1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_ire.h> 84 #include <inet/ip_rts.h> 85 #include <inet/optcom.h> 86 #include <inet/ip_ndp.h> 87 #include <inet/ip_listutils.h> 88 #include <netinet/igmp.h> 89 #include <netinet/ip_mroute.h> 90 #include <inet/ipp_common.h> 91 92 #include <net/pfkeyv2.h> 93 #include <inet/ipsec_info.h> 94 #include <inet/sadb.h> 95 #include <inet/ipsec_impl.h> 96 /* EXPORT DELETE START */ 97 #include <sys/iphada.h> 98 /* EXPORT DELETE END */ 99 #include <inet/tun.h> 100 #include <inet/ipdrop.h> 101 102 #include <sys/ethernet.h> 103 #include <net/if_types.h> 104 #include <sys/cpuvar.h> 105 106 #include <ipp/ipp.h> 107 #include <ipp/ipp_impl.h> 108 #include <ipp/ipgpc/ipgpc.h> 109 110 #include <sys/multidata.h> 111 #include <sys/pattr.h> 112 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 116 /* 117 * Values for squeue switch: 118 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 119 * IP_SQUEUE_ENTER: squeue_enter 120 * IP_SQUEUE_FILL: squeue_fill 121 */ 122 int ip_squeue_enter = 2; 123 squeue_func_t ip_input_proc; 124 /* 125 * IP statistics. 126 */ 127 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 128 129 typedef struct ip_stat { 130 kstat_named_t ipsec_fanout_proto; 131 kstat_named_t ip_udp_fannorm; 132 kstat_named_t ip_udp_fanmb; 133 kstat_named_t ip_udp_fanothers; 134 kstat_named_t ip_udp_fast_path; 135 kstat_named_t ip_udp_slow_path; 136 kstat_named_t ip_udp_input_err; 137 kstat_named_t ip_tcppullup; 138 kstat_named_t ip_tcpoptions; 139 kstat_named_t ip_multipkttcp; 140 kstat_named_t ip_tcp_fast_path; 141 kstat_named_t ip_tcp_slow_path; 142 kstat_named_t ip_tcp_input_error; 143 kstat_named_t ip_db_ref; 144 kstat_named_t ip_notaligned1; 145 kstat_named_t ip_notaligned2; 146 kstat_named_t ip_multimblk3; 147 kstat_named_t ip_multimblk4; 148 kstat_named_t ip_ipoptions; 149 kstat_named_t ip_classify_fail; 150 kstat_named_t ip_opt; 151 kstat_named_t ip_udp_rput_local; 152 kstat_named_t ipsec_proto_ahesp; 153 kstat_named_t ip_conn_flputbq; 154 kstat_named_t ip_conn_walk_drain; 155 kstat_named_t ip_out_sw_cksum; 156 kstat_named_t ip_in_sw_cksum; 157 kstat_named_t ip_trash_ire_reclaim_calls; 158 kstat_named_t ip_trash_ire_reclaim_success; 159 kstat_named_t ip_ire_arp_timer_expired; 160 kstat_named_t ip_ire_redirect_timer_expired; 161 kstat_named_t ip_ire_pmtu_timer_expired; 162 kstat_named_t ip_input_multi_squeue; 163 } ip_stat_t; 164 165 static ip_stat_t ip_statistics = { 166 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 167 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 168 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 169 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 170 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 171 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 172 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 173 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 174 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 175 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 176 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 177 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 178 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 179 { "ip_db_ref", KSTAT_DATA_UINT64 }, 180 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 181 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 182 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 183 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 184 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 185 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 186 { "ip_opt", KSTAT_DATA_UINT64 }, 187 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 188 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 189 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 190 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 191 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 192 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 193 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 194 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 195 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 196 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 197 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 198 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 199 }; 200 201 static kstat_t *ip_kstat; 202 203 #define TCP6 "tcp6" 204 #define TCP "tcp" 205 #define SCTP "sctp" 206 #define SCTP6 "sctp6" 207 208 major_t TCP6_MAJ; 209 major_t TCP_MAJ; 210 major_t SCTP_MAJ; 211 major_t SCTP6_MAJ; 212 213 int ip_poll_normal_ms = 100; 214 int ip_poll_normal_ticks = 0; 215 216 /* 217 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 218 */ 219 220 struct listptr_s { 221 mblk_t *lp_head; /* pointer to the head of the list */ 222 mblk_t *lp_tail; /* pointer to the tail of the list */ 223 }; 224 225 typedef struct listptr_s listptr_t; 226 227 /* 228 * Cluster specific hooks. These should be NULL when booted as a non-cluster 229 */ 230 231 /* 232 * Hook functions to enable cluster networking 233 * On non-clustered systems these vectors must always be NULL. 234 * 235 * Hook function to Check ip specified ip address is a shared ip address 236 * in the cluster 237 * 238 */ 239 int (*cl_inet_isclusterwide)(uint8_t protocol, 240 sa_family_t addr_family, uint8_t *laddrp) = NULL; 241 242 /* 243 * Hook function to generate cluster wide ip fragment identifier 244 */ 245 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 246 uint8_t *laddrp, uint8_t *faddrp) = NULL; 247 248 /* 249 * Synchronization notes: 250 * 251 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 252 * MT level protection given by STREAMS. IP uses a combination of its own 253 * internal serialization mechanism and standard Solaris locking techniques. 254 * The internal serialization is per phyint (no IPMP) or per IPMP group. 255 * This is used to serialize plumbing operations, IPMP operations, certain 256 * multicast operations, most set ioctls, igmp/mld timers etc. 257 * 258 * Plumbing is a long sequence of operations involving message 259 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 260 * involved in plumbing operations. A natural model is to serialize these 261 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 262 * parallel without any interference. But various set ioctls on hme0 are best 263 * serialized. However if the system uses IPMP, the operations are easier if 264 * they are serialized on a per IPMP group basis since IPMP operations 265 * happen across ill's of a group. Thus the lowest common denominator is to 266 * serialize most set ioctls, multicast join/leave operations, IPMP operations 267 * igmp/mld timer operations, and processing of DLPI control messages received 268 * from drivers on a per IPMP group basis. If the system does not employ 269 * IPMP the serialization is on a per phyint basis. This serialization is 270 * provided by the ipsq_t and primitives operating on this. Details can 271 * be found in ip_if.c above the core primitives operating on ipsq_t. 272 * 273 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 274 * Simiarly lookup of an ire by a thread also returns a refheld ire. 275 * In addition ipif's and ill's referenced by the ire are also indirectly 276 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 277 * the ipif's address or netmask change as long as an ipif is refheld 278 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 279 * address of an ipif has to go through the ipsq_t. This ensures that only 280 * 1 such exclusive operation proceeds at any time on the ipif. It then 281 * deletes all ires associated with this ipif, and waits for all refcnts 282 * associated with this ipif to come down to zero. The address is changed 283 * only after the ipif has been quiesced. Then the ipif is brought up again. 284 * More details are described above the comment in ip_sioctl_flags. 285 * 286 * Packet processing is based mostly on IREs and are fully multi-threaded 287 * using standard Solaris MT techniques. 288 * 289 * There are explicit locks in IP to handle: 290 * - The ip_g_head list maintained by mi_open_link() and friends. 291 * 292 * - The reassembly data structures (one lock per hash bucket) 293 * 294 * - conn_lock is meant to protect conn_t fields. The fields actually 295 * protected by conn_lock are documented in the conn_t definition. 296 * 297 * - ire_lock to protect some of the fields of the ire, IRE tables 298 * (one lock per hash bucket). Refer to ip_ire.c for details. 299 * 300 * - ndp_g_lock and nce_lock for protecting NCEs. 301 * 302 * - ill_lock protects fields of the ill and ipif. Details in ip.h 303 * 304 * - ill_g_lock: This is a global reader/writer lock. Protects the following 305 * * The AVL tree based global multi list of all ills. 306 * * The linked list of all ipifs of an ill 307 * * The <ill-ipsq> mapping 308 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 309 * * The illgroup list threaded by ill_group_next. 310 * * <ill-phyint> association 311 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 312 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 313 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 314 * will all have to hold the ill_g_lock as writer for the actual duration 315 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 316 * may be found in the IPMP section. 317 * 318 * - ill_lock: This is a per ill mutex. 319 * It protects some members of the ill and is documented below. 320 * It also protects the <ill-ipsq> mapping 321 * It also protects the illgroup list threaded by ill_group_next. 322 * It also protects the <ill-phyint> assoc. 323 * It also protects the list of ipifs hanging off the ill. 324 * 325 * - ipsq_lock: This is a per ipsq_t mutex lock. 326 * This protects all the other members of the ipsq struct except 327 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 328 * 329 * - illgrp_lock: This is a per ill_group mutex lock. 330 * The only thing it protects is the illgrp_ill_schednext member of ill_group 331 * which dictates which is the next ill in an ill_group that is to be chosen 332 * for sending outgoing packets, through creation of an IRE_CACHE that 333 * references this ill. 334 * 335 * - phyint_lock: This is a per phyint mutex lock. Protects just the 336 * phyint_flags 337 * 338 * - ip_g_nd_lock: This is a global reader/writer lock. 339 * Any call to nd_load to load a new parameter to the ND table must hold the 340 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 341 * as reader. 342 * 343 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 344 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 345 * uniqueness check also done atomically. 346 * 347 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 348 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 349 * as a writer when adding or deleting elements from these lists, and 350 * as a reader when walking these lists to send a SADB update to the 351 * IPsec capable ills. 352 * 353 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 354 * group list linked by ill_usesrc_grp_next. It also protects the 355 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 356 * group is being added or deleted. This lock is taken as a reader when 357 * walking the list/group(eg: to get the number of members in a usesrc group). 358 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 359 * field is changing state i.e from NULL to non-NULL or vice-versa. For 360 * example, it is not necessary to take this lock in the initial portion 361 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 362 * ip_sioctl_flags since the these operations are executed exclusively and 363 * that ensures that the "usesrc group state" cannot change. The "usesrc 364 * group state" change can happen only in the latter part of 365 * ip_sioctl_slifusesrc and in ill_delete. 366 * 367 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 368 * 369 * To change the <ill-phyint> association, the ill_g_lock must be held 370 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 371 * must be held. 372 * 373 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 374 * and the ill_lock of the ill in question must be held. 375 * 376 * To change the <ill-illgroup> association the ill_g_lock must be held as 377 * writer and the ill_lock of the ill in question must be held. 378 * 379 * To add or delete an ipif from the list of ipifs hanging off the ill, 380 * ill_g_lock (writer) and ill_lock must be held and the thread must be 381 * a writer on the associated ipsq,. 382 * 383 * To add or delete an ill to the system, the ill_g_lock must be held as 384 * writer and the thread must be a writer on the associated ipsq. 385 * 386 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 387 * must be a writer on the associated ipsq. 388 * 389 * Lock hierarchy 390 * 391 * Some lock hierarchy scenarios are listed below. 392 * 393 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 394 * ill_g_lock -> illgrp_lock -> ill_lock 395 * ill_g_lock -> ill_lock(s) -> phyint_lock 396 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 397 * ill_g_lock -> ip_addr_avail_lock 398 * conn_lock -> irb_lock -> ill_lock -> ire_lock 399 * ipsa_lock -> ill_g_lock -> ill_lock 400 * ill_g_lock -> ip_g_nd_lock 401 * irb_lock -> ill_lock -> ire_mrtun_lock 402 * irb_lock -> ill_lock -> ire_srcif_table_lock 403 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 404 * ipsec_capab_ills_lock -> ipsa_lock 405 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 406 * 407 * When more than 1 ill lock is needed to be held, all ill lock addresses 408 * are sorted on address and locked starting from highest addressed lock 409 * downward. 410 * 411 * IPSEC notes : 412 * 413 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 414 * in front of the actual packet. For outbound datagrams, the M_CTL 415 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 416 * information used by the IPSEC code for applying the right level of 417 * protection. The information initialized by IP in the ipsec_out_t 418 * is determined by the per-socket policy or global policy in the system. 419 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 420 * ipsec_info.h) which starts out with nothing in it. It gets filled 421 * with the right information if it goes through the AH/ESP code, which 422 * happens if the incoming packet is secure. The information initialized 423 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 424 * the policy requirements needed by per-socket policy or global policy 425 * is met or not. 426 * 427 * If there is both per-socket policy (set using setsockopt) and there 428 * is also global policy match for the 5 tuples of the socket, 429 * ipsec_override_policy() makes the decision of which one to use. 430 * 431 * For fully connected sockets i.e dst, src [addr, port] is known, 432 * conn_policy_cached is set indicating that policy has been cached. 433 * conn_in_enforce_policy may or may not be set depending on whether 434 * there is a global policy match or per-socket policy match. 435 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 436 * Once the right policy is set on the conn_t, policy cannot change for 437 * this socket. This makes life simpler for TCP (UDP ?) where 438 * re-transmissions go out with the same policy. For symmetry, policy 439 * is cached for fully connected UDP sockets also. Thus if policy is cached, 440 * it also implies that policy is latched i.e policy cannot change 441 * on these sockets. As we have the right policy on the conn, we don't 442 * have to lookup global policy for every outbound and inbound datagram 443 * and thus serving as an optimization. Note that a global policy change 444 * does not affect fully connected sockets if they have policy. If fully 445 * connected sockets did not have any policy associated with it, global 446 * policy change may affect them. 447 * 448 * IP Flow control notes: 449 * 450 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 451 * cannot be sent down to the driver by IP, because of a canput failure, IP 452 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 453 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 454 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 455 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 456 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 457 * the queued messages, and removes the conn from the drain list, if all 458 * messages were drained. It also qenables the next conn in the drain list to 459 * continue the drain process. 460 * 461 * In reality the drain list is not a single list, but a configurable number 462 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 463 * list. If the ip_wsrv of the next qenabled conn does not run, because the 464 * stream closes, ip_close takes responsibility to qenable the next conn in 465 * the drain list. The directly called ip_wput path always does a putq, if 466 * it cannot putnext. Thus synchronization problems are handled between 467 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 468 * functions that manipulate this drain list. Furthermore conn_drain_insert 469 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 470 * running on a queue at any time. conn_drain_tail can be simultaneously called 471 * from both ip_wsrv and ip_close. 472 * 473 * IPQOS notes: 474 * 475 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 476 * and IPQoS modules. IPPF includes hooks in IP at different control points 477 * (callout positions) which direct packets to IPQoS modules for policy 478 * processing. Policies, if present, are global. 479 * 480 * The callout positions are located in the following paths: 481 * o local_in (packets destined for this host) 482 * o local_out (packets orginating from this host ) 483 * o fwd_in (packets forwarded by this m/c - inbound) 484 * o fwd_out (packets forwarded by this m/c - outbound) 485 * Hooks at these callout points can be enabled/disabled using the ndd variable 486 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 487 * By default all the callout positions are enabled. 488 * 489 * Outbound (local_out) 490 * Hooks are placed in ip_wput_ire and ipsec_out_process. 491 * 492 * Inbound (local_in) 493 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 494 * TCP and UDP fanout routines. 495 * 496 * Forwarding (in and out) 497 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 498 * 499 * IP Policy Framework processing (IPPF processing) 500 * Policy processing for a packet is initiated by ip_process, which ascertains 501 * that the classifier (ipgpc) is loaded and configured, failing which the 502 * packet resumes normal processing in IP. If the clasifier is present, the 503 * packet is acted upon by one or more IPQoS modules (action instances), per 504 * filters configured in ipgpc and resumes normal IP processing thereafter. 505 * An action instance can drop a packet in course of its processing. 506 * 507 * A boolean variable, ip_policy, is used in all the fanout routines that can 508 * invoke ip_process for a packet. This variable indicates if the packet should 509 * to be sent for policy processing. The variable is set to B_TRUE by default, 510 * i.e. when the routines are invoked in the normal ip procesing path for a 511 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 512 * ip_policy is set to B_FALSE for all the routines called in these two 513 * functions because, in the former case, we don't process loopback traffic 514 * currently while in the latter, the packets have already been processed in 515 * icmp_inbound. 516 * 517 * Zones notes: 518 * 519 * The partitioning rules for networking are as follows: 520 * 1) Packets coming from a zone must have a source address belonging to that 521 * zone. 522 * 2) Packets coming from a zone can only be sent on a physical interface on 523 * which the zone has an IP address. 524 * 3) Between two zones on the same machine, packet delivery is only allowed if 525 * there's a matching route for the destination and zone in the forwarding 526 * table. 527 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 528 * different zones can bind to the same port with the wildcard address 529 * (INADDR_ANY). 530 * 531 * The granularity of interface partitioning is at the logical interface level. 532 * Therefore, every zone has its own IP addresses, and incoming packets can be 533 * attributed to a zone unambiguously. A logical interface is placed into a zone 534 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 535 * structure. Rule (1) is implemented by modifying the source address selection 536 * algorithm so that the list of eligible addresses is filtered based on the 537 * sending process zone. 538 * 539 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 540 * across all zones, depending on their type. Here is the break-up: 541 * 542 * IRE type Shared/exclusive 543 * -------- ---------------- 544 * IRE_BROADCAST Exclusive 545 * IRE_DEFAULT (default routes) Shared (*) 546 * IRE_LOCAL Exclusive 547 * IRE_LOOPBACK Exclusive 548 * IRE_PREFIX (net routes) Shared (*) 549 * IRE_CACHE Exclusive 550 * IRE_IF_NORESOLVER (interface routes) Exclusive 551 * IRE_IF_RESOLVER (interface routes) Exclusive 552 * IRE_HOST (host routes) Shared (*) 553 * 554 * (*) A zone can only use a default or off-subnet route if the gateway is 555 * directly reachable from the zone, that is, if the gateway's address matches 556 * one of the zone's logical interfaces. 557 * 558 * Multiple zones can share a common broadcast address; typically all zones 559 * share the 255.255.255.255 address. Incoming as well as locally originated 560 * broadcast packets must be dispatched to all the zones on the broadcast 561 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 562 * since some zones may not be on the 10.16.72/24 network. To handle this, each 563 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 564 * sent to every zone that has an IRE_BROADCAST entry for the destination 565 * address on the input ill, see conn_wantpacket(). 566 * 567 * Applications in different zones can join the same multicast group address. 568 * For IPv4, group memberships are per-logical interface, so they're already 569 * inherently part of a zone. For IPv6, group memberships are per-physical 570 * interface, so we distinguish IPv6 group memberships based on group address, 571 * interface and zoneid. In both cases, received multicast packets are sent to 572 * every zone for which a group membership entry exists. On IPv6 we need to 573 * check that the target zone still has an address on the receiving physical 574 * interface; it could have been removed since the application issued the 575 * IPV6_JOIN_GROUP. 576 */ 577 578 /* 579 * Squeue Fanout flags: 580 * 0: No fanout. 581 * 1: Fanout across all squeues 582 */ 583 boolean_t ip_squeue_fanout = 0; 584 585 /* 586 * Maximum dups allowed per packet. 587 */ 588 uint_t ip_max_frag_dups = 10; 589 590 #define IS_SIMPLE_IPH(ipha) \ 591 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 592 593 /* RFC1122 Conformance */ 594 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 595 596 #ifdef _BIG_ENDIAN 597 #define IP_HDR_CSUM_TTL_ADJUST 256 598 #define IP_TCP_CSUM_COMP IPPROTO_TCP 599 #define IP_UDP_CSUM_COMP IPPROTO_UDP 600 #else 601 #define IP_HDR_CSUM_TTL_ADJUST 1 602 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8) 603 #define IP_UDP_CSUM_COMP (IPPROTO_UDP << 8) 604 #endif 605 606 #define TCP_CHECKSUM_OFFSET 16 607 #define UDP_CHECKSUM_OFFSET 6 608 609 #define ILL_MAX_NAMELEN LIFNAMSIZ 610 611 #define UDPH_SIZE 8 612 613 /* Leave room for ip_newroute to tack on the src and target addresses */ 614 #define OK_RESOLVER_MP(mp) \ 615 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 616 617 static ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 618 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 619 620 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 621 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 622 623 static void icmp_frag_needed(queue_t *, mblk_t *, int); 624 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 625 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 626 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 627 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 628 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 629 ill_t *, zoneid_t); 630 static void icmp_options_update(ipha_t *); 631 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 632 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 633 static mblk_t *icmp_pkt_err_ok(mblk_t *); 634 static void icmp_redirect(mblk_t *); 635 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 636 637 static void ip_arp_news(queue_t *, mblk_t *); 638 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 639 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 640 char *ip_dot_addr(ipaddr_t, char *); 641 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 642 int ip_close(queue_t *, int); 643 static char *ip_dot_saddr(uchar_t *, char *); 644 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 645 boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 647 boolean_t, boolean_t, zoneid_t); 648 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 649 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 650 static void ip_lrput(queue_t *, mblk_t *); 651 ipaddr_t ip_massage_options(ipha_t *); 652 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 653 ipaddr_t ip_net_mask(ipaddr_t); 654 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 655 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 656 conn_t *, uint32_t); 657 static int ip_hdr_complete(ipha_t *, zoneid_t); 658 char *ip_nv_lookup(nv_t *, int); 659 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 660 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 661 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 662 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 663 size_t); 664 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 665 void ip_rput(queue_t *, mblk_t *); 666 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 667 void *dummy_arg); 668 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 669 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 670 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 671 ire_t *); 672 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 673 int ip_snmp_get(queue_t *, mblk_t *); 674 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 681 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 682 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 683 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 685 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 686 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 687 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 688 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 689 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 690 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 691 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 692 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 693 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 694 static boolean_t ip_source_routed(ipha_t *); 695 static boolean_t ip_source_route_included(ipha_t *); 696 697 static void ip_unbind(queue_t *, mblk_t *); 698 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 699 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 700 static void ip_wput_local_options(ipha_t *); 701 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 702 zoneid_t); 703 704 static void conn_drain_init(void); 705 static void conn_drain_fini(void); 706 static void conn_drain_tail(conn_t *connp, boolean_t closing); 707 708 static void conn_walk_drain(void); 709 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 710 zoneid_t); 711 712 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 713 zoneid_t); 714 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 715 void *dummy_arg); 716 717 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 718 719 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 720 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 721 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 722 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 723 724 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 725 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 726 caddr_t, cred_t *); 727 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 728 caddr_t cp, cred_t *cr); 729 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 730 cred_t *); 731 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 732 caddr_t cp, cred_t *cr); 733 static int ip_fanout_set(queue_t *, mblk_t *, char *, caddr_t, 734 cred_t *); 735 static squeue_func_t ip_squeue_switch(int); 736 737 static void ip_kstat_init(void); 738 static void ip_kstat_fini(void); 739 static int ip_kstat_update(kstat_t *kp, int rw); 740 static void icmp_kstat_init(void); 741 static void icmp_kstat_fini(void); 742 static int icmp_kstat_update(kstat_t *kp, int rw); 743 744 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 745 746 static boolean_t ip_no_forward(ipha_t *, ill_t *); 747 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 748 749 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 750 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 751 752 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 753 754 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 755 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 756 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 757 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 758 759 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 760 uint_t ip_ire_default_index; /* Walking index used to mod in */ 761 762 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 763 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 764 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 765 766 /* How long, in seconds, we allow frags to hang around. */ 767 #define IP_FRAG_TIMEOUT 60 768 769 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 770 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 771 772 /* Protected by ip_mi_lock */ 773 static void *ip_g_head; /* Instance Data List Head */ 774 kmutex_t ip_mi_lock; /* Lock for list of instances */ 775 776 /* Only modified during _init and _fini thus no locking is needed. */ 777 caddr_t ip_g_nd; /* Named Dispatch List Head */ 778 779 780 static long ip_rput_pullups; 781 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 782 783 vmem_t *ip_minor_arena; 784 785 /* 786 * MIB-2 stuff for SNMP (both IP and ICMP) 787 */ 788 mib2_ip_t ip_mib; 789 mib2_icmp_t icmp_mib; 790 791 #ifdef DEBUG 792 uint32_t ipsechw_debug = 0; 793 #endif 794 795 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 796 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 797 798 uint_t loopback_packets = 0; 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 807 hrtime_t ip_multirt_log_interval = 1000; 808 /* Time since last warning issued. */ 809 static hrtime_t multirt_bad_mtu_last_time = 0; 810 811 kmutex_t ip_trash_timer_lock; 812 krwlock_t ip_g_nd_lock; 813 814 /* 815 * XXX following really should only be in a header. Would need more 816 * header and .c clean up first. 817 */ 818 extern optdb_obj_t ip_opt_obj; 819 820 ulong_t ip_squeue_enter_unbound = 0; 821 822 /* 823 * Named Dispatch Parameter Table. 824 * All of these are alterable, within the min/max values given, at run time. 825 */ 826 static ipparam_t lcl_param_arr[] = { 827 /* min max value name */ 828 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 829 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 830 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 831 { 0, 1, 0, "ip_respond_to_timestamp"}, 832 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 833 { 0, 1, 1, "ip_send_redirects"}, 834 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 835 { 0, 10, 0, "ip_debug"}, 836 { 0, 10, 0, "ip_mrtdebug"}, 837 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 838 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 839 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 840 { 1, 255, 255, "ip_def_ttl" }, 841 { 0, 1, 0, "ip_forward_src_routed"}, 842 { 0, 256, 32, "ip_wroff_extra" }, 843 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 844 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 845 { 0, 1, 1, "ip_path_mtu_discovery" }, 846 { 0, 240, 30, "ip_ignore_delete_time" }, 847 { 0, 1, 0, "ip_ignore_redirect" }, 848 { 0, 1, 1, "ip_output_queue" }, 849 { 1, 254, 1, "ip_broadcast_ttl" }, 850 { 0, 99999, 100, "ip_icmp_err_interval" }, 851 { 1, 99999, 10, "ip_icmp_err_burst" }, 852 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 853 { 0, 1, 0, "ip_strict_dst_multihoming" }, 854 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 855 { 0, 1, 0, "ipsec_override_persocket_policy" }, 856 { 0, 1, 1, "icmp_accept_clear_messages" }, 857 { 0, 1, 1, "igmp_accept_clear_messages" }, 858 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 859 "ip_ndp_delay_first_probe_time"}, 860 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 861 "ip_ndp_max_unicast_solicit"}, 862 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 863 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 864 { 0, 1, 0, "ip6_forward_src_routed"}, 865 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 866 { 0, 1, 1, "ip6_send_redirects"}, 867 { 0, 1, 0, "ip6_ignore_redirect" }, 868 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 869 870 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 871 872 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 873 874 { 0, 1, 1, "pim_accept_clear_messages" }, 875 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 876 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 877 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 878 { 0, 15, 0, "ip_policy_mask" }, 879 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 880 { 0, 255, 1, "ip_multirt_ttl" }, 881 { 0, 1, 1, "ip_multidata_outbound" }, 882 #ifdef DEBUG 883 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 884 #endif 885 }; 886 887 ipparam_t *ip_param_arr = lcl_param_arr; 888 889 /* Extended NDP table */ 890 static ipndp_t lcl_ndp_arr[] = { 891 /* getf setf data name */ 892 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 893 "ip_forwarding" }, 894 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 895 "ip6_forwarding" }, 896 { ip_ill_report, NULL, NULL, 897 "ip_ill_status" }, 898 { ip_ipif_report, NULL, NULL, 899 "ip_ipif_status" }, 900 { ip_ire_report, NULL, NULL, 901 "ipv4_ire_status" }, 902 { ip_ire_report_mrtun, NULL, NULL, 903 "ipv4_mrtun_ire_status" }, 904 { ip_ire_report_srcif, NULL, NULL, 905 "ipv4_srcif_ire_status" }, 906 { ip_ire_report_v6, NULL, NULL, 907 "ipv6_ire_status" }, 908 { ip_conn_report, NULL, NULL, 909 "ip_conn_status" }, 910 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 911 "ip_rput_pullups" }, 912 { ndp_report, NULL, NULL, 913 "ip_ndp_cache_report" }, 914 { ip_srcid_report, NULL, NULL, 915 "ip_srcid_status" }, 916 { ip_param_generic_get, ip_squeue_profile_set, 917 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 918 { ip_param_generic_get, ip_squeue_bind_set, 919 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 920 { ip_param_generic_get, ip_input_proc_set, 921 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 922 { ip_param_generic_get, ip_fanout_set, 923 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 924 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 925 "ip_cgtp_filter" } 926 }; 927 928 /* 929 * ip_g_forward controls IP forwarding. It takes two values: 930 * 0: IP_FORWARD_NEVER Don't forward packets ever. 931 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 932 * 933 * RFC1122 says there must be a configuration switch to control forwarding, 934 * but that the default MUST be to not forward packets ever. Implicit 935 * control based on configuration of multiple interfaces MUST NOT be 936 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 937 * and, in fact, it was the default. That capability is now provided in the 938 * /etc/rc2.d/S69inet script. 939 */ 940 int ip_g_forward = IP_FORWARD_DEFAULT; 941 942 /* It also has an IPv6 counterpart. */ 943 944 int ipv6_forward = IP_FORWARD_DEFAULT; 945 946 /* Following line is external, and in ip.h. Normally marked with * *. */ 947 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 948 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 949 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 950 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 951 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 952 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 953 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 954 #define ip_debug ip_param_arr[7].ip_param_value /* */ 955 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 956 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 957 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 958 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 959 #define ip_def_ttl ip_param_arr[12].ip_param_value 960 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 961 #define ip_wroff_extra ip_param_arr[14].ip_param_value 962 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 963 #define ip_icmp_return ip_param_arr[16].ip_param_value 964 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 965 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 966 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 967 #define ip_output_queue ip_param_arr[20].ip_param_value 968 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 969 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 970 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 971 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 972 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 973 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 974 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 975 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 976 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 977 978 /* IPv6 configuration knobs */ 979 #define delay_first_probe_time ip_param_arr[30].ip_param_value 980 #define max_unicast_solicit ip_param_arr[31].ip_param_value 981 #define ipv6_def_hops ip_param_arr[32].ip_param_value 982 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 983 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 984 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 985 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 986 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 987 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 988 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 989 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 990 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 991 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 992 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 993 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 994 #define ip_policy_mask ip_param_arr[45].ip_param_value 995 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 996 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 997 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 998 #ifdef DEBUG 999 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1000 #else 1001 #define ipv6_drop_inbound_icmpv6 0 1002 #endif 1003 1004 1005 /* 1006 * Table of IP ioctls encoding the various properties of the ioctl and 1007 * indexed based on the last byte of the ioctl command. Occasionally there 1008 * is a clash, and there is more than 1 ioctl with the same last byte. 1009 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1010 * ioctls are encoded in the misc table. An entry in the ndx table is 1011 * retrieved by indexing on the last byte of the ioctl command and comparing 1012 * the ioctl command with the value in the ndx table. In the event of a 1013 * mismatch the misc table is then searched sequentially for the desired 1014 * ioctl command. 1015 * 1016 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1017 */ 1018 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1019 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 1030 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1031 MISC_CMD, ip_siocaddrt, NULL }, 1032 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1033 MISC_CMD, ip_siocdelrt, NULL }, 1034 1035 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1036 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1037 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1038 IF_CMD, ip_sioctl_get_addr, NULL }, 1039 1040 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1041 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1042 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1043 IPI_GET_CMD | IPI_REPL, 1044 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1045 1046 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1047 IPI_PRIV | IPI_WR | IPI_REPL, 1048 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1049 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1050 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1051 IF_CMD, ip_sioctl_get_flags, NULL }, 1052 1053 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 1056 /* copyin size cannot be coded for SIOCGIFCONF */ 1057 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1058 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1059 1060 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1061 IF_CMD, ip_sioctl_mtu, NULL }, 1062 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1063 IF_CMD, ip_sioctl_get_mtu, NULL }, 1064 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1065 IPI_GET_CMD | IPI_REPL, 1066 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1067 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1068 IF_CMD, ip_sioctl_brdaddr, NULL }, 1069 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1070 IPI_GET_CMD | IPI_REPL, 1071 IF_CMD, ip_sioctl_get_netmask, NULL }, 1072 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1073 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1074 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1075 IPI_GET_CMD | IPI_REPL, 1076 IF_CMD, ip_sioctl_get_metric, NULL }, 1077 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1078 IF_CMD, ip_sioctl_metric, NULL }, 1079 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 1081 /* See 166-168 below for extended SIOC*XARP ioctls */ 1082 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1083 MISC_CMD, ip_sioctl_arp, NULL }, 1084 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1085 MISC_CMD, ip_sioctl_arp, NULL }, 1086 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1087 MISC_CMD, ip_sioctl_arp, NULL }, 1088 1089 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 1111 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1112 MISC_CMD, if_unitsel, if_unitsel_restart }, 1113 1114 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 1133 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1134 IPI_PRIV | IPI_WR | IPI_MODOK, 1135 IF_CMD, ip_sioctl_sifname, NULL }, 1136 1137 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 1151 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1152 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1153 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1154 IF_CMD, ip_sioctl_get_muxid, NULL }, 1155 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1156 IPI_PRIV | IPI_WR | IPI_REPL, 1157 IF_CMD, ip_sioctl_muxid, NULL }, 1158 1159 /* Both if and lif variants share same func */ 1160 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1161 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1162 /* Both if and lif variants share same func */ 1163 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1164 IPI_PRIV | IPI_WR | IPI_REPL, 1165 IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR | IPI_REPL, 1190 LIF_CMD, ip_sioctl_removeif, 1191 ip_sioctl_removeif_restart }, 1192 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1194 LIF_CMD, ip_sioctl_addif, NULL }, 1195 #define SIOCLIFADDR_NDX 112 1196 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1197 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1198 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1199 IPI_GET_CMD | IPI_REPL, 1200 LIF_CMD, ip_sioctl_get_addr, NULL }, 1201 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1202 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1203 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1204 IPI_GET_CMD | IPI_REPL, 1205 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1206 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1207 IPI_PRIV | IPI_WR | IPI_REPL, 1208 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1209 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1210 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1211 LIF_CMD, ip_sioctl_get_flags, NULL }, 1212 1213 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1214 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1215 1216 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1217 ip_sioctl_get_lifconf, NULL }, 1218 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1219 LIF_CMD, ip_sioctl_mtu, NULL }, 1220 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1221 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1222 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1223 IPI_GET_CMD | IPI_REPL, 1224 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1225 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1227 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1228 IPI_GET_CMD | IPI_REPL, 1229 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1230 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1231 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1232 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1233 IPI_GET_CMD | IPI_REPL, 1234 LIF_CMD, ip_sioctl_get_metric, NULL }, 1235 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1236 LIF_CMD, ip_sioctl_metric, NULL }, 1237 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1238 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1239 LIF_CMD, ip_sioctl_slifname, 1240 ip_sioctl_slifname_restart }, 1241 1242 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1243 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1244 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1247 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1248 IPI_PRIV | IPI_WR | IPI_REPL, 1249 LIF_CMD, ip_sioctl_muxid, NULL }, 1250 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1251 IPI_GET_CMD | IPI_REPL, 1252 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1253 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1254 IPI_PRIV | IPI_WR | IPI_REPL, 1255 LIF_CMD, ip_sioctl_slifindex, 0 }, 1256 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1257 LIF_CMD, ip_sioctl_token, NULL }, 1258 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1259 IPI_GET_CMD | IPI_REPL, 1260 LIF_CMD, ip_sioctl_get_token, NULL }, 1261 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1262 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1263 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1264 IPI_GET_CMD | IPI_REPL, 1265 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1266 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1267 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1268 1269 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1272 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1273 LIF_CMD, ip_siocdelndp_v6, NULL }, 1274 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1275 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1276 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1277 LIF_CMD, ip_siocsetndp_v6, NULL }, 1278 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1279 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1280 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1281 MISC_CMD, ip_sioctl_tonlink, NULL }, 1282 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1283 MISC_CMD, ip_sioctl_tmysite, NULL }, 1284 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1285 TUN_CMD, ip_sioctl_tunparam, NULL }, 1286 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1287 IPI_PRIV | IPI_WR, 1288 TUN_CMD, ip_sioctl_tunparam, NULL }, 1289 1290 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1291 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1292 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1293 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1294 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1295 1296 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1297 IPI_PRIV | IPI_WR | IPI_REPL, 1298 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1299 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1300 IPI_PRIV | IPI_WR | IPI_REPL, 1301 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1302 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1303 IPI_PRIV | IPI_WR, 1304 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1305 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1306 IPI_GET_CMD | IPI_REPL, 1307 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1308 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1309 IPI_GET_CMD | IPI_REPL, 1310 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1311 1312 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1313 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1314 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1315 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1316 1317 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1318 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1319 1320 /* These are handled in ip_sioctl_copyin_setup itself */ 1321 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1322 MISC_CMD, NULL, NULL }, 1323 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1324 MISC_CMD, NULL, NULL }, 1325 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1326 1327 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1328 ip_sioctl_get_lifconf, NULL }, 1329 1330 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1331 MISC_CMD, ip_sioctl_xarp, NULL }, 1332 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1333 MISC_CMD, ip_sioctl_xarp, NULL }, 1334 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1335 MISC_CMD, ip_sioctl_xarp, NULL }, 1336 1337 /* SIOCPOPSOCKFS is not handled by IP */ 1338 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1339 1340 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1341 IPI_GET_CMD | IPI_REPL, 1342 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1343 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1344 IPI_PRIV | IPI_WR | IPI_REPL, 1345 LIF_CMD, ip_sioctl_slifzone, 1346 ip_sioctl_slifzone_restart }, 1347 /* 172-174 are SCTP ioctls and not handled by IP */ 1348 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1350 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1351 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1352 IPI_GET_CMD, LIF_CMD, 1353 ip_sioctl_get_lifusesrc, 0 }, 1354 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1355 IPI_PRIV | IPI_WR, 1356 LIF_CMD, ip_sioctl_slifusesrc, 1357 NULL }, 1358 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1359 ip_sioctl_get_lifsrcof, NULL }, 1360 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1361 MISC_CMD, ip_sioctl_msfilter, NULL }, 1362 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1363 MISC_CMD, ip_sioctl_msfilter, NULL }, 1364 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1365 MISC_CMD, ip_sioctl_msfilter, NULL }, 1366 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1367 MISC_CMD, ip_sioctl_msfilter, NULL } 1368 }; 1369 1370 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1371 1372 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1373 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1374 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1375 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1376 TUN_CMD, ip_sioctl_tunparam, NULL }, 1377 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1378 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1379 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1380 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1381 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1382 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1383 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1384 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1385 MISC_CMD, mrt_ioctl}, 1386 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1387 MISC_CMD, mrt_ioctl}, 1388 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1389 MISC_CMD, mrt_ioctl} 1390 }; 1391 1392 int ip_misc_ioctl_count = 1393 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1394 1395 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1396 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1397 static int conn_drain_list_index; /* Next drain_list to be used */ 1398 int conn_drain_nthreads; /* Number of drainers reqd. */ 1399 /* Settable in /etc/system */ 1400 1401 /* Defined in ip_ire.c */ 1402 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1403 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1404 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1405 1406 static nv_t ire_nv_arr[] = { 1407 { IRE_BROADCAST, "BROADCAST" }, 1408 { IRE_LOCAL, "LOCAL" }, 1409 { IRE_LOOPBACK, "LOOPBACK" }, 1410 { IRE_CACHE, "CACHE" }, 1411 { IRE_DEFAULT, "DEFAULT" }, 1412 { IRE_PREFIX, "PREFIX" }, 1413 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1414 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1415 { IRE_HOST, "HOST" }, 1416 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1417 { 0 } 1418 }; 1419 1420 nv_t *ire_nv_tbl = ire_nv_arr; 1421 1422 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1423 extern krwlock_t ipsec_capab_ills_lock; 1424 1425 /* Packet dropper for IP IPsec processing failures */ 1426 ipdropper_t ip_dropper; 1427 1428 /* Simple ICMP IP Header Template */ 1429 static ipha_t icmp_ipha = { 1430 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1431 }; 1432 1433 struct module_info ip_mod_info = { 1434 5701, "ip", 1, INFPSZ, 65536, 1024 1435 }; 1436 1437 static struct qinit rinit = { 1438 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1439 &ip_mod_info 1440 }; 1441 1442 static struct qinit winit = { 1443 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1444 &ip_mod_info 1445 }; 1446 1447 static struct qinit lrinit = { 1448 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1449 &ip_mod_info 1450 }; 1451 1452 static struct qinit lwinit = { 1453 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1454 &ip_mod_info 1455 }; 1456 1457 struct streamtab ipinfo = { 1458 &rinit, &winit, &lrinit, &lwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 /* 1465 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1466 */ 1467 mblk_t * 1468 ip_copymsg(mblk_t *mp) 1469 { 1470 mblk_t *nmp; 1471 ipsec_info_t *in; 1472 1473 if (mp->b_datap->db_type != M_CTL) 1474 return (copymsg(mp)); 1475 1476 in = (ipsec_info_t *)mp->b_rptr; 1477 1478 /* 1479 * Note that M_CTL is also used for delivering ICMP error messages 1480 * upstream to transport layers. 1481 */ 1482 if (in->ipsec_info_type != IPSEC_OUT && 1483 in->ipsec_info_type != IPSEC_IN) 1484 return (copymsg(mp)); 1485 1486 nmp = copymsg(mp->b_cont); 1487 1488 if (in->ipsec_info_type == IPSEC_OUT) 1489 return (ipsec_out_tag(mp, nmp)); 1490 else 1491 return (ipsec_in_tag(mp, nmp)); 1492 } 1493 1494 /* Generate an ICMP fragmentation needed message. */ 1495 static void 1496 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1497 { 1498 icmph_t icmph; 1499 mblk_t *first_mp; 1500 boolean_t mctl_present; 1501 1502 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1503 1504 if (!(mp = icmp_pkt_err_ok(mp))) { 1505 if (mctl_present) 1506 freeb(first_mp); 1507 return; 1508 } 1509 1510 bzero(&icmph, sizeof (icmph_t)); 1511 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1512 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1513 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1514 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1515 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1516 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1517 } 1518 1519 /* 1520 * icmp_inbound deals with ICMP messages in the following ways. 1521 * 1522 * 1) It needs to send a reply back and possibly delivering it 1523 * to the "interested" upper clients. 1524 * 2) It needs to send it to the upper clients only. 1525 * 3) It needs to change some values in IP only. 1526 * 4) It needs to change some values in IP and upper layers e.g TCP. 1527 * 1528 * We need to accomodate icmp messages coming in clear until we get 1529 * everything secure from the wire. If icmp_accept_clear_messages 1530 * is zero we check with the global policy and act accordingly. If 1531 * it is non-zero, we accept the message without any checks. But 1532 * *this does not mean* that this will be delivered to the upper 1533 * clients. By accepting we might send replies back, change our MTU 1534 * value etc. but delivery to the ULP/clients depends on their policy 1535 * dispositions. 1536 * 1537 * We handle the above 4 cases in the context of IPSEC in the 1538 * following way : 1539 * 1540 * 1) Send the reply back in the same way as the request came in. 1541 * If it came in encrypted, it goes out encrypted. If it came in 1542 * clear, it goes out in clear. Thus, this will prevent chosen 1543 * plain text attack. 1544 * 2) The client may or may not expect things to come in secure. 1545 * If it comes in secure, the policy constraints are checked 1546 * before delivering it to the upper layers. If it comes in 1547 * clear, ipsec_inbound_accept_clear will decide whether to 1548 * accept this in clear or not. In both the cases, if the returned 1549 * message (IP header + 8 bytes) that caused the icmp message has 1550 * AH/ESP headers, it is sent up to AH/ESP for validation before 1551 * sending up. If there are only 8 bytes of returned message, then 1552 * upper client will not be notified. 1553 * 3) Check with global policy to see whether it matches the constaints. 1554 * But this will be done only if icmp_accept_messages_in_clear is 1555 * zero. 1556 * 4) If we need to change both in IP and ULP, then the decision taken 1557 * while affecting the values in IP and while delivering up to TCP 1558 * should be the same. 1559 * 1560 * There are two cases. 1561 * 1562 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1563 * failed), we will not deliver it to the ULP, even though they 1564 * are *willing* to accept in *clear*. This is fine as our global 1565 * disposition to icmp messages asks us reject the datagram. 1566 * 1567 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1568 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1569 * to deliver it to ULP (policy failed), it can lead to 1570 * consistency problems. The cases known at this time are 1571 * ICMP_DESTINATION_UNREACHABLE messages with following code 1572 * values : 1573 * 1574 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1575 * and Upper layer rejects. Then the communication will 1576 * come to a stop. This is solved by making similar decisions 1577 * at both levels. Currently, when we are unable to deliver 1578 * to the Upper Layer (due to policy failures) while IP has 1579 * adjusted ire_max_frag, the next outbound datagram would 1580 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1581 * will be with the right level of protection. Thus the right 1582 * value will be communicated even if we are not able to 1583 * communicate when we get from the wire initially. But this 1584 * assumes there would be at least one outbound datagram after 1585 * IP has adjusted its ire_max_frag value. To make things 1586 * simpler, we accept in clear after the validation of 1587 * AH/ESP headers. 1588 * 1589 * - Other ICMP ERRORS : We may not be able to deliver it to the 1590 * upper layer depending on the level of protection the upper 1591 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1592 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1593 * should be accepted in clear when the Upper layer expects secure. 1594 * Thus the communication may get aborted by some bad ICMP 1595 * packets. 1596 * 1597 * IPQoS Notes: 1598 * The only instance when a packet is sent for processing is when there 1599 * isn't an ICMP client and if we are interested in it. 1600 * If there is a client, IPPF processing will take place in the 1601 * ip_fanout_proto routine. 1602 * 1603 * Zones notes: 1604 * The packet is only processed in the context of the specified zone: typically 1605 * only this zone will reply to an echo request, and only interested clients in 1606 * this zone will receive a copy of the packet. This means that the caller must 1607 * call icmp_inbound() for each relevant zone. 1608 */ 1609 static void 1610 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1611 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1612 ill_t *recv_ill, zoneid_t zoneid) 1613 { 1614 icmph_t *icmph; 1615 ipha_t *ipha; 1616 int iph_hdr_length; 1617 int hdr_length; 1618 boolean_t interested; 1619 uint32_t ts; 1620 uchar_t *wptr; 1621 ipif_t *ipif; 1622 mblk_t *first_mp; 1623 ipsec_in_t *ii; 1624 ire_t *src_ire; 1625 boolean_t onlink; 1626 timestruc_t now; 1627 uint32_t ill_index; 1628 1629 ASSERT(ill != NULL); 1630 1631 first_mp = mp; 1632 if (mctl_present) { 1633 mp = first_mp->b_cont; 1634 ASSERT(mp != NULL); 1635 } 1636 1637 ipha = (ipha_t *)mp->b_rptr; 1638 if (icmp_accept_clear_messages == 0) { 1639 first_mp = ipsec_check_global_policy(first_mp, NULL, 1640 ipha, NULL, mctl_present); 1641 if (first_mp == NULL) 1642 return; 1643 } 1644 /* 1645 * We have accepted the ICMP message. It means that we will 1646 * respond to the packet if needed. It may not be delivered 1647 * to the upper client depending on the policy constraints 1648 * and the disposition in ipsec_inbound_accept_clear. 1649 */ 1650 1651 ASSERT(ill != NULL); 1652 1653 BUMP_MIB(&icmp_mib, icmpInMsgs); 1654 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1655 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1656 /* Last chance to get real. */ 1657 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1658 BUMP_MIB(&icmp_mib, icmpInErrors); 1659 freemsg(first_mp); 1660 return; 1661 } 1662 /* Refresh iph following the pullup. */ 1663 ipha = (ipha_t *)mp->b_rptr; 1664 } 1665 /* ICMP header checksum, including checksum field, should be zero. */ 1666 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1667 IP_CSUM(mp, iph_hdr_length, 0)) { 1668 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1669 freemsg(first_mp); 1670 return; 1671 } 1672 /* The IP header will always be a multiple of four bytes */ 1673 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1674 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1675 icmph->icmph_code)); 1676 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1677 /* We will set "interested" to "true" if we want a copy */ 1678 interested = B_FALSE; 1679 switch (icmph->icmph_type) { 1680 case ICMP_ECHO_REPLY: 1681 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1682 break; 1683 case ICMP_DEST_UNREACHABLE: 1684 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1685 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1686 interested = B_TRUE; /* Pass up to transport */ 1687 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1688 break; 1689 case ICMP_SOURCE_QUENCH: 1690 interested = B_TRUE; /* Pass up to transport */ 1691 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1692 break; 1693 case ICMP_REDIRECT: 1694 if (!ip_ignore_redirect) 1695 interested = B_TRUE; 1696 BUMP_MIB(&icmp_mib, icmpInRedirects); 1697 break; 1698 case ICMP_ECHO_REQUEST: 1699 /* 1700 * Whether to respond to echo requests that come in as IP 1701 * broadcasts or as IP multicast is subject to debate 1702 * (what isn't?). We aim to please, you pick it. 1703 * Default is do it. 1704 */ 1705 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1706 /* unicast: always respond */ 1707 interested = B_TRUE; 1708 } else if (CLASSD(ipha->ipha_dst)) { 1709 /* multicast: respond based on tunable */ 1710 interested = ip_g_resp_to_echo_mcast; 1711 } else if (broadcast) { 1712 /* broadcast: respond based on tunable */ 1713 interested = ip_g_resp_to_echo_bcast; 1714 } 1715 BUMP_MIB(&icmp_mib, icmpInEchos); 1716 break; 1717 case ICMP_ROUTER_ADVERTISEMENT: 1718 case ICMP_ROUTER_SOLICITATION: 1719 break; 1720 case ICMP_TIME_EXCEEDED: 1721 interested = B_TRUE; /* Pass up to transport */ 1722 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1723 break; 1724 case ICMP_PARAM_PROBLEM: 1725 interested = B_TRUE; /* Pass up to transport */ 1726 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1727 break; 1728 case ICMP_TIME_STAMP_REQUEST: 1729 /* Response to Time Stamp Requests is local policy. */ 1730 if (ip_g_resp_to_timestamp && 1731 /* So is whether to respond if it was an IP broadcast. */ 1732 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1733 int tstamp_len = 3 * sizeof (uint32_t); 1734 1735 if (wptr + tstamp_len > mp->b_wptr) { 1736 if (!pullupmsg(mp, wptr + tstamp_len - 1737 mp->b_rptr)) { 1738 BUMP_MIB(&ip_mib, ipInDiscards); 1739 freemsg(first_mp); 1740 return; 1741 } 1742 /* Refresh ipha following the pullup. */ 1743 ipha = (ipha_t *)mp->b_rptr; 1744 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1745 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1746 } 1747 interested = B_TRUE; 1748 } 1749 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1750 break; 1751 case ICMP_TIME_STAMP_REPLY: 1752 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1753 break; 1754 case ICMP_INFO_REQUEST: 1755 /* Per RFC 1122 3.2.2.7, ignore this. */ 1756 case ICMP_INFO_REPLY: 1757 break; 1758 case ICMP_ADDRESS_MASK_REQUEST: 1759 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1760 /* TODO m_pullup of complete header? */ 1761 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1762 interested = B_TRUE; 1763 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1764 break; 1765 case ICMP_ADDRESS_MASK_REPLY: 1766 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1767 break; 1768 default: 1769 interested = B_TRUE; /* Pass up to transport */ 1770 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1771 break; 1772 } 1773 /* See if there is an ICMP client. */ 1774 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1775 /* If there is an ICMP client and we want one too, copy it. */ 1776 mblk_t *first_mp1; 1777 1778 if (!interested) { 1779 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1780 ip_policy, recv_ill, zoneid); 1781 return; 1782 } 1783 first_mp1 = ip_copymsg(first_mp); 1784 if (first_mp1 != NULL) { 1785 ip_fanout_proto(q, first_mp1, ill, ipha, 1786 0, mctl_present, ip_policy, recv_ill, zoneid); 1787 } 1788 } else if (!interested) { 1789 freemsg(first_mp); 1790 return; 1791 } else { 1792 /* 1793 * Initiate policy processing for this packet if ip_policy 1794 * is true. 1795 */ 1796 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1797 ill_index = ill->ill_phyint->phyint_ifindex; 1798 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1799 if (mp == NULL) { 1800 if (mctl_present) { 1801 freeb(first_mp); 1802 } 1803 BUMP_MIB(&icmp_mib, icmpInErrors); 1804 return; 1805 } 1806 } 1807 } 1808 /* We want to do something with it. */ 1809 /* Check db_ref to make sure we can modify the packet. */ 1810 if (mp->b_datap->db_ref > 1) { 1811 mblk_t *first_mp1; 1812 1813 first_mp1 = ip_copymsg(first_mp); 1814 freemsg(first_mp); 1815 if (!first_mp1) { 1816 BUMP_MIB(&icmp_mib, icmpOutDrops); 1817 return; 1818 } 1819 first_mp = first_mp1; 1820 if (mctl_present) { 1821 mp = first_mp->b_cont; 1822 ASSERT(mp != NULL); 1823 } else { 1824 mp = first_mp; 1825 } 1826 ipha = (ipha_t *)mp->b_rptr; 1827 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1828 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1829 } 1830 switch (icmph->icmph_type) { 1831 case ICMP_ADDRESS_MASK_REQUEST: 1832 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1833 if (ipif == NULL) { 1834 freemsg(first_mp); 1835 return; 1836 } 1837 /* 1838 * outging interface must be IPv4 1839 */ 1840 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1841 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1842 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1843 ipif_refrele(ipif); 1844 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1845 break; 1846 case ICMP_ECHO_REQUEST: 1847 icmph->icmph_type = ICMP_ECHO_REPLY; 1848 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1849 break; 1850 case ICMP_TIME_STAMP_REQUEST: { 1851 uint32_t *tsp; 1852 1853 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1854 tsp = (uint32_t *)wptr; 1855 tsp++; /* Skip past 'originate time' */ 1856 /* Compute # of milliseconds since midnight */ 1857 gethrestime(&now); 1858 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1859 now.tv_nsec / (NANOSEC / MILLISEC); 1860 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1861 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1862 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1863 break; 1864 } 1865 default: 1866 ipha = (ipha_t *)&icmph[1]; 1867 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1868 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1869 BUMP_MIB(&ip_mib, ipInDiscards); 1870 freemsg(first_mp); 1871 return; 1872 } 1873 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1874 ipha = (ipha_t *)&icmph[1]; 1875 } 1876 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1877 BUMP_MIB(&ip_mib, ipInDiscards); 1878 freemsg(first_mp); 1879 return; 1880 } 1881 hdr_length = IPH_HDR_LENGTH(ipha); 1882 if (hdr_length < sizeof (ipha_t)) { 1883 BUMP_MIB(&ip_mib, ipInDiscards); 1884 freemsg(first_mp); 1885 return; 1886 } 1887 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1888 if (!pullupmsg(mp, 1889 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1890 BUMP_MIB(&ip_mib, ipInDiscards); 1891 freemsg(first_mp); 1892 return; 1893 } 1894 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1895 ipha = (ipha_t *)&icmph[1]; 1896 } 1897 switch (icmph->icmph_type) { 1898 case ICMP_REDIRECT: 1899 /* 1900 * As there is no upper client to deliver, we don't 1901 * need the first_mp any more. 1902 */ 1903 if (mctl_present) { 1904 freeb(first_mp); 1905 } 1906 icmp_redirect(mp); 1907 return; 1908 case ICMP_DEST_UNREACHABLE: 1909 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1910 if (!icmp_inbound_too_big(icmph, ipha)) { 1911 freemsg(first_mp); 1912 return; 1913 } 1914 } 1915 /* FALLTHRU */ 1916 default : 1917 /* 1918 * IPQoS notes: Since we have already done IPQoS 1919 * processing we don't want to do it again in 1920 * the fanout routines called by 1921 * icmp_inbound_error_fanout, hence the last 1922 * argument, ip_policy, is B_FALSE. 1923 */ 1924 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1925 ipha, iph_hdr_length, hdr_length, mctl_present, 1926 B_FALSE, recv_ill, zoneid); 1927 } 1928 return; 1929 } 1930 /* Send out an ICMP packet */ 1931 icmph->icmph_checksum = 0; 1932 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1933 if (broadcast || CLASSD(ipha->ipha_dst)) { 1934 ipif_t *ipif_chosen; 1935 /* 1936 * Make it look like it was directed to us, so we don't look 1937 * like a fool with a broadcast or multicast source address. 1938 */ 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 /* 1941 * Make sure that we haven't grabbed an interface that's DOWN. 1942 */ 1943 if (ipif != NULL) { 1944 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1945 ipha->ipha_src, zoneid); 1946 if (ipif_chosen != NULL) { 1947 ipif_refrele(ipif); 1948 ipif = ipif_chosen; 1949 } 1950 } 1951 if (ipif == NULL) { 1952 ip0dbg(("icmp_inbound: " 1953 "No source for broadcast/multicast:\n" 1954 "\tsrc 0x%x dst 0x%x ill %p " 1955 "ipif_lcl_addr 0x%x\n", 1956 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1957 (void *)ill, 1958 ill->ill_ipif->ipif_lcl_addr)); 1959 freemsg(first_mp); 1960 return; 1961 } 1962 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1963 ipha->ipha_dst = ipif->ipif_src_addr; 1964 ipif_refrele(ipif); 1965 } 1966 /* Reset time to live. */ 1967 ipha->ipha_ttl = ip_def_ttl; 1968 { 1969 /* Swap source and destination addresses */ 1970 ipaddr_t tmp; 1971 1972 tmp = ipha->ipha_src; 1973 ipha->ipha_src = ipha->ipha_dst; 1974 ipha->ipha_dst = tmp; 1975 } 1976 ipha->ipha_ident = 0; 1977 if (!IS_SIMPLE_IPH(ipha)) 1978 icmp_options_update(ipha); 1979 1980 /* 1981 * ICMP echo replies should go out on the same interface 1982 * the request came on as probes used by in.mpathd for detecting 1983 * NIC failures are ECHO packets. We turn-off load spreading 1984 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1985 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1986 * function. This is in turn handled by ip_wput and ip_newroute 1987 * to make sure that the packet goes out on the interface it came 1988 * in on. If we don't turnoff load spreading, the packets might get 1989 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1990 * to go out and in.mpathd would wrongly detect a failure or 1991 * mis-detect a NIC failure for link failure. As load spreading 1992 * can happen only if ill_group is not NULL, we do only for 1993 * that case and this does not affect the normal case. 1994 * 1995 * We turn off load spreading only on echo packets that came from 1996 * on-link hosts. If the interface route has been deleted, this will 1997 * not be enforced as we can't do much. For off-link hosts, as the 1998 * default routes in IPv4 does not typically have an ire_ipif 1999 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2000 * Moreover, expecting a default route through this interface may 2001 * not be correct. We use ipha_dst because of the swap above. 2002 */ 2003 onlink = B_FALSE; 2004 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2005 /* 2006 * First, we need to make sure that it is not one of our 2007 * local addresses. If we set onlink when it is one of 2008 * our local addresses, we will end up creating IRE_CACHES 2009 * for one of our local addresses. Then, we will never 2010 * accept packets for them afterwards. 2011 */ 2012 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2013 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2014 if (src_ire == NULL) { 2015 ipif = ipif_get_next_ipif(NULL, ill); 2016 if (ipif == NULL) { 2017 BUMP_MIB(&ip_mib, ipInDiscards); 2018 freemsg(mp); 2019 return; 2020 } 2021 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2022 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2023 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2024 ipif_refrele(ipif); 2025 if (src_ire != NULL) { 2026 onlink = B_TRUE; 2027 ire_refrele(src_ire); 2028 } 2029 } else { 2030 ire_refrele(src_ire); 2031 } 2032 } 2033 if (!mctl_present) { 2034 /* 2035 * This packet should go out the same way as it 2036 * came in i.e in clear. To make sure that global 2037 * policy will not be applied to this in ip_wput_ire, 2038 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2039 */ 2040 ASSERT(first_mp == mp); 2041 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2042 BUMP_MIB(&ip_mib, ipInDiscards); 2043 freemsg(mp); 2044 return; 2045 } 2046 ii = (ipsec_in_t *)first_mp->b_rptr; 2047 2048 /* This is not a secure packet */ 2049 ii->ipsec_in_secure = B_FALSE; 2050 if (onlink) { 2051 ii->ipsec_in_attach_if = B_TRUE; 2052 ii->ipsec_in_ill_index = 2053 ill->ill_phyint->phyint_ifindex; 2054 ii->ipsec_in_rill_index = 2055 recv_ill->ill_phyint->phyint_ifindex; 2056 } 2057 first_mp->b_cont = mp; 2058 } else if (onlink) { 2059 ii = (ipsec_in_t *)first_mp->b_rptr; 2060 ii->ipsec_in_attach_if = B_TRUE; 2061 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2062 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 } 2066 ii->ipsec_in_zoneid = zoneid; 2067 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2068 BUMP_MIB(&ip_mib, ipInDiscards); 2069 return; 2070 } 2071 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2072 put(WR(q), first_mp); 2073 } 2074 2075 /* Table from RFC 1191 */ 2076 static int icmp_frag_size_table[] = 2077 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2078 2079 /* 2080 * Process received ICMP Packet too big. 2081 * After updating any IRE it does the fanout to any matching transport streams. 2082 * Assumes the message has been pulled up till the IP header that caused 2083 * the error. 2084 * 2085 * Returns B_FALSE on failure and B_TRUE on success. 2086 */ 2087 static boolean_t 2088 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2089 { 2090 ire_t *ire, *first_ire; 2091 int mtu; 2092 int hdr_length; 2093 2094 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2095 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2096 2097 hdr_length = IPH_HDR_LENGTH(ipha); 2098 2099 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2100 ALL_ZONES, MATCH_IRE_TYPE); 2101 2102 if (!first_ire) { 2103 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2104 ntohl(ipha->ipha_dst))); 2105 return (B_FALSE); 2106 } 2107 /* Drop if the original packet contained a source route */ 2108 if (ip_source_route_included(ipha)) { 2109 ire_refrele(first_ire); 2110 return (B_FALSE); 2111 } 2112 /* Check for MTU discovery advice as described in RFC 1191 */ 2113 mtu = ntohs(icmph->icmph_du_mtu); 2114 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2115 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2116 ire = ire->ire_next) { 2117 mutex_enter(&ire->ire_lock); 2118 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2119 /* Reduce the IRE max frag value as advised. */ 2120 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2121 ip1dbg(("Received mtu from router: %d\n", mtu)); 2122 } else { 2123 uint32_t length; 2124 int i; 2125 2126 /* 2127 * Use the table from RFC 1191 to figure out 2128 * the next "plateau" based on the length in 2129 * the original IP packet. 2130 */ 2131 length = ntohs(ipha->ipha_length); 2132 if (ire->ire_max_frag <= length && 2133 ire->ire_max_frag >= length - hdr_length) { 2134 /* 2135 * Handle broken BSD 4.2 systems that 2136 * return the wrong iph_length in ICMP 2137 * errors. 2138 */ 2139 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2140 length, ire->ire_max_frag)); 2141 length -= hdr_length; 2142 } 2143 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2144 if (length > icmp_frag_size_table[i]) 2145 break; 2146 } 2147 if (i == A_CNT(icmp_frag_size_table)) { 2148 /* Smaller than 68! */ 2149 ip1dbg(("Too big for packet size %d\n", 2150 length)); 2151 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2152 ire->ire_frag_flag = 0; 2153 } else { 2154 mtu = icmp_frag_size_table[i]; 2155 ip1dbg(("Calculated mtu %d, packet size %d, " 2156 "before %d", mtu, length, 2157 ire->ire_max_frag)); 2158 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2159 ip1dbg((", after %d\n", ire->ire_max_frag)); 2160 } 2161 /* Record the new max frag size for the ULP. */ 2162 icmph->icmph_du_zero = 0; 2163 icmph->icmph_du_mtu = 2164 htons((uint16_t)ire->ire_max_frag); 2165 } 2166 mutex_exit(&ire->ire_lock); 2167 } 2168 rw_exit(&first_ire->ire_bucket->irb_lock); 2169 ire_refrele(first_ire); 2170 return (B_TRUE); 2171 } 2172 2173 /* 2174 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2175 * calls this function. 2176 */ 2177 static mblk_t * 2178 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2179 { 2180 ipha_t *ipha; 2181 icmph_t *icmph; 2182 ipha_t *in_ipha; 2183 int length; 2184 2185 ASSERT(mp->b_datap->db_type == M_DATA); 2186 2187 /* 2188 * For Self-encapsulated packets, we added an extra IP header 2189 * without the options. Inner IP header is the one from which 2190 * the outer IP header was formed. Thus, we need to remove the 2191 * outer IP header. To do this, we pullup the whole message 2192 * and overlay whatever follows the outer IP header over the 2193 * outer IP header. 2194 */ 2195 2196 if (!pullupmsg(mp, -1)) { 2197 BUMP_MIB(&ip_mib, ipInDiscards); 2198 return (NULL); 2199 } 2200 2201 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2202 ipha = (ipha_t *)&icmph[1]; 2203 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2204 2205 /* 2206 * The length that we want to overlay is following the inner 2207 * IP header. Subtracting the IP header + icmp header + outer 2208 * IP header's length should give us the length that we want to 2209 * overlay. 