received from the 20497 * upper level protocol. We remove this conn from any fanout hash list it is 20498 * on, and zero out the bind information. No reply is expected up above. 20499 */ 20500 void 20501 ip_unbind(conn_t *connp) 20502 { 20503 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20504 20505 if (is_system_labeled() && connp->conn_anon_port) { 20506 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20507 connp->conn_mlp_type, connp->conn_ulp, 20508 ntohs(connp->conn_lport), B_FALSE); 20509 connp->conn_anon_port = 0; 20510 } 20511 connp->conn_mlp_type = mlptSingle; 20512 20513 ipcl_hash_remove(connp); 20514 20515 } 20516 20517 /* 20518 * Write side put procedure. Outbound data, IOCTLs, responses from 20519 * resolvers, etc, come down through here. 20520 * 20521 * arg2 is always a queue_t *. 20522 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20523 * the zoneid. 20524 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20525 */ 20526 void 20527 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20528 { 20529 ip_output_options(arg, mp, arg2, caller, &zero_info); 20530 } 20531 20532 void 20533 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20534 ip_opt_info_t *infop) 20535 { 20536 conn_t *connp = NULL; 20537 queue_t *q = (queue_t *)arg2; 20538 ipha_t *ipha; 20539 #define rptr ((uchar_t *)ipha) 20540 ire_t *ire = NULL; 20541 ire_t *sctp_ire = NULL; 20542 uint32_t v_hlen_tos_len; 20543 ipaddr_t dst; 20544 mblk_t *first_mp = NULL; 20545 boolean_t mctl_present; 20546 ipsec_out_t *io; 20547 int match_flags; 20548 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20549 ipif_t *dst_ipif; 20550 boolean_t multirt_need_resolve = B_FALSE; 20551 mblk_t *copy_mp = NULL; 20552 int err = 0; 20553 zoneid_t zoneid; 20554 boolean_t need_decref = B_FALSE; 20555 boolean_t ignore_dontroute = B_FALSE; 20556 boolean_t ignore_nexthop = B_FALSE; 20557 boolean_t ip_nexthop = B_FALSE; 20558 ipaddr_t nexthop_addr; 20559 ip_stack_t *ipst; 20560 20561 #ifdef _BIG_ENDIAN 20562 #define V_HLEN (v_hlen_tos_len >> 24) 20563 #else 20564 #define V_HLEN (v_hlen_tos_len & 0xFF) 20565 #endif 20566 20567 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20568 "ip_wput_start: q %p", q); 20569 20570 /* 20571 * ip_wput fast path 20572 */ 20573 20574 /* is packet from ARP ? */ 20575 if (q->q_next != NULL) { 20576 zoneid = (zoneid_t)(uintptr_t)arg; 20577 goto qnext; 20578 } 20579 20580 connp = (conn_t *)arg; 20581 ASSERT(connp != NULL); 20582 zoneid = connp->conn_zoneid; 20583 ipst = connp->conn_netstack->netstack_ip; 20584 ASSERT(ipst != NULL); 20585 20586 /* is queue flow controlled? */ 20587 if ((q->q_first != NULL || connp->conn_draining) && 20588 (caller == IP_WPUT)) { 20589 ASSERT(!need_decref); 20590 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20591 (void) putq(q, mp); 20592 return; 20593 } 20594 20595 /* Multidata transmit? */ 20596 if (DB_TYPE(mp) == M_MULTIDATA) { 20597 /* 20598 * We should never get here, since all Multidata messages 20599 * originating from tcp should have been directed over to 20600 * tcp_multisend() in the first place. 20601 */ 20602 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20603 freemsg(mp); 20604 return; 20605 } else if (DB_TYPE(mp) != M_DATA) 20606 goto notdata; 20607 20608 if (mp->b_flag & MSGHASREF) { 20609 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20610 mp->b_flag &= ~MSGHASREF; 20611 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20612 need_decref = B_TRUE; 20613 } 20614 ipha = (ipha_t *)mp->b_rptr; 20615 20616 /* is IP header non-aligned or mblk smaller than basic IP header */ 20617 #ifndef SAFETY_BEFORE_SPEED 20618 if (!OK_32PTR(rptr) || 20619 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20620 goto hdrtoosmall; 20621 #endif 20622 20623 ASSERT(OK_32PTR(ipha)); 20624 20625 /* 20626 * This function assumes that mp points to an IPv4 packet. If it's the 20627 * wrong version, we'll catch it again in ip_output_v6. 20628 * 20629 * Note that this is *only* locally-generated output here, and never 20630 * forwarded data, and that we need to deal only with transports that 20631 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20632 * label.) 20633 */ 20634 if (is_system_labeled() && 20635 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20636 !connp->conn_ulp_labeled) { 20637 cred_t *credp; 20638 pid_t pid; 20639 20640 credp = BEST_CRED(mp, connp, &pid); 20641 err = tsol_check_label(credp, &mp, 20642 connp->conn_mac_exempt, ipst, pid); 20643 ipha = (ipha_t *)mp->b_rptr; 20644 if (err != 0) { 20645 first_mp = mp; 20646 if (err == EINVAL) 20647 goto icmp_parameter_problem; 20648 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20649 goto discard_pkt; 20650 } 20651 } 20652 20653 ASSERT(infop != NULL); 20654 20655 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20656 /* 20657 * IP_PKTINFO ancillary option is present. 20658 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20659 * allows using address of any zone as the source address. 20660 */ 20661 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20662 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20663 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20664 if (ire == NULL) 20665 goto drop_pkt; 20666 ire_refrele(ire); 20667 ire = NULL; 20668 } 20669 20670 /* 20671 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20672 */ 20673 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20674 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20675 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20676 20677 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20678 goto drop_pkt; 20679 /* 20680 * check that there is an ipif belonging 20681 * to our zone. IPCL_ZONEID is not used because 20682 * IP_ALLZONES option is valid only when the ill is 20683 * accessible from all zones i.e has a valid ipif in 20684 * all zones. 20685 */ 20686 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20687 goto drop_pkt; 20688 } 20689 } 20690 20691 /* 20692 * If there is a policy, try to attach an ipsec_out in 20693 * the front. At the end, first_mp either points to a 20694 * M_DATA message or IPSEC_OUT message linked to a 20695 * M_DATA message. We have to do it now as we might 20696 * lose the "conn" if we go through ip_newroute. 20697 */ 20698 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20699 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20700 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20701 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20702 if (need_decref) 20703 CONN_DEC_REF(connp); 20704 return; 20705 } else { 20706 ASSERT(mp->b_datap->db_type == M_CTL); 20707 first_mp = mp; 20708 mp = mp->b_cont; 20709 mctl_present = B_TRUE; 20710 } 20711 } else { 20712 first_mp = mp; 20713 mctl_present = B_FALSE; 20714 } 20715 20716 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20717 20718 /* is wrong version or IP options present */ 20719 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20720 goto version_hdrlen_check; 20721 dst = ipha->ipha_dst; 20722 20723 /* If IP_BOUND_IF has been set, use that ill. */ 20724 if (connp->conn_outgoing_ill != NULL) { 20725 xmit_ill = conn_get_held_ill(connp, 20726 &connp->conn_outgoing_ill, &err); 20727 if (err == ILL_LOOKUP_FAILED) 20728 goto drop_pkt; 20729 20730 goto send_from_ill; 20731 } 20732 20733 /* is packet multicast? */ 20734 if (CLASSD(dst)) 20735 goto multicast; 20736 20737 /* 20738 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20739 * takes precedence over conn_dontroute and conn_nexthop_set 20740 */ 20741 if (xmit_ill != NULL) 20742 goto send_from_ill; 20743 20744 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20745 /* 20746 * If the destination is a broadcast, local, or loopback 20747 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20748 * standard path. 20749 */ 20750 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20751 if ((ire == NULL) || (ire->ire_type & 20752 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20753 if (ire != NULL) { 20754 ire_refrele(ire); 20755 /* No more access to ire */ 20756 ire = NULL; 20757 } 20758 /* 20759 * bypass routing checks and go directly to interface. 20760 */ 20761 if (connp->conn_dontroute) 20762 goto dontroute; 20763 20764 ASSERT(connp->conn_nexthop_set); 20765 ip_nexthop = B_TRUE; 20766 nexthop_addr = connp->conn_nexthop_v4; 20767 goto send_from_ill; 20768 } 20769 20770 /* Must be a broadcast, a loopback or a local ire */ 20771 ire_refrele(ire); 20772 /* No more access to ire */ 20773 ire = NULL; 20774 } 20775 20776 /* 20777 * We cache IRE_CACHEs to avoid lookups. We don't do 20778 * this for the tcp global queue and listen end point 20779 * as it does not really have a real destination to 20780 * talk to. This is also true for SCTP. 20781 */ 20782 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20783 !connp->conn_fully_bound) { 20784 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20785 if (ire == NULL) 20786 goto noirefound; 20787 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20788 "ip_wput_end: q %p (%S)", q, "end"); 20789 20790 /* 20791 * Check if the ire has the RTF_MULTIRT flag, inherited 20792 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20793 */ 20794 if (ire->ire_flags & RTF_MULTIRT) { 20795 20796 /* 20797 * Force the TTL of multirouted packets if required. 20798 * The TTL of such packets is bounded by the 20799 * ip_multirt_ttl ndd variable. 20800 */ 20801 if ((ipst->ips_ip_multirt_ttl > 0) && 20802 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20803 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20804 "(was %d), dst 0x%08x\n", 20805 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20806 ntohl(ire->ire_addr))); 20807 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20808 } 20809 /* 20810 * We look at this point if there are pending 20811 * unresolved routes. ire_multirt_resolvable() 20812 * checks in O(n) that all IRE_OFFSUBNET ire 20813 * entries for the packet's destination and 20814 * flagged RTF_MULTIRT are currently resolved. 20815 * If some remain unresolved, we make a copy 20816 * of the current message. It will be used 20817 * to initiate additional route resolutions. 20818 */ 20819 multirt_need_resolve = 20820 ire_multirt_need_resolve(ire->ire_addr, 20821 msg_getlabel(first_mp), ipst); 20822 ip2dbg(("ip_wput[TCP]: ire %p, " 20823 "multirt_need_resolve %d, first_mp %p\n", 20824 (void *)ire, multirt_need_resolve, 20825 (void *)first_mp)); 20826 if (multirt_need_resolve) { 20827 copy_mp = copymsg(first_mp); 20828 if (copy_mp != NULL) { 20829 MULTIRT_DEBUG_TAG(copy_mp); 20830 } 20831 } 20832 } 20833 20834 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20835 20836 /* 20837 * Try to resolve another multiroute if 20838 * ire_multirt_need_resolve() deemed it necessary. 20839 */ 20840 if (copy_mp != NULL) 20841 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20842 if (need_decref) 20843 CONN_DEC_REF(connp); 20844 return; 20845 } 20846 20847 /* 20848 * Access to conn_ire_cache. (protected by conn_lock) 20849 * 20850 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20851 * the ire bucket lock here to check for CONDEMNED as it is okay to 20852 * send a packet or two with the IRE_CACHE that is going away. 20853 * Access to the ire requires an ire refhold on the ire prior to 20854 * its use since an interface unplumb thread may delete the cached 20855 * ire and release the refhold at any time. 20856 * 20857 * Caching an ire in the conn_ire_cache 20858 * 20859 * o Caching an ire pointer in the conn requires a strict check for 20860 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20861 * ires before cleaning up the conns. So the caching of an ire pointer 20862 * in the conn is done after making sure under the bucket lock that the 20863 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20864 * caching an ire after the unplumb thread has cleaned up the conn. 20865 * If the conn does not send a packet subsequently the unplumb thread 20866 * will be hanging waiting for the ire count to drop to zero. 20867 * 20868 * o We also need to atomically test for a null conn_ire_cache and 20869 * set the conn_ire_cache under the the protection of the conn_lock 20870 * to avoid races among concurrent threads trying to simultaneously 20871 * cache an ire in the conn_ire_cache. 20872 */ 20873 mutex_enter(&connp->conn_lock); 20874 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20875 20876 if (ire != NULL && ire->ire_addr == dst && 20877 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20878 20879 IRE_REFHOLD(ire); 20880 mutex_exit(&connp->conn_lock); 20881 20882 } else { 20883 boolean_t cached = B_FALSE; 20884 connp->conn_ire_cache = NULL; 20885 mutex_exit(&connp->conn_lock); 20886 /* Release the old ire */ 20887 if (ire != NULL && sctp_ire == NULL) 20888 IRE_REFRELE_NOTR(ire); 20889 20890 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20891 if (ire == NULL) 20892 goto noirefound; 20893 IRE_REFHOLD_NOTR(ire); 20894 20895 mutex_enter(&connp->conn_lock); 20896 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20897 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20898 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20899 if (connp->conn_ulp == IPPROTO_TCP) 20900 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20901 connp->conn_ire_cache = ire; 20902 cached = B_TRUE; 20903 } 20904 rw_exit(&ire->ire_bucket->irb_lock); 20905 } 20906 mutex_exit(&connp->conn_lock); 20907 20908 /* 20909 * We can continue to use the ire but since it was 20910 * not cached, we should drop the extra reference. 20911 */ 20912 if (!cached) 20913 IRE_REFRELE_NOTR(ire); 20914 } 20915 20916 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20917 "ip_wput_end: q %p (%S)", q, "end"); 20918 20919 /* 20920 * Check if the ire has the RTF_MULTIRT flag, inherited 20921 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20922 */ 20923 if (ire->ire_flags & RTF_MULTIRT) { 20924 /* 20925 * Force the TTL of multirouted packets if required. 20926 * The TTL of such packets is bounded by the 20927 * ip_multirt_ttl ndd variable. 20928 */ 20929 if ((ipst->ips_ip_multirt_ttl > 0) && 20930 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20931 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20932 "(was %d), dst 0x%08x\n", 20933 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20934 ntohl(ire->ire_addr))); 20935 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20936 } 20937 20938 /* 20939 * At this point, we check to see if there are any pending 20940 * unresolved routes. ire_multirt_resolvable() 20941 * checks in O(n) that all IRE_OFFSUBNET ire 20942 * entries for the packet's destination and 20943 * flagged RTF_MULTIRT are currently resolved. 20944 * If some remain unresolved, we make a copy 20945 * of the current message. It will be used 20946 * to initiate additional route resolutions. 20947 */ 20948 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20949 msg_getlabel(first_mp), ipst); 20950 ip2dbg(("ip_wput[not TCP]: ire %p, " 20951 "multirt_need_resolve %d, first_mp %p\n", 20952 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20953 if (multirt_need_resolve) { 20954 copy_mp = copymsg(first_mp); 20955 if (copy_mp != NULL) { 20956 MULTIRT_DEBUG_TAG(copy_mp); 20957 } 20958 } 20959 } 20960 20961 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20962 20963 /* 20964 * Try to resolve another multiroute if 20965 * ire_multirt_resolvable() deemed it necessary 20966 */ 20967 if (copy_mp != NULL) 20968 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20969 if (need_decref) 20970 CONN_DEC_REF(connp); 20971 return; 20972 20973 qnext: 20974 /* 20975 * Upper Level Protocols pass down complete IP datagrams 20976 * as M_DATA messages. Everything else is a sideshow. 20977 * 20978 * 1) We could be re-entering ip_wput because of ip_neworute 20979 * in which case we could have a IPSEC_OUT message. We 20980 * need to pass through ip_wput like other datagrams and 20981 * hence cannot branch to ip_wput_nondata. 20982 * 20983 * 2) ARP, AH, ESP, and other clients who are on the module 20984 * instance of IP stream, give us something to deal with. 20985 * We will handle AH and ESP here and rest in ip_wput_nondata. 20986 * 20987 * 3) ICMP replies also could come here. 20988 */ 20989 ipst = ILLQ_TO_IPST(q); 20990 20991 if (DB_TYPE(mp) != M_DATA) { 20992 notdata: 20993 if (DB_TYPE(mp) == M_CTL) { 20994 /* 20995 * M_CTL messages are used by ARP, AH and ESP to 20996 * communicate with IP. We deal with IPSEC_IN and 20997 * IPSEC_OUT here. ip_wput_nondata handles other 20998 * cases. 20999 */ 21000 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 21001 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 21002 first_mp = mp->b_cont; 21003 first_mp->b_flag &= ~MSGHASREF; 21004 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 21005 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 21006 CONN_DEC_REF(connp); 21007 connp = NULL; 21008 } 21009 if (ii->ipsec_info_type == IPSEC_IN) { 21010 /* 21011 * Either this message goes back to 21012 * IPsec for further processing or to 21013 * ULP after policy checks. 21014 */ 21015 ip_fanout_proto_again(mp, NULL, NULL, NULL); 21016 return; 21017 } else if (ii->ipsec_info_type == IPSEC_OUT) { 21018 io = (ipsec_out_t *)ii; 21019 if (io->ipsec_out_proc_begin) { 21020 /* 21021 * IPsec processing has already started. 21022 * Complete it. 21023 * IPQoS notes: We don't care what is 21024 * in ipsec_out_ill_index since this 21025 * won't be processed for IPQoS policies 21026 * in ipsec_out_process. 21027 */ 21028 ipsec_out_process(q, mp, NULL, 21029 io->ipsec_out_ill_index); 21030 return; 21031 } else { 21032 connp = (q->q_next != NULL) ? 21033 NULL : Q_TO_CONN(q); 21034 first_mp = mp; 21035 mp = mp->b_cont; 21036 mctl_present = B_TRUE; 21037 } 21038 zoneid = io->ipsec_out_zoneid; 21039 ASSERT(zoneid != ALL_ZONES); 21040 } else if (ii->ipsec_info_type == IPSEC_CTL) { 21041 /* 21042 * It's an IPsec control message requesting 21043 * an SADB update to be sent to the IPsec 21044 * hardware acceleration capable ills. 21045 */ 21046 ipsec_ctl_t *ipsec_ctl = 21047 (ipsec_ctl_t *)mp->b_rptr; 21048 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 21049 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 21050 mblk_t *cmp = mp->b_cont; 21051 21052 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 21053 ASSERT(cmp != NULL); 21054 21055 freeb(mp); 21056 ill_ipsec_capab_send_all(satype, cmp, sa, 21057 ipst->ips_netstack); 21058 return; 21059 } else { 21060 /* 21061 * This must be ARP or special TSOL signaling. 21062 */ 21063 ip_wput_nondata(NULL, q, mp, NULL); 21064 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21065 "ip_wput_end: q %p (%S)", q, "nondata"); 21066 return; 21067 } 21068 } else { 21069 /* 21070 * This must be non-(ARP/AH/ESP) messages. 21071 */ 21072 ASSERT(!need_decref); 21073 ip_wput_nondata(NULL, q, mp, NULL); 21074 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21075 "ip_wput_end: q %p (%S)", q, "nondata"); 21076 return; 21077 } 21078 } else { 21079 first_mp = mp; 21080 mctl_present = B_FALSE; 21081 } 21082 21083 ASSERT(first_mp != NULL); 21084 21085 if (mctl_present) { 21086 io = (ipsec_out_t *)first_mp->b_rptr; 21087 if (io->ipsec_out_ip_nexthop) { 21088 /* 21089 * We may have lost the conn context if we are 21090 * coming here from ip_newroute(). Copy the 21091 * nexthop information. 21092 */ 21093 ip_nexthop = B_TRUE; 21094 nexthop_addr = io->ipsec_out_nexthop_addr; 21095 21096 ipha = (ipha_t *)mp->b_rptr; 21097 dst = ipha->ipha_dst; 21098 goto send_from_ill; 21099 } 21100 } 21101 21102 ASSERT(xmit_ill == NULL); 21103 21104 /* We have a complete IP datagram heading outbound. */ 21105 ipha = (ipha_t *)mp->b_rptr; 21106 21107 #ifndef SPEED_BEFORE_SAFETY 21108 /* 21109 * Make sure we have a full-word aligned message and that at least 21110 * a simple IP header is accessible in the first message. If not, 21111 * try a pullup. For labeled systems we need to always take this 21112 * path as M_CTLs are "notdata" but have trailing data to process. 21113 */ 21114 if (!OK_32PTR(rptr) || 21115 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21116 hdrtoosmall: 21117 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21118 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21119 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21120 if (first_mp == NULL) 21121 first_mp = mp; 21122 goto discard_pkt; 21123 } 21124 21125 /* This function assumes that mp points to an IPv4 packet. */ 21126 if (is_system_labeled() && 21127 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21128 (connp == NULL || !connp->conn_ulp_labeled)) { 21129 cred_t *credp; 21130 pid_t pid; 21131 21132 if (connp != NULL) { 21133 credp = BEST_CRED(mp, connp, &pid); 21134 err = tsol_check_label(credp, &mp, 21135 connp->conn_mac_exempt, ipst, pid); 21136 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 21137 err = tsol_check_label(credp, &mp, 21138 B_FALSE, ipst, pid); 21139 } 21140 ipha = (ipha_t *)mp->b_rptr; 21141 if (mctl_present) 21142 first_mp->b_cont = mp; 21143 else 21144 first_mp = mp; 21145 if (err != 0) { 21146 if (err == EINVAL) 21147 goto icmp_parameter_problem; 21148 ip2dbg(("ip_wput: label check failed (%d)\n", 21149 err)); 21150 goto discard_pkt; 21151 } 21152 } 21153 21154 ipha = (ipha_t *)mp->b_rptr; 21155 if (first_mp == NULL) { 21156 ASSERT(xmit_ill == NULL); 21157 /* 21158 * If we got here because of "goto hdrtoosmall" 21159 * We need to attach a IPSEC_OUT. 21160 */ 21161 if (connp->conn_out_enforce_policy) { 21162 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21163 NULL, ipha->ipha_protocol, 21164 ipst->ips_netstack)) == NULL)) { 21165 BUMP_MIB(&ipst->ips_ip_mib, 21166 ipIfStatsOutDiscards); 21167 if (need_decref) 21168 CONN_DEC_REF(connp); 21169 return; 21170 } else { 21171 ASSERT(mp->b_datap->db_type == M_CTL); 21172 first_mp = mp; 21173 mp = mp->b_cont; 21174 mctl_present = B_TRUE; 21175 } 21176 } else { 21177 first_mp = mp; 21178 mctl_present = B_FALSE; 21179 } 21180 } 21181 } 21182 #endif 21183 21184 /* Most of the code below is written for speed, not readability */ 21185 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21186 21187 /* 21188 * If ip_newroute() fails, we're going to need a full 21189 * header for the icmp wraparound. 21190 */ 21191 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21192 uint_t v_hlen; 21193 version_hdrlen_check: 21194 ASSERT(first_mp != NULL); 21195 v_hlen = V_HLEN; 21196 /* 21197 * siphon off IPv6 packets coming down from transport 21198 * layer modules here. 21199 * Note: high-order bit carries NUD reachability confirmation 21200 */ 21201 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21202 /* 21203 * FIXME: assume that callers of ip_output* call 21204 * the right version? 21205 */ 21206 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21207 ASSERT(xmit_ill == NULL); 21208 if (need_decref) 21209 mp->b_flag |= MSGHASREF; 21210 (void) ip_output_v6(arg, first_mp, arg2, caller); 21211 return; 21212 } 21213 21214 if ((v_hlen >> 4) != IP_VERSION) { 21215 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21216 "ip_wput_end: q %p (%S)", q, "badvers"); 21217 goto discard_pkt; 21218 } 21219 /* 21220 * Is the header length at least 20 bytes? 21221 * 21222 * Are there enough bytes accessible in the header? If 21223 * not, try a pullup. 21224 */ 21225 v_hlen &= 0xF; 21226 v_hlen <<= 2; 21227 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21228 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21229 "ip_wput_end: q %p (%S)", q, "badlen"); 21230 goto discard_pkt; 21231 } 21232 if (v_hlen > (mp->b_wptr - rptr)) { 21233 if (!pullupmsg(mp, v_hlen)) { 21234 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21235 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21236 goto discard_pkt; 21237 } 21238 ipha = (ipha_t *)mp->b_rptr; 21239 } 21240 /* 21241 * Move first entry from any source route into ipha_dst and 21242 * verify the options 21243 */ 21244 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21245 zoneid, ipst)) { 21246 ASSERT(xmit_ill == NULL); 21247 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21248 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21249 "ip_wput_end: q %p (%S)", q, "badopts"); 21250 if (need_decref) 21251 CONN_DEC_REF(connp); 21252 return; 21253 } 21254 } 21255 dst = ipha->ipha_dst; 21256 21257 /* 21258 * Try to get an IRE_CACHE for the destination address. If we can't, 21259 * we have to run the packet through ip_newroute which will take 21260 * the appropriate action to arrange for an IRE_CACHE, such as querying 21261 * a resolver, or assigning a default gateway, etc. 21262 */ 21263 if (CLASSD(dst)) { 21264 ipif_t *ipif; 21265 uint32_t setsrc = 0; 21266 21267 multicast: 21268 ASSERT(first_mp != NULL); 21269 ip2dbg(("ip_wput: CLASSD\n")); 21270 if (connp == NULL) { 21271 /* 21272 * Use the first good ipif on the ill. 21273 * XXX Should this ever happen? (Appears 21274 * to show up with just ppp and no ethernet due 21275 * to in.rdisc.) 21276 * However, ire_send should be able to 21277 * call ip_wput_ire directly. 21278 * 21279 * XXX Also, this can happen for ICMP and other packets 21280 * with multicast source addresses. Perhaps we should 21281 * fix things so that we drop the packet in question, 21282 * but for now, just run with it. 21283 */ 21284 ill_t *ill = (ill_t *)q->q_ptr; 21285 21286 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21287 if (ipif == NULL) { 21288 if (need_decref) 21289 CONN_DEC_REF(connp); 21290 freemsg(first_mp); 21291 return; 21292 } 21293 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21294 ntohl(dst), ill->ill_name)); 21295 } else { 21296 /* 21297 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21298 * and IP_MULTICAST_IF. The block comment above this 21299 * function explains the locking mechanism used here. 21300 */ 21301 if (xmit_ill == NULL) { 21302 xmit_ill = conn_get_held_ill(connp, 21303 &connp->conn_outgoing_ill, &err); 21304 if (err == ILL_LOOKUP_FAILED) { 21305 ip1dbg(("ip_wput: No ill for " 21306 "IP_BOUND_IF\n")); 21307 BUMP_MIB(&ipst->ips_ip_mib, 21308 ipIfStatsOutNoRoutes); 21309 goto drop_pkt; 21310 } 21311 } 21312 21313 if (xmit_ill == NULL) { 21314 ipif = conn_get_held_ipif(connp, 21315 &connp->conn_multicast_ipif, &err); 21316 if (err == IPIF_LOOKUP_FAILED) { 21317 ip1dbg(("ip_wput: No ipif for " 21318 "multicast\n")); 21319 BUMP_MIB(&ipst->ips_ip_mib, 21320 ipIfStatsOutNoRoutes); 21321 goto drop_pkt; 21322 } 21323 } 21324 if (xmit_ill != NULL) { 21325 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21326 if (ipif == NULL) { 21327 ip1dbg(("ip_wput: No ipif for " 21328 "xmit_ill\n")); 21329 BUMP_MIB(&ipst->ips_ip_mib, 21330 ipIfStatsOutNoRoutes); 21331 goto drop_pkt; 21332 } 21333 } else if (ipif == NULL || ipif->ipif_isv6) { 21334 /* 21335 * We must do this ipif determination here 21336 * else we could pass through ip_newroute 21337 * and come back here without the conn context. 21338 * 21339 * Note: we do late binding i.e. we bind to 21340 * the interface when the first packet is sent. 21341 * For performance reasons we do not rebind on 21342 * each packet but keep the binding until the 21343 * next IP_MULTICAST_IF option. 21344 * 21345 * conn_multicast_{ipif,ill} are shared between 21346 * IPv4 and IPv6 and AF_INET6 sockets can 21347 * send both IPv4 and IPv6 packets. Hence 21348 * we have to check that "isv6" matches above. 21349 */ 21350 if (ipif != NULL) 21351 ipif_refrele(ipif); 21352 ipif = ipif_lookup_group(dst, zoneid, ipst); 21353 if (ipif == NULL) { 21354 ip1dbg(("ip_wput: No ipif for " 21355 "multicast\n")); 21356 BUMP_MIB(&ipst->ips_ip_mib, 21357 ipIfStatsOutNoRoutes); 21358 goto drop_pkt; 21359 } 21360 err = conn_set_held_ipif(connp, 21361 &connp->conn_multicast_ipif, ipif); 21362 if (err == IPIF_LOOKUP_FAILED) { 21363 ipif_refrele(ipif); 21364 ip1dbg(("ip_wput: No ipif for " 21365 "multicast\n")); 21366 BUMP_MIB(&ipst->ips_ip_mib, 21367 ipIfStatsOutNoRoutes); 21368 goto drop_pkt; 21369 } 21370 } 21371 } 21372 ASSERT(!ipif->ipif_isv6); 21373 /* 21374 * As we may lose the conn by the time we reach ip_wput_ire, 21375 * we copy conn_multicast_loop and conn_dontroute on to an 21376 * ipsec_out. In case if this datagram goes out secure, 21377 * we need the ill_index also. Copy that also into the 21378 * ipsec_out. 21379 */ 21380 if (mctl_present) { 21381 io = (ipsec_out_t *)first_mp->b_rptr; 21382 ASSERT(first_mp->b_datap->db_type == M_CTL); 21383 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21384 } else { 21385 ASSERT(mp == first_mp); 21386 if ((first_mp = allocb(sizeof (ipsec_info_t), 21387 BPRI_HI)) == NULL) { 21388 ipif_refrele(ipif); 21389 first_mp = mp; 21390 goto discard_pkt; 21391 } 21392 first_mp->b_datap->db_type = M_CTL; 21393 first_mp->b_wptr += sizeof (ipsec_info_t); 21394 /* ipsec_out_secure is B_FALSE now */ 21395 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21396 io = (ipsec_out_t *)first_mp->b_rptr; 21397 io->ipsec_out_type = IPSEC_OUT; 21398 io->ipsec_out_len = sizeof (ipsec_out_t); 21399 io->ipsec_out_use_global_policy = B_TRUE; 21400 io->ipsec_out_ns = ipst->ips_netstack; 21401 first_mp->b_cont = mp; 21402 mctl_present = B_TRUE; 21403 } 21404 21405 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21406 io->ipsec_out_ill_index = 21407 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21408 21409 if (connp != NULL) { 21410 io->ipsec_out_multicast_loop = 21411 connp->conn_multicast_loop; 21412 io->ipsec_out_dontroute = connp->conn_dontroute; 21413 io->ipsec_out_zoneid = connp->conn_zoneid; 21414 } 21415 /* 21416 * If the application uses IP_MULTICAST_IF with 21417 * different logical addresses of the same ILL, we 21418 * need to make sure that the soruce address of 21419 * the packet matches the logical IP address used 21420 * in the option. We do it by initializing ipha_src 21421 * here. This should keep IPsec also happy as 21422 * when we return from IPsec processing, we don't 21423 * have to worry about getting the right address on 21424 * the packet. Thus it is sufficient to look for 21425 * IRE_CACHE using MATCH_IRE_ILL rathen than 21426 * MATCH_IRE_IPIF. 21427 * 21428 * NOTE : We need to do it for non-secure case also as 21429 * this might go out secure if there is a global policy 21430 * match in ip_wput_ire. 21431 * 21432 * As we do not have the ire yet, it is possible that 21433 * we set the source address here and then later discover 21434 * that the ire implies the source address to be assigned 21435 * through the RTF_SETSRC flag. 21436 * In that case, the setsrc variable will remind us 21437 * that overwritting the source address by the one 21438 * of the RTF_SETSRC-flagged ire is allowed. 21439 */ 21440 if (ipha->ipha_src == INADDR_ANY && 21441 (connp == NULL || !connp->conn_unspec_src)) { 21442 ipha->ipha_src = ipif->ipif_src_addr; 21443 setsrc = RTF_SETSRC; 21444 } 21445 /* 21446 * Find an IRE which matches the destination and the outgoing 21447 * queue (i.e. the outgoing interface.) 21448 * For loopback use a unicast IP address for 21449 * the ire lookup. 21450 */ 21451 if (IS_LOOPBACK(ipif->ipif_ill)) 21452 dst = ipif->ipif_lcl_addr; 21453 21454 /* 21455 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21456 * We don't need to lookup ire in ctable as the packet 21457 * needs to be sent to the destination through the specified 21458 * ill irrespective of ires in the cache table. 21459 */ 21460 ire = NULL; 21461 if (xmit_ill == NULL) { 21462 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21463 zoneid, msg_getlabel(mp), match_flags, ipst); 21464 } 21465 21466 if (ire == NULL) { 21467 /* 21468 * Multicast loopback and multicast forwarding is 21469 * done in ip_wput_ire. 21470 * 21471 * Mark this packet to make it be delivered to 21472 * ip_wput_ire after the new ire has been 21473 * created. 21474 * 21475 * The call to ip_newroute_ipif takes into account 21476 * the setsrc reminder. In any case, we take care 21477 * of the RTF_MULTIRT flag. 21478 */ 21479 mp->b_prev = mp->b_next = NULL; 21480 if (xmit_ill == NULL || 21481 xmit_ill->ill_ipif_up_count > 0) { 21482 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21483 setsrc | RTF_MULTIRT, zoneid, infop); 21484 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21485 "ip_wput_end: q %p (%S)", q, "noire"); 21486 } else { 21487 freemsg(first_mp); 21488 } 21489 ipif_refrele(ipif); 21490 if (xmit_ill != NULL) 21491 ill_refrele(xmit_ill); 21492 if (need_decref) 21493 CONN_DEC_REF(connp); 21494 return; 21495 } 21496 21497 ipif_refrele(ipif); 21498 ipif = NULL; 21499 ASSERT(xmit_ill == NULL); 21500 21501 /* 21502 * Honor the RTF_SETSRC flag for multicast packets, 21503 * if allowed by the setsrc reminder. 21504 */ 21505 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21506 ipha->ipha_src = ire->ire_src_addr; 21507 } 21508 21509 /* 21510 * Unconditionally force the TTL to 1 for 21511 * multirouted multicast packets: 21512 * multirouted multicast should not cross 21513 * multicast routers. 21514 */ 21515 if (ire->ire_flags & RTF_MULTIRT) { 21516 if (ipha->ipha_ttl > 1) { 21517 ip2dbg(("ip_wput: forcing multicast " 21518 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21519 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21520 ipha->ipha_ttl = 1; 21521 } 21522 } 21523 } else { 21524 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21525 if ((ire != NULL) && (ire->ire_type & 21526 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21527 ignore_dontroute = B_TRUE; 21528 ignore_nexthop = B_TRUE; 21529 } 21530 if (ire != NULL) { 21531 ire_refrele(ire); 21532 ire = NULL; 21533 } 21534 /* 21535 * Guard against coming in from arp in which case conn is NULL. 21536 * Also guard against non M_DATA with dontroute set but 21537 * destined to local, loopback or broadcast addresses. 21538 */ 21539 if (connp != NULL && connp->conn_dontroute && 21540 !ignore_dontroute) { 21541 dontroute: 21542 /* 21543 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21544 * routing protocols from seeing false direct 21545 * connectivity. 21546 */ 21547 ipha->ipha_ttl = 1; 21548 /* If suitable ipif not found, drop packet */ 21549 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21550 if (dst_ipif == NULL) { 21551 noroute: 21552 ip1dbg(("ip_wput: no route for dst using" 21553 " SO_DONTROUTE\n")); 21554 BUMP_MIB(&ipst->ips_ip_mib, 21555 ipIfStatsOutNoRoutes); 21556 mp->b_prev = mp->b_next = NULL; 21557 if (first_mp == NULL) 21558 first_mp = mp; 21559 goto drop_pkt; 21560 } else { 21561 /* 21562 * If suitable ipif has been found, set 21563 * xmit_ill to the corresponding 21564 * ipif_ill because we'll be using the 21565 * send_from_ill logic below. 21566 */ 21567 ASSERT(xmit_ill == NULL); 21568 xmit_ill = dst_ipif->ipif_ill; 21569 mutex_enter(&xmit_ill->ill_lock); 21570 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21571 mutex_exit(&xmit_ill->ill_lock); 21572 xmit_ill = NULL; 21573 ipif_refrele(dst_ipif); 21574 goto noroute; 21575 } 21576 ill_refhold_locked(xmit_ill); 21577 mutex_exit(&xmit_ill->ill_lock); 21578 ipif_refrele(dst_ipif); 21579 } 21580 } 21581 21582 send_from_ill: 21583 if (xmit_ill != NULL) { 21584 ipif_t *ipif; 21585 21586 /* 21587 * Mark this packet as originated locally 21588 */ 21589 mp->b_prev = mp->b_next = NULL; 21590 21591 /* 21592 * Could be SO_DONTROUTE case also. 21593 * Verify that at least one ipif is up on the ill. 21594 */ 21595 if (xmit_ill->ill_ipif_up_count == 0) { 21596 ip1dbg(("ip_output: xmit_ill %s is down\n", 21597 xmit_ill->ill_name)); 21598 goto drop_pkt; 21599 } 21600 21601 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21602 if (ipif == NULL) { 21603 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21604 xmit_ill->ill_name)); 21605 goto drop_pkt; 21606 } 21607 21608 match_flags = 0; 21609 if (IS_UNDER_IPMP(xmit_ill)) 21610 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21611 21612 /* 21613 * Look for a ire that is part of the group, 21614 * if found use it else call ip_newroute_ipif. 21615 * IPCL_ZONEID is not used for matching because 21616 * IP_ALLZONES option is valid only when the 21617 * ill is accessible from all zones i.e has a 21618 * valid ipif in all zones. 21619 */ 21620 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21621 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21622 msg_getlabel(mp), match_flags, ipst); 21623 /* 21624 * If an ire exists use it or else create 21625 * an ire but don't add it to the cache. 21626 * Adding an ire may cause issues with 21627 * asymmetric routing. 21628 * In case of multiroute always act as if 21629 * ire does not exist. 21630 */ 21631 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21632 if (ire != NULL) 21633 ire_refrele(ire); 21634 ip_newroute_ipif(q, first_mp, ipif, 21635 dst, connp, 0, zoneid, infop); 21636 ipif_refrele(ipif); 21637 ip1dbg(("ip_output: xmit_ill via %s\n", 21638 xmit_ill->ill_name)); 21639 ill_refrele(xmit_ill); 21640 if (need_decref) 21641 CONN_DEC_REF(connp); 21642 return; 21643 } 21644 ipif_refrele(ipif); 21645 } else if (ip_nexthop || (connp != NULL && 21646 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21647 if (!ip_nexthop) { 21648 ip_nexthop = B_TRUE; 21649 nexthop_addr = connp->conn_nexthop_v4; 21650 } 21651 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21652 MATCH_IRE_GW; 21653 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21654 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21655 } else { 21656 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21657 ipst); 21658 } 21659 if (!ire) { 21660 if (ip_nexthop && !ignore_nexthop) { 21661 if (mctl_present) { 21662 io = (ipsec_out_t *)first_mp->b_rptr; 21663 ASSERT(first_mp->b_datap->db_type == 21664 M_CTL); 21665 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21666 } else { 21667 ASSERT(mp == first_mp); 21668 first_mp = allocb( 21669 sizeof (ipsec_info_t), BPRI_HI); 21670 if (first_mp == NULL) { 21671 first_mp = mp; 21672 goto discard_pkt; 21673 } 21674 first_mp->b_datap->db_type = M_CTL; 21675 first_mp->b_wptr += 21676 sizeof (ipsec_info_t); 21677 /* ipsec_out_secure is B_FALSE now */ 21678 bzero(first_mp->b_rptr, 21679 sizeof (ipsec_info_t)); 21680 io = (ipsec_out_t *)first_mp->b_rptr; 21681 io->ipsec_out_type = IPSEC_OUT; 21682 io->ipsec_out_len = 21683 sizeof (ipsec_out_t); 21684 io->ipsec_out_use_global_policy = 21685 B_TRUE; 21686 io->ipsec_out_ns = ipst->ips_netstack; 21687 first_mp->b_cont = mp; 21688 mctl_present = B_TRUE; 21689 } 21690 io->ipsec_out_ip_nexthop = ip_nexthop; 21691 io->ipsec_out_nexthop_addr = nexthop_addr; 21692 } 21693 noirefound: 21694 /* 21695 * Mark this packet as having originated on 21696 * this machine. This will be noted in 21697 * ire_add_then_send, which needs to know 21698 * whether to run it back through ip_wput or 21699 * ip_rput following successful resolution. 