xref: /titanic_50/usr/src/uts/common/inet/ip/ip.c (revision ead9bb4b1be81d7bbf8ed86ee41d6c1e58b069a3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 1990 Mentat Inc.
25  * Copyright (c) 2011 Joyent, Inc. All rights reserved.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/dlpi.h>
31 #include <sys/stropts.h>
32 #include <sys/sysmacros.h>
33 #include <sys/strsubr.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #include <sys/zone.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/xti_inet.h>
40 #include <sys/ddi.h>
41 #include <sys/suntpi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/kobj.h>
45 #include <sys/modctl.h>
46 #include <sys/atomic.h>
47 #include <sys/policy.h>
48 #include <sys/priv.h>
49 #include <sys/taskq.h>
50 
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>
62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>
65 
66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/optcom.h>
73 #include <inet/kstatcom.h>
74 
75 #include <netinet/igmp_var.h>
76 #include <netinet/ip6.h>
77 #include <netinet/icmp6.h>
78 #include <netinet/sctp.h>
79 
80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>
96 
97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/iptun/iptun_impl.h>
101 #include <inet/ipdrop.h>
102 #include <inet/ip_netinfo.h>
103 #include <inet/ilb_ip.h>
104 
105 #include <sys/ethernet.h>
106 #include <net/if_types.h>
107 #include <sys/cpuvar.h>
108 
109 #include <ipp/ipp.h>
110 #include <ipp/ipp_impl.h>
111 #include <ipp/ipgpc/ipgpc.h>
112 
113 #include <sys/pattr.h>
114 #include <inet/ipclassifier.h>
115 #include <inet/sctp_ip.h>
116 #include <inet/sctp/sctp_impl.h>
117 #include <inet/udp_impl.h>
118 #include <inet/rawip_impl.h>
119 #include <inet/rts_impl.h>
120 
121 #include <sys/tsol/label.h>
122 #include <sys/tsol/tnet.h>
123 
124 #include <sys/squeue_impl.h>
125 #include <inet/ip_arp.h>
126 
127 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
128 
129 /*
130  * Values for squeue switch:
131  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
132  * IP_SQUEUE_ENTER: SQ_PROCESS
133  * IP_SQUEUE_FILL: SQ_FILL
134  */
135 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
136 
137 int ip_squeue_flag;
138 
139 /*
140  * Setable in /etc/system
141  */
142 int ip_poll_normal_ms = 100;
143 int ip_poll_normal_ticks = 0;
144 int ip_modclose_ackwait_ms = 3000;
145 
146 /*
147  * It would be nice to have these present only in DEBUG systems, but the
148  * current design of the global symbol checking logic requires them to be
149  * unconditionally present.
150  */
151 uint_t ip_thread_data;			/* TSD key for debug support */
152 krwlock_t ip_thread_rwlock;
153 list_t	ip_thread_list;
154 
155 /*
156  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
157  */
158 
159 struct listptr_s {
160 	mblk_t	*lp_head;	/* pointer to the head of the list */
161 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
162 };
163 
164 typedef struct listptr_s listptr_t;
165 
166 /*
167  * This is used by ip_snmp_get_mib2_ip_route_media and
168  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
169  */
170 typedef struct iproutedata_s {
171 	uint_t		ird_idx;
172 	uint_t		ird_flags;	/* see below */
173 	listptr_t	ird_route;	/* ipRouteEntryTable */
174 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
175 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
176 } iproutedata_t;
177 
178 /* Include ire_testhidden and IRE_IF_CLONE routes */
179 #define	IRD_REPORT_ALL	0x01
180 
181 /*
182  * Cluster specific hooks. These should be NULL when booted as a non-cluster
183  */
184 
185 /*
186  * Hook functions to enable cluster networking
187  * On non-clustered systems these vectors must always be NULL.
188  *
189  * Hook function to Check ip specified ip address is a shared ip address
190  * in the cluster
191  *
192  */
193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
194     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
195 
196 /*
197  * Hook function to generate cluster wide ip fragment identifier
198  */
199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
200     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
201     void *args) = NULL;
202 
203 /*
204  * Hook function to generate cluster wide SPI.
205  */
206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
207     void *) = NULL;
208 
209 /*
210  * Hook function to verify if the SPI is already utlized.
211  */
212 
213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
214 
215 /*
216  * Hook function to delete the SPI from the cluster wide repository.
217  */
218 
219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
220 
221 /*
222  * Hook function to inform the cluster when packet received on an IDLE SA
223  */
224 
225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
226     in6_addr_t, in6_addr_t, void *) = NULL;
227 
228 /*
229  * Synchronization notes:
230  *
231  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
232  * MT level protection given by STREAMS. IP uses a combination of its own
233  * internal serialization mechanism and standard Solaris locking techniques.
234  * The internal serialization is per phyint.  This is used to serialize
235  * plumbing operations, IPMP operations, most set ioctls, etc.
236  *
237  * Plumbing is a long sequence of operations involving message
238  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
239  * involved in plumbing operations. A natural model is to serialize these
240  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
241  * parallel without any interference. But various set ioctls on hme0 are best
242  * serialized, along with IPMP operations and processing of DLPI control
243  * messages received from drivers on a per phyint basis. This serialization is
244  * provided by the ipsq_t and primitives operating on this. Details can
245  * be found in ip_if.c above the core primitives operating on ipsq_t.
246  *
247  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
248  * Simiarly lookup of an ire by a thread also returns a refheld ire.
249  * In addition ipif's and ill's referenced by the ire are also indirectly
250  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
251  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
252  * address of an ipif has to go through the ipsq_t. This ensures that only
253  * one such exclusive operation proceeds at any time on the ipif. It then
254  * waits for all refcnts
255  * associated with this ipif to come down to zero. The address is changed
256  * only after the ipif has been quiesced. Then the ipif is brought up again.
257  * More details are described above the comment in ip_sioctl_flags.
258  *
259  * Packet processing is based mostly on IREs and are fully multi-threaded
260  * using standard Solaris MT techniques.
261  *
262  * There are explicit locks in IP to handle:
263  * - The ip_g_head list maintained by mi_open_link() and friends.
264  *
265  * - The reassembly data structures (one lock per hash bucket)
266  *
267  * - conn_lock is meant to protect conn_t fields. The fields actually
268  *   protected by conn_lock are documented in the conn_t definition.
269  *
270  * - ire_lock to protect some of the fields of the ire, IRE tables
271  *   (one lock per hash bucket). Refer to ip_ire.c for details.
272  *
273  * - ndp_g_lock and ncec_lock for protecting NCEs.
274  *
275  * - ill_lock protects fields of the ill and ipif. Details in ip.h
276  *
277  * - ill_g_lock: This is a global reader/writer lock. Protects the following
278  *	* The AVL tree based global multi list of all ills.
279  *	* The linked list of all ipifs of an ill
280  *	* The <ipsq-xop> mapping
281  *	* <ill-phyint> association
282  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
283  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
284  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
285  *   writer for the actual duration of the insertion/deletion/change.
286  *
287  * - ill_lock:  This is a per ill mutex.
288  *   It protects some members of the ill_t struct; see ip.h for details.
289  *   It also protects the <ill-phyint> assoc.
290  *   It also protects the list of ipifs hanging off the ill.
291  *
292  * - ipsq_lock: This is a per ipsq_t mutex lock.
293  *   This protects some members of the ipsq_t struct; see ip.h for details.
294  *   It also protects the <ipsq-ipxop> mapping
295  *
296  * - ipx_lock: This is a per ipxop_t mutex lock.
297  *   This protects some members of the ipxop_t struct; see ip.h for details.
298  *
299  * - phyint_lock: This is a per phyint mutex lock. Protects just the
300  *   phyint_flags
301  *
302  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
303  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
304  *   uniqueness check also done atomically.
305  *
306  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
307  *   group list linked by ill_usesrc_grp_next. It also protects the
308  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
309  *   group is being added or deleted.  This lock is taken as a reader when
310  *   walking the list/group(eg: to get the number of members in a usesrc group).
311  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
312  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
313  *   example, it is not necessary to take this lock in the initial portion
314  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
315  *   operations are executed exclusively and that ensures that the "usesrc
316  *   group state" cannot change. The "usesrc group state" change can happen
317  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
318  *
319  * Changing <ill-phyint>, <ipsq-xop> assocications:
320  *
321  * To change the <ill-phyint> association, the ill_g_lock must be held
322  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
323  * must be held.
324  *
325  * To change the <ipsq-xop> association, the ill_g_lock must be held as
326  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
327  * This is only done when ills are added or removed from IPMP groups.
328  *
329  * To add or delete an ipif from the list of ipifs hanging off the ill,
330  * ill_g_lock (writer) and ill_lock must be held and the thread must be
331  * a writer on the associated ipsq.
332  *
333  * To add or delete an ill to the system, the ill_g_lock must be held as
334  * writer and the thread must be a writer on the associated ipsq.
335  *
336  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
337  * must be a writer on the associated ipsq.
338  *
339  * Lock hierarchy
340  *
341  * Some lock hierarchy scenarios are listed below.
342  *
343  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
344  * ill_g_lock -> ill_lock(s) -> phyint_lock
345  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
346  * ill_g_lock -> ip_addr_avail_lock
347  * conn_lock -> irb_lock -> ill_lock -> ire_lock
348  * ill_g_lock -> ip_g_nd_lock
349  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
350  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
351  * arl_lock -> ill_lock
352  * ips_ire_dep_lock -> irb_lock
353  *
354  * When more than 1 ill lock is needed to be held, all ill lock addresses
355  * are sorted on address and locked starting from highest addressed lock
356  * downward.
357  *
358  * Multicast scenarios
359  * ips_ill_g_lock -> ill_mcast_lock
360  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
361  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
362  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
363  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
364  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
365  *
366  * IPsec scenarios
367  *
368  * ipsa_lock -> ill_g_lock -> ill_lock
369  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
370  *
371  * Trusted Solaris scenarios
372  *
373  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
374  * igsa_lock -> gcdb_lock
375  * gcgrp_rwlock -> ire_lock
376  * gcgrp_rwlock -> gcdb_lock
377  *
378  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
379  *
380  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
381  * sq_lock -> conn_lock -> QLOCK(q)
382  * ill_lock -> ft_lock -> fe_lock
383  *
384  * Routing/forwarding table locking notes:
385  *
386  * Lock acquisition order: Radix tree lock, irb_lock.
387  * Requirements:
388  * i.  Walker must not hold any locks during the walker callback.
389  * ii  Walker must not see a truncated tree during the walk because of any node
390  *     deletion.
391  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
392  *     in many places in the code to walk the irb list. Thus even if all the
393  *     ires in a bucket have been deleted, we still can't free the radix node
394  *     until the ires have actually been inactive'd (freed).
395  *
396  * Tree traversal - Need to hold the global tree lock in read mode.
397  * Before dropping the global tree lock, need to either increment the ire_refcnt
398  * to ensure that the radix node can't be deleted.
399  *
400  * Tree add - Need to hold the global tree lock in write mode to add a
401  * radix node. To prevent the node from being deleted, increment the
402  * irb_refcnt, after the node is added to the tree. The ire itself is
403  * added later while holding the irb_lock, but not the tree lock.
404  *
405  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
406  * All associated ires must be inactive (i.e. freed), and irb_refcnt
407  * must be zero.
408  *
409  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
410  * global tree lock (read mode) for traversal.
411  *
412  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
413  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
414  *
415  * IPsec notes :
416  *
417  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
418  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
419  * ip_xmit_attr_t has the
420  * information used by the IPsec code for applying the right level of
421  * protection. The information initialized by IP in the ip_xmit_attr_t
422  * is determined by the per-socket policy or global policy in the system.
423  * For inbound datagrams, the ip_recv_attr_t
424  * starts out with nothing in it. It gets filled
425  * with the right information if it goes through the AH/ESP code, which
426  * happens if the incoming packet is secure. The information initialized
427  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
428  * the policy requirements needed by per-socket policy or global policy
429  * is met or not.
430  *
431  * For fully connected sockets i.e dst, src [addr, port] is known,
432  * conn_policy_cached is set indicating that policy has been cached.
433  * conn_in_enforce_policy may or may not be set depending on whether
434  * there is a global policy match or per-socket policy match.
435  * Policy inheriting happpens in ip_policy_set once the destination is known.
436  * Once the right policy is set on the conn_t, policy cannot change for
437  * this socket. This makes life simpler for TCP (UDP ?) where
438  * re-transmissions go out with the same policy. For symmetry, policy
439  * is cached for fully connected UDP sockets also. Thus if policy is cached,
440  * it also implies that policy is latched i.e policy cannot change
441  * on these sockets. As we have the right policy on the conn, we don't
442  * have to lookup global policy for every outbound and inbound datagram
443  * and thus serving as an optimization. Note that a global policy change
444  * does not affect fully connected sockets if they have policy. If fully
445  * connected sockets did not have any policy associated with it, global
446  * policy change may affect them.
447  *
448  * IP Flow control notes:
449  * ---------------------
450  * Non-TCP streams are flow controlled by IP. The way this is accomplished
451  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
452  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
453  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
454  * functions.
455  *
456  * Per Tx ring udp flow control:
457  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
458  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
459  *
460  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
461  * To achieve best performance, outgoing traffic need to be fanned out among
462  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
463  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
464  * the address of connp as fanout hint to mac_tx(). Under flow controlled
465  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
466  * cookie points to a specific Tx ring that is blocked. The cookie is used to
467  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
468  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
469  * connp's. The drain list is not a single list but a configurable number of
470  * lists.
471  *
472  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
473  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
474  * which is equal to 128. This array in turn contains a pointer to idl_t[],
475  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
476  * list will point to the list of connp's that are flow controlled.
477  *
478  *                      ---------------   -------   -------   -------
479  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
480  *                   |  ---------------   -------   -------   -------
481  *                   |  ---------------   -------   -------   -------
482  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
483  * ----------------  |  ---------------   -------   -------   -------
484  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
485  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
486  *                   |  ---------------   -------   -------   -------
487  *                   .        .              .         .         .
488  *                   |  ---------------   -------   -------   -------
489  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
490  *                      ---------------   -------   -------   -------
491  *                      ---------------   -------   -------   -------
492  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
493  *                   |  ---------------   -------   -------   -------
494  *                   |  ---------------   -------   -------   -------
495  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
496  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
497  * ----------------  |        .              .         .         .
498  *                   |  ---------------   -------   -------   -------
499  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
500  *                      ---------------   -------   -------   -------
501  *     .....
502  * ----------------
503  * |idl_tx_list[n]|-> ...
504  * ----------------
505  *
506  * When mac_tx() returns a cookie, the cookie is hashed into an index into
507  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
508  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
509  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
510  * Further, conn_blocked is set to indicate that the conn is blocked.
511  *
512  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
513  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
514  * is again hashed to locate the appropriate idl_tx_list, which is then
515  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
516  * the drain list and calls conn_drain_remove() to clear flow control (via
517  * calling su_txq_full() or clearing QFULL), and remove the conn from the
518  * drain list.
519  *
520  * Note that the drain list is not a single list but a (configurable) array of
521  * lists (8 elements by default).  Synchronization between drain insertion and
522  * flow control wakeup is handled by using idl_txl->txl_lock, and only
523  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
524  *
525  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
526  * On the send side, if the packet cannot be sent down to the driver by IP
527  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
528  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
529  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
530  * control has been relieved, the blocked conns in the 0'th drain list are
531  * drained as in the non-STREAMS case.
532  *
533  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
534  * is done when the conn is inserted into the drain list (conn_drain_insert())
535  * and cleared when the conn is removed from the it (conn_drain_remove()).
536  *
537  * IPQOS notes:
538  *
539  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
540  * and IPQoS modules. IPPF includes hooks in IP at different control points
541  * (callout positions) which direct packets to IPQoS modules for policy
542  * processing. Policies, if present, are global.
543  *
544  * The callout positions are located in the following paths:
545  *		o local_in (packets destined for this host)
546  *		o local_out (packets orginating from this host )
547  *		o fwd_in  (packets forwarded by this m/c - inbound)
548  *		o fwd_out (packets forwarded by this m/c - outbound)
549  * Hooks at these callout points can be enabled/disabled using the ndd variable
550  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
551  * By default all the callout positions are enabled.
552  *
553  * Outbound (local_out)
554  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
555  *
556  * Inbound (local_in)
557  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
558  *
559  * Forwarding (in and out)
560  * Hooks are placed in ire_recv_forward_v4/v6.
561  *
562  * IP Policy Framework processing (IPPF processing)
563  * Policy processing for a packet is initiated by ip_process, which ascertains
564  * that the classifier (ipgpc) is loaded and configured, failing which the
565  * packet resumes normal processing in IP. If the clasifier is present, the
566  * packet is acted upon by one or more IPQoS modules (action instances), per
567  * filters configured in ipgpc and resumes normal IP processing thereafter.
568  * An action instance can drop a packet in course of its processing.
569  *
570  * Zones notes:
571  *
572  * The partitioning rules for networking are as follows:
573  * 1) Packets coming from a zone must have a source address belonging to that
574  * zone.
575  * 2) Packets coming from a zone can only be sent on a physical interface on
576  * which the zone has an IP address.
577  * 3) Between two zones on the same machine, packet delivery is only allowed if
578  * there's a matching route for the destination and zone in the forwarding
579  * table.
580  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
581  * different zones can bind to the same port with the wildcard address
582  * (INADDR_ANY).
583  *
584  * The granularity of interface partitioning is at the logical interface level.
585  * Therefore, every zone has its own IP addresses, and incoming packets can be
586  * attributed to a zone unambiguously. A logical interface is placed into a zone
587  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
588  * structure. Rule (1) is implemented by modifying the source address selection
589  * algorithm so that the list of eligible addresses is filtered based on the
590  * sending process zone.
591  *
592  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
593  * across all zones, depending on their type. Here is the break-up:
594  *
595  * IRE type				Shared/exclusive
596  * --------				----------------
597  * IRE_BROADCAST			Exclusive
598  * IRE_DEFAULT (default routes)		Shared (*)
599  * IRE_LOCAL				Exclusive (x)
600  * IRE_LOOPBACK				Exclusive
601  * IRE_PREFIX (net routes)		Shared (*)
602  * IRE_IF_NORESOLVER (interface routes)	Exclusive
603  * IRE_IF_RESOLVER (interface routes)	Exclusive
604  * IRE_IF_CLONE (interface routes)	Exclusive
605  * IRE_HOST (host routes)		Shared (*)
606  *
607  * (*) A zone can only use a default or off-subnet route if the gateway is
608  * directly reachable from the zone, that is, if the gateway's address matches
609  * one of the zone's logical interfaces.
610  *
611  * (x) IRE_LOCAL are handled a bit differently.
612  * When ip_restrict_interzone_loopback is set (the default),
613  * ire_route_recursive restricts loopback using an IRE_LOCAL
614  * between zone to the case when L2 would have conceptually looped the packet
615  * back, i.e. the loopback which is required since neither Ethernet drivers
616  * nor Ethernet hardware loops them back. This is the case when the normal
617  * routes (ignoring IREs with different zoneids) would send out the packet on
618  * the same ill as the ill with which is IRE_LOCAL is associated.
619  *
620  * Multiple zones can share a common broadcast address; typically all zones
621  * share the 255.255.255.255 address. Incoming as well as locally originated
622  * broadcast packets must be dispatched to all the zones on the broadcast
623  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
624  * since some zones may not be on the 10.16.72/24 network. To handle this, each
625  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
626  * sent to every zone that has an IRE_BROADCAST entry for the destination
627  * address on the input ill, see ip_input_broadcast().
628  *
629  * Applications in different zones can join the same multicast group address.
630  * The same logic applies for multicast as for broadcast. ip_input_multicast
631  * dispatches packets to all zones that have members on the physical interface.
632  */
633 
634 /*
635  * Squeue Fanout flags:
636  *	0: No fanout.
637  *	1: Fanout across all squeues
638  */
639 boolean_t	ip_squeue_fanout = 0;
640 
641 /*
642  * Maximum dups allowed per packet.
643  */
644 uint_t ip_max_frag_dups = 10;
645 
646 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
647 		    cred_t *credp, boolean_t isv6);
648 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
649 
650 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
651 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
652 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
653     ip_recv_attr_t *);
654 static void	icmp_options_update(ipha_t *);
655 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
656 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
657 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
658 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
659     ip_recv_attr_t *);
660 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
661 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
662     ip_recv_attr_t *);
663 
664 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
665 char		*ip_dot_addr(ipaddr_t, char *);
666 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
667 int		ip_close(queue_t *, int);
668 static char	*ip_dot_saddr(uchar_t *, char *);
669 static void	ip_lrput(queue_t *, mblk_t *);
670 ipaddr_t	ip_net_mask(ipaddr_t);
671 char		*ip_nv_lookup(nv_t *, int);
672 void	ip_rput(queue_t *, mblk_t *);
673 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
674 		    void *dummy_arg);
675 int		ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
676 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
677 		    mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
678 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
679 		    ip_stack_t *, boolean_t);
680 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
681 		    boolean_t);
682 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
683 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
684 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
687 		    ip_stack_t *ipst, boolean_t);
688 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
689 		    ip_stack_t *ipst, boolean_t);
690 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
691 		    ip_stack_t *ipst);
692 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
693 		    ip_stack_t *ipst);
694 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
695 		    ip_stack_t *ipst);
696 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
697 		    ip_stack_t *ipst);
698 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
699 		    ip_stack_t *ipst);
700 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
701 		    ip_stack_t *ipst);
702 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
703 		    ip_stack_t *ipst);
704 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
705 		    ip_stack_t *ipst);
706 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
707 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
708 static int	ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
709 static int	ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
710 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
711 
712 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
713 		    mblk_t *);
714 
715 static void	conn_drain_init(ip_stack_t *);
716 static void	conn_drain_fini(ip_stack_t *);
717 static void	conn_drain(conn_t *connp, boolean_t closing);
718 
719 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
720 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
721 
722 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
723 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
724 static void	ip_stack_fini(netstackid_t stackid, void *arg);
725 
726 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
727     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
728     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
729     const in6_addr_t *);
730 
731 static int	ip_squeue_switch(int);
732 
733 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
734 static void	ip_kstat_fini(netstackid_t, kstat_t *);
735 static int	ip_kstat_update(kstat_t *kp, int rw);
736 static void	*icmp_kstat_init(netstackid_t);
737 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
738 static int	icmp_kstat_update(kstat_t *kp, int rw);
739 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
740 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
741 
742 static void	ipobs_init(ip_stack_t *);
743 static void	ipobs_fini(ip_stack_t *);
744 
745 static int	ip_tp_cpu_update(cpu_setup_t, int, void *);
746 
747 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
748 
749 static long ip_rput_pullups;
750 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
751 
752 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
753 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
754 
755 int	ip_debug;
756 
757 /*
758  * Multirouting/CGTP stuff
759  */
760 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
761 
762 /*
763  * IP tunables related declarations. Definitions are in ip_tunables.c
764  */
765 extern mod_prop_info_t ip_propinfo_tbl[];
766 extern int ip_propinfo_count;
767 
768 /*
769  * Table of IP ioctls encoding the various properties of the ioctl and
770  * indexed based on the last byte of the ioctl command. Occasionally there
771  * is a clash, and there is more than 1 ioctl with the same last byte.
772  * In such a case 1 ioctl is encoded in the ndx table and the remaining
773  * ioctls are encoded in the misc table. An entry in the ndx table is
774  * retrieved by indexing on the last byte of the ioctl command and comparing
775  * the ioctl command with the value in the ndx table. In the event of a
776  * mismatch the misc table is then searched sequentially for the desired
777  * ioctl command.
778  *
779  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
780  */
781 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
782 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
783 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
784 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 
793 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
794 			MISC_CMD, ip_siocaddrt, NULL },
795 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
796 			MISC_CMD, ip_siocdelrt, NULL },
797 
798 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
799 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
800 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
801 			IF_CMD, ip_sioctl_get_addr, NULL },
802 
803 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
804 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
805 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
806 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
807 
808 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
809 			IPI_PRIV | IPI_WR,
810 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
811 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
812 			IPI_MODOK | IPI_GET_CMD,
813 			IF_CMD, ip_sioctl_get_flags, NULL },
814 
815 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
816 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
817 
818 	/* copyin size cannot be coded for SIOCGIFCONF */
819 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
820 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
821 
822 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
823 			IF_CMD, ip_sioctl_mtu, NULL },
824 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
825 			IF_CMD, ip_sioctl_get_mtu, NULL },
826 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
827 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
828 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
829 			IF_CMD, ip_sioctl_brdaddr, NULL },
830 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
831 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
832 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
833 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
834 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
835 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
836 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
837 			IF_CMD, ip_sioctl_metric, NULL },
838 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
839 
840 	/* See 166-168 below for extended SIOC*XARP ioctls */
841 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
842 			ARP_CMD, ip_sioctl_arp, NULL },
843 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
844 			ARP_CMD, ip_sioctl_arp, NULL },
845 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
846 			ARP_CMD, ip_sioctl_arp, NULL },
847 
848 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
849 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
850 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 
870 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
871 			MISC_CMD, if_unitsel, if_unitsel_restart },
872 
873 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
874 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
875 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 
892 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
893 			IPI_PRIV | IPI_WR | IPI_MODOK,
894 			IF_CMD, ip_sioctl_sifname, NULL },
895 
896 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
897 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
898 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 
910 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
911 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
912 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
913 			IF_CMD, ip_sioctl_get_muxid, NULL },
914 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
915 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
916 
917 	/* Both if and lif variants share same func */
918 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
919 			IF_CMD, ip_sioctl_get_lifindex, NULL },
920 	/* Both if and lif variants share same func */
921 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
922 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
923 
924 	/* copyin size cannot be coded for SIOCGIFCONF */
925 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
926 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
927 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
928 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
929 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 
945 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
946 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
947 			ip_sioctl_removeif_restart },
948 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
949 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
950 			LIF_CMD, ip_sioctl_addif, NULL },
951 #define	SIOCLIFADDR_NDX 112
952 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
953 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
954 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
955 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
956 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
957 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
958 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
959 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
960 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
961 			IPI_PRIV | IPI_WR,
962 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
963 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
964 			IPI_GET_CMD | IPI_MODOK,
965 			LIF_CMD, ip_sioctl_get_flags, NULL },
966 
967 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
968 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
969 
970 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
971 			ip_sioctl_get_lifconf, NULL },
972 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
973 			LIF_CMD, ip_sioctl_mtu, NULL },
974 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
975 			LIF_CMD, ip_sioctl_get_mtu, NULL },
976 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
977 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
978 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
979 			LIF_CMD, ip_sioctl_brdaddr, NULL },
980 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
981 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
982 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
983 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
984 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
985 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
986 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
987 			LIF_CMD, ip_sioctl_metric, NULL },
988 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
989 			IPI_PRIV | IPI_WR | IPI_MODOK,
990 			LIF_CMD, ip_sioctl_slifname,
991 			ip_sioctl_slifname_restart },
992 
993 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
994 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
995 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
996 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
997 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
998 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
999 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1000 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1001 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1002 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1003 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1004 			LIF_CMD, ip_sioctl_token, NULL },
1005 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1006 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1007 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1008 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1009 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1010 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1011 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1012 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1013 
1014 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1015 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1016 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1017 			LIF_CMD, ip_siocdelndp_v6, NULL },
1018 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1019 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1020 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1021 			LIF_CMD, ip_siocsetndp_v6, NULL },
1022 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1023 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1024 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025 			MISC_CMD, ip_sioctl_tonlink, NULL },
1026 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1027 			MISC_CMD, ip_sioctl_tmysite, NULL },
1028 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 	/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1031 	/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1032 	/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1033 	/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1034 	/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1035 
1036 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 
1038 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1039 			LIF_CMD, ip_sioctl_get_binding, NULL },
1040 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1041 			IPI_PRIV | IPI_WR,
1042 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1043 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1044 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1045 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1046 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1047 
1048 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1049 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 
1053 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 
1055 	/* These are handled in ip_sioctl_copyin_setup itself */
1056 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1057 			MISC_CMD, NULL, NULL },
1058 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1059 			MISC_CMD, NULL, NULL },
1060 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1061 
1062 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1063 			ip_sioctl_get_lifconf, NULL },
1064 
1065 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1066 			XARP_CMD, ip_sioctl_arp, NULL },
1067 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1068 			XARP_CMD, ip_sioctl_arp, NULL },
1069 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1070 			XARP_CMD, ip_sioctl_arp, NULL },
1071 
1072 	/* SIOCPOPSOCKFS is not handled by IP */
1073 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1074 
1075 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1076 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1077 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1078 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1079 			ip_sioctl_slifzone_restart },
1080 	/* 172-174 are SCTP ioctls and not handled by IP */
1081 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1082 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1083 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1085 			IPI_GET_CMD, LIF_CMD,
1086 			ip_sioctl_get_lifusesrc, 0 },
1087 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1088 			IPI_PRIV | IPI_WR,
1089 			LIF_CMD, ip_sioctl_slifusesrc,
1090 			NULL },
1091 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1092 			ip_sioctl_get_lifsrcof, NULL },
1093 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1094 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1095 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1096 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1098 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1100 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1102 	/* SIOCSENABLESDP is handled by SDP */
1103 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1104 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1105 	/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1106 			IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1107 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1108 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1109 			ip_sioctl_ilb_cmd, NULL },
1110 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1111 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1112 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1113 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1114 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1115 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1116 	/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1117 			LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1118 };
1119 
1120 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1121 
1122 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1123 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1124 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1125 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 	{ ND_GET,	0, 0, 0, NULL, NULL },
1128 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1130 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1131 		MISC_CMD, mrt_ioctl},
1132 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1133 		MISC_CMD, mrt_ioctl},
1134 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1135 		MISC_CMD, mrt_ioctl}
1136 };
1137 
1138 int ip_misc_ioctl_count =
1139     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1140 
1141 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1142 					/* Settable in /etc/system */
1143 /* Defined in ip_ire.c */
1144 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1145 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1146 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1147 
1148 static nv_t	ire_nv_arr[] = {
1149 	{ IRE_BROADCAST, "BROADCAST" },
1150 	{ IRE_LOCAL, "LOCAL" },
1151 	{ IRE_LOOPBACK, "LOOPBACK" },
1152 	{ IRE_DEFAULT, "DEFAULT" },
1153 	{ IRE_PREFIX, "PREFIX" },
1154 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1155 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1156 	{ IRE_IF_CLONE, "IF_CLONE" },
1157 	{ IRE_HOST, "HOST" },
1158 	{ IRE_MULTICAST, "MULTICAST" },
1159 	{ IRE_NOROUTE, "NOROUTE" },
1160 	{ 0 }
1161 };
1162 
1163 nv_t	*ire_nv_tbl = ire_nv_arr;
1164 
1165 /* Simple ICMP IP Header Template */
1166 static ipha_t icmp_ipha = {
1167 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1168 };
1169 
1170 struct module_info ip_mod_info = {
1171 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1172 	IP_MOD_LOWAT
1173 };
1174 
1175 /*
1176  * Duplicate static symbols within a module confuses mdb; so we avoid the
1177  * problem by making the symbols here distinct from those in udp.c.
1178  */
1179 
1180 /*
1181  * Entry points for IP as a device and as a module.
1182  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1183  */
1184 static struct qinit iprinitv4 = {
1185 	(pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1186 	&ip_mod_info
1187 };
1188 
1189 struct qinit iprinitv6 = {
1190 	(pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1191 	&ip_mod_info
1192 };
1193 
1194 static struct qinit ipwinit = {
1195 	(pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1196 	&ip_mod_info
1197 };
1198 
1199 static struct qinit iplrinit = {
1200 	(pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1201 	&ip_mod_info
1202 };
1203 
1204 static struct qinit iplwinit = {
1205 	(pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1206 	&ip_mod_info
1207 };
1208 
1209 /* For AF_INET aka /dev/ip */
1210 struct streamtab ipinfov4 = {
1211 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1212 };
1213 
1214 /* For AF_INET6 aka /dev/ip6 */
1215 struct streamtab ipinfov6 = {
1216 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1217 };
1218 
1219 #ifdef	DEBUG
1220 boolean_t skip_sctp_cksum = B_FALSE;
1221 #endif
1222 
1223 /*
1224  * Generate an ICMP fragmentation needed message.
1225  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1226  * constructed by the caller.
1227  */
1228 void
1229 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1230 {
1231 	icmph_t	icmph;
1232 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1233 
1234 	mp = icmp_pkt_err_ok(mp, ira);
1235 	if (mp == NULL)
1236 		return;
1237 
1238 	bzero(&icmph, sizeof (icmph_t));
1239 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1240 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1241 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1242 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1243 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1244 
1245 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1246 }
1247 
1248 /*
1249  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1250  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1251  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1252  * Likewise, if the ICMP error is misformed (too short, etc), then it
1253  * returns NULL. The caller uses this to determine whether or not to send
1254  * to raw sockets.
1255  *
1256  * All error messages are passed to the matching transport stream.
1257  *
1258  * The following cases are handled by icmp_inbound:
1259  * 1) It needs to send a reply back and possibly delivering it
1260  *    to the "interested" upper clients.
1261  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1262  * 3) It needs to change some values in IP only.
1263  * 4) It needs to change some values in IP and upper layers e.g TCP
1264  *    by delivering an error to the upper layers.
1265  *
1266  * We handle the above three cases in the context of IPsec in the
1267  * following way :
1268  *
1269  * 1) Send the reply back in the same way as the request came in.
1270  *    If it came in encrypted, it goes out encrypted. If it came in
1271  *    clear, it goes out in clear. Thus, this will prevent chosen
1272  *    plain text attack.
1273  * 2) The client may or may not expect things to come in secure.
1274  *    If it comes in secure, the policy constraints are checked
1275  *    before delivering it to the upper layers. If it comes in
1276  *    clear, ipsec_inbound_accept_clear will decide whether to
1277  *    accept this in clear or not. In both the cases, if the returned
1278  *    message (IP header + 8 bytes) that caused the icmp message has
1279  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1280  *    sending up. If there are only 8 bytes of returned message, then
1281  *    upper client will not be notified.
1282  * 3) Check with global policy to see whether it matches the constaints.
1283  *    But this will be done only if icmp_accept_messages_in_clear is
1284  *    zero.
1285  * 4) If we need to change both in IP and ULP, then the decision taken
1286  *    while affecting the values in IP and while delivering up to TCP
1287  *    should be the same.
1288  *
1289  * 	There are two cases.
1290  *
1291  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1292  *	   failed), we will not deliver it to the ULP, even though they
1293  *	   are *willing* to accept in *clear*. This is fine as our global
1294  *	   disposition to icmp messages asks us reject the datagram.
1295  *
1296  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1297  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1298  *	   to deliver it to ULP (policy failed), it can lead to
1299  *	   consistency problems. The cases known at this time are
1300  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1301  *	   values :
1302  *
1303  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1304  *	     and Upper layer rejects. Then the communication will
1305  *	     come to a stop. This is solved by making similar decisions
1306  *	     at both levels. Currently, when we are unable to deliver
1307  *	     to the Upper Layer (due to policy failures) while IP has
1308  *	     adjusted dce_pmtu, the next outbound datagram would
1309  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1310  *	     will be with the right level of protection. Thus the right
1311  *	     value will be communicated even if we are not able to
1312  *	     communicate when we get from the wire initially. But this
1313  *	     assumes there would be at least one outbound datagram after
1314  *	     IP has adjusted its dce_pmtu value. To make things
1315  *	     simpler, we accept in clear after the validation of
1316  *	     AH/ESP headers.
1317  *
1318  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1319  *	     upper layer depending on the level of protection the upper
1320  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1321  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1322  *	     should be accepted in clear when the Upper layer expects secure.
1323  *	     Thus the communication may get aborted by some bad ICMP
1324  *	     packets.
1325  */
1326 mblk_t *
1327 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1328 {
1329 	icmph_t		*icmph;
1330 	ipha_t		*ipha;		/* Outer header */
1331 	int		ip_hdr_length;	/* Outer header length */
1332 	boolean_t	interested;
1333 	ipif_t		*ipif;
1334 	uint32_t	ts;
1335 	uint32_t	*tsp;
1336 	timestruc_t	now;
1337 	ill_t		*ill = ira->ira_ill;
1338 	ip_stack_t	*ipst = ill->ill_ipst;
1339 	zoneid_t	zoneid = ira->ira_zoneid;
1340 	int		len_needed;
1341 	mblk_t		*mp_ret = NULL;
1342 
1343 	ipha = (ipha_t *)mp->b_rptr;
1344 
1345 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1346 
1347 	ip_hdr_length = ira->ira_ip_hdr_length;
1348 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1349 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1350 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1351 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1352 			freemsg(mp);
1353 			return (NULL);
1354 		}
1355 		/* Last chance to get real. */
1356 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1357 		if (ipha == NULL) {
1358 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1359 			freemsg(mp);
1360 			return (NULL);
1361 		}
1362 	}
1363 
1364 	/* The IP header will always be a multiple of four bytes */
1365 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1366 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1367 	    icmph->icmph_code));
1368 
1369 	/*
1370 	 * We will set "interested" to "true" if we should pass a copy to
1371 	 * the transport or if we handle the packet locally.
1372 	 */
1373 	interested = B_FALSE;
1374 	switch (icmph->icmph_type) {
1375 	case ICMP_ECHO_REPLY:
1376 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1377 		break;
1378 	case ICMP_DEST_UNREACHABLE:
1379 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1380 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1381 		interested = B_TRUE;	/* Pass up to transport */
1382 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1383 		break;
1384 	case ICMP_SOURCE_QUENCH:
1385 		interested = B_TRUE;	/* Pass up to transport */
1386 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1387 		break;
1388 	case ICMP_REDIRECT:
1389 		if (!ipst->ips_ip_ignore_redirect)
1390 			interested = B_TRUE;
1391 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1392 		break;
1393 	case ICMP_ECHO_REQUEST:
1394 		/*
1395 		 * Whether to respond to echo requests that come in as IP
1396 		 * broadcasts or as IP multicast is subject to debate
1397 		 * (what isn't?).  We aim to please, you pick it.
1398 		 * Default is do it.
1399 		 */
1400 		if (ira->ira_flags & IRAF_MULTICAST) {
1401 			/* multicast: respond based on tunable */
1402 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1403 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1404 			/* broadcast: respond based on tunable */
1405 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1406 		} else {
1407 			/* unicast: always respond */
1408 			interested = B_TRUE;
1409 		}
1410 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1411 		if (!interested) {
1412 			/* We never pass these to RAW sockets */
1413 			freemsg(mp);
1414 			return (NULL);
1415 		}
1416 
1417 		/* Check db_ref to make sure we can modify the packet. */
1418 		if (mp->b_datap->db_ref > 1) {
1419 			mblk_t	*mp1;
1420 
1421 			mp1 = copymsg(mp);
1422 			freemsg(mp);
1423 			if (!mp1) {
1424 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1425 				return (NULL);
1426 			}
1427 			mp = mp1;
1428 			ipha = (ipha_t *)mp->b_rptr;
1429 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1430 		}
1431 		icmph->icmph_type = ICMP_ECHO_REPLY;
1432 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1433 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1434 		return (NULL);
1435 
1436 	case ICMP_ROUTER_ADVERTISEMENT:
1437 	case ICMP_ROUTER_SOLICITATION:
1438 		break;
1439 	case ICMP_TIME_EXCEEDED:
1440 		interested = B_TRUE;	/* Pass up to transport */
1441 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1442 		break;
1443 	case ICMP_PARAM_PROBLEM:
1444 		interested = B_TRUE;	/* Pass up to transport */
1445 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1446 		break;
1447 	case ICMP_TIME_STAMP_REQUEST:
1448 		/* Response to Time Stamp Requests is local policy. */
1449 		if (ipst->ips_ip_g_resp_to_timestamp) {
1450 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1451 				interested =
1452 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1453 			else
1454 				interested = B_TRUE;
1455 		}
1456 		if (!interested) {
1457 			/* We never pass these to RAW sockets */
1458 			freemsg(mp);
1459 			return (NULL);
1460 		}
1461 
1462 		/* Make sure we have enough of the packet */
1463 		len_needed = ip_hdr_length + ICMPH_SIZE +
1464 		    3 * sizeof (uint32_t);
1465 
1466 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1467 			ipha = ip_pullup(mp, len_needed, ira);
1468 			if (ipha == NULL) {
1469 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1470 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1471 				    mp, ill);
1472 				freemsg(mp);
1473 				return (NULL);
1474 			}
1475 			/* Refresh following the pullup. */
1476 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1477 		}
1478 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1479 		/* Check db_ref to make sure we can modify the packet. */
1480 		if (mp->b_datap->db_ref > 1) {
1481 			mblk_t	*mp1;
1482 
1483 			mp1 = copymsg(mp);
1484 			freemsg(mp);
1485 			if (!mp1) {
1486 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1487 				return (NULL);
1488 			}
1489 			mp = mp1;
1490 			ipha = (ipha_t *)mp->b_rptr;
1491 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1492 		}
1493 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1494 		tsp = (uint32_t *)&icmph[1];
1495 		tsp++;		/* Skip past 'originate time' */
1496 		/* Compute # of milliseconds since midnight */
1497 		gethrestime(&now);
1498 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1499 		    now.tv_nsec / (NANOSEC / MILLISEC);
1500 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1501 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1502 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1503 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1504 		return (NULL);
1505 
1506 	case ICMP_TIME_STAMP_REPLY:
1507 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1508 		break;
1509 	case ICMP_INFO_REQUEST:
1510 		/* Per RFC 1122 3.2.2.7, ignore this. */
1511 	case ICMP_INFO_REPLY:
1512 		break;
1513 	case ICMP_ADDRESS_MASK_REQUEST:
1514 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1515 			interested =
1516 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1517 		} else {
1518 			interested = B_TRUE;
1519 		}
1520 		if (!interested) {
1521 			/* We never pass these to RAW sockets */
1522 			freemsg(mp);
1523 			return (NULL);
1524 		}
1525 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1526 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1527 			ipha = ip_pullup(mp, len_needed, ira);
1528 			if (ipha == NULL) {
1529 				BUMP_MIB(ill->ill_ip_mib,
1530 				    ipIfStatsInTruncatedPkts);
1531 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1532 				    ill);
1533 				freemsg(mp);
1534 				return (NULL);
1535 			}
1536 			/* Refresh following the pullup. */
1537 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1538 		}
1539 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1540 		/* Check db_ref to make sure we can modify the packet. */
1541 		if (mp->b_datap->db_ref > 1) {
1542 			mblk_t	*mp1;
1543 
1544 			mp1 = copymsg(mp);
1545 			freemsg(mp);
1546 			if (!mp1) {
1547 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1548 				return (NULL);
1549 			}
1550 			mp = mp1;
1551 			ipha = (ipha_t *)mp->b_rptr;
1552 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1553 		}
1554 		/*
1555 		 * Need the ipif with the mask be the same as the source
1556 		 * address of the mask reply. For unicast we have a specific
1557 		 * ipif. For multicast/broadcast we only handle onlink
1558 		 * senders, and use the source address to pick an ipif.
1559 		 */
1560 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1561 		if (ipif == NULL) {
1562 			/* Broadcast or multicast */
1563 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1564 			if (ipif == NULL) {
1565 				freemsg(mp);
1566 				return (NULL);
1567 			}
1568 		}
1569 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1570 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1571 		ipif_refrele(ipif);
1572 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1573 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1574 		return (NULL);
1575 
1576 	case ICMP_ADDRESS_MASK_REPLY:
1577 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1578 		break;
1579 	default:
1580 		interested = B_TRUE;	/* Pass up to transport */
1581 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1582 		break;
1583 	}
1584 	/*
1585 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1586 	 * if there isn't one.
1587 	 */
1588 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1589 		/* If there is an ICMP client and we want one too, copy it. */
1590 
1591 		if (!interested) {
1592 			/* Caller will deliver to RAW sockets */
1593 			return (mp);
1594 		}
1595 		mp_ret = copymsg(mp);
1596 		if (mp_ret == NULL) {
1597 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1598 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1599 		}
1600 	} else if (!interested) {
1601 		/* Neither we nor raw sockets are interested. Drop packet now */
1602 		freemsg(mp);
1603 		return (NULL);
1604 	}
1605 
1606 	/*
1607 	 * ICMP error or redirect packet. Make sure we have enough of
1608 	 * the header and that db_ref == 1 since we might end up modifying
1609 	 * the packet.
1610 	 */
1611 	if (mp->b_cont != NULL) {
1612 		if (ip_pullup(mp, -1, ira) == NULL) {
1613 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1614 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1615 			    mp, ill);
1616 			freemsg(mp);
1617 			return (mp_ret);
1618 		}
1619 	}
1620 
1621 	if (mp->b_datap->db_ref > 1) {
1622 		mblk_t	*mp1;
1623 
1624 		mp1 = copymsg(mp);
1625 		if (mp1 == NULL) {
1626 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1627 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1628 			freemsg(mp);
1629 			return (mp_ret);
1630 		}
1631 		freemsg(mp);
1632 		mp = mp1;
1633 	}
1634 
1635 	/*
1636 	 * In case mp has changed, verify the message before any further
1637 	 * processes.
1638 	 */
1639 	ipha = (ipha_t *)mp->b_rptr;
1640 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1641 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1642 		freemsg(mp);
1643 		return (mp_ret);
1644 	}
1645 
1646 	switch (icmph->icmph_type) {
1647 	case ICMP_REDIRECT:
1648 		icmp_redirect_v4(mp, ipha, icmph, ira);
1649 		break;
1650 	case ICMP_DEST_UNREACHABLE:
1651 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1652 			/* Update DCE and adjust MTU is icmp header if needed */
1653 			icmp_inbound_too_big_v4(icmph, ira);
1654 		}
1655 		/* FALLTHRU */
1656 	default:
1657 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1658 		break;
1659 	}
1660 	return (mp_ret);
1661 }
1662 
1663 /*
1664  * Send an ICMP echo, timestamp or address mask reply.
1665  * The caller has already updated the payload part of the packet.
1666  * We handle the ICMP checksum, IP source address selection and feed
1667  * the packet into ip_output_simple.
1668  */
1669 static void
1670 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1671     ip_recv_attr_t *ira)
1672 {
1673 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1674 	ill_t		*ill = ira->ira_ill;
1675 	ip_stack_t	*ipst = ill->ill_ipst;
1676 	ip_xmit_attr_t	ixas;
1677 
1678 	/* Send out an ICMP packet */
1679 	icmph->icmph_checksum = 0;
1680 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1681 	/* Reset time to live. */
1682 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1683 	{
1684 		/* Swap source and destination addresses */
1685 		ipaddr_t tmp;
1686 
1687 		tmp = ipha->ipha_src;
1688 		ipha->ipha_src = ipha->ipha_dst;
1689 		ipha->ipha_dst = tmp;
1690 	}
1691 	ipha->ipha_ident = 0;
1692 	if (!IS_SIMPLE_IPH(ipha))
1693 		icmp_options_update(ipha);
1694 
1695 	bzero(&ixas, sizeof (ixas));
1696 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1697 	ixas.ixa_zoneid = ira->ira_zoneid;
1698 	ixas.ixa_cred = kcred;
1699 	ixas.ixa_cpid = NOPID;
1700 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1701 	ixas.ixa_ifindex = 0;
1702 	ixas.ixa_ipst = ipst;
1703 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1704 
1705 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1706 		/*
1707 		 * This packet should go out the same way as it
1708 		 * came in i.e in clear, independent of the IPsec policy
1709 		 * for transmitting packets.
1710 		 */
1711 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1712 	} else {
1713 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1714 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1715 			/* Note: mp already consumed and ip_drop_packet done */
1716 			return;
1717 		}
1718 	}
1719 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1720 		/*
1721 		 * Not one or our addresses (IRE_LOCALs), thus we let
1722 		 * ip_output_simple pick the source.
1723 		 */
1724 		ipha->ipha_src = INADDR_ANY;
1725 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1726 	}
1727 	/* Should we send with DF and use dce_pmtu? */
1728 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1729 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1730 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1731 	}
1732 
1733 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1734 
1735 	(void) ip_output_simple(mp, &ixas);
1736 	ixa_cleanup(&ixas);
1737 }
1738 
1739 /*
1740  * Verify the ICMP messages for either for ICMP error or redirect packet.
1741  * The caller should have fully pulled up the message. If it's a redirect
1742  * packet, only basic checks on IP header will be done; otherwise, verify
1743  * the packet by looking at the included ULP header.
1744  *
1745  * Called before icmp_inbound_error_fanout_v4 is called.
1746  */
1747 static boolean_t
1748 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1749 {
1750 	ill_t		*ill = ira->ira_ill;
1751 	int		hdr_length;
1752 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1753 	conn_t		*connp;
1754 	ipha_t		*ipha;	/* Inner IP header */
1755 
1756 	ipha = (ipha_t *)&icmph[1];
1757 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1758 		goto truncated;
1759 
1760 	hdr_length = IPH_HDR_LENGTH(ipha);
1761 
1762 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1763 		goto discard_pkt;
1764 
1765 	if (hdr_length < sizeof (ipha_t))
1766 		goto truncated;
1767 
1768 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1769 		goto truncated;
1770 
1771 	/*
1772 	 * Stop here for ICMP_REDIRECT.
1773 	 */
1774 	if (icmph->icmph_type == ICMP_REDIRECT)
1775 		return (B_TRUE);
1776 
1777 	/*
1778 	 * ICMP errors only.
1779 	 */
1780 	switch (ipha->ipha_protocol) {
1781 	case IPPROTO_UDP:
1782 		/*
1783 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1784 		 * transport header.
1785 		 */
1786 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1787 		    mp->b_wptr)
1788 			goto truncated;
1789 		break;
1790 	case IPPROTO_TCP: {
1791 		tcpha_t		*tcpha;
1792 
1793 		/*
1794 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1795 		 * transport header.
1796 		 */
1797 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1798 		    mp->b_wptr)
1799 			goto truncated;
1800 
1801 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1802 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1803 		    ipst);
1804 		if (connp == NULL)
1805 			goto discard_pkt;
1806 
1807 		if ((connp->conn_verifyicmp != NULL) &&
1808 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1809 			CONN_DEC_REF(connp);
1810 			goto discard_pkt;
1811 		}
1812 		CONN_DEC_REF(connp);
1813 		break;
1814 	}
1815 	case IPPROTO_SCTP:
1816 		/*
1817 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1818 		 * transport header.
1819 		 */
1820 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1821 		    mp->b_wptr)
1822 			goto truncated;
1823 		break;
1824 	case IPPROTO_ESP:
1825 	case IPPROTO_AH:
1826 		break;
1827 	case IPPROTO_ENCAP:
1828 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1829 		    mp->b_wptr)
1830 			goto truncated;
1831 		break;
1832 	default:
1833 		break;
1834 	}
1835 
1836 	return (B_TRUE);
1837 
1838 discard_pkt:
1839 	/* Bogus ICMP error. */
1840 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1841 	return (B_FALSE);
1842 
1843 truncated:
1844 	/* We pulled up everthing already. Must be truncated */
1845 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1846 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1847 	return (B_FALSE);
1848 }
1849 
1850 /* Table from RFC 1191 */
1851 static int icmp_frag_size_table[] =
1852 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1853 
1854 /*
1855  * Process received ICMP Packet too big.
1856  * Just handles the DCE create/update, including using the above table of
1857  * PMTU guesses. The caller is responsible for validating the packet before
1858  * passing it in and also to fanout the ICMP error to any matching transport
1859  * conns. Assumes the message has been fully pulled up and verified.
1860  *
1861  * Before getting here, the caller has called icmp_inbound_verify_v4()
1862  * that should have verified with ULP to prevent undoing the changes we're
1863  * going to make to DCE. For example, TCP might have verified that the packet
1864  * which generated error is in the send window.
1865  *
1866  * In some cases modified this MTU in the ICMP header packet; the caller
1867  * should pass to the matching ULP after this returns.
1868  */
1869 static void
1870 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1871 {
1872 	dce_t		*dce;
1873 	int		old_mtu;
1874 	int		mtu, orig_mtu;
1875 	ipaddr_t	dst;
1876 	boolean_t	disable_pmtud;
1877 	ill_t		*ill = ira->ira_ill;
1878 	ip_stack_t	*ipst = ill->ill_ipst;
1879 	uint_t		hdr_length;
1880 	ipha_t		*ipha;
1881 
1882 	/* Caller already pulled up everything. */
1883 	ipha = (ipha_t *)&icmph[1];
1884 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1885 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1886 	ASSERT(ill != NULL);
1887 
1888 	hdr_length = IPH_HDR_LENGTH(ipha);
1889 
1890 	/*
1891 	 * We handle path MTU for source routed packets since the DCE
1892 	 * is looked up using the final destination.
1893 	 */
1894 	dst = ip_get_dst(ipha);
1895 
1896 	dce = dce_lookup_and_add_v4(dst, ipst);
1897 	if (dce == NULL) {
1898 		/* Couldn't add a unique one - ENOMEM */
1899 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1900 		    ntohl(dst)));
1901 		return;
1902 	}
1903 
1904 	/* Check for MTU discovery advice as described in RFC 1191 */
1905 	mtu = ntohs(icmph->icmph_du_mtu);
1906 	orig_mtu = mtu;
1907 	disable_pmtud = B_FALSE;
1908 
1909 	mutex_enter(&dce->dce_lock);
1910 	if (dce->dce_flags & DCEF_PMTU)
1911 		old_mtu = dce->dce_pmtu;
1912 	else
1913 		old_mtu = ill->ill_mtu;
1914 
1915 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1916 		uint32_t length;
1917 		int	i;
1918 
1919 		/*
1920 		 * Use the table from RFC 1191 to figure out
1921 		 * the next "plateau" based on the length in
1922 		 * the original IP packet.
1923 		 */
1924 		length = ntohs(ipha->ipha_length);
1925 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1926 		    uint32_t, length);
1927 		if (old_mtu <= length &&
1928 		    old_mtu >= length - hdr_length) {
1929 			/*
1930 			 * Handle broken BSD 4.2 systems that
1931 			 * return the wrong ipha_length in ICMP
1932 			 * errors.
1933 			 */
1934 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1935 			    length, old_mtu));
1936 			length -= hdr_length;
1937 		}
1938 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1939 			if (length > icmp_frag_size_table[i])
1940 				break;
1941 		}
1942 		if (i == A_CNT(icmp_frag_size_table)) {
1943 			/* Smaller than IP_MIN_MTU! */
1944 			ip1dbg(("Too big for packet size %d\n",
1945 			    length));
1946 			disable_pmtud = B_TRUE;
1947 			mtu = ipst->ips_ip_pmtu_min;
1948 		} else {
1949 			mtu = icmp_frag_size_table[i];
1950 			ip1dbg(("Calculated mtu %d, packet size %d, "
1951 			    "before %d\n", mtu, length, old_mtu));
1952 			if (mtu < ipst->ips_ip_pmtu_min) {
1953 				mtu = ipst->ips_ip_pmtu_min;
1954 				disable_pmtud = B_TRUE;
1955 			}
1956 		}
1957 	}
1958 	if (disable_pmtud)
1959 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1960 	else
1961 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1962 
1963 	dce->dce_pmtu = MIN(old_mtu, mtu);
1964 	/* Prepare to send the new max frag size for the ULP. */
1965 	icmph->icmph_du_zero = 0;
1966 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1967 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1968 	    dce, int, orig_mtu, int, mtu);
1969 
1970 	/* We now have a PMTU for sure */
1971 	dce->dce_flags |= DCEF_PMTU;
1972 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1973 	mutex_exit(&dce->dce_lock);
1974 	/*
1975 	 * After dropping the lock the new value is visible to everyone.
1976 	 * Then we bump the generation number so any cached values reinspect
1977 	 * the dce_t.
1978 	 */
1979 	dce_increment_generation(dce);
1980 	dce_refrele(dce);
1981 }
1982 
1983 /*
1984  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1985  * calls this function.
1986  */
1987 static mblk_t *
1988 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1989 {
1990 	int length;
1991 
1992 	ASSERT(mp->b_datap->db_type == M_DATA);
1993 
1994 	/* icmp_inbound_v4 has already pulled up the whole error packet */
1995 	ASSERT(mp->b_cont == NULL);
1996 
1997 	/*
1998 	 * The length that we want to overlay is the inner header
1999 	 * and what follows it.
2000 	 */
2001 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2002 
2003 	/*
2004 	 * Overlay the inner header and whatever follows it over the
2005 	 * outer header.
2006 	 */
2007 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2008 
2009 	/* Adjust for what we removed */
2010 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2011 	return (mp);
2012 }
2013 
2014 /*
2015  * Try to pass the ICMP message upstream in case the ULP cares.
2016  *
2017  * If the packet that caused the ICMP error is secure, we send
2018  * it to AH/ESP to make sure that the attached packet has a
2019  * valid association. ipha in the code below points to the
2020  * IP header of the packet that caused the error.
2021  *
2022  * For IPsec cases, we let the next-layer-up (which has access to
2023  * cached policy on the conn_t, or can query the SPD directly)
2024  * subtract out any IPsec overhead if they must.  We therefore make no
2025  * adjustments here for IPsec overhead.
2026  *
2027  * IFN could have been generated locally or by some router.
2028  *
2029  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2030  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2031  *	    This happens because IP adjusted its value of MTU on an
2032  *	    earlier IFN message and could not tell the upper layer,
2033  *	    the new adjusted value of MTU e.g. Packet was encrypted
2034  *	    or there was not enough information to fanout to upper
2035  *	    layers. Thus on the next outbound datagram, ire_send_wire
2036  *	    generates the IFN, where IPsec processing has *not* been
2037  *	    done.
2038  *
2039  *	    Note that we retain ixa_fragsize across IPsec thus once
2040  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2041  *	    no change the fragsize even if the path MTU changes before
2042  *	    we reach ip_output_post_ipsec.
2043  *
2044  *	    In the local case, IRAF_LOOPBACK will be set indicating
2045  *	    that IFN was generated locally.
2046  *
2047  * ROUTER : IFN could be secure or non-secure.
2048  *
2049  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2050  *	      packet in error has AH/ESP headers to validate the AH/ESP
2051  *	      headers. AH/ESP will verify whether there is a valid SA or
2052  *	      not and send it back. We will fanout again if we have more
2053  *	      data in the packet.
2054  *
2055  *	      If the packet in error does not have AH/ESP, we handle it
2056  *	      like any other case.