2210 */ 2211 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2212 hdr_length; 2213 /* 2214 * Overlay whatever follows the inner header over the 2215 * outer header. 2216 */ 2217 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2218 2219 /* Set the wptr to account for the outer header */ 2220 mp->b_wptr -= hdr_length; 2221 return (mp); 2222 } 2223 2224 /* 2225 * Try to pass the ICMP message upstream in case the ULP cares. 2226 * 2227 * If the packet that caused the ICMP error is secure, we send 2228 * it to AH/ESP to make sure that the attached packet has a 2229 * valid association. ipha in the code below points to the 2230 * IP header of the packet that caused the error. 2231 * 2232 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2233 * in the context of IPSEC. Normally we tell the upper layer 2234 * whenever we send the ire (including ip_bind), the IPSEC header 2235 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2236 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2237 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2238 * same thing. As TCP has the IPSEC options size that needs to be 2239 * adjusted, we just pass the MTU unchanged. 2240 * 2241 * IFN could have been generated locally or by some router. 2242 * 2243 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2244 * This happens because IP adjusted its value of MTU on an 2245 * earlier IFN message and could not tell the upper layer, 2246 * the new adjusted value of MTU e.g. Packet was encrypted 2247 * or there was not enough information to fanout to upper 2248 * layers. Thus on the next outbound datagram, ip_wput_ire 2249 * generates the IFN, where IPSEC processing has *not* been 2250 * done. 2251 * 2252 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2253 * could have generated this. This happens because ire_max_frag 2254 * value in IP was set to a new value, while the IPSEC processing 2255 * was being done and after we made the fragmentation check in 2256 * ip_wput_ire. Thus on return from IPSEC processing, 2257 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2258 * and generates the IFN. As IPSEC processing is over, we fanout 2259 * to AH/ESP to remove the header. 2260 * 2261 * In both these cases, ipsec_in_loopback will be set indicating 2262 * that IFN was generated locally. 2263 * 2264 * ROUTER : IFN could be secure or non-secure. 2265 * 2266 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2267 * packet in error has AH/ESP headers to validate the AH/ESP 2268 * headers. AH/ESP will verify whether there is a valid SA or 2269 * not and send it back. We will fanout again if we have more 2270 * data in the packet. 2271 * 2272 * If the packet in error does not have AH/ESP, we handle it 2273 * like any other case. 2274 * 2275 * * NON_SECURE : If the packet in error has AH/ESP headers, 2276 * we attach a dummy ipsec_in and send it up to AH/ESP 2277 * for validation. AH/ESP will verify whether there is a 2278 * valid SA or not and send it back. We will fanout again if 2279 * we have more data in the packet. 2280 * 2281 * If the packet in error does not have AH/ESP, we handle it 2282 * like any other case. 2283 */ 2284 static void 2285 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2286 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2287 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2288 zoneid_t zoneid) 2289 { 2290 uint16_t *up; /* Pointer to ports in ULP header */ 2291 uint32_t ports; /* reversed ports for fanout */ 2292 ipha_t ripha; /* With reversed addresses */ 2293 mblk_t *first_mp; 2294 ipsec_in_t *ii; 2295 tcph_t *tcph; 2296 conn_t *connp; 2297 2298 first_mp = mp; 2299 if (mctl_present) { 2300 mp = first_mp->b_cont; 2301 ASSERT(mp != NULL); 2302 2303 ii = (ipsec_in_t *)first_mp->b_rptr; 2304 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2305 } else { 2306 ii = NULL; 2307 } 2308 2309 switch (ipha->ipha_protocol) { 2310 case IPPROTO_UDP: 2311 /* 2312 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2313 * transport header. 2314 */ 2315 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2316 mp->b_wptr) { 2317 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2318 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2319 BUMP_MIB(&ip_mib, ipInDiscards); 2320 goto drop_pkt; 2321 } 2322 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2323 ipha = (ipha_t *)&icmph[1]; 2324 } 2325 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2326 2327 /* 2328 * Attempt to find a client stream based on port. 2329 * Note that we do a reverse lookup since the header is 2330 * in the form we sent it out. 2331 * The ripha header is only used for the IP_UDP_MATCH and we 2332 * only set the src and dst addresses and protocol. 2333 */ 2334 ripha.ipha_src = ipha->ipha_dst; 2335 ripha.ipha_dst = ipha->ipha_src; 2336 ripha.ipha_protocol = ipha->ipha_protocol; 2337 ((uint16_t *)&ports)[0] = up[1]; 2338 ((uint16_t *)&ports)[1] = up[0]; 2339 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2340 ntohl(ipha->ipha_src), ntohs(up[0]), 2341 ntohl(ipha->ipha_dst), ntohs(up[1]), 2342 icmph->icmph_type, icmph->icmph_code)); 2343 2344 /* Have to change db_type after any pullupmsg */ 2345 DB_TYPE(mp) = M_CTL; 2346 2347 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2348 mctl_present, ip_policy, recv_ill, zoneid); 2349 return; 2350 2351 case IPPROTO_TCP: 2352 /* 2353 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2354 * transport header. 2355 */ 2356 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2357 mp->b_wptr) { 2358 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2359 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2360 BUMP_MIB(&ip_mib, ipInDiscards); 2361 goto drop_pkt; 2362 } 2363 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2364 ipha = (ipha_t *)&icmph[1]; 2365 } 2366 /* 2367 * Find a TCP client stream for this packet. 2368 * Note that we do a reverse lookup since the header is 2369 * in the form we sent it out. 2370 */ 2371 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2372 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2373 if (connp == NULL) { 2374 BUMP_MIB(&ip_mib, ipInDiscards); 2375 goto drop_pkt; 2376 } 2377 2378 /* Have to change db_type after any pullupmsg */ 2379 DB_TYPE(mp) = M_CTL; 2380 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2381 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2382 return; 2383 2384 case IPPROTO_SCTP: 2385 /* 2386 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2387 * transport header. 2388 */ 2389 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2390 mp->b_wptr) { 2391 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2392 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2393 BUMP_MIB(&ip_mib, ipInDiscards); 2394 goto drop_pkt; 2395 } 2396 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2397 ipha = (ipha_t *)&icmph[1]; 2398 } 2399 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2400 /* 2401 * Find a SCTP client stream for this packet. 2402 * Note that we do a reverse lookup since the header is 2403 * in the form we sent it out. 2404 * The ripha header is only used for the matching and we 2405 * only set the src and dst addresses, protocol, and version. 2406 */ 2407 ripha.ipha_src = ipha->ipha_dst; 2408 ripha.ipha_dst = ipha->ipha_src; 2409 ripha.ipha_protocol = ipha->ipha_protocol; 2410 ripha.ipha_version_and_hdr_length = 2411 ipha->ipha_version_and_hdr_length; 2412 ((uint16_t *)&ports)[0] = up[1]; 2413 ((uint16_t *)&ports)[1] = up[0]; 2414 2415 /* Have to change db_type after any pullupmsg */ 2416 DB_TYPE(mp) = M_CTL; 2417 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2418 mctl_present, ip_policy, 0, zoneid); 2419 return; 2420 2421 case IPPROTO_ESP: 2422 case IPPROTO_AH: { 2423 int ipsec_rc; 2424 2425 /* 2426 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2427 * We will re-use the IPSEC_IN if it is already present as 2428 * AH/ESP will not affect any fields in the IPSEC_IN for 2429 * ICMP errors. If there is no IPSEC_IN, allocate a new 2430 * one and attach it in the front. 2431 */ 2432 if (ii != NULL) { 2433 /* 2434 * ip_fanout_proto_again converts the ICMP errors 2435 * that come back from AH/ESP to M_DATA so that 2436 * if it is non-AH/ESP and we do a pullupmsg in 2437 * this function, it would work. Convert it back 2438 * to M_CTL before we send up as this is a ICMP 2439 * error. This could have been generated locally or 2440 * by some router. Validate the inner IPSEC 2441 * headers. 2442 * 2443 * NOTE : ill_index is used by ip_fanout_proto_again 2444 * to locate the ill. 2445 */ 2446 ASSERT(ill != NULL); 2447 ii->ipsec_in_ill_index = 2448 ill->ill_phyint->phyint_ifindex; 2449 ii->ipsec_in_rill_index = 2450 recv_ill->ill_phyint->phyint_ifindex; 2451 DB_TYPE(first_mp->b_cont) = M_CTL; 2452 } else { 2453 /* 2454 * IPSEC_IN is not present. We attach a ipsec_in 2455 * message and send up to IPSEC for validating 2456 * and removing the IPSEC headers. Clear 2457 * ipsec_in_secure so that when we return 2458 * from IPSEC, we don't mistakenly think that this 2459 * is a secure packet came from the network. 2460 * 2461 * NOTE : ill_index is used by ip_fanout_proto_again 2462 * to locate the ill. 2463 */ 2464 ASSERT(first_mp == mp); 2465 first_mp = ipsec_in_alloc(B_TRUE); 2466 if (first_mp == NULL) { 2467 freemsg(mp); 2468 BUMP_MIB(&ip_mib, ipInDiscards); 2469 return; 2470 } 2471 ii = (ipsec_in_t *)first_mp->b_rptr; 2472 2473 /* This is not a secure packet */ 2474 ii->ipsec_in_secure = B_FALSE; 2475 first_mp->b_cont = mp; 2476 DB_TYPE(mp) = M_CTL; 2477 ASSERT(ill != NULL); 2478 ii->ipsec_in_ill_index = 2479 ill->ill_phyint->phyint_ifindex; 2480 ii->ipsec_in_rill_index = 2481 recv_ill->ill_phyint->phyint_ifindex; 2482 } 2483 ip2dbg(("icmp_inbound_error: ipsec\n")); 2484 2485 if (!ipsec_loaded()) { 2486 ip_proto_not_sup(q, first_mp, 0, zoneid); 2487 return; 2488 } 2489 2490 if (ipha->ipha_protocol == IPPROTO_ESP) 2491 ipsec_rc = ipsecesp_icmp_error(first_mp); 2492 else 2493 ipsec_rc = ipsecah_icmp_error(first_mp); 2494 if (ipsec_rc == IPSEC_STATUS_FAILED) 2495 return; 2496 2497 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2498 return; 2499 } 2500 default: 2501 /* 2502 * The ripha header is only used for the lookup and we 2503 * only set the src and dst addresses and protocol. 2504 */ 2505 ripha.ipha_src = ipha->ipha_dst; 2506 ripha.ipha_dst = ipha->ipha_src; 2507 ripha.ipha_protocol = ipha->ipha_protocol; 2508 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2509 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2510 ntohl(ipha->ipha_dst), 2511 icmph->icmph_type, icmph->icmph_code)); 2512 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2513 ipha_t *in_ipha; 2514 2515 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2516 mp->b_wptr) { 2517 if (!pullupmsg(mp, (uchar_t *)ipha + 2518 hdr_length + sizeof (ipha_t) - 2519 mp->b_rptr)) { 2520 2521 BUMP_MIB(&ip_mib, ipInDiscards); 2522 goto drop_pkt; 2523 } 2524 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2525 ipha = (ipha_t *)&icmph[1]; 2526 } 2527 /* 2528 * Caller has verified that length has to be 2529 * at least the size of IP header. 2530 */ 2531 ASSERT(hdr_length >= sizeof (ipha_t)); 2532 /* 2533 * Check the sanity of the inner IP header like 2534 * we did for the outer header. 2535 */ 2536 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2537 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2538 BUMP_MIB(&ip_mib, ipInDiscards); 2539 goto drop_pkt; 2540 } 2541 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2542 BUMP_MIB(&ip_mib, ipInDiscards); 2543 goto drop_pkt; 2544 } 2545 /* Check for Self-encapsulated tunnels */ 2546 if (in_ipha->ipha_src == ipha->ipha_src && 2547 in_ipha->ipha_dst == ipha->ipha_dst) { 2548 2549 mp = icmp_inbound_self_encap_error(mp, 2550 iph_hdr_length, hdr_length); 2551 if (mp == NULL) 2552 goto drop_pkt; 2553 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2554 ipha = (ipha_t *)&icmph[1]; 2555 hdr_length = IPH_HDR_LENGTH(ipha); 2556 /* 2557 * The packet in error is self-encapsualted. 2558 * And we are finding it further encapsulated 2559 * which we could not have possibly generated. 2560 */ 2561 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2562 BUMP_MIB(&ip_mib, ipInDiscards); 2563 goto drop_pkt; 2564 } 2565 icmp_inbound_error_fanout(q, ill, first_mp, 2566 icmph, ipha, iph_hdr_length, hdr_length, 2567 mctl_present, ip_policy, recv_ill, zoneid); 2568 return; 2569 } 2570 } 2571 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2572 ipha->ipha_protocol == IPPROTO_IPV6) && 2573 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2574 ii != NULL && 2575 ii->ipsec_in_loopback && 2576 ii->ipsec_in_secure) { 2577 /* 2578 * For IP tunnels that get a looped-back 2579 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2580 * reported new MTU to take into account the IPsec 2581 * headers protecting this configured tunnel. 2582 * 2583 * This allows the tunnel module (tun.c) to blindly 2584 * accept the MTU reported in an ICMP "too big" 2585 * message. 2586 * 2587 * Non-looped back ICMP messages will just be 2588 * handled by the security protocols (if needed), 2589 * and the first subsequent packet will hit this 2590 * path. 2591 */ 2592 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2593 ipsec_in_extra_length(first_mp)); 2594 } 2595 /* Have to change db_type after any pullupmsg */ 2596 DB_TYPE(mp) = M_CTL; 2597 2598 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2599 ip_policy, recv_ill, zoneid); 2600 return; 2601 } 2602 /* NOTREACHED */ 2603 drop_pkt:; 2604 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2605 freemsg(first_mp); 2606 } 2607 2608 /* 2609 * Common IP options parser. 2610 * 2611 * Setup routine: fill in *optp with options-parsing state, then 2612 * tail-call ipoptp_next to return the first option. 2613 */ 2614 uint8_t 2615 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2616 { 2617 uint32_t totallen; /* total length of all options */ 2618 2619 totallen = ipha->ipha_version_and_hdr_length - 2620 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2621 totallen <<= 2; 2622 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2623 optp->ipoptp_end = optp->ipoptp_next + totallen; 2624 optp->ipoptp_flags = 0; 2625 return (ipoptp_next(optp)); 2626 } 2627 2628 /* 2629 * Common IP options parser: extract next option. 2630 */ 2631 uint8_t 2632 ipoptp_next(ipoptp_t *optp) 2633 { 2634 uint8_t *end = optp->ipoptp_end; 2635 uint8_t *cur = optp->ipoptp_next; 2636 uint8_t opt, len, pointer; 2637 2638 /* 2639 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2640 * has been corrupted. 2641 */ 2642 ASSERT(cur <= end); 2643 2644 if (cur == end) 2645 return (IPOPT_EOL); 2646 2647 opt = cur[IPOPT_OPTVAL]; 2648 2649 /* 2650 * Skip any NOP options. 2651 */ 2652 while (opt == IPOPT_NOP) { 2653 cur++; 2654 if (cur == end) 2655 return (IPOPT_EOL); 2656 opt = cur[IPOPT_OPTVAL]; 2657 } 2658 2659 if (opt == IPOPT_EOL) 2660 return (IPOPT_EOL); 2661 2662 /* 2663 * Option requiring a length. 2664 */ 2665 if ((cur + 1) >= end) { 2666 optp->ipoptp_flags |= IPOPTP_ERROR; 2667 return (IPOPT_EOL); 2668 } 2669 len = cur[IPOPT_OLEN]; 2670 if (len < 2) { 2671 optp->ipoptp_flags |= IPOPTP_ERROR; 2672 return (IPOPT_EOL); 2673 } 2674 optp->ipoptp_cur = cur; 2675 optp->ipoptp_len = len; 2676 optp->ipoptp_next = cur + len; 2677 if (cur + len > end) { 2678 optp->ipoptp_flags |= IPOPTP_ERROR; 2679 return (IPOPT_EOL); 2680 } 2681 2682 /* 2683 * For the options which require a pointer field, make sure 2684 * its there, and make sure it points to either something 2685 * inside this option, or the end of the option. 2686 */ 2687 switch (opt) { 2688 case IPOPT_RR: 2689 case IPOPT_TS: 2690 case IPOPT_LSRR: 2691 case IPOPT_SSRR: 2692 if (len <= IPOPT_OFFSET) { 2693 optp->ipoptp_flags |= IPOPTP_ERROR; 2694 return (opt); 2695 } 2696 pointer = cur[IPOPT_OFFSET]; 2697 if (pointer - 1 > len) { 2698 optp->ipoptp_flags |= IPOPTP_ERROR; 2699 return (opt); 2700 } 2701 break; 2702 } 2703 2704 /* 2705 * Sanity check the pointer field based on the type of the 2706 * option. 2707 */ 2708 switch (opt) { 2709 case IPOPT_RR: 2710 case IPOPT_SSRR: 2711 case IPOPT_LSRR: 2712 if (pointer < IPOPT_MINOFF_SR) 2713 optp->ipoptp_flags |= IPOPTP_ERROR; 2714 break; 2715 case IPOPT_TS: 2716 if (pointer < IPOPT_MINOFF_IT) 2717 optp->ipoptp_flags |= IPOPTP_ERROR; 2718 /* 2719 * Note that the Internet Timestamp option also 2720 * contains two four bit fields (the Overflow field, 2721 * and the Flag field), which follow the pointer 2722 * field. We don't need to check that these fields 2723 * fall within the length of the option because this 2724 * was implicitely done above. We've checked that the 2725 * pointer value is at least IPOPT_MINOFF_IT, and that 2726 * it falls within the option. Since IPOPT_MINOFF_IT > 2727 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2728 */ 2729 ASSERT(len > IPOPT_POS_OV_FLG); 2730 break; 2731 } 2732 2733 return (opt); 2734 } 2735 2736 /* 2737 * Update any record route or timestamp options to include this host. 2738 * Reverse any source route option. 2739 * This routine assumes that the options are well formed i.e. that they 2740 * have already been checked. 2741 */ 2742 static void 2743 icmp_options_update(ipha_t *ipha) 2744 { 2745 ipoptp_t opts; 2746 uchar_t *opt; 2747 uint8_t optval; 2748 ipaddr_t src; /* Our local address */ 2749 ipaddr_t dst; 2750 2751 ip2dbg(("icmp_options_update\n")); 2752 src = ipha->ipha_src; 2753 dst = ipha->ipha_dst; 2754 2755 for (optval = ipoptp_first(&opts, ipha); 2756 optval != IPOPT_EOL; 2757 optval = ipoptp_next(&opts)) { 2758 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2759 opt = opts.ipoptp_cur; 2760 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2761 optval, opts.ipoptp_len)); 2762 switch (optval) { 2763 int off1, off2; 2764 case IPOPT_SSRR: 2765 case IPOPT_LSRR: 2766 /* 2767 * Reverse the source route. The first entry 2768 * should be the next to last one in the current 2769 * source route (the last entry is our address). 2770 * The last entry should be the final destination. 2771 */ 2772 off1 = IPOPT_MINOFF_SR - 1; 2773 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2774 if (off2 < 0) { 2775 /* No entries in source route */ 2776 ip1dbg(( 2777 "icmp_options_update: bad src route\n")); 2778 break; 2779 } 2780 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2781 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2782 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2783 off2 -= IP_ADDR_LEN; 2784 2785 while (off1 < off2) { 2786 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2787 bcopy((char *)opt + off2, (char *)opt + off1, 2788 IP_ADDR_LEN); 2789 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2790 off1 += IP_ADDR_LEN; 2791 off2 -= IP_ADDR_LEN; 2792 } 2793 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2794 break; 2795 } 2796 } 2797 } 2798 2799 /* 2800 * Process received ICMP Redirect messages. 2801 */ 2802 /* ARGSUSED */ 2803 static void 2804 icmp_redirect(mblk_t *mp) 2805 { 2806 ipha_t *ipha; 2807 int iph_hdr_length; 2808 icmph_t *icmph; 2809 ipha_t *ipha_err; 2810 ire_t *ire; 2811 ire_t *prev_ire; 2812 ire_t *save_ire; 2813 ipaddr_t src, dst, gateway; 2814 iulp_t ulp_info = { 0 }; 2815 int error; 2816 2817 ipha = (ipha_t *)mp->b_rptr; 2818 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2819 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2820 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2821 BUMP_MIB(&icmp_mib, icmpInErrors); 2822 freemsg(mp); 2823 return; 2824 } 2825 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2826 ipha_err = (ipha_t *)&icmph[1]; 2827 src = ipha->ipha_src; 2828 dst = ipha_err->ipha_dst; 2829 gateway = icmph->icmph_rd_gateway; 2830 /* Make sure the new gateway is reachable somehow. */ 2831 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2832 ALL_ZONES, MATCH_IRE_TYPE); 2833 /* 2834 * Make sure we had a route for the dest in question and that 2835 * that route was pointing to the old gateway (the source of the 2836 * redirect packet.) 2837 */ 2838 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2839 MATCH_IRE_GW); 2840 /* 2841 * Check that 2842 * the redirect was not from ourselves 2843 * the new gateway and the old gateway are directly reachable 2844 */ 2845 if (!prev_ire || 2846 !ire || 2847 ire->ire_type == IRE_LOCAL) { 2848 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2849 freemsg(mp); 2850 if (ire != NULL) 2851 ire_refrele(ire); 2852 if (prev_ire != NULL) 2853 ire_refrele(prev_ire); 2854 return; 2855 } 2856 2857 /* 2858 * Should we use the old ULP info to create the new gateway? From 2859 * a user's perspective, we should inherit the info so that it 2860 * is a "smooth" transition. If we do not do that, then new 2861 * connections going thru the new gateway will have no route metrics, 2862 * which is counter-intuitive to user. From a network point of 2863 * view, this may or may not make sense even though the new gateway 2864 * is still directly connected to us so the route metrics should not 2865 * change much. 2866 * 2867 * But if the old ire_uinfo is not initialized, we do another 2868 * recursive lookup on the dest using the new gateway. There may 2869 * be a route to that. If so, use it to initialize the redirect 2870 * route. 2871 */ 2872 if (prev_ire->ire_uinfo.iulp_set) { 2873 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2874 } else { 2875 ire_t *tmp_ire; 2876 ire_t *sire; 2877 2878 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2879 ALL_ZONES, 0, 2880 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2881 if (sire != NULL) { 2882 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2883 /* 2884 * If sire != NULL, ire_ftable_lookup() should not 2885 * return a NULL value. 2886 */ 2887 ASSERT(tmp_ire != NULL); 2888 ire_refrele(tmp_ire); 2889 ire_refrele(sire); 2890 } else if (tmp_ire != NULL) { 2891 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2892 sizeof (iulp_t)); 2893 ire_refrele(tmp_ire); 2894 } 2895 } 2896 if (prev_ire->ire_type == IRE_CACHE) 2897 ire_delete(prev_ire); 2898 ire_refrele(prev_ire); 2899 /* 2900 * TODO: more precise handling for cases 0, 2, 3, the latter two 2901 * require TOS routing 2902 */ 2903 switch (icmph->icmph_code) { 2904 case 0: 2905 case 1: 2906 /* TODO: TOS specificity for cases 2 and 3 */ 2907 case 2: 2908 case 3: 2909 break; 2910 default: 2911 freemsg(mp); 2912 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2913 ire_refrele(ire); 2914 return; 2915 } 2916 /* 2917 * Create a Route Association. This will allow us to remember that 2918 * someone we believe told us to use the particular gateway. 2919 */ 2920 save_ire = ire; 2921 ire = ire_create( 2922 (uchar_t *)&dst, /* dest addr */ 2923 (uchar_t *)&ip_g_all_ones, /* mask */ 2924 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2925 (uchar_t *)&gateway, /* gateway addr */ 2926 NULL, /* no in_srcaddr */ 2927 &save_ire->ire_max_frag, /* max frag */ 2928 NULL, /* Fast Path header */ 2929 NULL, /* no rfq */ 2930 NULL, /* no stq */ 2931 IRE_HOST_REDIRECT, 2932 NULL, 2933 NULL, 2934 NULL, 2935 0, 2936 0, 2937 0, 2938 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2939 &ulp_info); 2940 2941 if (ire == NULL) { 2942 freemsg(mp); 2943 ire_refrele(save_ire); 2944 return; 2945 } 2946 error = ire_add(&ire, NULL, NULL, NULL); 2947 ire_refrele(save_ire); 2948 if (error == 0) { 2949 ire_refrele(ire); /* Held in ire_add_v4 */ 2950 /* tell routing sockets that we received a redirect */ 2951 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2952 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2953 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2954 } 2955 2956 /* 2957 * Delete any existing IRE_HOST_REDIRECT for this destination. 2958 * This together with the added IRE has the effect of 2959 * modifying an existing redirect. 2960 */ 2961 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2962 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2963 if (prev_ire) { 2964 ire_delete(prev_ire); 2965 ire_refrele(prev_ire); 2966 } 2967 2968 freemsg(mp); 2969 } 2970 2971 /* 2972 * Generate an ICMP parameter problem message. 2973 */ 2974 static void 2975 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 2976 { 2977 icmph_t icmph; 2978 boolean_t mctl_present; 2979 mblk_t *first_mp; 2980 2981 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 2982 2983 if (!(mp = icmp_pkt_err_ok(mp))) { 2984 if (mctl_present) 2985 freeb(first_mp); 2986 return; 2987 } 2988 2989 bzero(&icmph, sizeof (icmph_t)); 2990 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2991 icmph.icmph_pp_ptr = ptr; 2992 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 2993 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 2994 } 2995 2996 /* 2997 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2998 * the ICMP header pointed to by "stuff". (May be called as writer.) 2999 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3000 * an icmp error packet can be sent. 3001 * Assigns an appropriate source address to the packet. If ipha_dst is 3002 * one of our addresses use it for source. Otherwise pick a source based 3003 * on a route lookup back to ipha_src. 3004 * Note that ipha_src must be set here since the 3005 * packet is likely to arrive on an ill queue in ip_wput() which will 3006 * not set a source address. 3007 */ 3008 static void 3009 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3010 boolean_t mctl_present) 3011 { 3012 ipaddr_t dst; 3013 icmph_t *icmph; 3014 ipha_t *ipha; 3015 uint_t len_needed; 3016 size_t msg_len; 3017 mblk_t *mp1; 3018 ipaddr_t src; 3019 ire_t *ire; 3020 mblk_t *ipsec_mp; 3021 ipsec_out_t *io = NULL; 3022 boolean_t xmit_if_on = B_FALSE; 3023 zoneid_t zoneid; 3024 3025 if (mctl_present) { 3026 /* 3027 * If it is : 3028 * 3029 * 1) a IPSEC_OUT, then this is caused by outbound 3030 * datagram originating on this host. IPSEC processing 3031 * may or may not have been done. Refer to comments above 3032 * icmp_inbound_error_fanout for details. 3033 * 3034 * 2) a IPSEC_IN if we are generating a icmp_message 3035 * for an incoming datagram destined for us i.e called 3036 * from ip_fanout_send_icmp. 3037 */ 3038 ipsec_info_t *in; 3039 ipsec_mp = mp; 3040 mp = ipsec_mp->b_cont; 3041 3042 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3043 ipha = (ipha_t *)mp->b_rptr; 3044 3045 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3046 in->ipsec_info_type == IPSEC_IN); 3047 3048 if (in->ipsec_info_type == IPSEC_IN) { 3049 /* 3050 * Convert the IPSEC_IN to IPSEC_OUT. 3051 */ 3052 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3053 BUMP_MIB(&ip_mib, ipOutDiscards); 3054 return; 3055 } 3056 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3057 } else { 3058 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3059 io = (ipsec_out_t *)in; 3060 if (io->ipsec_out_xmit_if) 3061 xmit_if_on = B_TRUE; 3062 /* 3063 * Clear out ipsec_out_proc_begin, so we do a fresh 3064 * ire lookup. 3065 */ 3066 io->ipsec_out_proc_begin = B_FALSE; 3067 } 3068 zoneid = io->ipsec_out_zoneid; 3069 ASSERT(zoneid != ALL_ZONES); 3070 } else { 3071 /* 3072 * This is in clear. The icmp message we are building 3073 * here should go out in clear. 3074 * 3075 * Pardon the convolution of it all, but it's easier to 3076 * allocate a "use cleartext" IPSEC_IN message and convert 3077 * it than it is to allocate a new one. 3078 */ 3079 ipsec_in_t *ii; 3080 ASSERT(DB_TYPE(mp) == M_DATA); 3081 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3082 freemsg(mp); 3083 BUMP_MIB(&ip_mib, ipOutDiscards); 3084 return; 3085 } 3086 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3087 3088 /* This is not a secure packet */ 3089 ii->ipsec_in_secure = B_FALSE; 3090 if (CONN_Q(q)) { 3091 zoneid = Q_TO_CONN(q)->conn_zoneid; 3092 } else { 3093 zoneid = GLOBAL_ZONEID; 3094 } 3095 ii->ipsec_in_zoneid = zoneid; 3096 ipsec_mp->b_cont = mp; 3097 ipha = (ipha_t *)mp->b_rptr; 3098 /* 3099 * Convert the IPSEC_IN to IPSEC_OUT. 3100 */ 3101 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3102 BUMP_MIB(&ip_mib, ipOutDiscards); 3103 return; 3104 } 3105 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3106 } 3107 3108 /* Remember our eventual destination */ 3109 dst = ipha->ipha_src; 3110 3111 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3112 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3113 if (ire != NULL && ire->ire_zoneid == zoneid) { 3114 src = ipha->ipha_dst; 3115 } else if (!xmit_if_on) { 3116 if (ire != NULL) 3117 ire_refrele(ire); 3118 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3119 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3120 if (ire == NULL) { 3121 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3122 freemsg(ipsec_mp); 3123 return; 3124 } 3125 src = ire->ire_src_addr; 3126 } else { 3127 ipif_t *ipif = NULL; 3128 ill_t *ill; 3129 /* 3130 * This must be an ICMP error coming from 3131 * ip_mrtun_forward(). The src addr should 3132 * be equal to the IP-addr of the outgoing 3133 * interface. 3134 */ 3135 if (io == NULL) { 3136 /* This is not a IPSEC_OUT type control msg */ 3137 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3138 freemsg(ipsec_mp); 3139 return; 3140 } 3141 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3142 NULL, NULL, NULL, NULL); 3143 if (ill != NULL) { 3144 ipif = ipif_get_next_ipif(NULL, ill); 3145 ill_refrele(ill); 3146 } 3147 if (ipif == NULL) { 3148 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3149 freemsg(ipsec_mp); 3150 return; 3151 } 3152 src = ipif->ipif_src_addr; 3153 ipif_refrele(ipif); 3154 } 3155 3156 if (ire != NULL) 3157 ire_refrele(ire); 3158 3159 /* 3160 * Check if we can send back more then 8 bytes in addition 3161 * to the IP header. We will include as much as 64 bytes. 3162 */ 3163 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3164 msg_len = msgdsize(mp); 3165 if (msg_len > len_needed) { 3166 (void) adjmsg(mp, len_needed - msg_len); 3167 msg_len = len_needed; 3168 } 3169 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3170 if (!mp1) { 3171 BUMP_MIB(&icmp_mib, icmpOutErrors); 3172 freemsg(ipsec_mp); 3173 return; 3174 } 3175 mp1->b_cont = mp; 3176 mp = mp1; 3177 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3178 ipsec_mp->b_rptr == (uint8_t *)io && 3179 io->ipsec_out_type == IPSEC_OUT); 3180 ipsec_mp->b_cont = mp; 3181 3182 /* 3183 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3184 * node generates be accepted in peace by all on-host destinations. 3185 * If we do NOT assume that all on-host destinations trust 3186 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3187 * (Look for ipsec_out_icmp_loopback). 3188 */ 3189 io->ipsec_out_icmp_loopback = B_TRUE; 3190 3191 ipha = (ipha_t *)mp->b_rptr; 3192 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3193 *ipha = icmp_ipha; 3194 ipha->ipha_src = src; 3195 ipha->ipha_dst = dst; 3196 ipha->ipha_ttl = ip_def_ttl; 3197 msg_len += sizeof (icmp_ipha) + len; 3198 if (msg_len > IP_MAXPACKET) { 3199 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3200 msg_len = IP_MAXPACKET; 3201 } 3202 ipha->ipha_length = htons((uint16_t)msg_len); 3203 icmph = (icmph_t *)&ipha[1]; 3204 bcopy(stuff, icmph, len); 3205 icmph->icmph_checksum = 0; 3206 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3207 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3208 put(q, ipsec_mp); 3209 } 3210 3211 /* 3212 * Determine if an ICMP error packet can be sent given the rate limit. 3213 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3214 * in milliseconds) and a burst size. Burst size number of packets can 3215 * be sent arbitrarely closely spaced. 3216 * The state is tracked using two variables to implement an approximate 3217 * token bucket filter: 3218 * icmp_pkt_err_last - lbolt value when the last burst started 3219 * icmp_pkt_err_sent - number of packets sent in current burst 3220 */ 3221 boolean_t 3222 icmp_err_rate_limit(void) 3223 { 3224 clock_t now = TICK_TO_MSEC(lbolt); 3225 uint_t refilled; /* Number of packets refilled in tbf since last */ 3226 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3227 3228 if (err_interval == 0) 3229 return (B_FALSE); 3230 3231 if (icmp_pkt_err_last > now) { 3232 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3233 icmp_pkt_err_last = 0; 3234 icmp_pkt_err_sent = 0; 3235 } 3236 /* 3237 * If we are in a burst update the token bucket filter. 3238 * Update the "last" time to be close to "now" but make sure 3239 * we don't loose precision. 3240 */ 3241 if (icmp_pkt_err_sent != 0) { 3242 refilled = (now - icmp_pkt_err_last)/err_interval; 3243 if (refilled > icmp_pkt_err_sent) { 3244 icmp_pkt_err_sent = 0; 3245 } else { 3246 icmp_pkt_err_sent -= refilled; 3247 icmp_pkt_err_last += refilled * err_interval; 3248 } 3249 } 3250 if (icmp_pkt_err_sent == 0) { 3251 /* Start of new burst */ 3252 icmp_pkt_err_last = now; 3253 } 3254 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3255 icmp_pkt_err_sent++; 3256 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3257 icmp_pkt_err_sent)); 3258 return (B_FALSE); 3259 } 3260 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3261 return (B_TRUE); 3262 } 3263 3264 /* 3265 * Check if it is ok to send an IPv4 ICMP error packet in 3266 * response to the IPv4 packet in mp. 3267 * Free the message and return null if no 3268 * ICMP error packet should be sent. 3269 */ 3270 static mblk_t * 3271 icmp_pkt_err_ok(mblk_t *mp) 3272 { 3273 icmph_t *icmph; 3274 ipha_t *ipha; 3275 uint_t len_needed; 3276 ire_t *src_ire; 3277 ire_t *dst_ire; 3278 3279 if (!mp) 3280 return (NULL); 3281 ipha = (ipha_t *)mp->b_rptr; 3282 if (ip_csum_hdr(ipha)) { 3283 BUMP_MIB(&ip_mib, ipInCksumErrs); 3284 freemsg(mp); 3285 return (NULL); 3286 } 3287 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3288 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3289 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3290 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3291 if (src_ire != NULL || dst_ire != NULL || 3292 CLASSD(ipha->ipha_dst) || 3293 CLASSD(ipha->ipha_src) || 3294 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3295 /* Note: only errors to the fragment with offset 0 */ 3296 BUMP_MIB(&icmp_mib, icmpOutDrops); 3297 freemsg(mp); 3298 if (src_ire != NULL) 3299 ire_refrele(src_ire); 3300 if (dst_ire != NULL) 3301 ire_refrele(dst_ire); 3302 return (NULL); 3303 } 3304 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3305 /* 3306 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3307 * errors in response to any ICMP errors. 3308 */ 3309 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3310 if (mp->b_wptr - mp->b_rptr < len_needed) { 3311 if (!pullupmsg(mp, len_needed)) { 3312 BUMP_MIB(&icmp_mib, icmpInErrors); 3313 freemsg(mp); 3314 return (NULL); 3315 } 3316 ipha = (ipha_t *)mp->b_rptr; 3317 } 3318 icmph = (icmph_t *) 3319 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3320 switch (icmph->icmph_type) { 3321 case ICMP_DEST_UNREACHABLE: 3322 case ICMP_SOURCE_QUENCH: 3323 case ICMP_TIME_EXCEEDED: 3324 case ICMP_PARAM_PROBLEM: 3325 case ICMP_REDIRECT: 3326 BUMP_MIB(&icmp_mib, icmpOutDrops); 3327 freemsg(mp); 3328 return (NULL); 3329 default: 3330 break; 3331 } 3332 } 3333 if (icmp_err_rate_limit()) { 3334 /* 3335 * Only send ICMP error packets every so often. 3336 * This should be done on a per port/source basis, 3337 * but for now this will suffice. 3338 */ 3339 freemsg(mp); 3340 return (NULL); 3341 } 3342 return (mp); 3343 } 3344 3345 /* 3346 * Generate an ICMP redirect message. 3347 */ 3348 static void 3349 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3350 { 3351 icmph_t icmph; 3352 3353 /* 3354 * We are called from ip_rput where we could 3355 * not have attached an IPSEC_IN. 3356 */ 3357 ASSERT(mp->b_datap->db_type == M_DATA); 3358 3359 if (!(mp = icmp_pkt_err_ok(mp))) { 3360 return; 3361 } 3362 3363 bzero(&icmph, sizeof (icmph_t)); 3364 icmph.icmph_type = ICMP_REDIRECT; 3365 icmph.icmph_code = 1; 3366 icmph.icmph_rd_gateway = gateway; 3367 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3368 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3369 } 3370 3371 /* 3372 * Generate an ICMP time exceeded message. 3373 */ 3374 void 3375 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3376 { 3377 icmph_t icmph; 3378 boolean_t mctl_present; 3379 mblk_t *first_mp; 3380 3381 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3382 3383 if (!(mp = icmp_pkt_err_ok(mp))) { 3384 if (mctl_present) 3385 freeb(first_mp); 3386 return; 3387 } 3388 3389 bzero(&icmph, sizeof (icmph_t)); 3390 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3391 icmph.icmph_code = code; 3392 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3393 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3394 } 3395 3396 /* 3397 * Generate an ICMP unreachable message. 3398 */ 3399 void 3400 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3401 { 3402 icmph_t icmph; 3403 mblk_t *first_mp; 3404 boolean_t mctl_present; 3405 3406 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3407 3408 if (!(mp = icmp_pkt_err_ok(mp))) { 3409 if (mctl_present) 3410 freeb(first_mp); 3411 return; 3412 } 3413 3414 bzero(&icmph, sizeof (icmph_t)); 3415 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3416 icmph.icmph_code = code; 3417 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3418 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3419 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3420 } 3421 3422 /* 3423 * News from ARP. ARP sends notification of interesting events down 3424 * to its clients using M_CTL messages with the interesting ARP packet 3425 * attached via b_cont. 3426 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3427 * queue as opposed to ARP sending the message to all the clients, i.e. all 3428 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3429 * table if a cache IRE is found to delete all the entries for the address in 3430 * the packet. 3431 */ 3432 static void 3433 ip_arp_news(queue_t *q, mblk_t *mp) 3434 { 3435 arcn_t *arcn; 3436 arh_t *arh; 3437 char *cp1; 3438 uchar_t *cp2; 3439 ire_t *ire = NULL; 3440 int i1; 3441 char hbuf[128]; 3442 char sbuf[16]; 3443 ipaddr_t src; 3444 in6_addr_t v6src; 3445 boolean_t isv6 = B_FALSE; 3446 3447 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3448 if (q->q_next) { 3449 putnext(q, mp); 3450 } else 3451 freemsg(mp); 3452 return; 3453 } 3454 arh = (arh_t *)mp->b_cont->b_rptr; 3455 /* Is it one we are interested in? */ 3456 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3457 isv6 = B_TRUE; 3458 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3459 IPV6_ADDR_LEN); 3460 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3461 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3462 IP_ADDR_LEN); 3463 } else { 3464 freemsg(mp); 3465 return; 3466 } 3467 3468 arcn = (arcn_t *)mp->b_rptr; 3469 switch (arcn->arcn_code) { 3470 case AR_CN_BOGON: 3471 /* 3472 * Someone is sending ARP packets with a source protocol 3473 * address which we have published. Either they are 3474 * pretending to be us, or we have been asked to proxy 3475 * for a machine that can do fine for itself, or two 3476 * different machines are providing proxy service for the 3477 * same protocol address, or something. We try and do 3478 * something appropriate here. 3479 */ 3480 cp2 = (uchar_t *)&arh[1]; 3481 cp1 = hbuf; 3482 *cp1 = '\0'; 3483 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3484 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3485 if (cp1 != hbuf) 3486 cp1[-1] = '\0'; 3487 (void) ip_dot_addr(src, sbuf); 3488 if (isv6) 3489 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3490 else 3491 ire = ire_cache_lookup(src, ALL_ZONES); 3492 3493 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3494 cmn_err(CE_WARN, 3495 "IP: Hardware address '%s' trying" 3496 " to be our address %s!", 3497 hbuf, sbuf); 3498 } else { 3499 cmn_err(CE_WARN, 3500 "IP: Proxy ARP problem? " 3501 "Hardware address '%s' thinks it is %s", 3502 hbuf, sbuf); 3503 } 3504 if (ire != NULL) 3505 ire_refrele(ire); 3506 break; 3507 case AR_CN_ANNOUNCE: 3508 if (isv6) { 3509 /* 3510 * For XRESOLV interfaces. 3511 * Delete the IRE cache entry and NCE for this 3512 * v6 address 3513 */ 3514 ip_ire_clookup_and_delete_v6(&v6src); 3515 /* 3516 * If v6src is a non-zero, it's a router address 3517 * as below. Do the same sort of thing to clean 3518 * out off-net IRE_CACHE entries that go through 3519 * the router. 3520 */ 3521 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3522 ire_walk_v6(ire_delete_cache_gw_v6, 3523 (char *)&v6src, ALL_ZONES); 3524 } 3525 break; 3526 } 3527 /* 3528 * ARP gives us a copy of any broadcast packet with identical 3529 * sender and receiver protocol address, in 3530 * case we want to intuit something from it. Such a packet 3531 * usually means that a machine has just come up on the net. 3532 * If we have an IRE_CACHE, we blow it away. This way we will 3533 * immediately pick up the rare case of a host changing 3534 * hardware address. ip_ire_clookup_and_delete achieves this. 3535 * 3536 * The address in "src" may be an entry for a router. 3537 * (Default router, or non-default router.) If 3538 * that's true, then any off-net IRE_CACHE entries 3539 * that go through the router with address "src" 3540 * must be clobbered. Use ire_walk to achieve this 3541 * goal. 3542 * 3543 * It should be possible to determine if the address 3544 * in src is or is not for a router. This way, 3545 * the ire_walk() isn't called all of the time here. 3546 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3547 * as it would remove all IRE_CACHE entries for onlink 3548 * destinations. All onlink destinations have 3549 * ire_gateway_addr == 0. 3550 */ 3551 if ((ip_ire_clookup_and_delete(src, NULL) || 3552 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3553 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3554 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3555 ALL_ZONES); 3556 } 3557 /* From ire_ftable_lookup */ 3558 if (ire != NULL) 3559 ire_refrele(ire); 3560 break; 3561 default: 3562 if (ire != NULL) 3563 ire_refrele(ire); 3564 break; 3565 } 3566 freemsg(mp); 3567 } 3568 3569 /* 3570 * Create a mblk suitable for carrying the interface index and/or source link 3571 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3572 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3573 * application. 3574 */ 3575 mblk_t * 3576 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3577 { 3578 mblk_t *mp; 3579 in_pktinfo_t *pinfo; 3580 ipha_t *ipha; 3581 struct ether_header *pether; 3582 3583 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3584 if (mp == NULL) { 3585 ip1dbg(("ip_add_info: allocation failure.\n")); 3586 return (data_mp); 3587 } 3588 3589 ipha = (ipha_t *)data_mp->b_rptr; 3590 pinfo = (in_pktinfo_t *)mp->b_rptr; 3591 bzero(pinfo, sizeof (in_pktinfo_t)); 3592 pinfo->in_pkt_flags = (uchar_t)flags; 3593 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3594 3595 if (flags & IPF_RECVIF) 3596 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3597 3598 pether = (struct ether_header *)((char *)ipha 3599 - sizeof (struct ether_header)); 3600 /* 3601 * Make sure the interface is an ethernet type, since this option 3602 * is currently supported only on this type of interface. Also make 3603 * sure we are pointing correctly above db_base. 3604 */ 3605 3606 if ((flags & IPF_RECVSLLA) && 3607 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3608 (ill->ill_type == IFT_ETHER) && 3609 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3610 3611 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3612 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3613 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3614 } else { 3615 /* 3616 * Clear the bit. Indicate to upper layer that IP is not 3617 * sending this ancillary info. 3618 */ 3619 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3620 } 3621 3622 mp->b_datap->db_type = M_CTL; 3623 mp->b_wptr += sizeof (in_pktinfo_t); 3624 mp->b_cont = data_mp; 3625 3626 return (mp); 3627 } 3628 3629 /* 3630 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3631 * part of the bind request. 3632 */ 3633 3634 boolean_t 3635 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3636 { 3637 ipsec_in_t *ii; 3638 3639 ASSERT(policy_mp != NULL); 3640 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3641 3642 ii = (ipsec_in_t *)policy_mp->b_rptr; 3643 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3644 3645 connp->conn_policy = ii->ipsec_in_policy; 3646 ii->ipsec_in_policy = NULL; 3647 3648 if (ii->ipsec_in_action != NULL) { 3649 if (connp->conn_latch == NULL) { 3650 connp->conn_latch = iplatch_create(); 3651 if (connp->conn_latch == NULL) 3652 return (B_FALSE); 3653 } 3654 ipsec_latch_inbound(connp->conn_latch, ii); 3655 } 3656 return (B_TRUE); 3657 } 3658 3659 /* 3660 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3661 * and to arrange for power-fanout assist. The ULP is identified by 3662 * adding a single byte at the end of the original bind message. 3663 * A ULP other than UDP or TCP that wishes to be recognized passes 3664 * down a bind with a zero length address. 3665 * 3666 * The binding works as follows: 3667 * - A zero byte address means just bind to the protocol. 3668 * - A four byte address is treated as a request to validate 3669 * that the address is a valid local address, appropriate for 3670 * an application to bind to. This does not affect any fanout 3671 * information in IP. 3672 * - A sizeof sin_t byte address is used to bind to only the local address 3673 * and port. 3674 * - A sizeof ipa_conn_t byte address contains complete fanout information 3675 * consisting of local and remote addresses and ports. In 3676 * this case, the addresses are both validated as appropriate 3677 * for this operation, and, if so, the information is retained 3678 * for use in the inbound fanout. 3679 * 3680 * The ULP (except in the zero-length bind) can append an 3681 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3682 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3683 * a copy of the source or destination IRE (source for local bind; 3684 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3685 * policy information contained should be copied on to the conn. 3686 * 3687 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3688 */ 3689 mblk_t * 3690 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3691 { 3692 ssize_t len; 3693 struct T_bind_req *tbr; 3694 sin_t *sin; 3695 ipa_conn_t *ac; 3696 uchar_t *ucp; 3697 mblk_t *mp1; 3698 boolean_t ire_requested; 3699 boolean_t ipsec_policy_set = B_FALSE; 3700 int error = 0; 3701 int protocol; 3702 ipa_conn_x_t *acx; 3703 3704 ASSERT(!connp->conn_af_isv6); 3705 connp->conn_pkt_isv6 = B_FALSE; 3706 3707 len = mp->b_wptr - mp->b_rptr; 3708 if (len < (sizeof (*tbr) + 1)) { 3709 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3710 "ip_bind: bogus msg, len %ld", len); 3711 /* XXX: Need to return something better */ 3712 goto bad_addr; 3713 } 3714 /* Back up and extract the protocol identifier. */ 3715 mp->b_wptr--; 3716 protocol = *mp->b_wptr & 0xFF; 3717 tbr = (struct T_bind_req *)mp->b_rptr; 3718 /* Reset the message type in preparation for shipping it back. */ 3719 mp->b_datap->db_type = M_PCPROTO; 3720 3721 connp->conn_ulp = (uint8_t)protocol; 3722 3723 /* 3724 * Check for a zero length address. This is from a protocol that 3725 * wants to register to receive all packets of its type. 3726 */ 3727 if (tbr->ADDR_length == 0) { 3728 /* 3729 * These protocols are now intercepted in ip_bind_v6(). 3730 * Reject protocol-level binds here for now. 3731 * 3732 * For SCTP raw socket, ICMP sends down a bind with sin_t 3733 * so that the protocol type cannot be SCTP. 3734 */ 3735 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3736 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3737 goto bad_addr; 3738 } 3739 3740 /* No hash here really. The table is big enough. */ 3741 connp->conn_srcv6 = ipv6_all_zeros; 3742 3743 ipcl_proto_insert(connp, protocol); 3744 3745 tbr->PRIM_type = T_BIND_ACK; 3746 return (mp); 3747 } 3748 3749 /* Extract the address pointer from the message. */ 3750 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3751 tbr->ADDR_length); 3752 if (ucp == NULL) { 3753 ip1dbg(("ip_bind: no address\n")); 3754 goto bad_addr; 3755 } 3756 if (!OK_32PTR(ucp)) { 3757 ip1dbg(("ip_bind: unaligned address\n")); 3758 goto bad_addr; 3759 } 3760 /* 3761 * Check for trailing mps. 3762 */ 3763 3764 mp1 = mp->b_cont; 3765 ire_requested = (mp1 && mp1->b_datap->db_type == IRE_DB_REQ_TYPE); 3766 ipsec_policy_set = (mp1 && mp1->b_datap->db_type == IPSEC_POLICY_SET); 3767 3768 switch (tbr->ADDR_length) { 3769 default: 3770 ip1dbg(("ip_bind: bad address length %d\n", 3771 (int)tbr->ADDR_length)); 3772 goto bad_addr; 3773 3774 case IP_ADDR_LEN: 3775 /* Verification of local address only */ 3776 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3777 ire_requested, ipsec_policy_set, B_FALSE); 3778 break; 3779 3780 case sizeof (sin_t): 3781 sin = (sin_t *)ucp; 3782 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3783 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3784 if (protocol == IPPROTO_TCP) 3785 connp->conn_recv = tcp_conn_request; 3786 break; 3787 3788 case sizeof (ipa_conn_t): 3789 ac = (ipa_conn_t *)ucp; 3790 /* For raw socket, the local port is not set. */ 3791 if (ac->ac_lport == 0) 3792 ac->ac_lport = connp->conn_lport; 3793 /* Always verify destination reachability. */ 3794 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3795 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3796 ipsec_policy_set, B_TRUE, B_TRUE); 3797 if (protocol == IPPROTO_TCP) 3798 connp->conn_recv = tcp_input; 3799 break; 3800 3801 case sizeof (ipa_conn_x_t): 3802 acx = (ipa_conn_x_t *)ucp; 3803 /* 3804 * Whether or not to verify destination reachability depends 3805 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3806 */ 3807 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3808 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3809 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3810 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3811 if (protocol == IPPROTO_TCP) 3812 connp->conn_recv = tcp_input; 3813 break; 3814 } 3815 if (error == EINPROGRESS) 3816 return (NULL); 3817 else if (error != 0) 3818 goto bad_addr; 3819 /* 3820 * Pass the IPSEC headers size in ire_ipsec_overhead. 3821 * We can't do this in ip_bind_insert_ire because the policy 3822 * may not have been inherited at that point in time and hence 3823 * conn_out_enforce_policy may not be set. 3824 */ 3825 mp1 = mp->b_cont; 3826 if (ire_requested && connp->conn_out_enforce_policy && 3827 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3828 ire_t *ire = (ire_t *)mp1->b_rptr; 3829 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3830 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3831 } 3832 3833 /* Send it home. */ 3834 mp->b_datap->db_type = M_PCPROTO; 3835 tbr->PRIM_type = T_BIND_ACK; 3836 return (mp); 3837 3838 bad_addr: 3839 /* 3840 * If error = -1 then we generate a TBADADDR - otherwise error is 3841 * a unix errno. 3842 */ 3843 if (error > 0) 3844 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3845 else 3846 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3847 return (mp); 3848 } 3849 3850 /* 3851 * Here address is verified to be a valid local address. 3852 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3853 * address is also considered a valid local address. 3854 * In the case of a broadcast/multicast address, however, the 3855 * upper protocol is expected to reset the src address 3856 * to 0 if it sees a IRE_BROADCAST type returned so that 3857 * no packets are emitted with broadcast/multicast address as 3858 * source address (that violates hosts requirements RFC1122) 3859 * The addresses valid for bind are: 3860 * (1) - INADDR_ANY (0) 3861 * (2) - IP address of an UP interface 3862 * (3) - IP address of a DOWN interface 3863 * (4) - valid local IP broadcast addresses. In this case 3864 * the conn will only receive packets destined to 3865 * the specified broadcast address. 3866 * (5) - a multicast address. In this case 3867 * the conn will only receive packets destined to 3868 * the specified multicast address. Note: the 3869 * application still has to issue an 3870 * IP_ADD_MEMBERSHIP socket option. 3871 * 3872 * On error, return -1 for TBADADDR otherwise pass the 3873 * errno with TSYSERR reply. 3874 * 3875 * In all the above cases, the bound address must be valid in the current zone. 3876 * When the address is loopback, multicast or broadcast, there might be many 3877 * matching IREs so bind has to look up based on the zone. 3878 */ 3879 int 3880 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3881 boolean_t ire_requested, boolean_t ipsec_policy_set, 3882 boolean_t fanout_insert) 3883 { 3884 int error = 0; 3885 ire_t *src_ire; 3886 mblk_t *policy_mp; 3887 ipif_t *ipif; 3888 zoneid_t zoneid; 3889 3890 if (ipsec_policy_set) { 3891 policy_mp = mp->b_cont; 3892 } 3893 3894 /* 3895 * If it was previously connected, conn_fully_bound would have 3896 * been set. 3897 */ 3898 connp->conn_fully_bound = B_FALSE; 3899 3900 src_ire = NULL; 3901 ipif = NULL; 3902 3903 zoneid = connp->conn_zoneid; 3904 3905 if (src_addr) { 3906 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3907 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3908 /* 3909 * If an address other than 0.0.0.0 is requested, 3910 * we verify that it is a valid address for bind 3911 * Note: Following code is in if-else-if form for 3912 * readability compared to a condition check. 3913 */ 3914 /* LINTED - statement has no consequent */ 3915 if (IRE_IS_LOCAL(src_ire)) { 3916 /* 3917 * (2) Bind to address of local UP interface 3918 */ 3919 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3920 /* 3921 * (4) Bind to broadcast address 3922 * Note: permitted only from transports that 3923 * request IRE 3924 */ 3925 if (!ire_requested) 3926 error = EADDRNOTAVAIL; 3927 } else { 3928 /* 3929 * (3) Bind to address of local DOWN interface 3930 * (ipif_lookup_addr() looks up all interfaces 3931 * but we do not get here for UP interfaces 3932 * - case (2) above) 3933 * We put the protocol byte back into the mblk 3934 * since we may come back via ip_wput_nondata() 3935 * later with this mblk if ipif_lookup_addr chooses 3936 * to defer processing. 3937 */ 3938 *mp->b_wptr++ = (char)connp->conn_ulp; 3939 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3940 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3941 &error)) != NULL) { 3942 ipif_refrele(ipif); 3943 } else if (error == EINPROGRESS) { 3944 if (src_ire != NULL) 3945 ire_refrele(src_ire); 3946 return (EINPROGRESS); 3947 } else if (CLASSD(src_addr)) { 3948 error = 0; 3949 if (src_ire != NULL) 3950 ire_refrele(src_ire); 3951 /* 3952 * (5) bind to multicast address. 3953 * Fake out the IRE returned to upper 3954 * layer to be a broadcast IRE. 3955 */ 3956 src_ire = ire_ctable_lookup( 3957 INADDR_BROADCAST, INADDR_ANY, 3958 IRE_BROADCAST, NULL, zoneid, 3959 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3960 if (src_ire == NULL || !ire_requested) 3961 error = EADDRNOTAVAIL; 3962 } else { 3963 /* 3964 * Not a valid address for bind 3965 */ 3966 error = EADDRNOTAVAIL; 3967 } 3968 /* 3969 * Just to keep it consistent with the processing in 3970 * ip_bind_v4() 3971 */ 3972 mp->b_wptr--; 3973 } 3974 if (error) { 3975 /* Red Alert! Attempting to be a bogon! */ 3976 ip1dbg(("ip_bind: bad src address 0x%x\n", 3977 ntohl(src_addr))); 3978 goto bad_addr; 3979 } 3980 } 3981 3982 /* 3983 * Allow setting new policies. For example, disconnects come 3984 * down as ipa_t bind. As we would have set conn_policy_cached 3985 * to B_TRUE before, we should set it to B_FALSE, so that policy 3986 * can change after the disconnect. 3987 */ 3988 connp->conn_policy_cached = B_FALSE; 3989 3990 /* 3991 * If not fanout_insert this was just an address verification 3992 */ 3993 if (fanout_insert) { 3994 /* 3995 * The addresses have been verified. Time to insert in 3996 * the correct fanout list. 3997 */ 3998 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 3999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4000 connp->conn_lport = lport; 4001 connp->conn_fport = 0; 4002 /* 4003 * Do we need to add a check to reject Multicast packets 4004 */ 4005 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4006 } 4007 done: 4008 if (error == 0) { 4009 if (ire_requested) { 4010 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4011 error = -1; 4012 /* Falls through to bad_addr */ 4013 } 4014 } else if (ipsec_policy_set) { 4015 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4016 error = -1; 4017 /* Falls through to bad_addr */ 4018 } 4019 } 4020 } 4021 bad_addr: 4022 if (src_ire != NULL) 4023 IRE_REFRELE(src_ire); 4024 if (ipsec_policy_set) { 4025 ASSERT(policy_mp == mp->b_cont); 4026 ASSERT(policy_mp != NULL); 4027 freeb(policy_mp); 4028 /* 4029 * As of now assume that nothing else accompanies 4030 * IPSEC_POLICY_SET. 4031 */ 4032 mp->b_cont = NULL; 4033 } 4034 return (error); 4035 } 4036 4037 /* 4038 * Verify that both the source and destination addresses 4039 * are valid. If verify_dst is false, then the destination address may be 4040 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4041 * destination reachability, while tunnels do not. 4042 * Note that we allow connect to broadcast and multicast 4043 * addresses when ire_requested is set. Thus the ULP 4044 * has to check for IRE_BROADCAST and multicast. 4045 * 4046 * Returns zero if ok. 4047 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4048 * (for use with TSYSERR reply). 4049 */ 4050 int 4051 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4052 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4053 boolean_t ire_requested, boolean_t ipsec_policy_set, 4054 boolean_t fanout_insert, boolean_t verify_dst) 4055 { 4056 ire_t *src_ire; 4057 ire_t *dst_ire; 4058 int error = 0; 4059 int protocol; 4060 mblk_t *policy_mp; 4061 ire_t *sire = NULL; 4062 ire_t *md_dst_ire = NULL; 4063 ill_t *md_ill = NULL; 4064 zoneid_t zoneid; 4065 ipaddr_t src_addr = *src_addrp; 4066 4067 src_ire = dst_ire = NULL; 4068 protocol = *mp->b_wptr & 0xFF; 4069 4070 /* 4071 * If we never got a disconnect before, clear it now. 4072 */ 4073 connp->conn_fully_bound = B_FALSE; 4074 4075 if (ipsec_policy_set) { 4076 policy_mp = mp->b_cont; 4077 } 4078 4079 zoneid = connp->conn_zoneid; 4080 4081 if (CLASSD(dst_addr)) { 4082 /* Pick up an IRE_BROADCAST */ 4083 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4084 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4085 MATCH_IRE_RJ_BHOLE)); 4086 } else { 4087 /* 4088 * If conn_dontroute is set, and onlink ipif is not found 4089 * set ENETUNREACH error 4090 */ 4091 if (connp->conn_dontroute) { 4092 ipif_t *ipif; 4093 4094 ipif = ipif_lookup_onlink_addr(dst_addr, zoneid); 4095 if (ipif == NULL) { 4096 error = ENETUNREACH; 4097 goto bad_addr; 4098 } 4099 ipif_refrele(ipif); 4100 } 4101 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, &sire, 4102 zoneid, 4103 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4104 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4105 } 4106 /* 4107 * dst_ire can't be a broadcast when not ire_requested. 4108 * We also prevent ire's with src address INADDR_ANY to 4109 * be used, which are created temporarily for 4110 * sending out packets from endpoints that have 4111 * conn_unspec_src set. If verify_dst is true, the destination must be 4112 * reachable. If verify_dst is false, the destination needn't be 4113 * reachable. 4114 * 4115 * If we match on a reject or black hole, then we've got a 4116 * local failure. May as well fail out the connect() attempt, 4117 * since it's never going to succeed. 4118 */ 4119 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4120 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4121 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4122 /* 4123 * If we're verifying destination reachability, we always want 4124 * to complain here. 4125 * 4126 * If we're not verifying destination reachability but the 4127 * destination has a route, we still want to fail on the 4128 * temporary address and broadcast address tests. 4129 */ 4130 if (verify_dst || (dst_ire != NULL)) { 4131 if (ip_debug > 2) { 4132 pr_addr_dbg("ip_bind_connected: bad connected " 4133 "dst %s\n", AF_INET, &dst_addr); 4134 } 4135 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4136 error = ENETUNREACH; 4137 else 4138 error = EHOSTUNREACH; 4139 goto bad_addr; 4140 } 4141 } 4142 /* 4143 * If the app does a connect(), it means that it will most likely 4144 * send more than 1 packet to the destination. It makes sense 4145 * to clear the temporary flag. 4146 */ 4147 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4148 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4149 irb_t *irb = dst_ire->ire_bucket; 4150 4151 rw_enter(&irb->irb_lock, RW_WRITER); 4152 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4153 irb->irb_tmp_ire_cnt--; 4154 rw_exit(&irb->irb_lock); 4155 } 4156 4157 /* 4158 * See if we should notify ULP about MDT; we do this whether or not 4159 * ire_requested is TRUE, in order to handle active connects; MDT 4160 * eligibility tests for passive connects are handled separately 4161 * through tcp_adapt_ire(). We do this before the source address 4162 * selection, because dst_ire may change after a call to 4163 * ipif_select_source(). This is a best-effort check, as the 4164 * packet for this connection may not actually go through 4165 * dst_ire->ire_stq, and the exact IRE can only be known after 4166 * calling ip_newroute(). This is why we further check on the 4167 * IRE during Multidata packet transmission in tcp_multisend(). 4168 */ 4169 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4170 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4171 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4172 (md_ill->ill_capabilities & ILL_CAPAB_MDT)) { 4173 md_dst_ire = dst_ire; 4174 IRE_REFHOLD(md_dst_ire); 4175 } 4176 4177 if (dst_ire != NULL && 4178 dst_ire->ire_type == IRE_LOCAL && 4179 dst_ire->ire_zoneid != zoneid) { 4180 /* 4181 * If the IRE belongs to a different zone, look for a matching 4182 * route in the forwarding table and use the source address from 4183 * that route. 4184 */ 4185 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4186 zoneid, 0, 4187 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4188 MATCH_IRE_RJ_BHOLE); 4189 if (src_ire == NULL) { 4190 error = EHOSTUNREACH; 4191 goto bad_addr; 4192 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4193 if (!(src_ire->ire_type & IRE_HOST)) 4194 error = ENETUNREACH; 4195 else 4196 error = EHOSTUNREACH; 4197 goto bad_addr; 4198 } 4199 if (src_addr == INADDR_ANY) 4200 src_addr = src_ire->ire_src_addr; 4201 ire_refrele(src_ire); 4202 src_ire = NULL; 4203 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4204 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4205 src_addr = sire->ire_src_addr; 4206 ire_refrele(dst_ire); 4207 dst_ire = sire; 4208 sire = NULL; 4209 } else { 4210 /* 4211 * Pick a source address so that a proper inbound 4212 * load spreading would happen. 4213 */ 4214 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4215 ipif_t *src_ipif = NULL; 4216 ire_t *ipif_ire; 4217 4218 /* 4219 * Supply a local source address such that inbound 4220 * load spreading happens. 4221 * 4222 * Determine the best source address on this ill for 4223 * the destination. 4224 * 4225 * 1) For broadcast, we should return a broadcast ire 4226 * found above so that upper layers know that the 4227 * destination address is a broadcast address. 4228 * 4229 * 2) If this is part of a group, select a better 4230 * source address so that better inbound load 4231 * balancing happens. Do the same if the ipif 4232 * is DEPRECATED. 4233 * 4234 * 3) If the outgoing interface is part of a usesrc 4235 * group, then try selecting a source address from 4236 * the usesrc ILL. 4237 */ 4238 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4239 ((dst_ill->ill_group != NULL) || 4240 (dst_ire->ire_ipif->ipif_flags & 4241 IPIF_DEPRECATED) || 4242 (dst_ill->ill_usesrc_ifindex != 0))) { 4243 src_ipif = ipif_select_source(dst_ill, 4244 dst_addr, zoneid); 4245 if (src_ipif != NULL) { 4246 if (IS_VNI(src_ipif->ipif_ill)) { 4247 /* 4248 * For VNI there is no 4249 * interface route 4250 */ 4251 src_addr = 4252 src_ipif->ipif_src_addr; 4253 } else { 4254 ipif_ire = 4255 ipif_to_ire(src_ipif); 4256 if (ipif_ire != NULL) { 4257 IRE_REFRELE(dst_ire); 4258 dst_ire = ipif_ire; 4259 } 4260 src_addr = 4261 dst_ire->ire_src_addr; 4262 } 4263 ipif_refrele(src_ipif); 4264 } else { 4265 src_addr = dst_ire->ire_src_addr; 4266 } 4267 } else { 4268 src_addr = dst_ire->ire_src_addr; 4269 } 4270 } 4271 } 4272 4273 /* 4274 * We do ire_route_lookup() here (and not 4275 * interface lookup as we assert that 4276 * src_addr should only come from an 4277 * UP interface for hard binding. 4278 */ 4279 ASSERT(src_ire == NULL); 4280 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4281 NULL, zoneid, MATCH_IRE_ZONEONLY); 4282 /* src_ire must be a local|loopback */ 4283 if (!IRE_IS_LOCAL(src_ire)) { 4284 if (ip_debug > 2) { 4285 pr_addr_dbg("ip_bind_connected: bad connected " 4286 "src %s\n", AF_INET, &src_addr); 4287 } 4288 error = EADDRNOTAVAIL; 4289 goto bad_addr; 4290 } 4291 4292 /* 4293 * If the source address is a loopback address, the 4294 * destination had best be local or multicast. 4295 * The transports that can't handle multicast will reject 4296 * those addresses. 4297 */ 4298 if (src_ire->ire_type == IRE_LOOPBACK && 4299 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4300 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4301 error = -1; 4302 goto bad_addr; 4303 } 4304 4305 /* 4306 * Allow setting new policies. For example, disconnects come 4307 * down as ipa_t bind. As we would have set conn_policy_cached 4308 * to B_TRUE before, we should set it to B_FALSE, so that policy 4309 * can change after the disconnect. 4310 */ 4311 connp->conn_policy_cached = B_FALSE; 4312 4313 /* 4314 * Set the conn addresses/ports immediately, so the IPsec policy calls 4315 * can handle their passed-in conn's. 4316 */ 4317 4318 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4319 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4320 connp->conn_lport = lport; 4321 connp->conn_fport = fport; 4322 *src_addrp = src_addr; 4323 4324 ASSERT(!(ipsec_policy_set && ire_requested)); 4325 if (ire_requested) { 4326 iulp_t *ulp_info = NULL; 4327 4328 /* 4329 * Note that sire will not be NULL if this is an off-link 4330 * connection and there is not cache for that dest yet. 4331 * 4332 * XXX Because of an existing bug, if there are multiple 4333 * default routes, the IRE returned now may not be the actual 4334 * default route used (default routes are chosen in a 4335 * round robin fashion). So if the metrics for different 4336 * default routes are different, we may return the wrong 4337 * metrics. This will not be a problem if the existing 4338 * bug is fixed. 4339 */ 4340 if (sire != NULL) { 4341 ulp_info = &(sire->ire_uinfo); 4342 } 4343 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4344 error = -1; 4345 goto bad_addr; 4346 } 4347 } else if (ipsec_policy_set) { 4348 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4349 error = -1; 4350 goto bad_addr; 4351 } 4352 } 4353 4354 /* 4355 * Cache IPsec policy in this conn. If we have per-socket policy, 4356 * we'll cache that. If we don't, we'll inherit global policy. 4357 * 4358 * We can't insert until the conn reflects the policy. Note that 4359 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4360 * connections where we don't have a policy. This is to prevent 4361 * global policy lookups in the inbound path. 4362 * 4363 * If we insert before we set conn_policy_cached, 4364 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4365 * because global policy cound be non-empty. We normally call 4366 * ipsec_check_policy() for conn_policy_cached connections only if 4367 * ipc_in_enforce_policy is set. But in this case, 4368 * conn_policy_cached can get set anytime since we made the 4369 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4370 * called, which will make the above assumption false. Thus, we 4371 * need to insert after we set conn_policy_cached. 4372 */ 4373 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4374 goto bad_addr; 4375 4376 if (fanout_insert) { 4377 /* 4378 * The addresses have been verified. Time to insert in 4379 * the correct fanout list. 4380 */ 4381 error = ipcl_conn_insert(connp, protocol, src_addr, 4382 dst_addr, connp->conn_ports); 4383 } 4384 4385 if (error == 0) { 4386 connp->conn_fully_bound = B_TRUE; 4387 /* 4388 * Our initial checks for MDT have passed; the IRE is not 4389 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4390 * be supporting MDT. Pass the IRE, IPC and ILL into 4391 * ip_mdinfo_return(), which performs further checks 4392 * against them and upon success, returns the MDT info 4393 * mblk which we will attach to the bind acknowledgment. 4394 */ 4395 if (md_dst_ire != NULL) { 4396 mblk_t *mdinfo_mp; 4397 4398 ASSERT(md_ill != NULL); 4399 ASSERT(md_ill->ill_mdt_capab != NULL); 4400 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4401 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4402 linkb(mp, mdinfo_mp); 4403 } 4404 } 4405 bad_addr: 4406 if (ipsec_policy_set) { 4407 ASSERT(policy_mp == mp->b_cont); 4408 ASSERT(policy_mp != NULL); 4409 freeb(policy_mp); 4410 /* 4411 * As of now assume that nothing else accompanies 4412 * IPSEC_POLICY_SET. 4413 */ 4414 mp->b_cont = NULL; 4415 } 4416 if (src_ire != NULL) 4417 IRE_REFRELE(src_ire); 4418 if (dst_ire != NULL) 4419 IRE_REFRELE(dst_ire); 4420 if (sire != NULL) 4421 IRE_REFRELE(sire); 4422 if (md_dst_ire != NULL) 4423 IRE_REFRELE(md_dst_ire); 4424 return (error); 4425 } 4426 4427 /* 4428 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4429 * Prefers dst_ire over src_ire. 4430 */ 4431 static boolean_t 4432 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4433 { 4434 mblk_t *mp1; 4435 ire_t *ret_ire = NULL; 4436 4437 mp1 = mp->b_cont; 4438 ASSERT(mp1 != NULL); 4439 4440 if (ire != NULL) { 4441 /* 4442 * mp1 initialized above to IRE_DB_REQ_TYPE 4443 * appended mblk. Its <upper protocol>'s 4444 * job to make sure there is room. 4445 */ 4446 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4447 return (0); 4448 4449 mp1->b_datap->db_type = IRE_DB_TYPE; 4450 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4451 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4452 ret_ire = (ire_t *)mp1->b_rptr; 4453 /* 4454 * Pass the latest setting of the ip_path_mtu_discovery and 4455 * copy the ulp info if any. 4456 */ 4457 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4458 IPH_DF : 0; 4459 if (ulp_info != NULL) { 4460 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4461 sizeof (iulp_t)); 4462 } 4463 ret_ire->ire_mp = mp1; 4464 } else { 4465 /* 4466 * No IRE was found. Remove IRE mblk. 4467 */ 4468 mp->b_cont = mp1->b_cont; 4469 freeb(mp1); 4470 } 4471 4472 return (1); 4473 } 4474 4475 /* 4476 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4477 * the final piece where we don't. Return a pointer to the first mblk in the 4478 * result, and update the pointer to the next mblk to chew on. If anything 4479 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4480 * NULL pointer. 4481 */ 4482 mblk_t * 4483 ip_carve_mp(mblk_t **mpp, ssize_t len) 4484 { 4485 mblk_t *mp0; 4486 mblk_t *mp1; 4487 mblk_t *mp2; 4488 4489 if (!len || !mpp || !(mp0 = *mpp)) 4490 return (NULL); 4491 /* If we aren't going to consume the first mblk, we need a dup. */ 4492 if (mp0->b_wptr - mp0->b_rptr > len) { 4493 mp1 = dupb(mp0); 4494 if (mp1) { 4495 /* Partition the data between the two mblks. */ 4496 mp1->b_wptr = mp1->b_rptr + len; 4497 mp0->b_rptr = mp1->b_wptr; 4498 /* 4499 * after adjustments if mblk not consumed is now 4500 * unaligned, try to align it. If this fails free 4501 * all messages and let upper layer recover. 4502 */ 4503 if (!OK_32PTR(mp0->b_rptr)) { 4504 if (!pullupmsg(mp0, -1)) { 4505 freemsg(mp0); 4506 freemsg(mp1); 4507 *mpp = NULL; 4508 return (NULL); 4509 } 4510 } 4511 } 4512 return (mp1); 4513 } 4514 /* Eat through as many mblks as we need to get len bytes. */ 4515 len -= mp0->b_wptr - mp0->b_rptr; 4516 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4517 if (mp2->b_wptr - mp2->b_rptr > len) { 4518 /* 4519 * We won't consume the entire last mblk. Like 4520 * above, dup and partition it. 4521 */ 4522 mp1->b_cont = dupb(mp2); 4523 mp1 = mp1->b_cont; 4524 if (!mp1) { 4525 /* 4526 * Trouble. Rather than go to a lot of 4527 * trouble to clean up, we free the messages. 4528 * This won't be any worse than losing it on 4529 * the wire. 4530 */ 4531 freemsg(mp0); 4532 freemsg(mp2); 4533 *mpp = NULL; 4534 return (NULL); 4535 } 4536 mp1->b_wptr = mp1->b_rptr + len; 4537 mp2->b_rptr = mp1->b_wptr; 4538 /* 4539 * after adjustments if mblk not consumed is now 4540 * unaligned, try to align it. If this fails free 4541 * all messages and let upper layer recover. 4542 */ 4543 if (!OK_32PTR(mp2->b_rptr)) { 4544 if (!pullupmsg(mp2, -1)) { 4545 freemsg(mp0); 4546 freemsg(mp2); 4547 *mpp = NULL; 4548 return (NULL); 4549 } 4550 } 4551 *mpp = mp2; 4552 return (mp0); 4553 } 4554 /* Decrement len by the amount we just got. */ 4555 len -= mp2->b_wptr - mp2->b_rptr; 4556 } 4557 /* 4558 * len should be reduced to zero now. If not our caller has 4559 * screwed up. 4560 */ 4561 if (len) { 4562 /* Shouldn't happen! */ 4563 freemsg(mp0); 4564 *mpp = NULL; 4565 return (NULL); 4566 } 4567 /* 4568 * We consumed up to exactly the end of an mblk. Detach the part 4569 * we are returning from the rest of the chain. 4570 */ 4571 mp1->b_cont = NULL; 4572 *mpp = mp2; 4573 return (mp0); 4574 } 4575 4576 /* The ill stream is being unplumbed. Called from ip_close */ 4577 int 4578 ip_modclose(ill_t *ill) 4579 { 4580 4581 boolean_t success; 4582 ipsq_t *ipsq; 4583 ipif_t *ipif; 4584 queue_t *q = ill->ill_rq; 4585 4586 /* 4587 * Forcibly enter the ipsq after some delay. This is to take 4588 * care of the case when some ioctl does not complete because 4589 * we sent a control message to the driver and it did not 4590 * send us a reply. We want to be able to at least unplumb 4591 * and replumb rather than force the user to reboot the system. 4592 */ 4593 success = ipsq_enter(ill, B_FALSE); 4594 4595 /* 4596 * Open/close/push/pop is guaranteed to be single threaded 4597 * per stream by STREAMS. FS guarantees that all references 4598 * from top are gone before close is called. So there can't 4599 * be another close thread that has set CONDEMNED on this ill. 4600 * and cause ipsq_enter to return failure. 4601 */ 4602 ASSERT(success); 4603 ipsq = ill->ill_phyint->phyint_ipsq; 4604 4605 /* 4606 * Mark it condemned. No new reference will be made to this ill. 4607 * Lookup functions will return an error. Threads that try to 4608 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4609 * that the refcnt will drop down to zero. 4610 */ 4611 mutex_enter(&ill->ill_lock); 4612 ill->ill_state_flags |= ILL_CONDEMNED; 4613 for (ipif = ill->ill_ipif; ipif != NULL; 4614 ipif = ipif->ipif_next) { 4615 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4616 } 4617 /* 4618 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4619 * returns error if ILL_CONDEMNED is set 4620 */ 4621 cv_broadcast(&ill->ill_cv); 4622 mutex_exit(&ill->ill_lock); 4623 4624 /* 4625 * Shut down fragmentation reassembly. 4626 * ill_frag_timer won't start a timer again. 4627 * Now cancel any existing timer 4628 */ 4629 (void) untimeout(ill->ill_frag_timer_id); 4630 (void) ill_frag_timeout(ill, 0); 4631 4632 /* 4633 * If MOVE was in progress, clear the 4634 * move_in_progress fields also. 4635 */ 4636 if (ill->ill_move_in_progress) { 4637 ILL_CLEAR_MOVE(ill); 4638 } 4639 4640 /* 4641 * Call ill_delete to bring down the ipifs, ilms and ill on 4642 * this ill. Then wait for the refcnts to drop to zero. 4643 * ill_is_quiescent checks whether the ill is really quiescent. 4644 * Then make sure that threads that are waiting to enter the 4645 * ipsq have seen the error returned by ipsq_enter and have 4646 * gone away. Then we call ill_delete_tail which does the 4647 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4648 */ 4649 ill_delete(ill); 4650 mutex_enter(&ill->ill_lock); 4651 while (!ill_is_quiescent(ill)) 4652 cv_wait(&ill->ill_cv, &ill->ill_lock); 4653 while (ill->ill_waiters) 4654 cv_wait(&ill->ill_cv, &ill->ill_lock); 4655 4656 mutex_exit(&ill->ill_lock); 4657 4658 /* qprocsoff is called in ill_delete_tail */ 4659 ill_delete_tail(ill); 4660 4661 /* 4662 * Walk through all upper (conn) streams and qenable 4663 * those that have queued data. 4664 * close synchronization needs this to 4665 * be done to ensure that all upper layers blocked 4666 * due to flow control to the closing device 4667 * get unblocked. 4668 */ 4669 ip1dbg(("ip_wsrv: walking\n")); 4670 conn_walk_drain(); 4671 4672 mutex_enter(&ip_mi_lock); 4673 mi_close_unlink(&ip_g_head, (IDP)ill); 4674 mutex_exit(&ip_mi_lock); 4675 4676 /* 4677 * credp could be null if the open didn't succeed and ip_modopen 4678 * itself calls ip_close. 4679 */ 4680 if (ill->ill_credp != NULL) 4681 crfree(ill->ill_credp); 4682 4683 mi_close_free((IDP)ill); 4684 q->q_ptr = WR(q)->q_ptr = NULL; 4685 4686 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4687 4688 return (0); 4689 } 4690 4691 /* 4692 * IP has been configured as _D_QNEXTLESS for the client side i.e the driver 4693 * instance. This implies that 4694 * 1. IP cannot access the read side q_next pointer directly - it must 4695 * use routines like putnext and canputnext. 4696 * 2. ip_close must ensure that all sources of messages being putnext upstream 4697 * are gone before qprocsoff is called. 4698 * 4699 * #2 is handled by having ip_close do the ipcl_hash_remove and wait for 4700 * conn_ref to drop to zero before calling qprocsoff. 4701 */ 4702 4703 /* ARGSUSED */ 4704 int 4705 ip_close(queue_t *q, int flags) 4706 { 4707 conn_t *connp; 4708 boolean_t drain_cleanup_reqd = B_FALSE; 4709 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4710 boolean_t ilg_cleanup_reqd = B_FALSE; 4711 4712 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4713 4714 /* 4715 * Call the appropriate delete routine depending on whether this is 4716 * a module or device. 4717 */ 4718 if (WR(q)->q_next != NULL) { 4719 /* This is a module close */ 4720 return (ip_modclose((ill_t *)q->q_ptr)); 4721 } 4722 4723 connp = Q_TO_CONN(q); 4724 ASSERT(connp->conn_tcp == NULL); 4725 4726 /* 4727 * We are being closed as /dev/ip or /dev/ip6. 4728 * 4729 * Mark the conn as closing, and this conn must not be 4730 * inserted in future into any list. Eg. conn_drain_insert(), 4731 * won't insert this conn into the conn_drain_list. 4732 * Similarly ill_pending_mp_add() will not add any mp to 4733 * the pending mp list, after this conn has started closing. 4734 * 4735 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4736 * cannot get set henceforth. 4737 */ 4738 mutex_enter(&connp->conn_lock); 4739 connp->conn_state_flags |= CONN_CLOSING; 4740 if (connp->conn_idl != NULL) 4741 drain_cleanup_reqd = B_TRUE; 4742 if (connp->conn_oper_pending_ill != NULL) 4743 conn_ioctl_cleanup_reqd = B_TRUE; 4744 if (connp->conn_ilg_inuse != 0) 4745 ilg_cleanup_reqd = B_TRUE; 4746 mutex_exit(&connp->conn_lock); 4747 4748 if (conn_ioctl_cleanup_reqd) 4749 conn_ioctl_cleanup(connp); 4750 4751 /* 4752 * Remove this conn from any fanout list it is on. 4753 * Then wait until the number of pending putnexts from 4754 * the fanout code drops to zero, before calling qprocsoff. 4755 * This is the guarantee a QNEXTLESS driver provides to 4756 * STREAMS, and is mentioned at the top of this function. 4757 */ 4758 4759 ipcl_hash_remove(connp); 4760 4761 /* 4762 * Remove this conn from the drain list, and do 4763 * any other cleanup that may be required. 