21700 */ 21701 mp->b_prev = NULL; 21702 mp->b_next = NULL; 21703 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21704 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21705 "ip_wput_end: q %p (%S)", q, "newroute"); 21706 if (xmit_ill != NULL) 21707 ill_refrele(xmit_ill); 21708 if (need_decref) 21709 CONN_DEC_REF(connp); 21710 return; 21711 } 21712 } 21713 21714 /* We now know where we are going with it. */ 21715 21716 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21717 "ip_wput_end: q %p (%S)", q, "end"); 21718 21719 /* 21720 * Check if the ire has the RTF_MULTIRT flag, inherited 21721 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21722 */ 21723 if (ire->ire_flags & RTF_MULTIRT) { 21724 /* 21725 * Force the TTL of multirouted packets if required. 21726 * The TTL of such packets is bounded by the 21727 * ip_multirt_ttl ndd variable. 21728 */ 21729 if ((ipst->ips_ip_multirt_ttl > 0) && 21730 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21731 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21732 "(was %d), dst 0x%08x\n", 21733 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21734 ntohl(ire->ire_addr))); 21735 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21736 } 21737 /* 21738 * At this point, we check to see if there are any pending 21739 * unresolved routes. ire_multirt_resolvable() 21740 * checks in O(n) that all IRE_OFFSUBNET ire 21741 * entries for the packet's destination and 21742 * flagged RTF_MULTIRT are currently resolved. 21743 * If some remain unresolved, we make a copy 21744 * of the current message. It will be used 21745 * to initiate additional route resolutions. 21746 */ 21747 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21748 msg_getlabel(first_mp), ipst); 21749 ip2dbg(("ip_wput[noirefound]: ire %p, " 21750 "multirt_need_resolve %d, first_mp %p\n", 21751 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21752 if (multirt_need_resolve) { 21753 copy_mp = copymsg(first_mp); 21754 if (copy_mp != NULL) { 21755 MULTIRT_DEBUG_TAG(copy_mp); 21756 } 21757 } 21758 } 21759 21760 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21761 /* 21762 * Try to resolve another multiroute if 21763 * ire_multirt_resolvable() deemed it necessary. 21764 * At this point, we need to distinguish 21765 * multicasts from other packets. For multicasts, 21766 * we call ip_newroute_ipif() and request that both 21767 * multirouting and setsrc flags are checked. 21768 */ 21769 if (copy_mp != NULL) { 21770 if (CLASSD(dst)) { 21771 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21772 if (ipif) { 21773 ASSERT(infop->ip_opt_ill_index == 0); 21774 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21775 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21776 ipif_refrele(ipif); 21777 } else { 21778 MULTIRT_DEBUG_UNTAG(copy_mp); 21779 freemsg(copy_mp); 21780 copy_mp = NULL; 21781 } 21782 } else { 21783 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21784 } 21785 } 21786 if (xmit_ill != NULL) 21787 ill_refrele(xmit_ill); 21788 if (need_decref) 21789 CONN_DEC_REF(connp); 21790 return; 21791 21792 icmp_parameter_problem: 21793 /* could not have originated externally */ 21794 ASSERT(mp->b_prev == NULL); 21795 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21796 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21797 /* it's the IP header length that's in trouble */ 21798 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21799 first_mp = NULL; 21800 } 21801 21802 discard_pkt: 21803 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21804 drop_pkt: 21805 ip1dbg(("ip_wput: dropped packet\n")); 21806 if (ire != NULL) 21807 ire_refrele(ire); 21808 if (need_decref) 21809 CONN_DEC_REF(connp); 21810 freemsg(first_mp); 21811 if (xmit_ill != NULL) 21812 ill_refrele(xmit_ill); 21813 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21814 "ip_wput_end: q %p (%S)", q, "droppkt"); 21815 } 21816 21817 /* 21818 * If this is a conn_t queue, then we pass in the conn. This includes the 21819 * zoneid. 21820 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21821 * in which case we use the global zoneid since those are all part of 21822 * the global zone. 21823 */ 21824 void 21825 ip_wput(queue_t *q, mblk_t *mp) 21826 { 21827 if (CONN_Q(q)) 21828 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21829 else 21830 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21831 } 21832 21833 /* 21834 * 21835 * The following rules must be observed when accessing any ipif or ill 21836 * that has been cached in the conn. Typically conn_outgoing_ill, 21837 * conn_multicast_ipif and conn_multicast_ill. 21838 * 21839 * Access: The ipif or ill pointed to from the conn can be accessed under 21840 * the protection of the conn_lock or after it has been refheld under the 21841 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21842 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21843 * The reason for this is that a concurrent unplumb could actually be 21844 * cleaning up these cached pointers by walking the conns and might have 21845 * finished cleaning up the conn in question. The macros check that an 21846 * unplumb has not yet started on the ipif or ill. 21847 * 21848 * Caching: An ipif or ill pointer may be cached in the conn only after 21849 * making sure that an unplumb has not started. So the caching is done 21850 * while holding both the conn_lock and the ill_lock and after using the 21851 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21852 * flag before starting the cleanup of conns. 21853 * 21854 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21855 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21856 * or a reference to the ipif or a reference to an ire that references the 21857 * ipif. An ipif only changes its ill when migrating from an underlying ill 21858 * to an IPMP ill in ipif_up(). 21859 */ 21860 ipif_t * 21861 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21862 { 21863 ipif_t *ipif; 21864 ill_t *ill; 21865 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21866 21867 *err = 0; 21868 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21869 mutex_enter(&connp->conn_lock); 21870 ipif = *ipifp; 21871 if (ipif != NULL) { 21872 ill = ipif->ipif_ill; 21873 mutex_enter(&ill->ill_lock); 21874 if (IPIF_CAN_LOOKUP(ipif)) { 21875 ipif_refhold_locked(ipif); 21876 mutex_exit(&ill->ill_lock); 21877 mutex_exit(&connp->conn_lock); 21878 rw_exit(&ipst->ips_ill_g_lock); 21879 return (ipif); 21880 } else { 21881 *err = IPIF_LOOKUP_FAILED; 21882 } 21883 mutex_exit(&ill->ill_lock); 21884 } 21885 mutex_exit(&connp->conn_lock); 21886 rw_exit(&ipst->ips_ill_g_lock); 21887 return (NULL); 21888 } 21889 21890 ill_t * 21891 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21892 { 21893 ill_t *ill; 21894 21895 *err = 0; 21896 mutex_enter(&connp->conn_lock); 21897 ill = *illp; 21898 if (ill != NULL) { 21899 mutex_enter(&ill->ill_lock); 21900 if (ILL_CAN_LOOKUP(ill)) { 21901 ill_refhold_locked(ill); 21902 mutex_exit(&ill->ill_lock); 21903 mutex_exit(&connp->conn_lock); 21904 return (ill); 21905 } else { 21906 *err = ILL_LOOKUP_FAILED; 21907 } 21908 mutex_exit(&ill->ill_lock); 21909 } 21910 mutex_exit(&connp->conn_lock); 21911 return (NULL); 21912 } 21913 21914 static int 21915 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21916 { 21917 ill_t *ill; 21918 21919 ill = ipif->ipif_ill; 21920 mutex_enter(&connp->conn_lock); 21921 mutex_enter(&ill->ill_lock); 21922 if (IPIF_CAN_LOOKUP(ipif)) { 21923 *ipifp = ipif; 21924 mutex_exit(&ill->ill_lock); 21925 mutex_exit(&connp->conn_lock); 21926 return (0); 21927 } 21928 mutex_exit(&ill->ill_lock); 21929 mutex_exit(&connp->conn_lock); 21930 return (IPIF_LOOKUP_FAILED); 21931 } 21932 21933 /* 21934 * This is called if the outbound datagram needs fragmentation. 21935 * 21936 * NOTE : This function does not ire_refrele the ire argument passed in. 21937 */ 21938 static void 21939 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21940 ip_stack_t *ipst, conn_t *connp) 21941 { 21942 ipha_t *ipha; 21943 mblk_t *mp; 21944 uint32_t v_hlen_tos_len; 21945 uint32_t max_frag; 21946 uint32_t frag_flag; 21947 boolean_t dont_use; 21948 21949 if (ipsec_mp->b_datap->db_type == M_CTL) { 21950 mp = ipsec_mp->b_cont; 21951 } else { 21952 mp = ipsec_mp; 21953 } 21954 21955 ipha = (ipha_t *)mp->b_rptr; 21956 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21957 21958 #ifdef _BIG_ENDIAN 21959 #define V_HLEN (v_hlen_tos_len >> 24) 21960 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21961 #else 21962 #define V_HLEN (v_hlen_tos_len & 0xFF) 21963 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21964 #endif 21965 21966 #ifndef SPEED_BEFORE_SAFETY 21967 /* 21968 * Check that ipha_length is consistent with 21969 * the mblk length 21970 */ 21971 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21972 ip0dbg(("Packet length mismatch: %d, %ld\n", 21973 LENGTH, msgdsize(mp))); 21974 freemsg(ipsec_mp); 21975 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21976 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21977 "packet length mismatch"); 21978 return; 21979 } 21980 #endif 21981 /* 21982 * Don't use frag_flag if pre-built packet or source 21983 * routed or if multicast (since multicast packets do not solicit 21984 * ICMP "packet too big" messages). Get the values of 21985 * max_frag and frag_flag atomically by acquiring the 21986 * ire_lock. 21987 */ 21988 mutex_enter(&ire->ire_lock); 21989 max_frag = ire->ire_max_frag; 21990 frag_flag = ire->ire_frag_flag; 21991 mutex_exit(&ire->ire_lock); 21992 21993 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21994 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21995 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21996 21997 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21998 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21999 } 22000 22001 /* 22002 * Used for deciding the MSS size for the upper layer. Thus 22003 * we need to check the outbound policy values in the conn. 22004 */ 22005 int 22006 conn_ipsec_length(conn_t *connp) 22007 { 22008 ipsec_latch_t *ipl; 22009 22010 ipl = connp->conn_latch; 22011 if (ipl == NULL) 22012 return (0); 22013 22014 if (ipl->ipl_out_policy == NULL) 22015 return (0); 22016 22017 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 22018 } 22019 22020 /* 22021 * Returns an estimate of the IPsec headers size. This is used if 22022 * we don't want to call into IPsec to get the exact size. 22023 */ 22024 int 22025 ipsec_out_extra_length(mblk_t *ipsec_mp) 22026 { 22027 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 22028 ipsec_action_t *a; 22029 22030 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22031 if (!io->ipsec_out_secure) 22032 return (0); 22033 22034 a = io->ipsec_out_act; 22035 22036 if (a == NULL) { 22037 ASSERT(io->ipsec_out_policy != NULL); 22038 a = io->ipsec_out_policy->ipsp_act; 22039 } 22040 ASSERT(a != NULL); 22041 22042 return (a->ipa_ovhd); 22043 } 22044 22045 /* 22046 * Returns an estimate of the IPsec headers size. This is used if 22047 * we don't want to call into IPsec to get the exact size. 22048 */ 22049 int 22050 ipsec_in_extra_length(mblk_t *ipsec_mp) 22051 { 22052 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22053 ipsec_action_t *a; 22054 22055 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22056 22057 a = ii->ipsec_in_action; 22058 return (a == NULL ? 0 : a->ipa_ovhd); 22059 } 22060 22061 /* 22062 * If there are any source route options, return the true final 22063 * destination. Otherwise, return the destination. 22064 */ 22065 ipaddr_t 22066 ip_get_dst(ipha_t *ipha) 22067 { 22068 ipoptp_t opts; 22069 uchar_t *opt; 22070 uint8_t optval; 22071 uint8_t optlen; 22072 ipaddr_t dst; 22073 uint32_t off; 22074 22075 dst = ipha->ipha_dst; 22076 22077 if (IS_SIMPLE_IPH(ipha)) 22078 return (dst); 22079 22080 for (optval = ipoptp_first(&opts, ipha); 22081 optval != IPOPT_EOL; 22082 optval = ipoptp_next(&opts)) { 22083 opt = opts.ipoptp_cur; 22084 optlen = opts.ipoptp_len; 22085 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22086 switch (optval) { 22087 case IPOPT_SSRR: 22088 case IPOPT_LSRR: 22089 off = opt[IPOPT_OFFSET]; 22090 /* 22091 * If one of the conditions is true, it means 22092 * end of options and dst already has the right 22093 * value. 22094 */ 22095 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22096 off = optlen - IP_ADDR_LEN; 22097 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22098 } 22099 return (dst); 22100 default: 22101 break; 22102 } 22103 } 22104 22105 return (dst); 22106 } 22107 22108 mblk_t * 22109 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22110 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22111 { 22112 ipsec_out_t *io; 22113 mblk_t *first_mp; 22114 boolean_t policy_present; 22115 ip_stack_t *ipst; 22116 ipsec_stack_t *ipss; 22117 22118 ASSERT(ire != NULL); 22119 ipst = ire->ire_ipst; 22120 ipss = ipst->ips_netstack->netstack_ipsec; 22121 22122 first_mp = mp; 22123 if (mp->b_datap->db_type == M_CTL) { 22124 io = (ipsec_out_t *)first_mp->b_rptr; 22125 /* 22126 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22127 * 22128 * 1) There is per-socket policy (including cached global 22129 * policy) or a policy on the IP-in-IP tunnel. 22130 * 2) There is no per-socket policy, but it is 22131 * a multicast packet that needs to go out 22132 * on a specific interface. This is the case 22133 * where (ip_wput and ip_wput_multicast) attaches 22134 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22135 * 22136 * In case (2) we check with global policy to 22137 * see if there is a match and set the ill_index 22138 * appropriately so that we can lookup the ire 22139 * properly in ip_wput_ipsec_out. 22140 */ 22141 22142 /* 22143 * ipsec_out_use_global_policy is set to B_FALSE 22144 * in ipsec_in_to_out(). Refer to that function for 22145 * details. 22146 */ 22147 if ((io->ipsec_out_latch == NULL) && 22148 (io->ipsec_out_use_global_policy)) { 22149 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22150 ire, connp, unspec_src, zoneid)); 22151 } 22152 if (!io->ipsec_out_secure) { 22153 /* 22154 * If this is not a secure packet, drop 22155 * the IPSEC_OUT mp and treat it as a clear 22156 * packet. This happens when we are sending 22157 * a ICMP reply back to a clear packet. See 22158 * ipsec_in_to_out() for details. 22159 */ 22160 mp = first_mp->b_cont; 22161 freeb(first_mp); 22162 } 22163 return (mp); 22164 } 22165 /* 22166 * See whether we need to attach a global policy here. We 22167 * don't depend on the conn (as it could be null) for deciding 22168 * what policy this datagram should go through because it 22169 * should have happened in ip_wput if there was some 22170 * policy. This normally happens for connections which are not 22171 * fully bound preventing us from caching policies in 22172 * ip_bind. Packets coming from the TCP listener/global queue 22173 * - which are non-hard_bound - could also be affected by 22174 * applying policy here. 22175 * 22176 * If this packet is coming from tcp global queue or listener, 22177 * we will be applying policy here. This may not be *right* 22178 * if these packets are coming from the detached connection as 22179 * it could have gone in clear before. This happens only if a 22180 * TCP connection started when there is no policy and somebody 22181 * added policy before it became detached. Thus packets of the 22182 * detached connection could go out secure and the other end 22183 * would drop it because it will be expecting in clear. The 22184 * converse is not true i.e if somebody starts a TCP 22185 * connection and deletes the policy, all the packets will 22186 * still go out with the policy that existed before deleting 22187 * because ip_unbind sends up policy information which is used 22188 * by TCP on subsequent ip_wputs. The right solution is to fix 22189 * TCP to attach a dummy IPSEC_OUT and set 22190 * ipsec_out_use_global_policy to B_FALSE. As this might 22191 * affect performance for normal cases, we are not doing it. 22192 * Thus, set policy before starting any TCP connections. 22193 * 22194 * NOTE - We might apply policy even for a hard bound connection 22195 * - for which we cached policy in ip_bind - if somebody added 22196 * global policy after we inherited the policy in ip_bind. 22197 * This means that the packets that were going out in clear 22198 * previously would start going secure and hence get dropped 22199 * on the other side. To fix this, TCP attaches a dummy 22200 * ipsec_out and make sure that we don't apply global policy. 22201 */ 22202 if (ipha != NULL) 22203 policy_present = ipss->ipsec_outbound_v4_policy_present; 22204 else 22205 policy_present = ipss->ipsec_outbound_v6_policy_present; 22206 if (!policy_present) 22207 return (mp); 22208 22209 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22210 zoneid)); 22211 } 22212 22213 /* 22214 * This function does the ire_refrele of the ire passed in as the 22215 * argument. As this function looks up more ires i.e broadcast ires, 22216 * it needs to REFRELE them. Currently, for simplicity we don't 22217 * differentiate the one passed in and looked up here. We always 22218 * REFRELE. 22219 * IPQoS Notes: 22220 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22221 * IPsec packets are done in ipsec_out_process. 22222 */ 22223 void 22224 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22225 zoneid_t zoneid) 22226 { 22227 ipha_t *ipha; 22228 #define rptr ((uchar_t *)ipha) 22229 queue_t *stq; 22230 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22231 uint32_t v_hlen_tos_len; 22232 uint32_t ttl_protocol; 22233 ipaddr_t src; 22234 ipaddr_t dst; 22235 uint32_t cksum; 22236 ipaddr_t orig_src; 22237 ire_t *ire1; 22238 mblk_t *next_mp; 22239 uint_t hlen; 22240 uint16_t *up; 22241 uint32_t max_frag = ire->ire_max_frag; 22242 ill_t *ill = ire_to_ill(ire); 22243 int clusterwide; 22244 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22245 int ipsec_len; 22246 mblk_t *first_mp; 22247 ipsec_out_t *io; 22248 boolean_t conn_dontroute; /* conn value for multicast */ 22249 boolean_t conn_multicast_loop; /* conn value for multicast */ 22250 boolean_t multicast_forward; /* Should we forward ? */ 22251 boolean_t unspec_src; 22252 ill_t *conn_outgoing_ill = NULL; 22253 ill_t *ire_ill; 22254 ill_t *ire1_ill; 22255 ill_t *out_ill; 22256 uint32_t ill_index = 0; 22257 boolean_t multirt_send = B_FALSE; 22258 int err; 22259 ipxmit_state_t pktxmit_state; 22260 ip_stack_t *ipst = ire->ire_ipst; 22261 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22262 22263 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22264 "ip_wput_ire_start: q %p", q); 22265 22266 multicast_forward = B_FALSE; 22267 unspec_src = (connp != NULL && connp->conn_unspec_src); 22268 22269 if (ire->ire_flags & RTF_MULTIRT) { 22270 /* 22271 * Multirouting case. The bucket where ire is stored 22272 * probably holds other RTF_MULTIRT flagged ire 22273 * to the destination. In this call to ip_wput_ire, 22274 * we attempt to send the packet through all 22275 * those ires. Thus, we first ensure that ire is the 22276 * first RTF_MULTIRT ire in the bucket, 22277 * before walking the ire list. 22278 */ 22279 ire_t *first_ire; 22280 irb_t *irb = ire->ire_bucket; 22281 ASSERT(irb != NULL); 22282 22283 /* Make sure we do not omit any multiroute ire. */ 22284 IRB_REFHOLD(irb); 22285 for (first_ire = irb->irb_ire; 22286 first_ire != NULL; 22287 first_ire = first_ire->ire_next) { 22288 if ((first_ire->ire_flags & RTF_MULTIRT) && 22289 (first_ire->ire_addr == ire->ire_addr) && 22290 !(first_ire->ire_marks & 22291 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22292 break; 22293 } 22294 22295 if ((first_ire != NULL) && (first_ire != ire)) { 22296 IRE_REFHOLD(first_ire); 22297 ire_refrele(ire); 22298 ire = first_ire; 22299 ill = ire_to_ill(ire); 22300 } 22301 IRB_REFRELE(irb); 22302 } 22303 22304 /* 22305 * conn_outgoing_ill variable is used only in the broadcast loop. 22306 * for performance we don't grab the mutexs in the fastpath 22307 */ 22308 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22309 connp->conn_outgoing_ill != NULL) { 22310 conn_outgoing_ill = conn_get_held_ill(connp, 22311 &connp->conn_outgoing_ill, &err); 22312 if (err == ILL_LOOKUP_FAILED) { 22313 ire_refrele(ire); 22314 freemsg(mp); 22315 return; 22316 } 22317 } 22318 22319 if (mp->b_datap->db_type != M_CTL) { 22320 ipha = (ipha_t *)mp->b_rptr; 22321 } else { 22322 io = (ipsec_out_t *)mp->b_rptr; 22323 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22324 ASSERT(zoneid == io->ipsec_out_zoneid); 22325 ASSERT(zoneid != ALL_ZONES); 22326 ipha = (ipha_t *)mp->b_cont->b_rptr; 22327 dst = ipha->ipha_dst; 22328 /* 22329 * For the multicast case, ipsec_out carries conn_dontroute and 22330 * conn_multicast_loop as conn may not be available here. We 22331 * need this for multicast loopback and forwarding which is done 22332 * later in the code. 22333 */ 22334 if (CLASSD(dst)) { 22335 conn_dontroute = io->ipsec_out_dontroute; 22336 conn_multicast_loop = io->ipsec_out_multicast_loop; 22337 /* 22338 * If conn_dontroute is not set or conn_multicast_loop 22339 * is set, we need to do forwarding/loopback. For 22340 * datagrams from ip_wput_multicast, conn_dontroute is 22341 * set to B_TRUE and conn_multicast_loop is set to 22342 * B_FALSE so that we neither do forwarding nor 22343 * loopback. 22344 */ 22345 if (!conn_dontroute || conn_multicast_loop) 22346 multicast_forward = B_TRUE; 22347 } 22348 } 22349 22350 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22351 ire->ire_zoneid != ALL_ZONES) { 22352 /* 22353 * When a zone sends a packet to another zone, we try to deliver 22354 * the packet under the same conditions as if the destination 22355 * was a real node on the network. To do so, we look for a 22356 * matching route in the forwarding table. 22357 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22358 * ip_newroute() does. 22359 * Note that IRE_LOCAL are special, since they are used 22360 * when the zoneid doesn't match in some cases. This means that 22361 * we need to handle ipha_src differently since ire_src_addr 22362 * belongs to the receiving zone instead of the sending zone. 22363 * When ip_restrict_interzone_loopback is set, then 22364 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22365 * for loopback between zones when the logical "Ethernet" would 22366 * have looped them back. 22367 */ 22368 ire_t *src_ire; 22369 22370 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22371 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22372 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22373 if (src_ire != NULL && 22374 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22375 (!ipst->ips_ip_restrict_interzone_loopback || 22376 ire_local_same_lan(ire, src_ire))) { 22377 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22378 ipha->ipha_src = src_ire->ire_src_addr; 22379 ire_refrele(src_ire); 22380 } else { 22381 ire_refrele(ire); 22382 if (conn_outgoing_ill != NULL) 22383 ill_refrele(conn_outgoing_ill); 22384 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22385 if (src_ire != NULL) { 22386 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22387 ire_refrele(src_ire); 22388 freemsg(mp); 22389 return; 22390 } 22391 ire_refrele(src_ire); 22392 } 22393 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22394 /* Failed */ 22395 freemsg(mp); 22396 return; 22397 } 22398 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22399 ipst); 22400 return; 22401 } 22402 } 22403 22404 if (mp->b_datap->db_type == M_CTL || 22405 ipss->ipsec_outbound_v4_policy_present) { 22406 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22407 unspec_src, zoneid); 22408 if (mp == NULL) { 22409 ire_refrele(ire); 22410 if (conn_outgoing_ill != NULL) 22411 ill_refrele(conn_outgoing_ill); 22412 return; 22413 } 22414 /* 22415 * Trusted Extensions supports all-zones interfaces, so 22416 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22417 * the global zone. 22418 */ 22419 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22420 io = (ipsec_out_t *)mp->b_rptr; 22421 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22422 zoneid = io->ipsec_out_zoneid; 22423 } 22424 } 22425 22426 first_mp = mp; 22427 ipsec_len = 0; 22428 22429 if (first_mp->b_datap->db_type == M_CTL) { 22430 io = (ipsec_out_t *)first_mp->b_rptr; 22431 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22432 mp = first_mp->b_cont; 22433 ipsec_len = ipsec_out_extra_length(first_mp); 22434 ASSERT(ipsec_len >= 0); 22435 /* We already picked up the zoneid from the M_CTL above */ 22436 ASSERT(zoneid == io->ipsec_out_zoneid); 22437 ASSERT(zoneid != ALL_ZONES); 22438 22439 /* 22440 * Drop M_CTL here if IPsec processing is not needed. 22441 * (Non-IPsec use of M_CTL extracted any information it 22442 * needed above). 22443 */ 22444 if (ipsec_len == 0) { 22445 freeb(first_mp); 22446 first_mp = mp; 22447 } 22448 } 22449 22450 /* 22451 * Fast path for ip_wput_ire 22452 */ 22453 22454 ipha = (ipha_t *)mp->b_rptr; 22455 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22456 dst = ipha->ipha_dst; 22457 22458 /* 22459 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22460 * if the socket is a SOCK_RAW type. The transport checksum should 22461 * be provided in the pre-built packet, so we don't need to compute it. 22462 * Also, other application set flags, like DF, should not be altered. 22463 * Other transport MUST pass down zero. 22464 */ 22465 ip_hdr_included = ipha->ipha_ident; 22466 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22467 22468 if (CLASSD(dst)) { 22469 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22470 ntohl(dst), 22471 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22472 ntohl(ire->ire_addr))); 22473 } 22474 22475 /* Macros to extract header fields from data already in registers */ 22476 #ifdef _BIG_ENDIAN 22477 #define V_HLEN (v_hlen_tos_len >> 24) 22478 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22479 #define PROTO (ttl_protocol & 0xFF) 22480 #else 22481 #define V_HLEN (v_hlen_tos_len & 0xFF) 22482 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22483 #define PROTO (ttl_protocol >> 8) 22484 #endif 22485 22486 orig_src = src = ipha->ipha_src; 22487 /* (The loop back to "another" is explained down below.) */ 22488 another:; 22489 /* 22490 * Assign an ident value for this packet. We assign idents on 22491 * a per destination basis out of the IRE. There could be 22492 * other threads targeting the same destination, so we have to 22493 * arrange for a atomic increment. Note that we use a 32-bit 22494 * atomic add because it has better performance than its 22495 * 16-bit sibling. 22496 * 22497 * If running in cluster mode and if the source address 22498 * belongs to a replicated service then vector through 22499 * cl_inet_ipident vector to allocate ip identifier 22500 * NOTE: This is a contract private interface with the 22501 * clustering group. 22502 */ 22503 clusterwide = 0; 22504 if (cl_inet_ipident) { 22505 ASSERT(cl_inet_isclusterwide); 22506 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22507 22508 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22509 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22510 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22511 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22512 (uint8_t *)(uintptr_t)dst, NULL); 22513 clusterwide = 1; 22514 } 22515 } 22516 if (!clusterwide) { 22517 ipha->ipha_ident = 22518 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22519 } 22520 22521 #ifndef _BIG_ENDIAN 22522 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22523 #endif 22524 22525 /* 22526 * Set source address unless sent on an ill or conn_unspec_src is set. 22527 * This is needed to obey conn_unspec_src when packets go through 22528 * ip_newroute + arp. 22529 * Assumes ip_newroute{,_multi} sets the source address as well. 22530 */ 22531 if (src == INADDR_ANY && !unspec_src) { 22532 /* 22533 * Assign the appropriate source address from the IRE if none 22534 * was specified. 22535 */ 22536 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22537 22538 src = ire->ire_src_addr; 22539 if (connp == NULL) { 22540 ip1dbg(("ip_wput_ire: no connp and no src " 22541 "address for dst 0x%x, using src 0x%x\n", 22542 ntohl(dst), 22543 ntohl(src))); 22544 } 22545 ipha->ipha_src = src; 22546 } 22547 stq = ire->ire_stq; 22548 22549 /* 22550 * We only allow ire chains for broadcasts since there will 22551 * be multiple IRE_CACHE entries for the same multicast 22552 * address (one per ipif). 22553 */ 22554 next_mp = NULL; 22555 22556 /* broadcast packet */ 22557 if (ire->ire_type == IRE_BROADCAST) 22558 goto broadcast; 22559 22560 /* loopback ? */ 22561 if (stq == NULL) 22562 goto nullstq; 22563 22564 /* The ill_index for outbound ILL */ 22565 ill_index = Q_TO_INDEX(stq); 22566 22567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22568 ttl_protocol = ((uint16_t *)ipha)[4]; 22569 22570 /* pseudo checksum (do it in parts for IP header checksum) */ 22571 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22572 22573 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22574 queue_t *dev_q = stq->q_next; 22575 22576 /* 22577 * For DIRECT_CAPABLE, we do flow control at 22578 * the time of sending the packet. See 22579 * ILL_SEND_TX(). 22580 */ 22581 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22582 (DEV_Q_FLOW_BLOCKED(dev_q))) 22583 goto blocked; 22584 22585 if ((PROTO == IPPROTO_UDP) && 22586 (ip_hdr_included != IP_HDR_INCLUDED)) { 22587 hlen = (V_HLEN & 0xF) << 2; 22588 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22589 if (*up != 0) { 22590 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22591 hlen, LENGTH, max_frag, ipsec_len, cksum); 22592 /* Software checksum? */ 22593 if (DB_CKSUMFLAGS(mp) == 0) { 22594 IP_STAT(ipst, ip_out_sw_cksum); 22595 IP_STAT_UPDATE(ipst, 22596 ip_udp_out_sw_cksum_bytes, 22597 LENGTH - hlen); 22598 } 22599 } 22600 } 22601 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22602 hlen = (V_HLEN & 0xF) << 2; 22603 if (PROTO == IPPROTO_TCP) { 22604 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22605 /* 22606 * The packet header is processed once and for all, even 22607 * in the multirouting case. We disable hardware 22608 * checksum if the packet is multirouted, as it will be 22609 * replicated via several interfaces, and not all of 22610 * them may have this capability. 22611 */ 22612 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22613 LENGTH, max_frag, ipsec_len, cksum); 22614 /* Software checksum? */ 22615 if (DB_CKSUMFLAGS(mp) == 0) { 22616 IP_STAT(ipst, ip_out_sw_cksum); 22617 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22618 LENGTH - hlen); 22619 } 22620 } else { 22621 sctp_hdr_t *sctph; 22622 22623 ASSERT(PROTO == IPPROTO_SCTP); 22624 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22625 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22626 /* 22627 * Zero out the checksum field to ensure proper 22628 * checksum calculation. 22629 */ 22630 sctph->sh_chksum = 0; 22631 #ifdef DEBUG 22632 if (!skip_sctp_cksum) 22633 #endif 22634 sctph->sh_chksum = sctp_cksum(mp, hlen); 22635 } 22636 } 22637 22638 /* 22639 * If this is a multicast packet and originated from ip_wput 22640 * we need to do loopback and forwarding checks. If it comes 22641 * from ip_wput_multicast, we SHOULD not do this. 22642 */ 22643 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22644 22645 /* checksum */ 22646 cksum += ttl_protocol; 22647 22648 /* fragment the packet */ 22649 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22650 goto fragmentit; 22651 /* 22652 * Don't use frag_flag if packet is pre-built or source 22653 * routed or if multicast (since multicast packets do 22654 * not solicit ICMP "packet too big" messages). 22655 */ 22656 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22657 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22658 !ip_source_route_included(ipha)) && 22659 !CLASSD(ipha->ipha_dst)) 22660 ipha->ipha_fragment_offset_and_flags |= 22661 htons(ire->ire_frag_flag); 22662 22663 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22664 /* calculate IP header checksum */ 22665 cksum += ipha->ipha_ident; 22666 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22667 cksum += ipha->ipha_fragment_offset_and_flags; 22668 22669 /* IP options present */ 22670 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22671 if (hlen) 22672 goto checksumoptions; 22673 22674 /* calculate hdr checksum */ 22675 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22676 cksum = ~(cksum + (cksum >> 16)); 22677 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22678 } 22679 if (ipsec_len != 0) { 22680 /* 22681 * We will do the rest of the processing after 22682 * we come back from IPsec in ip_wput_ipsec_out(). 22683 */ 22684 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22685 22686 io = (ipsec_out_t *)first_mp->b_rptr; 22687 io->ipsec_out_ill_index = 22688 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22689 ipsec_out_process(q, first_mp, ire, 0); 22690 ire_refrele(ire); 22691 if (conn_outgoing_ill != NULL) 22692 ill_refrele(conn_outgoing_ill); 22693 return; 22694 } 22695 22696 /* 22697 * In most cases, the emission loop below is entered only 22698 * once. Only in the case where the ire holds the 22699 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22700 * flagged ires in the bucket, and send the packet 22701 * through all crossed RTF_MULTIRT routes. 22702 */ 22703 if (ire->ire_flags & RTF_MULTIRT) { 22704 multirt_send = B_TRUE; 22705 } 22706 do { 22707 if (multirt_send) { 22708 irb_t *irb; 22709 /* 22710 * We are in a multiple send case, need to get 22711 * the next ire and make a duplicate of the packet. 22712 * ire1 holds here the next ire to process in the 22713 * bucket. If multirouting is expected, 22714 * any non-RTF_MULTIRT ire that has the 22715 * right destination address is ignored. 22716 */ 22717 irb = ire->ire_bucket; 22718 ASSERT(irb != NULL); 22719 22720 IRB_REFHOLD(irb); 22721 for (ire1 = ire->ire_next; 22722 ire1 != NULL; 22723 ire1 = ire1->ire_next) { 22724 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22725 continue; 22726 if (ire1->ire_addr != ire->ire_addr) 22727 continue; 22728 if (ire1->ire_marks & 22729 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22730 continue; 22731 22732 /* Got one */ 22733 IRE_REFHOLD(ire1); 22734 break; 22735 } 22736 IRB_REFRELE(irb); 22737 22738 if (ire1 != NULL) { 22739 next_mp = copyb(mp); 22740 if ((next_mp == NULL) || 22741 ((mp->b_cont != NULL) && 22742 ((next_mp->b_cont = 22743 dupmsg(mp->b_cont)) == NULL))) { 22744 freemsg(next_mp); 22745 next_mp = NULL; 22746 ire_refrele(ire1); 22747 ire1 = NULL; 22748 } 22749 } 22750 22751 /* Last multiroute ire; don't loop anymore. */ 22752 if (ire1 == NULL) { 22753 multirt_send = B_FALSE; 22754 } 22755 } 22756 22757 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22758 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22759 mblk_t *, mp); 22760 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22761 ipst->ips_ipv4firewall_physical_out, 22762 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22763 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22764 22765 if (mp == NULL) 22766 goto release_ire_and_ill; 22767 22768 if (ipst->ips_ipobs_enabled) { 22769 zoneid_t szone; 22770 22771 /* 22772 * On the outbound path the destination zone will be 22773 * unknown as we're sending this packet out on the 22774 * wire. 22775 */ 22776 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22777 ALL_ZONES); 22778 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22779 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22780 } 22781 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22782 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22783 22784 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22785 22786 if ((pktxmit_state == SEND_FAILED) || 22787 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22788 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22789 "- packet dropped\n")); 22790 release_ire_and_ill: 22791 ire_refrele(ire); 22792 if (next_mp != NULL) { 22793 freemsg(next_mp); 22794 ire_refrele(ire1); 22795 } 22796 if (conn_outgoing_ill != NULL) 22797 ill_refrele(conn_outgoing_ill); 22798 return; 22799 } 22800 22801 if (CLASSD(dst)) { 22802 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22803 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22804 LENGTH); 22805 } 22806 22807 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22808 "ip_wput_ire_end: q %p (%S)", 22809 q, "last copy out"); 22810 IRE_REFRELE(ire); 22811 22812 if (multirt_send) { 22813 ASSERT(ire1); 22814 /* 22815 * Proceed with the next RTF_MULTIRT ire, 22816 * Also set up the send-to queue accordingly. 22817 */ 22818 ire = ire1; 22819 ire1 = NULL; 22820 stq = ire->ire_stq; 22821 mp = next_mp; 22822 next_mp = NULL; 22823 ipha = (ipha_t *)mp->b_rptr; 22824 ill_index = Q_TO_INDEX(stq); 22825 ill = (ill_t *)stq->q_ptr; 22826 } 22827 } while (multirt_send); 22828 if (conn_outgoing_ill != NULL) 22829 ill_refrele(conn_outgoing_ill); 22830 return; 22831 22832 /* 22833 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22834 */ 22835 broadcast: 22836 { 22837 /* 22838 * To avoid broadcast storms, we usually set the TTL to 1 for 22839 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22840 * can be overridden stack-wide through the ip_broadcast_ttl 22841 * ndd tunable, or on a per-connection basis through the 22842 * IP_BROADCAST_TTL socket option. 