2057  *
2058  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2059  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2060  *	      valid SA or not and send it back. We will fanout again if
2061  *	      we have more data in the packet.
2062  *
2063  *	      If the packet in error does not have AH/ESP, we handle it
2064  *	      like any other case.
2065  *
2066  * The caller must have called icmp_inbound_verify_v4.
2067  */
2068 static void
2069 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2070 {
2071 	uint16_t	*up;	/* Pointer to ports in ULP header */
2072 	uint32_t	ports;	/* reversed ports for fanout */
2073 	ipha_t		ripha;	/* With reversed addresses */
2074 	ipha_t		*ipha;  /* Inner IP header */
2075 	uint_t		hdr_length; /* Inner IP header length */
2076 	tcpha_t		*tcpha;
2077 	conn_t		*connp;
2078 	ill_t		*ill = ira->ira_ill;
2079 	ip_stack_t	*ipst = ill->ill_ipst;
2080 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2081 	ill_t		*rill = ira->ira_rill;
2082 
2083 	/* Caller already pulled up everything. */
2084 	ipha = (ipha_t *)&icmph[1];
2085 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2086 	ASSERT(mp->b_cont == NULL);
2087 
2088 	hdr_length = IPH_HDR_LENGTH(ipha);
2089 	ira->ira_protocol = ipha->ipha_protocol;
2090 
2091 	/*
2092 	 * We need a separate IP header with the source and destination
2093 	 * addresses reversed to do fanout/classification because the ipha in
2094 	 * the ICMP error is in the form we sent it out.
2095 	 */
2096 	ripha.ipha_src = ipha->ipha_dst;
2097 	ripha.ipha_dst = ipha->ipha_src;
2098 	ripha.ipha_protocol = ipha->ipha_protocol;
2099 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2100 
2101 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2102 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2103 	    ntohl(ipha->ipha_dst),
2104 	    icmph->icmph_type, icmph->icmph_code));
2105 
2106 	switch (ipha->ipha_protocol) {
2107 	case IPPROTO_UDP:
2108 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2109 
2110 		/* Attempt to find a client stream based on port. */
2111 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2112 		    ntohs(up[0]), ntohs(up[1])));
2113 
2114 		/* Note that we send error to all matches. */
2115 		ira->ira_flags |= IRAF_ICMP_ERROR;
2116 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2117 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2118 		return;
2119 
2120 	case IPPROTO_TCP:
2121 		/*
2122 		 * Find a TCP client stream for this packet.
2123 		 * Note that we do a reverse lookup since the header is
2124 		 * in the form we sent it out.
2125 		 */
2126 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2127 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2128 		    ipst);
2129 		if (connp == NULL)
2130 			goto discard_pkt;
2131 
2132 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2133 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2134 			mp = ipsec_check_inbound_policy(mp, connp,
2135 			    ipha, NULL, ira);
2136 			if (mp == NULL) {
2137 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2138 				/* Note that mp is NULL */
2139 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2140 				CONN_DEC_REF(connp);
2141 				return;
2142 			}
2143 		}
2144 
2145 		ira->ira_flags |= IRAF_ICMP_ERROR;
2146 		ira->ira_ill = ira->ira_rill = NULL;
2147 		if (IPCL_IS_TCP(connp)) {
2148 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2149 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2150 			    SQTAG_TCP_INPUT_ICMP_ERR);
2151 		} else {
2152 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2153 			(connp->conn_recv)(connp, mp, NULL, ira);
2154 			CONN_DEC_REF(connp);
2155 		}
2156 		ira->ira_ill = ill;
2157 		ira->ira_rill = rill;
2158 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2159 		return;
2160 
2161 	case IPPROTO_SCTP:
2162 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2163 		/* Find a SCTP client stream for this packet. */
2164 		((uint16_t *)&ports)[0] = up[1];
2165 		((uint16_t *)&ports)[1] = up[0];
2166 
2167 		ira->ira_flags |= IRAF_ICMP_ERROR;
2168 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2169 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2170 		return;
2171 
2172 	case IPPROTO_ESP:
2173 	case IPPROTO_AH:
2174 		if (!ipsec_loaded(ipss)) {
2175 			ip_proto_not_sup(mp, ira);
2176 			return;
2177 		}
2178 
2179 		if (ipha->ipha_protocol == IPPROTO_ESP)
2180 			mp = ipsecesp_icmp_error(mp, ira);
2181 		else
2182 			mp = ipsecah_icmp_error(mp, ira);
2183 		if (mp == NULL)
2184 			return;
2185 
2186 		/* Just in case ipsec didn't preserve the NULL b_cont */
2187 		if (mp->b_cont != NULL) {
2188 			if (!pullupmsg(mp, -1))
2189 				goto discard_pkt;
2190 		}
2191 
2192 		/*
2193 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2194 		 * correct, but we don't use them any more here.
2195 		 *
2196 		 * If succesful, the mp has been modified to not include
2197 		 * the ESP/AH header so we can fanout to the ULP's icmp
2198 		 * error handler.
2199 		 */
2200 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2201 			goto truncated;
2202 
2203 		/* Verify the modified message before any further processes. */
2204 		ipha = (ipha_t *)mp->b_rptr;
2205 		hdr_length = IPH_HDR_LENGTH(ipha);
2206 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2207 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2208 			freemsg(mp);
2209 			return;
2210 		}
2211 
2212 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2213 		return;
2214 
2215 	case IPPROTO_ENCAP: {
2216 		/* Look for self-encapsulated packets that caused an error */
2217 		ipha_t *in_ipha;
2218 
2219 		/*
2220 		 * Caller has verified that length has to be
2221 		 * at least the size of IP header.
2222 		 */
2223 		ASSERT(hdr_length >= sizeof (ipha_t));
2224 		/*
2225 		 * Check the sanity of the inner IP header like
2226 		 * we did for the outer header.
2227 		 */
2228 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2229 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2230 			goto discard_pkt;
2231 		}
2232 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2233 			goto discard_pkt;
2234 		}
2235 		/* Check for Self-encapsulated tunnels */
2236 		if (in_ipha->ipha_src == ipha->ipha_src &&
2237 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2238 
2239 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2240 			    in_ipha);
2241 			if (mp == NULL)
2242 				goto discard_pkt;
2243 
2244 			/*
2245 			 * Just in case self_encap didn't preserve the NULL
2246 			 * b_cont
2247 			 */
2248 			if (mp->b_cont != NULL) {
2249 				if (!pullupmsg(mp, -1))
2250 					goto discard_pkt;
2251 			}
2252 			/*
2253 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2254 			 * longer correct, but we don't use them any more here.
2255 			 */
2256 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2257 				goto truncated;
2258 
2259 			/*
2260 			 * Verify the modified message before any further
2261 			 * processes.
2262 			 */
2263 			ipha = (ipha_t *)mp->b_rptr;
2264 			hdr_length = IPH_HDR_LENGTH(ipha);
2265 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2266 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2267 				freemsg(mp);
2268 				return;
2269 			}
2270 
2271 			/*
2272 			 * The packet in error is self-encapsualted.
2273 			 * And we are finding it further encapsulated
2274 			 * which we could not have possibly generated.
2275 			 */
2276 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2277 				goto discard_pkt;
2278 			}
2279 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2280 			return;
2281 		}
2282 		/* No self-encapsulated */
2283 		/* FALLTHRU */
2284 	}
2285 	case IPPROTO_IPV6:
2286 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2287 		    &ripha.ipha_dst, ipst)) != NULL) {
2288 			ira->ira_flags |= IRAF_ICMP_ERROR;
2289 			connp->conn_recvicmp(connp, mp, NULL, ira);
2290 			CONN_DEC_REF(connp);
2291 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2292 			return;
2293 		}
2294 		/*
2295 		 * No IP tunnel is interested, fallthrough and see
2296 		 * if a raw socket will want it.
2297 		 */
2298 		/* FALLTHRU */
2299 	default:
2300 		ira->ira_flags |= IRAF_ICMP_ERROR;
2301 		ip_fanout_proto_v4(mp, &ripha, ira);
2302 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2303 		return;
2304 	}
2305 	/* NOTREACHED */
2306 discard_pkt:
2307 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2308 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2309 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2310 	freemsg(mp);
2311 	return;
2312 
2313 truncated:
2314 	/* We pulled up everthing already. Must be truncated */
2315 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2316 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2317 	freemsg(mp);
2318 }
2319 
2320 /*
2321  * Common IP options parser.
2322  *
2323  * Setup routine: fill in *optp with options-parsing state, then
2324  * tail-call ipoptp_next to return the first option.
2325  */
2326 uint8_t
2327 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2328 {
2329 	uint32_t totallen; /* total length of all options */
2330 
2331 	totallen = ipha->ipha_version_and_hdr_length -
2332 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2333 	totallen <<= 2;
2334 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2335 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2336 	optp->ipoptp_flags = 0;
2337 	return (ipoptp_next(optp));
2338 }
2339 
2340 /* Like above but without an ipha_t */
2341 uint8_t
2342 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2343 {
2344 	optp->ipoptp_next = opt;
2345 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2346 	optp->ipoptp_flags = 0;
2347 	return (ipoptp_next(optp));
2348 }
2349 
2350 /*
2351  * Common IP options parser: extract next option.
2352  */
2353 uint8_t
2354 ipoptp_next(ipoptp_t *optp)
2355 {
2356 	uint8_t *end = optp->ipoptp_end;
2357 	uint8_t *cur = optp->ipoptp_next;
2358 	uint8_t opt, len, pointer;
2359 
2360 	/*
2361 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2362 	 * has been corrupted.
2363 	 */
2364 	ASSERT(cur <= end);
2365 
2366 	if (cur == end)
2367 		return (IPOPT_EOL);
2368 
2369 	opt = cur[IPOPT_OPTVAL];
2370 
2371 	/*
2372 	 * Skip any NOP options.
2373 	 */
2374 	while (opt == IPOPT_NOP) {
2375 		cur++;
2376 		if (cur == end)
2377 			return (IPOPT_EOL);
2378 		opt = cur[IPOPT_OPTVAL];
2379 	}
2380 
2381 	if (opt == IPOPT_EOL)
2382 		return (IPOPT_EOL);
2383 
2384 	/*
2385 	 * Option requiring a length.
2386 	 */
2387 	if ((cur + 1) >= end) {
2388 		optp->ipoptp_flags |= IPOPTP_ERROR;
2389 		return (IPOPT_EOL);
2390 	}
2391 	len = cur[IPOPT_OLEN];
2392 	if (len < 2) {
2393 		optp->ipoptp_flags |= IPOPTP_ERROR;
2394 		return (IPOPT_EOL);
2395 	}
2396 	optp->ipoptp_cur = cur;
2397 	optp->ipoptp_len = len;
2398 	optp->ipoptp_next = cur + len;
2399 	if (cur + len > end) {
2400 		optp->ipoptp_flags |= IPOPTP_ERROR;
2401 		return (IPOPT_EOL);
2402 	}
2403 
2404 	/*
2405 	 * For the options which require a pointer field, make sure
2406 	 * its there, and make sure it points to either something
2407 	 * inside this option, or the end of the option.
2408 	 */
2409 	switch (opt) {
2410 	case IPOPT_RR:
2411 	case IPOPT_TS:
2412 	case IPOPT_LSRR:
2413 	case IPOPT_SSRR:
2414 		if (len <= IPOPT_OFFSET) {
2415 			optp->ipoptp_flags |= IPOPTP_ERROR;
2416 			return (opt);
2417 		}
2418 		pointer = cur[IPOPT_OFFSET];
2419 		if (pointer - 1 > len) {
2420 			optp->ipoptp_flags |= IPOPTP_ERROR;
2421 			return (opt);
2422 		}
2423 		break;
2424 	}
2425 
2426 	/*
2427 	 * Sanity check the pointer field based on the type of the
2428 	 * option.
2429 	 */
2430 	switch (opt) {
2431 	case IPOPT_RR:
2432 	case IPOPT_SSRR:
2433 	case IPOPT_LSRR:
2434 		if (pointer < IPOPT_MINOFF_SR)
2435 			optp->ipoptp_flags |= IPOPTP_ERROR;
2436 		break;
2437 	case IPOPT_TS:
2438 		if (pointer < IPOPT_MINOFF_IT)
2439 			optp->ipoptp_flags |= IPOPTP_ERROR;
2440 		/*
2441 		 * Note that the Internet Timestamp option also
2442 		 * contains two four bit fields (the Overflow field,
2443 		 * and the Flag field), which follow the pointer
2444 		 * field.  We don't need to check that these fields
2445 		 * fall within the length of the option because this
2446 		 * was implicitely done above.  We've checked that the
2447 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2448 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2449 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2450 		 */
2451 		ASSERT(len > IPOPT_POS_OV_FLG);
2452 		break;
2453 	}
2454 
2455 	return (opt);
2456 }
2457 
2458 /*
2459  * Use the outgoing IP header to create an IP_OPTIONS option the way
2460  * it was passed down from the application.
2461  *
2462  * This is compatible with BSD in that it returns
2463  * the reverse source route with the final destination
2464  * as the last entry. The first 4 bytes of the option
2465  * will contain the final destination.
2466  */
2467 int
2468 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2469 {
2470 	ipoptp_t	opts;
2471 	uchar_t		*opt;
2472 	uint8_t		optval;
2473 	uint8_t		optlen;
2474 	uint32_t	len = 0;
2475 	uchar_t		*buf1 = buf;
2476 	uint32_t	totallen;
2477 	ipaddr_t	dst;
2478 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2479 
2480 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2481 		return (0);
2482 
2483 	totallen = ipp->ipp_ipv4_options_len;
2484 	if (totallen & 0x3)
2485 		return (0);
2486 
2487 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2488 	len += IP_ADDR_LEN;
2489 	bzero(buf1, IP_ADDR_LEN);
2490 
2491 	dst = connp->conn_faddr_v4;
2492 
2493 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2494 	    optval != IPOPT_EOL;
2495 	    optval = ipoptp_next(&opts)) {
2496 		int	off;
2497 
2498 		opt = opts.ipoptp_cur;
2499 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2500 			break;
2501 		}
2502 		optlen = opts.ipoptp_len;
2503 
2504 		switch (optval) {
2505 		case IPOPT_SSRR:
2506 		case IPOPT_LSRR:
2507 
2508 			/*
2509 			 * Insert destination as the first entry in the source
2510 			 * route and move down the entries on step.
2511 			 * The last entry gets placed at buf1.
2512 			 */
2513 			buf[IPOPT_OPTVAL] = optval;
2514 			buf[IPOPT_OLEN] = optlen;
2515 			buf[IPOPT_OFFSET] = optlen;
2516 
2517 			off = optlen - IP_ADDR_LEN;
2518 			if (off < 0) {
2519 				/* No entries in source route */
2520 				break;
2521 			}
2522 			/* Last entry in source route if not already set */
2523 			if (dst == INADDR_ANY)
2524 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2525 			off -= IP_ADDR_LEN;
2526 
2527 			while (off > 0) {
2528 				bcopy(opt + off,
2529 				    buf + off + IP_ADDR_LEN,
2530 				    IP_ADDR_LEN);
2531 				off -= IP_ADDR_LEN;
2532 			}
2533 			/* ipha_dst into first slot */
2534 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2535 			    IP_ADDR_LEN);
2536 			buf += optlen;
2537 			len += optlen;
2538 			break;
2539 
2540 		default:
2541 			bcopy(opt, buf, optlen);
2542 			buf += optlen;
2543 			len += optlen;
2544 			break;
2545 		}
2546 	}
2547 done:
2548 	/* Pad the resulting options */
2549 	while (len & 0x3) {
2550 		*buf++ = IPOPT_EOL;
2551 		len++;
2552 	}
2553 	return (len);
2554 }
2555 
2556 /*
2557  * Update any record route or timestamp options to include this host.
2558  * Reverse any source route option.
2559  * This routine assumes that the options are well formed i.e. that they
2560  * have already been checked.
2561  */
2562 static void
2563 icmp_options_update(ipha_t *ipha)
2564 {
2565 	ipoptp_t	opts;
2566 	uchar_t		*opt;
2567 	uint8_t		optval;
2568 	ipaddr_t	src;		/* Our local address */
2569 	ipaddr_t	dst;
2570 
2571 	ip2dbg(("icmp_options_update\n"));
2572 	src = ipha->ipha_src;
2573 	dst = ipha->ipha_dst;
2574 
2575 	for (optval = ipoptp_first(&opts, ipha);
2576 	    optval != IPOPT_EOL;
2577 	    optval = ipoptp_next(&opts)) {
2578 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2579 		opt = opts.ipoptp_cur;
2580 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2581 		    optval, opts.ipoptp_len));
2582 		switch (optval) {
2583 			int off1, off2;
2584 		case IPOPT_SSRR:
2585 		case IPOPT_LSRR:
2586 			/*
2587 			 * Reverse the source route.  The first entry
2588 			 * should be the next to last one in the current
2589 			 * source route (the last entry is our address).
2590 			 * The last entry should be the final destination.
2591 			 */
2592 			off1 = IPOPT_MINOFF_SR - 1;
2593 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2594 			if (off2 < 0) {
2595 				/* No entries in source route */
2596 				ip1dbg((
2597 				    "icmp_options_update: bad src route\n"));
2598 				break;
2599 			}
2600 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2601 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2602 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2603 			off2 -= IP_ADDR_LEN;
2604 
2605 			while (off1 < off2) {
2606 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2607 				bcopy((char *)opt + off2, (char *)opt + off1,
2608 				    IP_ADDR_LEN);
2609 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2610 				off1 += IP_ADDR_LEN;
2611 				off2 -= IP_ADDR_LEN;
2612 			}
2613 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2614 			break;
2615 		}
2616 	}
2617 }
2618 
2619 /*
2620  * Process received ICMP Redirect messages.
2621  * Assumes the caller has verified that the headers are in the pulled up mblk.
2622  * Consumes mp.
2623  */
2624 static void
2625 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2626 {
2627 	ire_t		*ire, *nire;
2628 	ire_t		*prev_ire;
2629 	ipaddr_t  	src, dst, gateway;
2630 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2631 	ipha_t		*inner_ipha;	/* Inner IP header */
2632 
2633 	/* Caller already pulled up everything. */
2634 	inner_ipha = (ipha_t *)&icmph[1];
2635 	src = ipha->ipha_src;
2636 	dst = inner_ipha->ipha_dst;
2637 	gateway = icmph->icmph_rd_gateway;
2638 	/* Make sure the new gateway is reachable somehow. */
2639 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2640 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2641 	/*
2642 	 * Make sure we had a route for the dest in question and that
2643 	 * that route was pointing to the old gateway (the source of the
2644 	 * redirect packet.)
2645 	 * We do longest match and then compare ire_gateway_addr below.
2646 	 */
2647 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2648 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2649 	/*
2650 	 * Check that
2651 	 *	the redirect was not from ourselves
2652 	 *	the new gateway and the old gateway are directly reachable
2653 	 */
2654 	if (prev_ire == NULL || ire == NULL ||
2655 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2656 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2657 	    !(ire->ire_type & IRE_IF_ALL) ||
2658 	    prev_ire->ire_gateway_addr != src) {
2659 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2660 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2661 		freemsg(mp);
2662 		if (ire != NULL)
2663 			ire_refrele(ire);
2664 		if (prev_ire != NULL)
2665 			ire_refrele(prev_ire);
2666 		return;
2667 	}
2668 
2669 	ire_refrele(prev_ire);
2670 	ire_refrele(ire);
2671 
2672 	/*
2673 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2674 	 * require TOS routing
2675 	 */
2676 	switch (icmph->icmph_code) {
2677 	case 0:
2678 	case 1:
2679 		/* TODO: TOS specificity for cases 2 and 3 */
2680 	case 2:
2681 	case 3:
2682 		break;
2683 	default:
2684 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2685 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2686 		freemsg(mp);
2687 		return;
2688 	}
2689 	/*
2690 	 * Create a Route Association.  This will allow us to remember that
2691 	 * someone we believe told us to use the particular gateway.
2692 	 */
2693 	ire = ire_create(
2694 	    (uchar_t *)&dst,			/* dest addr */
2695 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2696 	    (uchar_t *)&gateway,		/* gateway addr */
2697 	    IRE_HOST,
2698 	    NULL,				/* ill */
2699 	    ALL_ZONES,
2700 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2701 	    NULL,				/* tsol_gc_t */
2702 	    ipst);
2703 
2704 	if (ire == NULL) {
2705 		freemsg(mp);
2706 		return;
2707 	}
2708 	nire = ire_add(ire);
2709 	/* Check if it was a duplicate entry */
2710 	if (nire != NULL && nire != ire) {
2711 		ASSERT(nire->ire_identical_ref > 1);
2712 		ire_delete(nire);
2713 		ire_refrele(nire);
2714 		nire = NULL;
2715 	}
2716 	ire = nire;
2717 	if (ire != NULL) {
2718 		ire_refrele(ire);		/* Held in ire_add */
2719 
2720 		/* tell routing sockets that we received a redirect */
2721 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2722 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2723 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2724 	}
2725 
2726 	/*
2727 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2728 	 * This together with the added IRE has the effect of
2729 	 * modifying an existing redirect.
2730 	 */
2731 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2732 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2733 	if (prev_ire != NULL) {
2734 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2735 			ire_delete(prev_ire);
2736 		ire_refrele(prev_ire);
2737 	}
2738 
2739 	freemsg(mp);
2740 }
2741 
2742 /*
2743  * Generate an ICMP parameter problem message.
2744  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2745  * constructed by the caller.
2746  */
2747 static void
2748 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2749 {
2750 	icmph_t	icmph;
2751 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2752 
2753 	mp = icmp_pkt_err_ok(mp, ira);
2754 	if (mp == NULL)
2755 		return;
2756 
2757 	bzero(&icmph, sizeof (icmph_t));
2758 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2759 	icmph.icmph_pp_ptr = ptr;
2760 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2761 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2762 }
2763 
2764 /*
2765  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2766  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2767  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2768  * an icmp error packet can be sent.
2769  * Assigns an appropriate source address to the packet. If ipha_dst is
2770  * one of our addresses use it for source. Otherwise let ip_output_simple
2771  * pick the source address.
2772  */
2773 static void
2774 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2775 {
2776 	ipaddr_t dst;
2777 	icmph_t	*icmph;
2778 	ipha_t	*ipha;
2779 	uint_t	len_needed;
2780 	size_t	msg_len;
2781 	mblk_t	*mp1;
2782 	ipaddr_t src;
2783 	ire_t	*ire;
2784 	ip_xmit_attr_t ixas;
2785 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2786 
2787 	ipha = (ipha_t *)mp->b_rptr;
2788 
2789 	bzero(&ixas, sizeof (ixas));
2790 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2791 	ixas.ixa_zoneid = ira->ira_zoneid;
2792 	ixas.ixa_ifindex = 0;
2793 	ixas.ixa_ipst = ipst;
2794 	ixas.ixa_cred = kcred;
2795 	ixas.ixa_cpid = NOPID;
2796 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2797 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2798 
2799 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2800 		/*
2801 		 * Apply IPsec based on how IPsec was applied to
2802 		 * the packet that had the error.
2803 		 *
2804 		 * If it was an outbound packet that caused the ICMP
2805 		 * error, then the caller will have setup the IRA
2806 		 * appropriately.
2807 		 */
2808 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2809 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2810 			/* Note: mp already consumed and ip_drop_packet done */
2811 			return;
2812 		}
2813 	} else {
2814 		/*
2815 		 * This is in clear. The icmp message we are building
2816 		 * here should go out in clear, independent of our policy.
2817 		 */
2818 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2819 	}
2820 
2821 	/* Remember our eventual destination */
2822 	dst = ipha->ipha_src;
2823 
2824 	/*
2825 	 * If the packet was for one of our unicast addresses, make
2826 	 * sure we respond with that as the source. Otherwise
2827 	 * have ip_output_simple pick the source address.
2828 	 */
2829 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2830 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2831 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2832 	if (ire != NULL) {
2833 		ire_refrele(ire);
2834 		src = ipha->ipha_dst;
2835 	} else {
2836 		src = INADDR_ANY;
2837 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2838 	}
2839 
2840 	/*
2841 	 * Check if we can send back more then 8 bytes in addition to
2842 	 * the IP header.  We try to send 64 bytes of data and the internal
2843 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2844 	 */
2845 	len_needed = IPH_HDR_LENGTH(ipha);
2846 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2847 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2848 		if (!pullupmsg(mp, -1)) {
2849 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2850 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2851 			freemsg(mp);
2852 			return;
2853 		}
2854 		ipha = (ipha_t *)mp->b_rptr;
2855 
2856 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2857 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2858 			    len_needed));
2859 		} else {
2860 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2861 
2862 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2863 			len_needed += ip_hdr_length_v6(mp, ip6h);
2864 		}
2865 	}
2866 	len_needed += ipst->ips_ip_icmp_return;
2867 	msg_len = msgdsize(mp);
2868 	if (msg_len > len_needed) {
2869 		(void) adjmsg(mp, len_needed - msg_len);
2870 		msg_len = len_needed;
2871 	}
2872 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2873 	if (mp1 == NULL) {
2874 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2875 		freemsg(mp);
2876 		return;
2877 	}
2878 	mp1->b_cont = mp;
2879 	mp = mp1;
2880 
2881 	/*
2882 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2883 	 * node generates be accepted in peace by all on-host destinations.
2884 	 * If we do NOT assume that all on-host destinations trust
2885 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2886 	 * (Look for IXAF_TRUSTED_ICMP).
2887 	 */
2888 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2889 
2890 	ipha = (ipha_t *)mp->b_rptr;
2891 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2892 	*ipha = icmp_ipha;
2893 	ipha->ipha_src = src;
2894 	ipha->ipha_dst = dst;
2895 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2896 	msg_len += sizeof (icmp_ipha) + len;
2897 	if (msg_len > IP_MAXPACKET) {
2898 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2899 		msg_len = IP_MAXPACKET;
2900 	}
2901 	ipha->ipha_length = htons((uint16_t)msg_len);
2902 	icmph = (icmph_t *)&ipha[1];
2903 	bcopy(stuff, icmph, len);
2904 	icmph->icmph_checksum = 0;
2905 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2906 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2907 
2908 	(void) ip_output_simple(mp, &ixas);
2909 	ixa_cleanup(&ixas);
2910 }
2911 
2912 /*
2913  * Determine if an ICMP error packet can be sent given the rate limit.
2914  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2915  * in milliseconds) and a burst size. Burst size number of packets can
2916  * be sent arbitrarely closely spaced.
2917  * The state is tracked using two variables to implement an approximate
2918  * token bucket filter:
2919  *	icmp_pkt_err_last - lbolt value when the last burst started
2920  *	icmp_pkt_err_sent - number of packets sent in current burst
2921  */
2922 boolean_t
2923 icmp_err_rate_limit(ip_stack_t *ipst)
2924 {
2925 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2926 	uint_t refilled; /* Number of packets refilled in tbf since last */
2927 	/* Guard against changes by loading into local variable */
2928 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2929 
2930 	if (err_interval == 0)
2931 		return (B_FALSE);
2932 
2933 	if (ipst->ips_icmp_pkt_err_last > now) {
2934 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2935 		ipst->ips_icmp_pkt_err_last = 0;
2936 		ipst->ips_icmp_pkt_err_sent = 0;
2937 	}
2938 	/*
2939 	 * If we are in a burst update the token bucket filter.
2940 	 * Update the "last" time to be close to "now" but make sure
2941 	 * we don't loose precision.
2942 	 */
2943 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2944 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2945 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2946 			ipst->ips_icmp_pkt_err_sent = 0;
2947 		} else {
2948 			ipst->ips_icmp_pkt_err_sent -= refilled;
2949 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2950 		}
2951 	}
2952 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2953 		/* Start of new burst */
2954 		ipst->ips_icmp_pkt_err_last = now;
2955 	}
2956 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2957 		ipst->ips_icmp_pkt_err_sent++;
2958 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2959 		    ipst->ips_icmp_pkt_err_sent));
2960 		return (B_FALSE);
2961 	}
2962 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2963 	return (B_TRUE);
2964 }
2965 
2966 /*
2967  * Check if it is ok to send an IPv4 ICMP error packet in
2968  * response to the IPv4 packet in mp.
2969  * Free the message and return null if no
2970  * ICMP error packet should be sent.
2971  */
2972 static mblk_t *
2973 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2974 {
2975 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2976 	icmph_t	*icmph;
2977 	ipha_t	*ipha;
2978 	uint_t	len_needed;
2979 
2980 	if (!mp)
2981 		return (NULL);
2982 	ipha = (ipha_t *)mp->b_rptr;
2983 	if (ip_csum_hdr(ipha)) {
2984 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2985 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2986 		freemsg(mp);
2987 		return (NULL);
2988 	}
2989 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2990 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2991 	    CLASSD(ipha->ipha_dst) ||
2992 	    CLASSD(ipha->ipha_src) ||
2993 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2994 		/* Note: only errors to the fragment with offset 0 */
2995 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2996 		freemsg(mp);
2997 		return (NULL);
2998 	}
2999 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3000 		/*
3001 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3002 		 * errors in response to any ICMP errors.
3003 		 */
3004 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3005 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3006 			if (!pullupmsg(mp, len_needed)) {
3007 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3008 				freemsg(mp);
3009 				return (NULL);
3010 			}
3011 			ipha = (ipha_t *)mp->b_rptr;
3012 		}
3013 		icmph = (icmph_t *)
3014 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3015 		switch (icmph->icmph_type) {
3016 		case ICMP_DEST_UNREACHABLE:
3017 		case ICMP_SOURCE_QUENCH:
3018 		case ICMP_TIME_EXCEEDED:
3019 		case ICMP_PARAM_PROBLEM:
3020 		case ICMP_REDIRECT:
3021 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3022 			freemsg(mp);
3023 			return (NULL);
3024 		default:
3025 			break;
3026 		}
3027 	}
3028 	/*
3029 	 * If this is a labeled system, then check to see if we're allowed to
3030 	 * send a response to this particular sender.  If not, then just drop.
3031 	 */
3032 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3033 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3034 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3035 		freemsg(mp);
3036 		return (NULL);
3037 	}
3038 	if (icmp_err_rate_limit(ipst)) {
3039 		/*
3040 		 * Only send ICMP error packets every so often.
3041 		 * This should be done on a per port/source basis,
3042 		 * but for now this will suffice.
3043 		 */
3044 		freemsg(mp);
3045 		return (NULL);
3046 	}
3047 	return (mp);
3048 }
3049 
3050 /*
3051  * Called when a packet was sent out the same link that it arrived on.
3052  * Check if it is ok to send a redirect and then send it.
3053  */
3054 void
3055 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3056     ip_recv_attr_t *ira)
3057 {
3058 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3059 	ipaddr_t	src, nhop;
3060 	mblk_t		*mp1;
3061 	ire_t		*nhop_ire;
3062 
3063 	/*
3064 	 * Check the source address to see if it originated
3065 	 * on the same logical subnet it is going back out on.
3066 	 * If so, we should be able to send it a redirect.
3067 	 * Avoid sending a redirect if the destination
3068 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3069 	 * or if the packet was source routed out this interface.
3070 	 *
3071 	 * We avoid sending a redirect if the
3072 	 * destination is directly connected
3073 	 * because it is possible that multiple
3074 	 * IP subnets may have been configured on
3075 	 * the link, and the source may not
3076 	 * be on the same subnet as ip destination,
3077 	 * even though they are on the same
3078 	 * physical link.
3079 	 */
3080 	if ((ire->ire_type & IRE_ONLINK) ||
3081 	    ip_source_routed(ipha, ipst))
3082 		return;
3083 
3084 	nhop_ire = ire_nexthop(ire);
3085 	if (nhop_ire == NULL)
3086 		return;
3087 
3088 	nhop = nhop_ire->ire_addr;
3089 
3090 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3091 		ire_t	*ire2;
3092 
3093 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3094 		mutex_enter(&nhop_ire->ire_lock);
3095 		ire2 = nhop_ire->ire_dep_parent;
3096 		if (ire2 != NULL)
3097 			ire_refhold(ire2);
3098 		mutex_exit(&nhop_ire->ire_lock);
3099 		ire_refrele(nhop_ire);
3100 		nhop_ire = ire2;
3101 	}
3102 	if (nhop_ire == NULL)
3103 		return;
3104 
3105 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3106 
3107 	src = ipha->ipha_src;
3108 
3109 	/*
3110 	 * We look at the interface ire for the nexthop,
3111 	 * to see if ipha_src is in the same subnet
3112 	 * as the nexthop.
3113 	 */
3114 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3115 		/*
3116 		 * The source is directly connected.
3117 		 */
3118 		mp1 = copymsg(mp);
3119 		if (mp1 != NULL) {
3120 			icmp_send_redirect(mp1, nhop, ira);
3121 		}
3122 	}
3123 	ire_refrele(nhop_ire);
3124 }
3125 
3126 /*
3127  * Generate an ICMP redirect message.
3128  */
3129 static void
3130 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3131 {
3132 	icmph_t	icmph;
3133 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3134 
3135 	mp = icmp_pkt_err_ok(mp, ira);
3136 	if (mp == NULL)
3137 		return;
3138 
3139 	bzero(&icmph, sizeof (icmph_t));
3140 	icmph.icmph_type = ICMP_REDIRECT;
3141 	icmph.icmph_code = 1;
3142 	icmph.icmph_rd_gateway = gateway;
3143 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3144 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3145 }
3146 
3147 /*
3148  * Generate an ICMP time exceeded message.
3149  */
3150 void
3151 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3152 {
3153 	icmph_t	icmph;
3154 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3155 
3156 	mp = icmp_pkt_err_ok(mp, ira);
3157 	if (mp == NULL)
3158 		return;
3159 
3160 	bzero(&icmph, sizeof (icmph_t));
3161 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3162 	icmph.icmph_code = code;
3163 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3164 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3165 }
3166 
3167 /*
3168  * Generate an ICMP unreachable message.
3169  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3170  * constructed by the caller.
3171  */
3172 void
3173 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3174 {
3175 	icmph_t	icmph;
3176 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3177 
3178 	mp = icmp_pkt_err_ok(mp, ira);
3179 	if (mp == NULL)
3180 		return;
3181 
3182 	bzero(&icmph, sizeof (icmph_t));
3183 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3184 	icmph.icmph_code = code;
3185 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3186 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3187 }
3188 
3189 /*
3190  * Latch in the IPsec state for a stream based the policy in the listener
3191  * and the actions in the ip_recv_attr_t.
3192  * Called directly from TCP and SCTP.
3193  */
3194 boolean_t
3195 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3196 {
3197 	ASSERT(lconnp->conn_policy != NULL);
3198 	ASSERT(connp->conn_policy == NULL);
3199 
3200 	IPPH_REFHOLD(lconnp->conn_policy);
3201 	connp->conn_policy = lconnp->conn_policy;
3202 
3203 	if (ira->ira_ipsec_action != NULL) {
3204 		if (connp->conn_latch == NULL) {
3205 			connp->conn_latch = iplatch_create();
3206 			if (connp->conn_latch == NULL)
3207 				return (B_FALSE);
3208 		}
3209 		ipsec_latch_inbound(connp, ira);
3210 	}
3211 	return (B_TRUE);
3212 }
3213 
3214 /*
3215  * Verify whether or not the IP address is a valid local address.
3216  * Could be a unicast, including one for a down interface.
3217  * If allow_mcbc then a multicast or broadcast address is also
3218  * acceptable.
3219  *
3220  * In the case of a broadcast/multicast address, however, the
3221  * upper protocol is expected to reset the src address
3222  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3223  * no packets are emitted with broadcast/multicast address as
3224  * source address (that violates hosts requirements RFC 1122)
3225  * The addresses valid for bind are:
3226  *	(1) - INADDR_ANY (0)
3227  *	(2) - IP address of an UP interface
3228  *	(3) - IP address of a DOWN interface
3229  *	(4) - valid local IP broadcast addresses. In this case
3230  *	the conn will only receive packets destined to
3231  *	the specified broadcast address.
3232  *	(5) - a multicast address. In this case
3233  *	the conn will only receive packets destined to
3234  *	the specified multicast address. Note: the
3235  *	application still has to issue an
3236  *	IP_ADD_MEMBERSHIP socket option.
3237  *
3238  * In all the above cases, the bound address must be valid in the current zone.
3239  * When the address is loopback, multicast or broadcast, there might be many
3240  * matching IREs so bind has to look up based on the zone.
3241  */
3242 ip_laddr_t
3243 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3244     ip_stack_t *ipst, boolean_t allow_mcbc)
3245 {
3246 	ire_t *src_ire;
3247 
3248 	ASSERT(src_addr != INADDR_ANY);
3249 
3250 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3251 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3252 
3253 	/*
3254 	 * If an address other than in6addr_any is requested,
3255 	 * we verify that it is a valid address for bind
3256 	 * Note: Following code is in if-else-if form for
3257 	 * readability compared to a condition check.
3258 	 */
3259 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3260 		/*
3261 		 * (2) Bind to address of local UP interface
3262 		 */
3263 		ire_refrele(src_ire);
3264 		return (IPVL_UNICAST_UP);
3265 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3266 		/*
3267 		 * (4) Bind to broadcast address
3268 		 */
3269 		ire_refrele(src_ire);
3270 		if (allow_mcbc)
3271 			return (IPVL_BCAST);
3272 		else
3273 			return (IPVL_BAD);
3274 	} else if (CLASSD(src_addr)) {
3275 		/* (5) bind to multicast address. */
3276 		if (src_ire != NULL)
3277 			ire_refrele(src_ire);
3278 
3279 		if (allow_mcbc)
3280 			return (IPVL_MCAST);
3281 		else
3282 			return (IPVL_BAD);
3283 	} else {
3284 		ipif_t *ipif;
3285 
3286 		/*
3287 		 * (3) Bind to address of local DOWN interface?
3288 		 * (ipif_lookup_addr() looks up all interfaces
3289 		 * but we do not get here for UP interfaces
3290 		 * - case (2) above)
3291 		 */
3292 		if (src_ire != NULL)
3293 			ire_refrele(src_ire);
3294 
3295 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3296 		if (ipif == NULL)
3297 			return (IPVL_BAD);
3298 
3299 		/* Not a useful source? */
3300 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3301 			ipif_refrele(ipif);
3302 			return (IPVL_BAD);
3303 		}
3304 		ipif_refrele(ipif);
3305 		return (IPVL_UNICAST_DOWN);
3306 	}
3307 }
3308 
3309 /*
3310  * Insert in the bind fanout for IPv4 and IPv6.
3311  * The caller should already have used ip_laddr_verify_v*() before calling
3312  * this.
3313  */
3314 int
3315 ip_laddr_fanout_insert(conn_t *connp)
3316 {
3317 	int		error;
3318 
3319 	/*
3320 	 * Allow setting new policies. For example, disconnects result
3321 	 * in us being called. As we would have set conn_policy_cached
3322 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3323 	 * can change after the disconnect.
3324 	 */
3325 	connp->conn_policy_cached = B_FALSE;
3326 
3327 	error = ipcl_bind_insert(connp);
3328 	if (error != 0) {
3329 		if (connp->conn_anon_port) {
3330 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3331 			    connp->conn_mlp_type, connp->conn_proto,
3332 			    ntohs(connp->conn_lport), B_FALSE);
3333 		}
3334 		connp->conn_mlp_type = mlptSingle;
3335 	}
3336 	return (error);
3337 }
3338 
3339 /*
3340  * Verify that both the source and destination addresses are valid. If
3341  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3342  * i.e. have no route to it.  Protocols like TCP want to verify destination
3343  * reachability, while tunnels do not.
3344  *
3345  * Determine the route, the interface, and (optionally) the source address
3346  * to use to reach a given destination.
3347  * Note that we allow connect to broadcast and multicast addresses when
3348  * IPDF_ALLOW_MCBC is set.
3349  * first_hop and dst_addr are normally the same, but if source routing
3350  * they will differ; in that case the first_hop is what we'll use for the
3351  * routing lookup but the dce and label checks will be done on dst_addr,
3352  *
3353  * If uinfo is set, then we fill in the best available information
3354  * we have for the destination. This is based on (in priority order) any
3355  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3356  * ill_mtu/ill_mc_mtu.
3357  *
3358  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3359  * always do the label check on dst_addr.
3360  */
3361 int
3362 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3363     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3364 {
3365 	ire_t		*ire = NULL;
3366 	int		error = 0;
3367 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3368 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3369 	ip_stack_t	*ipst = ixa->ixa_ipst;
3370 	dce_t		*dce;
3371 	uint_t		pmtu;
3372 	uint_t		generation;
3373 	nce_t		*nce;
3374 	ill_t		*ill = NULL;
3375 	boolean_t	multirt = B_FALSE;
3376 
3377 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3378 
3379 	/*
3380 	 * We never send to zero; the ULPs map it to the loopback address.
3381 	 * We can't allow it since we use zero to mean unitialized in some
3382 	 * places.
3383 	 */
3384 	ASSERT(dst_addr != INADDR_ANY);
3385 
3386 	if (is_system_labeled()) {
3387 		ts_label_t *tsl = NULL;
3388 
3389 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3390 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3391 		if (error != 0)
3392 			return (error);
3393 		if (tsl != NULL) {
3394 			/* Update the label */
3395 			ip_xmit_attr_replace_tsl(ixa, tsl);
3396 		}
3397 	}
3398 
3399 	setsrc = INADDR_ANY;
3400 	/*
3401 	 * Select a route; For IPMP interfaces, we would only select
3402 	 * a "hidden" route (i.e., going through a specific under_ill)
3403 	 * if ixa_ifindex has been specified.
3404 	 */
3405 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3406 	    &generation, &setsrc, &error, &multirt);
3407 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3408 	if (error != 0)
3409 		goto bad_addr;
3410 
3411 	/*
3412 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3413 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3414 	 * Otherwise the destination needn't be reachable.
3415 	 *
3416 	 * If we match on a reject or black hole, then we've got a
3417 	 * local failure.  May as well fail out the connect() attempt,
3418 	 * since it's never going to succeed.
3419 	 */
3420 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3421 		/*
3422 		 * If we're verifying destination reachability, we always want
3423 		 * to complain here.
3424 		 *
3425 		 * If we're not verifying destination reachability but the
3426 		 * destination has a route, we still want to fail on the
3427 		 * temporary address and broadcast address tests.
3428 		 *
3429 		 * In both cases do we let the code continue so some reasonable
3430 		 * information is returned to the caller. That enables the
3431 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3432 		 * use the generation mismatch path to check for the unreachable
3433 		 * case thereby avoiding any specific check in the main path.
3434 		 */
3435 		ASSERT(generation == IRE_GENERATION_VERIFY);
3436 		if (flags & IPDF_VERIFY_DST) {
3437 			/*
3438 			 * Set errno but continue to set up ixa_ire to be
3439 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3440 			 * That allows callers to use ip_output to get an
3441 			 * ICMP error back.
3442 			 */
3443 			if (!(ire->ire_type & IRE_HOST))
3444 				error = ENETUNREACH;
3445 			else
3446 				error = EHOSTUNREACH;
3447 		}
3448 	}
3449 
3450 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3451 	    !(flags & IPDF_ALLOW_MCBC)) {
3452 		ire_refrele(ire);
3453 		ire = ire_reject(ipst, B_FALSE);
3454 		generation = IRE_GENERATION_VERIFY;
3455 		error = ENETUNREACH;
3456 	}
3457 
3458 	/* Cache things */
3459 	if (ixa->ixa_ire != NULL)
3460 		ire_refrele_notr(ixa->ixa_ire);
3461 #ifdef DEBUG
3462 	ire_refhold_notr(ire);
3463 	ire_refrele(ire);
3464 #endif
3465 	ixa->ixa_ire = ire;
3466 	ixa->ixa_ire_generation = generation;
3467 
3468 	/*
3469 	 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3470 	 * since some callers will send a packet to conn_ip_output() even if
3471 	 * there's an error.
3472 	 */
3473 	if (flags & IPDF_UNIQUE_DCE) {
3474 		/* Fallback to the default dce if allocation fails */
3475 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3476 		if (dce != NULL)
3477 			generation = dce->dce_generation;
3478 		else
3479 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3480 	} else {
3481 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3482 	}
3483 	ASSERT(dce != NULL);
3484 	if (ixa->ixa_dce != NULL)
3485 		dce_refrele_notr(ixa->ixa_dce);
3486 #ifdef DEBUG
3487 	dce_refhold_notr(dce);
3488 	dce_refrele(dce);
3489 #endif
3490 	ixa->ixa_dce = dce;
3491 	ixa->ixa_dce_generation = generation;
3492 
3493 	/*
3494 	 * For multicast with multirt we have a flag passed back from
3495 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3496 	 * possible multicast address.
3497 	 * We also need a flag for multicast since we can't check
3498 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3499 	 */
3500 	if (multirt) {
3501 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3502 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3503 	} else {
3504 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3505 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3506 	}
3507 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3508 		/* Get an nce to cache. */
3509 		nce = ire_to_nce(ire, firsthop, NULL);
3510 		if (nce == NULL) {
3511 			/* Allocation failure? */
3512 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3513 		} else {
3514 			if (ixa->ixa_nce != NULL)
3515 				nce_refrele(ixa->ixa_nce);
3516 			ixa->ixa_nce = nce;
3517 		}
3518 	}
3519 
3520 	/*
3521 	 * If the source address is a loopback address, the
3522 	 * destination had best be local or multicast.
3523 	 * If we are sending to an IRE_LOCAL using a loopback source then
3524 	 * it had better be the same zoneid.
3525 	 */
3526 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3527 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3528 			ire = NULL;	/* Stored in ixa_ire */
3529 			error = EADDRNOTAVAIL;
3530 			goto bad_addr;
3531 		}
3532 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3533 			ire = NULL;	/* Stored in ixa_ire */
3534 			error = EADDRNOTAVAIL;
3535 			goto bad_addr;
3536 		}
3537 	}
3538 	if (ire->ire_type & IRE_BROADCAST) {
3539 		/*
3540 		 * If the ULP didn't have a specified source, then we
3541 		 * make sure we reselect the source when sending
3542 		 * broadcasts out different interfaces.
3543 		 */
3544 		if (flags & IPDF_SELECT_SRC)
3545 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3546 		else
3547 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3548 	}
3549 
3550 	/*
3551 	 * Does the caller want us to pick a source address?
3552 	 */
3553 	if (flags & IPDF_SELECT_SRC) {
3554 		ipaddr_t	src_addr;
3555 
3556 		/*
3557 		 * We use use ire_nexthop_ill to avoid the under ipmp
3558 		 * interface for source address selection. Note that for ipmp
3559 		 * probe packets, ixa_ifindex would have been specified, and
3560 		 * the ip_select_route() invocation would have picked an ire
3561 		 * will ire_ill pointing at an under interface.
3562 		 */
3563 		ill = ire_nexthop_ill(ire);
3564 
3565 		/* If unreachable we have no ill but need some source */
3566 		if (ill == NULL) {
3567 			src_addr = htonl(INADDR_LOOPBACK);
3568 			/* Make sure we look for a better source address */
3569 			generation = SRC_GENERATION_VERIFY;
3570 		} else {
3571 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3572 			    ixa->ixa_multicast_ifaddr, zoneid,
3573 			    ipst, &src_addr, &generation, NULL);
3574 			if (error != 0) {
3575 				ire = NULL;	/* Stored in ixa_ire */
3576 				goto bad_addr;
3577 			}
3578 		}
3579 
3580 		/*
3581 		 * We allow the source address to to down.
3582 		 * However, we check that we don't use the loopback address
3583 		 * as a source when sending out on the wire.
3584 		 */
3585 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3586 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3587 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3588 			ire = NULL;	/* Stored in ixa_ire */
3589 			error = EADDRNOTAVAIL;
3590 			goto bad_addr;
3591 		}
3592 
3593 		*src_addrp = src_addr;
3594 		ixa->ixa_src_generation = generation;
3595 	}
3596 
3597 	/*
3598 	 * Make sure we don't leave an unreachable ixa_nce in place
3599 	 * since ip_select_route is used when we unplumb i.e., remove
3600 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3601 	 */
3602 	nce = ixa->ixa_nce;
3603 	if (nce != NULL && nce->nce_is_condemned) {
3604 		nce_refrele(nce);
3605 		ixa->ixa_nce = NULL;
3606 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3607 	}
3608 
3609 	/*
3610 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3611 	 * However, we can't do it for IPv4 multicast or broadcast.
3612 	 */
3613 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3614 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3615 
3616 	/*
3617 	 * Set initial value for fragmentation limit. Either conn_ip_output
3618 	 * or ULP might updates it when there are routing changes.
3619 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3620 	 */
3621 	pmtu = ip_get_pmtu(ixa);
3622 	ixa->ixa_fragsize = pmtu;
3623 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3624 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3625 		ixa->ixa_pmtu = pmtu;
3626 
3627 	/*
3628 	 * Extract information useful for some transports.
3629 	 * First we look for DCE metrics. Then we take what we have in
3630 	 * the metrics in the route, where the offlink is used if we have
3631 	 * one.
3632 	 */
3633 	if (uinfo != NULL) {
3634 		bzero(uinfo, sizeof (*uinfo));
3635 
3636 		if (dce->dce_flags & DCEF_UINFO)
3637 			*uinfo = dce->dce_uinfo;
3638 
3639 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3640 
3641 		/* Allow ire_metrics to decrease the path MTU from above */
3642 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3643 			uinfo->iulp_mtu = pmtu;
3644 
3645 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3646 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3647 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3648 	}
3649 
3650 	if (ill != NULL)
3651 		ill_refrele(ill);
3652 
3653 	return (error);
3654 
3655 bad_addr:
3656 	if (ire != NULL)
3657 		ire_refrele(ire);
3658 
3659 	if (ill != NULL)
3660 		ill_refrele(ill);
3661 
3662 	/*
3663 	 * Make sure we don't leave an unreachable ixa_nce in place
3664 	 * since ip_select_route is used when we unplumb i.e., remove
3665 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3666 	 */
3667 	nce = ixa->ixa_nce;
3668 	if (nce != NULL && nce->nce_is_condemned) {
3669 		nce_refrele(nce);
3670 		ixa->ixa_nce = NULL;
3671 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3672 	}
3673 
3674 	return (error);
3675 }
3676 
3677 
3678 /*
3679  * Get the base MTU for the case when path MTU discovery is not used.
3680  * Takes the MTU of the IRE into account.
3681  */
3682 uint_t
3683 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3684 {
3685 	uint_t mtu;
3686 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3687 
3688 	if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3689 		mtu = ill->ill_mc_mtu;
3690 	else
3691 		mtu = ill->ill_mtu;
3692 
3693 	if (iremtu != 0 && iremtu < mtu)
3694 		mtu = iremtu;
3695 
3696 	return (mtu);
3697 }
3698 
3699 /*
3700  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3701  * Assumes that ixa_ire, dce, and nce have already been set up.
3702  *
3703  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3704  * We avoid path MTU discovery if it is disabled with ndd.
3705  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3706  *
3707  * NOTE: We also used to turn it off for source routed packets. That
3708  * is no longer required since the dce is per final destination.
3709  */
3710 uint_t
3711 ip_get_pmtu(ip_xmit_attr_t *ixa)
3712 {
3713 	ip_stack_t	*ipst = ixa->ixa_ipst;
3714 	dce_t		*dce;
3715 	nce_t		*nce;
3716 	ire_t		*ire;
3717 	uint_t		pmtu;
3718 
3719 	ire = ixa->ixa_ire;
3720 	dce = ixa->ixa_dce;
3721 	nce = ixa->ixa_nce;
3722 
3723 	/*
3724 	 * If path MTU discovery has been turned off by ndd, then we ignore
3725 	 * any dce_pmtu and for IPv4 we will not set DF.
3726 	 */
3727 	if (!ipst->ips_ip_path_mtu_discovery)
3728 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3729 
3730 	pmtu = IP_MAXPACKET;
3731 	/*
3732 	 * Decide whether whether IPv4 sets DF
3733 	 * For IPv6 "no DF" means to use the 1280 mtu
3734 	 */
3735 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3736 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3737 	} else {
3738 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3739 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3740 			pmtu = IPV6_MIN_MTU;
3741 	}
3742 
3743 	/* Check if the PMTU is to old before we use it */
3744 	if ((dce->dce_flags & DCEF_PMTU) &&
3745 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3746 	    ipst->ips_ip_pathmtu_interval) {
3747 		/*
3748 		 * Older than 20 minutes. Drop the path MTU information.
3749 		 */
3750 		mutex_enter(&dce->dce_lock);
3751 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3752 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3753 		mutex_exit(&dce->dce_lock);
3754 		dce_increment_generation(dce);
3755 	}
3756 
3757 	/* The metrics on the route can lower the path MTU */
3758 	if (ire->ire_metrics.iulp_mtu != 0 &&
3759 	    ire->ire_metrics.iulp_mtu < pmtu)
3760 		pmtu = ire->ire_metrics.iulp_mtu;
3761 
3762 	/*
3763 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3764 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3765 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3766 	 */
3767 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3768 		if (dce->dce_flags & DCEF_PMTU) {
3769 			if (dce->dce_pmtu < pmtu)
3770 				pmtu = dce->dce_pmtu;
3771 
3772 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3773 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3774 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3775 			} else {
3776 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3777 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3778 			}
3779 		} else {
3780 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3781 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3782 		}
3783 	}
3784 
3785 	/*
3786 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3787 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3788 	 * mtu as IRE_LOOPBACK.
3789 	 */
3790 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3791 		uint_t loopback_mtu;
3792 
3793 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3794 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3795 
3796 		if (loopback_mtu < pmtu)
3797 			pmtu = loopback_mtu;
3798 	} else if (nce != NULL) {
3799 		/*
3800 		 * Make sure we don't exceed the interface MTU.
3801 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3802 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3803 		 * to tell the transport something larger than zero.
3804 		 */
3805 		if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3806 			if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3807 				pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3808 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3809 			    nce->nce_ill->ill_mc_mtu < pmtu) {
3810 				/*
3811 				 * for interfaces in an IPMP group, the mtu of
3812 				 * the nce_ill (under_ill) could be different
3813 				 * from the mtu of the ncec_ill, so we take the
3814 				 * min of the two.
3815 				 */
3816 				pmtu = nce->nce_ill->ill_mc_mtu;
3817 			}
3818 		} else {
3819 			if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3820 				pmtu = nce->nce_common->ncec_ill->ill_mtu;
3821 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3822 			    nce->nce_ill->ill_mtu < pmtu) {
3823 				/*
3824 				 * for interfaces in an IPMP group, the mtu of
3825 				 * the nce_ill (under_ill) could be different
3826 				 * from the mtu of the ncec_ill, so we take the
3827 				 * min of the two.
3828 				 */
3829 				pmtu = nce->nce_ill->ill_mtu;
3830 			}
3831 		}
3832 	}
3833 
3834 	/*
3835 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3836 	 * Only applies to IPv6.
3837 	 */
3838 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3839 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3840 			switch (ixa->ixa_use_min_mtu) {
3841 			case IPV6_USE_MIN_MTU_MULTICAST:
3842 				if (ire->ire_type & IRE_MULTICAST)
3843 					pmtu = IPV6_MIN_MTU;
3844 				break;
3845 			case IPV6_USE_MIN_MTU_ALWAYS:
3846 				pmtu = IPV6_MIN_MTU;
3847 				break;
3848 			case IPV6_USE_MIN_MTU_NEVER:
3849 				break;
3850 			}
3851 		} else {
3852 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3853 			if (ire->ire_type & IRE_MULTICAST)
3854 				pmtu = IPV6_MIN_MTU;
3855 		}
3856 	}
3857 
3858 	/*
3859 	 * After receiving an ICMPv6 "packet too big" message with a
3860 	 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3861 	 * will insert a 8-byte fragment header in every packet. We compensate
3862 	 * for those cases by returning a smaller path MTU to the ULP.
3863 	 *
3864 	 * In the case of CGTP then ip_output will add a fragment header.
3865 	 * Make sure there is room for it by telling a smaller number
3866 	 * to the transport.
3867 	 *
3868 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3869 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3870 	 * which is the size of the packets it can send.
3871 	 */
3872 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3873 		if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3874 		    (ire->ire_flags & RTF_MULTIRT) ||
3875 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3876 			pmtu -= sizeof (ip6_frag_t);
3877 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3878 		}
3879 	}
3880 
3881 	return (pmtu);
3882 }
3883 
3884 /*
3885  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3886  * the final piece where we don't.  Return a pointer to the first mblk in the
3887  * result, and update the pointer to the next mblk to chew on.  If anything
3888  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3889  * NULL pointer.
3890  */
3891 mblk_t *
3892 ip_carve_mp(mblk_t **mpp, ssize_t len)
3893 {
3894 	mblk_t	*mp0;
3895 	mblk_t	*mp1;
3896 	mblk_t	*mp2;
3897 
3898 	if (!len || !mpp || !(mp0 = *mpp))
3899 		return (NULL);
3900 	/* If we aren't going to consume the first mblk, we need a dup. */
3901 	if (mp0->b_wptr - mp0->b_rptr > len) {
3902 		mp1 = dupb(mp0);
3903 		if (mp1) {
3904 			/* Partition the data between the two mblks. */
3905 			mp1->b_wptr = mp1->b_rptr + len;
3906 			mp0->b_rptr = mp1->b_wptr;
3907 			/*
3908 			 * after adjustments if mblk not consumed is now
3909 			 * unaligned, try to align it. If this fails free
3910 			 * all messages and let upper layer recover.
3911 			 */
3912 			if (!OK_32PTR(mp0->b_rptr)) {
3913 				if (!pullupmsg(mp0, -1)) {
3914 					freemsg(mp0);
3915 					freemsg(mp1);
3916 					*mpp = NULL;
3917 					return (NULL);
3918 				}
3919 			}
3920 		}
3921 		return (mp1);
3922 	}
3923 	/* Eat through as many mblks as we need to get len bytes. */
3924 	len -= mp0->b_wptr - mp0->b_rptr;
3925 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3926 		if (mp2->b_wptr - mp2->b_rptr > len) {
3927 			/*
3928 			 * We won't consume the entire last mblk.  Like
3929 			 * above, dup and partition it.
3930 			 */
3931 			mp1->b_cont = dupb(mp2);
3932 			mp1 = mp1->b_cont;
3933 			if (!mp1) {
3934 				/*
3935 				 * Trouble.  Rather than go to a lot of
3936 				 * trouble to clean up, we free the messages.