4764 * (Only non-tcp streams may have a non-null conn_idl. 4765 * TCP streams are never flow controlled, and 4766 * conn_idl will be null) 4767 */ 4768 if (drain_cleanup_reqd) 4769 conn_drain_tail(connp, B_TRUE); 4770 4771 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4772 (void) ip_mrouter_done(NULL); 4773 4774 if (ilg_cleanup_reqd) 4775 ilg_delete_all(connp); 4776 4777 conn_delete_ire(connp, NULL); 4778 4779 4780 /* 4781 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4782 * callers from write side can't be there now because close 4783 * is in progress. The only other caller is ipcl_walk 4784 * which checks for the condemned flag. 4785 */ 4786 mutex_enter(&connp->conn_lock); 4787 connp->conn_state_flags |= CONN_CONDEMNED; 4788 while (connp->conn_ref != 1) 4789 cv_wait(&connp->conn_cv, &connp->conn_lock); 4790 mutex_exit(&connp->conn_lock); 4791 4792 qprocsoff(q); 4793 4794 /* 4795 * Now we are truly single threaded on this stream, and can 4796 * delete the things hanging off the connp, and finally the connp. 4797 * We removed this connp from the fanout list, it cannot be 4798 * accessed thru the fanouts, and we already waited for the 4799 * conn_ref to drop to 0. We are already in close, so 4800 * there cannot be any other thread from the top. qprocsoff 4801 * has completed, and service has completed or won't run in 4802 * future. 4803 */ 4804 if (connp->conn_latch != NULL) { 4805 IPLATCH_REFRELE(connp->conn_latch); 4806 connp->conn_latch = NULL; 4807 } 4808 if (connp->conn_policy != NULL) { 4809 IPPH_REFRELE(connp->conn_policy); 4810 connp->conn_policy = NULL; 4811 } 4812 if (connp->conn_ipsec_opt_mp != NULL) { 4813 freemsg(connp->conn_ipsec_opt_mp); 4814 connp->conn_ipsec_opt_mp = NULL; 4815 } 4816 if (connp->conn_cred != NULL) { 4817 crfree(connp->conn_cred); 4818 connp->conn_cred = NULL; 4819 } 4820 4821 inet_minor_free(ip_minor_arena, connp->conn_dev); 4822 4823 connp->conn_ref--; 4824 ipcl_conn_destroy(connp); 4825 4826 q->q_ptr = WR(q)->q_ptr = NULL; 4827 return (0); 4828 } 4829 4830 /* Return the IP checksum for the IP header at "iph". */ 4831 uint16_t 4832 ip_csum_hdr(ipha_t *ipha) 4833 { 4834 uint16_t *uph; 4835 uint32_t sum; 4836 int opt_len; 4837 4838 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4839 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4840 uph = (uint16_t *)ipha; 4841 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4842 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4843 if (opt_len > 0) { 4844 do { 4845 sum += uph[10]; 4846 sum += uph[11]; 4847 uph += 2; 4848 } while (--opt_len); 4849 } 4850 sum = (sum & 0xFFFF) + (sum >> 16); 4851 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4852 if (sum == 0xffff) 4853 sum = 0; 4854 return ((uint16_t)sum); 4855 } 4856 4857 void 4858 ip_ddi_destroy(void) 4859 { 4860 tcp_ddi_destroy(); 4861 sctp_ddi_destroy(); 4862 ipsec_loader_destroy(); 4863 ipsec_policy_destroy(); 4864 ipsec_kstat_destroy(); 4865 nd_free(&ip_g_nd); 4866 mutex_destroy(&igmp_timer_lock); 4867 mutex_destroy(&mld_timer_lock); 4868 mutex_destroy(&igmp_slowtimeout_lock); 4869 mutex_destroy(&mld_slowtimeout_lock); 4870 mutex_destroy(&ip_mi_lock); 4871 mutex_destroy(&rts_clients.connf_lock); 4872 ip_ire_fini(); 4873 ip6_asp_free(); 4874 conn_drain_fini(); 4875 ipcl_destroy(); 4876 inet_minor_destroy(ip_minor_arena); 4877 icmp_kstat_fini(); 4878 ip_kstat_fini(); 4879 rw_destroy(&ipsec_capab_ills_lock); 4880 rw_destroy(&ill_g_usesrc_lock); 4881 ip_drop_unregister(&ip_dropper); 4882 } 4883 4884 4885 void 4886 ip_ddi_init(void) 4887 { 4888 TCP6_MAJ = ddi_name_to_major(TCP6); 4889 TCP_MAJ = ddi_name_to_major(TCP); 4890 SCTP_MAJ = ddi_name_to_major(SCTP); 4891 SCTP6_MAJ = ddi_name_to_major(SCTP6); 4892 4893 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 4894 4895 /* IP's IPsec code calls the packet dropper */ 4896 ip_drop_register(&ip_dropper, "IP IPsec processing"); 4897 4898 if (!ip_g_nd) { 4899 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 4900 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 4901 nd_free(&ip_g_nd); 4902 } 4903 } 4904 4905 ipsec_loader_init(); 4906 ipsec_policy_init(); 4907 ipsec_kstat_init(); 4908 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 4909 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4910 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4911 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4912 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4913 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4914 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4915 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 4916 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 4917 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4918 4919 /* 4920 * For IP and TCP the minor numbers should start from 2 since we have 4 4921 * initial devices: ip, ip6, tcp, tcp6. 4922 */ 4923 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 4924 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 4925 cmn_err(CE_PANIC, 4926 "ip_ddi_init: ip_minor_arena creation failed\n"); 4927 } 4928 4929 ipcl_init(); 4930 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 4931 ip_ire_init(); 4932 ip6_asp_init(); 4933 ipif_init(); 4934 conn_drain_init(); 4935 tcp_ddi_init(); 4936 sctp_ddi_init(); 4937 4938 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4939 4940 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 4941 "net", KSTAT_TYPE_NAMED, 4942 sizeof (ip_statistics) / sizeof (kstat_named_t), 4943 KSTAT_FLAG_VIRTUAL)) != NULL) { 4944 ip_kstat->ks_data = &ip_statistics; 4945 kstat_install(ip_kstat); 4946 } 4947 ip_kstat_init(); 4948 ip6_kstat_init(); 4949 icmp_kstat_init(); 4950 4951 ipsec_loader_start(); 4952 } 4953 4954 /* 4955 * Allocate and initialize a DLPI template of the specified length. (May be 4956 * called as writer.) 4957 */ 4958 mblk_t * 4959 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4960 { 4961 mblk_t *mp; 4962 4963 mp = allocb(len, BPRI_MED); 4964 if (!mp) 4965 return (NULL); 4966 4967 /* 4968 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4969 * of which we don't seem to use) are sent with M_PCPROTO, and 4970 * that other DLPI are M_PROTO. 4971 */ 4972 if (prim == DL_INFO_REQ) { 4973 mp->b_datap->db_type = M_PCPROTO; 4974 } else { 4975 mp->b_datap->db_type = M_PROTO; 4976 } 4977 4978 mp->b_wptr = mp->b_rptr + len; 4979 bzero(mp->b_rptr, len); 4980 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4981 return (mp); 4982 } 4983 4984 const char * 4985 dlpi_prim_str(int prim) 4986 { 4987 switch (prim) { 4988 case DL_INFO_REQ: return ("DL_INFO_REQ"); 4989 case DL_INFO_ACK: return ("DL_INFO_ACK"); 4990 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 4991 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 4992 case DL_BIND_REQ: return ("DL_BIND_REQ"); 4993 case DL_BIND_ACK: return ("DL_BIND_ACK"); 4994 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 4995 case DL_OK_ACK: return ("DL_OK_ACK"); 4996 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 4997 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 4998 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 4999 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5000 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5001 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5002 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5003 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5004 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5005 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5006 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5007 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5008 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5009 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5010 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5011 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5012 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5013 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5014 default: return ("<unknown primitive>"); 5015 } 5016 } 5017 5018 const char * 5019 dlpi_err_str(int err) 5020 { 5021 switch (err) { 5022 case DL_ACCESS: return ("DL_ACCESS"); 5023 case DL_BADADDR: return ("DL_BADADDR"); 5024 case DL_BADCORR: return ("DL_BADCORR"); 5025 case DL_BADDATA: return ("DL_BADDATA"); 5026 case DL_BADPPA: return ("DL_BADPPA"); 5027 case DL_BADPRIM: return ("DL_BADPRIM"); 5028 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5029 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5030 case DL_BADSAP: return ("DL_BADSAP"); 5031 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5032 case DL_BOUND: return ("DL_BOUND"); 5033 case DL_INITFAILED: return ("DL_INITFAILED"); 5034 case DL_NOADDR: return ("DL_NOADDR"); 5035 case DL_NOTINIT: return ("DL_NOTINIT"); 5036 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5037 case DL_SYSERR: return ("DL_SYSERR"); 5038 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5039 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5040 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5041 case DL_TOOMANY: return ("DL_TOOMANY"); 5042 case DL_NOTENAB: return ("DL_NOTENAB"); 5043 case DL_BUSY: return ("DL_BUSY"); 5044 case DL_NOAUTO: return ("DL_NOAUTO"); 5045 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5046 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5047 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5048 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5049 case DL_PENDING: return ("DL_PENDING"); 5050 default: return ("<unknown error>"); 5051 } 5052 } 5053 5054 /* 5055 * Debug formatting routine. Returns a character string representation of the 5056 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5057 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5058 */ 5059 char * 5060 ip_dot_addr(ipaddr_t addr, char *buf) 5061 { 5062 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5063 } 5064 5065 /* 5066 * Debug formatting routine. Returns a character string representation of the 5067 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5068 * as a pointer. The "xxx" parts including left zero padding so the final 5069 * string will fit easily in tables. It would be nice to take a padding 5070 * length argument instead. 5071 */ 5072 static char * 5073 ip_dot_saddr(uchar_t *addr, char *buf) 5074 { 5075 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5076 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5077 return (buf); 5078 } 5079 5080 /* 5081 * Send an ICMP error after patching up the packet appropriately. Returns 5082 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5083 */ 5084 static int 5085 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5086 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5087 { 5088 ipha_t *ipha; 5089 mblk_t *first_mp; 5090 boolean_t secure; 5091 unsigned char db_type; 5092 5093 first_mp = mp; 5094 if (mctl_present) { 5095 mp = mp->b_cont; 5096 secure = ipsec_in_is_secure(first_mp); 5097 ASSERT(mp != NULL); 5098 } else { 5099 /* 5100 * If this is an ICMP error being reported - which goes 5101 * up as M_CTLs, we need to convert them to M_DATA till 5102 * we finish checking with global policy because 5103 * ipsec_check_global_policy() assumes M_DATA as clear 5104 * and M_CTL as secure. 5105 */ 5106 db_type = mp->b_datap->db_type; 5107 mp->b_datap->db_type = M_DATA; 5108 secure = B_FALSE; 5109 } 5110 /* 5111 * We are generating an icmp error for some inbound packet. 5112 * Called from all ip_fanout_(udp, tcp, proto) functions. 5113 * Before we generate an error, check with global policy 5114 * to see whether this is allowed to enter the system. As 5115 * there is no "conn", we are checking with global policy. 5116 */ 5117 ipha = (ipha_t *)mp->b_rptr; 5118 if (secure || ipsec_inbound_v4_policy_present) { 5119 first_mp = ipsec_check_global_policy(first_mp, NULL, 5120 ipha, NULL, mctl_present); 5121 if (first_mp == NULL) 5122 return (0); 5123 } 5124 5125 if (!mctl_present) 5126 mp->b_datap->db_type = db_type; 5127 5128 if (flags & IP_FF_SEND_ICMP) { 5129 if (flags & IP_FF_HDR_COMPLETE) { 5130 if (ip_hdr_complete(ipha, zoneid)) { 5131 freemsg(first_mp); 5132 return (1); 5133 } 5134 } 5135 if (flags & IP_FF_CKSUM) { 5136 /* 5137 * Have to correct checksum since 5138 * the packet might have been 5139 * fragmented and the reassembly code in ip_rput 5140 * does not restore the IP checksum. 5141 */ 5142 ipha->ipha_hdr_checksum = 0; 5143 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5144 } 5145 switch (icmp_type) { 5146 case ICMP_DEST_UNREACHABLE: 5147 icmp_unreachable(WR(q), first_mp, icmp_code); 5148 break; 5149 default: 5150 freemsg(first_mp); 5151 break; 5152 } 5153 } else { 5154 freemsg(first_mp); 5155 return (0); 5156 } 5157 5158 return (1); 5159 } 5160 5161 #ifdef DEBUG 5162 /* 5163 * Copy the header into the IPSEC_IN message. 5164 */ 5165 static void 5166 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5167 { 5168 mblk_t *data_mp = ipsec_mp->b_cont; 5169 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5170 ipha_t *ipha; 5171 5172 if (ii->ipsec_in_type != IPSEC_IN) 5173 return; 5174 ASSERT(data_mp != NULL); 5175 5176 ipha = (ipha_t *)data_mp->b_rptr; 5177 bcopy(ipha, ii->ipsec_in_saved_hdr, 5178 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5179 sizeof (ipha_t) : sizeof (ip6_t)); 5180 } 5181 #else 5182 #define ipsec_inbound_debug_tag(x) /* NOP */ 5183 #endif /* DEBUG */ 5184 5185 /* 5186 * Used to send an ICMP error message when a packet is received for 5187 * a protocol that is not supported. The mblk passed as argument 5188 * is consumed by this function. 5189 */ 5190 void 5191 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5192 { 5193 mblk_t *mp; 5194 ipha_t *ipha; 5195 ill_t *ill; 5196 ipsec_in_t *ii; 5197 5198 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5199 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5200 5201 mp = ipsec_mp->b_cont; 5202 ipsec_mp->b_cont = NULL; 5203 ipha = (ipha_t *)mp->b_rptr; 5204 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5205 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5206 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5207 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5208 } 5209 } else { 5210 /* Get ill from index in ipsec_in_t. */ 5211 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5212 B_TRUE, NULL, NULL, NULL, NULL); 5213 if (ill != NULL) { 5214 if (ip_fanout_send_icmp_v6(q, mp, flags, 5215 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5216 0, B_FALSE, zoneid)) { 5217 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5218 } 5219 5220 ill_refrele(ill); 5221 } else { /* re-link for the freemsg() below. */ 5222 ipsec_mp->b_cont = mp; 5223 } 5224 } 5225 5226 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5227 freemsg(ipsec_mp); 5228 } 5229 5230 /* 5231 * See if the inbound datagram has had IPsec processing applied to it. 5232 */ 5233 boolean_t 5234 ipsec_in_is_secure(mblk_t *ipsec_mp) 5235 { 5236 ipsec_in_t *ii; 5237 5238 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5239 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5240 5241 if (ii->ipsec_in_loopback) { 5242 return (ii->ipsec_in_secure); 5243 } else { 5244 return (ii->ipsec_in_ah_sa != NULL || 5245 ii->ipsec_in_esp_sa != NULL || 5246 ii->ipsec_in_decaps); 5247 } 5248 } 5249 5250 /* 5251 * Handle protocols with which IP is less intimate. There 5252 * can be more than one stream bound to a particular 5253 * protocol. When this is the case, normally each one gets a copy 5254 * of any incoming packets. 5255 * 5256 * IPSEC NOTE : 5257 * 5258 * Don't allow a secure packet going up a non-secure connection. 5259 * We don't allow this because 5260 * 5261 * 1) Reply might go out in clear which will be dropped at 5262 * the sending side. 5263 * 2) If the reply goes out in clear it will give the 5264 * adversary enough information for getting the key in 5265 * most of the cases. 5266 * 5267 * Moreover getting a secure packet when we expect clear 5268 * implies that SA's were added without checking for 5269 * policy on both ends. This should not happen once ISAKMP 5270 * is used to negotiate SAs as SAs will be added only after 5271 * verifying the policy. 5272 * 5273 * NOTE : If the packet was tunneled and not multicast we only send 5274 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5275 * back to delivering packets to AF_INET6 raw sockets. 5276 * 5277 * IPQoS Notes: 5278 * Once we have determined the client, invoke IPPF processing. 5279 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5280 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5281 * ip_policy will be false. 5282 * 5283 * Zones notes: 5284 * Currently only applications in the global zone can create raw sockets for 5285 * protocols other than ICMP. So unlike the broadcast / multicast case of 5286 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5287 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5288 */ 5289 static void 5290 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5291 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5292 zoneid_t zoneid) 5293 { 5294 queue_t *rq; 5295 mblk_t *mp1, *first_mp1; 5296 uint_t protocol = ipha->ipha_protocol; 5297 ipaddr_t dst; 5298 boolean_t one_only; 5299 mblk_t *first_mp = mp; 5300 boolean_t secure; 5301 uint32_t ill_index; 5302 conn_t *connp, *first_connp, *next_connp; 5303 connf_t *connfp; 5304 5305 if (mctl_present) { 5306 mp = first_mp->b_cont; 5307 secure = ipsec_in_is_secure(first_mp); 5308 ASSERT(mp != NULL); 5309 } else { 5310 secure = B_FALSE; 5311 } 5312 dst = ipha->ipha_dst; 5313 /* 5314 * If the packet was tunneled and not multicast we only send to it 5315 * the first match. 5316 */ 5317 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5318 !CLASSD(dst)); 5319 5320 connfp = &ipcl_proto_fanout[protocol]; 5321 mutex_enter(&connfp->connf_lock); 5322 connp = connfp->connf_head; 5323 for (connp = connfp->connf_head; connp != NULL; 5324 connp = connp->conn_next) { 5325 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5326 break; 5327 } 5328 5329 if (connp == NULL || connp->conn_upq == NULL) { 5330 /* 5331 * No one bound to these addresses. Is 5332 * there a client that wants all 5333 * unclaimed datagrams? 5334 */ 5335 mutex_exit(&connfp->connf_lock); 5336 /* 5337 * Check for IPPROTO_ENCAP... 5338 */ 5339 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5340 /* 5341 * XXX If an IPsec mblk is here on a multicast 5342 * tunnel (using ip_mroute stuff), what should 5343 * I do? 5344 * 5345 * For now, just free the IPsec mblk before 5346 * passing it up to the multicast routing 5347 * stuff. 5348 * 5349 * BTW, If I match a configured IP-in-IP 5350 * tunnel, ip_mroute_decap will never be 5351 * called. 5352 */ 5353 if (mp != first_mp) 5354 freeb(first_mp); 5355 ip_mroute_decap(q, mp); 5356 } else { 5357 /* 5358 * Otherwise send an ICMP protocol unreachable. 5359 */ 5360 if (ip_fanout_send_icmp(q, first_mp, flags, 5361 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5362 mctl_present, zoneid)) { 5363 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5364 } 5365 } 5366 return; 5367 } 5368 CONN_INC_REF(connp); 5369 first_connp = connp; 5370 5371 /* 5372 * Only send message to one tunnel driver by immediately 5373 * terminating the loop. 5374 */ 5375 connp = one_only ? NULL : connp->conn_next; 5376 5377 for (;;) { 5378 while (connp != NULL) { 5379 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5380 flags, zoneid)) 5381 break; 5382 connp = connp->conn_next; 5383 } 5384 5385 /* 5386 * Copy the packet. 5387 */ 5388 if (connp == NULL || connp->conn_upq == NULL || 5389 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5390 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5391 /* 5392 * No more interested clients or memory 5393 * allocation failed 5394 */ 5395 connp = first_connp; 5396 break; 5397 } 5398 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5399 CONN_INC_REF(connp); 5400 mutex_exit(&connfp->connf_lock); 5401 rq = connp->conn_rq; 5402 if (!canputnext(rq)) { 5403 if (flags & IP_FF_RAWIP) { 5404 BUMP_MIB(&ip_mib, rawipInOverflows); 5405 } else { 5406 BUMP_MIB(&icmp_mib, icmpInOverflows); 5407 } 5408 5409 freemsg(first_mp1); 5410 } else { 5411 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5412 first_mp1 = ipsec_check_inbound_policy 5413 (first_mp1, connp, ipha, NULL, 5414 mctl_present); 5415 } 5416 if (first_mp1 != NULL) { 5417 /* 5418 * ip_fanout_proto also gets called from 5419 * icmp_inbound_error_fanout, in which case 5420 * the msg type is M_CTL. Don't add info 5421 * in this case for the time being. In future 5422 * when there is a need for knowing the 5423 * inbound iface index for ICMP error msgs, 5424 * then this can be changed. 5425 */ 5426 if ((connp->conn_recvif != 0) && 5427 (mp->b_datap->db_type != M_CTL)) { 5428 /* 5429 * the actual data will be 5430 * contained in b_cont upon 5431 * successful return of the 5432 * following call else 5433 * original mblk is returned 5434 */ 5435 ASSERT(recv_ill != NULL); 5436 mp1 = ip_add_info(mp1, recv_ill, 5437 IPF_RECVIF); 5438 } 5439 BUMP_MIB(&ip_mib, ipInDelivers); 5440 if (mctl_present) 5441 freeb(first_mp1); 5442 putnext(rq, mp1); 5443 } 5444 } 5445 mutex_enter(&connfp->connf_lock); 5446 /* Follow the next pointer before releasing the conn. */ 5447 next_connp = connp->conn_next; 5448 CONN_DEC_REF(connp); 5449 connp = next_connp; 5450 } 5451 5452 /* Last one. Send it upstream. */ 5453 mutex_exit(&connfp->connf_lock); 5454 5455 /* 5456 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5457 * will be set to false. 5458 */ 5459 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5460 ill_index = ill->ill_phyint->phyint_ifindex; 5461 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5462 if (mp == NULL) { 5463 CONN_DEC_REF(connp); 5464 if (mctl_present) { 5465 freeb(first_mp); 5466 } 5467 return; 5468 } 5469 } 5470 5471 rq = connp->conn_rq; 5472 if (!canputnext(rq)) { 5473 if (flags & IP_FF_RAWIP) { 5474 BUMP_MIB(&ip_mib, rawipInOverflows); 5475 } else { 5476 BUMP_MIB(&icmp_mib, icmpInOverflows); 5477 } 5478 5479 freemsg(first_mp); 5480 } else { 5481 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5482 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5483 ipha, NULL, mctl_present); 5484 } 5485 if (first_mp != NULL) { 5486 /* 5487 * ip_fanout_proto also gets called 5488 * from icmp_inbound_error_fanout, in 5489 * which case the msg type is M_CTL. 5490 * Don't add info in this case for time 5491 * being. In future when there is a 5492 * need for knowing the inbound iface 5493 * index for ICMP error msgs, then this 5494 * can be changed 5495 */ 5496 if ((connp->conn_recvif != 0) && 5497 (mp->b_datap->db_type != M_CTL)) { 5498 /* 5499 * the actual data will be contained in 5500 * b_cont upon successful return 5501 * of the following call else original 5502 * mblk is returned 5503 */ 5504 ASSERT(recv_ill != NULL); 5505 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5506 } 5507 BUMP_MIB(&ip_mib, ipInDelivers); 5508 putnext(rq, mp); 5509 if (mctl_present) 5510 freeb(first_mp); 5511 } 5512 } 5513 CONN_DEC_REF(connp); 5514 } 5515 5516 /* 5517 * Fanout for TCP packets 5518 * The caller puts <fport, lport> in the ports parameter. 5519 * 5520 * IPQoS Notes 5521 * Before sending it to the client, invoke IPPF processing. 5522 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5523 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5524 * ip_policy is false. 5525 */ 5526 static void 5527 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5528 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5529 { 5530 mblk_t *first_mp; 5531 boolean_t secure; 5532 uint32_t ill_index; 5533 int ip_hdr_len; 5534 tcph_t *tcph; 5535 boolean_t syn_present = B_FALSE; 5536 conn_t *connp; 5537 5538 first_mp = mp; 5539 if (mctl_present) { 5540 ASSERT(first_mp->b_datap->db_type == M_CTL); 5541 mp = first_mp->b_cont; 5542 secure = ipsec_in_is_secure(first_mp); 5543 ASSERT(mp != NULL); 5544 } else { 5545 secure = B_FALSE; 5546 } 5547 5548 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5549 5550 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5551 NULL) { 5552 /* 5553 * No connected connection or listener. Send a 5554 * TH_RST via tcp_xmit_listeners_reset. 5555 */ 5556 5557 /* Initiate IPPf processing, if needed. */ 5558 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5559 uint32_t ill_index; 5560 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5561 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5562 if (first_mp == NULL) 5563 return; 5564 } 5565 BUMP_MIB(&ip_mib, ipInDelivers); 5566 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5567 return; 5568 } 5569 5570 /* 5571 * Allocate the SYN for the TCP connection here itself 5572 */ 5573 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5574 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5575 if (IPCL_IS_TCP(connp)) { 5576 squeue_t *sqp; 5577 5578 /* 5579 * For fused tcp loopback, assign the eager's 5580 * squeue to be that of the active connect's. 5581 * Note that we don't check for IP_FF_LOOPBACK 5582 * here since this routine gets called only 5583 * for loopback (unlike the IPv6 counterpart). 5584 */ 5585 if (do_tcp_fusion && 5586 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5587 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy) { 5588 ASSERT(Q_TO_CONN(q) != NULL); 5589 sqp = Q_TO_CONN(q)->conn_sqp; 5590 } else { 5591 sqp = IP_SQUEUE_GET(lbolt); 5592 } 5593 5594 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5595 mp->b_datap->db_cksumstart = (intptr_t)sqp; 5596 syn_present = B_TRUE; 5597 } 5598 } 5599 5600 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5601 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5602 if ((flags & TH_RST) || (flags & TH_URG)) { 5603 CONN_DEC_REF(connp); 5604 freemsg(first_mp); 5605 return; 5606 } 5607 if (flags & TH_ACK) { 5608 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5609 CONN_DEC_REF(connp); 5610 return; 5611 } 5612 5613 CONN_DEC_REF(connp); 5614 freemsg(first_mp); 5615 return; 5616 } 5617 5618 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5619 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5620 NULL, mctl_present); 5621 if (first_mp == NULL) { 5622 CONN_DEC_REF(connp); 5623 return; 5624 } 5625 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5626 ASSERT(syn_present); 5627 if (mctl_present) { 5628 ASSERT(first_mp != mp); 5629 first_mp->b_datap->db_struioflag |= 5630 STRUIO_POLICY; 5631 } else { 5632 ASSERT(first_mp == mp); 5633 mp->b_datap->db_struioflag &= 5634 ~STRUIO_EAGER; 5635 mp->b_datap->db_struioflag |= 5636 STRUIO_POLICY; 5637 } 5638 } else { 5639 /* 5640 * Discard first_mp early since we're dealing with a 5641 * fully-connected conn_t and tcp doesn't do policy in 5642 * this case. 5643 */ 5644 if (mctl_present) { 5645 freeb(first_mp); 5646 mctl_present = B_FALSE; 5647 } 5648 first_mp = mp; 5649 } 5650 } 5651 5652 /* 5653 * Initiate policy processing here if needed. If we get here from 5654 * icmp_inbound_error_fanout, ip_policy is false. 5655 */ 5656 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5657 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5658 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5659 if (mp == NULL) { 5660 CONN_DEC_REF(connp); 5661 if (mctl_present) 5662 freeb(first_mp); 5663 return; 5664 } else if (mctl_present) { 5665 ASSERT(first_mp != mp); 5666 first_mp->b_cont = mp; 5667 } else { 5668 first_mp = mp; 5669 } 5670 } 5671 5672 5673 5674 /* Handle IPv6 socket options. */ 5675 if (!syn_present && 5676 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5677 /* Add header */ 5678 ASSERT(recv_ill != NULL); 5679 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5680 if (mp == NULL) { 5681 CONN_DEC_REF(connp); 5682 if (mctl_present) 5683 freeb(first_mp); 5684 return; 5685 } else if (mctl_present) { 5686 /* 5687 * ip_add_info might return a new mp. 5688 */ 5689 ASSERT(first_mp != mp); 5690 first_mp->b_cont = mp; 5691 } else { 5692 first_mp = mp; 5693 } 5694 } 5695 5696 BUMP_MIB(&ip_mib, ipInDelivers); 5697 if (IPCL_IS_TCP(connp)) { 5698 (*ip_input_proc)(connp->conn_sqp, first_mp, 5699 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5700 } else { 5701 putnext(connp->conn_rq, first_mp); 5702 CONN_DEC_REF(connp); 5703 } 5704 } 5705 5706 /* 5707 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5708 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5709 * Caller is responsible for dropping references to the conn, and freeing 5710 * first_mp. 5711 * 5712 * IPQoS Notes 5713 * Before sending it to the client, invoke IPPF processing. Policy processing 5714 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5715 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5716 * ip_wput_local, ip_policy is false. 5717 */ 5718 static void 5719 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5720 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5721 boolean_t ip_policy) 5722 { 5723 queue_t *rq = connp->conn_rq; 5724 boolean_t mctl_present = (first_mp != NULL); 5725 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5726 uint32_t ill_index; 5727 5728 if (mctl_present) 5729 first_mp->b_cont = mp; 5730 else 5731 first_mp = mp; 5732 5733 if (!canputnext(rq)) { 5734 BUMP_MIB(&ip_mib, udpInOverflows); 5735 freemsg(first_mp); 5736 return; 5737 } 5738 5739 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5740 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5741 NULL, mctl_present); 5742 if (first_mp == NULL) 5743 return; /* Freed by ipsec_check_inbound_policy(). */ 5744 } 5745 if (mctl_present) 5746 freeb(first_mp); 5747 5748 if (connp->conn_recvif) 5749 in_flags = IPF_RECVIF; 5750 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5751 in_flags |= IPF_RECVSLLA; 5752 5753 /* Handle IPv6 options. */ 5754 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5755 in_flags |= IPF_RECVIF; 5756 5757 /* 5758 * Initiate IPPF processing here, if needed. Note first_mp won't be 5759 * freed if the packet is dropped. The caller will do so. 5760 */ 5761 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5762 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5763 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5764 if (mp == NULL) { 5765 return; 5766 } 5767 } 5768 if ((in_flags != 0) && 5769 (mp->b_datap->db_type != M_CTL)) { 5770 /* 5771 * The actual data will be contained in b_cont 5772 * upon successful return of the following call 5773 * else original mblk is returned 5774 */ 5775 ASSERT(recv_ill != NULL); 5776 mp = ip_add_info(mp, recv_ill, in_flags); 5777 } 5778 BUMP_MIB(&ip_mib, ipInDelivers); 5779 putnext(rq, mp); 5780 } 5781 5782 /* 5783 * Fanout for UDP packets. 5784 * The caller puts <fport, lport> in the ports parameter. 5785 * 5786 * If SO_REUSEADDR is set all multicast and broadcast packets 5787 * will be delivered to all streams bound to the same port. 5788 * 5789 * Zones notes: 5790 * Multicast and broadcast packets will be distributed to streams in all zones. 5791 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5792 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5793 * packets. To maintain this behavior with multiple zones, the conns are grouped 5794 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5795 * each zone. If unset, all the following conns in the same zone are skipped. 5796 */ 5797 static void 5798 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5799 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5800 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5801 { 5802 uint32_t dstport, srcport; 5803 ipaddr_t dst; 5804 mblk_t *first_mp; 5805 boolean_t secure; 5806 in6_addr_t v6src; 5807 conn_t *connp; 5808 connf_t *connfp; 5809 conn_t *first_connp; 5810 conn_t *next_connp; 5811 mblk_t *mp1, *first_mp1; 5812 ipaddr_t src; 5813 zoneid_t last_zoneid; 5814 boolean_t reuseaddr; 5815 5816 first_mp = mp; 5817 if (mctl_present) { 5818 mp = first_mp->b_cont; 5819 first_mp->b_cont = NULL; 5820 secure = ipsec_in_is_secure(first_mp); 5821 ASSERT(mp != NULL); 5822 } else { 5823 first_mp = NULL; 5824 secure = B_FALSE; 5825 } 5826 5827 /* Extract ports in net byte order */ 5828 dstport = htons(ntohl(ports) & 0xFFFF); 5829 srcport = htons(ntohl(ports) >> 16); 5830 dst = ipha->ipha_dst; 5831 src = ipha->ipha_src; 5832 5833 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5834 mutex_enter(&connfp->connf_lock); 5835 connp = connfp->connf_head; 5836 if (!broadcast && !CLASSD(dst)) { 5837 /* 5838 * Not broadcast or multicast. Send to the one (first) 5839 * client we find. No need to check conn_wantpacket() 5840 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5841 * IPv4 unicast packets. 5842 */ 5843 while ((connp != NULL) && 5844 (!IPCL_UDP_MATCH(connp, dstport, dst, 5845 srcport, src) || connp->conn_zoneid != zoneid)) { 5846 connp = connp->conn_next; 5847 } 5848 5849 if (connp == NULL || connp->conn_upq == NULL) 5850 goto notfound; 5851 CONN_INC_REF(connp); 5852 mutex_exit(&connfp->connf_lock); 5853 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5854 recv_ill, ip_policy); 5855 IP_STAT(ip_udp_fannorm); 5856 CONN_DEC_REF(connp); 5857 return; 5858 } 5859 5860 /* 5861 * Broadcast and multicast case 5862 * 5863 * Need to check conn_wantpacket(). 5864 * If SO_REUSEADDR has been set on the first we send the 5865 * packet to all clients that have joined the group and 5866 * match the port. 5867 */ 5868 5869 while (connp != NULL) { 5870 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 5871 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5872 break; 5873 connp = connp->conn_next; 5874 } 5875 5876 if (connp == NULL || connp->conn_upq == NULL) 5877 goto notfound; 5878 5879 first_connp = connp; 5880 /* 5881 * When SO_REUSEADDR is not set, send the packet only to the first 5882 * matching connection in its zone by keeping track of the zoneid. 5883 */ 5884 reuseaddr = first_connp->conn_reuseaddr; 5885 last_zoneid = first_connp->conn_zoneid; 5886 5887 CONN_INC_REF(connp); 5888 connp = connp->conn_next; 5889 for (;;) { 5890 while (connp != NULL) { 5891 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 5892 (reuseaddr || connp->conn_zoneid != last_zoneid) && 5893 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5894 break; 5895 connp = connp->conn_next; 5896 } 5897 /* 5898 * Just copy the data part alone. The mctl part is 5899 * needed just for verifying policy and it is never 5900 * sent up. 5901 */ 5902 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 5903 ((mp1 = copymsg(mp)) == NULL))) { 5904 /* 5905 * No more interested clients or memory 5906 * allocation failed 5907 */ 5908 connp = first_connp; 5909 break; 5910 } 5911 if (connp->conn_zoneid != last_zoneid) { 5912 /* 5913 * Update the zoneid so that the packet isn't sent to 5914 * any more conns in the same zone unless SO_REUSEADDR 5915 * is set. 5916 */ 5917 reuseaddr = connp->conn_reuseaddr; 5918 last_zoneid = connp->conn_zoneid; 5919 } 5920 if (first_mp != NULL) { 5921 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 5922 ipsec_info_type == IPSEC_IN); 5923 first_mp1 = ipsec_in_tag(first_mp, NULL); 5924 if (first_mp1 == NULL) { 5925 freemsg(mp1); 5926 connp = first_connp; 5927 break; 5928 } 5929 } else { 5930 first_mp1 = NULL; 5931 } 5932 CONN_INC_REF(connp); 5933 mutex_exit(&connfp->connf_lock); 5934 /* 5935 * IPQoS notes: We don't send the packet for policy 5936 * processing here, will do it for the last one (below). 5937 * i.e. we do it per-packet now, but if we do policy 5938 * processing per-conn, then we would need to do it 5939 * here too. 5940 */ 5941 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 5942 ipha, flags, recv_ill, B_FALSE); 5943 mutex_enter(&connfp->connf_lock); 5944 /* Follow the next pointer before releasing the conn. */ 5945 next_connp = connp->conn_next; 5946 IP_STAT(ip_udp_fanmb); 5947 CONN_DEC_REF(connp); 5948 connp = next_connp; 5949 } 5950 5951 /* Last one. Send it upstream. */ 5952 mutex_exit(&connfp->connf_lock); 5953 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 5954 ip_policy); 5955 IP_STAT(ip_udp_fanmb); 5956 CONN_DEC_REF(connp); 5957 return; 5958 5959 notfound: 5960 5961 mutex_exit(&connfp->connf_lock); 5962 IP_STAT(ip_udp_fanothers); 5963 /* 5964 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 5965 * have already been matched above, since they live in the IPv4 5966 * fanout tables. This implies we only need to 5967 * check for IPv6 in6addr_any endpoints here. 5968 * Thus we compare using ipv6_all_zeros instead of the destination 5969 * address, except for the multicast group membership lookup which 5970 * uses the IPv4 destination. 5971 */ 5972 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 5973 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5974 mutex_enter(&connfp->connf_lock); 5975 connp = connfp->connf_head; 5976 if (!broadcast && !CLASSD(dst)) { 5977 while (connp != NULL) { 5978 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 5979 srcport, v6src) && connp->conn_zoneid == zoneid && 5980 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 5981 !connp->conn_ipv6_v6only) 5982 break; 5983 connp = connp->conn_next; 5984 } 5985 5986 if (connp == NULL || connp->conn_upq == NULL) { 5987 /* 5988 * No one bound to this port. Is 5989 * there a client that wants all 5990 * unclaimed datagrams? 5991 */ 5992 mutex_exit(&connfp->connf_lock); 5993 5994 if (mctl_present) 5995 first_mp->b_cont = mp; 5996 else 5997 first_mp = mp; 5998 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 5999 ip_fanout_proto(q, first_mp, ill, ipha, 6000 flags | IP_FF_RAWIP, mctl_present, 6001 ip_policy, recv_ill, zoneid); 6002 } else { 6003 if (ip_fanout_send_icmp(q, first_mp, flags, 6004 ICMP_DEST_UNREACHABLE, 6005 ICMP_PORT_UNREACHABLE, 6006 mctl_present, zoneid)) { 6007 BUMP_MIB(&ip_mib, udpNoPorts); 6008 } 6009 } 6010 return; 6011 } 6012 CONN_INC_REF(connp); 6013 mutex_exit(&connfp->connf_lock); 6014 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6015 recv_ill, ip_policy); 6016 CONN_DEC_REF(connp); 6017 return; 6018 } 6019 /* 6020 * IPv4 multicast packet being delivered to an AF_INET6 6021 * in6addr_any endpoint. 6022 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6023 * and not conn_wantpacket_v6() since any multicast membership is 6024 * for an IPv4-mapped multicast address. 6025 * The packet is sent to all clients in all zones that have joined the 6026 * group and match the port. 6027 */ 6028 while (connp != NULL) { 6029 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6030 srcport, v6src) && 6031 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6032 break; 6033 connp = connp->conn_next; 6034 } 6035 6036 if (connp == NULL || connp->conn_upq == NULL) { 6037 /* 6038 * No one bound to this port. Is 6039 * there a client that wants all 6040 * unclaimed datagrams? 6041 */ 6042 mutex_exit(&connfp->connf_lock); 6043 6044 if (mctl_present) 6045 first_mp->b_cont = mp; 6046 else 6047 first_mp = mp; 6048 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6049 ip_fanout_proto(q, first_mp, ill, ipha, 6050 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6051 recv_ill, zoneid); 6052 } else { 6053 /* 6054 * We used to attempt to send an icmp error here, but 6055 * since this is known to be a multicast packet 6056 * and we don't send icmp errors in response to 6057 * multicast, just drop the packet and give up sooner. 6058 */ 6059 BUMP_MIB(&ip_mib, udpNoPorts); 6060 freemsg(first_mp); 6061 } 6062 return; 6063 } 6064 6065 first_connp = connp; 6066 6067 CONN_INC_REF(connp); 6068 connp = connp->conn_next; 6069 for (;;) { 6070 while (connp != NULL) { 6071 if (IPCL_UDP_MATCH_V6(connp, dstport, 6072 ipv6_all_zeros, srcport, v6src) && 6073 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6074 break; 6075 connp = connp->conn_next; 6076 } 6077 /* 6078 * Just copy the data part alone. The mctl part is 6079 * needed just for verifying policy and it is never 6080 * sent up. 6081 */ 6082 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6083 ((mp1 = copymsg(mp)) == NULL))) { 6084 /* 6085 * No more intested clients or memory 6086 * allocation failed 6087 */ 6088 connp = first_connp; 6089 break; 6090 } 6091 if (first_mp != NULL) { 6092 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6093 ipsec_info_type == IPSEC_IN); 6094 first_mp1 = ipsec_in_tag(first_mp, NULL); 6095 if (first_mp1 == NULL) { 6096 freemsg(mp1); 6097 connp = first_connp; 6098 break; 6099 } 6100 } else { 6101 first_mp1 = NULL; 6102 } 6103 CONN_INC_REF(connp); 6104 mutex_exit(&connfp->connf_lock); 6105 /* 6106 * IPQoS notes: We don't send the packet for policy 6107 * processing here, will do it for the last one (below). 6108 * i.e. we do it per-packet now, but if we do policy 6109 * processing per-conn, then we would need to do it 6110 * here too. 6111 */ 6112 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6113 ipha, flags, recv_ill, B_FALSE); 6114 mutex_enter(&connfp->connf_lock); 6115 /* Follow the next pointer before releasing the conn. */ 6116 next_connp = connp->conn_next; 6117 CONN_DEC_REF(connp); 6118 connp = next_connp; 6119 } 6120 6121 /* Last one. Send it upstream. */ 6122 mutex_exit(&connfp->connf_lock); 6123 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6124 ip_policy); 6125 CONN_DEC_REF(connp); 6126 } 6127 6128 /* 6129 * Complete the ip_wput header so that it 6130 * is possible to generate ICMP 6131 * errors. 6132 */ 6133 static int 6134 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6135 { 6136 ire_t *ire; 6137 6138 if (ipha->ipha_src == INADDR_ANY) { 6139 ire = ire_lookup_local(zoneid); 6140 if (ire == NULL) { 6141 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6142 return (1); 6143 } 6144 ipha->ipha_src = ire->ire_addr; 6145 ire_refrele(ire); 6146 } 6147 ipha->ipha_ttl = ip_def_ttl; 6148 ipha->ipha_hdr_checksum = 0; 6149 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6150 return (0); 6151 } 6152 6153 /* 6154 * Nobody should be sending 6155 * packets up this stream 6156 */ 6157 static void 6158 ip_lrput(queue_t *q, mblk_t *mp) 6159 { 6160 mblk_t *mp1; 6161 6162 switch (mp->b_datap->db_type) { 6163 case M_FLUSH: 6164 /* Turn around */ 6165 if (*mp->b_rptr & FLUSHW) { 6166 *mp->b_rptr &= ~FLUSHR; 6167 qreply(q, mp); 6168 return; 6169 } 6170 break; 6171 } 6172 /* Could receive messages that passed through ar_rput */ 6173 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6174 mp1->b_prev = mp1->b_next = NULL; 6175 freemsg(mp); 6176 } 6177 6178 /* Nobody should be sending packets down this stream */ 6179 /* ARGSUSED */ 6180 void 6181 ip_lwput(queue_t *q, mblk_t *mp) 6182 { 6183 freemsg(mp); 6184 } 6185 6186 /* 6187 * Move the first hop in any source route to ipha_dst and remove that part of 6188 * the source route. Called by other protocols. Errors in option formatting 6189 * are ignored - will be handled by ip_wput_options Return the final 6190 * destination (either ipha_dst or the last entry in a source route.) 6191 */ 6192 ipaddr_t 6193 ip_massage_options(ipha_t *ipha) 6194 { 6195 ipoptp_t opts; 6196 uchar_t *opt; 6197 uint8_t optval; 6198 uint8_t optlen; 6199 ipaddr_t dst; 6200 int i; 6201 ire_t *ire; 6202 6203 ip2dbg(("ip_massage_options\n")); 6204 dst = ipha->ipha_dst; 6205 for (optval = ipoptp_first(&opts, ipha); 6206 optval != IPOPT_EOL; 6207 optval = ipoptp_next(&opts)) { 6208 opt = opts.ipoptp_cur; 6209 switch (optval) { 6210 uint8_t off; 6211 case IPOPT_SSRR: 6212 case IPOPT_LSRR: 6213 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6214 ip1dbg(("ip_massage_options: bad src route\n")); 6215 break; 6216 } 6217 optlen = opts.ipoptp_len; 6218 off = opt[IPOPT_OFFSET]; 6219 off--; 6220 redo_srr: 6221 if (optlen < IP_ADDR_LEN || 6222 off > optlen - IP_ADDR_LEN) { 6223 /* End of source route */ 6224 ip1dbg(("ip_massage_options: end of SR\n")); 6225 break; 6226 } 6227 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6228 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6229 ntohl(dst))); 6230 /* 6231 * Check if our address is present more than 6232 * once as consecutive hops in source route. 6233 * XXX verify per-interface ip_forwarding 6234 * for source route? 6235 */ 6236 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6237 ALL_ZONES, MATCH_IRE_TYPE); 6238 if (ire != NULL) { 6239 ire_refrele(ire); 6240 off += IP_ADDR_LEN; 6241 goto redo_srr; 6242 } 6243 if (dst == htonl(INADDR_LOOPBACK)) { 6244 ip1dbg(("ip_massage_options: loopback addr in " 6245 "source route!\n")); 6246 break; 6247 } 6248 /* 6249 * Update ipha_dst to be the first hop and remove the 6250 * first hop from the source route (by overwriting 6251 * part of the option with NOP options). 6252 */ 6253 ipha->ipha_dst = dst; 6254 /* Put the last entry in dst */ 6255 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6256 3; 6257 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6258 6259 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6260 ntohl(dst))); 6261 /* Move down and overwrite */ 6262 opt[IP_ADDR_LEN] = opt[0]; 6263 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6264 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6265 for (i = 0; i < IP_ADDR_LEN; i++) 6266 opt[i] = IPOPT_NOP; 6267 break; 6268 } 6269 } 6270 return (dst); 6271 } 6272 6273 /* 6274 * This function's job is to forward data to the reverse tunnel (FA->HA) 6275 * after doing a few checks. It is assumed that the incoming interface 6276 * of the packet is always different than the outgoing interface and the 6277 * ire_type of the found ire has to be a non-resolver type. 6278 * 6279 * IPQoS notes 6280 * IP policy is invoked twice for a forwarded packet, once on the read side 6281 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6282 * enabled. 6283 */ 6284 static void 6285 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6286 { 6287 ipha_t *ipha; 6288 queue_t *q; 6289 uint32_t pkt_len; 6290 #define rptr ((uchar_t *)ipha) 6291 uint32_t sum; 6292 uint32_t max_frag; 6293 mblk_t *first_mp; 6294 uint32_t ill_index; 6295 6296 ASSERT(ire != NULL); 6297 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6298 ASSERT(ire->ire_stq != NULL); 6299 6300 /* Initiate read side IPPF processing */ 6301 if (IPP_ENABLED(IPP_FWD_IN)) { 6302 ill_index = in_ill->ill_phyint->phyint_ifindex; 6303 ip_process(IPP_FWD_IN, &mp, ill_index); 6304 if (mp == NULL) { 6305 ip2dbg(("ip_mrtun_forward: inbound pkt " 6306 "dropped during IPPF processing\n")); 6307 return; 6308 } 6309 } 6310 6311 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6312 ILLF_ROUTER) == 0) || 6313 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6314 BUMP_MIB(&ip_mib, ipForwProhibits); 6315 ip0dbg(("ip_mrtun_forward: Can't forward :" 6316 "forwarding is not turned on\n")); 6317 goto drop_pkt; 6318 } 6319 6320 /* 6321 * Don't forward if the interface is down 6322 */ 6323 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6324 BUMP_MIB(&ip_mib, ipInDiscards); 6325 goto drop_pkt; 6326 } 6327 6328 ipha = (ipha_t *)mp->b_rptr; 6329 pkt_len = ntohs(ipha->ipha_length); 6330 /* Adjust the checksum to reflect the ttl decrement. */ 6331 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6332 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6333 if (ipha->ipha_ttl-- <= 1) { 6334 if (ip_csum_hdr(ipha)) { 6335 BUMP_MIB(&ip_mib, ipInCksumErrs); 6336 goto drop_pkt; 6337 } 6338 q = ire->ire_stq; 6339 if ((first_mp = allocb(sizeof (ipsec_info_t), 6340 BPRI_HI)) == NULL) { 6341 goto drop_pkt; 6342 } 6343 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6344 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6345 6346 return; 6347 } 6348 6349 /* Get the ill_index of the ILL */ 6350 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6351 6352 /* 6353 * ip_mrtun_forward is only used by foreign agent to reverse 6354 * tunnel the incoming packet. So it does not do any option 6355 * processing for source routing. 6356 */ 6357 max_frag = ire->ire_max_frag; 6358 if (pkt_len > max_frag) { 6359 /* 6360 * It needs fragging on its way out. We haven't 6361 * verified the header checksum yet. Since we 6362 * are going to put a surely good checksum in the 6363 * outgoing header, we have to make sure that it 6364 * was good coming in. 6365 */ 6366 if (ip_csum_hdr(ipha)) { 6367 BUMP_MIB(&ip_mib, ipInCksumErrs); 6368 goto drop_pkt; 6369 } 6370 6371 /* Initiate write side IPPF processing */ 6372 if (IPP_ENABLED(IPP_FWD_OUT)) { 6373 ip_process(IPP_FWD_OUT, &mp, ill_index); 6374 if (mp == NULL) { 6375 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6376 "dropped/deferred during ip policy "\ 6377 "processing\n")); 6378 return; 6379 } 6380 } 6381 if ((first_mp = allocb(sizeof (ipsec_info_t), 6382 BPRI_HI)) == NULL) { 6383 goto drop_pkt; 6384 } 6385 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6386 mp = first_mp; 6387 6388 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6389 return; 6390 } 6391 6392 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6393 6394 ASSERT(ire->ire_ipif != NULL); 6395 6396 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6397 if (mp == NULL) { 6398 BUMP_MIB(&ip_mib, ipInDiscards); 6399 return; 6400 } 6401 6402 /* Now send the packet to the tunnel interface */ 6403 q = ire->ire_stq; 6404 UPDATE_IB_PKT_COUNT(ire); 6405 ire->ire_last_used_time = lbolt; 6406 BUMP_MIB(&ip_mib, ipForwDatagrams); 6407 putnext(q, mp); 6408 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6409 return; 6410 6411 drop_pkt:; 6412 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6413 freemsg(mp); 6414 #undef rptr 6415 } 6416 6417 /* 6418 * Fills the ipsec_out_t data structure with appropriate fields and 6419 * prepends it to mp which contains the IP hdr + data that was meant 6420 * to be forwarded. Please note that ipsec_out_info data structure 6421 * is used here to communicate the outgoing ill path at ip_wput() 6422 * for the ICMP error packet. This has nothing to do with ipsec IP 6423 * security. ipsec_out_t is really used to pass the info to the module 6424 * IP where this information cannot be extracted from conn. 6425 * This functions is called by ip_mrtun_forward(). 6426 */ 6427 void 6428 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6429 { 6430 ipsec_out_t *io; 6431 6432 ASSERT(xmit_ill != NULL); 6433 first_mp->b_datap->db_type = M_CTL; 6434 first_mp->b_wptr += sizeof (ipsec_info_t); 6435 /* 6436 * This is to pass info to ip_wput in absence of conn. 6437 * ipsec_out_secure will be B_FALSE because of this. 6438 * Thus ipsec_out_secure being B_FALSE indicates that 6439 * this is not IPSEC security related information. 6440 */ 6441 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6442 io = (ipsec_out_t *)first_mp->b_rptr; 6443 io->ipsec_out_type = IPSEC_OUT; 6444 io->ipsec_out_len = sizeof (ipsec_out_t); 6445 first_mp->b_cont = mp; 6446 io->ipsec_out_ill_index = 6447 xmit_ill->ill_phyint->phyint_ifindex; 6448 io->ipsec_out_xmit_if = B_TRUE; 6449 } 6450 6451 /* 6452 * Return the network mask 6453 * associated with the specified address. 6454 */ 6455 ipaddr_t 6456 ip_net_mask(ipaddr_t addr) 6457 { 6458 uchar_t *up = (uchar_t *)&addr; 6459 ipaddr_t mask = 0; 6460 uchar_t *maskp = (uchar_t *)&mask; 6461 6462 #if defined(__i386) || defined(__amd64) 6463 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6464 #endif 6465 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6466 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6467 #endif 6468 if (CLASSD(addr)) { 6469 maskp[0] = 0xF0; 6470 return (mask); 6471 } 6472 if (addr == 0) 6473 return (0); 6474 maskp[0] = 0xFF; 6475 if ((up[0] & 0x80) == 0) 6476 return (mask); 6477 6478 maskp[1] = 0xFF; 6479 if ((up[0] & 0xC0) == 0x80) 6480 return (mask); 6481 6482 maskp[2] = 0xFF; 6483 if ((up[0] & 0xE0) == 0xC0) 6484 return (mask); 6485 6486 /* Must be experimental or multicast, indicate as much */ 6487 return ((ipaddr_t)0); 6488 } 6489 6490 /* 6491 * Select an ill for the packet by considering load spreading across 6492 * a different ill in the group if dst_ill is part of some group. 6493 */ 6494 static ill_t * 6495 ip_newroute_get_dst_ill(ill_t *dst_ill) 6496 { 6497 ill_t *ill; 6498 6499 /* 6500 * We schedule irrespective of whether the source address is 6501 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6502 */ 6503 ill = illgrp_scheduler(dst_ill); 6504 if (ill == NULL) 6505 return (NULL); 6506 6507 /* 6508 * For groups with names ip_sioctl_groupname ensures that all 6509 * ills are of same type. For groups without names, ifgrp_insert 6510 * ensures this. 6511 */ 6512 ASSERT(dst_ill->ill_type == ill->ill_type); 6513 6514 return (ill); 6515 } 6516 6517 /* 6518 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6519 */ 6520 ill_t * 6521 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6522 { 6523 ill_t *ret_ill; 6524 6525 ASSERT(ifindex != 0); 6526 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6527 if (ret_ill == NULL || 6528 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6529 if (isv6) { 6530 if (ill != NULL) { 6531 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6532 } else { 6533 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6534 } 6535 ip1dbg(("ip_grab_attach_ill (IPv6): " 6536 "bad ifindex %d.\n", ifindex)); 6537 } else { 6538 BUMP_MIB(&ip_mib, ipOutDiscards); 6539 ip1dbg(("ip_grab_attach_ill (IPv4): " 6540 "bad ifindex %d.\n", ifindex)); 6541 } 6542 if (ret_ill != NULL) 6543 ill_refrele(ret_ill); 6544 freemsg(first_mp); 6545 return (NULL); 6546 } 6547 6548 return (ret_ill); 6549 } 6550 6551 /* 6552 * IPv4 - 6553 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6554 * out a packet to a destination address for which we do not have specific 6555 * (or sufficient) routing information. 6556 * 6557 * NOTE : These are the scopes of some of the variables that point at IRE, 6558 * which needs to be followed while making any future modifications 6559 * to avoid memory leaks. 6560 * 6561 * - ire and sire are the entries looked up initially by 6562 * ire_ftable_lookup. 6563 * - ipif_ire is used to hold the interface ire associated with 6564 * the new cache ire. But it's scope is limited, so we always REFRELE 6565 * it before branching out to error paths. 6566 * - save_ire is initialized before ire_create, so that ire returned 6567 * by ire_create will not over-write the ire. We REFRELE save_ire 6568 * before breaking out of the switch. 6569 * 6570 * Thus on failures, we have to REFRELE only ire and sire, if they 6571 * are not NULL. 6572 */ 6573 void 6574 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6575 { 6576 areq_t *areq; 6577 ipaddr_t gw = 0; 6578 ire_t *ire = NULL; 6579 mblk_t *res_mp; 6580 ipaddr_t *addrp; 6581 ipif_t *src_ipif = NULL; 6582 ill_t *dst_ill = NULL; 6583 ipha_t *ipha; 6584 ire_t *sire = NULL; 6585 mblk_t *first_mp; 6586 ire_t *save_ire; 6587 mblk_t *dlureq_mp; 6588 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6589 ushort_t ire_marks = 0; 6590 boolean_t mctl_present; 6591 ipsec_out_t *io; 6592 mblk_t *saved_mp; 6593 ire_t *first_sire = NULL; 6594 mblk_t *copy_mp = NULL; 6595 mblk_t *xmit_mp = NULL; 6596 ipaddr_t save_dst; 6597 uint32_t multirt_flags = 6598 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6599 boolean_t multirt_is_resolvable; 6600 boolean_t multirt_resolve_next; 6601 boolean_t do_attach_ill = B_FALSE; 6602 zoneid_t zoneid; 6603 6604 if (ip_debug > 2) { 6605 /* ip1dbg */ 6606 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6607 } 6608 6609 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6610 if (mctl_present) { 6611 io = (ipsec_out_t *)first_mp->b_rptr; 6612 zoneid = io->ipsec_out_zoneid; 6613 ASSERT(zoneid != ALL_ZONES); 6614 } else if (connp != NULL) { 6615 zoneid = connp->conn_zoneid; 6616 } else { 6617 zoneid = GLOBAL_ZONEID; 6618 } 6619 6620 ipha = (ipha_t *)mp->b_rptr; 6621 6622 /* All multicast lookups come through ip_newroute_ipif() */ 6623 if (CLASSD(dst)) { 6624 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6625 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6626 freemsg(first_mp); 6627 return; 6628 } 6629 6630 if (ip_loopback_src_or_dst(ipha, NULL)) { 6631 goto icmp_err_ret; 6632 } 6633 6634 if (mctl_present && io->ipsec_out_attach_if) { 6635 /* ip_grab_attach_ill returns a held ill */ 6636 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6637 io->ipsec_out_ill_index, B_FALSE); 6638 6639 /* Failure case frees things for us. */ 6640 if (attach_ill == NULL) 6641 return; 6642 6643 /* 6644 * Check if we need an ire that will not be 6645 * looked up by anybody else i.e. HIDDEN. 6646 */ 6647 if (ill_is_probeonly(attach_ill)) 6648 ire_marks = IRE_MARK_HIDDEN; 6649 } 6650 /* 6651 * If this IRE is created for forwarding or it is not for 6652 * traffic for congestion controlled protocols, mark it as temporary. 6653 */ 6654 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6655 ire_marks |= IRE_MARK_TEMPORARY; 6656 6657 /* 6658 * Get what we can from ire_ftable_lookup which will follow an IRE 6659 * chain until it gets the most specific information available. 6660 * For example, we know that there is no IRE_CACHE for this dest, 6661 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6662 * ire_ftable_lookup will look up the gateway, etc. 6663 * Check if in_ill != NULL. If it is true, the packet must be 6664 * from an incoming interface where RTA_SRCIFP is set. 6665 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6666 * to the destination, of equal netmask length in the forward table, 6667 * will be recursively explored. If no information is available 6668 * for the final gateway of that route, we force the returned ire 6669 * to be equal to sire using MATCH_IRE_PARENT. 6670 * At least, in this case we have a starting point (in the buckets) 6671 * to look for other routes to the destination in the forward table. 6672 * This is actually used only for multirouting, where a list 6673 * of routes has to be processed in sequence. 6674 */ 6675 if (in_ill != NULL) { 6676 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6677 in_ill, MATCH_IRE_TYPE); 6678 } else if (attach_ill == NULL) { 6679 ire = ire_ftable_lookup(dst, 0, 0, 0, 6680 NULL, &sire, zoneid, 0, 6681 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6682 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6683 } else { 6684 /* 6685 * attach_ill is set only for communicating with 6686 * on-link hosts. So, don't look for DEFAULT. 6687 */ 6688 ipif_t *attach_ipif; 6689 6690 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6691 if (attach_ipif == NULL) { 6692 ill_refrele(attach_ill); 6693 goto icmp_err_ret; 6694 } 6695 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6696 &sire, zoneid, 0, 6697 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6698 ipif_refrele(attach_ipif); 6699 } 6700 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6701 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6702 6703 /* 6704 * This loop is run only once in most cases. 6705 * We loop to resolve further routes only when the destination 6706 * can be reached through multiple RTF_MULTIRT-flagged ires. 6707 */ 6708 do { 6709 /* Clear the previous iteration's values */ 6710 if (src_ipif != NULL) { 6711 ipif_refrele(src_ipif); 6712 src_ipif = NULL; 6713 } 6714 if (dst_ill != NULL) { 6715 ill_refrele(dst_ill); 6716 dst_ill = NULL; 6717 } 6718 6719 multirt_resolve_next = B_FALSE; 6720 /* 6721 * We check if packets have to be multirouted. 6722 * In this case, given the current <ire, sire> couple, 6723 * we look for the next suitable <ire, sire>. 6724 * This check is done in ire_multirt_lookup(), 6725 * which applies various criteria to find the next route 6726 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6727 * unchanged if it detects it has not been tried yet. 6728 */ 6729 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6730 ip3dbg(("ip_newroute: starting next_resolution " 6731 "with first_mp %p, tag %d\n", 6732 (void *)first_mp, 6733 MULTIRT_DEBUG_TAGGED(first_mp))); 6734 6735 ASSERT(sire != NULL); 6736 multirt_is_resolvable = 6737 ire_multirt_lookup(&ire, &sire, multirt_flags); 6738 6739 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6740 "ire %p, sire %p\n", 6741 multirt_is_resolvable, 6742 (void *)ire, (void *)sire)); 6743 6744 if (!multirt_is_resolvable) { 6745 /* 6746 * No more multirt route to resolve; give up 6747 * (all routes resolved or no more 6748 * resolvable routes). 6749 */ 6750 if (ire != NULL) { 6751 ire_refrele(ire); 6752 ire = NULL; 6753 } 6754 } else { 6755 ASSERT(sire != NULL); 6756 ASSERT(ire != NULL); 6757 /* 6758 * We simply use first_sire as a flag that 6759 * indicates if a resolvable multirt route 6760 * has already been found. 6761 * If it is not the case, we may have to send 6762 * an ICMP error to report that the 6763 * destination is unreachable. 6764 * We do not IRE_REFHOLD first_sire. 6765 */ 6766 if (first_sire == NULL) { 6767 first_sire = sire; 6768 } 6769 } 6770 } 6771 if (ire == NULL) { 6772 if (ip_debug > 3) { 6773 /* ip2dbg */ 6774 pr_addr_dbg("ip_newroute: " 6775 "can't resolve %s\n", AF_INET, &dst); 6776 } 6777 ip3dbg(("ip_newroute: " 6778 "ire %p, sire %p, first_sire %p\n", 6779 (void *)ire, (void *)sire, (void *)first_sire)); 6780 6781 if (sire != NULL) { 6782 ire_refrele(sire); 6783 sire = NULL; 6784 } 6785 6786 if (first_sire != NULL) { 6787 /* 6788 * At least one multirt route has been found 6789 * in the same call to ip_newroute(); 6790 * there is no need to report an ICMP error. 6791 * first_sire was not IRE_REFHOLDed. 6792 */ 6793 MULTIRT_DEBUG_UNTAG(first_mp); 6794 freemsg(first_mp); 6795 return; 6796 } 6797 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6798 RTA_DST); 6799 if (attach_ill != NULL) 6800 ill_refrele(attach_ill); 6801 goto icmp_err_ret; 6802 } 6803 6804 /* 6805 * When RTA_SRCIFP is used to add a route, then an interface 6806 * route is added in the source interface's routing table. 6807 * If the outgoing interface of this route is of type 6808 * IRE_IF_RESOLVER, then upon creation of the ire, 6809 * ire_dlureq_mp is set to NULL. Later, when this route is 6810 * first used for forwarding packet, ip_newroute() is called 6811 * to resolve the hardware address of the outgoing ipif. 6812 * We do not come here for IRE_IF_NORESOLVER entries in the 6813 * source interface based table. We only come here if the 6814 * outgoing interface is a resolver interface and we don't 6815 * have the ire_dlureq_mp information yet. 6816 * If in_ill is not null that means it is called from 6817 * ip_rput. 6818 */ 6819 6820 ASSERT(ire->ire_in_ill == NULL || 6821 (ire->ire_type == IRE_IF_RESOLVER && 6822 ire->ire_dlureq_mp == NULL)); 6823 6824 /* 6825 * Verify that the returned IRE does not have either 6826 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 6827 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 6828 */ 6829 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 6830 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 6831 if (attach_ill != NULL) 6832 ill_refrele(attach_ill); 6833 goto icmp_err_ret; 6834 } 6835 /* 6836 * Increment the ire_ob_pkt_count field for ire if it is an 6837 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 6838 * increment the same for the parent IRE, sire, if it is some 6839 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 6840 * and HOST_REDIRECT). 6841 */ 6842 if ((ire->ire_type & IRE_INTERFACE) != 0) { 6843 UPDATE_OB_PKT_COUNT(ire); 6844 ire->ire_last_used_time = lbolt; 6845 } 6846 6847 if (sire != NULL) { 6848 gw = sire->ire_gateway_addr; 6849 ASSERT((sire->ire_type & (IRE_CACHETABLE | 6850 IRE_INTERFACE)) == 0); 6851 UPDATE_OB_PKT_COUNT(sire); 6852 sire->ire_last_used_time = lbolt; 6853 } 6854 /* 6855 * We have a route to reach the destination. 6856 * 6857 * 1) If the interface is part of ill group, try to get a new 6858 * ill taking load spreading into account. 6859 * 6860 * 2) After selecting the ill, get a source address that 6861 * might create good inbound load spreading. 6862 * ipif_select_source does this for us. 6863 * 6864 * If the application specified the ill (ifindex), we still 6865 * load spread. Only if the packets needs to go out 6866 * specifically on a given ill e.g. binding to 6867 * IPIF_NOFAILOVER address, then we don't try to use a 6868 * different ill for load spreading. 6869 */ 6870 if (attach_ill == NULL) { 6871 /* 6872 * Don't perform outbound load spreading in the 6873 * case of an RTF_MULTIRT route, as we actually 6874 * typically want to replicate outgoing packets 6875 * through particular interfaces. 6876 */ 6877 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6878 dst_ill = ire->ire_ipif->ipif_ill; 6879 /* for uniformity */ 6880 ill_refhold(dst_ill); 6881 } else { 6882 /* 6883 * If we are here trying to create an IRE_CACHE 6884 * for an offlink destination and have the 6885 * IRE_CACHE for the next hop and the latter is 6886 * using virtual IP source address selection i.e 6887 * it's ire->ire_ipif is pointing to a virtual 6888 * network interface (vni) then 6889 * ip_newroute_get_dst_ll() will return the vni 6890 * interface as the dst_ill. Since the vni is 6891 * virtual i.e not associated with any physical 6892 * interface, it cannot be the dst_ill, hence 6893 * in such a case call ip_newroute_get_dst_ll() 6894 * with the stq_ill instead of the ire_ipif ILL. 6895 * The function returns a refheld ill. 6896 */ 6897 if ((ire->ire_type == IRE_CACHE) && 6898 IS_VNI(ire->ire_ipif->ipif_ill)) 6899 dst_ill = ip_newroute_get_dst_ill( 6900 ire->ire_stq->q_ptr); 6901 else 6902 dst_ill = ip_newroute_get_dst_ill( 6903 ire->ire_ipif->ipif_ill); 6904 } 6905 if (dst_ill == NULL) { 6906 if (ip_debug > 2) { 6907 pr_addr_dbg("ip_newroute: " 6908 "no dst ill for dst" 6909 " %s\n", AF_INET, &dst); 6910 } 6911 goto icmp_err_ret; 6912 } 6913 } else { 6914 dst_ill = ire->ire_ipif->ipif_ill; 6915 /* for uniformity */ 6916 ill_refhold(dst_ill); 6917 /* 6918 * We should have found a route matching ill as we 6919 * called ire_ftable_lookup with MATCH_IRE_ILL. 6920 * Rather than asserting, when there is a mismatch, 6921 * we just drop the packet. 6922 */ 6923 if (dst_ill != attach_ill) { 6924 ip0dbg(("ip_newroute: Packet dropped as " 6925 "IPIF_NOFAILOVER ill is %s, " 6926 "ire->ire_ipif->ipif_ill is %s\n", 6927 attach_ill->ill_name, 6928 dst_ill->ill_name)); 6929 ill_refrele(attach_ill); 6930 goto icmp_err_ret; 6931 } 6932 } 6933 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 6934 if (attach_ill != NULL) { 6935 ill_refrele(attach_ill); 6936 attach_ill = NULL; 6937 do_attach_ill = B_TRUE; 6938 } 6939 ASSERT(dst_ill != NULL); 6940 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 6941 6942 /* 6943 * Pick the best source address from dst_ill. 6944 * 6945 * 1) If it is part of a multipathing group, we would 6946 * like to spread the inbound packets across different 6947 * interfaces. ipif_select_source picks a random source 6948 * across the different ills in the group. 6949 * 6950 * 2) If it is not part of a multipathing group, we try 6951 * to pick the source address from the destination 6952 * route. Clustering assumes that when we have multiple 6953 * prefixes hosted on an interface, the prefix of the 6954 * source address matches the prefix of the destination 6955 * route. We do this only if the address is not 6956 * DEPRECATED. 6957 * 6958 * 3) If the conn is in a different zone than the ire, we 6959 * need to pick a source address from the right zone. 6960 * 6961 * NOTE : If we hit case (1) above, the prefix of the source 6962 * address picked may not match the prefix of the 6963 * destination routes prefix as ipif_select_source 6964 * does not look at "dst" while picking a source 6965 * address. 6966 * If we want the same behavior as (2), we will need 6967 * to change the behavior of ipif_select_source. 6968 */ 6969 ASSERT(src_ipif == NULL); 6970 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 6971 /* 6972 * The RTF_SETSRC flag is set in the parent ire (sire). 6973 * Check that the ipif matching the requested source 6974 * address still exists. 6975 */ 6976 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 6977 zoneid, NULL, NULL, NULL, NULL); 6978 } 6979 if (src_ipif == NULL) { 6980 ire_marks |= IRE_MARK_USESRC_CHECK; 6981 if ((dst_ill->ill_group != NULL) || 6982 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 6983 (connp != NULL && ire->ire_zoneid != zoneid) || 6984 (dst_ill->ill_usesrc_ifindex != 0)) { 6985 src_ipif = ipif_select_source(dst_ill, dst, 6986 zoneid); 6987 if (src_ipif == NULL) { 6988 if (ip_debug > 2) { 6989 pr_addr_dbg("ip_newroute: " 6990 "no src for dst %s ", 6991 AF_INET, &dst); 6992 printf("through interface %s\n", 6993 dst_ill->ill_name); 6994 } 6995 goto icmp_err_ret; 6996 } 6997 } else { 6998 src_ipif = ire->ire_ipif; 6999 ASSERT(src_ipif != NULL); 7000 /* hold src_ipif for uniformity */ 7001 ipif_refhold(src_ipif); 7002 } 7003 } 7004 7005 /* 7006 * Assign a source address while we have the conn. 7007 * We can't have ip_wput_ire pick a source address when the 7008 * packet returns from arp since we need to look at 7009 * conn_unspec_src and conn_zoneid, and we lose the conn when 7010 * going through arp. 7011 * 7012 * NOTE : ip_newroute_v6 does not have this piece of code as 7013 * it uses ip6i to store this information. 7014 */ 7015 if (ipha->ipha_src == INADDR_ANY && 7016 (connp == NULL || !connp->conn_unspec_src)) { 7017 ipha->ipha_src = src_ipif->ipif_src_addr; 7018 } 7019 if (ip_debug > 3) { 7020 /* ip2dbg */ 7021 pr_addr_dbg("ip_newroute: first hop %s\n", 7022 AF_INET, &gw); 7023 } 7024 ip2dbg(("\tire type %s (%d)\n", 7025 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7026 7027 /* 7028 * The TTL of multirouted packets is bounded by the 7029 * ip_multirt_ttl ndd variable. 7030 */ 7031 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7032 /* Force TTL of multirouted packets */ 7033 if ((ip_multirt_ttl > 0) && 7034 (ipha->ipha_ttl > ip_multirt_ttl)) { 7035 ip2dbg(("ip_newroute: forcing multirt TTL " 7036 "to %d (was %d), dst 0x%08x\n", 7037 ip_multirt_ttl, ipha->ipha_ttl, 7038 ntohl(sire->ire_addr))); 7039 ipha->ipha_ttl = ip_multirt_ttl; 7040 } 7041 } 7042 /* 7043 * At this point in ip_newroute(), ire is either the 7044 * IRE_CACHE of the next-hop gateway for an off-subnet 7045 * destination or an IRE_INTERFACE type that should be used 7046 * to resolve an on-subnet destination or an on-subnet 7047 * next-hop gateway. 7048 * 7049 * In the IRE_CACHE case, we have the following : 7050 * 7051 * 1) src_ipif - used for getting a source address. 7052 * 7053 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7054 * means packets using this IRE_CACHE will go out on 7055 * dst_ill. 7056 * 7057 * 3) The IRE sire will point to the prefix that is the 7058 * longest matching route for the destination. These 7059 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7060 * and IRE_HOST_REDIRECT. 7061 * 7062 * The newly created IRE_CACHE entry for the off-subnet 7063 * destination is tied to both the prefix route and the 7064 * interface route used to resolve the next-hop gateway 7065 * via the ire_phandle and ire_ihandle fields, 7066 * respectively. 7067 * 7068 * In the IRE_INTERFACE case, we have the following : 7069 * 7070 * 1) src_ipif - used for getting a source address. 7071 * 7072 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7073 * means packets using the IRE_CACHE that we will build 7074 * here will go out on dst_ill. 7075 * 7076 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7077 * to be created will only be tied to the IRE_INTERFACE 7078 * that was derived from the ire_ihandle field. 7079 * 7080 * If sire is non-NULL, it means the destination is 7081 * off-link and we will first create the IRE_CACHE for the 7082 * gateway. Next time through ip_newroute, we will create 7083 * the IRE_CACHE for the final destination as described 7084 * above. 7085 * 7086 * In both cases, after the current resolution has been 7087 * completed (or possibly initialised, in the IRE_INTERFACE 7088 * case), the loop may be re-entered to attempt the resolution 7089 * of another RTF_MULTIRT route. 7090 * 7091 * When an IRE_CACHE entry for the off-subnet destination is 7092 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7093 * for further processing in emission loops. 7094 */ 7095 save_ire = ire; 7096 switch (ire->ire_type) { 7097 case IRE_CACHE: { 7098 ire_t *ipif_ire; 7099 mblk_t *ire_fp_mp; 7100 7101 ASSERT(sire != NULL); 7102 if (gw == 0) 7103 gw = ire->ire_gateway_addr; 7104 /* 7105 * We need 3 ire's to create a new cache ire for an 7106 * off-link destination from the cache ire of the 7107 * gateway. 7108 * 7109 * 1. The prefix ire 'sire' 7110 * 2. The cache ire of the gateway 'ire' 7111 * 3. The interface ire 'ipif_ire' 7112 * 7113 * We have (1) and (2). We lookup (3) below. 7114 * 7115 * If there is no interface route to the gateway, 7116 * it is a race condition, where we found the cache 7117 * but the inteface route has been deleted. 7118 */ 7119 ipif_ire = ire_ihandle_lookup_offlink(ire, sire); 7120 if (ipif_ire == NULL) { 7121 ip1dbg(("ip_newroute: " 7122 "ire_ihandle_lookup_offlink failed\n")); 7123 goto icmp_err_ret; 7124 } 7125 /* 7126 * XXX We are using the same dlureq_mp 7127 * (DL_UNITDATA_REQ) though the save_ire is not 7128 * pointing at the same ill. 7129 * This is incorrect. We need to send it up to the 7130 * resolver to get the right dlureq_mp. For ethernets 7131 * this may be okay (ill_type == DL_ETHER). 7132 */ 7133 dlureq_mp = save_ire->ire_dlureq_mp; 7134 ire_fp_mp = NULL; 7135 /* 7136 * save_ire's ire_fp_mp can't change since it is 7137 * not an IRE_MIPRTUN or IRE_BROADCAST 7138 * LOCK_IRE_FP_MP does not do any useful work in 7139 * the case of IRE_CACHE. So we don't use it below. 7140 */ 7141 if (save_ire->ire_stq == dst_ill->ill_wq) 7142 ire_fp_mp = save_ire->ire_fp_mp; 7143 7144 ire = ire_create( 7145 (uchar_t *)&dst, /* dest address */ 7146 (uchar_t *)&ip_g_all_ones, /* mask */ 7147 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7148 (uchar_t *)&gw, /* gateway address */ 7149 NULL, 7150 &save_ire->ire_max_frag, 7151 ire_fp_mp, /* Fast Path header */ 7152 dst_ill->ill_rq, /* recv-from queue */ 7153 dst_ill->ill_wq, /* send-to queue */ 7154 IRE_CACHE, /* IRE type */ 7155 save_ire->ire_dlureq_mp, 7156 src_ipif, 7157 in_ill, /* incoming ill */ 7158 sire->ire_mask, /* Parent mask */ 7159 sire->ire_phandle, /* Parent handle */ 7160 ipif_ire->ire_ihandle, /* Interface handle */ 7161 sire->ire_flags & 7162 (RTF_SETSRC | RTF_MULTIRT), /* flags if any */ 7163 &(sire->ire_uinfo)); 7164 7165 if (ire == NULL) { 7166 ire_refrele(ipif_ire); 7167 ire_refrele(save_ire); 7168 break; 7169 } 7170 7171 ire->ire_marks |= ire_marks; 7172 7173 /* 7174 * Prevent sire and ipif_ire from getting deleted. 7175 * The newly created ire is tied to both of them via 7176 * the phandle and ihandle respectively. 7177 */ 7178 IRB_REFHOLD(sire->ire_bucket); 7179 /* Has it been removed already ? */ 7180 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7181 IRB_REFRELE(sire->ire_bucket); 7182 ire_refrele(ipif_ire); 7183 ire_refrele(save_ire); 7184 break; 7185 } 7186 7187 IRB_REFHOLD(ipif_ire->ire_bucket); 7188 /* Has it been removed already ? */ 7189 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7190 IRB_REFRELE(ipif_ire->ire_bucket); 7191 IRB_REFRELE(sire->ire_bucket); 7192 ire_refrele(ipif_ire); 7193 ire_refrele(save_ire); 7194 break; 7195 } 7196 7197 xmit_mp = first_mp; 7198 /* 7199 * In the case of multirouting, a copy 7200 * of the packet is done before its sending. 7201 * The copy is used to attempt another 7202 * route resolution, in a next loop. 7203 */ 7204 if (ire->ire_flags & RTF_MULTIRT) { 7205 copy_mp = copymsg(first_mp); 7206 if (copy_mp != NULL) { 7207 xmit_mp = copy_mp; 7208 MULTIRT_DEBUG_TAG(first_mp); 7209 } 7210 } 7211 ire_add_then_send(q, ire, xmit_mp); 7212 ire_refrele(save_ire); 7213 7214 /* Assert that sire is not deleted yet. */ 7215 ASSERT(sire->ire_ptpn != NULL); 7216 IRB_REFRELE(sire->ire_bucket); 7217 7218 /* Assert that ipif_ire is not deleted yet. */ 7219 ASSERT(ipif_ire->ire_ptpn != NULL); 7220 IRB_REFRELE(ipif_ire->ire_bucket); 7221 ire_refrele(ipif_ire); 7222 7223 /* 7224 * If copy_mp is not NULL, multirouting was 7225 * requested. We loop to initiate a next 7226 * route resolution attempt, starting from sire. 7227 */ 7228 if (copy_mp != NULL) { 7229 /* 7230 * Search for the next unresolved 7231 * multirt route. 7232 */ 7233 copy_mp = NULL; 7234 ipif_ire = NULL; 7235 ire = NULL; 7236 multirt_resolve_next = B_TRUE; 7237 continue; 7238 } 7239 7240 ire_refrele(sire); 7241 ipif_refrele(src_ipif); 7242 ill_refrele(dst_ill); 7243 return; 7244 } 7245 case IRE_IF_NORESOLVER: { 7246 /* 7247 * We have what we need to build an IRE_CACHE. 7248 * 7249 * Create a new dlureq_mp with the IP gateway address 7250 * in destination address in the DLPI hdr if the 7251 * physical length is exactly 4 bytes. 7252 */ 7253 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7254 uchar_t *addr; 7255 7256 if (gw) 7257 addr = (uchar_t *)&gw; 7258 else 7259 addr = (uchar_t *)&dst; 7260 7261 dlureq_mp = ill_dlur_gen(addr, 7262 dst_ill->ill_phys_addr_length, 7263 dst_ill->ill_sap, 7264 dst_ill->ill_sap_length); 7265 } else { 7266 dlureq_mp = ire->ire_dlureq_mp; 7267 } 7268 7269 if (dlureq_mp == NULL) { 7270 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7271 break; 7272 } 7273 7274 ire = ire_create( 7275 (uchar_t *)&dst, /* dest address */ 7276 (uchar_t *)&ip_g_all_ones, /* mask */ 7277 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7278 (uchar_t *)&gw, /* gateway address */ 7279 NULL, 7280 &save_ire->ire_max_frag, 7281 NULL, /* Fast Path header */ 7282 dst_ill->ill_rq, /* recv-from queue */ 7283 dst_ill->ill_wq, /* send-to queue */ 7284 IRE_CACHE, 7285 dlureq_mp, 7286 src_ipif, 7287 in_ill, /* Incoming ill */ 7288 save_ire->ire_mask, /* Parent mask */ 7289 (sire != NULL) ? /* Parent handle */ 7290 sire->ire_phandle : 0, 7291 save_ire->ire_ihandle, /* Interface handle */ 7292 (sire != NULL) ? sire->ire_flags & 7293 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7294 &(save_ire->ire_uinfo)); 7295 7296 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7297 freeb(dlureq_mp); 7298 7299 if (ire == NULL) { 7300 ire_refrele(save_ire); 7301 break; 7302 } 7303 7304 ire->ire_marks |= ire_marks; 7305 7306 /* Prevent save_ire from getting deleted */ 7307 IRB_REFHOLD(save_ire->ire_bucket); 7308 /* Has it been removed already ? */ 7309 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7310 IRB_REFRELE(save_ire->ire_bucket); 7311 ire_refrele(save_ire); 7312 break; 7313 } 7314 7315 /* 7316 * In the case of multirouting, a copy 7317 * of the packet is made before it is sent. 7318 * The copy is used in the next 7319 * loop to attempt another resolution. 7320 */ 7321 xmit_mp = first_mp; 7322 if ((sire != NULL) && 7323 (sire->ire_flags & RTF_MULTIRT)) { 7324 copy_mp = copymsg(first_mp); 7325 if (copy_mp != NULL) { 7326 xmit_mp = copy_mp; 7327 MULTIRT_DEBUG_TAG(first_mp); 7328 } 7329 } 7330 ire_add_then_send(q, ire, xmit_mp); 7331 7332 /* Assert that it is not deleted yet. */ 7333 ASSERT(save_ire->ire_ptpn != NULL); 7334 IRB_REFRELE(save_ire->ire_bucket); 7335 ire_refrele(save_ire); 7336 7337 if (copy_mp != NULL) { 7338 /* 7339 * If we found a (no)resolver, we ignore any 7340 * trailing top priority IRE_CACHE in further 7341 * loops. This ensures that we do not omit any 7342 * (no)resolver. 7343 * This IRE_CACHE, if any, will be processed 7344 * by another thread entering ip_newroute(). 7345 * IRE_CACHE entries, if any, will be processed 7346 * by another thread entering ip_newroute(), 7347 * (upon resolver response, for instance). 7348 * This aims to force parallel multirt 7349 * resolutions as soon as a packet must be sent. 7350 * In the best case, after the tx of only one 7351 * packet, all reachable routes are resolved. 7352 * Otherwise, the resolution of all RTF_MULTIRT 7353 * routes would require several emissions. 7354 */ 7355 multirt_flags &= ~MULTIRT_CACHEGW; 7356 7357 /* 7358 * Search for the next unresolved multirt 7359 * route. 7360 */ 7361 copy_mp = NULL; 7362 save_ire = NULL; 7363 ire = NULL; 7364 multirt_resolve_next = B_TRUE; 7365 continue; 7366 } 7367 7368 /* 7369 * Don't need sire anymore 7370 */ 7371 if (sire != NULL) 7372 ire_refrele(sire); 7373 7374 ipif_refrele(src_ipif); 7375 ill_refrele(dst_ill); 7376 return; 7377 } 7378 case IRE_IF_RESOLVER: 7379 /* 7380 * We can't build an IRE_CACHE yet, but at least we 7381 * found a resolver that can help. 7382 */ 7383 res_mp = dst_ill->ill_resolver_mp; 7384 if (!OK_RESOLVER_MP(res_mp)) 7385 break; 7386 /* 7387 * To be at this point in the code with a non-zero gw 7388 * means that dst is reachable through a gateway that 7389 * we have never resolved. By changing dst to the gw 7390 * addr we resolve the gateway first. 