22843 * 22844 * In the event that we are replying to incoming ICMP packets, 22845 * connp could be NULL. 22846 */ 22847 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22848 if (connp != NULL) { 22849 if (connp->conn_dontroute) 22850 ipha->ipha_ttl = 1; 22851 else if (connp->conn_broadcast_ttl != 0) 22852 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22853 } 22854 22855 /* 22856 * Note that we are not doing a IRB_REFHOLD here. 22857 * Actually we don't care if the list changes i.e 22858 * if somebody deletes an IRE from the list while 22859 * we drop the lock, the next time we come around 22860 * ire_next will be NULL and hence we won't send 22861 * out multiple copies which is fine. 22862 */ 22863 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22864 ire1 = ire->ire_next; 22865 if (conn_outgoing_ill != NULL) { 22866 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22867 ASSERT(ire1 == ire->ire_next); 22868 if (ire1 != NULL && ire1->ire_addr == dst) { 22869 ire_refrele(ire); 22870 ire = ire1; 22871 IRE_REFHOLD(ire); 22872 ire1 = ire->ire_next; 22873 continue; 22874 } 22875 rw_exit(&ire->ire_bucket->irb_lock); 22876 /* Did not find a matching ill */ 22877 ip1dbg(("ip_wput_ire: broadcast with no " 22878 "matching IP_BOUND_IF ill %s dst %x\n", 22879 conn_outgoing_ill->ill_name, dst)); 22880 freemsg(first_mp); 22881 if (ire != NULL) 22882 ire_refrele(ire); 22883 ill_refrele(conn_outgoing_ill); 22884 return; 22885 } 22886 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22887 /* 22888 * If the next IRE has the same address and is not one 22889 * of the two copies that we need to send, try to see 22890 * whether this copy should be sent at all. This 22891 * assumes that we insert loopbacks first and then 22892 * non-loopbacks. This is acheived by inserting the 22893 * loopback always before non-loopback. 22894 * This is used to send a single copy of a broadcast 22895 * packet out all physical interfaces that have an 22896 * matching IRE_BROADCAST while also looping 22897 * back one copy (to ip_wput_local) for each 22898 * matching physical interface. However, we avoid 22899 * sending packets out different logical that match by 22900 * having ipif_up/ipif_down supress duplicate 22901 * IRE_BROADCASTS. 22902 * 22903 * This feature is currently used to get broadcasts 22904 * sent to multiple interfaces, when the broadcast 22905 * address being used applies to multiple interfaces. 22906 * For example, a whole net broadcast will be 22907 * replicated on every connected subnet of 22908 * the target net. 22909 * 22910 * Each zone has its own set of IRE_BROADCASTs, so that 22911 * we're able to distribute inbound packets to multiple 22912 * zones who share a broadcast address. We avoid looping 22913 * back outbound packets in different zones but on the 22914 * same ill, as the application would see duplicates. 22915 * 22916 * This logic assumes that ire_add_v4() groups the 22917 * IRE_BROADCAST entries so that those with the same 22918 * ire_addr are kept together. 22919 */ 22920 ire_ill = ire->ire_ipif->ipif_ill; 22921 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22922 while (ire1 != NULL && ire1->ire_addr == dst) { 22923 ire1_ill = ire1->ire_ipif->ipif_ill; 22924 if (ire1_ill != ire_ill) 22925 break; 22926 ire1 = ire1->ire_next; 22927 } 22928 } 22929 } 22930 ASSERT(multirt_send == B_FALSE); 22931 if (ire1 != NULL && ire1->ire_addr == dst) { 22932 if ((ire->ire_flags & RTF_MULTIRT) && 22933 (ire1->ire_flags & RTF_MULTIRT)) { 22934 /* 22935 * We are in the multirouting case. 22936 * The message must be sent at least 22937 * on both ires. These ires have been 22938 * inserted AFTER the standard ones 22939 * in ip_rt_add(). There are thus no 22940 * other ire entries for the destination 22941 * address in the rest of the bucket 22942 * that do not have the RTF_MULTIRT 22943 * flag. We don't process a copy 22944 * of the message here. This will be 22945 * done in the final sending loop. 22946 */ 22947 multirt_send = B_TRUE; 22948 } else { 22949 next_mp = ip_copymsg(first_mp); 22950 if (next_mp != NULL) 22951 IRE_REFHOLD(ire1); 22952 } 22953 } 22954 rw_exit(&ire->ire_bucket->irb_lock); 22955 } 22956 22957 if (stq) { 22958 /* 22959 * A non-NULL send-to queue means this packet is going 22960 * out of this machine. 22961 */ 22962 out_ill = (ill_t *)stq->q_ptr; 22963 22964 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22965 ttl_protocol = ((uint16_t *)ipha)[4]; 22966 /* 22967 * We accumulate the pseudo header checksum in cksum. 22968 * This is pretty hairy code, so watch close. One 22969 * thing to keep in mind is that UDP and TCP have 22970 * stored their respective datagram lengths in their 22971 * checksum fields. This lines things up real nice. 22972 */ 22973 cksum = (dst >> 16) + (dst & 0xFFFF) + 22974 (src >> 16) + (src & 0xFFFF); 22975 /* 22976 * We assume the udp checksum field contains the 22977 * length, so to compute the pseudo header checksum, 22978 * all we need is the protocol number and src/dst. 22979 */ 22980 /* Provide the checksums for UDP and TCP. */ 22981 if ((PROTO == IPPROTO_TCP) && 22982 (ip_hdr_included != IP_HDR_INCLUDED)) { 22983 /* hlen gets the number of uchar_ts in the IP header */ 22984 hlen = (V_HLEN & 0xF) << 2; 22985 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22986 IP_STAT(ipst, ip_out_sw_cksum); 22987 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22988 LENGTH - hlen); 22989 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22990 } else if (PROTO == IPPROTO_SCTP && 22991 (ip_hdr_included != IP_HDR_INCLUDED)) { 22992 sctp_hdr_t *sctph; 22993 22994 hlen = (V_HLEN & 0xF) << 2; 22995 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22996 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22997 sctph->sh_chksum = 0; 22998 #ifdef DEBUG 22999 if (!skip_sctp_cksum) 23000 #endif 23001 sctph->sh_chksum = sctp_cksum(mp, hlen); 23002 } else { 23003 queue_t *dev_q = stq->q_next; 23004 23005 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 23006 (DEV_Q_FLOW_BLOCKED(dev_q))) { 23007 blocked: 23008 ipha->ipha_ident = ip_hdr_included; 23009 /* 23010 * If we don't have a conn to apply 23011 * backpressure, free the message. 23012 * In the ire_send path, we don't know 23013 * the position to requeue the packet. Rather 23014 * than reorder packets, we just drop this 23015 * packet. 23016 */ 23017 if (ipst->ips_ip_output_queue && 23018 connp != NULL && 23019 caller != IRE_SEND) { 23020 if (caller == IP_WSRV) { 23021 idl_tx_list_t *idl_txl; 23022 23023 idl_txl = 23024 &ipst->ips_idl_tx_list[0]; 23025 connp->conn_did_putbq = 1; 23026 (void) putbq(connp->conn_wq, 23027 first_mp); 23028 conn_drain_insert(connp, 23029 idl_txl); 23030 /* 23031 * This is the service thread, 23032 * and the queue is already 23033 * noenabled. The check for 23034 * canput and the putbq is not 23035 * atomic. So we need to check 23036 * again. 23037 */ 23038 if (canput(stq->q_next)) 23039 connp->conn_did_putbq 23040 = 0; 23041 IP_STAT(ipst, ip_conn_flputbq); 23042 } else { 23043 /* 23044 * We are not the service proc. 23045 * ip_wsrv will be scheduled or 23046 * is already running. 23047 */ 23048 23049 (void) putq(connp->conn_wq, 23050 first_mp); 23051 } 23052 } else { 23053 out_ill = (ill_t *)stq->q_ptr; 23054 BUMP_MIB(out_ill->ill_ip_mib, 23055 ipIfStatsOutDiscards); 23056 freemsg(first_mp); 23057 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23058 "ip_wput_ire_end: q %p (%S)", 23059 q, "discard"); 23060 } 23061 ire_refrele(ire); 23062 if (next_mp) { 23063 ire_refrele(ire1); 23064 freemsg(next_mp); 23065 } 23066 if (conn_outgoing_ill != NULL) 23067 ill_refrele(conn_outgoing_ill); 23068 return; 23069 } 23070 if ((PROTO == IPPROTO_UDP) && 23071 (ip_hdr_included != IP_HDR_INCLUDED)) { 23072 /* 23073 * hlen gets the number of uchar_ts in the 23074 * IP header 23075 */ 23076 hlen = (V_HLEN & 0xF) << 2; 23077 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23078 max_frag = ire->ire_max_frag; 23079 if (*up != 0) { 23080 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23081 up, PROTO, hlen, LENGTH, max_frag, 23082 ipsec_len, cksum); 23083 /* Software checksum? */ 23084 if (DB_CKSUMFLAGS(mp) == 0) { 23085 IP_STAT(ipst, ip_out_sw_cksum); 23086 IP_STAT_UPDATE(ipst, 23087 ip_udp_out_sw_cksum_bytes, 23088 LENGTH - hlen); 23089 } 23090 } 23091 } 23092 } 23093 /* 23094 * Need to do this even when fragmenting. The local 23095 * loopback can be done without computing checksums 23096 * but forwarding out other interface must be done 23097 * after the IP checksum (and ULP checksums) have been 23098 * computed. 23099 * 23100 * NOTE : multicast_forward is set only if this packet 23101 * originated from ip_wput. For packets originating from 23102 * ip_wput_multicast, it is not set. 23103 */ 23104 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23105 multi_loopback: 23106 ip2dbg(("ip_wput: multicast, loop %d\n", 23107 conn_multicast_loop)); 23108 23109 /* Forget header checksum offload */ 23110 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23111 23112 /* 23113 * Local loopback of multicasts? Check the 23114 * ill. 23115 * 23116 * Note that the loopback function will not come 23117 * in through ip_rput - it will only do the 23118 * client fanout thus we need to do an mforward 23119 * as well. The is different from the BSD 23120 * logic. 23121 */ 23122 if (ill != NULL) { 23123 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23124 ALL_ZONES) != NULL) { 23125 /* 23126 * Pass along the virtual output q. 23127 * ip_wput_local() will distribute the 23128 * packet to all the matching zones, 23129 * except the sending zone when 23130 * IP_MULTICAST_LOOP is false. 23131 */ 23132 ip_multicast_loopback(q, ill, first_mp, 23133 conn_multicast_loop ? 0 : 23134 IP_FF_NO_MCAST_LOOP, zoneid); 23135 } 23136 } 23137 if (ipha->ipha_ttl == 0) { 23138 /* 23139 * 0 => only to this host i.e. we are 23140 * done. We are also done if this was the 23141 * loopback interface since it is sufficient 23142 * to loopback one copy of a multicast packet. 23143 */ 23144 freemsg(first_mp); 23145 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23146 "ip_wput_ire_end: q %p (%S)", 23147 q, "loopback"); 23148 ire_refrele(ire); 23149 if (conn_outgoing_ill != NULL) 23150 ill_refrele(conn_outgoing_ill); 23151 return; 23152 } 23153 /* 23154 * ILLF_MULTICAST is checked in ip_newroute 23155 * i.e. we don't need to check it here since 23156 * all IRE_CACHEs come from ip_newroute. 23157 * For multicast traffic, SO_DONTROUTE is interpreted 23158 * to mean only send the packet out the interface 23159 * (optionally specified with IP_MULTICAST_IF) 23160 * and do not forward it out additional interfaces. 23161 * RSVP and the rsvp daemon is an example of a 23162 * protocol and user level process that 23163 * handles it's own routing. Hence, it uses the 23164 * SO_DONTROUTE option to accomplish this. 23165 */ 23166 23167 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23168 ill != NULL) { 23169 /* Unconditionally redo the checksum */ 23170 ipha->ipha_hdr_checksum = 0; 23171 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23172 23173 /* 23174 * If this needs to go out secure, we need 23175 * to wait till we finish the IPsec 23176 * processing. 23177 */ 23178 if (ipsec_len == 0 && 23179 ip_mforward(ill, ipha, mp)) { 23180 freemsg(first_mp); 23181 ip1dbg(("ip_wput: mforward failed\n")); 23182 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23183 "ip_wput_ire_end: q %p (%S)", 23184 q, "mforward failed"); 23185 ire_refrele(ire); 23186 if (conn_outgoing_ill != NULL) 23187 ill_refrele(conn_outgoing_ill); 23188 return; 23189 } 23190 } 23191 } 23192 max_frag = ire->ire_max_frag; 23193 cksum += ttl_protocol; 23194 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23195 /* No fragmentation required for this one. */ 23196 /* 23197 * Don't use frag_flag if packet is pre-built or source 23198 * routed or if multicast (since multicast packets do 23199 * not solicit ICMP "packet too big" messages). 23200 */ 23201 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23202 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23203 !ip_source_route_included(ipha)) && 23204 !CLASSD(ipha->ipha_dst)) 23205 ipha->ipha_fragment_offset_and_flags |= 23206 htons(ire->ire_frag_flag); 23207 23208 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23209 /* Complete the IP header checksum. */ 23210 cksum += ipha->ipha_ident; 23211 cksum += (v_hlen_tos_len >> 16)+ 23212 (v_hlen_tos_len & 0xFFFF); 23213 cksum += ipha->ipha_fragment_offset_and_flags; 23214 hlen = (V_HLEN & 0xF) - 23215 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23216 if (hlen) { 23217 checksumoptions: 23218 /* 23219 * Account for the IP Options in the IP 23220 * header checksum. 23221 */ 23222 up = (uint16_t *)(rptr+ 23223 IP_SIMPLE_HDR_LENGTH); 23224 do { 23225 cksum += up[0]; 23226 cksum += up[1]; 23227 up += 2; 23228 } while (--hlen); 23229 } 23230 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23231 cksum = ~(cksum + (cksum >> 16)); 23232 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23233 } 23234 if (ipsec_len != 0) { 23235 ipsec_out_process(q, first_mp, ire, ill_index); 23236 if (!next_mp) { 23237 ire_refrele(ire); 23238 if (conn_outgoing_ill != NULL) 23239 ill_refrele(conn_outgoing_ill); 23240 return; 23241 } 23242 goto next; 23243 } 23244 23245 /* 23246 * multirt_send has already been handled 23247 * for broadcast, but not yet for multicast 23248 * or IP options. 23249 */ 23250 if (next_mp == NULL) { 23251 if (ire->ire_flags & RTF_MULTIRT) { 23252 multirt_send = B_TRUE; 23253 } 23254 } 23255 23256 /* 23257 * In most cases, the emission loop below is 23258 * entered only once. Only in the case where 23259 * the ire holds the RTF_MULTIRT flag, do we loop 23260 * to process all RTF_MULTIRT ires in the bucket, 23261 * and send the packet through all crossed 23262 * RTF_MULTIRT routes. 23263 */ 23264 do { 23265 if (multirt_send) { 23266 irb_t *irb; 23267 23268 irb = ire->ire_bucket; 23269 ASSERT(irb != NULL); 23270 /* 23271 * We are in a multiple send case, 23272 * need to get the next IRE and make 23273 * a duplicate of the packet. 23274 */ 23275 IRB_REFHOLD(irb); 23276 for (ire1 = ire->ire_next; 23277 ire1 != NULL; 23278 ire1 = ire1->ire_next) { 23279 if (!(ire1->ire_flags & 23280 RTF_MULTIRT)) 23281 continue; 23282 23283 if (ire1->ire_addr != 23284 ire->ire_addr) 23285 continue; 23286 23287 if (ire1->ire_marks & 23288 (IRE_MARK_CONDEMNED | 23289 IRE_MARK_TESTHIDDEN)) 23290 continue; 23291 23292 /* Got one */ 23293 IRE_REFHOLD(ire1); 23294 break; 23295 } 23296 IRB_REFRELE(irb); 23297 23298 if (ire1 != NULL) { 23299 next_mp = copyb(mp); 23300 if ((next_mp == NULL) || 23301 ((mp->b_cont != NULL) && 23302 ((next_mp->b_cont = 23303 dupmsg(mp->b_cont)) 23304 == NULL))) { 23305 freemsg(next_mp); 23306 next_mp = NULL; 23307 ire_refrele(ire1); 23308 ire1 = NULL; 23309 } 23310 } 23311 23312 /* 23313 * Last multiroute ire; don't loop 23314 * anymore. The emission is over 23315 * and next_mp is NULL. 23316 */ 23317 if (ire1 == NULL) { 23318 multirt_send = B_FALSE; 23319 } 23320 } 23321 23322 out_ill = ire_to_ill(ire); 23323 DTRACE_PROBE4(ip4__physical__out__start, 23324 ill_t *, NULL, 23325 ill_t *, out_ill, 23326 ipha_t *, ipha, mblk_t *, mp); 23327 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23328 ipst->ips_ipv4firewall_physical_out, 23329 NULL, out_ill, ipha, mp, mp, 0, ipst); 23330 DTRACE_PROBE1(ip4__physical__out__end, 23331 mblk_t *, mp); 23332 if (mp == NULL) 23333 goto release_ire_and_ill_2; 23334 23335 ASSERT(ipsec_len == 0); 23336 mp->b_prev = 23337 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23338 DTRACE_PROBE2(ip__xmit__2, 23339 mblk_t *, mp, ire_t *, ire); 23340 pktxmit_state = ip_xmit_v4(mp, ire, 23341 NULL, B_TRUE, connp); 23342 if ((pktxmit_state == SEND_FAILED) || 23343 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23344 release_ire_and_ill_2: 23345 if (next_mp) { 23346 freemsg(next_mp); 23347 ire_refrele(ire1); 23348 } 23349 ire_refrele(ire); 23350 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23351 "ip_wput_ire_end: q %p (%S)", 23352 q, "discard MDATA"); 23353 if (conn_outgoing_ill != NULL) 23354 ill_refrele(conn_outgoing_ill); 23355 return; 23356 } 23357 23358 if (CLASSD(dst)) { 23359 BUMP_MIB(out_ill->ill_ip_mib, 23360 ipIfStatsHCOutMcastPkts); 23361 UPDATE_MIB(out_ill->ill_ip_mib, 23362 ipIfStatsHCOutMcastOctets, 23363 LENGTH); 23364 } else if (ire->ire_type == IRE_BROADCAST) { 23365 BUMP_MIB(out_ill->ill_ip_mib, 23366 ipIfStatsHCOutBcastPkts); 23367 } 23368 23369 if (multirt_send) { 23370 /* 23371 * We are in a multiple send case, 23372 * need to re-enter the sending loop 23373 * using the next ire. 23374 */ 23375 ire_refrele(ire); 23376 ire = ire1; 23377 stq = ire->ire_stq; 23378 mp = next_mp; 23379 next_mp = NULL; 23380 ipha = (ipha_t *)mp->b_rptr; 23381 ill_index = Q_TO_INDEX(stq); 23382 } 23383 } while (multirt_send); 23384 23385 if (!next_mp) { 23386 /* 23387 * Last copy going out (the ultra-common 23388 * case). Note that we intentionally replicate 23389 * the putnext rather than calling it before 23390 * the next_mp check in hopes of a little 23391 * tail-call action out of the compiler. 23392 */ 23393 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23394 "ip_wput_ire_end: q %p (%S)", 23395 q, "last copy out(1)"); 23396 ire_refrele(ire); 23397 if (conn_outgoing_ill != NULL) 23398 ill_refrele(conn_outgoing_ill); 23399 return; 23400 } 23401 /* More copies going out below. */ 23402 } else { 23403 int offset; 23404 fragmentit: 23405 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23406 /* 23407 * If this would generate a icmp_frag_needed message, 23408 * we need to handle it before we do the IPsec 23409 * processing. Otherwise, we need to strip the IPsec 23410 * headers before we send up the message to the ULPs 23411 * which becomes messy and difficult. 23412 */ 23413 if (ipsec_len != 0) { 23414 if ((max_frag < (unsigned int)(LENGTH + 23415 ipsec_len)) && (offset & IPH_DF)) { 23416 out_ill = (ill_t *)stq->q_ptr; 23417 BUMP_MIB(out_ill->ill_ip_mib, 23418 ipIfStatsOutFragFails); 23419 BUMP_MIB(out_ill->ill_ip_mib, 23420 ipIfStatsOutFragReqds); 23421 ipha->ipha_hdr_checksum = 0; 23422 ipha->ipha_hdr_checksum = 23423 (uint16_t)ip_csum_hdr(ipha); 23424 icmp_frag_needed(ire->ire_stq, first_mp, 23425 max_frag, zoneid, ipst); 23426 if (!next_mp) { 23427 ire_refrele(ire); 23428 if (conn_outgoing_ill != NULL) { 23429 ill_refrele( 23430 conn_outgoing_ill); 23431 } 23432 return; 23433 } 23434 } else { 23435 /* 23436 * This won't cause a icmp_frag_needed 23437 * message. to be generated. Send it on 23438 * the wire. Note that this could still 23439 * cause fragmentation and all we 23440 * do is the generation of the message 23441 * to the ULP if needed before IPsec. 23442 */ 23443 if (!next_mp) { 23444 ipsec_out_process(q, first_mp, 23445 ire, ill_index); 23446 TRACE_2(TR_FAC_IP, 23447 TR_IP_WPUT_IRE_END, 23448 "ip_wput_ire_end: q %p " 23449 "(%S)", q, 23450 "last ipsec_out_process"); 23451 ire_refrele(ire); 23452 if (conn_outgoing_ill != NULL) { 23453 ill_refrele( 23454 conn_outgoing_ill); 23455 } 23456 return; 23457 } 23458 ipsec_out_process(q, first_mp, 23459 ire, ill_index); 23460 } 23461 } else { 23462 /* 23463 * Initiate IPPF processing. For 23464 * fragmentable packets we finish 23465 * all QOS packet processing before 23466 * calling: 23467 * ip_wput_ire_fragmentit->ip_wput_frag 23468 */ 23469 23470 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23471 ip_process(IPP_LOCAL_OUT, &mp, 23472 ill_index); 23473 if (mp == NULL) { 23474 out_ill = (ill_t *)stq->q_ptr; 23475 BUMP_MIB(out_ill->ill_ip_mib, 23476 ipIfStatsOutDiscards); 23477 if (next_mp != NULL) { 23478 freemsg(next_mp); 23479 ire_refrele(ire1); 23480 } 23481 ire_refrele(ire); 23482 TRACE_2(TR_FAC_IP, 23483 TR_IP_WPUT_IRE_END, 23484 "ip_wput_ire: q %p (%S)", 23485 q, "discard MDATA"); 23486 if (conn_outgoing_ill != NULL) { 23487 ill_refrele( 23488 conn_outgoing_ill); 23489 } 23490 return; 23491 } 23492 } 23493 if (!next_mp) { 23494 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23495 "ip_wput_ire_end: q %p (%S)", 23496 q, "last fragmentation"); 23497 ip_wput_ire_fragmentit(mp, ire, 23498 zoneid, ipst, connp); 23499 ire_refrele(ire); 23500 if (conn_outgoing_ill != NULL) 23501 ill_refrele(conn_outgoing_ill); 23502 return; 23503 } 23504 ip_wput_ire_fragmentit(mp, ire, 23505 zoneid, ipst, connp); 23506 } 23507 } 23508 } else { 23509 nullstq: 23510 /* A NULL stq means the destination address is local. */ 23511 UPDATE_OB_PKT_COUNT(ire); 23512 ire->ire_last_used_time = lbolt; 23513 ASSERT(ire->ire_ipif != NULL); 23514 if (!next_mp) { 23515 /* 23516 * Is there an "in" and "out" for traffic local 23517 * to a host (loopback)? The code in Solaris doesn't 23518 * explicitly draw a line in its code for in vs out, 23519 * so we've had to draw a line in the sand: ip_wput_ire 23520 * is considered to be the "output" side and 23521 * ip_wput_local to be the "input" side. 23522 */ 23523 out_ill = ire_to_ill(ire); 23524 23525 /* 23526 * DTrace this as ip:::send. A blocked packet will 23527 * fire the send probe, but not the receive probe. 23528 */ 23529 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23530 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23531 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23532 23533 DTRACE_PROBE4(ip4__loopback__out__start, 23534 ill_t *, NULL, ill_t *, out_ill, 23535 ipha_t *, ipha, mblk_t *, first_mp); 23536 23537 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23538 ipst->ips_ipv4firewall_loopback_out, 23539 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23540 23541 DTRACE_PROBE1(ip4__loopback__out_end, 23542 mblk_t *, first_mp); 23543 23544 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23545 "ip_wput_ire_end: q %p (%S)", 23546 q, "local address"); 23547 23548 if (first_mp != NULL) 23549 ip_wput_local(q, out_ill, ipha, 23550 first_mp, ire, 0, ire->ire_zoneid); 23551 ire_refrele(ire); 23552 if (conn_outgoing_ill != NULL) 23553 ill_refrele(conn_outgoing_ill); 23554 return; 23555 } 23556 23557 out_ill = ire_to_ill(ire); 23558 23559 /* 23560 * DTrace this as ip:::send. A blocked packet will fire the 23561 * send probe, but not the receive probe. 23562 */ 23563 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23564 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23565 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23566 23567 DTRACE_PROBE4(ip4__loopback__out__start, 23568 ill_t *, NULL, ill_t *, out_ill, 23569 ipha_t *, ipha, mblk_t *, first_mp); 23570 23571 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23572 ipst->ips_ipv4firewall_loopback_out, 23573 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23574 23575 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23576 23577 if (first_mp != NULL) 23578 ip_wput_local(q, out_ill, ipha, 23579 first_mp, ire, 0, ire->ire_zoneid); 23580 } 23581 next: 23582 /* 23583 * More copies going out to additional interfaces. 23584 * ire1 has already been held. We don't need the 23585 * "ire" anymore. 23586 */ 23587 ire_refrele(ire); 23588 ire = ire1; 23589 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23590 mp = next_mp; 23591 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23592 ill = ire_to_ill(ire); 23593 first_mp = mp; 23594 if (ipsec_len != 0) { 23595 ASSERT(first_mp->b_datap->db_type == M_CTL); 23596 mp = mp->b_cont; 23597 } 23598 dst = ire->ire_addr; 23599 ipha = (ipha_t *)mp->b_rptr; 23600 /* 23601 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23602 * Restore ipha_ident "no checksum" flag. 23603 */ 23604 src = orig_src; 23605 ipha->ipha_ident = ip_hdr_included; 23606 goto another; 23607 23608 #undef rptr 23609 #undef Q_TO_INDEX 23610 } 23611 23612 /* 23613 * Routine to allocate a message that is used to notify the ULP about MDT. 23614 * The caller may provide a pointer to the link-layer MDT capabilities, 23615 * or NULL if MDT is to be disabled on the stream. 23616 */ 23617 mblk_t * 23618 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23619 { 23620 mblk_t *mp; 23621 ip_mdt_info_t *mdti; 23622 ill_mdt_capab_t *idst; 23623 23624 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23625 DB_TYPE(mp) = M_CTL; 23626 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23627 mdti = (ip_mdt_info_t *)mp->b_rptr; 23628 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23629 idst = &(mdti->mdt_capab); 23630 23631 /* 23632 * If the caller provides us with the capability, copy 23633 * it over into our notification message; otherwise 23634 * we zero out the capability portion. 23635 */ 23636 if (isrc != NULL) 23637 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23638 else 23639 bzero((caddr_t)idst, sizeof (*idst)); 23640 } 23641 return (mp); 23642 } 23643 23644 /* 23645 * Routine which determines whether MDT can be enabled on the destination 23646 * IRE and IPC combination, and if so, allocates and returns the MDT 23647 * notification mblk that may be used by ULP. We also check if we need to 23648 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23649 * MDT usage in the past have been lifted. This gets called during IP 23650 * and ULP binding. 23651 */ 23652 mblk_t * 23653 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23654 ill_mdt_capab_t *mdt_cap) 23655 { 23656 mblk_t *mp; 23657 boolean_t rc = B_FALSE; 23658 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23659 23660 ASSERT(dst_ire != NULL); 23661 ASSERT(connp != NULL); 23662 ASSERT(mdt_cap != NULL); 23663 23664 /* 23665 * Currently, we only support simple TCP/{IPv4,IPv6} with 23666 * Multidata, which is handled in tcp_multisend(). This 23667 * is the reason why we do all these checks here, to ensure 23668 * that we don't enable Multidata for the cases which we 23669 * can't handle at the moment. 23670 */ 23671 do { 23672 /* Only do TCP at the moment */ 23673 if (connp->conn_ulp != IPPROTO_TCP) 23674 break; 23675 23676 /* 23677 * IPsec outbound policy present? Note that we get here 23678 * after calling ipsec_conn_cache_policy() where the global 23679 * policy checking is performed. conn_latch will be 23680 * non-NULL as long as there's a policy defined, 23681 * i.e. conn_out_enforce_policy may be NULL in such case 23682 * when the connection is non-secure, and hence we check 23683 * further if the latch refers to an outbound policy. 23684 */ 23685 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23686 break; 23687 23688 /* CGTP (multiroute) is enabled? */ 23689 if (dst_ire->ire_flags & RTF_MULTIRT) 23690 break; 23691 23692 /* Outbound IPQoS enabled? */ 23693 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23694 /* 23695 * In this case, we disable MDT for this and all 23696 * future connections going over the interface. 23697 */ 23698 mdt_cap->ill_mdt_on = 0; 23699 break; 23700 } 23701 23702 /* socket option(s) present? */ 23703 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23704 break; 23705 23706 rc = B_TRUE; 23707 /* CONSTCOND */ 23708 } while (0); 23709 23710 /* Remember the result */ 23711 connp->conn_mdt_ok = rc; 23712 23713 if (!rc) 23714 return (NULL); 23715 else if (!mdt_cap->ill_mdt_on) { 23716 /* 23717 * If MDT has been previously turned off in the past, and we 23718 * currently can do MDT (due to IPQoS policy removal, etc.) 23719 * then enable it for this interface. 23720 */ 23721 mdt_cap->ill_mdt_on = 1; 23722 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23723 "interface %s\n", ill_name)); 23724 } 23725 23726 /* Allocate the MDT info mblk */ 23727 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23728 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23729 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23730 return (NULL); 23731 } 23732 return (mp); 23733 } 23734 23735 /* 23736 * Routine to allocate a message that is used to notify the ULP about LSO. 23737 * The caller may provide a pointer to the link-layer LSO capabilities, 23738 * or NULL if LSO is to be disabled on the stream. 23739 */ 23740 mblk_t * 23741 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23742 { 23743 mblk_t *mp; 23744 ip_lso_info_t *lsoi; 23745 ill_lso_capab_t *idst; 23746 23747 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23748 DB_TYPE(mp) = M_CTL; 23749 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23750 lsoi = (ip_lso_info_t *)mp->b_rptr; 23751 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23752 idst = &(lsoi->lso_capab); 23753 23754 /* 23755 * If the caller provides us with the capability, copy 23756 * it over into our notification message; otherwise 23757 * we zero out the capability portion. 23758 */ 23759 if (isrc != NULL) 23760 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23761 else 23762 bzero((caddr_t)idst, sizeof (*idst)); 23763 } 23764 return (mp); 23765 } 23766 23767 /* 23768 * Routine which determines whether LSO can be enabled on the destination 23769 * IRE and IPC combination, and if so, allocates and returns the LSO 23770 * notification mblk that may be used by ULP. We also check if we need to 23771 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23772 * LSO usage in the past have been lifted. This gets called during IP 23773 * and ULP binding. 23774 */ 23775 mblk_t * 23776 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23777 ill_lso_capab_t *lso_cap) 23778 { 23779 mblk_t *mp; 23780 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23781 23782 ASSERT(dst_ire != NULL); 23783 ASSERT(connp != NULL); 23784 ASSERT(lso_cap != NULL); 23785 23786 connp->conn_lso_ok = B_TRUE; 23787 23788 if ((connp->conn_ulp != IPPROTO_TCP) || 23789 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23790 (dst_ire->ire_flags & RTF_MULTIRT) || 23791 !CONN_IS_LSO_MD_FASTPATH(connp) || 23792 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23793 connp->conn_lso_ok = B_FALSE; 23794 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23795 /* 23796 * Disable LSO for this and all future connections going 23797 * over the interface. 23798 */ 23799 lso_cap->ill_lso_on = 0; 23800 } 23801 } 23802 23803 if (!connp->conn_lso_ok) 23804 return (NULL); 23805 else if (!lso_cap->ill_lso_on) { 23806 /* 23807 * If LSO has been previously turned off in the past, and we 23808 * currently can do LSO (due to IPQoS policy removal, etc.) 23809 * then enable it for this interface. 23810 */ 23811 lso_cap->ill_lso_on = 1; 23812 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23813 ill_name)); 23814 } 23815 23816 /* Allocate the LSO info mblk */ 23817 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23818 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23819 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23820 23821 return (mp); 23822 } 23823 23824 /* 23825 * Create destination address attribute, and fill it with the physical 23826 * destination address and SAP taken from the template DL_UNITDATA_REQ 23827 * message block. 23828 */ 23829 boolean_t 23830 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23831 { 23832 dl_unitdata_req_t *dlurp; 23833 pattr_t *pa; 23834 pattrinfo_t pa_info; 23835 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23836 uint_t das_len, das_off; 23837 23838 ASSERT(dlmp != NULL); 23839 23840 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23841 das_len = dlurp->dl_dest_addr_length; 23842 das_off = dlurp->dl_dest_addr_offset; 23843 23844 pa_info.type = PATTR_DSTADDRSAP; 23845 pa_info.len = sizeof (**das) + das_len - 1; 23846 23847 /* create and associate the attribute */ 23848 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23849 if (pa != NULL) { 23850 ASSERT(*das != NULL); 23851 (*das)->addr_is_group = 0; 23852 (*das)->addr_len = (uint8_t)das_len; 23853 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23854 } 23855 23856 return (pa != NULL); 23857 } 23858 23859 /* 23860 * Create hardware checksum attribute and fill it with the values passed. 23861 */ 23862 boolean_t 23863 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23864 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23865 { 23866 pattr_t *pa; 23867 pattrinfo_t pa_info; 23868 23869 ASSERT(mmd != NULL); 23870 23871 pa_info.type = PATTR_HCKSUM; 23872 pa_info.len = sizeof (pattr_hcksum_t); 23873 23874 /* create and associate the attribute */ 23875 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23876 if (pa != NULL) { 23877 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23878 23879 hck->hcksum_start_offset = start_offset; 23880 hck->hcksum_stuff_offset = stuff_offset; 23881 hck->hcksum_end_offset = end_offset; 23882 hck->hcksum_flags = flags; 23883 } 23884 return (pa != NULL); 23885 } 23886 23887 /* 23888 * Create zerocopy attribute and fill it with the specified flags 23889 */ 23890 boolean_t 23891 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23892 { 23893 pattr_t *pa; 23894 pattrinfo_t pa_info; 23895 23896 ASSERT(mmd != NULL); 23897 pa_info.type = PATTR_ZCOPY; 23898 pa_info.len = sizeof (pattr_zcopy_t); 23899 23900 /* create and associate the attribute */ 23901 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23902 if (pa != NULL) { 23903 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23904 23905 zcopy->zcopy_flags = flags; 23906 } 23907 return (pa != NULL); 23908 } 23909 23910 /* 23911 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23912 * block chain. We could rewrite to handle arbitrary message block chains but 23913 * that would make the code complicated and slow. Right now there three 23914 * restrictions: 23915 * 23916 * 1. The first message block must contain the complete IP header and 23917 * at least 1 byte of payload data. 23918 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23919 * so that we can use a single Multidata message. 23920 * 3. No frag must be distributed over two or more message blocks so 23921 * that we don't need more than two packet descriptors per frag. 23922 * 23923 * The above restrictions allow us to support userland applications (which 23924 * will send down a single message block) and NFS over UDP (which will 23925 * send down a chain of at most three message blocks). 23926 * 23927 * We also don't use MDT for payloads with less than or equal to 23928 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23929 */ 23930 boolean_t 23931 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23932 { 23933 int blocks; 23934 ssize_t total, missing, size; 23935 23936 ASSERT(mp != NULL); 23937 ASSERT(hdr_len > 0); 23938 23939 size = MBLKL(mp) - hdr_len; 23940 if (size <= 0) 23941 return (B_FALSE); 23942 23943 /* The first mblk contains the header and some payload. */ 23944 blocks = 1; 23945 total = size; 23946 size %= len; 23947 missing = (size == 0) ? 0 : (len - size); 23948 mp = mp->b_cont; 23949 23950 while (mp != NULL) { 23951 /* 23952 * Give up if we encounter a zero length message block. 23953 * In practice, this should rarely happen and therefore 23954 * not worth the trouble of freeing and re-linking the 23955 * mblk from the chain to handle such case. 23956 */ 23957 if ((size = MBLKL(mp)) == 0) 23958 return (B_FALSE); 23959 23960 /* Too many payload buffers for a single Multidata message? */ 23961 if (++blocks > MULTIDATA_MAX_PBUFS) 23962 return (B_FALSE); 23963 23964 total += size; 23965 /* Is a frag distributed over two or more message blocks? */ 23966 if (missing > size) 23967 return (B_FALSE); 23968 size -= missing; 23969 23970 size %= len; 23971 missing = (size == 0) ? 0 : (len - size); 23972 23973 mp = mp->b_cont; 23974 } 23975 23976 return (total > ip_wput_frag_mdt_min); 23977 } 23978 23979 /* 23980 * Outbound IPv4 fragmentation routine using MDT. 23981 */ 23982 static void 23983 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23984 uint32_t frag_flag, int offset) 23985 { 23986 ipha_t *ipha_orig; 23987 int i1, ip_data_end; 23988 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23989 mblk_t *hdr_mp, *md_mp = NULL; 23990 unsigned char *hdr_ptr, *pld_ptr; 23991 multidata_t *mmd; 23992 ip_pdescinfo_t pdi; 23993 ill_t *ill; 23994 ip_stack_t *ipst = ire->ire_ipst; 23995 23996 ASSERT(DB_TYPE(mp) == M_DATA); 23997 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23998 23999 ill = ire_to_ill(ire); 24000 ASSERT(ill != NULL); 24001 24002 ipha_orig = (ipha_t *)mp->b_rptr; 24003 mp->b_rptr += sizeof (ipha_t); 24004 24005 /* Calculate how many packets we will send out */ 24006 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24007 pkts = (i1 + len - 1) / len; 24008 ASSERT(pkts > 1); 24009 24010 /* Allocate a message block which will hold all the IP Headers. */ 24011 wroff = ipst->ips_ip_wroff_extra; 24012 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24013 24014 i1 = pkts * hdr_chunk_len; 24015 /* 24016 * Create the header buffer, Multidata and destination address 24017 * and SAP attribute that should be associated with it. 24018 */ 24019 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24020 ((hdr_mp->b_wptr += i1), 24021 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24022 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24023 freemsg(mp); 24024 if (md_mp == NULL) { 24025 freemsg(hdr_mp); 24026 } else { 24027 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24028 freemsg(md_mp); 24029 } 24030 IP_STAT(ipst, ip_frag_mdt_allocfail); 24031 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24032 return; 24033 } 24034 IP_STAT(ipst, ip_frag_mdt_allocd); 24035 24036 /* 24037 * Add a payload buffer to the Multidata; this operation must not 24038 * fail, or otherwise our logic in this routine is broken. There 24039 * is no memory allocation done by the routine, so any returned 24040 * failure simply tells us that we've done something wrong. 24041 * 24042 * A failure tells us that either we're adding the same payload 24043 * buffer more than once, or we're trying to add more buffers than 24044 * allowed. None of the above cases should happen, and we panic 24045 * because either there's horrible heap corruption, and/or 24046 * programming mistake. 24047 */ 24048 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24049 goto pbuf_panic; 24050 24051 hdr_ptr = hdr_mp->b_rptr; 24052 pld_ptr = mp->b_rptr; 24053 24054 /* Establish the ending byte offset, based on the starting offset. */ 24055 offset <<= 3; 24056 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24057 IP_SIMPLE_HDR_LENGTH; 24058 24059 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24060 24061 while (pld_ptr < mp->b_wptr) { 24062 ipha_t *ipha; 24063 uint16_t offset_and_flags; 24064 uint16_t ip_len; 24065 int error; 24066 24067 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24068 ipha = (ipha_t *)(hdr_ptr + wroff); 24069 ASSERT(OK_32PTR(ipha)); 24070 *ipha = *ipha_orig; 24071 24072 if (ip_data_end - offset > len) { 24073 offset_and_flags = IPH_MF; 24074 } else { 24075 /* 24076 * Last frag. Set len to the length of this last piece. 