3937 				 * This won't be any worse than losing it on
3938 				 * the wire.
3939 				 */
3940 				freemsg(mp0);
3941 				freemsg(mp2);
3942 				*mpp = NULL;
3943 				return (NULL);
3944 			}
3945 			mp1->b_wptr = mp1->b_rptr + len;
3946 			mp2->b_rptr = mp1->b_wptr;
3947 			/*
3948 			 * after adjustments if mblk not consumed is now
3949 			 * unaligned, try to align it. If this fails free
3950 			 * all messages and let upper layer recover.
3951 			 */
3952 			if (!OK_32PTR(mp2->b_rptr)) {
3953 				if (!pullupmsg(mp2, -1)) {
3954 					freemsg(mp0);
3955 					freemsg(mp2);
3956 					*mpp = NULL;
3957 					return (NULL);
3958 				}
3959 			}
3960 			*mpp = mp2;
3961 			return (mp0);
3962 		}
3963 		/* Decrement len by the amount we just got. */
3964 		len -= mp2->b_wptr - mp2->b_rptr;
3965 	}
3966 	/*
3967 	 * len should be reduced to zero now.  If not our caller has
3968 	 * screwed up.
3969 	 */
3970 	if (len) {
3971 		/* Shouldn't happen! */
3972 		freemsg(mp0);
3973 		*mpp = NULL;
3974 		return (NULL);
3975 	}
3976 	/*
3977 	 * We consumed up to exactly the end of an mblk.  Detach the part
3978 	 * we are returning from the rest of the chain.
3979 	 */
3980 	mp1->b_cont = NULL;
3981 	*mpp = mp2;
3982 	return (mp0);
3983 }
3984 
3985 /* The ill stream is being unplumbed. Called from ip_close */
3986 int
3987 ip_modclose(ill_t *ill)
3988 {
3989 	boolean_t success;
3990 	ipsq_t	*ipsq;
3991 	ipif_t	*ipif;
3992 	queue_t	*q = ill->ill_rq;
3993 	ip_stack_t	*ipst = ill->ill_ipst;
3994 	int	i;
3995 	arl_ill_common_t *ai = ill->ill_common;
3996 
3997 	/*
3998 	 * The punlink prior to this may have initiated a capability
3999 	 * negotiation. But ipsq_enter will block until that finishes or
4000 	 * times out.
4001 	 */
4002 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
4003 
4004 	/*
4005 	 * Open/close/push/pop is guaranteed to be single threaded
4006 	 * per stream by STREAMS. FS guarantees that all references
4007 	 * from top are gone before close is called. So there can't
4008 	 * be another close thread that has set CONDEMNED on this ill.
4009 	 * and cause ipsq_enter to return failure.
4010 	 */
4011 	ASSERT(success);
4012 	ipsq = ill->ill_phyint->phyint_ipsq;
4013 
4014 	/*
4015 	 * Mark it condemned. No new reference will be made to this ill.
4016 	 * Lookup functions will return an error. Threads that try to
4017 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4018 	 * that the refcnt will drop down to zero.
4019 	 */
4020 	mutex_enter(&ill->ill_lock);
4021 	ill->ill_state_flags |= ILL_CONDEMNED;
4022 	for (ipif = ill->ill_ipif; ipif != NULL;
4023 	    ipif = ipif->ipif_next) {
4024 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4025 	}
4026 	/*
4027 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4028 	 * returns  error if ILL_CONDEMNED is set
4029 	 */
4030 	cv_broadcast(&ill->ill_cv);
4031 	mutex_exit(&ill->ill_lock);
4032 
4033 	/*
4034 	 * Send all the deferred DLPI messages downstream which came in
4035 	 * during the small window right before ipsq_enter(). We do this
4036 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4037 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4038 	 */
4039 	ill_dlpi_send_deferred(ill);
4040 
4041 	/*
4042 	 * Shut down fragmentation reassembly.
4043 	 * ill_frag_timer won't start a timer again.
4044 	 * Now cancel any existing timer
4045 	 */
4046 	(void) untimeout(ill->ill_frag_timer_id);
4047 	(void) ill_frag_timeout(ill, 0);
4048 
4049 	/*
4050 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4051 	 * this ill. Then wait for the refcnts to drop to zero.
4052 	 * ill_is_freeable checks whether the ill is really quiescent.
4053 	 * Then make sure that threads that are waiting to enter the
4054 	 * ipsq have seen the error returned by ipsq_enter and have
4055 	 * gone away. Then we call ill_delete_tail which does the
4056 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4057 	 */
4058 	ill_delete(ill);
4059 	mutex_enter(&ill->ill_lock);
4060 	while (!ill_is_freeable(ill))
4061 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4062 
4063 	while (ill->ill_waiters)
4064 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4065 
4066 	mutex_exit(&ill->ill_lock);
4067 
4068 	/*
4069 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4070 	 * it held until the end of the function since the cleanup
4071 	 * below needs to be able to use the ip_stack_t.
4072 	 */
4073 	netstack_hold(ipst->ips_netstack);
4074 
4075 	/* qprocsoff is done via ill_delete_tail */
4076 	ill_delete_tail(ill);
4077 	/*
4078 	 * synchronously wait for arp stream to unbind. After this, we
4079 	 * cannot get any data packets up from the driver.
4080 	 */
4081 	arp_unbind_complete(ill);
4082 	ASSERT(ill->ill_ipst == NULL);
4083 
4084 	/*
4085 	 * Walk through all conns and qenable those that have queued data.
4086 	 * Close synchronization needs this to
4087 	 * be done to ensure that all upper layers blocked
4088 	 * due to flow control to the closing device
4089 	 * get unblocked.
4090 	 */
4091 	ip1dbg(("ip_wsrv: walking\n"));
4092 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4093 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4094 	}
4095 
4096 	/*
4097 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4098 	 * stream is being torn down before ARP was plumbed (e.g.,
4099 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4100 	 * an error
4101 	 */
4102 	if (ai != NULL) {
4103 		ASSERT(!ill->ill_isv6);
4104 		mutex_enter(&ai->ai_lock);
4105 		ai->ai_ill = NULL;
4106 		if (ai->ai_arl == NULL) {
4107 			mutex_destroy(&ai->ai_lock);
4108 			kmem_free(ai, sizeof (*ai));
4109 		} else {
4110 			cv_signal(&ai->ai_ill_unplumb_done);
4111 			mutex_exit(&ai->ai_lock);
4112 		}
4113 	}
4114 
4115 	mutex_enter(&ipst->ips_ip_mi_lock);
4116 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4117 	mutex_exit(&ipst->ips_ip_mi_lock);
4118 
4119 	/*
4120 	 * credp could be null if the open didn't succeed and ip_modopen
4121 	 * itself calls ip_close.
4122 	 */
4123 	if (ill->ill_credp != NULL)
4124 		crfree(ill->ill_credp);
4125 
4126 	mutex_destroy(&ill->ill_saved_ire_lock);
4127 	mutex_destroy(&ill->ill_lock);
4128 	rw_destroy(&ill->ill_mcast_lock);
4129 	mutex_destroy(&ill->ill_mcast_serializer);
4130 	list_destroy(&ill->ill_nce);
4131 
4132 	/*
4133 	 * Now we are done with the module close pieces that
4134 	 * need the netstack_t.
4135 	 */
4136 	netstack_rele(ipst->ips_netstack);
4137 
4138 	mi_close_free((IDP)ill);
4139 	q->q_ptr = WR(q)->q_ptr = NULL;
4140 
4141 	ipsq_exit(ipsq);
4142 
4143 	return (0);
4144 }
4145 
4146 /*
4147  * This is called as part of close() for IP, UDP, ICMP, and RTS
4148  * in order to quiesce the conn.
4149  */
4150 void
4151 ip_quiesce_conn(conn_t *connp)
4152 {
4153 	boolean_t	drain_cleanup_reqd = B_FALSE;
4154 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4155 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4156 	ip_stack_t	*ipst;
4157 
4158 	ASSERT(!IPCL_IS_TCP(connp));
4159 	ipst = connp->conn_netstack->netstack_ip;
4160 
4161 	/*
4162 	 * Mark the conn as closing, and this conn must not be
4163 	 * inserted in future into any list. Eg. conn_drain_insert(),
4164 	 * won't insert this conn into the conn_drain_list.
4165 	 *
4166 	 * conn_idl, and conn_ilg cannot get set henceforth.
4167 	 */
4168 	mutex_enter(&connp->conn_lock);
4169 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4170 	connp->conn_state_flags |= CONN_CLOSING;
4171 	if (connp->conn_idl != NULL)
4172 		drain_cleanup_reqd = B_TRUE;
4173 	if (connp->conn_oper_pending_ill != NULL)
4174 		conn_ioctl_cleanup_reqd = B_TRUE;
4175 	if (connp->conn_dhcpinit_ill != NULL) {
4176 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4177 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4178 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4179 		connp->conn_dhcpinit_ill = NULL;
4180 	}
4181 	if (connp->conn_ilg != NULL)
4182 		ilg_cleanup_reqd = B_TRUE;
4183 	mutex_exit(&connp->conn_lock);
4184 
4185 	if (conn_ioctl_cleanup_reqd)
4186 		conn_ioctl_cleanup(connp);
4187 
4188 	if (is_system_labeled() && connp->conn_anon_port) {
4189 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4190 		    connp->conn_mlp_type, connp->conn_proto,
4191 		    ntohs(connp->conn_lport), B_FALSE);
4192 		connp->conn_anon_port = 0;
4193 	}
4194 	connp->conn_mlp_type = mlptSingle;
4195 
4196 	/*
4197 	 * Remove this conn from any fanout list it is on.
4198 	 * and then wait for any threads currently operating
4199 	 * on this endpoint to finish
4200 	 */
4201 	ipcl_hash_remove(connp);
4202 
4203 	/*
4204 	 * Remove this conn from the drain list, and do any other cleanup that
4205 	 * may be required.  (TCP conns are never flow controlled, and
4206 	 * conn_idl will be NULL.)
4207 	 */
4208 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4209 		idl_t *idl = connp->conn_idl;
4210 
4211 		mutex_enter(&idl->idl_lock);
4212 		conn_drain(connp, B_TRUE);
4213 		mutex_exit(&idl->idl_lock);
4214 	}
4215 
4216 	if (connp == ipst->ips_ip_g_mrouter)
4217 		(void) ip_mrouter_done(ipst);
4218 
4219 	if (ilg_cleanup_reqd)
4220 		ilg_delete_all(connp);
4221 
4222 	/*
4223 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4224 	 * callers from write side can't be there now because close
4225 	 * is in progress. The only other caller is ipcl_walk
4226 	 * which checks for the condemned flag.
4227 	 */
4228 	mutex_enter(&connp->conn_lock);
4229 	connp->conn_state_flags |= CONN_CONDEMNED;
4230 	while (connp->conn_ref != 1)
4231 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4232 	connp->conn_state_flags |= CONN_QUIESCED;
4233 	mutex_exit(&connp->conn_lock);
4234 }
4235 
4236 /* ARGSUSED */
4237 int
4238 ip_close(queue_t *q, int flags)
4239 {
4240 	conn_t		*connp;
4241 
4242 	/*
4243 	 * Call the appropriate delete routine depending on whether this is
4244 	 * a module or device.
4245 	 */
4246 	if (WR(q)->q_next != NULL) {
4247 		/* This is a module close */
4248 		return (ip_modclose((ill_t *)q->q_ptr));
4249 	}
4250 
4251 	connp = q->q_ptr;
4252 	ip_quiesce_conn(connp);
4253 
4254 	qprocsoff(q);
4255 
4256 	/*
4257 	 * Now we are truly single threaded on this stream, and can
4258 	 * delete the things hanging off the connp, and finally the connp.
4259 	 * We removed this connp from the fanout list, it cannot be
4260 	 * accessed thru the fanouts, and we already waited for the
4261 	 * conn_ref to drop to 0. We are already in close, so
4262 	 * there cannot be any other thread from the top. qprocsoff
4263 	 * has completed, and service has completed or won't run in
4264 	 * future.
4265 	 */
4266 	ASSERT(connp->conn_ref == 1);
4267 
4268 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4269 
4270 	connp->conn_ref--;
4271 	ipcl_conn_destroy(connp);
4272 
4273 	q->q_ptr = WR(q)->q_ptr = NULL;
4274 	return (0);
4275 }
4276 
4277 /*
4278  * Wapper around putnext() so that ip_rts_request can merely use
4279  * conn_recv.
4280  */
4281 /*ARGSUSED2*/
4282 static void
4283 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4284 {
4285 	conn_t *connp = (conn_t *)arg1;
4286 
4287 	putnext(connp->conn_rq, mp);
4288 }
4289 
4290 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4291 /* ARGSUSED */
4292 static void
4293 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4294 {
4295 	freemsg(mp);
4296 }
4297 
4298 /*
4299  * Called when the module is about to be unloaded
4300  */
4301 void
4302 ip_ddi_destroy(void)
4303 {
4304 	/* This needs to be called before destroying any transports. */
4305 	mutex_enter(&cpu_lock);
4306 	unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4307 	mutex_exit(&cpu_lock);
4308 
4309 	tnet_fini();
4310 
4311 	icmp_ddi_g_destroy();
4312 	rts_ddi_g_destroy();
4313 	udp_ddi_g_destroy();
4314 	sctp_ddi_g_destroy();
4315 	tcp_ddi_g_destroy();
4316 	ilb_ddi_g_destroy();
4317 	dce_g_destroy();
4318 	ipsec_policy_g_destroy();
4319 	ipcl_g_destroy();
4320 	ip_net_g_destroy();
4321 	ip_ire_g_fini();
4322 	inet_minor_destroy(ip_minor_arena_sa);
4323 #if defined(_LP64)
4324 	inet_minor_destroy(ip_minor_arena_la);
4325 #endif
4326 
4327 #ifdef DEBUG
4328 	list_destroy(&ip_thread_list);
4329 	rw_destroy(&ip_thread_rwlock);
4330 	tsd_destroy(&ip_thread_data);
4331 #endif
4332 
4333 	netstack_unregister(NS_IP);
4334 }
4335 
4336 /*
4337  * First step in cleanup.
4338  */
4339 /* ARGSUSED */
4340 static void
4341 ip_stack_shutdown(netstackid_t stackid, void *arg)
4342 {
4343 	ip_stack_t *ipst = (ip_stack_t *)arg;
4344 
4345 #ifdef NS_DEBUG
4346 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4347 #endif
4348 
4349 	/*
4350 	 * Perform cleanup for special interfaces (loopback and IPMP).
4351 	 */
4352 	ip_interface_cleanup(ipst);
4353 
4354 	/*
4355 	 * The *_hook_shutdown()s start the process of notifying any
4356 	 * consumers that things are going away.... nothing is destroyed.
4357 	 */
4358 	ipv4_hook_shutdown(ipst);
4359 	ipv6_hook_shutdown(ipst);
4360 	arp_hook_shutdown(ipst);
4361 
4362 	mutex_enter(&ipst->ips_capab_taskq_lock);
4363 	ipst->ips_capab_taskq_quit = B_TRUE;
4364 	cv_signal(&ipst->ips_capab_taskq_cv);
4365 	mutex_exit(&ipst->ips_capab_taskq_lock);
4366 }
4367 
4368 /*
4369  * Free the IP stack instance.
4370  */
4371 static void
4372 ip_stack_fini(netstackid_t stackid, void *arg)
4373 {
4374 	ip_stack_t *ipst = (ip_stack_t *)arg;
4375 	int ret;
4376 
4377 #ifdef NS_DEBUG
4378 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4379 #endif
4380 	/*
4381 	 * At this point, all of the notifications that the events and
4382 	 * protocols are going away have been run, meaning that we can
4383 	 * now set about starting to clean things up.
4384 	 */
4385 	ipobs_fini(ipst);
4386 	ipv4_hook_destroy(ipst);
4387 	ipv6_hook_destroy(ipst);
4388 	arp_hook_destroy(ipst);
4389 	ip_net_destroy(ipst);
4390 
4391 	ipmp_destroy(ipst);
4392 
4393 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4394 	ipst->ips_ip_mibkp = NULL;
4395 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4396 	ipst->ips_icmp_mibkp = NULL;
4397 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4398 	ipst->ips_ip_kstat = NULL;
4399 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4400 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4401 	ipst->ips_ip6_kstat = NULL;
4402 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4403 
4404 	kmem_free(ipst->ips_propinfo_tbl,
4405 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4406 	ipst->ips_propinfo_tbl = NULL;
4407 
4408 	dce_stack_destroy(ipst);
4409 	ip_mrouter_stack_destroy(ipst);
4410 
4411 	ret = untimeout(ipst->ips_igmp_timeout_id);
4412 	if (ret == -1) {
4413 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4414 	} else {
4415 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4416 		ipst->ips_igmp_timeout_id = 0;
4417 	}
4418 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4419 	if (ret == -1) {
4420 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4421 	} else {
4422 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4423 		ipst->ips_igmp_slowtimeout_id = 0;
4424 	}
4425 	ret = untimeout(ipst->ips_mld_timeout_id);
4426 	if (ret == -1) {
4427 		ASSERT(ipst->ips_mld_timeout_id == 0);
4428 	} else {
4429 		ASSERT(ipst->ips_mld_timeout_id != 0);
4430 		ipst->ips_mld_timeout_id = 0;
4431 	}
4432 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4433 	if (ret == -1) {
4434 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4435 	} else {
4436 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4437 		ipst->ips_mld_slowtimeout_id = 0;
4438 	}
4439 
4440 	ip_ire_fini(ipst);
4441 	ip6_asp_free(ipst);
4442 	conn_drain_fini(ipst);
4443 	ipcl_destroy(ipst);
4444 
4445 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4446 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4447 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4448 	ipst->ips_ndp4 = NULL;
4449 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4450 	ipst->ips_ndp6 = NULL;
4451 
4452 	if (ipst->ips_loopback_ksp != NULL) {
4453 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4454 		ipst->ips_loopback_ksp = NULL;
4455 	}
4456 
4457 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4458 	cv_destroy(&ipst->ips_capab_taskq_cv);
4459 
4460 	rw_destroy(&ipst->ips_srcid_lock);
4461 
4462 	mutex_destroy(&ipst->ips_ip_mi_lock);
4463 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4464 
4465 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4466 	mutex_destroy(&ipst->ips_mld_timer_lock);
4467 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4468 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4469 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4470 	rw_destroy(&ipst->ips_ill_g_lock);
4471 
4472 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4473 	ipst->ips_phyint_g_list = NULL;
4474 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4475 	ipst->ips_ill_g_heads = NULL;
4476 
4477 	ldi_ident_release(ipst->ips_ldi_ident);
4478 	kmem_free(ipst, sizeof (*ipst));
4479 }
4480 
4481 /*
4482  * This function is called from the TSD destructor, and is used to debug
4483  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4484  * details.
4485  */
4486 static void
4487 ip_thread_exit(void *phash)
4488 {
4489 	th_hash_t *thh = phash;
4490 
4491 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4492 	list_remove(&ip_thread_list, thh);
4493 	rw_exit(&ip_thread_rwlock);
4494 	mod_hash_destroy_hash(thh->thh_hash);
4495 	kmem_free(thh, sizeof (*thh));
4496 }
4497 
4498 /*
4499  * Called when the IP kernel module is loaded into the kernel
4500  */
4501 void
4502 ip_ddi_init(void)
4503 {
4504 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4505 
4506 	/*
4507 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4508 	 * initial devices: ip, ip6, tcp, tcp6.
4509 	 */
4510 	/*
4511 	 * If this is a 64-bit kernel, then create two separate arenas -
4512 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4513 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4514 	 */
4515 	ip_minor_arena_la = NULL;
4516 	ip_minor_arena_sa = NULL;
4517 #if defined(_LP64)
4518 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4519 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4520 		cmn_err(CE_PANIC,
4521 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4522 	}
4523 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4524 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4525 		cmn_err(CE_PANIC,
4526 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4527 	}
4528 #else
4529 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4530 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4531 		cmn_err(CE_PANIC,
4532 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4533 	}
4534 #endif
4535 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4536 
4537 	ipcl_g_init();
4538 	ip_ire_g_init();
4539 	ip_net_g_init();
4540 
4541 #ifdef DEBUG
4542 	tsd_create(&ip_thread_data, ip_thread_exit);
4543 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4544 	list_create(&ip_thread_list, sizeof (th_hash_t),
4545 	    offsetof(th_hash_t, thh_link));
4546 #endif
4547 	ipsec_policy_g_init();
4548 	tcp_ddi_g_init();
4549 	sctp_ddi_g_init();
4550 	dce_g_init();
4551 
4552 	/*
4553 	 * We want to be informed each time a stack is created or
4554 	 * destroyed in the kernel, so we can maintain the
4555 	 * set of udp_stack_t's.
4556 	 */
4557 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4558 	    ip_stack_fini);
4559 
4560 	tnet_init();
4561 
4562 	udp_ddi_g_init();
4563 	rts_ddi_g_init();
4564 	icmp_ddi_g_init();
4565 	ilb_ddi_g_init();
4566 
4567 	/* This needs to be called after all transports are initialized. */
4568 	mutex_enter(&cpu_lock);
4569 	register_cpu_setup_func(ip_tp_cpu_update, NULL);
4570 	mutex_exit(&cpu_lock);
4571 }
4572 
4573 /*
4574  * Initialize the IP stack instance.
4575  */
4576 static void *
4577 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4578 {
4579 	ip_stack_t	*ipst;
4580 	size_t		arrsz;
4581 	major_t		major;
4582 
4583 #ifdef NS_DEBUG
4584 	printf("ip_stack_init(stack %d)\n", stackid);
4585 #endif
4586 
4587 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4588 	ipst->ips_netstack = ns;
4589 
4590 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4591 	    KM_SLEEP);
4592 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4593 	    KM_SLEEP);
4594 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4595 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4596 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4597 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4598 
4599 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4600 	ipst->ips_igmp_deferred_next = INFINITY;
4601 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4602 	ipst->ips_mld_deferred_next = INFINITY;
4603 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4604 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4605 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4606 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4607 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4608 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4609 
4610 	ipcl_init(ipst);
4611 	ip_ire_init(ipst);
4612 	ip6_asp_init(ipst);
4613 	ipif_init(ipst);
4614 	conn_drain_init(ipst);
4615 	ip_mrouter_stack_init(ipst);
4616 	dce_stack_init(ipst);
4617 
4618 	ipst->ips_ip_multirt_log_interval = 1000;
4619 
4620 	ipst->ips_ill_index = 1;
4621 
4622 	ipst->ips_saved_ip_forwarding = -1;
4623 	ipst->ips_reg_vif_num = ALL_VIFS; 	/* Index to Register vif */
4624 
4625 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4626 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4627 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4628 
4629 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4630 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4631 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4632 	ipst->ips_ip6_kstat =
4633 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4634 
4635 	ipst->ips_ip_src_id = 1;
4636 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4637 
4638 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4639 
4640 	ip_net_init(ipst, ns);
4641 	ipv4_hook_init(ipst);
4642 	ipv6_hook_init(ipst);
4643 	arp_hook_init(ipst);
4644 	ipmp_init(ipst);
4645 	ipobs_init(ipst);
4646 
4647 	/*
4648 	 * Create the taskq dispatcher thread and initialize related stuff.
4649 	 */
4650 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4651 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4652 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4653 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4654 
4655 	major = mod_name_to_major(INET_NAME);
4656 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4657 	return (ipst);
4658 }
4659 
4660 /*
4661  * Allocate and initialize a DLPI template of the specified length.  (May be
4662  * called as writer.)
4663  */
4664 mblk_t *
4665 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4666 {
4667 	mblk_t	*mp;
4668 
4669 	mp = allocb(len, BPRI_MED);
4670 	if (!mp)
4671 		return (NULL);
4672 
4673 	/*
4674 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4675 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4676 	 * that other DLPI are M_PROTO.
4677 	 */
4678 	if (prim == DL_INFO_REQ) {
4679 		mp->b_datap->db_type = M_PCPROTO;
4680 	} else {
4681 		mp->b_datap->db_type = M_PROTO;
4682 	}
4683 
4684 	mp->b_wptr = mp->b_rptr + len;
4685 	bzero(mp->b_rptr, len);
4686 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4687 	return (mp);
4688 }
4689 
4690 /*
4691  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4692  */
4693 mblk_t *
4694 ip_dlnotify_alloc(uint_t notification, uint_t data)
4695 {
4696 	dl_notify_ind_t	*notifyp;
4697 	mblk_t		*mp;
4698 
4699 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4700 		return (NULL);
4701 
4702 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4703 	notifyp->dl_notification = notification;
4704 	notifyp->dl_data = data;
4705 	return (mp);
4706 }
4707 
4708 mblk_t *
4709 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4710 {
4711 	dl_notify_ind_t	*notifyp;
4712 	mblk_t		*mp;
4713 
4714 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4715 		return (NULL);
4716 
4717 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4718 	notifyp->dl_notification = notification;
4719 	notifyp->dl_data1 = data1;
4720 	notifyp->dl_data2 = data2;
4721 	return (mp);
4722 }
4723 
4724 /*
4725  * Debug formatting routine.  Returns a character string representation of the
4726  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4727  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4728  *
4729  * Once the ndd table-printing interfaces are removed, this can be changed to
4730  * standard dotted-decimal form.
4731  */
4732 char *
4733 ip_dot_addr(ipaddr_t addr, char *buf)
4734 {
4735 	uint8_t *ap = (uint8_t *)&addr;
4736 
4737 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4738 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4739 	return (buf);
4740 }
4741 
4742 /*
4743  * Write the given MAC address as a printable string in the usual colon-
4744  * separated format.
4745  */
4746 const char *
4747 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4748 {
4749 	char *bp;
4750 
4751 	if (alen == 0 || buflen < 4)
4752 		return ("?");
4753 	bp = buf;
4754 	for (;;) {
4755 		/*
4756 		 * If there are more MAC address bytes available, but we won't
4757 		 * have any room to print them, then add "..." to the string
4758 		 * instead.  See below for the 'magic number' explanation.
4759 		 */
4760 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4761 			(void) strcpy(bp, "...");
4762 			break;
4763 		}
4764 		(void) sprintf(bp, "%02x", *addr++);
4765 		bp += 2;
4766 		if (--alen == 0)
4767 			break;
4768 		*bp++ = ':';
4769 		buflen -= 3;
4770 		/*
4771 		 * At this point, based on the first 'if' statement above,
4772 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4773 		 * buflen >= 4.  The first case leaves room for the final "xx"
4774 		 * number and trailing NUL byte.  The second leaves room for at
4775 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4776 		 * that statement.
4777 		 */
4778 	}
4779 	return (buf);
4780 }
4781 
4782 /*
4783  * Called when it is conceptually a ULP that would sent the packet
4784  * e.g., port unreachable and protocol unreachable. Check that the packet
4785  * would have passed the IPsec global policy before sending the error.
4786  *
4787  * Send an ICMP error after patching up the packet appropriately.
4788  * Uses ip_drop_input and bumps the appropriate MIB.
4789  */
4790 void
4791 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4792     ip_recv_attr_t *ira)
4793 {
4794 	ipha_t		*ipha;
4795 	boolean_t	secure;
4796 	ill_t		*ill = ira->ira_ill;
4797 	ip_stack_t	*ipst = ill->ill_ipst;
4798 	netstack_t	*ns = ipst->ips_netstack;
4799 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4800 
4801 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4802 
4803 	/*
4804 	 * We are generating an icmp error for some inbound packet.
4805 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4806 	 * Before we generate an error, check with global policy
4807 	 * to see whether this is allowed to enter the system. As
4808 	 * there is no "conn", we are checking with global policy.
4809 	 */
4810 	ipha = (ipha_t *)mp->b_rptr;
4811 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4812 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4813 		if (mp == NULL)
4814 			return;
4815 	}
4816 
4817 	/* We never send errors for protocols that we do implement */
4818 	if (ira->ira_protocol == IPPROTO_ICMP ||
4819 	    ira->ira_protocol == IPPROTO_IGMP) {
4820 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4821 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4822 		freemsg(mp);
4823 		return;
4824 	}
4825 	/*
4826 	 * Have to correct checksum since
4827 	 * the packet might have been
4828 	 * fragmented and the reassembly code in ip_rput
4829 	 * does not restore the IP checksum.
4830 	 */
4831 	ipha->ipha_hdr_checksum = 0;
4832 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4833 
4834 	switch (icmp_type) {
4835 	case ICMP_DEST_UNREACHABLE:
4836 		switch (icmp_code) {
4837 		case ICMP_PROTOCOL_UNREACHABLE:
4838 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4839 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4840 			break;
4841 		case ICMP_PORT_UNREACHABLE:
4842 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4843 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4844 			break;
4845 		}
4846 
4847 		icmp_unreachable(mp, icmp_code, ira);
4848 		break;
4849 	default:
4850 #ifdef DEBUG
4851 		panic("ip_fanout_send_icmp_v4: wrong type");
4852 		/*NOTREACHED*/
4853 #else
4854 		freemsg(mp);
4855 		break;
4856 #endif
4857 	}
4858 }
4859 
4860 /*
4861  * Used to send an ICMP error message when a packet is received for
4862  * a protocol that is not supported. The mblk passed as argument
4863  * is consumed by this function.
4864  */
4865 void
4866 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4867 {
4868 	ipha_t		*ipha;
4869 
4870 	ipha = (ipha_t *)mp->b_rptr;
4871 	if (ira->ira_flags & IRAF_IS_IPV4) {
4872 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4873 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4874 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4875 	} else {
4876 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4877 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4878 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4879 	}
4880 }
4881 
4882 /*
4883  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4884  * Handles IPv4 and IPv6.
4885  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4886  * Caller is responsible for dropping references to the conn.
4887  */
4888 void
4889 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4890     ip_recv_attr_t *ira)
4891 {
4892 	ill_t		*ill = ira->ira_ill;
4893 	ip_stack_t	*ipst = ill->ill_ipst;
4894 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4895 	boolean_t	secure;
4896 	uint_t		protocol = ira->ira_protocol;
4897 	iaflags_t	iraflags = ira->ira_flags;
4898 	queue_t		*rq;
4899 
4900 	secure = iraflags & IRAF_IPSEC_SECURE;
4901 
4902 	rq = connp->conn_rq;
4903 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4904 		switch (protocol) {
4905 		case IPPROTO_ICMPV6:
4906 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4907 			break;
4908 		case IPPROTO_ICMP:
4909 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4910 			break;
4911 		default:
4912 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4913 			break;
4914 		}
4915 		freemsg(mp);
4916 		return;
4917 	}
4918 
4919 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4920 
4921 	if (((iraflags & IRAF_IS_IPV4) ?
4922 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4923 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4924 	    secure) {
4925 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4926 		    ip6h, ira);
4927 		if (mp == NULL) {
4928 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4929 			/* Note that mp is NULL */
4930 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4931 			return;
4932 		}
4933 	}
4934 
4935 	if (iraflags & IRAF_ICMP_ERROR) {
4936 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4937 	} else {
4938 		ill_t *rill = ira->ira_rill;
4939 
4940 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4941 		ira->ira_ill = ira->ira_rill = NULL;
4942 		/* Send it upstream */
4943 		(connp->conn_recv)(connp, mp, NULL, ira);
4944 		ira->ira_ill = ill;
4945 		ira->ira_rill = rill;
4946 	}
4947 }
4948 
4949 /*
4950  * Handle protocols with which IP is less intimate.  There
4951  * can be more than one stream bound to a particular
4952  * protocol.  When this is the case, normally each one gets a copy
4953  * of any incoming packets.
4954  *
4955  * IPsec NOTE :
4956  *
4957  * Don't allow a secure packet going up a non-secure connection.
4958  * We don't allow this because
4959  *
4960  * 1) Reply might go out in clear which will be dropped at
4961  *    the sending side.
4962  * 2) If the reply goes out in clear it will give the
4963  *    adversary enough information for getting the key in
4964  *    most of the cases.
4965  *
4966  * Moreover getting a secure packet when we expect clear
4967  * implies that SA's were added without checking for
4968  * policy on both ends. This should not happen once ISAKMP
4969  * is used to negotiate SAs as SAs will be added only after
4970  * verifying the policy.
4971  *
4972  * Zones notes:
4973  * Earlier in ip_input on a system with multiple shared-IP zones we
4974  * duplicate the multicast and broadcast packets and send them up
4975  * with each explicit zoneid that exists on that ill.
4976  * This means that here we can match the zoneid with SO_ALLZONES being special.
4977  */
4978 void
4979 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4980 {
4981 	mblk_t		*mp1;
4982 	ipaddr_t	laddr;
4983 	conn_t		*connp, *first_connp, *next_connp;
4984 	connf_t		*connfp;
4985 	ill_t		*ill = ira->ira_ill;
4986 	ip_stack_t	*ipst = ill->ill_ipst;
4987 
4988 	laddr = ipha->ipha_dst;
4989 
4990 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
4991 	mutex_enter(&connfp->connf_lock);
4992 	connp = connfp->connf_head;
4993 	for (connp = connfp->connf_head; connp != NULL;
4994 	    connp = connp->conn_next) {
4995 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
4996 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
4997 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
4998 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
4999 			break;
5000 		}
5001 	}
5002 
5003 	if (connp == NULL) {
5004 		/*
5005 		 * No one bound to these addresses.  Is
5006 		 * there a client that wants all
5007 		 * unclaimed datagrams?
5008 		 */
5009 		mutex_exit(&connfp->connf_lock);
5010 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5011 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5012 		return;
5013 	}
5014 
5015 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5016 
5017 	CONN_INC_REF(connp);
5018 	first_connp = connp;
5019 	connp = connp->conn_next;
5020 
5021 	for (;;) {
5022 		while (connp != NULL) {
5023 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5024 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5025 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5026 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5027 			    ira, connp)))
5028 				break;
5029 			connp = connp->conn_next;
5030 		}
5031 
5032 		if (connp == NULL) {
5033 			/* No more interested clients */
5034 			connp = first_connp;
5035 			break;
5036 		}
5037 		if (((mp1 = dupmsg(mp)) == NULL) &&
5038 		    ((mp1 = copymsg(mp)) == NULL)) {
5039 			/* Memory allocation failed */
5040 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5041 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5042 			connp = first_connp;
5043 			break;
5044 		}
5045 
5046 		CONN_INC_REF(connp);
5047 		mutex_exit(&connfp->connf_lock);
5048 
5049 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5050 		    ira);
5051 
5052 		mutex_enter(&connfp->connf_lock);
5053 		/* Follow the next pointer before releasing the conn. */
5054 		next_connp = connp->conn_next;
5055 		CONN_DEC_REF(connp);
5056 		connp = next_connp;
5057 	}
5058 
5059 	/* Last one.  Send it upstream. */
5060 	mutex_exit(&connfp->connf_lock);
5061 
5062 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5063 
5064 	CONN_DEC_REF(connp);
5065 }
5066 
5067 /*
5068  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5069  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5070  * is not consumed.
5071  *
5072  * One of three things can happen, all of which affect the passed-in mblk:
5073  *
5074  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5075  *
5076  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5077  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5078  *
5079  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5080  */
5081 mblk_t *
5082 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5083 {
5084 	int shift, plen, iph_len;
5085 	ipha_t *ipha;
5086 	udpha_t *udpha;
5087 	uint32_t *spi;
5088 	uint32_t esp_ports;
5089 	uint8_t *orptr;
5090 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5091 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5092 
5093 	ipha = (ipha_t *)mp->b_rptr;
5094 	iph_len = ira->ira_ip_hdr_length;
5095 	plen = ira->ira_pktlen;
5096 
5097 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5098 		/*
5099 		 * Most likely a keepalive for the benefit of an intervening
5100 		 * NAT.  These aren't for us, per se, so drop it.
5101 		 *
5102 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5103 		 * byte packets (keepalives are 1-byte), but we'll drop them
5104 		 * also.
5105 		 */
5106 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5107 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5108 		return (NULL);
5109 	}
5110 
5111 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5112 		/* might as well pull it all up - it might be ESP. */
5113 		if (!pullupmsg(mp, -1)) {
5114 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5115 			    DROPPER(ipss, ipds_esp_nomem),
5116 			    &ipss->ipsec_dropper);
5117 			return (NULL);
5118 		}
5119 
5120 		ipha = (ipha_t *)mp->b_rptr;
5121 	}
5122 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5123 	if (*spi == 0) {
5124 		/* UDP packet - remove 0-spi. */
5125 		shift = sizeof (uint32_t);
5126 	} else {
5127 		/* ESP-in-UDP packet - reduce to ESP. */
5128 		ipha->ipha_protocol = IPPROTO_ESP;
5129 		shift = sizeof (udpha_t);
5130 	}
5131 
5132 	/* Fix IP header */
5133 	ira->ira_pktlen = (plen - shift);
5134 	ipha->ipha_length = htons(ira->ira_pktlen);
5135 	ipha->ipha_hdr_checksum = 0;
5136 
5137 	orptr = mp->b_rptr;
5138 	mp->b_rptr += shift;
5139 
5140 	udpha = (udpha_t *)(orptr + iph_len);
5141 	if (*spi == 0) {
5142 		ASSERT((uint8_t *)ipha == orptr);
5143 		udpha->uha_length = htons(plen - shift - iph_len);
5144 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5145 		esp_ports = 0;
5146 	} else {
5147 		esp_ports = *((uint32_t *)udpha);
5148 		ASSERT(esp_ports != 0);
5149 	}
5150 	ovbcopy(orptr, orptr + shift, iph_len);
5151 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5152 		ipha = (ipha_t *)(orptr + shift);
5153 
5154 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5155 		ira->ira_esp_udp_ports = esp_ports;
5156 		ip_fanout_v4(mp, ipha, ira);
5157 		return (NULL);
5158 	}
5159 	return (mp);
5160 }
5161 
5162 /*
5163  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5164  * Handles IPv4 and IPv6.
5165  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5166  * Caller is responsible for dropping references to the conn.
5167  */
5168 void
5169 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5170     ip_recv_attr_t *ira)
5171 {
5172 	ill_t		*ill = ira->ira_ill;
5173 	ip_stack_t	*ipst = ill->ill_ipst;
5174 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5175 	boolean_t	secure;
5176 	iaflags_t	iraflags = ira->ira_flags;
5177 
5178 	secure = iraflags & IRAF_IPSEC_SECURE;
5179 
5180 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5181 	    !canputnext(connp->conn_rq)) {
5182 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5183 		freemsg(mp);
5184 		return;
5185 	}
5186 
5187 	if (((iraflags & IRAF_IS_IPV4) ?
5188 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5189 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5190 	    secure) {
5191 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5192 		    ip6h, ira);
5193 		if (mp == NULL) {
5194 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5195 			/* Note that mp is NULL */
5196 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5197 			return;
5198 		}
5199 	}
5200 
5201 	/*
5202 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5203 	 * check. Only ip_fanout_v4 has that check.
5204 	 */
5205 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5206 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5207 	} else {
5208 		ill_t *rill = ira->ira_rill;
5209 
5210 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5211 		ira->ira_ill = ira->ira_rill = NULL;
5212 		/* Send it upstream */
5213 		(connp->conn_recv)(connp, mp, NULL, ira);
5214 		ira->ira_ill = ill;
5215 		ira->ira_rill = rill;
5216 	}
5217 }
5218 
5219 /*
5220  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5221  * (Unicast fanout is handled in ip_input_v4.)
5222  *
5223  * If SO_REUSEADDR is set all multicast and broadcast packets
5224  * will be delivered to all conns bound to the same port.
5225  *
5226  * If there is at least one matching AF_INET receiver, then we will
5227  * ignore any AF_INET6 receivers.
5228  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5229  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5230  * packets.
5231  *
5232  * Zones notes:
5233  * Earlier in ip_input on a system with multiple shared-IP zones we
5234  * duplicate the multicast and broadcast packets and send them up
5235  * with each explicit zoneid that exists on that ill.
5236  * This means that here we can match the zoneid with SO_ALLZONES being special.
5237  */
5238 void
5239 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5240     ip_recv_attr_t *ira)
5241 {
5242 	ipaddr_t	laddr;
5243 	in6_addr_t	v6faddr;
5244 	conn_t		*connp;
5245 	connf_t		*connfp;
5246 	ipaddr_t	faddr;
5247 	ill_t		*ill = ira->ira_ill;
5248 	ip_stack_t	*ipst = ill->ill_ipst;
5249 
5250 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5251 
5252 	laddr = ipha->ipha_dst;
5253 	faddr = ipha->ipha_src;
5254 
5255 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5256 	mutex_enter(&connfp->connf_lock);
5257 	connp = connfp->connf_head;
5258 
5259 	/*
5260 	 * If SO_REUSEADDR has been set on the first we send the
5261 	 * packet to all clients that have joined the group and
5262 	 * match the port.
5263 	 */
5264 	while (connp != NULL) {
5265 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5266 		    conn_wantpacket(connp, ira, ipha) &&
5267 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5268 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5269 			break;
5270 		connp = connp->conn_next;
5271 	}
5272 
5273 	if (connp == NULL)
5274 		goto notfound;
5275 
5276 	CONN_INC_REF(connp);
5277 
5278 	if (connp->conn_reuseaddr) {
5279 		conn_t		*first_connp = connp;
5280 		conn_t		*next_connp;
5281 		mblk_t		*mp1;
5282 
5283 		connp = connp->conn_next;
5284 		for (;;) {
5285 			while (connp != NULL) {
5286 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5287 				    fport, faddr) &&
5288 				    conn_wantpacket(connp, ira, ipha) &&
5289 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5290 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5291 				    ira, connp)))
5292 					break;
5293 				connp = connp->conn_next;
5294 			}
5295 			if (connp == NULL) {
5296 				/* No more interested clients */
5297 				connp = first_connp;
5298 				break;
5299 			}
5300 			if (((mp1 = dupmsg(mp)) == NULL) &&
5301 			    ((mp1 = copymsg(mp)) == NULL)) {
5302 				/* Memory allocation failed */
5303 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5304 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5305 				connp = first_connp;
5306 				break;
5307 			}
5308 			CONN_INC_REF(connp);
5309 			mutex_exit(&connfp->connf_lock);
5310 
5311 			IP_STAT(ipst, ip_udp_fanmb);
5312 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5313 			    NULL, ira);
5314 			mutex_enter(&connfp->connf_lock);
5315 			/* Follow the next pointer before releasing the conn */
5316 			next_connp = connp->conn_next;
5317 			CONN_DEC_REF(connp);
5318 			connp = next_connp;
5319 		}
5320 	}
5321 
5322 	/* Last one.  Send it upstream. */
5323 	mutex_exit(&connfp->connf_lock);
5324 	IP_STAT(ipst, ip_udp_fanmb);
5325 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5326 	CONN_DEC_REF(connp);
5327 	return;
5328 
5329 notfound:
5330 	mutex_exit(&connfp->connf_lock);
5331 	/*
5332 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5333 	 * have already been matched above, since they live in the IPv4
5334 	 * fanout tables. This implies we only need to
5335 	 * check for IPv6 in6addr_any endpoints here.
5336 	 * Thus we compare using ipv6_all_zeros instead of the destination
5337 	 * address, except for the multicast group membership lookup which
5338 	 * uses the IPv4 destination.
5339 	 */
5340 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5341 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5342 	mutex_enter(&connfp->connf_lock);
5343 	connp = connfp->connf_head;
5344 	/*
5345 	 * IPv4 multicast packet being delivered to an AF_INET6
5346 	 * in6addr_any endpoint.
5347 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5348 	 * and not conn_wantpacket_v6() since any multicast membership is
5349 	 * for an IPv4-mapped multicast address.
5350 	 */
5351 	while (connp != NULL) {
5352 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5353 		    fport, v6faddr) &&
5354 		    conn_wantpacket(connp, ira, ipha) &&
5355 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5356 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5357 			break;
5358 		connp = connp->conn_next;
5359 	}
5360 
5361 	if (connp == NULL) {
5362 		/*
5363 		 * No one bound to this port.  Is
5364 		 * there a client that wants all
5365 		 * unclaimed datagrams?
5366 		 */
5367 		mutex_exit(&connfp->connf_lock);
5368 
5369 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5370 		    NULL) {
5371 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5372 			ip_fanout_proto_v4(mp, ipha, ira);
5373 		} else {
5374 			/*
5375 			 * We used to attempt to send an icmp error here, but
5376 			 * since this is known to be a multicast packet
5377 			 * and we don't send icmp errors in response to
5378 			 * multicast, just drop the packet and give up sooner.
5379 			 */
5380 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5381 			freemsg(mp);
5382 		}
5383 		return;
5384 	}
5385 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5386 
5387 	/*
5388 	 * If SO_REUSEADDR has been set on the first we send the
5389 	 * packet to all clients that have joined the group and
5390 	 * match the port.
5391 	 */
5392 	if (connp->conn_reuseaddr) {
5393 		conn_t		*first_connp = connp;
5394 		conn_t		*next_connp;
5395 		mblk_t		*mp1;
5396 
5397 		CONN_INC_REF(connp);
5398 		connp = connp->conn_next;
5399 		for (;;) {
5400 			while (connp != NULL) {
5401 				if (IPCL_UDP_MATCH_V6(connp, lport,
5402 				    ipv6_all_zeros, fport, v6faddr) &&
5403 				    conn_wantpacket(connp, ira, ipha) &&
5404 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5405 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5406 				    ira, connp)))
5407 					break;
5408 				connp = connp->conn_next;
5409 			}
5410 			if (connp == NULL) {
5411 				/* No more interested clients */
5412 				connp = first_connp;
5413 				break;
5414 			}
5415 			if (((mp1 = dupmsg(mp)) == NULL) &&
5416 			    ((mp1 = copymsg(mp)) == NULL)) {
5417 				/* Memory allocation failed */
5418 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5419 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5420 				connp = first_connp;
5421 				break;
5422 			}
5423 			CONN_INC_REF(connp);
5424 			mutex_exit(&connfp->connf_lock);
5425 
5426 			IP_STAT(ipst, ip_udp_fanmb);
5427 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5428 			    NULL, ira);
5429 			mutex_enter(&connfp->connf_lock);
5430 			/* Follow the next pointer before releasing the conn */
5431 			next_connp = connp->conn_next;
5432 			CONN_DEC_REF(connp);
5433 			connp = next_connp;
5434 		}
5435 	}
5436 
5437 	/* Last one.  Send it upstream. */
5438 	mutex_exit(&connfp->connf_lock);
5439 	IP_STAT(ipst, ip_udp_fanmb);
5440 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5441 	CONN_DEC_REF(connp);
5442 }
5443 
5444 /*
5445  * Split an incoming packet's IPv4 options into the label and the other options.
5446  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5447  * clearing out any leftover label or options.
5448  * Otherwise it just makes ipp point into the packet.
5449  *
5450  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5451  */
5452 int
5453 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5454 {
5455 	uchar_t		*opt;
5456 	uint32_t	totallen;
5457 	uint32_t	optval;
5458 	uint32_t	optlen;
5459 
5460 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5461 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5462 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5463 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5464 
5465 	/*
5466 	 * Get length (in 4 byte octets) of IP header options.
5467 	 */
5468 	totallen = ipha->ipha_version_and_hdr_length -
5469 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5470 
5471 	if (totallen == 0) {
5472 		if (!allocate)
5473 			return (0);
5474 
5475 		/* Clear out anything from a previous packet */
5476 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5477 			kmem_free(ipp->ipp_ipv4_options,
5478 			    ipp->ipp_ipv4_options_len);
5479 			ipp->ipp_ipv4_options = NULL;
5480 			ipp->ipp_ipv4_options_len = 0;
5481 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5482 		}
5483 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5484 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5485 			ipp->ipp_label_v4 = NULL;
5486 			ipp->ipp_label_len_v4 = 0;
5487 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5488 		}
5489 		return (0);
5490 	}
5491 
5492 	totallen <<= 2;
5493 	opt = (uchar_t *)&ipha[1];
5494 	if (!is_system_labeled()) {
5495 
5496 	copyall:
5497 		if (!allocate) {
5498 			if (totallen != 0) {
5499 				ipp->ipp_ipv4_options = opt;
5500 				ipp->ipp_ipv4_options_len = totallen;
5501 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5502 			}
5503 			return (0);
5504 		}
5505 		/* Just copy all of options */
5506 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5507 			if (totallen == ipp->ipp_ipv4_options_len) {
5508 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5509 				return (0);
5510 			}
5511 			kmem_free(ipp->ipp_ipv4_options,
5512 			    ipp->ipp_ipv4_options_len);
5513 			ipp->ipp_ipv4_options = NULL;
5514 			ipp->ipp_ipv4_options_len = 0;
5515 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5516 		}
5517 		if (totallen == 0)
5518 			return (0);
5519 
5520 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5521 		if (ipp->ipp_ipv4_options == NULL)
5522 			return (ENOMEM);
5523 		ipp->ipp_ipv4_options_len = totallen;
5524 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5525 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5526 		return (0);
5527 	}
5528 
5529 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5530 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5531 		ipp->ipp_label_v4 = NULL;
5532 		ipp->ipp_label_len_v4 = 0;
5533 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5534 	}
5535 
5536 	/*
5537 	 * Search for CIPSO option.
5538 	 * We assume CIPSO is first in options if it is present.
5539 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5540 	 * prior to the CIPSO option.
5541 	 */
5542 	while (totallen != 0) {
5543 		switch (optval = opt[IPOPT_OPTVAL]) {
5544 		case IPOPT_EOL:
5545 			return (0);
5546 		case IPOPT_NOP:
5547 			optlen = 1;
5548 			break;
5549 		default:
5550 			if (totallen <= IPOPT_OLEN)
5551 				return (EINVAL);
5552 			optlen = opt[IPOPT_OLEN];
5553 			if (optlen < 2)
5554 				return (EINVAL);
5555 		}
5556 		if (optlen > totallen)
5557 			return (EINVAL);
5558 
5559 		switch (optval) {
5560 		case IPOPT_COMSEC:
5561 			if (!allocate) {
5562 				ipp->ipp_label_v4 = opt;
5563 				ipp->ipp_label_len_v4 = optlen;
5564 				ipp->ipp_fields |= IPPF_LABEL_V4;
5565 			} else {
5566 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5567 				    KM_NOSLEEP);
5568 				if (ipp->ipp_label_v4 == NULL)
5569 					return (ENOMEM);
5570 				ipp->ipp_label_len_v4 = optlen;
5571 				ipp->ipp_fields |= IPPF_LABEL_V4;
5572 				bcopy(opt, ipp->ipp_label_v4, optlen);
5573 			}
5574 			totallen -= optlen;
5575 			opt += optlen;
5576 
5577 			/* Skip padding bytes until we get to a multiple of 4 */
5578 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5579 				totallen--;
5580 				opt++;
5581 			}
5582 			/* Remaining as ipp_ipv4_options */
5583 			goto copyall;
5584 		}
5585 		totallen -= optlen;
5586 		opt += optlen;
5587 	}
5588 	/* No CIPSO found; return everything as ipp_ipv4_options */
5589 	totallen = ipha->ipha_version_and_hdr_length -
5590 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5591 	totallen <<= 2;
5592 	opt = (uchar_t *)&ipha[1];
5593 	goto copyall;
5594 }
5595 
5596 /*
5597  * Efficient versions of lookup for an IRE when we only
5598  * match the address.
5599  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5600  * Does not handle multicast addresses.
5601  */
5602 uint_t
5603 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5604 {
5605 	ire_t *ire;
5606 	uint_t result;
5607 
5608 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5609 	ASSERT(ire != NULL);
5610 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5611 		result = IRE_NOROUTE;
5612 	else
5613 		result = ire->ire_type;
5614 	ire_refrele(ire);
5615 	return (result);
5616 }
5617 
5618 /*
5619  * Efficient versions of lookup for an IRE when we only
5620  * match the address.
5621  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5622  * Does not handle multicast addresses.
5623  */
5624 uint_t
5625 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5626 {
5627 	ire_t *ire;
5628 	uint_t result;
5629 
5630 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5631 	ASSERT(ire != NULL);
5632 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5633 		result = IRE_NOROUTE;
5634 	else
5635 		result = ire->ire_type;
5636 	ire_refrele(ire);
5637 	return (result);
5638 }
5639 
5640 /*
5641  * Nobody should be sending
5642  * packets up this stream
5643  */
5644 static void
5645 ip_lrput(queue_t *q, mblk_t *mp)
5646 {
5647 	switch (mp->b_datap->db_type) {
5648 	case M_FLUSH:
5649 		/* Turn around */
5650 		if (*mp->b_rptr & FLUSHW) {
5651 			*mp->b_rptr &= ~FLUSHR;
5652 			qreply(q, mp);
5653 			return;
5654 		}
5655 		break;
5656 	}
5657 	freemsg(mp);
5658 }
5659 
5660 /* Nobody should be sending packets down this stream */
5661 /* ARGSUSED */
5662 void
5663 ip_lwput(queue_t *q, mblk_t *mp)
5664 {
5665 	freemsg(mp);
5666 }
5667 
5668 /*
5669  * Move the first hop in any source route to ipha_dst and remove that part of
5670  * the source route.  Called by other protocols.  Errors in option formatting
5671  * are ignored - will be handled by ip_output_options. Return the final
5672  * destination (either ipha_dst or the last entry in a source route.)
5673  */
5674 ipaddr_t
5675 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5676 {
5677 	ipoptp_t	opts;
5678 	uchar_t		*opt;
5679 	uint8_t		optval;
5680 	uint8_t		optlen;
5681 	ipaddr_t	dst;
5682 	int		i;
5683 	ip_stack_t	*ipst = ns->netstack_ip;
5684 
5685 	ip2dbg(("ip_massage_options\n"));
5686 	dst = ipha->ipha_dst;
5687 	for (optval = ipoptp_first(&opts, ipha);
5688 	    optval != IPOPT_EOL;
5689 	    optval = ipoptp_next(&opts)) {
5690 		opt = opts.ipoptp_cur;
5691 		switch (optval) {
5692 			uint8_t off;
5693 		case IPOPT_SSRR:
5694 		case IPOPT_LSRR:
5695 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5696 				ip1dbg(("ip_massage_options: bad src route\n"));
5697 				break;
5698 			}
5699 			optlen = opts.ipoptp_len;
5700 			off = opt[IPOPT_OFFSET];
5701 			off--;
5702 		redo_srr:
5703 			if (optlen < IP_ADDR_LEN ||
5704 			    off > optlen - IP_ADDR_LEN) {
5705 				/* End of source route */
5706 				ip1dbg(("ip_massage_options: end of SR\n"));
5707 				break;
5708 			}
5709 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5710 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5711 			    ntohl(dst)));
5712 			/*
5713 			 * Check if our address is present more than
5714 			 * once as consecutive hops in source route.
5715 			 * XXX verify per-interface ip_forwarding
5716 			 * for source route?
5717 			 */
5718 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5719 				off += IP_ADDR_LEN;
5720 				goto redo_srr;
5721 			}
5722 			if (dst == htonl(INADDR_LOOPBACK)) {
5723 				ip1dbg(("ip_massage_options: loopback addr in "
5724 				    "source route!\n"));
5725 				break;
5726 			}
5727 			/*
5728 			 * Update ipha_dst to be the first hop and remove the
5729 			 * first hop from the source route (by overwriting
5730 			 * part of the option with NOP options).
5731 			 */
5732 			ipha->ipha_dst = dst;
5733 			/* Put the last entry in dst */
5734 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5735 			    3;
5736 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5737 
5738 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5739 			    ntohl(dst)));
5740 			/* Move down and overwrite */
5741 			opt[IP_ADDR_LEN] = opt[0];
5742 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5743 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5744 			for (i = 0; i < IP_ADDR_LEN; i++)
5745 				opt[i] = IPOPT_NOP;
5746 			break;
5747 		}
5748 	}
5749 	return (dst);
5750 }
5751 
5752 /*
5753  * Return the network mask
5754  * associated with the specified address.
5755  */
5756 ipaddr_t
5757 ip_net_mask(ipaddr_t addr)
5758 {
5759 	uchar_t	*up = (uchar_t *)&addr;
5760 	ipaddr_t mask = 0;
5761 	uchar_t	*maskp = (uchar_t *)&mask;
5762 
5763 #if defined(__i386) || defined(__amd64)
5764 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5765 #endif
5766 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5767 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5768 #endif
5769 	if (CLASSD(addr)) {
5770 		maskp[0] = 0xF0;
5771 		return (mask);
5772 	}
5773 
5774 	/* We assume Class E default netmask to be 32 */
5775 	if (CLASSE(addr))
5776 		return (0xffffffffU);
5777 
5778 	if (addr == 0)
5779 		return (0);
5780 	maskp[0] = 0xFF;
5781 	if ((up[0] & 0x80) == 0)
5782 		return (mask);
5783 
5784 	maskp[1] = 0xFF;
5785 	if ((up[0] & 0xC0) == 0x80)
5786 		return (mask);
5787 
5788 	maskp[2] = 0xFF;
5789 	if ((up[0] & 0xE0) == 0xC0)
5790 		return (mask);
5791 
5792 	/* Otherwise return no mask */
5793 	return ((ipaddr_t)0);
5794 }
5795 
5796 /* Name/Value Table Lookup Routine */
5797 char *
5798 ip_nv_lookup(nv_t *nv, int value)
5799 {
5800 	if (!nv)
5801 		return (NULL);
5802 	for (; nv->nv_name; nv++) {
5803 		if (nv->nv_value == value)
5804 			return (nv->nv_name);
5805 	}
5806 	return ("unknown");
5807 }
5808 
5809 static int
5810 ip_wait_for_info_ack(ill_t *ill)
5811 {
5812 	int err;
5813 
5814 	mutex_enter(&ill->ill_lock);
5815 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5816 		/*
5817 		 * Return value of 0 indicates a pending signal.
5818 		 */
5819 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5820 		if (err == 0) {
5821 			mutex_exit(&ill->ill_lock);
5822 			return (EINTR);
5823 		}
5824 	}
5825 	mutex_exit(&ill->ill_lock);
5826 	/*
5827 	 * ip_rput_other could have set an error  in ill_error on
5828 	 * receipt of M_ERROR.
5829 	 */
5830 	return (ill->ill_error);
5831 }
5832 
5833 /*
5834  * This is a module open, i.e. this is a control stream for access
5835  * to a DLPI device.  We allocate an ill_t as the instance data in
5836  * this case.