7391 * When ire_add_then_send() tries to put the IP dg 7392 * to dst, it will reenter ip_newroute() at which 7393 * time we will find the IRE_CACHE for the gw and 7394 * create another IRE_CACHE in case IRE_CACHE above. 7395 */ 7396 if (gw != INADDR_ANY) { 7397 /* 7398 * The source ipif that was determined above was 7399 * relative to the destination address, not the 7400 * gateway's. If src_ipif was not taken out of 7401 * the IRE_IF_RESOLVER entry, we'll need to call 7402 * ipif_select_source() again. 7403 */ 7404 if (src_ipif != ire->ire_ipif) { 7405 ipif_refrele(src_ipif); 7406 src_ipif = ipif_select_source(dst_ill, 7407 gw, zoneid); 7408 if (src_ipif == NULL) { 7409 if (ip_debug > 2) { 7410 pr_addr_dbg( 7411 "ip_newroute: no " 7412 "src for gw %s ", 7413 AF_INET, &gw); 7414 printf("through " 7415 "interface %s\n", 7416 dst_ill->ill_name); 7417 } 7418 goto icmp_err_ret; 7419 } 7420 } 7421 save_dst = dst; 7422 dst = gw; 7423 gw = INADDR_ANY; 7424 } 7425 /* 7426 * We obtain a partial IRE_CACHE which we will pass 7427 * along with the resolver query. When the response 7428 * comes back it will be there ready for us to add. 7429 * The ire_max_frag is atomically set under the 7430 * irebucket lock in ire_add_v[46]. 7431 */ 7432 ire = ire_create_mp( 7433 (uchar_t *)&dst, /* dest address */ 7434 (uchar_t *)&ip_g_all_ones, /* mask */ 7435 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7436 (uchar_t *)&gw, /* gateway address */ 7437 NULL, /* no in_src_addr */ 7438 NULL, /* ire_max_frag */ 7439 NULL, /* Fast Path header */ 7440 dst_ill->ill_rq, /* recv-from queue */ 7441 dst_ill->ill_wq, /* send-to queue */ 7442 IRE_CACHE, 7443 res_mp, 7444 src_ipif, /* Interface ipif */ 7445 in_ill, /* Incoming ILL */ 7446 save_ire->ire_mask, /* Parent mask */ 7447 0, 7448 save_ire->ire_ihandle, /* Interface handle */ 7449 0, /* flags if any */ 7450 &(save_ire->ire_uinfo)); 7451 7452 if (ire == NULL) { 7453 ire_refrele(save_ire); 7454 break; 7455 } 7456 7457 if ((sire != NULL) && 7458 (sire->ire_flags & RTF_MULTIRT)) { 7459 copy_mp = copymsg(first_mp); 7460 if (copy_mp != NULL) 7461 MULTIRT_DEBUG_TAG(copy_mp); 7462 } 7463 7464 ire->ire_marks |= ire_marks; 7465 7466 /* 7467 * Construct message chain for the resolver 7468 * of the form: 7469 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7470 * Packet could contain a IPSEC_OUT mp. 7471 * 7472 * NOTE : ire will be added later when the response 7473 * comes back from ARP. If the response does not 7474 * come back, ARP frees the packet. For this reason, 7475 * we can't REFHOLD the bucket of save_ire to prevent 7476 * deletions. We may not be able to REFRELE the bucket 7477 * if the response never comes back. Thus, before 7478 * adding the ire, ire_add_v4 will make sure that the 7479 * interface route does not get deleted. This is the 7480 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7481 * where we can always prevent deletions because of 7482 * the synchronous nature of adding IRES i.e 7483 * ire_add_then_send is called after creating the IRE. 7484 */ 7485 ASSERT(ire->ire_mp != NULL); 7486 ire->ire_mp->b_cont = first_mp; 7487 /* Have saved_mp handy, for cleanup if canput fails */ 7488 saved_mp = mp; 7489 mp = ire->ire_dlureq_mp; 7490 ASSERT(mp != NULL); 7491 ire->ire_dlureq_mp = NULL; 7492 linkb(mp, ire->ire_mp); 7493 7494 7495 /* 7496 * Fill in the source and dest addrs for the resolver. 7497 * NOTE: this depends on memory layouts imposed by 7498 * ill_init(). 7499 */ 7500 areq = (areq_t *)mp->b_rptr; 7501 addrp = (ipaddr_t *)((char *)areq + 7502 areq->areq_sender_addr_offset); 7503 if (do_attach_ill) { 7504 /* 7505 * This is bind to no failover case. 7506 * arp packet also must go out on attach_ill. 7507 */ 7508 ASSERT(ipha->ipha_src != NULL); 7509 *addrp = ipha->ipha_src; 7510 } else { 7511 *addrp = save_ire->ire_src_addr; 7512 } 7513 7514 ire_refrele(save_ire); 7515 addrp = (ipaddr_t *)((char *)areq + 7516 areq->areq_target_addr_offset); 7517 *addrp = dst; 7518 /* Up to the resolver. */ 7519 if (canputnext(dst_ill->ill_rq)) { 7520 putnext(dst_ill->ill_rq, mp); 7521 ire = NULL; 7522 if (copy_mp != NULL) { 7523 /* 7524 * If we found a resolver, we ignore 7525 * any trailing top priority IRE_CACHE 7526 * in the further loops. This ensures 7527 * that we do not omit any resolver. 7528 * IRE_CACHE entries, if any, will be 7529 * processed next time we enter 7530 * ip_newroute(). 7531 */ 7532 multirt_flags &= ~MULTIRT_CACHEGW; 7533 /* 7534 * Search for the next unresolved 7535 * multirt route. 7536 */ 7537 first_mp = copy_mp; 7538 copy_mp = NULL; 7539 /* Prepare the next resolution loop. */ 7540 mp = first_mp; 7541 EXTRACT_PKT_MP(mp, first_mp, 7542 mctl_present); 7543 if (mctl_present) 7544 io = (ipsec_out_t *) 7545 first_mp->b_rptr; 7546 ipha = (ipha_t *)mp->b_rptr; 7547 7548 ASSERT(sire != NULL); 7549 7550 dst = save_dst; 7551 multirt_resolve_next = B_TRUE; 7552 continue; 7553 } 7554 7555 if (sire != NULL) 7556 ire_refrele(sire); 7557 7558 /* 7559 * The response will come back in ip_wput 7560 * with db_type IRE_DB_TYPE. 7561 */ 7562 ipif_refrele(src_ipif); 7563 ill_refrele(dst_ill); 7564 return; 7565 } else { 7566 /* Prepare for cleanup */ 7567 ire->ire_dlureq_mp = mp; 7568 mp->b_cont = NULL; 7569 ire_delete(ire); 7570 mp = saved_mp; 7571 ire = NULL; 7572 if (copy_mp != NULL) { 7573 MULTIRT_DEBUG_UNTAG(copy_mp); 7574 freemsg(copy_mp); 7575 copy_mp = NULL; 7576 } 7577 break; 7578 } 7579 default: 7580 break; 7581 } 7582 } while (multirt_resolve_next); 7583 7584 ip1dbg(("ip_newroute: dropped\n")); 7585 /* Did this packet originate externally? */ 7586 if (mp->b_prev) { 7587 mp->b_next = NULL; 7588 mp->b_prev = NULL; 7589 BUMP_MIB(&ip_mib, ipInDiscards); 7590 } else { 7591 BUMP_MIB(&ip_mib, ipOutDiscards); 7592 } 7593 ASSERT(copy_mp == NULL); 7594 MULTIRT_DEBUG_UNTAG(first_mp); 7595 freemsg(first_mp); 7596 if (ire != NULL) 7597 ire_refrele(ire); 7598 if (sire != NULL) 7599 ire_refrele(sire); 7600 if (src_ipif != NULL) 7601 ipif_refrele(src_ipif); 7602 if (dst_ill != NULL) 7603 ill_refrele(dst_ill); 7604 return; 7605 7606 icmp_err_ret: 7607 ip1dbg(("ip_newroute: no route\n")); 7608 if (src_ipif != NULL) 7609 ipif_refrele(src_ipif); 7610 if (dst_ill != NULL) 7611 ill_refrele(dst_ill); 7612 if (sire != NULL) 7613 ire_refrele(sire); 7614 /* Did this packet originate externally? */ 7615 if (mp->b_prev) { 7616 mp->b_next = NULL; 7617 mp->b_prev = NULL; 7618 /* XXX ipInNoRoutes */ 7619 q = WR(q); 7620 } else { 7621 /* 7622 * Since ip_wput() isn't close to finished, we fill 7623 * in enough of the header for credible error reporting. 7624 */ 7625 if (ip_hdr_complete(ipha, zoneid)) { 7626 /* Failed */ 7627 MULTIRT_DEBUG_UNTAG(first_mp); 7628 freemsg(first_mp); 7629 if (ire != NULL) 7630 ire_refrele(ire); 7631 return; 7632 } 7633 } 7634 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7635 7636 /* 7637 * At this point we will have ire only if RTF_BLACKHOLE 7638 * or RTF_REJECT flags are set on the IRE. It will not 7639 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7640 */ 7641 if (ire != NULL) { 7642 if (ire->ire_flags & RTF_BLACKHOLE) { 7643 ire_refrele(ire); 7644 MULTIRT_DEBUG_UNTAG(first_mp); 7645 freemsg(first_mp); 7646 return; 7647 } 7648 ire_refrele(ire); 7649 } 7650 if (ip_source_routed(ipha)) { 7651 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7652 return; 7653 } 7654 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7655 } 7656 7657 /* 7658 * IPv4 - 7659 * ip_newroute_ipif is called by ip_wput_multicast and 7660 * ip_rput_forward_multicast whenever we need to send 7661 * out a packet to a destination address for which we do not have specific 7662 * routing information. It is used when the packet will be sent out 7663 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7664 * socket option is set or icmp error message wants to go out on a particular 7665 * interface for a unicast packet. 7666 * 7667 * In most cases, the destination address is resolved thanks to the ipif 7668 * intrinsic resolver. However, there are some cases where the call to 7669 * ip_newroute_ipif must take into account the potential presence of 7670 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7671 * that uses the interface. This is specified through flags, 7672 * which can be a combination of: 7673 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7674 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7675 * and flags. Additionally, the packet source address has to be set to 7676 * the specified address. The caller is thus expected to set this flag 7677 * if the packet has no specific source address yet. 7678 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7679 * flag, the resulting ire will inherit the flag. All unresolved routes 7680 * to the destination must be explored in the same call to 7681 * ip_newroute_ipif(). 7682 */ 7683 static void 7684 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7685 conn_t *connp, uint32_t flags) 7686 { 7687 areq_t *areq; 7688 ire_t *ire = NULL; 7689 mblk_t *res_mp; 7690 ipaddr_t *addrp; 7691 mblk_t *first_mp; 7692 ire_t *save_ire = NULL; 7693 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7694 ipif_t *src_ipif = NULL; 7695 ushort_t ire_marks = 0; 7696 ill_t *dst_ill = NULL; 7697 boolean_t mctl_present; 7698 ipsec_out_t *io; 7699 ipha_t *ipha; 7700 int ihandle = 0; 7701 mblk_t *saved_mp; 7702 ire_t *fire = NULL; 7703 mblk_t *copy_mp = NULL; 7704 boolean_t multirt_resolve_next; 7705 ipaddr_t ipha_dst; 7706 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7707 7708 /* 7709 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7710 * here for uniformity 7711 */ 7712 ipif_refhold(ipif); 7713 7714 /* 7715 * This loop is run only once in most cases. 7716 * We loop to resolve further routes only when the destination 7717 * can be reached through multiple RTF_MULTIRT-flagged ires. 7718 */ 7719 do { 7720 if (dst_ill != NULL) { 7721 ill_refrele(dst_ill); 7722 dst_ill = NULL; 7723 } 7724 if (src_ipif != NULL) { 7725 ipif_refrele(src_ipif); 7726 src_ipif = NULL; 7727 } 7728 multirt_resolve_next = B_FALSE; 7729 7730 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7731 ipif->ipif_ill->ill_name)); 7732 7733 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7734 if (mctl_present) 7735 io = (ipsec_out_t *)first_mp->b_rptr; 7736 7737 ipha = (ipha_t *)mp->b_rptr; 7738 7739 /* 7740 * Save the packet destination address, we may need it after 7741 * the packet has been consumed. 7742 */ 7743 ipha_dst = ipha->ipha_dst; 7744 7745 /* 7746 * If the interface is a pt-pt interface we look for an 7747 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7748 * local_address and the pt-pt destination address. Otherwise 7749 * we just match the local address. 7750 * NOTE: dst could be different than ipha->ipha_dst in case 7751 * of sending igmp multicast packets over a point-to-point 7752 * connection. 7753 * Thus we must be careful enough to check ipha_dst to be a 7754 * multicast address, otherwise it will take xmit_if path for 7755 * multicast packets resulting into kernel stack overflow by 7756 * repeated calls to ip_newroute_ipif from ire_send(). 7757 */ 7758 if (CLASSD(ipha_dst) && 7759 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7760 goto err_ret; 7761 } 7762 7763 /* 7764 * We check if an IRE_OFFSUBNET for the addr that goes through 7765 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7766 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7767 * propagate its flags to the new ire. 7768 */ 7769 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7770 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7771 ip2dbg(("ip_newroute_ipif: " 7772 "ipif_lookup_multi_ire(" 7773 "ipif %p, dst %08x) = fire %p\n", 7774 (void *)ipif, ntohl(dst), (void *)fire)); 7775 } 7776 7777 if (mctl_present && io->ipsec_out_attach_if) { 7778 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7779 io->ipsec_out_ill_index, B_FALSE); 7780 7781 /* Failure case frees things for us. */ 7782 if (attach_ill == NULL) { 7783 ipif_refrele(ipif); 7784 if (fire != NULL) 7785 ire_refrele(fire); 7786 return; 7787 } 7788 7789 /* 7790 * Check if we need an ire that will not be 7791 * looked up by anybody else i.e. HIDDEN. 7792 */ 7793 if (ill_is_probeonly(attach_ill)) { 7794 ire_marks = IRE_MARK_HIDDEN; 7795 } 7796 /* 7797 * ip_wput passes the right ipif for IPIF_NOFAILOVER 7798 * case. 7799 */ 7800 dst_ill = ipif->ipif_ill; 7801 /* attach_ill has been refheld by ip_grab_attach_ill */ 7802 ASSERT(dst_ill == attach_ill); 7803 } else { 7804 /* 7805 * If this is set by IP_XMIT_IF, then make sure that 7806 * ipif is pointing to the same ill as the IP_XMIT_IF 7807 * specified ill. 7808 */ 7809 ASSERT((connp == NULL) || 7810 (connp->conn_xmit_if_ill == NULL) || 7811 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 7812 /* 7813 * If the interface belongs to an interface group, 7814 * make sure the next possible interface in the group 7815 * is used. This encourages load spreading among 7816 * peers in an interface group. 7817 * Note: load spreading is disabled for RTF_MULTIRT 7818 * routes. 7819 */ 7820 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7821 (fire->ire_flags & RTF_MULTIRT)) { 7822 /* 7823 * Don't perform outbound load spreading 7824 * in the case of an RTF_MULTIRT issued route, 7825 * we actually typically want to replicate 7826 * outgoing packets through particular 7827 * interfaces. 7828 */ 7829 dst_ill = ipif->ipif_ill; 7830 ill_refhold(dst_ill); 7831 } else { 7832 dst_ill = ip_newroute_get_dst_ill( 7833 ipif->ipif_ill); 7834 } 7835 if (dst_ill == NULL) { 7836 if (ip_debug > 2) { 7837 pr_addr_dbg("ip_newroute_ipif: " 7838 "no dst ill for dst %s\n", 7839 AF_INET, &dst); 7840 } 7841 goto err_ret; 7842 } 7843 } 7844 7845 /* 7846 * Pick a source address preferring non-deprecated ones. 7847 * Unlike ip_newroute, we don't do any source address 7848 * selection here since for multicast it really does not help 7849 * in inbound load spreading as in the unicast case. 7850 */ 7851 if ((flags & RTF_SETSRC) && (fire != NULL) && 7852 (fire->ire_flags & RTF_SETSRC)) { 7853 /* 7854 * As requested by flags, an IRE_OFFSUBNET was looked up 7855 * on that interface. This ire has RTF_SETSRC flag, so 7856 * the source address of the packet must be changed. 7857 * Check that the ipif matching the requested source 7858 * address still exists. 7859 */ 7860 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 7861 zoneid, NULL, NULL, NULL, NULL); 7862 } 7863 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 7864 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 7865 (src_ipif == NULL)) { 7866 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 7867 if (src_ipif == NULL) { 7868 if (ip_debug > 2) { 7869 /* ip1dbg */ 7870 pr_addr_dbg("ip_newroute_ipif: " 7871 "no src for dst %s", 7872 AF_INET, &dst); 7873 } 7874 ip1dbg((" through interface %s\n", 7875 dst_ill->ill_name)); 7876 goto err_ret; 7877 } 7878 ipif_refrele(ipif); 7879 ipif = src_ipif; 7880 ipif_refhold(ipif); 7881 } 7882 if (src_ipif == NULL) { 7883 src_ipif = ipif; 7884 ipif_refhold(src_ipif); 7885 } 7886 7887 /* 7888 * Assign a source address while we have the conn. 7889 * We can't have ip_wput_ire pick a source address when the 7890 * packet returns from arp since conn_unspec_src might be set 7891 * and we loose the conn when going through arp. 7892 */ 7893 if (ipha->ipha_src == INADDR_ANY && 7894 (connp == NULL || !connp->conn_unspec_src)) { 7895 ipha->ipha_src = src_ipif->ipif_src_addr; 7896 } 7897 7898 /* 7899 * In case of IP_XMIT_IF, it is possible that the outgoing 7900 * interface does not have an interface ire. 7901 * Example: Thousands of mobileip PPP interfaces to mobile 7902 * nodes. We don't want to create interface ires because 7903 * packets from other mobile nodes must not take the route 7904 * via interface ires to the visiting mobile node without 7905 * going through the home agent, in absence of mobileip 7906 * route optimization. 7907 */ 7908 if (CLASSD(ipha_dst) && (connp == NULL || 7909 connp->conn_xmit_if_ill == NULL)) { 7910 /* ipif_to_ire returns an held ire */ 7911 ire = ipif_to_ire(ipif); 7912 if (ire == NULL) 7913 goto err_ret; 7914 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 7915 goto err_ret; 7916 /* 7917 * ihandle is needed when the ire is added to 7918 * cache table. 7919 */ 7920 save_ire = ire; 7921 ihandle = save_ire->ire_ihandle; 7922 7923 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 7924 "flags %04x\n", 7925 (void *)ire, (void *)ipif, flags)); 7926 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7927 (fire->ire_flags & RTF_MULTIRT)) { 7928 /* 7929 * As requested by flags, an IRE_OFFSUBNET was 7930 * looked up on that interface. This ire has 7931 * RTF_MULTIRT flag, so the resolution loop will 7932 * be re-entered to resolve additional routes on 7933 * other interfaces. For that purpose, a copy of 7934 * the packet is performed at this point. 7935 */ 7936 fire->ire_last_used_time = lbolt; 7937 copy_mp = copymsg(first_mp); 7938 if (copy_mp) { 7939 MULTIRT_DEBUG_TAG(copy_mp); 7940 } 7941 } 7942 if ((flags & RTF_SETSRC) && (fire != NULL) && 7943 (fire->ire_flags & RTF_SETSRC)) { 7944 /* 7945 * As requested by flags, an IRE_OFFSUBET was 7946 * looked up on that interface. This ire has 7947 * RTF_SETSRC flag, so the source address of the 7948 * packet must be changed. 7949 */ 7950 ipha->ipha_src = fire->ire_src_addr; 7951 } 7952 } else { 7953 ASSERT((connp == NULL) || 7954 (connp->conn_xmit_if_ill != NULL) || 7955 (connp->conn_dontroute)); 7956 /* 7957 * The only ways we can come here are: 7958 * 1) IP_XMIT_IF socket option is set 7959 * 2) ICMP error message generated from 7960 * ip_mrtun_forward() routine and it needs 7961 * to go through the specified ill. 7962 * 3) SO_DONTROUTE socket option is set 7963 * In all cases, the new ire will not be added 7964 * into cache table. 7965 */ 7966 ire_marks |= IRE_MARK_NOADD; 7967 } 7968 7969 switch (ipif->ipif_net_type) { 7970 case IRE_IF_NORESOLVER: { 7971 /* We have what we need to build an IRE_CACHE. */ 7972 mblk_t *dlureq_mp; 7973 7974 /* 7975 * Create a new dlureq_mp with the 7976 * IP gateway address as destination address in the 7977 * DLPI hdr if the physical length is exactly 4 bytes. 7978 */ 7979 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7980 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 7981 dst_ill->ill_phys_addr_length, 7982 dst_ill->ill_sap, 7983 dst_ill->ill_sap_length); 7984 } else { 7985 /* use the value set in ip_ll_subnet_defaults */ 7986 dlureq_mp = ill_dlur_gen(NULL, 7987 dst_ill->ill_phys_addr_length, 7988 dst_ill->ill_sap, 7989 dst_ill->ill_sap_length); 7990 } 7991 7992 if (dlureq_mp == NULL) 7993 break; 7994 /* 7995 * The new ire inherits the IRE_OFFSUBNET flags 7996 * and source address, if this was requested. 7997 */ 7998 ire = ire_create( 7999 (uchar_t *)&dst, /* dest address */ 8000 (uchar_t *)&ip_g_all_ones, /* mask */ 8001 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8002 NULL, /* gateway address */ 8003 NULL, 8004 &ipif->ipif_mtu, 8005 NULL, /* Fast Path header */ 8006 dst_ill->ill_rq, /* recv-from queue */ 8007 dst_ill->ill_wq, /* send-to queue */ 8008 IRE_CACHE, 8009 dlureq_mp, 8010 src_ipif, 8011 NULL, 8012 (save_ire != NULL ? save_ire->ire_mask : 0), 8013 (fire != NULL) ? /* Parent handle */ 8014 fire->ire_phandle : 0, 8015 ihandle, /* Interface handle */ 8016 (fire != NULL) ? 8017 (fire->ire_flags & 8018 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8019 (save_ire == NULL ? &ire_uinfo_null : 8020 &save_ire->ire_uinfo)); 8021 8022 freeb(dlureq_mp); 8023 8024 if (ire == NULL) { 8025 if (save_ire != NULL) 8026 ire_refrele(save_ire); 8027 break; 8028 } 8029 8030 ire->ire_marks |= ire_marks; 8031 8032 /* Prevent save_ire from getting deleted */ 8033 if (save_ire != NULL) { 8034 IRB_REFHOLD(save_ire->ire_bucket); 8035 /* Has it been removed already ? */ 8036 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8037 IRB_REFRELE(save_ire->ire_bucket); 8038 ire_refrele(save_ire); 8039 break; 8040 } 8041 } 8042 8043 ire_add_then_send(q, ire, first_mp); 8044 8045 /* Assert that save_ire is not deleted yet. */ 8046 if (save_ire != NULL) { 8047 ASSERT(save_ire->ire_ptpn != NULL); 8048 IRB_REFRELE(save_ire->ire_bucket); 8049 ire_refrele(save_ire); 8050 save_ire = NULL; 8051 } 8052 if (fire != NULL) { 8053 ire_refrele(fire); 8054 fire = NULL; 8055 } 8056 8057 /* 8058 * the resolution loop is re-entered if this 8059 * was requested through flags and if we 8060 * actually are in a multirouting case. 8061 */ 8062 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8063 boolean_t need_resolve = 8064 ire_multirt_need_resolve(ipha_dst); 8065 if (!need_resolve) { 8066 MULTIRT_DEBUG_UNTAG(copy_mp); 8067 freemsg(copy_mp); 8068 copy_mp = NULL; 8069 } else { 8070 /* 8071 * ipif_lookup_group() calls 8072 * ire_lookup_multi() that uses 8073 * ire_ftable_lookup() to find 8074 * an IRE_INTERFACE for the group. 8075 * In the multirt case, 8076 * ire_lookup_multi() then invokes 8077 * ire_multirt_lookup() to find 8078 * the next resolvable ire. 8079 * As a result, we obtain an new 8080 * interface, derived from the 8081 * next ire. 8082 */ 8083 ipif_refrele(ipif); 8084 ipif = ipif_lookup_group(ipha_dst, 8085 zoneid); 8086 ip2dbg(("ip_newroute_ipif: " 8087 "multirt dst %08x, ipif %p\n", 8088 htonl(dst), (void *)ipif)); 8089 if (ipif != NULL) { 8090 mp = copy_mp; 8091 copy_mp = NULL; 8092 multirt_resolve_next = B_TRUE; 8093 continue; 8094 } else { 8095 freemsg(copy_mp); 8096 } 8097 } 8098 } 8099 if (ipif != NULL) 8100 ipif_refrele(ipif); 8101 ill_refrele(dst_ill); 8102 ipif_refrele(src_ipif); 8103 return; 8104 } 8105 case IRE_IF_RESOLVER: 8106 /* 8107 * We can't build an IRE_CACHE yet, but at least 8108 * we found a resolver that can help. 8109 */ 8110 res_mp = dst_ill->ill_resolver_mp; 8111 if (!OK_RESOLVER_MP(res_mp)) 8112 break; 8113 8114 /* 8115 * We obtain a partial IRE_CACHE which we will pass 8116 * along with the resolver query. When the response 8117 * comes back it will be there ready for us to add. 8118 * The new ire inherits the IRE_OFFSUBNET flags 8119 * and source address, if this was requested. 8120 * The ire_max_frag is atomically set under the 8121 * irebucket lock in ire_add_v[46]. Only in the 8122 * case of IRE_MARK_NOADD, we set it here itself. 8123 */ 8124 ire = ire_create_mp( 8125 (uchar_t *)&dst, /* dest address */ 8126 (uchar_t *)&ip_g_all_ones, /* mask */ 8127 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8128 NULL, /* gateway address */ 8129 NULL, /* no in_src_addr */ 8130 (ire_marks & IRE_MARK_NOADD) ? 8131 ipif->ipif_mtu : 0, /* max_frag */ 8132 NULL, /* Fast path header */ 8133 dst_ill->ill_rq, /* recv-from queue */ 8134 dst_ill->ill_wq, /* send-to queue */ 8135 IRE_CACHE, 8136 res_mp, 8137 src_ipif, 8138 NULL, 8139 (save_ire != NULL ? save_ire->ire_mask : 0), 8140 (fire != NULL) ? /* Parent handle */ 8141 fire->ire_phandle : 0, 8142 ihandle, /* Interface handle */ 8143 (fire != NULL) ? /* flags if any */ 8144 (fire->ire_flags & 8145 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8146 (save_ire == NULL ? &ire_uinfo_null : 8147 &save_ire->ire_uinfo)); 8148 8149 if (save_ire != NULL) { 8150 ire_refrele(save_ire); 8151 save_ire = NULL; 8152 } 8153 if (ire == NULL) 8154 break; 8155 8156 ire->ire_marks |= ire_marks; 8157 /* 8158 * Construct message chain for the resolver of the 8159 * form: 8160 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8161 * 8162 * NOTE : ire will be added later when the response 8163 * comes back from ARP. If the response does not 8164 * come back, ARP frees the packet. For this reason, 8165 * we can't REFHOLD the bucket of save_ire to prevent 8166 * deletions. We may not be able to REFRELE the 8167 * bucket if the response never comes back. 8168 * Thus, before adding the ire, ire_add_v4 will make 8169 * sure that the interface route does not get deleted. 8170 * This is the only case unlike ip_newroute_v6, 8171 * ip_newroute_ipif_v6 where we can always prevent 8172 * deletions because ire_add_then_send is called after 8173 * creating the IRE. 8174 * If IRE_MARK_NOADD is set, then ire_add_then_send 8175 * does not add this IRE into the IRE CACHE. 8176 */ 8177 ASSERT(ire->ire_mp != NULL); 8178 ire->ire_mp->b_cont = first_mp; 8179 /* Have saved_mp handy, for cleanup if canput fails */ 8180 saved_mp = mp; 8181 mp = ire->ire_dlureq_mp; 8182 ASSERT(mp != NULL); 8183 ire->ire_dlureq_mp = NULL; 8184 linkb(mp, ire->ire_mp); 8185 8186 /* 8187 * Fill in the source and dest addrs for the resolver. 8188 * NOTE: this depends on memory layouts imposed by 8189 * ill_init(). 8190 */ 8191 areq = (areq_t *)mp->b_rptr; 8192 addrp = (ipaddr_t *)((char *)areq + 8193 areq->areq_sender_addr_offset); 8194 *addrp = ire->ire_src_addr; 8195 addrp = (ipaddr_t *)((char *)areq + 8196 areq->areq_target_addr_offset); 8197 *addrp = dst; 8198 /* Up to the resolver. */ 8199 if (canputnext(dst_ill->ill_rq)) { 8200 putnext(dst_ill->ill_rq, mp); 8201 /* 8202 * The response will come back in ip_wput 8203 * with db_type IRE_DB_TYPE. 8204 */ 8205 } else { 8206 ire->ire_dlureq_mp = mp; 8207 mp->b_cont = NULL; 8208 ire_delete(ire); 8209 saved_mp->b_next = NULL; 8210 saved_mp->b_prev = NULL; 8211 freemsg(first_mp); 8212 ip2dbg(("ip_newroute_ipif: dropped\n")); 8213 } 8214 8215 if (fire != NULL) { 8216 ire_refrele(fire); 8217 fire = NULL; 8218 } 8219 8220 8221 /* 8222 * The resolution loop is re-entered if this was 8223 * requested through flags and we actually are 8224 * in a multirouting case. 8225 */ 8226 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8227 boolean_t need_resolve = 8228 ire_multirt_need_resolve(ipha_dst); 8229 if (!need_resolve) { 8230 MULTIRT_DEBUG_UNTAG(copy_mp); 8231 freemsg(copy_mp); 8232 copy_mp = NULL; 8233 } else { 8234 /* 8235 * ipif_lookup_group() calls 8236 * ire_lookup_multi() that uses 8237 * ire_ftable_lookup() to find 8238 * an IRE_INTERFACE for the group. 8239 * In the multirt case, 8240 * ire_lookup_multi() then invokes 8241 * ire_multirt_lookup() to find 8242 * the next resolvable ire. 8243 * As a result, we obtain an new 8244 * interface, derived from the 8245 * next ire. 8246 */ 8247 ipif_refrele(ipif); 8248 ipif = ipif_lookup_group(ipha_dst, 8249 zoneid); 8250 if (ipif != NULL) { 8251 mp = copy_mp; 8252 copy_mp = NULL; 8253 multirt_resolve_next = B_TRUE; 8254 continue; 8255 } else { 8256 freemsg(copy_mp); 8257 } 8258 } 8259 } 8260 if (ipif != NULL) 8261 ipif_refrele(ipif); 8262 ill_refrele(dst_ill); 8263 ipif_refrele(src_ipif); 8264 return; 8265 default: 8266 break; 8267 } 8268 } while (multirt_resolve_next); 8269 8270 err_ret: 8271 ip2dbg(("ip_newroute_ipif: dropped\n")); 8272 if (fire != NULL) 8273 ire_refrele(fire); 8274 ipif_refrele(ipif); 8275 /* Did this packet originate externally? */ 8276 if (dst_ill != NULL) 8277 ill_refrele(dst_ill); 8278 if (src_ipif != NULL) 8279 ipif_refrele(src_ipif); 8280 if (mp->b_prev || mp->b_next) { 8281 mp->b_next = NULL; 8282 mp->b_prev = NULL; 8283 } else { 8284 /* 8285 * Since ip_wput() isn't close to finished, we fill 8286 * in enough of the header for credible error reporting. 8287 */ 8288 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8289 /* Failed */ 8290 freemsg(first_mp); 8291 if (ire != NULL) 8292 ire_refrele(ire); 8293 return; 8294 } 8295 } 8296 /* 8297 * At this point we will have ire only if RTF_BLACKHOLE 8298 * or RTF_REJECT flags are set on the IRE. It will not 8299 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8300 */ 8301 if (ire != NULL) { 8302 if (ire->ire_flags & RTF_BLACKHOLE) { 8303 ire_refrele(ire); 8304 freemsg(first_mp); 8305 return; 8306 } 8307 ire_refrele(ire); 8308 } 8309 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8310 } 8311 8312 /* Name/Value Table Lookup Routine */ 8313 char * 8314 ip_nv_lookup(nv_t *nv, int value) 8315 { 8316 if (!nv) 8317 return (NULL); 8318 for (; nv->nv_name; nv++) { 8319 if (nv->nv_value == value) 8320 return (nv->nv_name); 8321 } 8322 return ("unknown"); 8323 } 8324 8325 /* 8326 * one day it can be patched to 1 from /etc/system for machines that have few 8327 * fast network interfaces feeding multiple cpus. 8328 */ 8329 int ill_stream_putlocks = 0; 8330 8331 /* 8332 * This is a module open, i.e. this is a control stream for access 8333 * to a DLPI device. We allocate an ill_t as the instance data in 8334 * this case. 8335 */ 8336 int 8337 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8338 { 8339 uint32_t mem_cnt; 8340 uint32_t cpu_cnt; 8341 uint32_t min_cnt; 8342 pgcnt_t mem_avail; 8343 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8344 ill_t *ill; 8345 int err; 8346 8347 /* 8348 * Prevent unprivileged processes from pushing IP so that 8349 * they can't send raw IP. 8350 */ 8351 if (secpolicy_net_rawaccess(credp) != 0) 8352 return (EPERM); 8353 8354 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8355 q->q_ptr = WR(q)->q_ptr = ill; 8356 8357 /* 8358 * ill_init initializes the ill fields and then sends down 8359 * down a DL_INFO_REQ after calling qprocson. 8360 */ 8361 err = ill_init(q, ill); 8362 if (err != 0) { 8363 mi_free(ill); 8364 q->q_ptr = NULL; 8365 WR(q)->q_ptr = NULL; 8366 return (err); 8367 } 8368 8369 /* ill_init initializes the ipsq marking this thread as writer */ 8370 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8371 /* Wait for the DL_INFO_ACK */ 8372 mutex_enter(&ill->ill_lock); 8373 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8374 /* 8375 * Return value of 0 indicates a pending signal. 8376 */ 8377 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8378 if (err == 0) { 8379 mutex_exit(&ill->ill_lock); 8380 (void) ip_close(q, 0); 8381 return (EINTR); 8382 } 8383 } 8384 mutex_exit(&ill->ill_lock); 8385 8386 /* 8387 * ip_rput_other could have set an error in ill_error on 8388 * receipt of M_ERROR. 8389 */ 8390 8391 err = ill->ill_error; 8392 if (err != 0) { 8393 (void) ip_close(q, 0); 8394 return (err); 8395 } 8396 8397 /* 8398 * ip_ire_max_bucket_cnt is sized below based on the memory 8399 * size and the cpu speed of the machine. This is upper 8400 * bounded by the compile time value of ip_ire_max_bucket_cnt 8401 * and is lower bounded by the compile time value of 8402 * ip_ire_min_bucket_cnt. Similar logic applies to 8403 * ip6_ire_max_bucket_cnt. 8404 */ 8405 mem_avail = kmem_avail(); 8406 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8407 ip_cache_table_size / sizeof (ire_t); 8408 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8409 8410 min_cnt = MIN(cpu_cnt, mem_cnt); 8411 if (min_cnt < ip_ire_min_bucket_cnt) 8412 min_cnt = ip_ire_min_bucket_cnt; 8413 if (ip_ire_max_bucket_cnt > min_cnt) { 8414 ip_ire_max_bucket_cnt = min_cnt; 8415 } 8416 8417 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8418 ip6_cache_table_size / sizeof (ire_t); 8419 min_cnt = MIN(cpu_cnt, mem_cnt); 8420 if (min_cnt < ip6_ire_min_bucket_cnt) 8421 min_cnt = ip6_ire_min_bucket_cnt; 8422 if (ip6_ire_max_bucket_cnt > min_cnt) { 8423 ip6_ire_max_bucket_cnt = min_cnt; 8424 } 8425 8426 ill->ill_credp = credp; 8427 crhold(credp); 8428 8429 mutex_enter(&ip_mi_lock); 8430 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8431 mutex_exit(&ip_mi_lock); 8432 if (err) { 8433 (void) ip_close(q, 0); 8434 return (err); 8435 } 8436 return (0); 8437 } 8438 8439 /* IP open routine. */ 8440 int 8441 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8442 { 8443 conn_t *connp; 8444 major_t maj; 8445 8446 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8447 8448 /* Allow reopen. */ 8449 if (q->q_ptr != NULL) 8450 return (0); 8451 8452 if (sflag & MODOPEN) { 8453 /* This is a module open */ 8454 return (ip_modopen(q, devp, flag, sflag, credp)); 8455 } 8456 8457 8458 /* 8459 * We are opening as a device. This is an IP client stream, and we 8460 * allocate an conn_t as the instance data. 8461 */ 8462 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8463 connp->conn_upq = q; 8464 q->q_ptr = WR(q)->q_ptr = connp; 8465 8466 /* Minor tells us which /dev entry was opened */ 8467 if (geteminor(*devp) == IPV6_MINOR) { 8468 connp->conn_flags |= IPCL_ISV6; 8469 connp->conn_af_isv6 = B_TRUE; 8470 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8471 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8472 } else { 8473 connp->conn_af_isv6 = B_FALSE; 8474 connp->conn_pkt_isv6 = B_FALSE; 8475 } 8476 8477 8478 if ((connp->conn_dev = 8479 inet_minor_alloc(ip_minor_arena)) == 0) { 8480 q->q_ptr = WR(q)->q_ptr = NULL; 8481 CONN_DEC_REF(connp); 8482 return (EBUSY); 8483 } 8484 8485 maj = getemajor(*devp); 8486 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8487 8488 /* 8489 * connp->conn_cred is crfree()ed in ip_close(). 8490 */ 8491 connp->conn_cred = credp; 8492 crhold(connp->conn_cred); 8493 8494 connp->conn_zoneid = getzoneid(); 8495 8496 /* 8497 * This should only happen for ndd, netstat, raw socket or other SCTP 8498 * administrative ops. In these cases, we just need a normal conn_t 8499 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8500 * an error will be returned. 8501 */ 8502 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8503 connp->conn_rq = q; 8504 connp->conn_wq = WR(q); 8505 } else { 8506 connp->conn_ulp = IPPROTO_SCTP; 8507 connp->conn_rq = connp->conn_wq = NULL; 8508 } 8509 /* Non-zero default values */ 8510 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8511 8512 /* 8513 * Make the conn globally visible to walkers 8514 */ 8515 mutex_enter(&connp->conn_lock); 8516 connp->conn_state_flags &= ~CONN_INCIPIENT; 8517 mutex_exit(&connp->conn_lock); 8518 ASSERT(connp->conn_ref == 1); 8519 8520 qprocson(q); 8521 8522 return (0); 8523 } 8524 8525 /* 8526 * Change q_qinfo based on the value of isv6. 8527 * This can not called on an ill queue. 8528 * Note that there is no race since either q_qinfo works for conn queues - it 8529 * is just an optimization to enter the best wput routine directly. 8530 */ 8531 void 8532 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8533 { 8534 ASSERT(q->q_flag & QREADR); 8535 ASSERT(WR(q)->q_next == NULL); 8536 ASSERT(q->q_ptr != NULL); 8537 8538 if (minor == IPV6_MINOR) { 8539 if (bump_mib) 8540 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8541 q->q_qinfo = &rinit_ipv6; 8542 WR(q)->q_qinfo = &winit_ipv6; 8543 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8544 } else { 8545 if (bump_mib) 8546 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8547 q->q_qinfo = &rinit; 8548 WR(q)->q_qinfo = &winit; 8549 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8550 } 8551 8552 } 8553 8554 /* 8555 * See if IPsec needs loading because of the options in mp. 8556 */ 8557 static boolean_t 8558 ipsec_opt_present(mblk_t *mp) 8559 { 8560 uint8_t *optcp, *next_optcp, *opt_endcp; 8561 struct opthdr *opt; 8562 struct T_opthdr *topt; 8563 int opthdr_len; 8564 t_uscalar_t optname, optlevel; 8565 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8566 ipsec_req_t *ipsr; 8567 8568 /* 8569 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8570 * return TRUE. 8571 */ 8572 8573 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8574 opt_endcp = optcp + tor->OPT_length; 8575 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8576 opthdr_len = sizeof (struct T_opthdr); 8577 } else { /* O_OPTMGMT_REQ */ 8578 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8579 opthdr_len = sizeof (struct opthdr); 8580 } 8581 for (; optcp < opt_endcp; optcp = next_optcp) { 8582 if (optcp + opthdr_len > opt_endcp) 8583 return (B_FALSE); /* Not enough option header. */ 8584 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8585 topt = (struct T_opthdr *)optcp; 8586 optlevel = topt->level; 8587 optname = topt->name; 8588 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8589 } else { 8590 opt = (struct opthdr *)optcp; 8591 optlevel = opt->level; 8592 optname = opt->name; 8593 next_optcp = optcp + opthdr_len + 8594 _TPI_ALIGN_OPT(opt->len); 8595 } 8596 if ((next_optcp < optcp) || /* wraparound pointer space */ 8597 ((next_optcp >= opt_endcp) && /* last option bad len */ 8598 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8599 return (B_FALSE); /* bad option buffer */ 8600 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8601 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8602 /* 8603 * Check to see if it's an all-bypass or all-zeroes 8604 * IPsec request. Don't bother loading IPsec if 8605 * the socket doesn't want to use it. (A good example 8606 * is a bypass request.) 8607 * 8608 * Basically, if any of the non-NEVER bits are set, 8609 * load IPsec. 8610 */ 8611 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8612 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8613 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8614 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8615 != 0) 8616 return (B_TRUE); 8617 } 8618 } 8619 return (B_FALSE); 8620 } 8621 8622 /* 8623 * If conn is is waiting for ipsec to finish loading, kick it. 8624 */ 8625 /* ARGSUSED */ 8626 static void 8627 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8628 { 8629 t_scalar_t optreq_prim; 8630 mblk_t *mp; 8631 cred_t *cr; 8632 int err = 0; 8633 8634 /* 8635 * This function is called, after ipsec loading is complete. 8636 * Since IP checks exclusively and atomically (i.e it prevents 8637 * ipsec load from completing until ip_optcom_req completes) 8638 * whether ipsec load is complete, there cannot be a race with IP 8639 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8640 */ 8641 mutex_enter(&connp->conn_lock); 8642 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8643 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8644 mp = connp->conn_ipsec_opt_mp; 8645 connp->conn_ipsec_opt_mp = NULL; 8646 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8647 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8648 mutex_exit(&connp->conn_lock); 8649 8650 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8651 8652 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8653 if (optreq_prim == T_OPTMGMT_REQ) { 8654 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8655 &ip_opt_obj); 8656 } else { 8657 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8658 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8659 &ip_opt_obj); 8660 } 8661 if (err != EINPROGRESS) 8662 CONN_OPER_PENDING_DONE(connp); 8663 return; 8664 } 8665 mutex_exit(&connp->conn_lock); 8666 } 8667 8668 /* 8669 * Called from the ipsec_loader thread, outside any perimeter, to tell 8670 * ip qenable any of the queues waiting for the ipsec loader to 8671 * complete. 8672 * 8673 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8674 * are done with this lock held, so it's guaranteed that none of the 8675 * links will change along the way. 8676 */ 8677 void 8678 ip_ipsec_load_complete() 8679 { 8680 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8681 } 8682 8683 /* 8684 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8685 * determines the grp on which it has to become exclusive, queues the mp 8686 * and sq draining restarts the optmgmt 8687 */ 8688 static boolean_t 8689 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8690 { 8691 conn_t *connp; 8692 8693 /* 8694 * Take IPsec requests and treat them special. 8695 */ 8696 if (ipsec_opt_present(mp)) { 8697 /* First check if IPsec is loaded. */ 8698 mutex_enter(&ipsec_loader_lock); 8699 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8700 mutex_exit(&ipsec_loader_lock); 8701 return (B_FALSE); 8702 } 8703 connp = Q_TO_CONN(q); 8704 mutex_enter(&connp->conn_lock); 8705 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8706 8707 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8708 connp->conn_ipsec_opt_mp = mp; 8709 mutex_exit(&connp->conn_lock); 8710 mutex_exit(&ipsec_loader_lock); 8711 8712 ipsec_loader_loadnow(); 8713 return (B_TRUE); 8714 } 8715 return (B_FALSE); 8716 } 8717 8718 /* 8719 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8720 * all of them are copied to the conn_t. If the req is "zero", the policy is 8721 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8722 * fields. 8723 * We keep only the latest setting of the policy and thus policy setting 8724 * is not incremental/cumulative. 8725 * 8726 * Requests to set policies with multiple alternative actions will 8727 * go through a different API. 8728 */ 8729 int 8730 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8731 { 8732 uint_t ah_req = 0; 8733 uint_t esp_req = 0; 8734 uint_t se_req = 0; 8735 ipsec_selkey_t sel; 8736 ipsec_act_t *actp = NULL; 8737 uint_t nact; 8738 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8739 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8740 ipsec_policy_root_t *pr; 8741 ipsec_policy_head_t *ph; 8742 int fam; 8743 boolean_t is_pol_reset; 8744 int error = 0; 8745 8746 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8747 8748 /* 8749 * The IP_SEC_OPT option does not allow variable length parameters, 8750 * hence a request cannot be NULL. 8751 */ 8752 if (req == NULL) 8753 return (EINVAL); 8754 8755 ah_req = req->ipsr_ah_req; 8756 esp_req = req->ipsr_esp_req; 8757 se_req = req->ipsr_self_encap_req; 8758 8759 /* 8760 * Are we dealing with a request to reset the policy (i.e. 8761 * zero requests). 8762 */ 8763 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8764 (esp_req & REQ_MASK) == 0 && 8765 (se_req & REQ_MASK) == 0); 8766 8767 if (!is_pol_reset) { 8768 /* 8769 * If we couldn't load IPsec, fail with "protocol 8770 * not supported". 8771 * IPsec may not have been loaded for a request with zero 8772 * policies, so we don't fail in this case. 8773 */ 8774 mutex_enter(&ipsec_loader_lock); 8775 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8776 mutex_exit(&ipsec_loader_lock); 8777 return (EPROTONOSUPPORT); 8778 } 8779 mutex_exit(&ipsec_loader_lock); 8780 8781 /* 8782 * Test for valid requests. Invalid algorithms 8783 * need to be tested by IPSEC code because new 8784 * algorithms can be added dynamically. 8785 */ 8786 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8787 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8788 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8789 return (EINVAL); 8790 } 8791 8792 /* 8793 * Only privileged users can issue these 8794 * requests. 8795 */ 8796 if (((ah_req & IPSEC_PREF_NEVER) || 8797 (esp_req & IPSEC_PREF_NEVER) || 8798 (se_req & IPSEC_PREF_NEVER)) && 8799 secpolicy_net_config(cr, B_FALSE) != 0) { 8800 return (EPERM); 8801 } 8802 8803 /* 8804 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 8805 * are mutually exclusive. 8806 */ 8807 if (((ah_req & REQ_MASK) == REQ_MASK) || 8808 ((esp_req & REQ_MASK) == REQ_MASK) || 8809 ((se_req & REQ_MASK) == REQ_MASK)) { 8810 /* Both of them are set */ 8811 return (EINVAL); 8812 } 8813 } 8814 8815 mutex_enter(&connp->conn_lock); 8816 8817 /* 8818 * If we have already cached policies in ip_bind_connected*(), don't 8819 * let them change now. We cache policies for connections 8820 * whose src,dst [addr, port] is known. The exception to this is 8821 * tunnels. Tunnels are allowed to change policies after having 8822 * become fully bound. 8823 */ 8824 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 8825 mutex_exit(&connp->conn_lock); 8826 return (EINVAL); 8827 } 8828 8829 /* 8830 * We have a zero policies, reset the connection policy if already 8831 * set. This will cause the connection to inherit the 8832 * global policy, if any. 8833 */ 8834 if (is_pol_reset) { 8835 if (connp->conn_policy != NULL) { 8836 IPPH_REFRELE(connp->conn_policy); 8837 connp->conn_policy = NULL; 8838 } 8839 connp->conn_flags &= ~IPCL_CHECK_POLICY; 8840 connp->conn_in_enforce_policy = B_FALSE; 8841 connp->conn_out_enforce_policy = B_FALSE; 8842 mutex_exit(&connp->conn_lock); 8843 return (0); 8844 } 8845 8846 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 8847 if (ph == NULL) 8848 goto enomem; 8849 8850 ipsec_actvec_from_req(req, &actp, &nact); 8851 if (actp == NULL) 8852 goto enomem; 8853 8854 /* 8855 * Always allocate IPv4 policy entries, since they can also 8856 * apply to ipv6 sockets being used in ipv4-compat mode. 8857 */ 8858 bzero(&sel, sizeof (sel)); 8859 sel.ipsl_valid = IPSL_IPV4; 8860 8861 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8862 if (pin4 == NULL) 8863 goto enomem; 8864 8865 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8866 if (pout4 == NULL) 8867 goto enomem; 8868 8869 if (connp->conn_pkt_isv6) { 8870 /* 8871 * We're looking at a v6 socket, also allocate the 8872 * v6-specific entries... 8873 */ 8874 sel.ipsl_valid = IPSL_IPV6; 8875 pin6 = ipsec_policy_create(&sel, actp, nact, 8876 IPSEC_PRIO_SOCKET); 8877 if (pin6 == NULL) 8878 goto enomem; 8879 8880 pout6 = ipsec_policy_create(&sel, actp, nact, 8881 IPSEC_PRIO_SOCKET); 8882 if (pout6 == NULL) 8883 goto enomem; 8884 8885 /* 8886 * .. and file them away in the right place. 8887 */ 8888 fam = IPSEC_AF_V6; 8889 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8890 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 8891 ipsec_insert_always(&ph->iph_rulebyid, pin6); 8892 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8893 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 8894 ipsec_insert_always(&ph->iph_rulebyid, pout6); 8895 } 8896 8897 ipsec_actvec_free(actp, nact); 8898 8899 /* 8900 * File the v4 policies. 8901 */ 8902 fam = IPSEC_AF_V4; 8903 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8904 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 8905 ipsec_insert_always(&ph->iph_rulebyid, pin4); 8906 8907 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8908 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 8909 ipsec_insert_always(&ph->iph_rulebyid, pout4); 8910 8911 /* 8912 * If the requests need security, set enforce_policy. 8913 * If the requests are IPSEC_PREF_NEVER, one should 8914 * still set conn_out_enforce_policy so that an ipsec_out 8915 * gets attached in ip_wput. This is needed so that 8916 * for connections that we don't cache policy in ip_bind, 8917 * if global policy matches in ip_wput_attach_policy, we 8918 * don't wrongly inherit global policy. Similarly, we need 8919 * to set conn_in_enforce_policy also so that we don't verify 8920 * policy wrongly. 8921 */ 8922 if ((ah_req & REQ_MASK) != 0 || 8923 (esp_req & REQ_MASK) != 0 || 8924 (se_req & REQ_MASK) != 0) { 8925 connp->conn_in_enforce_policy = B_TRUE; 8926 connp->conn_out_enforce_policy = B_TRUE; 8927 connp->conn_flags |= IPCL_CHECK_POLICY; 8928 } 8929 8930 /* 8931 * Tunnels are allowed to set policy after having been fully bound. 8932 * If that's the case, cache policy here. 8933 */ 8934 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 8935 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 8936 8937 mutex_exit(&connp->conn_lock); 8938 return (error); 8939 #undef REQ_MASK 8940 8941 /* 8942 * Common memory-allocation-failure exit path. 8943 */ 8944 enomem: 8945 mutex_exit(&connp->conn_lock); 8946 if (actp != NULL) 8947 ipsec_actvec_free(actp, nact); 8948 if (pin4 != NULL) 8949 IPPOL_REFRELE(pin4); 8950 if (pout4 != NULL) 8951 IPPOL_REFRELE(pout4); 8952 if (pin6 != NULL) 8953 IPPOL_REFRELE(pin6); 8954 if (pout6 != NULL) 8955 IPPOL_REFRELE(pout6); 8956 return (ENOMEM); 8957 } 8958 8959 /* 8960 * Only for options that pass in an IP addr. Currently only V4 options 8961 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 8962 * So this function assumes level is IPPROTO_IP 8963 */ 8964 int 8965 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 8966 mblk_t *first_mp) 8967 { 8968 ipif_t *ipif = NULL; 8969 int error; 8970 ill_t *ill; 8971 8972 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 8973 8974 if (addr != INADDR_ANY || checkonly) { 8975 ASSERT(connp != NULL); 8976 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 8977 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, &error); 8978 if (ipif == NULL) { 8979 if (error == EINPROGRESS) 8980 return (error); 8981 else if (option == IP_MULTICAST_IF) 8982 return (EHOSTUNREACH); 8983 else 8984 return (EINVAL); 8985 } else if (checkonly) { 8986 if (option == IP_MULTICAST_IF) { 8987 ill = ipif->ipif_ill; 8988 /* not supported by the virtual network iface */ 8989 if (IS_VNI(ill)) { 8990 ipif_refrele(ipif); 8991 return (EINVAL); 8992 } 8993 } 8994 ipif_refrele(ipif); 8995 return (0); 8996 } 8997 ill = ipif->ipif_ill; 8998 mutex_enter(&connp->conn_lock); 8999 mutex_enter(&ill->ill_lock); 9000 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9001 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9002 mutex_exit(&ill->ill_lock); 9003 mutex_exit(&connp->conn_lock); 9004 ipif_refrele(ipif); 9005 return (option == IP_MULTICAST_IF ? 9006 EHOSTUNREACH : EINVAL); 9007 } 9008 } else { 9009 mutex_enter(&connp->conn_lock); 9010 } 9011 9012 /* None of the options below are supported on the VNI */ 9013 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9014 mutex_exit(&ill->ill_lock); 9015 mutex_exit(&connp->conn_lock); 9016 ipif_refrele(ipif); 9017 return (EINVAL); 9018 } 9019 9020 switch (option) { 9021 case IP_DONTFAILOVER_IF: 9022 /* 9023 * This option is used by in.mpathd to ensure 9024 * that IPMP probe packets only go out on the 9025 * test interfaces. in.mpathd sets this option 9026 * on the non-failover interfaces. 9027 * For backward compatibility, this option 9028 * implicitly sets IP_MULTICAST_IF, as used 9029 * be done in bind(), so that ip_wput gets 9030 * this ipif to send mcast packets. 9031 */ 9032 if (ipif != NULL) { 9033 ASSERT(addr != INADDR_ANY); 9034 connp->conn_nofailover_ill = ipif->ipif_ill; 9035 connp->conn_multicast_ipif = ipif; 9036 } else { 9037 ASSERT(addr == INADDR_ANY); 9038 connp->conn_nofailover_ill = NULL; 9039 connp->conn_multicast_ipif = NULL; 9040 } 9041 break; 9042 9043 case IP_MULTICAST_IF: 9044 connp->conn_multicast_ipif = ipif; 9045 break; 9046 } 9047 9048 if (ipif != NULL) { 9049 mutex_exit(&ill->ill_lock); 9050 mutex_exit(&connp->conn_lock); 9051 ipif_refrele(ipif); 9052 return (0); 9053 } 9054 mutex_exit(&connp->conn_lock); 9055 /* We succeded in cleared the option */ 9056 return (0); 9057 } 9058 9059 /* 9060 * For options that pass in an ifindex specifying the ill. V6 options always 9061 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9062 */ 9063 int 9064 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9065 int level, int option, mblk_t *first_mp) 9066 { 9067 ill_t *ill = NULL; 9068 int error = 0; 9069 9070 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9071 if (ifindex != 0) { 9072 ASSERT(connp != NULL); 9073 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9074 first_mp, ip_restart_optmgmt, &error); 9075 if (ill != NULL) { 9076 if (checkonly) { 9077 /* not supported by the virtual network iface */ 9078 if (IS_VNI(ill)) { 9079 ill_refrele(ill); 9080 return (EINVAL); 9081 } 9082 ill_refrele(ill); 9083 return (0); 9084 } 9085 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9086 0, NULL)) { 9087 ill_refrele(ill); 9088 ill = NULL; 9089 mutex_enter(&connp->conn_lock); 9090 goto setit; 9091 } 9092 mutex_enter(&connp->conn_lock); 9093 mutex_enter(&ill->ill_lock); 9094 if (ill->ill_state_flags & ILL_CONDEMNED) { 9095 mutex_exit(&ill->ill_lock); 9096 mutex_exit(&connp->conn_lock); 9097 ill_refrele(ill); 9098 ill = NULL; 9099 mutex_enter(&connp->conn_lock); 9100 } 9101 goto setit; 9102 } else if (error == EINPROGRESS) { 9103 return (error); 9104 } else { 9105 error = 0; 9106 } 9107 } 9108 mutex_enter(&connp->conn_lock); 9109 setit: 9110 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9111 9112 /* 9113 * The options below assume that the ILL (if any) transmits and/or 9114 * receives traffic. Neither of which is true for the virtual network 9115 * interface, so fail setting these on a VNI. 9116 */ 9117 if (IS_VNI(ill)) { 9118 ASSERT(ill != NULL); 9119 mutex_exit(&ill->ill_lock); 9120 mutex_exit(&connp->conn_lock); 9121 ill_refrele(ill); 9122 return (EINVAL); 9123 } 9124 9125 if (level == IPPROTO_IP) { 9126 switch (option) { 9127 case IP_BOUND_IF: 9128 connp->conn_incoming_ill = ill; 9129 connp->conn_outgoing_ill = ill; 9130 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9131 0 : ifindex; 9132 break; 9133 9134 case IP_XMIT_IF: 9135 /* 9136 * Similar to IP_BOUND_IF, but this only 9137 * determines the outgoing interface for 9138 * unicast packets. Also no IRE_CACHE entry 9139 * is added for the destination of the 9140 * outgoing packets. This feature is needed 9141 * for mobile IP. 9142 */ 9143 connp->conn_xmit_if_ill = ill; 9144 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9145 0 : ifindex; 9146 break; 9147 9148 case IP_MULTICAST_IF: 9149 /* 9150 * This option is an internal special. The socket 9151 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9152 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9153 * specifies an ifindex and we try first on V6 ill's. 9154 * If we don't find one, we they try using on v4 ill's 9155 * intenally and we come here. 9156 */ 9157 if (!checkonly && ill != NULL) { 9158 ipif_t *ipif; 9159 ipif = ill->ill_ipif; 9160 9161 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9162 mutex_exit(&ill->ill_lock); 9163 mutex_exit(&connp->conn_lock); 9164 ill_refrele(ill); 9165 ill = NULL; 9166 mutex_enter(&connp->conn_lock); 9167 } else { 9168 connp->conn_multicast_ipif = ipif; 9169 } 9170 } 9171 break; 9172 } 9173 } else { 9174 switch (option) { 9175 case IPV6_BOUND_IF: 9176 connp->conn_incoming_ill = ill; 9177 connp->conn_outgoing_ill = ill; 9178 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9179 0 : ifindex; 9180 break; 9181 9182 case IPV6_BOUND_PIF: 9183 /* 9184 * Limit all transmit to this ill. 9185 * Unlike IPV6_BOUND_IF, using this option 9186 * prevents load spreading and failover from 9187 * happening when the interface is part of the 9188 * group. That's why we don't need to remember 9189 * the ifindex in orig_bound_ifindex as in 9190 * IPV6_BOUND_IF. 9191 */ 9192 connp->conn_outgoing_pill = ill; 9193 break; 9194 9195 case IPV6_DONTFAILOVER_IF: 9196 /* 9197 * This option is used by in.mpathd to ensure 9198 * that IPMP probe packets only go out on the 9199 * test interfaces. in.mpathd sets this option 9200 * on the non-failover interfaces. 9201 */ 9202 connp->conn_nofailover_ill = ill; 9203 /* 9204 * For backward compatibility, this option 9205 * implicitly sets ip_multicast_ill as used in 9206 * IP_MULTICAST_IF so that ip_wput gets 9207 * this ipif to send mcast packets. 9208 */ 9209 connp->conn_multicast_ill = ill; 9210 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9211 0 : ifindex; 9212 break; 9213 9214 case IPV6_MULTICAST_IF: 9215 /* 9216 * Set conn_multicast_ill to be the IPv6 ill. 9217 * Set conn_multicast_ipif to be an IPv4 ipif 9218 * for ifindex to make IPv4 mapped addresses 9219 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9220 * Even if no IPv6 ill exists for the ifindex 9221 * we need to check for an IPv4 ifindex in order 9222 * for this to work with mapped addresses. In that 9223 * case only set conn_multicast_ipif. 9224 */ 9225 if (!checkonly) { 9226 if (ifindex == 0) { 9227 connp->conn_multicast_ill = NULL; 9228 connp->conn_orig_multicast_ifindex = 0; 9229 connp->conn_multicast_ipif = NULL; 9230 } else if (ill != NULL) { 9231 connp->conn_multicast_ill = ill; 9232 connp->conn_orig_multicast_ifindex = 9233 ifindex; 9234 } 9235 } 9236 break; 9237 } 9238 } 9239 9240 if (ill != NULL) { 9241 mutex_exit(&ill->ill_lock); 9242 mutex_exit(&connp->conn_lock); 9243 ill_refrele(ill); 9244 return (0); 9245 } 9246 mutex_exit(&connp->conn_lock); 9247 /* 9248 * We succeeded in clearing the option (ifindex == 0) or failed to 9249 * locate the ill and could not set the option (ifindex != 0) 9250 */ 9251 return (ifindex == 0 ? 0 : EINVAL); 9252 } 9253 9254 /* This routine sets socket options. */ 9255 /* ARGSUSED */ 9256 int 9257 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9258 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9259 void *dummy, cred_t *cr, mblk_t *first_mp) 9260 { 9261 int *i1 = (int *)invalp; 9262 conn_t *connp = Q_TO_CONN(q); 9263 int error = 0; 9264 boolean_t checkonly; 9265 ire_t *ire; 9266 boolean_t found; 9267 9268 switch (optset_context) { 9269 9270 case SETFN_OPTCOM_CHECKONLY: 9271 checkonly = B_TRUE; 9272 /* 9273 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9274 * inlen != 0 implies value supplied and 9275 * we have to "pretend" to set it. 9276 * inlen == 0 implies that there is no 9277 * value part in T_CHECK request and just validation 9278 * done elsewhere should be enough, we just return here. 9279 */ 9280 if (inlen == 0) { 9281 *outlenp = 0; 9282 return (0); 9283 } 9284 break; 9285 case SETFN_OPTCOM_NEGOTIATE: 9286 case SETFN_UD_NEGOTIATE: 9287 case SETFN_CONN_NEGOTIATE: 9288 checkonly = B_FALSE; 9289 break; 9290 default: 9291 /* 9292 * We should never get here 9293 */ 9294 *outlenp = 0; 9295 return (EINVAL); 9296 } 9297 9298 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9299 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9300 9301 /* 9302 * For fixed length options, no sanity check 9303 * of passed in length is done. It is assumed *_optcom_req() 9304 * routines do the right thing. 9305 */ 9306 9307 switch (level) { 9308 case SOL_SOCKET: 9309 /* 9310 * conn_lock protects the bitfields, and is used to 9311 * set the fields atomically. 9312 */ 9313 switch (name) { 9314 case SO_BROADCAST: 9315 if (!checkonly) { 9316 /* TODO: use value someplace? */ 9317 mutex_enter(&connp->conn_lock); 9318 connp->conn_broadcast = *i1 ? 1 : 0; 9319 mutex_exit(&connp->conn_lock); 9320 } 9321 break; /* goto sizeof (int) option return */ 9322 case SO_USELOOPBACK: 9323 if (!checkonly) { 9324 /* TODO: use value someplace? */ 9325 mutex_enter(&connp->conn_lock); 9326 connp->conn_loopback = *i1 ? 1 : 0; 9327 mutex_exit(&connp->conn_lock); 9328 } 9329 break; /* goto sizeof (int) option return */ 9330 case SO_DONTROUTE: 9331 if (!checkonly) { 9332 mutex_enter(&connp->conn_lock); 9333 connp->conn_dontroute = *i1 ? 1 : 0; 9334 mutex_exit(&connp->conn_lock); 9335 } 9336 break; /* goto sizeof (int) option return */ 9337 case SO_REUSEADDR: 9338 if (!checkonly) { 9339 mutex_enter(&connp->conn_lock); 9340 connp->conn_reuseaddr = *i1 ? 1 : 0; 9341 mutex_exit(&connp->conn_lock); 9342 } 9343 break; /* goto sizeof (int) option return */ 9344 case SO_PROTOTYPE: 9345 if (!checkonly) { 9346 mutex_enter(&connp->conn_lock); 9347 connp->conn_proto = *i1; 9348 mutex_exit(&connp->conn_lock); 9349 } 9350 break; /* goto sizeof (int) option return */ 9351 default: 9352 /* 9353 * "soft" error (negative) 9354 * option not handled at this level 9355 * Note: Do not modify *outlenp 9356 */ 9357 return (-EINVAL); 9358 } 9359 break; 9360 case IPPROTO_IP: 9361 switch (name) { 9362 case IP_MULTICAST_IF: 9363 case IP_DONTFAILOVER_IF: { 9364 ipaddr_t addr = *i1; 9365 9366 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9367 first_mp); 9368 if (error != 0) 9369 return (error); 9370 break; /* goto sizeof (int) option return */ 9371 } 9372 9373 case IP_MULTICAST_TTL: 9374 /* Recorded in transport above IP */ 9375 *outvalp = *invalp; 9376 *outlenp = sizeof (uchar_t); 9377 return (0); 9378 case IP_MULTICAST_LOOP: 9379 if (!checkonly) { 9380 mutex_enter(&connp->conn_lock); 9381 connp->conn_multicast_loop = *invalp ? 1 : 0; 9382 mutex_exit(&connp->conn_lock); 9383 } 9384 *outvalp = *invalp; 9385 *outlenp = sizeof (uchar_t); 9386 return (0); 9387 case IP_ADD_MEMBERSHIP: 9388 case MCAST_JOIN_GROUP: 9389 case IP_DROP_MEMBERSHIP: 9390 case MCAST_LEAVE_GROUP: { 9391 struct ip_mreq *mreqp; 9392 struct group_req *greqp; 9393 ire_t *ire; 9394 boolean_t done = B_FALSE; 9395 ipaddr_t group, ifaddr; 9396 struct sockaddr_in *sin; 9397 uint32_t *ifindexp; 9398 boolean_t mcast_opt = B_TRUE; 9399 mcast_record_t fmode; 9400 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9401 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9402 9403 switch (name) { 9404 case IP_ADD_MEMBERSHIP: 9405 mcast_opt = B_FALSE; 9406 /* FALLTHRU */ 9407 case MCAST_JOIN_GROUP: 9408 fmode = MODE_IS_EXCLUDE; 9409 optfn = ip_opt_add_group; 9410 break; 9411 9412 case IP_DROP_MEMBERSHIP: 9413 mcast_opt = B_FALSE; 9414 /* FALLTHRU */ 9415 case MCAST_LEAVE_GROUP: 9416 fmode = MODE_IS_INCLUDE; 9417 optfn = ip_opt_delete_group; 9418 break; 9419 } 9420 9421 if (mcast_opt) { 9422 greqp = (struct group_req *)i1; 9423 sin = (struct sockaddr_in *)&greqp->gr_group; 9424 if (sin->sin_family != AF_INET) { 9425 *outlenp = 0; 9426 return (ENOPROTOOPT); 9427 } 9428 group = (ipaddr_t)sin->sin_addr.s_addr; 9429 ifaddr = INADDR_ANY; 9430 ifindexp = &greqp->gr_interface; 9431 } else { 9432 mreqp = (struct ip_mreq *)i1; 9433 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9434 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9435 ifindexp = NULL; 9436 } 9437 9438 /* 9439 * In the multirouting case, we need to replicate 9440 * the request on all interfaces that will take part 9441 * in replication. We do so because multirouting is 9442 * reflective, thus we will probably receive multi- 9443 * casts on those interfaces. 9444 * The ip_multirt_apply_membership() succeeds if the 9445 * operation succeeds on at least one interface. 9446 */ 9447 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9448 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9449 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9450 if (ire != NULL) { 9451 if (ire->ire_flags & RTF_MULTIRT) { 9452 error = ip_multirt_apply_membership( 9453 optfn, ire, connp, checkonly, group, 9454 fmode, INADDR_ANY, first_mp); 9455 done = B_TRUE; 9456 } 9457 ire_refrele(ire); 9458 } 9459 if (!done) { 9460 error = optfn(connp, checkonly, group, ifaddr, 9461 ifindexp, fmode, INADDR_ANY, first_mp); 9462 } 9463 if (error) { 9464 /* 9465 * EINPROGRESS is a soft error, needs retry 9466 * so don't make *outlenp zero. 9467 */ 9468 if (error != EINPROGRESS) 9469 *outlenp = 0; 9470 return (error); 9471 } 9472 /* OK return - copy input buffer into output buffer */ 9473 if (invalp != outvalp) { 9474 /* don't trust bcopy for identical src/dst */ 9475 bcopy(invalp, outvalp, inlen); 9476 } 9477 *outlenp = inlen; 9478 return (0); 9479 } 9480 case IP_BLOCK_SOURCE: 9481 case IP_UNBLOCK_SOURCE: 9482 case IP_ADD_SOURCE_MEMBERSHIP: 9483 case IP_DROP_SOURCE_MEMBERSHIP: 9484 case MCAST_BLOCK_SOURCE: 9485 case MCAST_UNBLOCK_SOURCE: 9486 case MCAST_JOIN_SOURCE_GROUP: 9487 case MCAST_LEAVE_SOURCE_GROUP: { 9488 struct ip_mreq_source *imreqp; 9489 struct group_source_req *gsreqp; 9490 in_addr_t grp, src, ifaddr = INADDR_ANY; 9491 uint32_t ifindex = 0; 9492 mcast_record_t fmode; 9493 struct sockaddr_in *sin; 9494 ire_t *ire; 9495 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9496 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9497 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9498 9499 switch (name) { 9500 case IP_BLOCK_SOURCE: 9501 mcast_opt = B_FALSE; 9502 /* FALLTHRU */ 9503 case MCAST_BLOCK_SOURCE: 9504 fmode = MODE_IS_EXCLUDE; 9505 optfn = ip_opt_add_group; 9506 break; 9507 9508 case IP_UNBLOCK_SOURCE: 9509 mcast_opt = B_FALSE; 9510 /* FALLTHRU */ 9511 case MCAST_UNBLOCK_SOURCE: 9512 fmode = MODE_IS_EXCLUDE; 9513 optfn = ip_opt_delete_group; 9514 break; 9515 9516 case IP_ADD_SOURCE_MEMBERSHIP: 9517 mcast_opt = B_FALSE; 9518 /* FALLTHRU */ 9519 case MCAST_JOIN_SOURCE_GROUP: 9520 fmode = MODE_IS_INCLUDE; 9521 optfn = ip_opt_add_group; 9522 break; 9523 9524 case IP_DROP_SOURCE_MEMBERSHIP: 9525 mcast_opt = B_FALSE; 9526 /* FALLTHRU */ 9527 case MCAST_LEAVE_SOURCE_GROUP: 9528 fmode = MODE_IS_INCLUDE; 9529 optfn = ip_opt_delete_group; 9530 break; 9531 } 9532 9533 if (mcast_opt) { 9534 gsreqp = (struct group_source_req *)i1; 9535 if (gsreqp->gsr_group.ss_family != AF_INET) { 9536 *outlenp = 0; 9537 return (ENOPROTOOPT); 9538 } 9539 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9540 grp = (ipaddr_t)sin->sin_addr.s_addr; 9541 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9542 src = (ipaddr_t)sin->sin_addr.s_addr; 9543 ifindex = gsreqp->gsr_interface; 9544 } else { 9545 imreqp = (struct ip_mreq_source *)i1; 9546 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9547 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9548 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9549 } 9550 9551 /* 9552 * In the multirouting case, we need to replicate 9553 * the request as noted in the mcast cases above. 9554 */ 9555 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9556 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9557 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9558 if (ire != NULL) { 9559 if (ire->ire_flags & RTF_MULTIRT) { 9560 error = ip_multirt_apply_membership( 9561 optfn, ire, connp, checkonly, grp, 9562 fmode, src, first_mp); 9563 done = B_TRUE; 9564 } 9565 ire_refrele(ire); 9566 } 9567 if (!done) { 9568 error = optfn(connp, checkonly, grp, ifaddr, 9569 &ifindex, fmode, src, first_mp); 9570 } 9571 if (error != 0) { 9572 /* 9573 * EINPROGRESS is a soft error, needs retry 9574 * so don't make *outlenp zero. 9575 */ 9576 if (error != EINPROGRESS) 9577 *outlenp = 0; 9578 return (error); 9579 } 9580 /* OK return - copy input buffer into output buffer */ 9581 if (invalp != outvalp) { 9582 bcopy(invalp, outvalp, inlen); 9583 } 9584 *outlenp = inlen; 9585 return (0); 9586 } 9587 case IP_SEC_OPT: 9588 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9589 if (error != 0) { 9590 *outlenp = 0; 9591 return (error); 9592 } 9593 break; 9594 case IP_HDRINCL: 9595 case IP_OPTIONS: 9596 case T_IP_OPTIONS: 9597 case IP_TOS: 9598 case T_IP_TOS: 9599 case IP_TTL: 9600 case IP_RECVDSTADDR: 9601 case IP_RECVOPTS: 9602 /* OK return - copy input buffer into output buffer */ 9603 if (invalp != outvalp) { 9604 /* don't trust bcopy for identical src/dst */ 9605 bcopy(invalp, outvalp, inlen); 9606 } 9607 *outlenp = inlen; 9608 return (0); 9609 case IP_RECVIF: 9610 /* Retrieve the inbound interface index */ 9611 if (!checkonly) { 9612 mutex_enter(&connp->conn_lock); 9613 connp->conn_recvif = *i1 ? 1 : 0; 9614 mutex_exit(&connp->conn_lock); 9615 } 9616 break; /* goto sizeof (int) option return */ 9617 case IP_RECVSLLA: 9618 /* Retrieve the source link layer address */ 9619 if (!checkonly) { 9620 mutex_enter(&connp->conn_lock); 9621 connp->conn_recvslla = *i1 ? 1 : 0; 9622 mutex_exit(&connp->conn_lock); 9623 } 9624 break; /* goto sizeof (int) option return */ 9625 case MRT_INIT: 9626 case MRT_DONE: 9627 case MRT_ADD_VIF: 9628 case MRT_DEL_VIF: 9629 case MRT_ADD_MFC: 9630 case MRT_DEL_MFC: 9631 case MRT_ASSERT: 9632 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9633 *outlenp = 0; 9634 return (error); 9635 } 9636 error = ip_mrouter_set((int)name, q, checkonly, 9637 (uchar_t *)invalp, inlen, first_mp); 9638 if (error) { 9639 *outlenp = 0; 9640 return (error); 9641 } 9642 /* OK return - copy input buffer into output buffer */ 9643 if (invalp != outvalp) { 9644 /* don't trust bcopy for identical src/dst */ 9645 bcopy(invalp, outvalp, inlen); 9646 } 9647 *outlenp = inlen; 9648 return (0); 9649 case IP_BOUND_IF: 9650 case IP_XMIT_IF: 9651 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9652 level, name, first_mp); 9653 if (error != 0) 9654 return (error); 9655 break; /* goto sizeof (int) option return */ 9656 9657 case IP_UNSPEC_SRC: 9658 /* Allow sending with a zero source address */ 9659 if (!checkonly) { 9660 mutex_enter(&connp->conn_lock); 9661 connp->conn_unspec_src = *i1 ? 1 : 0; 9662 mutex_exit(&connp->conn_lock); 9663 } 9664 break; /* goto sizeof (int) option return */ 9665 default: 9666 /* 9667 * "soft" error (negative) 9668 * option not handled at this level 9669 * Note: Do not modify *outlenp 9670 */ 9671 return (-EINVAL); 9672 } 9673 break; 9674 case IPPROTO_IPV6: 9675 switch (name) { 9676 case IPV6_BOUND_IF: 9677 case IPV6_BOUND_PIF: 9678 case IPV6_DONTFAILOVER_IF: 9679 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9680 level, name, first_mp); 9681 if (error != 0) 9682 return (error); 9683 break; /* goto sizeof (int) option return */ 9684 9685 case IPV6_MULTICAST_IF: 9686 /* 9687 * The only possible errors are EINPROGRESS and 9688 * EINVAL. EINPROGRESS will be restarted and is not 9689 * a hard error. We call this option on both V4 and V6 9690 * If both return EINVAL, then this call returns 9691 * EINVAL. If at least one of them succeeds we 9692 * return success. 9693 */ 9694 found = B_FALSE; 9695 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9696 level, name, first_mp); 9697 if (error == EINPROGRESS) 9698 return (error); 9699 if (error == 0) 9700 found = B_TRUE; 9701 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9702 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9703 if (error == 0) 9704 found = B_TRUE; 9705 if (!found) 9706 return (error); 9707 break; /* goto sizeof (int) option return */ 9708 9709 case IPV6_MULTICAST_HOPS: 9710 /* Recorded in transport above IP */ 9711 break; /* goto sizeof (int) option return */ 9712 case IPV6_MULTICAST_LOOP: 9713 if (!checkonly) { 9714 mutex_enter(&connp->conn_lock); 9715 connp->conn_multicast_loop = *i1; 9716 mutex_exit(&connp->conn_lock); 9717 } 9718 break; /* goto sizeof (int) option return */ 9719 case IPV6_JOIN_GROUP: 9720 case MCAST_JOIN_GROUP: 9721 case IPV6_LEAVE_GROUP: 9722 case MCAST_LEAVE_GROUP: { 9723 struct ipv6_mreq *ip_mreqp; 9724 struct group_req *greqp; 9725 ire_t *ire; 9726 boolean_t done = B_FALSE; 9727 in6_addr_t groupv6; 9728 uint32_t ifindex; 9729 boolean_t mcast_opt = B_TRUE; 9730 mcast_record_t fmode; 9731 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9732 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9733 9734 switch (name) { 9735 case IPV6_JOIN_GROUP: 9736 mcast_opt = B_FALSE; 9737 /* FALLTHRU */ 9738 case MCAST_JOIN_GROUP: 9739 fmode = MODE_IS_EXCLUDE; 9740 optfn = ip_opt_add_group_v6; 9741 break; 9742 9743 case IPV6_LEAVE_GROUP: 9744 mcast_opt = B_FALSE; 9745 /* FALLTHRU */ 9746 case MCAST_LEAVE_GROUP: 9747 fmode = MODE_IS_INCLUDE; 9748 optfn = ip_opt_delete_group_v6; 9749 break; 9750 } 9751 9752 if (mcast_opt) { 9753 struct sockaddr_in *sin; 9754 struct sockaddr_in6 *sin6; 9755 greqp = (struct group_req *)i1; 9756 if (greqp->gr_group.ss_family == AF_INET) { 9757 sin = (struct sockaddr_in *) 9758 &(greqp->gr_group); 9759 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9760 &groupv6); 9761 } else { 9762 sin6 = (struct sockaddr_in6 *) 9763 &(greqp->gr_group); 9764 groupv6 = sin6->sin6_addr; 9765 } 9766 ifindex = greqp->gr_interface; 9767 } else { 9768 ip_mreqp = (struct ipv6_mreq *)i1; 9769 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9770 ifindex = ip_mreqp->ipv6mr_interface; 9771 } 9772 /* 9773 * In the multirouting case, we need to replicate 9774 * the request on all interfaces that will take part 9775 * in replication. We do so because multirouting is 9776 * reflective, thus we will probably receive multi- 9777 * casts on those interfaces. 9778 * The ip_multirt_apply_membership_v6() succeeds if 9779 * the operation succeeds on at least one interface. 9780 */ 9781 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9782 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9783 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9784 if (ire != NULL) { 9785 if (ire->ire_flags & RTF_MULTIRT) { 9786 error = ip_multirt_apply_membership_v6( 9787 optfn, ire, connp, checkonly, 9788 &groupv6, fmode, &ipv6_all_zeros, 9789 first_mp); 9790 done = B_TRUE; 9791 } 9792 ire_refrele(ire); 9793 } 9794 if (!done) { 9795 error = optfn(connp, checkonly, &groupv6, 9796 ifindex, fmode, &ipv6_all_zeros, first_mp); 9797 } 9798 if (error) { 9799 /* 9800 * EINPROGRESS is a soft error, needs retry 9801 * so don't make *outlenp zero. 9802 */ 9803 if (error != EINPROGRESS) 9804 *outlenp = 0; 9805 return (error); 9806 } 9807 /* OK return - copy input buffer into output buffer */ 9808 if (invalp != outvalp) { 9809 /* don't trust bcopy for identical src/dst */ 9810 bcopy(invalp, outvalp, inlen); 9811 } 9812 *outlenp = inlen; 9813 return (0); 9814 } 9815 case MCAST_BLOCK_SOURCE: 9816 case MCAST_UNBLOCK_SOURCE: 9817 case MCAST_JOIN_SOURCE_GROUP: 9818 case MCAST_LEAVE_SOURCE_GROUP: { 9819 struct group_source_req *gsreqp; 9820 in6_addr_t v6grp, v6src; 9821 uint32_t ifindex; 9822 mcast_record_t fmode; 9823 ire_t *ire; 9824 boolean_t done = B_FALSE; 9825 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9826 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9827 9828 switch (name) { 9829 case MCAST_BLOCK_SOURCE: 9830 fmode = MODE_IS_EXCLUDE; 9831 optfn = ip_opt_add_group_v6; 9832 break; 9833 case MCAST_UNBLOCK_SOURCE: 9834 fmode = MODE_IS_EXCLUDE; 9835 optfn = ip_opt_delete_group_v6; 9836 break; 9837 case MCAST_JOIN_SOURCE_GROUP: 9838 fmode = MODE_IS_INCLUDE; 9839 optfn = ip_opt_add_group_v6; 9840 break; 9841 case MCAST_LEAVE_SOURCE_GROUP: 9842 fmode = MODE_IS_INCLUDE; 9843 optfn = ip_opt_delete_group_v6; 9844 break; 9845 } 9846 9847 gsreqp = (struct group_source_req *)i1; 9848 ifindex = gsreqp->gsr_interface; 9849 if (gsreqp->gsr_group.ss_family == AF_INET) { 9850 struct sockaddr_in *s; 9851 s = (struct sockaddr_in *)&gsreqp->gsr_group; 9852 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 9853 s = (struct sockaddr_in *)&gsreqp->gsr_source; 9854 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 9855 } else { 9856 struct sockaddr_in6 *s6; 9857 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 9858 v6grp = s6->sin6_addr; 9859 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 9860 v6src = s6->sin6_addr; 9861 } 9862 9863 /* 9864 * In the multirouting case, we need to replicate 9865 * the request as noted in the mcast cases above. 9866 */ 9867 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 9868 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9869 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9870 if (ire != NULL) { 9871 if (ire->ire_flags & RTF_MULTIRT) { 9872 error = ip_multirt_apply_membership_v6( 9873 optfn, ire, connp, checkonly, 9874 &v6grp, fmode, &v6src, first_mp); 9875 done = B_TRUE; 9876 } 9877 ire_refrele(ire); 9878 } 9879 if (!done) { 9880 error = optfn(connp, checkonly, &v6grp, 9881 ifindex, fmode, &v6src, first_mp); 9882 } 9883 if (error != 0) { 9884 /* 9885 * EINPROGRESS is a soft error, needs retry 9886 * so don't make *outlenp zero. 9887 */ 9888 if (error != EINPROGRESS) 9889 *outlenp = 0; 9890 return (error); 9891 } 9892 /* OK return - copy input buffer into output buffer */ 9893 if (invalp != outvalp) { 9894 bcopy(invalp, outvalp, inlen); 9895 } 9896 *outlenp = inlen; 9897 return (0); 9898 } 9899 case IPV6_UNICAST_HOPS: 9900 /* Recorded in transport above IP */ 9901 break; /* goto sizeof (int) option return */ 9902 case IPV6_UNSPEC_SRC: 9903 /* Allow sending with a zero source address */ 9904 if (!checkonly) { 9905 mutex_enter(&connp->conn_lock); 9906 connp->conn_unspec_src = *i1 ? 1 : 0; 9907 mutex_exit(&connp->conn_lock); 9908 } 9909 break; /* goto sizeof (int) option return */ 9910 case IPV6_RECVPKTINFO: 9911 if (!checkonly) { 9912 mutex_enter(&connp->conn_lock); 9913 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 9914 mutex_exit(&connp->conn_lock); 9915 } 9916 break; /* goto sizeof (int) option return */ 9917 case IPV6_RECVTCLASS: 9918 if (!checkonly) { 9919 if (*i1 < 0 || *i1 > 1) { 9920 return (EINVAL); 9921 } 9922 mutex_enter(&connp->conn_lock); 9923 connp->conn_ipv6_recvtclass = *i1; 9924 mutex_exit(&connp->conn_lock); 9925 } 9926 break; 9927 case IPV6_RECVPATHMTU: 9928 if (!checkonly) { 9929 if (*i1 < 0 || *i1 > 1) { 9930 return (EINVAL); 9931 } 9932 mutex_enter(&connp->conn_lock); 9933 connp->conn_ipv6_recvpathmtu = *i1; 9934 mutex_exit(&connp->conn_lock); 9935 } 9936 break; 9937 case IPV6_RECVHOPLIMIT: 9938 if (!checkonly) { 9939 mutex_enter(&connp->conn_lock); 9940 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 9941 mutex_exit(&connp->conn_lock); 9942 } 9943 break; /* goto sizeof (int) option return */ 9944 case IPV6_RECVHOPOPTS: 9945 if (!checkonly) { 9946 mutex_enter(&connp->conn_lock); 9947 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 9948 mutex_exit(&connp->conn_lock); 9949 } 9950 break; /* goto sizeof (int) option return */ 9951 case IPV6_RECVDSTOPTS: 9952 if (!checkonly) { 9953 mutex_enter(&connp->conn_lock); 9954 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 9955 mutex_exit(&connp->conn_lock); 9956 } 9957 break; /* goto sizeof (int) option return */ 9958 case IPV6_RECVRTHDR: 9959 if (!checkonly) { 9960 mutex_enter(&connp->conn_lock); 9961 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 9962 mutex_exit(&connp->conn_lock); 9963 } 9964 break; /* goto sizeof (int) option return */ 9965 case IPV6_RECVRTHDRDSTOPTS: 9966 if (!checkonly) { 9967 mutex_enter(&connp->conn_lock); 9968 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 9969 mutex_exit(&connp->conn_lock); 9970 } 9971 break; /* goto sizeof (int) option return */ 9972 case IPV6_PKTINFO: 9973 if (inlen == 0) 9974 return (-EINVAL); /* clearing option */ 9975 error = ip6_set_pktinfo(cr, connp, 9976 (struct in6_pktinfo *)invalp, first_mp); 9977 if (error != 0) 9978 *outlenp = 0; 9979 else 9980 *outlenp = inlen; 9981 return (error); 9982 case IPV6_NEXTHOP: { 9983 struct sockaddr_in6 *sin6; 9984 9985 /* Verify that the nexthop is reachable */ 9986 if (inlen == 0) 9987 return (-EINVAL); /* clearing option */ 9988 9989 sin6 = (struct sockaddr_in6 *)invalp; 9990 ire = ire_route_lookup_v6(&sin6->sin6_addr, 9991 0, 0, 0, NULL, NULL, connp->conn_zoneid, 9992 MATCH_IRE_DEFAULT); 9993 9994 if (ire == NULL) { 9995 *outlenp = 0; 9996 return (EHOSTUNREACH); 9997 } 9998 ire_refrele(ire); 9999 return (-EINVAL); 10000 } 10001 case IPV6_SEC_OPT: 10002 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10003 if (error != 0) { 10004 *outlenp = 0; 10005 return (error); 10006 } 10007 break; 10008 case IPV6_SRC_PREFERENCES: { 10009 /* 10010 * This is implemented strictly in the ip module 10011 * (here and in tcp_opt_*() to accomodate tcp 10012 * sockets). Modules above ip pass this option 10013 * down here since ip is the only one that needs to 10014 * be aware of source address preferences. 10015 * 10016 * This socket option only affects connected 10017 * sockets that haven't already bound to a specific 10018 * IPv6 address. In other words, sockets that 10019 * don't call bind() with an address other than the 10020 * unspecified address and that call connect(). 10021 * ip_bind_connected_v6() passes these preferences 10022 * to the ipif_select_source_v6() function. 10023 */ 10024 if (inlen != sizeof (uint32_t)) 10025 return (EINVAL); 10026 error = ip6_set_src_preferences(connp, 10027 *(uint32_t *)invalp); 10028 if (error != 0) { 10029 *outlenp = 0; 10030 return (error); 10031 } else { 10032 *outlenp = sizeof (uint32_t); 10033 } 10034 break; 10035 } 10036 case IPV6_V6ONLY: 10037 if (*i1 < 0 || *i1 > 1) { 10038 return (EINVAL); 10039 } 10040 mutex_enter(&connp->conn_lock); 10041 connp->conn_ipv6_v6only = *i1; 10042 mutex_exit(&connp->conn_lock); 10043 break; 10044 default: 10045 return (-EINVAL); 10046 } 10047 break; 10048 default: 10049 /* 10050 * "soft" error (negative) 10051 * option not handled at this level 10052 * Note: Do not modify *outlenp 10053 */ 10054 return (-EINVAL); 10055 } 10056 /* 10057 * Common case of return from an option that is sizeof (int) 10058 */ 10059 *(int *)outvalp = *i1; 10060 *outlenp = sizeof (int); 10061 return (0); 10062 } 10063 10064 /* 10065 * This routine gets default values of certain options whose default 10066 * values are maintained by protocol specific code 10067 */ 10068 /* ARGSUSED */ 10069 int 10070 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10071 { 10072 int *i1 = (int *)ptr; 10073 10074 switch (level) { 10075 case IPPROTO_IP: 10076 switch (name) { 10077 case IP_MULTICAST_TTL: 10078 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10079 return (sizeof (uchar_t)); 10080 case IP_MULTICAST_LOOP: 10081 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10082 return (sizeof (uchar_t)); 10083 default: 10084 return (-1); 10085 } 10086 case IPPROTO_IPV6: 10087 switch (name) { 10088 case IPV6_UNICAST_HOPS: 10089 *i1 = ipv6_def_hops; 10090 return (sizeof (int)); 10091 case IPV6_MULTICAST_HOPS: 10092 *i1 = IP_DEFAULT_MULTICAST_TTL; 10093 return (sizeof (int)); 10094 case IPV6_MULTICAST_LOOP: 10095 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10096 return (sizeof (int)); 10097 case IPV6_V6ONLY: 10098 *i1 = 1; 10099 return (sizeof (int)); 10100 default: 10101 return (-1); 10102 } 10103 default: 10104 return (-1); 10105 } 10106 /* NOTREACHED */ 10107 } 10108 10109 /* 10110 * Given a destination address and a pointer to where to put the information 10111 * this routine fills in the mtuinfo. 