24077 */ 24078 len = ip_data_end - offset; 24079 /* A frag of a frag might have IPH_MF non-zero */ 24080 offset_and_flags = 24081 ntohs(ipha->ipha_fragment_offset_and_flags) & 24082 IPH_MF; 24083 } 24084 offset_and_flags |= (uint16_t)(offset >> 3); 24085 offset_and_flags |= (uint16_t)frag_flag; 24086 /* Store the offset and flags in the IP header. */ 24087 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24088 24089 /* Store the length in the IP header. */ 24090 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24091 ipha->ipha_length = htons(ip_len); 24092 24093 /* 24094 * Set the IP header checksum. Note that mp is just 24095 * the header, so this is easy to pass to ip_csum. 24096 */ 24097 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24098 24099 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24100 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24101 NULL, int, 0); 24102 24103 /* 24104 * Record offset and size of header and data of the next packet 24105 * in the multidata message. 24106 */ 24107 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24108 PDESC_PLD_INIT(&pdi); 24109 i1 = MIN(mp->b_wptr - pld_ptr, len); 24110 ASSERT(i1 > 0); 24111 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24112 if (i1 == len) { 24113 pld_ptr += len; 24114 } else { 24115 i1 = len - i1; 24116 mp = mp->b_cont; 24117 ASSERT(mp != NULL); 24118 ASSERT(MBLKL(mp) >= i1); 24119 /* 24120 * Attach the next payload message block to the 24121 * multidata message. 24122 */ 24123 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24124 goto pbuf_panic; 24125 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24126 pld_ptr = mp->b_rptr + i1; 24127 } 24128 24129 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24130 KM_NOSLEEP)) == NULL) { 24131 /* 24132 * Any failure other than ENOMEM indicates that we 24133 * have passed in invalid pdesc info or parameters 24134 * to mmd_addpdesc, which must not happen. 24135 * 24136 * EINVAL is a result of failure on boundary checks 24137 * against the pdesc info contents. It should not 24138 * happen, and we panic because either there's 24139 * horrible heap corruption, and/or programming 24140 * mistake. 24141 */ 24142 if (error != ENOMEM) { 24143 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24144 "pdesc logic error detected for " 24145 "mmd %p pinfo %p (%d)\n", 24146 (void *)mmd, (void *)&pdi, error); 24147 /* NOTREACHED */ 24148 } 24149 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24150 /* Free unattached payload message blocks as well */ 24151 md_mp->b_cont = mp->b_cont; 24152 goto free_mmd; 24153 } 24154 24155 /* Advance fragment offset. */ 24156 offset += len; 24157 24158 /* Advance to location for next header in the buffer. */ 24159 hdr_ptr += hdr_chunk_len; 24160 24161 /* Did we reach the next payload message block? */ 24162 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24163 mp = mp->b_cont; 24164 /* 24165 * Attach the next message block with payload 24166 * data to the multidata message. 24167 */ 24168 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24169 goto pbuf_panic; 24170 pld_ptr = mp->b_rptr; 24171 } 24172 } 24173 24174 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24175 ASSERT(mp->b_wptr == pld_ptr); 24176 24177 /* Update IP statistics */ 24178 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24179 24180 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24181 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24182 24183 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24184 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24185 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24186 24187 if (pkt_type == OB_PKT) { 24188 ire->ire_ob_pkt_count += pkts; 24189 if (ire->ire_ipif != NULL) 24190 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24191 } else { 24192 /* The type is IB_PKT in the forwarding path. */ 24193 ire->ire_ib_pkt_count += pkts; 24194 ASSERT(!IRE_IS_LOCAL(ire)); 24195 if (ire->ire_type & IRE_BROADCAST) { 24196 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24197 } else { 24198 UPDATE_MIB(ill->ill_ip_mib, 24199 ipIfStatsHCOutForwDatagrams, pkts); 24200 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24201 } 24202 } 24203 ire->ire_last_used_time = lbolt; 24204 /* Send it down */ 24205 putnext(ire->ire_stq, md_mp); 24206 return; 24207 24208 pbuf_panic: 24209 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24210 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24211 pbuf_idx); 24212 /* NOTREACHED */ 24213 } 24214 24215 /* 24216 * Outbound IP fragmentation routine. 24217 * 24218 * NOTE : This routine does not ire_refrele the ire that is passed in 24219 * as the argument. 24220 */ 24221 static void 24222 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24223 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24224 { 24225 int i1; 24226 mblk_t *ll_hdr_mp; 24227 int ll_hdr_len; 24228 int hdr_len; 24229 mblk_t *hdr_mp; 24230 ipha_t *ipha; 24231 int ip_data_end; 24232 int len; 24233 mblk_t *mp = mp_orig, *mp1; 24234 int offset; 24235 queue_t *q; 24236 uint32_t v_hlen_tos_len; 24237 mblk_t *first_mp; 24238 boolean_t mctl_present; 24239 ill_t *ill; 24240 ill_t *out_ill; 24241 mblk_t *xmit_mp; 24242 mblk_t *carve_mp; 24243 ire_t *ire1 = NULL; 24244 ire_t *save_ire = NULL; 24245 mblk_t *next_mp = NULL; 24246 boolean_t last_frag = B_FALSE; 24247 boolean_t multirt_send = B_FALSE; 24248 ire_t *first_ire = NULL; 24249 irb_t *irb = NULL; 24250 mib2_ipIfStatsEntry_t *mibptr = NULL; 24251 24252 ill = ire_to_ill(ire); 24253 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24254 24255 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24256 24257 if (max_frag == 0) { 24258 ip1dbg(("ip_wput_frag: ire frag size is 0" 24259 " - dropping packet\n")); 24260 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24261 freemsg(mp); 24262 return; 24263 } 24264 24265 /* 24266 * IPsec does not allow hw accelerated packets to be fragmented 24267 * This check is made in ip_wput_ipsec_out prior to coming here 24268 * via ip_wput_ire_fragmentit. 24269 * 24270 * If at this point we have an ire whose ARP request has not 24271 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24272 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24273 * This packet and all fragmentable packets for this ire will 24274 * continue to get dropped while ire_nce->nce_state remains in 24275 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24276 * ND_REACHABLE, all subsquent large packets for this ire will 24277 * get fragemented and sent out by this function. 24278 */ 24279 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24280 /* If nce_state is ND_INITIAL, trigger ARP query */ 24281 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24282 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24283 " - dropping packet\n")); 24284 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24285 freemsg(mp); 24286 return; 24287 } 24288 24289 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24290 "ip_wput_frag_start:"); 24291 24292 if (mp->b_datap->db_type == M_CTL) { 24293 first_mp = mp; 24294 mp_orig = mp = mp->b_cont; 24295 mctl_present = B_TRUE; 24296 } else { 24297 first_mp = mp; 24298 mctl_present = B_FALSE; 24299 } 24300 24301 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24302 ipha = (ipha_t *)mp->b_rptr; 24303 24304 /* 24305 * If the Don't Fragment flag is on, generate an ICMP destination 24306 * unreachable, fragmentation needed. 24307 */ 24308 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24309 if (offset & IPH_DF) { 24310 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24311 if (is_system_labeled()) { 24312 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24313 ire->ire_max_frag - max_frag, AF_INET); 24314 } 24315 /* 24316 * Need to compute hdr checksum if called from ip_wput_ire. 24317 * Note that ip_rput_forward verifies the checksum before 24318 * calling this routine so in that case this is a noop. 24319 */ 24320 ipha->ipha_hdr_checksum = 0; 24321 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24322 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24323 ipst); 24324 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24325 "ip_wput_frag_end:(%S)", 24326 "don't fragment"); 24327 return; 24328 } 24329 /* 24330 * Labeled systems adjust max_frag if they add a label 24331 * to send the correct path mtu. We need the real mtu since we 24332 * are fragmenting the packet after label adjustment. 24333 */ 24334 if (is_system_labeled()) 24335 max_frag = ire->ire_max_frag; 24336 if (mctl_present) 24337 freeb(first_mp); 24338 /* 24339 * Establish the starting offset. May not be zero if we are fragging 24340 * a fragment that is being forwarded. 24341 */ 24342 offset = offset & IPH_OFFSET; 24343 24344 /* TODO why is this test needed? */ 24345 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24346 if (((max_frag - LENGTH) & ~7) < 8) { 24347 /* TODO: notify ulp somehow */ 24348 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24349 freemsg(mp); 24350 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24351 "ip_wput_frag_end:(%S)", 24352 "len < 8"); 24353 return; 24354 } 24355 24356 hdr_len = (V_HLEN & 0xF) << 2; 24357 24358 ipha->ipha_hdr_checksum = 0; 24359 24360 /* 24361 * Establish the number of bytes maximum per frag, after putting 24362 * in the header. 24363 */ 24364 len = (max_frag - hdr_len) & ~7; 24365 24366 /* Check if we can use MDT to send out the frags. */ 24367 ASSERT(!IRE_IS_LOCAL(ire)); 24368 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24369 ipst->ips_ip_multidata_outbound && 24370 !(ire->ire_flags & RTF_MULTIRT) && 24371 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24372 ill != NULL && ILL_MDT_CAPABLE(ill) && 24373 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24374 ASSERT(ill->ill_mdt_capab != NULL); 24375 if (!ill->ill_mdt_capab->ill_mdt_on) { 24376 /* 24377 * If MDT has been previously turned off in the past, 24378 * and we currently can do MDT (due to IPQoS policy 24379 * removal, etc.) then enable it for this interface. 24380 */ 24381 ill->ill_mdt_capab->ill_mdt_on = 1; 24382 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24383 ill->ill_name)); 24384 } 24385 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24386 offset); 24387 return; 24388 } 24389 24390 /* Get a copy of the header for the trailing frags */ 24391 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24392 mp); 24393 if (!hdr_mp) { 24394 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24395 freemsg(mp); 24396 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24397 "ip_wput_frag_end:(%S)", 24398 "couldn't copy hdr"); 24399 return; 24400 } 24401 24402 /* Store the starting offset, with the MoreFrags flag. */ 24403 i1 = offset | IPH_MF | frag_flag; 24404 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24405 24406 /* Establish the ending byte offset, based on the starting offset. */ 24407 offset <<= 3; 24408 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24409 24410 /* Store the length of the first fragment in the IP header. */ 24411 i1 = len + hdr_len; 24412 ASSERT(i1 <= IP_MAXPACKET); 24413 ipha->ipha_length = htons((uint16_t)i1); 24414 24415 /* 24416 * Compute the IP header checksum for the first frag. We have to 24417 * watch out that we stop at the end of the header. 24418 */ 24419 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24420 24421 /* 24422 * Now carve off the first frag. Note that this will include the 24423 * original IP header. 24424 */ 24425 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24426 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24427 freeb(hdr_mp); 24428 freemsg(mp_orig); 24429 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24430 "ip_wput_frag_end:(%S)", 24431 "couldn't carve first"); 24432 return; 24433 } 24434 24435 /* 24436 * Multirouting case. Each fragment is replicated 24437 * via all non-condemned RTF_MULTIRT routes 24438 * currently resolved. 24439 * We ensure that first_ire is the first RTF_MULTIRT 24440 * ire in the bucket. 24441 */ 24442 if (ire->ire_flags & RTF_MULTIRT) { 24443 irb = ire->ire_bucket; 24444 ASSERT(irb != NULL); 24445 24446 multirt_send = B_TRUE; 24447 24448 /* Make sure we do not omit any multiroute ire. */ 24449 IRB_REFHOLD(irb); 24450 for (first_ire = irb->irb_ire; 24451 first_ire != NULL; 24452 first_ire = first_ire->ire_next) { 24453 if ((first_ire->ire_flags & RTF_MULTIRT) && 24454 (first_ire->ire_addr == ire->ire_addr) && 24455 !(first_ire->ire_marks & 24456 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24457 break; 24458 } 24459 24460 if (first_ire != NULL) { 24461 if (first_ire != ire) { 24462 IRE_REFHOLD(first_ire); 24463 /* 24464 * Do not release the ire passed in 24465 * as the argument. 24466 */ 24467 ire = first_ire; 24468 } else { 24469 first_ire = NULL; 24470 } 24471 } 24472 IRB_REFRELE(irb); 24473 24474 /* 24475 * Save the first ire; we will need to restore it 24476 * for the trailing frags. 24477 * We REFHOLD save_ire, as each iterated ire will be 24478 * REFRELEd. 24479 */ 24480 save_ire = ire; 24481 IRE_REFHOLD(save_ire); 24482 } 24483 24484 /* 24485 * First fragment emission loop. 24486 * In most cases, the emission loop below is entered only 24487 * once. Only in the case where the ire holds the RTF_MULTIRT 24488 * flag, do we loop to process all RTF_MULTIRT ires in the 24489 * bucket, and send the fragment through all crossed 24490 * RTF_MULTIRT routes. 24491 */ 24492 do { 24493 if (ire->ire_flags & RTF_MULTIRT) { 24494 /* 24495 * We are in a multiple send case, need to get 24496 * the next ire and make a copy of the packet. 24497 * ire1 holds here the next ire to process in the 24498 * bucket. If multirouting is expected, 24499 * any non-RTF_MULTIRT ire that has the 24500 * right destination address is ignored. 24501 * 24502 * We have to take into account the MTU of 24503 * each walked ire. max_frag is set by the 24504 * the caller and generally refers to 24505 * the primary ire entry. Here we ensure that 24506 * no route with a lower MTU will be used, as 24507 * fragments are carved once for all ires, 24508 * then replicated. 24509 */ 24510 ASSERT(irb != NULL); 24511 IRB_REFHOLD(irb); 24512 for (ire1 = ire->ire_next; 24513 ire1 != NULL; 24514 ire1 = ire1->ire_next) { 24515 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24516 continue; 24517 if (ire1->ire_addr != ire->ire_addr) 24518 continue; 24519 if (ire1->ire_marks & 24520 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24521 continue; 24522 /* 24523 * Ensure we do not exceed the MTU 24524 * of the next route. 24525 */ 24526 if (ire1->ire_max_frag < max_frag) { 24527 ip_multirt_bad_mtu(ire1, max_frag); 24528 continue; 24529 } 24530 24531 /* Got one. */ 24532 IRE_REFHOLD(ire1); 24533 break; 24534 } 24535 IRB_REFRELE(irb); 24536 24537 if (ire1 != NULL) { 24538 next_mp = copyb(mp); 24539 if ((next_mp == NULL) || 24540 ((mp->b_cont != NULL) && 24541 ((next_mp->b_cont = 24542 dupmsg(mp->b_cont)) == NULL))) { 24543 freemsg(next_mp); 24544 next_mp = NULL; 24545 ire_refrele(ire1); 24546 ire1 = NULL; 24547 } 24548 } 24549 24550 /* Last multiroute ire; don't loop anymore. */ 24551 if (ire1 == NULL) { 24552 multirt_send = B_FALSE; 24553 } 24554 } 24555 24556 ll_hdr_len = 0; 24557 LOCK_IRE_FP_MP(ire); 24558 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24559 if (ll_hdr_mp != NULL) { 24560 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24561 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24562 } else { 24563 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24564 } 24565 24566 /* If there is a transmit header, get a copy for this frag. */ 24567 /* 24568 * TODO: should check db_ref before calling ip_carve_mp since 24569 * it might give us a dup. 24570 */ 24571 if (!ll_hdr_mp) { 24572 /* No xmit header. */ 24573 xmit_mp = mp; 24574 24575 /* We have a link-layer header that can fit in our mblk. */ 24576 } else if (mp->b_datap->db_ref == 1 && 24577 ll_hdr_len != 0 && 24578 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24579 /* M_DATA fastpath */ 24580 mp->b_rptr -= ll_hdr_len; 24581 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24582 xmit_mp = mp; 24583 24584 /* Corner case if copyb has failed */ 24585 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24586 UNLOCK_IRE_FP_MP(ire); 24587 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24588 freeb(hdr_mp); 24589 freemsg(mp); 24590 freemsg(mp_orig); 24591 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24592 "ip_wput_frag_end:(%S)", 24593 "discard"); 24594 24595 if (multirt_send) { 24596 ASSERT(ire1); 24597 ASSERT(next_mp); 24598 24599 freemsg(next_mp); 24600 ire_refrele(ire1); 24601 } 24602 if (save_ire != NULL) 24603 IRE_REFRELE(save_ire); 24604 24605 if (first_ire != NULL) 24606 ire_refrele(first_ire); 24607 return; 24608 24609 /* 24610 * Case of res_mp OR the fastpath mp can't fit 24611 * in the mblk 24612 */ 24613 } else { 24614 xmit_mp->b_cont = mp; 24615 24616 /* 24617 * Get priority marking, if any. 24618 * We propagate the CoS marking from the 24619 * original packet that went to QoS processing 24620 * in ip_wput_ire to the newly carved mp. 24621 */ 24622 if (DB_TYPE(xmit_mp) == M_DATA) 24623 xmit_mp->b_band = mp->b_band; 24624 } 24625 UNLOCK_IRE_FP_MP(ire); 24626 24627 q = ire->ire_stq; 24628 out_ill = (ill_t *)q->q_ptr; 24629 24630 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24631 24632 DTRACE_PROBE4(ip4__physical__out__start, 24633 ill_t *, NULL, ill_t *, out_ill, 24634 ipha_t *, ipha, mblk_t *, xmit_mp); 24635 24636 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24637 ipst->ips_ipv4firewall_physical_out, 24638 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24639 24640 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24641 24642 if (xmit_mp != NULL) { 24643 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24644 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24645 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24646 24647 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24648 24649 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24650 UPDATE_MIB(out_ill->ill_ip_mib, 24651 ipIfStatsHCOutOctets, i1); 24652 24653 if (pkt_type != OB_PKT) { 24654 /* 24655 * Update the packet count and MIB stats 24656 * of trailing RTF_MULTIRT ires. 24657 */ 24658 UPDATE_OB_PKT_COUNT(ire); 24659 BUMP_MIB(out_ill->ill_ip_mib, 24660 ipIfStatsOutFragReqds); 24661 } 24662 } 24663 24664 if (multirt_send) { 24665 /* 24666 * We are in a multiple send case; look for 24667 * the next ire and re-enter the loop. 24668 */ 24669 ASSERT(ire1); 24670 ASSERT(next_mp); 24671 /* REFRELE the current ire before looping */ 24672 ire_refrele(ire); 24673 ire = ire1; 24674 ire1 = NULL; 24675 mp = next_mp; 24676 next_mp = NULL; 24677 } 24678 } while (multirt_send); 24679 24680 ASSERT(ire1 == NULL); 24681 24682 /* Restore the original ire; we need it for the trailing frags */ 24683 if (save_ire != NULL) { 24684 /* REFRELE the last iterated ire */ 24685 ire_refrele(ire); 24686 /* save_ire has been REFHOLDed */ 24687 ire = save_ire; 24688 save_ire = NULL; 24689 q = ire->ire_stq; 24690 } 24691 24692 if (pkt_type == OB_PKT) { 24693 UPDATE_OB_PKT_COUNT(ire); 24694 } else { 24695 out_ill = (ill_t *)q->q_ptr; 24696 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24697 UPDATE_IB_PKT_COUNT(ire); 24698 } 24699 24700 /* Advance the offset to the second frag starting point. */ 24701 offset += len; 24702 /* 24703 * Update hdr_len from the copied header - there might be less options 24704 * in the later fragments. 24705 */ 24706 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24707 /* Loop until done. */ 24708 for (;;) { 24709 uint16_t offset_and_flags; 24710 uint16_t ip_len; 24711 24712 if (ip_data_end - offset > len) { 24713 /* 24714 * Carve off the appropriate amount from the original 24715 * datagram. 24716 */ 24717 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24718 mp = NULL; 24719 break; 24720 } 24721 /* 24722 * More frags after this one. Get another copy 24723 * of the header. 24724 */ 24725 if (carve_mp->b_datap->db_ref == 1 && 24726 hdr_mp->b_wptr - hdr_mp->b_rptr < 24727 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24728 /* Inline IP header */ 24729 carve_mp->b_rptr -= hdr_mp->b_wptr - 24730 hdr_mp->b_rptr; 24731 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24732 hdr_mp->b_wptr - hdr_mp->b_rptr); 24733 mp = carve_mp; 24734 } else { 24735 if (!(mp = copyb(hdr_mp))) { 24736 freemsg(carve_mp); 24737 break; 24738 } 24739 /* Get priority marking, if any. */ 24740 mp->b_band = carve_mp->b_band; 24741 mp->b_cont = carve_mp; 24742 } 24743 ipha = (ipha_t *)mp->b_rptr; 24744 offset_and_flags = IPH_MF; 24745 } else { 24746 /* 24747 * Last frag. Consume the header. Set len to 24748 * the length of this last piece. 24749 */ 24750 len = ip_data_end - offset; 24751 24752 /* 24753 * Carve off the appropriate amount from the original 24754 * datagram. 24755 */ 24756 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24757 mp = NULL; 24758 break; 24759 } 24760 if (carve_mp->b_datap->db_ref == 1 && 24761 hdr_mp->b_wptr - hdr_mp->b_rptr < 24762 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24763 /* Inline IP header */ 24764 carve_mp->b_rptr -= hdr_mp->b_wptr - 24765 hdr_mp->b_rptr; 24766 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24767 hdr_mp->b_wptr - hdr_mp->b_rptr); 24768 mp = carve_mp; 24769 freeb(hdr_mp); 24770 hdr_mp = mp; 24771 } else { 24772 mp = hdr_mp; 24773 /* Get priority marking, if any. */ 24774 mp->b_band = carve_mp->b_band; 24775 mp->b_cont = carve_mp; 24776 } 24777 ipha = (ipha_t *)mp->b_rptr; 24778 /* A frag of a frag might have IPH_MF non-zero */ 24779 offset_and_flags = 24780 ntohs(ipha->ipha_fragment_offset_and_flags) & 24781 IPH_MF; 24782 } 24783 offset_and_flags |= (uint16_t)(offset >> 3); 24784 offset_and_flags |= (uint16_t)frag_flag; 24785 /* Store the offset and flags in the IP header. */ 24786 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24787 24788 /* Store the length in the IP header. */ 24789 ip_len = (uint16_t)(len + hdr_len); 24790 ipha->ipha_length = htons(ip_len); 24791 24792 /* 24793 * Set the IP header checksum. Note that mp is just 24794 * the header, so this is easy to pass to ip_csum. 24795 */ 24796 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24797 24798 /* Attach a transmit header, if any, and ship it. */ 24799 if (pkt_type == OB_PKT) { 24800 UPDATE_OB_PKT_COUNT(ire); 24801 } else { 24802 out_ill = (ill_t *)q->q_ptr; 24803 BUMP_MIB(out_ill->ill_ip_mib, 24804 ipIfStatsHCOutForwDatagrams); 24805 UPDATE_IB_PKT_COUNT(ire); 24806 } 24807 24808 if (ire->ire_flags & RTF_MULTIRT) { 24809 irb = ire->ire_bucket; 24810 ASSERT(irb != NULL); 24811 24812 multirt_send = B_TRUE; 24813 24814 /* 24815 * Save the original ire; we will need to restore it 24816 * for the tailing frags. 24817 */ 24818 save_ire = ire; 24819 IRE_REFHOLD(save_ire); 24820 } 24821 /* 24822 * Emission loop for this fragment, similar 24823 * to what is done for the first fragment. 24824 */ 24825 do { 24826 if (multirt_send) { 24827 /* 24828 * We are in a multiple send case, need to get 24829 * the next ire and make a copy of the packet. 24830 */ 24831 ASSERT(irb != NULL); 24832 IRB_REFHOLD(irb); 24833 for (ire1 = ire->ire_next; 24834 ire1 != NULL; 24835 ire1 = ire1->ire_next) { 24836 if (!(ire1->ire_flags & RTF_MULTIRT)) 24837 continue; 24838 if (ire1->ire_addr != ire->ire_addr) 24839 continue; 24840 if (ire1->ire_marks & 24841 (IRE_MARK_CONDEMNED | 24842 IRE_MARK_TESTHIDDEN)) 24843 continue; 24844 /* 24845 * Ensure we do not exceed the MTU 24846 * of the next route. 24847 */ 24848 if (ire1->ire_max_frag < max_frag) { 24849 ip_multirt_bad_mtu(ire1, 24850 max_frag); 24851 continue; 24852 } 24853 24854 /* Got one. */ 24855 IRE_REFHOLD(ire1); 24856 break; 24857 } 24858 IRB_REFRELE(irb); 24859 24860 if (ire1 != NULL) { 24861 next_mp = copyb(mp); 24862 if ((next_mp == NULL) || 24863 ((mp->b_cont != NULL) && 24864 ((next_mp->b_cont = 24865 dupmsg(mp->b_cont)) == NULL))) { 24866 freemsg(next_mp); 24867 next_mp = NULL; 24868 ire_refrele(ire1); 24869 ire1 = NULL; 24870 } 24871 } 24872 24873 /* Last multiroute ire; don't loop anymore. */ 24874 if (ire1 == NULL) { 24875 multirt_send = B_FALSE; 24876 } 24877 } 24878 24879 /* Update transmit header */ 24880 ll_hdr_len = 0; 24881 LOCK_IRE_FP_MP(ire); 24882 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24883 if (ll_hdr_mp != NULL) { 24884 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24885 ll_hdr_len = MBLKL(ll_hdr_mp); 24886 } else { 24887 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24888 } 24889 24890 if (!ll_hdr_mp) { 24891 xmit_mp = mp; 24892 24893 /* 24894 * We have link-layer header that can fit in 24895 * our mblk. 24896 */ 24897 } else if (mp->b_datap->db_ref == 1 && 24898 ll_hdr_len != 0 && 24899 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24900 /* M_DATA fastpath */ 24901 mp->b_rptr -= ll_hdr_len; 24902 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24903 ll_hdr_len); 24904 xmit_mp = mp; 24905 24906 /* 24907 * Case of res_mp OR the fastpath mp can't fit 24908 * in the mblk 24909 */ 24910 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24911 xmit_mp->b_cont = mp; 24912 /* Get priority marking, if any. */ 24913 if (DB_TYPE(xmit_mp) == M_DATA) 24914 xmit_mp->b_band = mp->b_band; 24915 24916 /* Corner case if copyb failed */ 24917 } else { 24918 /* 24919 * Exit both the replication and 24920 * fragmentation loops. 24921 */ 24922 UNLOCK_IRE_FP_MP(ire); 24923 goto drop_pkt; 24924 } 24925 UNLOCK_IRE_FP_MP(ire); 24926 24927 mp1 = mp; 24928 out_ill = (ill_t *)q->q_ptr; 24929 24930 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24931 24932 DTRACE_PROBE4(ip4__physical__out__start, 24933 ill_t *, NULL, ill_t *, out_ill, 24934 ipha_t *, ipha, mblk_t *, xmit_mp); 24935 24936 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24937 ipst->ips_ipv4firewall_physical_out, 24938 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24939 24940 DTRACE_PROBE1(ip4__physical__out__end, 24941 mblk_t *, xmit_mp); 24942 24943 if (mp != mp1 && hdr_mp == mp1) 24944 hdr_mp = mp; 24945 if (mp != mp1 && mp_orig == mp1) 24946 mp_orig = mp; 24947 24948 if (xmit_mp != NULL) { 24949 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24950 NULL, void_ip_t *, ipha, 24951 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24952 ipha, ip6_t *, NULL, int, 0); 24953 24954 ILL_SEND_TX(out_ill, ire, connp, 24955 xmit_mp, 0, connp); 24956 24957 BUMP_MIB(out_ill->ill_ip_mib, 24958 ipIfStatsHCOutTransmits); 24959 UPDATE_MIB(out_ill->ill_ip_mib, 24960 ipIfStatsHCOutOctets, ip_len); 24961 24962 if (pkt_type != OB_PKT) { 24963 /* 24964 * Update the packet count of trailing 24965 * RTF_MULTIRT ires. 24966 */ 24967 UPDATE_OB_PKT_COUNT(ire); 24968 } 24969 } 24970 24971 /* All done if we just consumed the hdr_mp. */ 24972 if (mp == hdr_mp) { 24973 last_frag = B_TRUE; 24974 BUMP_MIB(out_ill->ill_ip_mib, 24975 ipIfStatsOutFragOKs); 24976 } 24977 24978 if (multirt_send) { 24979 /* 24980 * We are in a multiple send case; look for 24981 * the next ire and re-enter the loop. 24982 */ 24983 ASSERT(ire1); 24984 ASSERT(next_mp); 24985 /* REFRELE the current ire before looping */ 24986 ire_refrele(ire); 24987 ire = ire1; 24988 ire1 = NULL; 24989 q = ire->ire_stq; 24990 mp = next_mp; 24991 next_mp = NULL; 24992 } 24993 } while (multirt_send); 24994 /* 24995 * Restore the original ire; we need it for the 24996 * trailing frags 24997 */ 24998 if (save_ire != NULL) { 24999 ASSERT(ire1 == NULL); 25000 /* REFRELE the last iterated ire */ 25001 ire_refrele(ire); 25002 /* save_ire has been REFHOLDed */ 25003 ire = save_ire; 25004 q = ire->ire_stq; 25005 save_ire = NULL; 25006 } 25007 25008 if (last_frag) { 25009 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25010 "ip_wput_frag_end:(%S)", 25011 "consumed hdr_mp"); 25012 25013 if (first_ire != NULL) 25014 ire_refrele(first_ire); 25015 return; 25016 } 25017 /* Otherwise, advance and loop. */ 25018 offset += len; 25019 } 25020 25021 drop_pkt: 25022 /* Clean up following allocation failure. */ 25023 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25024 freemsg(mp); 25025 if (mp != hdr_mp) 25026 freeb(hdr_mp); 25027 if (mp != mp_orig) 25028 freemsg(mp_orig); 25029 25030 if (save_ire != NULL) 25031 IRE_REFRELE(save_ire); 25032 if (first_ire != NULL) 25033 ire_refrele(first_ire); 25034 25035 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25036 "ip_wput_frag_end:(%S)", 25037 "end--alloc failure"); 25038 } 25039 25040 /* 25041 * Copy the header plus those options which have the copy bit set 25042 * src is the template to make sure we preserve the cred for TX purposes. 25043 */ 25044 static mblk_t * 25045 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 25046 mblk_t *src) 25047 { 25048 mblk_t *mp; 25049 uchar_t *up; 25050 25051 /* 25052 * Quick check if we need to look for options without the copy bit 25053 * set 25054 */ 25055 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 25056 if (!mp) 25057 return (mp); 25058 mp->b_rptr += ipst->ips_ip_wroff_extra; 25059 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25060 bcopy(rptr, mp->b_rptr, hdr_len); 25061 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25062 return (mp); 25063 } 25064 up = mp->b_rptr; 25065 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25066 up += IP_SIMPLE_HDR_LENGTH; 25067 rptr += IP_SIMPLE_HDR_LENGTH; 25068 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25069 while (hdr_len > 0) { 25070 uint32_t optval; 25071 uint32_t optlen; 25072 25073 optval = *rptr; 25074 if (optval == IPOPT_EOL) 25075 break; 25076 if (optval == IPOPT_NOP) 25077 optlen = 1; 25078 else 25079 optlen = rptr[1]; 25080 if (optval & IPOPT_COPY) { 25081 bcopy(rptr, up, optlen); 25082 up += optlen; 25083 } 25084 rptr += optlen; 25085 hdr_len -= optlen; 25086 } 25087 /* 25088 * Make sure that we drop an even number of words by filling 25089 * with EOL to the next word boundary. 25090 */ 25091 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25092 hdr_len & 0x3; hdr_len++) 25093 *up++ = IPOPT_EOL; 25094 mp->b_wptr = up; 25095 /* Update header length */ 25096 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25097 return (mp); 25098 } 25099 25100 /* 25101 * Delivery to local recipients including fanout to multiple recipients. 25102 * Does not do checksumming of UDP/TCP. 25103 * Note: q should be the read side queue for either the ill or conn. 25104 * Note: rq should be the read side q for the lower (ill) stream. 25105 * We don't send packets to IPPF processing, thus the last argument 25106 * to all the fanout calls are B_FALSE. 25107 */ 25108 void 25109 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25110 int fanout_flags, zoneid_t zoneid) 25111 { 25112 uint32_t protocol; 25113 mblk_t *first_mp; 25114 boolean_t mctl_present; 25115 int ire_type; 25116 #define rptr ((uchar_t *)ipha) 25117 ip_stack_t *ipst = ill->ill_ipst; 25118 25119 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25120 "ip_wput_local_start: q %p", q); 25121 25122 if (ire != NULL) { 25123 ire_type = ire->ire_type; 25124 } else { 25125 /* 25126 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25127 * packet is not multicast, we can't tell the ire type. 25128 */ 25129 ASSERT(CLASSD(ipha->ipha_dst)); 25130 ire_type = IRE_BROADCAST; 25131 } 25132 25133 first_mp = mp; 25134 if (first_mp->b_datap->db_type == M_CTL) { 25135 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25136 if (!io->ipsec_out_secure) { 25137 /* 25138 * This ipsec_out_t was allocated in ip_wput 25139 * for multicast packets to store the ill_index. 25140 * As this is being delivered locally, we don't 25141 * need this anymore. 25142 */ 25143 mp = first_mp->b_cont; 25144 freeb(first_mp); 25145 first_mp = mp; 25146 mctl_present = B_FALSE; 25147 } else { 25148 /* 25149 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25150 * security properties for the looped-back packet. 25151 */ 25152 mctl_present = B_TRUE; 25153 mp = first_mp->b_cont; 25154 ASSERT(mp != NULL); 25155 ipsec_out_to_in(first_mp); 25156 } 25157 } else { 25158 mctl_present = B_FALSE; 25159 } 25160 25161 DTRACE_PROBE4(ip4__loopback__in__start, 25162 ill_t *, ill, ill_t *, NULL, 25163 ipha_t *, ipha, mblk_t *, first_mp); 25164 25165 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25166 ipst->ips_ipv4firewall_loopback_in, 25167 ill, NULL, ipha, first_mp, mp, 0, ipst); 25168 25169 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25170 25171 if (first_mp == NULL) 25172 return; 25173 25174 if (ipst->ips_ipobs_enabled) { 25175 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25176 zoneid_t stackzoneid = netstackid_to_zoneid( 25177 ipst->ips_netstack->netstack_stackid); 25178 25179 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25180 /* 25181 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25182 * address. Restrict the lookup below to the destination zone. 25183 */ 25184 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25185 lookup_zoneid = zoneid; 25186 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25187 lookup_zoneid); 25188 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25189 IPV4_VERSION, 0, ipst); 25190 } 25191 25192 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25193 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25194 int, 1); 25195 25196 ipst->ips_loopback_packets++; 25197 25198 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25199 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25200 if (!IS_SIMPLE_IPH(ipha)) { 25201 ip_wput_local_options(ipha, ipst); 25202 } 25203 25204 protocol = ipha->ipha_protocol; 25205 switch (protocol) { 25206 case IPPROTO_ICMP: { 25207 ire_t *ire_zone; 25208 ilm_t *ilm; 25209 mblk_t *mp1; 25210 zoneid_t last_zoneid; 25211 ilm_walker_t ilw; 25212 25213 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25214 ASSERT(ire_type == IRE_BROADCAST); 25215 /* 25216 * In the multicast case, applications may have joined 25217 * the group from different zones, so we need to deliver 25218 * the packet to each of them. Loop through the 25219 * multicast memberships structures (ilm) on the receive 25220 * ill and send a copy of the packet up each matching 25221 * one. However, we don't do this for multicasts sent on 25222 * the loopback interface (PHYI_LOOPBACK flag set) as 25223 * they must stay in the sender's zone. 25224 * 25225 * ilm_add_v6() ensures that ilms in the same zone are 25226 * contiguous in the ill_ilm list. We use this property 25227 * to avoid sending duplicates needed when two 25228 * applications in the same zone join the same group on 25229 * different logical interfaces: we ignore the ilm if 25230 * it's zoneid is the same as the last matching one. 25231 * In addition, the sending of the packet for 25232 * ire_zoneid is delayed until all of the other ilms 25233 * have been exhausted. 25234 */ 25235 last_zoneid = -1; 25236 ilm = ilm_walker_start(&ilw, ill); 25237 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25238 if (ipha->ipha_dst != ilm->ilm_addr || 25239 ilm->ilm_zoneid == last_zoneid || 25240 ilm->ilm_zoneid == zoneid || 25241 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25242 continue; 25243 mp1 = ip_copymsg(first_mp); 25244 if (mp1 == NULL) 25245 continue; 25246 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25247 0, 0, mctl_present, B_FALSE, ill, 25248 ilm->ilm_zoneid); 25249 last_zoneid = ilm->ilm_zoneid; 25250 } 25251 ilm_walker_finish(&ilw); 25252 /* 25253 * Loopback case: the sending endpoint has 25254 * IP_MULTICAST_LOOP disabled, therefore we don't 25255 * dispatch the multicast packet to the sending zone. 25256 */ 25257 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25258 freemsg(first_mp); 25259 return; 25260 } 25261 } else if (ire_type == IRE_BROADCAST) { 25262 /* 25263 * In the broadcast case, there may be many zones 25264 * which need a copy of the packet delivered to them. 25265 * There is one IRE_BROADCAST per broadcast address 25266 * and per zone; we walk those using a helper function. 25267 * In addition, the sending of the packet for zoneid is 25268 * delayed until all of the other ires have been 25269 * processed. 25270 */ 25271 IRB_REFHOLD(ire->ire_bucket); 25272 ire_zone = NULL; 25273 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25274 ire)) != NULL) { 25275 mp1 = ip_copymsg(first_mp); 25276 if (mp1 == NULL) 25277 continue; 25278 25279 UPDATE_IB_PKT_COUNT(ire_zone); 25280 ire_zone->ire_last_used_time = lbolt; 25281 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25282 mctl_present, B_FALSE, ill, 25283 ire_zone->ire_zoneid); 25284 } 25285 IRB_REFRELE(ire->ire_bucket); 25286 } 25287 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25288 0, mctl_present, B_FALSE, ill, zoneid); 25289 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25290 "ip_wput_local_end: q %p (%S)", 25291 q, "icmp"); 25292 return; 25293 } 25294 case IPPROTO_IGMP: 25295 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25296 /* Bad packet - discarded by igmp_input */ 25297 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25298 "ip_wput_local_end: q %p (%S)", 25299 q, "igmp_input--bad packet"); 25300 if (mctl_present) 25301 freeb(first_mp); 25302 return; 25303 } 25304 /* 25305 * igmp_input() may have returned the pulled up message. 25306 * So first_mp and ipha need to be reinitialized. 25307 */ 25308 ipha = (ipha_t *)mp->b_rptr; 25309 if (mctl_present) 25310 first_mp->b_cont = mp; 25311 else 25312 first_mp = mp; 25313 /* deliver to local raw users */ 25314 break; 25315 case IPPROTO_ENCAP: 25316 /* 25317 * This case is covered by either ip_fanout_proto, or by 25318 * the above security processing for self-tunneled packets. 25319 */ 25320 break; 25321 case IPPROTO_UDP: { 25322 uint16_t *up; 25323 uint32_t ports; 25324 25325 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25326 UDP_PORTS_OFFSET); 25327 /* Force a 'valid' checksum. */ 25328 up[3] = 0; 25329 25330 ports = *(uint32_t *)up; 25331 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25332 (ire_type == IRE_BROADCAST), 25333 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25334 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25335 ill, zoneid); 25336 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25337 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25338 return; 25339 } 25340 case IPPROTO_TCP: { 25341 25342 /* 25343 * For TCP, discard broadcast packets. 