5837  */
5838 static int
5839 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5840 {
5841 	ill_t	*ill;
5842 	int	err;
5843 	zoneid_t zoneid;
5844 	netstack_t *ns;
5845 	ip_stack_t *ipst;
5846 
5847 	/*
5848 	 * Prevent unprivileged processes from pushing IP so that
5849 	 * they can't send raw IP.
5850 	 */
5851 	if (secpolicy_net_rawaccess(credp) != 0)
5852 		return (EPERM);
5853 
5854 	ns = netstack_find_by_cred(credp);
5855 	ASSERT(ns != NULL);
5856 	ipst = ns->netstack_ip;
5857 	ASSERT(ipst != NULL);
5858 
5859 	/*
5860 	 * For exclusive stacks we set the zoneid to zero
5861 	 * to make IP operate as if in the global zone.
5862 	 */
5863 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5864 		zoneid = GLOBAL_ZONEID;
5865 	else
5866 		zoneid = crgetzoneid(credp);
5867 
5868 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5869 	q->q_ptr = WR(q)->q_ptr = ill;
5870 	ill->ill_ipst = ipst;
5871 	ill->ill_zoneid = zoneid;
5872 
5873 	/*
5874 	 * ill_init initializes the ill fields and then sends down
5875 	 * down a DL_INFO_REQ after calling qprocson.
5876 	 */
5877 	err = ill_init(q, ill);
5878 
5879 	if (err != 0) {
5880 		mi_free(ill);
5881 		netstack_rele(ipst->ips_netstack);
5882 		q->q_ptr = NULL;
5883 		WR(q)->q_ptr = NULL;
5884 		return (err);
5885 	}
5886 
5887 	/*
5888 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5889 	 *
5890 	 * ill_init initializes the ipsq marking this thread as
5891 	 * writer
5892 	 */
5893 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5894 	err = ip_wait_for_info_ack(ill);
5895 	if (err == 0)
5896 		ill->ill_credp = credp;
5897 	else
5898 		goto fail;
5899 
5900 	crhold(credp);
5901 
5902 	mutex_enter(&ipst->ips_ip_mi_lock);
5903 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5904 	    sflag, credp);
5905 	mutex_exit(&ipst->ips_ip_mi_lock);
5906 fail:
5907 	if (err) {
5908 		(void) ip_close(q, 0);
5909 		return (err);
5910 	}
5911 	return (0);
5912 }
5913 
5914 /* For /dev/ip aka AF_INET open */
5915 int
5916 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5917 {
5918 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5919 }
5920 
5921 /* For /dev/ip6 aka AF_INET6 open */
5922 int
5923 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5924 {
5925 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5926 }
5927 
5928 /* IP open routine. */
5929 int
5930 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5931     boolean_t isv6)
5932 {
5933 	conn_t 		*connp;
5934 	major_t		maj;
5935 	zoneid_t	zoneid;
5936 	netstack_t	*ns;
5937 	ip_stack_t	*ipst;
5938 
5939 	/* Allow reopen. */
5940 	if (q->q_ptr != NULL)
5941 		return (0);
5942 
5943 	if (sflag & MODOPEN) {
5944 		/* This is a module open */
5945 		return (ip_modopen(q, devp, flag, sflag, credp));
5946 	}
5947 
5948 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5949 		/*
5950 		 * Non streams based socket looking for a stream
5951 		 * to access IP
5952 		 */
5953 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5954 		    credp, isv6));
5955 	}
5956 
5957 	ns = netstack_find_by_cred(credp);
5958 	ASSERT(ns != NULL);
5959 	ipst = ns->netstack_ip;
5960 	ASSERT(ipst != NULL);
5961 
5962 	/*
5963 	 * For exclusive stacks we set the zoneid to zero
5964 	 * to make IP operate as if in the global zone.
5965 	 */
5966 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5967 		zoneid = GLOBAL_ZONEID;
5968 	else
5969 		zoneid = crgetzoneid(credp);
5970 
5971 	/*
5972 	 * We are opening as a device. This is an IP client stream, and we
5973 	 * allocate an conn_t as the instance data.
5974 	 */
5975 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5976 
5977 	/*
5978 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
5979 	 * done by netstack_find_by_cred()
5980 	 */
5981 	netstack_rele(ipst->ips_netstack);
5982 
5983 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5984 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5985 	connp->conn_ixa->ixa_zoneid = zoneid;
5986 	connp->conn_zoneid = zoneid;
5987 
5988 	connp->conn_rq = q;
5989 	q->q_ptr = WR(q)->q_ptr = connp;
5990 
5991 	/* Minor tells us which /dev entry was opened */
5992 	if (isv6) {
5993 		connp->conn_family = AF_INET6;
5994 		connp->conn_ipversion = IPV6_VERSION;
5995 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
5996 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
5997 	} else {
5998 		connp->conn_family = AF_INET;
5999 		connp->conn_ipversion = IPV4_VERSION;
6000 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6001 	}
6002 
6003 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6004 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6005 		connp->conn_minor_arena = ip_minor_arena_la;
6006 	} else {
6007 		/*
6008 		 * Either minor numbers in the large arena were exhausted
6009 		 * or a non socket application is doing the open.
6010 		 * Try to allocate from the small arena.
6011 		 */
6012 		if ((connp->conn_dev =
6013 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6014 			/* CONN_DEC_REF takes care of netstack_rele() */
6015 			q->q_ptr = WR(q)->q_ptr = NULL;
6016 			CONN_DEC_REF(connp);
6017 			return (EBUSY);
6018 		}
6019 		connp->conn_minor_arena = ip_minor_arena_sa;
6020 	}
6021 
6022 	maj = getemajor(*devp);
6023 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6024 
6025 	/*
6026 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6027 	 */
6028 	connp->conn_cred = credp;
6029 	connp->conn_cpid = curproc->p_pid;
6030 	/* Cache things in ixa without an extra refhold */
6031 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6032 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6033 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6034 	if (is_system_labeled())
6035 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6036 
6037 	/*
6038 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6039 	 */
6040 	connp->conn_recv = ip_conn_input;
6041 	connp->conn_recvicmp = ip_conn_input_icmp;
6042 
6043 	crhold(connp->conn_cred);
6044 
6045 	/*
6046 	 * If the caller has the process-wide flag set, then default to MAC
6047 	 * exempt mode.  This allows read-down to unlabeled hosts.
6048 	 */
6049 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6050 		connp->conn_mac_mode = CONN_MAC_AWARE;
6051 
6052 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6053 
6054 	connp->conn_rq = q;
6055 	connp->conn_wq = WR(q);
6056 
6057 	/* Non-zero default values */
6058 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6059 
6060 	/*
6061 	 * Make the conn globally visible to walkers
6062 	 */
6063 	ASSERT(connp->conn_ref == 1);
6064 	mutex_enter(&connp->conn_lock);
6065 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6066 	mutex_exit(&connp->conn_lock);
6067 
6068 	qprocson(q);
6069 
6070 	return (0);
6071 }
6072 
6073 /*
6074  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6075  * all of them are copied to the conn_t. If the req is "zero", the policy is
6076  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6077  * fields.
6078  * We keep only the latest setting of the policy and thus policy setting
6079  * is not incremental/cumulative.
6080  *
6081  * Requests to set policies with multiple alternative actions will
6082  * go through a different API.
6083  */
6084 int
6085 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6086 {
6087 	uint_t ah_req = 0;
6088 	uint_t esp_req = 0;
6089 	uint_t se_req = 0;
6090 	ipsec_act_t *actp = NULL;
6091 	uint_t nact;
6092 	ipsec_policy_head_t *ph;
6093 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6094 	int error = 0;
6095 	netstack_t	*ns = connp->conn_netstack;
6096 	ip_stack_t	*ipst = ns->netstack_ip;
6097 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6098 
6099 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6100 
6101 	/*
6102 	 * The IP_SEC_OPT option does not allow variable length parameters,
6103 	 * hence a request cannot be NULL.
6104 	 */
6105 	if (req == NULL)
6106 		return (EINVAL);
6107 
6108 	ah_req = req->ipsr_ah_req;
6109 	esp_req = req->ipsr_esp_req;
6110 	se_req = req->ipsr_self_encap_req;
6111 
6112 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6113 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6114 		return (EINVAL);
6115 
6116 	/*
6117 	 * Are we dealing with a request to reset the policy (i.e.
6118 	 * zero requests).
6119 	 */
6120 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6121 	    (esp_req & REQ_MASK) == 0 &&
6122 	    (se_req & REQ_MASK) == 0);
6123 
6124 	if (!is_pol_reset) {
6125 		/*
6126 		 * If we couldn't load IPsec, fail with "protocol
6127 		 * not supported".
6128 		 * IPsec may not have been loaded for a request with zero
6129 		 * policies, so we don't fail in this case.
6130 		 */
6131 		mutex_enter(&ipss->ipsec_loader_lock);
6132 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6133 			mutex_exit(&ipss->ipsec_loader_lock);
6134 			return (EPROTONOSUPPORT);
6135 		}
6136 		mutex_exit(&ipss->ipsec_loader_lock);
6137 
6138 		/*
6139 		 * Test for valid requests. Invalid algorithms
6140 		 * need to be tested by IPsec code because new
6141 		 * algorithms can be added dynamically.
6142 		 */
6143 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6144 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6145 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6146 			return (EINVAL);
6147 		}
6148 
6149 		/*
6150 		 * Only privileged users can issue these
6151 		 * requests.
6152 		 */
6153 		if (((ah_req & IPSEC_PREF_NEVER) ||
6154 		    (esp_req & IPSEC_PREF_NEVER) ||
6155 		    (se_req & IPSEC_PREF_NEVER)) &&
6156 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6157 			return (EPERM);
6158 		}
6159 
6160 		/*
6161 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6162 		 * are mutually exclusive.
6163 		 */
6164 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6165 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6166 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6167 			/* Both of them are set */
6168 			return (EINVAL);
6169 		}
6170 	}
6171 
6172 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6173 
6174 	/*
6175 	 * If we have already cached policies in conn_connect(), don't
6176 	 * let them change now. We cache policies for connections
6177 	 * whose src,dst [addr, port] is known.
6178 	 */
6179 	if (connp->conn_policy_cached) {
6180 		return (EINVAL);
6181 	}
6182 
6183 	/*
6184 	 * We have a zero policies, reset the connection policy if already
6185 	 * set. This will cause the connection to inherit the
6186 	 * global policy, if any.
6187 	 */
6188 	if (is_pol_reset) {
6189 		if (connp->conn_policy != NULL) {
6190 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6191 			connp->conn_policy = NULL;
6192 		}
6193 		connp->conn_in_enforce_policy = B_FALSE;
6194 		connp->conn_out_enforce_policy = B_FALSE;
6195 		return (0);
6196 	}
6197 
6198 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6199 	    ipst->ips_netstack);
6200 	if (ph == NULL)
6201 		goto enomem;
6202 
6203 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6204 	if (actp == NULL)
6205 		goto enomem;
6206 
6207 	/*
6208 	 * Always insert IPv4 policy entries, since they can also apply to
6209 	 * ipv6 sockets being used in ipv4-compat mode.
6210 	 */
6211 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6212 	    IPSEC_TYPE_INBOUND, ns))
6213 		goto enomem;
6214 	is_pol_inserted = B_TRUE;
6215 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6216 	    IPSEC_TYPE_OUTBOUND, ns))
6217 		goto enomem;
6218 
6219 	/*
6220 	 * We're looking at a v6 socket, also insert the v6-specific
6221 	 * entries.
6222 	 */
6223 	if (connp->conn_family == AF_INET6) {
6224 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6225 		    IPSEC_TYPE_INBOUND, ns))
6226 			goto enomem;
6227 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6228 		    IPSEC_TYPE_OUTBOUND, ns))
6229 			goto enomem;
6230 	}
6231 
6232 	ipsec_actvec_free(actp, nact);
6233 
6234 	/*
6235 	 * If the requests need security, set enforce_policy.
6236 	 * If the requests are IPSEC_PREF_NEVER, one should
6237 	 * still set conn_out_enforce_policy so that ip_set_destination
6238 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6239 	 * for connections that we don't cache policy in at connect time,
6240 	 * if global policy matches in ip_output_attach_policy, we
6241 	 * don't wrongly inherit global policy. Similarly, we need
6242 	 * to set conn_in_enforce_policy also so that we don't verify
6243 	 * policy wrongly.
6244 	 */
6245 	if ((ah_req & REQ_MASK) != 0 ||
6246 	    (esp_req & REQ_MASK) != 0 ||
6247 	    (se_req & REQ_MASK) != 0) {
6248 		connp->conn_in_enforce_policy = B_TRUE;
6249 		connp->conn_out_enforce_policy = B_TRUE;
6250 	}
6251 
6252 	return (error);
6253 #undef REQ_MASK
6254 
6255 	/*
6256 	 * Common memory-allocation-failure exit path.
6257 	 */
6258 enomem:
6259 	if (actp != NULL)
6260 		ipsec_actvec_free(actp, nact);
6261 	if (is_pol_inserted)
6262 		ipsec_polhead_flush(ph, ns);
6263 	return (ENOMEM);
6264 }
6265 
6266 /*
6267  * Set socket options for joining and leaving multicast groups.
6268  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6269  * The caller has already check that the option name is consistent with
6270  * the address family of the socket.
6271  */
6272 int
6273 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6274     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6275 {
6276 	int		*i1 = (int *)invalp;
6277 	int		error = 0;
6278 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6279 	struct ip_mreq	*v4_mreqp;
6280 	struct ipv6_mreq *v6_mreqp;
6281 	struct group_req *greqp;
6282 	ire_t *ire;
6283 	boolean_t done = B_FALSE;
6284 	ipaddr_t ifaddr;
6285 	in6_addr_t v6group;
6286 	uint_t ifindex;
6287 	boolean_t mcast_opt = B_TRUE;
6288 	mcast_record_t fmode;
6289 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6290 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6291 
6292 	switch (name) {
6293 	case IP_ADD_MEMBERSHIP:
6294 	case IPV6_JOIN_GROUP:
6295 		mcast_opt = B_FALSE;
6296 		/* FALLTHRU */
6297 	case MCAST_JOIN_GROUP:
6298 		fmode = MODE_IS_EXCLUDE;
6299 		optfn = ip_opt_add_group;
6300 		break;
6301 
6302 	case IP_DROP_MEMBERSHIP:
6303 	case IPV6_LEAVE_GROUP:
6304 		mcast_opt = B_FALSE;
6305 		/* FALLTHRU */
6306 	case MCAST_LEAVE_GROUP:
6307 		fmode = MODE_IS_INCLUDE;
6308 		optfn = ip_opt_delete_group;
6309 		break;
6310 	default:
6311 		ASSERT(0);
6312 	}
6313 
6314 	if (mcast_opt) {
6315 		struct sockaddr_in *sin;
6316 		struct sockaddr_in6 *sin6;
6317 
6318 		greqp = (struct group_req *)i1;
6319 		if (greqp->gr_group.ss_family == AF_INET) {
6320 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6321 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6322 		} else {
6323 			if (!inet6)
6324 				return (EINVAL);	/* Not on INET socket */
6325 
6326 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6327 			v6group = sin6->sin6_addr;
6328 		}
6329 		ifaddr = INADDR_ANY;
6330 		ifindex = greqp->gr_interface;
6331 	} else if (inet6) {
6332 		v6_mreqp = (struct ipv6_mreq *)i1;
6333 		v6group = v6_mreqp->ipv6mr_multiaddr;
6334 		ifaddr = INADDR_ANY;
6335 		ifindex = v6_mreqp->ipv6mr_interface;
6336 	} else {
6337 		v4_mreqp = (struct ip_mreq *)i1;
6338 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6339 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6340 		ifindex = 0;
6341 	}
6342 
6343 	/*
6344 	 * In the multirouting case, we need to replicate
6345 	 * the request on all interfaces that will take part
6346 	 * in replication.  We do so because multirouting is
6347 	 * reflective, thus we will probably receive multi-
6348 	 * casts on those interfaces.
6349 	 * The ip_multirt_apply_membership() succeeds if
6350 	 * the operation succeeds on at least one interface.
6351 	 */
6352 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6353 		ipaddr_t group;
6354 
6355 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6356 
6357 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6358 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6359 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6360 	} else {
6361 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6362 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6363 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6364 	}
6365 	if (ire != NULL) {
6366 		if (ire->ire_flags & RTF_MULTIRT) {
6367 			error = ip_multirt_apply_membership(optfn, ire, connp,
6368 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6369 			done = B_TRUE;
6370 		}
6371 		ire_refrele(ire);
6372 	}
6373 
6374 	if (!done) {
6375 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6376 		    fmode, &ipv6_all_zeros);
6377 	}
6378 	return (error);
6379 }
6380 
6381 /*
6382  * Set socket options for joining and leaving multicast groups
6383  * for specific sources.
6384  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6385  * The caller has already check that the option name is consistent with
6386  * the address family of the socket.
6387  */
6388 int
6389 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6390     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6391 {
6392 	int		*i1 = (int *)invalp;
6393 	int		error = 0;
6394 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6395 	struct ip_mreq_source *imreqp;
6396 	struct group_source_req *gsreqp;
6397 	in6_addr_t v6group, v6src;
6398 	uint32_t ifindex;
6399 	ipaddr_t ifaddr;
6400 	boolean_t mcast_opt = B_TRUE;
6401 	mcast_record_t fmode;
6402 	ire_t *ire;
6403 	boolean_t done = B_FALSE;
6404 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6405 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6406 
6407 	switch (name) {
6408 	case IP_BLOCK_SOURCE:
6409 		mcast_opt = B_FALSE;
6410 		/* FALLTHRU */
6411 	case MCAST_BLOCK_SOURCE:
6412 		fmode = MODE_IS_EXCLUDE;
6413 		optfn = ip_opt_add_group;
6414 		break;
6415 
6416 	case IP_UNBLOCK_SOURCE:
6417 		mcast_opt = B_FALSE;
6418 		/* FALLTHRU */
6419 	case MCAST_UNBLOCK_SOURCE:
6420 		fmode = MODE_IS_EXCLUDE;
6421 		optfn = ip_opt_delete_group;
6422 		break;
6423 
6424 	case IP_ADD_SOURCE_MEMBERSHIP:
6425 		mcast_opt = B_FALSE;
6426 		/* FALLTHRU */
6427 	case MCAST_JOIN_SOURCE_GROUP:
6428 		fmode = MODE_IS_INCLUDE;
6429 		optfn = ip_opt_add_group;
6430 		break;
6431 
6432 	case IP_DROP_SOURCE_MEMBERSHIP:
6433 		mcast_opt = B_FALSE;
6434 		/* FALLTHRU */
6435 	case MCAST_LEAVE_SOURCE_GROUP:
6436 		fmode = MODE_IS_INCLUDE;
6437 		optfn = ip_opt_delete_group;
6438 		break;
6439 	default:
6440 		ASSERT(0);
6441 	}
6442 
6443 	if (mcast_opt) {
6444 		gsreqp = (struct group_source_req *)i1;
6445 		ifindex = gsreqp->gsr_interface;
6446 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6447 			struct sockaddr_in *s;
6448 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6449 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6450 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6451 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6452 		} else {
6453 			struct sockaddr_in6 *s6;
6454 
6455 			if (!inet6)
6456 				return (EINVAL);	/* Not on INET socket */
6457 
6458 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6459 			v6group = s6->sin6_addr;
6460 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6461 			v6src = s6->sin6_addr;
6462 		}
6463 		ifaddr = INADDR_ANY;
6464 	} else {
6465 		imreqp = (struct ip_mreq_source *)i1;
6466 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6467 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6468 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6469 		ifindex = 0;
6470 	}
6471 
6472 	/*
6473 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6474 	 */
6475 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6476 		v6src = ipv6_all_zeros;
6477 
6478 	/*
6479 	 * In the multirouting case, we need to replicate
6480 	 * the request as noted in the mcast cases above.
6481 	 */
6482 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6483 		ipaddr_t group;
6484 
6485 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6486 
6487 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6488 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6489 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6490 	} else {
6491 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6492 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6493 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6494 	}
6495 	if (ire != NULL) {
6496 		if (ire->ire_flags & RTF_MULTIRT) {
6497 			error = ip_multirt_apply_membership(optfn, ire, connp,
6498 			    checkonly, &v6group, fmode, &v6src);
6499 			done = B_TRUE;
6500 		}
6501 		ire_refrele(ire);
6502 	}
6503 	if (!done) {
6504 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6505 		    fmode, &v6src);
6506 	}
6507 	return (error);
6508 }
6509 
6510 /*
6511  * Given a destination address and a pointer to where to put the information
6512  * this routine fills in the mtuinfo.
6513  * The socket must be connected.
6514  * For sctp conn_faddr is the primary address.
6515  */
6516 int
6517 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6518 {
6519 	uint32_t	pmtu = IP_MAXPACKET;
6520 	uint_t		scopeid;
6521 
6522 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6523 		return (-1);
6524 
6525 	/* In case we never sent or called ip_set_destination_v4/v6 */
6526 	if (ixa->ixa_ire != NULL)
6527 		pmtu = ip_get_pmtu(ixa);
6528 
6529 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6530 		scopeid = ixa->ixa_scopeid;
6531 	else
6532 		scopeid = 0;
6533 
6534 	bzero(mtuinfo, sizeof (*mtuinfo));
6535 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6536 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6537 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6538 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6539 	mtuinfo->ip6m_mtu = pmtu;
6540 
6541 	return (sizeof (struct ip6_mtuinfo));
6542 }
6543 
6544 /*
6545  * When the src multihoming is changed from weak to [strong, preferred]
6546  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6547  * and identify routes that were created by user-applications in the
6548  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6549  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6550  * is selected by finding an interface route for the gateway.
6551  */
6552 /* ARGSUSED */
6553 void
6554 ip_ire_rebind_walker(ire_t *ire, void *notused)
6555 {
6556 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6557 		return;
6558 	ire_rebind(ire);
6559 	ire_delete(ire);
6560 }
6561 
6562 /*
6563  * When the src multihoming is changed from  [strong, preferred] to weak,
6564  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6565  * set any entries that were created by user-applications in the unbound state
6566  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6567  */
6568 /* ARGSUSED */
6569 void
6570 ip_ire_unbind_walker(ire_t *ire, void *notused)
6571 {
6572 	ire_t *new_ire;
6573 
6574 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6575 		return;
6576 	if (ire->ire_ipversion == IPV6_VERSION) {
6577 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6578 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6579 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6580 	} else {
6581 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6582 		    (uchar_t *)&ire->ire_mask,
6583 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6584 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6585 	}
6586 	if (new_ire == NULL)
6587 		return;
6588 	new_ire->ire_unbound = B_TRUE;
6589 	/*
6590 	 * The bound ire must first be deleted so that we don't return
6591 	 * the existing one on the attempt to add the unbound new_ire.
6592 	 */
6593 	ire_delete(ire);
6594 	new_ire = ire_add(new_ire);
6595 	if (new_ire != NULL)
6596 		ire_refrele(new_ire);
6597 }
6598 
6599 /*
6600  * When the settings of ip*_strict_src_multihoming tunables are changed,
6601  * all cached routes need to be recomputed. This recomputation needs to be
6602  * done when going from weaker to stronger modes so that the cached ire
6603  * for the connection does not violate the current ip*_strict_src_multihoming
6604  * setting. It also needs to be done when going from stronger to weaker modes,
6605  * so that we fall back to matching on the longest-matching-route (as opposed
6606  * to a shorter match that may have been selected in the strong mode
6607  * to satisfy src_multihoming settings).
6608  *
6609  * The cached ixa_ire entires for all conn_t entries are marked as
6610  * "verify" so that they will be recomputed for the next packet.
6611  */
6612 void
6613 conn_ire_revalidate(conn_t *connp, void *arg)
6614 {
6615 	boolean_t isv6 = (boolean_t)arg;
6616 
6617 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6618 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6619 		return;
6620 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6621 }
6622 
6623 /*
6624  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6625  * When an ipf is passed here for the first time, if
6626  * we already have in-order fragments on the queue, we convert from the fast-
6627  * path reassembly scheme to the hard-case scheme.  From then on, additional
6628  * fragments are reassembled here.  We keep track of the start and end offsets
6629  * of each piece, and the number of holes in the chain.  When the hole count
6630  * goes to zero, we are done!
6631  *
6632  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6633  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6634  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6635  * after the call to ip_reassemble().
6636  */
6637 int
6638 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6639     size_t msg_len)
6640 {
6641 	uint_t	end;
6642 	mblk_t	*next_mp;
6643 	mblk_t	*mp1;
6644 	uint_t	offset;
6645 	boolean_t incr_dups = B_TRUE;
6646 	boolean_t offset_zero_seen = B_FALSE;
6647 	boolean_t pkt_boundary_checked = B_FALSE;
6648 
6649 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6650 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6651 
6652 	/* Add in byte count */
6653 	ipf->ipf_count += msg_len;
6654 	if (ipf->ipf_end) {
6655 		/*
6656 		 * We were part way through in-order reassembly, but now there
6657 		 * is a hole.  We walk through messages already queued, and
6658 		 * mark them for hard case reassembly.  We know that up till
6659 		 * now they were in order starting from offset zero.
6660 		 */
6661 		offset = 0;
6662 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6663 			IP_REASS_SET_START(mp1, offset);
6664 			if (offset == 0) {
6665 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6666 				offset = -ipf->ipf_nf_hdr_len;
6667 			}
6668 			offset += mp1->b_wptr - mp1->b_rptr;
6669 			IP_REASS_SET_END(mp1, offset);
6670 		}
6671 		/* One hole at the end. */
6672 		ipf->ipf_hole_cnt = 1;
6673 		/* Brand it as a hard case, forever. */
6674 		ipf->ipf_end = 0;
6675 	}
6676 	/* Walk through all the new pieces. */
6677 	do {
6678 		end = start + (mp->b_wptr - mp->b_rptr);
6679 		/*
6680 		 * If start is 0, decrease 'end' only for the first mblk of
6681 		 * the fragment. Otherwise 'end' can get wrong value in the
6682 		 * second pass of the loop if first mblk is exactly the
6683 		 * size of ipf_nf_hdr_len.
6684 		 */
6685 		if (start == 0 && !offset_zero_seen) {
6686 			/* First segment */
6687 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6688 			end -= ipf->ipf_nf_hdr_len;
6689 			offset_zero_seen = B_TRUE;
6690 		}
6691 		next_mp = mp->b_cont;
6692 		/*
6693 		 * We are checking to see if there is any interesing data
6694 		 * to process.  If there isn't and the mblk isn't the
6695 		 * one which carries the unfragmentable header then we
6696 		 * drop it.  It's possible to have just the unfragmentable
6697 		 * header come through without any data.  That needs to be
6698 		 * saved.
6699 		 *
6700 		 * If the assert at the top of this function holds then the
6701 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6702 		 * is infrequently traveled enough that the test is left in
6703 		 * to protect against future code changes which break that
6704 		 * invariant.
6705 		 */
6706 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6707 			/* Empty.  Blast it. */
6708 			IP_REASS_SET_START(mp, 0);
6709 			IP_REASS_SET_END(mp, 0);
6710 			/*
6711 			 * If the ipf points to the mblk we are about to free,
6712 			 * update ipf to point to the next mblk (or NULL
6713 			 * if none).
6714 			 */
6715 			if (ipf->ipf_mp->b_cont == mp)
6716 				ipf->ipf_mp->b_cont = next_mp;
6717 			freeb(mp);
6718 			continue;
6719 		}
6720 		mp->b_cont = NULL;
6721 		IP_REASS_SET_START(mp, start);
6722 		IP_REASS_SET_END(mp, end);
6723 		if (!ipf->ipf_tail_mp) {
6724 			ipf->ipf_tail_mp = mp;
6725 			ipf->ipf_mp->b_cont = mp;
6726 			if (start == 0 || !more) {
6727 				ipf->ipf_hole_cnt = 1;
6728 				/*
6729 				 * if the first fragment comes in more than one
6730 				 * mblk, this loop will be executed for each
6731 				 * mblk. Need to adjust hole count so exiting
6732 				 * this routine will leave hole count at 1.
6733 				 */
6734 				if (next_mp)
6735 					ipf->ipf_hole_cnt++;
6736 			} else
6737 				ipf->ipf_hole_cnt = 2;
6738 			continue;
6739 		} else if (ipf->ipf_last_frag_seen && !more &&
6740 		    !pkt_boundary_checked) {
6741 			/*
6742 			 * We check datagram boundary only if this fragment
6743 			 * claims to be the last fragment and we have seen a
6744 			 * last fragment in the past too. We do this only
6745 			 * once for a given fragment.
6746 			 *
6747 			 * start cannot be 0 here as fragments with start=0
6748 			 * and MF=0 gets handled as a complete packet. These
6749 			 * fragments should not reach here.
6750 			 */
6751 
6752 			if (start + msgdsize(mp) !=
6753 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6754 				/*
6755 				 * We have two fragments both of which claim
6756 				 * to be the last fragment but gives conflicting
6757 				 * information about the whole datagram size.
6758 				 * Something fishy is going on. Drop the
6759 				 * fragment and free up the reassembly list.
6760 				 */
6761 				return (IP_REASS_FAILED);
6762 			}
6763 
6764 			/*
6765 			 * We shouldn't come to this code block again for this
6766 			 * particular fragment.
6767 			 */
6768 			pkt_boundary_checked = B_TRUE;
6769 		}
6770 
6771 		/* New stuff at or beyond tail? */
6772 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6773 		if (start >= offset) {
6774 			if (ipf->ipf_last_frag_seen) {
6775 				/* current fragment is beyond last fragment */
6776 				return (IP_REASS_FAILED);
6777 			}
6778 			/* Link it on end. */
6779 			ipf->ipf_tail_mp->b_cont = mp;
6780 			ipf->ipf_tail_mp = mp;
6781 			if (more) {
6782 				if (start != offset)
6783 					ipf->ipf_hole_cnt++;
6784 			} else if (start == offset && next_mp == NULL)
6785 					ipf->ipf_hole_cnt--;
6786 			continue;
6787 		}
6788 		mp1 = ipf->ipf_mp->b_cont;
6789 		offset = IP_REASS_START(mp1);
6790 		/* New stuff at the front? */
6791 		if (start < offset) {
6792 			if (start == 0) {
6793 				if (end >= offset) {
6794 					/* Nailed the hole at the begining. */
6795 					ipf->ipf_hole_cnt--;
6796 				}
6797 			} else if (end < offset) {
6798 				/*
6799 				 * A hole, stuff, and a hole where there used
6800 				 * to be just a hole.
6801 				 */
6802 				ipf->ipf_hole_cnt++;
6803 			}
6804 			mp->b_cont = mp1;
6805 			/* Check for overlap. */
6806 			while (end > offset) {
6807 				if (end < IP_REASS_END(mp1)) {
6808 					mp->b_wptr -= end - offset;
6809 					IP_REASS_SET_END(mp, offset);
6810 					BUMP_MIB(ill->ill_ip_mib,
6811 					    ipIfStatsReasmPartDups);
6812 					break;
6813 				}
6814 				/* Did we cover another hole? */
6815 				if ((mp1->b_cont &&
6816 				    IP_REASS_END(mp1) !=
6817 				    IP_REASS_START(mp1->b_cont) &&
6818 				    end >= IP_REASS_START(mp1->b_cont)) ||
6819 				    (!ipf->ipf_last_frag_seen && !more)) {
6820 					ipf->ipf_hole_cnt--;
6821 				}
6822 				/* Clip out mp1. */
6823 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6824 					/*
6825 					 * After clipping out mp1, this guy
6826 					 * is now hanging off the end.
6827 					 */
6828 					ipf->ipf_tail_mp = mp;
6829 				}
6830 				IP_REASS_SET_START(mp1, 0);
6831 				IP_REASS_SET_END(mp1, 0);
6832 				/* Subtract byte count */
6833 				ipf->ipf_count -= mp1->b_datap->db_lim -
6834 				    mp1->b_datap->db_base;
6835 				freeb(mp1);
6836 				BUMP_MIB(ill->ill_ip_mib,
6837 				    ipIfStatsReasmPartDups);
6838 				mp1 = mp->b_cont;
6839 				if (!mp1)
6840 					break;
6841 				offset = IP_REASS_START(mp1);
6842 			}
6843 			ipf->ipf_mp->b_cont = mp;
6844 			continue;
6845 		}
6846 		/*
6847 		 * The new piece starts somewhere between the start of the head
6848 		 * and before the end of the tail.
6849 		 */
6850 		for (; mp1; mp1 = mp1->b_cont) {
6851 			offset = IP_REASS_END(mp1);
6852 			if (start < offset) {
6853 				if (end <= offset) {
6854 					/* Nothing new. */
6855 					IP_REASS_SET_START(mp, 0);
6856 					IP_REASS_SET_END(mp, 0);
6857 					/* Subtract byte count */
6858 					ipf->ipf_count -= mp->b_datap->db_lim -
6859 					    mp->b_datap->db_base;
6860 					if (incr_dups) {
6861 						ipf->ipf_num_dups++;
6862 						incr_dups = B_FALSE;
6863 					}
6864 					freeb(mp);
6865 					BUMP_MIB(ill->ill_ip_mib,
6866 					    ipIfStatsReasmDuplicates);
6867 					break;
6868 				}
6869 				/*
6870 				 * Trim redundant stuff off beginning of new
6871 				 * piece.
6872 				 */
6873 				IP_REASS_SET_START(mp, offset);
6874 				mp->b_rptr += offset - start;
6875 				BUMP_MIB(ill->ill_ip_mib,
6876 				    ipIfStatsReasmPartDups);
6877 				start = offset;
6878 				if (!mp1->b_cont) {
6879 					/*
6880 					 * After trimming, this guy is now
6881 					 * hanging off the end.
6882 					 */
6883 					mp1->b_cont = mp;
6884 					ipf->ipf_tail_mp = mp;
6885 					if (!more) {
6886 						ipf->ipf_hole_cnt--;
6887 					}
6888 					break;
6889 				}
6890 			}
6891 			if (start >= IP_REASS_START(mp1->b_cont))
6892 				continue;
6893 			/* Fill a hole */
6894 			if (start > offset)
6895 				ipf->ipf_hole_cnt++;
6896 			mp->b_cont = mp1->b_cont;
6897 			mp1->b_cont = mp;
6898 			mp1 = mp->b_cont;
6899 			offset = IP_REASS_START(mp1);
6900 			if (end >= offset) {
6901 				ipf->ipf_hole_cnt--;
6902 				/* Check for overlap. */
6903 				while (end > offset) {
6904 					if (end < IP_REASS_END(mp1)) {
6905 						mp->b_wptr -= end - offset;
6906 						IP_REASS_SET_END(mp, offset);
6907 						/*
6908 						 * TODO we might bump
6909 						 * this up twice if there is
6910 						 * overlap at both ends.
6911 						 */
6912 						BUMP_MIB(ill->ill_ip_mib,
6913 						    ipIfStatsReasmPartDups);
6914 						break;
6915 					}
6916 					/* Did we cover another hole? */
6917 					if ((mp1->b_cont &&
6918 					    IP_REASS_END(mp1)
6919 					    != IP_REASS_START(mp1->b_cont) &&
6920 					    end >=
6921 					    IP_REASS_START(mp1->b_cont)) ||
6922 					    (!ipf->ipf_last_frag_seen &&
6923 					    !more)) {
6924 						ipf->ipf_hole_cnt--;
6925 					}
6926 					/* Clip out mp1. */
6927 					if ((mp->b_cont = mp1->b_cont) ==
6928 					    NULL) {
6929 						/*
6930 						 * After clipping out mp1,
6931 						 * this guy is now hanging
6932 						 * off the end.
6933 						 */
6934 						ipf->ipf_tail_mp = mp;
6935 					}
6936 					IP_REASS_SET_START(mp1, 0);
6937 					IP_REASS_SET_END(mp1, 0);
6938 					/* Subtract byte count */
6939 					ipf->ipf_count -=
6940 					    mp1->b_datap->db_lim -
6941 					    mp1->b_datap->db_base;
6942 					freeb(mp1);
6943 					BUMP_MIB(ill->ill_ip_mib,
6944 					    ipIfStatsReasmPartDups);
6945 					mp1 = mp->b_cont;
6946 					if (!mp1)
6947 						break;
6948 					offset = IP_REASS_START(mp1);
6949 				}
6950 			}
6951 			break;
6952 		}
6953 	} while (start = end, mp = next_mp);
6954 
6955 	/* Fragment just processed could be the last one. Remember this fact */
6956 	if (!more)
6957 		ipf->ipf_last_frag_seen = B_TRUE;
6958 
6959 	/* Still got holes? */
6960 	if (ipf->ipf_hole_cnt)
6961 		return (IP_REASS_PARTIAL);
6962 	/* Clean up overloaded fields to avoid upstream disasters. */
6963 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6964 		IP_REASS_SET_START(mp1, 0);
6965 		IP_REASS_SET_END(mp1, 0);
6966 	}
6967 	return (IP_REASS_COMPLETE);
6968 }
6969 
6970 /*
6971  * Fragmentation reassembly.  Each ILL has a hash table for
6972  * queuing packets undergoing reassembly for all IPIFs
6973  * associated with the ILL.  The hash is based on the packet
6974  * IP ident field.  The ILL frag hash table was allocated
6975  * as a timer block at the time the ILL was created.  Whenever
6976  * there is anything on the reassembly queue, the timer will
6977  * be running.  Returns the reassembled packet if reassembly completes.
6978  */
6979 mblk_t *
6980 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6981 {
6982 	uint32_t	frag_offset_flags;
6983 	mblk_t		*t_mp;
6984 	ipaddr_t	dst;
6985 	uint8_t		proto = ipha->ipha_protocol;
6986 	uint32_t	sum_val;
6987 	uint16_t	sum_flags;
6988 	ipf_t		*ipf;
6989 	ipf_t		**ipfp;
6990 	ipfb_t		*ipfb;
6991 	uint16_t	ident;
6992 	uint32_t	offset;
6993 	ipaddr_t	src;
6994 	uint_t		hdr_length;
6995 	uint32_t	end;
6996 	mblk_t		*mp1;
6997 	mblk_t		*tail_mp;
6998 	size_t		count;
6999 	size_t		msg_len;
7000 	uint8_t		ecn_info = 0;
7001 	uint32_t	packet_size;
7002 	boolean_t	pruned = B_FALSE;
7003 	ill_t		*ill = ira->ira_ill;
7004 	ip_stack_t	*ipst = ill->ill_ipst;
7005 
7006 	/*
7007 	 * Drop the fragmented as early as possible, if
7008 	 * we don't have resource(s) to re-assemble.
7009 	 */
7010 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7011 		freemsg(mp);
7012 		return (NULL);
7013 	}
7014 
7015 	/* Check for fragmentation offset; return if there's none */
7016 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7017 	    (IPH_MF | IPH_OFFSET)) == 0)
7018 		return (mp);
7019 
7020 	/*
7021 	 * We utilize hardware computed checksum info only for UDP since
7022 	 * IP fragmentation is a normal occurrence for the protocol.  In
7023 	 * addition, checksum offload support for IP fragments carrying
7024 	 * UDP payload is commonly implemented across network adapters.
7025 	 */
7026 	ASSERT(ira->ira_rill != NULL);
7027 	if (proto == IPPROTO_UDP && dohwcksum &&
7028 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7029 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7030 		mblk_t *mp1 = mp->b_cont;
7031 		int32_t len;
7032 
7033 		/* Record checksum information from the packet */
7034 		sum_val = (uint32_t)DB_CKSUM16(mp);
7035 		sum_flags = DB_CKSUMFLAGS(mp);
7036 
7037 		/* IP payload offset from beginning of mblk */
7038 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7039 
7040 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7041 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7042 		    offset >= DB_CKSUMSTART(mp) &&
7043 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7044 			uint32_t adj;
7045 			/*
7046 			 * Partial checksum has been calculated by hardware
7047 			 * and attached to the packet; in addition, any
7048 			 * prepended extraneous data is even byte aligned.
7049 			 * If any such data exists, we adjust the checksum;
7050 			 * this would also handle any postpended data.
7051 			 */
7052 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7053 			    mp, mp1, len, adj);
7054 
7055 			/* One's complement subtract extraneous checksum */
7056 			if (adj >= sum_val)
7057 				sum_val = ~(adj - sum_val) & 0xFFFF;
7058 			else
7059 				sum_val -= adj;
7060 		}
7061 	} else {
7062 		sum_val = 0;
7063 		sum_flags = 0;
7064 	}
7065 
7066 	/* Clear hardware checksumming flag */
7067 	DB_CKSUMFLAGS(mp) = 0;
7068 
7069 	ident = ipha->ipha_ident;
7070 	offset = (frag_offset_flags << 3) & 0xFFFF;
7071 	src = ipha->ipha_src;
7072 	dst = ipha->ipha_dst;
7073 	hdr_length = IPH_HDR_LENGTH(ipha);
7074 	end = ntohs(ipha->ipha_length) - hdr_length;
7075 
7076 	/* If end == 0 then we have a packet with no data, so just free it */
7077 	if (end == 0) {
7078 		freemsg(mp);
7079 		return (NULL);
7080 	}
7081 
7082 	/* Record the ECN field info. */
7083 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7084 	if (offset != 0) {
7085 		/*
7086 		 * If this isn't the first piece, strip the header, and
7087 		 * add the offset to the end value.
7088 		 */
7089 		mp->b_rptr += hdr_length;
7090 		end += offset;
7091 	}
7092 
7093 	/* Handle vnic loopback of fragments */
7094 	if (mp->b_datap->db_ref > 2)
7095 		msg_len = 0;
7096 	else
7097 		msg_len = MBLKSIZE(mp);
7098 
7099 	tail_mp = mp;
7100 	while (tail_mp->b_cont != NULL) {
7101 		tail_mp = tail_mp->b_cont;
7102 		if (tail_mp->b_datap->db_ref <= 2)
7103 			msg_len += MBLKSIZE(tail_mp);
7104 	}
7105 
7106 	/* If the reassembly list for this ILL will get too big, prune it */
7107 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7108 	    ipst->ips_ip_reass_queue_bytes) {
7109 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7110 		    uint_t, ill->ill_frag_count,
7111 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7112 		ill_frag_prune(ill,
7113 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7114 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7115 		pruned = B_TRUE;
7116 	}
7117 
7118 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7119 	mutex_enter(&ipfb->ipfb_lock);
7120 
7121 	ipfp = &ipfb->ipfb_ipf;
7122 	/* Try to find an existing fragment queue for this packet. */
7123 	for (;;) {
7124 		ipf = ipfp[0];
7125 		if (ipf != NULL) {
7126 			/*
7127 			 * It has to match on ident and src/dst address.
7128 			 */
7129 			if (ipf->ipf_ident == ident &&
7130 			    ipf->ipf_src == src &&
7131 			    ipf->ipf_dst == dst &&
7132 			    ipf->ipf_protocol == proto) {
7133 				/*
7134 				 * If we have received too many
7135 				 * duplicate fragments for this packet
7136 				 * free it.
7137 				 */
7138 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7139 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7140 					freemsg(mp);
7141 					mutex_exit(&ipfb->ipfb_lock);
7142 					return (NULL);
7143 				}
7144 				/* Found it. */
7145 				break;
7146 			}
7147 			ipfp = &ipf->ipf_hash_next;
7148 			continue;
7149 		}
7150 
7151 		/*
7152 		 * If we pruned the list, do we want to store this new
7153 		 * fragment?. We apply an optimization here based on the
7154 		 * fact that most fragments will be received in order.
7155 		 * So if the offset of this incoming fragment is zero,
7156 		 * it is the first fragment of a new packet. We will
7157 		 * keep it.  Otherwise drop the fragment, as we have
7158 		 * probably pruned the packet already (since the
7159 		 * packet cannot be found).
7160 		 */
7161 		if (pruned && offset != 0) {
7162 			mutex_exit(&ipfb->ipfb_lock);
7163 			freemsg(mp);
7164 			return (NULL);
7165 		}
7166 
7167 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7168 			/*
7169 			 * Too many fragmented packets in this hash
7170 			 * bucket. Free the oldest.
7171 			 */
7172 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7173 		}
7174 
7175 		/* New guy.  Allocate a frag message. */
7176 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7177 		if (mp1 == NULL) {
7178 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7179 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7180 			freemsg(mp);
7181 reass_done:
7182 			mutex_exit(&ipfb->ipfb_lock);
7183 			return (NULL);
7184 		}
7185 
7186 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7187 		mp1->b_cont = mp;
7188 
7189 		/* Initialize the fragment header. */
7190 		ipf = (ipf_t *)mp1->b_rptr;
7191 		ipf->ipf_mp = mp1;
7192 		ipf->ipf_ptphn = ipfp;
7193 		ipfp[0] = ipf;
7194 		ipf->ipf_hash_next = NULL;
7195 		ipf->ipf_ident = ident;
7196 		ipf->ipf_protocol = proto;
7197 		ipf->ipf_src = src;
7198 		ipf->ipf_dst = dst;
7199 		ipf->ipf_nf_hdr_len = 0;
7200 		/* Record reassembly start time. */
7201 		ipf->ipf_timestamp = gethrestime_sec();
7202 		/* Record ipf generation and account for frag header */
7203 		ipf->ipf_gen = ill->ill_ipf_gen++;
7204 		ipf->ipf_count = MBLKSIZE(mp1);
7205 		ipf->ipf_last_frag_seen = B_FALSE;
7206 		ipf->ipf_ecn = ecn_info;
7207 		ipf->ipf_num_dups = 0;
7208 		ipfb->ipfb_frag_pkts++;
7209 		ipf->ipf_checksum = 0;
7210 		ipf->ipf_checksum_flags = 0;
7211 
7212 		/* Store checksum value in fragment header */
7213 		if (sum_flags != 0) {
7214 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7215 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7216 			ipf->ipf_checksum = sum_val;
7217 			ipf->ipf_checksum_flags = sum_flags;
7218 		}
7219 
7220 		/*
7221 		 * We handle reassembly two ways.  In the easy case,
7222 		 * where all the fragments show up in order, we do
7223 		 * minimal bookkeeping, and just clip new pieces on
7224 		 * the end.  If we ever see a hole, then we go off
7225 		 * to ip_reassemble which has to mark the pieces and
7226 		 * keep track of the number of holes, etc.  Obviously,
7227 		 * the point of having both mechanisms is so we can
7228 		 * handle the easy case as efficiently as possible.
7229 		 */
7230 		if (offset == 0) {
7231 			/* Easy case, in-order reassembly so far. */
7232 			ipf->ipf_count += msg_len;
7233 			ipf->ipf_tail_mp = tail_mp;
7234 			/*
7235 			 * Keep track of next expected offset in
7236 			 * ipf_end.
7237 			 */
7238 			ipf->ipf_end = end;
7239 			ipf->ipf_nf_hdr_len = hdr_length;
7240 		} else {
7241 			/* Hard case, hole at the beginning. */
7242 			ipf->ipf_tail_mp = NULL;
7243 			/*
7244 			 * ipf_end == 0 means that we have given up
7245 			 * on easy reassembly.
7246 			 */
7247 			ipf->ipf_end = 0;
7248 
7249 			/* Forget checksum offload from now on */
7250 			ipf->ipf_checksum_flags = 0;
7251 
7252 			/*
7253 			 * ipf_hole_cnt is set by ip_reassemble.
7254 			 * ipf_count is updated by ip_reassemble.
7255 			 * No need to check for return value here
7256 			 * as we don't expect reassembly to complete
7257 			 * or fail for the first fragment itself.
7258 			 */
7259 			(void) ip_reassemble(mp, ipf,
7260 			    (frag_offset_flags & IPH_OFFSET) << 3,
7261 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7262 		}
7263 		/* Update per ipfb and ill byte counts */
7264 		ipfb->ipfb_count += ipf->ipf_count;
7265 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7266 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7267 		/* If the frag timer wasn't already going, start it. */
7268 		mutex_enter(&ill->ill_lock);
7269 		ill_frag_timer_start(ill);
7270 		mutex_exit(&ill->ill_lock);
7271 		goto reass_done;
7272 	}
7273 
7274 	/*
7275 	 * If the packet's flag has changed (it could be coming up
7276 	 * from an interface different than the previous, therefore
7277 	 * possibly different checksum capability), then forget about
7278 	 * any stored checksum states.  Otherwise add the value to
7279 	 * the existing one stored in the fragment header.
7280 	 */
7281 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7282 		sum_val += ipf->ipf_checksum;
7283 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7284 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7285 		ipf->ipf_checksum = sum_val;
7286 	} else if (ipf->ipf_checksum_flags != 0) {
7287 		/* Forget checksum offload from now on */
7288 		ipf->ipf_checksum_flags = 0;
7289 	}
7290 
7291 	/*
7292 	 * We have a new piece of a datagram which is already being
7293 	 * reassembled.  Update the ECN info if all IP fragments
7294 	 * are ECN capable.  If there is one which is not, clear
7295 	 * all the info.  If there is at least one which has CE
7296 	 * code point, IP needs to report that up to transport.
7297 	 */
7298 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7299 		if (ecn_info == IPH_ECN_CE)
7300 			ipf->ipf_ecn = IPH_ECN_CE;
7301 	} else {
7302 		ipf->ipf_ecn = IPH_ECN_NECT;
7303 	}
7304 	if (offset && ipf->ipf_end == offset) {
7305 		/* The new fragment fits at the end */
7306 		ipf->ipf_tail_mp->b_cont = mp;
7307 		/* Update the byte count */
7308 		ipf->ipf_count += msg_len;
7309 		/* Update per ipfb and ill byte counts */
7310 		ipfb->ipfb_count += msg_len;
7311 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7312 		atomic_add_32(&ill->ill_frag_count, msg_len);
7313 		if (frag_offset_flags & IPH_MF) {
7314 			/* More to come. */
7315 			ipf->ipf_end = end;
7316 			ipf->ipf_tail_mp = tail_mp;
7317 			goto reass_done;
7318 		}
7319 	} else {
7320 		/* Go do the hard cases. */
7321 		int ret;
7322 
7323 		if (offset == 0)
7324 			ipf->ipf_nf_hdr_len = hdr_length;
7325 
7326 		/* Save current byte count */
7327 		count = ipf->ipf_count;
7328 		ret = ip_reassemble(mp, ipf,
7329 		    (frag_offset_flags & IPH_OFFSET) << 3,
7330 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7331 		/* Count of bytes added and subtracted (freeb()ed) */
7332 		count = ipf->ipf_count - count;
7333 		if (count) {
7334 			/* Update per ipfb and ill byte counts */
7335 			ipfb->ipfb_count += count;
7336 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7337 			atomic_add_32(&ill->ill_frag_count, count);
7338 		}
7339 		if (ret == IP_REASS_PARTIAL) {
7340 			goto reass_done;
7341 		} else if (ret == IP_REASS_FAILED) {
7342 			/* Reassembly failed. Free up all resources */
7343 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7344 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7345 				IP_REASS_SET_START(t_mp, 0);
7346 				IP_REASS_SET_END(t_mp, 0);
7347 			}
7348 			freemsg(mp);
7349 			goto reass_done;
7350 		}
7351 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7352 	}
7353 	/*
7354 	 * We have completed reassembly.  Unhook the frag header from
7355 	 * the reassembly list.
7356 	 *
7357 	 * Before we free the frag header, record the ECN info
7358 	 * to report back to the transport.
7359 	 */
7360 	ecn_info = ipf->ipf_ecn;
7361 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7362 	ipfp = ipf->ipf_ptphn;
7363 
7364 	/* We need to supply these to caller */
7365 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7366 		sum_val = ipf->ipf_checksum;
7367 	else
7368 		sum_val = 0;
7369 
7370 	mp1 = ipf->ipf_mp;
7371 	count = ipf->ipf_count;
7372 	ipf = ipf->ipf_hash_next;
7373 	if (ipf != NULL)
7374 		ipf->ipf_ptphn = ipfp;
7375 	ipfp[0] = ipf;
7376 	atomic_add_32(&ill->ill_frag_count, -count);
7377 	ASSERT(ipfb->ipfb_count >= count);
7378 	ipfb->ipfb_count -= count;
7379 	ipfb->ipfb_frag_pkts--;
7380 	mutex_exit(&ipfb->ipfb_lock);
7381 	/* Ditch the frag header. */
7382 	mp = mp1->b_cont;
7383 
7384 	freeb(mp1);
7385 
7386 	/* Restore original IP length in header. */
7387 	packet_size = (uint32_t)msgdsize(mp);
7388 	if (packet_size > IP_MAXPACKET) {
7389 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7390 		ip_drop_input("Reassembled packet too large", mp, ill);
7391 		freemsg(mp);
7392 		return (NULL);
7393 	}
7394 
7395 	if (DB_REF(mp) > 1) {
7396 		mblk_t *mp2 = copymsg(mp);
7397 
7398 		if (mp2 == NULL) {
7399 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7400 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7401 			freemsg(mp);
7402 			return (NULL);
7403 		}
7404 		freemsg(mp);
7405 		mp = mp2;
7406 	}
7407 	ipha = (ipha_t *)mp->b_rptr;
7408 
7409 	ipha->ipha_length = htons((uint16_t)packet_size);
7410 	/* We're now complete, zip the frag state */
7411 	ipha->ipha_fragment_offset_and_flags = 0;
7412 	/* Record the ECN info. */
7413 	ipha->ipha_type_of_service &= 0xFC;
7414 	ipha->ipha_type_of_service |= ecn_info;
7415 
7416 	/* Update the receive attributes */
7417 	ira->ira_pktlen = packet_size;
7418 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7419 
7420 	/* Reassembly is successful; set checksum information in packet */
7421 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7422 	DB_CKSUMFLAGS(mp) = sum_flags;
7423 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7424 
7425 	return (mp);
7426 }
7427 
7428 /*
7429  * Pullup function that should be used for IP input in order to
7430  * ensure we do not loose the L2 source address; we need the l2 source
7431  * address for IP_RECVSLLA and for ndp_input.
7432  *
7433  * We return either NULL or b_rptr.
7434  */
7435 void *
7436 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7437 {
7438 	ill_t		*ill = ira->ira_ill;
7439 
7440 	if (ip_rput_pullups++ == 0) {
7441 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7442 		    "ip_pullup: %s forced us to "
7443 		    " pullup pkt, hdr len %ld, hdr addr %p",
7444 		    ill->ill_name, len, (void *)mp->b_rptr);
7445 	}
7446 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7447 		ip_setl2src(mp, ira, ira->ira_rill);
7448 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7449 	if (!pullupmsg(mp, len))
7450 		return (NULL);
7451 	else
7452 		return (mp->b_rptr);
7453 }
7454 
7455 /*
7456  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7457  * When called from the ULP ira_rill will be NULL hence the caller has to
7458  * pass in the ill.
7459  */
7460 /* ARGSUSED */
7461 void
7462 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7463 {
7464 	const uchar_t *addr;
7465 	int alen;
7466 
7467 	if (ira->ira_flags & IRAF_L2SRC_SET)
7468 		return;
7469 
7470 	ASSERT(ill != NULL);
7471 	alen = ill->ill_phys_addr_length;
7472 	ASSERT(alen <= sizeof (ira->ira_l2src));
7473 	if (ira->ira_mhip != NULL &&
7474 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7475 		bcopy(addr, ira->ira_l2src, alen);
7476 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7477 	    (addr = ill->ill_phys_addr) != NULL) {
7478 		bcopy(addr, ira->ira_l2src, alen);
7479 	} else {
7480 		bzero(ira->ira_l2src, alen);
7481 	}
7482 	ira->ira_flags |= IRAF_L2SRC_SET;
7483 }
7484 
7485 /*
7486  * check ip header length and align it.
7487  */
7488 mblk_t *
7489 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7490 {
7491 	ill_t	*ill = ira->ira_ill;
7492 	ssize_t len;
7493 
7494 	len = MBLKL(mp);
7495 
7496 	if (!OK_32PTR(mp->b_rptr))
7497 		IP_STAT(ill->ill_ipst, ip_notaligned);
7498 	else
7499 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7500 
7501 	/* Guard against bogus device drivers */
7502 	if (len < 0) {
7503 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7504 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7505 		freemsg(mp);
7506 		return (NULL);
7507 	}
7508 
7509 	if (len == 0) {
7510 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7511 		mblk_t *mp1 = mp->b_cont;
7512 
7513 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7514 			ip_setl2src(mp, ira, ira->ira_rill);
7515 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7516 
7517 		freeb(mp);
7518 		mp = mp1;
7519 		if (mp == NULL)
7520 			return (NULL);
7521 
7522 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7523 			return (mp);
7524 	}
7525 	if (ip_pullup(mp, min_size, ira) == NULL) {
7526 		if (msgdsize(mp) < min_size) {
7527 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7528 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7529 		} else {
7530 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7531 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7532 		}
7533 		freemsg(mp);
7534 		return (NULL);
7535 	}
7536 	return (mp);
7537 }
7538 
7539 /*
7540  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7541  */
7542 mblk_t *
7543 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7544     uint_t min_size, ip_recv_attr_t *ira)
7545 {
7546 	ill_t	*ill = ira->ira_ill;
7547 
7548 	/*
7549 	 * Make sure we have data length consistent
7550 	 * with the IP header.
7551 	 */
7552 	if (mp->b_cont == NULL) {
7553 		/* pkt_len is based on ipha_len, not the mblk length */
7554 		if (pkt_len < min_size) {
7555 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7556 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7557 			freemsg(mp);
7558 			return (NULL);
7559 		}
7560 		if (len < 0) {
7561 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7562 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7563 			freemsg(mp);
7564 			return (NULL);
7565 		}
7566 		/* Drop any pad */
7567 		mp->b_wptr = rptr + pkt_len;
7568 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7569 		ASSERT(pkt_len >= min_size);
7570 		if (pkt_len < min_size) {
7571 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7572 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7573 			freemsg(mp);
7574 			return (NULL);
7575 		}
7576 		if (len < 0) {
7577 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7578 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7579 			freemsg(mp);
7580 			return (NULL);
7581 		}
7582 		/* Drop any pad */
7583 		(void) adjmsg(mp, -len);
7584 		/*
7585 		 * adjmsg may have freed an mblk from the chain, hence
7586 		 * invalidate any hw checksum here. This will force IP to
7587 		 * calculate the checksum in sw, but only for this packet.