10112 */ 10113 int 10114 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10115 struct ip6_mtuinfo *mtuinfo) 10116 { 10117 ire_t *ire; 10118 10119 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10120 return (-1); 10121 10122 bzero(mtuinfo, sizeof (*mtuinfo)); 10123 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10124 mtuinfo->ip6m_addr.sin6_port = port; 10125 mtuinfo->ip6m_addr.sin6_addr = *in6; 10126 10127 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10128 if (ire != NULL) { 10129 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10130 ire_refrele(ire); 10131 } else { 10132 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10133 } 10134 return (sizeof (struct ip6_mtuinfo)); 10135 } 10136 10137 /* 10138 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10139 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10140 * isn't. This doesn't matter as the error checking is done properly for the 10141 * other MRT options coming in through ip_opt_set. 10142 */ 10143 int 10144 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10145 { 10146 conn_t *connp = Q_TO_CONN(q); 10147 ipsec_req_t *req = (ipsec_req_t *)ptr; 10148 10149 switch (level) { 10150 case IPPROTO_IP: 10151 switch (name) { 10152 case MRT_VERSION: 10153 case MRT_ASSERT: 10154 (void) ip_mrouter_get(name, q, ptr); 10155 return (sizeof (int)); 10156 case IP_SEC_OPT: 10157 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10158 default: 10159 break; 10160 } 10161 break; 10162 case IPPROTO_IPV6: 10163 switch (name) { 10164 case IPV6_SEC_OPT: 10165 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10166 case IPV6_SRC_PREFERENCES: { 10167 return (ip6_get_src_preferences(connp, 10168 (uint32_t *)ptr)); 10169 } 10170 case IPV6_V6ONLY: 10171 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10172 return (sizeof (int)); 10173 case IPV6_PATHMTU: 10174 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10175 (struct ip6_mtuinfo *)ptr)); 10176 default: 10177 break; 10178 } 10179 break; 10180 default: 10181 break; 10182 } 10183 return (-1); 10184 } 10185 10186 /* Named Dispatch routine to get a current value out of our parameter table. */ 10187 /* ARGSUSED */ 10188 static int 10189 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10190 { 10191 ipparam_t *ippa = (ipparam_t *)cp; 10192 10193 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10194 return (0); 10195 } 10196 10197 /* ARGSUSED */ 10198 static int 10199 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10200 { 10201 10202 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10203 return (0); 10204 } 10205 10206 /* 10207 * Set ip{,6}_forwarding values. This means walking through all of the 10208 * ill's and toggling their forwarding values. 10209 */ 10210 /* ARGSUSED */ 10211 static int 10212 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10213 { 10214 long new_value; 10215 int *forwarding_value = (int *)cp; 10216 ill_t *walker; 10217 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10218 ill_walk_context_t ctx; 10219 10220 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10221 new_value < 0 || new_value > 1) { 10222 return (EINVAL); 10223 } 10224 10225 *forwarding_value = new_value; 10226 10227 /* 10228 * Regardless of the current value of ip_forwarding, set all per-ill 10229 * values of ip_forwarding to the value being set. 10230 * 10231 * Bring all the ill's up to date with the new global value. 10232 */ 10233 rw_enter(&ill_g_lock, RW_READER); 10234 10235 if (isv6) 10236 walker = ILL_START_WALK_V6(&ctx); 10237 else 10238 walker = ILL_START_WALK_V4(&ctx); 10239 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10240 (void) ill_forward_set(q, mp, (new_value != 0), 10241 (caddr_t)walker); 10242 } 10243 rw_exit(&ill_g_lock); 10244 10245 return (0); 10246 } 10247 10248 /* 10249 * Walk through the param array specified registering each element with the 10250 * Named Dispatch handler. This is called only during init. So it is ok 10251 * not to acquire any locks 10252 */ 10253 static boolean_t 10254 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10255 ipndp_t *ipnd, size_t ipnd_cnt) 10256 { 10257 for (; ippa_cnt-- > 0; ippa++) { 10258 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10259 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10260 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10261 nd_free(&ip_g_nd); 10262 return (B_FALSE); 10263 } 10264 } 10265 } 10266 10267 for (; ipnd_cnt-- > 0; ipnd++) { 10268 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10269 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10270 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10271 ipnd->ip_ndp_data)) { 10272 nd_free(&ip_g_nd); 10273 return (B_FALSE); 10274 } 10275 } 10276 } 10277 10278 return (B_TRUE); 10279 } 10280 10281 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10282 /* ARGSUSED */ 10283 static int 10284 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10285 { 10286 long new_value; 10287 ipparam_t *ippa = (ipparam_t *)cp; 10288 10289 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10290 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10291 return (EINVAL); 10292 } 10293 ippa->ip_param_value = new_value; 10294 return (0); 10295 } 10296 10297 /* 10298 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10299 * When an ipf is passed here for the first time, if 10300 * we already have in-order fragments on the queue, we convert from the fast- 10301 * path reassembly scheme to the hard-case scheme. From then on, additional 10302 * fragments are reassembled here. We keep track of the start and end offsets 10303 * of each piece, and the number of holes in the chain. When the hole count 10304 * goes to zero, we are done! 10305 * 10306 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10307 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10308 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10309 * after the call to ip_reassemble(). 10310 */ 10311 int 10312 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10313 size_t msg_len) 10314 { 10315 uint_t end; 10316 mblk_t *next_mp; 10317 mblk_t *mp1; 10318 uint_t offset; 10319 boolean_t incr_dups = B_TRUE; 10320 boolean_t offset_zero_seen = B_FALSE; 10321 boolean_t pkt_boundary_checked = B_FALSE; 10322 10323 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10324 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10325 10326 /* Add in byte count */ 10327 ipf->ipf_count += msg_len; 10328 if (ipf->ipf_end) { 10329 /* 10330 * We were part way through in-order reassembly, but now there 10331 * is a hole. We walk through messages already queued, and 10332 * mark them for hard case reassembly. We know that up till 10333 * now they were in order starting from offset zero. 10334 */ 10335 offset = 0; 10336 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10337 IP_REASS_SET_START(mp1, offset); 10338 if (offset == 0) { 10339 ASSERT(ipf->ipf_nf_hdr_len != 0); 10340 offset = -ipf->ipf_nf_hdr_len; 10341 } 10342 offset += mp1->b_wptr - mp1->b_rptr; 10343 IP_REASS_SET_END(mp1, offset); 10344 } 10345 /* One hole at the end. */ 10346 ipf->ipf_hole_cnt = 1; 10347 /* Brand it as a hard case, forever. */ 10348 ipf->ipf_end = 0; 10349 } 10350 /* Walk through all the new pieces. */ 10351 do { 10352 end = start + (mp->b_wptr - mp->b_rptr); 10353 /* 10354 * If start is 0, decrease 'end' only for the first mblk of 10355 * the fragment. Otherwise 'end' can get wrong value in the 10356 * second pass of the loop if first mblk is exactly the 10357 * size of ipf_nf_hdr_len. 10358 */ 10359 if (start == 0 && !offset_zero_seen) { 10360 /* First segment */ 10361 ASSERT(ipf->ipf_nf_hdr_len != 0); 10362 end -= ipf->ipf_nf_hdr_len; 10363 offset_zero_seen = B_TRUE; 10364 } 10365 next_mp = mp->b_cont; 10366 /* 10367 * We are checking to see if there is any interesing data 10368 * to process. If there isn't and the mblk isn't the 10369 * one which carries the unfragmentable header then we 10370 * drop it. It's possible to have just the unfragmentable 10371 * header come through without any data. That needs to be 10372 * saved. 10373 * 10374 * If the assert at the top of this function holds then the 10375 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10376 * is infrequently traveled enough that the test is left in 10377 * to protect against future code changes which break that 10378 * invariant. 10379 */ 10380 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10381 /* Empty. Blast it. */ 10382 IP_REASS_SET_START(mp, 0); 10383 IP_REASS_SET_END(mp, 0); 10384 /* 10385 * If the ipf points to the mblk we are about to free, 10386 * update ipf to point to the next mblk (or NULL 10387 * if none). 10388 */ 10389 if (ipf->ipf_mp->b_cont == mp) 10390 ipf->ipf_mp->b_cont = next_mp; 10391 freeb(mp); 10392 continue; 10393 } 10394 mp->b_cont = NULL; 10395 IP_REASS_SET_START(mp, start); 10396 IP_REASS_SET_END(mp, end); 10397 if (!ipf->ipf_tail_mp) { 10398 ipf->ipf_tail_mp = mp; 10399 ipf->ipf_mp->b_cont = mp; 10400 if (start == 0 || !more) { 10401 ipf->ipf_hole_cnt = 1; 10402 /* 10403 * if the first fragment comes in more than one 10404 * mblk, this loop will be executed for each 10405 * mblk. Need to adjust hole count so exiting 10406 * this routine will leave hole count at 1. 10407 */ 10408 if (next_mp) 10409 ipf->ipf_hole_cnt++; 10410 } else 10411 ipf->ipf_hole_cnt = 2; 10412 continue; 10413 } else if (ipf->ipf_last_frag_seen && !more && 10414 !pkt_boundary_checked) { 10415 /* 10416 * We check datagram boundary only if this fragment 10417 * claims to be the last fragment and we have seen a 10418 * last fragment in the past too. We do this only 10419 * once for a given fragment. 10420 * 10421 * start cannot be 0 here as fragments with start=0 10422 * and MF=0 gets handled as a complete packet. These 10423 * fragments should not reach here. 10424 */ 10425 10426 if (start + msgdsize(mp) != 10427 IP_REASS_END(ipf->ipf_tail_mp)) { 10428 /* 10429 * We have two fragments both of which claim 10430 * to be the last fragment but gives conflicting 10431 * information about the whole datagram size. 10432 * Something fishy is going on. Drop the 10433 * fragment and free up the reassembly list. 10434 */ 10435 return (IP_REASS_FAILED); 10436 } 10437 10438 /* 10439 * We shouldn't come to this code block again for this 10440 * particular fragment. 10441 */ 10442 pkt_boundary_checked = B_TRUE; 10443 } 10444 10445 /* New stuff at or beyond tail? */ 10446 offset = IP_REASS_END(ipf->ipf_tail_mp); 10447 if (start >= offset) { 10448 if (ipf->ipf_last_frag_seen) { 10449 /* current fragment is beyond last fragment */ 10450 return (IP_REASS_FAILED); 10451 } 10452 /* Link it on end. */ 10453 ipf->ipf_tail_mp->b_cont = mp; 10454 ipf->ipf_tail_mp = mp; 10455 if (more) { 10456 if (start != offset) 10457 ipf->ipf_hole_cnt++; 10458 } else if (start == offset && next_mp == NULL) 10459 ipf->ipf_hole_cnt--; 10460 continue; 10461 } 10462 mp1 = ipf->ipf_mp->b_cont; 10463 offset = IP_REASS_START(mp1); 10464 /* New stuff at the front? */ 10465 if (start < offset) { 10466 if (start == 0) { 10467 if (end >= offset) { 10468 /* Nailed the hole at the begining. */ 10469 ipf->ipf_hole_cnt--; 10470 } 10471 } else if (end < offset) { 10472 /* 10473 * A hole, stuff, and a hole where there used 10474 * to be just a hole. 10475 */ 10476 ipf->ipf_hole_cnt++; 10477 } 10478 mp->b_cont = mp1; 10479 /* Check for overlap. */ 10480 while (end > offset) { 10481 if (end < IP_REASS_END(mp1)) { 10482 mp->b_wptr -= end - offset; 10483 IP_REASS_SET_END(mp, offset); 10484 if (ill->ill_isv6) { 10485 BUMP_MIB(ill->ill_ip6_mib, 10486 ipv6ReasmPartDups); 10487 } else { 10488 BUMP_MIB(&ip_mib, 10489 ipReasmPartDups); 10490 } 10491 break; 10492 } 10493 /* Did we cover another hole? */ 10494 if ((mp1->b_cont && 10495 IP_REASS_END(mp1) != 10496 IP_REASS_START(mp1->b_cont) && 10497 end >= IP_REASS_START(mp1->b_cont)) || 10498 (!ipf->ipf_last_frag_seen && !more)) { 10499 ipf->ipf_hole_cnt--; 10500 } 10501 /* Clip out mp1. */ 10502 if ((mp->b_cont = mp1->b_cont) == NULL) { 10503 /* 10504 * After clipping out mp1, this guy 10505 * is now hanging off the end. 10506 */ 10507 ipf->ipf_tail_mp = mp; 10508 } 10509 IP_REASS_SET_START(mp1, 0); 10510 IP_REASS_SET_END(mp1, 0); 10511 /* Subtract byte count */ 10512 ipf->ipf_count -= mp1->b_datap->db_lim - 10513 mp1->b_datap->db_base; 10514 freeb(mp1); 10515 if (ill->ill_isv6) { 10516 BUMP_MIB(ill->ill_ip6_mib, 10517 ipv6ReasmPartDups); 10518 } else { 10519 BUMP_MIB(&ip_mib, ipReasmPartDups); 10520 } 10521 mp1 = mp->b_cont; 10522 if (!mp1) 10523 break; 10524 offset = IP_REASS_START(mp1); 10525 } 10526 ipf->ipf_mp->b_cont = mp; 10527 continue; 10528 } 10529 /* 10530 * The new piece starts somewhere between the start of the head 10531 * and before the end of the tail. 10532 */ 10533 for (; mp1; mp1 = mp1->b_cont) { 10534 offset = IP_REASS_END(mp1); 10535 if (start < offset) { 10536 if (end <= offset) { 10537 /* Nothing new. */ 10538 IP_REASS_SET_START(mp, 0); 10539 IP_REASS_SET_END(mp, 0); 10540 /* Subtract byte count */ 10541 ipf->ipf_count -= mp->b_datap->db_lim - 10542 mp->b_datap->db_base; 10543 if (incr_dups) { 10544 ipf->ipf_num_dups++; 10545 incr_dups = B_FALSE; 10546 } 10547 freeb(mp); 10548 if (ill->ill_isv6) { 10549 BUMP_MIB(ill->ill_ip6_mib, 10550 ipv6ReasmDuplicates); 10551 } else { 10552 BUMP_MIB(&ip_mib, 10553 ipReasmDuplicates); 10554 } 10555 break; 10556 } 10557 /* 10558 * Trim redundant stuff off beginning of new 10559 * piece. 10560 */ 10561 IP_REASS_SET_START(mp, offset); 10562 mp->b_rptr += offset - start; 10563 if (ill->ill_isv6) { 10564 BUMP_MIB(ill->ill_ip6_mib, 10565 ipv6ReasmPartDups); 10566 } else { 10567 BUMP_MIB(&ip_mib, ipReasmPartDups); 10568 } 10569 start = offset; 10570 if (!mp1->b_cont) { 10571 /* 10572 * After trimming, this guy is now 10573 * hanging off the end. 10574 */ 10575 mp1->b_cont = mp; 10576 ipf->ipf_tail_mp = mp; 10577 if (!more) { 10578 ipf->ipf_hole_cnt--; 10579 } 10580 break; 10581 } 10582 } 10583 if (start >= IP_REASS_START(mp1->b_cont)) 10584 continue; 10585 /* Fill a hole */ 10586 if (start > offset) 10587 ipf->ipf_hole_cnt++; 10588 mp->b_cont = mp1->b_cont; 10589 mp1->b_cont = mp; 10590 mp1 = mp->b_cont; 10591 offset = IP_REASS_START(mp1); 10592 if (end >= offset) { 10593 ipf->ipf_hole_cnt--; 10594 /* Check for overlap. */ 10595 while (end > offset) { 10596 if (end < IP_REASS_END(mp1)) { 10597 mp->b_wptr -= end - offset; 10598 IP_REASS_SET_END(mp, offset); 10599 /* 10600 * TODO we might bump 10601 * this up twice if there is 10602 * overlap at both ends. 10603 */ 10604 if (ill->ill_isv6) { 10605 BUMP_MIB( 10606 ill->ill_ip6_mib, 10607 ipv6ReasmPartDups); 10608 } else { 10609 BUMP_MIB(&ip_mib, 10610 ipReasmPartDups); 10611 } 10612 break; 10613 } 10614 /* Did we cover another hole? */ 10615 if ((mp1->b_cont && 10616 IP_REASS_END(mp1) 10617 != IP_REASS_START(mp1->b_cont) && 10618 end >= 10619 IP_REASS_START(mp1->b_cont)) || 10620 (!ipf->ipf_last_frag_seen && 10621 !more)) { 10622 ipf->ipf_hole_cnt--; 10623 } 10624 /* Clip out mp1. */ 10625 if ((mp->b_cont = mp1->b_cont) == 10626 NULL) { 10627 /* 10628 * After clipping out mp1, 10629 * this guy is now hanging 10630 * off the end. 10631 */ 10632 ipf->ipf_tail_mp = mp; 10633 } 10634 IP_REASS_SET_START(mp1, 0); 10635 IP_REASS_SET_END(mp1, 0); 10636 /* Subtract byte count */ 10637 ipf->ipf_count -= 10638 mp1->b_datap->db_lim - 10639 mp1->b_datap->db_base; 10640 freeb(mp1); 10641 if (ill->ill_isv6) { 10642 BUMP_MIB(ill->ill_ip6_mib, 10643 ipv6ReasmPartDups); 10644 } else { 10645 BUMP_MIB(&ip_mib, 10646 ipReasmPartDups); 10647 } 10648 mp1 = mp->b_cont; 10649 if (!mp1) 10650 break; 10651 offset = IP_REASS_START(mp1); 10652 } 10653 } 10654 break; 10655 } 10656 } while (start = end, mp = next_mp); 10657 10658 /* Fragment just processed could be the last one. Remember this fact */ 10659 if (!more) 10660 ipf->ipf_last_frag_seen = B_TRUE; 10661 10662 /* Still got holes? */ 10663 if (ipf->ipf_hole_cnt) 10664 return (IP_REASS_PARTIAL); 10665 /* Clean up overloaded fields to avoid upstream disasters. */ 10666 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10667 IP_REASS_SET_START(mp1, 0); 10668 IP_REASS_SET_END(mp1, 0); 10669 } 10670 return (IP_REASS_COMPLETE); 10671 } 10672 10673 /* 10674 * ipsec processing for the fast path, used for input UDP Packets 10675 */ 10676 static boolean_t 10677 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10678 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10679 { 10680 uint32_t ill_index; 10681 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10682 10683 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10684 /* The ill_index of the incoming ILL */ 10685 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10686 10687 /* pass packet up to the transport */ 10688 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10689 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10690 NULL, mctl_present); 10691 if (*first_mpp == NULL) { 10692 return (B_FALSE); 10693 } 10694 } 10695 10696 /* Initiate IPPF processing for fastpath UDP */ 10697 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10698 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10699 if (*mpp == NULL) { 10700 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10701 "deferred/dropped during IPPF processing\n")); 10702 return (B_FALSE); 10703 } 10704 } 10705 /* 10706 * We make the checks as below since we are in the fast path 10707 * and want to minimize the number of checks if the IP_RECVIF and/or 10708 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10709 */ 10710 if (connp->conn_recvif || connp->conn_recvslla || 10711 connp->conn_ipv6_recvpktinfo) { 10712 if (connp->conn_recvif || 10713 connp->conn_ipv6_recvpktinfo) { 10714 in_flags = IPF_RECVIF; 10715 } 10716 if (connp->conn_recvslla) { 10717 in_flags |= IPF_RECVSLLA; 10718 } 10719 /* 10720 * since in_flags are being set ill will be 10721 * referenced in ip_add_info, so it better not 10722 * be NULL. 10723 */ 10724 /* 10725 * the actual data will be contained in b_cont 10726 * upon successful return of the following call. 10727 * If the call fails then the original mblk is 10728 * returned. 10729 */ 10730 *mpp = ip_add_info(*mpp, ill, in_flags); 10731 } 10732 10733 return (B_TRUE); 10734 } 10735 10736 /* 10737 * Do fragmentation reassembly. 10738 * returns B_TRUE if successful else B_FALSE. 10739 * frees mp on failure. 10740 */ 10741 static boolean_t 10742 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha) 10743 { 10744 uint32_t frag_offset_flags; 10745 ill_t *ill = (ill_t *)q->q_ptr; 10746 mblk_t *mp = *mpp; 10747 mblk_t *t_mp; 10748 ipaddr_t dst; 10749 10750 /* 10751 * Drop the fragmented as early as possible, if 10752 * we don't have resource(s) to re-assemble. 10753 */ 10754 10755 if (ip_reass_queue_bytes == 0) { 10756 freemsg(mp); 10757 return (B_FALSE); 10758 } 10759 10760 dst = ipha->ipha_dst; 10761 10762 /* Clear hardware checksumming flag if set */ 10763 mp->b_datap->db_struioun.cksum.flags = 0; 10764 10765 /* Check for fragmentation offset. */ 10766 frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 10767 (IPH_MF | IPH_OFFSET); 10768 if (frag_offset_flags) { 10769 ipf_t *ipf; 10770 ipf_t **ipfp; 10771 ipfb_t *ipfb; 10772 uint16_t ident; 10773 uint32_t offset; 10774 ipaddr_t src; 10775 uint_t hdr_length; 10776 uint32_t end; 10777 uint8_t proto; 10778 mblk_t *mp1; 10779 mblk_t *tail_mp; 10780 size_t count; 10781 size_t msg_len; 10782 uint8_t ecn_info = 0; 10783 uint32_t packet_size; 10784 boolean_t pruned = B_FALSE; 10785 10786 ident = ipha->ipha_ident; 10787 offset = (frag_offset_flags << 3) & 0xFFFF; 10788 src = ipha->ipha_src; 10789 hdr_length = IPH_HDR_LENGTH(ipha); 10790 end = ntohs(ipha->ipha_length) - hdr_length; 10791 10792 /* 10793 * if end == 0 then we have a packet with no data, so just 10794 * free it. 10795 */ 10796 if (end == 0) { 10797 freemsg(mp); 10798 return (B_FALSE); 10799 } 10800 proto = ipha->ipha_protocol; 10801 10802 /* 10803 * Fragmentation reassembly. Each ILL has a hash table for 10804 * queuing packets undergoing reassembly for all IPIFs 10805 * associated with the ILL. The hash is based on the packet 10806 * IP ident field. The ILL frag hash table was allocated 10807 * as a timer block at the time the ILL was created. Whenever 10808 * there is anything on the reassembly queue, the timer will 10809 * be running. 10810 */ 10811 ASSERT(ill != NULL); 10812 10813 /* Record the ECN field info. */ 10814 ecn_info = (ipha->ipha_type_of_service & 0x3); 10815 if (offset != 0) { 10816 /* 10817 * If this isn't the first piece, strip the header, and 10818 * add the offset to the end value. 10819 */ 10820 mp->b_rptr += hdr_length; 10821 end += offset; 10822 } 10823 10824 msg_len = mp->b_datap->db_lim - mp->b_datap->db_base; 10825 tail_mp = mp; 10826 while (tail_mp->b_cont != NULL) { 10827 tail_mp = tail_mp->b_cont; 10828 msg_len += tail_mp->b_datap->db_lim - 10829 tail_mp->b_datap->db_base; 10830 } 10831 10832 /* 10833 * If the reassembly list for this ILL will get too big 10834 * prune it. 10835 */ 10836 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 10837 ip_reass_queue_bytes) { 10838 ill_frag_prune(ill, 10839 (ip_reass_queue_bytes < msg_len) ? 0 : 10840 (ip_reass_queue_bytes - msg_len)); 10841 pruned = B_TRUE; 10842 } 10843 10844 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 10845 mutex_enter(&ipfb->ipfb_lock); 10846 10847 ipfp = &ipfb->ipfb_ipf; 10848 /* Try to find an existing fragment queue for this packet. */ 10849 for (;;) { 10850 ipf = ipfp[0]; 10851 if (ipf != NULL) { 10852 /* 10853 * It has to match on ident and src/dst address. 10854 */ 10855 if (ipf->ipf_ident == ident && 10856 ipf->ipf_src == src && 10857 ipf->ipf_dst == dst && 10858 ipf->ipf_protocol == proto) { 10859 /* 10860 * If we have received too many 10861 * duplicate fragments for this packet 10862 * free it. 10863 */ 10864 if (ipf->ipf_num_dups > 10865 ip_max_frag_dups) { 10866 ill_frag_free_pkts(ill, ipfb, 10867 ipf, 1); 10868 freemsg(mp); 10869 mutex_exit(&ipfb->ipfb_lock); 10870 return (B_FALSE); 10871 } 10872 /* Found it. */ 10873 break; 10874 } 10875 ipfp = &ipf->ipf_hash_next; 10876 continue; 10877 } 10878 10879 /* 10880 * If we pruned the list, do we want to store this new 10881 * fragment?. We apply an optimization here based on the 10882 * fact that most fragments will be received in order. 10883 * So if the offset of this incoming fragment is zero, 10884 * it is the first fragment of a new packet. We will 10885 * keep it. Otherwise drop the fragment, as we have 10886 * probably pruned the packet already (since the 10887 * packet cannot be found). 10888 */ 10889 if (pruned && offset != 0) { 10890 mutex_exit(&ipfb->ipfb_lock); 10891 freemsg(mp); 10892 return (B_FALSE); 10893 } 10894 10895 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 10896 /* 10897 * Too many fragmented packets in this hash 10898 * bucket. Free the oldest. 10899 */ 10900 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 10901 1); 10902 } 10903 10904 /* New guy. Allocate a frag message. */ 10905 mp1 = allocb(sizeof (*ipf), BPRI_MED); 10906 if (mp1 == NULL) { 10907 BUMP_MIB(&ip_mib, ipInDiscards); 10908 freemsg(mp); 10909 reass_done: 10910 mutex_exit(&ipfb->ipfb_lock); 10911 return (B_FALSE); 10912 } 10913 10914 10915 BUMP_MIB(&ip_mib, ipReasmReqds); 10916 mp1->b_cont = mp; 10917 10918 /* Initialize the fragment header. */ 10919 ipf = (ipf_t *)mp1->b_rptr; 10920 ipf->ipf_mp = mp1; 10921 ipf->ipf_ptphn = ipfp; 10922 ipfp[0] = ipf; 10923 ipf->ipf_hash_next = NULL; 10924 ipf->ipf_ident = ident; 10925 ipf->ipf_protocol = proto; 10926 ipf->ipf_src = src; 10927 ipf->ipf_dst = dst; 10928 ipf->ipf_nf_hdr_len = 0; 10929 /* Record reassembly start time. */ 10930 ipf->ipf_timestamp = gethrestime_sec(); 10931 /* Record ipf generation and account for frag header */ 10932 ipf->ipf_gen = ill->ill_ipf_gen++; 10933 ipf->ipf_count = mp1->b_datap->db_lim - 10934 mp1->b_datap->db_base; 10935 ipf->ipf_last_frag_seen = B_FALSE; 10936 ipf->ipf_ecn = ecn_info; 10937 ipf->ipf_num_dups = 0; 10938 ipfb->ipfb_frag_pkts++; 10939 10940 /* 10941 * We handle reassembly two ways. In the easy case, 10942 * where all the fragments show up in order, we do 10943 * minimal bookkeeping, and just clip new pieces on 10944 * the end. If we ever see a hole, then we go off 10945 * to ip_reassemble which has to mark the pieces and 10946 * keep track of the number of holes, etc. Obviously, 10947 * the point of having both mechanisms is so we can 10948 * handle the easy case as efficiently as possible. 10949 */ 10950 if (offset == 0) { 10951 /* Easy case, in-order reassembly so far. */ 10952 ipf->ipf_count += msg_len; 10953 ipf->ipf_tail_mp = tail_mp; 10954 /* 10955 * Keep track of next expected offset in 10956 * ipf_end. 10957 */ 10958 ipf->ipf_end = end; 10959 ipf->ipf_nf_hdr_len = hdr_length; 10960 } else { 10961 /* Hard case, hole at the beginning. */ 10962 ipf->ipf_tail_mp = NULL; 10963 /* 10964 * ipf_end == 0 means that we have given up 10965 * on easy reassembly. 10966 */ 10967 ipf->ipf_end = 0; 10968 /* 10969 * ipf_hole_cnt is set by ip_reassemble. 10970 * ipf_count is updated by ip_reassemble. 10971 * No need to check for return value here 10972 * as we don't expect reassembly to complete 10973 * or fail for the first fragment itself. 10974 */ 10975 (void) ip_reassemble(mp, ipf, 10976 (frag_offset_flags & IPH_OFFSET) << 3, 10977 (frag_offset_flags & IPH_MF), ill, msg_len); 10978 } 10979 /* Update per ipfb and ill byte counts */ 10980 ipfb->ipfb_count += ipf->ipf_count; 10981 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 10982 ill->ill_frag_count += ipf->ipf_count; 10983 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 10984 /* If the frag timer wasn't already going, start it. */ 10985 mutex_enter(&ill->ill_lock); 10986 ill_frag_timer_start(ill); 10987 mutex_exit(&ill->ill_lock); 10988 goto reass_done; 10989 } 10990 10991 /* 10992 * We have a new piece of a datagram which is already being 10993 * reassembled. Update the ECN info if all IP fragments 10994 * are ECN capable. If there is one which is not, clear 10995 * all the info. If there is at least one which has CE 10996 * code point, IP needs to report that up to transport. 10997 */ 10998 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 10999 if (ecn_info == IPH_ECN_CE) 11000 ipf->ipf_ecn = IPH_ECN_CE; 11001 } else { 11002 ipf->ipf_ecn = IPH_ECN_NECT; 11003 } 11004 if (offset && ipf->ipf_end == offset) { 11005 /* The new fragment fits at the end */ 11006 ipf->ipf_tail_mp->b_cont = mp; 11007 /* Update the byte count */ 11008 ipf->ipf_count += msg_len; 11009 /* Update per ipfb and ill byte counts */ 11010 ipfb->ipfb_count += msg_len; 11011 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11012 ill->ill_frag_count += msg_len; 11013 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11014 if (frag_offset_flags & IPH_MF) { 11015 /* More to come. */ 11016 ipf->ipf_end = end; 11017 ipf->ipf_tail_mp = tail_mp; 11018 goto reass_done; 11019 } 11020 } else { 11021 /* Go do the hard cases. */ 11022 int ret; 11023 11024 if (offset == 0) 11025 ipf->ipf_nf_hdr_len = hdr_length; 11026 11027 /* Save current byte count */ 11028 count = ipf->ipf_count; 11029 ret = ip_reassemble(mp, ipf, 11030 (frag_offset_flags & IPH_OFFSET) << 3, 11031 (frag_offset_flags & IPH_MF), ill, msg_len); 11032 /* Count of bytes added and subtracted (freeb()ed) */ 11033 count = ipf->ipf_count - count; 11034 if (count) { 11035 /* Update per ipfb and ill byte counts */ 11036 ipfb->ipfb_count += count; 11037 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11038 ill->ill_frag_count += count; 11039 ASSERT(ill->ill_frag_count > 0); 11040 } 11041 if (ret == IP_REASS_PARTIAL) { 11042 goto reass_done; 11043 } else if (ret == IP_REASS_FAILED) { 11044 /* Reassembly failed. Free up all resources */ 11045 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11046 for (t_mp = mp; t_mp != NULL; 11047 t_mp = t_mp->b_cont) { 11048 IP_REASS_SET_START(t_mp, 0); 11049 IP_REASS_SET_END(t_mp, 0); 11050 } 11051 freemsg(mp); 11052 goto reass_done; 11053 } 11054 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11055 } 11056 /* 11057 * We have completed reassembly. Unhook the frag header from 11058 * the reassembly list. 11059 * 11060 * Before we free the frag header, record the ECN info 11061 * to report back to the transport. 11062 */ 11063 ecn_info = ipf->ipf_ecn; 11064 BUMP_MIB(&ip_mib, ipReasmOKs); 11065 ipfp = ipf->ipf_ptphn; 11066 mp1 = ipf->ipf_mp; 11067 count = ipf->ipf_count; 11068 ipf = ipf->ipf_hash_next; 11069 if (ipf) 11070 ipf->ipf_ptphn = ipfp; 11071 ipfp[0] = ipf; 11072 ill->ill_frag_count -= count; 11073 ASSERT(ipfb->ipfb_count >= count); 11074 ipfb->ipfb_count -= count; 11075 ipfb->ipfb_frag_pkts--; 11076 mutex_exit(&ipfb->ipfb_lock); 11077 /* Ditch the frag header. */ 11078 mp = mp1->b_cont; 11079 11080 freeb(mp1); 11081 11082 /* Restore original IP length in header. */ 11083 packet_size = (uint32_t)msgdsize(mp); 11084 if (packet_size > IP_MAXPACKET) { 11085 freemsg(mp); 11086 BUMP_MIB(&ip_mib, ipInHdrErrors); 11087 return (B_FALSE); 11088 } 11089 11090 if (mp->b_datap->db_ref > 1) { 11091 mblk_t *mp2; 11092 11093 mp2 = copymsg(mp); 11094 freemsg(mp); 11095 if (!mp2) { 11096 BUMP_MIB(&ip_mib, ipInDiscards); 11097 return (B_FALSE); 11098 } 11099 mp = mp2; 11100 } 11101 ipha = (ipha_t *)mp->b_rptr; 11102 11103 ipha->ipha_length = htons((uint16_t)packet_size); 11104 /* We're now complete, zip the frag state */ 11105 ipha->ipha_fragment_offset_and_flags = 0; 11106 /* Record the ECN info. */ 11107 ipha->ipha_type_of_service &= 0xFC; 11108 ipha->ipha_type_of_service |= ecn_info; 11109 *mpp = mp; 11110 11111 } 11112 return (B_TRUE); 11113 } 11114 11115 /* 11116 * Perform ip header check sum update local options. 11117 * return B_TRUE if all is well, else return B_FALSE and release 11118 * the mp. caller is responsible for decrementing ire ref cnt. 11119 */ 11120 static boolean_t 11121 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11122 { 11123 mblk_t *first_mp; 11124 boolean_t mctl_present; 11125 uint16_t sum; 11126 11127 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11128 /* 11129 * Don't do the checksum if it has gone through AH/ESP 11130 * processing. 11131 */ 11132 if (!mctl_present) { 11133 sum = ip_csum_hdr(ipha); 11134 if (sum != 0) { 11135 BUMP_MIB(&ip_mib, ipInCksumErrs); 11136 freemsg(first_mp); 11137 return (B_FALSE); 11138 } 11139 } 11140 11141 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11142 if (mctl_present) 11143 freeb(first_mp); 11144 return (B_FALSE); 11145 } 11146 11147 return (B_TRUE); 11148 } 11149 11150 /* 11151 * All udp packet are delivered to the local host via this routine. 11152 */ 11153 void 11154 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11155 ill_t *recv_ill) 11156 { 11157 uint32_t sum; 11158 uint32_t u1; 11159 uint32_t u2; 11160 boolean_t mctl_present; 11161 conn_t *connp; 11162 mblk_t *first_mp; 11163 mblk_t *mp1; 11164 dblk_t *dp; 11165 uint16_t *up; 11166 ill_t *ill = (ill_t *)q->q_ptr; 11167 uint32_t ports; 11168 boolean_t cksum_computed = B_FALSE; 11169 11170 #define rptr ((uchar_t *)ipha) 11171 11172 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11173 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11174 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11175 11176 /* 11177 * FAST PATH for udp packets 11178 */ 11179 11180 /* u1 is # words of IP options */ 11181 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11182 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11183 11184 /* IP options present */ 11185 if (u1) 11186 goto ipoptions; 11187 11188 #define IS_IPHDR_HWCKSUM(mctl_present, mp, ill) \ 11189 ((!mctl_present) && (mp->b_datap->db_struioun.cksum.flags & \ 11190 HCK_IPV4_HDRCKSUM) && (ill->ill_capabilities & \ 11191 ILL_CAPAB_HCKSUM) && dohwcksum) 11192 11193 /* Check the IP header checksum. */ 11194 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11195 /* Clear the IP header h/w cksum flag */ 11196 mp->b_datap->db_struioun.cksum.flags &= 11197 ~HCK_IPV4_HDRCKSUM; 11198 } else { 11199 #define uph ((uint16_t *)ipha) 11200 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11201 uph[6] + uph[7] + uph[8] + uph[9]; 11202 #undef uph 11203 /* finish doing IP checksum */ 11204 sum = (sum & 0xFFFF) + (sum >> 16); 11205 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11206 /* 11207 * Don't verify header checksum if this packet is coming 11208 * back from AH/ESP as we already did it. 11209 */ 11210 if (!mctl_present && (sum && sum != 0xFFFF)) { 11211 BUMP_MIB(&ip_mib, ipInCksumErrs); 11212 freemsg(first_mp); 11213 return; 11214 } 11215 } 11216 11217 /* 11218 * Count for SNMP of inbound packets for ire. 11219 * if mctl is present this might be a secure packet and 11220 * has already been counted for in ip_proto_input(). 11221 */ 11222 if (!mctl_present) { 11223 UPDATE_IB_PKT_COUNT(ire); 11224 ire->ire_last_used_time = lbolt; 11225 } 11226 11227 /* packet part of fragmented IP packet? */ 11228 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11229 if (u1 & (IPH_MF | IPH_OFFSET)) { 11230 goto fragmented; 11231 } 11232 11233 /* u1 = IP header length (20 bytes) */ 11234 u1 = IP_SIMPLE_HDR_LENGTH; 11235 11236 /* packet does not contain complete IP & UDP headers */ 11237 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11238 goto udppullup; 11239 /* up points to UDP header */ 11240 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11241 #define iphs ((uint16_t *)ipha) 11242 11243 #define IP_CKSUM_RECV(len, u1, u2, mp, mp1, error, dp) { \ 11244 boolean_t doswcksum = B_TRUE; \ 11245 uint_t hcksumflags = 0; \ 11246 \ 11247 hcksumflags = dp->db_struioun.cksum.flags; \ 11248 \ 11249 /* Clear the hardware checksum flags; they have been consumed */\ 11250 dp->db_struioun.cksum.flags = 0; \ 11251 if (hcksumflags && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) &&\ 11252 dohwcksum) { \ 11253 if (hcksumflags & HCK_FULLCKSUM) { \ 11254 /* \ 11255 * Full checksum has been computed by the \ 11256 * hardware and has been attached. \ 11257 */ \ 11258 doswcksum = B_FALSE; \ 11259 if (!(hcksumflags & HCK_FULLCKSUM_OK) && \ 11260 (dp->db_cksum16 != 0xffff)) { \ 11261 ipcsumdbg("full hwcksumerr\n", mp); \ 11262 goto error; \ 11263 } \ 11264 } else if ((hcksumflags & HCK_PARTIALCKSUM) && \ 11265 (((len = (IP_SIMPLE_HDR_LENGTH - dp->db_cksumstart))\ 11266 & 1) == 0)) { \ 11267 uint32_t tot_len = 0; \ 11268 \ 11269 doswcksum = B_FALSE; \ 11270 /* Partial checksum computed */ \ 11271 u1 += dp->db_cksum16; \ 11272 tot_len = mp->b_wptr - mp->b_rptr; \ 11273 if (!mp1) \ 11274 mp1 = mp; \ 11275 else \ 11276 tot_len += mp1->b_wptr - mp1->b_rptr; \ 11277 if (len > 0) { \ 11278 /* \ 11279 * Prepended extraneous data. Adjust \ 11280 * checksum. \ 11281 */ \ 11282 u2 = IP_BCSUM_PARTIAL((uchar_t *)(rptr +\ 11283 dp->db_cksumstart), (int32_t)len, \ 11284 0); \ 11285 } else \ 11286 u2 = 0; \ 11287 if ((len = (dp->db_cksumend - tot_len)) > 0) { \ 11288 /* \ 11289 * Postpended extraneous data. Adjust \ 11290 * checksum. \ 11291 */ \ 11292 uint32_t u3; \ 11293 \ 11294 u3 = IP_BCSUM_PARTIAL(mp1->b_wptr, \ 11295 (int32_t)len, 0); \ 11296 if ((uintptr_t)mp1->b_wptr & 1) \ 11297 /* \ 11298 * Postpended extraneous data \ 11299 * was odd byte aligned, so \ 11300 * swap resulting checksum \ 11301 * bytes. \ 11302 */ \ 11303 u2 += ((u3 << 8) & 0xffff) | \ 11304 (u3 >> 8); \ 11305 else \ 11306 u2 += u3; \ 11307 u2 = (u2 & 0xFFFF) + ((int)(u2) >> 16); \ 11308 } \ 11309 /* \ 11310 * One's complement subtract extraneous checksum\ 11311 */ \ 11312 if (u2 >= u1) \ 11313 u1 = ~(u2 - u1) & 0xFFFF; \ 11314 else \ 11315 u1 -= u2; \ 11316 u1 = (u1 & 0xFFFF) + ((int)u1 >> 16); \ 11317 if (~(u1) & 0xFFFF) { \ 11318 ipcsumdbg("partial hwcksumerr\n", mp); \ 11319 goto error; \ 11320 } \ 11321 } \ 11322 } \ 11323 if (doswcksum) { \ 11324 IP_STAT(ip_in_sw_cksum); \ 11325 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - \ 11326 (uchar_t *)ipha), u1)) != 0) { \ 11327 ipcsumdbg("swcksumerr\n", mp); \ 11328 goto error; \ 11329 } \ 11330 } \ 11331 } 11332 11333 dp = mp->b_datap; 11334 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11335 if (up[3]) { 11336 cksum_computed = B_TRUE; 11337 /* multiple mblks of udp data? */ 11338 if ((mp1 = mp->b_cont) != NULL) { 11339 /* more than two? */ 11340 if (mp1->b_cont) 11341 goto multipktudp; 11342 } 11343 11344 /* Pseudo-header checksum */ 11345 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11346 iphs[9] + up[2]; 11347 if (!mctl_present) { 11348 ssize_t len = 0; 11349 11350 IP_CKSUM_RECV(len, u1, u2, mp, mp1, udpcksumerr, dp); 11351 } else { 11352 multipktudp: 11353 IP_STAT(ip_in_sw_cksum); 11354 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - 11355 (uchar_t *)ipha), u1)) != 0) { 11356 udpcksumerr: 11357 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11358 BUMP_MIB(&ip_mib, udpInCksumErrs); 11359 freemsg(first_mp); 11360 return; 11361 } 11362 } 11363 } 11364 11365 /* broadcast IP packet? */ 11366 if (ire->ire_type == IRE_BROADCAST) 11367 goto udpslowpath; 11368 11369 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11370 ire->ire_zoneid)) != NULL) { 11371 ASSERT(connp->conn_upq != NULL); 11372 IP_STAT(ip_udp_fast_path); 11373 11374 if (!canputnext(connp->conn_upq)) { 11375 freemsg(mp); 11376 BUMP_MIB(&ip_mib, udpInOverflows); 11377 } else { 11378 if (!mctl_present) { 11379 BUMP_MIB(&ip_mib, ipInDelivers); 11380 } 11381 /* 11382 * mp and first_mp can change. 11383 */ 11384 if (ip_udp_check(q, connp, recv_ill, 11385 ipha, &mp, &first_mp, mctl_present)) { 11386 putnext(connp->conn_upq, mp); 11387 } 11388 } 11389 /* 11390 * freeb() cannot deal with null mblk being passed 11391 * in and first_mp can be set to null in the call 11392 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11393 */ 11394 if (mctl_present && first_mp != NULL) { 11395 freeb(first_mp); 11396 } 11397 CONN_DEC_REF(connp); 11398 return; 11399 } 11400 11401 /* 11402 * if we got here we know the packet is not fragmented and 11403 * has no options. The classifier could not find a conn_t and 11404 * most likely its an icmp packet so send it through slow path. 11405 */ 11406 11407 goto udpslowpath; 11408 11409 ipoptions: 11410 if (!ip_options_cksum(q, mp, ipha, ire)) { 11411 goto slow_done; 11412 } 11413 11414 UPDATE_IB_PKT_COUNT(ire); 11415 ire->ire_last_used_time = lbolt; 11416 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11417 if (u1 & (IPH_MF | IPH_OFFSET)) { 11418 fragmented: 11419 if (!ip_rput_fragment(q, &mp, ipha)) { 11420 goto slow_done; 11421 } 11422 /* 11423 * Make sure that first_mp points back to mp as 11424 * the mp we came in with could have changed in 11425 * ip_rput_fragment(). 11426 */ 11427 ASSERT(!mctl_present); 11428 ipha = (ipha_t *)mp->b_rptr; 11429 first_mp = mp; 11430 } 11431 11432 /* Now we have a complete datagram, destined for this machine. */ 11433 u1 = IPH_HDR_LENGTH(ipha); 11434 /* Pull up the UDP header, if necessary. */ 11435 if ((mp->b_wptr - mp->b_rptr) < (u1 + UDPH_SIZE)) { 11436 udppullup: 11437 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11438 BUMP_MIB(&ip_mib, ipInDiscards); 11439 freemsg(first_mp); 11440 goto slow_done; 11441 } 11442 ipha = (ipha_t *)mp->b_rptr; 11443 } 11444 /* 11445 * Validate the checksum. This code is a bit funny looking 11446 * but may help out the compiler in this crucial spot. 11447 */ 11448 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11449 if (!cksum_computed && up[3]) { 11450 IP_STAT(ip_in_sw_cksum); 11451 sum = IP_CSUM(mp, (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11452 IP_UDP_CSUM_COMP + iphs[6] + 11453 iphs[7] + iphs[8] + 11454 iphs[9] + up[2]); 11455 if (sum != 0) { 11456 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11457 BUMP_MIB(&ip_mib, udpInCksumErrs); 11458 freemsg(first_mp); 11459 goto slow_done; 11460 } 11461 } 11462 udpslowpath: 11463 11464 ports = *(uint32_t *)up; 11465 /* Clear hardware checksum flag */ 11466 mp->b_datap->db_struioun.cksum.flags = 0; 11467 ip_fanout_udp(q, first_mp, ill, ipha, ports, 11468 (ire->ire_type == IRE_BROADCAST), 11469 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11470 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11471 11472 slow_done: 11473 IP_STAT(ip_udp_slow_path); 11474 return; 11475 11476 #undef rptr 11477 } 11478 11479 /* ARGSUSED */ 11480 static mblk_t * 11481 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11482 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11483 ill_rx_ring_t *ill_ring) 11484 { 11485 conn_t *connp; 11486 uint32_t sum; 11487 uint32_t u1; 11488 uint32_t u2; 11489 uint16_t *up; 11490 int offset; 11491 ssize_t len; 11492 mblk_t *mp1; 11493 dblk_t *dp; 11494 boolean_t syn_present = B_FALSE; 11495 tcph_t *tcph; 11496 uint_t ip_hdr_len; 11497 ill_t *ill = (ill_t *)q->q_ptr; 11498 zoneid_t zoneid = ire->ire_zoneid; 11499 11500 #define rptr ((uchar_t *)ipha) 11501 11502 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11503 11504 /* 11505 * FAST PATH for tcp packets 11506 */ 11507 11508 /* u1 is # words of IP options */ 11509 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11510 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11511 11512 /* IP options present */ 11513 if (u1) { 11514 goto ipoptions; 11515 } else { 11516 /* Check the IP header checksum. */ 11517 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11518 /* Clear the IP header h/w cksum flag */ 11519 mp->b_datap->db_struioun.cksum.flags &= 11520 ~HCK_IPV4_HDRCKSUM; 11521 } else { 11522 #define uph ((uint16_t *)ipha) 11523 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11524 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11525 #undef uph 11526 /* finish doing IP checksum */ 11527 sum = (sum & 0xFFFF) + (sum >> 16); 11528 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11529 /* 11530 * Don't verify header checksum if this packet 11531 * is coming back from AH/ESP as we already did it. 11532 */ 11533 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11534 BUMP_MIB(&ip_mib, ipInCksumErrs); 11535 goto error; 11536 } 11537 } 11538 } 11539 11540 if (!mctl_present) { 11541 UPDATE_IB_PKT_COUNT(ire); 11542 ire->ire_last_used_time = lbolt; 11543 } 11544 11545 /* packet part of fragmented IP packet? */ 11546 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11547 if (u1 & (IPH_MF | IPH_OFFSET)) { 11548 goto fragmented; 11549 } 11550 11551 /* u1 = IP header length (20 bytes) */ 11552 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11553 11554 /* does packet contain IP+TCP headers? */ 11555 len = mp->b_wptr - rptr; 11556 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11557 IP_STAT(ip_tcppullup); 11558 goto tcppullup; 11559 } 11560 11561 /* TCP options present? */ 11562 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11563 11564 /* 11565 * If options need to be pulled up, then goto tcpoptions. 11566 * otherwise we are still in the fast path 11567 */ 11568 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11569 IP_STAT(ip_tcpoptions); 11570 goto tcpoptions; 11571 } 11572 11573 /* multiple mblks of tcp data? */ 11574 if ((mp1 = mp->b_cont) != NULL) { 11575 /* more then two? */ 11576 if (mp1->b_cont != NULL) { 11577 IP_STAT(ip_multipkttcp); 11578 goto multipkttcp; 11579 } 11580 len += mp1->b_wptr - mp1->b_rptr; 11581 } 11582 11583 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11584 11585 /* part of pseudo checksum */ 11586 11587 /* TCP datagram length */ 11588 u1 = len - IP_SIMPLE_HDR_LENGTH; 11589 11590 #define iphs ((uint16_t *)ipha) 11591 11592 #ifdef _BIG_ENDIAN 11593 u1 += IPPROTO_TCP; 11594 #else 11595 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11596 #endif 11597 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11598 11599 11600 /* 11601 * If the packet has gone through AH/ESP, do the checksum here 11602 * itself. 11603 * 11604 * If it has not gone through IPSEC processing and not a duped 11605 * mblk, then look for driver checksummed mblk. We validate or 11606 * postpone the checksum to TCP for single copy checksum. 11607 * 11608 * Note that we only honor HW cksum in the fastpath. 11609 */ 11610 dp = mp->b_datap; 11611 if (!mctl_present) { 11612 IP_CKSUM_RECV(len, u1, u2, mp, mp1, tcpcksumerr, dp); 11613 } else { 11614 IP_STAT(ip_in_sw_cksum); 11615 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), 11616 u1)) != 0) { 11617 tcpcksumerr: 11618 BUMP_MIB(&ip_mib, tcpInErrs); 11619 ip1dbg(("ip_tcp_input: bad tcp checksum \n")); 11620 freemsg(first_mp); 11621 goto slow_done; 11622 } 11623 } 11624 11625 try_again: 11626 11627 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11628 NULL) { 11629 /* Send the TH_RST */ 11630 goto no_conn; 11631 } 11632 11633 /* 11634 * TCP FAST PATH for AF_INET socket. 11635 * 11636 * TCP fast path to avoid extra work. An AF_INET socket type 11637 * does not have facility to receive extra information via 11638 * ip_process or ip_add_info. Also, when the connection was 11639 * established, we made a check if this connection is impacted 11640 * by any global IPSec policy or per connection policy (a 11641 * policy that comes in effect later will not apply to this 11642 * connection). Since all this can be determined at the 11643 * connection establishment time, a quick check of flags 11644 * can avoid extra work. 11645 */ 11646 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11647 !IPP_ENABLED(IPP_LOCAL_IN)) { 11648 ASSERT(first_mp == mp); 11649 SET_SQUEUE(mp, tcp_rput_data, connp); 11650 return (mp); 11651 } 11652 11653 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11654 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11655 if (IPCL_IS_TCP(connp)) { 11656 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11657 mp->b_datap->db_cksumstart = 11658 (intptr_t)ip_squeue_get(ill_ring); 11659 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11660 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11661 SET_SQUEUE(mp, connp->conn_recv, connp); 11662 return (mp); 11663 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11664 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11665 ip_squeue_enter_unbound++; 11666 SET_SQUEUE(mp, tcp_conn_request_unbound, 11667 connp); 11668 return (mp); 11669 } 11670 syn_present = B_TRUE; 11671 } 11672 11673 } 11674 11675 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11676 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11677 11678 /* No need to send this packet to TCP */ 11679 if ((flags & TH_RST) || (flags & TH_URG)) { 11680 CONN_DEC_REF(connp); 11681 freemsg(first_mp); 11682 return (NULL); 11683 } 11684 if (flags & TH_ACK) { 11685 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11686 CONN_DEC_REF(connp); 11687 return (NULL); 11688 } 11689 11690 CONN_DEC_REF(connp); 11691 freemsg(first_mp); 11692 return (NULL); 11693 } 11694 11695 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11696 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11697 ipha, NULL, mctl_present); 11698 if (first_mp == NULL) { 11699 CONN_DEC_REF(connp); 11700 return (NULL); 11701 } 11702 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11703 ASSERT(syn_present); 11704 if (mctl_present) { 11705 ASSERT(first_mp != mp); 11706 first_mp->b_datap->db_struioflag |= 11707 STRUIO_POLICY; 11708 } else { 11709 ASSERT(first_mp == mp); 11710 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11711 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11712 } 11713 } else { 11714 /* 11715 * Discard first_mp early since we're dealing with a 11716 * fully-connected conn_t and tcp doesn't do policy in 11717 * this case. 11718 */ 11719 if (mctl_present) { 11720 freeb(first_mp); 11721 mctl_present = B_FALSE; 11722 } 11723 first_mp = mp; 11724 } 11725 } 11726 11727 /* Initiate IPPF processing for fastpath */ 11728 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11729 uint32_t ill_index; 11730 11731 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11732 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11733 if (mp == NULL) { 11734 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11735 "deferred/dropped during IPPF processing\n")); 11736 CONN_DEC_REF(connp); 11737 if (mctl_present) 11738 freeb(first_mp); 11739 return (NULL); 11740 } else if (mctl_present) { 11741 /* 11742 * ip_process might return a new mp. 11743 */ 11744 ASSERT(first_mp != mp); 11745 first_mp->b_cont = mp; 11746 } else { 11747 first_mp = mp; 11748 } 11749 11750 } 11751 11752 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11753 mp = ip_add_info(mp, recv_ill, flags); 11754 if (mp == NULL) { 11755 CONN_DEC_REF(connp); 11756 if (mctl_present) 11757 freeb(first_mp); 11758 return (NULL); 11759 } else if (mctl_present) { 11760 /* 11761 * ip_add_info might return a new mp. 11762 */ 11763 ASSERT(first_mp != mp); 11764 first_mp->b_cont = mp; 11765 } else { 11766 first_mp = mp; 11767 } 11768 } 11769 11770 if (IPCL_IS_TCP(connp)) { 11771 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11772 return (first_mp); 11773 } else { 11774 putnext(connp->conn_rq, first_mp); 11775 CONN_DEC_REF(connp); 11776 return (NULL); 11777 } 11778 11779 no_conn: 11780 /* Initiate IPPf processing, if needed. */ 11781 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11782 uint32_t ill_index; 11783 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11784 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 11785 if (first_mp == NULL) { 11786 return (NULL); 11787 } 11788 } 11789 BUMP_MIB(&ip_mib, ipInDelivers); 11790 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 11791 return (NULL); 11792 ipoptions: 11793 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 11794 goto slow_done; 11795 } 11796 11797 UPDATE_IB_PKT_COUNT(ire); 11798 ire->ire_last_used_time = lbolt; 11799 11800 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11801 if (u1 & (IPH_MF | IPH_OFFSET)) { 11802 fragmented: 11803 if (!ip_rput_fragment(q, &mp, ipha)) { 11804 if (mctl_present) 11805 freeb(first_mp); 11806 goto slow_done; 11807 } 11808 /* 11809 * Make sure that first_mp points back to mp as 11810 * the mp we came in with could have changed in 11811 * ip_rput_fragment(). 11812 */ 11813 ASSERT(!mctl_present); 11814 ipha = (ipha_t *)mp->b_rptr; 11815 first_mp = mp; 11816 } 11817 11818 tcp_slow: 11819 /* Now we have a complete datagram, destined for this machine. */ 11820 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 11821 11822 len = mp->b_wptr - mp->b_rptr; 11823 /* Pull up a minimal TCP header, if necessary. */ 11824 if (len < (u1 + 20)) { 11825 tcppullup: 11826 if (!pullupmsg(mp, u1 + 20)) { 11827 BUMP_MIB(&ip_mib, ipInDiscards); 11828 goto error; 11829 } 11830 ipha = (ipha_t *)mp->b_rptr; 11831 len = mp->b_wptr - mp->b_rptr; 11832 } 11833 11834 /* 11835 * Extract the offset field from the TCP header. As usual, we 11836 * try to help the compiler more than the reader. 11837 */ 11838 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 11839 if (offset != 5) { 11840 tcpoptions: 11841 if (offset < 5) { 11842 BUMP_MIB(&ip_mib, ipInDiscards); 11843 goto error; 11844 } 11845 /* 11846 * There must be TCP options. 11847 * Make sure we can grab them. 11848 */ 11849 offset <<= 2; 11850 offset += u1; 11851 if (len < offset) { 11852 if (!pullupmsg(mp, offset)) { 11853 BUMP_MIB(&ip_mib, ipInDiscards); 11854 goto error; 11855 } 11856 ipha = (ipha_t *)mp->b_rptr; 11857 len = mp->b_wptr - rptr; 11858 } 11859 } 11860 11861 /* Get the total packet length in len, including headers. */ 11862 if (mp->b_cont) { 11863 multipkttcp: 11864 len = msgdsize(mp); 11865 } 11866 11867 /* 11868 * Check the TCP checksum by pulling together the pseudo- 11869 * header checksum, and passing it to ip_csum to be added in 11870 * with the TCP datagram. 11871 * 11872 * Since we are not using the hwcksum if available we must 11873 * clear the flag. We may come here via tcppullup or tcpoptions. 11874 * If either of these fails along the way the mblk is freed. 11875 * If this logic ever changes and mblk is reused to say send 11876 * ICMP's back, then this flag may need to be cleared in 11877 * other places as well. 11878 */ 11879 mp->b_datap->db_struioun.cksum.flags = 0; 11880 11881 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 11882 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 11883 #ifdef _BIG_ENDIAN 11884 u1 += IPPROTO_TCP; 11885 #else 11886 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11887 #endif 11888 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11889 /* 11890 * Not M_DATA mblk or its a dup, so do the checksum now. 11891 */ 11892 IP_STAT(ip_in_sw_cksum); 11893 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1)) { 11894 BUMP_MIB(&ip_mib, tcpInErrs); 11895 goto error; 11896 } 11897 11898 IP_STAT(ip_tcp_slow_path); 11899 goto try_again; 11900 #undef iphs 11901 #undef rptr 11902 11903 error: 11904 freemsg(first_mp); 11905 slow_done: 11906 return (NULL); 11907 } 11908 11909 /* ARGSUSED */ 11910 static void 11911 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11912 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 11913 { 11914 conn_t *connp; 11915 uint32_t sum; 11916 uint32_t u1; 11917 ssize_t len; 11918 sctp_hdr_t *sctph; 11919 zoneid_t zoneid = ire->ire_zoneid; 11920 uint32_t pktsum; 11921 uint32_t calcsum; 11922 uint32_t ports; 11923 uint_t ipif_seqid; 11924 in6_addr_t map_src, map_dst; 11925 ill_t *ill = (ill_t *)q->q_ptr; 11926 11927 #define rptr ((uchar_t *)ipha) 11928 11929 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 11930 11931 /* u1 is # words of IP options */ 11932 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11933 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11934 11935 /* IP options present */ 11936 if (u1 > 0) { 11937 goto ipoptions; 11938 } else { 11939 /* Check the IP header checksum. */ 11940 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11941 /* 11942 * Since there is no SCTP h/w cksum support yet, just 11943 * clear the flag. 11944 */ 11945 mp->b_datap->db_struioun.cksum.flags = 0; 11946 } else { 11947 #define uph ((uint16_t *)ipha) 11948 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11949 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11950 #undef uph 11951 /* finish doing IP checksum */ 11952 sum = (sum & 0xFFFF) + (sum >> 16); 11953 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11954 /* 11955 * Don't verify header checksum if this packet 11956 * is coming back from AH/ESP as we already did it. 11957 */ 11958 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11959 BUMP_MIB(&ip_mib, ipInCksumErrs); 11960 goto error; 11961 } 11962 } 11963 } 11964 11965 /* 11966 * Don't verify header checksum if this packet is coming 11967 * back from AH/ESP as we already did it. 11968 */ 11969 if (!mctl_present) { 11970 UPDATE_IB_PKT_COUNT(ire); 11971 ire->ire_last_used_time = lbolt; 11972 } 11973 11974 /* packet part of fragmented IP packet? */ 11975 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11976 if (u1 & (IPH_MF | IPH_OFFSET)) 11977 goto fragmented; 11978 11979 /* u1 = IP header length (20 bytes) */ 11980 u1 = IP_SIMPLE_HDR_LENGTH; 11981 11982 find_sctp_client: 11983 /* Pullup if we don't have the sctp common header. */ 11984 len = MBLKL(mp); 11985 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 11986 if (mp->b_cont == NULL || 11987 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 11988 BUMP_MIB(&ip_mib, ipInDiscards); 11989 goto error; 11990 } 11991 ipha = (ipha_t *)mp->b_rptr; 11992 len = MBLKL(mp); 11993 } 11994 11995 sctph = (sctp_hdr_t *)(rptr + u1); 11996 #ifdef DEBUG 11997 if (!skip_sctp_cksum) { 11998 #endif 11999 pktsum = sctph->sh_chksum; 12000 sctph->sh_chksum = 0; 12001 calcsum = sctp_cksum(mp, u1); 12002 if (calcsum != pktsum) { 12003 BUMP_MIB(&sctp_mib, sctpChecksumError); 12004 goto error; 12005 } 12006 sctph->sh_chksum = pktsum; 12007 #ifdef DEBUG /* skip_sctp_cksum */ 12008 } 12009 #endif 12010 /* get the ports */ 12011 ports = *(uint32_t *)&sctph->sh_sport; 12012 12013 ipif_seqid = ire->ire_ipif->ipif_seqid; 12014 IRE_REFRELE(ire); 12015 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12016 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12017 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12018 zoneid)) == NULL) { 12019 /* Check for raw socket or OOTB handling */ 12020 goto no_conn; 12021 } 12022 12023 /* Found a client; up it goes */ 12024 BUMP_MIB(&ip_mib, ipInDelivers); 12025 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12026 return; 12027 12028 no_conn: 12029 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12030 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12031 return; 12032 12033 ipoptions: 12034 mp->b_datap->db_struioun.cksum.flags = 0; 12035 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12036 goto slow_done; 12037 12038 UPDATE_IB_PKT_COUNT(ire); 12039 ire->ire_last_used_time = lbolt; 12040 12041 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12042 if (u1 & (IPH_MF | IPH_OFFSET)) { 12043 fragmented: 12044 if (!ip_rput_fragment(q, &mp, ipha)) 12045 goto slow_done; 12046 /* 12047 * Make sure that first_mp points back to mp as 12048 * the mp we came in with could have changed in 12049 * ip_rput_fragment(). 12050 */ 12051 ASSERT(!mctl_present); 12052 ipha = (ipha_t *)mp->b_rptr; 12053 first_mp = mp; 12054 } 12055 12056 /* Now we have a complete datagram, destined for this machine. */ 12057 u1 = IPH_HDR_LENGTH(ipha); 12058 goto find_sctp_client; 12059 #undef iphs 12060 #undef rptr 12061 12062 error: 12063 freemsg(first_mp); 12064 slow_done: 12065 IRE_REFRELE(ire); 12066 } 12067 12068 #define VER_BITS 0xF0 12069 #define VERSION_6 0x60 12070 12071 static boolean_t 12072 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12073 ipaddr_t *dstp) 12074 { 12075 uint_t opt_len; 12076 ipha_t *ipha; 12077 ssize_t len; 12078 uint_t pkt_len; 12079 12080 IP_STAT(ip_ipoptions); 12081 ipha = *iphapp; 12082 12083 #define rptr ((uchar_t *)ipha) 12084 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12085 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12086 BUMP_MIB(&ip_mib, ipInIPv6); 12087 freemsg(mp); 12088 return (B_FALSE); 12089 } 12090 12091 /* multiple mblk or too short */ 12092 pkt_len = ntohs(ipha->ipha_length); 12093 12094 /* Get the number of words of IP options in the IP header. */ 12095 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12096 if (opt_len) { 12097 /* IP Options present! Validate and process. */ 12098 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12099 BUMP_MIB(&ip_mib, ipInHdrErrors); 12100 goto done; 12101 } 12102 /* 12103 * Recompute complete header length and make sure we 12104 * have access to all of it. 12105 */ 12106 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12107 if (len > (mp->b_wptr - rptr)) { 12108 if (len > pkt_len) { 12109 BUMP_MIB(&ip_mib, ipInHdrErrors); 12110 goto done; 12111 } 12112 if (!pullupmsg(mp, len)) { 12113 BUMP_MIB(&ip_mib, ipInDiscards); 12114 goto done; 12115 } 12116 ipha = (ipha_t *)mp->b_rptr; 12117 } 12118 /* 12119 * Go off to ip_rput_options which returns the next hop 12120 * destination address, which may have been affected 12121 * by source routing. 12122 */ 12123 IP_STAT(ip_opt); 12124 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12125 return (B_FALSE); 12126 } 12127 } 12128 *iphapp = ipha; 12129 return (B_TRUE); 12130 done: 12131 /* clear b_prev - used by ip_mroute_decap */ 12132 mp->b_prev = NULL; 12133 freemsg(mp); 12134 return (B_FALSE); 12135 #undef rptr 12136 } 12137 12138 /* 12139 * Deal with the fact that there is no ire for the destination. 12140 * The incoming ill (in_ill) is passed in to ip_newroute only 12141 * in the case of packets coming from mobile ip forward tunnel. 12142 * It must be null otherwise. 12143 */ 12144 static void 12145 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12146 ipaddr_t dst) 12147 { 12148 ipha_t *ipha; 12149 ill_t *ill; 12150 12151 ipha = (ipha_t *)mp->b_rptr; 12152 ill = (ill_t *)q->q_ptr; 12153 12154 ASSERT(ill != NULL); 12155 /* 12156 * No IRE for this destination, so it can't be for us. 12157 * Unless we are forwarding, drop the packet. 12158 * We have to let source routed packets through 12159 * since we don't yet know if they are 'ping -l' 12160 * packets i.e. if they will go out over the 12161 * same interface as they came in on. 12162 */ 12163 if (ll_multicast) { 12164 freemsg(mp); 12165 return; 12166 } 12167 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12168 BUMP_MIB(&ip_mib, ipForwProhibits); 12169 freemsg(mp); 12170 return; 12171 } 12172 12173 /* Check for Martian addresses */ 12174 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12175 freemsg(mp); 12176 return; 12177 } 12178 12179 /* Mark this packet as having originated externally */ 12180 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12181 12182 /* 12183 * Clear the indication that this may have a hardware checksum 12184 * as we are not using it 12185 */ 12186 mp->b_datap->db_struioun.cksum.flags = 0; 12187 12188 /* 12189 * Now hand the packet to ip_newroute. 12190 */ 12191 ip_newroute(q, mp, dst, in_ill, NULL); 12192 } 12193 12194 /* 12195 * check ip header length and align it. 12196 */ 12197 static boolean_t 12198 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12199 { 12200 ssize_t len; 12201 ill_t *ill; 12202 ipha_t *ipha; 12203 12204 len = MBLKL(mp); 12205 12206 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12207 if (!OK_32PTR(mp->b_rptr)) 12208 IP_STAT(ip_notaligned1); 12209 else 12210 IP_STAT(ip_notaligned2); 12211 /* Guard against bogus device drivers */ 12212 if (len < 0) { 12213 /* clear b_prev - used by ip_mroute_decap */ 12214 mp->b_prev = NULL; 12215 BUMP_MIB(&ip_mib, ipInHdrErrors); 12216 freemsg(mp); 12217 return (B_FALSE); 12218 } 12219 12220 if (ip_rput_pullups++ == 0) { 12221 ill = (ill_t *)q->q_ptr; 12222 ipha = (ipha_t *)mp->b_rptr; 12223 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12224 "ip_check_and_align_header: %s forced us to " 12225 " pullup pkt, hdr len %ld, hdr addr %p", 12226 ill->ill_name, len, ipha); 12227 } 12228 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12229 /* clear b_prev - used by ip_mroute_decap */ 12230 mp->b_prev = NULL; 12231 BUMP_MIB(&ip_mib, ipInDiscards); 12232 freemsg(mp); 12233 return (B_FALSE); 12234 } 12235 } 12236 return (B_TRUE); 12237 } 12238 12239 static boolean_t 12240 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12241 { 12242 ill_group_t *ill_group; 12243 ill_group_t *ire_group; 12244 queue_t *q; 12245 ill_t *ire_ill; 12246 uint_t ill_ifindex; 12247 12248 q = *qp; 12249 /* 12250 * We need to check to make sure the packet came in 12251 * on the queue associated with the destination IRE. 12252 * Note that for multicast packets and broadcast packets sent to 12253 * a broadcast address which is shared between multiple interfaces 12254 * we should not do this since we just got a random broadcast ire. 12255 */ 12256 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12257 boolean_t check_multi = B_TRUE; 12258 12259 /* 12260 * This packet came in on an interface other than the 12261 * one associated with the destination address. 12262 * "Gateway" it to the appropriate interface here. 12263 * As long as the ills belong to the same group, 12264 * we don't consider them to arriving on the wrong 12265 * interface. Thus, when the switch is doing inbound 12266 * load spreading, we won't drop packets when we 12267 * are doing strict multihoming checks. Note, the 12268 * same holds true for 'usesrc groups' where the 12269 * destination address may belong to another interface 12270 * to allow multipathing to happen 12271 */ 12272 ill_group = ill->ill_group; 12273 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12274 ill_ifindex = ill->ill_usesrc_ifindex; 12275 ire_group = ire_ill->ill_group; 12276 12277 /* 12278 * If it's part of the same IPMP group, or if it's a legal 12279 * address on the 'usesrc' interface, then bypass strict 12280 * checks. 12281 */ 12282 if (ill_group != NULL && ill_group == ire_group) { 12283 check_multi = B_FALSE; 12284 } else if (ill_ifindex != 0 && 12285 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12286 check_multi = B_FALSE; 12287 } 12288 12289 if (check_multi && 12290 ip_strict_dst_multihoming && 12291 ((ill->ill_flags & 12292 ire->ire_ipif->ipif_ill->ill_flags & 12293 ILLF_ROUTER) == 0)) { 12294 /* Drop packet */ 12295 BUMP_MIB(&ip_mib, ipForwProhibits); 12296 freemsg(mp); 12297 ire_refrele(ire); 12298 return (B_TRUE); 12299 } 12300 12301 /* 12302 * Change the queue (for non-virtual destination network 12303 * interfaces) and ip_rput_local will be called with the right 12304 * queue 12305 */ 12306 q = ire->ire_rfq; 12307 } 12308 /* Must be broadcast. We'll take it. */ 12309 *qp = q; 12310 return (B_FALSE); 12311 } 12312 12313 static void 12314 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12315 ill_t *ill, int ll_multicast) 12316 { 12317 ill_group_t *ill_group; 12318 ill_group_t *ire_group; 12319 queue_t *dev_q; 12320 12321 ASSERT(ire->ire_stq != NULL); 12322 if (ll_multicast != 0) 12323 goto drop_pkt; 12324 12325 if (ip_no_forward(ipha, ill)) 12326 goto drop_pkt; 12327 12328 ill_group = ill->ill_group; 12329 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12330 /* 12331 * Check if we want to forward this one at this time. 12332 * We allow source routed packets on a host provided that 12333 * they go out the same interface or same interface group 12334 * as they came in on. 12335 * 12336 * XXX To be quicker, we may wish to not chase pointers to 12337 * get the ILLF_ROUTER flag and instead store the 12338 * forwarding policy in the ire. An unfortunate 12339 * side-effect of that would be requiring an ire flush 12340 * whenever the ILLF_ROUTER flag changes. 12341 */ 12342 if (((ill->ill_flags & 12343 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12344 ILLF_ROUTER) == 0) && 12345 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12346 (ill_group != NULL && ill_group == ire_group)))) { 12347 BUMP_MIB(&ip_mib, ipForwProhibits); 12348 if (ip_source_routed(ipha)) { 12349 q = WR(q); 12350 /* 12351 * Clear the indication that this may have 12352 * hardware checksum as we are not using it. 12353 */ 12354 mp->b_datap->db_struioun.cksum.flags = 0; 12355 icmp_unreachable(q, mp, 12356 ICMP_SOURCE_ROUTE_FAILED); 12357 ire_refrele(ire); 12358 return; 12359 } 12360 goto drop_pkt; 12361 } 12362 12363 /* Packet is being forwarded. Turning off hwcksum flag. */ 12364 mp->b_datap->db_struioun.cksum.flags = 0; 12365 if (ip_g_send_redirects) { 12366 /* 12367 * Check whether the incoming interface and outgoing 12368 * interface is part of the same group. If so, 12369 * send redirects. 12370 * 12371 * Check the source address to see if it originated 12372 * on the same logical subnet it is going back out on. 12373 * If so, we should be able to send it a redirect. 12374 * Avoid sending a redirect if the destination 12375 * is directly connected (gw_addr == 0), 12376 * or if the packet was source routed out this 12377 * interface. 12378 */ 12379 ipaddr_t src; 12380 mblk_t *mp1; 12381 ire_t *src_ire = NULL; 12382 12383 /* 12384 * Check whether ire_rfq and q are from the same ill 12385 * or if they are not same, they at least belong 12386 * to the same group. If so, send redirects. 12387 */ 12388 if ((ire->ire_rfq == q || 12389 (ill_group != NULL && ill_group == ire_group)) && 12390 (ire->ire_gateway_addr != 0) && 12391 !ip_source_routed(ipha)) { 12392 12393 src = ipha->ipha_src; 12394 src_ire = ire_ftable_lookup(src, 0, 0, 12395 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12396 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12397 12398 if (src_ire != NULL) { 12399 /* 12400 * The source is directly connected. 12401 * Just copy the ip header (which is 12402 * in the first mblk) 12403 */ 12404 mp1 = copyb(mp); 12405 if (mp1 != NULL) { 12406 icmp_send_redirect(WR(q), mp1, 12407 ire->ire_gateway_addr); 12408 } 12409 ire_refrele(src_ire); 12410 } 12411 } 12412 } 12413 12414 dev_q = ire->ire_stq->q_next; 12415 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12416 BUMP_MIB(&ip_mib, ipInDiscards); 12417 freemsg(mp); 12418 ire_refrele(ire); 12419 return; 12420 } 12421 12422 ip_rput_forward(ire, ipha, mp, ill); 12423 IRE_REFRELE(ire); 12424 return; 12425 12426 drop_pkt: 12427 ire_refrele(ire); 12428 ip2dbg(("ip_rput_forward: drop pkt\n")); 12429 freemsg(mp); 12430 } 12431 12432 static boolean_t 12433 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12434 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12435 { 12436 queue_t *q; 12437 ire_t *ire; 12438 12439 q = *qp; 12440 ire = *irep; 12441 12442 /* 12443 * Clear the indication that this may have hardware 12444 * checksum as we are not using it. 12445 */ 12446 mp->b_datap->db_struioun.cksum.flags = 0; 12447 12448 /* 12449 * Directed broadcast forwarding: if the packet came in over a 12450 * different interface then it is routed out over we can forward it. 12451 */ 12452 if (ipha->ipha_protocol == IPPROTO_TCP) { 12453 ire_refrele(ire); 12454 freemsg(mp); 12455 BUMP_MIB(&ip_mib, ipInDiscards); 12456 return (B_TRUE); 12457 } 12458 /* 12459 * For multicast we have set dst to be INADDR_BROADCAST 12460 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12461 * only for broadcast packets. 12462 */ 12463 if (!CLASSD(ipha->ipha_dst)) { 12464 ire_t *new_ire; 12465 ipif_t *ipif; 12466 /* 12467 * For ill groups, as the switch duplicates broadcasts 12468 * across all the ports, we need to filter out and 12469 * send up only one copy. There is one copy for every 12470 * broadcast address on each ill. Thus, we look for a 12471 * specific IRE on this ill and look at IRE_MARK_NORECV 12472 * later to see whether this ill is eligible to receive 12473 * them or not. ill_nominate_bcast_rcv() nominates only 12474 * one set of IREs for receiving. 12475 */ 12476 12477 ipif = ipif_get_next_ipif(NULL, ill); 12478 if (ipif == NULL) { 12479 ire_refrele(ire); 12480 freemsg(mp); 12481 BUMP_MIB(&ip_mib, ipInDiscards); 12482 return (B_TRUE); 12483 } 12484 new_ire = ire_ctable_lookup(dst, 0, 0, 12485 ipif, ALL_ZONES, MATCH_IRE_ILL); 12486 ipif_refrele(ipif); 12487 12488 if (new_ire != NULL) { 12489 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12490 ire_refrele(ire); 12491 ire_refrele(new_ire); 12492 freemsg(mp); 12493 BUMP_MIB(&ip_mib, ipInDiscards); 12494 return (B_TRUE); 12495 } 12496 /* 12497 * In the special case of multirouted broadcast 12498 * packets, we unconditionally need to "gateway" 12499 * them to the appropriate interface here. 12500 * In the normal case, this cannot happen, because 12501 * there is no broadcast IRE tagged with the 12502 * RTF_MULTIRT flag. 12503 */ 12504 if (new_ire->ire_flags & RTF_MULTIRT) { 12505 ire_refrele(new_ire); 12506 if (ire->ire_rfq != NULL) { 12507 q = ire->ire_rfq; 12508 *qp = q; 12509 } 12510 } else { 12511 ire_refrele(ire); 12512 ire = new_ire; 12513 } 12514 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12515 if (!ip_g_forward_directed_bcast) { 12516 /* 12517 * Free the message if 12518 * ip_g_forward_directed_bcast is turned 12519 * off for non-local broadcast. 12520 */ 12521 ire_refrele(ire); 12522 freemsg(mp); 12523 BUMP_MIB(&ip_mib, ipInDiscards); 12524 return (B_TRUE); 12525 } 12526 } else { 12527 /* 12528 * This CGTP packet successfully passed the 12529 * CGTP filter, but the related CGTP 12530 * broadcast IRE has not been found, 12531 * meaning that the redundant ipif is 12532 * probably down. However, if we discarded 12533 * this packet, its duplicate would be 12534 * filtered out by the CGTP filter so none 12535 * of them would get through. So we keep 12536 * going with this one. 12537 */ 12538 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12539 if (ire->ire_rfq != NULL) { 12540 q = ire->ire_rfq; 12541 *qp = q; 12542 } 12543 } 12544 } 12545 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12546 /* 12547 * Verify that there are not more then one 12548 * IRE_BROADCAST with this broadcast address which 12549 * has ire_stq set. 12550 * TODO: simplify, loop over all IRE's 12551 */ 12552 ire_t *ire1; 12553 int num_stq = 0; 12554 mblk_t *mp1; 12555 12556 /* Find the first one with ire_stq set */ 12557 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12558 for (ire1 = ire; ire1 && 12559 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12560 ire1 = ire1->ire_next) 12561 ; 12562 if (ire1) { 12563 ire_refrele(ire); 12564 ire = ire1; 12565 IRE_REFHOLD(ire); 12566 } 12567 12568 /* Check if there are additional ones with stq set */ 12569 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12570 if (ire->ire_addr != ire1->ire_addr) 12571 break; 12572 if (ire1->ire_stq) { 12573 num_stq++; 12574 break; 12575 } 12576 } 12577 rw_exit(&ire->ire_bucket->irb_lock); 12578 if (num_stq == 1 && ire->ire_stq != NULL) { 12579 ip1dbg(("ip_rput_process_broadcast: directed " 12580 "broadcast to 0x%x\n", 12581 ntohl(ire->ire_addr))); 12582 mp1 = copymsg(mp); 12583 if (mp1) { 12584 switch (ipha->ipha_protocol) { 12585 case IPPROTO_UDP: 12586 ip_udp_input(q, mp1, ipha, ire, ill); 12587 break; 12588 default: 12589 ip_proto_input(q, mp1, ipha, ire, ill); 12590 break; 12591 } 12592 } 12593 /* 12594 * Adjust ttl to 2 (1+1 - the forward engine 12595 * will decrement it by one. 12596 */ 12597 if (ip_csum_hdr(ipha)) { 12598 BUMP_MIB(&ip_mib, ipInCksumErrs); 12599 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12600 freemsg(mp); 12601 ire_refrele(ire); 12602 return (B_TRUE); 12603 } 12604 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12605 ipha->ipha_hdr_checksum = 0; 12606 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12607 ip_rput_process_forward(q, mp, ire, ipha, 12608 ill, ll_multicast); 12609 return (B_TRUE); 12610 } 12611 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12612 ntohl(ire->ire_addr))); 12613 } 12614 12615 *irep = ire; 12616 return (B_FALSE); 12617 } 12618 12619 /* ARGSUSED */ 12620 static boolean_t 12621 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12622 int *ll_multicast, ipaddr_t *dstp) 12623 { 12624 /* 12625 * Forward packets only if we have joined the allmulti 12626 * group on this interface. 12627 */ 12628 if (ip_g_mrouter && ill->ill_join_allmulti) { 12629 int retval; 12630 12631 /* 12632 * Clear the indication that this may have hardware 12633 * checksum as we are not using it. 12634 */ 12635 mp->b_datap->db_struioun.cksum.flags = 0; 12636 retval = ip_mforward(ill, ipha, mp); 12637 /* ip_mforward updates mib variables if needed */ 12638 /* clear b_prev - used by ip_mroute_decap */ 12639 mp->b_prev = NULL; 12640 12641 switch (retval) { 12642 case 0: 12643 /* 12644 * pkt is okay and arrived on phyint. 12645 * 12646 * If we are running as a multicast router 12647 * we need to see all IGMP and/or PIM packets. 12648 */ 12649 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12650 (ipha->ipha_protocol == IPPROTO_PIM)) { 12651 goto done; 12652 } 12653 break; 12654 case -1: 12655 /* pkt is mal-formed, toss it */ 12656 goto drop_pkt; 12657 case 1: 12658 /* pkt is okay and arrived on a tunnel */ 12659 /* 12660 * If we are running a multicast router 12661 * we need to see all igmp packets. 12662 */ 12663 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12664 *dstp = INADDR_BROADCAST; 12665 *ll_multicast = 1; 12666 return (B_FALSE); 12667 } 12668 12669 goto drop_pkt; 12670 } 12671 } 12672 12673 ILM_WALKER_HOLD(ill); 12674 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12675 /* 12676 * This might just be caused by the fact that 12677 * multiple IP Multicast addresses map to the same 12678 * link layer multicast - no need to increment counter! 12679 */ 12680 ILM_WALKER_RELE(ill); 12681 freemsg(mp); 12682 return (B_TRUE); 12683 } 12684 ILM_WALKER_RELE(ill); 12685 done: 12686 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12687 /* 12688 * This assumes the we deliver to all streams for multicast 12689 * and broadcast packets. 12690 */ 12691 *dstp = INADDR_BROADCAST; 12692 *ll_multicast = 1; 12693 return (B_FALSE); 12694 drop_pkt: 12695 ip2dbg(("ip_rput: drop pkt\n")); 12696 freemsg(mp); 12697 return (B_TRUE); 12698 } 12699 12700 static boolean_t 12701 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12702 int *ll_multicast, mblk_t **mpp) 12703 { 12704 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12705 boolean_t must_copy = B_FALSE; 12706 struct iocblk *iocp; 12707 ipha_t *ipha; 12708 12709 #define rptr ((uchar_t *)ipha) 12710 12711 first_mp = *first_mpp; 12712 mp = *mpp; 12713 12714 ASSERT(first_mp == mp); 12715 12716 /* 12717 * if db_ref > 1 then copymsg and free original. Packet may be 12718 * changed and do not want other entity who has a reference to this 12719 * message to trip over the changes. This is a blind change because 12720 * trying to catch all places that might change packet is too 12721 * difficult (since it may be a module above this one) 12722 * 12723 * This corresponds to the non-fast path case. We walk down the full 12724 * chain in this case, and check the db_ref count of all the dblks, 12725 * and do a copymsg if required. It is possible that the db_ref counts 12726 * of the data blocks in the mblk chain can be different. 12727 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12728 * count of 1, followed by a M_DATA block with a ref count of 2, if 12729 * 'snoop' is running. 12730 */ 12731 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12732 if (mp1->b_datap->db_ref > 1) { 12733 must_copy = B_TRUE; 12734 break; 12735 } 12736 } 12737 12738 if (must_copy) { 12739 mp1 = copymsg(mp); 12740 if (mp1 == NULL) { 12741 for (mp1 = mp; mp1 != NULL; 12742 mp1 = mp1->b_cont) { 12743 mp1->b_next = NULL; 12744 mp1->b_prev = NULL; 12745 } 12746 freemsg(mp); 12747 BUMP_MIB(&ip_mib, ipInDiscards); 12748 return (B_TRUE); 12749 } 12750 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12751 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12752 /* Copy b_next - used in M_BREAK messages */ 12753 to_mp->b_next = from_mp->b_next; 12754 from_mp->b_next = NULL; 12755 /* Copy b_prev - used by ip_mroute_decap */ 12756 to_mp->b_prev = from_mp->b_prev; 12757 from_mp->b_prev = NULL; 12758 } 12759 *first_mpp = first_mp = mp1; 12760 freemsg(mp); 12761 mp = mp1; 12762 *mpp = mp1; 12763 } 12764 12765 ipha = (ipha_t *)mp->b_rptr; 12766 12767 /* 12768 * previous code has a case for M_DATA. 12769 * We want to check how that happens. 12770 */ 12771 ASSERT(first_mp->b_datap->db_type != M_DATA); 12772 switch (first_mp->b_datap->db_type) { 12773 case M_PROTO: 12774 case M_PCPROTO: 12775 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 12776 DL_UNITDATA_IND) { 12777 /* Go handle anything other than data elsewhere. */ 12778 ip_rput_dlpi(q, mp); 12779 return (B_TRUE); 12780 } 12781 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 12782 /* Ditch the DLPI header. */ 12783 mp1 = mp->b_cont; 12784 ASSERT(first_mp == mp); 12785 *first_mpp = mp1; 12786 freeb(mp); 12787 *mpp = mp1; 12788 return (B_FALSE); 12789 case M_BREAK: 12790 /* 12791 * A packet arrives as M_BREAK following a cycle through 12792 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 12793 * This is an IP datagram sans lower level header. 12794 * M_BREAK are also used to pass back in multicast packets 12795 * that are encapsulated with a source route. 12796 */ 12797 /* Ditch the M_BREAK mblk */ 12798 mp1 = mp->b_cont; 12799 ASSERT(first_mp == mp); 12800 *first_mpp = mp1; 12801 freeb(mp); 12802 mp = mp1; 12803 mp->b_next = NULL; 12804 *mpp = mp; 12805 *ll_multicast = 0; 12806 return (B_FALSE); 12807 case M_IOCACK: 12808 ip1dbg(("got iocack ")); 12809 iocp = (struct iocblk *)mp->b_rptr; 12810 switch (iocp->ioc_cmd) { 12811 case DL_IOC_HDR_INFO: 12812 ill = (ill_t *)q->q_ptr; 12813 ill_fastpath_ack(ill, mp); 12814 return (B_TRUE); 12815 case SIOCSTUNPARAM: 12816 case OSIOCSTUNPARAM: 12817 /* Go through qwriter_ip */ 12818 break; 12819 case SIOCGTUNPARAM: 12820 case OSIOCGTUNPARAM: 12821 ip_rput_other(NULL, q, mp, NULL); 12822 return (B_TRUE); 12823 default: 12824 putnext(q, mp); 12825 return (B_TRUE); 12826 } 12827 /* FALLTHRU */ 12828 case M_ERROR: 12829 case M_HANGUP: 12830 /* 12831 * Since this is on the ill stream we unconditionally 12832 * bump up the refcount 12833 */ 12834 ill_refhold(ill); 12835 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 12836 B_FALSE); 12837 return (B_TRUE); 12838 case M_CTL: 12839 /* EXPORT DELETE START */ 12840 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 12841 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 12842 IPHADA_M_CTL)) { 12843 /* 12844 * It's an IPsec accelerated packet. 12845 * Make sure that the ill from which we received the 12846 * packet has enabled IPsec hardware acceleration. 12847 */ 12848 if (!