25344 */ 25345 if ((ushort_t)ire_type == IRE_BROADCAST) { 25346 freemsg(first_mp); 25347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25348 ip2dbg(("ip_wput_local: discard broadcast\n")); 25349 return; 25350 } 25351 25352 if (mp->b_datap->db_type == M_DATA) { 25353 /* 25354 * M_DATA mblk, so init mblk (chain) for no struio(). 25355 */ 25356 mblk_t *mp1 = mp; 25357 25358 do { 25359 mp1->b_datap->db_struioflag = 0; 25360 } while ((mp1 = mp1->b_cont) != NULL); 25361 } 25362 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25363 <= mp->b_wptr); 25364 ip_fanout_tcp(q, first_mp, ill, ipha, 25365 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25366 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25367 mctl_present, B_FALSE, zoneid); 25368 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25369 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25370 return; 25371 } 25372 case IPPROTO_SCTP: 25373 { 25374 uint32_t ports; 25375 25376 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25377 ip_fanout_sctp(first_mp, ill, ipha, ports, 25378 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25379 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25380 return; 25381 } 25382 25383 default: 25384 break; 25385 } 25386 /* 25387 * Find a client for some other protocol. We give 25388 * copies to multiple clients, if more than one is 25389 * bound. 25390 */ 25391 ip_fanout_proto(q, first_mp, ill, ipha, 25392 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25393 mctl_present, B_FALSE, ill, zoneid); 25394 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25395 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25396 #undef rptr 25397 } 25398 25399 /* 25400 * Update any source route, record route, or timestamp options. 25401 * Check that we are at end of strict source route. 25402 * The options have been sanity checked by ip_wput_options(). 25403 */ 25404 static void 25405 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25406 { 25407 ipoptp_t opts; 25408 uchar_t *opt; 25409 uint8_t optval; 25410 uint8_t optlen; 25411 ipaddr_t dst; 25412 uint32_t ts; 25413 ire_t *ire; 25414 timestruc_t now; 25415 25416 ip2dbg(("ip_wput_local_options\n")); 25417 for (optval = ipoptp_first(&opts, ipha); 25418 optval != IPOPT_EOL; 25419 optval = ipoptp_next(&opts)) { 25420 opt = opts.ipoptp_cur; 25421 optlen = opts.ipoptp_len; 25422 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25423 switch (optval) { 25424 uint32_t off; 25425 case IPOPT_SSRR: 25426 case IPOPT_LSRR: 25427 off = opt[IPOPT_OFFSET]; 25428 off--; 25429 if (optlen < IP_ADDR_LEN || 25430 off > optlen - IP_ADDR_LEN) { 25431 /* End of source route */ 25432 break; 25433 } 25434 /* 25435 * This will only happen if two consecutive entries 25436 * in the source route contains our address or if 25437 * it is a packet with a loose source route which 25438 * reaches us before consuming the whole source route 25439 */ 25440 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25441 if (optval == IPOPT_SSRR) { 25442 return; 25443 } 25444 /* 25445 * Hack: instead of dropping the packet truncate the 25446 * source route to what has been used by filling the 25447 * rest with IPOPT_NOP. 25448 */ 25449 opt[IPOPT_OLEN] = (uint8_t)off; 25450 while (off < optlen) { 25451 opt[off++] = IPOPT_NOP; 25452 } 25453 break; 25454 case IPOPT_RR: 25455 off = opt[IPOPT_OFFSET]; 25456 off--; 25457 if (optlen < IP_ADDR_LEN || 25458 off > optlen - IP_ADDR_LEN) { 25459 /* No more room - ignore */ 25460 ip1dbg(( 25461 "ip_wput_forward_options: end of RR\n")); 25462 break; 25463 } 25464 dst = htonl(INADDR_LOOPBACK); 25465 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25466 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25467 break; 25468 case IPOPT_TS: 25469 /* Insert timestamp if there is romm */ 25470 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25471 case IPOPT_TS_TSONLY: 25472 off = IPOPT_TS_TIMELEN; 25473 break; 25474 case IPOPT_TS_PRESPEC: 25475 case IPOPT_TS_PRESPEC_RFC791: 25476 /* Verify that the address matched */ 25477 off = opt[IPOPT_OFFSET] - 1; 25478 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25479 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25480 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25481 ipst); 25482 if (ire == NULL) { 25483 /* Not for us */ 25484 break; 25485 } 25486 ire_refrele(ire); 25487 /* FALLTHRU */ 25488 case IPOPT_TS_TSANDADDR: 25489 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25490 break; 25491 default: 25492 /* 25493 * ip_*put_options should have already 25494 * dropped this packet. 25495 */ 25496 cmn_err(CE_PANIC, "ip_wput_local_options: " 25497 "unknown IT - bug in ip_wput_options?\n"); 25498 return; /* Keep "lint" happy */ 25499 } 25500 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25501 /* Increase overflow counter */ 25502 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25503 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25504 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25505 (off << 4); 25506 break; 25507 } 25508 off = opt[IPOPT_OFFSET] - 1; 25509 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25510 case IPOPT_TS_PRESPEC: 25511 case IPOPT_TS_PRESPEC_RFC791: 25512 case IPOPT_TS_TSANDADDR: 25513 dst = htonl(INADDR_LOOPBACK); 25514 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25515 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25516 /* FALLTHRU */ 25517 case IPOPT_TS_TSONLY: 25518 off = opt[IPOPT_OFFSET] - 1; 25519 /* Compute # of milliseconds since midnight */ 25520 gethrestime(&now); 25521 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25522 now.tv_nsec / (NANOSEC / MILLISEC); 25523 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25524 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25525 break; 25526 } 25527 break; 25528 } 25529 } 25530 } 25531 25532 /* 25533 * Send out a multicast packet on interface ipif. 25534 * The sender does not have an conn. 25535 * Caller verifies that this isn't a PHYI_LOOPBACK. 25536 */ 25537 void 25538 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25539 { 25540 ipha_t *ipha; 25541 ire_t *ire; 25542 ipaddr_t dst; 25543 mblk_t *first_mp; 25544 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25545 25546 /* igmp_sendpkt always allocates a ipsec_out_t */ 25547 ASSERT(mp->b_datap->db_type == M_CTL); 25548 ASSERT(!ipif->ipif_isv6); 25549 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25550 25551 first_mp = mp; 25552 mp = first_mp->b_cont; 25553 ASSERT(mp->b_datap->db_type == M_DATA); 25554 ipha = (ipha_t *)mp->b_rptr; 25555 25556 /* 25557 * Find an IRE which matches the destination and the outgoing 25558 * queue (i.e. the outgoing interface.) 25559 */ 25560 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25561 dst = ipif->ipif_pp_dst_addr; 25562 else 25563 dst = ipha->ipha_dst; 25564 /* 25565 * The source address has already been initialized by the 25566 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25567 * be sufficient rather than MATCH_IRE_IPIF. 25568 * 25569 * This function is used for sending IGMP packets. For IPMP, 25570 * we sidestep IGMP snooping issues by sending all multicast 25571 * traffic on a single interface in the IPMP group. 25572 */ 25573 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25574 MATCH_IRE_ILL, ipst); 25575 if (!ire) { 25576 /* 25577 * Mark this packet to make it be delivered to 25578 * ip_wput_ire after the new ire has been 25579 * created. 25580 */ 25581 mp->b_prev = NULL; 25582 mp->b_next = NULL; 25583 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25584 zoneid, &zero_info); 25585 return; 25586 } 25587 25588 /* 25589 * Honor the RTF_SETSRC flag; this is the only case 25590 * where we force this addr whatever the current src addr is, 25591 * because this address is set by igmp_sendpkt(), and 25592 * cannot be specified by any user. 25593 */ 25594 if (ire->ire_flags & RTF_SETSRC) { 25595 ipha->ipha_src = ire->ire_src_addr; 25596 } 25597 25598 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25599 } 25600 25601 /* 25602 * NOTE : This function does not ire_refrele the ire argument passed in. 25603 * 25604 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25605 * failure. The nce_fp_mp can vanish any time in the case of 25606 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25607 * the ire_lock to access the nce_fp_mp in this case. 25608 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25609 * prepending a fastpath message IPQoS processing must precede it, we also set 25610 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25611 * (IPQoS might have set the b_band for CoS marking). 25612 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25613 * must follow it so that IPQoS can mark the dl_priority field for CoS 25614 * marking, if needed. 25615 */ 25616 static mblk_t * 25617 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25618 uint32_t ill_index, ipha_t **iphap) 25619 { 25620 uint_t hlen; 25621 ipha_t *ipha; 25622 mblk_t *mp1; 25623 boolean_t qos_done = B_FALSE; 25624 uchar_t *ll_hdr; 25625 ip_stack_t *ipst = ire->ire_ipst; 25626 25627 #define rptr ((uchar_t *)ipha) 25628 25629 ipha = (ipha_t *)mp->b_rptr; 25630 hlen = 0; 25631 LOCK_IRE_FP_MP(ire); 25632 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25633 ASSERT(DB_TYPE(mp1) == M_DATA); 25634 /* Initiate IPPF processing */ 25635 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25636 UNLOCK_IRE_FP_MP(ire); 25637 ip_process(proc, &mp, ill_index); 25638 if (mp == NULL) 25639 return (NULL); 25640 25641 ipha = (ipha_t *)mp->b_rptr; 25642 LOCK_IRE_FP_MP(ire); 25643 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25644 qos_done = B_TRUE; 25645 goto no_fp_mp; 25646 } 25647 ASSERT(DB_TYPE(mp1) == M_DATA); 25648 } 25649 hlen = MBLKL(mp1); 25650 /* 25651 * Check if we have enough room to prepend fastpath 25652 * header 25653 */ 25654 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25655 ll_hdr = rptr - hlen; 25656 bcopy(mp1->b_rptr, ll_hdr, hlen); 25657 /* 25658 * Set the b_rptr to the start of the link layer 25659 * header 25660 */ 25661 mp->b_rptr = ll_hdr; 25662 mp1 = mp; 25663 } else { 25664 mp1 = copyb(mp1); 25665 if (mp1 == NULL) 25666 goto unlock_err; 25667 mp1->b_band = mp->b_band; 25668 mp1->b_cont = mp; 25669 /* 25670 * XXX disable ICK_VALID and compute checksum 25671 * here; can happen if nce_fp_mp changes and 25672 * it can't be copied now due to insufficient 25673 * space. (unlikely, fp mp can change, but it 25674 * does not increase in length) 25675 */ 25676 } 25677 UNLOCK_IRE_FP_MP(ire); 25678 } else { 25679 no_fp_mp: 25680 mp1 = copyb(ire->ire_nce->nce_res_mp); 25681 if (mp1 == NULL) { 25682 unlock_err: 25683 UNLOCK_IRE_FP_MP(ire); 25684 freemsg(mp); 25685 return (NULL); 25686 } 25687 UNLOCK_IRE_FP_MP(ire); 25688 mp1->b_cont = mp; 25689 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25690 ip_process(proc, &mp1, ill_index); 25691 if (mp1 == NULL) 25692 return (NULL); 25693 25694 if (mp1->b_cont == NULL) 25695 ipha = NULL; 25696 else 25697 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25698 } 25699 } 25700 25701 *iphap = ipha; 25702 return (mp1); 25703 #undef rptr 25704 } 25705 25706 /* 25707 * Finish the outbound IPsec processing for an IPv6 packet. This function 25708 * is called from ipsec_out_process() if the IPsec packet was processed 25709 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25710 * asynchronously. 25711 */ 25712 void 25713 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25714 ire_t *ire_arg) 25715 { 25716 in6_addr_t *v6dstp; 25717 ire_t *ire; 25718 mblk_t *mp; 25719 ip6_t *ip6h1; 25720 uint_t ill_index; 25721 ipsec_out_t *io; 25722 boolean_t hwaccel; 25723 uint32_t flags = IP6_NO_IPPOLICY; 25724 int match_flags; 25725 zoneid_t zoneid; 25726 boolean_t ill_need_rele = B_FALSE; 25727 boolean_t ire_need_rele = B_FALSE; 25728 ip_stack_t *ipst; 25729 25730 mp = ipsec_mp->b_cont; 25731 ip6h1 = (ip6_t *)mp->b_rptr; 25732 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25733 ASSERT(io->ipsec_out_ns != NULL); 25734 ipst = io->ipsec_out_ns->netstack_ip; 25735 ill_index = io->ipsec_out_ill_index; 25736 if (io->ipsec_out_reachable) { 25737 flags |= IPV6_REACHABILITY_CONFIRMATION; 25738 } 25739 hwaccel = io->ipsec_out_accelerated; 25740 zoneid = io->ipsec_out_zoneid; 25741 ASSERT(zoneid != ALL_ZONES); 25742 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25743 /* Multicast addresses should have non-zero ill_index. */ 25744 v6dstp = &ip6h->ip6_dst; 25745 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25746 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25747 25748 if (ill == NULL && ill_index != 0) { 25749 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25750 /* Failure case frees things for us. */ 25751 if (ill == NULL) 25752 return; 25753 25754 ill_need_rele = B_TRUE; 25755 } 25756 ASSERT(mp != NULL); 25757 25758 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25759 boolean_t unspec_src; 25760 ipif_t *ipif; 25761 25762 /* 25763 * Use the ill_index to get the right ill. 25764 */ 25765 unspec_src = io->ipsec_out_unspec_src; 25766 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25767 if (ipif == NULL) { 25768 if (ill_need_rele) 25769 ill_refrele(ill); 25770 freemsg(ipsec_mp); 25771 return; 25772 } 25773 25774 if (ire_arg != NULL) { 25775 ire = ire_arg; 25776 } else { 25777 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25778 zoneid, msg_getlabel(mp), match_flags, ipst); 25779 ire_need_rele = B_TRUE; 25780 } 25781 if (ire != NULL) { 25782 ipif_refrele(ipif); 25783 /* 25784 * XXX Do the multicast forwarding now, as the IPsec 25785 * processing has been done. 25786 */ 25787 goto send; 25788 } 25789 25790 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25791 mp->b_prev = NULL; 25792 mp->b_next = NULL; 25793 25794 /* 25795 * If the IPsec packet was processed asynchronously, 25796 * drop it now. 25797 */ 25798 if (q == NULL) { 25799 if (ill_need_rele) 25800 ill_refrele(ill); 25801 freemsg(ipsec_mp); 25802 return; 25803 } 25804 25805 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25806 unspec_src, zoneid); 25807 ipif_refrele(ipif); 25808 } else { 25809 if (ire_arg != NULL) { 25810 ire = ire_arg; 25811 } else { 25812 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25813 ire_need_rele = B_TRUE; 25814 } 25815 if (ire != NULL) 25816 goto send; 25817 /* 25818 * ire disappeared underneath. 25819 * 25820 * What we need to do here is the ip_newroute 25821 * logic to get the ire without doing the IPsec 25822 * processing. Follow the same old path. But this 25823 * time, ip_wput or ire_add_then_send will call us 25824 * directly as all the IPsec operations are done. 25825 */ 25826 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25827 mp->b_prev = NULL; 25828 mp->b_next = NULL; 25829 25830 /* 25831 * If the IPsec packet was processed asynchronously, 25832 * drop it now. 25833 */ 25834 if (q == NULL) { 25835 if (ill_need_rele) 25836 ill_refrele(ill); 25837 freemsg(ipsec_mp); 25838 return; 25839 } 25840 25841 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25842 zoneid, ipst); 25843 } 25844 if (ill != NULL && ill_need_rele) 25845 ill_refrele(ill); 25846 return; 25847 send: 25848 if (ill != NULL && ill_need_rele) 25849 ill_refrele(ill); 25850 25851 /* Local delivery */ 25852 if (ire->ire_stq == NULL) { 25853 ill_t *out_ill; 25854 ASSERT(q != NULL); 25855 25856 /* PFHooks: LOOPBACK_OUT */ 25857 out_ill = ire_to_ill(ire); 25858 25859 /* 25860 * DTrace this as ip:::send. A blocked packet will fire the 25861 * send probe, but not the receive probe. 25862 */ 25863 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25864 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25865 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25866 25867 DTRACE_PROBE4(ip6__loopback__out__start, 25868 ill_t *, NULL, ill_t *, out_ill, 25869 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25870 25871 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25872 ipst->ips_ipv6firewall_loopback_out, 25873 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25874 25875 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25876 25877 if (ipsec_mp != NULL) { 25878 ip_wput_local_v6(RD(q), out_ill, 25879 ip6h, ipsec_mp, ire, 0, zoneid); 25880 } 25881 if (ire_need_rele) 25882 ire_refrele(ire); 25883 return; 25884 } 25885 /* 25886 * Everything is done. Send it out on the wire. 25887 * We force the insertion of a fragment header using the 25888 * IPH_FRAG_HDR flag in two cases: 25889 * - after reception of an ICMPv6 "packet too big" message 25890 * with a MTU < 1280 (cf. RFC 2460 section 5) 25891 * - for multirouted IPv6 packets, so that the receiver can 25892 * discard duplicates according to their fragment identifier 25893 */ 25894 /* XXX fix flow control problems. */ 25895 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25896 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25897 if (hwaccel) { 25898 /* 25899 * hardware acceleration does not handle these 25900 * "slow path" cases. 25901 */ 25902 /* IPsec KSTATS: should bump bean counter here. */ 25903 if (ire_need_rele) 25904 ire_refrele(ire); 25905 freemsg(ipsec_mp); 25906 return; 25907 } 25908 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25909 (mp->b_cont ? msgdsize(mp) : 25910 mp->b_wptr - (uchar_t *)ip6h)) { 25911 /* IPsec KSTATS: should bump bean counter here. */ 25912 ip0dbg(("Packet length mismatch: %d, %ld\n", 25913 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25914 msgdsize(mp))); 25915 if (ire_need_rele) 25916 ire_refrele(ire); 25917 freemsg(ipsec_mp); 25918 return; 25919 } 25920 ASSERT(mp->b_prev == NULL); 25921 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25922 ntohs(ip6h->ip6_plen) + 25923 IPV6_HDR_LEN, ire->ire_max_frag)); 25924 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25925 ire->ire_max_frag); 25926 } else { 25927 UPDATE_OB_PKT_COUNT(ire); 25928 ire->ire_last_used_time = lbolt; 25929 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25930 } 25931 if (ire_need_rele) 25932 ire_refrele(ire); 25933 freeb(ipsec_mp); 25934 } 25935 25936 void 25937 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25938 { 25939 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25940 da_ipsec_t *hada; /* data attributes */ 25941 ill_t *ill = (ill_t *)q->q_ptr; 25942 25943 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25944 25945 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25946 /* IPsec KSTATS: Bump lose counter here! */ 25947 freemsg(mp); 25948 return; 25949 } 25950 25951 /* 25952 * It's an IPsec packet that must be 25953 * accelerated by the Provider, and the 25954 * outbound ill is IPsec acceleration capable. 25955 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25956 * to the ill. 25957 * IPsec KSTATS: should bump packet counter here. 25958 */ 25959 25960 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25961 if (hada_mp == NULL) { 25962 /* IPsec KSTATS: should bump packet counter here. */ 25963 freemsg(mp); 25964 return; 25965 } 25966 25967 hada_mp->b_datap->db_type = M_CTL; 25968 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25969 hada_mp->b_cont = mp; 25970 25971 hada = (da_ipsec_t *)hada_mp->b_rptr; 25972 bzero(hada, sizeof (da_ipsec_t)); 25973 hada->da_type = IPHADA_M_CTL; 25974 25975 putnext(q, hada_mp); 25976 } 25977 25978 /* 25979 * Finish the outbound IPsec processing. This function is called from 25980 * ipsec_out_process() if the IPsec packet was processed 25981 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25982 * asynchronously. 25983 */ 25984 void 25985 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25986 ire_t *ire_arg) 25987 { 25988 uint32_t v_hlen_tos_len; 25989 ipaddr_t dst; 25990 ipif_t *ipif = NULL; 25991 ire_t *ire; 25992 ire_t *ire1 = NULL; 25993 mblk_t *next_mp = NULL; 25994 uint32_t max_frag; 25995 boolean_t multirt_send = B_FALSE; 25996 mblk_t *mp; 25997 ipha_t *ipha1; 25998 uint_t ill_index; 25999 ipsec_out_t *io; 26000 int match_flags; 26001 irb_t *irb = NULL; 26002 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26003 zoneid_t zoneid; 26004 ipxmit_state_t pktxmit_state; 26005 ip_stack_t *ipst; 26006 26007 #ifdef _BIG_ENDIAN 26008 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26009 #else 26010 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26011 #endif 26012 26013 mp = ipsec_mp->b_cont; 26014 ipha1 = (ipha_t *)mp->b_rptr; 26015 ASSERT(mp != NULL); 26016 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26017 dst = ipha->ipha_dst; 26018 26019 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26020 ill_index = io->ipsec_out_ill_index; 26021 zoneid = io->ipsec_out_zoneid; 26022 ASSERT(zoneid != ALL_ZONES); 26023 ipst = io->ipsec_out_ns->netstack_ip; 26024 ASSERT(io->ipsec_out_ns != NULL); 26025 26026 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26027 if (ill == NULL && ill_index != 0) { 26028 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 26029 /* Failure case frees things for us. */ 26030 if (ill == NULL) 26031 return; 26032 26033 ill_need_rele = B_TRUE; 26034 } 26035 26036 if (CLASSD(dst)) { 26037 boolean_t conn_dontroute; 26038 /* 26039 * Use the ill_index to get the right ipif. 26040 */ 26041 conn_dontroute = io->ipsec_out_dontroute; 26042 if (ill_index == 0) 26043 ipif = ipif_lookup_group(dst, zoneid, ipst); 26044 else 26045 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26046 if (ipif == NULL) { 26047 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26048 " multicast\n")); 26049 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26050 freemsg(ipsec_mp); 26051 goto done; 26052 } 26053 /* 26054 * ipha_src has already been intialized with the 26055 * value of the ipif in ip_wput. All we need now is 26056 * an ire to send this downstream. 26057 */ 26058 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26059 msg_getlabel(mp), match_flags, ipst); 26060 if (ire != NULL) { 26061 ill_t *ill1; 26062 /* 26063 * Do the multicast forwarding now, as the IPsec 26064 * processing has been done. 26065 */ 26066 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26067 (ill1 = ire_to_ill(ire))) { 26068 if (ip_mforward(ill1, ipha, mp)) { 26069 freemsg(ipsec_mp); 26070 ip1dbg(("ip_wput_ipsec_out: mforward " 26071 "failed\n")); 26072 ire_refrele(ire); 26073 goto done; 26074 } 26075 } 26076 goto send; 26077 } 26078 26079 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26080 mp->b_prev = NULL; 26081 mp->b_next = NULL; 26082 26083 /* 26084 * If the IPsec packet was processed asynchronously, 26085 * drop it now. 26086 */ 26087 if (q == NULL) { 26088 freemsg(ipsec_mp); 26089 goto done; 26090 } 26091 26092 /* 26093 * We may be using a wrong ipif to create the ire. 26094 * But it is okay as the source address is assigned 26095 * for the packet already. Next outbound packet would 26096 * create the IRE with the right IPIF in ip_wput. 26097 * 26098 * Also handle RTF_MULTIRT routes. 26099 */ 26100 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26101 zoneid, &zero_info); 26102 } else { 26103 if (ire_arg != NULL) { 26104 ire = ire_arg; 26105 ire_need_rele = B_FALSE; 26106 } else { 26107 ire = ire_cache_lookup(dst, zoneid, 26108 msg_getlabel(mp), ipst); 26109 } 26110 if (ire != NULL) { 26111 goto send; 26112 } 26113 26114 /* 26115 * ire disappeared underneath. 26116 * 26117 * What we need to do here is the ip_newroute 26118 * logic to get the ire without doing the IPsec 26119 * processing. Follow the same old path. But this 26120 * time, ip_wput or ire_add_then_put will call us 26121 * directly as all the IPsec operations are done. 26122 */ 26123 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26124 mp->b_prev = NULL; 26125 mp->b_next = NULL; 26126 26127 /* 26128 * If the IPsec packet was processed asynchronously, 26129 * drop it now. 26130 */ 26131 if (q == NULL) { 26132 freemsg(ipsec_mp); 26133 goto done; 26134 } 26135 26136 /* 26137 * Since we're going through ip_newroute() again, we 26138 * need to make sure we don't: 26139 * 26140 * 1.) Trigger the ASSERT() with the ipha_ident 26141 * overloading. 26142 * 2.) Redo transport-layer checksumming, since we've 26143 * already done all that to get this far. 26144 * 26145 * The easiest way not do either of the above is to set 26146 * the ipha_ident field to IP_HDR_INCLUDED. 26147 */ 26148 ipha->ipha_ident = IP_HDR_INCLUDED; 26149 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26150 zoneid, ipst); 26151 } 26152 goto done; 26153 send: 26154 if (ire->ire_stq == NULL) { 26155 ill_t *out_ill; 26156 /* 26157 * Loopbacks go through ip_wput_local except for one case. 26158 * We come here if we generate a icmp_frag_needed message 26159 * after IPsec processing is over. When this function calls 26160 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26161 * icmp_frag_needed. The message generated comes back here 26162 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26163 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26164 * source address as it is usually set in ip_wput_ire. As 26165 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26166 * and we end up here. We can't enter ip_wput_ire once the 26167 * IPsec processing is over and hence we need to do it here. 26168 */ 26169 ASSERT(q != NULL); 26170 UPDATE_OB_PKT_COUNT(ire); 26171 ire->ire_last_used_time = lbolt; 26172 if (ipha->ipha_src == 0) 26173 ipha->ipha_src = ire->ire_src_addr; 26174 26175 /* PFHooks: LOOPBACK_OUT */ 26176 out_ill = ire_to_ill(ire); 26177 26178 /* 26179 * DTrace this as ip:::send. A blocked packet will fire the 26180 * send probe, but not the receive probe. 26181 */ 26182 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26183 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26184 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26185 26186 DTRACE_PROBE4(ip4__loopback__out__start, 26187 ill_t *, NULL, ill_t *, out_ill, 26188 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26189 26190 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26191 ipst->ips_ipv4firewall_loopback_out, 26192 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26193 26194 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26195 26196 if (ipsec_mp != NULL) 26197 ip_wput_local(RD(q), out_ill, 26198 ipha, ipsec_mp, ire, 0, zoneid); 26199 if (ire_need_rele) 26200 ire_refrele(ire); 26201 goto done; 26202 } 26203 26204 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26205 /* 26206 * We are through with IPsec processing. 26207 * Fragment this and send it on the wire. 26208 */ 26209 if (io->ipsec_out_accelerated) { 26210 /* 26211 * The packet has been accelerated but must 26212 * be fragmented. This should not happen 26213 * since AH and ESP must not accelerate 26214 * packets that need fragmentation, however 26215 * the configuration could have changed 26216 * since the AH or ESP processing. 26217 * Drop packet. 26218 * IPsec KSTATS: bump bean counter here. 26219 */ 26220 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26221 "fragmented accelerated packet!\n")); 26222 freemsg(ipsec_mp); 26223 } else { 26224 ip_wput_ire_fragmentit(ipsec_mp, ire, 26225 zoneid, ipst, NULL); 26226 } 26227 if (ire_need_rele) 26228 ire_refrele(ire); 26229 goto done; 26230 } 26231 26232 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26233 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26234 (void *)ire->ire_ipif, (void *)ipif)); 26235 26236 /* 26237 * Multiroute the secured packet. 26238 */ 26239 if (ire->ire_flags & RTF_MULTIRT) { 26240 ire_t *first_ire; 26241 irb = ire->ire_bucket; 26242 ASSERT(irb != NULL); 26243 /* 26244 * This ire has been looked up as the one that 26245 * goes through the given ipif; 26246 * make sure we do not omit any other multiroute ire 26247 * that may be present in the bucket before this one. 26248 */ 26249 IRB_REFHOLD(irb); 26250 for (first_ire = irb->irb_ire; 26251 first_ire != NULL; 26252 first_ire = first_ire->ire_next) { 26253 if ((first_ire->ire_flags & RTF_MULTIRT) && 26254 (first_ire->ire_addr == ire->ire_addr) && 26255 !(first_ire->ire_marks & 26256 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26257 break; 26258 } 26259 26260 if ((first_ire != NULL) && (first_ire != ire)) { 26261 /* 26262 * Don't change the ire if the packet must 26263 * be fragmented if sent via this new one. 26264 */ 26265 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26266 IRE_REFHOLD(first_ire); 26267 if (ire_need_rele) 26268 ire_refrele(ire); 26269 else 26270 ire_need_rele = B_TRUE; 26271 ire = first_ire; 26272 } 26273 } 26274 IRB_REFRELE(irb); 26275 26276 multirt_send = B_TRUE; 26277 max_frag = ire->ire_max_frag; 26278 } 26279 26280 /* 26281 * In most cases, the emission loop below is entered only once. 26282 * Only in the case where the ire holds the RTF_MULTIRT 26283 * flag, we loop to process all RTF_MULTIRT ires in the 26284 * bucket, and send the packet through all crossed 26285 * RTF_MULTIRT routes. 26286 */ 26287 do { 26288 if (multirt_send) { 26289 /* 26290 * ire1 holds here the next ire to process in the 26291 * bucket. If multirouting is expected, 26292 * any non-RTF_MULTIRT ire that has the 26293 * right destination address is ignored. 26294 */ 26295 ASSERT(irb != NULL); 26296 IRB_REFHOLD(irb); 26297 for (ire1 = ire->ire_next; 26298 ire1 != NULL; 26299 ire1 = ire1->ire_next) { 26300 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26301 continue; 26302 if (ire1->ire_addr != ire->ire_addr) 26303 continue; 26304 if (ire1->ire_marks & 26305 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26306 continue; 26307 /* No loopback here */ 26308 if (ire1->ire_stq == NULL) 26309 continue; 26310 /* 26311 * Ensure we do not exceed the MTU 26312 * of the next route. 26313 */ 26314 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26315 ip_multirt_bad_mtu(ire1, max_frag); 26316 continue; 26317 } 26318 26319 IRE_REFHOLD(ire1); 26320 break; 26321 } 26322 IRB_REFRELE(irb); 26323 if (ire1 != NULL) { 26324 /* 26325 * We are in a multiple send case, need to 26326 * make a copy of the packet. 26327 */ 26328 next_mp = copymsg(ipsec_mp); 26329 if (next_mp == NULL) { 26330 ire_refrele(ire1); 26331 ire1 = NULL; 26332 } 26333 } 26334 } 26335 /* 26336 * Everything is done. Send it out on the wire 26337 * 26338 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26339 * either send it on the wire or, in the case of 26340 * HW acceleration, call ipsec_hw_putnext. 26341 */ 26342 if (ire->ire_nce && 26343 ire->ire_nce->nce_state != ND_REACHABLE) { 26344 DTRACE_PROBE2(ip__wput__ipsec__bail, 26345 (ire_t *), ire, (mblk_t *), ipsec_mp); 26346 /* 26347 * If ire's link-layer is unresolved (this 26348 * would only happen if the incomplete ire 26349 * was added to cachetable via forwarding path) 26350 * don't bother going to ip_xmit_v4. Just drop the 26351 * packet. 26352 * There is a slight risk here, in that, if we 26353 * have the forwarding path create an incomplete 26354 * IRE, then until the IRE is completed, any 26355 * transmitted IPsec packets will be dropped 26356 * instead of being queued waiting for resolution. 26357 * 26358 * But the likelihood of a forwarding packet and a wput 26359 * packet sending to the same dst at the same time 26360 * and there not yet be an ARP entry for it is small. 26361 * Furthermore, if this actually happens, it might 26362 * be likely that wput would generate multiple 26363 * packets (and forwarding would also have a train 26364 * of packets) for that destination. If this is 26365 * the case, some of them would have been dropped 26366 * anyway, since ARP only queues a few packets while 26367 * waiting for resolution 26368 * 26369 * NOTE: We should really call ip_xmit_v4, 26370 * and let it queue the packet and send the 26371 * ARP query and have ARP come back thus: 26372 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26373 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26374 * hw accel work. But it's too complex to get 26375 * the IPsec hw acceleration approach to fit 26376 * well with ip_xmit_v4 doing ARP without 26377 * doing IPsec simplification. For now, we just 26378 * poke ip_xmit_v4 to trigger the arp resolve, so 26379 * that we can continue with the send on the next 26380 * attempt. 26381 * 26382 * XXX THis should be revisited, when 26383 * the IPsec/IP interaction is cleaned up 26384 */ 26385 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26386 " - dropping packet\n")); 26387 freemsg(ipsec_mp); 26388 /* 26389 * Call ip_xmit_v4() to trigger ARP query 26390 * in case the nce_state is ND_INITIAL 26391 */ 26392 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26393 goto drop_pkt; 26394 } 26395 26396 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26397 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26398 mblk_t *, ipsec_mp); 26399 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26400 ipst->ips_ipv4firewall_physical_out, NULL, 26401 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26402 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26403 if (ipsec_mp == NULL) 26404 goto drop_pkt; 26405 26406 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26407 pktxmit_state = ip_xmit_v4(mp, ire, 26408 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26409 26410 if ((pktxmit_state == SEND_FAILED) || 26411 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26412 26413 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26414 drop_pkt: 26415 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26416 ipIfStatsOutDiscards); 26417 if (ire_need_rele) 26418 ire_refrele(ire); 26419 if (ire1 != NULL) { 26420 ire_refrele(ire1); 26421 freemsg(next_mp); 26422 } 26423 goto done; 26424 } 26425 26426 freeb(ipsec_mp); 26427 if (ire_need_rele) 26428 ire_refrele(ire); 26429 26430 if (ire1 != NULL) { 26431 ire = ire1; 26432 ire_need_rele = B_TRUE; 26433 ASSERT(next_mp); 26434 ipsec_mp = next_mp; 26435 mp = ipsec_mp->b_cont; 26436 ire1 = NULL; 26437 next_mp = NULL; 26438 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26439 } else { 26440 multirt_send = B_FALSE; 26441 } 26442 } while (multirt_send); 26443 done: 26444 if (ill != NULL && ill_need_rele) 26445 ill_refrele(ill); 26446 if (ipif != NULL) 26447 ipif_refrele(ipif); 26448 } 26449 26450 /* 26451 * Get the ill corresponding to the specified ire, and compare its 26452 * capabilities with the protocol and algorithms specified by the 26453 * the SA obtained from ipsec_out. If they match, annotate the 26454 * ipsec_out structure to indicate that the packet needs acceleration. 26455 * 26456 * 26457 * A packet is eligible for outbound hardware acceleration if the 26458 * following conditions are satisfied: 26459 * 26460 * 1. the packet will not be fragmented 26461 * 2. the provider supports the algorithm 26462 * 3. there is no pending control message being exchanged 26463 * 4. snoop is not attached 26464 * 5. the destination address is not a broadcast or multicast address. 26465 * 26466 * Rationale: 26467 * - Hardware drivers do not support fragmentation with 26468 * the current interface. 26469 * - snoop, multicast, and broadcast may result in exposure of 26470 * a cleartext datagram. 26471 * We check all five of these conditions here. 26472 * 26473 * XXX would like to nuke "ire_t *" parameter here; problem is that 26474 * IRE is only way to figure out if a v4 address is a broadcast and 26475 * thus ineligible for acceleration... 26476 */ 26477 static void 26478 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26479 { 26480 ipsec_out_t *io; 26481 mblk_t *data_mp; 26482 uint_t plen, overhead; 26483 ip_stack_t *ipst; 26484 phyint_t *phyint; 26485 26486 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26487 return; 26488 26489 if (ill == NULL) 26490 return; 26491 ipst = ill->ill_ipst; 26492 phyint = ill->ill_phyint; 26493 26494 /* 26495 * Destination address is a broadcast or multicast. Punt. 26496 */ 26497 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26498 IRE_LOCAL))) 26499 return; 26500 26501 data_mp = ipsec_mp->b_cont; 26502 26503 if (ill->ill_isv6) { 26504 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26505 26506 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26507 return; 26508 26509 plen = ip6h->ip6_plen; 26510 } else { 26511 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26512 26513 if (CLASSD(ipha->ipha_dst)) 26514 return; 26515 26516 plen = ipha->ipha_length; 26517 } 26518 /* 26519 * Is there a pending DLPI control message being exchanged 26520 * between IP/IPsec and the DLS Provider? If there is, it 26521 * could be a SADB update, and the state of the DLS Provider 26522 * SADB might not be in sync with the SADB maintained by 26523 * IPsec. To avoid dropping packets or using the wrong keying 26524 * material, we do not accelerate this packet. 26525 */ 26526 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26527 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26528 "ill_dlpi_pending! don't accelerate packet\n")); 26529 return; 26530 } 26531 26532 /* 26533 * Is the Provider in promiscous mode? If it does, we don't 26534 * accelerate the packet since it will bounce back up to the 26535 * listeners in the clear. 26536 */ 26537 if (phyint->phyint_flags & PHYI_PROMISC) { 26538 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26539 "ill in promiscous mode, don't accelerate packet\n")); 26540 return; 26541 } 26542 26543 /* 26544 * Will the packet require fragmentation? 26545 */ 26546 26547 /* 26548 * IPsec ESP note: this is a pessimistic estimate, but the same 26549 * as is used elsewhere. 26550 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26551 * + 2-byte trailer 26552 */ 26553 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26554 IPSEC_BASE_ESP_HDR_SIZE(sa); 26555 26556 if ((plen + overhead) > ill->ill_max_mtu) 26557 return; 26558 26559 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26560 26561 /* 26562 * Can the ill accelerate this IPsec protocol and algorithm 26563 * specified by the SA? 26564 */ 26565 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26566 ill->ill_isv6, sa, ipst->ips_netstack)) { 26567 return; 26568 } 26569 26570 /* 26571 * Tell AH or ESP that the outbound ill is capable of 26572 * accelerating this packet. 26573 */ 26574 io->ipsec_out_is_capab_ill = B_TRUE; 26575 } 26576 26577 /* 26578 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26579 * 26580 * If this function returns B_TRUE, the requested SA's have been filled 26581 * into the ipsec_out_*_sa pointers. 