7588 		 */
7589 		DB_CKSUMFLAGS(mp) = 0;
7590 		IP_STAT(ill->ill_ipst, ip_multimblk);
7591 	}
7592 	return (mp);
7593 }
7594 
7595 /*
7596  * Check that the IPv4 opt_len is consistent with the packet and pullup
7597  * the options.
7598  */
7599 mblk_t *
7600 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7601     ip_recv_attr_t *ira)
7602 {
7603 	ill_t	*ill = ira->ira_ill;
7604 	ssize_t len;
7605 
7606 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7607 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7608 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7609 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7610 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7611 		freemsg(mp);
7612 		return (NULL);
7613 	}
7614 
7615 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7616 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7617 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7618 		freemsg(mp);
7619 		return (NULL);
7620 	}
7621 	/*
7622 	 * Recompute complete header length and make sure we
7623 	 * have access to all of it.
7624 	 */
7625 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7626 	if (len > (mp->b_wptr - mp->b_rptr)) {
7627 		if (len > pkt_len) {
7628 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7629 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7630 			freemsg(mp);
7631 			return (NULL);
7632 		}
7633 		if (ip_pullup(mp, len, ira) == NULL) {
7634 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7635 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7636 			freemsg(mp);
7637 			return (NULL);
7638 		}
7639 	}
7640 	return (mp);
7641 }
7642 
7643 /*
7644  * Returns a new ire, or the same ire, or NULL.
7645  * If a different IRE is returned, then it is held; the caller
7646  * needs to release it.
7647  * In no case is there any hold/release on the ire argument.
7648  */
7649 ire_t *
7650 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7651 {
7652 	ire_t		*new_ire;
7653 	ill_t		*ire_ill;
7654 	uint_t		ifindex;
7655 	ip_stack_t	*ipst = ill->ill_ipst;
7656 	boolean_t	strict_check = B_FALSE;
7657 
7658 	/*
7659 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7660 	 * issue (e.g. packet received on an underlying interface matched an
7661 	 * IRE_LOCAL on its associated group interface).
7662 	 */
7663 	ASSERT(ire->ire_ill != NULL);
7664 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7665 		return (ire);
7666 
7667 	/*
7668 	 * Do another ire lookup here, using the ingress ill, to see if the
7669 	 * interface is in a usesrc group.
7670 	 * As long as the ills belong to the same group, we don't consider
7671 	 * them to be arriving on the wrong interface. Thus, if the switch
7672 	 * is doing inbound load spreading, we won't drop packets when the
7673 	 * ip*_strict_dst_multihoming switch is on.
7674 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7675 	 * where the local address may not be unique. In this case we were
7676 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7677 	 * actually returned. The new lookup, which is more specific, should
7678 	 * only find the IRE_LOCAL associated with the ingress ill if one
7679 	 * exists.
7680 	 */
7681 	if (ire->ire_ipversion == IPV4_VERSION) {
7682 		if (ipst->ips_ip_strict_dst_multihoming)
7683 			strict_check = B_TRUE;
7684 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7685 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7686 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7687 	} else {
7688 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7689 		if (ipst->ips_ipv6_strict_dst_multihoming)
7690 			strict_check = B_TRUE;
7691 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7692 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7693 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7694 	}
7695 	/*
7696 	 * If the same ire that was returned in ip_input() is found then this
7697 	 * is an indication that usesrc groups are in use. The packet
7698 	 * arrived on a different ill in the group than the one associated with
7699 	 * the destination address.  If a different ire was found then the same
7700 	 * IP address must be hosted on multiple ills. This is possible with
7701 	 * unnumbered point2point interfaces. We switch to use this new ire in
7702 	 * order to have accurate interface statistics.
7703 	 */
7704 	if (new_ire != NULL) {
7705 		/* Note: held in one case but not the other? Caller handles */
7706 		if (new_ire != ire)
7707 			return (new_ire);
7708 		/* Unchanged */
7709 		ire_refrele(new_ire);
7710 		return (ire);
7711 	}
7712 
7713 	/*
7714 	 * Chase pointers once and store locally.
7715 	 */
7716 	ASSERT(ire->ire_ill != NULL);
7717 	ire_ill = ire->ire_ill;
7718 	ifindex = ill->ill_usesrc_ifindex;
7719 
7720 	/*
7721 	 * Check if it's a legal address on the 'usesrc' interface.
7722 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7723 	 * can just check phyint_ifindex.
7724 	 */
7725 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7726 		return (ire);
7727 	}
7728 
7729 	/*
7730 	 * If the ip*_strict_dst_multihoming switch is on then we can
7731 	 * only accept this packet if the interface is marked as routing.
7732 	 */
7733 	if (!(strict_check))
7734 		return (ire);
7735 
7736 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7737 		return (ire);
7738 	}
7739 	return (NULL);
7740 }
7741 
7742 /*
7743  * This function is used to construct a mac_header_info_s from a
7744  * DL_UNITDATA_IND message.
7745  * The address fields in the mhi structure points into the message,
7746  * thus the caller can't use those fields after freeing the message.
7747  *
7748  * We determine whether the packet received is a non-unicast packet
7749  * and in doing so, determine whether or not it is broadcast vs multicast.
7750  * For it to be a broadcast packet, we must have the appropriate mblk_t
7751  * hanging off the ill_t.  If this is either not present or doesn't match
7752  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7753  * to be multicast.  Thus NICs that have no broadcast address (or no
7754  * capability for one, such as point to point links) cannot return as
7755  * the packet being broadcast.
7756  */
7757 void
7758 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7759 {
7760 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7761 	mblk_t *bmp;
7762 	uint_t extra_offset;
7763 
7764 	bzero(mhip, sizeof (struct mac_header_info_s));
7765 
7766 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7767 
7768 	if (ill->ill_sap_length < 0)
7769 		extra_offset = 0;
7770 	else
7771 		extra_offset = ill->ill_sap_length;
7772 
7773 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7774 	    extra_offset;
7775 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7776 	    extra_offset;
7777 
7778 	if (!ind->dl_group_address)
7779 		return;
7780 
7781 	/* Multicast or broadcast */
7782 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7783 
7784 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7785 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7786 	    (bmp = ill->ill_bcast_mp) != NULL) {
7787 		dl_unitdata_req_t *dlur;
7788 		uint8_t *bphys_addr;
7789 
7790 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7791 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7792 		    extra_offset;
7793 
7794 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7795 		    ind->dl_dest_addr_length) == 0)
7796 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7797 	}
7798 }
7799 
7800 /*
7801  * This function is used to construct a mac_header_info_s from a
7802  * M_DATA fastpath message from a DLPI driver.
7803  * The address fields in the mhi structure points into the message,
7804  * thus the caller can't use those fields after freeing the message.
7805  *
7806  * We determine whether the packet received is a non-unicast packet
7807  * and in doing so, determine whether or not it is broadcast vs multicast.
7808  * For it to be a broadcast packet, we must have the appropriate mblk_t
7809  * hanging off the ill_t.  If this is either not present or doesn't match
7810  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7811  * to be multicast.  Thus NICs that have no broadcast address (or no
7812  * capability for one, such as point to point links) cannot return as
7813  * the packet being broadcast.
7814  */
7815 void
7816 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7817 {
7818 	mblk_t *bmp;
7819 	struct ether_header *pether;
7820 
7821 	bzero(mhip, sizeof (struct mac_header_info_s));
7822 
7823 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7824 
7825 	pether = (struct ether_header *)((char *)mp->b_rptr
7826 	    - sizeof (struct ether_header));
7827 
7828 	/*
7829 	 * Make sure the interface is an ethernet type, since we don't
7830 	 * know the header format for anything but Ethernet. Also make
7831 	 * sure we are pointing correctly above db_base.
7832 	 */
7833 	if (ill->ill_type != IFT_ETHER)
7834 		return;
7835 
7836 retry:
7837 	if ((uchar_t *)pether < mp->b_datap->db_base)
7838 		return;
7839 
7840 	/* Is there a VLAN tag? */
7841 	if (ill->ill_isv6) {
7842 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7843 			pether = (struct ether_header *)((char *)pether - 4);
7844 			goto retry;
7845 		}
7846 	} else {
7847 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7848 			pether = (struct ether_header *)((char *)pether - 4);
7849 			goto retry;
7850 		}
7851 	}
7852 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7853 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7854 
7855 	if (!(mhip->mhi_daddr[0] & 0x01))
7856 		return;
7857 
7858 	/* Multicast or broadcast */
7859 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7860 
7861 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7862 		dl_unitdata_req_t *dlur;
7863 		uint8_t *bphys_addr;
7864 		uint_t	addrlen;
7865 
7866 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7867 		addrlen = dlur->dl_dest_addr_length;
7868 		if (ill->ill_sap_length < 0) {
7869 			bphys_addr = (uchar_t *)dlur +
7870 			    dlur->dl_dest_addr_offset;
7871 			addrlen += ill->ill_sap_length;
7872 		} else {
7873 			bphys_addr = (uchar_t *)dlur +
7874 			    dlur->dl_dest_addr_offset +
7875 			    ill->ill_sap_length;
7876 			addrlen -= ill->ill_sap_length;
7877 		}
7878 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7879 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7880 	}
7881 }
7882 
7883 /*
7884  * Handle anything but M_DATA messages
7885  * We see the DL_UNITDATA_IND which are part
7886  * of the data path, and also the other messages from the driver.
7887  */
7888 void
7889 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7890 {
7891 	mblk_t		*first_mp;
7892 	struct iocblk   *iocp;
7893 	struct mac_header_info_s mhi;
7894 
7895 	switch (DB_TYPE(mp)) {
7896 	case M_PROTO:
7897 	case M_PCPROTO: {
7898 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7899 		    DL_UNITDATA_IND) {
7900 			/* Go handle anything other than data elsewhere. */
7901 			ip_rput_dlpi(ill, mp);
7902 			return;
7903 		}
7904 
7905 		first_mp = mp;
7906 		mp = first_mp->b_cont;
7907 		first_mp->b_cont = NULL;
7908 
7909 		if (mp == NULL) {
7910 			freeb(first_mp);
7911 			return;
7912 		}
7913 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7914 		if (ill->ill_isv6)
7915 			ip_input_v6(ill, NULL, mp, &mhi);
7916 		else
7917 			ip_input(ill, NULL, mp, &mhi);
7918 
7919 		/* Ditch the DLPI header. */
7920 		freeb(first_mp);
7921 		return;
7922 	}
7923 	case M_IOCACK:
7924 		iocp = (struct iocblk *)mp->b_rptr;
7925 		switch (iocp->ioc_cmd) {
7926 		case DL_IOC_HDR_INFO:
7927 			ill_fastpath_ack(ill, mp);
7928 			return;
7929 		default:
7930 			putnext(ill->ill_rq, mp);
7931 			return;
7932 		}
7933 		/* FALLTHRU */
7934 	case M_ERROR:
7935 	case M_HANGUP:
7936 		mutex_enter(&ill->ill_lock);
7937 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7938 			mutex_exit(&ill->ill_lock);
7939 			freemsg(mp);
7940 			return;
7941 		}
7942 		ill_refhold_locked(ill);
7943 		mutex_exit(&ill->ill_lock);
7944 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7945 		    B_FALSE);
7946 		return;
7947 	case M_CTL:
7948 		putnext(ill->ill_rq, mp);
7949 		return;
7950 	case M_IOCNAK:
7951 		ip1dbg(("got iocnak "));
7952 		iocp = (struct iocblk *)mp->b_rptr;
7953 		switch (iocp->ioc_cmd) {
7954 		case DL_IOC_HDR_INFO:
7955 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7956 			return;
7957 		default:
7958 			break;
7959 		}
7960 		/* FALLTHRU */
7961 	default:
7962 		putnext(ill->ill_rq, mp);
7963 		return;
7964 	}
7965 }
7966 
7967 /* Read side put procedure.  Packets coming from the wire arrive here. */
7968 void
7969 ip_rput(queue_t *q, mblk_t *mp)
7970 {
7971 	ill_t	*ill;
7972 	union DL_primitives *dl;
7973 
7974 	ill = (ill_t *)q->q_ptr;
7975 
7976 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7977 		/*
7978 		 * If things are opening or closing, only accept high-priority
7979 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
7980 		 * created; on close, things hanging off the ill may have been
7981 		 * freed already.)
7982 		 */
7983 		dl = (union DL_primitives *)mp->b_rptr;
7984 		if (DB_TYPE(mp) != M_PCPROTO ||
7985 		    dl->dl_primitive == DL_UNITDATA_IND) {
7986 			inet_freemsg(mp);
7987 			return;
7988 		}
7989 	}
7990 	if (DB_TYPE(mp) == M_DATA) {
7991 		struct mac_header_info_s mhi;
7992 
7993 		ip_mdata_to_mhi(ill, mp, &mhi);
7994 		ip_input(ill, NULL, mp, &mhi);
7995 	} else {
7996 		ip_rput_notdata(ill, mp);
7997 	}
7998 }
7999 
8000 /*
8001  * Move the information to a copy.
8002  */
8003 mblk_t *
8004 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8005 {
8006 	mblk_t		*mp1;
8007 	ill_t		*ill = ira->ira_ill;
8008 	ip_stack_t	*ipst = ill->ill_ipst;
8009 
8010 	IP_STAT(ipst, ip_db_ref);
8011 
8012 	/* Make sure we have ira_l2src before we loose the original mblk */
8013 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8014 		ip_setl2src(mp, ira, ira->ira_rill);
8015 
8016 	mp1 = copymsg(mp);
8017 	if (mp1 == NULL) {
8018 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8019 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8020 		freemsg(mp);
8021 		return (NULL);
8022 	}
8023 	/* preserve the hardware checksum flags and data, if present */
8024 	if (DB_CKSUMFLAGS(mp) != 0) {
8025 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8026 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8027 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8028 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8029 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8030 	}
8031 	freemsg(mp);
8032 	return (mp1);
8033 }
8034 
8035 static void
8036 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8037     t_uscalar_t err)
8038 {
8039 	if (dl_err == DL_SYSERR) {
8040 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8041 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8042 		    ill->ill_name, dl_primstr(prim), err);
8043 		return;
8044 	}
8045 
8046 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8047 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8048 	    dl_errstr(dl_err));
8049 }
8050 
8051 /*
8052  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8053  * than DL_UNITDATA_IND messages. If we need to process this message
8054  * exclusively, we call qwriter_ip, in which case we also need to call
8055  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8056  */
8057 void
8058 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8059 {
8060 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8061 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8062 	queue_t		*q = ill->ill_rq;
8063 	t_uscalar_t	prim = dloa->dl_primitive;
8064 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8065 
8066 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8067 	    char *, dl_primstr(prim), ill_t *, ill);
8068 	ip1dbg(("ip_rput_dlpi"));
8069 
8070 	/*
8071 	 * If we received an ACK but didn't send a request for it, then it
8072 	 * can't be part of any pending operation; discard up-front.
8073 	 */
8074 	switch (prim) {
8075 	case DL_ERROR_ACK:
8076 		reqprim = dlea->dl_error_primitive;
8077 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8078 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8079 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8080 		    dlea->dl_unix_errno));
8081 		break;
8082 	case DL_OK_ACK:
8083 		reqprim = dloa->dl_correct_primitive;
8084 		break;
8085 	case DL_INFO_ACK:
8086 		reqprim = DL_INFO_REQ;
8087 		break;
8088 	case DL_BIND_ACK:
8089 		reqprim = DL_BIND_REQ;
8090 		break;
8091 	case DL_PHYS_ADDR_ACK:
8092 		reqprim = DL_PHYS_ADDR_REQ;
8093 		break;
8094 	case DL_NOTIFY_ACK:
8095 		reqprim = DL_NOTIFY_REQ;
8096 		break;
8097 	case DL_CAPABILITY_ACK:
8098 		reqprim = DL_CAPABILITY_REQ;
8099 		break;
8100 	}
8101 
8102 	if (prim != DL_NOTIFY_IND) {
8103 		if (reqprim == DL_PRIM_INVAL ||
8104 		    !ill_dlpi_pending(ill, reqprim)) {
8105 			/* Not a DLPI message we support or expected */
8106 			freemsg(mp);
8107 			return;
8108 		}
8109 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8110 		    dl_primstr(reqprim)));
8111 	}
8112 
8113 	switch (reqprim) {
8114 	case DL_UNBIND_REQ:
8115 		/*
8116 		 * NOTE: we mark the unbind as complete even if we got a
8117 		 * DL_ERROR_ACK, since there's not much else we can do.
8118 		 */
8119 		mutex_enter(&ill->ill_lock);
8120 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8121 		cv_signal(&ill->ill_cv);
8122 		mutex_exit(&ill->ill_lock);
8123 		break;
8124 
8125 	case DL_ENABMULTI_REQ:
8126 		if (prim == DL_OK_ACK) {
8127 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8128 				ill->ill_dlpi_multicast_state = IDS_OK;
8129 		}
8130 		break;
8131 	}
8132 
8133 	/*
8134 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8135 	 * need to become writer to continue to process it.  Because an
8136 	 * exclusive operation doesn't complete until replies to all queued
8137 	 * DLPI messages have been received, we know we're in the middle of an
8138 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8139 	 *
8140 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8141 	 * Since this is on the ill stream we unconditionally bump up the
8142 	 * refcount without doing ILL_CAN_LOOKUP().
8143 	 */
8144 	ill_refhold(ill);
8145 	if (prim == DL_NOTIFY_IND)
8146 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8147 	else
8148 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8149 }
8150 
8151 /*
8152  * Handling of DLPI messages that require exclusive access to the ipsq.
8153  *
8154  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8155  * happen here. (along with mi_copy_done)
8156  */
8157 /* ARGSUSED */
8158 static void
8159 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8160 {
8161 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8162 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8163 	int		err = 0;
8164 	ill_t		*ill = (ill_t *)q->q_ptr;
8165 	ipif_t		*ipif = NULL;
8166 	mblk_t		*mp1 = NULL;
8167 	conn_t		*connp = NULL;
8168 	t_uscalar_t	paddrreq;
8169 	mblk_t		*mp_hw;
8170 	boolean_t	success;
8171 	boolean_t	ioctl_aborted = B_FALSE;
8172 	boolean_t	log = B_TRUE;
8173 
8174 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8175 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8176 
8177 	ip1dbg(("ip_rput_dlpi_writer .."));
8178 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8179 	ASSERT(IAM_WRITER_ILL(ill));
8180 
8181 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8182 	/*
8183 	 * The current ioctl could have been aborted by the user and a new
8184 	 * ioctl to bring up another ill could have started. We could still
8185 	 * get a response from the driver later.
8186 	 */
8187 	if (ipif != NULL && ipif->ipif_ill != ill)
8188 		ioctl_aborted = B_TRUE;
8189 
8190 	switch (dloa->dl_primitive) {
8191 	case DL_ERROR_ACK:
8192 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8193 		    dl_primstr(dlea->dl_error_primitive)));
8194 
8195 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8196 		    char *, dl_primstr(dlea->dl_error_primitive),
8197 		    ill_t *, ill);
8198 
8199 		switch (dlea->dl_error_primitive) {
8200 		case DL_DISABMULTI_REQ:
8201 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8202 			break;
8203 		case DL_PROMISCON_REQ:
8204 		case DL_PROMISCOFF_REQ:
8205 		case DL_UNBIND_REQ:
8206 		case DL_ATTACH_REQ:
8207 		case DL_INFO_REQ:
8208 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8209 			break;
8210 		case DL_NOTIFY_REQ:
8211 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8212 			log = B_FALSE;
8213 			break;
8214 		case DL_PHYS_ADDR_REQ:
8215 			/*
8216 			 * For IPv6 only, there are two additional
8217 			 * phys_addr_req's sent to the driver to get the
8218 			 * IPv6 token and lla. This allows IP to acquire
8219 			 * the hardware address format for a given interface
8220 			 * without having built in knowledge of the hardware
8221 			 * address. ill_phys_addr_pend keeps track of the last
8222 			 * DL_PAR sent so we know which response we are
8223 			 * dealing with. ill_dlpi_done will update
8224 			 * ill_phys_addr_pend when it sends the next req.
8225 			 * We don't complete the IOCTL until all three DL_PARs
8226 			 * have been attempted, so set *_len to 0 and break.
8227 			 */
8228 			paddrreq = ill->ill_phys_addr_pend;
8229 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8230 			if (paddrreq == DL_IPV6_TOKEN) {
8231 				ill->ill_token_length = 0;
8232 				log = B_FALSE;
8233 				break;
8234 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8235 				ill->ill_nd_lla_len = 0;
8236 				log = B_FALSE;
8237 				break;
8238 			}
8239 			/*
8240 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8241 			 * We presumably have an IOCTL hanging out waiting
8242 			 * for completion. Find it and complete the IOCTL
8243 			 * with the error noted.
8244 			 * However, ill_dl_phys was called on an ill queue
8245 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8246 			 * set. But the ioctl is known to be pending on ill_wq.
8247 			 */
8248 			if (!ill->ill_ifname_pending)
8249 				break;
8250 			ill->ill_ifname_pending = 0;
8251 			if (!ioctl_aborted)
8252 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8253 			if (mp1 != NULL) {
8254 				/*
8255 				 * This operation (SIOCSLIFNAME) must have
8256 				 * happened on the ill. Assert there is no conn
8257 				 */
8258 				ASSERT(connp == NULL);
8259 				q = ill->ill_wq;
8260 			}
8261 			break;
8262 		case DL_BIND_REQ:
8263 			ill_dlpi_done(ill, DL_BIND_REQ);
8264 			if (ill->ill_ifname_pending)
8265 				break;
8266 			mutex_enter(&ill->ill_lock);
8267 			ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8268 			mutex_exit(&ill->ill_lock);
8269 			/*
8270 			 * Something went wrong with the bind.  We presumably
8271 			 * have an IOCTL hanging out waiting for completion.
8272 			 * Find it, take down the interface that was coming
8273 			 * up, and complete the IOCTL with the error noted.
8274 			 */
8275 			if (!ioctl_aborted)
8276 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8277 			if (mp1 != NULL) {
8278 				/*
8279 				 * This might be a result of a DL_NOTE_REPLUMB
8280 				 * notification. In that case, connp is NULL.
8281 				 */
8282 				if (connp != NULL)
8283 					q = CONNP_TO_WQ(connp);
8284 
8285 				(void) ipif_down(ipif, NULL, NULL);
8286 				/* error is set below the switch */
8287 			}
8288 			break;
8289 		case DL_ENABMULTI_REQ:
8290 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8291 
8292 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8293 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8294 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8295 
8296 				printf("ip: joining multicasts failed (%d)"
8297 				    " on %s - will use link layer "
8298 				    "broadcasts for multicast\n",
8299 				    dlea->dl_errno, ill->ill_name);
8300 
8301 				/*
8302 				 * Set up for multi_bcast; We are the
8303 				 * writer, so ok to access ill->ill_ipif
8304 				 * without any lock.
8305 				 */
8306 				mutex_enter(&ill->ill_phyint->phyint_lock);
8307 				ill->ill_phyint->phyint_flags |=
8308 				    PHYI_MULTI_BCAST;
8309 				mutex_exit(&ill->ill_phyint->phyint_lock);
8310 
8311 			}
8312 			freemsg(mp);	/* Don't want to pass this up */
8313 			return;
8314 		case DL_CAPABILITY_REQ:
8315 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8316 			    "DL_CAPABILITY REQ\n"));
8317 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8318 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8319 			ill_capability_done(ill);
8320 			freemsg(mp);
8321 			return;
8322 		}
8323 		/*
8324 		 * Note the error for IOCTL completion (mp1 is set when
8325 		 * ready to complete ioctl). If ill_ifname_pending_err is
8326 		 * set, an error occured during plumbing (ill_ifname_pending),
8327 		 * so we want to report that error.
8328 		 *
8329 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8330 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8331 		 * expected to get errack'd if the driver doesn't support
8332 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8333 		 * if these error conditions are encountered.
8334 		 */
8335 		if (mp1 != NULL) {
8336 			if (ill->ill_ifname_pending_err != 0)  {
8337 				err = ill->ill_ifname_pending_err;
8338 				ill->ill_ifname_pending_err = 0;
8339 			} else {
8340 				err = dlea->dl_unix_errno ?
8341 				    dlea->dl_unix_errno : ENXIO;
8342 			}
8343 		/*
8344 		 * If we're plumbing an interface and an error hasn't already
8345 		 * been saved, set ill_ifname_pending_err to the error passed
8346 		 * up. Ignore the error if log is B_FALSE (see comment above).
8347 		 */
8348 		} else if (log && ill->ill_ifname_pending &&
8349 		    ill->ill_ifname_pending_err == 0) {
8350 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8351 			    dlea->dl_unix_errno : ENXIO;
8352 		}
8353 
8354 		if (log)
8355 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8356 			    dlea->dl_errno, dlea->dl_unix_errno);
8357 		break;
8358 	case DL_CAPABILITY_ACK:
8359 		ill_capability_ack(ill, mp);
8360 		/*
8361 		 * The message has been handed off to ill_capability_ack
8362 		 * and must not be freed below
8363 		 */
8364 		mp = NULL;
8365 		break;
8366 
8367 	case DL_INFO_ACK:
8368 		/* Call a routine to handle this one. */
8369 		ill_dlpi_done(ill, DL_INFO_REQ);
8370 		ip_ll_subnet_defaults(ill, mp);
8371 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8372 		return;
8373 	case DL_BIND_ACK:
8374 		/*
8375 		 * We should have an IOCTL waiting on this unless
8376 		 * sent by ill_dl_phys, in which case just return
8377 		 */
8378 		ill_dlpi_done(ill, DL_BIND_REQ);
8379 
8380 		if (ill->ill_ifname_pending) {
8381 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8382 			    ill_t *, ill, mblk_t *, mp);
8383 			break;
8384 		}
8385 		mutex_enter(&ill->ill_lock);
8386 		ill->ill_dl_up = 1;
8387 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8388 		mutex_exit(&ill->ill_lock);
8389 
8390 		if (!ioctl_aborted)
8391 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8392 		if (mp1 == NULL) {
8393 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8394 			break;
8395 		}
8396 		/*
8397 		 * mp1 was added by ill_dl_up(). if that is a result of
8398 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8399 		 */
8400 		if (connp != NULL)
8401 			q = CONNP_TO_WQ(connp);
8402 		/*
8403 		 * We are exclusive. So nothing can change even after
8404 		 * we get the pending mp.
8405 		 */
8406 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8407 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8408 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8409 
8410 		/*
8411 		 * Now bring up the resolver; when that is complete, we'll
8412 		 * create IREs.  Note that we intentionally mirror what
8413 		 * ipif_up() would have done, because we got here by way of
8414 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8415 		 */
8416 		if (ill->ill_isv6) {
8417 			/*
8418 			 * v6 interfaces.
8419 			 * Unlike ARP which has to do another bind
8420 			 * and attach, once we get here we are
8421 			 * done with NDP
8422 			 */
8423 			(void) ipif_resolver_up(ipif, Res_act_initial);
8424 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8425 				err = ipif_up_done_v6(ipif);
8426 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8427 			/*
8428 			 * ARP and other v4 external resolvers.
8429 			 * Leave the pending mblk intact so that
8430 			 * the ioctl completes in ip_rput().
8431 			 */
8432 			if (connp != NULL)
8433 				mutex_enter(&connp->conn_lock);
8434 			mutex_enter(&ill->ill_lock);
8435 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8436 			mutex_exit(&ill->ill_lock);
8437 			if (connp != NULL)
8438 				mutex_exit(&connp->conn_lock);
8439 			if (success) {
8440 				err = ipif_resolver_up(ipif, Res_act_initial);
8441 				if (err == EINPROGRESS) {
8442 					freemsg(mp);
8443 					return;
8444 				}
8445 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8446 			} else {
8447 				/* The conn has started closing */
8448 				err = EINTR;
8449 			}
8450 		} else {
8451 			/*
8452 			 * This one is complete. Reply to pending ioctl.
8453 			 */
8454 			(void) ipif_resolver_up(ipif, Res_act_initial);
8455 			err = ipif_up_done(ipif);
8456 		}
8457 
8458 		if ((err == 0) && (ill->ill_up_ipifs)) {
8459 			err = ill_up_ipifs(ill, q, mp1);
8460 			if (err == EINPROGRESS) {
8461 				freemsg(mp);
8462 				return;
8463 			}
8464 		}
8465 
8466 		/*
8467 		 * If we have a moved ipif to bring up, and everything has
8468 		 * succeeded to this point, bring it up on the IPMP ill.
8469 		 * Otherwise, leave it down -- the admin can try to bring it
8470 		 * up by hand if need be.
8471 		 */
8472 		if (ill->ill_move_ipif != NULL) {
8473 			if (err != 0) {
8474 				ill->ill_move_ipif = NULL;
8475 			} else {
8476 				ipif = ill->ill_move_ipif;
8477 				ill->ill_move_ipif = NULL;
8478 				err = ipif_up(ipif, q, mp1);
8479 				if (err == EINPROGRESS) {
8480 					freemsg(mp);
8481 					return;
8482 				}
8483 			}
8484 		}
8485 		break;
8486 
8487 	case DL_NOTIFY_IND: {
8488 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8489 		uint_t orig_mtu, orig_mc_mtu;
8490 
8491 		switch (notify->dl_notification) {
8492 		case DL_NOTE_PHYS_ADDR:
8493 			err = ill_set_phys_addr(ill, mp);
8494 			break;
8495 
8496 		case DL_NOTE_REPLUMB:
8497 			/*
8498 			 * Directly return after calling ill_replumb().
8499 			 * Note that we should not free mp as it is reused
8500 			 * in the ill_replumb() function.
8501 			 */
8502 			err = ill_replumb(ill, mp);
8503 			return;
8504 
8505 		case DL_NOTE_FASTPATH_FLUSH:
8506 			nce_flush(ill, B_FALSE);
8507 			break;
8508 
8509 		case DL_NOTE_SDU_SIZE:
8510 		case DL_NOTE_SDU_SIZE2:
8511 			/*
8512 			 * The dce and fragmentation code can cope with
8513 			 * this changing while packets are being sent.
8514 			 * When packets are sent ip_output will discover
8515 			 * a change.
8516 			 *
8517 			 * Change the MTU size of the interface.
8518 			 */
8519 			mutex_enter(&ill->ill_lock);
8520 			orig_mtu = ill->ill_mtu;
8521 			orig_mc_mtu = ill->ill_mc_mtu;
8522 			switch (notify->dl_notification) {
8523 			case DL_NOTE_SDU_SIZE:
8524 				ill->ill_current_frag =
8525 				    (uint_t)notify->dl_data;
8526 				ill->ill_mc_mtu = (uint_t)notify->dl_data;
8527 				break;
8528 			case DL_NOTE_SDU_SIZE2:
8529 				ill->ill_current_frag =
8530 				    (uint_t)notify->dl_data1;
8531 				ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8532 				break;
8533 			}
8534 			if (ill->ill_current_frag > ill->ill_max_frag)
8535 				ill->ill_max_frag = ill->ill_current_frag;
8536 
8537 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8538 				ill->ill_mtu = ill->ill_current_frag;
8539 
8540 				/*
8541 				 * If ill_user_mtu was set (via
8542 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8543 				 */
8544 				if (ill->ill_user_mtu != 0 &&
8545 				    ill->ill_user_mtu < ill->ill_mtu)
8546 					ill->ill_mtu = ill->ill_user_mtu;
8547 
8548 				if (ill->ill_user_mtu != 0 &&
8549 				    ill->ill_user_mtu < ill->ill_mc_mtu)
8550 					ill->ill_mc_mtu = ill->ill_user_mtu;
8551 
8552 				if (ill->ill_isv6) {
8553 					if (ill->ill_mtu < IPV6_MIN_MTU)
8554 						ill->ill_mtu = IPV6_MIN_MTU;
8555 					if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8556 						ill->ill_mc_mtu = IPV6_MIN_MTU;
8557 				} else {
8558 					if (ill->ill_mtu < IP_MIN_MTU)
8559 						ill->ill_mtu = IP_MIN_MTU;
8560 					if (ill->ill_mc_mtu < IP_MIN_MTU)
8561 						ill->ill_mc_mtu = IP_MIN_MTU;
8562 				}
8563 			} else if (ill->ill_mc_mtu > ill->ill_mtu) {
8564 				ill->ill_mc_mtu = ill->ill_mtu;
8565 			}
8566 
8567 			mutex_exit(&ill->ill_lock);
8568 			/*
8569 			 * Make sure all dce_generation checks find out
8570 			 * that ill_mtu/ill_mc_mtu has changed.
8571 			 */
8572 			if (orig_mtu != ill->ill_mtu ||
8573 			    orig_mc_mtu != ill->ill_mc_mtu) {
8574 				dce_increment_all_generations(ill->ill_isv6,
8575 				    ill->ill_ipst);
8576 			}
8577 
8578 			/*
8579 			 * Refresh IPMP meta-interface MTU if necessary.
8580 			 */
8581 			if (IS_UNDER_IPMP(ill))
8582 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8583 			break;
8584 
8585 		case DL_NOTE_LINK_UP:
8586 		case DL_NOTE_LINK_DOWN: {
8587 			/*
8588 			 * We are writer. ill / phyint / ipsq assocs stable.
8589 			 * The RUNNING flag reflects the state of the link.
8590 			 */
8591 			phyint_t *phyint = ill->ill_phyint;
8592 			uint64_t new_phyint_flags;
8593 			boolean_t changed = B_FALSE;
8594 			boolean_t went_up;
8595 
8596 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8597 			mutex_enter(&phyint->phyint_lock);
8598 
8599 			new_phyint_flags = went_up ?
8600 			    phyint->phyint_flags | PHYI_RUNNING :
8601 			    phyint->phyint_flags & ~PHYI_RUNNING;
8602 
8603 			if (IS_IPMP(ill)) {
8604 				new_phyint_flags = went_up ?
8605 				    new_phyint_flags & ~PHYI_FAILED :
8606 				    new_phyint_flags | PHYI_FAILED;
8607 			}
8608 
8609 			if (new_phyint_flags != phyint->phyint_flags) {
8610 				phyint->phyint_flags = new_phyint_flags;
8611 				changed = B_TRUE;
8612 			}
8613 			mutex_exit(&phyint->phyint_lock);
8614 			/*
8615 			 * ill_restart_dad handles the DAD restart and routing
8616 			 * socket notification logic.
8617 			 */
8618 			if (changed) {
8619 				ill_restart_dad(phyint->phyint_illv4, went_up);
8620 				ill_restart_dad(phyint->phyint_illv6, went_up);
8621 			}
8622 			break;
8623 		}
8624 		case DL_NOTE_PROMISC_ON_PHYS: {
8625 			phyint_t *phyint = ill->ill_phyint;
8626 
8627 			mutex_enter(&phyint->phyint_lock);
8628 			phyint->phyint_flags |= PHYI_PROMISC;
8629 			mutex_exit(&phyint->phyint_lock);
8630 			break;
8631 		}
8632 		case DL_NOTE_PROMISC_OFF_PHYS: {
8633 			phyint_t *phyint = ill->ill_phyint;
8634 
8635 			mutex_enter(&phyint->phyint_lock);
8636 			phyint->phyint_flags &= ~PHYI_PROMISC;
8637 			mutex_exit(&phyint->phyint_lock);
8638 			break;
8639 		}
8640 		case DL_NOTE_CAPAB_RENEG:
8641 			/*
8642 			 * Something changed on the driver side.
8643 			 * It wants us to renegotiate the capabilities
8644 			 * on this ill. One possible cause is the aggregation
8645 			 * interface under us where a port got added or
8646 			 * went away.
8647 			 *
8648 			 * If the capability negotiation is already done
8649 			 * or is in progress, reset the capabilities and
8650 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8651 			 * so that when the ack comes back, we can start
8652 			 * the renegotiation process.
8653 			 *
8654 			 * Note that if ill_capab_reneg is already B_TRUE
8655 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8656 			 * the capability resetting request has been sent
8657 			 * and the renegotiation has not been started yet;
8658 			 * nothing needs to be done in this case.
8659 			 */
8660 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8661 			ill_capability_reset(ill, B_TRUE);
8662 			ipsq_current_finish(ipsq);
8663 			break;
8664 
8665 		case DL_NOTE_ALLOWED_IPS:
8666 			ill_set_allowed_ips(ill, mp);
8667 			break;
8668 		default:
8669 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8670 			    "type 0x%x for DL_NOTIFY_IND\n",
8671 			    notify->dl_notification));
8672 			break;
8673 		}
8674 
8675 		/*
8676 		 * As this is an asynchronous operation, we
8677 		 * should not call ill_dlpi_done
8678 		 */
8679 		break;
8680 	}
8681 	case DL_NOTIFY_ACK: {
8682 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8683 
8684 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8685 			ill->ill_note_link = 1;
8686 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8687 		break;
8688 	}
8689 	case DL_PHYS_ADDR_ACK: {
8690 		/*
8691 		 * As part of plumbing the interface via SIOCSLIFNAME,
8692 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8693 		 * whose answers we receive here.  As each answer is received,
8694 		 * we call ill_dlpi_done() to dispatch the next request as
8695 		 * we're processing the current one.  Once all answers have
8696 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8697 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8698 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8699 		 * available, but we know the ioctl is pending on ill_wq.)
8700 		 */
8701 		uint_t	paddrlen, paddroff;
8702 		uint8_t	*addr;
8703 
8704 		paddrreq = ill->ill_phys_addr_pend;
8705 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8706 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8707 		addr = mp->b_rptr + paddroff;
8708 
8709 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8710 		if (paddrreq == DL_IPV6_TOKEN) {
8711 			/*
8712 			 * bcopy to low-order bits of ill_token
8713 			 *
8714 			 * XXX Temporary hack - currently, all known tokens
8715 			 * are 64 bits, so I'll cheat for the moment.
8716 			 */
8717 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8718 			ill->ill_token_length = paddrlen;
8719 			break;
8720 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8721 			ASSERT(ill->ill_nd_lla_mp == NULL);
8722 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8723 			mp = NULL;
8724 			break;
8725 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8726 			ASSERT(ill->ill_dest_addr_mp == NULL);
8727 			ill->ill_dest_addr_mp = mp;
8728 			ill->ill_dest_addr = addr;
8729 			mp = NULL;
8730 			if (ill->ill_isv6) {
8731 				ill_setdesttoken(ill);
8732 				ipif_setdestlinklocal(ill->ill_ipif);
8733 			}
8734 			break;
8735 		}
8736 
8737 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8738 		ASSERT(ill->ill_phys_addr_mp == NULL);
8739 		if (!ill->ill_ifname_pending)
8740 			break;
8741 		ill->ill_ifname_pending = 0;
8742 		if (!ioctl_aborted)
8743 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8744 		if (mp1 != NULL) {
8745 			ASSERT(connp == NULL);
8746 			q = ill->ill_wq;
8747 		}
8748 		/*
8749 		 * If any error acks received during the plumbing sequence,
8750 		 * ill_ifname_pending_err will be set. Break out and send up
8751 		 * the error to the pending ioctl.
8752 		 */
8753 		if (ill->ill_ifname_pending_err != 0) {
8754 			err = ill->ill_ifname_pending_err;
8755 			ill->ill_ifname_pending_err = 0;
8756 			break;
8757 		}
8758 
8759 		ill->ill_phys_addr_mp = mp;
8760 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8761 		mp = NULL;
8762 
8763 		/*
8764 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8765 		 * provider doesn't support physical addresses.  We check both
8766 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8767 		 * not have physical addresses, but historically adversises a
8768 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8769 		 * its DL_PHYS_ADDR_ACK.
8770 		 */
8771 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8772 			ill->ill_phys_addr = NULL;
8773 		} else if (paddrlen != ill->ill_phys_addr_length) {
8774 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8775 			    paddrlen, ill->ill_phys_addr_length));
8776 			err = EINVAL;
8777 			break;
8778 		}
8779 
8780 		if (ill->ill_nd_lla_mp == NULL) {
8781 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8782 				err = ENOMEM;
8783 				break;
8784 			}
8785 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8786 		}
8787 
8788 		if (ill->ill_isv6) {
8789 			ill_setdefaulttoken(ill);
8790 			ipif_setlinklocal(ill->ill_ipif);
8791 		}
8792 		break;
8793 	}
8794 	case DL_OK_ACK:
8795 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8796 		    dl_primstr((int)dloa->dl_correct_primitive),
8797 		    dloa->dl_correct_primitive));
8798 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8799 		    char *, dl_primstr(dloa->dl_correct_primitive),
8800 		    ill_t *, ill);
8801 
8802 		switch (dloa->dl_correct_primitive) {
8803 		case DL_ENABMULTI_REQ:
8804 		case DL_DISABMULTI_REQ:
8805 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8806 			break;
8807 		case DL_PROMISCON_REQ:
8808 		case DL_PROMISCOFF_REQ:
8809 		case DL_UNBIND_REQ:
8810 		case DL_ATTACH_REQ:
8811 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8812 			break;
8813 		}
8814 		break;
8815 	default:
8816 		break;
8817 	}
8818 
8819 	freemsg(mp);
8820 	if (mp1 == NULL)
8821 		return;
8822 
8823 	/*
8824 	 * The operation must complete without EINPROGRESS since
8825 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8826 	 * the operation will be stuck forever inside the IPSQ.
8827 	 */
8828 	ASSERT(err != EINPROGRESS);
8829 
8830 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8831 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8832 	    ipif_t *, NULL);
8833 
8834 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8835 	case 0:
8836 		ipsq_current_finish(ipsq);
8837 		break;
8838 
8839 	case SIOCSLIFNAME:
8840 	case IF_UNITSEL: {
8841 		ill_t *ill_other = ILL_OTHER(ill);
8842 
8843 		/*
8844 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8845 		 * ill has a peer which is in an IPMP group, then place ill
8846 		 * into the same group.  One catch: although ifconfig plumbs
8847 		 * the appropriate IPMP meta-interface prior to plumbing this
8848 		 * ill, it is possible for multiple ifconfig applications to
8849 		 * race (or for another application to adjust plumbing), in
8850 		 * which case the IPMP meta-interface we need will be missing.
8851 		 * If so, kick the phyint out of the group.
8852 		 */
8853 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8854 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8855 			ipmp_illgrp_t	*illg;
8856 
8857 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8858 			if (illg == NULL)
8859 				ipmp_phyint_leave_grp(ill->ill_phyint);
8860 			else
8861 				ipmp_ill_join_illgrp(ill, illg);
8862 		}
8863 
8864 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8865 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8866 		else
8867 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8868 		break;
8869 	}
8870 	case SIOCLIFADDIF:
8871 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8872 		break;
8873 
8874 	default:
8875 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8876 		break;
8877 	}
8878 }
8879 
8880 /*
8881  * ip_rput_other is called by ip_rput to handle messages modifying the global
8882  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8883  */
8884 /* ARGSUSED */
8885 void
8886 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8887 {
8888 	ill_t		*ill = q->q_ptr;
8889 	struct iocblk	*iocp;
8890 
8891 	ip1dbg(("ip_rput_other "));
8892 	if (ipsq != NULL) {
8893 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8894 		ASSERT(ipsq->ipsq_xop ==
8895 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8896 	}
8897 
8898 	switch (mp->b_datap->db_type) {
8899 	case M_ERROR:
8900 	case M_HANGUP:
8901 		/*
8902 		 * The device has a problem.  We force the ILL down.  It can
8903 		 * be brought up again manually using SIOCSIFFLAGS (via
8904 		 * ifconfig or equivalent).
8905 		 */
8906 		ASSERT(ipsq != NULL);
8907 		if (mp->b_rptr < mp->b_wptr)
8908 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8909 		if (ill->ill_error == 0)
8910 			ill->ill_error = ENXIO;
8911 		if (!ill_down_start(q, mp))
8912 			return;
8913 		ipif_all_down_tail(ipsq, q, mp, NULL);
8914 		break;
8915 	case M_IOCNAK: {
8916 		iocp = (struct iocblk *)mp->b_rptr;
8917 
8918 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8919 		/*
8920 		 * If this was the first attempt, turn off the fastpath
8921 		 * probing.
8922 		 */
8923 		mutex_enter(&ill->ill_lock);
8924 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8925 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8926 			mutex_exit(&ill->ill_lock);
8927 			/*
8928 			 * don't flush the nce_t entries: we use them
8929 			 * as an index to the ncec itself.
8930 			 */
8931 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8932 			    ill->ill_name));
8933 		} else {
8934 			mutex_exit(&ill->ill_lock);
8935 		}
8936 		freemsg(mp);
8937 		break;
8938 	}
8939 	default:
8940 		ASSERT(0);
8941 		break;
8942 	}
8943 }
8944 
8945 /*
8946  * Update any source route, record route or timestamp options
8947  * When it fails it has consumed the message and BUMPed the MIB.
8948  */
8949 boolean_t
8950 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8951     ip_recv_attr_t *ira)
8952 {
8953 	ipoptp_t	opts;
8954 	uchar_t		*opt;
8955 	uint8_t		optval;
8956 	uint8_t		optlen;
8957 	ipaddr_t	dst;
8958 	ipaddr_t	ifaddr;
8959 	uint32_t	ts;
8960 	timestruc_t	now;
8961 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
8962 
8963 	ip2dbg(("ip_forward_options\n"));
8964 	dst = ipha->ipha_dst;
8965 	for (optval = ipoptp_first(&opts, ipha);
8966 	    optval != IPOPT_EOL;
8967 	    optval = ipoptp_next(&opts)) {
8968 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8969 		opt = opts.ipoptp_cur;
8970 		optlen = opts.ipoptp_len;
8971 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
8972 		    optval, opts.ipoptp_len));
8973 		switch (optval) {
8974 			uint32_t off;
8975 		case IPOPT_SSRR:
8976 		case IPOPT_LSRR:
8977 			/* Check if adminstratively disabled */
8978 			if (!ipst->ips_ip_forward_src_routed) {
8979 				BUMP_MIB(dst_ill->ill_ip_mib,
8980 				    ipIfStatsForwProhibits);
8981 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8982 				    mp, dst_ill);
8983 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8984 				    ira);
8985 				return (B_FALSE);
8986 			}
8987 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8988 				/*
8989 				 * Must be partial since ip_input_options
8990 				 * checked for strict.
8991 				 */
8992 				break;
8993 			}
8994 			off = opt[IPOPT_OFFSET];
8995 			off--;
8996 		redo_srr:
8997 			if (optlen < IP_ADDR_LEN ||
8998 			    off > optlen - IP_ADDR_LEN) {
8999 				/* End of source route */
9000 				ip1dbg((
9001 				    "ip_forward_options: end of SR\n"));
9002 				break;
9003 			}
9004 			/* Pick a reasonable address on the outbound if */
9005 			ASSERT(dst_ill != NULL);
9006 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9007 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9008 			    NULL) != 0) {
9009 				/* No source! Shouldn't happen */
9010 				ifaddr = INADDR_ANY;
9011 			}
9012 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9013 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9014 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9015 			    ntohl(dst)));
9016 
9017 			/*
9018 			 * Check if our address is present more than
9019 			 * once as consecutive hops in source route.
9020 			 */
9021 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9022 				off += IP_ADDR_LEN;
9023 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9024 				goto redo_srr;
9025 			}
9026 			ipha->ipha_dst = dst;
9027 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9028 			break;
9029 		case IPOPT_RR:
9030 			off = opt[IPOPT_OFFSET];
9031 			off--;
9032 			if (optlen < IP_ADDR_LEN ||
9033 			    off > optlen - IP_ADDR_LEN) {
9034 				/* No more room - ignore */
9035 				ip1dbg((
9036 				    "ip_forward_options: end of RR\n"));
9037 				break;
9038 			}
9039 			/* Pick a reasonable address on the outbound if */
9040 			ASSERT(dst_ill != NULL);
9041 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9042 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9043 			    NULL) != 0) {
9044 				/* No source! Shouldn't happen */
9045 				ifaddr = INADDR_ANY;
9046 			}
9047 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9048 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9049 			break;
9050 		case IPOPT_TS:
9051 			/* Insert timestamp if there is room */
9052 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9053 			case IPOPT_TS_TSONLY:
9054 				off = IPOPT_TS_TIMELEN;
9055 				break;
9056 			case IPOPT_TS_PRESPEC:
9057 			case IPOPT_TS_PRESPEC_RFC791:
9058 				/* Verify that the address matched */
9059 				off = opt[IPOPT_OFFSET] - 1;
9060 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9061 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9062 					/* Not for us */
9063 					break;
9064 				}
9065 				/* FALLTHRU */
9066 			case IPOPT_TS_TSANDADDR:
9067 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9068 				break;
9069 			default:
9070 				/*
9071 				 * ip_*put_options should have already
9072 				 * dropped this packet.
9073 				 */
9074 				cmn_err(CE_PANIC, "ip_forward_options: "
9075 				    "unknown IT - bug in ip_input_options?\n");
9076 				return (B_TRUE);	/* Keep "lint" happy */
9077 			}
9078 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9079 				/* Increase overflow counter */
9080 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9081 				opt[IPOPT_POS_OV_FLG] =
9082 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9083 				    (off << 4));
9084 				break;
9085 			}
9086 			off = opt[IPOPT_OFFSET] - 1;
9087 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9088 			case IPOPT_TS_PRESPEC:
9089 			case IPOPT_TS_PRESPEC_RFC791:
9090 			case IPOPT_TS_TSANDADDR:
9091 				/* Pick a reasonable addr on the outbound if */
9092 				ASSERT(dst_ill != NULL);
9093 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9094 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9095 				    NULL, NULL) != 0) {
9096 					/* No source! Shouldn't happen */
9097 					ifaddr = INADDR_ANY;
9098 				}
9099 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9100 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9101 				/* FALLTHRU */
9102 			case IPOPT_TS_TSONLY:
9103 				off = opt[IPOPT_OFFSET] - 1;
9104 				/* Compute # of milliseconds since midnight */
9105 				gethrestime(&now);
9106 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9107 				    now.tv_nsec / (NANOSEC / MILLISEC);
9108 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9109 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9110 				break;
9111 			}
9112 			break;
9113 		}
9114 	}
9115 	return (B_TRUE);
9116 }
9117 
9118 /*
9119  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9120  * returns 'true' if there are still fragments left on the queue, in
9121  * which case we restart the timer.
9122  */
9123 void
9124 ill_frag_timer(void *arg)
9125 {
9126 	ill_t	*ill = (ill_t *)arg;
9127 	boolean_t frag_pending;
9128 	ip_stack_t *ipst = ill->ill_ipst;
9129 	time_t	timeout;
9130 
9131 	mutex_enter(&ill->ill_lock);
9132 	ASSERT(!ill->ill_fragtimer_executing);
9133 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9134 		ill->ill_frag_timer_id = 0;
9135 		mutex_exit(&ill->ill_lock);
9136 		return;
9137 	}
9138 	ill->ill_fragtimer_executing = 1;
9139 	mutex_exit(&ill->ill_lock);
9140 
9141 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9142 	    ipst->ips_ip_reassembly_timeout);
9143 
9144 	frag_pending = ill_frag_timeout(ill, timeout);
9145 
9146 	/*
9147 	 * Restart the timer, if we have fragments pending or if someone
9148 	 * wanted us to be scheduled again.
9149 	 */
9150 	mutex_enter(&ill->ill_lock);
9151 	ill->ill_fragtimer_executing = 0;
9152 	ill->ill_frag_timer_id = 0;
9153 	if (frag_pending || ill->ill_fragtimer_needrestart)
9154 		ill_frag_timer_start(ill);
9155 	mutex_exit(&ill->ill_lock);
9156 }
9157 
9158 void
9159 ill_frag_timer_start(ill_t *ill)
9160 {
9161 	ip_stack_t *ipst = ill->ill_ipst;
9162 	clock_t	timeo_ms;
9163 
9164 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9165 
9166 	/* If the ill is closing or opening don't proceed */
9167 	if (ill->ill_state_flags & ILL_CONDEMNED)
9168 		return;
9169 
9170 	if (ill->ill_fragtimer_executing) {
9171 		/*
9172 		 * ill_frag_timer is currently executing. Just record the
9173 		 * the fact that we want the timer to be restarted.
9174 		 * ill_frag_timer will post a timeout before it returns,
9175 		 * ensuring it will be called again.
9176 		 */
9177 		ill->ill_fragtimer_needrestart = 1;
9178 		return;
9179 	}
9180 
9181 	if (ill->ill_frag_timer_id == 0) {
9182 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9183 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9184 
9185 		/*
9186 		 * The timer is neither running nor is the timeout handler
9187 		 * executing. Post a timeout so that ill_frag_timer will be
9188 		 * called
9189 		 */
9190 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9191 		    MSEC_TO_TICK(timeo_ms >> 1));
9192 		ill->ill_fragtimer_needrestart = 0;
9193 	}
9194 }
9195 
9196 /*
9197  * Update any source route, record route or timestamp options.
9198  * Check that we are at end of strict source route.
9199  * The options have already been checked for sanity in ip_input_options().
9200  */
9201 boolean_t
9202 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9203 {
9204 	ipoptp_t	opts;
9205 	uchar_t		*opt;
9206 	uint8_t		optval;
9207 	uint8_t		optlen;
9208 	ipaddr_t	dst;
9209 	ipaddr_t	ifaddr;
9210 	uint32_t	ts;
9211 	timestruc_t	now;
9212 	ill_t		*ill = ira->ira_ill;
9213 	ip_stack_t	*ipst = ill->ill_ipst;
9214 
9215 	ip2dbg(("ip_input_local_options\n"));
9216 
9217 	for (optval = ipoptp_first(&opts, ipha);
9218 	    optval != IPOPT_EOL;
9219 	    optval = ipoptp_next(&opts)) {
9220 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9221 		opt = opts.ipoptp_cur;
9222 		optlen = opts.ipoptp_len;
9223 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9224 		    optval, optlen));
9225 		switch (optval) {
9226 			uint32_t off;
9227 		case IPOPT_SSRR:
9228 		case IPOPT_LSRR:
9229 			off = opt[IPOPT_OFFSET];
9230 			off--;
9231 			if (optlen < IP_ADDR_LEN ||
9232 			    off > optlen - IP_ADDR_LEN) {
9233 				/* End of source route */
9234 				ip1dbg(("ip_input_local_options: end of SR\n"));
9235 				break;
9236 			}
9237 			/*
9238 			 * This will only happen if two consecutive entries
9239 			 * in the source route contains our address or if
9240 			 * it is a packet with a loose source route which
9241 			 * reaches us before consuming the whole source route
9242 			 */
9243 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9244 			if (optval == IPOPT_SSRR) {
9245 				goto bad_src_route;
9246 			}
9247 			/*
9248 			 * Hack: instead of dropping the packet truncate the
9249 			 * source route to what has been used by filling the
9250 			 * rest with IPOPT_NOP.
9251 			 */
9252 			opt[IPOPT_OLEN] = (uint8_t)off;
9253 			while (off < optlen) {
9254 				opt[off++] = IPOPT_NOP;
9255 			}
9256 			break;
9257 		case IPOPT_RR:
9258 			off = opt[IPOPT_OFFSET];
9259 			off--;
9260 			if (optlen < IP_ADDR_LEN ||
9261 			    off > optlen - IP_ADDR_LEN) {
9262 				/* No more room - ignore */
9263 				ip1dbg((
9264 				    "ip_input_local_options: end of RR\n"));
9265 				break;
9266 			}
9267 			/* Pick a reasonable address on the outbound if */
9268 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9269 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9270 			    NULL) != 0) {
9271 				/* No source! Shouldn't happen */
9272 				ifaddr = INADDR_ANY;
9273 			}
9274 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9275 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9276 			break;
9277 		case IPOPT_TS:
9278 			/* Insert timestamp if there is romm */
9279 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9280 			case IPOPT_TS_TSONLY:
9281 				off = IPOPT_TS_TIMELEN;
9282 				break;
9283 			case IPOPT_TS_PRESPEC:
9284 			case IPOPT_TS_PRESPEC_RFC791:
9285 				/* Verify that the address matched */
9286 				off = opt[IPOPT_OFFSET] - 1;
9287 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9288 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9289 					/* Not for us */
9290 					break;
9291 				}
9292 				/* FALLTHRU */
9293 			case IPOPT_TS_TSANDADDR:
9294 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9295 				break;
9296 			default:
9297 				/*
9298 				 * ip_*put_options should have already
9299 				 * dropped this packet.
9300 				 */
9301 				cmn_err(CE_PANIC, "ip_input_local_options: "
9302 				    "unknown IT - bug in ip_input_options?\n");
9303 				return (B_TRUE);	/* Keep "lint" happy */
9304 			}
9305 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9306 				/* Increase overflow counter */
9307 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9308 				opt[IPOPT_POS_OV_FLG] =
9309 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9310 				    (off << 4));
9311 				break;
9312 			}
9313 			off = opt[IPOPT_OFFSET] - 1;
9314 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9315 			case IPOPT_TS_PRESPEC:
9316 			case IPOPT_TS_PRESPEC_RFC791:
9317 			case IPOPT_TS_TSANDADDR:
9318 				/* Pick a reasonable addr on the outbound if */
9319 				if (ip_select_source_v4(ill, INADDR_ANY,
9320 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9321 				    &ifaddr, NULL, NULL) != 0) {
9322 					/* No source! Shouldn't happen */
9323 					ifaddr = INADDR_ANY;
9324 				}
9325 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9326 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9327 				/* FALLTHRU */
9328 			case IPOPT_TS_TSONLY:
9329 				off = opt[IPOPT_OFFSET] - 1;
9330 				/* Compute # of milliseconds since midnight */
9331 				gethrestime(&now);
9332 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9333 				    now.tv_nsec / (NANOSEC / MILLISEC);
9334 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9335 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9336 				break;
9337 			}
9338 			break;
9339 		}
9340 	}
9341 	return (B_TRUE);
9342 
9343 bad_src_route:
9344 	/* make sure we clear any indication of a hardware checksum */
9345 	DB_CKSUMFLAGS(mp) = 0;
9346 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9347 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9348 	return (B_FALSE);
9349 
9350 }
9351 
9352 /*
9353  * Process IP options in an inbound packet.  Always returns the nexthop.
9354  * Normally this is the passed in nexthop, but if there is an option
9355  * that effects the nexthop (such as a source route) that will be returned.
9356  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9357  * and mp freed.