(ill->ill_capabilities & 12849 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 12850 /* IPsec kstats: bean counter */ 12851 freemsg(mp); 12852 return (B_TRUE); 12853 } 12854 12855 /* 12856 * Make mp point to the mblk following the M_CTL, 12857 * then process according to type of mp. 12858 * After this processing, first_mp will point to 12859 * the data-attributes and mp to the pkt following 12860 * the M_CTL. 12861 */ 12862 mp = first_mp->b_cont; 12863 if (mp == NULL) { 12864 freemsg(first_mp); 12865 return (B_TRUE); 12866 } 12867 /* 12868 * A Hardware Accelerated packet can only be M_DATA 12869 * ESP or AH packet. 12870 */ 12871 if (mp->b_datap->db_type != M_DATA) { 12872 /* non-M_DATA IPsec accelerated packet */ 12873 IPSECHW_DEBUG(IPSECHW_PKT, 12874 ("non-M_DATA IPsec accelerated pkt\n")); 12875 freemsg(first_mp); 12876 return (B_TRUE); 12877 } 12878 ipha = (ipha_t *)mp->b_rptr; 12879 if (ipha->ipha_protocol != IPPROTO_AH && 12880 ipha->ipha_protocol != IPPROTO_ESP) { 12881 IPSECHW_DEBUG(IPSECHW_PKT, 12882 ("non-M_DATA IPsec accelerated pkt\n")); 12883 freemsg(first_mp); 12884 return (B_TRUE); 12885 } 12886 *mpp = mp; 12887 return (B_FALSE); 12888 } 12889 /* EXPORT DELETE END */ 12890 putnext(q, mp); 12891 return (B_TRUE); 12892 case M_FLUSH: 12893 if (*mp->b_rptr & FLUSHW) { 12894 *mp->b_rptr &= ~FLUSHR; 12895 qreply(q, mp); 12896 return (B_TRUE); 12897 } 12898 freemsg(mp); 12899 return (B_TRUE); 12900 case M_IOCNAK: 12901 ip1dbg(("got iocnak ")); 12902 iocp = (struct iocblk *)mp->b_rptr; 12903 switch (iocp->ioc_cmd) { 12904 case DL_IOC_HDR_INFO: 12905 case SIOCSTUNPARAM: 12906 case OSIOCSTUNPARAM: 12907 /* 12908 * Since this is on the ill stream we unconditionally 12909 * bump up the refcount 12910 */ 12911 ill_refhold(ill); 12912 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 12913 CUR_OP, B_FALSE); 12914 return (B_TRUE); 12915 case SIOCGTUNPARAM: 12916 case OSIOCGTUNPARAM: 12917 ip_rput_other(NULL, q, mp, NULL); 12918 return (B_TRUE); 12919 default: 12920 break; 12921 } 12922 /* FALLTHRU */ 12923 default: 12924 putnext(q, mp); 12925 return (B_TRUE); 12926 } 12927 } 12928 12929 /* Read side put procedure. Packets coming from the wire arrive here. */ 12930 void 12931 ip_rput(queue_t *q, mblk_t *mp) 12932 { 12933 ill_t *ill; 12934 12935 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 12936 12937 ill = (ill_t *)q->q_ptr; 12938 12939 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 12940 union DL_primitives *dl; 12941 12942 /* 12943 * Things are opening or closing. Only accept DLPI control 12944 * messages. In the open case, the ill->ill_ipif has not yet 12945 * been created. In the close case, things hanging off the 12946 * ill could have been freed already. In either case it 12947 * may not be safe to proceed further. 12948 */ 12949 12950 dl = (union DL_primitives *)mp->b_rptr; 12951 if ((mp->b_datap->db_type != M_PCPROTO) || 12952 (dl->dl_primitive == DL_UNITDATA_IND)) { 12953 /* 12954 * Also SIOC[GS]TUN* ioctls can come here. 12955 */ 12956 ip_ioctl_freemsg(mp); 12957 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 12958 "ip_input_end: q %p (%S)", q, "uninit"); 12959 return; 12960 } 12961 } 12962 12963 /* 12964 * if db_ref > 1 then copymsg and free original. Packet may be 12965 * changed and we do not want the other entity who has a reference to 12966 * this message to trip over the changes. This is a blind change because 12967 * trying to catch all places that might change the packet is too 12968 * difficult. 12969 * 12970 * This corresponds to the fast path case, where we have a chain of 12971 * M_DATA mblks. We check the db_ref count of only the 1st data block 12972 * in the mblk chain. There doesn't seem to be a reason why a device 12973 * driver would send up data with varying db_ref counts in the mblk 12974 * chain. In any case the Fast path is a private interface, and our 12975 * drivers don't do such a thing. Given the above assumption, there is 12976 * no need to walk down the entire mblk chain (which could have a 12977 * potential performance problem) 12978 */ 12979 if (mp->b_datap->db_ref > 1) { 12980 mblk_t *mp1; 12981 boolean_t adjusted = B_FALSE; 12982 IP_STAT(ip_db_ref); 12983 12984 /* 12985 * The IP_RECVSLLA option depends on having the link layer 12986 * header. First check that: 12987 * a> the underlying device is of type ether, since this 12988 * option is currently supported only over ethernet. 12989 * b> there is enough room to copy over the link layer header. 12990 * 12991 * Once the checks are done, adjust rptr so that the link layer 12992 * header will be copied via copymsg. Note that, IFT_ETHER may 12993 * be returned by some non-ethernet drivers but in this case the 12994 * second check will fail. 12995 */ 12996 if (ill->ill_type == IFT_ETHER && 12997 (mp->b_rptr - mp->b_datap->db_base) >= 12998 sizeof (struct ether_header)) { 12999 mp->b_rptr -= sizeof (struct ether_header); 13000 adjusted = B_TRUE; 13001 } 13002 mp1 = copymsg(mp); 13003 if (mp1 == NULL) { 13004 /* Clear b_next - used in M_BREAK messages */ 13005 mp->b_next = NULL; 13006 /* clear b_prev - used by ip_mroute_decap */ 13007 mp->b_prev = NULL; 13008 freemsg(mp); 13009 BUMP_MIB(&ip_mib, ipInDiscards); 13010 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13011 "ip_rput_end: q %p (%S)", q, "copymsg"); 13012 return; 13013 } 13014 if (adjusted) { 13015 /* 13016 * Copy is done. Restore the pointer in the _new_ mblk 13017 */ 13018 mp1->b_rptr += sizeof (struct ether_header); 13019 } 13020 /* Copy b_next - used in M_BREAK messages */ 13021 mp1->b_next = mp->b_next; 13022 mp->b_next = NULL; 13023 /* Copy b_prev - used by ip_mroute_decap */ 13024 mp1->b_prev = mp->b_prev; 13025 mp->b_prev = NULL; 13026 freemsg(mp); 13027 mp = mp1; 13028 } 13029 13030 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13031 "ip_rput_end: q %p (%S)", q, "end"); 13032 13033 ip_input(ill, NULL, mp, 0); 13034 } 13035 13036 /* 13037 * Direct read side procedure capable of dealing with chains. GLDv3 based 13038 * drivers call this function directly with mblk chains while STREAMS 13039 * read side procedure ip_rput() calls this for single packet with ip_ring 13040 * set to NULL to process one packet at a time. 13041 * 13042 * The ill will always be valid if this function is called directly from 13043 * the driver. 13044 */ 13045 /*ARGSUSED*/ 13046 void 13047 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13048 { 13049 ipaddr_t dst; 13050 ire_t *ire; 13051 ipha_t *ipha; 13052 uint_t pkt_len; 13053 ssize_t len; 13054 uint_t opt_len; 13055 int ll_multicast; 13056 int cgtp_flt_pkt; 13057 queue_t *q = ill->ill_rq; 13058 squeue_t *curr_sqp = NULL; 13059 mblk_t *head = NULL; 13060 mblk_t *tail = NULL; 13061 mblk_t *first_mp; 13062 mblk_t *mp; 13063 int cnt = 0; 13064 13065 ASSERT(mp_chain != NULL); 13066 ASSERT(ill != NULL); 13067 13068 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13069 13070 #define rptr ((uchar_t *)ipha) 13071 13072 while (mp_chain != NULL) { 13073 first_mp = mp = mp_chain; 13074 mp_chain = mp_chain->b_next; 13075 mp->b_next = NULL; 13076 ll_multicast = 0; 13077 ire = NULL; 13078 13079 /* 13080 * ip_input fast path 13081 */ 13082 13083 /* mblk type is not M_DATA */ 13084 if (mp->b_datap->db_type != M_DATA) { 13085 if (ip_rput_process_notdata(q, &first_mp, ill, 13086 &ll_multicast, &mp)) 13087 continue; 13088 } 13089 13090 ASSERT(mp->b_datap->db_type == M_DATA); 13091 ASSERT(mp->b_datap->db_ref == 1); 13092 13093 /* 13094 * Invoke the CGTP (multirouting) filtering module to process 13095 * the incoming packet. Packets identified as duplicates 13096 * must be discarded. Filtering is active only if the 13097 * the ip_cgtp_filter ndd variable is non-zero. 13098 */ 13099 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13100 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13101 cgtp_flt_pkt = 13102 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13103 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13104 freemsg(first_mp); 13105 continue; 13106 } 13107 } 13108 13109 ipha = (ipha_t *)mp->b_rptr; 13110 len = mp->b_wptr - rptr; 13111 13112 BUMP_MIB(&ip_mib, ipInReceives); 13113 13114 /* 13115 * IP header ptr not aligned? 13116 * OR IP header not complete in first mblk 13117 */ 13118 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13119 if (!ip_check_and_align_header(q, mp)) 13120 continue; 13121 ipha = (ipha_t *)mp->b_rptr; 13122 len = mp->b_wptr - rptr; 13123 } 13124 13125 /* multiple mblk or too short */ 13126 pkt_len = ntohs(ipha->ipha_length); 13127 len -= pkt_len; 13128 if (len != 0) { 13129 /* 13130 * Make sure we have data length consistent 13131 * with the IP header. 13132 */ 13133 if (mp->b_cont == NULL) { 13134 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13135 BUMP_MIB(&ip_mib, ipInHdrErrors); 13136 ip2dbg(("ip_input: drop pkt\n")); 13137 freemsg(mp); 13138 continue; 13139 } 13140 mp->b_wptr = rptr + pkt_len; 13141 } else if (len += msgdsize(mp->b_cont)) { 13142 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13143 BUMP_MIB(&ip_mib, ipInHdrErrors); 13144 ip2dbg(("ip_input: drop pkt\n")); 13145 freemsg(mp); 13146 continue; 13147 } 13148 (void) adjmsg(mp, -len); 13149 IP_STAT(ip_multimblk3); 13150 } 13151 } 13152 13153 if (ip_loopback_src_or_dst(ipha, ill)) { 13154 ip2dbg(("ip_input: drop pkt\n")); 13155 freemsg(mp); 13156 continue; 13157 } 13158 13159 opt_len = ipha->ipha_version_and_hdr_length - 13160 IP_SIMPLE_HDR_VERSION; 13161 /* IP version bad or there are IP options */ 13162 if (opt_len) { 13163 if (len != 0) 13164 IP_STAT(ip_multimblk4); 13165 else 13166 IP_STAT(ip_ipoptions); 13167 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13168 continue; 13169 } else { 13170 dst = ipha->ipha_dst; 13171 } 13172 13173 /* 13174 * If rsvpd is running, let RSVP daemon handle its processing 13175 * and forwarding of RSVP multicast/unicast packets. 13176 * If rsvpd is not running but mrouted is running, RSVP 13177 * multicast packets are forwarded as multicast traffic 13178 * and RSVP unicast packets are forwarded by unicast router. 13179 * If neither rsvpd nor mrouted is running, RSVP multicast 13180 * packets are not forwarded, but the unicast packets are 13181 * forwarded like unicast traffic. 13182 */ 13183 if (ipha->ipha_protocol == IPPROTO_RSVP && 13184 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13185 /* RSVP packet and rsvpd running. Treat as ours */ 13186 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13187 /* 13188 * This assumes that we deliver to all streams for 13189 * multicast and broadcast packets. 13190 * We have to force ll_multicast to 1 to handle the 13191 * M_DATA messages passed in from ip_mroute_decap. 13192 */ 13193 dst = INADDR_BROADCAST; 13194 ll_multicast = 1; 13195 } else if (CLASSD(dst)) { 13196 /* packet is multicast */ 13197 mp->b_next = NULL; 13198 if (ip_rput_process_multicast(q, mp, ill, ipha, 13199 &ll_multicast, &dst)) 13200 continue; 13201 } 13202 13203 13204 /* 13205 * Check if the packet is coming from the Mobile IP 13206 * forward tunnel interface 13207 */ 13208 if (ill->ill_srcif_refcnt > 0) { 13209 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13210 NULL, ill, MATCH_IRE_TYPE); 13211 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13212 ire->ire_ipif->ipif_net_type == 13213 IRE_IF_RESOLVER) { 13214 /* We need to resolve the link layer info */ 13215 ire_refrele(ire); 13216 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13217 ll_multicast, dst); 13218 continue; 13219 } 13220 } 13221 13222 if (ire == NULL) 13223 ire = ire_cache_lookup(dst, ALL_ZONES); 13224 13225 /* 13226 * If mipagent is running and reverse tunnel is created as per 13227 * mobile node request, then any packet coming through the 13228 * incoming interface from the mobile-node, should be reverse 13229 * tunneled to it's home agent except those that are destined 13230 * to foreign agent only. 13231 * This needs source address based ire lookup. The routing 13232 * entries for source address based lookup are only created by 13233 * mipagent program only when a reverse tunnel is created. 13234 * Reference : RFC2002, RFC2344 13235 */ 13236 if (ill->ill_mrtun_refcnt > 0) { 13237 ipaddr_t srcaddr; 13238 ire_t *tmp_ire; 13239 13240 tmp_ire = ire; /* Save, we might need it later */ 13241 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13242 ire->ire_type != IRE_BROADCAST)) { 13243 srcaddr = ipha->ipha_src; 13244 ire = ire_mrtun_lookup(srcaddr, ill); 13245 if (ire != NULL) { 13246 /* 13247 * Should not be getting iphada packet 13248 * here. we should only get those for 13249 * IRE_LOCAL traffic, excluded above. 13250 * Fail-safe (drop packet) in the event 13251 * hardware is misbehaving. 13252 */ 13253 if (first_mp != mp) { 13254 /* IPsec KSTATS: beancount me */ 13255 freemsg(first_mp); 13256 } else { 13257 /* 13258 * This packet must be forwarded 13259 * to Reverse Tunnel 13260 */ 13261 ip_mrtun_forward(ire, ill, mp); 13262 } 13263 ire_refrele(ire); 13264 if (tmp_ire != NULL) 13265 ire_refrele(tmp_ire); 13266 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13267 "ip_input_end: q %p (%S)", 13268 q, "uninit"); 13269 continue; 13270 } 13271 } 13272 /* 13273 * If this packet is from a non-mobilenode or a 13274 * mobile-node which does not request reverse 13275 * tunnel service 13276 */ 13277 ire = tmp_ire; 13278 } 13279 13280 13281 /* 13282 * If we reach here that means the incoming packet satisfies 13283 * one of the following conditions: 13284 * - packet is from a mobile node which does not request 13285 * reverse tunnel 13286 * - packet is from a non-mobile node, which is the most 13287 * common case 13288 * - packet is from a reverse tunnel enabled mobile node 13289 * and destined to foreign agent only 13290 */ 13291 13292 if (ire == NULL) { 13293 /* 13294 * No IRE for this destination, so it can't be for us. 13295 * Unless we are forwarding, drop the packet. 13296 * We have to let source routed packets through 13297 * since we don't yet know if they are 'ping -l' 13298 * packets i.e. if they will go out over the 13299 * same interface as they came in on. 13300 */ 13301 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13302 continue; 13303 } 13304 13305 /* broadcast? */ 13306 if (ire->ire_type == IRE_BROADCAST) { 13307 if (ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13308 dst, cgtp_flt_pkt, ll_multicast)) { 13309 continue; 13310 } 13311 } else if (ire->ire_stq != NULL) { 13312 /* fowarding? */ 13313 ip_rput_process_forward(q, mp, ire, ipha, ill, 13314 ll_multicast); 13315 continue; 13316 } 13317 13318 /* packet not for us */ 13319 if (ire->ire_rfq != q) { 13320 if (ip_rput_notforus(&q, mp, ire, ill)) { 13321 continue; 13322 } 13323 } 13324 13325 switch (ipha->ipha_protocol) { 13326 case IPPROTO_TCP: 13327 ASSERT(first_mp == mp); 13328 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13329 mp, 0, q, ip_ring)) != NULL) { 13330 if (curr_sqp == NULL) { 13331 curr_sqp = GET_SQUEUE(mp); 13332 ASSERT(cnt == 0); 13333 cnt++; 13334 head = tail = mp; 13335 } else if (curr_sqp == GET_SQUEUE(mp)) { 13336 ASSERT(tail != NULL); 13337 cnt++; 13338 tail->b_next = mp; 13339 tail = mp; 13340 } else { 13341 /* 13342 * A different squeue. Send the 13343 * chain for the previous squeue on 13344 * its way. This shouldn't happen 13345 * often unless interrupt binding 13346 * changes. 13347 */ 13348 IP_STAT(ip_input_multi_squeue); 13349 squeue_enter_chain(curr_sqp, head, 13350 tail, cnt, SQTAG_IP_INPUT); 13351 curr_sqp = GET_SQUEUE(mp); 13352 head = mp; 13353 tail = mp; 13354 cnt = 1; 13355 } 13356 } 13357 IRE_REFRELE(ire); 13358 continue; 13359 case IPPROTO_UDP: 13360 ASSERT(first_mp == mp); 13361 ip_udp_input(q, mp, ipha, ire, ill); 13362 IRE_REFRELE(ire); 13363 continue; 13364 case IPPROTO_SCTP: 13365 ASSERT(first_mp == mp); 13366 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13367 q, dst); 13368 continue; 13369 default: 13370 ip_proto_input(q, first_mp, ipha, ire, ill); 13371 IRE_REFRELE(ire); 13372 continue; 13373 } 13374 } 13375 13376 if (head != NULL) 13377 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13378 13379 /* 13380 * This code is there just to make netperf/ttcp look good. 13381 * 13382 * Its possible that after being in polling mode (and having cleared 13383 * the backlog), squeues have turned the interrupt frequency higher 13384 * to improve latency at the expense of more CPU utilization (less 13385 * packets per interrupts or more number of interrupts). Workloads 13386 * like ttcp/netperf do manage to tickle polling once in a while 13387 * but for the remaining time, stay in higher interrupt mode since 13388 * their packet arrival rate is pretty uniform and this shows up 13389 * as higher CPU utilization. Since people care about CPU utilization 13390 * while running netperf/ttcp, turn the interrupt frequency back to 13391 * normal/default if polling has not been used in ip_poll_normal_ticks. 13392 */ 13393 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13394 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13395 ip_ring->rr_poll_state &= ~ILL_POLLING; 13396 ip_ring->rr_blank(ip_ring->rr_handle, 13397 ip_ring->rr_normal_blank_time, 13398 ip_ring->rr_normal_pkt_cnt); 13399 } 13400 } 13401 13402 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13403 "ip_input_end: q %p (%S)", q, "end"); 13404 #undef rptr 13405 } 13406 13407 static void 13408 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13409 t_uscalar_t err) 13410 { 13411 if (dl_err == DL_SYSERR) { 13412 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13413 "%s: %s failed: DL_SYSERR (errno %u)\n", 13414 ill->ill_name, dlpi_prim_str(prim), err); 13415 return; 13416 } 13417 13418 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13419 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13420 dlpi_err_str(dl_err)); 13421 } 13422 13423 /* 13424 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13425 * than DL_UNITDATA_IND messages. If we need to process this message 13426 * exclusively, we call qwriter_ip, in which case we also need to call 13427 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13428 */ 13429 void 13430 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13431 { 13432 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13433 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13434 ill_t *ill; 13435 13436 ip1dbg(("ip_rput_dlpi")); 13437 ill = (ill_t *)q->q_ptr; 13438 switch (dloa->dl_primitive) { 13439 case DL_ERROR_ACK: 13440 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13441 "%s (0x%x), unix %u\n", ill->ill_name, 13442 dlpi_prim_str(dlea->dl_error_primitive), 13443 dlea->dl_error_primitive, 13444 dlpi_err_str(dlea->dl_errno), 13445 dlea->dl_errno, 13446 dlea->dl_unix_errno)); 13447 switch (dlea->dl_error_primitive) { 13448 case DL_NOTIFY_REQ: 13449 case DL_UNBIND_REQ: 13450 case DL_ATTACH_REQ: 13451 case DL_DETACH_REQ: 13452 case DL_INFO_REQ: 13453 case DL_BIND_REQ: 13454 case DL_ENABMULTI_REQ: 13455 case DL_PHYS_ADDR_REQ: 13456 case DL_CAPABILITY_REQ: 13457 case DL_CONTROL_REQ: 13458 /* 13459 * Refhold the ill to match qwriter_ip which does a 13460 * refrele. Since this is on the ill stream we 13461 * unconditionally bump up the refcount without 13462 * checking for ILL_CAN_LOOKUP 13463 */ 13464 ill_refhold(ill); 13465 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13466 CUR_OP, B_FALSE); 13467 return; 13468 case DL_DISABMULTI_REQ: 13469 freemsg(mp); /* Don't want to pass this up */ 13470 return; 13471 default: 13472 break; 13473 } 13474 ip_dlpi_error(ill, dlea->dl_error_primitive, 13475 dlea->dl_errno, dlea->dl_unix_errno); 13476 freemsg(mp); 13477 return; 13478 case DL_INFO_ACK: 13479 case DL_BIND_ACK: 13480 case DL_PHYS_ADDR_ACK: 13481 case DL_NOTIFY_ACK: 13482 case DL_CAPABILITY_ACK: 13483 case DL_CONTROL_ACK: 13484 /* 13485 * Refhold the ill to match qwriter_ip which does a refrele 13486 * Since this is on the ill stream we unconditionally 13487 * bump up the refcount without doing ILL_CAN_LOOKUP. 13488 */ 13489 ill_refhold(ill); 13490 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13491 CUR_OP, B_FALSE); 13492 return; 13493 case DL_NOTIFY_IND: 13494 ill_refhold(ill); 13495 /* 13496 * The DL_NOTIFY_IND is an asynchronous message that has no 13497 * relation to the current ioctl in progress (if any). Hence we 13498 * pass in NEW_OP in this case. 13499 */ 13500 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13501 NEW_OP, B_FALSE); 13502 return; 13503 case DL_OK_ACK: 13504 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13505 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13506 switch (dloa->dl_correct_primitive) { 13507 case DL_UNBIND_REQ: 13508 mutex_enter(&ill->ill_lock); 13509 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13510 cv_signal(&ill->ill_cv); 13511 mutex_exit(&ill->ill_lock); 13512 /* FALLTHRU */ 13513 case DL_ATTACH_REQ: 13514 case DL_DETACH_REQ: 13515 /* 13516 * Refhold the ill to match qwriter_ip which does a 13517 * refrele. Since this is on the ill stream we 13518 * unconditionally bump up the refcount 13519 */ 13520 ill_refhold(ill); 13521 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13522 CUR_OP, B_FALSE); 13523 return; 13524 case DL_ENABMULTI_REQ: 13525 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13526 ill->ill_dlpi_multicast_state = IDMS_OK; 13527 break; 13528 13529 } 13530 break; 13531 default: 13532 break; 13533 } 13534 freemsg(mp); 13535 } 13536 13537 /* 13538 * This function is used to free a message that has gone through 13539 * mi_copyin processing which modifies the M_IOCTL mblk's b_next 13540 * and b_prev pointers. We use this function to set b_next/b_prev 13541 * to NULL and free them. 13542 */ 13543 void 13544 ip_ioctl_freemsg(mblk_t *mp) 13545 { 13546 mblk_t *bp = mp; 13547 13548 for (; bp != NULL; bp = bp->b_cont) { 13549 bp->b_prev = NULL; 13550 bp->b_next = NULL; 13551 } 13552 freemsg(mp); 13553 } 13554 13555 /* 13556 * Handling of DLPI messages that require exclusive access to the ipsq. 13557 * 13558 * Need to do ill_pending_mp_release on ioctl completion, which could 13559 * happen here. (along with mi_copy_done) 13560 */ 13561 /* ARGSUSED */ 13562 static void 13563 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13564 { 13565 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13566 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13567 int err = 0; 13568 ill_t *ill; 13569 ipif_t *ipif = NULL; 13570 mblk_t *mp1 = NULL; 13571 conn_t *connp = NULL; 13572 t_uscalar_t physaddr_req; 13573 mblk_t *mp_hw; 13574 union DL_primitives *dlp; 13575 boolean_t success; 13576 boolean_t ioctl_aborted = B_FALSE; 13577 boolean_t log = B_TRUE; 13578 13579 ip1dbg(("ip_rput_dlpi_writer ..")); 13580 ill = (ill_t *)q->q_ptr; 13581 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13582 13583 ASSERT(IAM_WRITER_ILL(ill)); 13584 13585 /* 13586 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13587 * both are null or non-null. However we can assert that only 13588 * after grabbing the ipsq_lock. So we don't make any assertion 13589 * here and in other places in the code. 13590 */ 13591 ipif = ipsq->ipsq_pending_ipif; 13592 /* 13593 * The current ioctl could have been aborted by the user and a new 13594 * ioctl to bring up another ill could have started. We could still 13595 * get a response from the driver later. 13596 */ 13597 if (ipif != NULL && ipif->ipif_ill != ill) 13598 ioctl_aborted = B_TRUE; 13599 13600 switch (dloa->dl_primitive) { 13601 case DL_ERROR_ACK: 13602 switch (dlea->dl_error_primitive) { 13603 case DL_UNBIND_REQ: 13604 case DL_ATTACH_REQ: 13605 case DL_DETACH_REQ: 13606 case DL_INFO_REQ: 13607 ill_dlpi_done(ill, dlea->dl_error_primitive); 13608 break; 13609 case DL_NOTIFY_REQ: 13610 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13611 log = B_FALSE; 13612 break; 13613 case DL_PHYS_ADDR_REQ: 13614 /* 13615 * For IPv6 only, there are two additional 13616 * phys_addr_req's sent to the driver to get the 13617 * IPv6 token and lla. This allows IP to acquire 13618 * the hardware address format for a given interface 13619 * without having built in knowledge of the hardware 13620 * address. ill_phys_addr_pend keeps track of the last 13621 * DL_PAR sent so we know which response we are 13622 * dealing with. ill_dlpi_done will update 13623 * ill_phys_addr_pend when it sends the next req. 13624 * We don't complete the IOCTL until all three DL_PARs 13625 * have been attempted, so set *_len to 0 and break. 13626 */ 13627 physaddr_req = ill->ill_phys_addr_pend; 13628 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13629 if (physaddr_req == DL_IPV6_TOKEN) { 13630 ill->ill_token_length = 0; 13631 log = B_FALSE; 13632 break; 13633 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13634 ill->ill_nd_lla_len = 0; 13635 log = B_FALSE; 13636 break; 13637 } 13638 /* 13639 * Something went wrong with the DL_PHYS_ADDR_REQ. 13640 * We presumably have an IOCTL hanging out waiting 13641 * for completion. Find it and complete the IOCTL 13642 * with the error noted. 13643 * However, ill_dl_phys was called on an ill queue 13644 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13645 * set. But the ioctl is known to be pending on ill_wq. 13646 */ 13647 if (!ill->ill_ifname_pending) 13648 break; 13649 ill->ill_ifname_pending = 0; 13650 if (!ioctl_aborted) 13651 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13652 if (mp1 != NULL) { 13653 /* 13654 * This operation (SIOCSLIFNAME) must have 13655 * happened on the ill. Assert there is no conn 13656 */ 13657 ASSERT(connp == NULL); 13658 q = ill->ill_wq; 13659 } 13660 break; 13661 case DL_BIND_REQ: 13662 ill_dlpi_done(ill, DL_BIND_REQ); 13663 if (ill->ill_ifname_pending) 13664 break; 13665 /* 13666 * Something went wrong with the bind. We presumably 13667 * have an IOCTL hanging out waiting for completion. 13668 * Find it, take down the interface that was coming 13669 * up, and complete the IOCTL with the error noted. 13670 */ 13671 if (!ioctl_aborted) 13672 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13673 if (mp1 != NULL) { 13674 /* 13675 * This operation (SIOCSLIFFLAGS) must have 13676 * happened from a conn. 13677 */ 13678 ASSERT(connp != NULL); 13679 q = CONNP_TO_WQ(connp); 13680 if (ill->ill_move_in_progress) { 13681 ILL_CLEAR_MOVE(ill); 13682 } 13683 (void) ipif_down(ipif, NULL, NULL); 13684 /* error is set below the switch */ 13685 } 13686 break; 13687 case DL_ENABMULTI_REQ: 13688 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13689 13690 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13691 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13692 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13693 ipif_t *ipif; 13694 13695 log = B_FALSE; 13696 printf("ip: joining multicasts failed (%d)" 13697 " on %s - will use link layer " 13698 "broadcasts for multicast\n", 13699 dlea->dl_errno, ill->ill_name); 13700 13701 /* 13702 * Set up the multicast mapping alone. 13703 * writer, so ok to access ill->ill_ipif 13704 * without any lock. 13705 */ 13706 ipif = ill->ill_ipif; 13707 mutex_enter(&ill->ill_phyint->phyint_lock); 13708 ill->ill_phyint->phyint_flags |= 13709 PHYI_MULTI_BCAST; 13710 mutex_exit(&ill->ill_phyint->phyint_lock); 13711 13712 if (!ill->ill_isv6) { 13713 (void) ipif_arp_setup_multicast(ipif, 13714 NULL); 13715 } else { 13716 (void) ipif_ndp_setup_multicast(ipif, 13717 NULL); 13718 } 13719 } 13720 freemsg(mp); /* Don't want to pass this up */ 13721 return; 13722 case DL_CAPABILITY_REQ: 13723 case DL_CONTROL_REQ: 13724 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13725 "DL_CAPABILITY/CONTROL REQ\n")); 13726 ill_dlpi_done(ill, dlea->dl_error_primitive); 13727 ill->ill_capab_state = IDMS_FAILED; 13728 freemsg(mp); 13729 return; 13730 } 13731 /* 13732 * Note the error for IOCTL completion (mp1 is set when 13733 * ready to complete ioctl). If ill_ifname_pending_err is 13734 * set, an error occured during plumbing (ill_ifname_pending), 13735 * so we want to report that error. 13736 * 13737 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13738 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13739 * expected to get errack'd if the driver doesn't support 13740 * these flags (e.g. ethernet). log will be set to B_FALSE 13741 * if these error conditions are encountered. 13742 */ 13743 if (mp1 != NULL) { 13744 if (ill->ill_ifname_pending_err != 0) { 13745 err = ill->ill_ifname_pending_err; 13746 ill->ill_ifname_pending_err = 0; 13747 } else { 13748 err = dlea->dl_unix_errno ? 13749 dlea->dl_unix_errno : ENXIO; 13750 } 13751 /* 13752 * If we're plumbing an interface and an error hasn't already 13753 * been saved, set ill_ifname_pending_err to the error passed 13754 * up. Ignore the error if log is B_FALSE (see comment above). 13755 */ 13756 } else if (log && ill->ill_ifname_pending && 13757 ill->ill_ifname_pending_err == 0) { 13758 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13759 dlea->dl_unix_errno : ENXIO; 13760 } 13761 13762 if (log) 13763 ip_dlpi_error(ill, dlea->dl_error_primitive, 13764 dlea->dl_errno, dlea->dl_unix_errno); 13765 break; 13766 case DL_CAPABILITY_ACK: { 13767 boolean_t reneg_flag = B_FALSE; 13768 /* Call a routine to handle this one. */ 13769 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13770 /* 13771 * Check if the ACK is due to renegotiation case since we 13772 * will need to send a new CAPABILITY_REQ later. 13773 */ 13774 if (ill->ill_capab_state == IDMS_RENEG) { 13775 /* This is the ack for a renogiation case */ 13776 reneg_flag = B_TRUE; 13777 ill->ill_capab_state = IDMS_UNKNOWN; 13778 } 13779 ill_capability_ack(ill, mp); 13780 if (reneg_flag) 13781 ill_capability_probe(ill); 13782 break; 13783 } 13784 case DL_CONTROL_ACK: 13785 /* We treat all of these as "fire and forget" */ 13786 ill_dlpi_done(ill, DL_CONTROL_REQ); 13787 break; 13788 case DL_INFO_ACK: 13789 /* Call a routine to handle this one. */ 13790 ill_dlpi_done(ill, DL_INFO_REQ); 13791 ip_ll_subnet_defaults(ill, mp); 13792 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 13793 return; 13794 case DL_BIND_ACK: 13795 /* 13796 * We should have an IOCTL waiting on this unless 13797 * sent by ill_dl_phys, in which case just return 13798 */ 13799 ill_dlpi_done(ill, DL_BIND_REQ); 13800 if (ill->ill_ifname_pending) 13801 break; 13802 13803 if (!ioctl_aborted) 13804 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13805 if (mp1 == NULL) 13806 break; 13807 ASSERT(connp != NULL); 13808 q = CONNP_TO_WQ(connp); 13809 13810 /* 13811 * We are exclusive. So nothing can change even after 13812 * we get the pending mp. If need be we can put it back 13813 * and restart, as in calling ipif_arp_up() below. 13814 */ 13815 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 13816 13817 mutex_enter(&ill->ill_lock); 13818 ill->ill_dl_up = 1; 13819 mutex_exit(&ill->ill_lock); 13820 13821 /* 13822 * Now bring up the resolver, when that is 13823 * done we'll create IREs and we are done. 13824 */ 13825 if (ill->ill_isv6) { 13826 /* 13827 * v6 interfaces. 13828 * Unlike ARP which has to do another bind 13829 * and attach, once we get here we are 13830 * done withh NDP. Except in the case of 13831 * ILLF_XRESOLV, in which case we send an 13832 * AR_INTERFACE_UP to the external resolver. 13833 * If all goes well, the ioctl will complete 13834 * in ip_rput(). If there's an error, we 13835 * complete it here. 13836 */ 13837 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 13838 B_FALSE); 13839 if (err == 0) { 13840 if (ill->ill_flags & ILLF_XRESOLV) { 13841 mutex_enter(&connp->conn_lock); 13842 mutex_enter(&ill->ill_lock); 13843 success = ipsq_pending_mp_add( 13844 connp, ipif, q, mp1, 0); 13845 mutex_exit(&ill->ill_lock); 13846 mutex_exit(&connp->conn_lock); 13847 if (success) { 13848 err = ipif_resolver_up(ipif, 13849 B_FALSE); 13850 if (err == EINPROGRESS) { 13851 freemsg(mp); 13852 return; 13853 } 13854 ASSERT(err != 0); 13855 mp1 = ipsq_pending_mp_get(ipsq, 13856 &connp); 13857 ASSERT(mp1 != NULL); 13858 } else { 13859 /* conn has started closing */ 13860 err = EINTR; 13861 } 13862 } else { /* Non XRESOLV interface */ 13863 err = ipif_up_done_v6(ipif); 13864 } 13865 } 13866 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 13867 /* 13868 * ARP and other v4 external resolvers. 13869 * Leave the pending mblk intact so that 13870 * the ioctl completes in ip_rput(). 13871 */ 13872 mutex_enter(&connp->conn_lock); 13873 mutex_enter(&ill->ill_lock); 13874 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 13875 mutex_exit(&ill->ill_lock); 13876 mutex_exit(&connp->conn_lock); 13877 if (success) { 13878 err = ipif_resolver_up(ipif, B_FALSE); 13879 if (err == EINPROGRESS) { 13880 freemsg(mp); 13881 return; 13882 } 13883 ASSERT(err != 0); 13884 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13885 } else { 13886 /* The conn has started closing */ 13887 err = EINTR; 13888 } 13889 } else { 13890 /* 13891 * This one is complete. Reply to pending ioctl. 13892 */ 13893 err = ipif_up_done(ipif); 13894 } 13895 13896 if ((err == 0) && (ill->ill_up_ipifs)) { 13897 err = ill_up_ipifs(ill, q, mp1); 13898 if (err == EINPROGRESS) { 13899 freemsg(mp); 13900 return; 13901 } 13902 } 13903 13904 if (ill->ill_up_ipifs) { 13905 ill_group_cleanup(ill); 13906 } 13907 13908 break; 13909 case DL_NOTIFY_IND: { 13910 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 13911 ire_t *ire; 13912 boolean_t need_ire_walk_v4 = B_FALSE; 13913 boolean_t need_ire_walk_v6 = B_FALSE; 13914 13915 /* 13916 * Change the address everywhere we need to. 13917 * What we're getting here is a link-level addr or phys addr. 13918 * The new addr is at notify + notify->dl_addr_offset 13919 * The address length is notify->dl_addr_length; 13920 */ 13921 switch (notify->dl_notification) { 13922 case DL_NOTE_PHYS_ADDR: 13923 mp_hw = copyb(mp); 13924 if (mp_hw == NULL) { 13925 err = ENOMEM; 13926 break; 13927 } 13928 dlp = (union DL_primitives *)mp_hw->b_rptr; 13929 /* 13930 * We currently don't support changing 13931 * the token via DL_NOTIFY_IND. 13932 * When we do support it, we have to consider 13933 * what the implications are with respect to 13934 * the token and the link local address. 13935 */ 13936 mutex_enter(&ill->ill_lock); 13937 if (dlp->notify_ind.dl_data == 13938 DL_IPV6_LINK_LAYER_ADDR) { 13939 if (ill->ill_nd_lla_mp != NULL) 13940 freemsg(ill->ill_nd_lla_mp); 13941 ill->ill_nd_lla_mp = mp_hw; 13942 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 13943 dlp->notify_ind.dl_addr_offset; 13944 ill->ill_nd_lla_len = 13945 dlp->notify_ind.dl_addr_length - 13946 ABS(ill->ill_sap_length); 13947 mutex_exit(&ill->ill_lock); 13948 break; 13949 } else if (dlp->notify_ind.dl_data == 13950 DL_CURR_PHYS_ADDR) { 13951 if (ill->ill_phys_addr_mp != NULL) 13952 freemsg(ill->ill_phys_addr_mp); 13953 ill->ill_phys_addr_mp = mp_hw; 13954 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 13955 dlp->notify_ind.dl_addr_offset; 13956 ill->ill_phys_addr_length = 13957 dlp->notify_ind.dl_addr_length - 13958 ABS(ill->ill_sap_length); 13959 if (ill->ill_isv6 && 13960 !(ill->ill_flags & ILLF_XRESOLV)) { 13961 if (ill->ill_nd_lla_mp != NULL) 13962 freemsg(ill->ill_nd_lla_mp); 13963 ill->ill_nd_lla_mp = copyb(mp_hw); 13964 ill->ill_nd_lla = (uchar_t *) 13965 ill->ill_nd_lla_mp->b_rptr + 13966 dlp->notify_ind.dl_addr_offset; 13967 ill->ill_nd_lla_len = 13968 ill->ill_phys_addr_length; 13969 } 13970 } 13971 mutex_exit(&ill->ill_lock); 13972 /* 13973 * Send out gratuitous arp request for our new 13974 * hardware address. 13975 */ 13976 for (ipif = ill->ill_ipif; ipif != NULL; 13977 ipif = ipif->ipif_next) { 13978 if (!(ipif->ipif_flags & IPIF_UP)) 13979 continue; 13980 if (ill->ill_isv6) { 13981 ipif_ndp_down(ipif); 13982 /* 13983 * Set B_TRUE to enable 13984 * ipif_ndp_up() to send out 13985 * unsolicited advertisements. 13986 */ 13987 err = ipif_ndp_up(ipif, 13988 &ipif->ipif_v6lcl_addr, 13989 B_TRUE); 13990 if (err) { 13991 ip1dbg(( 13992 "ip_rput_dlpi_writer: " 13993 "Failed to update ndp " 13994 "err %d\n", err)); 13995 } 13996 } else { 13997 /* 13998 * IPv4 ARP case 13999 * 14000 * Set B_TRUE, as we only want 14001 * ipif_resolver_up to send an 14002 * AR_ENTRY_ADD request up to 14003 * ARP. 14004 */ 14005 err = ipif_resolver_up(ipif, 14006 B_TRUE); 14007 if (err) { 14008 ip1dbg(( 14009 "ip_rput_dlpi_writer: " 14010 "Failed to update arp " 14011 "err %d\n", err)); 14012 } 14013 } 14014 } 14015 /* 14016 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14017 * case so that all old fastpath information can be 14018 * purged from IRE caches. 14019 */ 14020 /* FALLTHRU */ 14021 case DL_NOTE_FASTPATH_FLUSH: 14022 /* 14023 * Any fastpath probe sent henceforth will get the 14024 * new fp mp. So we first delete any ires that are 14025 * waiting for the fastpath. Then walk all ires and 14026 * delete the ire or delete the fp mp. In the case of 14027 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14028 * recreate the ire's without going through a complex 14029 * ipif up/down dance. So we don't delete the ire 14030 * itself, but just the ire_fp_mp for these 2 ire's 14031 * In the case of the other ire's we delete the ire's 14032 * themselves. Access to ire_fp_mp is completely 14033 * protected by ire_lock for IRE_MIPRTUN and 14034 * IRE_BROADCAST. Deleting the ire is preferable in the 14035 * other cases for performance. 14036 */ 14037 if (ill->ill_isv6) { 14038 nce_fastpath_list_dispatch(ill, NULL, NULL); 14039 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14040 NULL); 14041 } else { 14042 ire_fastpath_list_dispatch(ill, NULL, NULL); 14043 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14044 IRE_CACHE | IRE_BROADCAST, 14045 ire_fastpath_flush, NULL, ill); 14046 mutex_enter(&ire_mrtun_lock); 14047 if (ire_mrtun_count != 0) { 14048 mutex_exit(&ire_mrtun_lock); 14049 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14050 IRE_MIPRTUN, ire_fastpath_flush, 14051 NULL, ill); 14052 } else { 14053 mutex_exit(&ire_mrtun_lock); 14054 } 14055 } 14056 break; 14057 case DL_NOTE_SDU_SIZE: 14058 /* 14059 * Change the MTU size of the interface, of all 14060 * attached ipif's, and of all relevant ire's. The 14061 * new value's a uint32_t at notify->dl_data. 14062 * Mtu change Vs. new ire creation - protocol below. 14063 * 14064 * a Mark the ipif as IPIF_CHANGING. 14065 * b Set the new mtu in the ipif. 14066 * c Change the ire_max_frag on all affected ires 14067 * d Unmark the IPIF_CHANGING 14068 * 14069 * To see how the protocol works, assume an interface 14070 * route is also being added simultaneously by 14071 * ip_rt_add and let 'ipif' be the ipif referenced by 14072 * the ire. If the ire is created before step a, 14073 * it will be cleaned up by step c. If the ire is 14074 * created after step d, it will see the new value of 14075 * ipif_mtu. Any attempt to create the ire between 14076 * steps a to d will fail because of the IPIF_CHANGING 14077 * flag. Note that ire_create() is passed a pointer to 14078 * the ipif_mtu, and not the value. During ire_add 14079 * under the bucket lock, the ire_max_frag of the 14080 * new ire being created is set from the ipif/ire from 14081 * which it is being derived. 14082 */ 14083 mutex_enter(&ill->ill_lock); 14084 ill->ill_max_frag = (uint_t)notify->dl_data; 14085 14086 /* 14087 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14088 * leave it alone 14089 */ 14090 if (ill->ill_mtu_userspecified) { 14091 mutex_exit(&ill->ill_lock); 14092 break; 14093 } 14094 ill->ill_max_mtu = ill->ill_max_frag; 14095 if (ill->ill_isv6) { 14096 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14097 ill->ill_max_mtu = IPV6_MIN_MTU; 14098 } else { 14099 if (ill->ill_max_mtu < IP_MIN_MTU) 14100 ill->ill_max_mtu = IP_MIN_MTU; 14101 } 14102 for (ipif = ill->ill_ipif; ipif != NULL; 14103 ipif = ipif->ipif_next) { 14104 /* 14105 * Don't override the mtu if the user 14106 * has explicitly set it. 14107 */ 14108 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14109 continue; 14110 ipif->ipif_mtu = (uint_t)notify->dl_data; 14111 if (ipif->ipif_isv6) 14112 ire = ipif_to_ire_v6(ipif); 14113 else 14114 ire = ipif_to_ire(ipif); 14115 if (ire != NULL) { 14116 ire->ire_max_frag = ipif->ipif_mtu; 14117 ire_refrele(ire); 14118 } 14119 if (ipif->ipif_flags & IPIF_UP) { 14120 if (ill->ill_isv6) 14121 need_ire_walk_v6 = B_TRUE; 14122 else 14123 need_ire_walk_v4 = B_TRUE; 14124 } 14125 } 14126 mutex_exit(&ill->ill_lock); 14127 if (need_ire_walk_v4) 14128 ire_walk_v4(ill_mtu_change, (char *)ill, 14129 ALL_ZONES); 14130 if (need_ire_walk_v6) 14131 ire_walk_v6(ill_mtu_change, (char *)ill, 14132 ALL_ZONES); 14133 break; 14134 case DL_NOTE_LINK_UP: 14135 case DL_NOTE_LINK_DOWN: { 14136 /* 14137 * We are writer. ill / phyint / ipsq assocs stable. 14138 * The RUNNING flag reflects the state of the link. 14139 */ 14140 phyint_t *phyint = ill->ill_phyint; 14141 uint64_t new_phyint_flags; 14142 boolean_t changed = B_FALSE; 14143 14144 mutex_enter(&phyint->phyint_lock); 14145 new_phyint_flags = 14146 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14147 phyint->phyint_flags | PHYI_RUNNING : 14148 phyint->phyint_flags & ~PHYI_RUNNING; 14149 if (new_phyint_flags != phyint->phyint_flags) { 14150 phyint->phyint_flags = new_phyint_flags; 14151 changed = B_TRUE; 14152 } 14153 mutex_exit(&phyint->phyint_lock); 14154 /* 14155 * If the flags have changed, send a message to 14156 * the routing socket. 14157 */ 14158 if (changed) { 14159 if (phyint->phyint_illv4 != NULL) { 14160 ip_rts_ifmsg( 14161 phyint->phyint_illv4->ill_ipif); 14162 } 14163 if (phyint->phyint_illv6 != NULL) { 14164 ip_rts_ifmsg( 14165 phyint->phyint_illv6->ill_ipif); 14166 } 14167 } 14168 break; 14169 } 14170 case DL_NOTE_PROMISC_ON_PHYS: 14171 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14172 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14173 mutex_enter(&ill->ill_lock); 14174 ill->ill_promisc_on_phys = B_TRUE; 14175 mutex_exit(&ill->ill_lock); 14176 break; 14177 case DL_NOTE_PROMISC_OFF_PHYS: 14178 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14179 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14180 mutex_enter(&ill->ill_lock); 14181 ill->ill_promisc_on_phys = B_FALSE; 14182 mutex_exit(&ill->ill_lock); 14183 break; 14184 case DL_NOTE_CAPAB_RENEG: 14185 /* 14186 * Something changed on the driver side. 14187 * It wants us to renegotiate the capabilities 14188 * on this ill. The most likely cause is the 14189 * aggregation interface under us where a 14190 * port got added or went away. 14191 * 14192 * We reset the capabilities and set the 14193 * state to IDMS_RENG so that when the ack 14194 * comes back, we can start the 14195 * renegotiation process. 14196 */ 14197 ill_capability_reset(ill); 14198 ill->ill_capab_state = IDMS_RENEG; 14199 break; 14200 default: 14201 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14202 "type 0x%x for DL_NOTIFY_IND\n", 14203 notify->dl_notification)); 14204 break; 14205 } 14206 14207 /* 14208 * As this is an asynchronous operation, we 14209 * should not call ill_dlpi_done 14210 */ 14211 break; 14212 } 14213 case DL_NOTIFY_ACK: 14214 /* 14215 * Don't really need to check for what notifications 14216 * are supported; we'll process what gets sent upstream, 14217 * and we know it'll be something we support changing 14218 * based on our DL_NOTIFY_REQ. 14219 */ 14220 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14221 break; 14222 case DL_PHYS_ADDR_ACK: { 14223 /* 14224 * We should have an IOCTL waiting on this when request 14225 * sent by ill_dl_phys. 14226 * However, ill_dl_phys was called on an ill queue (from 14227 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14228 * ioctl is known to be pending on ill_wq. 14229 * There are two additional phys_addr_req's sent to the 14230 * driver to get the token and lla. ill_phys_addr_pend 14231 * keeps track of the last one sent so we know which 14232 * response we are dealing with. ill_dlpi_done will 14233 * update ill_phys_addr_pend when it sends the next req. 14234 * We don't complete the IOCTL until all three DL_PARs 14235 * have been attempted. 14236 * 14237 * We don't need any lock to update ill_nd_lla* fields, 14238 * since the ill is not yet up, We grab the lock just 14239 * for uniformity with other code that accesses ill_nd_lla. 14240 */ 14241 physaddr_req = ill->ill_phys_addr_pend; 14242 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14243 if (physaddr_req == DL_IPV6_TOKEN || 14244 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14245 if (physaddr_req == DL_IPV6_TOKEN) { 14246 /* 14247 * bcopy to low-order bits of ill_token 14248 * 14249 * XXX Temporary hack - currently, 14250 * all known tokens are 64 bits, 14251 * so I'll cheat for the moment. 14252 */ 14253 dlp = (union DL_primitives *)mp->b_rptr; 14254 14255 mutex_enter(&ill->ill_lock); 14256 bcopy((uchar_t *)(mp->b_rptr + 14257 dlp->physaddr_ack.dl_addr_offset), 14258 (void *)&ill->ill_token.s6_addr32[2], 14259 dlp->physaddr_ack.dl_addr_length); 14260 ill->ill_token_length = 14261 dlp->physaddr_ack.dl_addr_length; 14262 mutex_exit(&ill->ill_lock); 14263 } else { 14264 ASSERT(ill->ill_nd_lla_mp == NULL); 14265 mp_hw = copyb(mp); 14266 if (mp_hw == NULL) { 14267 err = ENOMEM; 14268 break; 14269 } 14270 dlp = (union DL_primitives *)mp_hw->b_rptr; 14271 mutex_enter(&ill->ill_lock); 14272 ill->ill_nd_lla_mp = mp_hw; 14273 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14274 dlp->physaddr_ack.dl_addr_offset; 14275 ill->ill_nd_lla_len = 14276 dlp->physaddr_ack.dl_addr_length; 14277 mutex_exit(&ill->ill_lock); 14278 } 14279 break; 14280 } 14281 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14282 ASSERT(ill->ill_phys_addr_mp == NULL); 14283 if (!ill->ill_ifname_pending) 14284 break; 14285 ill->ill_ifname_pending = 0; 14286 if (!ioctl_aborted) 14287 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14288 if (mp1 != NULL) { 14289 ASSERT(connp == NULL); 14290 q = ill->ill_wq; 14291 } 14292 /* 14293 * If any error acks received during the plumbing sequence, 14294 * ill_ifname_pending_err will be set. Break out and send up 14295 * the error to the pending ioctl. 14296 */ 14297 if (ill->ill_ifname_pending_err != 0) { 14298 err = ill->ill_ifname_pending_err; 14299 ill->ill_ifname_pending_err = 0; 14300 break; 14301 } 14302 /* 14303 * Get the interface token. If the zeroth interface 14304 * address is zero then set the address to the link local 14305 * address 14306 */ 14307 mp_hw = copyb(mp); 14308 if (mp_hw == NULL) { 14309 err = ENOMEM; 14310 break; 14311 } 14312 dlp = (union DL_primitives *)mp_hw->b_rptr; 14313 ill->ill_phys_addr_mp = mp_hw; 14314 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14315 dlp->physaddr_ack.dl_addr_offset; 14316 if (dlp->physaddr_ack.dl_addr_length == 0 || 14317 ill->ill_phys_addr_length == 0 || 14318 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14319 /* 14320 * Compatibility: atun driver returns a length of 0. 14321 * ipdptp has an ill_phys_addr_length of zero(from 14322 * DL_BIND_ACK) but a non-zero length here. 14323 * ipd has an ill_phys_addr_length of 4(from 14324 * DL_BIND_ACK) but a non-zero length here. 14325 */ 14326 ill->ill_phys_addr = NULL; 14327 } else if (dlp->physaddr_ack.dl_addr_length != 14328 ill->ill_phys_addr_length) { 14329 ip0dbg(("DL_PHYS_ADDR_ACK: " 14330 "Address length mismatch %d %d\n", 14331 dlp->physaddr_ack.dl_addr_length, 14332 ill->ill_phys_addr_length)); 14333 err = EINVAL; 14334 break; 14335 } 14336 mutex_enter(&ill->ill_lock); 14337 if (ill->ill_nd_lla_mp == NULL) { 14338 ill->ill_nd_lla_mp = copyb(mp_hw); 14339 if (ill->ill_nd_lla_mp == NULL) { 14340 err = ENOMEM; 14341 mutex_exit(&ill->ill_lock); 14342 break; 14343 } 14344 ill->ill_nd_lla = 14345 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14346 dlp->physaddr_ack.dl_addr_offset; 14347 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14348 } 14349 mutex_exit(&ill->ill_lock); 14350 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14351 (void) ill_setdefaulttoken(ill); 14352 14353 /* 14354 * If the ill zero interface has a zero address assign 14355 * it the proper link local address. 14356 */ 14357 ASSERT(ill->ill_ipif->ipif_id == 0); 14358 if (ipif != NULL && 14359 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14360 (void) ipif_setlinklocal(ipif); 14361 break; 14362 } 14363 case DL_OK_ACK: 14364 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14365 dlpi_prim_str((int)dloa->dl_correct_primitive), 14366 dloa->dl_correct_primitive)); 14367 switch (dloa->dl_correct_primitive) { 14368 case DL_UNBIND_REQ: 14369 case DL_ATTACH_REQ: 14370 case DL_DETACH_REQ: 14371 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14372 break; 14373 } 14374 break; 14375 default: 14376 break; 14377 } 14378 14379 freemsg(mp); 14380 if (mp1) { 14381 struct iocblk *iocp; 14382 int mode; 14383 14384 /* 14385 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14386 * SIOCSLIFNAME do a copyout. 14387 */ 14388 iocp = (struct iocblk *)mp1->b_rptr; 14389 14390 if (iocp->ioc_cmd == SIOCLIFADDIF || 14391 iocp->ioc_cmd == SIOCSLIFNAME) 14392 mode = COPYOUT; 14393 else 14394 mode = NO_COPYOUT; 14395 /* 14396 * The ioctl must complete now without EINPROGRESS 14397 * since ipsq_pending_mp_get has removed the ioctl mblk 14398 * from ipsq_pending_mp. Otherwise the ioctl will be 14399 * stuck for ever in the ipsq. 14400 */ 14401 ASSERT(err != EINPROGRESS); 14402 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14403 14404 } 14405 } 14406 14407 /* 14408 * ip_rput_other is called by ip_rput to handle messages modifying the global 14409 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14410 */ 14411 /* ARGSUSED */ 14412 void 14413 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14414 { 14415 ill_t *ill; 14416 struct iocblk *iocp; 14417 mblk_t *mp1; 14418 conn_t *connp = NULL; 14419 14420 ip1dbg(("ip_rput_other ")); 14421 ill = (ill_t *)q->q_ptr; 14422 /* 14423 * This routine is not a writer in the case of SIOCGTUNPARAM 14424 * in which case ipsq is NULL. 14425 */ 14426 if (ipsq != NULL) { 14427 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14428 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14429 } 14430 14431 switch (mp->b_datap->db_type) { 14432 case M_ERROR: 14433 case M_HANGUP: 14434 /* 14435 * The device has a problem. We force the ILL down. It can 14436 * be brought up again manually using SIOCSIFFLAGS (via 14437 * ifconfig or equivalent). 14438 */ 14439 ASSERT(ipsq != NULL); 14440 if (mp->b_rptr < mp->b_wptr) 14441 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14442 if (ill->ill_error == 0) 14443 ill->ill_error = ENXIO; 14444 if (!ill_down_start(q, mp)) 14445 return; 14446 ipif_all_down_tail(ipsq, q, mp, NULL); 14447 break; 14448 case M_IOCACK: 14449 iocp = (struct iocblk *)mp->b_rptr; 14450 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14451 switch (iocp->ioc_cmd) { 14452 case SIOCSTUNPARAM: 14453 case OSIOCSTUNPARAM: 14454 ASSERT(ipsq != NULL); 14455 /* 14456 * Finish socket ioctl passed through to tun. 14457 * We should have an IOCTL waiting on this. 14458 */ 14459 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14460 if (ill->ill_isv6) { 14461 struct iftun_req *ta; 14462 14463 /* 14464 * if a source or destination is 14465 * being set, try and set the link 14466 * local address for the tunnel 14467 */ 14468 ta = (struct iftun_req *)mp->b_cont-> 14469 b_cont->b_rptr; 14470 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14471 ipif_set_tun_llink(ill, ta); 14472 } 14473 14474 } 14475 if (mp1 != NULL) { 14476 /* 14477 * Now copy back the b_next/b_prev used by 14478 * mi code for the mi_copy* functions. 14479 * See ip_sioctl_tunparam() for the reason. 14480 * Also protect against missing b_cont. 14481 */ 14482 if (mp->b_cont != NULL) { 14483 mp->b_cont->b_next = 14484 mp1->b_cont->b_next; 14485 mp->b_cont->b_prev = 14486 mp1->b_cont->b_prev; 14487 } 14488 ip_ioctl_freemsg(mp1); 14489 ASSERT(ipsq->ipsq_current_ipif != NULL); 14490 ASSERT(connp != NULL); 14491 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14492 iocp->ioc_error, NO_COPYOUT, 14493 ipsq->ipsq_current_ipif, ipsq); 14494 } else { 14495 ASSERT(connp == NULL); 14496 putnext(q, mp); 14497 } 14498 break; 14499 case SIOCGTUNPARAM: 14500 case OSIOCGTUNPARAM: 14501 /* 14502 * This is really M_IOCDATA from the tunnel driver. 14503 * convert back and complete the ioctl. 14504 * We should have an IOCTL waiting on this. 14505 */ 14506 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14507 if (mp1) { 14508 /* 14509 * Now copy back the b_next/b_prev used by 14510 * mi code for the mi_copy* functions. 14511 * See ip_sioctl_tunparam() for the reason. 14512 * Also protect against missing b_cont. 14513 */ 14514 if (mp->b_cont != NULL) { 14515 mp->b_cont->b_next = 14516 mp1->b_cont->b_next; 14517 mp->b_cont->b_prev = 14518 mp1->b_cont->b_prev; 14519 } 14520 ip_ioctl_freemsg(mp1); 14521 if (iocp->ioc_error == 0) 14522 mp->b_datap->db_type = M_IOCDATA; 14523 ASSERT(connp != NULL); 14524 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14525 iocp->ioc_error, COPYOUT, NULL, NULL); 14526 } else { 14527 ASSERT(connp == NULL); 14528 putnext(q, mp); 14529 } 14530 break; 14531 default: 14532 break; 14533 } 14534 break; 14535 case M_IOCNAK: 14536 iocp = (struct iocblk *)mp->b_rptr; 14537 14538 switch (iocp->ioc_cmd) { 14539 int mode; 14540 ipif_t *ipif; 14541 14542 case DL_IOC_HDR_INFO: 14543 /* 14544 * If this was the first attempt turn of the 14545 * fastpath probing. 14546 */ 14547 mutex_enter(&ill->ill_lock); 14548 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14549 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14550 mutex_exit(&ill->ill_lock); 14551 ill_fastpath_nack(ill); 14552 ip1dbg(("ip_rput: DLPI fastpath off on " 14553 "interface %s\n", 14554 ill->ill_name)); 14555 } else { 14556 mutex_exit(&ill->ill_lock); 14557 } 14558 freemsg(mp); 14559 break; 14560 case SIOCSTUNPARAM: 14561 case OSIOCSTUNPARAM: 14562 ASSERT(ipsq != NULL); 14563 /* 14564 * Finish socket ioctl passed through to tun 14565 * We should have an IOCTL waiting on this. 14566 */ 14567 /* FALLTHRU */ 14568 case SIOCGTUNPARAM: 14569 case OSIOCGTUNPARAM: 14570 /* 14571 * This is really M_IOCDATA from the tunnel driver. 14572 * convert back and complete the ioctl. 14573 * We should have an IOCTL waiting on this. 14574 */ 14575 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14576 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14577 mp1 = ill_pending_mp_get(ill, &connp, 14578 iocp->ioc_id); 14579 mode = COPYOUT; 14580 ipsq = NULL; 14581 ipif = NULL; 14582 } else { 14583 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14584 mode = NO_COPYOUT; 14585 ASSERT(ipsq->ipsq_current_ipif != NULL); 14586 ipif = ipsq->ipsq_current_ipif; 14587 } 14588 if (mp1 != NULL) { 14589 /* 14590 * Now copy back the b_next/b_prev used by 14591 * mi code for the mi_copy* functions. 14592 * See ip_sioctl_tunparam() for the reason. 14593 * Also protect against missing b_cont. 14594 */ 14595 if (mp->b_cont != NULL) { 14596 mp->b_cont->b_next = 14597 mp1->b_cont->b_next; 14598 mp->b_cont->b_prev = 14599 mp1->b_cont->b_prev; 14600 } 14601 ip_ioctl_freemsg(mp1); 14602 if (iocp->ioc_error == 0) 14603 iocp->ioc_error = EINVAL; 14604 ASSERT(connp != NULL); 14605 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14606 iocp->ioc_error, mode, ipif, ipsq); 14607 } else { 14608 ASSERT(connp == NULL); 14609 putnext(q, mp); 14610 } 14611 break; 14612 default: 14613 break; 14614 } 14615 default: 14616 break; 14617 } 14618 } 14619 14620 /* 14621 * NOTE : This function does not ire_refrele the ire argument passed in. 14622 * 14623 * IPQoS notes 14624 * IP policy is invoked twice for a forwarded packet, once on the read side 14625 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14626 * enabled. An additional parameter, in_ill, has been added for this purpose. 14627 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14628 * because ip_mroute drops this information. 14629 * 14630 */ 14631 void 14632 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14633 { 14634 uint32_t pkt_len; 14635 queue_t *q; 14636 uint32_t sum; 14637 #define rptr ((uchar_t *)ipha) 14638 uint32_t max_frag; 14639 uint32_t ill_index; 14640 14641 /* Get the ill_index of the incoming ILL */ 14642 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14643 14644 /* Initiate Read side IPPF processing */ 14645 if (IPP_ENABLED(IPP_FWD_IN)) { 14646 ip_process(IPP_FWD_IN, &mp, ill_index); 14647 if (mp == NULL) { 14648 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14649 "during IPPF processing\n")); 14650 return; 14651 } 14652 } 14653 pkt_len = ntohs(ipha->ipha_length); 14654 14655 /* Adjust the checksum to reflect the ttl decrement. */ 14656 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14657 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14658 14659 if (ipha->ipha_ttl-- <= 1) { 14660 if (ip_csum_hdr(ipha)) { 14661 BUMP_MIB(&ip_mib, ipInCksumErrs); 14662 goto drop_pkt; 14663 } 14664 /* 14665 * Note: ire_stq this will be NULL for multicast 14666 * datagrams using the long path through arp (the IRE 14667 * is not an IRE_CACHE). This should not cause 14668 * problems since we don't generate ICMP errors for 14669 * multicast packets. 14670 */ 14671 q = ire->ire_stq; 14672 if (q) 14673 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14674 else 14675 freemsg(mp); 14676 return; 14677 } 14678 14679 /* 14680 * Don't forward if the interface is down 14681 */ 14682 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14683 BUMP_MIB(&ip_mib, ipInDiscards); 14684 goto drop_pkt; 14685 } 14686 14687 /* Get the ill_index of the outgoing ILL */ 14688 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14689 14690 /* Check if there are options to update */ 14691 if (!IS_SIMPLE_IPH(ipha)) { 14692 if (ip_csum_hdr(ipha)) { 14693 BUMP_MIB(&ip_mib, ipInCksumErrs); 14694 goto drop_pkt; 14695 } 14696 if (ip_rput_forward_options(mp, ipha, ire)) { 14697 return; 14698 } 14699 14700 ipha->ipha_hdr_checksum = 0; 14701 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14702 } 14703 max_frag = ire->ire_max_frag; 14704 if (pkt_len > max_frag) { 14705 /* 14706 * It needs fragging on its way out. We haven't 14707 * verified the header checksum yet. Since we 14708 * are going to put a surely good checksum in the 14709 * outgoing header, we have to make sure that it 14710 * was good coming in. 14711 */ 14712 if (ip_csum_hdr(ipha)) { 14713 BUMP_MIB(&ip_mib, ipInCksumErrs); 14714 goto drop_pkt; 14715 } 14716 /* Initiate Write side IPPF processing */ 14717 if (IPP_ENABLED(IPP_FWD_OUT)) { 14718 ip_process(IPP_FWD_OUT, &mp, ill_index); 14719 if (mp == NULL) { 14720 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14721 " during IPPF processing\n")); 14722 return; 14723 } 14724 } 14725 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14726 return; 14727 } 14728 14729 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14730 if (mp == NULL) { 14731 BUMP_MIB(&ip_mib, ipInDiscards); 14732 return; 14733 } 14734 14735 q = ire->ire_stq; 14736 UPDATE_IB_PKT_COUNT(ire); 14737 ire->ire_last_used_time = lbolt; 14738 BUMP_MIB(&ip_mib, ipForwDatagrams); 14739 putnext(q, mp); 14740 return; 14741 14742 drop_pkt:; 14743 ip1dbg(("ip_rput_forward: drop pkt\n")); 14744 freemsg(mp); 14745 #undef rptr 14746 } 14747 14748 void 14749 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14750 { 14751 ire_t *ire; 14752 14753 ASSERT(!ipif->ipif_isv6); 14754 /* 14755 * Find an IRE which matches the destination and the outgoing 14756 * queue in the cache table. All we need is an IRE_CACHE which 14757 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14758 * then it is enough to have some IRE_CACHE in the group. 14759 */ 14760 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14761 dst = ipif->ipif_pp_dst_addr; 14762 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14763 MATCH_IRE_ILL_GROUP); 14764 if (!ire) { 14765 /* 14766 * Mark this packet to make it be delivered to 14767 * ip_rput_forward after the new ire has been 14768 * created. 14769 */ 14770 mp->b_prev = NULL; 14771 mp->b_next = mp; 14772 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14773 NULL, 0); 14774 } else { 14775 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14776 IRE_REFRELE(ire); 14777 } 14778 } 14779 14780 /* Update any source route, record route or timestamp options */ 14781 static int 14782 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 14783 { 14784 ipoptp_t opts; 14785 uchar_t *opt; 14786 uint8_t optval; 14787 uint8_t optlen; 14788 ipaddr_t dst; 14789 uint32_t ts; 14790 ire_t *dst_ire = NULL; 14791 ire_t *tmp_ire = NULL; 14792 timestruc_t now; 14793 14794 ip2dbg(("ip_rput_forward_options\n")); 14795 dst = ipha->ipha_dst; 14796 for (optval = ipoptp_first(&opts, ipha); 14797 optval != IPOPT_EOL; 14798 optval = ipoptp_next(&opts)) { 14799 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 14800 opt = opts.ipoptp_cur; 14801 optlen = opts.ipoptp_len; 14802 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 14803 optval, opts.ipoptp_len)); 14804 switch (optval) { 14805 uint32_t off; 14806 case IPOPT_SSRR: 14807 case IPOPT_LSRR: 14808 /* Check if adminstratively disabled */ 14809 if (!ip_forward_src_routed) { 14810 BUMP_MIB(&ip_mib, ipForwProhibits); 14811 if (ire->ire_stq) 14812 icmp_unreachable(ire->ire_stq, mp, 14813 ICMP_SOURCE_ROUTE_FAILED); 14814 else { 14815 ip0dbg(("ip_rput_forward_options: " 14816 "unable to send unreach\n")); 14817 freemsg(mp); 14818 } 14819 return (-1); 14820 } 14821 14822 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14823 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14824 if (dst_ire == NULL) { 14825 /* 14826 * Must be partial since ip_rput_options 14827 * checked for strict. 14828 */ 14829 break; 14830 } 14831 off = opt[IPOPT_OFFSET]; 14832 off--; 14833 redo_srr: 14834 if (optlen < IP_ADDR_LEN || 14835 off > optlen - IP_ADDR_LEN) { 14836 /* End of source route */ 14837 ip1dbg(( 14838 "ip_rput_forward_options: end of SR\n")); 14839 ire_refrele(dst_ire); 14840 break; 14841 } 14842 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14843 bcopy(&ire->ire_src_addr, (char *)opt + off, 14844 IP_ADDR_LEN); 14845 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 14846 ntohl(dst))); 14847 14848 /* 14849 * Check if our address is present more than 14850 * once as consecutive hops in source route. 14851 */ 14852 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14853 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14854 if (tmp_ire != NULL) { 14855 ire_refrele(tmp_ire); 14856 off += IP_ADDR_LEN; 14857 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14858 goto redo_srr; 14859 } 14860 ipha->ipha_dst = dst; 14861 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14862 ire_refrele(dst_ire); 14863 break; 14864 case IPOPT_RR: 14865 off = opt[IPOPT_OFFSET]; 14866 off--; 14867 if (optlen < IP_ADDR_LEN || 14868 off > optlen - IP_ADDR_LEN) { 14869 /* No more room - ignore */ 14870 ip1dbg(( 14871 "ip_rput_forward_options: end of RR\n")); 14872 break; 14873 } 14874 bcopy(&ire->ire_src_addr, (char *)opt + off, 14875 IP_ADDR_LEN); 14876 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14877 break; 14878 case IPOPT_TS: 14879 /* Insert timestamp if there is room */ 14880 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14881 case IPOPT_TS_TSONLY: 14882 off = IPOPT_TS_TIMELEN; 14883 break; 14884 case IPOPT_TS_PRESPEC: 14885 case IPOPT_TS_PRESPEC_RFC791: 14886 /* Verify that the address matched */ 14887 off = opt[IPOPT_OFFSET] - 1; 14888 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14889 dst_ire = ire_ctable_lookup(dst, 0, 14890 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 14891 if (dst_ire == NULL) { 14892 /* Not for us */ 14893 break; 14894 } 14895 ire_refrele(dst_ire); 14896 /* FALLTHRU */ 14897 case IPOPT_TS_TSANDADDR: 14898 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 14899 break; 14900 default: 14901 /* 14902 * ip_*put_options should have already 14903 * dropped this packet. 14904 */ 14905 cmn_err(CE_PANIC, "ip_rput_forward_options: " 14906 "unknown IT - bug in ip_rput_options?\n"); 14907 return (0); /* Keep "lint" happy */ 14908 } 14909 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 14910 /* Increase overflow counter */ 14911 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 14912 opt[IPOPT_POS_OV_FLG] = 14913 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 14914 (off << 4)); 14915 break; 14916 } 14917 off = opt[IPOPT_OFFSET] - 1; 14918 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14919 case IPOPT_TS_PRESPEC: 14920 case IPOPT_TS_PRESPEC_RFC791: 14921 case IPOPT_TS_TSANDADDR: 14922 bcopy(&ire->ire_src_addr, 14923 (char *)opt + off, IP_ADDR_LEN); 14924 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14925 /* FALLTHRU */ 14926 case IPOPT_TS_TSONLY: 14927 off = opt[IPOPT_OFFSET] - 1; 14928 /* Compute # of milliseconds since midnight */ 14929 gethrestime(&now); 14930 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 14931 now.tv_nsec / (NANOSEC / MILLISEC); 14932 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 14933 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 14934 break; 14935 } 14936 break; 14937 } 14938 } 14939 return (0); 14940 } 14941 14942 /* 14943 * This is called after processing at least one of AH/ESP headers. 14944 * 14945 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 14946 * the actual, physical interface on which the packet was received, 14947 * but, when ip_strict_dst_multihoming is set to 1, could be the 14948 * interface which had the ipha_dst configured when the packet went 14949 * through ip_rput. The ill_index corresponding to the recv_ill 14950 * is saved in ipsec_in_rill_index 14951 */ 14952 void 14953 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 14954 { 14955 mblk_t *mp; 14956 ipaddr_t dst; 14957 in6_addr_t *v6dstp; 14958 ipha_t *ipha; 14959 ip6_t *ip6h; 14960 ipsec_in_t *ii; 14961 boolean_t ill_need_rele = B_FALSE; 14962 boolean_t rill_need_rele = B_FALSE; 14963 boolean_t ire_need_rele = B_FALSE; 14964 14965 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 14966 ASSERT(ii->ipsec_in_ill_index != 0); 14967 14968 mp = ipsec_mp->b_cont; 14969 ASSERT(mp != NULL); 14970 14971 14972 if (ill == NULL) { 14973 ASSERT(recv_ill == NULL); 14974 /* 14975 * We need to get the original queue on which ip_rput_local 14976 * or ip_rput_data_v6 was called. 14977 */ 14978 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 14979 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 14980 ill_need_rele = B_TRUE; 14981 14982 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 14983 recv_ill = ill_lookup_on_ifindex( 14984 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 14985 NULL, NULL, NULL, NULL); 14986 rill_need_rele = B_TRUE; 14987 } else { 14988 recv_ill = ill; 14989 } 14990 14991 if ((ill == NULL) || (recv_ill == NULL)) { 14992 ip0dbg(("ip_fanout_proto_again: interface " 14993 "disappeared\n")); 14994 if (ill != NULL) 14995 ill_refrele(ill); 14996 if (recv_ill != NULL) 14997 ill_refrele(recv_ill); 14998 freemsg(ipsec_mp); 14999 return; 15000 } 15001 } 15002 15003 ASSERT(ill != NULL && recv_ill != NULL); 15004 15005 if (mp->b_datap->db_type == M_CTL) { 15006 /* 15007 * AH/ESP is returning the ICMP message after 15008 * removing their headers. Fanout again till 15009 * it gets to the right protocol. 15010 */ 15011 if (ii->ipsec_in_v4) { 15012 icmph_t *icmph; 15013 int iph_hdr_length; 15014 int hdr_length; 15015 15016 ipha = (ipha_t *)mp->b_rptr; 15017 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15018 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15019 ipha = (ipha_t *)&icmph[1]; 15020 hdr_length = IPH_HDR_LENGTH(ipha); 15021 /* 15022 * icmp_inbound_error_fanout may need to do pullupmsg. 15023 * Reset the type to M_DATA. 15024 */ 15025 mp->b_datap->db_type = M_DATA; 15026 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15027 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15028 B_FALSE, ill, ii->ipsec_in_zoneid); 15029 } else { 15030 icmp6_t *icmp6; 15031 int hdr_length; 15032 15033 ip6h = (ip6_t *)mp->b_rptr; 15034 /* Don't call hdr_length_v6() unless you have to. */ 15035 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15036 hdr_length = ip_hdr_length_v6(mp, ip6h); 15037 else 15038 hdr_length = IPV6_HDR_LEN; 15039 15040 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15041 /* 15042 * icmp_inbound_error_fanout_v6 may need to do 15043 * pullupmsg. Reset the type to M_DATA. 15044 */ 15045 mp->b_datap->db_type = M_DATA; 15046 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15047 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15048 } 15049 if (ill_need_rele) 15050 ill_refrele(ill); 15051 if (rill_need_rele) 15052 ill_refrele(recv_ill); 15053 return; 15054 } 15055 15056 if (ii->ipsec_in_v4) { 15057 ipha = (ipha_t *)mp->b_rptr; 15058 dst = ipha->ipha_dst; 15059 if (CLASSD(dst)) { 15060 /* 15061 * Multicast has to be delivered to all streams. 15062 */ 15063 dst = INADDR_BROADCAST; 15064 } 15065 15066 if (ire == NULL) { 15067 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15068 if (ire == NULL) { 15069 if (ill_need_rele) 15070 ill_refrele(ill); 15071 if (rill_need_rele) 15072 ill_refrele(recv_ill); 15073 ip1dbg(("ip_fanout_proto_again: " 15074 "IRE not found")); 15075 freemsg(ipsec_mp); 15076 return; 15077 } 15078 ire_need_rele = B_TRUE; 15079 } 15080 15081 switch (ipha->ipha_protocol) { 15082 case IPPROTO_UDP: 15083 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15084 recv_ill); 15085 if (ire_need_rele) 15086 ire_refrele(ire); 15087 break; 15088 case IPPROTO_TCP: 15089 if (!ire_need_rele) 15090 IRE_REFHOLD(ire); 15091 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15092 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15093 IRE_REFRELE(ire); 15094 if (mp != NULL) 15095 squeue_enter_chain(GET_SQUEUE(mp), mp, 15096 mp, 1, SQTAG_IP_PROTO_AGAIN); 15097 break; 15098 case IPPROTO_SCTP: 15099 if (!ire_need_rele) 15100 IRE_REFHOLD(ire); 15101 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15102 ipsec_mp, 0, ill->ill_rq, dst); 15103 break; 15104 default: 15105 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15106 recv_ill); 15107 if (ire_need_rele) 15108 ire_refrele(ire); 15109 break; 15110 } 15111 } else { 15112 uint32_t rput_flags = 0; 15113 15114 ip6h = (ip6_t *)mp->b_rptr; 15115 v6dstp = &ip6h->ip6_dst; 15116 /* 15117 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15118 * address. 15119 * 15120 * Currently, we don't store that state in the IPSEC_IN 15121 * message, and we may need to. 15122 */ 15123 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15124 IP6_IN_LLMCAST : 0); 15125 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15126 NULL); 15127 } 15128 if (ill_need_rele) 15129 ill_refrele(ill); 15130 if (rill_need_rele) 15131 ill_refrele(recv_ill); 15132 } 15133 15134 /* 15135 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15136 * returns 'true' if there are still fragments left on the queue, in 15137 * which case we restart the timer. 15138 */ 15139 void 15140 ill_frag_timer(void *arg) 15141 { 15142 ill_t *ill = (ill_t *)arg; 15143 boolean_t frag_pending; 15144 15145 mutex_enter(&ill->ill_lock); 15146 ASSERT(!ill->ill_fragtimer_executing); 15147 if (ill->ill_state_flags & ILL_CONDEMNED) { 15148 ill->ill_frag_timer_id = 0; 15149 mutex_exit(&ill->ill_lock); 15150 return; 15151 } 15152 ill->ill_fragtimer_executing = 1; 15153 mutex_exit(&ill->ill_lock); 15154 15155 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15156 15157 /* 15158 * Restart the timer, if we have fragments pending or if someone 15159 * wanted us to be scheduled again. 15160 */ 15161 mutex_enter(&ill->ill_lock); 15162 ill->ill_fragtimer_executing = 0; 15163 ill->ill_frag_timer_id = 0; 15164 if (frag_pending || ill->ill_fragtimer_needrestart) 15165 ill_frag_timer_start(ill); 15166 mutex_exit(&ill->ill_lock); 15167 } 15168 15169 void 15170 ill_frag_timer_start(ill_t *ill) 15171 { 15172 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15173 15174 /* If the ill is closing or opening don't proceed */ 15175 if (ill->ill_state_flags & ILL_CONDEMNED) 15176 return; 15177 15178 if (ill->ill_fragtimer_executing) { 15179 /* 15180 * ill_frag_timer is currently executing. Just record the 15181 * the fact that we want the timer to be restarted. 15182 * ill_frag_timer will post a timeout before it returns, 15183 * ensuring it will be called again. 15184 */ 15185 ill->ill_fragtimer_needrestart = 1; 15186 return; 15187 } 15188 15189 if (ill->ill_frag_timer_id == 0) { 15190 /* 15191 * The timer is neither running nor is the timeout handler 15192 * executing. Post a timeout so that ill_frag_timer will be 15193 * called 15194 */ 15195 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15196 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15197 ill->ill_fragtimer_needrestart = 0; 15198 } 15199 } 15200 15201 /* 15202 * This routine is needed for loopback when forwarding multicasts. 15203 * 15204 * IPQoS Notes: 15205 * IPPF processing is done in fanout routines. 15206 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15207 * processing for IPSec packets is done when it comes back in clear. 15208 * NOTE : The callers of this function need to do the ire_refrele for the 15209 * ire that is being passed in. 15210 */ 15211 void 15212 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15213 ill_t *recv_ill) 15214 { 15215 ill_t *ill = (ill_t *)q->q_ptr; 15216 uint32_t sum; 15217 uint32_t u1; 15218 uint32_t u2; 15219 int hdr_length; 15220 boolean_t mctl_present; 15221 mblk_t *first_mp = mp; 15222 mblk_t *hada_mp = NULL; 15223 ipha_t *inner_ipha; 15224 15225 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15226 "ip_rput_locl_start: q %p", q); 15227 15228 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15229 15230 15231 #define rptr ((uchar_t *)ipha) 15232 #define iphs ((uint16_t *)ipha) 15233 15234 /* 15235 * no UDP or TCP packet should come here anymore. 15236 */ 15237 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15238 (ipha->ipha_protocol != IPPROTO_UDP)); 15239 15240 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15241 /* EXPORT DELETE START */ 15242 if (mctl_present && 15243 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15244 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15245 15246 /* 15247 * It's an IPsec accelerated packet. 15248 * Keep a pointer to the data attributes around until 15249 * we allocate the ipsec_info_t. 15250 */ 15251 IPSECHW_DEBUG(IPSECHW_PKT, 15252 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15253 hada_mp = first_mp; 15254 hada_mp->b_cont = NULL; 15255 /* 15256 * Since it is accelerated, it comes directly from 15257 * the ill and the data attributes is followed by 15258 * the packet data. 15259 */ 15260 ASSERT(mp->b_datap->db_type != M_CTL); 15261 first_mp = mp; 15262 mctl_present = B_FALSE; 15263 } 15264 /* EXPORT DELETE END */ 15265 15266 /* 15267 * IF M_CTL is not present, then ipsec_in_is_secure 15268 * should return B_TRUE. There is a case where loopback 15269 * packets has an M_CTL in the front with all the 15270 * IPSEC options set to IPSEC_PREF_NEVER - which means 15271 * ipsec_in_is_secure will return B_FALSE. As loopback 15272 * packets never comes here, it is safe to ASSERT the 15273 * following. 15274 */ 15275 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15276 15277 15278 /* u1 is # words of IP options */ 15279 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15280 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15281 15282 if (u1) { 15283 if (!ip_options_cksum(q, mp, ipha, ire)) { 15284 if (hada_mp != NULL) 15285 freemsg(hada_mp); 15286 return; 15287 } 15288 } else { 15289 /* Check the IP header checksum. */ 15290 #define uph ((uint16_t *)ipha) 15291 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15292 uph[6] + uph[7] + uph[8] + uph[9]; 15293 #undef uph 15294 /* finish doing IP checksum */ 15295 sum = (sum & 0xFFFF) + (sum >> 16); 15296 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15297 /* 15298 * Don't verify header checksum if this packet is coming 15299 * back from AH/ESP as we already did it. 15300 */ 15301 if (!mctl_present && (sum && sum != 0xFFFF)) { 15302 BUMP_MIB(&ip_mib, ipInCksumErrs); 15303 goto drop_pkt; 15304 } 15305 } 15306 15307 /* 15308 * Count for SNMP of inbound packets for ire. As ip_proto_input 15309 * might be called more than once for secure packets, count only 15310 * the first time. 15311 */ 15312 if (!mctl_present) { 15313 UPDATE_IB_PKT_COUNT(ire); 15314 ire->ire_last_used_time = lbolt; 15315 } 15316 15317 /* Check for fragmentation offset. */ 15318 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15319 u1 = u2 & (IPH_MF | IPH_OFFSET); 15320 if (u1) { 15321 /* 15322 * We re-assemble fragments before we do the AH/ESP 15323 * processing. Thus, M_CTL should not be present 15324 * while we are re-assembling. 15325 */ 15326 ASSERT(!mctl_present); 15327 ASSERT(first_mp == mp); 15328 if (!ip_rput_fragment(q, &mp, ipha)) { 15329 return; 15330 } 15331 /* 15332 * Make sure that first_mp points back to mp as 15333 * the mp we came in with could have changed in 15334 * ip_rput_fragment(). 15335 */ 15336 ipha = (ipha_t *)mp->b_rptr; 15337 first_mp = mp; 15338 } 15339 15340 /* 15341 * Clear hardware checksumming flag as it is currently only 15342 * used by TCP and UDP. 15343 */ 15344 mp->b_datap->db_struioun.cksum.flags = 0; 15345 15346 /* Now we have a complete datagram, destined for this machine. */ 15347 u1 = IPH_HDR_LENGTH(ipha); 15348 switch (ipha->ipha_protocol) { 15349 case IPPROTO_ICMP: { 15350 ire_t *ire_zone; 15351 ilm_t *ilm; 15352 mblk_t *mp1; 15353 zoneid_t last_zoneid; 15354 15355 if (CLASSD(ipha->ipha_dst) && 15356 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15357 ASSERT(ire->ire_type == IRE_BROADCAST); 15358 /* 15359 * In the multicast case, applications may have joined 15360 * the group from different zones, so we need to deliver 15361 * the packet to each of them. Loop through the 15362 * multicast memberships structures (ilm) on the receive 15363 * ill and send a copy of the packet up each matching 15364 * one. However, we don't do this for multicasts sent on 15365 * the loopback interface (PHYI_LOOPBACK flag set) as 15366 * they must stay in the sender's zone. 15367 * 15368 * ilm_add_v6() ensures that ilms in the same zone are 15369 * contiguous in the ill_ilm list. We use this property 15370 * to avoid sending duplicates needed when two 15371 * applications in the same zone join the same group on 15372 * different logical interfaces: we ignore the ilm if 15373 * its zoneid is the same as the last matching one. 15374 * In addition, the sending of the packet for 15375 * ire_zoneid is delayed until all of the other ilms 15376 * have been exhausted. 15377 */ 15378 last_zoneid = -1; 15379 ILM_WALKER_HOLD(recv_ill); 15380 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15381 ilm = ilm->ilm_next) { 15382 if ((ilm->ilm_flags & ILM_DELETED) || 15383 ipha->ipha_dst != ilm->ilm_addr || 15384 ilm->ilm_zoneid == last_zoneid || 15385 ilm->ilm_zoneid == ire->ire_zoneid || 15386 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15387 continue; 15388 mp1 = ip_copymsg(first_mp); 15389 if (mp1 == NULL) 15390 continue; 15391 icmp_inbound(q, mp1, B_TRUE, ill, 15392 0, sum, mctl_present, B_TRUE, 15393 recv_ill, ilm->ilm_zoneid); 15394 last_zoneid = ilm->ilm_zoneid; 15395 } 15396 ILM_WALKER_RELE(recv_ill); 15397 } else if (ire->ire_type == IRE_BROADCAST) { 15398 /* 15399 * In the broadcast case, there may be many zones 15400 * which need a copy of the packet delivered to them. 15401 * There is one IRE_BROADCAST per broadcast address 15402 * and per zone; we walk those using a helper function. 15403 * In addition, the sending of the packet for ire is 15404 * delayed until all of the other ires have been 15405 * processed. 15406 */ 15407 IRB_REFHOLD(ire->ire_bucket); 15408 ire_zone = NULL; 15409 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15410 ire)) != NULL) { 15411 mp1 = ip_copymsg(first_mp); 15412 if (mp1 == NULL) 15413 continue; 15414 15415 UPDATE_IB_PKT_COUNT(ire_zone); 15416 ire_zone->ire_last_used_time = lbolt; 15417 icmp_inbound(q, mp1, B_TRUE, ill, 15418 0, sum, mctl_present, B_TRUE, 15419 recv_ill, ire_zone->ire_zoneid); 15420 } 15421 IRB_REFRELE(ire->ire_bucket); 15422 } 15423 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15424 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15425 ire->ire_zoneid); 15426 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15427 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15428 return; 15429 } 15430 case IPPROTO_IGMP: 15431 /* 15432 * If we are not willing to accept IGMP packets in clear, 15433 * then check with global policy. 