26582 * 26583 * If the function returns B_FALSE, the packet has been "consumed", most 26584 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26585 * 26586 * The SA references created by the protocol-specific "select" 26587 * function will be released when the ipsec_mp is freed, thanks to the 26588 * ipsec_out_free destructor -- see spd.c. 26589 */ 26590 static boolean_t 26591 ipsec_out_select_sa(mblk_t *ipsec_mp) 26592 { 26593 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26594 ipsec_out_t *io; 26595 ipsec_policy_t *pp; 26596 ipsec_action_t *ap; 26597 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26598 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26599 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26600 26601 if (!io->ipsec_out_secure) { 26602 /* 26603 * We came here by mistake. 26604 * Don't bother with ipsec processing 26605 * We should "discourage" this path in the future. 26606 */ 26607 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26608 return (B_FALSE); 26609 } 26610 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26611 ASSERT((io->ipsec_out_policy != NULL) || 26612 (io->ipsec_out_act != NULL)); 26613 26614 ASSERT(io->ipsec_out_failed == B_FALSE); 26615 26616 /* 26617 * IPsec processing has started. 26618 */ 26619 io->ipsec_out_proc_begin = B_TRUE; 26620 ap = io->ipsec_out_act; 26621 if (ap == NULL) { 26622 pp = io->ipsec_out_policy; 26623 ASSERT(pp != NULL); 26624 ap = pp->ipsp_act; 26625 ASSERT(ap != NULL); 26626 } 26627 26628 /* 26629 * We have an action. now, let's select SA's. 26630 * (In the future, we can cache this in the conn_t..) 26631 */ 26632 if (ap->ipa_want_esp) { 26633 if (io->ipsec_out_esp_sa == NULL) { 26634 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26635 IPPROTO_ESP); 26636 } 26637 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26638 } 26639 26640 if (ap->ipa_want_ah) { 26641 if (io->ipsec_out_ah_sa == NULL) { 26642 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26643 IPPROTO_AH); 26644 } 26645 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26646 /* 26647 * The ESP and AH processing order needs to be preserved 26648 * when both protocols are required (ESP should be applied 26649 * before AH for an outbound packet). Force an ESP ACQUIRE 26650 * when both ESP and AH are required, and an AH ACQUIRE 26651 * is needed. 26652 */ 26653 if (ap->ipa_want_esp && need_ah_acquire) 26654 need_esp_acquire = B_TRUE; 26655 } 26656 26657 /* 26658 * Send an ACQUIRE (extended, regular, or both) if we need one. 26659 * Release SAs that got referenced, but will not be used until we 26660 * acquire _all_ of the SAs we need. 26661 */ 26662 if (need_ah_acquire || need_esp_acquire) { 26663 if (io->ipsec_out_ah_sa != NULL) { 26664 IPSA_REFRELE(io->ipsec_out_ah_sa); 26665 io->ipsec_out_ah_sa = NULL; 26666 } 26667 if (io->ipsec_out_esp_sa != NULL) { 26668 IPSA_REFRELE(io->ipsec_out_esp_sa); 26669 io->ipsec_out_esp_sa = NULL; 26670 } 26671 26672 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26673 return (B_FALSE); 26674 } 26675 26676 return (B_TRUE); 26677 } 26678 26679 /* 26680 * Process an IPSEC_OUT message and see what you can 26681 * do with it. 26682 * IPQoS Notes: 26683 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26684 * IPsec. 26685 * XXX would like to nuke ire_t. 26686 * XXX ill_index better be "real" 26687 */ 26688 void 26689 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26690 { 26691 ipsec_out_t *io; 26692 ipsec_policy_t *pp; 26693 ipsec_action_t *ap; 26694 ipha_t *ipha; 26695 ip6_t *ip6h; 26696 mblk_t *mp; 26697 ill_t *ill; 26698 zoneid_t zoneid; 26699 ipsec_status_t ipsec_rc; 26700 boolean_t ill_need_rele = B_FALSE; 26701 ip_stack_t *ipst; 26702 ipsec_stack_t *ipss; 26703 26704 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26705 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26706 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26707 ipst = io->ipsec_out_ns->netstack_ip; 26708 mp = ipsec_mp->b_cont; 26709 26710 /* 26711 * Initiate IPPF processing. We do it here to account for packets 26712 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26713 * We can check for ipsec_out_proc_begin even for such packets, as 26714 * they will always be false (asserted below). 26715 */ 26716 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26717 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26718 io->ipsec_out_ill_index : ill_index); 26719 if (mp == NULL) { 26720 ip2dbg(("ipsec_out_process: packet dropped "\ 26721 "during IPPF processing\n")); 26722 freeb(ipsec_mp); 26723 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26724 return; 26725 } 26726 } 26727 26728 if (!io->ipsec_out_secure) { 26729 /* 26730 * We came here by mistake. 26731 * Don't bother with ipsec processing 26732 * Should "discourage" this path in the future. 26733 */ 26734 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26735 goto done; 26736 } 26737 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26738 ASSERT((io->ipsec_out_policy != NULL) || 26739 (io->ipsec_out_act != NULL)); 26740 ASSERT(io->ipsec_out_failed == B_FALSE); 26741 26742 ipss = ipst->ips_netstack->netstack_ipsec; 26743 if (!ipsec_loaded(ipss)) { 26744 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26745 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26746 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26747 } else { 26748 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26749 } 26750 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26751 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26752 &ipss->ipsec_dropper); 26753 return; 26754 } 26755 26756 /* 26757 * IPsec processing has started. 26758 */ 26759 io->ipsec_out_proc_begin = B_TRUE; 26760 ap = io->ipsec_out_act; 26761 if (ap == NULL) { 26762 pp = io->ipsec_out_policy; 26763 ASSERT(pp != NULL); 26764 ap = pp->ipsp_act; 26765 ASSERT(ap != NULL); 26766 } 26767 26768 /* 26769 * Save the outbound ill index. When the packet comes back 26770 * from IPsec, we make sure the ill hasn't changed or disappeared 26771 * before sending it the accelerated packet. 26772 */ 26773 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26774 ill = ire_to_ill(ire); 26775 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26776 } 26777 26778 /* 26779 * The order of processing is first insert a IP header if needed. 26780 * Then insert the ESP header and then the AH header. 26781 */ 26782 if ((io->ipsec_out_se_done == B_FALSE) && 26783 (ap->ipa_want_se)) { 26784 /* 26785 * First get the outer IP header before sending 26786 * it to ESP. 26787 */ 26788 ipha_t *oipha, *iipha; 26789 mblk_t *outer_mp, *inner_mp; 26790 26791 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26792 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26793 "ipsec_out_process: " 26794 "Self-Encapsulation failed: Out of memory\n"); 26795 freemsg(ipsec_mp); 26796 if (ill != NULL) { 26797 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26798 } else { 26799 BUMP_MIB(&ipst->ips_ip_mib, 26800 ipIfStatsOutDiscards); 26801 } 26802 return; 26803 } 26804 inner_mp = ipsec_mp->b_cont; 26805 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26806 oipha = (ipha_t *)outer_mp->b_rptr; 26807 iipha = (ipha_t *)inner_mp->b_rptr; 26808 *oipha = *iipha; 26809 outer_mp->b_wptr += sizeof (ipha_t); 26810 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26811 sizeof (ipha_t)); 26812 oipha->ipha_protocol = IPPROTO_ENCAP; 26813 oipha->ipha_version_and_hdr_length = 26814 IP_SIMPLE_HDR_VERSION; 26815 oipha->ipha_hdr_checksum = 0; 26816 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26817 outer_mp->b_cont = inner_mp; 26818 ipsec_mp->b_cont = outer_mp; 26819 26820 io->ipsec_out_se_done = B_TRUE; 26821 io->ipsec_out_tunnel = B_TRUE; 26822 } 26823 26824 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26825 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26826 !ipsec_out_select_sa(ipsec_mp)) 26827 return; 26828 26829 /* 26830 * By now, we know what SA's to use. Toss over to ESP & AH 26831 * to do the heavy lifting. 26832 */ 26833 zoneid = io->ipsec_out_zoneid; 26834 ASSERT(zoneid != ALL_ZONES); 26835 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26836 ASSERT(io->ipsec_out_esp_sa != NULL); 26837 io->ipsec_out_esp_done = B_TRUE; 26838 /* 26839 * Note that since hw accel can only apply one transform, 26840 * not two, we skip hw accel for ESP if we also have AH 26841 * This is an design limitation of the interface 26842 * which should be revisited. 26843 */ 26844 ASSERT(ire != NULL); 26845 if (io->ipsec_out_ah_sa == NULL) { 26846 ill = (ill_t *)ire->ire_stq->q_ptr; 26847 ipsec_out_is_accelerated(ipsec_mp, 26848 io->ipsec_out_esp_sa, ill, ire); 26849 } 26850 26851 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26852 switch (ipsec_rc) { 26853 case IPSEC_STATUS_SUCCESS: 26854 break; 26855 case IPSEC_STATUS_FAILED: 26856 if (ill != NULL) { 26857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26858 } else { 26859 BUMP_MIB(&ipst->ips_ip_mib, 26860 ipIfStatsOutDiscards); 26861 } 26862 /* FALLTHRU */ 26863 case IPSEC_STATUS_PENDING: 26864 return; 26865 } 26866 } 26867 26868 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26869 ASSERT(io->ipsec_out_ah_sa != NULL); 26870 io->ipsec_out_ah_done = B_TRUE; 26871 if (ire == NULL) { 26872 int idx = io->ipsec_out_capab_ill_index; 26873 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26874 NULL, NULL, NULL, NULL, ipst); 26875 ill_need_rele = B_TRUE; 26876 } else { 26877 ill = (ill_t *)ire->ire_stq->q_ptr; 26878 } 26879 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26880 ire); 26881 26882 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26883 switch (ipsec_rc) { 26884 case IPSEC_STATUS_SUCCESS: 26885 break; 26886 case IPSEC_STATUS_FAILED: 26887 if (ill != NULL) { 26888 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26889 } else { 26890 BUMP_MIB(&ipst->ips_ip_mib, 26891 ipIfStatsOutDiscards); 26892 } 26893 /* FALLTHRU */ 26894 case IPSEC_STATUS_PENDING: 26895 if (ill != NULL && ill_need_rele) 26896 ill_refrele(ill); 26897 return; 26898 } 26899 } 26900 /* 26901 * We are done with IPsec processing. Send it over the wire. 26902 */ 26903 done: 26904 mp = ipsec_mp->b_cont; 26905 ipha = (ipha_t *)mp->b_rptr; 26906 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26907 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26908 ire); 26909 } else { 26910 ip6h = (ip6_t *)ipha; 26911 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26912 ire); 26913 } 26914 if (ill != NULL && ill_need_rele) 26915 ill_refrele(ill); 26916 } 26917 26918 /* ARGSUSED */ 26919 void 26920 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26921 { 26922 opt_restart_t *or; 26923 int err; 26924 conn_t *connp; 26925 cred_t *cr; 26926 26927 ASSERT(CONN_Q(q)); 26928 connp = Q_TO_CONN(q); 26929 26930 ASSERT(first_mp->b_datap->db_type == M_CTL); 26931 or = (opt_restart_t *)first_mp->b_rptr; 26932 /* 26933 * We checked for a db_credp the first time svr4_optcom_req 26934 * was called (from ip_wput_nondata). So we can just ASSERT here. 26935 */ 26936 cr = msg_getcred(first_mp, NULL); 26937 ASSERT(cr != NULL); 26938 26939 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26940 err = svr4_optcom_req(q, first_mp, cr, 26941 &ip_opt_obj, B_FALSE); 26942 } else { 26943 ASSERT(or->or_type == T_OPTMGMT_REQ); 26944 err = tpi_optcom_req(q, first_mp, cr, 26945 &ip_opt_obj, B_FALSE); 26946 } 26947 if (err != EINPROGRESS) { 26948 /* operation is done */ 26949 CONN_OPER_PENDING_DONE(connp); 26950 } 26951 } 26952 26953 /* 26954 * ioctls that go through a down/up sequence may need to wait for the down 26955 * to complete. This involves waiting for the ire and ipif refcnts to go down 26956 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26957 */ 26958 /* ARGSUSED */ 26959 void 26960 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26961 { 26962 struct iocblk *iocp; 26963 mblk_t *mp1; 26964 ip_ioctl_cmd_t *ipip; 26965 int err; 26966 sin_t *sin; 26967 struct lifreq *lifr; 26968 struct ifreq *ifr; 26969 26970 iocp = (struct iocblk *)mp->b_rptr; 26971 ASSERT(ipsq != NULL); 26972 /* Existence of mp1 verified in ip_wput_nondata */ 26973 mp1 = mp->b_cont->b_cont; 26974 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26975 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26976 /* 26977 * Special case where ipx_current_ipif is not set: 26978 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26979 * We are here as were not able to complete the operation in 26980 * ipif_set_values because we could not become exclusive on 26981 * the new ipsq. 26982 */ 26983 ill_t *ill = q->q_ptr; 26984 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26985 } 26986 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26987 26988 if (ipip->ipi_cmd_type == IF_CMD) { 26989 /* This a old style SIOC[GS]IF* command */ 26990 ifr = (struct ifreq *)mp1->b_rptr; 26991 sin = (sin_t *)&ifr->ifr_addr; 26992 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26993 /* This a new style SIOC[GS]LIF* command */ 26994 lifr = (struct lifreq *)mp1->b_rptr; 26995 sin = (sin_t *)&lifr->lifr_addr; 26996 } else { 26997 sin = NULL; 26998 } 26999 27000 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 27001 q, mp, ipip, mp1->b_rptr); 27002 27003 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27004 } 27005 27006 /* 27007 * ioctl processing 27008 * 27009 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27010 * the ioctl command in the ioctl tables, determines the copyin data size 27011 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27012 * 27013 * ioctl processing then continues when the M_IOCDATA makes its way down to 27014 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27015 * associated 'conn' is refheld till the end of the ioctl and the general 27016 * ioctl processing function ip_process_ioctl() is called to extract the 27017 * arguments and process the ioctl. To simplify extraction, ioctl commands 27018 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27019 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27020 * is used to extract the ioctl's arguments. 27021 * 27022 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27023 * so goes thru the serialization primitive ipsq_try_enter. Then the 27024 * appropriate function to handle the ioctl is called based on the entry in 27025 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27026 * which also refreleases the 'conn' that was refheld at the start of the 27027 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27028 * 27029 * Many exclusive ioctls go thru an internal down up sequence as part of 27030 * the operation. For example an attempt to change the IP address of an 27031 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27032 * does all the cleanup such as deleting all ires that use this address. 27033 * Then we need to wait till all references to the interface go away. 27034 */ 27035 void 27036 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27037 { 27038 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27039 ip_ioctl_cmd_t *ipip = arg; 27040 ip_extract_func_t *extract_funcp; 27041 cmd_info_t ci; 27042 int err; 27043 boolean_t entered_ipsq = B_FALSE; 27044 27045 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27046 27047 if (ipip == NULL) 27048 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27049 27050 /* 27051 * SIOCLIFADDIF needs to go thru a special path since the 27052 * ill may not exist yet. This happens in the case of lo0 27053 * which is created using this ioctl. 27054 */ 27055 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27056 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27057 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27058 return; 27059 } 27060 27061 ci.ci_ipif = NULL; 27062 if (ipip->ipi_cmd_type == MISC_CMD) { 27063 /* 27064 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27065 */ 27066 if (ipip->ipi_cmd == IF_UNITSEL) { 27067 /* ioctl comes down the ill */ 27068 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27069 ipif_refhold(ci.ci_ipif); 27070 } 27071 err = 0; 27072 ci.ci_sin = NULL; 27073 ci.ci_sin6 = NULL; 27074 ci.ci_lifr = NULL; 27075 } else { 27076 switch (ipip->ipi_cmd_type) { 27077 case IF_CMD: 27078 case LIF_CMD: 27079 extract_funcp = ip_extract_lifreq; 27080 break; 27081 27082 case ARP_CMD: 27083 case XARP_CMD: 27084 extract_funcp = ip_extract_arpreq; 27085 break; 27086 27087 case TUN_CMD: 27088 extract_funcp = ip_extract_tunreq; 27089 break; 27090 27091 case MSFILT_CMD: 27092 extract_funcp = ip_extract_msfilter; 27093 break; 27094 27095 default: 27096 ASSERT(0); 27097 } 27098 27099 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27100 if (err != 0) { 27101 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27102 return; 27103 } 27104 27105 /* 27106 * All of the extraction functions return a refheld ipif. 27107 */ 27108 ASSERT(ci.ci_ipif != NULL); 27109 } 27110 27111 if (!(ipip->ipi_flags & IPI_WR)) { 27112 /* 27113 * A return value of EINPROGRESS means the ioctl is 27114 * either queued and waiting for some reason or has 27115 * already completed. 27116 */ 27117 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27118 ci.ci_lifr); 27119 if (ci.ci_ipif != NULL) 27120 ipif_refrele(ci.ci_ipif); 27121 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27122 return; 27123 } 27124 27125 ASSERT(ci.ci_ipif != NULL); 27126 27127 /* 27128 * If ipsq is non-NULL, we are already being called exclusively. 27129 */ 27130 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27131 if (ipsq == NULL) { 27132 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27133 NEW_OP, B_TRUE); 27134 if (ipsq == NULL) { 27135 ipif_refrele(ci.ci_ipif); 27136 return; 27137 } 27138 entered_ipsq = B_TRUE; 27139 } 27140 27141 /* 27142 * Release the ipif so that ipif_down and friends that wait for 27143 * references to go away are not misled about the current ipif_refcnt 27144 * values. We are writer so we can access the ipif even after releasing 27145 * the ipif. 27146 */ 27147 ipif_refrele(ci.ci_ipif); 27148 27149 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27150 27151 /* 27152 * A return value of EINPROGRESS means the ioctl is 27153 * either queued and waiting for some reason or has 27154 * already completed. 27155 */ 27156 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27157 27158 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27159 27160 if (entered_ipsq) 27161 ipsq_exit(ipsq); 27162 } 27163 27164 /* 27165 * Complete the ioctl. Typically ioctls use the mi package and need to 27166 * do mi_copyout/mi_copy_done. 27167 */ 27168 void 27169 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27170 { 27171 conn_t *connp = NULL; 27172 27173 if (err == EINPROGRESS) 27174 return; 27175 27176 if (CONN_Q(q)) { 27177 connp = Q_TO_CONN(q); 27178 ASSERT(connp->conn_ref >= 2); 27179 } 27180 27181 switch (mode) { 27182 case COPYOUT: 27183 if (err == 0) 27184 mi_copyout(q, mp); 27185 else 27186 mi_copy_done(q, mp, err); 27187 break; 27188 27189 case NO_COPYOUT: 27190 mi_copy_done(q, mp, err); 27191 break; 27192 27193 default: 27194 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27195 break; 27196 } 27197 27198 /* 27199 * The refhold placed at the start of the ioctl is released here. 27200 */ 27201 if (connp != NULL) 27202 CONN_OPER_PENDING_DONE(connp); 27203 27204 if (ipsq != NULL) 27205 ipsq_current_finish(ipsq); 27206 } 27207 27208 /* Called from ip_wput for all non data messages */ 27209 /* ARGSUSED */ 27210 void 27211 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27212 { 27213 mblk_t *mp1; 27214 ire_t *ire, *fake_ire; 27215 ill_t *ill; 27216 struct iocblk *iocp; 27217 ip_ioctl_cmd_t *ipip; 27218 cred_t *cr; 27219 conn_t *connp; 27220 int err; 27221 nce_t *nce; 27222 ipif_t *ipif; 27223 ip_stack_t *ipst; 27224 char *proto_str; 27225 27226 if (CONN_Q(q)) { 27227 connp = Q_TO_CONN(q); 27228 ipst = connp->conn_netstack->netstack_ip; 27229 } else { 27230 connp = NULL; 27231 ipst = ILLQ_TO_IPST(q); 27232 } 27233 27234 switch (DB_TYPE(mp)) { 27235 case M_IOCTL: 27236 /* 27237 * IOCTL processing begins in ip_sioctl_copyin_setup which 27238 * will arrange to copy in associated control structures. 27239 */ 27240 ip_sioctl_copyin_setup(q, mp); 27241 return; 27242 case M_IOCDATA: 27243 /* 27244 * Ensure that this is associated with one of our trans- 27245 * parent ioctls. If it's not ours, discard it if we're 27246 * running as a driver, or pass it on if we're a module. 27247 */ 27248 iocp = (struct iocblk *)mp->b_rptr; 27249 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27250 if (ipip == NULL) { 27251 if (q->q_next == NULL) { 27252 goto nak; 27253 } else { 27254 putnext(q, mp); 27255 } 27256 return; 27257 } 27258 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27259 /* 27260 * the ioctl is one we recognise, but is not 27261 * consumed by IP as a module, pass M_IOCDATA 27262 * for processing downstream, but only for 27263 * common Streams ioctls. 27264 */ 27265 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27266 putnext(q, mp); 27267 return; 27268 } else { 27269 goto nak; 27270 } 27271 } 27272 27273 /* IOCTL continuation following copyin or copyout. */ 27274 if (mi_copy_state(q, mp, NULL) == -1) { 27275 /* 27276 * The copy operation failed. mi_copy_state already 27277 * cleaned up, so we're out of here. 27278 */ 27279 return; 27280 } 27281 /* 27282 * If we just completed a copy in, we become writer and 27283 * continue processing in ip_sioctl_copyin_done. If it 27284 * was a copy out, we call mi_copyout again. If there is 27285 * nothing more to copy out, it will complete the IOCTL. 27286 */ 27287 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27288 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27289 mi_copy_done(q, mp, EPROTO); 27290 return; 27291 } 27292 /* 27293 * Check for cases that need more copying. A return 27294 * value of 0 means a second copyin has been started, 27295 * so we return; a return value of 1 means no more 27296 * copying is needed, so we continue. 27297 */ 27298 if (ipip->ipi_cmd_type == MSFILT_CMD && 27299 MI_COPY_COUNT(mp) == 1) { 27300 if (ip_copyin_msfilter(q, mp) == 0) 27301 return; 27302 } 27303 /* 27304 * Refhold the conn, till the ioctl completes. This is 27305 * needed in case the ioctl ends up in the pending mp 27306 * list. Every mp in the ill_pending_mp list and 27307 * the ipx_pending_mp must have a refhold on the conn 27308 * to resume processing. The refhold is released when 27309 * the ioctl completes. (normally or abnormally) 27310 * In all cases ip_ioctl_finish is called to finish 27311 * the ioctl. 27312 */ 27313 if (connp != NULL) { 27314 /* This is not a reentry */ 27315 ASSERT(ipsq == NULL); 27316 CONN_INC_REF(connp); 27317 } else { 27318 if (!(ipip->ipi_flags & IPI_MODOK)) { 27319 mi_copy_done(q, mp, EINVAL); 27320 return; 27321 } 27322 } 27323 27324 ip_process_ioctl(ipsq, q, mp, ipip); 27325 27326 } else { 27327 mi_copyout(q, mp); 27328 } 27329 return; 27330 nak: 27331 iocp->ioc_error = EINVAL; 27332 mp->b_datap->db_type = M_IOCNAK; 27333 iocp->ioc_count = 0; 27334 qreply(q, mp); 27335 return; 27336 27337 case M_IOCNAK: 27338 /* 27339 * The only way we could get here is if a resolver didn't like 27340 * an IOCTL we sent it. This shouldn't happen. 27341 */ 27342 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27343 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27344 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27345 freemsg(mp); 27346 return; 27347 case M_IOCACK: 27348 /* /dev/ip shouldn't see this */ 27349 if (CONN_Q(q)) 27350 goto nak; 27351 27352 /* 27353 * Finish socket ioctls passed through to ARP. We use the 27354 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27355 * we need to become writer before calling ip_sioctl_iocack(). 27356 * Note that qwriter_ip() will release the refhold, and that a 27357 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27358 * ill stream. 27359 */ 27360 iocp = (struct iocblk *)mp->b_rptr; 27361 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27362 ip_sioctl_iocack(NULL, q, mp, NULL); 27363 return; 27364 } 27365 27366 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27367 iocp->ioc_cmd == AR_ENTRY_ADD); 27368 ill = q->q_ptr; 27369 ill_refhold(ill); 27370 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27371 return; 27372 case M_FLUSH: 27373 if (*mp->b_rptr & FLUSHW) 27374 flushq(q, FLUSHALL); 27375 if (q->q_next) { 27376 putnext(q, mp); 27377 return; 27378 } 27379 if (*mp->b_rptr & FLUSHR) { 27380 *mp->b_rptr &= ~FLUSHW; 27381 qreply(q, mp); 27382 return; 27383 } 27384 freemsg(mp); 27385 return; 27386 case IRE_DB_REQ_TYPE: 27387 if (connp == NULL) { 27388 proto_str = "IRE_DB_REQ_TYPE"; 27389 goto protonak; 27390 } 27391 /* An Upper Level Protocol wants a copy of an IRE. */ 27392 ip_ire_req(q, mp); 27393 return; 27394 case M_CTL: 27395 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27396 break; 27397 27398 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27399 TUN_HELLO) { 27400 ASSERT(connp != NULL); 27401 connp->conn_flags |= IPCL_IPTUN; 27402 freeb(mp); 27403 return; 27404 } 27405 27406 /* M_CTL messages are used by ARP to tell us things. */ 27407 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27408 break; 27409 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27410 case AR_ENTRY_SQUERY: 27411 putnext(q, mp); 27412 return; 27413 case AR_CLIENT_NOTIFY: 27414 ip_arp_news(q, mp); 27415 return; 27416 case AR_DLPIOP_DONE: 27417 ASSERT(q->q_next != NULL); 27418 ill = (ill_t *)q->q_ptr; 27419 /* qwriter_ip releases the refhold */ 27420 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27421 ill_refhold(ill); 27422 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27423 return; 27424 case AR_ARP_CLOSING: 27425 /* 27426 * ARP (above us) is closing. If no ARP bringup is 27427 * currently pending, ack the message so that ARP 27428 * can complete its close. Also mark ill_arp_closing 27429 * so that new ARP bringups will fail. If any 27430 * ARP bringup is currently in progress, we will 27431 * ack this when the current ARP bringup completes. 27432 */ 27433 ASSERT(q->q_next != NULL); 27434 ill = (ill_t *)q->q_ptr; 27435 mutex_enter(&ill->ill_lock); 27436 ill->ill_arp_closing = 1; 27437 if (!ill->ill_arp_bringup_pending) { 27438 mutex_exit(&ill->ill_lock); 27439 qreply(q, mp); 27440 } else { 27441 mutex_exit(&ill->ill_lock); 27442 freemsg(mp); 27443 } 27444 return; 27445 case AR_ARP_EXTEND: 27446 /* 27447 * The ARP module above us is capable of duplicate 27448 * address detection. Old ATM drivers will not send 27449 * this message. 27450 */ 27451 ASSERT(q->q_next != NULL); 27452 ill = (ill_t *)q->q_ptr; 27453 ill->ill_arp_extend = B_TRUE; 27454 freemsg(mp); 27455 return; 27456 default: 27457 break; 27458 } 27459 break; 27460 case M_PROTO: 27461 case M_PCPROTO: 27462 /* 27463 * The only PROTO messages we expect are copies of option 27464 * negotiation acknowledgements, AH and ESP bind requests 27465 * are also expected. 27466 */ 27467 switch (((union T_primitives *)mp->b_rptr)->type) { 27468 case O_T_BIND_REQ: 27469 case T_BIND_REQ: { 27470 /* Request can get queued in bind */ 27471 if (connp == NULL) { 27472 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27473 goto protonak; 27474 } 27475 /* 27476 * The transports except SCTP call ip_bind_{v4,v6}() 27477 * directly instead of a a putnext. SCTP doesn't 27478 * generate any T_BIND_REQ since it has its own 27479 * fanout data structures. However, ESP and AH 27480 * come in for regular binds; all other cases are 27481 * bind retries. 27482 */ 27483 ASSERT(!IPCL_IS_SCTP(connp)); 27484 27485 /* Don't increment refcnt if this is a re-entry */ 27486 if (ipsq == NULL) 27487 CONN_INC_REF(connp); 27488 27489 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27490 connp, NULL) : ip_bind_v4(q, mp, connp); 27491 ASSERT(mp != NULL); 27492 27493 ASSERT(!IPCL_IS_TCP(connp)); 27494 ASSERT(!IPCL_IS_UDP(connp)); 27495 ASSERT(!IPCL_IS_RAWIP(connp)); 27496 27497 /* The case of AH and ESP */ 27498 qreply(q, mp); 27499 CONN_OPER_PENDING_DONE(connp); 27500 return; 27501 } 27502 case T_SVR4_OPTMGMT_REQ: 27503 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27504 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27505 27506 if (connp == NULL) { 27507 proto_str = "T_SVR4_OPTMGMT_REQ"; 27508 goto protonak; 27509 } 27510 27511 /* 27512 * All Solaris components should pass a db_credp 27513 * for this TPI message, hence we ASSERT. 27514 * But in case there is some other M_PROTO that looks 27515 * like a TPI message sent by some other kernel 27516 * component, we check and return an error. 27517 */ 27518 cr = msg_getcred(mp, NULL); 27519 ASSERT(cr != NULL); 27520 if (cr == NULL) { 27521 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27522 if (mp != NULL) 27523 qreply(q, mp); 27524 return; 27525 } 27526 27527 if (!snmpcom_req(q, mp, ip_snmp_set, 27528 ip_snmp_get, cr)) { 27529 /* 27530 * Call svr4_optcom_req so that it can 27531 * generate the ack. We don't come here 27532 * if this operation is being restarted. 27533 * ip_restart_optmgmt will drop the conn ref. 27534 * In the case of ipsec option after the ipsec 27535 * load is complete conn_restart_ipsec_waiter 27536 * drops the conn ref. 27537 */ 27538 ASSERT(ipsq == NULL); 27539 CONN_INC_REF(connp); 27540 if (ip_check_for_ipsec_opt(q, mp)) 27541 return; 27542 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27543 B_FALSE); 27544 if (err != EINPROGRESS) { 27545 /* Operation is done */ 27546 CONN_OPER_PENDING_DONE(connp); 27547 } 27548 } 27549 return; 27550 case T_OPTMGMT_REQ: 27551 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27552 /* 27553 * Note: No snmpcom_req support through new 27554 * T_OPTMGMT_REQ. 27555 * Call tpi_optcom_req so that it can 27556 * generate the ack. 27557 */ 27558 if (connp == NULL) { 27559 proto_str = "T_OPTMGMT_REQ"; 27560 goto protonak; 27561 } 27562 27563 /* 27564 * All Solaris components should pass a db_credp 27565 * for this TPI message, hence we ASSERT. 27566 * But in case there is some other M_PROTO that looks 27567 * like a TPI message sent by some other kernel 27568 * component, we check and return an error. 27569 */ 27570 cr = msg_getcred(mp, NULL); 27571 ASSERT(cr != NULL); 27572 if (cr == NULL) { 27573 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27574 if (mp != NULL) 27575 qreply(q, mp); 27576 return; 27577 } 27578 ASSERT(ipsq == NULL); 27579 /* 27580 * We don't come here for restart. ip_restart_optmgmt 27581 * will drop the conn ref. In the case of ipsec option 27582 * after the ipsec load is complete 27583 * conn_restart_ipsec_waiter drops the conn ref. 27584 */ 27585 CONN_INC_REF(connp); 27586 if (ip_check_for_ipsec_opt(q, mp)) 27587 return; 27588 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27589 if (err != EINPROGRESS) { 27590 /* Operation is done */ 27591 CONN_OPER_PENDING_DONE(connp); 27592 } 27593 return; 27594 case T_UNBIND_REQ: 27595 if (connp == NULL) { 27596 proto_str = "T_UNBIND_REQ"; 27597 goto protonak; 27598 } 27599 ip_unbind(Q_TO_CONN(q)); 27600 mp = mi_tpi_ok_ack_alloc(mp); 27601 qreply(q, mp); 27602 return; 27603 default: 27604 /* 27605 * Have to drop any DLPI messages coming down from 27606 * arp (such as an info_req which would cause ip 27607 * to receive an extra info_ack if it was passed 27608 * through. 27609 */ 27610 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27611 (int)*(uint_t *)mp->b_rptr)); 27612 freemsg(mp); 27613 return; 27614 } 27615 /* NOTREACHED */ 27616 case IRE_DB_TYPE: { 27617 nce_t *nce; 27618 ill_t *ill; 27619 in6_addr_t gw_addr_v6; 27620 27621 /* 27622 * This is a response back from a resolver. It 27623 * consists of a message chain containing: 27624 * IRE_MBLK-->LL_HDR_MBLK->pkt 27625 * The IRE_MBLK is the one we allocated in ip_newroute. 27626 * The LL_HDR_MBLK is the DLPI header to use to get 27627 * the attached packet, and subsequent ones for the 27628 * same destination, transmitted. 27629 */ 27630 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27631 break; 27632 /* 27633 * First, check to make sure the resolution succeeded. 27634 * If it failed, the second mblk will be empty. 27635 * If it is, free the chain, dropping the packet. 27636 * (We must ire_delete the ire; that frees the ire mblk) 27637 * We're doing this now to support PVCs for ATM; it's 27638 * a partial xresolv implementation. When we fully implement 27639 * xresolv interfaces, instead of freeing everything here 27640 * we'll initiate neighbor discovery. 27641 * 27642 * For v4 (ARP and other external resolvers) the resolver 27643 * frees the message, so no check is needed. This check 27644 * is required, though, for a full xresolve implementation. 27645 * Including this code here now both shows how external 27646 * resolvers can NACK a resolution request using an 27647 * existing design that has no specific provisions for NACKs, 27648 * and also takes into account that the current non-ARP 27649 * external resolver has been coded to use this method of 27650 * NACKing for all IPv6 (xresolv) cases, 27651 * whether our xresolv implementation is complete or not. 27652 * 27653 */ 27654 ire = (ire_t *)mp->b_rptr; 27655 ill = ire_to_ill(ire); 27656 mp1 = mp->b_cont; /* dl_unitdata_req */ 27657 if (mp1->b_rptr == mp1->b_wptr) { 27658 if (ire->ire_ipversion == IPV6_VERSION) { 27659 /* 27660 * XRESOLV interface. 27661 */ 27662 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27663 mutex_enter(&ire->ire_lock); 27664 gw_addr_v6 = ire->ire_gateway_addr_v6; 27665 mutex_exit(&ire->ire_lock); 27666 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27667 nce = ndp_lookup_v6(ill, B_FALSE, 27668 &ire->ire_addr_v6, B_FALSE); 27669 } else { 27670 nce = ndp_lookup_v6(ill, B_FALSE, 27671 &gw_addr_v6, B_FALSE); 27672 } 27673 if (nce != NULL) { 27674 nce_resolv_failed(nce); 27675 ndp_delete(nce); 27676 NCE_REFRELE(nce); 27677 } 27678 } 27679 mp->b_cont = NULL; 27680 freemsg(mp1); /* frees the pkt as well */ 27681 ASSERT(ire->ire_nce == NULL); 27682 ire_delete((ire_t *)mp->b_rptr); 27683 return; 27684 } 27685 27686 /* 27687 * Split them into IRE_MBLK and pkt and feed it into 27688 * ire_add_then_send. Then in ire_add_then_send 27689 * the IRE will be added, and then the packet will be 27690 * run back through ip_wput. This time it will make 27691 * it to the wire. 27692 */ 27693 mp->b_cont = NULL; 27694 mp = mp1->b_cont; /* now, mp points to pkt */ 27695 mp1->b_cont = NULL; 27696 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27697 if (ire->ire_ipversion == IPV6_VERSION) { 27698 /* 27699 * XRESOLV interface. Find the nce and put a copy 27700 * of the dl_unitdata_req in nce_res_mp 27701 */ 27702 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27703 mutex_enter(&ire->ire_lock); 27704 gw_addr_v6 = ire->ire_gateway_addr_v6; 27705 mutex_exit(&ire->ire_lock); 27706 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27707 nce = ndp_lookup_v6(ill, B_FALSE, 27708 &ire->ire_addr_v6, B_FALSE); 27709 } else { 27710 nce = ndp_lookup_v6(ill, B_FALSE, 27711 &gw_addr_v6, B_FALSE); 27712 } 27713 if (nce != NULL) { 27714 /* 27715 * We have to protect nce_res_mp here 27716 * from being accessed by other threads 27717 * while we change the mblk pointer. 27718 * Other functions will also lock the nce when 27719 * accessing nce_res_mp. 27720 * 27721 * The reason we change the mblk pointer 27722 * here rather than copying the resolved address 27723 * into the template is that, unlike with 27724 * ethernet, we have no guarantee that the 27725 * resolved address length will be 27726 * smaller than or equal to the lla length 27727 * with which the template was allocated, 27728 * (for ethernet, they're equal) 27729 * so we have to use the actual resolved 27730 * address mblk - which holds the real 27731 * dl_unitdata_req with the resolved address. 27732 * 27733 * Doing this is the same behavior as was 27734 * previously used in the v4 ARP case. 27735 */ 27736 mutex_enter(&nce->nce_lock); 27737 if (nce->nce_res_mp != NULL) 27738 freemsg(nce->nce_res_mp); 27739 nce->nce_res_mp = mp1; 27740 mutex_exit(&nce->nce_lock); 27741 /* 27742 * We do a fastpath probe here because 27743 * we have resolved the address without 27744 * using Neighbor Discovery. 27745 * In the non-XRESOLV v6 case, the fastpath 27746 * probe is done right after neighbor 27747 * discovery completes. 27748 */ 27749 if (nce->nce_res_mp != NULL) { 27750 int res; 27751 nce_fastpath_list_add(nce); 27752 res = ill_fastpath_probe(ill, 27753 nce->nce_res_mp); 27754 if (res != 0 && res != EAGAIN) 27755 nce_fastpath_list_delete(nce); 27756 } 27757 27758 ire_add_then_send(q, ire, mp); 27759 /* 27760 * Now we have to clean out any packets 27761 * that may have been queued on the nce 27762 * while it was waiting for address resolution 27763 * to complete. 27764 */ 27765 mutex_enter(&nce->nce_lock); 27766 mp1 = nce->nce_qd_mp; 27767 nce->nce_qd_mp = NULL; 27768 mutex_exit(&nce->nce_lock); 27769 while (mp1 != NULL) { 27770 mblk_t *nxt_mp; 27771 queue_t *fwdq = NULL; 27772 ill_t *inbound_ill; 27773 uint_t ifindex; 27774 27775 nxt_mp = mp1->b_next; 27776 mp1->b_next = NULL; 27777 /* 27778 * Retrieve ifindex stored in 27779 * ip_rput_data_v6() 27780 */ 27781 ifindex = 27782 (uint_t)(uintptr_t)mp1->b_prev; 27783 inbound_ill = 27784 ill_lookup_on_ifindex(ifindex, 27785 B_TRUE, NULL, NULL, NULL, 27786 NULL, ipst); 27787 mp1->b_prev = NULL; 27788 if (inbound_ill != NULL) 27789 fwdq = inbound_ill->ill_rq; 27790 27791 if (fwdq != NULL) { 27792 put(fwdq, mp1); 27793 ill_refrele(inbound_ill); 27794 } else 27795 put(WR(ill->ill_rq), mp1); 27796 mp1 = nxt_mp; 27797 } 27798 NCE_REFRELE(nce); 27799 } else { /* nce is NULL; clean up */ 27800 ire_delete(ire); 27801 freemsg(mp); 27802 freemsg(mp1); 27803 return; 27804 } 27805 } else { 27806 nce_t *arpce; 27807 /* 27808 * Link layer resolution succeeded. Recompute the 27809 * ire_nce. 27810 */ 27811 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27812 if ((arpce = ndp_lookup_v4(ill, 27813 (ire->ire_gateway_addr != INADDR_ANY ? 27814 &ire->ire_gateway_addr : &ire->ire_addr), 27815 B_FALSE)) == NULL) { 27816 freeb(ire->ire_mp); 27817 freeb(mp1); 27818 freemsg(mp); 27819 return; 27820 } 27821 mutex_enter(&arpce->nce_lock); 27822 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27823 if (arpce->nce_state == ND_REACHABLE) { 27824 /* 27825 * Someone resolved this before us; 27826 * cleanup the res_mp. Since ire has 27827 * not been added yet, the call to ire_add_v4 27828 * from ire_add_then_send (when a dup is 27829 * detected) will clean up the ire. 27830 */ 27831 freeb(mp1); 27832 } else { 27833 ASSERT(arpce->nce_res_mp == NULL); 27834 arpce->nce_res_mp = mp1; 27835 arpce->nce_state = ND_REACHABLE; 27836 } 27837 mutex_exit(&arpce->nce_lock); 27838 if (ire->ire_marks & IRE_MARK_NOADD) { 27839 /* 27840 * this ire will not be added to the ire 27841 * cache table, so we can set the ire_nce 27842 * here, as there are no atomicity constraints. 