9358  */
9359 ipaddr_t
9360 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9361     ip_recv_attr_t *ira, int *errorp)
9362 {
9363 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9364 	ipoptp_t	opts;
9365 	uchar_t		*opt;
9366 	uint8_t		optval;
9367 	uint8_t		optlen;
9368 	intptr_t	code = 0;
9369 	ire_t		*ire;
9370 
9371 	ip2dbg(("ip_input_options\n"));
9372 	*errorp = 0;
9373 	for (optval = ipoptp_first(&opts, ipha);
9374 	    optval != IPOPT_EOL;
9375 	    optval = ipoptp_next(&opts)) {
9376 		opt = opts.ipoptp_cur;
9377 		optlen = opts.ipoptp_len;
9378 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9379 		    optval, optlen));
9380 		/*
9381 		 * Note: we need to verify the checksum before we
9382 		 * modify anything thus this routine only extracts the next
9383 		 * hop dst from any source route.
9384 		 */
9385 		switch (optval) {
9386 			uint32_t off;
9387 		case IPOPT_SSRR:
9388 		case IPOPT_LSRR:
9389 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9390 				if (optval == IPOPT_SSRR) {
9391 					ip1dbg(("ip_input_options: not next"
9392 					    " strict source route 0x%x\n",
9393 					    ntohl(dst)));
9394 					code = (char *)&ipha->ipha_dst -
9395 					    (char *)ipha;
9396 					goto param_prob; /* RouterReq's */
9397 				}
9398 				ip2dbg(("ip_input_options: "
9399 				    "not next source route 0x%x\n",
9400 				    ntohl(dst)));
9401 				break;
9402 			}
9403 
9404 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9405 				ip1dbg((
9406 				    "ip_input_options: bad option offset\n"));
9407 				code = (char *)&opt[IPOPT_OLEN] -
9408 				    (char *)ipha;
9409 				goto param_prob;
9410 			}
9411 			off = opt[IPOPT_OFFSET];
9412 			off--;
9413 		redo_srr:
9414 			if (optlen < IP_ADDR_LEN ||
9415 			    off > optlen - IP_ADDR_LEN) {
9416 				/* End of source route */
9417 				ip1dbg(("ip_input_options: end of SR\n"));
9418 				break;
9419 			}
9420 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9421 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9422 			    ntohl(dst)));
9423 
9424 			/*
9425 			 * Check if our address is present more than
9426 			 * once as consecutive hops in source route.
9427 			 * XXX verify per-interface ip_forwarding
9428 			 * for source route?
9429 			 */
9430 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9431 				off += IP_ADDR_LEN;
9432 				goto redo_srr;
9433 			}
9434 
9435 			if (dst == htonl(INADDR_LOOPBACK)) {
9436 				ip1dbg(("ip_input_options: loopback addr in "
9437 				    "source route!\n"));
9438 				goto bad_src_route;
9439 			}
9440 			/*
9441 			 * For strict: verify that dst is directly
9442 			 * reachable.
9443 			 */
9444 			if (optval == IPOPT_SSRR) {
9445 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9446 				    IRE_INTERFACE, NULL, ALL_ZONES,
9447 				    ira->ira_tsl,
9448 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9449 				    NULL);
9450 				if (ire == NULL) {
9451 					ip1dbg(("ip_input_options: SSRR not "
9452 					    "directly reachable: 0x%x\n",
9453 					    ntohl(dst)));
9454 					goto bad_src_route;
9455 				}
9456 				ire_refrele(ire);
9457 			}
9458 			/*
9459 			 * Defer update of the offset and the record route
9460 			 * until the packet is forwarded.
9461 			 */
9462 			break;
9463 		case IPOPT_RR:
9464 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9465 				ip1dbg((
9466 				    "ip_input_options: bad option offset\n"));
9467 				code = (char *)&opt[IPOPT_OLEN] -
9468 				    (char *)ipha;
9469 				goto param_prob;
9470 			}
9471 			break;
9472 		case IPOPT_TS:
9473 			/*
9474 			 * Verify that length >= 5 and that there is either
9475 			 * room for another timestamp or that the overflow
9476 			 * counter is not maxed out.
9477 			 */
9478 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9479 			if (optlen < IPOPT_MINLEN_IT) {
9480 				goto param_prob;
9481 			}
9482 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9483 				ip1dbg((
9484 				    "ip_input_options: bad option offset\n"));
9485 				code = (char *)&opt[IPOPT_OFFSET] -
9486 				    (char *)ipha;
9487 				goto param_prob;
9488 			}
9489 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9490 			case IPOPT_TS_TSONLY:
9491 				off = IPOPT_TS_TIMELEN;
9492 				break;
9493 			case IPOPT_TS_TSANDADDR:
9494 			case IPOPT_TS_PRESPEC:
9495 			case IPOPT_TS_PRESPEC_RFC791:
9496 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9497 				break;
9498 			default:
9499 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9500 				    (char *)ipha;
9501 				goto param_prob;
9502 			}
9503 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9504 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9505 				/*
9506 				 * No room and the overflow counter is 15
9507 				 * already.
9508 				 */
9509 				goto param_prob;
9510 			}
9511 			break;
9512 		}
9513 	}
9514 
9515 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9516 		return (dst);
9517 	}
9518 
9519 	ip1dbg(("ip_input_options: error processing IP options."));
9520 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9521 
9522 param_prob:
9523 	/* make sure we clear any indication of a hardware checksum */
9524 	DB_CKSUMFLAGS(mp) = 0;
9525 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9526 	icmp_param_problem(mp, (uint8_t)code, ira);
9527 	*errorp = -1;
9528 	return (dst);
9529 
9530 bad_src_route:
9531 	/* make sure we clear any indication of a hardware checksum */
9532 	DB_CKSUMFLAGS(mp) = 0;
9533 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9534 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9535 	*errorp = -1;
9536 	return (dst);
9537 }
9538 
9539 /*
9540  * IP & ICMP info in >=14 msg's ...
9541  *  - ip fixed part (mib2_ip_t)
9542  *  - icmp fixed part (mib2_icmp_t)
9543  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9544  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9545  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9546  *  - ipRouteAttributeTable (ip 102)	labeled routes
9547  *  - ip multicast membership (ip_member_t)
9548  *  - ip multicast source filtering (ip_grpsrc_t)
9549  *  - igmp fixed part (struct igmpstat)
9550  *  - multicast routing stats (struct mrtstat)
9551  *  - multicast routing vifs (array of struct vifctl)
9552  *  - multicast routing routes (array of struct mfcctl)
9553  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9554  *					One per ill plus one generic
9555  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9556  *					One per ill plus one generic
9557  *  - ipv6RouteEntry			all IPv6 IREs
9558  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9559  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9560  *  - ipv6AddrEntry			all IPv6 ipifs
9561  *  - ipv6 multicast membership (ipv6_member_t)
9562  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9563  *
9564  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9565  * already filled in by the caller.
9566  * If legacy_req is true then MIB structures needs to be truncated to their
9567  * legacy sizes before being returned.
9568  * Return value of 0 indicates that no messages were sent and caller
9569  * should free mpctl.
9570  */
9571 int
9572 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9573 {
9574 	ip_stack_t *ipst;
9575 	sctp_stack_t *sctps;
9576 
9577 	if (q->q_next != NULL) {
9578 		ipst = ILLQ_TO_IPST(q);
9579 	} else {
9580 		ipst = CONNQ_TO_IPST(q);
9581 	}
9582 	ASSERT(ipst != NULL);
9583 	sctps = ipst->ips_netstack->netstack_sctp;
9584 
9585 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9586 		return (0);
9587 	}
9588 
9589 	/*
9590 	 * For the purposes of the (broken) packet shell use
9591 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9592 	 * to make TCP and UDP appear first in the list of mib items.
9593 	 * TBD: We could expand this and use it in netstat so that
9594 	 * the kernel doesn't have to produce large tables (connections,
9595 	 * routes, etc) when netstat only wants the statistics or a particular
9596 	 * table.
9597 	 */
9598 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9599 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9600 			return (1);
9601 		}
9602 	}
9603 
9604 	if (level != MIB2_TCP) {
9605 		if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9606 			return (1);
9607 		}
9608 	}
9609 
9610 	if (level != MIB2_UDP) {
9611 		if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9612 			return (1);
9613 		}
9614 	}
9615 
9616 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9617 	    ipst, legacy_req)) == NULL) {
9618 		return (1);
9619 	}
9620 
9621 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9622 	    legacy_req)) == NULL) {
9623 		return (1);
9624 	}
9625 
9626 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9627 		return (1);
9628 	}
9629 
9630 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9631 		return (1);
9632 	}
9633 
9634 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9635 		return (1);
9636 	}
9637 
9638 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9639 		return (1);
9640 	}
9641 
9642 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9643 	    legacy_req)) == NULL) {
9644 		return (1);
9645 	}
9646 
9647 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9648 	    legacy_req)) == NULL) {
9649 		return (1);
9650 	}
9651 
9652 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9653 		return (1);
9654 	}
9655 
9656 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9657 		return (1);
9658 	}
9659 
9660 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9661 		return (1);
9662 	}
9663 
9664 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9665 		return (1);
9666 	}
9667 
9668 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9669 		return (1);
9670 	}
9671 
9672 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9673 		return (1);
9674 	}
9675 
9676 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9677 	if (mpctl == NULL)
9678 		return (1);
9679 
9680 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9681 	if (mpctl == NULL)
9682 		return (1);
9683 
9684 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9685 		return (1);
9686 	}
9687 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9688 		return (1);
9689 	}
9690 	freemsg(mpctl);
9691 	return (1);
9692 }
9693 
9694 /* Get global (legacy) IPv4 statistics */
9695 static mblk_t *
9696 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9697     ip_stack_t *ipst, boolean_t legacy_req)
9698 {
9699 	mib2_ip_t		old_ip_mib;
9700 	struct opthdr		*optp;
9701 	mblk_t			*mp2ctl;
9702 	mib2_ipAddrEntry_t	mae;
9703 
9704 	/*
9705 	 * make a copy of the original message
9706 	 */
9707 	mp2ctl = copymsg(mpctl);
9708 
9709 	/* fixed length IP structure... */
9710 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9711 	optp->level = MIB2_IP;
9712 	optp->name = 0;
9713 	SET_MIB(old_ip_mib.ipForwarding,
9714 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9715 	SET_MIB(old_ip_mib.ipDefaultTTL,
9716 	    (uint32_t)ipst->ips_ip_def_ttl);
9717 	SET_MIB(old_ip_mib.ipReasmTimeout,
9718 	    ipst->ips_ip_reassembly_timeout);
9719 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9720 	    (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9721 	    sizeof (mib2_ipAddrEntry_t));
9722 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9723 	    sizeof (mib2_ipRouteEntry_t));
9724 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9725 	    sizeof (mib2_ipNetToMediaEntry_t));
9726 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9727 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9728 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9729 	    sizeof (mib2_ipAttributeEntry_t));
9730 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9731 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9732 
9733 	/*
9734 	 * Grab the statistics from the new IP MIB
9735 	 */
9736 	SET_MIB(old_ip_mib.ipInReceives,
9737 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9738 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9739 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9740 	SET_MIB(old_ip_mib.ipForwDatagrams,
9741 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9742 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9743 	    ipmib->ipIfStatsInUnknownProtos);
9744 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9745 	SET_MIB(old_ip_mib.ipInDelivers,
9746 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9747 	SET_MIB(old_ip_mib.ipOutRequests,
9748 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9749 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9750 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9751 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9752 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9753 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9754 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9755 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9756 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9757 
9758 	/* ipRoutingDiscards is not being used */
9759 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9760 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9761 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9762 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9763 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9764 	    ipmib->ipIfStatsReasmDuplicates);
9765 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9766 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9767 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9768 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9769 	SET_MIB(old_ip_mib.rawipInOverflows,
9770 	    ipmib->rawipIfStatsInOverflows);
9771 
9772 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9773 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9774 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9775 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9776 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9777 	    ipmib->ipIfStatsOutSwitchIPVersion);
9778 
9779 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9780 	    (int)sizeof (old_ip_mib))) {
9781 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9782 		    (uint_t)sizeof (old_ip_mib)));
9783 	}
9784 
9785 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9786 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9787 	    (int)optp->level, (int)optp->name, (int)optp->len));
9788 	qreply(q, mpctl);
9789 	return (mp2ctl);
9790 }
9791 
9792 /* Per interface IPv4 statistics */
9793 static mblk_t *
9794 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9795     boolean_t legacy_req)
9796 {
9797 	struct opthdr		*optp;
9798 	mblk_t			*mp2ctl;
9799 	ill_t			*ill;
9800 	ill_walk_context_t	ctx;
9801 	mblk_t			*mp_tail = NULL;
9802 	mib2_ipIfStatsEntry_t	global_ip_mib;
9803 	mib2_ipAddrEntry_t	mae;
9804 
9805 	/*
9806 	 * Make a copy of the original message
9807 	 */
9808 	mp2ctl = copymsg(mpctl);
9809 
9810 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9811 	optp->level = MIB2_IP;
9812 	optp->name = MIB2_IP_TRAFFIC_STATS;
9813 	/* Include "unknown interface" ip_mib */
9814 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9815 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9816 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9817 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9818 	    (ipst->ips_ip_forwarding ? 1 : 2));
9819 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9820 	    (uint32_t)ipst->ips_ip_def_ttl);
9821 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9822 	    sizeof (mib2_ipIfStatsEntry_t));
9823 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9824 	    sizeof (mib2_ipAddrEntry_t));
9825 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9826 	    sizeof (mib2_ipRouteEntry_t));
9827 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9828 	    sizeof (mib2_ipNetToMediaEntry_t));
9829 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9830 	    sizeof (ip_member_t));
9831 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9832 	    sizeof (ip_grpsrc_t));
9833 
9834 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9835 
9836 	if (legacy_req) {
9837 		SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9838 		    LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9839 	}
9840 
9841 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9842 	    (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9843 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9844 		    "failed to allocate %u bytes\n",
9845 		    (uint_t)sizeof (global_ip_mib)));
9846 	}
9847 
9848 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9849 	ill = ILL_START_WALK_V4(&ctx, ipst);
9850 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9851 		ill->ill_ip_mib->ipIfStatsIfIndex =
9852 		    ill->ill_phyint->phyint_ifindex;
9853 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9854 		    (ipst->ips_ip_forwarding ? 1 : 2));
9855 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9856 		    (uint32_t)ipst->ips_ip_def_ttl);
9857 
9858 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9859 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9860 		    (char *)ill->ill_ip_mib,
9861 		    (int)sizeof (*ill->ill_ip_mib))) {
9862 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9863 			    "failed to allocate %u bytes\n",
9864 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9865 		}
9866 	}
9867 	rw_exit(&ipst->ips_ill_g_lock);
9868 
9869 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9870 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9871 	    "level %d, name %d, len %d\n",
9872 	    (int)optp->level, (int)optp->name, (int)optp->len));
9873 	qreply(q, mpctl);
9874 
9875 	if (mp2ctl == NULL)
9876 		return (NULL);
9877 
9878 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9879 	    legacy_req));
9880 }
9881 
9882 /* Global IPv4 ICMP statistics */
9883 static mblk_t *
9884 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9885 {
9886 	struct opthdr		*optp;
9887 	mblk_t			*mp2ctl;
9888 
9889 	/*
9890 	 * Make a copy of the original message
9891 	 */
9892 	mp2ctl = copymsg(mpctl);
9893 
9894 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9895 	optp->level = MIB2_ICMP;
9896 	optp->name = 0;
9897 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9898 	    (int)sizeof (ipst->ips_icmp_mib))) {
9899 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9900 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9901 	}
9902 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9903 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9904 	    (int)optp->level, (int)optp->name, (int)optp->len));
9905 	qreply(q, mpctl);
9906 	return (mp2ctl);
9907 }
9908 
9909 /* Global IPv4 IGMP statistics */
9910 static mblk_t *
9911 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9912 {
9913 	struct opthdr		*optp;
9914 	mblk_t			*mp2ctl;
9915 
9916 	/*
9917 	 * make a copy of the original message
9918 	 */
9919 	mp2ctl = copymsg(mpctl);
9920 
9921 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9922 	optp->level = EXPER_IGMP;
9923 	optp->name = 0;
9924 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9925 	    (int)sizeof (ipst->ips_igmpstat))) {
9926 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9927 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9928 	}
9929 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9930 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9931 	    (int)optp->level, (int)optp->name, (int)optp->len));
9932 	qreply(q, mpctl);
9933 	return (mp2ctl);
9934 }
9935 
9936 /* Global IPv4 Multicast Routing statistics */
9937 static mblk_t *
9938 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9939 {
9940 	struct opthdr		*optp;
9941 	mblk_t			*mp2ctl;
9942 
9943 	/*
9944 	 * make a copy of the original message
9945 	 */
9946 	mp2ctl = copymsg(mpctl);
9947 
9948 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9949 	optp->level = EXPER_DVMRP;
9950 	optp->name = 0;
9951 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9952 		ip0dbg(("ip_mroute_stats: failed\n"));
9953 	}
9954 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9955 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9956 	    (int)optp->level, (int)optp->name, (int)optp->len));
9957 	qreply(q, mpctl);
9958 	return (mp2ctl);
9959 }
9960 
9961 /* IPv4 address information */
9962 static mblk_t *
9963 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9964     boolean_t legacy_req)
9965 {
9966 	struct opthdr		*optp;
9967 	mblk_t			*mp2ctl;
9968 	mblk_t			*mp_tail = NULL;
9969 	ill_t			*ill;
9970 	ipif_t			*ipif;
9971 	uint_t			bitval;
9972 	mib2_ipAddrEntry_t	mae;
9973 	size_t			mae_size;
9974 	zoneid_t		zoneid;
9975 	ill_walk_context_t	ctx;
9976 
9977 	/*
9978 	 * make a copy of the original message
9979 	 */
9980 	mp2ctl = copymsg(mpctl);
9981 
9982 	mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9983 	    sizeof (mib2_ipAddrEntry_t);
9984 
9985 	/* ipAddrEntryTable */
9986 
9987 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9988 	optp->level = MIB2_IP;
9989 	optp->name = MIB2_IP_ADDR;
9990 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9991 
9992 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9993 	ill = ILL_START_WALK_V4(&ctx, ipst);
9994 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9995 		for (ipif = ill->ill_ipif; ipif != NULL;
9996 		    ipif = ipif->ipif_next) {
9997 			if (ipif->ipif_zoneid != zoneid &&
9998 			    ipif->ipif_zoneid != ALL_ZONES)
9999 				continue;
10000 			/* Sum of count from dead IRE_LO* and our current */
10001 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10002 			if (ipif->ipif_ire_local != NULL) {
10003 				mae.ipAdEntInfo.ae_ibcnt +=
10004 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10005 			}
10006 			mae.ipAdEntInfo.ae_obcnt = 0;
10007 			mae.ipAdEntInfo.ae_focnt = 0;
10008 
10009 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10010 			    OCTET_LENGTH);
10011 			mae.ipAdEntIfIndex.o_length =
10012 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10013 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10014 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10015 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10016 			mae.ipAdEntInfo.ae_subnet_len =
10017 			    ip_mask_to_plen(ipif->ipif_net_mask);
10018 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10019 			for (bitval = 1;
10020 			    bitval &&
10021 			    !(bitval & ipif->ipif_brd_addr);
10022 			    bitval <<= 1)
10023 				noop;
10024 			mae.ipAdEntBcastAddr = bitval;
10025 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10026 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10027 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10028 			mae.ipAdEntInfo.ae_broadcast_addr =
10029 			    ipif->ipif_brd_addr;
10030 			mae.ipAdEntInfo.ae_pp_dst_addr =
10031 			    ipif->ipif_pp_dst_addr;
10032 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10033 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10034 			mae.ipAdEntRetransmitTime =
10035 			    ill->ill_reachable_retrans_time;
10036 
10037 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10038 			    (char *)&mae, (int)mae_size)) {
10039 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10040 				    "allocate %u bytes\n", (uint_t)mae_size));
10041 			}
10042 		}
10043 	}
10044 	rw_exit(&ipst->ips_ill_g_lock);
10045 
10046 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10047 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10048 	    (int)optp->level, (int)optp->name, (int)optp->len));
10049 	qreply(q, mpctl);
10050 	return (mp2ctl);
10051 }
10052 
10053 /* IPv6 address information */
10054 static mblk_t *
10055 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10056     boolean_t legacy_req)
10057 {
10058 	struct opthdr		*optp;
10059 	mblk_t			*mp2ctl;
10060 	mblk_t			*mp_tail = NULL;
10061 	ill_t			*ill;
10062 	ipif_t			*ipif;
10063 	mib2_ipv6AddrEntry_t	mae6;
10064 	size_t			mae6_size;
10065 	zoneid_t		zoneid;
10066 	ill_walk_context_t	ctx;
10067 
10068 	/*
10069 	 * make a copy of the original message
10070 	 */
10071 	mp2ctl = copymsg(mpctl);
10072 
10073 	mae6_size = (legacy_req) ?
10074 	    LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10075 	    sizeof (mib2_ipv6AddrEntry_t);
10076 
10077 	/* ipv6AddrEntryTable */
10078 
10079 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10080 	optp->level = MIB2_IP6;
10081 	optp->name = MIB2_IP6_ADDR;
10082 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10083 
10084 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10085 	ill = ILL_START_WALK_V6(&ctx, ipst);
10086 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10087 		for (ipif = ill->ill_ipif; ipif != NULL;
10088 		    ipif = ipif->ipif_next) {
10089 			if (ipif->ipif_zoneid != zoneid &&
10090 			    ipif->ipif_zoneid != ALL_ZONES)
10091 				continue;
10092 			/* Sum of count from dead IRE_LO* and our current */
10093 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10094 			if (ipif->ipif_ire_local != NULL) {
10095 				mae6.ipv6AddrInfo.ae_ibcnt +=
10096 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10097 			}
10098 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10099 			mae6.ipv6AddrInfo.ae_focnt = 0;
10100 
10101 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10102 			    OCTET_LENGTH);
10103 			mae6.ipv6AddrIfIndex.o_length =
10104 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10105 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10106 			mae6.ipv6AddrPfxLength =
10107 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10108 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10109 			mae6.ipv6AddrInfo.ae_subnet_len =
10110 			    mae6.ipv6AddrPfxLength;
10111 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10112 
10113 			/* Type: stateless(1), stateful(2), unknown(3) */
10114 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10115 				mae6.ipv6AddrType = 1;
10116 			else
10117 				mae6.ipv6AddrType = 2;
10118 			/* Anycast: true(1), false(2) */
10119 			if (ipif->ipif_flags & IPIF_ANYCAST)
10120 				mae6.ipv6AddrAnycastFlag = 1;
10121 			else
10122 				mae6.ipv6AddrAnycastFlag = 2;
10123 
10124 			/*
10125 			 * Address status: preferred(1), deprecated(2),
10126 			 * invalid(3), inaccessible(4), unknown(5)
10127 			 */
10128 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10129 				mae6.ipv6AddrStatus = 3;
10130 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10131 				mae6.ipv6AddrStatus = 2;
10132 			else
10133 				mae6.ipv6AddrStatus = 1;
10134 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10135 			mae6.ipv6AddrInfo.ae_metric  =
10136 			    ipif->ipif_ill->ill_metric;
10137 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10138 			    ipif->ipif_v6pp_dst_addr;
10139 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10140 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10141 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10142 			mae6.ipv6AddrIdentifier = ill->ill_token;
10143 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10144 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10145 			mae6.ipv6AddrRetransmitTime =
10146 			    ill->ill_reachable_retrans_time;
10147 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10148 			    (char *)&mae6, (int)mae6_size)) {
10149 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10150 				    "allocate %u bytes\n",
10151 				    (uint_t)mae6_size));
10152 			}
10153 		}
10154 	}
10155 	rw_exit(&ipst->ips_ill_g_lock);
10156 
10157 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10158 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10159 	    (int)optp->level, (int)optp->name, (int)optp->len));
10160 	qreply(q, mpctl);
10161 	return (mp2ctl);
10162 }
10163 
10164 /* IPv4 multicast group membership. */
10165 static mblk_t *
10166 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10167 {
10168 	struct opthdr		*optp;
10169 	mblk_t			*mp2ctl;
10170 	ill_t			*ill;
10171 	ipif_t			*ipif;
10172 	ilm_t			*ilm;
10173 	ip_member_t		ipm;
10174 	mblk_t			*mp_tail = NULL;
10175 	ill_walk_context_t	ctx;
10176 	zoneid_t		zoneid;
10177 
10178 	/*
10179 	 * make a copy of the original message
10180 	 */
10181 	mp2ctl = copymsg(mpctl);
10182 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10183 
10184 	/* ipGroupMember table */
10185 	optp = (struct opthdr *)&mpctl->b_rptr[
10186 	    sizeof (struct T_optmgmt_ack)];
10187 	optp->level = MIB2_IP;
10188 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10189 
10190 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10191 	ill = ILL_START_WALK_V4(&ctx, ipst);
10192 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10193 		/* Make sure the ill isn't going away. */
10194 		if (!ill_check_and_refhold(ill))
10195 			continue;
10196 		rw_exit(&ipst->ips_ill_g_lock);
10197 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10198 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10199 			if (ilm->ilm_zoneid != zoneid &&
10200 			    ilm->ilm_zoneid != ALL_ZONES)
10201 				continue;
10202 
10203 			/* Is there an ipif for ilm_ifaddr? */
10204 			for (ipif = ill->ill_ipif; ipif != NULL;
10205 			    ipif = ipif->ipif_next) {
10206 				if (!IPIF_IS_CONDEMNED(ipif) &&
10207 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10208 				    ilm->ilm_ifaddr != INADDR_ANY)
10209 					break;
10210 			}
10211 			if (ipif != NULL) {
10212 				ipif_get_name(ipif,
10213 				    ipm.ipGroupMemberIfIndex.o_bytes,
10214 				    OCTET_LENGTH);
10215 			} else {
10216 				ill_get_name(ill,
10217 				    ipm.ipGroupMemberIfIndex.o_bytes,
10218 				    OCTET_LENGTH);
10219 			}
10220 			ipm.ipGroupMemberIfIndex.o_length =
10221 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10222 
10223 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10224 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10225 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10226 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10227 			    (char *)&ipm, (int)sizeof (ipm))) {
10228 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10229 				    "failed to allocate %u bytes\n",
10230 				    (uint_t)sizeof (ipm)));
10231 			}
10232 		}
10233 		rw_exit(&ill->ill_mcast_lock);
10234 		ill_refrele(ill);
10235 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10236 	}
10237 	rw_exit(&ipst->ips_ill_g_lock);
10238 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10239 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10240 	    (int)optp->level, (int)optp->name, (int)optp->len));
10241 	qreply(q, mpctl);
10242 	return (mp2ctl);
10243 }
10244 
10245 /* IPv6 multicast group membership. */
10246 static mblk_t *
10247 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10248 {
10249 	struct opthdr		*optp;
10250 	mblk_t			*mp2ctl;
10251 	ill_t			*ill;
10252 	ilm_t			*ilm;
10253 	ipv6_member_t		ipm6;
10254 	mblk_t			*mp_tail = NULL;
10255 	ill_walk_context_t	ctx;
10256 	zoneid_t		zoneid;
10257 
10258 	/*
10259 	 * make a copy of the original message
10260 	 */
10261 	mp2ctl = copymsg(mpctl);
10262 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10263 
10264 	/* ip6GroupMember table */
10265 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10266 	optp->level = MIB2_IP6;
10267 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10268 
10269 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10270 	ill = ILL_START_WALK_V6(&ctx, ipst);
10271 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10272 		/* Make sure the ill isn't going away. */
10273 		if (!ill_check_and_refhold(ill))
10274 			continue;
10275 		rw_exit(&ipst->ips_ill_g_lock);
10276 		/*
10277 		 * Normally we don't have any members on under IPMP interfaces.
10278 		 * We report them as a debugging aid.
10279 		 */
10280 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10281 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10282 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10283 			if (ilm->ilm_zoneid != zoneid &&
10284 			    ilm->ilm_zoneid != ALL_ZONES)
10285 				continue;	/* not this zone */
10286 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10287 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10288 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10289 			if (!snmp_append_data2(mpctl->b_cont,
10290 			    &mp_tail,
10291 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10292 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10293 				    "failed to allocate %u bytes\n",
10294 				    (uint_t)sizeof (ipm6)));
10295 			}
10296 		}
10297 		rw_exit(&ill->ill_mcast_lock);
10298 		ill_refrele(ill);
10299 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10300 	}
10301 	rw_exit(&ipst->ips_ill_g_lock);
10302 
10303 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10304 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10305 	    (int)optp->level, (int)optp->name, (int)optp->len));
10306 	qreply(q, mpctl);
10307 	return (mp2ctl);
10308 }
10309 
10310 /* IP multicast filtered sources */
10311 static mblk_t *
10312 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10313 {
10314 	struct opthdr		*optp;
10315 	mblk_t			*mp2ctl;
10316 	ill_t			*ill;
10317 	ipif_t			*ipif;
10318 	ilm_t			*ilm;
10319 	ip_grpsrc_t		ips;
10320 	mblk_t			*mp_tail = NULL;
10321 	ill_walk_context_t	ctx;
10322 	zoneid_t		zoneid;
10323 	int			i;
10324 	slist_t			*sl;
10325 
10326 	/*
10327 	 * make a copy of the original message
10328 	 */
10329 	mp2ctl = copymsg(mpctl);
10330 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10331 
10332 	/* ipGroupSource table */
10333 	optp = (struct opthdr *)&mpctl->b_rptr[
10334 	    sizeof (struct T_optmgmt_ack)];
10335 	optp->level = MIB2_IP;
10336 	optp->name = EXPER_IP_GROUP_SOURCES;
10337 
10338 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10339 	ill = ILL_START_WALK_V4(&ctx, ipst);
10340 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10341 		/* Make sure the ill isn't going away. */
10342 		if (!ill_check_and_refhold(ill))
10343 			continue;
10344 		rw_exit(&ipst->ips_ill_g_lock);
10345 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10346 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10347 			sl = ilm->ilm_filter;
10348 			if (ilm->ilm_zoneid != zoneid &&
10349 			    ilm->ilm_zoneid != ALL_ZONES)
10350 				continue;
10351 			if (SLIST_IS_EMPTY(sl))
10352 				continue;
10353 
10354 			/* Is there an ipif for ilm_ifaddr? */
10355 			for (ipif = ill->ill_ipif; ipif != NULL;
10356 			    ipif = ipif->ipif_next) {
10357 				if (!IPIF_IS_CONDEMNED(ipif) &&
10358 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10359 				    ilm->ilm_ifaddr != INADDR_ANY)
10360 					break;
10361 			}
10362 			if (ipif != NULL) {
10363 				ipif_get_name(ipif,
10364 				    ips.ipGroupSourceIfIndex.o_bytes,
10365 				    OCTET_LENGTH);
10366 			} else {
10367 				ill_get_name(ill,
10368 				    ips.ipGroupSourceIfIndex.o_bytes,
10369 				    OCTET_LENGTH);
10370 			}
10371 			ips.ipGroupSourceIfIndex.o_length =
10372 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10373 
10374 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10375 			for (i = 0; i < sl->sl_numsrc; i++) {
10376 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10377 					continue;
10378 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10379 				    ips.ipGroupSourceAddress);
10380 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10381 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10382 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10383 					    " failed to allocate %u bytes\n",
10384 					    (uint_t)sizeof (ips)));
10385 				}
10386 			}
10387 		}
10388 		rw_exit(&ill->ill_mcast_lock);
10389 		ill_refrele(ill);
10390 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10391 	}
10392 	rw_exit(&ipst->ips_ill_g_lock);
10393 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10394 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10395 	    (int)optp->level, (int)optp->name, (int)optp->len));
10396 	qreply(q, mpctl);
10397 	return (mp2ctl);
10398 }
10399 
10400 /* IPv6 multicast filtered sources. */
10401 static mblk_t *
10402 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10403 {
10404 	struct opthdr		*optp;
10405 	mblk_t			*mp2ctl;
10406 	ill_t			*ill;
10407 	ilm_t			*ilm;
10408 	ipv6_grpsrc_t		ips6;
10409 	mblk_t			*mp_tail = NULL;
10410 	ill_walk_context_t	ctx;
10411 	zoneid_t		zoneid;
10412 	int			i;
10413 	slist_t			*sl;
10414 
10415 	/*
10416 	 * make a copy of the original message
10417 	 */
10418 	mp2ctl = copymsg(mpctl);
10419 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10420 
10421 	/* ip6GroupMember table */
10422 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10423 	optp->level = MIB2_IP6;
10424 	optp->name = EXPER_IP6_GROUP_SOURCES;
10425 
10426 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10427 	ill = ILL_START_WALK_V6(&ctx, ipst);
10428 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10429 		/* Make sure the ill isn't going away. */
10430 		if (!ill_check_and_refhold(ill))
10431 			continue;
10432 		rw_exit(&ipst->ips_ill_g_lock);
10433 		/*
10434 		 * Normally we don't have any members on under IPMP interfaces.
10435 		 * We report them as a debugging aid.
10436 		 */
10437 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10438 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10439 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10440 			sl = ilm->ilm_filter;
10441 			if (ilm->ilm_zoneid != zoneid &&
10442 			    ilm->ilm_zoneid != ALL_ZONES)
10443 				continue;
10444 			if (SLIST_IS_EMPTY(sl))
10445 				continue;
10446 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10447 			for (i = 0; i < sl->sl_numsrc; i++) {
10448 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10449 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10450 				    (char *)&ips6, (int)sizeof (ips6))) {
10451 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10452 					    "group_src: failed to allocate "
10453 					    "%u bytes\n",
10454 					    (uint_t)sizeof (ips6)));
10455 				}
10456 			}
10457 		}
10458 		rw_exit(&ill->ill_mcast_lock);
10459 		ill_refrele(ill);
10460 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10461 	}
10462 	rw_exit(&ipst->ips_ill_g_lock);
10463 
10464 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10465 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10466 	    (int)optp->level, (int)optp->name, (int)optp->len));
10467 	qreply(q, mpctl);
10468 	return (mp2ctl);
10469 }
10470 
10471 /* Multicast routing virtual interface table. */
10472 static mblk_t *
10473 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10474 {
10475 	struct opthdr		*optp;
10476 	mblk_t			*mp2ctl;
10477 
10478 	/*
10479 	 * make a copy of the original message
10480 	 */
10481 	mp2ctl = copymsg(mpctl);
10482 
10483 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10484 	optp->level = EXPER_DVMRP;
10485 	optp->name = EXPER_DVMRP_VIF;
10486 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10487 		ip0dbg(("ip_mroute_vif: failed\n"));
10488 	}
10489 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10490 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10491 	    (int)optp->level, (int)optp->name, (int)optp->len));
10492 	qreply(q, mpctl);
10493 	return (mp2ctl);
10494 }
10495 
10496 /* Multicast routing table. */
10497 static mblk_t *
10498 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10499 {
10500 	struct opthdr		*optp;
10501 	mblk_t			*mp2ctl;
10502 
10503 	/*
10504 	 * make a copy of the original message
10505 	 */
10506 	mp2ctl = copymsg(mpctl);
10507 
10508 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10509 	optp->level = EXPER_DVMRP;
10510 	optp->name = EXPER_DVMRP_MRT;
10511 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10512 		ip0dbg(("ip_mroute_mrt: failed\n"));
10513 	}
10514 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10515 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10516 	    (int)optp->level, (int)optp->name, (int)optp->len));
10517 	qreply(q, mpctl);
10518 	return (mp2ctl);
10519 }
10520 
10521 /*
10522  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10523  * in one IRE walk.
10524  */
10525 static mblk_t *
10526 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10527     ip_stack_t *ipst)
10528 {
10529 	struct opthdr	*optp;
10530 	mblk_t		*mp2ctl;	/* Returned */
10531 	mblk_t		*mp3ctl;	/* nettomedia */
10532 	mblk_t		*mp4ctl;	/* routeattrs */
10533 	iproutedata_t	ird;
10534 	zoneid_t	zoneid;
10535 
10536 	/*
10537 	 * make copies of the original message
10538 	 *	- mp2ctl is returned unchanged to the caller for his use
10539 	 *	- mpctl is sent upstream as ipRouteEntryTable
10540 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10541 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10542 	 */
10543 	mp2ctl = copymsg(mpctl);
10544 	mp3ctl = copymsg(mpctl);
10545 	mp4ctl = copymsg(mpctl);
10546 	if (mp3ctl == NULL || mp4ctl == NULL) {
10547 		freemsg(mp4ctl);
10548 		freemsg(mp3ctl);
10549 		freemsg(mp2ctl);
10550 		freemsg(mpctl);
10551 		return (NULL);
10552 	}
10553 
10554 	bzero(&ird, sizeof (ird));
10555 
10556 	ird.ird_route.lp_head = mpctl->b_cont;
10557 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10558 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10559 	/*
10560 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10561 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10562 	 * intended a temporary solution until a proper MIB API is provided
10563 	 * that provides complete filtering/caller-opt-in.
10564 	 */
10565 	if (level == EXPER_IP_AND_ALL_IRES)
10566 		ird.ird_flags |= IRD_REPORT_ALL;
10567 
10568 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10569 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10570 
10571 	/* ipRouteEntryTable in mpctl */
10572 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10573 	optp->level = MIB2_IP;
10574 	optp->name = MIB2_IP_ROUTE;
10575 	optp->len = msgdsize(ird.ird_route.lp_head);
10576 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10577 	    (int)optp->level, (int)optp->name, (int)optp->len));
10578 	qreply(q, mpctl);
10579 
10580 	/* ipNetToMediaEntryTable in mp3ctl */
10581 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10582 
10583 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10584 	optp->level = MIB2_IP;
10585 	optp->name = MIB2_IP_MEDIA;
10586 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10587 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10588 	    (int)optp->level, (int)optp->name, (int)optp->len));
10589 	qreply(q, mp3ctl);
10590 
10591 	/* ipRouteAttributeTable in mp4ctl */
10592 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10593 	optp->level = MIB2_IP;
10594 	optp->name = EXPER_IP_RTATTR;
10595 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10596 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10597 	    (int)optp->level, (int)optp->name, (int)optp->len));
10598 	if (optp->len == 0)
10599 		freemsg(mp4ctl);
10600 	else
10601 		qreply(q, mp4ctl);
10602 
10603 	return (mp2ctl);
10604 }
10605 
10606 /*
10607  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10608  * ipv6NetToMediaEntryTable in an NDP walk.
10609  */
10610 static mblk_t *
10611 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10612     ip_stack_t *ipst)
10613 {
10614 	struct opthdr	*optp;
10615 	mblk_t		*mp2ctl;	/* Returned */
10616 	mblk_t		*mp3ctl;	/* nettomedia */
10617 	mblk_t		*mp4ctl;	/* routeattrs */
10618 	iproutedata_t	ird;
10619 	zoneid_t	zoneid;
10620 
10621 	/*
10622 	 * make copies of the original message
10623 	 *	- mp2ctl is returned unchanged to the caller for his use
10624 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10625 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10626 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10627 	 */
10628 	mp2ctl = copymsg(mpctl);
10629 	mp3ctl = copymsg(mpctl);
10630 	mp4ctl = copymsg(mpctl);
10631 	if (mp3ctl == NULL || mp4ctl == NULL) {
10632 		freemsg(mp4ctl);
10633 		freemsg(mp3ctl);
10634 		freemsg(mp2ctl);
10635 		freemsg(mpctl);
10636 		return (NULL);
10637 	}
10638 
10639 	bzero(&ird, sizeof (ird));
10640 
10641 	ird.ird_route.lp_head = mpctl->b_cont;
10642 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10643 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10644 	/*
10645 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10646 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10647 	 * intended a temporary solution until a proper MIB API is provided
10648 	 * that provides complete filtering/caller-opt-in.
10649 	 */
10650 	if (level == EXPER_IP_AND_ALL_IRES)
10651 		ird.ird_flags |= IRD_REPORT_ALL;
10652 
10653 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10654 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10655 
10656 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10657 	optp->level = MIB2_IP6;
10658 	optp->name = MIB2_IP6_ROUTE;
10659 	optp->len = msgdsize(ird.ird_route.lp_head);
10660 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10661 	    (int)optp->level, (int)optp->name, (int)optp->len));
10662 	qreply(q, mpctl);
10663 
10664 	/* ipv6NetToMediaEntryTable in mp3ctl */
10665 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10666 
10667 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10668 	optp->level = MIB2_IP6;
10669 	optp->name = MIB2_IP6_MEDIA;
10670 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10671 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10672 	    (int)optp->level, (int)optp->name, (int)optp->len));
10673 	qreply(q, mp3ctl);
10674 
10675 	/* ipv6RouteAttributeTable in mp4ctl */
10676 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10677 	optp->level = MIB2_IP6;
10678 	optp->name = EXPER_IP_RTATTR;
10679 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10680 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10681 	    (int)optp->level, (int)optp->name, (int)optp->len));
10682 	if (optp->len == 0)
10683 		freemsg(mp4ctl);
10684 	else
10685 		qreply(q, mp4ctl);
10686 
10687 	return (mp2ctl);
10688 }
10689 
10690 /*
10691  * IPv6 mib: One per ill
10692  */
10693 static mblk_t *
10694 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10695     boolean_t legacy_req)
10696 {
10697 	struct opthdr		*optp;
10698 	mblk_t			*mp2ctl;
10699 	ill_t			*ill;
10700 	ill_walk_context_t	ctx;
10701 	mblk_t			*mp_tail = NULL;
10702 	mib2_ipv6AddrEntry_t	mae6;
10703 	mib2_ipIfStatsEntry_t	*ise;
10704 	size_t			ise_size, iae_size;
10705 
10706 	/*
10707 	 * Make a copy of the original message
10708 	 */
10709 	mp2ctl = copymsg(mpctl);
10710 
10711 	/* fixed length IPv6 structure ... */
10712 
10713 	if (legacy_req) {
10714 		ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10715 		    mib2_ipIfStatsEntry_t);
10716 		iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10717 	} else {
10718 		ise_size = sizeof (mib2_ipIfStatsEntry_t);
10719 		iae_size = sizeof (mib2_ipv6AddrEntry_t);
10720 	}
10721 
10722 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10723 	optp->level = MIB2_IP6;
10724 	optp->name = 0;
10725 	/* Include "unknown interface" ip6_mib */
10726 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10727 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10728 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10729 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10730 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10731 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10732 	    ipst->ips_ipv6_def_hops);
10733 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10734 	    sizeof (mib2_ipIfStatsEntry_t));
10735 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10736 	    sizeof (mib2_ipv6AddrEntry_t));
10737 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10738 	    sizeof (mib2_ipv6RouteEntry_t));
10739 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10740 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10741 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10742 	    sizeof (ipv6_member_t));
10743 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10744 	    sizeof (ipv6_grpsrc_t));
10745 
10746 	/*
10747 	 * Synchronize 64- and 32-bit counters
10748 	 */
10749 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10750 	    ipIfStatsHCInReceives);
10751 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10752 	    ipIfStatsHCInDelivers);
10753 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10754 	    ipIfStatsHCOutRequests);
10755 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10756 	    ipIfStatsHCOutForwDatagrams);
10757 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10758 	    ipIfStatsHCOutMcastPkts);
10759 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10760 	    ipIfStatsHCInMcastPkts);
10761 
10762 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10763 	    (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10764 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10765 		    (uint_t)ise_size));
10766 	} else if (legacy_req) {
10767 		/* Adjust the EntrySize fields for legacy requests. */
10768 		ise =
10769 		    (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10770 		SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10771 		SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10772 	}
10773 
10774 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10775 	ill = ILL_START_WALK_V6(&ctx, ipst);
10776 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10777 		ill->ill_ip_mib->ipIfStatsIfIndex =
10778 		    ill->ill_phyint->phyint_ifindex;
10779 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10780 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10781 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10782 		    ill->ill_max_hops);
10783 
10784 		/*
10785 		 * Synchronize 64- and 32-bit counters
10786 		 */
10787 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10788 		    ipIfStatsHCInReceives);
10789 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10790 		    ipIfStatsHCInDelivers);
10791 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10792 		    ipIfStatsHCOutRequests);
10793 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10794 		    ipIfStatsHCOutForwDatagrams);
10795 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10796 		    ipIfStatsHCOutMcastPkts);
10797 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10798 		    ipIfStatsHCInMcastPkts);
10799 
10800 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10801 		    (char *)ill->ill_ip_mib, (int)ise_size)) {
10802 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10803 			"%u bytes\n", (uint_t)ise_size));
10804 		} else if (legacy_req) {
10805 			/* Adjust the EntrySize fields for legacy requests. */
10806 			ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10807 			    (int)ise_size);
10808 			SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10809 			SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10810 		}
10811 	}
10812 	rw_exit(&ipst->ips_ill_g_lock);
10813 
10814 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10815 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10816 	    (int)optp->level, (int)optp->name, (int)optp->len));
10817 	qreply(q, mpctl);
10818 	return (mp2ctl);
10819 }
10820 
10821 /*
10822  * ICMPv6 mib: One per ill
10823  */
10824 static mblk_t *
10825 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10826 {
10827 	struct opthdr		*optp;
10828 	mblk_t			*mp2ctl;
10829 	ill_t			*ill;
10830 	ill_walk_context_t	ctx;
10831 	mblk_t			*mp_tail = NULL;
10832 	/*
10833 	 * Make a copy of the original message
10834 	 */
10835 	mp2ctl = copymsg(mpctl);
10836 
10837 	/* fixed length ICMPv6 structure ... */
10838 
10839 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10840 	optp->level = MIB2_ICMP6;
10841 	optp->name = 0;
10842 	/* Include "unknown interface" icmp6_mib */
10843 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10844 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10845 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10846 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10847 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10848 	    (char *)&ipst->ips_icmp6_mib,
10849 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10850 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10851 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10852 	}
10853 
10854 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10855 	ill = ILL_START_WALK_V6(&ctx, ipst);
10856 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10857 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10858 		    ill->ill_phyint->phyint_ifindex;
10859 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10860 		    (char *)ill->ill_icmp6_mib,
10861 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10862 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10863 			    "%u bytes\n",
10864 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10865 		}
10866 	}
10867 	rw_exit(&ipst->ips_ill_g_lock);
10868 
10869 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10870 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10871 	    (int)optp->level, (int)optp->name, (int)optp->len));
10872 	qreply(q, mpctl);
10873 	return (mp2ctl);
10874 }
10875 
10876 /*
10877  * ire_walk routine to create both ipRouteEntryTable and
10878  * ipRouteAttributeTable in one IRE walk
10879  */
10880 static void
10881 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10882 {
10883 	ill_t				*ill;
10884 	mib2_ipRouteEntry_t		*re;
10885 	mib2_ipAttributeEntry_t		iaes;
10886 	tsol_ire_gw_secattr_t		*attrp;
10887 	tsol_gc_t			*gc = NULL;
10888 	tsol_gcgrp_t			*gcgrp = NULL;
10889 	ip_stack_t			*ipst = ire->ire_ipst;
10890 
10891 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10892 
10893 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10894 		if (ire->ire_testhidden)
10895 			return;
10896 		if (ire->ire_type & IRE_IF_CLONE)
10897 			return;
10898 	}
10899 
10900 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10901 		return;
10902 
10903 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10904 		mutex_enter(&attrp->igsa_lock);
10905 		if ((gc = attrp->igsa_gc) != NULL) {
10906 			gcgrp = gc->gc_grp;
10907 			ASSERT(gcgrp != NULL);
10908 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10909 		}
10910 		mutex_exit(&attrp->igsa_lock);
10911 	}
10912 	/*
10913 	 * Return all IRE types for route table... let caller pick and choose
10914 	 */
10915 	re->ipRouteDest = ire->ire_addr;
10916 	ill = ire->ire_ill;
10917 	re->ipRouteIfIndex.o_length = 0;
10918 	if (ill != NULL) {
10919 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10920 		re->ipRouteIfIndex.o_length =
10921 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10922 	}
10923 	re->ipRouteMetric1 = -1;
10924 	re->ipRouteMetric2 = -1;
10925 	re->ipRouteMetric3 = -1;
10926 	re->ipRouteMetric4 = -1;
10927 
10928 	re->ipRouteNextHop = ire->ire_gateway_addr;
10929 	/* indirect(4), direct(3), or invalid(2) */
10930 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10931 		re->ipRouteType = 2;
10932 	else if (ire->ire_type & IRE_ONLINK)
10933 		re->ipRouteType = 3;
10934 	else
10935 		re->ipRouteType = 4;
10936 
10937 	re->ipRouteProto = -1;
10938 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10939 	re->ipRouteMask = ire->ire_mask;
10940 	re->ipRouteMetric5 = -1;
10941 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10942 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10943 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10944 
10945 	re->ipRouteInfo.re_frag_flag	= 0;
10946 	re->ipRouteInfo.re_rtt		= 0;
10947 	re->ipRouteInfo.re_src_addr	= 0;
10948 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10949 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10950 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
10951 	re->ipRouteInfo.re_flags	= ire->ire_flags;
10952 
10953 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10954 	if (ire->ire_type & IRE_INTERFACE) {
10955 		ire_t *child;
10956 
10957 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10958 		child = ire->ire_dep_children;
10959 		while (child != NULL) {
10960 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10961 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10962 			child = child->ire_dep_sib_next;
10963 		}
10964 		rw_exit(&ipst->ips_ire_dep_lock);
10965 	}
10966 
10967 	if (ire->ire_flags & RTF_DYNAMIC) {
10968 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
10969 	} else {
10970 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
10971 	}
10972 
10973 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10974 	    (char *)re, (int)sizeof (*re))) {
10975 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10976 		    (uint_t)sizeof (*re)));
10977 	}
10978 
10979 	if (gc != NULL) {
10980 		iaes.iae_routeidx = ird->ird_idx;
10981 		iaes.iae_doi = gc->gc_db->gcdb_doi;
10982 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10983 
10984 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
10985 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10986 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10987 			    "bytes\n", (uint_t)sizeof (iaes)));
10988 		}
10989 	}
10990 
10991 	/* bump route index for next pass */
10992 	ird->ird_idx++;
10993 
10994 	kmem_free(re, sizeof (*re));
10995 	if (gcgrp != NULL)
10996 		rw_exit(&gcgrp->gcgrp_rwlock);
10997 }
10998 
10999 /*
11000  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11001  */
11002 static void
11003 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11004 {
11005 	ill_t				*ill;
11006 	mib2_ipv6RouteEntry_t		*re;
11007 	mib2_ipAttributeEntry_t		iaes;
11008 	tsol_ire_gw_secattr_t		*attrp;
11009 	tsol_gc_t			*gc = NULL;
11010 	tsol_gcgrp_t			*gcgrp = NULL;
11011 	ip_stack_t			*ipst = ire->ire_ipst;
11012 
11013 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11014 
11015 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11016 		if (ire->ire_testhidden)
11017 			return;
11018 		if (ire->ire_type & IRE_IF_CLONE)
11019 			return;
11020 	}
11021 
11022 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11023 		return;
11024 
11025 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11026 		mutex_enter(&attrp->igsa_lock);
11027 		if ((gc = attrp->igsa_gc) != NULL) {
11028 			gcgrp = gc->gc_grp;
11029 			ASSERT(gcgrp != NULL);
11030 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11031 		}
11032 		mutex_exit(&attrp->igsa_lock);
11033 	}
11034 	/*
11035 	 * Return all IRE types for route table... let caller pick and choose
11036 	 */
11037 	re->ipv6RouteDest = ire->ire_addr_v6;
11038 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11039 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11040 	re->ipv6RouteIfIndex.o_length = 0;
11041 	ill = ire->ire_ill;
11042 	if (ill != NULL) {
11043 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11044 		re->ipv6RouteIfIndex.o_length =
11045 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11046 	}
11047 
11048 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11049 
11050 	mutex_enter(&ire->ire_lock);
11051 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11052 	mutex_exit(&ire->ire_lock);
11053 
11054 	/* remote(4), local(3), or discard(2) */
11055 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11056 		re->ipv6RouteType = 2;
11057 	else if (ire->ire_type & IRE_ONLINK)
11058 		re->ipv6RouteType = 3;
11059 	else
11060 		re->ipv6RouteType = 4;
11061 
11062 	re->ipv6RouteProtocol	= -1;
11063 	re->ipv6RoutePolicy	= 0;
11064 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11065 	re->ipv6RouteNextHopRDI	= 0;
11066 	re->ipv6RouteWeight	= 0;
11067 	re->ipv6RouteMetric	= 0;
11068 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11069 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11070 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11071 
11072 	re->ipv6RouteInfo.re_frag_flag	= 0;
11073 	re->ipv6RouteInfo.re_rtt	= 0;
11074 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11075 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11076 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11077 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11078 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11079 
11080 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11081 	if (ire->ire_type & IRE_INTERFACE) {
11082 		ire_t *child;
11083 
11084 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11085 		child = ire->ire_dep_children;
11086 		while (child != NULL) {
11087 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11088 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11089 			child = child->ire_dep_sib_next;
11090 		}
11091 		rw_exit(&ipst->ips_ire_dep_lock);
11092 	}
11093 	if (ire->ire_flags & RTF_DYNAMIC) {
11094 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11095 	} else {
11096 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11097 	}
11098 
11099 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11100 	    (char *)re, (int)sizeof (*re))) {
11101 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11102 		    (uint_t)sizeof (*re)));
11103 	}
11104 
11105 	if (gc != NULL) {
11106 		iaes.iae_routeidx = ird->ird_idx;
11107 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11108 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11109 
11110 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11111 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11112 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11113 			    "bytes\n", (uint_t)sizeof (iaes)));
11114 		}
11115 	}
11116 
11117 	/* bump route index for next pass */
11118 	ird->ird_idx++;
11119 
11120 	kmem_free(re, sizeof (*re));
11121 	if (gcgrp != NULL)
11122 		rw_exit(&gcgrp->gcgrp_rwlock);
11123 }
11124 
11125 /*
11126  * ncec_walk routine to create ipv6NetToMediaEntryTable
11127  */
11128 static int
11129 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11130 {
11131 	ill_t				*ill;
11132 	mib2_ipv6NetToMediaEntry_t	ntme;
11133 
11134 	ill = ncec->ncec_ill;
11135 	/* skip arpce entries, and loopback ncec entries */
11136 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11137 		return (0);
11138 	/*
11139 	 * Neighbor cache entry attached to IRE with on-link
11140 	 * destination.
11141 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11142 	 */
11143 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11144 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11145 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11146 	if (ncec->ncec_lladdr != NULL) {
11147 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11148 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11149 	}
11150 	/*
11151 	 * Note: Returns ND_* states. Should be:
11152 	 * reachable(1), stale(2), delay(3), probe(4),
11153 	 * invalid(5), unknown(6)
11154 	 */
11155 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11156 	ntme.ipv6NetToMediaLastUpdated = 0;
11157 
11158 	/* other(1), dynamic(2), static(3), local(4) */
11159 	if (NCE_MYADDR(ncec)) {
11160 		ntme.ipv6NetToMediaType = 4;
11161 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11162 		ntme.ipv6NetToMediaType = 1; /* proxy */
11163 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11164 		ntme.ipv6NetToMediaType = 3;
11165 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11166 		ntme.ipv6NetToMediaType = 1;
11167 	} else {
11168 		ntme.ipv6NetToMediaType = 2;
11169 	}
11170 
11171 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11172 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11173 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11174 		    (uint_t)sizeof (ntme)));
11175 	}
11176 	return (0);
11177 }
11178 
11179 int
11180 nce2ace(ncec_t *ncec)
11181 {
11182 	int flags = 0;
11183 
11184 	if (NCE_ISREACHABLE(ncec))
11185 		flags |= ACE_F_RESOLVED;
11186 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11187 		flags |= ACE_F_AUTHORITY;
11188 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11189 		flags |= ACE_F_PUBLISH;
11190 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11191 		flags |= ACE_F_PERMANENT;
11192 	if (NCE_MYADDR(ncec))
11193 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11194 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11195 		flags |= ACE_F_UNVERIFIED;
11196 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11197 		flags |= ACE_F_AUTHORITY;
11198 	if (ncec->ncec_flags & NCE_F_DELAYED)
11199 		flags |= ACE_F_DELAYED;
11200 	return (flags);
11201 }
11202 
11203 /*
11204  * ncec_walk routine to create ipNetToMediaEntryTable
11205  */
11206 static int
11207 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11208 {
11209 	ill_t				*ill;
11210 	mib2_ipNetToMediaEntry_t	ntme;
11211 	const char			*name = "unknown";
11212 	ipaddr_t			ncec_addr;
11213 
11214 	ill = ncec->ncec_ill;
11215 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11216 	    ill->ill_net_type == IRE_LOOPBACK)
11217 		return (0);
11218 
11219 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11220 	name = ill->ill_name;
11221 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11222 	if (NCE_MYADDR(ncec)) {
11223 		ntme.ipNetToMediaType = 4;
11224 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11225 		ntme.ipNetToMediaType = 1;
11226 	} else {
11227 		ntme.ipNetToMediaType = 3;
11228 	}
11229 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11230 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11231 	    ntme.ipNetToMediaIfIndex.o_length);
11232 
11233 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11234 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11235 
11236 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11237 	ncec_addr = INADDR_BROADCAST;
11238 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11239 	    sizeof (ncec_addr));
11240 	/*
11241 	 * map all the flags to the ACE counterpart.
11242 	 */
11243 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11244 
11245 	ntme.ipNetToMediaPhysAddress.o_length =
11246 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11247 
11248 	if (!NCE_ISREACHABLE(ncec))
11249 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11250 	else {
11251 		if (ncec->ncec_lladdr != NULL) {
11252 			bcopy(ncec->ncec_lladdr,
11253 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11254 			    ntme.ipNetToMediaPhysAddress.o_length);
11255 		}
11256 	}
11257 
11258 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11259 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11260 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11261 		    (uint_t)sizeof (ntme)));
11262 	}
11263 	return (0);
11264 }
11265 
11266 /*
11267  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11268  */
11269 /* ARGSUSED */
11270 int
11271 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11272 {
11273 	switch (level) {
11274 	case MIB2_IP:
11275 	case MIB2_ICMP:
11276 		switch (name) {
11277 		default:
11278 			break;
11279 		}
11280 		return (1);
11281 	default:
11282 		return (1);
11283 	}
11284 }
11285 
11286 /*
11287  * When there exists both a 64- and 32-bit counter of a particular type
11288  * (i.e., InReceives), only the 64-bit counters are added.