15434 */ 15435 if (igmp_accept_clear_messages == 0) { 15436 first_mp = ipsec_check_global_policy(first_mp, NULL, 15437 ipha, NULL, mctl_present); 15438 if (first_mp == NULL) 15439 return; 15440 } 15441 if (igmp_input(q, mp, ill)) { 15442 /* Bad packet - discarded by igmp_input */ 15443 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15444 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15445 if (mctl_present) 15446 freeb(first_mp); 15447 return; 15448 } 15449 /* 15450 * igmp_input() may have pulled up the message so ipha needs to 15451 * be reinitialized. 15452 */ 15453 ipha = (ipha_t *)mp->b_rptr; 15454 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15455 /* No user-level listener for IGMP packets */ 15456 goto drop_pkt; 15457 } 15458 /* deliver to local raw users */ 15459 break; 15460 case IPPROTO_PIM: 15461 /* 15462 * If we are not willing to accept PIM packets in clear, 15463 * then check with global policy. 15464 */ 15465 if (pim_accept_clear_messages == 0) { 15466 first_mp = ipsec_check_global_policy(first_mp, NULL, 15467 ipha, NULL, mctl_present); 15468 if (first_mp == NULL) 15469 return; 15470 } 15471 if (pim_input(q, mp) != 0) { 15472 /* Bad packet - discarded by pim_input */ 15473 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15474 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15475 if (mctl_present) 15476 freeb(first_mp); 15477 return; 15478 } 15479 15480 /* 15481 * pim_input() may have pulled up the message so ipha needs to 15482 * be reinitialized. 15483 */ 15484 ipha = (ipha_t *)mp->b_rptr; 15485 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15486 /* No user-level listener for PIM packets */ 15487 goto drop_pkt; 15488 } 15489 /* deliver to local raw users */ 15490 break; 15491 case IPPROTO_ENCAP: 15492 /* 15493 * Handle self-encapsulated packets (IP-in-IP where 15494 * the inner addresses == the outer addresses). 15495 */ 15496 hdr_length = IPH_HDR_LENGTH(ipha); 15497 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15498 mp->b_wptr) { 15499 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15500 sizeof (ipha_t) - mp->b_rptr)) { 15501 BUMP_MIB(&ip_mib, ipInDiscards); 15502 freemsg(first_mp); 15503 return; 15504 } 15505 ipha = (ipha_t *)mp->b_rptr; 15506 } 15507 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15508 /* 15509 * Check the sanity of the inner IP header. 15510 */ 15511 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15512 BUMP_MIB(&ip_mib, ipInDiscards); 15513 freemsg(first_mp); 15514 return; 15515 } 15516 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15517 BUMP_MIB(&ip_mib, ipInDiscards); 15518 freemsg(first_mp); 15519 return; 15520 } 15521 if (inner_ipha->ipha_src == ipha->ipha_src && 15522 inner_ipha->ipha_dst == ipha->ipha_dst) { 15523 ipsec_in_t *ii; 15524 15525 /* 15526 * Self-encapsulated tunnel packet. Remove 15527 * the outer IP header and fanout again. 15528 * We also need to make sure that the inner 15529 * header is pulled up until options. 15530 */ 15531 mp->b_rptr = (uchar_t *)inner_ipha; 15532 ipha = inner_ipha; 15533 hdr_length = IPH_HDR_LENGTH(ipha); 15534 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15535 if (!pullupmsg(mp, (uchar_t *)ipha + 15536 + hdr_length - mp->b_rptr)) { 15537 freemsg(first_mp); 15538 return; 15539 } 15540 ipha = (ipha_t *)mp->b_rptr; 15541 } 15542 if (!mctl_present) { 15543 ASSERT(first_mp == mp); 15544 /* 15545 * This means that somebody is sending 15546 * Self-encapsualted packets without AH/ESP. 15547 * If AH/ESP was present, we would have already 15548 * allocated the first_mp. 15549 */ 15550 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15551 NULL) { 15552 ip1dbg(("ip_proto_input: IPSEC_IN " 15553 "allocation failure.\n")); 15554 BUMP_MIB(&ip_mib, ipInDiscards); 15555 freemsg(mp); 15556 return; 15557 } 15558 first_mp->b_cont = mp; 15559 } 15560 /* 15561 * We generally store the ill_index if we need to 15562 * do IPSEC processing as we lose the ill queue when 15563 * we come back. But in this case, we never should 15564 * have to store the ill_index here as it should have 15565 * been stored previously when we processed the 15566 * AH/ESP header in this routine or for non-ipsec 15567 * cases, we still have the queue. But for some bad 15568 * packets from the wire, we can get to IPSEC after 15569 * this and we better store the index for that case. 15570 */ 15571 ill = (ill_t *)q->q_ptr; 15572 ii = (ipsec_in_t *)first_mp->b_rptr; 15573 ii->ipsec_in_ill_index = 15574 ill->ill_phyint->phyint_ifindex; 15575 ii->ipsec_in_rill_index = 15576 recv_ill->ill_phyint->phyint_ifindex; 15577 if (ii->ipsec_in_decaps) { 15578 /* 15579 * This packet is self-encapsulated multiple 15580 * times. We don't want to recurse infinitely. 15581 * To keep it simple, drop the packet. 15582 */ 15583 BUMP_MIB(&ip_mib, ipInDiscards); 15584 freemsg(first_mp); 15585 return; 15586 } 15587 ii->ipsec_in_decaps = B_TRUE; 15588 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15589 return; 15590 } 15591 break; 15592 case IPPROTO_AH: 15593 case IPPROTO_ESP: { 15594 /* 15595 * Fast path for AH/ESP. If this is the first time 15596 * we are sending a datagram to AH/ESP, allocate 15597 * a IPSEC_IN message and prepend it. Otherwise, 15598 * just fanout. 15599 */ 15600 15601 int ipsec_rc; 15602 ipsec_in_t *ii; 15603 15604 IP_STAT(ipsec_proto_ahesp); 15605 if (!mctl_present) { 15606 ASSERT(first_mp == mp); 15607 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15608 ip1dbg(("ip_proto_input: IPSEC_IN " 15609 "allocation failure.\n")); 15610 freemsg(hada_mp); /* okay ifnull */ 15611 BUMP_MIB(&ip_mib, ipInDiscards); 15612 freemsg(mp); 15613 return; 15614 } 15615 /* 15616 * Store the ill_index so that when we come back 15617 * from IPSEC we ride on the same queue. 15618 */ 15619 ill = (ill_t *)q->q_ptr; 15620 ii = (ipsec_in_t *)first_mp->b_rptr; 15621 ii->ipsec_in_ill_index = 15622 ill->ill_phyint->phyint_ifindex; 15623 ii->ipsec_in_rill_index = 15624 recv_ill->ill_phyint->phyint_ifindex; 15625 first_mp->b_cont = mp; 15626 /* 15627 * Cache hardware acceleration info. 15628 */ 15629 if (hada_mp != NULL) { 15630 IPSECHW_DEBUG(IPSECHW_PKT, 15631 ("ip_rput_local: caching data attr.\n")); 15632 ii->ipsec_in_accelerated = B_TRUE; 15633 ii->ipsec_in_da = hada_mp; 15634 hada_mp = NULL; 15635 } 15636 } else { 15637 ii = (ipsec_in_t *)first_mp->b_rptr; 15638 } 15639 15640 if (!ipsec_loaded()) { 15641 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15642 ire->ire_zoneid); 15643 return; 15644 } 15645 15646 /* select inbound SA and have IPsec process the pkt */ 15647 if (ipha->ipha_protocol == IPPROTO_ESP) { 15648 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15649 if (esph == NULL) 15650 return; 15651 ASSERT(ii->ipsec_in_esp_sa != NULL); 15652 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15653 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15654 first_mp, esph); 15655 } else { 15656 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15657 if (ah == NULL) 15658 return; 15659 ASSERT(ii->ipsec_in_ah_sa != NULL); 15660 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15661 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15662 first_mp, ah); 15663 } 15664 15665 switch (ipsec_rc) { 15666 case IPSEC_STATUS_SUCCESS: 15667 break; 15668 case IPSEC_STATUS_FAILED: 15669 BUMP_MIB(&ip_mib, ipInDiscards); 15670 /* FALLTHRU */ 15671 case IPSEC_STATUS_PENDING: 15672 return; 15673 } 15674 /* we're done with IPsec processing, send it up */ 15675 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15676 return; 15677 } 15678 default: 15679 break; 15680 } 15681 /* 15682 * Handle protocols with which IP is less intimate. There 15683 * can be more than one stream bound to a particular 15684 * protocol. When this is the case, each one gets a copy 15685 * of any incoming packets. 15686 */ 15687 ip_fanout_proto(q, first_mp, ill, ipha, 15688 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15689 B_TRUE, recv_ill, ire->ire_zoneid); 15690 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15691 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15692 return; 15693 15694 drop_pkt: 15695 freemsg(first_mp); 15696 if (hada_mp != NULL) 15697 freeb(hada_mp); 15698 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15699 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15700 #undef rptr 15701 #undef iphs 15702 15703 } 15704 15705 /* 15706 * Update any source route, record route or timestamp options. 15707 * Check that we are at end of strict source route. 15708 * The options have already been checked for sanity in ip_rput_options(). 15709 */ 15710 static boolean_t 15711 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15712 { 15713 ipoptp_t opts; 15714 uchar_t *opt; 15715 uint8_t optval; 15716 uint8_t optlen; 15717 ipaddr_t dst; 15718 uint32_t ts; 15719 ire_t *dst_ire; 15720 timestruc_t now; 15721 15722 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15723 15724 ip2dbg(("ip_rput_local_options\n")); 15725 15726 for (optval = ipoptp_first(&opts, ipha); 15727 optval != IPOPT_EOL; 15728 optval = ipoptp_next(&opts)) { 15729 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15730 opt = opts.ipoptp_cur; 15731 optlen = opts.ipoptp_len; 15732 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15733 optval, optlen)); 15734 switch (optval) { 15735 uint32_t off; 15736 case IPOPT_SSRR: 15737 case IPOPT_LSRR: 15738 off = opt[IPOPT_OFFSET]; 15739 off--; 15740 if (optlen < IP_ADDR_LEN || 15741 off > optlen - IP_ADDR_LEN) { 15742 /* End of source route */ 15743 ip1dbg(("ip_rput_local_options: end of SR\n")); 15744 break; 15745 } 15746 /* 15747 * This will only happen if two consecutive entries 15748 * in the source route contains our address or if 15749 * it is a packet with a loose source route which 15750 * reaches us before consuming the whole source route 15751 */ 15752 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15753 if (optval == IPOPT_SSRR) { 15754 goto bad_src_route; 15755 } 15756 /* 15757 * Hack: instead of dropping the packet truncate the 15758 * source route to what has been used by filling the 15759 * rest with IPOPT_NOP. 15760 */ 15761 opt[IPOPT_OLEN] = (uint8_t)off; 15762 while (off < optlen) { 15763 opt[off++] = IPOPT_NOP; 15764 } 15765 break; 15766 case IPOPT_RR: 15767 off = opt[IPOPT_OFFSET]; 15768 off--; 15769 if (optlen < IP_ADDR_LEN || 15770 off > optlen - IP_ADDR_LEN) { 15771 /* No more room - ignore */ 15772 ip1dbg(( 15773 "ip_rput_local_options: end of RR\n")); 15774 break; 15775 } 15776 bcopy(&ire->ire_src_addr, (char *)opt + off, 15777 IP_ADDR_LEN); 15778 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15779 break; 15780 case IPOPT_TS: 15781 /* Insert timestamp if there is romm */ 15782 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15783 case IPOPT_TS_TSONLY: 15784 off = IPOPT_TS_TIMELEN; 15785 break; 15786 case IPOPT_TS_PRESPEC: 15787 case IPOPT_TS_PRESPEC_RFC791: 15788 /* Verify that the address matched */ 15789 off = opt[IPOPT_OFFSET] - 1; 15790 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15791 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15792 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15793 if (dst_ire == NULL) { 15794 /* Not for us */ 15795 break; 15796 } 15797 ire_refrele(dst_ire); 15798 /* FALLTHRU */ 15799 case IPOPT_TS_TSANDADDR: 15800 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15801 break; 15802 default: 15803 /* 15804 * ip_*put_options should have already 15805 * dropped this packet. 15806 */ 15807 cmn_err(CE_PANIC, "ip_rput_local_options: " 15808 "unknown IT - bug in ip_rput_options?\n"); 15809 return (B_TRUE); /* Keep "lint" happy */ 15810 } 15811 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15812 /* Increase overflow counter */ 15813 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15814 opt[IPOPT_POS_OV_FLG] = 15815 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15816 (off << 4)); 15817 break; 15818 } 15819 off = opt[IPOPT_OFFSET] - 1; 15820 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15821 case IPOPT_TS_PRESPEC: 15822 case IPOPT_TS_PRESPEC_RFC791: 15823 case IPOPT_TS_TSANDADDR: 15824 bcopy(&ire->ire_src_addr, (char *)opt + off, 15825 IP_ADDR_LEN); 15826 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15827 /* FALLTHRU */ 15828 case IPOPT_TS_TSONLY: 15829 off = opt[IPOPT_OFFSET] - 1; 15830 /* Compute # of milliseconds since midnight */ 15831 gethrestime(&now); 15832 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15833 now.tv_nsec / (NANOSEC / MILLISEC); 15834 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15835 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15836 break; 15837 } 15838 break; 15839 } 15840 } 15841 return (B_TRUE); 15842 15843 bad_src_route: 15844 q = WR(q); 15845 /* make sure we clear any indication of a hardware checksum */ 15846 mp->b_datap->db_struioun.cksum.flags = 0; 15847 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 15848 return (B_FALSE); 15849 15850 } 15851 15852 /* 15853 * Process IP options in an inbound packet. If an option affects the 15854 * effective destination address, return the next hop address via dstp. 15855 * Returns -1 if something fails in which case an ICMP error has been sent 15856 * and mp freed. 15857 */ 15858 static int 15859 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 15860 { 15861 ipoptp_t opts; 15862 uchar_t *opt; 15863 uint8_t optval; 15864 uint8_t optlen; 15865 ipaddr_t dst; 15866 intptr_t code = 0; 15867 ire_t *ire = NULL; 15868 15869 ip2dbg(("ip_rput_options\n")); 15870 dst = ipha->ipha_dst; 15871 for (optval = ipoptp_first(&opts, ipha); 15872 optval != IPOPT_EOL; 15873 optval = ipoptp_next(&opts)) { 15874 opt = opts.ipoptp_cur; 15875 optlen = opts.ipoptp_len; 15876 ip2dbg(("ip_rput_options: opt %d, len %d\n", 15877 optval, optlen)); 15878 /* 15879 * Note: we need to verify the checksum before we 15880 * modify anything thus this routine only extracts the next 15881 * hop dst from any source route. 15882 */ 15883 switch (optval) { 15884 uint32_t off; 15885 case IPOPT_SSRR: 15886 case IPOPT_LSRR: 15887 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15888 ALL_ZONES, MATCH_IRE_TYPE); 15889 if (ire == NULL) { 15890 if (optval == IPOPT_SSRR) { 15891 ip1dbg(("ip_rput_options: not next" 15892 " strict source route 0x%x\n", 15893 ntohl(dst))); 15894 code = (char *)&ipha->ipha_dst - 15895 (char *)ipha; 15896 goto param_prob; /* RouterReq's */ 15897 } 15898 ip2dbg(("ip_rput_options: " 15899 "not next source route 0x%x\n", 15900 ntohl(dst))); 15901 break; 15902 } 15903 ire_refrele(ire); 15904 15905 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15906 ip1dbg(( 15907 "ip_rput_options: bad option offset\n")); 15908 code = (char *)&opt[IPOPT_OLEN] - 15909 (char *)ipha; 15910 goto param_prob; 15911 } 15912 off = opt[IPOPT_OFFSET]; 15913 off--; 15914 redo_srr: 15915 if (optlen < IP_ADDR_LEN || 15916 off > optlen - IP_ADDR_LEN) { 15917 /* End of source route */ 15918 ip1dbg(("ip_rput_options: end of SR\n")); 15919 break; 15920 } 15921 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15922 ip1dbg(("ip_rput_options: next hop 0x%x\n", 15923 ntohl(dst))); 15924 15925 /* 15926 * Check if our address is present more than 15927 * once as consecutive hops in source route. 15928 * XXX verify per-interface ip_forwarding 15929 * for source route? 15930 */ 15931 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15932 ALL_ZONES, MATCH_IRE_TYPE); 15933 15934 if (ire != NULL) { 15935 ire_refrele(ire); 15936 off += IP_ADDR_LEN; 15937 goto redo_srr; 15938 } 15939 15940 if (dst == htonl(INADDR_LOOPBACK)) { 15941 ip1dbg(("ip_rput_options: loopback addr in " 15942 "source route!\n")); 15943 goto bad_src_route; 15944 } 15945 /* 15946 * For strict: verify that dst is directly 15947 * reachable. 15948 */ 15949 if (optval == IPOPT_SSRR) { 15950 ire = ire_ftable_lookup(dst, 0, 0, 15951 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 15952 MATCH_IRE_TYPE); 15953 if (ire == NULL) { 15954 ip1dbg(("ip_rput_options: SSRR not " 15955 "directly reachable: 0x%x\n", 15956 ntohl(dst))); 15957 goto bad_src_route; 15958 } 15959 ire_refrele(ire); 15960 } 15961 /* 15962 * Defer update of the offset and the record route 15963 * until the packet is forwarded. 15964 */ 15965 break; 15966 case IPOPT_RR: 15967 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15968 ip1dbg(( 15969 "ip_rput_options: bad option offset\n")); 15970 code = (char *)&opt[IPOPT_OLEN] - 15971 (char *)ipha; 15972 goto param_prob; 15973 } 15974 break; 15975 case IPOPT_TS: 15976 /* 15977 * Verify that length >= 5 and that there is either 15978 * room for another timestamp or that the overflow 15979 * counter is not maxed out. 15980 */ 15981 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 15982 if (optlen < IPOPT_MINLEN_IT) { 15983 goto param_prob; 15984 } 15985 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15986 ip1dbg(( 15987 "ip_rput_options: bad option offset\n")); 15988 code = (char *)&opt[IPOPT_OFFSET] - 15989 (char *)ipha; 15990 goto param_prob; 15991 } 15992 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15993 case IPOPT_TS_TSONLY: 15994 off = IPOPT_TS_TIMELEN; 15995 break; 15996 case IPOPT_TS_TSANDADDR: 15997 case IPOPT_TS_PRESPEC: 15998 case IPOPT_TS_PRESPEC_RFC791: 15999 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16000 break; 16001 default: 16002 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16003 (char *)ipha; 16004 goto param_prob; 16005 } 16006 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16007 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16008 /* 16009 * No room and the overflow counter is 15 16010 * already. 16011 */ 16012 goto param_prob; 16013 } 16014 break; 16015 } 16016 } 16017 16018 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16019 *dstp = dst; 16020 return (0); 16021 } 16022 16023 ip1dbg(("ip_rput_options: error processing IP options.")); 16024 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16025 16026 param_prob: 16027 q = WR(q); 16028 /* make sure we clear any indication of a hardware checksum */ 16029 mp->b_datap->db_struioun.cksum.flags = 0; 16030 icmp_param_problem(q, mp, (uint8_t)code); 16031 return (-1); 16032 16033 bad_src_route: 16034 q = WR(q); 16035 /* make sure we clear any indication of a hardware checksum */ 16036 mp->b_datap->db_struioun.cksum.flags = 0; 16037 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16038 return (-1); 16039 } 16040 16041 /* 16042 * IP & ICMP info in >=14 msg's ... 16043 * - ip fixed part (mib2_ip_t) 16044 * - icmp fixed part (mib2_icmp_t) 16045 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16046 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16047 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16048 * - ip multicast membership (ip_member_t) 16049 * - ip multicast source filtering (ip_grpsrc_t) 16050 * - igmp fixed part (struct igmpstat) 16051 * - multicast routing stats (struct mrtstat) 16052 * - multicast routing vifs (array of struct vifctl) 16053 * - multicast routing routes (array of struct mfcctl) 16054 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16055 * One per ill plus one generic 16056 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16057 * One per ill plus one generic 16058 * - ipv6RouteEntry all IPv6 IREs 16059 * - ipv6NetToMediaEntry all Neighbor Cache entries 16060 * - ipv6AddrEntry all IPv6 ipifs 16061 * - ipv6 multicast membership (ipv6_member_t) 16062 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16063 * 16064 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16065 * already present. 16066 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16067 * already filled in by caller. 16068 * Return value of 0 indicates that no messages were sent and caller 16069 * should free mpctl. 16070 */ 16071 int 16072 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16073 { 16074 16075 if (mpctl == NULL || mpctl->b_cont == NULL) { 16076 return (0); 16077 } 16078 16079 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16080 return (1); 16081 } 16082 16083 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16084 return (1); 16085 } 16086 16087 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16088 return (1); 16089 } 16090 16091 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16092 return (1); 16093 } 16094 16095 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16096 return (1); 16097 } 16098 16099 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16100 return (1); 16101 } 16102 16103 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16104 return (1); 16105 } 16106 16107 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16108 return (1); 16109 } 16110 16111 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16112 return (1); 16113 } 16114 16115 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16116 return (1); 16117 } 16118 16119 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16120 return (1); 16121 } 16122 16123 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16124 return (1); 16125 } 16126 16127 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16128 return (1); 16129 } 16130 16131 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16132 return (1); 16133 } 16134 16135 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16136 return (1); 16137 } 16138 16139 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16140 return (1); 16141 } 16142 16143 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16144 return (1); 16145 } 16146 freemsg(mpctl); 16147 return (1); 16148 } 16149 16150 16151 /* Get global IPv4 statistics */ 16152 static mblk_t * 16153 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16154 { 16155 struct opthdr *optp; 16156 mblk_t *mp2ctl; 16157 16158 /* 16159 * make a copy of the original message 16160 */ 16161 mp2ctl = copymsg(mpctl); 16162 16163 /* fixed length IP structure... */ 16164 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16165 optp->level = MIB2_IP; 16166 optp->name = 0; 16167 SET_MIB(ip_mib.ipForwarding, 16168 (WE_ARE_FORWARDING ? 1 : 2)); 16169 SET_MIB(ip_mib.ipDefaultTTL, 16170 (uint32_t)ip_def_ttl); 16171 SET_MIB(ip_mib.ipReasmTimeout, 16172 ip_g_frag_timeout); 16173 SET_MIB(ip_mib.ipAddrEntrySize, 16174 sizeof (mib2_ipAddrEntry_t)); 16175 SET_MIB(ip_mib.ipRouteEntrySize, 16176 sizeof (mib2_ipRouteEntry_t)); 16177 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16178 sizeof (mib2_ipNetToMediaEntry_t)); 16179 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16180 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16181 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16182 (int)sizeof (ip_mib))) { 16183 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16184 (uint_t)sizeof (ip_mib))); 16185 } 16186 16187 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16188 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16189 (int)optp->level, (int)optp->name, (int)optp->len)); 16190 qreply(q, mpctl); 16191 return (mp2ctl); 16192 } 16193 16194 /* Global IPv4 ICMP statistics */ 16195 static mblk_t * 16196 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16197 { 16198 struct opthdr *optp; 16199 mblk_t *mp2ctl; 16200 16201 /* 16202 * Make a copy of the original message 16203 */ 16204 mp2ctl = copymsg(mpctl); 16205 16206 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16207 optp->level = MIB2_ICMP; 16208 optp->name = 0; 16209 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16210 (int)sizeof (icmp_mib))) { 16211 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16212 (uint_t)sizeof (icmp_mib))); 16213 } 16214 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16215 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16216 (int)optp->level, (int)optp->name, (int)optp->len)); 16217 qreply(q, mpctl); 16218 return (mp2ctl); 16219 } 16220 16221 /* Global IPv4 IGMP statistics */ 16222 static mblk_t * 16223 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16224 { 16225 struct opthdr *optp; 16226 mblk_t *mp2ctl; 16227 16228 /* 16229 * make a copy of the original message 16230 */ 16231 mp2ctl = copymsg(mpctl); 16232 16233 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16234 optp->level = EXPER_IGMP; 16235 optp->name = 0; 16236 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16237 (int)sizeof (igmpstat))) { 16238 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16239 (uint_t)sizeof (igmpstat))); 16240 } 16241 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16242 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16243 (int)optp->level, (int)optp->name, (int)optp->len)); 16244 qreply(q, mpctl); 16245 return (mp2ctl); 16246 } 16247 16248 /* Global IPv4 Multicast Routing statistics */ 16249 static mblk_t * 16250 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16251 { 16252 struct opthdr *optp; 16253 mblk_t *mp2ctl; 16254 16255 /* 16256 * make a copy of the original message 16257 */ 16258 mp2ctl = copymsg(mpctl); 16259 16260 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16261 optp->level = EXPER_DVMRP; 16262 optp->name = 0; 16263 if (!ip_mroute_stats(mpctl->b_cont)) { 16264 ip0dbg(("ip_mroute_stats: failed\n")); 16265 } 16266 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16267 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16268 (int)optp->level, (int)optp->name, (int)optp->len)); 16269 qreply(q, mpctl); 16270 return (mp2ctl); 16271 } 16272 16273 /* IPv4 address information */ 16274 static mblk_t * 16275 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16276 { 16277 struct opthdr *optp; 16278 mblk_t *mp2ctl; 16279 mblk_t *mp_tail = NULL; 16280 ill_t *ill; 16281 ipif_t *ipif; 16282 uint_t bitval; 16283 mib2_ipAddrEntry_t mae; 16284 zoneid_t zoneid; 16285 ill_walk_context_t ctx; 16286 16287 /* 16288 * make a copy of the original message 16289 */ 16290 mp2ctl = copymsg(mpctl); 16291 16292 /* ipAddrEntryTable */ 16293 16294 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16295 optp->level = MIB2_IP; 16296 optp->name = MIB2_IP_ADDR; 16297 zoneid = Q_TO_CONN(q)->conn_zoneid; 16298 16299 rw_enter(&ill_g_lock, RW_READER); 16300 ill = ILL_START_WALK_V4(&ctx); 16301 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16302 for (ipif = ill->ill_ipif; ipif != NULL; 16303 ipif = ipif->ipif_next) { 16304 if (ipif->ipif_zoneid != zoneid) 16305 continue; 16306 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16307 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16308 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16309 16310 (void) ipif_get_name(ipif, 16311 mae.ipAdEntIfIndex.o_bytes, 16312 OCTET_LENGTH); 16313 mae.ipAdEntIfIndex.o_length = 16314 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16315 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16316 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16317 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16318 mae.ipAdEntInfo.ae_subnet_len = 16319 ip_mask_to_plen(ipif->ipif_net_mask); 16320 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16321 for (bitval = 1; 16322 bitval && 16323 !(bitval & ipif->ipif_brd_addr); 16324 bitval <<= 1) 16325 noop; 16326 mae.ipAdEntBcastAddr = bitval; 16327 mae.ipAdEntReasmMaxSize = 65535; 16328 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16329 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16330 mae.ipAdEntInfo.ae_broadcast_addr = 16331 ipif->ipif_brd_addr; 16332 mae.ipAdEntInfo.ae_pp_dst_addr = 16333 ipif->ipif_pp_dst_addr; 16334 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16335 ill->ill_flags | ill->ill_phyint->phyint_flags; 16336 16337 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16338 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16339 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16340 "allocate %u bytes\n", 16341 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16342 } 16343 } 16344 } 16345 rw_exit(&ill_g_lock); 16346 16347 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16348 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16349 (int)optp->level, (int)optp->name, (int)optp->len)); 16350 qreply(q, mpctl); 16351 return (mp2ctl); 16352 } 16353 16354 /* IPv6 address information */ 16355 static mblk_t * 16356 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16357 { 16358 struct opthdr *optp; 16359 mblk_t *mp2ctl; 16360 mblk_t *mp_tail = NULL; 16361 ill_t *ill; 16362 ipif_t *ipif; 16363 mib2_ipv6AddrEntry_t mae6; 16364 zoneid_t zoneid; 16365 ill_walk_context_t ctx; 16366 16367 /* 16368 * make a copy of the original message 16369 */ 16370 mp2ctl = copymsg(mpctl); 16371 16372 /* ipv6AddrEntryTable */ 16373 16374 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16375 optp->level = MIB2_IP6; 16376 optp->name = MIB2_IP6_ADDR; 16377 zoneid = Q_TO_CONN(q)->conn_zoneid; 16378 16379 rw_enter(&ill_g_lock, RW_READER); 16380 ill = ILL_START_WALK_V6(&ctx); 16381 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16382 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16383 if (ipif->ipif_zoneid != zoneid) 16384 continue; 16385 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16386 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16387 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16388 16389 (void) ipif_get_name(ipif, 16390 mae6.ipv6AddrIfIndex.o_bytes, 16391 OCTET_LENGTH); 16392 mae6.ipv6AddrIfIndex.o_length = 16393 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16394 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16395 mae6.ipv6AddrPfxLength = 16396 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16397 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16398 mae6.ipv6AddrInfo.ae_subnet_len = 16399 mae6.ipv6AddrPfxLength; 16400 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16401 16402 /* Type: stateless(1), stateful(2), unknown(3) */ 16403 if (ipif->ipif_flags & IPIF_ADDRCONF) 16404 mae6.ipv6AddrType = 1; 16405 else 16406 mae6.ipv6AddrType = 2; 16407 /* Anycast: true(1), false(2) */ 16408 if (ipif->ipif_flags & IPIF_ANYCAST) 16409 mae6.ipv6AddrAnycastFlag = 1; 16410 else 16411 mae6.ipv6AddrAnycastFlag = 2; 16412 16413 /* 16414 * Address status: preferred(1), deprecated(2), 16415 * invalid(3), inaccessible(4), unknown(5) 16416 */ 16417 if (ipif->ipif_flags & IPIF_NOLOCAL) 16418 mae6.ipv6AddrStatus = 3; 16419 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16420 mae6.ipv6AddrStatus = 2; 16421 else 16422 mae6.ipv6AddrStatus = 1; 16423 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16424 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16425 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16426 ipif->ipif_v6pp_dst_addr; 16427 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16428 ill->ill_flags | ill->ill_phyint->phyint_flags; 16429 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16430 (char *)&mae6, 16431 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16432 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16433 "allocate %u bytes\n", 16434 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16435 } 16436 } 16437 } 16438 rw_exit(&ill_g_lock); 16439 16440 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16441 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16442 (int)optp->level, (int)optp->name, (int)optp->len)); 16443 qreply(q, mpctl); 16444 return (mp2ctl); 16445 } 16446 16447 /* IPv4 multicast group membership. */ 16448 static mblk_t * 16449 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16450 { 16451 struct opthdr *optp; 16452 mblk_t *mp2ctl; 16453 ill_t *ill; 16454 ipif_t *ipif; 16455 ilm_t *ilm; 16456 ip_member_t ipm; 16457 mblk_t *mp_tail = NULL; 16458 ill_walk_context_t ctx; 16459 zoneid_t zoneid; 16460 16461 /* 16462 * make a copy of the original message 16463 */ 16464 mp2ctl = copymsg(mpctl); 16465 zoneid = Q_TO_CONN(q)->conn_zoneid; 16466 16467 /* ipGroupMember table */ 16468 optp = (struct opthdr *)&mpctl->b_rptr[ 16469 sizeof (struct T_optmgmt_ack)]; 16470 optp->level = MIB2_IP; 16471 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16472 16473 rw_enter(&ill_g_lock, RW_READER); 16474 ill = ILL_START_WALK_V4(&ctx); 16475 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16476 ILM_WALKER_HOLD(ill); 16477 for (ipif = ill->ill_ipif; ipif != NULL; 16478 ipif = ipif->ipif_next) { 16479 if (ipif->ipif_zoneid != zoneid) 16480 continue; /* not this zone */ 16481 (void) ipif_get_name(ipif, 16482 ipm.ipGroupMemberIfIndex.o_bytes, 16483 OCTET_LENGTH); 16484 ipm.ipGroupMemberIfIndex.o_length = 16485 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16486 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16487 ASSERT(ilm->ilm_ipif != NULL); 16488 ASSERT(ilm->ilm_ill == NULL); 16489 if (ilm->ilm_ipif != ipif) 16490 continue; 16491 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16492 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16493 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16494 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16495 (char *)&ipm, (int)sizeof (ipm))) { 16496 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16497 "failed to allocate %u bytes\n", 16498 (uint_t)sizeof (ipm))); 16499 } 16500 } 16501 } 16502 ILM_WALKER_RELE(ill); 16503 } 16504 rw_exit(&ill_g_lock); 16505 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16506 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16507 (int)optp->level, (int)optp->name, (int)optp->len)); 16508 qreply(q, mpctl); 16509 return (mp2ctl); 16510 } 16511 16512 /* IPv6 multicast group membership. */ 16513 static mblk_t * 16514 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16515 { 16516 struct opthdr *optp; 16517 mblk_t *mp2ctl; 16518 ill_t *ill; 16519 ilm_t *ilm; 16520 ipv6_member_t ipm6; 16521 mblk_t *mp_tail = NULL; 16522 ill_walk_context_t ctx; 16523 zoneid_t zoneid; 16524 16525 /* 16526 * make a copy of the original message 16527 */ 16528 mp2ctl = copymsg(mpctl); 16529 zoneid = Q_TO_CONN(q)->conn_zoneid; 16530 16531 /* ip6GroupMember table */ 16532 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16533 optp->level = MIB2_IP6; 16534 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16535 16536 rw_enter(&ill_g_lock, RW_READER); 16537 ill = ILL_START_WALK_V6(&ctx); 16538 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16539 ILM_WALKER_HOLD(ill); 16540 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16541 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16542 ASSERT(ilm->ilm_ipif == NULL); 16543 ASSERT(ilm->ilm_ill != NULL); 16544 if (ilm->ilm_zoneid != zoneid) 16545 continue; /* not this zone */ 16546 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16547 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16548 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16549 if (!snmp_append_data2(mpctl->b_cont, 16550 &mp_tail, 16551 (char *)&ipm6, (int)sizeof (ipm6))) { 16552 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16553 "failed to allocate %u bytes\n", 16554 (uint_t)sizeof (ipm6))); 16555 } 16556 } 16557 ILM_WALKER_RELE(ill); 16558 } 16559 rw_exit(&ill_g_lock); 16560 16561 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16562 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16563 (int)optp->level, (int)optp->name, (int)optp->len)); 16564 qreply(q, mpctl); 16565 return (mp2ctl); 16566 } 16567 16568 /* IP multicast filtered sources */ 16569 static mblk_t * 16570 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16571 { 16572 struct opthdr *optp; 16573 mblk_t *mp2ctl; 16574 ill_t *ill; 16575 ipif_t *ipif; 16576 ilm_t *ilm; 16577 ip_grpsrc_t ips; 16578 mblk_t *mp_tail = NULL; 16579 ill_walk_context_t ctx; 16580 zoneid_t zoneid; 16581 int i; 16582 slist_t *sl; 16583 16584 /* 16585 * make a copy of the original message 16586 */ 16587 mp2ctl = copymsg(mpctl); 16588 zoneid = Q_TO_CONN(q)->conn_zoneid; 16589 16590 /* ipGroupSource table */ 16591 optp = (struct opthdr *)&mpctl->b_rptr[ 16592 sizeof (struct T_optmgmt_ack)]; 16593 optp->level = MIB2_IP; 16594 optp->name = EXPER_IP_GROUP_SOURCES; 16595 16596 rw_enter(&ill_g_lock, RW_READER); 16597 ill = ILL_START_WALK_V4(&ctx); 16598 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16599 ILM_WALKER_HOLD(ill); 16600 for (ipif = ill->ill_ipif; ipif != NULL; 16601 ipif = ipif->ipif_next) { 16602 if (ipif->ipif_zoneid != zoneid) 16603 continue; /* not this zone */ 16604 (void) ipif_get_name(ipif, 16605 ips.ipGroupSourceIfIndex.o_bytes, 16606 OCTET_LENGTH); 16607 ips.ipGroupSourceIfIndex.o_length = 16608 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16609 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16610 ASSERT(ilm->ilm_ipif != NULL); 16611 ASSERT(ilm->ilm_ill == NULL); 16612 sl = ilm->ilm_filter; 16613 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16614 continue; 16615 ips.ipGroupSourceGroup = ilm->ilm_addr; 16616 for (i = 0; i < sl->sl_numsrc; i++) { 16617 if (!IN6_IS_ADDR_V4MAPPED( 16618 &sl->sl_addr[i])) 16619 continue; 16620 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16621 ips.ipGroupSourceAddress); 16622 if (snmp_append_data2(mpctl->b_cont, 16623 &mp_tail, (char *)&ips, 16624 (int)sizeof (ips)) == 0) { 16625 ip1dbg(("ip_snmp_get_mib2_" 16626 "ip_group_src: failed to " 16627 "allocate %u bytes\n", 16628 (uint_t)sizeof (ips))); 16629 } 16630 } 16631 } 16632 } 16633 ILM_WALKER_RELE(ill); 16634 } 16635 rw_exit(&ill_g_lock); 16636 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16637 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16638 (int)optp->level, (int)optp->name, (int)optp->len)); 16639 qreply(q, mpctl); 16640 return (mp2ctl); 16641 } 16642 16643 /* IPv6 multicast filtered sources. */ 16644 static mblk_t * 16645 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16646 { 16647 struct opthdr *optp; 16648 mblk_t *mp2ctl; 16649 ill_t *ill; 16650 ilm_t *ilm; 16651 ipv6_grpsrc_t ips6; 16652 mblk_t *mp_tail = NULL; 16653 ill_walk_context_t ctx; 16654 zoneid_t zoneid; 16655 int i; 16656 slist_t *sl; 16657 16658 /* 16659 * make a copy of the original message 16660 */ 16661 mp2ctl = copymsg(mpctl); 16662 zoneid = Q_TO_CONN(q)->conn_zoneid; 16663 16664 /* ip6GroupMember table */ 16665 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16666 optp->level = MIB2_IP6; 16667 optp->name = EXPER_IP6_GROUP_SOURCES; 16668 16669 rw_enter(&ill_g_lock, RW_READER); 16670 ill = ILL_START_WALK_V6(&ctx); 16671 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16672 ILM_WALKER_HOLD(ill); 16673 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16674 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16675 ASSERT(ilm->ilm_ipif == NULL); 16676 ASSERT(ilm->ilm_ill != NULL); 16677 sl = ilm->ilm_filter; 16678 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16679 continue; 16680 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16681 for (i = 0; i < sl->sl_numsrc; i++) { 16682 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16683 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16684 (char *)&ips6, (int)sizeof (ips6))) { 16685 ip1dbg(("ip_snmp_get_mib2_ip6_" 16686 "group_src: failed to allocate " 16687 "%u bytes\n", 16688 (uint_t)sizeof (ips6))); 16689 } 16690 } 16691 } 16692 ILM_WALKER_RELE(ill); 16693 } 16694 rw_exit(&ill_g_lock); 16695 16696 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16697 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16698 (int)optp->level, (int)optp->name, (int)optp->len)); 16699 qreply(q, mpctl); 16700 return (mp2ctl); 16701 } 16702 16703 /* Multicast routing virtual interface table. */ 16704 static mblk_t * 16705 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16706 { 16707 struct opthdr *optp; 16708 mblk_t *mp2ctl; 16709 16710 /* 16711 * make a copy of the original message 16712 */ 16713 mp2ctl = copymsg(mpctl); 16714 16715 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16716 optp->level = EXPER_DVMRP; 16717 optp->name = EXPER_DVMRP_VIF; 16718 if (!ip_mroute_vif(mpctl->b_cont)) { 16719 ip0dbg(("ip_mroute_vif: failed\n")); 16720 } 16721 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16722 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16723 (int)optp->level, (int)optp->name, (int)optp->len)); 16724 qreply(q, mpctl); 16725 return (mp2ctl); 16726 } 16727 16728 /* Multicast routing table. */ 16729 static mblk_t * 16730 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16731 { 16732 struct opthdr *optp; 16733 mblk_t *mp2ctl; 16734 16735 /* 16736 * make a copy of the original message 16737 */ 16738 mp2ctl = copymsg(mpctl); 16739 16740 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16741 optp->level = EXPER_DVMRP; 16742 optp->name = EXPER_DVMRP_MRT; 16743 if (!ip_mroute_mrt(mpctl->b_cont)) { 16744 ip0dbg(("ip_mroute_mrt: failed\n")); 16745 } 16746 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16747 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16748 (int)optp->level, (int)optp->name, (int)optp->len)); 16749 qreply(q, mpctl); 16750 return (mp2ctl); 16751 } 16752 16753 /* 16754 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16755 * in one IRE walk. 16756 */ 16757 static mblk_t * 16758 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16759 { 16760 struct opthdr *optp; 16761 mblk_t *mp2ctl; /* Returned */ 16762 mblk_t *mp3ctl; /* nettomedia */ 16763 /* 16764 * We need two listptrs, for ipRouteEntryTable and 16765 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16766 */ 16767 listptr_t re_ntme_v4[2]; 16768 zoneid_t zoneid; 16769 16770 /* 16771 * make a copy of the original message 16772 */ 16773 mp2ctl = copymsg(mpctl); 16774 mp3ctl = copymsg(mpctl); 16775 if (mp3ctl == NULL) { 16776 freemsg(mp2ctl); 16777 freemsg(mpctl); 16778 return (NULL); 16779 } 16780 16781 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 16782 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 16783 /* 16784 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16785 * proper values when called. 16786 */ 16787 re_ntme_v4[0].lp_tail = NULL; 16788 re_ntme_v4[1].lp_tail = NULL; 16789 16790 zoneid = Q_TO_CONN(q)->conn_zoneid; 16791 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 16792 if (zoneid == GLOBAL_ZONEID) { 16793 /* 16794 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 16795 * the sys_net_config privilege, it can only run in the global 16796 * zone, so we don't display these IREs in the other zones. 16797 */ 16798 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 16799 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 16800 NULL); 16801 } 16802 16803 /* ipRouteEntryTable in mpctl */ 16804 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16805 optp->level = MIB2_IP; 16806 optp->name = MIB2_IP_ROUTE; 16807 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 16808 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16809 (int)optp->level, (int)optp->name, (int)optp->len)); 16810 qreply(q, mpctl); 16811 16812 /* ipNetToMediaEntryTable in mp3ctl */ 16813 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16814 optp->level = MIB2_IP; 16815 optp->name = MIB2_IP_MEDIA; 16816 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 16817 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16818 (int)optp->level, (int)optp->name, (int)optp->len)); 16819 qreply(q, mp3ctl); 16820 return (mp2ctl); 16821 } 16822 16823 /* 16824 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 16825 * in one IRE walk. 16826 */ 16827 static mblk_t * 16828 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 16829 { 16830 struct opthdr *optp; 16831 mblk_t *mp2ctl; /* Returned */ 16832 mblk_t *mp3ctl; /* nettomedia */ 16833 listptr_t re_ntme_v6; 16834 zoneid_t zoneid; 16835 16836 /* 16837 * make a copy of the original message 16838 */ 16839 mp2ctl = copymsg(mpctl); 16840 mp3ctl = copymsg(mpctl); 16841 if (mp3ctl == NULL) { 16842 freemsg(mp2ctl); 16843 freemsg(mpctl); 16844 return (NULL); 16845 } 16846 16847 /* 16848 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16849 * proper values when called. ipv6RouteEntryTable in is placed 16850 * in mpctl. 16851 */ 16852 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 16853 re_ntme_v6.lp_tail = NULL; 16854 zoneid = Q_TO_CONN(q)->conn_zoneid; 16855 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 16856 16857 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16858 optp->level = MIB2_IP6; 16859 optp->name = MIB2_IP6_ROUTE; 16860 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16861 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16862 (int)optp->level, (int)optp->name, (int)optp->len)); 16863 qreply(q, mpctl); 16864 16865 /* ipv6NetToMediaEntryTable in mp3ctl */ 16866 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 16867 re_ntme_v6.lp_tail = NULL; 16868 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 16869 16870 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16871 optp->level = MIB2_IP6; 16872 optp->name = MIB2_IP6_MEDIA; 16873 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16874 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16875 (int)optp->level, (int)optp->name, (int)optp->len)); 16876 qreply(q, mp3ctl); 16877 return (mp2ctl); 16878 } 16879 16880 /* 16881 * ICMPv6 mib: One per ill 16882 */ 16883 static mblk_t * 16884 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 16885 { 16886 struct opthdr *optp; 16887 mblk_t *mp2ctl; 16888 ill_t *ill; 16889 ill_walk_context_t ctx; 16890 mblk_t *mp_tail = NULL; 16891 16892 /* 16893 * Make a copy of the original message 16894 */ 16895 mp2ctl = copymsg(mpctl); 16896 16897 /* fixed length IPv6 structure ... */ 16898 16899 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16900 optp->level = MIB2_IP6; 16901 optp->name = 0; 16902 /* Include "unknown interface" ip6_mib */ 16903 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 16904 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 16905 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 16906 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 16907 sizeof (mib2_ipv6IfStatsEntry_t)); 16908 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 16909 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 16910 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 16911 sizeof (mib2_ipv6NetToMediaEntry_t)); 16912 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 16913 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 16914 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 16915 (int)sizeof (ip6_mib))) { 16916 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 16917 (uint_t)sizeof (ip6_mib))); 16918 } 16919 16920 rw_enter(&ill_g_lock, RW_READER); 16921 ill = ILL_START_WALK_V6(&ctx); 16922 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16923 ill->ill_ip6_mib->ipv6IfIndex = 16924 ill->ill_phyint->phyint_ifindex; 16925 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 16926 ipv6_forward ? 1 : 2); 16927 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 16928 ill->ill_max_hops); 16929 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 16930 sizeof (mib2_ipv6IfStatsEntry_t)); 16931 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 16932 sizeof (mib2_ipv6AddrEntry_t)); 16933 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 16934 sizeof (mib2_ipv6RouteEntry_t)); 16935 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 16936 sizeof (mib2_ipv6NetToMediaEntry_t)); 16937 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 16938 sizeof (ipv6_member_t)); 16939 16940 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16941 (char *)ill->ill_ip6_mib, 16942 (int)sizeof (*ill->ill_ip6_mib))) { 16943 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 16944 "%u bytes\n", 16945 (uint_t)sizeof (*ill->ill_ip6_mib))); 16946 } 16947 } 16948 rw_exit(&ill_g_lock); 16949 16950 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16951 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 16952 (int)optp->level, (int)optp->name, (int)optp->len)); 16953 qreply(q, mpctl); 16954 return (mp2ctl); 16955 } 16956 16957 /* 16958 * ICMPv6 mib: One per ill 16959 */ 16960 static mblk_t * 16961 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 16962 { 16963 struct opthdr *optp; 16964 mblk_t *mp2ctl; 16965 ill_t *ill; 16966 ill_walk_context_t ctx; 16967 mblk_t *mp_tail = NULL; 16968 /* 16969 * Make a copy of the original message 16970 */ 16971 mp2ctl = copymsg(mpctl); 16972 16973 /* fixed length ICMPv6 structure ... */ 16974 16975 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16976 optp->level = MIB2_ICMP6; 16977 optp->name = 0; 16978 /* Include "unknown interface" icmp6_mib */ 16979 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 16980 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 16981 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 16982 (int)sizeof (icmp6_mib))) { 16983 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 16984 (uint_t)sizeof (icmp6_mib))); 16985 } 16986 16987 rw_enter(&ill_g_lock, RW_READER); 16988 ill = ILL_START_WALK_V6(&ctx); 16989 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16990 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16991 ill->ill_phyint->phyint_ifindex; 16992 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 16993 sizeof (mib2_ipv6IfIcmpEntry_t); 16994 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16995 (char *)ill->ill_icmp6_mib, 16996 (int)sizeof (*ill->ill_icmp6_mib))) { 16997 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 16998 "%u bytes\n", 16999 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17000 } 17001 } 17002 rw_exit(&ill_g_lock); 17003 17004 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17005 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17006 (int)optp->level, (int)optp->name, (int)optp->len)); 17007 qreply(q, mpctl); 17008 return (mp2ctl); 17009 } 17010 17011 /* 17012 * ire_walk routine to create both ipRouteEntryTable and 17013 * ipNetToMediaEntryTable in one IRE walk 17014 */ 17015 static void 17016 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17017 { 17018 ill_t *ill; 17019 ipif_t *ipif; 17020 mblk_t *llmp; 17021 dl_unitdata_req_t *dlup; 17022 mib2_ipRouteEntry_t re; 17023 mib2_ipNetToMediaEntry_t ntme; 17024 ipaddr_t gw_addr; 17025 17026 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17027 17028 /* 17029 * Return all IRE types for route table... let caller pick and choose 17030 */ 17031 re.ipRouteDest = ire->ire_addr; 17032 ipif = ire->ire_ipif; 17033 re.ipRouteIfIndex.o_length = 0; 17034 if (ire->ire_type == IRE_CACHE) { 17035 ill = (ill_t *)ire->ire_stq->q_ptr; 17036 re.ipRouteIfIndex.o_length = 17037 ill->ill_name_length == 0 ? 0 : 17038 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17039 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17040 re.ipRouteIfIndex.o_length); 17041 } else if (ipif != NULL) { 17042 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17043 OCTET_LENGTH); 17044 re.ipRouteIfIndex.o_length = 17045 mi_strlen(re.ipRouteIfIndex.o_bytes); 17046 } 17047 re.ipRouteMetric1 = -1; 17048 re.ipRouteMetric2 = -1; 17049 re.ipRouteMetric3 = -1; 17050 re.ipRouteMetric4 = -1; 17051 17052 gw_addr = ire->ire_gateway_addr; 17053 17054 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17055 re.ipRouteNextHop = ire->ire_src_addr; 17056 else 17057 re.ipRouteNextHop = gw_addr; 17058 /* indirect(4), direct(3), or invalid(2) */ 17059 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17060 re.ipRouteType = 2; 17061 else 17062 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17063 re.ipRouteProto = -1; 17064 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17065 re.ipRouteMask = ire->ire_mask; 17066 re.ipRouteMetric5 = -1; 17067 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17068 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17069 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17070 llmp = ire->ire_dlureq_mp; 17071 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17072 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17073 re.ipRouteInfo.re_ire_type = ire->ire_type; 17074 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17075 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17076 re.ipRouteInfo.re_flags = ire->ire_flags; 17077 re.ipRouteInfo.re_in_ill.o_length = 0; 17078 if (ire->ire_in_ill != NULL) { 17079 re.ipRouteInfo.re_in_ill.o_length = 17080 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17081 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17082 bcopy(ire->ire_in_ill->ill_name, 17083 re.ipRouteInfo.re_in_ill.o_bytes, 17084 re.ipRouteInfo.re_in_ill.o_length); 17085 } 17086 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17087 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17088 (char *)&re, (int)sizeof (re))) { 17089 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17090 (uint_t)sizeof (re))); 17091 } 17092 17093 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17094 return; 17095 /* 17096 * only IRE_CACHE entries that are for a directly connected subnet 17097 * get appended to net -> phys addr table 17098 * (others in arp) 17099 */ 17100 ntme.ipNetToMediaIfIndex.o_length = 0; 17101 ill = ire_to_ill(ire); 17102 ASSERT(ill != NULL); 17103 ntme.ipNetToMediaIfIndex.o_length = 17104 ill->ill_name_length == 0 ? 0 : 17105 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17106 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17107 ntme.ipNetToMediaIfIndex.o_length); 17108 17109 ntme.ipNetToMediaPhysAddress.o_length = 0; 17110 if (llmp) { 17111 uchar_t *addr; 17112 17113 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17114 /* Remove sap from address */ 17115 if (ill->ill_sap_length < 0) 17116 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17117 else 17118 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17119 ill->ill_sap_length; 17120 17121 ntme.ipNetToMediaPhysAddress.o_length = 17122 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17123 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17124 ntme.ipNetToMediaPhysAddress.o_length); 17125 } 17126 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17127 /* assume dynamic (may be changed in arp) */ 17128 ntme.ipNetToMediaType = 3; 17129 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17130 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17131 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17132 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17133 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17134 (char *)&ntme, (int)sizeof (ntme))) { 17135 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17136 (uint_t)sizeof (ntme))); 17137 } 17138 } 17139 17140 /* 17141 * ire_walk routine to create ipv6RouteEntryTable. 17142 */ 17143 static void 17144 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17145 { 17146 ill_t *ill; 17147 ipif_t *ipif; 17148 mib2_ipv6RouteEntry_t re; 17149 in6_addr_t gw_addr_v6; 17150 17151 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17152 17153 /* 17154 * Return all IRE types for route table... let caller pick and choose 17155 */ 17156 re.ipv6RouteDest = ire->ire_addr_v6; 17157 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17158 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17159 re.ipv6RouteIfIndex.o_length = 0; 17160 ipif = ire->ire_ipif; 17161 if (ire->ire_type == IRE_CACHE) { 17162 ill = (ill_t *)ire->ire_stq->q_ptr; 17163 re.ipv6RouteIfIndex.o_length = 17164 ill->ill_name_length == 0 ? 0 : 17165 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17166 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17167 re.ipv6RouteIfIndex.o_length); 17168 } else if (ipif != NULL) { 17169 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17170 OCTET_LENGTH); 17171 re.ipv6RouteIfIndex.o_length = 17172 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17173 } 17174 17175 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17176 17177 mutex_enter(&ire->ire_lock); 17178 gw_addr_v6 = ire->ire_gateway_addr_v6; 17179 mutex_exit(&ire->ire_lock); 17180 17181 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17182 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17183 else 17184 re.ipv6RouteNextHop = gw_addr_v6; 17185 17186 /* remote(4), local(3), or discard(2) */ 17187 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17188 re.ipv6RouteType = 2; 17189 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17190 re.ipv6RouteType = 3; 17191 else 17192 re.ipv6RouteType = 4; 17193 17194 re.ipv6RouteProtocol = -1; 17195 re.ipv6RoutePolicy = 0; 17196 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17197 re.ipv6RouteNextHopRDI = 0; 17198 re.ipv6RouteWeight = 0; 17199 re.ipv6RouteMetric = 0; 17200 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17201 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17202 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17203 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17204 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17205 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17206 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17207 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17208 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17209 17210 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17211 (char *)&re, (int)sizeof (re))) { 17212 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17213 (uint_t)sizeof (re))); 17214 } 17215 } 17216 17217 /* 17218 * ndp_walk routine to create ipv6NetToMediaEntryTable 17219 */ 17220 static int 17221 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17222 { 17223 ill_t *ill; 17224 mib2_ipv6NetToMediaEntry_t ntme; 17225 dl_unitdata_req_t *dl; 17226 17227 ill = nce->nce_ill; 17228 ASSERT(ill->ill_isv6); 17229 17230 /* 17231 * Neighbor cache entry attached to IRE with on-link 17232 * destination. 17233 */ 17234 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17235 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17236 if ((ill->ill_flags & ILLF_XRESOLV) && 17237 (nce->nce_res_mp != NULL)) { 17238 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17239 ntme.ipv6NetToMediaPhysAddress.o_length = 17240 dl->dl_dest_addr_length; 17241 } else { 17242 ntme.ipv6NetToMediaPhysAddress.o_length = 17243 ill->ill_phys_addr_length; 17244 } 17245 if (nce->nce_res_mp != NULL) { 17246 bcopy((char *)nce->nce_res_mp->b_rptr + 17247 NCE_LL_ADDR_OFFSET(ill), 17248 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17249 ntme.ipv6NetToMediaPhysAddress.o_length); 17250 } else { 17251 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17252 ill->ill_phys_addr_length); 17253 } 17254 /* 17255 * Note: Returns ND_* states. Should be: 17256 * reachable(1), stale(2), delay(3), probe(4), 17257 * invalid(5), unknown(6) 17258 */ 17259 ntme.ipv6NetToMediaState = nce->nce_state; 17260 ntme.ipv6NetToMediaLastUpdated = 0; 17261 17262 /* other(1), dynamic(2), static(3), local(4) */ 17263 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17264 ntme.ipv6NetToMediaType = 4; 17265 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17266 ntme.ipv6NetToMediaType = 1; 17267 } else { 17268 ntme.ipv6NetToMediaType = 2; 17269 } 17270 17271 if (!snmp_append_data2(re_ntme->lp_head, 17272 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17273 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17274 (uint_t)sizeof (ntme))); 17275 } 17276 return (0); 17277 } 17278 17279 /* 17280 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17281 */ 17282 /* ARGSUSED */ 17283 int 17284 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17285 { 17286 switch (level) { 17287 case MIB2_IP: 17288 case MIB2_ICMP: 17289 switch (name) { 17290 default: 17291 break; 17292 } 17293 return (1); 17294 default: 17295 return (1); 17296 } 17297 } 17298 17299 /* 17300 * Called before the options are updated to check if this packet will 17301 * be source routed from here. 17302 * This routine assumes that the options are well formed i.e. that they 17303 * have already been checked. 17304 */ 17305 static boolean_t 17306 ip_source_routed(ipha_t *ipha) 17307 { 17308 ipoptp_t opts; 17309 uchar_t *opt; 17310 uint8_t optval; 17311 uint8_t optlen; 17312 ipaddr_t dst; 17313 ire_t *ire; 17314 17315 if (IS_SIMPLE_IPH(ipha)) { 17316 ip2dbg(("not source routed\n")); 17317 return (B_FALSE); 17318 } 17319 dst = ipha->ipha_dst; 17320 for (optval = ipoptp_first(&opts, ipha); 17321 optval != IPOPT_EOL; 17322 optval = ipoptp_next(&opts)) { 17323 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17324 opt = opts.ipoptp_cur; 17325 optlen = opts.ipoptp_len; 17326 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17327 optval, optlen)); 17328 switch (optval) { 17329 uint32_t off; 17330 case IPOPT_SSRR: 17331 case IPOPT_LSRR: 17332 /* 17333 * If dst is one of our addresses and there are some 17334 * entries left in the source route return (true). 17335 */ 17336 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17337 ALL_ZONES, MATCH_IRE_TYPE); 17338 if (ire == NULL) { 17339 ip2dbg(("ip_source_routed: not next" 17340 " source route 0x%x\n", 17341 ntohl(dst))); 17342 return (B_FALSE); 17343 } 17344 ire_refrele(ire); 17345 off = opt[IPOPT_OFFSET]; 17346 off--; 17347 if (optlen < IP_ADDR_LEN || 17348 off > optlen - IP_ADDR_LEN) { 17349 /* End of source route */ 17350 ip1dbg(("ip_source_routed: end of SR\n")); 17351 return (B_FALSE); 17352 } 17353 return (B_TRUE); 17354 } 17355 } 17356 ip2dbg(("not source routed\n")); 17357 return (B_FALSE); 17358 } 17359 17360 /* 17361 * Check if the packet contains any source route. 17362 */ 17363 static boolean_t 17364 ip_source_route_included(ipha_t *ipha) 17365 { 17366 ipoptp_t opts; 17367 uint8_t optval; 17368 17369 if (IS_SIMPLE_IPH(ipha)) 17370 return (B_FALSE); 17371 for (optval = ipoptp_first(&opts, ipha); 17372 optval != IPOPT_EOL; 17373 optval = ipoptp_next(&opts)) { 17374 switch (optval) { 17375 case IPOPT_SSRR: 17376 case IPOPT_LSRR: 17377 return (B_TRUE); 17378 } 17379 } 17380 return (B_FALSE); 17381 } 17382 17383 /* 17384 * Called when the IRE expiration timer fires. 17385 */ 17386 /* ARGSUSED */ 17387 void 17388 ip_trash_timer_expire(void *args) 17389 { 17390 int flush_flag = 0; 17391 17392 /* 17393 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17394 * This lock makes sure that a new invocation of this function 17395 * that occurs due to an almost immediate timer firing will not 17396 * progress beyond this point until the current invocation is done 17397 */ 17398 mutex_enter(&ip_trash_timer_lock); 17399 ip_ire_expire_id = 0; 17400 mutex_exit(&ip_trash_timer_lock); 17401 17402 /* Periodic timer */ 17403 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17404 /* 17405 * Remove all IRE_CACHE entries since they might 17406 * contain arp information. 17407 */ 17408 flush_flag |= FLUSH_ARP_TIME; 17409 ip_ire_arp_time_elapsed = 0; 17410 IP_STAT(ip_ire_arp_timer_expired); 17411 } 17412 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17413 /* Remove all redirects */ 17414 flush_flag |= FLUSH_REDIRECT_TIME; 17415 ip_ire_rd_time_elapsed = 0; 17416 IP_STAT(ip_ire_redirect_timer_expired); 17417 } 17418 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17419 /* Increase path mtu */ 17420 flush_flag |= FLUSH_MTU_TIME; 17421 ip_ire_pmtu_time_elapsed = 0; 17422 IP_STAT(ip_ire_pmtu_timer_expired); 17423 } 17424 if (flush_flag != 0) { 17425 /* Walk all IPv4 IRE's and update them */ 17426 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17427 ALL_ZONES); 17428 } 17429 if (flush_flag & FLUSH_MTU_TIME) { 17430 /* 17431 * Walk all IPv6 IRE's and update them 17432 * Note that ARP and redirect timers are not 17433 * needed since NUD handles stale entries. 17434 */ 17435 flush_flag = FLUSH_MTU_TIME; 17436 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17437 ALL_ZONES); 17438 } 17439 17440 ip_ire_arp_time_elapsed += ip_timer_interval; 17441 ip_ire_rd_time_elapsed += ip_timer_interval; 17442 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17443 17444 /* 17445 * Hold the lock to serialize timeout calls and prevent 17446 * stale values in ip_ire_expire_id. Otherwise it is possible 17447 * for the timer to fire and a new invocation of this function 17448 * to start before the return value of timeout has been stored 17449 * in ip_ire_expire_id by the current invocation. 17450 */ 17451 mutex_enter(&ip_trash_timer_lock); 17452 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17453 MSEC_TO_TICK(ip_timer_interval)); 17454 mutex_exit(&ip_trash_timer_lock); 17455 } 17456 17457 /* 17458 * Called by the memory allocator subsystem directly, when the system 17459 * is running low on memory. 17460 */ 17461 /* ARGSUSED */ 17462 void 17463 ip_trash_ire_reclaim(void *args) 17464 { 17465 ire_cache_count_t icc; 17466 ire_cache_reclaim_t icr; 17467 ncc_cache_count_t ncc; 17468 nce_cache_reclaim_t ncr; 17469 uint_t delete_cnt; 17470 /* 17471 * Memory reclaim call back. 17472 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17473 * Then, with a target of freeing 1/Nth of IRE_CACHE 17474 * entries, determine what fraction to free for 17475 * each category of IRE_CACHE entries giving absolute priority 17476 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17477 * entry will be freed unless all offlink entries are freed). 17478 */ 17479 icc.icc_total = 0; 17480 icc.icc_unused = 0; 17481 icc.icc_offlink = 0; 17482 icc.icc_pmtu = 0; 17483 icc.icc_onlink = 0; 17484 ire_walk(ire_cache_count, (char *)&icc); 17485 17486 /* 17487 * Free NCEs for IPv6 like the onlink ires. 17488 */ 17489 ncc.ncc_total = 0; 17490 ncc.ncc_host = 0; 17491 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17492 17493 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17494 icc.icc_pmtu + icc.icc_onlink); 17495 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17496 IP_STAT(ip_trash_ire_reclaim_calls); 17497 if (delete_cnt == 0) 17498 return; 17499 IP_STAT(ip_trash_ire_reclaim_success); 17500 /* Always delete all unused offlink entries */ 17501 icr.icr_unused = 1; 17502 if (delete_cnt <= icc.icc_unused) { 17503 /* 17504 * Only need to free unused entries. In other words, 17505 * there are enough unused entries to free to meet our 17506 * target number of freed ire cache entries. 17507 */ 17508 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17509 ncr.ncr_host = 0; 17510 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17511 /* 17512 * Only need to free unused entries, plus a fraction of offlink 17513 * entries. It follows from the first if statement that 17514 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17515 */ 17516 delete_cnt -= icc.icc_unused; 17517 /* Round up # deleted by truncating fraction */ 17518 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17519 icr.icr_pmtu = icr.icr_onlink = 0; 17520 ncr.ncr_host = 0; 17521 } else if (delete_cnt <= 17522 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17523 /* 17524 * Free all unused and offlink entries, plus a fraction of 17525 * pmtu entries. It follows from the previous if statement 17526 * that icc_pmtu is non-zero, and that 17527 * delete_cnt != icc_unused + icc_offlink. 17528 */ 17529 icr.icr_offlink = 1; 17530 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17531 /* Round up # deleted by truncating fraction */ 17532 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17533 icr.icr_onlink = 0; 17534 ncr.ncr_host = 0; 17535 } else { 17536 /* 17537 * Free all unused, offlink, and pmtu entries, plus a fraction 17538 * of onlink entries. If we're here, then we know that 17539 * icc_onlink is non-zero, and that 17540 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17541 */ 17542 icr.icr_offlink = icr.icr_pmtu = 1; 17543 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17544 icc.icc_pmtu; 17545 /* Round up # deleted by truncating fraction */ 17546 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17547 /* Using the same delete fraction as for onlink IREs */ 17548 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17549 } 17550 #ifdef DEBUG 17551 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17552 "fractions %d/%d/%d/%d\n", 17553 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17554 icc.icc_unused, icc.icc_offlink, 17555 icc.icc_pmtu, icc.icc_onlink, 17556 icr.icr_unused, icr.icr_offlink, 17557 icr.icr_pmtu, icr.icr_onlink)); 17558 #endif 17559 ire_walk(ire_cache_reclaim, (char *)&icr); 17560 if (ncr.ncr_host != 0) 17561 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17562 (uchar_t *)&ncr); 17563 #ifdef DEBUG 17564 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17565 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17566 ire_walk(ire_cache_count, (char *)&icc); 17567 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17568 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17569 icc.icc_pmtu, icc.icc_onlink)); 17570 #endif 17571 } 17572 17573 /* 17574 * ip_unbind is called when a copy of an unbind request is received from the 17575 * upper level protocol. We remove this conn from any fanout hash list it is 17576 * on, and zero out the bind information. No reply is expected up above. 17577 */ 17578 static void 17579 ip_unbind(queue_t *q, mblk_t *mp) 17580 { 17581 conn_t *connp = Q_TO_CONN(q); 17582 17583 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17584 17585 ipcl_hash_remove(connp); 17586 17587 ASSERT(mp->b_cont == NULL); 17588 /* 17589 * Convert mp into a T_OK_ACK 17590 */ 17591 mp = mi_tpi_ok_ack_alloc(mp); 17592 17593 /* 17594 * should not happen in practice... T_OK_ACK is smaller than the 17595 * original message. 17596 */ 17597 if (mp == NULL) 17598 return; 17599 17600 /* 17601 * Don't bzero the ports if its TCP since TCP still needs the 17602 * lport to remove it from its own bind hash. TCP will do the 17603 * cleanup. 17604 */ 17605 if (!IPCL_IS_TCP(connp)) 17606 bzero(&connp->u_port, sizeof (connp->u_port)); 17607 17608 qreply(q, mp); 17609 } 17610 17611 /* 17612 * Write side put procedure. Outbound data, IOCTLs, responses from 17613 * resolvers, etc, come down through here. 17614 */ 17615 void 17616 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17617 { 17618 conn_t *connp = NULL; 17619 queue_t *q = (queue_t *)arg2; 17620 ipha_t *ipha; 17621 #define rptr ((uchar_t *)ipha) 17622 ire_t *ire = NULL; 17623 ire_t *sctp_ire = NULL; 17624 uint32_t v_hlen_tos_len; 17625 ipaddr_t dst; 17626 mblk_t *first_mp = NULL; 17627 boolean_t mctl_present; 17628 ipsec_out_t *io; 17629 int match_flags; 17630 ill_t *attach_ill = NULL; 17631 /* Bind to IPIF_NOFAILOVER ill etc. */ 17632 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17633 ipif_t *dst_ipif; 17634 boolean_t multirt_need_resolve = B_FALSE; 17635 mblk_t *copy_mp = NULL; 17636 int err; 17637 zoneid_t zoneid; 17638 boolean_t need_decref = B_FALSE; 17639 boolean_t ignore_dontroute = B_FALSE; 17640 17641 #ifdef _BIG_ENDIAN 17642 #define V_HLEN (v_hlen_tos_len >> 24) 17643 #else 17644 #define V_HLEN (v_hlen_tos_len & 0xFF) 17645 #endif 17646 17647 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17648 "ip_wput_start: q %p", q); 17649 17650 /* 17651 * ip_wput fast path 17652 */ 17653 17654 /* is packet from ARP ? */ 17655 if (q->q_next != NULL) 17656 goto qnext; 17657 17658 connp = (conn_t *)arg; 17659 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17660 17661 /* is queue flow controlled? */ 17662 if ((q->q_first != NULL || connp->conn_draining) && 17663 (caller == IP_WPUT)) { 17664 goto doputq; 17665 } 17666 17667 /* Multidata transmit? */ 17668 if (DB_TYPE(mp) == M_MULTIDATA) { 17669 /* 17670 * We should never get here, since all Multidata messages 17671 * originating from tcp should have been directed over to 17672 * tcp_multisend() in the first place. 17673 */ 17674 BUMP_MIB(&ip_mib, ipOutDiscards); 17675 freemsg(mp); 17676 return; 17677 } else if (DB_TYPE(mp) != M_DATA) 17678 goto notdata; 17679 if (mp->b_flag & MSGHASREF) { 17680 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17681 mp->b_flag &= ~MSGHASREF; 17682 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17683 need_decref = B_TRUE; 17684 } 17685 ipha = (ipha_t *)mp->b_rptr; 17686 17687 /* is IP header non-aligned or mblk smaller than basic IP header */ 17688 #ifndef SAFETY_BEFORE_SPEED 17689 if (!OK_32PTR(rptr) || 17690 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17691 goto hdrtoosmall; 17692 #endif 17693 17694 /* 17695 * If there is a policy, try to attach an ipsec_out in 17696 * the front. At the end, first_mp either points to a 17697 * M_DATA message or IPSEC_OUT message linked to a 17698 * M_DATA message. We have to do it now as we might 17699 * lose the "conn" if we go through ip_newroute. 17700 */ 17701 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17702 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17703 ipha->ipha_protocol)) == NULL)) { 17704 if (need_decref) 17705 CONN_DEC_REF(connp); 17706 return; 17707 } else { 17708 ASSERT(mp->b_datap->db_type == M_CTL); 17709 first_mp = mp; 17710 mp = mp->b_cont; 17711 mctl_present = B_TRUE; 17712 } 17713 } else { 17714 first_mp = mp; 17715 mctl_present = B_FALSE; 17716 } 17717 17718 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17719 17720 /* is wrong version or IP options present */ 17721 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17722 goto version_hdrlen_check; 17723 dst = ipha->ipha_dst; 17724 17725 if (connp->conn_nofailover_ill != NULL) { 17726 attach_ill = conn_get_held_ill(connp, 17727 &connp->conn_nofailover_ill, &err); 17728 if (err == ILL_LOOKUP_FAILED) { 17729 if (need_decref) 17730 CONN_DEC_REF(connp); 17731 freemsg(first_mp); 17732 return; 17733 } 17734 } 17735 17736 /* is packet multicast? */ 17737 if (CLASSD(dst)) 17738 goto multicast; 17739 17740 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL)) { 17741 /* 17742 * If the destination is a broadcast or a loopback 17743 * address, both SO_DONTROUTE and IP_XMIT_IF go 17744 * through the standard path. But in the case of local 17745 * destination only SO_DONTROUTE goes through the 17746 * standard path not IP_XMIT_IF. 17747 */ 17748 ire = ire_cache_lookup(dst, zoneid); 17749 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17750 (ire->ire_type != IRE_LOOPBACK))) { 17751 17752 if ((connp->conn_dontroute) && (ire != NULL) && 17753 (ire->ire_type == IRE_LOCAL)) 17754 goto standard_path; 17755 17756 if (ire != NULL) { 17757 ire_refrele(ire); 17758 /* No more access to ire */ 17759 ire = NULL; 17760 } 17761 /* 17762 * bypass routing checks and go directly to 17763 * interface. 17764 */ 17765 if (connp->conn_dontroute) 17766 goto dontroute; 17767 17768 /* 17769 * If IP_XMIT_IF socket option is set, 17770 * then we allow unicast and multicast 17771 * packets to go through the ill. It is 17772 * quite possible that the destination 17773 * is not in the ire cache table and we 17774 * do not want to go to ip_newroute() 17775 * instead we call ip_newroute_ipif. 17776 */ 17777 xmit_ill = conn_get_held_ill(connp, 17778 &connp->conn_xmit_if_ill, &err); 17779 if (err == ILL_LOOKUP_FAILED) { 17780 if (attach_ill != NULL) 17781 ill_refrele(attach_ill); 17782 if (need_decref) 17783 CONN_DEC_REF(connp); 17784 freemsg(first_mp); 17785 return; 17786 } 17787 goto send_from_ill; 17788 } 17789 standard_path: 17790 /* Must be a broadcast, a loopback or a local ire */ 17791 if (ire != NULL) { 17792 ire_refrele(ire); 17793 /* No more access to ire */ 17794 ire = NULL; 17795 } 17796 } 17797 17798 if (attach_ill != NULL) 17799 goto send_from_ill; 17800 17801 /* 17802 * We cache IRE_CACHEs to avoid lookups. We don't do 17803 * this for the tcp global queue and listen end point 17804 * as it does not really have a real destination to 17805 * talk to. This is also true for SCTP. 17806 */ 17807 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 17808 !connp->conn_fully_bound) { 17809 ire = ire_cache_lookup(dst, zoneid); 17810 if (ire == NULL) 17811 goto noirefound; 17812 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17813 "ip_wput_end: q %p (%S)", q, "end"); 17814 17815 /* 17816 * Check if the ire has the RTF_MULTIRT flag, inherited 17817 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17818 */ 17819 if (ire->ire_flags & RTF_MULTIRT) { 17820 17821 /* 17822 * Force the TTL of multirouted packets if required. 17823 * The TTL of such packets is bounded by the 17824 * ip_multirt_ttl ndd variable. 17825 */ 17826 if ((ip_multirt_ttl > 0) && 17827 (ipha->ipha_ttl > ip_multirt_ttl)) { 17828 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17829 "(was %d), dst 0x%08x\n", 17830 ip_multirt_ttl, ipha->ipha_ttl, 17831 ntohl(ire->ire_addr))); 17832 ipha->ipha_ttl = ip_multirt_ttl; 17833 } 17834 /* 17835 * We look at this point if there are pending 17836 * unresolved routes. ire_multirt_resolvable() 17837 * checks in O(n) that all IRE_OFFSUBNET ire 17838 * entries for the packet's destination and 17839 * flagged RTF_MULTIRT are currently resolved. 17840 * If some remain unresolved, we make a copy 17841 * of the current message. It will be used 17842 * to initiate additional route resolutions. 17843 */ 17844 multirt_need_resolve = 17845 ire_multirt_need_resolve(ire->ire_addr); 17846 ip2dbg(("ip_wput[TCP]: ire %p, " 17847 "multirt_need_resolve %d, first_mp %p\n", 17848 (void *)ire, multirt_need_resolve, 17849 (void *)first_mp)); 17850 if (multirt_need_resolve) { 17851 copy_mp = copymsg(first_mp); 17852 if (copy_mp != NULL) { 17853 MULTIRT_DEBUG_TAG(copy_mp); 17854 } 17855 } 17856 } 17857 17858 ip_wput_ire(q, first_mp, ire, connp, caller); 17859 17860 /* 17861 * Try to resolve another multiroute if 17862 * ire_multirt_need_resolve() deemed it necessary. 17863 */ 17864 if (copy_mp != NULL) { 17865 ip_newroute(q, copy_mp, dst, NULL, connp); 17866 } 17867 if (need_decref) 17868 CONN_DEC_REF(connp); 17869 return; 17870 } 17871 17872 /* 17873 * Access to conn_ire_cache. (protected by conn_lock) 17874 * 17875 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 17876 * the ire bucket lock here to check for CONDEMNED as it is okay to 17877 * send a packet or two with the IRE_CACHE that is going away. 17878 * Access to the ire requires an ire refhold on the ire prior to 17879 * its use since an interface unplumb thread may delete the cached 17880 * ire and release the refhold at any time. 17881 * 17882 * Caching an ire in the conn_ire_cache 17883 * 17884 * o Caching an ire pointer in the conn requires a strict check for 17885 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 17886 * ires before cleaning up the conns. So the caching of an ire pointer 17887 * in the conn is done after making sure under the bucket lock that the 17888 * ire has not yet been marked CONDEMNED. Otherwise we will end up 17889 * caching an ire after the unplumb thread has cleaned up the conn. 17890 * If the conn does not send a packet subsequently the unplumb thread 17891 * will be hanging waiting for the ire count to drop to zero. 17892 * 17893 * o We also need to atomically test for a null conn_ire_cache and 17894 * set the conn_ire_cache under the the protection of the conn_lock 17895 * to avoid races among concurrent threads trying to simultaneously 17896 * cache an ire in the conn_ire_cache. 17897 */ 17898 mutex_enter(&connp->conn_lock); 17899 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 17900 17901 if (ire != NULL && ire->ire_addr == dst && 17902 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17903 17904 IRE_REFHOLD(ire); 17905 mutex_exit(&connp->conn_lock); 17906 17907 } else { 17908 boolean_t cached = B_FALSE; 17909 connp->conn_ire_cache = NULL; 17910 mutex_exit(&connp->conn_lock); 17911 /* Release the old ire */ 17912 if (ire != NULL && sctp_ire == NULL) 17913 IRE_REFRELE_NOTR(ire); 17914 17915 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 17916 if (ire == NULL) 17917 goto noirefound; 17918 IRE_REFHOLD_NOTR(ire); 17919 17920 mutex_enter(&connp->conn_lock); 17921 if (!(connp->conn_state_flags & CONN_CLOSING) && 17922 connp->conn_ire_cache == NULL) { 17923 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17924 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17925 connp->conn_ire_cache = ire; 17926 cached = B_TRUE; 17927 } 17928 rw_exit(&ire->ire_bucket->irb_lock); 17929 } 17930 mutex_exit(&connp->conn_lock); 17931 17932 /* 17933 * We can continue to use the ire but since it was 17934 * not cached, we should drop the extra reference. 17935 */ 17936 if (!cached) 17937 IRE_REFRELE_NOTR(ire); 17938 } 17939 17940 17941 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17942 "ip_wput_end: q %p (%S)", q, "end"); 17943 17944 /* 17945 * Check if the ire has the RTF_MULTIRT flag, inherited 17946 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17947 */ 17948 if (ire->ire_flags & RTF_MULTIRT) { 17949 17950 /* 17951 * Force the TTL of multirouted packets if required. 