27843 */ 27844 ire->ire_nce = arpce; 27845 /* 27846 * We are associating this nce with the ire 27847 * so change the nce ref taken in 27848 * ndp_lookup_v4() from 27849 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27850 */ 27851 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27852 } else { 27853 NCE_REFRELE(arpce); 27854 } 27855 ire_add_then_send(q, ire, mp); 27856 } 27857 return; /* All is well, the packet has been sent. */ 27858 } 27859 case IRE_ARPRESOLVE_TYPE: { 27860 27861 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27862 break; 27863 mp1 = mp->b_cont; /* dl_unitdata_req */ 27864 mp->b_cont = NULL; 27865 /* 27866 * First, check to make sure the resolution succeeded. 27867 * If it failed, the second mblk will be empty. 27868 */ 27869 if (mp1->b_rptr == mp1->b_wptr) { 27870 /* cleanup the incomplete ire, free queued packets */ 27871 freemsg(mp); /* fake ire */ 27872 freeb(mp1); /* dl_unitdata response */ 27873 return; 27874 } 27875 27876 /* 27877 * Update any incomplete nce_t found. We search the ctable 27878 * and find the nce from the ire->ire_nce because we need 27879 * to pass the ire to ip_xmit_v4 later, and can find both 27880 * ire and nce in one lookup. 27881 */ 27882 fake_ire = (ire_t *)mp->b_rptr; 27883 27884 /* 27885 * By the time we come back here from ARP the logical outgoing 27886 * interface of the incomplete ire we added in ire_forward() 27887 * could have disappeared, causing the incomplete ire to also 27888 * disappear. So we need to retreive the proper ipif for the 27889 * ire before looking in ctable. In the case of IPMP, the 27890 * ipif may be on the IPMP ill, so look it up based on the 27891 * ire_ipif_ifindex we stashed back in ire_init_common(). 27892 * Then, we can verify that ire_ipif_seqid still exists. 27893 */ 27894 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27895 NULL, NULL, NULL, NULL, ipst); 27896 if (ill == NULL) { 27897 ip1dbg(("ill for incomplete ire vanished\n")); 27898 freemsg(mp); /* fake ire */ 27899 freeb(mp1); /* dl_unitdata response */ 27900 return; 27901 } 27902 27903 /* Get the outgoing ipif */ 27904 mutex_enter(&ill->ill_lock); 27905 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27906 if (ipif == NULL) { 27907 mutex_exit(&ill->ill_lock); 27908 ill_refrele(ill); 27909 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27910 freemsg(mp); /* fake_ire */ 27911 freeb(mp1); /* dl_unitdata response */ 27912 return; 27913 } 27914 27915 ipif_refhold_locked(ipif); 27916 mutex_exit(&ill->ill_lock); 27917 ill_refrele(ill); 27918 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27919 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27920 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27921 ipif_refrele(ipif); 27922 if (ire == NULL) { 27923 /* 27924 * no ire was found; check if there is an nce 27925 * for this lookup; if it has no ire's pointing at it 27926 * cleanup. 27927 */ 27928 if ((nce = ndp_lookup_v4(q->q_ptr, 27929 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27930 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27931 B_FALSE)) != NULL) { 27932 /* 27933 * cleanup: 27934 * We check for refcnt 2 (one for the nce 27935 * hash list + 1 for the ref taken by 27936 * ndp_lookup_v4) to check that there are 27937 * no ire's pointing at the nce. 27938 */ 27939 if (nce->nce_refcnt == 2) 27940 ndp_delete(nce); 27941 NCE_REFRELE(nce); 27942 } 27943 freeb(mp1); /* dl_unitdata response */ 27944 freemsg(mp); /* fake ire */ 27945 return; 27946 } 27947 27948 nce = ire->ire_nce; 27949 DTRACE_PROBE2(ire__arpresolve__type, 27950 ire_t *, ire, nce_t *, nce); 27951 mutex_enter(&nce->nce_lock); 27952 nce->nce_last = TICK_TO_MSEC(lbolt64); 27953 if (nce->nce_state == ND_REACHABLE) { 27954 /* 27955 * Someone resolved this before us; 27956 * our response is not needed any more. 27957 */ 27958 mutex_exit(&nce->nce_lock); 27959 freeb(mp1); /* dl_unitdata response */ 27960 } else { 27961 ASSERT(nce->nce_res_mp == NULL); 27962 nce->nce_res_mp = mp1; 27963 nce->nce_state = ND_REACHABLE; 27964 mutex_exit(&nce->nce_lock); 27965 nce_fastpath(nce); 27966 } 27967 /* 27968 * The cached nce_t has been updated to be reachable; 27969 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27970 */ 27971 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27972 freemsg(mp); 27973 /* 27974 * send out queued packets. 27975 */ 27976 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27977 27978 IRE_REFRELE(ire); 27979 return; 27980 } 27981 default: 27982 break; 27983 } 27984 if (q->q_next) { 27985 putnext(q, mp); 27986 } else 27987 freemsg(mp); 27988 return; 27989 27990 protonak: 27991 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27992 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27993 qreply(q, mp); 27994 } 27995 27996 /* 27997 * Process IP options in an outbound packet. Modify the destination if there 27998 * is a source route option. 27999 * Returns non-zero if something fails in which case an ICMP error has been 28000 * sent and mp freed. 28001 */ 28002 static int 28003 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28004 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28005 { 28006 ipoptp_t opts; 28007 uchar_t *opt; 28008 uint8_t optval; 28009 uint8_t optlen; 28010 ipaddr_t dst; 28011 intptr_t code = 0; 28012 mblk_t *mp; 28013 ire_t *ire = NULL; 28014 28015 ip2dbg(("ip_wput_options\n")); 28016 mp = ipsec_mp; 28017 if (mctl_present) { 28018 mp = ipsec_mp->b_cont; 28019 } 28020 28021 dst = ipha->ipha_dst; 28022 for (optval = ipoptp_first(&opts, ipha); 28023 optval != IPOPT_EOL; 28024 optval = ipoptp_next(&opts)) { 28025 opt = opts.ipoptp_cur; 28026 optlen = opts.ipoptp_len; 28027 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28028 optval, optlen)); 28029 switch (optval) { 28030 uint32_t off; 28031 case IPOPT_SSRR: 28032 case IPOPT_LSRR: 28033 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28034 ip1dbg(( 28035 "ip_wput_options: bad option offset\n")); 28036 code = (char *)&opt[IPOPT_OLEN] - 28037 (char *)ipha; 28038 goto param_prob; 28039 } 28040 off = opt[IPOPT_OFFSET]; 28041 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28042 ntohl(dst))); 28043 /* 28044 * For strict: verify that dst is directly 28045 * reachable. 28046 */ 28047 if (optval == IPOPT_SSRR) { 28048 ire = ire_ftable_lookup(dst, 0, 0, 28049 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28050 msg_getlabel(mp), 28051 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28052 if (ire == NULL) { 28053 ip1dbg(("ip_wput_options: SSRR not" 28054 " directly reachable: 0x%x\n", 28055 ntohl(dst))); 28056 goto bad_src_route; 28057 } 28058 ire_refrele(ire); 28059 } 28060 break; 28061 case IPOPT_RR: 28062 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28063 ip1dbg(( 28064 "ip_wput_options: bad option offset\n")); 28065 code = (char *)&opt[IPOPT_OLEN] - 28066 (char *)ipha; 28067 goto param_prob; 28068 } 28069 break; 28070 case IPOPT_TS: 28071 /* 28072 * Verify that length >=5 and that there is either 28073 * room for another timestamp or that the overflow 28074 * counter is not maxed out. 28075 */ 28076 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28077 if (optlen < IPOPT_MINLEN_IT) { 28078 goto param_prob; 28079 } 28080 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28081 ip1dbg(( 28082 "ip_wput_options: bad option offset\n")); 28083 code = (char *)&opt[IPOPT_OFFSET] - 28084 (char *)ipha; 28085 goto param_prob; 28086 } 28087 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28088 case IPOPT_TS_TSONLY: 28089 off = IPOPT_TS_TIMELEN; 28090 break; 28091 case IPOPT_TS_TSANDADDR: 28092 case IPOPT_TS_PRESPEC: 28093 case IPOPT_TS_PRESPEC_RFC791: 28094 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28095 break; 28096 default: 28097 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28098 (char *)ipha; 28099 goto param_prob; 28100 } 28101 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28102 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28103 /* 28104 * No room and the overflow counter is 15 28105 * already. 28106 */ 28107 goto param_prob; 28108 } 28109 break; 28110 } 28111 } 28112 28113 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28114 return (0); 28115 28116 ip1dbg(("ip_wput_options: error processing IP options.")); 28117 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28118 28119 param_prob: 28120 /* 28121 * Since ip_wput() isn't close to finished, we fill 28122 * in enough of the header for credible error reporting. 28123 */ 28124 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28125 /* Failed */ 28126 freemsg(ipsec_mp); 28127 return (-1); 28128 } 28129 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28130 return (-1); 28131 28132 bad_src_route: 28133 /* 28134 * Since ip_wput() isn't close to finished, we fill 28135 * in enough of the header for credible error reporting. 28136 */ 28137 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28138 /* Failed */ 28139 freemsg(ipsec_mp); 28140 return (-1); 28141 } 28142 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28143 return (-1); 28144 } 28145 28146 /* 28147 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28148 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28149 * thru /etc/system. 28150 */ 28151 #define CONN_MAXDRAINCNT 64 28152 28153 static void 28154 conn_drain_init(ip_stack_t *ipst) 28155 { 28156 int i, j; 28157 idl_tx_list_t *itl_tx; 28158 28159 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28160 28161 if ((ipst->ips_conn_drain_list_cnt == 0) || 28162 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28163 /* 28164 * Default value of the number of drainers is the 28165 * number of cpus, subject to maximum of 8 drainers. 28166 */ 28167 if (boot_max_ncpus != -1) 28168 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28169 else 28170 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28171 } 28172 28173 ipst->ips_idl_tx_list = 28174 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28175 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28176 itl_tx = &ipst->ips_idl_tx_list[i]; 28177 itl_tx->txl_drain_list = 28178 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28179 sizeof (idl_t), KM_SLEEP); 28180 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28181 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28182 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28183 MUTEX_DEFAULT, NULL); 28184 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28185 } 28186 } 28187 } 28188 28189 static void 28190 conn_drain_fini(ip_stack_t *ipst) 28191 { 28192 int i; 28193 idl_tx_list_t *itl_tx; 28194 28195 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28196 itl_tx = &ipst->ips_idl_tx_list[i]; 28197 kmem_free(itl_tx->txl_drain_list, 28198 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28199 } 28200 kmem_free(ipst->ips_idl_tx_list, 28201 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28202 ipst->ips_idl_tx_list = NULL; 28203 } 28204 28205 /* 28206 * Note: For an overview of how flowcontrol is handled in IP please see the 28207 * IP Flowcontrol notes at the top of this file. 28208 * 28209 * Flow control has blocked us from proceeding. Insert the given conn in one 28210 * of the conn drain lists. These conn wq's will be qenabled later on when 28211 * STREAMS flow control does a backenable. conn_walk_drain will enable 28212 * the first conn in each of these drain lists. Each of these qenabled conns 28213 * in turn enables the next in the list, after it runs, or when it closes, 28214 * thus sustaining the drain process. 28215 */ 28216 void 28217 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28218 { 28219 idl_t *idl = tx_list->txl_drain_list; 28220 uint_t index; 28221 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28222 28223 mutex_enter(&connp->conn_lock); 28224 if (connp->conn_state_flags & CONN_CLOSING) { 28225 /* 28226 * The conn is closing as a result of which CONN_CLOSING 28227 * is set. Return. 28228 */ 28229 mutex_exit(&connp->conn_lock); 28230 return; 28231 } else if (connp->conn_idl == NULL) { 28232 /* 28233 * Assign the next drain list round robin. We dont' use 28234 * a lock, and thus it may not be strictly round robin. 28235 * Atomicity of load/stores is enough to make sure that 28236 * conn_drain_list_index is always within bounds. 28237 */ 28238 index = tx_list->txl_drain_index; 28239 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28240 connp->conn_idl = &tx_list->txl_drain_list[index]; 28241 index++; 28242 if (index == ipst->ips_conn_drain_list_cnt) 28243 index = 0; 28244 tx_list->txl_drain_index = index; 28245 } 28246 mutex_exit(&connp->conn_lock); 28247 28248 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28249 if ((connp->conn_drain_prev != NULL) || 28250 (connp->conn_state_flags & CONN_CLOSING)) { 28251 /* 28252 * The conn is already in the drain list, OR 28253 * the conn is closing. We need to check again for 28254 * the closing case again since close can happen 28255 * after we drop the conn_lock, and before we 28256 * acquire the CONN_DRAIN_LIST_LOCK. 28257 */ 28258 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28259 return; 28260 } else { 28261 idl = connp->conn_idl; 28262 } 28263 28264 /* 28265 * The conn is not in the drain list. Insert it at the 28266 * tail of the drain list. The drain list is circular 28267 * and doubly linked. idl_conn points to the 1st element 28268 * in the list. 28269 */ 28270 if (idl->idl_conn == NULL) { 28271 idl->idl_conn = connp; 28272 connp->conn_drain_next = connp; 28273 connp->conn_drain_prev = connp; 28274 } else { 28275 conn_t *head = idl->idl_conn; 28276 28277 connp->conn_drain_next = head; 28278 connp->conn_drain_prev = head->conn_drain_prev; 28279 head->conn_drain_prev->conn_drain_next = connp; 28280 head->conn_drain_prev = connp; 28281 } 28282 /* 28283 * For non streams based sockets assert flow control. 28284 */ 28285 if (IPCL_IS_NONSTR(connp)) { 28286 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28287 (*connp->conn_upcalls->su_txq_full) 28288 (connp->conn_upper_handle, B_TRUE); 28289 } else { 28290 conn_setqfull(connp); 28291 noenable(connp->conn_wq); 28292 } 28293 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28294 } 28295 28296 /* 28297 * This conn is closing, and we are called from ip_close. OR 28298 * This conn has been serviced by ip_wsrv, and we need to do the tail 28299 * processing. 28300 * If this conn is part of the drain list, we may need to sustain the drain 28301 * process by qenabling the next conn in the drain list. We may also need to 28302 * remove this conn from the list, if it is done. 28303 */ 28304 static void 28305 conn_drain_tail(conn_t *connp, boolean_t closing) 28306 { 28307 idl_t *idl; 28308 28309 /* 28310 * connp->conn_idl is stable at this point, and no lock is needed 28311 * to check it. If we are called from ip_close, close has already 28312 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28313 * called us only because conn_idl is non-null. If we are called thru 28314 * service, conn_idl could be null, but it cannot change because 28315 * service is single-threaded per queue, and there cannot be another 28316 * instance of service trying to call conn_drain_insert on this conn 28317 * now. 28318 */ 28319 ASSERT(!closing || (connp->conn_idl != NULL)); 28320 28321 /* 28322 * If connp->conn_idl is null, the conn has not been inserted into any 28323 * drain list even once since creation of the conn. Just return. 28324 */ 28325 if (connp->conn_idl == NULL) 28326 return; 28327 28328 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28329 28330 if (connp->conn_drain_prev == NULL) { 28331 /* This conn is currently not in the drain list. */ 28332 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28333 return; 28334 } 28335 idl = connp->conn_idl; 28336 if (idl->idl_conn_draining == connp) { 28337 /* 28338 * This conn is the current drainer. If this is the last conn 28339 * in the drain list, we need to do more checks, in the 'if' 28340 * below. Otherwwise we need to just qenable the next conn, 28341 * to sustain the draining, and is handled in the 'else' 28342 * below. 28343 */ 28344 if (connp->conn_drain_next == idl->idl_conn) { 28345 /* 28346 * This conn is the last in this list. This round 28347 * of draining is complete. If idl_repeat is set, 28348 * it means another flow enabling has happened from 28349 * the driver/streams and we need to another round 28350 * of draining. 28351 * If there are more than 2 conns in the drain list, 28352 * do a left rotate by 1, so that all conns except the 28353 * conn at the head move towards the head by 1, and the 28354 * the conn at the head goes to the tail. This attempts 28355 * a more even share for all queues that are being 28356 * drained. 28357 */ 28358 if ((connp->conn_drain_next != connp) && 28359 (idl->idl_conn->conn_drain_next != connp)) { 28360 idl->idl_conn = idl->idl_conn->conn_drain_next; 28361 } 28362 if (idl->idl_repeat) { 28363 qenable(idl->idl_conn->conn_wq); 28364 idl->idl_conn_draining = idl->idl_conn; 28365 idl->idl_repeat = 0; 28366 } else { 28367 idl->idl_conn_draining = NULL; 28368 } 28369 } else { 28370 /* 28371 * If the next queue that we are now qenable'ing, 28372 * is closing, it will remove itself from this list 28373 * and qenable the subsequent queue in ip_close(). 28374 * Serialization is acheived thru idl_lock. 28375 */ 28376 qenable(connp->conn_drain_next->conn_wq); 28377 idl->idl_conn_draining = connp->conn_drain_next; 28378 } 28379 } 28380 if (!connp->conn_did_putbq || closing) { 28381 /* 28382 * Remove ourself from the drain list, if we did not do 28383 * a putbq, or if the conn is closing. 28384 * Note: It is possible that q->q_first is non-null. It means 28385 * that these messages landed after we did a enableok() in 28386 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28387 * service them. 28388 */ 28389 if (connp->conn_drain_next == connp) { 28390 /* Singleton in the list */ 28391 ASSERT(connp->conn_drain_prev == connp); 28392 idl->idl_conn = NULL; 28393 idl->idl_conn_draining = NULL; 28394 } else { 28395 connp->conn_drain_prev->conn_drain_next = 28396 connp->conn_drain_next; 28397 connp->conn_drain_next->conn_drain_prev = 28398 connp->conn_drain_prev; 28399 if (idl->idl_conn == connp) 28400 idl->idl_conn = connp->conn_drain_next; 28401 ASSERT(idl->idl_conn_draining != connp); 28402 28403 } 28404 connp->conn_drain_next = NULL; 28405 connp->conn_drain_prev = NULL; 28406 28407 /* 28408 * For non streams based sockets open up flow control. 28409 */ 28410 if (IPCL_IS_NONSTR(connp)) { 28411 (*connp->conn_upcalls->su_txq_full) 28412 (connp->conn_upper_handle, B_FALSE); 28413 } else { 28414 conn_clrqfull(connp); 28415 enableok(connp->conn_wq); 28416 } 28417 } 28418 28419 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28420 } 28421 28422 /* 28423 * Write service routine. Shared perimeter entry point. 28424 * ip_wsrv can be called in any of the following ways. 28425 * 1. The device queue's messages has fallen below the low water mark 28426 * and STREAMS has backenabled the ill_wq. We walk thru all the 28427 * the drain lists and backenable the first conn in each list. 28428 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28429 * qenabled non-tcp upper layers. We start dequeing messages and call 28430 * ip_wput for each message. 28431 */ 28432 28433 void 28434 ip_wsrv(queue_t *q) 28435 { 28436 conn_t *connp; 28437 ill_t *ill; 28438 mblk_t *mp; 28439 28440 if (q->q_next) { 28441 ill = (ill_t *)q->q_ptr; 28442 if (ill->ill_state_flags == 0) { 28443 ip_stack_t *ipst = ill->ill_ipst; 28444 28445 /* 28446 * The device flow control has opened up. 28447 * Walk through conn drain lists and qenable the 28448 * first conn in each list. This makes sense only 28449 * if the stream is fully plumbed and setup. 28450 * Hence the if check above. 28451 */ 28452 ip1dbg(("ip_wsrv: walking\n")); 28453 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28454 } 28455 return; 28456 } 28457 28458 connp = Q_TO_CONN(q); 28459 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28460 28461 /* 28462 * 1. Set conn_draining flag to signal that service is active. 28463 * 28464 * 2. ip_output determines whether it has been called from service, 28465 * based on the last parameter. If it is IP_WSRV it concludes it 28466 * has been called from service. 28467 * 28468 * 3. Message ordering is preserved by the following logic. 28469 * i. A directly called ip_output (i.e. not thru service) will queue 28470 * the message at the tail, if conn_draining is set (i.e. service 28471 * is running) or if q->q_first is non-null. 28472 * 28473 * ii. If ip_output is called from service, and if ip_output cannot 28474 * putnext due to flow control, it does a putbq. 28475 * 28476 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28477 * (causing an infinite loop). 28478 */ 28479 ASSERT(!connp->conn_did_putbq); 28480 28481 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28482 connp->conn_draining = 1; 28483 noenable(q); 28484 while ((mp = getq(q)) != NULL) { 28485 ASSERT(CONN_Q(q)); 28486 28487 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28488 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28489 if (connp->conn_did_putbq) { 28490 /* ip_wput did a putbq */ 28491 break; 28492 } 28493 } 28494 /* 28495 * At this point, a thread coming down from top, calling 28496 * ip_wput, may end up queueing the message. We have not yet 28497 * enabled the queue, so ip_wsrv won't be called again. 28498 * To avoid this race, check q->q_first again (in the loop) 28499 * If the other thread queued the message before we call 28500 * enableok(), we will catch it in the q->q_first check. 28501 * If the other thread queues the message after we call 28502 * enableok(), ip_wsrv will be called again by STREAMS. 28503 */ 28504 connp->conn_draining = 0; 28505 enableok(q); 28506 } 28507 28508 /* Enable the next conn for draining */ 28509 conn_drain_tail(connp, B_FALSE); 28510 28511 /* 28512 * conn_direct_blocked is used to indicate blocked 28513 * condition for direct path (ILL_DIRECT_CAPABLE()). 28514 * This is the only place where it is set without 28515 * checking for ILL_DIRECT_CAPABLE() and setting it 28516 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28517 */ 28518 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28519 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28520 connp->conn_direct_blocked = B_FALSE; 28521 } 28522 28523 connp->conn_did_putbq = 0; 28524 } 28525 28526 /* 28527 * Callback to disable flow control in IP. 28528 * 28529 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28530 * is enabled. 28531 * 28532 * When MAC_TX() is not able to send any more packets, dld sets its queue 28533 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28534 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28535 * function and wakes up corresponding mac worker threads, which in turn 28536 * calls this callback function, and disables flow control. 28537 */ 28538 void 28539 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28540 { 28541 ill_t *ill = (ill_t *)arg; 28542 ip_stack_t *ipst = ill->ill_ipst; 28543 idl_tx_list_t *idl_txl; 28544 28545 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28546 mutex_enter(&idl_txl->txl_lock); 28547 /* add code to to set a flag to indicate idl_txl is enabled */ 28548 conn_walk_drain(ipst, idl_txl); 28549 mutex_exit(&idl_txl->txl_lock); 28550 } 28551 28552 /* 28553 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28554 * of conns that need to be drained, check if drain is already in progress. 28555 * If so set the idl_repeat bit, indicating that the last conn in the list 28556 * needs to reinitiate the drain once again, for the list. If drain is not 28557 * in progress for the list, initiate the draining, by qenabling the 1st 28558 * conn in the list. The drain is self-sustaining, each qenabled conn will 28559 * in turn qenable the next conn, when it is done/blocked/closing. 28560 */ 28561 static void 28562 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28563 { 28564 int i; 28565 idl_t *idl; 28566 28567 IP_STAT(ipst, ip_conn_walk_drain); 28568 28569 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28570 idl = &tx_list->txl_drain_list[i]; 28571 mutex_enter(&idl->idl_lock); 28572 if (idl->idl_conn == NULL) { 28573 mutex_exit(&idl->idl_lock); 28574 continue; 28575 } 28576 /* 28577 * If this list is not being drained currently by 28578 * an ip_wsrv thread, start the process. 28579 */ 28580 if (idl->idl_conn_draining == NULL) { 28581 ASSERT(idl->idl_repeat == 0); 28582 qenable(idl->idl_conn->conn_wq); 28583 idl->idl_conn_draining = idl->idl_conn; 28584 } else { 28585 idl->idl_repeat = 1; 28586 } 28587 mutex_exit(&idl->idl_lock); 28588 } 28589 } 28590 28591 /* 28592 * Determine if the ill and multicast aspects of that packets 28593 * "matches" the conn. 28594 */ 28595 boolean_t 28596 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28597 zoneid_t zoneid) 28598 { 28599 ill_t *bound_ill; 28600 boolean_t found; 28601 ipif_t *ipif; 28602 ire_t *ire; 28603 ipaddr_t dst, src; 28604 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28605 28606 dst = ipha->ipha_dst; 28607 src = ipha->ipha_src; 28608 28609 /* 28610 * conn_incoming_ill is set by IP_BOUND_IF which limits 28611 * unicast, broadcast and multicast reception to 28612 * conn_incoming_ill. conn_wantpacket itself is called 28613 * only for BROADCAST and multicast. 28614 */ 28615 bound_ill = connp->conn_incoming_ill; 28616 if (bound_ill != NULL) { 28617 if (IS_IPMP(bound_ill)) { 28618 if (bound_ill->ill_grp != ill->ill_grp) 28619 return (B_FALSE); 28620 } else { 28621 if (bound_ill != ill) 28622 return (B_FALSE); 28623 } 28624 } 28625 28626 if (!CLASSD(dst)) { 28627 if (IPCL_ZONE_MATCH(connp, zoneid)) 28628 return (B_TRUE); 28629 /* 28630 * The conn is in a different zone; we need to check that this 28631 * broadcast address is configured in the application's zone. 28632 */ 28633 ipif = ipif_get_next_ipif(NULL, ill); 28634 if (ipif == NULL) 28635 return (B_FALSE); 28636 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28637 connp->conn_zoneid, NULL, 28638 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28639 ipif_refrele(ipif); 28640 if (ire != NULL) { 28641 ire_refrele(ire); 28642 return (B_TRUE); 28643 } else { 28644 return (B_FALSE); 28645 } 28646 } 28647 28648 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28649 connp->conn_zoneid == zoneid) { 28650 /* 28651 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28652 * disabled, therefore we don't dispatch the multicast packet to 28653 * the sending zone. 28654 */ 28655 return (B_FALSE); 28656 } 28657 28658 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28659 /* 28660 * Multicast packet on the loopback interface: we only match 28661 * conns who joined the group in the specified zone. 28662 */ 28663 return (B_FALSE); 28664 } 28665 28666 if (connp->conn_multi_router) { 28667 /* multicast packet and multicast router socket: send up */ 28668 return (B_TRUE); 28669 } 28670 28671 mutex_enter(&connp->conn_lock); 28672 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28673 mutex_exit(&connp->conn_lock); 28674 return (found); 28675 } 28676 28677 static void 28678 conn_setqfull(conn_t *connp) 28679 { 28680 queue_t *q = connp->conn_wq; 28681 28682 if (!(q->q_flag & QFULL)) { 28683 mutex_enter(QLOCK(q)); 28684 if (!(q->q_flag & QFULL)) { 28685 /* still need to set QFULL */ 28686 q->q_flag |= QFULL; 28687 mutex_exit(QLOCK(q)); 28688 } else { 28689 mutex_exit(QLOCK(q)); 28690 } 28691 } 28692 } 28693 28694 static void 28695 conn_clrqfull(conn_t *connp) 28696 { 28697 queue_t *q = connp->conn_wq; 28698 28699 if (q->q_flag & QFULL) { 28700 mutex_enter(QLOCK(q)); 28701 if (q->q_flag & QFULL) { 28702 q->q_flag &= ~QFULL; 28703 mutex_exit(QLOCK(q)); 28704 if (q->q_flag & QWANTW) 28705 qbackenable(q, 0); 28706 } else { 28707 mutex_exit(QLOCK(q)); 28708 } 28709 } 28710 } 28711 28712 /* 28713 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28714 */ 28715 /* ARGSUSED */ 28716 static void 28717 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28718 { 28719 ill_t *ill = (ill_t *)q->q_ptr; 28720 mblk_t *mp1, *mp2; 28721 ipif_t *ipif; 28722 int err = 0; 28723 conn_t *connp = NULL; 28724 ipsq_t *ipsq; 28725 arc_t *arc; 28726 28727 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28728 28729 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28730 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28731 28732 ASSERT(IAM_WRITER_ILL(ill)); 28733 mp2 = mp->b_cont; 28734 mp->b_cont = NULL; 28735 28736 /* 28737 * We have now received the arp bringup completion message 28738 * from ARP. Mark the arp bringup as done. Also if the arp 28739 * stream has already started closing, send up the AR_ARP_CLOSING 28740 * ack now since ARP is waiting in close for this ack. 28741 */ 28742 mutex_enter(&ill->ill_lock); 28743 ill->ill_arp_bringup_pending = 0; 28744 if (ill->ill_arp_closing) { 28745 mutex_exit(&ill->ill_lock); 28746 /* Let's reuse the mp for sending the ack */ 28747 arc = (arc_t *)mp->b_rptr; 28748 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28749 arc->arc_cmd = AR_ARP_CLOSING; 28750 qreply(q, mp); 28751 } else { 28752 mutex_exit(&ill->ill_lock); 28753 freeb(mp); 28754 } 28755 28756 ipsq = ill->ill_phyint->phyint_ipsq; 28757 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28758 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28759 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28760 if (mp1 == NULL) { 28761 /* bringup was aborted by the user */ 28762 freemsg(mp2); 28763 return; 28764 } 28765 28766 /* 28767 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28768 * must have an associated conn_t. Otherwise, we're bringing this 28769 * interface back up as part of handling an asynchronous event (e.g., 28770 * physical address change). 28771 */ 28772 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28773 ASSERT(connp != NULL); 28774 q = CONNP_TO_WQ(connp); 28775 } else { 28776 ASSERT(connp == NULL); 28777 q = ill->ill_rq; 28778 } 28779 28780 /* 28781 * If the DL_BIND_REQ fails, it is noted 28782 * in arc_name_offset. 28783 */ 28784 err = *((int *)mp2->b_rptr); 28785 if (err == 0) { 28786 if (ipif->ipif_isv6) { 28787 if ((err = ipif_up_done_v6(ipif)) != 0) 28788 ip0dbg(("ip_arp_done: init failed\n")); 28789 } else { 28790 if ((err = ipif_up_done(ipif)) != 0) 28791 ip0dbg(("ip_arp_done: init failed\n")); 28792 } 28793 } else { 28794 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28795 } 28796 28797 freemsg(mp2); 28798 28799 if ((err == 0) && (ill->ill_up_ipifs)) { 28800 err = ill_up_ipifs(ill, q, mp1); 28801 if (err == EINPROGRESS) 28802 return; 28803 } 28804 28805 /* 28806 * If we have a moved ipif to bring up, and everything has succeeded 28807 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28808 * down -- the admin can try to bring it up by hand if need be. 28809 */ 28810 if (ill->ill_move_ipif != NULL) { 28811 ipif = ill->ill_move_ipif; 28812 ill->ill_move_ipif = NULL; 28813 if (err == 0) { 28814 err = ipif_up(ipif, q, mp1); 28815 if (err == EINPROGRESS) 28816 return; 28817 } 28818 } 28819 28820 /* 28821 * The operation must complete without EINPROGRESS since 28822 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28823 * operation will be stuck forever in the ipsq. 28824 */ 28825 ASSERT(err != EINPROGRESS); 28826 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28827 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28828 else 28829 ipsq_current_finish(ipsq); 28830 } 28831 28832 /* Allocate the private structure */ 28833 static int 28834 ip_priv_alloc(void **bufp) 28835 { 28836 void *buf; 28837 28838 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28839 return (ENOMEM); 28840 28841 *bufp = buf; 28842 return (0); 28843 } 28844 28845 /* Function to delete the private structure */ 28846 void 28847 ip_priv_free(void *buf) 28848 { 28849 ASSERT(buf != NULL); 28850 kmem_free(buf, sizeof (ip_priv_t)); 28851 } 28852 28853 /* 28854 * The entry point for IPPF processing. 28855 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28856 * routine just returns. 28857 * 28858 * When called, ip_process generates an ipp_packet_t structure 28859 * which holds the state information for this packet and invokes the 28860 * the classifier (via ipp_packet_process). The classification, depending on 28861 * configured filters, results in a list of actions for this packet. Invoking 28862 * an action may cause the packet to be dropped, in which case the resulting 28863 * mblk (*mpp) is NULL. proc indicates the callout position for 28864 * this packet and ill_index is the interface this packet on or will leave 28865 * on (inbound and outbound resp.). 28866 */ 28867 void 28868 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28869 { 28870 mblk_t *mp; 28871 ip_priv_t *priv; 28872 ipp_action_id_t aid; 28873 int rc = 0; 28874 ipp_packet_t *pp; 28875 #define IP_CLASS "ip" 28876 28877 /* If the classifier is not loaded, return */ 28878 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28879 return; 28880 } 28881 28882 mp = *mpp; 28883 ASSERT(mp != NULL); 28884 28885 /* Allocate the packet structure */ 28886 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28887 if (rc != 0) { 28888 *mpp = NULL; 28889 freemsg(mp); 28890 return; 28891 } 28892 28893 /* Allocate the private structure */ 28894 rc = ip_priv_alloc((void **)&priv); 28895 if (rc != 0) { 28896 *mpp = NULL; 28897 freemsg(mp); 28898 ipp_packet_free(pp); 28899 return; 28900 } 28901 priv->proc = proc; 28902 priv->ill_index = ill_index; 28903 ipp_packet_set_private(pp, priv, ip_priv_free); 28904 ipp_packet_set_data(pp, mp); 28905 28906 /* Invoke the classifier */ 28907 rc = ipp_packet_process(&pp); 28908 if (pp != NULL) { 28909 mp = ipp_packet_get_data(pp); 28910 ipp_packet_free(pp); 28911 if (rc != 0) { 28912 freemsg(mp); 28913 *mpp = NULL; 28914 } 28915 } else { 28916 *mpp = NULL; 28917 } 28918 #undef IP_CLASS 28919 } 28920 28921 /* 28922 * Propagate a multicast group membership operation (add/drop) on 28923 * all the interfaces crossed by the related multirt routes. 28924 * The call is considered successful if the operation succeeds 28925 * on at least one interface. 28926 */ 28927 static int 28928 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28929 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28930 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28931 mblk_t *first_mp) 28932 { 28933 ire_t *ire_gw; 28934 irb_t *irb; 28935 int error = 0; 28936 opt_restart_t *or; 28937 ip_stack_t *ipst = ire->ire_ipst; 28938 28939 irb = ire->ire_bucket; 28940 ASSERT(irb != NULL); 28941 28942 ASSERT(DB_TYPE(first_mp) == M_CTL); 28943 28944 or = (opt_restart_t *)first_mp->b_rptr; 28945 IRB_REFHOLD(irb); 28946 for (; ire != NULL; ire = ire->ire_next) { 28947 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28948 continue; 28949 if (ire->ire_addr != group) 28950 continue; 28951 28952 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28953 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28954 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28955 /* No resolver exists for the gateway; skip this ire. */ 28956 if (ire_gw == NULL) 28957 continue; 28958 28959 /* 28960 * This function can return EINPROGRESS. If so the operation 28961 * will be restarted from ip_restart_optmgmt which will 28962 * call ip_opt_set and option processing will restart for 28963 * this option. So we may end up calling 'fn' more than once. 28964 * This requires that 'fn' is idempotent except for the 28965 * return value. The operation is considered a success if 28966 * it succeeds at least once on any one interface. 28967 */ 28968 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28969 NULL, fmode, src, first_mp); 28970 if (error == 0) 28971 or->or_private = CGTP_MCAST_SUCCESS; 28972 28973 if (ip_debug > 0) { 28974 ulong_t off; 28975 char *ksym; 28976 ksym = kobj_getsymname((uintptr_t)fn, &off); 28977 ip2dbg(("ip_multirt_apply_membership: " 28978 "called %s, multirt group 0x%08x via itf 0x%08x, " 28979 "error %d [success %u]\n", 28980 ksym ? ksym : "?", 28981 ntohl(group), ntohl(ire_gw->ire_src_addr), 28982 error, or->or_private)); 28983 } 28984 28985 ire_refrele(ire_gw); 28986 if (error == EINPROGRESS) { 28987 IRB_REFRELE(irb); 28988 return (error); 28989 } 28990 } 28991 IRB_REFRELE(irb); 28992 /* 28993 * Consider the call as successful if we succeeded on at least 28994 * one interface. Otherwise, return the last encountered error. 28995 */ 28996 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28997 } 28998 28999 /* 29000 * Issue a warning regarding a route crossing an interface with an 29001 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29002 * amount of time is logged. 29003 */ 29004 static void 29005 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29006 { 29007 hrtime_t current = gethrtime(); 29008 char buf[INET_ADDRSTRLEN]; 29009 ip_stack_t *ipst = ire->ire_ipst; 29010 29011 /* Convert interval in ms to hrtime in ns */ 29012 if (ipst->ips_multirt_bad_mtu_last_time + 29013 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29014 current) { 29015 cmn_err(CE_WARN, "ip: ignoring multiroute " 29016 "to %s, incorrect MTU %u (expected %u)\n", 29017 ip_dot_addr(ire->ire_addr, buf), 29018 ire->ire_max_frag, max_frag); 29019 29020 ipst->ips_multirt_bad_mtu_last_time = current; 29021 } 29022 } 29023 29024 /* 29025 * Get the CGTP (multirouting) filtering status. 29026 * If 0, the CGTP hooks are transparent. 29027 */ 29028 /* ARGSUSED */ 29029 static int 29030 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29031 { 29032 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29033 29034 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29035 return (0); 29036 } 29037 29038 /* 29039 * Set the CGTP (multirouting) filtering status. 29040 * If the status is changed from active to transparent 29041 * or from transparent to active, forward the new status 29042 * to the filtering module (if loaded). 