11289  */
11290 void
11291 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11292 {
11293 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11294 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11295 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11296 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11297 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11298 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11299 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11300 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11301 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11302 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11303 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11304 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11305 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11306 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11307 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11308 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11309 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11310 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11311 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11312 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11313 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11314 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11315 	    o2->ipIfStatsInWrongIPVersion);
11316 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11317 	    o2->ipIfStatsInWrongIPVersion);
11318 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11319 	    o2->ipIfStatsOutSwitchIPVersion);
11320 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11321 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11322 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11323 	    o2->ipIfStatsHCInForwDatagrams);
11324 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11325 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11326 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11327 	    o2->ipIfStatsHCOutForwDatagrams);
11328 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11329 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11330 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11331 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11332 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11333 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11334 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11335 	    o2->ipIfStatsHCOutMcastOctets);
11336 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11337 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11338 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11339 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11340 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11341 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11342 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11343 }
11344 
11345 void
11346 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11347 {
11348 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11349 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11350 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11351 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11352 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11353 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11354 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11355 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11356 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11357 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11358 	    o2->ipv6IfIcmpInRouterSolicits);
11359 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11360 	    o2->ipv6IfIcmpInRouterAdvertisements);
11361 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11362 	    o2->ipv6IfIcmpInNeighborSolicits);
11363 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11364 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11365 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11366 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11367 	    o2->ipv6IfIcmpInGroupMembQueries);
11368 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11369 	    o2->ipv6IfIcmpInGroupMembResponses);
11370 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11371 	    o2->ipv6IfIcmpInGroupMembReductions);
11372 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11373 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11374 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11375 	    o2->ipv6IfIcmpOutDestUnreachs);
11376 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11377 	    o2->ipv6IfIcmpOutAdminProhibs);
11378 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11379 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11380 	    o2->ipv6IfIcmpOutParmProblems);
11381 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11382 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11383 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11384 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11385 	    o2->ipv6IfIcmpOutRouterSolicits);
11386 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11387 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11388 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11389 	    o2->ipv6IfIcmpOutNeighborSolicits);
11390 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11391 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11392 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11393 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11394 	    o2->ipv6IfIcmpOutGroupMembQueries);
11395 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11396 	    o2->ipv6IfIcmpOutGroupMembResponses);
11397 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11398 	    o2->ipv6IfIcmpOutGroupMembReductions);
11399 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11400 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11401 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11402 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11403 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11404 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11405 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11406 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11407 	    o2->ipv6IfIcmpInGroupMembTotal);
11408 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11409 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11410 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11411 	    o2->ipv6IfIcmpInGroupMembBadReports);
11412 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11413 	    o2->ipv6IfIcmpInGroupMembOurReports);
11414 }
11415 
11416 /*
11417  * Called before the options are updated to check if this packet will
11418  * be source routed from here.
11419  * This routine assumes that the options are well formed i.e. that they
11420  * have already been checked.
11421  */
11422 boolean_t
11423 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11424 {
11425 	ipoptp_t	opts;
11426 	uchar_t		*opt;
11427 	uint8_t		optval;
11428 	uint8_t		optlen;
11429 	ipaddr_t	dst;
11430 
11431 	if (IS_SIMPLE_IPH(ipha)) {
11432 		ip2dbg(("not source routed\n"));
11433 		return (B_FALSE);
11434 	}
11435 	dst = ipha->ipha_dst;
11436 	for (optval = ipoptp_first(&opts, ipha);
11437 	    optval != IPOPT_EOL;
11438 	    optval = ipoptp_next(&opts)) {
11439 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11440 		opt = opts.ipoptp_cur;
11441 		optlen = opts.ipoptp_len;
11442 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11443 		    optval, optlen));
11444 		switch (optval) {
11445 			uint32_t off;
11446 		case IPOPT_SSRR:
11447 		case IPOPT_LSRR:
11448 			/*
11449 			 * If dst is one of our addresses and there are some
11450 			 * entries left in the source route return (true).
11451 			 */
11452 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11453 				ip2dbg(("ip_source_routed: not next"
11454 				    " source route 0x%x\n",
11455 				    ntohl(dst)));
11456 				return (B_FALSE);
11457 			}
11458 			off = opt[IPOPT_OFFSET];
11459 			off--;
11460 			if (optlen < IP_ADDR_LEN ||
11461 			    off > optlen - IP_ADDR_LEN) {
11462 				/* End of source route */
11463 				ip1dbg(("ip_source_routed: end of SR\n"));
11464 				return (B_FALSE);
11465 			}
11466 			return (B_TRUE);
11467 		}
11468 	}
11469 	ip2dbg(("not source routed\n"));
11470 	return (B_FALSE);
11471 }
11472 
11473 /*
11474  * ip_unbind is called by the transports to remove a conn from
11475  * the fanout table.
11476  */
11477 void
11478 ip_unbind(conn_t *connp)
11479 {
11480 
11481 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11482 
11483 	if (is_system_labeled() && connp->conn_anon_port) {
11484 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11485 		    connp->conn_mlp_type, connp->conn_proto,
11486 		    ntohs(connp->conn_lport), B_FALSE);
11487 		connp->conn_anon_port = 0;
11488 	}
11489 	connp->conn_mlp_type = mlptSingle;
11490 
11491 	ipcl_hash_remove(connp);
11492 }
11493 
11494 /*
11495  * Used for deciding the MSS size for the upper layer. Thus
11496  * we need to check the outbound policy values in the conn.
11497  */
11498 int
11499 conn_ipsec_length(conn_t *connp)
11500 {
11501 	ipsec_latch_t *ipl;
11502 
11503 	ipl = connp->conn_latch;
11504 	if (ipl == NULL)
11505 		return (0);
11506 
11507 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11508 		return (0);
11509 
11510 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11511 }
11512 
11513 /*
11514  * Returns an estimate of the IPsec headers size. This is used if
11515  * we don't want to call into IPsec to get the exact size.
11516  */
11517 int
11518 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11519 {
11520 	ipsec_action_t *a;
11521 
11522 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11523 		return (0);
11524 
11525 	a = ixa->ixa_ipsec_action;
11526 	if (a == NULL) {
11527 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11528 		a = ixa->ixa_ipsec_policy->ipsp_act;
11529 	}
11530 	ASSERT(a != NULL);
11531 
11532 	return (a->ipa_ovhd);
11533 }
11534 
11535 /*
11536  * If there are any source route options, return the true final
11537  * destination. Otherwise, return the destination.
11538  */
11539 ipaddr_t
11540 ip_get_dst(ipha_t *ipha)
11541 {
11542 	ipoptp_t	opts;
11543 	uchar_t		*opt;
11544 	uint8_t		optval;
11545 	uint8_t		optlen;
11546 	ipaddr_t	dst;
11547 	uint32_t off;
11548 
11549 	dst = ipha->ipha_dst;
11550 
11551 	if (IS_SIMPLE_IPH(ipha))
11552 		return (dst);
11553 
11554 	for (optval = ipoptp_first(&opts, ipha);
11555 	    optval != IPOPT_EOL;
11556 	    optval = ipoptp_next(&opts)) {
11557 		opt = opts.ipoptp_cur;
11558 		optlen = opts.ipoptp_len;
11559 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11560 		switch (optval) {
11561 		case IPOPT_SSRR:
11562 		case IPOPT_LSRR:
11563 			off = opt[IPOPT_OFFSET];
11564 			/*
11565 			 * If one of the conditions is true, it means
11566 			 * end of options and dst already has the right
11567 			 * value.
11568 			 */
11569 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11570 				off = optlen - IP_ADDR_LEN;
11571 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11572 			}
11573 			return (dst);
11574 		default:
11575 			break;
11576 		}
11577 	}
11578 
11579 	return (dst);
11580 }
11581 
11582 /*
11583  * Outbound IP fragmentation routine.
11584  * Assumes the caller has checked whether or not fragmentation should
11585  * be allowed. Here we copy the DF bit from the header to all the generated
11586  * fragments.
11587  */
11588 int
11589 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11590     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11591     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11592 {
11593 	int		i1;
11594 	int		hdr_len;
11595 	mblk_t		*hdr_mp;
11596 	ipha_t		*ipha;
11597 	int		ip_data_end;
11598 	int		len;
11599 	mblk_t		*mp = mp_orig;
11600 	int		offset;
11601 	ill_t		*ill = nce->nce_ill;
11602 	ip_stack_t	*ipst = ill->ill_ipst;
11603 	mblk_t		*carve_mp;
11604 	uint32_t	frag_flag;
11605 	uint_t		priority = mp->b_band;
11606 	int		error = 0;
11607 
11608 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11609 
11610 	if (pkt_len != msgdsize(mp)) {
11611 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11612 		    pkt_len, msgdsize(mp)));
11613 		freemsg(mp);
11614 		return (EINVAL);
11615 	}
11616 
11617 	if (max_frag == 0) {
11618 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11619 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11620 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11621 		freemsg(mp);
11622 		return (EINVAL);
11623 	}
11624 
11625 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11626 	ipha = (ipha_t *)mp->b_rptr;
11627 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11628 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11629 
11630 	/*
11631 	 * Establish the starting offset.  May not be zero if we are fragging
11632 	 * a fragment that is being forwarded.
11633 	 */
11634 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11635 
11636 	/* TODO why is this test needed? */
11637 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11638 		/* TODO: notify ulp somehow */
11639 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11640 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11641 		freemsg(mp);
11642 		return (EINVAL);
11643 	}
11644 
11645 	hdr_len = IPH_HDR_LENGTH(ipha);
11646 	ipha->ipha_hdr_checksum = 0;
11647 
11648 	/*
11649 	 * Establish the number of bytes maximum per frag, after putting
11650 	 * in the header.
11651 	 */
11652 	len = (max_frag - hdr_len) & ~7;
11653 
11654 	/* Get a copy of the header for the trailing frags */
11655 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11656 	    mp);
11657 	if (hdr_mp == NULL) {
11658 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11659 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11660 		freemsg(mp);
11661 		return (ENOBUFS);
11662 	}
11663 
11664 	/* Store the starting offset, with the MoreFrags flag. */
11665 	i1 = offset | IPH_MF | frag_flag;
11666 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11667 
11668 	/* Establish the ending byte offset, based on the starting offset. */
11669 	offset <<= 3;
11670 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11671 
11672 	/* Store the length of the first fragment in the IP header. */
11673 	i1 = len + hdr_len;
11674 	ASSERT(i1 <= IP_MAXPACKET);
11675 	ipha->ipha_length = htons((uint16_t)i1);
11676 
11677 	/*
11678 	 * Compute the IP header checksum for the first frag.  We have to
11679 	 * watch out that we stop at the end of the header.
11680 	 */
11681 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11682 
11683 	/*
11684 	 * Now carve off the first frag.  Note that this will include the
11685 	 * original IP header.
11686 	 */
11687 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11688 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11689 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11690 		freeb(hdr_mp);
11691 		freemsg(mp_orig);
11692 		return (ENOBUFS);
11693 	}
11694 
11695 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11696 
11697 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11698 	    ixa_cookie);
11699 	if (error != 0 && error != EWOULDBLOCK) {
11700 		/* No point in sending the other fragments */
11701 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11702 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11703 		freeb(hdr_mp);
11704 		freemsg(mp_orig);
11705 		return (error);
11706 	}
11707 
11708 	/* No need to redo state machine in loop */
11709 	ixaflags &= ~IXAF_REACH_CONF;
11710 
11711 	/* Advance the offset to the second frag starting point. */
11712 	offset += len;
11713 	/*
11714 	 * Update hdr_len from the copied header - there might be less options
11715 	 * in the later fragments.
11716 	 */
11717 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11718 	/* Loop until done. */
11719 	for (;;) {
11720 		uint16_t	offset_and_flags;
11721 		uint16_t	ip_len;
11722 
11723 		if (ip_data_end - offset > len) {
11724 			/*
11725 			 * Carve off the appropriate amount from the original
11726 			 * datagram.
11727 			 */
11728 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11729 				mp = NULL;
11730 				break;
11731 			}
11732 			/*
11733 			 * More frags after this one.  Get another copy
11734 			 * of the header.
11735 			 */
11736 			if (carve_mp->b_datap->db_ref == 1 &&
11737 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11738 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11739 				/* Inline IP header */
11740 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11741 				    hdr_mp->b_rptr;
11742 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11743 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11744 				mp = carve_mp;
11745 			} else {
11746 				if (!(mp = copyb(hdr_mp))) {
11747 					freemsg(carve_mp);
11748 					break;
11749 				}
11750 				/* Get priority marking, if any. */
11751 				mp->b_band = priority;
11752 				mp->b_cont = carve_mp;
11753 			}
11754 			ipha = (ipha_t *)mp->b_rptr;
11755 			offset_and_flags = IPH_MF;
11756 		} else {
11757 			/*
11758 			 * Last frag.  Consume the header. Set len to
11759 			 * the length of this last piece.
11760 			 */
11761 			len = ip_data_end - offset;
11762 
11763 			/*
11764 			 * Carve off the appropriate amount from the original
11765 			 * datagram.
11766 			 */
11767 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11768 				mp = NULL;
11769 				break;
11770 			}
11771 			if (carve_mp->b_datap->db_ref == 1 &&
11772 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11773 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11774 				/* Inline IP header */
11775 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11776 				    hdr_mp->b_rptr;
11777 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11778 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11779 				mp = carve_mp;
11780 				freeb(hdr_mp);
11781 				hdr_mp = mp;
11782 			} else {
11783 				mp = hdr_mp;
11784 				/* Get priority marking, if any. */
11785 				mp->b_band = priority;
11786 				mp->b_cont = carve_mp;
11787 			}
11788 			ipha = (ipha_t *)mp->b_rptr;
11789 			/* A frag of a frag might have IPH_MF non-zero */
11790 			offset_and_flags =
11791 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11792 			    IPH_MF;
11793 		}
11794 		offset_and_flags |= (uint16_t)(offset >> 3);
11795 		offset_and_flags |= (uint16_t)frag_flag;
11796 		/* Store the offset and flags in the IP header. */
11797 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11798 
11799 		/* Store the length in the IP header. */
11800 		ip_len = (uint16_t)(len + hdr_len);
11801 		ipha->ipha_length = htons(ip_len);
11802 
11803 		/*
11804 		 * Set the IP header checksum.	Note that mp is just
11805 		 * the header, so this is easy to pass to ip_csum.
11806 		 */
11807 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11808 
11809 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11810 
11811 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11812 		    nolzid, ixa_cookie);
11813 		/* All done if we just consumed the hdr_mp. */
11814 		if (mp == hdr_mp) {
11815 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11816 			return (error);
11817 		}
11818 		if (error != 0 && error != EWOULDBLOCK) {
11819 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11820 			    mblk_t *, hdr_mp);
11821 			/* No point in sending the other fragments */
11822 			break;
11823 		}
11824 
11825 		/* Otherwise, advance and loop. */
11826 		offset += len;
11827 	}
11828 	/* Clean up following allocation failure. */
11829 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11830 	ip_drop_output("FragFails: loop ended", NULL, ill);
11831 	if (mp != hdr_mp)
11832 		freeb(hdr_mp);
11833 	if (mp != mp_orig)
11834 		freemsg(mp_orig);
11835 	return (error);
11836 }
11837 
11838 /*
11839  * Copy the header plus those options which have the copy bit set
11840  */
11841 static mblk_t *
11842 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11843     mblk_t *src)
11844 {
11845 	mblk_t	*mp;
11846 	uchar_t	*up;
11847 
11848 	/*
11849 	 * Quick check if we need to look for options without the copy bit
11850 	 * set
11851 	 */
11852 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11853 	if (!mp)
11854 		return (mp);
11855 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11856 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11857 		bcopy(rptr, mp->b_rptr, hdr_len);
11858 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11859 		return (mp);
11860 	}
11861 	up  = mp->b_rptr;
11862 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11863 	up += IP_SIMPLE_HDR_LENGTH;
11864 	rptr += IP_SIMPLE_HDR_LENGTH;
11865 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11866 	while (hdr_len > 0) {
11867 		uint32_t optval;
11868 		uint32_t optlen;
11869 
11870 		optval = *rptr;
11871 		if (optval == IPOPT_EOL)
11872 			break;
11873 		if (optval == IPOPT_NOP)
11874 			optlen = 1;
11875 		else
11876 			optlen = rptr[1];
11877 		if (optval & IPOPT_COPY) {
11878 			bcopy(rptr, up, optlen);
11879 			up += optlen;
11880 		}
11881 		rptr += optlen;
11882 		hdr_len -= optlen;
11883 	}
11884 	/*
11885 	 * Make sure that we drop an even number of words by filling
11886 	 * with EOL to the next word boundary.
11887 	 */
11888 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11889 	    hdr_len & 0x3; hdr_len++)
11890 		*up++ = IPOPT_EOL;
11891 	mp->b_wptr = up;
11892 	/* Update header length */
11893 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11894 	return (mp);
11895 }
11896 
11897 /*
11898  * Update any source route, record route, or timestamp options when
11899  * sending a packet back to ourselves.
11900  * Check that we are at end of strict source route.
11901  * The options have been sanity checked by ip_output_options().
11902  */
11903 void
11904 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11905 {
11906 	ipoptp_t	opts;
11907 	uchar_t		*opt;
11908 	uint8_t		optval;
11909 	uint8_t		optlen;
11910 	ipaddr_t	dst;
11911 	uint32_t	ts;
11912 	timestruc_t	now;
11913 
11914 	for (optval = ipoptp_first(&opts, ipha);
11915 	    optval != IPOPT_EOL;
11916 	    optval = ipoptp_next(&opts)) {
11917 		opt = opts.ipoptp_cur;
11918 		optlen = opts.ipoptp_len;
11919 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11920 		switch (optval) {
11921 			uint32_t off;
11922 		case IPOPT_SSRR:
11923 		case IPOPT_LSRR:
11924 			off = opt[IPOPT_OFFSET];
11925 			off--;
11926 			if (optlen < IP_ADDR_LEN ||
11927 			    off > optlen - IP_ADDR_LEN) {
11928 				/* End of source route */
11929 				break;
11930 			}
11931 			/*
11932 			 * This will only happen if two consecutive entries
11933 			 * in the source route contains our address or if
11934 			 * it is a packet with a loose source route which
11935 			 * reaches us before consuming the whole source route
11936 			 */
11937 
11938 			if (optval == IPOPT_SSRR) {
11939 				return;
11940 			}
11941 			/*
11942 			 * Hack: instead of dropping the packet truncate the
11943 			 * source route to what has been used by filling the
11944 			 * rest with IPOPT_NOP.
11945 			 */
11946 			opt[IPOPT_OLEN] = (uint8_t)off;
11947 			while (off < optlen) {
11948 				opt[off++] = IPOPT_NOP;
11949 			}
11950 			break;
11951 		case IPOPT_RR:
11952 			off = opt[IPOPT_OFFSET];
11953 			off--;
11954 			if (optlen < IP_ADDR_LEN ||
11955 			    off > optlen - IP_ADDR_LEN) {
11956 				/* No more room - ignore */
11957 				ip1dbg((
11958 				    "ip_output_local_options: end of RR\n"));
11959 				break;
11960 			}
11961 			dst = htonl(INADDR_LOOPBACK);
11962 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11963 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11964 			break;
11965 		case IPOPT_TS:
11966 			/* Insert timestamp if there is romm */
11967 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11968 			case IPOPT_TS_TSONLY:
11969 				off = IPOPT_TS_TIMELEN;
11970 				break;
11971 			case IPOPT_TS_PRESPEC:
11972 			case IPOPT_TS_PRESPEC_RFC791:
11973 				/* Verify that the address matched */
11974 				off = opt[IPOPT_OFFSET] - 1;
11975 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11976 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11977 					/* Not for us */
11978 					break;
11979 				}
11980 				/* FALLTHRU */
11981 			case IPOPT_TS_TSANDADDR:
11982 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11983 				break;
11984 			default:
11985 				/*
11986 				 * ip_*put_options should have already
11987 				 * dropped this packet.
11988 				 */
11989 				cmn_err(CE_PANIC, "ip_output_local_options: "
11990 				    "unknown IT - bug in ip_output_options?\n");
11991 				return;	/* Keep "lint" happy */
11992 			}
11993 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
11994 				/* Increase overflow counter */
11995 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
11996 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
11997 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
11998 				    (off << 4);
11999 				break;
12000 			}
12001 			off = opt[IPOPT_OFFSET] - 1;
12002 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12003 			case IPOPT_TS_PRESPEC:
12004 			case IPOPT_TS_PRESPEC_RFC791:
12005 			case IPOPT_TS_TSANDADDR:
12006 				dst = htonl(INADDR_LOOPBACK);
12007 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12008 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12009 				/* FALLTHRU */
12010 			case IPOPT_TS_TSONLY:
12011 				off = opt[IPOPT_OFFSET] - 1;
12012 				/* Compute # of milliseconds since midnight */
12013 				gethrestime(&now);
12014 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12015 				    now.tv_nsec / (NANOSEC / MILLISEC);
12016 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12017 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12018 				break;
12019 			}
12020 			break;
12021 		}
12022 	}
12023 }
12024 
12025 /*
12026  * Prepend an M_DATA fastpath header, and if none present prepend a
12027  * DL_UNITDATA_REQ. Frees the mblk on failure.
12028  *
12029  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12030  * If there is a change to them, the nce will be deleted (condemned) and
12031  * a new nce_t will be created when packets are sent. Thus we need no locks
12032  * to access those fields.
12033  *
12034  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12035  * we place b_band in dl_priority.dl_max.
12036  */
12037 static mblk_t *
12038 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12039 {
12040 	uint_t	hlen;
12041 	mblk_t *mp1;
12042 	uint_t	priority;
12043 	uchar_t *rptr;
12044 
12045 	rptr = mp->b_rptr;
12046 
12047 	ASSERT(DB_TYPE(mp) == M_DATA);
12048 	priority = mp->b_band;
12049 
12050 	ASSERT(nce != NULL);
12051 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12052 		hlen = MBLKL(mp1);
12053 		/*
12054 		 * Check if we have enough room to prepend fastpath
12055 		 * header
12056 		 */
12057 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12058 			rptr -= hlen;
12059 			bcopy(mp1->b_rptr, rptr, hlen);
12060 			/*
12061 			 * Set the b_rptr to the start of the link layer
12062 			 * header
12063 			 */
12064 			mp->b_rptr = rptr;
12065 			return (mp);
12066 		}
12067 		mp1 = copyb(mp1);
12068 		if (mp1 == NULL) {
12069 			ill_t *ill = nce->nce_ill;
12070 
12071 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12072 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12073 			freemsg(mp);
12074 			return (NULL);
12075 		}
12076 		mp1->b_band = priority;
12077 		mp1->b_cont = mp;
12078 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12079 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12080 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12081 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12082 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12083 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12084 		/*
12085 		 * XXX disable ICK_VALID and compute checksum
12086 		 * here; can happen if nce_fp_mp changes and
12087 		 * it can't be copied now due to insufficient
12088 		 * space. (unlikely, fp mp can change, but it
12089 		 * does not increase in length)
12090 		 */
12091 		return (mp1);
12092 	}
12093 	mp1 = copyb(nce->nce_dlur_mp);
12094 
12095 	if (mp1 == NULL) {
12096 		ill_t *ill = nce->nce_ill;
12097 
12098 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12099 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12100 		freemsg(mp);
12101 		return (NULL);
12102 	}
12103 	mp1->b_cont = mp;
12104 	if (priority != 0) {
12105 		mp1->b_band = priority;
12106 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12107 		    priority;
12108 	}
12109 	return (mp1);
12110 #undef rptr
12111 }
12112 
12113 /*
12114  * Finish the outbound IPsec processing. This function is called from
12115  * ipsec_out_process() if the IPsec packet was processed
12116  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12117  * asynchronously.
12118  *
12119  * This is common to IPv4 and IPv6.
12120  */
12121 int
12122 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12123 {
12124 	iaflags_t	ixaflags = ixa->ixa_flags;
12125 	uint_t		pktlen;
12126 
12127 
12128 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12129 	if (ixaflags & IXAF_IS_IPV4) {
12130 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12131 
12132 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12133 		pktlen = ntohs(ipha->ipha_length);
12134 	} else {
12135 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12136 
12137 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12138 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12139 	}
12140 
12141 	/*
12142 	 * We release any hard reference on the SAs here to make
12143 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12144 	 * on the SAs.
12145 	 * If in the future we want the hard latching of the SAs in the
12146 	 * ip_xmit_attr_t then we should remove this.
12147 	 */
12148 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12149 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12150 		ixa->ixa_ipsec_esp_sa = NULL;
12151 	}
12152 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12153 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12154 		ixa->ixa_ipsec_ah_sa = NULL;
12155 	}
12156 
12157 	/* Do we need to fragment? */
12158 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12159 	    pktlen > ixa->ixa_fragsize) {
12160 		if (ixaflags & IXAF_IS_IPV4) {
12161 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12162 			/*
12163 			 * We check for the DF case in ipsec_out_process
12164 			 * hence this only handles the non-DF case.
12165 			 */
12166 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12167 			    pktlen, ixa->ixa_fragsize,
12168 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12169 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12170 			    &ixa->ixa_cookie));
12171 		} else {
12172 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12173 			if (mp == NULL) {
12174 				/* MIB and ip_drop_output already done */
12175 				return (ENOMEM);
12176 			}
12177 			pktlen += sizeof (ip6_frag_t);
12178 			if (pktlen > ixa->ixa_fragsize) {
12179 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12180 				    ixa->ixa_flags, pktlen,
12181 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12182 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12183 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12184 			}
12185 		}
12186 	}
12187 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12188 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12189 	    ixa->ixa_no_loop_zoneid, NULL));
12190 }
12191 
12192 /*
12193  * Finish the inbound IPsec processing. This function is called from
12194  * ipsec_out_process() if the IPsec packet was processed
12195  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12196  * asynchronously.
12197  *
12198  * This is common to IPv4 and IPv6.
12199  */
12200 void
12201 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12202 {
12203 	iaflags_t	iraflags = ira->ira_flags;
12204 
12205 	/* Length might have changed */
12206 	if (iraflags & IRAF_IS_IPV4) {
12207 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12208 
12209 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12210 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12211 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12212 		ira->ira_protocol = ipha->ipha_protocol;
12213 
12214 		ip_fanout_v4(mp, ipha, ira);
12215 	} else {
12216 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12217 		uint8_t		*nexthdrp;
12218 
12219 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12220 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12221 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12222 		    &nexthdrp)) {
12223 			/* Malformed packet */
12224 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12225 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12226 			freemsg(mp);
12227 			return;
12228 		}
12229 		ira->ira_protocol = *nexthdrp;
12230 		ip_fanout_v6(mp, ip6h, ira);
12231 	}
12232 }
12233 
12234 /*
12235  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12236  *
12237  * If this function returns B_TRUE, the requested SA's have been filled
12238  * into the ixa_ipsec_*_sa pointers.
12239  *
12240  * If the function returns B_FALSE, the packet has been "consumed", most
12241  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12242  *
12243  * The SA references created by the protocol-specific "select"
12244  * function will be released in ip_output_post_ipsec.
12245  */
12246 static boolean_t
12247 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12248 {
12249 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12250 	ipsec_policy_t *pp;
12251 	ipsec_action_t *ap;
12252 
12253 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12254 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12255 	    (ixa->ixa_ipsec_action != NULL));
12256 
12257 	ap = ixa->ixa_ipsec_action;
12258 	if (ap == NULL) {
12259 		pp = ixa->ixa_ipsec_policy;
12260 		ASSERT(pp != NULL);
12261 		ap = pp->ipsp_act;
12262 		ASSERT(ap != NULL);
12263 	}
12264 
12265 	/*
12266 	 * We have an action.  now, let's select SA's.
12267 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12268 	 * be cached in the conn_t.
12269 	 */
12270 	if (ap->ipa_want_esp) {
12271 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12272 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12273 			    IPPROTO_ESP);
12274 		}
12275 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12276 	}
12277 
12278 	if (ap->ipa_want_ah) {
12279 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12280 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12281 			    IPPROTO_AH);
12282 		}
12283 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12284 		/*
12285 		 * The ESP and AH processing order needs to be preserved
12286 		 * when both protocols are required (ESP should be applied
12287 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12288 		 * when both ESP and AH are required, and an AH ACQUIRE
12289 		 * is needed.
12290 		 */
12291 		if (ap->ipa_want_esp && need_ah_acquire)
12292 			need_esp_acquire = B_TRUE;
12293 	}
12294 
12295 	/*
12296 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12297 	 * Release SAs that got referenced, but will not be used until we
12298 	 * acquire _all_ of the SAs we need.
12299 	 */
12300 	if (need_ah_acquire || need_esp_acquire) {
12301 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12302 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12303 			ixa->ixa_ipsec_ah_sa = NULL;
12304 		}
12305 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12306 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12307 			ixa->ixa_ipsec_esp_sa = NULL;
12308 		}
12309 
12310 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12311 		return (B_FALSE);
12312 	}
12313 
12314 	return (B_TRUE);
12315 }
12316 
12317 /*
12318  * Handle IPsec output processing.
12319  * This function is only entered once for a given packet.
12320  * We try to do things synchronously, but if we need to have user-level
12321  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12322  * will be completed
12323  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12324  *  - when asynchronous ESP is done it will do AH
12325  *
12326  * In all cases we come back in ip_output_post_ipsec() to fragment and
12327  * send out the packet.
12328  */
12329 int
12330 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12331 {
12332 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12333 	ip_stack_t	*ipst = ixa->ixa_ipst;
12334 	ipsec_stack_t	*ipss;
12335 	ipsec_policy_t	*pp;
12336 	ipsec_action_t	*ap;
12337 
12338 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12339 
12340 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12341 	    (ixa->ixa_ipsec_action != NULL));
12342 
12343 	ipss = ipst->ips_netstack->netstack_ipsec;
12344 	if (!ipsec_loaded(ipss)) {
12345 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12346 		ip_drop_packet(mp, B_TRUE, ill,
12347 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12348 		    &ipss->ipsec_dropper);
12349 		return (ENOTSUP);
12350 	}
12351 
12352 	ap = ixa->ixa_ipsec_action;
12353 	if (ap == NULL) {
12354 		pp = ixa->ixa_ipsec_policy;
12355 		ASSERT(pp != NULL);
12356 		ap = pp->ipsp_act;
12357 		ASSERT(ap != NULL);
12358 	}
12359 
12360 	/* Handle explicit drop action and bypass. */
12361 	switch (ap->ipa_act.ipa_type) {
12362 	case IPSEC_ACT_DISCARD:
12363 	case IPSEC_ACT_REJECT:
12364 		ip_drop_packet(mp, B_FALSE, ill,
12365 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12366 		return (EHOSTUNREACH);	/* IPsec policy failure */
12367 	case IPSEC_ACT_BYPASS:
12368 		return (ip_output_post_ipsec(mp, ixa));
12369 	}
12370 
12371 	/*
12372 	 * The order of processing is first insert a IP header if needed.
12373 	 * Then insert the ESP header and then the AH header.
12374 	 */
12375 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12376 		/*
12377 		 * First get the outer IP header before sending
12378 		 * it to ESP.
12379 		 */
12380 		ipha_t *oipha, *iipha;
12381 		mblk_t *outer_mp, *inner_mp;
12382 
12383 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12384 			(void) mi_strlog(ill->ill_rq, 0,
12385 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12386 			    "ipsec_out_process: "
12387 			    "Self-Encapsulation failed: Out of memory\n");
12388 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12389 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12390 			freemsg(mp);
12391 			return (ENOBUFS);
12392 		}
12393 		inner_mp = mp;
12394 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12395 		oipha = (ipha_t *)outer_mp->b_rptr;
12396 		iipha = (ipha_t *)inner_mp->b_rptr;
12397 		*oipha = *iipha;
12398 		outer_mp->b_wptr += sizeof (ipha_t);
12399 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12400 		    sizeof (ipha_t));
12401 		oipha->ipha_protocol = IPPROTO_ENCAP;
12402 		oipha->ipha_version_and_hdr_length =
12403 		    IP_SIMPLE_HDR_VERSION;
12404 		oipha->ipha_hdr_checksum = 0;
12405 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12406 		outer_mp->b_cont = inner_mp;
12407 		mp = outer_mp;
12408 
12409 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12410 	}
12411 
12412 	/* If we need to wait for a SA then we can't return any errno */
12413 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12414 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12415 	    !ipsec_out_select_sa(mp, ixa))
12416 		return (0);
12417 
12418 	/*
12419 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12420 	 * to do the heavy lifting.
12421 	 */
12422 	if (ap->ipa_want_esp) {
12423 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12424 
12425 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12426 		if (mp == NULL) {
12427 			/*
12428 			 * Either it failed or is pending. In the former case
12429 			 * ipIfStatsInDiscards was increased.
12430 			 */
12431 			return (0);
12432 		}
12433 	}
12434 
12435 	if (ap->ipa_want_ah) {
12436 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12437 
12438 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12439 		if (mp == NULL) {
12440 			/*
12441 			 * Either it failed or is pending. In the former case
12442 			 * ipIfStatsInDiscards was increased.
12443 			 */
12444 			return (0);
12445 		}
12446 	}
12447 	/*
12448 	 * We are done with IPsec processing. Send it over
12449 	 * the wire.
12450 	 */
12451 	return (ip_output_post_ipsec(mp, ixa));
12452 }
12453 
12454 /*
12455  * ioctls that go through a down/up sequence may need to wait for the down
12456  * to complete. This involves waiting for the ire and ipif refcnts to go down
12457  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12458  */
12459 /* ARGSUSED */
12460 void
12461 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12462 {
12463 	struct iocblk *iocp;
12464 	mblk_t *mp1;
12465 	ip_ioctl_cmd_t *ipip;
12466 	int err;
12467 	sin_t	*sin;
12468 	struct lifreq *lifr;
12469 	struct ifreq *ifr;
12470 
12471 	iocp = (struct iocblk *)mp->b_rptr;
12472 	ASSERT(ipsq != NULL);
12473 	/* Existence of mp1 verified in ip_wput_nondata */
12474 	mp1 = mp->b_cont->b_cont;
12475 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12476 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12477 		/*
12478 		 * Special case where ipx_current_ipif is not set:
12479 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12480 		 * We are here as were not able to complete the operation in
12481 		 * ipif_set_values because we could not become exclusive on
12482 		 * the new ipsq.
12483 		 */
12484 		ill_t *ill = q->q_ptr;
12485 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12486 	}
12487 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12488 
12489 	if (ipip->ipi_cmd_type == IF_CMD) {
12490 		/* This a old style SIOC[GS]IF* command */
12491 		ifr = (struct ifreq *)mp1->b_rptr;
12492 		sin = (sin_t *)&ifr->ifr_addr;
12493 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12494 		/* This a new style SIOC[GS]LIF* command */
12495 		lifr = (struct lifreq *)mp1->b_rptr;
12496 		sin = (sin_t *)&lifr->lifr_addr;
12497 	} else {
12498 		sin = NULL;
12499 	}
12500 
12501 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12502 	    q, mp, ipip, mp1->b_rptr);
12503 
12504 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12505 	    int, ipip->ipi_cmd,
12506 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12507 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12508 
12509 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12510 }
12511 
12512 /*
12513  * ioctl processing
12514  *
12515  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12516  * the ioctl command in the ioctl tables, determines the copyin data size
12517  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12518  *
12519  * ioctl processing then continues when the M_IOCDATA makes its way down to
12520  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12521  * associated 'conn' is refheld till the end of the ioctl and the general
12522  * ioctl processing function ip_process_ioctl() is called to extract the
12523  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12524  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12525  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12526  * is used to extract the ioctl's arguments.
12527  *
12528  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12529  * so goes thru the serialization primitive ipsq_try_enter. Then the
12530  * appropriate function to handle the ioctl is called based on the entry in
12531  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12532  * which also refreleases the 'conn' that was refheld at the start of the
12533  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12534  *
12535  * Many exclusive ioctls go thru an internal down up sequence as part of
12536  * the operation. For example an attempt to change the IP address of an
12537  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12538  * does all the cleanup such as deleting all ires that use this address.
12539  * Then we need to wait till all references to the interface go away.
12540  */
12541 void
12542 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12543 {
12544 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12545 	ip_ioctl_cmd_t *ipip = arg;
12546 	ip_extract_func_t *extract_funcp;
12547 	cmd_info_t ci;
12548 	int err;
12549 	boolean_t entered_ipsq = B_FALSE;
12550 
12551 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12552 
12553 	if (ipip == NULL)
12554 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12555 
12556 	/*
12557 	 * SIOCLIFADDIF needs to go thru a special path since the
12558 	 * ill may not exist yet. This happens in the case of lo0
12559 	 * which is created using this ioctl.
12560 	 */
12561 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12562 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12563 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12564 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12565 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12566 		return;
12567 	}
12568 
12569 	ci.ci_ipif = NULL;
12570 	switch (ipip->ipi_cmd_type) {
12571 	case MISC_CMD:
12572 	case MSFILT_CMD:
12573 		/*
12574 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12575 		 */
12576 		if (ipip->ipi_cmd == IF_UNITSEL) {
12577 			/* ioctl comes down the ill */
12578 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12579 			ipif_refhold(ci.ci_ipif);
12580 		}
12581 		err = 0;
12582 		ci.ci_sin = NULL;
12583 		ci.ci_sin6 = NULL;
12584 		ci.ci_lifr = NULL;
12585 		extract_funcp = NULL;
12586 		break;
12587 
12588 	case IF_CMD:
12589 	case LIF_CMD:
12590 		extract_funcp = ip_extract_lifreq;
12591 		break;
12592 
12593 	case ARP_CMD:
12594 	case XARP_CMD:
12595 		extract_funcp = ip_extract_arpreq;
12596 		break;
12597 
12598 	default:
12599 		ASSERT(0);
12600 	}
12601 
12602 	if (extract_funcp != NULL) {
12603 		err = (*extract_funcp)(q, mp, ipip, &ci);
12604 		if (err != 0) {
12605 			DTRACE_PROBE4(ipif__ioctl,
12606 			    char *, "ip_process_ioctl finish err",
12607 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12608 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12609 			return;
12610 		}
12611 
12612 		/*
12613 		 * All of the extraction functions return a refheld ipif.
12614 		 */
12615 		ASSERT(ci.ci_ipif != NULL);
12616 	}
12617 
12618 	if (!(ipip->ipi_flags & IPI_WR)) {
12619 		/*
12620 		 * A return value of EINPROGRESS means the ioctl is
12621 		 * either queued and waiting for some reason or has
12622 		 * already completed.
12623 		 */
12624 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12625 		    ci.ci_lifr);
12626 		if (ci.ci_ipif != NULL) {
12627 			DTRACE_PROBE4(ipif__ioctl,
12628 			    char *, "ip_process_ioctl finish RD",
12629 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12630 			    ipif_t *, ci.ci_ipif);
12631 			ipif_refrele(ci.ci_ipif);
12632 		} else {
12633 			DTRACE_PROBE4(ipif__ioctl,
12634 			    char *, "ip_process_ioctl finish RD",
12635 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12636 		}
12637 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12638 		return;
12639 	}
12640 
12641 	ASSERT(ci.ci_ipif != NULL);
12642 
12643 	/*
12644 	 * If ipsq is non-NULL, we are already being called exclusively
12645 	 */
12646 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12647 	if (ipsq == NULL) {
12648 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12649 		    NEW_OP, B_TRUE);
12650 		if (ipsq == NULL) {
12651 			ipif_refrele(ci.ci_ipif);
12652 			return;
12653 		}
12654 		entered_ipsq = B_TRUE;
12655 	}
12656 	/*
12657 	 * Release the ipif so that ipif_down and friends that wait for
12658 	 * references to go away are not misled about the current ipif_refcnt
12659 	 * values. We are writer so we can access the ipif even after releasing
12660 	 * the ipif.
12661 	 */
12662 	ipif_refrele(ci.ci_ipif);
12663 
12664 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12665 
12666 	/*
12667 	 * A return value of EINPROGRESS means the ioctl is
12668 	 * either queued and waiting for some reason or has
12669 	 * already completed.
12670 	 */
12671 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12672 
12673 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12674 	    int, ipip->ipi_cmd,
12675 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12676 	    ipif_t *, ci.ci_ipif);
12677 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12678 
12679 	if (entered_ipsq)
12680 		ipsq_exit(ipsq);
12681 }
12682 
12683 /*
12684  * Complete the ioctl. Typically ioctls use the mi package and need to
12685  * do mi_copyout/mi_copy_done.
12686  */
12687 void
12688 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12689 {
12690 	conn_t	*connp = NULL;
12691 
12692 	if (err == EINPROGRESS)
12693 		return;
12694 
12695 	if (CONN_Q(q)) {
12696 		connp = Q_TO_CONN(q);
12697 		ASSERT(connp->conn_ref >= 2);
12698 	}
12699 
12700 	switch (mode) {
12701 	case COPYOUT:
12702 		if (err == 0)
12703 			mi_copyout(q, mp);
12704 		else
12705 			mi_copy_done(q, mp, err);
12706 		break;
12707 
12708 	case NO_COPYOUT:
12709 		mi_copy_done(q, mp, err);
12710 		break;
12711 
12712 	default:
12713 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12714 		break;
12715 	}
12716 
12717 	/*
12718 	 * The conn refhold and ioctlref placed on the conn at the start of the
12719 	 * ioctl are released here.
12720 	 */
12721 	if (connp != NULL) {
12722 		CONN_DEC_IOCTLREF(connp);
12723 		CONN_OPER_PENDING_DONE(connp);
12724 	}
12725 
12726 	if (ipsq != NULL)
12727 		ipsq_current_finish(ipsq);
12728 }
12729 
12730 /* Handles all non data messages */
12731 void
12732 ip_wput_nondata(queue_t *q, mblk_t *mp)
12733 {
12734 	mblk_t		*mp1;
12735 	struct iocblk	*iocp;
12736 	ip_ioctl_cmd_t	*ipip;
12737 	conn_t		*connp;
12738 	cred_t		*cr;
12739 	char		*proto_str;
12740 
12741 	if (CONN_Q(q))
12742 		connp = Q_TO_CONN(q);
12743 	else
12744 		connp = NULL;
12745 
12746 	switch (DB_TYPE(mp)) {
12747 	case M_IOCTL:
12748 		/*
12749 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12750 		 * will arrange to copy in associated control structures.
12751 		 */
12752 		ip_sioctl_copyin_setup(q, mp);
12753 		return;
12754 	case M_IOCDATA:
12755 		/*
12756 		 * Ensure that this is associated with one of our trans-
12757 		 * parent ioctls.  If it's not ours, discard it if we're
12758 		 * running as a driver, or pass it on if we're a module.
12759 		 */
12760 		iocp = (struct iocblk *)mp->b_rptr;
12761 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12762 		if (ipip == NULL) {
12763 			if (q->q_next == NULL) {
12764 				goto nak;
12765 			} else {
12766 				putnext(q, mp);
12767 			}
12768 			return;
12769 		}
12770 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12771 			/*
12772 			 * The ioctl is one we recognise, but is not consumed
12773 			 * by IP as a module and we are a module, so we drop
12774 			 */
12775 			goto nak;
12776 		}
12777 
12778 		/* IOCTL continuation following copyin or copyout. */
12779 		if (mi_copy_state(q, mp, NULL) == -1) {
12780 			/*
12781 			 * The copy operation failed.  mi_copy_state already
12782 			 * cleaned up, so we're out of here.
12783 			 */
12784 			return;
12785 		}
12786 		/*
12787 		 * If we just completed a copy in, we become writer and
12788 		 * continue processing in ip_sioctl_copyin_done.  If it
12789 		 * was a copy out, we call mi_copyout again.  If there is
12790 		 * nothing more to copy out, it will complete the IOCTL.
12791 		 */
12792 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12793 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12794 				mi_copy_done(q, mp, EPROTO);
12795 				return;
12796 			}
12797 			/*
12798 			 * Check for cases that need more copying.  A return
12799 			 * value of 0 means a second copyin has been started,
12800 			 * so we return; a return value of 1 means no more
12801 			 * copying is needed, so we continue.
12802 			 */
12803 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12804 			    MI_COPY_COUNT(mp) == 1) {
12805 				if (ip_copyin_msfilter(q, mp) == 0)
12806 					return;
12807 			}
12808 			/*
12809 			 * Refhold the conn, till the ioctl completes. This is
12810 			 * needed in case the ioctl ends up in the pending mp
12811 			 * list. Every mp in the ipx_pending_mp list must have
12812 			 * a refhold on the conn to resume processing. The
12813 			 * refhold is released when the ioctl completes
12814 			 * (whether normally or abnormally). An ioctlref is also
12815 			 * placed on the conn to prevent TCP from removing the
12816 			 * queue needed to send the ioctl reply back.
12817 			 * In all cases ip_ioctl_finish is called to finish
12818 			 * the ioctl and release the refholds.
12819 			 */
12820 			if (connp != NULL) {
12821 				/* This is not a reentry */
12822 				CONN_INC_REF(connp);
12823 				CONN_INC_IOCTLREF(connp);
12824 			} else {
12825 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12826 					mi_copy_done(q, mp, EINVAL);
12827 					return;
12828 				}
12829 			}
12830 
12831 			ip_process_ioctl(NULL, q, mp, ipip);
12832 
12833 		} else {
12834 			mi_copyout(q, mp);
12835 		}
12836 		return;
12837 
12838 	case M_IOCNAK:
12839 		/*
12840 		 * The only way we could get here is if a resolver didn't like
12841 		 * an IOCTL we sent it.	 This shouldn't happen.
12842 		 */
12843 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12844 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12845 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12846 		freemsg(mp);
12847 		return;
12848 	case M_IOCACK:
12849 		/* /dev/ip shouldn't see this */
12850 		goto nak;
12851 	case M_FLUSH:
12852 		if (*mp->b_rptr & FLUSHW)
12853 			flushq(q, FLUSHALL);
12854 		if (q->q_next) {
12855 			putnext(q, mp);
12856 			return;
12857 		}
12858 		if (*mp->b_rptr & FLUSHR) {
12859 			*mp->b_rptr &= ~FLUSHW;
12860 			qreply(q, mp);
12861 			return;
12862 		}
12863 		freemsg(mp);
12864 		return;
12865 	case M_CTL:
12866 		break;
12867 	case M_PROTO:
12868 	case M_PCPROTO:
12869 		/*
12870 		 * The only PROTO messages we expect are SNMP-related.
12871 		 */
12872 		switch (((union T_primitives *)mp->b_rptr)->type) {
12873 		case T_SVR4_OPTMGMT_REQ:
12874 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12875 			    "flags %x\n",
12876 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12877 
12878 			if (connp == NULL) {
12879 				proto_str = "T_SVR4_OPTMGMT_REQ";
12880 				goto protonak;
12881 			}
12882 
12883 			/*
12884 			 * All Solaris components should pass a db_credp
12885 			 * for this TPI message, hence we ASSERT.
12886 			 * But in case there is some other M_PROTO that looks
12887 			 * like a TPI message sent by some other kernel
12888 			 * component, we check and return an error.
12889 			 */
12890 			cr = msg_getcred(mp, NULL);
12891 			ASSERT(cr != NULL);
12892 			if (cr == NULL) {
12893 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12894 				if (mp != NULL)
12895 					qreply(q, mp);
12896 				return;
12897 			}
12898 
12899 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12900 				proto_str = "Bad SNMPCOM request?";
12901 				goto protonak;
12902 			}
12903 			return;
12904 		default:
12905 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12906 			    (int)*(uint_t *)mp->b_rptr));
12907 			freemsg(mp);
12908 			return;
12909 		}
12910 	default:
12911 		break;
12912 	}
12913 	if (q->q_next) {
12914 		putnext(q, mp);
12915 	} else
12916 		freemsg(mp);
12917 	return;
12918 
12919 nak:
12920 	iocp->ioc_error = EINVAL;
12921 	mp->b_datap->db_type = M_IOCNAK;
12922 	iocp->ioc_count = 0;
12923 	qreply(q, mp);
12924 	return;
12925 
12926 protonak:
12927 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12928 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12929 		qreply(q, mp);
12930 }
12931 
12932 /*
12933  * Process IP options in an outbound packet.  Verify that the nexthop in a
12934  * strict source route is onlink.
12935  * Returns non-zero if something fails in which case an ICMP error has been
12936  * sent and mp freed.
12937  *
12938  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12939  */
12940 int
12941 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12942 {
12943 	ipoptp_t	opts;
12944 	uchar_t		*opt;
12945 	uint8_t		optval;
12946 	uint8_t		optlen;
12947 	ipaddr_t	dst;
12948 	intptr_t	code = 0;
12949 	ire_t		*ire;
12950 	ip_stack_t	*ipst = ixa->ixa_ipst;
12951 	ip_recv_attr_t	iras;
12952 
12953 	ip2dbg(("ip_output_options\n"));
12954 
12955 	dst = ipha->ipha_dst;
12956 	for (optval = ipoptp_first(&opts, ipha);
12957 	    optval != IPOPT_EOL;
12958 	    optval = ipoptp_next(&opts)) {
12959 		opt = opts.ipoptp_cur;
12960 		optlen = opts.ipoptp_len;
12961 		ip2dbg(("ip_output_options: opt %d, len %d\n",
12962 		    optval, optlen));
12963 		switch (optval) {
12964 			uint32_t off;
12965 		case IPOPT_SSRR:
12966 		case IPOPT_LSRR:
12967 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12968 				ip1dbg((
12969 				    "ip_output_options: bad option offset\n"));
12970 				code = (char *)&opt[IPOPT_OLEN] -
12971 				    (char *)ipha;
12972 				goto param_prob;
12973 			}
12974 			off = opt[IPOPT_OFFSET];
12975 			ip1dbg(("ip_output_options: next hop 0x%x\n",
12976 			    ntohl(dst)));
12977 			/*
12978 			 * For strict: verify that dst is directly
12979 			 * reachable.
12980 			 */
12981 			if (optval == IPOPT_SSRR) {
12982 				ire = ire_ftable_lookup_v4(dst, 0, 0,
12983 				    IRE_INTERFACE, NULL, ALL_ZONES,
12984 				    ixa->ixa_tsl,
12985 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12986 				    NULL);
12987 				if (ire == NULL) {
12988 					ip1dbg(("ip_output_options: SSRR not"
12989 					    " directly reachable: 0x%x\n",
12990 					    ntohl(dst)));
12991 					goto bad_src_route;
12992 				}
12993 				ire_refrele(ire);
12994 			}
12995 			break;
12996 		case IPOPT_RR:
12997 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12998 				ip1dbg((
12999 				    "ip_output_options: bad option offset\n"));
13000 				code = (char *)&opt[IPOPT_OLEN] -
13001 				    (char *)ipha;
13002 				goto param_prob;
13003 			}
13004 			break;
13005 		case IPOPT_TS:
13006 			/*
13007 			 * Verify that length >=5 and that there is either
13008 			 * room for another timestamp or that the overflow
13009 			 * counter is not maxed out.
13010 			 */
13011 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13012 			if (optlen < IPOPT_MINLEN_IT) {
13013 				goto param_prob;
13014 			}
13015 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13016 				ip1dbg((
13017 				    "ip_output_options: bad option offset\n"));
13018 				code = (char *)&opt[IPOPT_OFFSET] -
13019 				    (char *)ipha;
13020 				goto param_prob;
13021 			}
13022 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13023 			case IPOPT_TS_TSONLY:
13024 				off = IPOPT_TS_TIMELEN;
13025 				break;
13026 			case IPOPT_TS_TSANDADDR:
13027 			case IPOPT_TS_PRESPEC:
13028 			case IPOPT_TS_PRESPEC_RFC791:
13029 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13030 				break;
13031 			default:
13032 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13033 				    (char *)ipha;
13034 				goto param_prob;
13035 			}
13036 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13037 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13038 				/*
13039 				 * No room and the overflow counter is 15
13040 				 * already.
13041 				 */
13042 				goto param_prob;
13043 			}
13044 			break;
13045 		}
13046 	}
13047 
13048 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13049 		return (0);
13050 
13051 	ip1dbg(("ip_output_options: error processing IP options."));
13052 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13053 
13054 param_prob:
13055 	bzero(&iras, sizeof (iras));
13056 	iras.ira_ill = iras.ira_rill = ill;
13057 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13058 	iras.ira_rifindex = iras.ira_ruifindex;
13059 	iras.ira_flags = IRAF_IS_IPV4;
13060 
13061 	ip_drop_output("ip_output_options", mp, ill);
13062 	icmp_param_problem(mp, (uint8_t)code, &iras);
13063 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13064 	return (-1);
13065 
13066 bad_src_route:
13067 	bzero(&iras, sizeof (iras));
13068 	iras.ira_ill = iras.ira_rill = ill;
13069 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13070 	iras.ira_rifindex = iras.ira_ruifindex;
13071 	iras.ira_flags = IRAF_IS_IPV4;
13072 
13073 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13074 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13075 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13076 	return (-1);
13077 }
13078 
13079 /*
13080  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13081  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13082  * thru /etc/system.
13083  */
13084 #define	CONN_MAXDRAINCNT	64
13085 
13086 static void
13087 conn_drain_init(ip_stack_t *ipst)
13088 {
13089 	int i, j;
13090 	idl_tx_list_t *itl_tx;
13091 
13092 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13093 
13094 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13095 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13096 		/*
13097 		 * Default value of the number of drainers is the
13098 		 * number of cpus, subject to maximum of 8 drainers.
13099 		 */
13100 		if (boot_max_ncpus != -1)
13101 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13102 		else
13103 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13104 	}
13105 
13106 	ipst->ips_idl_tx_list =
13107 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13108 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13109 		itl_tx =  &ipst->ips_idl_tx_list[i];
13110 		itl_tx->txl_drain_list =
13111 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13112 		    sizeof (idl_t), KM_SLEEP);
13113 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13114 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13115 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13116 			    MUTEX_DEFAULT, NULL);
13117 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13118 		}
13119 	}
13120 }
13121 
13122 static void
13123 conn_drain_fini(ip_stack_t *ipst)
13124 {
13125 	int i;
13126 	idl_tx_list_t *itl_tx;
13127 
13128 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13129 		itl_tx =  &ipst->ips_idl_tx_list[i];
13130 		kmem_free(itl_tx->txl_drain_list,
13131 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13132 	}
13133 	kmem_free(ipst->ips_idl_tx_list,
13134 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13135 	ipst->ips_idl_tx_list = NULL;
13136 }
13137 
13138 /*
13139  * Flow control has blocked us from proceeding.  Insert the given conn in one
13140  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13141  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13142  * will call conn_walk_drain().  See the flow control notes at the top of this
13143  * file for more details.
13144  */
13145 void
13146 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13147 {
13148 	idl_t	*idl = tx_list->txl_drain_list;
13149 	uint_t	index;
13150 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13151 
13152 	mutex_enter(&connp->conn_lock);
13153 	if (connp->conn_state_flags & CONN_CLOSING) {
13154 		/*
13155 		 * The conn is closing as a result of which CONN_CLOSING
13156 		 * is set. Return.
13157 		 */
13158 		mutex_exit(&connp->conn_lock);
13159 		return;
13160 	} else if (connp->conn_idl == NULL) {
13161 		/*
13162 		 * Assign the next drain list round robin. We dont' use
13163 		 * a lock, and thus it may not be strictly round robin.
13164 		 * Atomicity of load/stores is enough to make sure that
13165 		 * conn_drain_list_index is always within bounds.
13166 		 */
13167 		index = tx_list->txl_drain_index;
13168 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13169 		connp->conn_idl = &tx_list->txl_drain_list[index];
13170 		index++;
13171 		if (index == ipst->ips_conn_drain_list_cnt)
13172 			index = 0;
13173 		tx_list->txl_drain_index = index;
13174 	} else {
13175 		ASSERT(connp->conn_idl->idl_itl == tx_list);
13176 	}
13177 	mutex_exit(&connp->conn_lock);
13178 
13179 	idl = connp->conn_idl;
13180 	mutex_enter(&idl->idl_lock);
13181 	if ((connp->conn_drain_prev != NULL) ||
13182 	    (connp->conn_state_flags & CONN_CLOSING)) {
13183 		/*
13184 		 * The conn is either already in the drain list or closing.
13185 		 * (We needed to check for CONN_CLOSING again since close can
13186 		 * sneak in between dropping conn_lock and acquiring idl_lock.)
13187 		 */
13188 		mutex_exit(&idl->idl_lock);
13189 		return;
13190 	}
13191 
13192 	/*
13193 	 * The conn is not in the drain list. Insert it at the
13194 	 * tail of the drain list. The drain list is circular
13195 	 * and doubly linked. idl_conn points to the 1st element
13196 	 * in the list.
13197 	 */
13198 	if (idl->idl_conn == NULL) {
13199 		idl->idl_conn = connp;
13200 		connp->conn_drain_next = connp;
13201 		connp->conn_drain_prev = connp;
13202 	} else {
13203 		conn_t *head = idl->idl_conn;
13204 
13205 		connp->conn_drain_next = head;
13206 		connp->conn_drain_prev = head->conn_drain_prev;
13207 		head->conn_drain_prev->conn_drain_next = connp;
13208 		head->conn_drain_prev = connp;
13209 	}
13210 	/*
13211 	 * For non streams based sockets assert flow control.
13212 	 */
13213 	conn_setqfull(connp, NULL);
13214 	mutex_exit(&idl->idl_lock);
13215 }
13216 
13217 static void
13218 conn_drain_remove(conn_t *connp)
13219 {
13220 	idl_t *idl = connp->conn_idl;
13221 
13222 	if (idl != NULL) {
13223 		/*
13224 		 * Remove ourself from the drain list.
13225 		 */
13226 		if (connp->conn_drain_next == connp) {
13227 			/* Singleton in the list */
13228 			ASSERT(connp->conn_drain_prev == connp);
13229 			idl->idl_conn = NULL;
13230 		} else {
13231 			connp->conn_drain_prev->conn_drain_next =
13232 			    connp->conn_drain_next;
13233 			connp->conn_drain_next->conn_drain_prev =
13234 			    connp->conn_drain_prev;
13235 			if (idl->idl_conn == connp)
13236 				idl->idl_conn = connp->conn_drain_next;
13237 		}
13238 
13239 		/*
13240 		 * NOTE: because conn_idl is associated with a specific drain
13241 		 * list which in turn is tied to the index the TX ring
13242 		 * (txl_cookie) hashes to, and because the TX ring can change
13243 		 * over the lifetime of the conn_t, we must clear conn_idl so
13244 		 * a subsequent conn_drain_insert() will set conn_idl again
13245 		 * based on the latest txl_cookie.