29043 */ 29044 /* ARGSUSED */ 29045 static int 29046 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29047 cred_t *ioc_cr) 29048 { 29049 long new_value; 29050 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29051 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29052 29053 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29054 return (EPERM); 29055 29056 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29057 new_value < 0 || new_value > 1) { 29058 return (EINVAL); 29059 } 29060 29061 if ((!*ip_cgtp_filter_value) && new_value) { 29062 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29063 ipst->ips_ip_cgtp_filter_ops == NULL ? 29064 " (module not loaded)" : ""); 29065 } 29066 if (*ip_cgtp_filter_value && (!new_value)) { 29067 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29068 ipst->ips_ip_cgtp_filter_ops == NULL ? 29069 " (module not loaded)" : ""); 29070 } 29071 29072 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29073 int res; 29074 netstackid_t stackid; 29075 29076 stackid = ipst->ips_netstack->netstack_stackid; 29077 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29078 new_value); 29079 if (res) 29080 return (res); 29081 } 29082 29083 *ip_cgtp_filter_value = (boolean_t)new_value; 29084 29085 return (0); 29086 } 29087 29088 /* 29089 * Return the expected CGTP hooks version number. 29090 */ 29091 int 29092 ip_cgtp_filter_supported(void) 29093 { 29094 return (ip_cgtp_filter_rev); 29095 } 29096 29097 /* 29098 * CGTP hooks can be registered by invoking this function. 29099 * Checks that the version number matches. 29100 */ 29101 int 29102 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29103 { 29104 netstack_t *ns; 29105 ip_stack_t *ipst; 29106 29107 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29108 return (ENOTSUP); 29109 29110 ns = netstack_find_by_stackid(stackid); 29111 if (ns == NULL) 29112 return (EINVAL); 29113 ipst = ns->netstack_ip; 29114 ASSERT(ipst != NULL); 29115 29116 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29117 netstack_rele(ns); 29118 return (EALREADY); 29119 } 29120 29121 ipst->ips_ip_cgtp_filter_ops = ops; 29122 netstack_rele(ns); 29123 return (0); 29124 } 29125 29126 /* 29127 * CGTP hooks can be unregistered by invoking this function. 29128 * Returns ENXIO if there was no registration. 29129 * Returns EBUSY if the ndd variable has not been turned off. 29130 */ 29131 int 29132 ip_cgtp_filter_unregister(netstackid_t stackid) 29133 { 29134 netstack_t *ns; 29135 ip_stack_t *ipst; 29136 29137 ns = netstack_find_by_stackid(stackid); 29138 if (ns == NULL) 29139 return (EINVAL); 29140 ipst = ns->netstack_ip; 29141 ASSERT(ipst != NULL); 29142 29143 if (ipst->ips_ip_cgtp_filter) { 29144 netstack_rele(ns); 29145 return (EBUSY); 29146 } 29147 29148 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29149 netstack_rele(ns); 29150 return (ENXIO); 29151 } 29152 ipst->ips_ip_cgtp_filter_ops = NULL; 29153 netstack_rele(ns); 29154 return (0); 29155 } 29156 29157 /* 29158 * Check whether there is a CGTP filter registration. 29159 * Returns non-zero if there is a registration, otherwise returns zero. 29160 * Note: returns zero if bad stackid. 29161 */ 29162 int 29163 ip_cgtp_filter_is_registered(netstackid_t stackid) 29164 { 29165 netstack_t *ns; 29166 ip_stack_t *ipst; 29167 int ret; 29168 29169 ns = netstack_find_by_stackid(stackid); 29170 if (ns == NULL) 29171 return (0); 29172 ipst = ns->netstack_ip; 29173 ASSERT(ipst != NULL); 29174 29175 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29176 ret = 1; 29177 else 29178 ret = 0; 29179 29180 netstack_rele(ns); 29181 return (ret); 29182 } 29183 29184 static int 29185 ip_squeue_switch(int val) 29186 { 29187 int rval = SQ_FILL; 29188 29189 switch (val) { 29190 case IP_SQUEUE_ENTER_NODRAIN: 29191 rval = SQ_NODRAIN; 29192 break; 29193 case IP_SQUEUE_ENTER: 29194 rval = SQ_PROCESS; 29195 break; 29196 default: 29197 break; 29198 } 29199 return (rval); 29200 } 29201 29202 /* ARGSUSED */ 29203 static int 29204 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29205 caddr_t addr, cred_t *cr) 29206 { 29207 int *v = (int *)addr; 29208 long new_value; 29209 29210 if (secpolicy_net_config(cr, B_FALSE) != 0) 29211 return (EPERM); 29212 29213 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29214 return (EINVAL); 29215 29216 ip_squeue_flag = ip_squeue_switch(new_value); 29217 *v = new_value; 29218 return (0); 29219 } 29220 29221 /* 29222 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29223 * ip_debug. 29224 */ 29225 /* ARGSUSED */ 29226 static int 29227 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29228 caddr_t addr, cred_t *cr) 29229 { 29230 int *v = (int *)addr; 29231 long new_value; 29232 29233 if (secpolicy_net_config(cr, B_FALSE) != 0) 29234 return (EPERM); 29235 29236 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29237 return (EINVAL); 29238 29239 *v = new_value; 29240 return (0); 29241 } 29242 29243 static void * 29244 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29245 { 29246 kstat_t *ksp; 29247 29248 ip_stat_t template = { 29249 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29250 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29251 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29252 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29253 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29254 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29255 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29256 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29257 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29258 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29259 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29260 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29261 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29262 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29263 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29264 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29265 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29266 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29267 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29268 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29269 { "ip_opt", KSTAT_DATA_UINT64 }, 29270 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29271 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29272 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29273 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29274 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29275 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29276 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29277 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29278 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29279 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29280 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29281 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29282 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29283 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29284 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29285 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29286 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29287 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29288 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29289 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29290 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29291 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29292 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29293 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29294 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29295 }; 29296 29297 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29298 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29299 KSTAT_FLAG_VIRTUAL, stackid); 29300 29301 if (ksp == NULL) 29302 return (NULL); 29303 29304 bcopy(&template, ip_statisticsp, sizeof (template)); 29305 ksp->ks_data = (void *)ip_statisticsp; 29306 ksp->ks_private = (void *)(uintptr_t)stackid; 29307 29308 kstat_install(ksp); 29309 return (ksp); 29310 } 29311 29312 static void 29313 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29314 { 29315 if (ksp != NULL) { 29316 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29317 kstat_delete_netstack(ksp, stackid); 29318 } 29319 } 29320 29321 static void * 29322 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29323 { 29324 kstat_t *ksp; 29325 29326 ip_named_kstat_t template = { 29327 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29328 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29329 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29330 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29331 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29332 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29333 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29334 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29335 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29336 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29337 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29338 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29339 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29340 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29341 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29342 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29343 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29344 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29345 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29346 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29347 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29348 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29349 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29350 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29351 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29352 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29353 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29354 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29355 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29356 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29357 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29358 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29359 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29360 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29361 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29362 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29363 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29364 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29365 }; 29366 29367 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29368 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29369 if (ksp == NULL || ksp->ks_data == NULL) 29370 return (NULL); 29371 29372 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29373 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29374 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29375 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29376 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29377 29378 template.netToMediaEntrySize.value.i32 = 29379 sizeof (mib2_ipNetToMediaEntry_t); 29380 29381 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29382 29383 bcopy(&template, ksp->ks_data, sizeof (template)); 29384 ksp->ks_update = ip_kstat_update; 29385 ksp->ks_private = (void *)(uintptr_t)stackid; 29386 29387 kstat_install(ksp); 29388 return (ksp); 29389 } 29390 29391 static void 29392 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29393 { 29394 if (ksp != NULL) { 29395 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29396 kstat_delete_netstack(ksp, stackid); 29397 } 29398 } 29399 29400 static int 29401 ip_kstat_update(kstat_t *kp, int rw) 29402 { 29403 ip_named_kstat_t *ipkp; 29404 mib2_ipIfStatsEntry_t ipmib; 29405 ill_walk_context_t ctx; 29406 ill_t *ill; 29407 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29408 netstack_t *ns; 29409 ip_stack_t *ipst; 29410 29411 if (kp == NULL || kp->ks_data == NULL) 29412 return (EIO); 29413 29414 if (rw == KSTAT_WRITE) 29415 return (EACCES); 29416 29417 ns = netstack_find_by_stackid(stackid); 29418 if (ns == NULL) 29419 return (-1); 29420 ipst = ns->netstack_ip; 29421 if (ipst == NULL) { 29422 netstack_rele(ns); 29423 return (-1); 29424 } 29425 ipkp = (ip_named_kstat_t *)kp->ks_data; 29426 29427 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29428 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29429 ill = ILL_START_WALK_V4(&ctx, ipst); 29430 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29431 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29432 rw_exit(&ipst->ips_ill_g_lock); 29433 29434 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29435 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29436 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29437 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29438 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29439 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29440 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29441 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29442 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29443 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29444 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29445 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29446 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29447 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29448 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29449 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29450 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29451 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29452 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29453 29454 ipkp->routingDiscards.value.ui32 = 0; 29455 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29456 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29457 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29458 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29459 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29460 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29461 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29462 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29463 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29464 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29465 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29466 29467 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29468 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29469 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29470 29471 netstack_rele(ns); 29472 29473 return (0); 29474 } 29475 29476 static void * 29477 icmp_kstat_init(netstackid_t stackid) 29478 { 29479 kstat_t *ksp; 29480 29481 icmp_named_kstat_t template = { 29482 { "inMsgs", KSTAT_DATA_UINT32 }, 29483 { "inErrors", KSTAT_DATA_UINT32 }, 29484 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29485 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29486 { "inParmProbs", KSTAT_DATA_UINT32 }, 29487 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29488 { "inRedirects", KSTAT_DATA_UINT32 }, 29489 { "inEchos", KSTAT_DATA_UINT32 }, 29490 { "inEchoReps", KSTAT_DATA_UINT32 }, 29491 { "inTimestamps", KSTAT_DATA_UINT32 }, 29492 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29493 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29494 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29495 { "outMsgs", KSTAT_DATA_UINT32 }, 29496 { "outErrors", KSTAT_DATA_UINT32 }, 29497 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29498 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29499 { "outParmProbs", KSTAT_DATA_UINT32 }, 29500 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29501 { "outRedirects", KSTAT_DATA_UINT32 }, 29502 { "outEchos", KSTAT_DATA_UINT32 }, 29503 { "outEchoReps", KSTAT_DATA_UINT32 }, 29504 { "outTimestamps", KSTAT_DATA_UINT32 }, 29505 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29506 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29507 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29508 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29509 { "inUnknowns", KSTAT_DATA_UINT32 }, 29510 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29511 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29512 { "outDrops", KSTAT_DATA_UINT32 }, 29513 { "inOverFlows", KSTAT_DATA_UINT32 }, 29514 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29515 }; 29516 29517 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29518 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29519 if (ksp == NULL || ksp->ks_data == NULL) 29520 return (NULL); 29521 29522 bcopy(&template, ksp->ks_data, sizeof (template)); 29523 29524 ksp->ks_update = icmp_kstat_update; 29525 ksp->ks_private = (void *)(uintptr_t)stackid; 29526 29527 kstat_install(ksp); 29528 return (ksp); 29529 } 29530 29531 static void 29532 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29533 { 29534 if (ksp != NULL) { 29535 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29536 kstat_delete_netstack(ksp, stackid); 29537 } 29538 } 29539 29540 static int 29541 icmp_kstat_update(kstat_t *kp, int rw) 29542 { 29543 icmp_named_kstat_t *icmpkp; 29544 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29545 netstack_t *ns; 29546 ip_stack_t *ipst; 29547 29548 if ((kp == NULL) || (kp->ks_data == NULL)) 29549 return (EIO); 29550 29551 if (rw == KSTAT_WRITE) 29552 return (EACCES); 29553 29554 ns = netstack_find_by_stackid(stackid); 29555 if (ns == NULL) 29556 return (-1); 29557 ipst = ns->netstack_ip; 29558 if (ipst == NULL) { 29559 netstack_rele(ns); 29560 return (-1); 29561 } 29562 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29563 29564 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29565 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29566 icmpkp->inDestUnreachs.value.ui32 = 29567 ipst->ips_icmp_mib.icmpInDestUnreachs; 29568 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29569 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29570 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29571 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29572 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29573 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29574 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29575 icmpkp->inTimestampReps.value.ui32 = 29576 ipst->ips_icmp_mib.icmpInTimestampReps; 29577 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29578 icmpkp->inAddrMaskReps.value.ui32 = 29579 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29580 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29581 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29582 icmpkp->outDestUnreachs.value.ui32 = 29583 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29584 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29585 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29586 icmpkp->outSrcQuenchs.value.ui32 = 29587 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29588 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29589 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29590 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29591 icmpkp->outTimestamps.value.ui32 = 29592 ipst->ips_icmp_mib.icmpOutTimestamps; 29593 icmpkp->outTimestampReps.value.ui32 = 29594 ipst->ips_icmp_mib.icmpOutTimestampReps; 29595 icmpkp->outAddrMasks.value.ui32 = 29596 ipst->ips_icmp_mib.icmpOutAddrMasks; 29597 icmpkp->outAddrMaskReps.value.ui32 = 29598 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29599 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29600 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29601 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29602 icmpkp->outFragNeeded.value.ui32 = 29603 ipst->ips_icmp_mib.icmpOutFragNeeded; 29604 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29605 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29606 icmpkp->inBadRedirects.value.ui32 = 29607 ipst->ips_icmp_mib.icmpInBadRedirects; 29608 29609 netstack_rele(ns); 29610 return (0); 29611 } 29612 29613 /* 29614 * This is the fanout function for raw socket opened for SCTP. Note 29615 * that it is called after SCTP checks that there is no socket which 29616 * wants a packet. Then before SCTP handles this out of the blue packet, 29617 * this function is called to see if there is any raw socket for SCTP. 29618 * If there is and it is bound to the correct address, the packet will 29619 * be sent to that socket. Note that only one raw socket can be bound to 29620 * a port. This is assured in ipcl_sctp_hash_insert(); 29621 */ 29622 void 29623 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29624 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29625 zoneid_t zoneid) 29626 { 29627 conn_t *connp; 29628 queue_t *rq; 29629 mblk_t *first_mp; 29630 boolean_t secure; 29631 ip6_t *ip6h; 29632 ip_stack_t *ipst = recv_ill->ill_ipst; 29633 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29634 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29635 boolean_t sctp_csum_err = B_FALSE; 29636 29637 if (flags & IP_FF_SCTP_CSUM_ERR) { 29638 sctp_csum_err = B_TRUE; 29639 flags &= ~IP_FF_SCTP_CSUM_ERR; 29640 } 29641 29642 first_mp = mp; 29643 if (mctl_present) { 29644 mp = first_mp->b_cont; 29645 secure = ipsec_in_is_secure(first_mp); 29646 ASSERT(mp != NULL); 29647 } else { 29648 secure = B_FALSE; 29649 } 29650 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29651 29652 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29653 if (connp == NULL) { 29654 /* 29655 * Although raw sctp is not summed, OOB chunks must be. 29656 * Drop the packet here if the sctp checksum failed. 29657 */ 29658 if (sctp_csum_err) { 29659 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29660 freemsg(first_mp); 29661 return; 29662 } 29663 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29664 return; 29665 } 29666 rq = connp->conn_rq; 29667 if (!canputnext(rq)) { 29668 CONN_DEC_REF(connp); 29669 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29670 freemsg(first_mp); 29671 return; 29672 } 29673 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29674 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29675 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29676 (isv4 ? ipha : NULL), ip6h, mctl_present); 29677 if (first_mp == NULL) { 29678 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29679 CONN_DEC_REF(connp); 29680 return; 29681 } 29682 } 29683 /* 29684 * We probably should not send M_CTL message up to 29685 * raw socket. 29686 */ 29687 if (mctl_present) 29688 freeb(first_mp); 29689 29690 /* Initiate IPPF processing here if needed. */ 29691 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29692 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29693 ip_process(IPP_LOCAL_IN, &mp, 29694 recv_ill->ill_phyint->phyint_ifindex); 29695 if (mp == NULL) { 29696 CONN_DEC_REF(connp); 29697 return; 29698 } 29699 } 29700 29701 if (connp->conn_recvif || connp->conn_recvslla || 29702 ((connp->conn_ip_recvpktinfo || 29703 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29704 (flags & IP_FF_IPINFO))) { 29705 int in_flags = 0; 29706 29707 /* 29708 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29709 * IPF_RECVIF. 29710 */ 29711 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29712 in_flags = IPF_RECVIF; 29713 } 29714 if (connp->conn_recvslla) { 29715 in_flags |= IPF_RECVSLLA; 29716 } 29717 if (isv4) { 29718 mp = ip_add_info(mp, recv_ill, in_flags, 29719 IPCL_ZONEID(connp), ipst); 29720 } else { 29721 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29722 if (mp == NULL) { 29723 BUMP_MIB(recv_ill->ill_ip_mib, 29724 ipIfStatsInDiscards); 29725 CONN_DEC_REF(connp); 29726 return; 29727 } 29728 } 29729 } 29730 29731 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29732 /* 29733 * We are sending the IPSEC_IN message also up. Refer 29734 * to comments above this function. 29735 * This is the SOCK_RAW, IPPROTO_SCTP case. 29736 */ 29737 (connp->conn_recv)(connp, mp, NULL); 29738 CONN_DEC_REF(connp); 29739 } 29740 29741 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29742 { \ 29743 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29744 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29745 } 29746 /* 29747 * This function should be called only if all packet processing 29748 * including fragmentation is complete. Callers of this function 29749 * must set mp->b_prev to one of these values: 29750 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29751 * prior to handing over the mp as first argument to this function. 29752 * 29753 * If the ire passed by caller is incomplete, this function 29754 * queues the packet and if necessary, sends ARP request and bails. 29755 * If the ire passed is fully resolved, we simply prepend 29756 * the link-layer header to the packet, do ipsec hw acceleration 29757 * work if necessary, and send the packet out on the wire. 29758 * 29759 * NOTE: IPsec will only call this function with fully resolved 29760 * ires if hw acceleration is involved. 29761 * TODO list : 29762 * a Handle M_MULTIDATA so that 29763 * tcp_multisend->tcp_multisend_data can 29764 * call ip_xmit_v4 directly 29765 * b Handle post-ARP work for fragments so that 29766 * ip_wput_frag can call this function. 29767 */ 29768 ipxmit_state_t 29769 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29770 boolean_t flow_ctl_enabled, conn_t *connp) 29771 { 29772 nce_t *arpce; 29773 ipha_t *ipha; 29774 queue_t *q; 29775 int ill_index; 29776 mblk_t *nxt_mp, *first_mp; 29777 boolean_t xmit_drop = B_FALSE; 29778 ip_proc_t proc; 29779 ill_t *out_ill; 29780 int pkt_len; 29781 29782 arpce = ire->ire_nce; 29783 ASSERT(arpce != NULL); 29784 29785 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29786 29787 mutex_enter(&arpce->nce_lock); 29788 switch (arpce->nce_state) { 29789 case ND_REACHABLE: 29790 /* If there are other queued packets, queue this packet */ 29791 if (arpce->nce_qd_mp != NULL) { 29792 if (mp != NULL) 29793 nce_queue_mp_common(arpce, mp, B_FALSE); 29794 mp = arpce->nce_qd_mp; 29795 } 29796 arpce->nce_qd_mp = NULL; 29797 mutex_exit(&arpce->nce_lock); 29798 29799 /* 29800 * Flush the queue. In the common case, where the 29801 * ARP is already resolved, it will go through the 29802 * while loop only once. 29803 */ 29804 while (mp != NULL) { 29805 29806 nxt_mp = mp->b_next; 29807 mp->b_next = NULL; 29808 ASSERT(mp->b_datap->db_type != M_CTL); 29809 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29810 /* 29811 * This info is needed for IPQOS to do COS marking 29812 * in ip_wput_attach_llhdr->ip_process. 29813 */ 29814 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29815 mp->b_prev = NULL; 29816 29817 /* set up ill index for outbound qos processing */ 29818 out_ill = ire_to_ill(ire); 29819 ill_index = out_ill->ill_phyint->phyint_ifindex; 29820 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29821 ill_index, &ipha); 29822 if (first_mp == NULL) { 29823 xmit_drop = B_TRUE; 29824 BUMP_MIB(out_ill->ill_ip_mib, 29825 ipIfStatsOutDiscards); 29826 goto next_mp; 29827 } 29828 29829 /* non-ipsec hw accel case */ 29830 if (io == NULL || !io->ipsec_out_accelerated) { 29831 /* send it */ 29832 q = ire->ire_stq; 29833 if (proc == IPP_FWD_OUT) { 29834 UPDATE_IB_PKT_COUNT(ire); 29835 } else { 29836 UPDATE_OB_PKT_COUNT(ire); 29837 } 29838 ire->ire_last_used_time = lbolt; 29839 29840 if (flow_ctl_enabled || canputnext(q)) { 29841 if (proc == IPP_FWD_OUT) { 29842 29843 BUMP_MIB(out_ill->ill_ip_mib, 29844 ipIfStatsHCOutForwDatagrams); 29845 29846 } 29847 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29848 pkt_len); 29849 29850 DTRACE_IP7(send, mblk_t *, first_mp, 29851 conn_t *, NULL, void_ip_t *, ipha, 29852 __dtrace_ipsr_ill_t *, out_ill, 29853 ipha_t *, ipha, ip6_t *, NULL, int, 29854 0); 29855 29856 ILL_SEND_TX(out_ill, 29857 ire, connp, first_mp, 0, connp); 29858 } else { 29859 BUMP_MIB(out_ill->ill_ip_mib, 29860 ipIfStatsOutDiscards); 29861 xmit_drop = B_TRUE; 29862 freemsg(first_mp); 29863 } 29864 } else { 29865 /* 29866 * Safety Pup says: make sure this 29867 * is going to the right interface! 29868 */ 29869 ill_t *ill1 = 29870 (ill_t *)ire->ire_stq->q_ptr; 29871 int ifindex = 29872 ill1->ill_phyint->phyint_ifindex; 29873 if (ifindex != 29874 io->ipsec_out_capab_ill_index) { 29875 xmit_drop = B_TRUE; 29876 freemsg(mp); 29877 } else { 29878 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29879 pkt_len); 29880 29881 DTRACE_IP7(send, mblk_t *, first_mp, 29882 conn_t *, NULL, void_ip_t *, ipha, 29883 __dtrace_ipsr_ill_t *, ill1, 29884 ipha_t *, ipha, ip6_t *, NULL, 29885 int, 0); 29886 29887 ipsec_hw_putnext(ire->ire_stq, mp); 29888 } 29889 } 29890 next_mp: 29891 mp = nxt_mp; 29892 } /* while (mp != NULL) */ 29893 if (xmit_drop) 29894 return (SEND_FAILED); 29895 else 29896 return (SEND_PASSED); 29897 29898 case ND_INITIAL: 29899 case ND_INCOMPLETE: 29900 29901 /* 29902 * While we do send off packets to dests that 29903 * use fully-resolved CGTP routes, we do not 29904 * handle unresolved CGTP routes. 29905 */ 29906 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29907 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29908 29909 if (mp != NULL) { 29910 /* queue the packet */ 29911 nce_queue_mp_common(arpce, mp, B_FALSE); 29912 } 29913 29914 if (arpce->nce_state == ND_INCOMPLETE) { 29915 mutex_exit(&arpce->nce_lock); 29916 DTRACE_PROBE3(ip__xmit__incomplete, 29917 (ire_t *), ire, (mblk_t *), mp, 29918 (ipsec_out_t *), io); 29919 return (LOOKUP_IN_PROGRESS); 29920 } 29921 29922 arpce->nce_state = ND_INCOMPLETE; 29923 mutex_exit(&arpce->nce_lock); 29924 29925 /* 29926 * Note that ire_add() (called from ire_forward()) 29927 * holds a ref on the ire until ARP is completed. 29928 */ 29929 ire_arpresolve(ire); 29930 return (LOOKUP_IN_PROGRESS); 29931 default: 29932 ASSERT(0); 29933 mutex_exit(&arpce->nce_lock); 29934 return (LLHDR_RESLV_FAILED); 29935 } 29936 } 29937 29938 #undef UPDATE_IP_MIB_OB_COUNTERS 29939 29940 /* 29941 * Return B_TRUE if the buffers differ in length or content. 29942 * This is used for comparing extension header buffers. 29943 * Note that an extension header would be declared different 29944 * even if all that changed was the next header value in that header i.e. 29945 * what really changed is the next extension header. 29946 */ 29947 boolean_t 29948 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29949 uint_t blen) 29950 { 29951 if (!b_valid) 29952 blen = 0; 29953 29954 if (alen != blen) 29955 return (B_TRUE); 29956 if (alen == 0) 29957 return (B_FALSE); /* Both zero length */ 29958 return (bcmp(abuf, bbuf, alen)); 29959 } 29960 29961 /* 29962 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29963 * Return B_FALSE if memory allocation fails - don't change any state! 29964 */ 29965 boolean_t 29966 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29967 const void *src, uint_t srclen) 29968 { 29969 void *dst; 29970 29971 if (!src_valid) 29972 srclen = 0; 29973 29974 ASSERT(*dstlenp == 0); 29975 if (src != NULL && srclen != 0) { 29976 dst = mi_alloc(srclen, BPRI_MED); 29977 if (dst == NULL) 29978 return (B_FALSE); 29979 } else { 29980 dst = NULL; 29981 } 29982 if (*dstp != NULL) 29983 mi_free(*dstp); 29984 *dstp = dst; 29985 *dstlenp = dst == NULL ? 0 : srclen; 29986 return (B_TRUE); 29987 } 29988 29989 /* 29990 * Replace what is in *dst, *dstlen with the source. 29991 * Assumes ip_allocbuf has already been called. 29992 */ 29993 void 29994 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29995 const void *src, uint_t srclen) 29996 { 29997 if (!src_valid) 29998 srclen = 0; 29999 30000 ASSERT(*dstlenp == srclen); 30001 if (src != NULL && srclen != 0) 30002 bcopy(src, *dstp, srclen); 30003 } 30004 30005 /* 30006 * Free the storage pointed to by the members of an ip6_pkt_t. 30007 */ 30008 void 30009 ip6_pkt_free(ip6_pkt_t *ipp) 30010 { 30011 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30012 30013 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30014 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30015 ipp->ipp_hopopts = NULL; 30016 ipp->ipp_hopoptslen = 0; 30017 } 30018 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30019 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30020 ipp->ipp_rtdstopts = NULL; 30021 ipp->ipp_rtdstoptslen = 0; 30022 } 30023 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30024 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30025 ipp->ipp_dstopts = NULL; 30026 ipp->ipp_dstoptslen = 0; 30027 } 30028 if (ipp->ipp_fields & IPPF_RTHDR) { 30029 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30030 ipp->ipp_rthdr = NULL; 30031 ipp->ipp_rthdrlen = 0; 30032 } 30033 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30034 IPPF_RTHDR); 30035 } 30036 30037 zoneid_t 30038 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30039 zoneid_t lookup_zoneid) 30040 { 30041 ire_t *ire; 30042 int ire_flags = MATCH_IRE_TYPE; 30043 zoneid_t zoneid = ALL_ZONES; 30044 30045 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30046 return (ALL_ZONES); 30047 30048 if (lookup_zoneid != ALL_ZONES) 30049 ire_flags |= MATCH_IRE_ZONEONLY; 30050 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30051 lookup_zoneid, NULL, ire_flags, ipst); 30052 if (ire != NULL) { 30053 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30054 ire_refrele(ire); 30055 } 30056 return (zoneid); 30057 } 30058 30059 zoneid_t 30060 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30061 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30062 { 30063 ire_t *ire; 30064 int ire_flags = MATCH_IRE_TYPE; 30065 zoneid_t zoneid = ALL_ZONES; 30066 ipif_t *ipif_arg = NULL; 30067 30068 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30069 return (ALL_ZONES); 30070 30071 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30072 ire_flags |= MATCH_IRE_ILL; 30073 ipif_arg = ill->ill_ipif; 30074 } 30075 if (lookup_zoneid != ALL_ZONES) 30076 ire_flags |= MATCH_IRE_ZONEONLY; 30077 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30078 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30079 if (ire != NULL) { 30080 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30081 ire_refrele(ire); 30082 } 30083 return (zoneid); 30084 } 30085 30086 /* 30087 * IP obserability hook support functions. 30088 */ 30089 30090 static void 30091 ipobs_init(ip_stack_t *ipst) 30092 { 30093 ipst->ips_ipobs_enabled = B_FALSE; 30094 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30095 offsetof(ipobs_cb_t, ipobs_cbnext)); 30096 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30097 ipst->ips_ipobs_cb_nwalkers = 0; 30098 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30099 } 30100 30101 static void 30102 ipobs_fini(ip_stack_t *ipst) 30103 { 30104 ipobs_cb_t *cb; 30105 30106 mutex_enter(&ipst->ips_ipobs_cb_lock); 30107 while (ipst->ips_ipobs_cb_nwalkers != 0) 30108 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30109 30110 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30111 list_remove(&ipst->ips_ipobs_cb_list, cb); 30112 kmem_free(cb, sizeof (*cb)); 30113 } 30114 list_destroy(&ipst->ips_ipobs_cb_list); 30115 mutex_exit(&ipst->ips_ipobs_cb_lock); 30116 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30117 cv_destroy(&ipst->ips_ipobs_cb_cv); 30118 } 30119 30120 void 30121 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30122 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30123 { 30124 mblk_t *mp2; 30125 ipobs_cb_t *ipobs_cb; 30126 ipobs_hook_data_t *ihd; 30127 uint64_t grifindex = 0; 30128 30129 ASSERT(DB_TYPE(mp) == M_DATA); 30130 30131 if (IS_UNDER_IPMP(ill)) 30132 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30133 30134 mutex_enter(&ipst->ips_ipobs_cb_lock); 30135 ipst->ips_ipobs_cb_nwalkers++; 30136 mutex_exit(&ipst->ips_ipobs_cb_lock); 30137 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30138 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30139 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30140 if (mp2 != NULL) { 30141 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30142 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30143 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30144 freemsg(mp2); 30145 continue; 30146 } 30147 ihd->ihd_mp->b_rptr += hlen; 30148 ihd->ihd_htype = htype; 30149 ihd->ihd_ipver = ipver; 30150 ihd->ihd_zsrc = zsrc; 30151 ihd->ihd_zdst = zdst; 30152 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30153 ihd->ihd_grifindex = grifindex; 30154 ihd->ihd_stack = ipst->ips_netstack; 30155 mp2->b_wptr += sizeof (*ihd); 30156 ipobs_cb->ipobs_cbfunc(mp2); 30157 } 30158 } 30159 mutex_enter(&ipst->ips_ipobs_cb_lock); 30160 ipst->ips_ipobs_cb_nwalkers--; 30161 if (ipst->ips_ipobs_cb_nwalkers == 0) 30162 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30163 mutex_exit(&ipst->ips_ipobs_cb_lock); 30164 } 30165 30166 void 30167 ipobs_register_hook(netstack_t *ns, pfv_t func) 30168 { 30169 ipobs_cb_t *cb; 30170 ip_stack_t *ipst = ns->netstack_ip; 30171 30172 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30173 30174 mutex_enter(&ipst->ips_ipobs_cb_lock); 30175 while (ipst->ips_ipobs_cb_nwalkers != 0) 30176 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30177 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30178 30179 cb->ipobs_cbfunc = func; 30180 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30181 ipst->ips_ipobs_enabled = B_TRUE; 30182 mutex_exit(&ipst->ips_ipobs_cb_lock); 30183 } 30184 30185 void 30186 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30187 { 30188 ipobs_cb_t *curcb; 30189 ip_stack_t *ipst = ns->netstack_ip; 30190 30191 mutex_enter(&ipst->ips_ipobs_cb_lock); 30192 while (ipst->ips_ipobs_cb_nwalkers != 0) 30193 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30194 30195 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30196 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30197 if (func == curcb->ipobs_cbfunc) { 30198 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30199 kmem_free(curcb, sizeof (*curcb)); 30200 break; 30201 } 30202 } 30203 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30204 ipst->ips_ipobs_enabled = B_FALSE; 30205 mutex_exit(&ipst->ips_ipobs_cb_lock); 30206 } 30207