13246 		 */
13247 		connp->conn_idl = NULL;
13248 	}
13249 	connp->conn_drain_next = NULL;
13250 	connp->conn_drain_prev = NULL;
13251 
13252 	conn_clrqfull(connp, NULL);
13253 	/*
13254 	 * For streams based sockets open up flow control.
13255 	 */
13256 	if (!IPCL_IS_NONSTR(connp))
13257 		enableok(connp->conn_wq);
13258 }
13259 
13260 /*
13261  * This conn is closing, and we are called from ip_close. OR
13262  * this conn is draining because flow-control on the ill has been relieved.
13263  *
13264  * We must also need to remove conn's on this idl from the list, and also
13265  * inform the sockfs upcalls about the change in flow-control.
13266  */
13267 static void
13268 conn_drain(conn_t *connp, boolean_t closing)
13269 {
13270 	idl_t *idl;
13271 	conn_t *next_connp;
13272 
13273 	/*
13274 	 * connp->conn_idl is stable at this point, and no lock is needed
13275 	 * to check it. If we are called from ip_close, close has already
13276 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13277 	 * called us only because conn_idl is non-null. If we are called thru
13278 	 * service, conn_idl could be null, but it cannot change because
13279 	 * service is single-threaded per queue, and there cannot be another
13280 	 * instance of service trying to call conn_drain_insert on this conn
13281 	 * now.
13282 	 */
13283 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13284 
13285 	/*
13286 	 * If the conn doesn't exist or is not on a drain list, bail.
13287 	 */
13288 	if (connp == NULL || connp->conn_idl == NULL ||
13289 	    connp->conn_drain_prev == NULL) {
13290 		return;
13291 	}
13292 
13293 	idl = connp->conn_idl;
13294 	ASSERT(MUTEX_HELD(&idl->idl_lock));
13295 
13296 	if (!closing) {
13297 		next_connp = connp->conn_drain_next;
13298 		while (next_connp != connp) {
13299 			conn_t *delconnp = next_connp;
13300 
13301 			next_connp = next_connp->conn_drain_next;
13302 			conn_drain_remove(delconnp);
13303 		}
13304 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13305 	}
13306 	conn_drain_remove(connp);
13307 }
13308 
13309 /*
13310  * Write service routine. Shared perimeter entry point.
13311  * The device queue's messages has fallen below the low water mark and STREAMS
13312  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13313  * each waiting conn.
13314  */
13315 void
13316 ip_wsrv(queue_t *q)
13317 {
13318 	ill_t	*ill;
13319 
13320 	ill = (ill_t *)q->q_ptr;
13321 	if (ill->ill_state_flags == 0) {
13322 		ip_stack_t *ipst = ill->ill_ipst;
13323 
13324 		/*
13325 		 * The device flow control has opened up.
13326 		 * Walk through conn drain lists and qenable the
13327 		 * first conn in each list. This makes sense only
13328 		 * if the stream is fully plumbed and setup.
13329 		 * Hence the ill_state_flags check above.
13330 		 */
13331 		ip1dbg(("ip_wsrv: walking\n"));
13332 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13333 		enableok(ill->ill_wq);
13334 	}
13335 }
13336 
13337 /*
13338  * Callback to disable flow control in IP.
13339  *
13340  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13341  * is enabled.
13342  *
13343  * When MAC_TX() is not able to send any more packets, dld sets its queue
13344  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13345  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13346  * function and wakes up corresponding mac worker threads, which in turn
13347  * calls this callback function, and disables flow control.
13348  */
13349 void
13350 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13351 {
13352 	ill_t *ill = (ill_t *)arg;
13353 	ip_stack_t *ipst = ill->ill_ipst;
13354 	idl_tx_list_t *idl_txl;
13355 
13356 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13357 	mutex_enter(&idl_txl->txl_lock);
13358 	/* add code to to set a flag to indicate idl_txl is enabled */
13359 	conn_walk_drain(ipst, idl_txl);
13360 	mutex_exit(&idl_txl->txl_lock);
13361 }
13362 
13363 /*
13364  * Flow control has been relieved and STREAMS has backenabled us; drain
13365  * all the conn lists on `tx_list'.
13366  */
13367 static void
13368 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13369 {
13370 	int i;
13371 	idl_t *idl;
13372 
13373 	IP_STAT(ipst, ip_conn_walk_drain);
13374 
13375 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13376 		idl = &tx_list->txl_drain_list[i];
13377 		mutex_enter(&idl->idl_lock);
13378 		conn_drain(idl->idl_conn, B_FALSE);
13379 		mutex_exit(&idl->idl_lock);
13380 	}
13381 }
13382 
13383 /*
13384  * Determine if the ill and multicast aspects of that packets
13385  * "matches" the conn.
13386  */
13387 boolean_t
13388 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13389 {
13390 	ill_t		*ill = ira->ira_rill;
13391 	zoneid_t	zoneid = ira->ira_zoneid;
13392 	uint_t		in_ifindex;
13393 	ipaddr_t	dst, src;
13394 
13395 	dst = ipha->ipha_dst;
13396 	src = ipha->ipha_src;
13397 
13398 	/*
13399 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13400 	 * unicast, broadcast and multicast reception to
13401 	 * conn_incoming_ifindex.
13402 	 * conn_wantpacket is called for unicast, broadcast and
13403 	 * multicast packets.
13404 	 */
13405 	in_ifindex = connp->conn_incoming_ifindex;
13406 
13407 	/* mpathd can bind to the under IPMP interface, which we allow */
13408 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13409 		if (!IS_UNDER_IPMP(ill))
13410 			return (B_FALSE);
13411 
13412 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13413 			return (B_FALSE);
13414 	}
13415 
13416 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13417 		return (B_FALSE);
13418 
13419 	if (!(ira->ira_flags & IRAF_MULTICAST))
13420 		return (B_TRUE);
13421 
13422 	if (connp->conn_multi_router) {
13423 		/* multicast packet and multicast router socket: send up */
13424 		return (B_TRUE);
13425 	}
13426 
13427 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13428 	    ipha->ipha_protocol == IPPROTO_RSVP)
13429 		return (B_TRUE);
13430 
13431 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13432 }
13433 
13434 void
13435 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13436 {
13437 	if (IPCL_IS_NONSTR(connp)) {
13438 		(*connp->conn_upcalls->su_txq_full)
13439 		    (connp->conn_upper_handle, B_TRUE);
13440 		if (flow_stopped != NULL)
13441 			*flow_stopped = B_TRUE;
13442 	} else {
13443 		queue_t *q = connp->conn_wq;
13444 
13445 		ASSERT(q != NULL);
13446 		if (!(q->q_flag & QFULL)) {
13447 			mutex_enter(QLOCK(q));
13448 			if (!(q->q_flag & QFULL)) {
13449 				/* still need to set QFULL */
13450 				q->q_flag |= QFULL;
13451 				/* set flow_stopped to true under QLOCK */
13452 				if (flow_stopped != NULL)
13453 					*flow_stopped = B_TRUE;
13454 				mutex_exit(QLOCK(q));
13455 			} else {
13456 				/* flow_stopped is left unchanged */
13457 				mutex_exit(QLOCK(q));
13458 			}
13459 		}
13460 	}
13461 }
13462 
13463 void
13464 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13465 {
13466 	if (IPCL_IS_NONSTR(connp)) {
13467 		(*connp->conn_upcalls->su_txq_full)
13468 		    (connp->conn_upper_handle, B_FALSE);
13469 		if (flow_stopped != NULL)
13470 			*flow_stopped = B_FALSE;
13471 	} else {
13472 		queue_t *q = connp->conn_wq;
13473 
13474 		ASSERT(q != NULL);
13475 		if (q->q_flag & QFULL) {
13476 			mutex_enter(QLOCK(q));
13477 			if (q->q_flag & QFULL) {
13478 				q->q_flag &= ~QFULL;
13479 				/* set flow_stopped to false under QLOCK */
13480 				if (flow_stopped != NULL)
13481 					*flow_stopped = B_FALSE;
13482 				mutex_exit(QLOCK(q));
13483 				if (q->q_flag & QWANTW)
13484 					qbackenable(q, 0);
13485 			} else {
13486 				/* flow_stopped is left unchanged */
13487 				mutex_exit(QLOCK(q));
13488 			}
13489 		}
13490 	}
13491 
13492 	mutex_enter(&connp->conn_lock);
13493 	connp->conn_blocked = B_FALSE;
13494 	mutex_exit(&connp->conn_lock);
13495 }
13496 
13497 /*
13498  * Return the length in bytes of the IPv4 headers (base header, label, and
13499  * other IP options) that will be needed based on the
13500  * ip_pkt_t structure passed by the caller.
13501  *
13502  * The returned length does not include the length of the upper level
13503  * protocol (ULP) header.
13504  * The caller needs to check that the length doesn't exceed the max for IPv4.
13505  */
13506 int
13507 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13508 {
13509 	int len;
13510 
13511 	len = IP_SIMPLE_HDR_LENGTH;
13512 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13513 		ASSERT(ipp->ipp_label_len_v4 != 0);
13514 		/* We need to round up here */
13515 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13516 	}
13517 
13518 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13519 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13520 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13521 		len += ipp->ipp_ipv4_options_len;
13522 	}
13523 	return (len);
13524 }
13525 
13526 /*
13527  * All-purpose routine to build an IPv4 header with options based
13528  * on the abstract ip_pkt_t.
13529  *
13530  * The caller has to set the source and destination address as well as
13531  * ipha_length. The caller has to massage any source route and compensate
13532  * for the ULP pseudo-header checksum due to the source route.
13533  */
13534 void
13535 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13536     uint8_t protocol)
13537 {
13538 	ipha_t	*ipha = (ipha_t *)buf;
13539 	uint8_t *cp;
13540 
13541 	/* Initialize IPv4 header */
13542 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13543 	ipha->ipha_length = 0;	/* Caller will set later */
13544 	ipha->ipha_ident = 0;
13545 	ipha->ipha_fragment_offset_and_flags = 0;
13546 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13547 	ipha->ipha_protocol = protocol;
13548 	ipha->ipha_hdr_checksum = 0;
13549 
13550 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13551 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13552 		ipha->ipha_src = ipp->ipp_addr_v4;
13553 
13554 	cp = (uint8_t *)&ipha[1];
13555 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13556 		ASSERT(ipp->ipp_label_len_v4 != 0);
13557 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13558 		cp += ipp->ipp_label_len_v4;
13559 		/* We need to round up here */
13560 		while ((uintptr_t)cp & 0x3) {
13561 			*cp++ = IPOPT_NOP;
13562 		}
13563 	}
13564 
13565 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13566 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13567 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13568 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13569 		cp += ipp->ipp_ipv4_options_len;
13570 	}
13571 	ipha->ipha_version_and_hdr_length =
13572 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13573 
13574 	ASSERT((int)(cp - buf) == buf_len);
13575 }
13576 
13577 /* Allocate the private structure */
13578 static int
13579 ip_priv_alloc(void **bufp)
13580 {
13581 	void	*buf;
13582 
13583 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13584 		return (ENOMEM);
13585 
13586 	*bufp = buf;
13587 	return (0);
13588 }
13589 
13590 /* Function to delete the private structure */
13591 void
13592 ip_priv_free(void *buf)
13593 {
13594 	ASSERT(buf != NULL);
13595 	kmem_free(buf, sizeof (ip_priv_t));
13596 }
13597 
13598 /*
13599  * The entry point for IPPF processing.
13600  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13601  * routine just returns.
13602  *
13603  * When called, ip_process generates an ipp_packet_t structure
13604  * which holds the state information for this packet and invokes the
13605  * the classifier (via ipp_packet_process). The classification, depending on
13606  * configured filters, results in a list of actions for this packet. Invoking
13607  * an action may cause the packet to be dropped, in which case we return NULL.
13608  * proc indicates the callout position for
13609  * this packet and ill is the interface this packet arrived on or will leave
13610  * on (inbound and outbound resp.).
13611  *
13612  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13613  * on the ill corrsponding to the destination IP address.
13614  */
13615 mblk_t *
13616 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13617 {
13618 	ip_priv_t	*priv;
13619 	ipp_action_id_t	aid;
13620 	int		rc = 0;
13621 	ipp_packet_t	*pp;
13622 
13623 	/* If the classifier is not loaded, return  */
13624 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13625 		return (mp);
13626 	}
13627 
13628 	ASSERT(mp != NULL);
13629 
13630 	/* Allocate the packet structure */
13631 	rc = ipp_packet_alloc(&pp, "ip", aid);
13632 	if (rc != 0)
13633 		goto drop;
13634 
13635 	/* Allocate the private structure */
13636 	rc = ip_priv_alloc((void **)&priv);
13637 	if (rc != 0) {
13638 		ipp_packet_free(pp);
13639 		goto drop;
13640 	}
13641 	priv->proc = proc;
13642 	priv->ill_index = ill_get_upper_ifindex(rill);
13643 
13644 	ipp_packet_set_private(pp, priv, ip_priv_free);
13645 	ipp_packet_set_data(pp, mp);
13646 
13647 	/* Invoke the classifier */
13648 	rc = ipp_packet_process(&pp);
13649 	if (pp != NULL) {
13650 		mp = ipp_packet_get_data(pp);
13651 		ipp_packet_free(pp);
13652 		if (rc != 0)
13653 			goto drop;
13654 		return (mp);
13655 	} else {
13656 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13657 		mp = NULL;
13658 	}
13659 drop:
13660 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13661 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13662 		ip_drop_input("ip_process", mp, ill);
13663 	} else {
13664 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13665 		ip_drop_output("ip_process", mp, ill);
13666 	}
13667 	freemsg(mp);
13668 	return (NULL);
13669 }
13670 
13671 /*
13672  * Propagate a multicast group membership operation (add/drop) on
13673  * all the interfaces crossed by the related multirt routes.
13674  * The call is considered successful if the operation succeeds
13675  * on at least one interface.
13676  *
13677  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13678  * multicast addresses with the ire argument being the first one.
13679  * We walk the bucket to find all the of those.
13680  *
13681  * Common to IPv4 and IPv6.
13682  */
13683 static int
13684 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13685     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13686     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13687     mcast_record_t fmode, const in6_addr_t *v6src)
13688 {
13689 	ire_t		*ire_gw;
13690 	irb_t		*irb;
13691 	int		ifindex;
13692 	int		error = 0;
13693 	int		result;
13694 	ip_stack_t	*ipst = ire->ire_ipst;
13695 	ipaddr_t	group;
13696 	boolean_t	isv6;
13697 	int		match_flags;
13698 
13699 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13700 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13701 		isv6 = B_FALSE;
13702 	} else {
13703 		isv6 = B_TRUE;
13704 	}
13705 
13706 	irb = ire->ire_bucket;
13707 	ASSERT(irb != NULL);
13708 
13709 	result = 0;
13710 	irb_refhold(irb);
13711 	for (; ire != NULL; ire = ire->ire_next) {
13712 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13713 			continue;
13714 
13715 		/* We handle -ifp routes by matching on the ill if set */
13716 		match_flags = MATCH_IRE_TYPE;
13717 		if (ire->ire_ill != NULL)
13718 			match_flags |= MATCH_IRE_ILL;
13719 
13720 		if (isv6) {
13721 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13722 				continue;
13723 
13724 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13725 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13726 			    match_flags, 0, ipst, NULL);
13727 		} else {
13728 			if (ire->ire_addr != group)
13729 				continue;
13730 
13731 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13732 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13733 			    match_flags, 0, ipst, NULL);
13734 		}
13735 		/* No interface route exists for the gateway; skip this ire. */
13736 		if (ire_gw == NULL)
13737 			continue;
13738 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13739 			ire_refrele(ire_gw);
13740 			continue;
13741 		}
13742 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13743 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13744 
13745 		/*
13746 		 * The operation is considered a success if
13747 		 * it succeeds at least once on any one interface.
13748 		 */
13749 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13750 		    fmode, v6src);
13751 		if (error == 0)
13752 			result = CGTP_MCAST_SUCCESS;
13753 
13754 		ire_refrele(ire_gw);
13755 	}
13756 	irb_refrele(irb);
13757 	/*
13758 	 * Consider the call as successful if we succeeded on at least
13759 	 * one interface. Otherwise, return the last encountered error.
13760 	 */
13761 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13762 }
13763 
13764 /*
13765  * Return the expected CGTP hooks version number.
13766  */
13767 int
13768 ip_cgtp_filter_supported(void)
13769 {
13770 	return (ip_cgtp_filter_rev);
13771 }
13772 
13773 /*
13774  * CGTP hooks can be registered by invoking this function.
13775  * Checks that the version number matches.
13776  */
13777 int
13778 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13779 {
13780 	netstack_t *ns;
13781 	ip_stack_t *ipst;
13782 
13783 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13784 		return (ENOTSUP);
13785 
13786 	ns = netstack_find_by_stackid(stackid);
13787 	if (ns == NULL)
13788 		return (EINVAL);
13789 	ipst = ns->netstack_ip;
13790 	ASSERT(ipst != NULL);
13791 
13792 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13793 		netstack_rele(ns);
13794 		return (EALREADY);
13795 	}
13796 
13797 	ipst->ips_ip_cgtp_filter_ops = ops;
13798 
13799 	ill_set_inputfn_all(ipst);
13800 
13801 	netstack_rele(ns);
13802 	return (0);
13803 }
13804 
13805 /*
13806  * CGTP hooks can be unregistered by invoking this function.
13807  * Returns ENXIO if there was no registration.
13808  * Returns EBUSY if the ndd variable has not been turned off.
13809  */
13810 int
13811 ip_cgtp_filter_unregister(netstackid_t stackid)
13812 {
13813 	netstack_t *ns;
13814 	ip_stack_t *ipst;
13815 
13816 	ns = netstack_find_by_stackid(stackid);
13817 	if (ns == NULL)
13818 		return (EINVAL);
13819 	ipst = ns->netstack_ip;
13820 	ASSERT(ipst != NULL);
13821 
13822 	if (ipst->ips_ip_cgtp_filter) {
13823 		netstack_rele(ns);
13824 		return (EBUSY);
13825 	}
13826 
13827 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13828 		netstack_rele(ns);
13829 		return (ENXIO);
13830 	}
13831 	ipst->ips_ip_cgtp_filter_ops = NULL;
13832 
13833 	ill_set_inputfn_all(ipst);
13834 
13835 	netstack_rele(ns);
13836 	return (0);
13837 }
13838 
13839 /*
13840  * Check whether there is a CGTP filter registration.
13841  * Returns non-zero if there is a registration, otherwise returns zero.
13842  * Note: returns zero if bad stackid.
13843  */
13844 int
13845 ip_cgtp_filter_is_registered(netstackid_t stackid)
13846 {
13847 	netstack_t *ns;
13848 	ip_stack_t *ipst;
13849 	int ret;
13850 
13851 	ns = netstack_find_by_stackid(stackid);
13852 	if (ns == NULL)
13853 		return (0);
13854 	ipst = ns->netstack_ip;
13855 	ASSERT(ipst != NULL);
13856 
13857 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13858 		ret = 1;
13859 	else
13860 		ret = 0;
13861 
13862 	netstack_rele(ns);
13863 	return (ret);
13864 }
13865 
13866 static int
13867 ip_squeue_switch(int val)
13868 {
13869 	int rval;
13870 
13871 	switch (val) {
13872 	case IP_SQUEUE_ENTER_NODRAIN:
13873 		rval = SQ_NODRAIN;
13874 		break;
13875 	case IP_SQUEUE_ENTER:
13876 		rval = SQ_PROCESS;
13877 		break;
13878 	case IP_SQUEUE_FILL:
13879 	default:
13880 		rval = SQ_FILL;
13881 		break;
13882 	}
13883 	return (rval);
13884 }
13885 
13886 static void *
13887 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13888 {
13889 	kstat_t *ksp;
13890 
13891 	ip_stat_t template = {
13892 		{ "ip_udp_fannorm", 		KSTAT_DATA_UINT64 },
13893 		{ "ip_udp_fanmb", 		KSTAT_DATA_UINT64 },
13894 		{ "ip_recv_pullup", 		KSTAT_DATA_UINT64 },
13895 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13896 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13897 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13898 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13899 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13900 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13901 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13902 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13903 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13904 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13905 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13906 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13907 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13908 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13909 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13910 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13911 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13912 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13913 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13914 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13915 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13916 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13917 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13918 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13919 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13920 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13921 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13922 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13923 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13924 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13925 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13926 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13927 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13928 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13929 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13930 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13931 	};
13932 
13933 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13934 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13935 	    KSTAT_FLAG_VIRTUAL, stackid);
13936 
13937 	if (ksp == NULL)
13938 		return (NULL);
13939 
13940 	bcopy(&template, ip_statisticsp, sizeof (template));
13941 	ksp->ks_data = (void *)ip_statisticsp;
13942 	ksp->ks_private = (void *)(uintptr_t)stackid;
13943 
13944 	kstat_install(ksp);
13945 	return (ksp);
13946 }
13947 
13948 static void
13949 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13950 {
13951 	if (ksp != NULL) {
13952 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13953 		kstat_delete_netstack(ksp, stackid);
13954 	}
13955 }
13956 
13957 static void *
13958 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13959 {
13960 	kstat_t	*ksp;
13961 
13962 	ip_named_kstat_t template = {
13963 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
13964 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
13965 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
13966 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
13967 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
13968 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
13969 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
13970 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
13971 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
13972 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
13973 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
13974 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
13975 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
13976 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
13977 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
13978 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
13979 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
13980 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
13981 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
13982 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
13983 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
13984 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
13985 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
13986 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
13987 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
13988 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
13989 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
13990 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
13991 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
13992 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
13993 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
13994 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
13995 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
13996 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
13997 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
13998 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
13999 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
14000 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14001 	};
14002 
14003 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14004 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14005 	if (ksp == NULL || ksp->ks_data == NULL)
14006 		return (NULL);
14007 
14008 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14009 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14010 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14011 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14012 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14013 
14014 	template.netToMediaEntrySize.value.i32 =
14015 	    sizeof (mib2_ipNetToMediaEntry_t);
14016 
14017 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14018 
14019 	bcopy(&template, ksp->ks_data, sizeof (template));
14020 	ksp->ks_update = ip_kstat_update;
14021 	ksp->ks_private = (void *)(uintptr_t)stackid;
14022 
14023 	kstat_install(ksp);
14024 	return (ksp);
14025 }
14026 
14027 static void
14028 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14029 {
14030 	if (ksp != NULL) {
14031 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14032 		kstat_delete_netstack(ksp, stackid);
14033 	}
14034 }
14035 
14036 static int
14037 ip_kstat_update(kstat_t *kp, int rw)
14038 {
14039 	ip_named_kstat_t *ipkp;
14040 	mib2_ipIfStatsEntry_t ipmib;
14041 	ill_walk_context_t ctx;
14042 	ill_t *ill;
14043 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14044 	netstack_t	*ns;
14045 	ip_stack_t	*ipst;
14046 
14047 	if (kp == NULL || kp->ks_data == NULL)
14048 		return (EIO);
14049 
14050 	if (rw == KSTAT_WRITE)
14051 		return (EACCES);
14052 
14053 	ns = netstack_find_by_stackid(stackid);
14054 	if (ns == NULL)
14055 		return (-1);
14056 	ipst = ns->netstack_ip;
14057 	if (ipst == NULL) {
14058 		netstack_rele(ns);
14059 		return (-1);
14060 	}
14061 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14062 
14063 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14064 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14065 	ill = ILL_START_WALK_V4(&ctx, ipst);
14066 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14067 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14068 	rw_exit(&ipst->ips_ill_g_lock);
14069 
14070 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14071 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14072 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14073 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14074 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14075 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14076 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14077 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14078 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14079 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14080 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14081 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14082 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
14083 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14084 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14085 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14086 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14087 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14088 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14089 
14090 	ipkp->routingDiscards.value.ui32 =	0;
14091 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14092 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14093 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14094 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14095 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14096 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14097 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14098 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14099 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14100 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14101 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14102 
14103 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14104 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14105 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14106 
14107 	netstack_rele(ns);
14108 
14109 	return (0);
14110 }
14111 
14112 static void *
14113 icmp_kstat_init(netstackid_t stackid)
14114 {
14115 	kstat_t	*ksp;
14116 
14117 	icmp_named_kstat_t template = {
14118 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14119 		{ "inErrors",		KSTAT_DATA_UINT32 },
14120 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14121 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14122 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14123 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14124 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14125 		{ "inEchos",		KSTAT_DATA_UINT32 },
14126 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14127 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14128 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14129 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14130 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14131 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14132 		{ "outErrors",		KSTAT_DATA_UINT32 },
14133 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14134 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14135 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14136 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14137 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14138 		{ "outEchos",		KSTAT_DATA_UINT32 },
14139 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14140 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14141 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14142 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14143 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14144 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14145 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14146 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14147 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14148 		{ "outDrops",		KSTAT_DATA_UINT32 },
14149 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14150 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14151 	};
14152 
14153 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14154 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14155 	if (ksp == NULL || ksp->ks_data == NULL)
14156 		return (NULL);
14157 
14158 	bcopy(&template, ksp->ks_data, sizeof (template));
14159 
14160 	ksp->ks_update = icmp_kstat_update;
14161 	ksp->ks_private = (void *)(uintptr_t)stackid;
14162 
14163 	kstat_install(ksp);
14164 	return (ksp);
14165 }
14166 
14167 static void
14168 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14169 {
14170 	if (ksp != NULL) {
14171 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14172 		kstat_delete_netstack(ksp, stackid);
14173 	}
14174 }
14175 
14176 static int
14177 icmp_kstat_update(kstat_t *kp, int rw)
14178 {
14179 	icmp_named_kstat_t *icmpkp;
14180 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14181 	netstack_t	*ns;
14182 	ip_stack_t	*ipst;
14183 
14184 	if ((kp == NULL) || (kp->ks_data == NULL))
14185 		return (EIO);
14186 
14187 	if (rw == KSTAT_WRITE)
14188 		return (EACCES);
14189 
14190 	ns = netstack_find_by_stackid(stackid);
14191 	if (ns == NULL)
14192 		return (-1);
14193 	ipst = ns->netstack_ip;
14194 	if (ipst == NULL) {
14195 		netstack_rele(ns);
14196 		return (-1);
14197 	}
14198 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14199 
14200 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14201 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14202 	icmpkp->inDestUnreachs.value.ui32 =
14203 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14204 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14205 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14206 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14207 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14208 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14209 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14210 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14211 	icmpkp->inTimestampReps.value.ui32 =
14212 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14213 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14214 	icmpkp->inAddrMaskReps.value.ui32 =
14215 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14216 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14217 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14218 	icmpkp->outDestUnreachs.value.ui32 =
14219 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14220 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14221 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14222 	icmpkp->outSrcQuenchs.value.ui32 =
14223 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14224 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14225 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14226 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14227 	icmpkp->outTimestamps.value.ui32 =
14228 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14229 	icmpkp->outTimestampReps.value.ui32 =
14230 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14231 	icmpkp->outAddrMasks.value.ui32 =
14232 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14233 	icmpkp->outAddrMaskReps.value.ui32 =
14234 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14235 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14236 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14237 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14238 	icmpkp->outFragNeeded.value.ui32 =
14239 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14240 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14241 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14242 	icmpkp->inBadRedirects.value.ui32 =
14243 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14244 
14245 	netstack_rele(ns);
14246 	return (0);
14247 }
14248 
14249 /*
14250  * This is the fanout function for raw socket opened for SCTP.  Note
14251  * that it is called after SCTP checks that there is no socket which
14252  * wants a packet.  Then before SCTP handles this out of the blue packet,
14253  * this function is called to see if there is any raw socket for SCTP.
14254  * If there is and it is bound to the correct address, the packet will
14255  * be sent to that socket.  Note that only one raw socket can be bound to
14256  * a port.  This is assured in ipcl_sctp_hash_insert();
14257  */
14258 void
14259 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14260     ip_recv_attr_t *ira)
14261 {
14262 	conn_t		*connp;
14263 	queue_t		*rq;
14264 	boolean_t	secure;
14265 	ill_t		*ill = ira->ira_ill;
14266 	ip_stack_t	*ipst = ill->ill_ipst;
14267 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14268 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14269 	iaflags_t	iraflags = ira->ira_flags;
14270 	ill_t		*rill = ira->ira_rill;
14271 
14272 	secure = iraflags & IRAF_IPSEC_SECURE;
14273 
14274 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14275 	    ira, ipst);
14276 	if (connp == NULL) {
14277 		/*
14278 		 * Although raw sctp is not summed, OOB chunks must be.
14279 		 * Drop the packet here if the sctp checksum failed.
14280 		 */
14281 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14282 			SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14283 			freemsg(mp);
14284 			return;
14285 		}
14286 		ira->ira_ill = ira->ira_rill = NULL;
14287 		sctp_ootb_input(mp, ira, ipst);
14288 		ira->ira_ill = ill;
14289 		ira->ira_rill = rill;
14290 		return;
14291 	}
14292 	rq = connp->conn_rq;
14293 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14294 		CONN_DEC_REF(connp);
14295 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14296 		freemsg(mp);
14297 		return;
14298 	}
14299 	if (((iraflags & IRAF_IS_IPV4) ?
14300 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14301 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14302 	    secure) {
14303 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14304 		    ip6h, ira);
14305 		if (mp == NULL) {
14306 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14307 			/* Note that mp is NULL */
14308 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14309 			CONN_DEC_REF(connp);
14310 			return;
14311 		}
14312 	}
14313 
14314 	if (iraflags & IRAF_ICMP_ERROR) {
14315 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14316 	} else {
14317 		ill_t *rill = ira->ira_rill;
14318 
14319 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14320 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14321 		ira->ira_ill = ira->ira_rill = NULL;
14322 		(connp->conn_recv)(connp, mp, NULL, ira);
14323 		ira->ira_ill = ill;
14324 		ira->ira_rill = rill;
14325 	}
14326 	CONN_DEC_REF(connp);
14327 }
14328 
14329 /*
14330  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14331  * header before the ip payload.
14332  */
14333 static void
14334 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14335 {
14336 	int len = (mp->b_wptr - mp->b_rptr);
14337 	mblk_t *ip_mp;
14338 
14339 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14340 	if (is_fp_mp || len != fp_mp_len) {
14341 		if (len > fp_mp_len) {
14342 			/*
14343 			 * fastpath header and ip header in the first mblk
14344 			 */
14345 			mp->b_rptr += fp_mp_len;
14346 		} else {
14347 			/*
14348 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14349 			 * attach the fastpath header before ip header.
14350 			 */
14351 			ip_mp = mp->b_cont;
14352 			freeb(mp);
14353 			mp = ip_mp;
14354 			mp->b_rptr += (fp_mp_len - len);
14355 		}
14356 	} else {
14357 		ip_mp = mp->b_cont;
14358 		freeb(mp);
14359 		mp = ip_mp;
14360 	}
14361 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14362 	freemsg(mp);
14363 }
14364 
14365 /*
14366  * Normal post fragmentation function.
14367  *
14368  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14369  * using the same state machine.
14370  *
14371  * We return an error on failure. In particular we return EWOULDBLOCK
14372  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14373  * (currently by canputnext failure resulting in backenabling from GLD.)
14374  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14375  * indication that they can flow control until ip_wsrv() tells then to restart.
14376  *
14377  * If the nce passed by caller is incomplete, this function
14378  * queues the packet and if necessary, sends ARP request and bails.
14379  * If the Neighbor Cache passed is fully resolved, we simply prepend
14380  * the link-layer header to the packet, do ipsec hw acceleration
14381  * work if necessary, and send the packet out on the wire.
14382  */
14383 /* ARGSUSED6 */
14384 int
14385 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14386     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14387 {
14388 	queue_t		*wq;
14389 	ill_t		*ill = nce->nce_ill;
14390 	ip_stack_t	*ipst = ill->ill_ipst;
14391 	uint64_t	delta;
14392 	boolean_t	isv6 = ill->ill_isv6;
14393 	boolean_t	fp_mp;
14394 	ncec_t		*ncec = nce->nce_common;
14395 	int64_t		now = LBOLT_FASTPATH64;
14396 	boolean_t	is_probe;
14397 
14398 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14399 
14400 	ASSERT(mp != NULL);
14401 	ASSERT(mp->b_datap->db_type == M_DATA);
14402 	ASSERT(pkt_len == msgdsize(mp));
14403 
14404 	/*
14405 	 * If we have already been here and are coming back after ARP/ND.
14406 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14407 	 * in that case since they have seen the packet when it came here
14408 	 * the first time.
14409 	 */
14410 	if (ixaflags & IXAF_NO_TRACE)
14411 		goto sendit;
14412 
14413 	if (ixaflags & IXAF_IS_IPV4) {
14414 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14415 
14416 		ASSERT(!isv6);
14417 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14418 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14419 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14420 			int	error;
14421 
14422 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14423 			    ipst->ips_ipv4firewall_physical_out,
14424 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14425 			DTRACE_PROBE1(ip4__physical__out__end,
14426 			    mblk_t *, mp);
14427 			if (mp == NULL)
14428 				return (error);
14429 
14430 			/* The length could have changed */
14431 			pkt_len = msgdsize(mp);
14432 		}
14433 		if (ipst->ips_ip4_observe.he_interested) {
14434 			/*
14435 			 * Note that for TX the zoneid is the sending
14436 			 * zone, whether or not MLP is in play.
14437 			 * Since the szone argument is the IP zoneid (i.e.,
14438 			 * zero for exclusive-IP zones) and ipobs wants
14439 			 * the system zoneid, we map it here.
14440 			 */
14441 			szone = IP_REAL_ZONEID(szone, ipst);
14442 
14443 			/*
14444 			 * On the outbound path the destination zone will be
14445 			 * unknown as we're sending this packet out on the
14446 			 * wire.
14447 			 */
14448 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14449 			    ill, ipst);
14450 		}
14451 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14452 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14453 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14454 	} else {
14455 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14456 
14457 		ASSERT(isv6);
14458 		ASSERT(pkt_len ==
14459 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14460 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14461 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14462 			int	error;
14463 
14464 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14465 			    ipst->ips_ipv6firewall_physical_out,
14466 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14467 			DTRACE_PROBE1(ip6__physical__out__end,
14468 			    mblk_t *, mp);
14469 			if (mp == NULL)
14470 				return (error);
14471 
14472 			/* The length could have changed */
14473 			pkt_len = msgdsize(mp);
14474 		}
14475 		if (ipst->ips_ip6_observe.he_interested) {
14476 			/* See above */
14477 			szone = IP_REAL_ZONEID(szone, ipst);
14478 
14479 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14480 			    ill, ipst);
14481 		}
14482 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14483 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14484 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14485 	}
14486 
14487 sendit:
14488 	/*
14489 	 * We check the state without a lock because the state can never
14490 	 * move "backwards" to initial or incomplete.
14491 	 */
14492 	switch (ncec->ncec_state) {
14493 	case ND_REACHABLE:
14494 	case ND_STALE:
14495 	case ND_DELAY:
14496 	case ND_PROBE:
14497 		mp = ip_xmit_attach_llhdr(mp, nce);
14498 		if (mp == NULL) {
14499 			/*
14500 			 * ip_xmit_attach_llhdr has increased
14501 			 * ipIfStatsOutDiscards and called ip_drop_output()
14502 			 */
14503 			return (ENOBUFS);
14504 		}
14505 		/*
14506 		 * check if nce_fastpath completed and we tagged on a
14507 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14508 		 */
14509 		fp_mp = (mp->b_datap->db_type == M_DATA);
14510 
14511 		if (fp_mp &&
14512 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14513 			ill_dld_direct_t *idd;
14514 
14515 			idd = &ill->ill_dld_capab->idc_direct;
14516 			/*
14517 			 * Send the packet directly to DLD, where it
14518 			 * may be queued depending on the availability
14519 			 * of transmit resources at the media layer.
14520 			 * Return value should be taken into
14521 			 * account and flow control the TCP.
14522 			 */
14523 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14524 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14525 			    pkt_len);
14526 
14527 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14528 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14529 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14530 			} else {
14531 				uintptr_t cookie;
14532 
14533 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14534 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14535 					if (ixacookie != NULL)
14536 						*ixacookie = cookie;
14537 					return (EWOULDBLOCK);
14538 				}
14539 			}
14540 		} else {
14541 			wq = ill->ill_wq;
14542 
14543 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14544 			    !canputnext(wq)) {
14545 				if (ixacookie != NULL)
14546 					*ixacookie = 0;
14547 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14548 				    nce->nce_fp_mp != NULL ?
14549 				    MBLKL(nce->nce_fp_mp) : 0);
14550 				return (EWOULDBLOCK);
14551 			}
14552 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14553 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14554 			    pkt_len);
14555 			putnext(wq, mp);
14556 		}
14557 
14558 		/*
14559 		 * The rest of this function implements Neighbor Unreachability
14560 		 * detection. Determine if the ncec is eligible for NUD.
14561 		 */
14562 		if (ncec->ncec_flags & NCE_F_NONUD)
14563 			return (0);
14564 
14565 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14566 
14567 		/*
14568 		 * Check for upper layer advice
14569 		 */
14570 		if (ixaflags & IXAF_REACH_CONF) {
14571 			timeout_id_t tid;
14572 
14573 			/*
14574 			 * It should be o.k. to check the state without
14575 			 * a lock here, at most we lose an advice.
14576 			 */
14577 			ncec->ncec_last = TICK_TO_MSEC(now);
14578 			if (ncec->ncec_state != ND_REACHABLE) {
14579 				mutex_enter(&ncec->ncec_lock);
14580 				ncec->ncec_state = ND_REACHABLE;
14581 				tid = ncec->ncec_timeout_id;
14582 				ncec->ncec_timeout_id = 0;
14583 				mutex_exit(&ncec->ncec_lock);
14584 				(void) untimeout(tid);
14585 				if (ip_debug > 2) {
14586 					/* ip1dbg */
14587 					pr_addr_dbg("ip_xmit: state"
14588 					    " for %s changed to"
14589 					    " REACHABLE\n", AF_INET6,
14590 					    &ncec->ncec_addr);
14591 				}
14592 			}
14593 			return (0);
14594 		}
14595 
14596 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14597 		ip1dbg(("ip_xmit: delta = %" PRId64
14598 		    " ill_reachable_time = %d \n", delta,
14599 		    ill->ill_reachable_time));
14600 		if (delta > (uint64_t)ill->ill_reachable_time) {
14601 			mutex_enter(&ncec->ncec_lock);
14602 			switch (ncec->ncec_state) {
14603 			case ND_REACHABLE:
14604 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14605 				/* FALLTHROUGH */
14606 			case ND_STALE:
14607 				/*
14608 				 * ND_REACHABLE is identical to
14609 				 * ND_STALE in this specific case. If
14610 				 * reachable time has expired for this
14611 				 * neighbor (delta is greater than
14612 				 * reachable time), conceptually, the
14613 				 * neighbor cache is no longer in
14614 				 * REACHABLE state, but already in
14615 				 * STALE state.  So the correct
14616 				 * transition here is to ND_DELAY.
14617 				 */
14618 				ncec->ncec_state = ND_DELAY;
14619 				mutex_exit(&ncec->ncec_lock);
14620 				nce_restart_timer(ncec,
14621 				    ipst->ips_delay_first_probe_time);
14622 				if (ip_debug > 3) {
14623 					/* ip2dbg */
14624 					pr_addr_dbg("ip_xmit: state"
14625 					    " for %s changed to"
14626 					    " DELAY\n", AF_INET6,
14627 					    &ncec->ncec_addr);
14628 				}
14629 				break;
14630 			case ND_DELAY:
14631 			case ND_PROBE:
14632 				mutex_exit(&ncec->ncec_lock);
14633 				/* Timers have already started */
14634 				break;
14635 			case ND_UNREACHABLE:
14636 				/*
14637 				 * nce_timer has detected that this ncec
14638 				 * is unreachable and initiated deleting
14639 				 * this ncec.
14640 				 * This is a harmless race where we found the
14641 				 * ncec before it was deleted and have
14642 				 * just sent out a packet using this
14643 				 * unreachable ncec.
14644 				 */
14645 				mutex_exit(&ncec->ncec_lock);
14646 				break;
14647 			default:
14648 				ASSERT(0);
14649 				mutex_exit(&ncec->ncec_lock);
14650 			}
14651 		}
14652 		return (0);
14653 
14654 	case ND_INCOMPLETE:
14655 		/*
14656 		 * the state could have changed since we didn't hold the lock.
14657 		 * Re-verify state under lock.
14658 		 */
14659 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14660 		mutex_enter(&ncec->ncec_lock);
14661 		if (NCE_ISREACHABLE(ncec)) {
14662 			mutex_exit(&ncec->ncec_lock);
14663 			goto sendit;
14664 		}
14665 		/* queue the packet */
14666 		nce_queue_mp(ncec, mp, is_probe);
14667 		mutex_exit(&ncec->ncec_lock);
14668 		DTRACE_PROBE2(ip__xmit__incomplete,
14669 		    (ncec_t *), ncec, (mblk_t *), mp);
14670 		return (0);
14671 
14672 	case ND_INITIAL:
14673 		/*
14674 		 * State could have changed since we didn't hold the lock, so
14675 		 * re-verify state.
14676 		 */
14677 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14678 		mutex_enter(&ncec->ncec_lock);
14679 		if (NCE_ISREACHABLE(ncec))  {
14680 			mutex_exit(&ncec->ncec_lock);
14681 			goto sendit;
14682 		}
14683 		nce_queue_mp(ncec, mp, is_probe);
14684 		if (ncec->ncec_state == ND_INITIAL) {
14685 			ncec->ncec_state = ND_INCOMPLETE;
14686 			mutex_exit(&ncec->ncec_lock);
14687 			/*
14688 			 * figure out the source we want to use
14689 			 * and resolve it.
14690 			 */
14691 			ip_ndp_resolve(ncec);
14692 		} else  {
14693 			mutex_exit(&ncec->ncec_lock);
14694 		}
14695 		return (0);
14696 
14697 	case ND_UNREACHABLE:
14698 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14699 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14700 		    mp, ill);
14701 		freemsg(mp);
14702 		return (0);
14703 
14704 	default:
14705 		ASSERT(0);
14706 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14707 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14708 		    mp, ill);
14709 		freemsg(mp);
14710 		return (ENETUNREACH);
14711 	}
14712 }
14713 
14714 /*
14715  * Return B_TRUE if the buffers differ in length or content.
14716  * This is used for comparing extension header buffers.
14717  * Note that an extension header would be declared different
14718  * even if all that changed was the next header value in that header i.e.
14719  * what really changed is the next extension header.
14720  */
14721 boolean_t
14722 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14723     uint_t blen)
14724 {
14725 	if (!b_valid)
14726 		blen = 0;
14727 
14728 	if (alen != blen)
14729 		return (B_TRUE);
14730 	if (alen == 0)
14731 		return (B_FALSE);	/* Both zero length */
14732 	return (bcmp(abuf, bbuf, alen));
14733 }
14734 
14735 /*
14736  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14737  * Return B_FALSE if memory allocation fails - don't change any state!
14738  */
14739 boolean_t
14740 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14741     const void *src, uint_t srclen)
14742 {
14743 	void *dst;
14744 
14745 	if (!src_valid)
14746 		srclen = 0;
14747 
14748 	ASSERT(*dstlenp == 0);
14749 	if (src != NULL && srclen != 0) {
14750 		dst = mi_alloc(srclen, BPRI_MED);
14751 		if (dst == NULL)
14752 			return (B_FALSE);
14753 	} else {
14754 		dst = NULL;
14755 	}
14756 	if (*dstp != NULL)
14757 		mi_free(*dstp);
14758 	*dstp = dst;
14759 	*dstlenp = dst == NULL ? 0 : srclen;
14760 	return (B_TRUE);
14761 }
14762 
14763 /*
14764  * Replace what is in *dst, *dstlen with the source.
14765  * Assumes ip_allocbuf has already been called.
14766  */
14767 void
14768 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14769     const void *src, uint_t srclen)
14770 {
14771 	if (!src_valid)
14772 		srclen = 0;
14773 
14774 	ASSERT(*dstlenp == srclen);
14775 	if (src != NULL && srclen != 0)
14776 		bcopy(src, *dstp, srclen);
14777 }
14778 
14779 /*
14780  * Free the storage pointed to by the members of an ip_pkt_t.
14781  */
14782 void
14783 ip_pkt_free(ip_pkt_t *ipp)
14784 {
14785 	uint_t	fields = ipp->ipp_fields;
14786 
14787 	if (fields & IPPF_HOPOPTS) {
14788 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14789 		ipp->ipp_hopopts = NULL;
14790 		ipp->ipp_hopoptslen = 0;
14791 	}
14792 	if (fields & IPPF_RTHDRDSTOPTS) {
14793 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14794 		ipp->ipp_rthdrdstopts = NULL;
14795 		ipp->ipp_rthdrdstoptslen = 0;
14796 	}
14797 	if (fields & IPPF_DSTOPTS) {
14798 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14799 		ipp->ipp_dstopts = NULL;
14800 		ipp->ipp_dstoptslen = 0;
14801 	}
14802 	if (fields & IPPF_RTHDR) {
14803 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14804 		ipp->ipp_rthdr = NULL;
14805 		ipp->ipp_rthdrlen = 0;
14806 	}
14807 	if (fields & IPPF_IPV4_OPTIONS) {
14808 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14809 		ipp->ipp_ipv4_options = NULL;
14810 		ipp->ipp_ipv4_options_len = 0;
14811 	}
14812 	if (fields & IPPF_LABEL_V4) {
14813 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14814 		ipp->ipp_label_v4 = NULL;
14815 		ipp->ipp_label_len_v4 = 0;
14816 	}
14817 	if (fields & IPPF_LABEL_V6) {
14818 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14819 		ipp->ipp_label_v6 = NULL;
14820 		ipp->ipp_label_len_v6 = 0;
14821 	}
14822 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14823 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14824 }
14825 
14826 /*
14827  * Copy from src to dst and allocate as needed.
14828  * Returns zero or ENOMEM.
14829  *
14830  * The caller must initialize dst to zero.
14831  */
14832 int
14833 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14834 {
14835 	uint_t	fields = src->ipp_fields;
14836 
14837 	/* Start with fields that don't require memory allocation */
14838 	dst->ipp_fields = fields &
14839 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14840 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14841 
14842 	dst->ipp_addr = src->ipp_addr;
14843 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14844 	dst->ipp_hoplimit = src->ipp_hoplimit;
14845 	dst->ipp_tclass = src->ipp_tclass;
14846 	dst->ipp_type_of_service = src->ipp_type_of_service;
14847 
14848 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14849 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14850 		return (0);
14851 
14852 	if (fields & IPPF_HOPOPTS) {
14853 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14854 		if (dst->ipp_hopopts == NULL) {
14855 			ip_pkt_free(dst);
14856 			return (ENOMEM);
14857 		}
14858 		dst->ipp_fields |= IPPF_HOPOPTS;
14859 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14860 		    src->ipp_hopoptslen);
14861 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14862 	}
14863 	if (fields & IPPF_RTHDRDSTOPTS) {
14864 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14865 		    kmflag);
14866 		if (dst->ipp_rthdrdstopts == NULL) {
14867 			ip_pkt_free(dst);
14868 			return (ENOMEM);
14869 		}
14870 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14871 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14872 		    src->ipp_rthdrdstoptslen);
14873 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14874 	}
14875 	if (fields & IPPF_DSTOPTS) {
14876 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14877 		if (dst->ipp_dstopts == NULL) {
14878 			ip_pkt_free(dst);
14879 			return (ENOMEM);
14880 		}
14881 		dst->ipp_fields |= IPPF_DSTOPTS;
14882 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14883 		    src->ipp_dstoptslen);
14884 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14885 	}
14886 	if (fields & IPPF_RTHDR) {
14887 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14888 		if (dst->ipp_rthdr == NULL) {
14889 			ip_pkt_free(dst);
14890 			return (ENOMEM);
14891 		}
14892 		dst->ipp_fields |= IPPF_RTHDR;
14893 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14894 		    src->ipp_rthdrlen);
14895 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14896 	}
14897 	if (fields & IPPF_IPV4_OPTIONS) {
14898 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14899 		    kmflag);
14900 		if (dst->ipp_ipv4_options == NULL) {
14901 			ip_pkt_free(dst);
14902 			return (ENOMEM);
14903 		}
14904 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14905 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14906 		    src->ipp_ipv4_options_len);
14907 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14908 	}
14909 	if (fields & IPPF_LABEL_V4) {
14910 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14911 		if (dst->ipp_label_v4 == NULL) {
14912 			ip_pkt_free(dst);
14913 			return (ENOMEM);
14914 		}
14915 		dst->ipp_fields |= IPPF_LABEL_V4;
14916 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14917 		    src->ipp_label_len_v4);
14918 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14919 	}
14920 	if (fields & IPPF_LABEL_V6) {
14921 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14922 		if (dst->ipp_label_v6 == NULL) {
14923 			ip_pkt_free(dst);
14924 			return (ENOMEM);
14925 		}
14926 		dst->ipp_fields |= IPPF_LABEL_V6;
14927 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14928 		    src->ipp_label_len_v6);
14929 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14930 	}
14931 	if (fields & IPPF_FRAGHDR) {
14932 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14933 		if (dst->ipp_fraghdr == NULL) {
14934 			ip_pkt_free(dst);
14935 			return (ENOMEM);
14936 		}
14937 		dst->ipp_fields |= IPPF_FRAGHDR;
14938 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14939 		    src->ipp_fraghdrlen);
14940 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14941 	}
14942 	return (0);
14943 }
14944 
14945 /*
14946  * Returns INADDR_ANY if no source route
14947  */
14948 ipaddr_t
14949 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14950 {
14951 	ipaddr_t	nexthop = INADDR_ANY;
14952 	ipoptp_t	opts;
14953 	uchar_t		*opt;
14954 	uint8_t		optval;
14955 	uint8_t		optlen;
14956 	uint32_t	totallen;
14957 
14958 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14959 		return (INADDR_ANY);
14960 
14961 	totallen = ipp->ipp_ipv4_options_len;
14962 	if (totallen & 0x3)
14963 		return (INADDR_ANY);
14964 
14965 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14966 	    optval != IPOPT_EOL;
14967 	    optval = ipoptp_next(&opts)) {
14968 		opt = opts.ipoptp_cur;
14969 		switch (optval) {
14970 			uint8_t off;
14971 		case IPOPT_SSRR:
14972 		case IPOPT_LSRR:
14973 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14974 				break;
14975 			}
14976 			optlen = opts.ipoptp_len;
14977 			off = opt[IPOPT_OFFSET];
14978 			off--;
14979 			if (optlen < IP_ADDR_LEN ||
14980 			    off > optlen - IP_ADDR_LEN) {
14981 				/* End of source route */
14982 				break;
14983 			}
14984 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14985 			if (nexthop == htonl(INADDR_LOOPBACK)) {
14986 				/* Ignore */
14987 				nexthop = INADDR_ANY;
14988 				break;
14989 			}
14990 			break;
14991 		}
14992 	}
14993 	return (nexthop);
14994 }
14995 
14996 /*
14997  * Reverse a source route.
14998  */
14999 void
15000 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15001 {
15002 	ipaddr_t	tmp;
15003 	ipoptp_t	opts;
15004 	uchar_t		*opt;
15005 	uint8_t		optval;
15006 	uint32_t	totallen;
15007 
15008 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15009 		return;
15010 
15011 	totallen = ipp->ipp_ipv4_options_len;
15012 	if (totallen & 0x3)
15013 		return;
15014 
15015 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15016 	    optval != IPOPT_EOL;
15017 	    optval = ipoptp_next(&opts)) {
15018 		uint8_t off1, off2;
15019 
15020 		opt = opts.ipoptp_cur;
15021 		switch (optval) {
15022 		case IPOPT_SSRR:
15023 		case IPOPT_LSRR:
15024 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15025 				break;
15026 			}
15027 			off1 = IPOPT_MINOFF_SR - 1;
15028 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15029 			while (off2 > off1) {
15030 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15031 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15032 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15033 				off2 -= IP_ADDR_LEN;
15034 				off1 += IP_ADDR_LEN;
15035 			}
15036 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15037 			break;
15038 		}
15039 	}
15040 }
15041 
15042 /*
15043  * Returns NULL if no routing header
15044  */
15045 in6_addr_t *
15046 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15047 {
15048 	in6_addr_t	*nexthop = NULL;
15049 	ip6_rthdr0_t	*rthdr;
15050 
15051 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15052 		return (NULL);
15053 
15054 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15055 	if (rthdr->ip6r0_segleft == 0)
15056 		return (NULL);
15057 
15058 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15059 	return (nexthop);
15060 }
15061 
15062 zoneid_t
15063 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15064     zoneid_t lookup_zoneid)
15065 {
15066 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15067 	ire_t		*ire;
15068 	int		ire_flags = MATCH_IRE_TYPE;
15069 	zoneid_t	zoneid = ALL_ZONES;
15070 
15071 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15072 		return (ALL_ZONES);
15073 
15074 	if (lookup_zoneid != ALL_ZONES)
15075 		ire_flags |= MATCH_IRE_ZONEONLY;
15076 	ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15077 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15078 	if (ire != NULL) {
15079 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15080 		ire_refrele(ire);
15081 	}
15082 	return (zoneid);
15083 }
15084 
15085 zoneid_t
15086 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15087     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15088 {
15089 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15090 	ire_t		*ire;
15091 	int		ire_flags = MATCH_IRE_TYPE;
15092 	zoneid_t	zoneid = ALL_ZONES;
15093 
15094 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15095 		return (ALL_ZONES);
15096 
15097 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15098 		ire_flags |= MATCH_IRE_ILL;
15099 
15100 	if (lookup_zoneid != ALL_ZONES)
15101 		ire_flags |= MATCH_IRE_ZONEONLY;
15102 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15103 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15104 	if (ire != NULL) {
15105 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15106 		ire_refrele(ire);
15107 	}
15108 	return (zoneid);
15109 }
15110 
15111 /*
15112  * IP obserability hook support functions.
15113  */
15114 static void
15115 ipobs_init(ip_stack_t *ipst)
15116 {
15117 	netid_t id;
15118 
15119 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15120 
15121 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15122 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15123 
15124 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15125 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15126 }
15127 
15128 static void
15129 ipobs_fini(ip_stack_t *ipst)
15130 {
15131 
15132 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15133 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15134 }
15135 
15136 /*
15137  * hook_pkt_observe_t is composed in network byte order so that the
15138  * entire mblk_t chain handed into hook_run can be used as-is.
15139  * The caveat is that use of the fields, such as the zone fields,
15140  * requires conversion into host byte order first.
15141  */
15142 void
15143 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15144     const ill_t *ill, ip_stack_t *ipst)
15145 {
15146 	hook_pkt_observe_t *hdr;
15147 	uint64_t grifindex;
15148 	mblk_t *imp;
15149 
15150 	imp = allocb(sizeof (*hdr), BPRI_HI);
15151 	if (imp == NULL)
15152 		return;
15153 
15154 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15155 	/*
15156 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15157 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15158 	 */
15159 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15160 	imp->b_cont = mp;
15161 
15162 	ASSERT(DB_TYPE(mp) == M_DATA);
15163 
15164 	if (IS_UNDER_IPMP(ill))
15165 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15166 	else
15167 		grifindex = 0;
15168 
15169 	hdr->hpo_version = 1;
15170 	hdr->hpo_htype = htons(htype);
15171 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15172 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15173 	hdr->hpo_grifindex = htonl(grifindex);
15174 	hdr->hpo_zsrc = htonl(zsrc);
15175 	hdr->hpo_zdst = htonl(zdst);
15176 	hdr->hpo_pkt = imp;
15177 	hdr->hpo_ctx = ipst->ips_netstack;
15178 
15179 	if (ill->ill_isv6) {
15180 		hdr->hpo_family = AF_INET6;
15181 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15182 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15183 	} else {
15184 		hdr->hpo_family = AF_INET;
15185 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15186 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15187 	}
15188 
15189 	imp->b_cont = NULL;
15190 	freemsg(imp);
15191 }
15192 
15193 /*
15194  * Utility routine that checks if `v4srcp' is a valid address on underlying
15195  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15196  * associated with `v4srcp' on success.  NOTE: if this is not called from
15197  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15198  * group during or after this lookup.
15199  */
15200 boolean_t
15201 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15202 {
15203 	ipif_t *ipif;
15204 
15205 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15206 	if (ipif != NULL) {
15207 		if (ipifp != NULL)
15208 			*ipifp = ipif;
15209 		else
15210 			ipif_refrele(ipif);
15211 		return (B_TRUE);
15212 	}
15213 
15214 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15215 	    *v4srcp));
15216 	return (B_FALSE);
15217 }
15218 
15219 /*
15220  * Transport protocol call back function for CPU state change.
15221  */
15222 /* ARGSUSED */
15223 static int
15224 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15225 {
15226 	processorid_t cpu_seqid;
15227 	netstack_handle_t nh;
15228 	netstack_t *ns;
15229 
15230 	ASSERT(MUTEX_HELD(&cpu_lock));
15231 
15232 	switch (what) {
15233 	case CPU_CONFIG:
15234 	case CPU_ON:
15235 	case CPU_INIT:
15236 	case CPU_CPUPART_IN:
15237 		cpu_seqid = cpu[id]->cpu_seqid;
15238 		netstack_next_init(&nh);
15239 		while ((ns = netstack_next(&nh)) != NULL) {
15240 			tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15241 			sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15242 			udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15243 			netstack_rele(ns);
15244 		}
15245 		netstack_next_fini(&nh);
15246 		break;
15247 	case CPU_UNCONFIG:
15248 	case CPU_OFF:
15249 	case CPU_CPUPART_OUT:
15250 		/*
15251 		 * Nothing to do.  We don't remove the per CPU stats from
15252 		 * the IP stack even when the CPU goes offline.
15253 		 */
15254 		break;
15255 	default:
15256 		break;
15257 	}
15258 	return (0);
15259 }
15260