17952 * The TTL of such packets is bounded by the 17953 * ip_multirt_ttl ndd variable. 17954 */ 17955 if ((ip_multirt_ttl > 0) && 17956 (ipha->ipha_ttl > ip_multirt_ttl)) { 17957 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17958 "(was %d), dst 0x%08x\n", 17959 ip_multirt_ttl, ipha->ipha_ttl, 17960 ntohl(ire->ire_addr))); 17961 ipha->ipha_ttl = ip_multirt_ttl; 17962 } 17963 17964 /* 17965 * At this point, we check to see if there are any pending 17966 * unresolved routes. ire_multirt_resolvable() 17967 * checks in O(n) that all IRE_OFFSUBNET ire 17968 * entries for the packet's destination and 17969 * flagged RTF_MULTIRT are currently resolved. 17970 * If some remain unresolved, we make a copy 17971 * of the current message. It will be used 17972 * to initiate additional route resolutions. 17973 */ 17974 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 17975 ip2dbg(("ip_wput[not TCP]: ire %p, " 17976 "multirt_need_resolve %d, first_mp %p\n", 17977 (void *)ire, multirt_need_resolve, (void *)first_mp)); 17978 if (multirt_need_resolve) { 17979 copy_mp = copymsg(first_mp); 17980 if (copy_mp != NULL) { 17981 MULTIRT_DEBUG_TAG(copy_mp); 17982 } 17983 } 17984 } 17985 17986 ip_wput_ire(q, first_mp, ire, connp, caller); 17987 17988 /* 17989 * Try to resolve another multiroute if 17990 * ire_multirt_resolvable() deemed it necessary 17991 */ 17992 if (copy_mp != NULL) { 17993 ip_newroute(q, copy_mp, dst, NULL, connp); 17994 } 17995 if (need_decref) 17996 CONN_DEC_REF(connp); 17997 return; 17998 17999 doputq: 18000 ASSERT(!need_decref); 18001 (void) putq(q, mp); 18002 return; 18003 18004 qnext: 18005 /* 18006 * Upper Level Protocols pass down complete IP datagrams 18007 * as M_DATA messages. Everything else is a sideshow. 18008 * 18009 * 1) We could be re-entering ip_wput because of ip_neworute 18010 * in which case we could have a IPSEC_OUT message. We 18011 * need to pass through ip_wput like other datagrams and 18012 * hence cannot branch to ip_wput_nondata. 18013 * 18014 * 2) ARP, AH, ESP, and other clients who are on the module 18015 * instance of IP stream, give us something to deal with. 18016 * We will handle AH and ESP here and rest in ip_wput_nondata. 18017 * 18018 * 3) ICMP replies also could come here. 18019 */ 18020 if (DB_TYPE(mp) != M_DATA) { 18021 notdata: 18022 if (DB_TYPE(mp) == M_CTL) { 18023 /* 18024 * M_CTL messages are used by ARP, AH and ESP to 18025 * communicate with IP. We deal with IPSEC_IN and 18026 * IPSEC_OUT here. ip_wput_nondata handles other 18027 * cases. 18028 */ 18029 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18030 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18031 first_mp = mp->b_cont; 18032 first_mp->b_flag &= ~MSGHASREF; 18033 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18034 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18035 CONN_DEC_REF(connp); 18036 connp = NULL; 18037 } 18038 if (ii->ipsec_info_type == IPSEC_IN) { 18039 /* 18040 * Either this message goes back to 18041 * IPSEC for further processing or to 18042 * ULP after policy checks. 18043 */ 18044 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18045 return; 18046 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18047 io = (ipsec_out_t *)ii; 18048 if (io->ipsec_out_proc_begin) { 18049 /* 18050 * IPSEC processing has already started. 18051 * Complete it. 18052 * IPQoS notes: We don't care what is 18053 * in ipsec_out_ill_index since this 18054 * won't be processed for IPQoS policies 18055 * in ipsec_out_process. 18056 */ 18057 ipsec_out_process(q, mp, NULL, 18058 io->ipsec_out_ill_index); 18059 return; 18060 } else { 18061 connp = (q->q_next != NULL) ? 18062 NULL : Q_TO_CONN(q); 18063 first_mp = mp; 18064 mp = mp->b_cont; 18065 mctl_present = B_TRUE; 18066 } 18067 zoneid = io->ipsec_out_zoneid; 18068 ASSERT(zoneid != ALL_ZONES); 18069 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18070 /* 18071 * It's an IPsec control message requesting 18072 * an SADB update to be sent to the IPsec 18073 * hardware acceleration capable ills. 18074 */ 18075 ipsec_ctl_t *ipsec_ctl = 18076 (ipsec_ctl_t *)mp->b_rptr; 18077 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18078 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18079 mblk_t *cmp = mp->b_cont; 18080 18081 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18082 ASSERT(cmp != NULL); 18083 18084 freeb(mp); 18085 ill_ipsec_capab_send_all(satype, cmp, sa); 18086 return; 18087 } else { 18088 /* 18089 * This must be ARP. 18090 */ 18091 ip_wput_nondata(NULL, q, mp, NULL); 18092 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18093 "ip_wput_end: q %p (%S)", q, "nondata"); 18094 return; 18095 } 18096 } else { 18097 /* 18098 * This must be non-(ARP/AH/ESP) messages. 18099 */ 18100 ASSERT(!need_decref); 18101 ip_wput_nondata(NULL, q, mp, NULL); 18102 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18103 "ip_wput_end: q %p (%S)", q, "nondata"); 18104 return; 18105 } 18106 } else { 18107 first_mp = mp; 18108 mctl_present = B_FALSE; 18109 } 18110 18111 ASSERT(first_mp != NULL); 18112 /* 18113 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18114 * to make sure that this packet goes out on the same interface it 18115 * came in. We handle that here. 18116 */ 18117 if (mctl_present) { 18118 uint_t ifindex; 18119 18120 io = (ipsec_out_t *)first_mp->b_rptr; 18121 if (io->ipsec_out_attach_if || 18122 io->ipsec_out_xmit_if) { 18123 ill_t *ill; 18124 18125 ASSERT(io->ipsec_out_ill_index != 0); 18126 ifindex = io->ipsec_out_ill_index; 18127 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18128 NULL, NULL, NULL, NULL); 18129 /* 18130 * ipsec_out_xmit_if bit is used to tell 18131 * ip_wput to use the ill to send outgoing data 18132 * as we have no conn when data comes from ICMP 18133 * error msg routines. Currently this feature is 18134 * only used by ip_mrtun_forward routine. 18135 */ 18136 if (io->ipsec_out_xmit_if) { 18137 xmit_ill = ill; 18138 if (xmit_ill == NULL) { 18139 ip1dbg(("ip_wput: bad ifindex for" 18140 "xmit_ill %d\n", ifindex)); 18141 freemsg(first_mp); 18142 BUMP_MIB(&ip_mib, ipOutDiscards); 18143 ASSERT(!need_decref); 18144 return; 18145 } 18146 /* Free up the ipsec_out_t mblk */ 18147 ASSERT(first_mp->b_cont == mp); 18148 first_mp->b_cont = NULL; 18149 freeb(first_mp); 18150 /* Just send the IP header+ICMP+data */ 18151 first_mp = mp; 18152 ipha = (ipha_t *)mp->b_rptr; 18153 dst = ipha->ipha_dst; 18154 goto send_from_ill; 18155 18156 } else { 18157 attach_ill = ill; 18158 } 18159 18160 if (attach_ill == NULL) { 18161 ASSERT(xmit_ill == NULL); 18162 ip1dbg(("ip_wput : bad ifindex for " 18163 "(BIND TO IPIF_NOFAILOVER) %d\n", ifindex)); 18164 freemsg(first_mp); 18165 BUMP_MIB(&ip_mib, ipOutDiscards); 18166 ASSERT(!need_decref); 18167 return; 18168 } 18169 } 18170 } 18171 18172 ASSERT(xmit_ill == NULL); 18173 18174 /* We have a complete IP datagram heading outbound. */ 18175 ipha = (ipha_t *)mp->b_rptr; 18176 18177 #ifndef SPEED_BEFORE_SAFETY 18178 /* 18179 * Make sure we have a full-word aligned message and that at least 18180 * a simple IP header is accessible in the first message. If not, 18181 * try a pullup. 18182 */ 18183 if (!OK_32PTR(rptr) || 18184 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18185 hdrtoosmall: 18186 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18187 BUMP_MIB(&ip_mib, ipOutDiscards); 18188 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18189 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18190 if (first_mp == NULL) 18191 first_mp = mp; 18192 goto drop_pkt; 18193 } 18194 ipha = (ipha_t *)mp->b_rptr; 18195 if (first_mp == NULL) { 18196 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18197 /* 18198 * If we got here because of "goto hdrtoosmall" 18199 * We need to attach a IPSEC_OUT. 18200 */ 18201 if (connp->conn_out_enforce_policy) { 18202 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18203 NULL, ipha->ipha_protocol)) == NULL)) { 18204 if (need_decref) 18205 CONN_DEC_REF(connp); 18206 return; 18207 } else { 18208 ASSERT(mp->b_datap->db_type == M_CTL); 18209 first_mp = mp; 18210 mp = mp->b_cont; 18211 mctl_present = B_TRUE; 18212 } 18213 } else { 18214 first_mp = mp; 18215 mctl_present = B_FALSE; 18216 } 18217 } 18218 } 18219 #endif 18220 18221 /* Most of the code below is written for speed, not readability */ 18222 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18223 18224 /* 18225 * If ip_newroute() fails, we're going to need a full 18226 * header for the icmp wraparound. 18227 */ 18228 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18229 uint_t v_hlen; 18230 version_hdrlen_check: 18231 ASSERT(first_mp != NULL); 18232 v_hlen = V_HLEN; 18233 /* 18234 * siphon off IPv6 packets coming down from transport 18235 * layer modules here. 18236 * Note: high-order bit carries NUD reachability confirmation 18237 */ 18238 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18239 /* 18240 * XXX implement a IPv4 and IPv6 packet counter per 18241 * conn and switch when ratio exceeds e.g. 10:1 18242 */ 18243 #ifdef notyet 18244 if (q->q_next == NULL) /* Avoid ill queue */ 18245 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18246 #endif 18247 BUMP_MIB(&ip_mib, ipOutIPv6); 18248 ASSERT(xmit_ill == NULL); 18249 if (attach_ill != NULL) 18250 ill_refrele(attach_ill); 18251 if (need_decref) 18252 mp->b_flag |= MSGHASREF; 18253 (void) ip_output_v6(connp, first_mp, q, caller); 18254 return; 18255 } 18256 18257 if ((v_hlen >> 4) != IP_VERSION) { 18258 BUMP_MIB(&ip_mib, ipOutDiscards); 18259 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18260 "ip_wput_end: q %p (%S)", q, "badvers"); 18261 goto drop_pkt; 18262 } 18263 /* 18264 * Is the header length at least 20 bytes? 18265 * 18266 * Are there enough bytes accessible in the header? If 18267 * not, try a pullup. 18268 */ 18269 v_hlen &= 0xF; 18270 v_hlen <<= 2; 18271 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18272 BUMP_MIB(&ip_mib, ipOutDiscards); 18273 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18274 "ip_wput_end: q %p (%S)", q, "badlen"); 18275 goto drop_pkt; 18276 } 18277 if (v_hlen > (mp->b_wptr - rptr)) { 18278 if (!pullupmsg(mp, v_hlen)) { 18279 BUMP_MIB(&ip_mib, ipOutDiscards); 18280 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18281 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18282 goto drop_pkt; 18283 } 18284 ipha = (ipha_t *)mp->b_rptr; 18285 } 18286 /* 18287 * Move first entry from any source route into ipha_dst and 18288 * verify the options 18289 */ 18290 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18291 ASSERT(xmit_ill == NULL); 18292 if (attach_ill != NULL) 18293 ill_refrele(attach_ill); 18294 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18295 "ip_wput_end: q %p (%S)", q, "badopts"); 18296 if (need_decref) 18297 CONN_DEC_REF(connp); 18298 return; 18299 } 18300 } 18301 dst = ipha->ipha_dst; 18302 18303 /* 18304 * Try to get an IRE_CACHE for the destination address. If we can't, 18305 * we have to run the packet through ip_newroute which will take 18306 * the appropriate action to arrange for an IRE_CACHE, such as querying 18307 * a resolver, or assigning a default gateway, etc. 18308 */ 18309 if (CLASSD(dst)) { 18310 ipif_t *ipif; 18311 uint32_t setsrc = 0; 18312 18313 multicast: 18314 ASSERT(first_mp != NULL); 18315 ASSERT(xmit_ill == NULL); 18316 ip2dbg(("ip_wput: CLASSD\n")); 18317 if (connp == NULL) { 18318 /* 18319 * Use the first good ipif on the ill. 18320 * XXX Should this ever happen? (Appears 18321 * to show up with just ppp and no ethernet due 18322 * to in.rdisc.) 18323 * However, ire_send should be able to 18324 * call ip_wput_ire directly. 18325 * 18326 * XXX Also, this can happen for ICMP and other packets 18327 * with multicast source addresses. Perhaps we should 18328 * fix things so that we drop the packet in question, 18329 * but for now, just run with it. 18330 */ 18331 ill_t *ill = (ill_t *)q->q_ptr; 18332 18333 /* 18334 * Don't honor attach_if for this case. If ill 18335 * is part of the group, ipif could belong to 18336 * any ill and we cannot maintain attach_ill 18337 * and ipif_ill same anymore and the assert 18338 * below would fail. 18339 */ 18340 if (mctl_present) { 18341 io->ipsec_out_ill_index = 0; 18342 io->ipsec_out_attach_if = B_FALSE; 18343 ASSERT(attach_ill != NULL); 18344 ill_refrele(attach_ill); 18345 attach_ill = NULL; 18346 } 18347 18348 ASSERT(attach_ill == NULL); 18349 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18350 if (ipif == NULL) { 18351 if (need_decref) 18352 CONN_DEC_REF(connp); 18353 freemsg(first_mp); 18354 return; 18355 } 18356 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18357 ntohl(dst), ill->ill_name)); 18358 } else { 18359 /* 18360 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18361 * IP_XMIT_IF is honoured. 18362 * Block comment above this function explains the 18363 * locking mechanism used here 18364 */ 18365 xmit_ill = conn_get_held_ill(connp, 18366 &connp->conn_xmit_if_ill, &err); 18367 if (err == ILL_LOOKUP_FAILED) { 18368 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18369 goto drop_pkt; 18370 } 18371 if (xmit_ill == NULL) { 18372 ipif = conn_get_held_ipif(connp, 18373 &connp->conn_multicast_ipif, &err); 18374 if (err == IPIF_LOOKUP_FAILED) { 18375 ip1dbg(("ip_wput: No ipif for " 18376 "multicast\n")); 18377 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18378 goto drop_pkt; 18379 } 18380 } 18381 if (xmit_ill != NULL) { 18382 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18383 if (ipif == NULL) { 18384 ip1dbg(("ip_wput: No ipif for " 18385 "IP_XMIT_IF\n")); 18386 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18387 goto drop_pkt; 18388 } 18389 } else if (ipif == NULL || ipif->ipif_isv6) { 18390 /* 18391 * We must do this ipif determination here 18392 * else we could pass through ip_newroute 18393 * and come back here without the conn context. 18394 * 18395 * Note: we do late binding i.e. we bind to 18396 * the interface when the first packet is sent. 18397 * For performance reasons we do not rebind on 18398 * each packet but keep the binding until the 18399 * next IP_MULTICAST_IF option. 18400 * 18401 * conn_multicast_{ipif,ill} are shared between 18402 * IPv4 and IPv6 and AF_INET6 sockets can 18403 * send both IPv4 and IPv6 packets. Hence 18404 * we have to check that "isv6" matches above. 18405 */ 18406 if (ipif != NULL) 18407 ipif_refrele(ipif); 18408 ipif = ipif_lookup_group(dst, zoneid); 18409 if (ipif == NULL) { 18410 ip1dbg(("ip_wput: No ipif for " 18411 "multicast\n")); 18412 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18413 goto drop_pkt; 18414 } 18415 err = conn_set_held_ipif(connp, 18416 &connp->conn_multicast_ipif, ipif); 18417 if (err == IPIF_LOOKUP_FAILED) { 18418 ipif_refrele(ipif); 18419 ip1dbg(("ip_wput: No ipif for " 18420 "multicast\n")); 18421 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18422 goto drop_pkt; 18423 } 18424 } 18425 } 18426 ASSERT(!ipif->ipif_isv6); 18427 /* 18428 * As we may lose the conn by the time we reach ip_wput_ire, 18429 * we copy conn_multicast_loop and conn_dontroute on to an 18430 * ipsec_out. In case if this datagram goes out secure, 18431 * we need the ill_index also. Copy that also into the 18432 * ipsec_out. 18433 */ 18434 if (mctl_present) { 18435 io = (ipsec_out_t *)first_mp->b_rptr; 18436 ASSERT(first_mp->b_datap->db_type == M_CTL); 18437 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18438 } else { 18439 ASSERT(mp == first_mp); 18440 if ((first_mp = allocb(sizeof (ipsec_info_t), 18441 BPRI_HI)) == NULL) { 18442 ipif_refrele(ipif); 18443 first_mp = mp; 18444 goto drop_pkt; 18445 } 18446 first_mp->b_datap->db_type = M_CTL; 18447 first_mp->b_wptr += sizeof (ipsec_info_t); 18448 /* ipsec_out_secure is B_FALSE now */ 18449 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18450 io = (ipsec_out_t *)first_mp->b_rptr; 18451 io->ipsec_out_type = IPSEC_OUT; 18452 io->ipsec_out_len = sizeof (ipsec_out_t); 18453 io->ipsec_out_use_global_policy = B_TRUE; 18454 first_mp->b_cont = mp; 18455 mctl_present = B_TRUE; 18456 } 18457 if (attach_ill != NULL) { 18458 ASSERT(attach_ill == ipif->ipif_ill); 18459 match_flags = MATCH_IRE_ILL; 18460 18461 /* 18462 * Check if we need an ire that will not be 18463 * looked up by anybody else i.e. HIDDEN. 18464 */ 18465 if (ill_is_probeonly(attach_ill)) { 18466 match_flags |= MATCH_IRE_MARK_HIDDEN; 18467 } 18468 io->ipsec_out_ill_index = 18469 attach_ill->ill_phyint->phyint_ifindex; 18470 io->ipsec_out_attach_if = B_TRUE; 18471 } else { 18472 match_flags = MATCH_IRE_ILL_GROUP; 18473 io->ipsec_out_ill_index = 18474 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18475 } 18476 if (connp != NULL) { 18477 io->ipsec_out_multicast_loop = 18478 connp->conn_multicast_loop; 18479 io->ipsec_out_dontroute = connp->conn_dontroute; 18480 io->ipsec_out_zoneid = connp->conn_zoneid; 18481 } 18482 /* 18483 * If the application uses IP_MULTICAST_IF with 18484 * different logical addresses of the same ILL, we 18485 * need to make sure that the soruce address of 18486 * the packet matches the logical IP address used 18487 * in the option. We do it by initializing ipha_src 18488 * here. This should keep IPSEC also happy as 18489 * when we return from IPSEC processing, we don't 18490 * have to worry about getting the right address on 18491 * the packet. Thus it is sufficient to look for 18492 * IRE_CACHE using MATCH_IRE_ILL rathen than 18493 * MATCH_IRE_IPIF. 18494 * 18495 * NOTE : We need to do it for non-secure case also as 18496 * this might go out secure if there is a global policy 18497 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18498 * address, the source should be initialized already and 18499 * hence we won't be initializing here. 18500 * 18501 * As we do not have the ire yet, it is possible that 18502 * we set the source address here and then later discover 18503 * that the ire implies the source address to be assigned 18504 * through the RTF_SETSRC flag. 18505 * In that case, the setsrc variable will remind us 18506 * that overwritting the source address by the one 18507 * of the RTF_SETSRC-flagged ire is allowed. 18508 */ 18509 if (ipha->ipha_src == INADDR_ANY && 18510 (connp == NULL || !connp->conn_unspec_src)) { 18511 ipha->ipha_src = ipif->ipif_src_addr; 18512 setsrc = RTF_SETSRC; 18513 } 18514 /* 18515 * Find an IRE which matches the destination and the outgoing 18516 * queue (i.e. the outgoing interface.) 18517 * For loopback use a unicast IP address for 18518 * the ire lookup. 18519 */ 18520 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18521 PHYI_LOOPBACK) { 18522 dst = ipif->ipif_lcl_addr; 18523 } 18524 /* 18525 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18526 * We don't need to lookup ire in ctable as the packet 18527 * needs to be sent to the destination through the specified 18528 * ill irrespective of ires in the cache table. 18529 */ 18530 ire = NULL; 18531 if (xmit_ill == NULL) { 18532 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18533 zoneid, match_flags); 18534 } 18535 18536 /* 18537 * refrele attach_ill as its not needed anymore. 18538 */ 18539 if (attach_ill != NULL) { 18540 ill_refrele(attach_ill); 18541 attach_ill = NULL; 18542 } 18543 18544 if (ire == NULL) { 18545 /* 18546 * Multicast loopback and multicast forwarding is 18547 * done in ip_wput_ire. 18548 * 18549 * Mark this packet to make it be delivered to 18550 * ip_wput_ire after the new ire has been 18551 * created. 18552 * 18553 * The call to ip_newroute_ipif takes into account 18554 * the setsrc reminder. In any case, we take care 18555 * of the RTF_MULTIRT flag. 18556 */ 18557 mp->b_prev = mp->b_next = NULL; 18558 if (xmit_ill == NULL || 18559 xmit_ill->ill_ipif_up_count > 0) { 18560 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18561 setsrc | RTF_MULTIRT); 18562 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18563 "ip_wput_end: q %p (%S)", q, "noire"); 18564 } else { 18565 freemsg(first_mp); 18566 } 18567 ipif_refrele(ipif); 18568 if (xmit_ill != NULL) 18569 ill_refrele(xmit_ill); 18570 if (need_decref) 18571 CONN_DEC_REF(connp); 18572 return; 18573 } 18574 18575 ipif_refrele(ipif); 18576 ipif = NULL; 18577 ASSERT(xmit_ill == NULL); 18578 18579 /* 18580 * Honor the RTF_SETSRC flag for multicast packets, 18581 * if allowed by the setsrc reminder. 18582 */ 18583 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18584 ipha->ipha_src = ire->ire_src_addr; 18585 } 18586 18587 /* 18588 * Unconditionally force the TTL to 1 for 18589 * multirouted multicast packets: 18590 * multirouted multicast should not cross 18591 * multicast routers. 18592 */ 18593 if (ire->ire_flags & RTF_MULTIRT) { 18594 if (ipha->ipha_ttl > 1) { 18595 ip2dbg(("ip_wput: forcing multicast " 18596 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18597 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18598 ipha->ipha_ttl = 1; 18599 } 18600 } 18601 } else { 18602 ire = ire_cache_lookup(dst, zoneid); 18603 if ((ire != NULL) && (ire->ire_type & 18604 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18605 ignore_dontroute = B_TRUE; 18606 } 18607 if (ire != NULL) { 18608 ire_refrele(ire); 18609 ire = NULL; 18610 } 18611 /* 18612 * Guard against coming in from arp in which case conn is NULL. 18613 * Also guard against non M_DATA with dontroute set but 18614 * destined to local, loopback or broadcast addresses. 18615 */ 18616 if (connp != NULL && connp->conn_dontroute && 18617 !ignore_dontroute) { 18618 dontroute: 18619 /* 18620 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18621 * routing protocols from seeing false direct 18622 * connectivity. 18623 */ 18624 ipha->ipha_ttl = 1; 18625 /* 18626 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18627 * along with SO_DONTROUTE, higher precedence is 18628 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18629 */ 18630 if (connp->conn_xmit_if_ill == NULL) { 18631 /* If suitable ipif not found, drop packet */ 18632 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18633 if (dst_ipif == NULL) { 18634 ip1dbg(("ip_wput: no route for " 18635 "dst using SO_DONTROUTE\n")); 18636 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18637 mp->b_prev = mp->b_next = NULL; 18638 if (first_mp == NULL) 18639 first_mp = mp; 18640 goto drop_pkt; 18641 } else { 18642 /* 18643 * If suitable ipif has been found, set 18644 * xmit_ill to the corresponding 18645 * ipif_ill because we'll be following 18646 * the IP_XMIT_IF logic. 18647 */ 18648 ASSERT(xmit_ill == NULL); 18649 xmit_ill = dst_ipif->ipif_ill; 18650 mutex_enter(&xmit_ill->ill_lock); 18651 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18652 mutex_exit(&xmit_ill->ill_lock); 18653 xmit_ill = NULL; 18654 ipif_refrele(dst_ipif); 18655 ip1dbg(("ip_wput: no route for" 18656 " dst using" 18657 " SO_DONTROUTE\n")); 18658 BUMP_MIB(&ip_mib, 18659 ipOutNoRoutes); 18660 mp->b_prev = mp->b_next = NULL; 18661 if (first_mp == NULL) 18662 first_mp = mp; 18663 goto drop_pkt; 18664 } 18665 ill_refhold_locked(xmit_ill); 18666 mutex_exit(&xmit_ill->ill_lock); 18667 ipif_refrele(dst_ipif); 18668 } 18669 } 18670 18671 } 18672 /* 18673 * If we are bound to IPIF_NOFAILOVER address, look for 18674 * an IRE_CACHE matching the ill. 18675 */ 18676 send_from_ill: 18677 if (attach_ill != NULL) { 18678 ipif_t *attach_ipif; 18679 18680 match_flags = MATCH_IRE_ILL; 18681 18682 /* 18683 * Check if we need an ire that will not be 18684 * looked up by anybody else i.e. HIDDEN. 18685 */ 18686 if (ill_is_probeonly(attach_ill)) { 18687 match_flags |= MATCH_IRE_MARK_HIDDEN; 18688 } 18689 18690 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18691 if (attach_ipif == NULL) { 18692 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18693 goto drop_pkt; 18694 } 18695 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18696 zoneid, match_flags); 18697 ipif_refrele(attach_ipif); 18698 } else if (xmit_ill != NULL || (connp != NULL && 18699 connp->conn_xmit_if_ill != NULL)) { 18700 /* 18701 * Mark this packet as originated locally 18702 */ 18703 mp->b_prev = mp->b_next = NULL; 18704 /* 18705 * xmit_ill could be NULL if SO_DONTROUTE 18706 * is also set. 18707 */ 18708 if (xmit_ill == NULL) { 18709 xmit_ill = conn_get_held_ill(connp, 18710 &connp->conn_xmit_if_ill, &err); 18711 if (err == ILL_LOOKUP_FAILED) { 18712 if (need_decref) 18713 CONN_DEC_REF(connp); 18714 freemsg(first_mp); 18715 return; 18716 } 18717 if (xmit_ill == NULL) { 18718 if (connp->conn_dontroute) 18719 goto dontroute; 18720 goto send_from_ill; 18721 } 18722 } 18723 /* 18724 * could be SO_DONTROUTE case also. 18725 * check at least one interface is UP as 18726 * spcified by this ILL, and then call 18727 * ip_newroute_ipif() 18728 */ 18729 if (xmit_ill->ill_ipif_up_count > 0) { 18730 ipif_t *ipif; 18731 18732 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18733 if (ipif != NULL) { 18734 ip_newroute_ipif(q, first_mp, ipif, 18735 dst, connp, 0); 18736 ipif_refrele(ipif); 18737 ip1dbg(("ip_wput: ip_unicast_if\n")); 18738 } 18739 } else { 18740 freemsg(first_mp); 18741 } 18742 ill_refrele(xmit_ill); 18743 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18744 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18745 if (need_decref) 18746 CONN_DEC_REF(connp); 18747 return; 18748 } else { 18749 ire = ire_cache_lookup(dst, zoneid); 18750 } 18751 if (!ire) { 18752 /* 18753 * Make sure we don't load spread if this 18754 * is IPIF_NOFAILOVER case. 18755 */ 18756 if (attach_ill != NULL) { 18757 if (mctl_present) { 18758 io = (ipsec_out_t *)first_mp->b_rptr; 18759 ASSERT(first_mp->b_datap->db_type == 18760 M_CTL); 18761 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18762 } else { 18763 ASSERT(mp == first_mp); 18764 first_mp = allocb( 18765 sizeof (ipsec_info_t), BPRI_HI); 18766 if (first_mp == NULL) { 18767 first_mp = mp; 18768 goto drop_pkt; 18769 } 18770 first_mp->b_datap->db_type = M_CTL; 18771 first_mp->b_wptr += 18772 sizeof (ipsec_info_t); 18773 /* ipsec_out_secure is B_FALSE now */ 18774 bzero(first_mp->b_rptr, 18775 sizeof (ipsec_info_t)); 18776 io = (ipsec_out_t *)first_mp->b_rptr; 18777 io->ipsec_out_type = IPSEC_OUT; 18778 io->ipsec_out_len = 18779 sizeof (ipsec_out_t); 18780 io->ipsec_out_use_global_policy = 18781 B_TRUE; 18782 first_mp->b_cont = mp; 18783 mctl_present = B_TRUE; 18784 } 18785 io->ipsec_out_ill_index = attach_ill-> 18786 ill_phyint->phyint_ifindex; 18787 io->ipsec_out_attach_if = B_TRUE; 18788 } 18789 noirefound: 18790 /* 18791 * Mark this packet as having originated on 18792 * this machine. This will be noted in 18793 * ire_add_then_send, which needs to know 18794 * whether to run it back through ip_wput or 18795 * ip_rput following successful resolution. 18796 */ 18797 mp->b_prev = NULL; 18798 mp->b_next = NULL; 18799 ip_newroute(q, first_mp, dst, NULL, connp); 18800 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18801 "ip_wput_end: q %p (%S)", q, "newroute"); 18802 if (attach_ill != NULL) 18803 ill_refrele(attach_ill); 18804 if (xmit_ill != NULL) 18805 ill_refrele(xmit_ill); 18806 if (need_decref) 18807 CONN_DEC_REF(connp); 18808 return; 18809 } 18810 } 18811 18812 /* We now know where we are going with it. */ 18813 18814 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18815 "ip_wput_end: q %p (%S)", q, "end"); 18816 18817 /* 18818 * Check if the ire has the RTF_MULTIRT flag, inherited 18819 * from an IRE_OFFSUBNET ire entry in ip_newroute. 18820 */ 18821 if (ire->ire_flags & RTF_MULTIRT) { 18822 /* 18823 * Force the TTL of multirouted packets if required. 18824 * The TTL of such packets is bounded by the 18825 * ip_multirt_ttl ndd variable. 18826 */ 18827 if ((ip_multirt_ttl > 0) && 18828 (ipha->ipha_ttl > ip_multirt_ttl)) { 18829 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18830 "(was %d), dst 0x%08x\n", 18831 ip_multirt_ttl, ipha->ipha_ttl, 18832 ntohl(ire->ire_addr))); 18833 ipha->ipha_ttl = ip_multirt_ttl; 18834 } 18835 /* 18836 * At this point, we check to see if there are any pending 18837 * unresolved routes. ire_multirt_resolvable() 18838 * checks in O(n) that all IRE_OFFSUBNET ire 18839 * entries for the packet's destination and 18840 * flagged RTF_MULTIRT are currently resolved. 18841 * If some remain unresolved, we make a copy 18842 * of the current message. It will be used 18843 * to initiate additional route resolutions. 18844 */ 18845 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18846 ip2dbg(("ip_wput[noirefound]: ire %p, " 18847 "multirt_need_resolve %d, first_mp %p\n", 18848 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18849 if (multirt_need_resolve) { 18850 copy_mp = copymsg(first_mp); 18851 if (copy_mp != NULL) { 18852 MULTIRT_DEBUG_TAG(copy_mp); 18853 } 18854 } 18855 } 18856 18857 ip_wput_ire(q, first_mp, ire, connp, caller); 18858 /* 18859 * Try to resolve another multiroute if 18860 * ire_multirt_resolvable() deemed it necessary. 18861 * At this point, we need to distinguish 18862 * multicasts from other packets. For multicasts, 18863 * we call ip_newroute_ipif() and request that both 18864 * multirouting and setsrc flags are checked. 18865 */ 18866 if (copy_mp != NULL) { 18867 if (CLASSD(dst)) { 18868 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 18869 if (ipif) { 18870 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 18871 RTF_SETSRC | RTF_MULTIRT); 18872 ipif_refrele(ipif); 18873 } else { 18874 MULTIRT_DEBUG_UNTAG(copy_mp); 18875 freemsg(copy_mp); 18876 copy_mp = NULL; 18877 } 18878 } else { 18879 ip_newroute(q, copy_mp, dst, NULL, connp); 18880 } 18881 } 18882 if (attach_ill != NULL) 18883 ill_refrele(attach_ill); 18884 if (xmit_ill != NULL) 18885 ill_refrele(xmit_ill); 18886 if (need_decref) 18887 CONN_DEC_REF(connp); 18888 return; 18889 18890 drop_pkt: 18891 ip1dbg(("ip_wput: dropped packet\n")); 18892 if (ire != NULL) 18893 ire_refrele(ire); 18894 if (need_decref) 18895 CONN_DEC_REF(connp); 18896 freemsg(first_mp); 18897 if (attach_ill != NULL) 18898 ill_refrele(attach_ill); 18899 if (xmit_ill != NULL) 18900 ill_refrele(xmit_ill); 18901 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18902 "ip_wput_end: q %p (%S)", q, "droppkt"); 18903 } 18904 18905 void 18906 ip_wput(queue_t *q, mblk_t *mp) 18907 { 18908 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 18909 } 18910 18911 /* 18912 * 18913 * The following rules must be observed when accessing any ipif or ill 18914 * that has been cached in the conn. Typically conn_nofailover_ill, 18915 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 18916 * 18917 * Access: The ipif or ill pointed to from the conn can be accessed under 18918 * the protection of the conn_lock or after it has been refheld under the 18919 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 18920 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 18921 * The reason for this is that a concurrent unplumb could actually be 18922 * cleaning up these cached pointers by walking the conns and might have 18923 * finished cleaning up the conn in question. The macros check that an 18924 * unplumb has not yet started on the ipif or ill. 18925 * 18926 * Caching: An ipif or ill pointer may be cached in the conn only after 18927 * making sure that an unplumb has not started. So the caching is done 18928 * while holding both the conn_lock and the ill_lock and after using the 18929 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 18930 * flag before starting the cleanup of conns. 18931 * 18932 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 18933 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 18934 * or a reference to the ipif or a reference to an ire that references the 18935 * ipif. An ipif does not change its ill except for failover/failback. Since 18936 * failover/failback happens only after bringing down the ipif and making sure 18937 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 18938 * the above holds. 18939 */ 18940 static ipif_t * 18941 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 18942 { 18943 ipif_t *ipif; 18944 ill_t *ill; 18945 18946 *err = 0; 18947 rw_enter(&ill_g_lock, RW_READER); 18948 mutex_enter(&connp->conn_lock); 18949 ipif = *ipifp; 18950 if (ipif != NULL) { 18951 ill = ipif->ipif_ill; 18952 mutex_enter(&ill->ill_lock); 18953 if (IPIF_CAN_LOOKUP(ipif)) { 18954 ipif_refhold_locked(ipif); 18955 mutex_exit(&ill->ill_lock); 18956 mutex_exit(&connp->conn_lock); 18957 rw_exit(&ill_g_lock); 18958 return (ipif); 18959 } else { 18960 *err = IPIF_LOOKUP_FAILED; 18961 } 18962 mutex_exit(&ill->ill_lock); 18963 } 18964 mutex_exit(&connp->conn_lock); 18965 rw_exit(&ill_g_lock); 18966 return (NULL); 18967 } 18968 18969 ill_t * 18970 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 18971 { 18972 ill_t *ill; 18973 18974 *err = 0; 18975 mutex_enter(&connp->conn_lock); 18976 ill = *illp; 18977 if (ill != NULL) { 18978 mutex_enter(&ill->ill_lock); 18979 if (ILL_CAN_LOOKUP(ill)) { 18980 ill_refhold_locked(ill); 18981 mutex_exit(&ill->ill_lock); 18982 mutex_exit(&connp->conn_lock); 18983 return (ill); 18984 } else { 18985 *err = ILL_LOOKUP_FAILED; 18986 } 18987 mutex_exit(&ill->ill_lock); 18988 } 18989 mutex_exit(&connp->conn_lock); 18990 return (NULL); 18991 } 18992 18993 static int 18994 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 18995 { 18996 ill_t *ill; 18997 18998 ill = ipif->ipif_ill; 18999 mutex_enter(&connp->conn_lock); 19000 mutex_enter(&ill->ill_lock); 19001 if (IPIF_CAN_LOOKUP(ipif)) { 19002 *ipifp = ipif; 19003 mutex_exit(&ill->ill_lock); 19004 mutex_exit(&connp->conn_lock); 19005 return (0); 19006 } 19007 mutex_exit(&ill->ill_lock); 19008 mutex_exit(&connp->conn_lock); 19009 return (IPIF_LOOKUP_FAILED); 19010 } 19011 19012 /* 19013 * This is called if the outbound datagram needs fragmentation. 19014 * 19015 * NOTE : This function does not ire_refrele the ire argument passed in. 19016 */ 19017 static void 19018 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19019 { 19020 ipha_t *ipha; 19021 mblk_t *mp; 19022 uint32_t v_hlen_tos_len; 19023 uint32_t max_frag; 19024 uint32_t frag_flag; 19025 boolean_t dont_use; 19026 19027 if (ipsec_mp->b_datap->db_type == M_CTL) { 19028 mp = ipsec_mp->b_cont; 19029 } else { 19030 mp = ipsec_mp; 19031 } 19032 19033 ipha = (ipha_t *)mp->b_rptr; 19034 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19035 19036 #ifdef _BIG_ENDIAN 19037 #define V_HLEN (v_hlen_tos_len >> 24) 19038 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19039 #else 19040 #define V_HLEN (v_hlen_tos_len & 0xFF) 19041 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19042 #endif 19043 19044 #ifndef SPEED_BEFORE_SAFETY 19045 /* 19046 * Check that ipha_length is consistent with 19047 * the mblk length 19048 */ 19049 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19050 ip0dbg(("Packet length mismatch: %d, %ld\n", 19051 LENGTH, msgdsize(mp))); 19052 freemsg(ipsec_mp); 19053 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19054 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19055 "packet length mismatch"); 19056 return; 19057 } 19058 #endif 19059 /* 19060 * Don't use frag_flag if pre-built packet or source 19061 * routed or if multicast (since multicast packets do not solicit 19062 * ICMP "packet too big" messages). Get the values of 19063 * max_frag and frag_flag atomically by acquiring the 19064 * ire_lock. 19065 */ 19066 mutex_enter(&ire->ire_lock); 19067 max_frag = ire->ire_max_frag; 19068 frag_flag = ire->ire_frag_flag; 19069 mutex_exit(&ire->ire_lock); 19070 19071 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19072 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19073 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19074 19075 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19076 (dont_use ? 0 : frag_flag)); 19077 } 19078 19079 /* 19080 * Used for deciding the MSS size for the upper layer. Thus 19081 * we need to check the outbound policy values in the conn. 19082 */ 19083 int 19084 conn_ipsec_length(conn_t *connp) 19085 { 19086 ipsec_latch_t *ipl; 19087 19088 ipl = connp->conn_latch; 19089 if (ipl == NULL) 19090 return (0); 19091 19092 if (ipl->ipl_out_policy == NULL) 19093 return (0); 19094 19095 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19096 } 19097 19098 /* 19099 * Returns an estimate of the IPSEC headers size. This is used if 19100 * we don't want to call into IPSEC to get the exact size. 19101 */ 19102 int 19103 ipsec_out_extra_length(mblk_t *ipsec_mp) 19104 { 19105 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19106 ipsec_action_t *a; 19107 19108 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19109 if (!io->ipsec_out_secure) 19110 return (0); 19111 19112 a = io->ipsec_out_act; 19113 19114 if (a == NULL) { 19115 ASSERT(io->ipsec_out_policy != NULL); 19116 a = io->ipsec_out_policy->ipsp_act; 19117 } 19118 ASSERT(a != NULL); 19119 19120 return (a->ipa_ovhd); 19121 } 19122 19123 /* 19124 * Returns an estimate of the IPSEC headers size. This is used if 19125 * we don't want to call into IPSEC to get the exact size. 19126 */ 19127 int 19128 ipsec_in_extra_length(mblk_t *ipsec_mp) 19129 { 19130 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19131 ipsec_action_t *a; 19132 19133 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19134 19135 a = ii->ipsec_in_action; 19136 return (a == NULL ? 0 : a->ipa_ovhd); 19137 } 19138 19139 /* 19140 * If there are any source route options, return the true final 19141 * destination. Otherwise, return the destination. 19142 */ 19143 ipaddr_t 19144 ip_get_dst(ipha_t *ipha) 19145 { 19146 ipoptp_t opts; 19147 uchar_t *opt; 19148 uint8_t optval; 19149 uint8_t optlen; 19150 ipaddr_t dst; 19151 uint32_t off; 19152 19153 dst = ipha->ipha_dst; 19154 19155 if (IS_SIMPLE_IPH(ipha)) 19156 return (dst); 19157 19158 for (optval = ipoptp_first(&opts, ipha); 19159 optval != IPOPT_EOL; 19160 optval = ipoptp_next(&opts)) { 19161 opt = opts.ipoptp_cur; 19162 optlen = opts.ipoptp_len; 19163 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19164 switch (optval) { 19165 case IPOPT_SSRR: 19166 case IPOPT_LSRR: 19167 off = opt[IPOPT_OFFSET]; 19168 /* 19169 * If one of the conditions is true, it means 19170 * end of options and dst already has the right 19171 * value. 19172 */ 19173 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19174 off = optlen - IP_ADDR_LEN; 19175 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19176 } 19177 return (dst); 19178 default: 19179 break; 19180 } 19181 } 19182 19183 return (dst); 19184 } 19185 19186 mblk_t * 19187 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19188 conn_t *connp, boolean_t unspec_src) 19189 { 19190 ipsec_out_t *io; 19191 mblk_t *first_mp; 19192 boolean_t policy_present; 19193 19194 first_mp = mp; 19195 if (mp->b_datap->db_type == M_CTL) { 19196 io = (ipsec_out_t *)first_mp->b_rptr; 19197 /* 19198 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19199 * 19200 * 1) There is per-socket policy (including cached global 19201 * policy). 19202 * 2) There is no per-socket policy, but it is 19203 * a multicast packet that needs to go out 19204 * on a specific interface. This is the case 19205 * where (ip_wput and ip_wput_multicast) attaches 19206 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19207 * 19208 * In case (2) we check with global policy to 19209 * see if there is a match and set the ill_index 19210 * appropriately so that we can lookup the ire 19211 * properly in ip_wput_ipsec_out. 19212 */ 19213 19214 /* 19215 * ipsec_out_use_global_policy is set to B_FALSE 19216 * in ipsec_in_to_out(). Refer to that function for 19217 * details. 19218 */ 19219 if ((io->ipsec_out_latch == NULL) && 19220 (io->ipsec_out_use_global_policy)) { 19221 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19222 ire, connp, unspec_src)); 19223 } 19224 if (!io->ipsec_out_secure) { 19225 /* 19226 * If this is not a secure packet, drop 19227 * the IPSEC_OUT mp and treat it as a clear 19228 * packet. This happens when we are sending 19229 * a ICMP reply back to a clear packet. See 19230 * ipsec_in_to_out() for details. 19231 */ 19232 mp = first_mp->b_cont; 19233 freeb(first_mp); 19234 } 19235 return (mp); 19236 } 19237 /* 19238 * See whether we need to attach a global policy here. We 19239 * don't depend on the conn (as it could be null) for deciding 19240 * what policy this datagram should go through because it 19241 * should have happened in ip_wput if there was some 19242 * policy. This normally happens for connections which are not 19243 * fully bound preventing us from caching policies in 19244 * ip_bind. Packets coming from the TCP listener/global queue 19245 * - which are non-hard_bound - could also be affected by 19246 * applying policy here. 19247 * 19248 * If this packet is coming from tcp global queue or listener, 19249 * we will be applying policy here. This may not be *right* 19250 * if these packets are coming from the detached connection as 19251 * it could have gone in clear before. This happens only if a 19252 * TCP connection started when there is no policy and somebody 19253 * added policy before it became detached. Thus packets of the 19254 * detached connection could go out secure and the other end 19255 * would drop it because it will be expecting in clear. The 19256 * converse is not true i.e if somebody starts a TCP 19257 * connection and deletes the policy, all the packets will 19258 * still go out with the policy that existed before deleting 19259 * because ip_unbind sends up policy information which is used 19260 * by TCP on subsequent ip_wputs. The right solution is to fix 19261 * TCP to attach a dummy IPSEC_OUT and set 19262 * ipsec_out_use_global_policy to B_FALSE. As this might 19263 * affect performance for normal cases, we are not doing it. 19264 * Thus, set policy before starting any TCP connections. 19265 * 19266 * NOTE - We might apply policy even for a hard bound connection 19267 * - for which we cached policy in ip_bind - if somebody added 19268 * global policy after we inherited the policy in ip_bind. 19269 * This means that the packets that were going out in clear 19270 * previously would start going secure and hence get dropped 19271 * on the other side. To fix this, TCP attaches a dummy 19272 * ipsec_out and make sure that we don't apply global policy. 19273 */ 19274 if (ipha != NULL) 19275 policy_present = ipsec_outbound_v4_policy_present; 19276 else 19277 policy_present = ipsec_outbound_v6_policy_present; 19278 if (!policy_present) 19279 return (mp); 19280 19281 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19282 } 19283 19284 ire_t * 19285 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19286 { 19287 ipaddr_t addr; 19288 ire_t *save_ire; 19289 irb_t *irb; 19290 ill_group_t *illgrp; 19291 int err; 19292 19293 save_ire = ire; 19294 addr = ire->ire_addr; 19295 19296 ASSERT(ire->ire_type == IRE_BROADCAST); 19297 19298 illgrp = connp->conn_outgoing_ill->ill_group; 19299 if (illgrp == NULL) { 19300 *conn_outgoing_ill = conn_get_held_ill(connp, 19301 &connp->conn_outgoing_ill, &err); 19302 if (err == ILL_LOOKUP_FAILED) { 19303 ire_refrele(save_ire); 19304 return (NULL); 19305 } 19306 return (save_ire); 19307 } 19308 /* 19309 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19310 * If it is part of the group, we need to send on the ire 19311 * that has been cleared of IRE_MARK_NORECV and that belongs 19312 * to this group. This is okay as IP_BOUND_IF really means 19313 * any ill in the group. We depend on the fact that the 19314 * first ire in the group is always cleared of IRE_MARK_NORECV 19315 * if such an ire exists. This is possible only if you have 19316 * at least one ill in the group that has not failed. 19317 * 19318 * First get to the ire that matches the address and group. 19319 * 19320 * We don't look for an ire with a matching zoneid because a given zone 19321 * won't always have broadcast ires on all ills in the group. 19322 */ 19323 irb = ire->ire_bucket; 19324 rw_enter(&irb->irb_lock, RW_READER); 19325 if (ire->ire_marks & IRE_MARK_NORECV) { 19326 /* 19327 * If the current zone only has an ire broadcast for this 19328 * address marked NORECV, the ire we want is ahead in the 19329 * bucket, so we look it up deliberately ignoring the zoneid. 19330 */ 19331 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19332 if (ire->ire_addr != addr) 19333 continue; 19334 /* skip over deleted ires */ 19335 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19336 continue; 19337 } 19338 } 19339 while (ire != NULL) { 19340 /* 19341 * If a new interface is coming up, we could end up 19342 * seeing the loopback ire and the non-loopback ire 19343 * may not have been added yet. So check for ire_stq 19344 */ 19345 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19346 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19347 break; 19348 } 19349 ire = ire->ire_next; 19350 } 19351 if (ire != NULL && ire->ire_addr == addr && 19352 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19353 IRE_REFHOLD(ire); 19354 rw_exit(&irb->irb_lock); 19355 ire_refrele(save_ire); 19356 *conn_outgoing_ill = ire_to_ill(ire); 19357 /* 19358 * Refhold the ill to make the conn_outgoing_ill 19359 * independent of the ire. ip_wput_ire goes in a loop 19360 * and may refrele the ire. Since we have an ire at this 19361 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19362 */ 19363 ill_refhold(*conn_outgoing_ill); 19364 return (ire); 19365 } 19366 rw_exit(&irb->irb_lock); 19367 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19368 /* 19369 * If we can't find a suitable ire, return the original ire. 19370 */ 19371 return (save_ire); 19372 } 19373 19374 /* 19375 * This function does the ire_refrele of the ire passed in as the 19376 * argument. As this function looks up more ires i.e broadcast ires, 19377 * it needs to REFRELE them. Currently, for simplicity we don't 19378 * differentiate the one passed in and looked up here. We always 19379 * REFRELE. 19380 * IPQoS Notes: 19381 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19382 * IPSec packets are done in ipsec_out_process. 19383 * 19384 */ 19385 void 19386 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19387 { 19388 ipha_t *ipha; 19389 #define rptr ((uchar_t *)ipha) 19390 mblk_t *mp1; 19391 queue_t *stq; 19392 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19393 uint32_t v_hlen_tos_len; 19394 uint32_t ttl_protocol; 19395 ipaddr_t src; 19396 ipaddr_t dst; 19397 uint32_t cksum; 19398 ipaddr_t orig_src; 19399 ire_t *ire1; 19400 mblk_t *next_mp; 19401 uint_t hlen; 19402 uint16_t *up; 19403 uint32_t max_frag = ire->ire_max_frag; 19404 ill_t *ill = ire_to_ill(ire); 19405 int clusterwide; 19406 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19407 int ipsec_len; 19408 mblk_t *first_mp; 19409 ipsec_out_t *io; 19410 boolean_t conn_dontroute; /* conn value for multicast */ 19411 boolean_t conn_multicast_loop; /* conn value for multicast */ 19412 boolean_t multicast_forward; /* Should we forward ? */ 19413 boolean_t unspec_src; 19414 ill_t *conn_outgoing_ill = NULL; 19415 ill_t *ire_ill; 19416 ill_t *ire1_ill; 19417 uint32_t ill_index = 0; 19418 boolean_t multirt_send = B_FALSE; 19419 int err; 19420 zoneid_t zoneid; 19421 boolean_t iphdrhwcksum = B_FALSE; 19422 19423 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19424 "ip_wput_ire_start: q %p", q); 19425 19426 multicast_forward = B_FALSE; 19427 unspec_src = (connp != NULL && connp->conn_unspec_src); 19428 19429 if (ire->ire_flags & RTF_MULTIRT) { 19430 /* 19431 * Multirouting case. The bucket where ire is stored 19432 * probably holds other RTF_MULTIRT flagged ire 19433 * to the destination. In this call to ip_wput_ire, 19434 * we attempt to send the packet through all 19435 * those ires. Thus, we first ensure that ire is the 19436 * first RTF_MULTIRT ire in the bucket, 19437 * before walking the ire list. 19438 */ 19439 ire_t *first_ire; 19440 irb_t *irb = ire->ire_bucket; 19441 ASSERT(irb != NULL); 19442 19443 /* Make sure we do not omit any multiroute ire. */ 19444 IRB_REFHOLD(irb); 19445 for (first_ire = irb->irb_ire; 19446 first_ire != NULL; 19447 first_ire = first_ire->ire_next) { 19448 if ((first_ire->ire_flags & RTF_MULTIRT) && 19449 (first_ire->ire_addr == ire->ire_addr) && 19450 !(first_ire->ire_marks & 19451 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19452 break; 19453 } 19454 19455 if ((first_ire != NULL) && (first_ire != ire)) { 19456 IRE_REFHOLD(first_ire); 19457 ire_refrele(ire); 19458 ire = first_ire; 19459 ill = ire_to_ill(ire); 19460 } 19461 IRB_REFRELE(irb); 19462 } 19463 19464 /* 19465 * conn_outgoing_ill is used only in the broadcast loop. 19466 * for performance we don't grab the mutexs in the fastpath 19467 */ 19468 if ((connp != NULL) && 19469 (connp->conn_xmit_if_ill == NULL) && 19470 (ire->ire_type == IRE_BROADCAST) && 19471 ((connp->conn_nofailover_ill != NULL) || 19472 (connp->conn_outgoing_ill != NULL))) { 19473 /* 19474 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19475 * option. So, see if this endpoint is bound to a 19476 * IPIF_NOFAILOVER address. If so, honor it. This implies 19477 * that if the interface is failed, we will still send 19478 * the packet on the same ill which is what we want. 19479 */ 19480 conn_outgoing_ill = conn_get_held_ill(connp, 19481 &connp->conn_nofailover_ill, &err); 19482 if (err == ILL_LOOKUP_FAILED) { 19483 ire_refrele(ire); 19484 freemsg(mp); 19485 return; 19486 } 19487 if (conn_outgoing_ill == NULL) { 19488 /* 19489 * Choose a good ill in the group to send the 19490 * packets on. 19491 */ 19492 ire = conn_set_outgoing_ill(connp, ire, 19493 &conn_outgoing_ill); 19494 if (ire == NULL) { 19495 freemsg(mp); 19496 return; 19497 } 19498 } 19499 } 19500 19501 if (mp->b_datap->db_type != M_CTL) { 19502 ipha = (ipha_t *)mp->b_rptr; 19503 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19504 } else { 19505 io = (ipsec_out_t *)mp->b_rptr; 19506 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19507 zoneid = io->ipsec_out_zoneid; 19508 ASSERT(zoneid != ALL_ZONES); 19509 ipha = (ipha_t *)mp->b_cont->b_rptr; 19510 dst = ipha->ipha_dst; 19511 /* 19512 * For the multicast case, ipsec_out carries conn_dontroute and 19513 * conn_multicast_loop as conn may not be available here. We 19514 * need this for multicast loopback and forwarding which is done 19515 * later in the code. 19516 */ 19517 if (CLASSD(dst)) { 19518 conn_dontroute = io->ipsec_out_dontroute; 19519 conn_multicast_loop = io->ipsec_out_multicast_loop; 19520 /* 19521 * If conn_dontroute is not set or conn_multicast_loop 19522 * is set, we need to do forwarding/loopback. For 19523 * datagrams from ip_wput_multicast, conn_dontroute is 19524 * set to B_TRUE and conn_multicast_loop is set to 19525 * B_FALSE so that we neither do forwarding nor 19526 * loopback. 19527 */ 19528 if (!conn_dontroute || conn_multicast_loop) 19529 multicast_forward = B_TRUE; 19530 } 19531 } 19532 19533 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19534 /* 19535 * When a zone sends a packet to another zone, we try to deliver 19536 * the packet under the same conditions as if the destination 19537 * was a real node on the network. To do so, we look for a 19538 * matching route in the forwarding table. 19539 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19540 * ip_newroute() does. 19541 */ 19542 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19543 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19544 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19545 if (src_ire != NULL && 19546 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19547 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19548 ipha->ipha_src = src_ire->ire_src_addr; 19549 ire_refrele(src_ire); 19550 } else { 19551 ire_refrele(ire); 19552 if (conn_outgoing_ill != NULL) 19553 ill_refrele(conn_outgoing_ill); 19554 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19555 if (src_ire != NULL) { 19556 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19557 ire_refrele(src_ire); 19558 freemsg(mp); 19559 return; 19560 } 19561 ire_refrele(src_ire); 19562 } 19563 if (ip_hdr_complete(ipha, zoneid)) { 19564 /* Failed */ 19565 freemsg(mp); 19566 return; 19567 } 19568 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19569 return; 19570 } 19571 } 19572 19573 if (mp->b_datap->db_type == M_CTL || 19574 ipsec_outbound_v4_policy_present) { 19575 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19576 unspec_src); 19577 if (mp == NULL) { 19578 ire_refrele(ire); 19579 if (conn_outgoing_ill != NULL) 19580 ill_refrele(conn_outgoing_ill); 19581 return; 19582 } 19583 } 19584 19585 first_mp = mp; 19586 ipsec_len = 0; 19587 19588 if (first_mp->b_datap->db_type == M_CTL) { 19589 io = (ipsec_out_t *)first_mp->b_rptr; 19590 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19591 mp = first_mp->b_cont; 19592 ipsec_len = ipsec_out_extra_length(first_mp); 19593 ASSERT(ipsec_len >= 0); 19594 zoneid = io->ipsec_out_zoneid; 19595 ASSERT(zoneid != ALL_ZONES); 19596 19597 /* 19598 * Drop M_CTL here if IPsec processing is not needed. 19599 * (Non-IPsec use of M_CTL extracted any information it 19600 * needed above). 19601 */ 19602 if (ipsec_len == 0) { 19603 freeb(first_mp); 19604 first_mp = mp; 19605 } 19606 } 19607 19608 /* 19609 * Fast path for ip_wput_ire 19610 */ 19611 19612 ipha = (ipha_t *)mp->b_rptr; 19613 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19614 dst = ipha->ipha_dst; 19615 19616 /* 19617 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19618 * if the socket is a SOCK_RAW type. The transport checksum should 19619 * be provided in the pre-built packet, so we don't need to compute it. 19620 * Also, other application set flags, like DF, should not be altered. 19621 * Other transport MUST pass down zero. 19622 */ 19623 ip_hdr_included = ipha->ipha_ident; 19624 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19625 19626 if (CLASSD(dst)) { 19627 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19628 ntohl(dst), 19629 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19630 ntohl(ire->ire_addr))); 19631 } 19632 19633 /* Macros to extract header fields from data already in registers */ 19634 #ifdef _BIG_ENDIAN 19635 #define V_HLEN (v_hlen_tos_len >> 24) 19636 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19637 #define PROTO (ttl_protocol & 0xFF) 19638 #else 19639 #define V_HLEN (v_hlen_tos_len & 0xFF) 19640 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19641 #define PROTO (ttl_protocol >> 8) 19642 #endif 19643 19644 19645 orig_src = src = ipha->ipha_src; 19646 /* (The loop back to "another" is explained down below.) */ 19647 another:; 19648 /* 19649 * Assign an ident value for this packet. We assign idents on 19650 * a per destination basis out of the IRE. There could be 19651 * other threads targeting the same destination, so we have to 19652 * arrange for a atomic increment. Note that we use a 32-bit 19653 * atomic add because it has better performance than its 19654 * 16-bit sibling. 19655 * 19656 * If running in cluster mode and if the source address 19657 * belongs to a replicated service then vector through 19658 * cl_inet_ipident vector to allocate ip identifier 19659 * NOTE: This is a contract private interface with the 19660 * clustering group. 19661 */ 19662 clusterwide = 0; 19663 if (cl_inet_ipident) { 19664 ASSERT(cl_inet_isclusterwide); 19665 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19666 AF_INET, (uint8_t *)(uintptr_t)src)) { 19667 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19668 AF_INET, (uint8_t *)(uintptr_t)src, 19669 (uint8_t *)(uintptr_t)dst); 19670 clusterwide = 1; 19671 } 19672 } 19673 if (!clusterwide) { 19674 ipha->ipha_ident = 19675 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19676 } 19677 19678 #ifndef _BIG_ENDIAN 19679 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19680 #endif 19681 19682 /* 19683 * Set source address unless sent on an ill or conn_unspec_src is set. 19684 * This is needed to obey conn_unspec_src when packets go through 19685 * ip_newroute + arp. 19686 * Assumes ip_newroute{,_multi} sets the source address as well. 19687 */ 19688 if (src == INADDR_ANY && !unspec_src) { 19689 /* 19690 * Assign the appropriate source address from the IRE if none 19691 * was specified. 19692 */ 19693 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19694 19695 /* 19696 * With IP multipathing, broadcast packets are sent on the ire 19697 * that has been cleared of IRE_MARK_NORECV and that belongs to 19698 * the group. However, this ire might not be in the same zone so 19699 * we can't always use its source address. We look for a 19700 * broadcast ire in the same group and in the right zone. 19701 */ 19702 if (ire->ire_type == IRE_BROADCAST && 19703 ire->ire_zoneid != zoneid) { 19704 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19705 IRE_BROADCAST, ire->ire_ipif, zoneid, 19706 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19707 if (src_ire != NULL) { 19708 src = src_ire->ire_src_addr; 19709 ire_refrele(src_ire); 19710 } else { 19711 ire_refrele(ire); 19712 if (conn_outgoing_ill != NULL) 19713 ill_refrele(conn_outgoing_ill); 19714 freemsg(first_mp); 19715 BUMP_MIB(&ip_mib, ipOutDiscards); 19716 return; 19717 } 19718 } else { 19719 src = ire->ire_src_addr; 19720 } 19721 19722 if (connp == NULL) { 19723 ip1dbg(("ip_wput_ire: no connp and no src " 19724 "address for dst 0x%x, using src 0x%x\n", 19725 ntohl(dst), 19726 ntohl(src))); 19727 } 19728 ipha->ipha_src = src; 19729 } 19730 stq = ire->ire_stq; 19731 19732 /* 19733 * We only allow ire chains for broadcasts since there will 19734 * be multiple IRE_CACHE entries for the same multicast 19735 * address (one per ipif). 19736 */ 19737 next_mp = NULL; 19738 19739 /* broadcast packet */ 19740 if (ire->ire_type == IRE_BROADCAST) 19741 goto broadcast; 19742 19743 /* loopback ? */ 19744 if (stq == NULL) 19745 goto nullstq; 19746 19747 /* The ill_index for outbound ILL */ 19748 ill_index = Q_TO_INDEX(stq); 19749 19750 BUMP_MIB(&ip_mib, ipOutRequests); 19751 ttl_protocol = ((uint16_t *)ipha)[4]; 19752 19753 /* pseudo checksum (do it in parts for IP header checksum) */ 19754 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19755 19756 #define FRAGMENT_NEEDED(mtu, size) \ 19757 (((mtu) < (unsigned int)(size)) ? B_TRUE : B_FALSE) 19758 19759 #define IS_FASTPATH(ire, bp) \ 19760 ((ire)->ire_fp_mp != NULL && \ 19761 (MBLKHEAD((bp)) >= (MBLKL((ire)->ire_fp_mp)))) \ 19762 19763 #define IPH_UDPH_CHECKSUMP(ipha, hlen) \ 19764 ((uint16_t *)(((uchar_t *)ipha)+(hlen + UDP_CHECKSUM_OFFSET))) 19765 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \ 19766 ((uint16_t *)(((uchar_t *)ipha)+(hlen+TCP_CHECKSUM_OFFSET))) 19767 19768 #define IP_CKSUM_XMIT(ill, ire, mp, up, proto, hlen, max_frag, \ 19769 ipsec_len) { \ 19770 uint32_t sum; \ 19771 uint32_t xmit_capab = HCKSUM_INET_FULL_V4 | \ 19772 HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; \ 19773 boolean_t cksum_offload = B_FALSE; \ 19774 \ 19775 /* \ 19776 * The ire fp mp can change due to the arrival of a \ 19777 * DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST \ 19778 * and IRE_MIPRTUN. Hence the ire_fp_mp has to be accessed \ 19779 * only under the ire_lock in such cases. \ 19780 */ \ 19781 LOCK_IRE_FP_MP(ire); \ 19782 if ((ill) && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) && \ 19783 (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19784 xmit_capab) && (!FRAGMENT_NEEDED(max_frag, \ 19785 (LENGTH + ipsec_len))) && (!(ire->ire_flags & \ 19786 RTF_MULTIRT)) && (ipsec_len == 0) && \ 19787 IS_FASTPATH((ire), (mp)) && (dohwcksum)) { \ 19788 /* \ 19789 * Underlying interface supports hardware checksumming. \ 19790 * So postpone the checksum to the interface driver \ 19791 */ \ 19792 \ 19793 if ((hlen) == IP_SIMPLE_HDR_LENGTH) { \ 19794 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19795 HCKSUM_IPHDRCKSUM) { \ 19796 mp->b_datap->db_struioun.cksum.flags |= \ 19797 HCK_IPV4_HDRCKSUM; \ 19798 /* seed the cksum field to 0 */ \ 19799 ipha->ipha_hdr_checksum = 0; \ 19800 iphdrhwcksum = B_TRUE; \ 19801 } \ 19802 /* \ 19803 * If underlying h/w supports full h/w checksumming \ 19804 * and no IP options are present, then offload \ 19805 * full checksumming to the hardware. \ 19806 * \ 19807 * If h/w can do partial checksumming then offload \ 19808 * unless the startpoint offset, including mac-header, \ 19809 * is too big for the interface to some of our \ 19810 * hardware (CE and ERI) which have 6 bit fields. \ 19811 * Sigh. \ 19812 * Unhappily we don't have the mac-header size here \ 19813 * so punt for any options. \ 19814 */ \ 19815 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19816 HCKSUM_INET_FULL_V4) { \ 19817 UNLOCK_IRE_FP_MP(ire); \ 19818 /* Seed the checksum field to 0 */ \ 19819 *up = 0; \ 19820 mp->b_datap->db_struioun.cksum.flags |= \ 19821 HCK_FULLCKSUM; \ 19822 cksum_offload = B_TRUE; \ 19823 } else if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19824 HCKSUM_INET_PARTIAL) { \ 19825 UNLOCK_IRE_FP_MP(ire); \ 19826 sum = *up + cksum + proto; \ 19827 sum = (sum & 0xFFFF) + (sum >> 16); \ 19828 *up = (sum & 0xFFFF) + (sum >> 16); \ 19829 /* \ 19830 * All offsets are relative to the beginning \ 19831 * of the IP header. \ 19832 */ \ 19833 mp->b_datap->db_cksumstart = hlen; \ 19834 mp->b_datap->db_cksumstuff = \ 19835 (PROTO == IPPROTO_UDP) ? \ 19836 (hlen) + UDP_CHECKSUM_OFFSET : \ 19837 (hlen) + TCP_CHECKSUM_OFFSET; \ 19838 mp->b_datap->db_cksumend = ipha->ipha_length; \ 19839 mp->b_datap->db_struioun.cksum.flags |= \ 19840 HCK_PARTIALCKSUM; \ 19841 cksum_offload = B_TRUE; \ 19842 } \ 19843 } \ 19844 } \ 19845 if (!cksum_offload) { \ 19846 UNLOCK_IRE_FP_MP(ire); \ 19847 IP_STAT(ip_out_sw_cksum); \ 19848 (sum) = IP_CSUM((mp), (hlen), cksum + proto); \ 19849 *(up) = (uint16_t)((sum) ? (sum) : ~(sum)); \ 19850 } \ 19851 } 19852 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 19853 queue_t *dev_q = stq->q_next; 19854 19855 /* flow controlled */ 19856 if ((dev_q->q_next || dev_q->q_first) && 19857 !canput(dev_q)) 19858 goto blocked; 19859 if ((PROTO == IPPROTO_UDP) && 19860 (ip_hdr_included != IP_HDR_INCLUDED)) { 19861 hlen = (V_HLEN & 0xF) << 2; 19862 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 19863 if (*up) { 19864 IP_CKSUM_XMIT(ill, ire, mp, up, 19865 IP_UDP_CSUM_COMP, hlen, max_frag, 19866 ipsec_len); 19867 } 19868 } 19869 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 19870 hlen = (V_HLEN & 0xF) << 2; 19871 if (PROTO == IPPROTO_TCP) { 19872 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 19873 /* 19874 * The packet header is processed once and for all, even 19875 * in the multirouting case. We disable hardware 19876 * checksum if the packet is multirouted, as it will be 19877 * replicated via several interfaces, and not all of 19878 * them may have this capability. 19879 */ 19880 IP_CKSUM_XMIT(ill, ire, mp, up, 19881 IP_TCP_CSUM_COMP, hlen, max_frag, ipsec_len); 19882 } else { 19883 sctp_hdr_t *sctph; 19884 19885 ASSERT(PROTO == IPPROTO_SCTP); 19886 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 19887 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 19888 /* 19889 * Zero out the checksum field to ensure proper 19890 * checksum calculation. 19891 */ 19892 sctph->sh_chksum = 0; 19893 #ifdef DEBUG 19894 if (!skip_sctp_cksum) 19895 #endif 19896 sctph->sh_chksum = sctp_cksum(mp, hlen); 19897 } 19898 } 19899 19900 /* 19901 * If this is a multicast packet and originated from ip_wput 19902 * we need to do loopback and forwarding checks. If it comes 19903 * from ip_wput_multicast, we SHOULD not do this. 19904 */ 19905 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 19906 19907 /* checksum */ 19908 cksum += ttl_protocol; 19909 19910 /* fragment the packet */ 19911 if (FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) 19912 goto fragmentit; 19913 /* 19914 * Don't use frag_flag if packet is pre-built or source 19915 * routed or if multicast (since multicast packets do 19916 * not solicit ICMP "packet too big" messages). 19917 */ 19918 if ((ip_hdr_included != IP_HDR_INCLUDED) && 19919 (V_HLEN == IP_SIMPLE_HDR_VERSION || 19920 !ip_source_route_included(ipha)) && 19921 !CLASSD(ipha->ipha_dst)) 19922 ipha->ipha_fragment_offset_and_flags |= 19923 htons(ire->ire_frag_flag); 19924 19925 if (!iphdrhwcksum) { 19926 /* checksum */ 19927 cksum += ipha->ipha_ident; 19928 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 19929 cksum += ipha->ipha_fragment_offset_and_flags; 19930 19931 /* IP options present */ 19932 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 19933 if (hlen) 19934 goto checksumoptions; 19935 19936 /* calculate hdr checksum */ 19937 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 19938 cksum = ~(cksum + (cksum >> 16)); 19939 ipha->ipha_hdr_checksum = (uint16_t)cksum; 19940 } 19941 if (ipsec_len != 0) { 19942 /* 19943 * We will do the rest of the processing after 19944 * we come back from IPSEC in ip_wput_ipsec_out(). 19945 */ 19946 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 19947 19948 io = (ipsec_out_t *)first_mp->b_rptr; 19949 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 19950 ill_phyint->phyint_ifindex; 19951 19952 ipsec_out_process(q, first_mp, ire, ill_index); 19953 ire_refrele(ire); 19954 if (conn_outgoing_ill != NULL) 19955 ill_refrele(conn_outgoing_ill); 19956 return; 19957 } 19958 19959 /* 19960 * In most cases, the emission loop below is entered only 19961 * once. Only in the case where the ire holds the 19962 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 19963 * flagged ires in the bucket, and send the packet 19964 * through all crossed RTF_MULTIRT routes. 19965 */ 19966 if (ire->ire_flags & RTF_MULTIRT) { 19967 multirt_send = B_TRUE; 19968 } 19969 do { 19970 if (multirt_send) { 19971 irb_t *irb; 19972 /* 19973 * We are in a multiple send case, need to get 19974 * the next ire and make a duplicate of the packet. 19975 * ire1 holds here the next ire to process in the 19976 * bucket. If multirouting is expected, 19977 * any non-RTF_MULTIRT ire that has the 19978 * right destination address is ignored. 19979 */ 19980 irb = ire->ire_bucket; 19981 ASSERT(irb != NULL); 19982 19983 IRB_REFHOLD(irb); 19984 for (ire1 = ire->ire_next; 19985 ire1 != NULL; 19986 ire1 = ire1->ire_next) { 19987 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 19988 continue; 19989 if (ire1->ire_addr != ire->ire_addr) 19990 continue; 19991 if (ire1->ire_marks & 19992 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 19993 continue; 19994 19995 /* Got one */ 19996 IRE_REFHOLD(ire1); 19997 break; 19998 } 19999 IRB_REFRELE(irb); 20000 20001 if (ire1 != NULL) { 20002 next_mp = copyb(mp); 20003 if ((next_mp == NULL) || 20004 ((mp->b_cont != NULL) && 20005 ((next_mp->b_cont = 20006 dupmsg(mp->b_cont)) == NULL))) { 20007 freemsg(next_mp); 20008 next_mp = NULL; 20009 ire_refrele(ire1); 20010 ire1 = NULL; 20011 } 20012 } 20013 20014 /* Last multiroute ire; don't loop anymore. */ 20015 if (ire1 == NULL) { 20016 multirt_send = B_FALSE; 20017 } 20018 } 20019 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20020 if (mp == NULL) { 20021 BUMP_MIB(&ip_mib, ipOutDiscards); 20022 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20023 "during IPPF processing\n")); 20024 ire_refrele(ire); 20025 if (next_mp != NULL) { 20026 freemsg(next_mp); 20027 ire_refrele(ire1); 20028 } 20029 if (conn_outgoing_ill != NULL) 20030 ill_refrele(conn_outgoing_ill); 20031 return; 20032 } 20033 UPDATE_OB_PKT_COUNT(ire); 20034 ire->ire_last_used_time = lbolt; 20035 20036 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20037 "ip_wput_ire_end: q %p (%S)", 20038 q, "last copy out"); 20039 putnext(stq, mp); 20040 IRE_REFRELE(ire); 20041 20042 if (multirt_send) { 20043 ASSERT(ire1); 20044 /* 20045 * Proceed with the next RTF_MULTIRT ire, 20046 * Also set up the send-to queue accordingly. 20047 */ 20048 ire = ire1; 20049 ire1 = NULL; 20050 stq = ire->ire_stq; 20051 mp = next_mp; 20052 next_mp = NULL; 20053 ipha = (ipha_t *)mp->b_rptr; 20054 ill_index = Q_TO_INDEX(stq); 20055 } 20056 } while (multirt_send); 20057 if (conn_outgoing_ill != NULL) 20058 ill_refrele(conn_outgoing_ill); 20059 return; 20060 20061 /* 20062 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20063 */ 20064 broadcast: 20065 { 20066 /* 20067 * Avoid broadcast storms by setting the ttl to 1 20068 * for broadcasts. This parameter can be set 20069 * via ndd, so make sure that for the SO_DONTROUTE 20070 * case that ipha_ttl is always set to 1. 20071 * In the event that we are replying to incoming 20072 * ICMP packets, conn could be NULL. 20073 */ 20074 if ((connp != NULL) && connp->conn_dontroute) 20075 ipha->ipha_ttl = 1; 20076 else 20077 ipha->ipha_ttl = ip_broadcast_ttl; 20078 20079 /* 20080 * Note that we are not doing a IRB_REFHOLD here. 20081 * Actually we don't care if the list changes i.e 20082 * if somebody deletes an IRE from the list while 20083 * we drop the lock, the next time we come around 20084 * ire_next will be NULL and hence we won't send 20085 * out multiple copies which is fine. 20086 */ 20087 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20088 ire1 = ire->ire_next; 20089 if (conn_outgoing_ill != NULL) { 20090 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20091 ASSERT(ire1 == ire->ire_next); 20092 if (ire1 != NULL && ire1->ire_addr == dst) { 20093 ire_refrele(ire); 20094 ire = ire1; 20095 IRE_REFHOLD(ire); 20096 ire1 = ire->ire_next; 20097 continue; 20098 } 20099 rw_exit(&ire->ire_bucket->irb_lock); 20100 /* Did not find a matching ill */ 20101 ip1dbg(("ip_wput_ire: broadcast with no " 20102 "matching IP_BOUND_IF ill %s\n", 20103 conn_outgoing_ill->ill_name)); 20104 freemsg(first_mp); 20105 if (ire != NULL) 20106 ire_refrele(ire); 20107 ill_refrele(conn_outgoing_ill); 20108 return; 20109 } 20110 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20111 /* 20112 * If the next IRE has the same address and is not one 20113 * of the two copies that we need to send, try to see 20114 * whether this copy should be sent at all. This 20115 * assumes that we insert loopbacks first and then 20116 * non-loopbacks. This is acheived by inserting the 20117 * loopback always before non-loopback. 20118 * This is used to send a single copy of a broadcast 20119 * packet out all physical interfaces that have an 20120 * matching IRE_BROADCAST while also looping 20121 * back one copy (to ip_wput_local) for each 20122 * matching physical interface. However, we avoid 20123 * sending packets out different logical that match by 20124 * having ipif_up/ipif_down supress duplicate 20125 * IRE_BROADCASTS. 20126 * 20127 * This feature is currently used to get broadcasts 20128 * sent to multiple interfaces, when the broadcast 20129 * address being used applies to multiple interfaces. 20130 * For example, a whole net broadcast will be 20131 * replicated on every connected subnet of 20132 * the target net. 20133 * 20134 * Each zone has its own set of IRE_BROADCASTs, so that 20135 * we're able to distribute inbound packets to multiple 20136 * zones who share a broadcast address. We avoid looping 20137 * back outbound packets in different zones but on the 20138 * same ill, as the application would see duplicates. 20139 * 20140 * If the interfaces are part of the same group, 20141 * we would want to send only one copy out for 20142 * whole group. 20143 * 20144 * This logic assumes that ire_add_v4() groups the 20145 * IRE_BROADCAST entries so that those with the same 20146 * ire_addr and ill_group are kept together. 20147 */ 20148 ire_ill = ire->ire_ipif->ipif_ill; 20149 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20150 if (ire_ill->ill_group != NULL && 20151 (ire->ire_marks & IRE_MARK_NORECV)) { 20152 /* 20153 * If the current zone only has an ire 20154 * broadcast for this address marked 20155 * NORECV, the ire we want is ahead in 20156 * the bucket, so we look it up 20157 * deliberately ignoring the zoneid. 20158 */ 20159 for (ire1 = ire->ire_bucket->irb_ire; 20160 ire1 != NULL; 20161 ire1 = ire1->ire_next) { 20162 ire1_ill = 20163 ire1->ire_ipif->ipif_ill; 20164 if (ire1->ire_addr != dst) 20165 continue; 20166 /* skip over the current ire */ 20167 if (ire1 == ire) 20168 continue; 20169 /* skip over deleted ires */ 20170 if (ire1->ire_marks & 20171 IRE_MARK_CONDEMNED) 20172 continue; 20173 /* 20174 * non-loopback ire in our 20175 * group: use it for the next 20176 * pass in the loop 20177 */ 20178 if (ire1->ire_stq != NULL && 20179 ire1_ill->ill_group == 20180 ire_ill->ill_group) 20181 break; 20182 } 20183 } 20184 } else { 20185 while (ire1 != NULL && ire1->ire_addr == dst) { 20186 ire1_ill = ire1->ire_ipif->ipif_ill; 20187 /* 20188 * We can have two broadcast ires on the 20189 * same ill in different zones; here 20190 * we'll send a copy of the packet on 20191 * each ill and the fanout code will 20192 * call conn_wantpacket() to check that 20193 * the zone has the broadcast address 20194 * configured on the ill. If the two 20195 * ires are in the same group we only 20196 * send one copy up. 20197 */ 20198 if (ire1_ill != ire_ill && 20199 (ire1_ill->ill_group == NULL || 20200 ire_ill->ill_group == NULL || 20201 ire1_ill->ill_group != 20202 ire_ill->ill_group)) { 20203 break; 20204 } 20205 ire1 = ire1->ire_next; 20206 } 20207 } 20208 } 20209 ASSERT(multirt_send == B_FALSE); 20210 if (ire1 != NULL && ire1->ire_addr == dst) { 20211 if ((ire->ire_flags & RTF_MULTIRT) && 20212 (ire1->ire_flags & RTF_MULTIRT)) { 20213 /* 20214 * We are in the multirouting case. 20215 * The message must be sent at least 20216 * on both ires. These ires have been 20217 * inserted AFTER the standard ones 20218 * in ip_rt_add(). There are thus no 20219 * other ire entries for the destination 20220 * address in the rest of the bucket 20221 * that do not have the RTF_MULTIRT 20222 * flag. We don't process a copy 20223 * of the message here. This will be 20224 * done in the final sending loop. 20225 */ 20226 multirt_send = B_TRUE; 20227 } else { 20228 next_mp = ip_copymsg(first_mp); 20229 if (next_mp != NULL) 20230 IRE_REFHOLD(ire1); 20231 } 20232 } 20233 rw_exit(&ire->ire_bucket->irb_lock); 20234 } 20235 20236 if (stq) { 20237 /* 20238 * A non-NULL send-to queue means this packet is going 20239 * out of this machine. 20240 */ 20241 20242 BUMP_MIB(&ip_mib, ipOutRequests); 20243 ttl_protocol = ((uint16_t *)ipha)[4]; 20244 /* 20245 * We accumulate the pseudo header checksum in cksum. 20246 * This is pretty hairy code, so watch close. One 20247 * thing to keep in mind is that UDP and TCP have 20248 * stored their respective datagram lengths in their 20249 * checksum fields. This lines things up real nice. 20250 */ 20251 cksum = (dst >> 16) + (dst & 0xFFFF) + 20252 (src >> 16) + (src & 0xFFFF); 20253 /* 20254 * We assume the udp checksum field contains the 20255 * length, so to compute the pseudo header checksum, 20256 * all we need is the protocol number and src/dst. 20257 */ 20258 /* Provide the checksums for UDP and TCP. */ 20259 if ((PROTO == IPPROTO_TCP) && 20260 (ip_hdr_included != IP_HDR_INCLUDED)) { 20261 /* hlen gets the number of uchar_ts in the IP header */ 20262 hlen = (V_HLEN & 0xF) << 2; 20263 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20264 IP_STAT(ip_out_sw_cksum); 20265 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20266 } else if (PROTO == IPPROTO_SCTP && 20267 (ip_hdr_included != IP_HDR_INCLUDED)) { 20268 sctp_hdr_t *sctph; 20269 20270 hlen = (V_HLEN & 0xF) << 2; 20271 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20272 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20273 sctph->sh_chksum = 0; 20274 #ifdef DEBUG 20275 if (!skip_sctp_cksum) 20276 #endif 20277 sctph->sh_chksum = sctp_cksum(mp, hlen); 20278 } else { 20279 queue_t *dev_q = stq->q_next; 20280 20281 if ((dev_q->q_next || dev_q->q_first) && 20282 !canput(dev_q)) { 20283 blocked: 20284 ipha->ipha_ident = ip_hdr_included; 20285 /* 20286 * If we don't have a conn to apply 20287 * backpressure, free the message. 20288 * In the ire_send path, we don't know 20289 * the position to requeue the packet. Rather 20290 * than reorder packets, we just drop this 20291 * packet. 20292 */ 20293 if (ip_output_queue && connp != NULL && 20294 caller != IRE_SEND) { 20295 if (caller == IP_WSRV) { 20296 connp->conn_did_putbq = 1; 20297 (void) putbq(connp->conn_wq, 20298 first_mp); 20299 conn_drain_insert(connp); 20300 /* 20301 * This is the service thread, 20302 * and the queue is already 20303 * noenabled. The check for 20304 * canput and the putbq is not 20305 * atomic. So we need to check 20306 * again. 20307 */ 20308 if (canput(stq->q_next)) 20309 connp->conn_did_putbq 20310 = 0; 20311 IP_STAT(ip_conn_flputbq); 20312 } else { 20313 /* 20314 * We are not the service proc. 20315 * ip_wsrv will be scheduled or 20316 * is already running. 20317 */ 20318 (void) putq(connp->conn_wq, 20319 first_mp); 20320 } 20321 } else { 20322 BUMP_MIB(&ip_mib, ipOutDiscards); 20323 freemsg(first_mp); 20324 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20325 "ip_wput_ire_end: q %p (%S)", 20326 q, "discard"); 20327 } 20328 ire_refrele(ire); 20329 if (next_mp) { 20330 ire_refrele(ire1); 20331 freemsg(next_mp); 20332 } 20333 if (conn_outgoing_ill != NULL) 20334 ill_refrele(conn_outgoing_ill); 20335 return; 20336 } 20337 if ((PROTO == IPPROTO_UDP) && 20338 (ip_hdr_included != IP_HDR_INCLUDED)) { 20339 /* 20340 * hlen gets the number of uchar_ts in the 20341 * IP header 20342 */ 20343 hlen = (V_HLEN & 0xF) << 2; 20344 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20345 if (*up) { 20346 uint_t sum; 20347 20348 /* 20349 * NOTE: watch out for compiler high 20350 * bits 20351 */ 20352 IP_STAT(ip_out_sw_cksum); 20353 sum = IP_CSUM(mp, hlen, 20354 cksum + IP_UDP_CSUM_COMP); 20355 *up = (uint16_t)(sum ? sum : ~sum); 20356 } 20357 } 20358 } 20359 /* 20360 * Need to do this even when fragmenting. The local 20361 * loopback can be done without computing checksums 20362 * but forwarding out other interface must be done 20363 * after the IP checksum (and ULP checksums) have been 20364 * computed. 20365 * 20366 * NOTE : multicast_forward is set only if this packet 20367 * originated from ip_wput. For packets originating from 20368 * ip_wput_multicast, it is not set. 20369 */ 20370 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20371 multi_loopback: 20372 ip2dbg(("ip_wput: multicast, loop %d\n", 20373 conn_multicast_loop)); 20374 20375 /* Forget header checksum offload */ 20376 mp->b_datap->db_struioun.cksum.flags &= 20377 ~HCK_IPV4_HDRCKSUM; 20378 iphdrhwcksum = B_FALSE; 20379 20380 /* 20381 * Local loopback of multicasts? Check the 20382 * ill. 20383 * 20384 * Note that the loopback function will not come 20385 * in through ip_rput - it will only do the 20386 * client fanout thus we need to do an mforward 20387 * as well. The is different from the BSD 20388 * logic. 20389 */ 20390 if (ill != NULL) { 20391 ilm_t *ilm; 20392 20393 ILM_WALKER_HOLD(ill); 20394 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20395 ALL_ZONES); 20396 ILM_WALKER_RELE(ill); 20397 if (ilm != NULL) { 20398 /* 20399 * Pass along the virtual output q. 20400 * ip_wput_local() will distribute the 20401 * packet to all the matching zones, 20402 * except the sending zone when 20403 * IP_MULTICAST_LOOP is false. 20404 */ 20405 ip_multicast_loopback(q, ill, first_mp, 20406 conn_multicast_loop ? 0 : 20407 IP_FF_NO_MCAST_LOOP, zoneid); 20408 } 20409 } 20410 if (ipha->ipha_ttl == 0) { 20411 /* 20412 * 0 => only to this host i.e. we are 20413 * done. We are also done if this was the 20414 * loopback interface since it is sufficient 20415 * to loopback one copy of a multicast packet. 20416 */ 20417 freemsg(first_mp); 20418 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20419 "ip_wput_ire_end: q %p (%S)", 20420 q, "loopback"); 20421 ire_refrele(ire); 20422 if (conn_outgoing_ill != NULL) 20423 ill_refrele(conn_outgoing_ill); 20424 return; 20425 } 20426 /* 20427 * ILLF_MULTICAST is checked in ip_newroute 20428 * i.e. we don't need to check it here since 20429 * all IRE_CACHEs come from ip_newroute. 20430 * For multicast traffic, SO_DONTROUTE is interpreted 20431 * to mean only send the packet out the interface 20432 * (optionally specified with IP_MULTICAST_IF) 20433 * and do not forward it out additional interfaces. 20434 * RSVP and the rsvp daemon is an example of a 20435 * protocol and user level process that 20436 * handles it's own routing. Hence, it uses the 20437 * SO_DONTROUTE option to accomplish this. 20438 */ 20439 20440 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20441 /* Unconditionally redo the checksum */ 20442 ipha->ipha_hdr_checksum = 0; 20443 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20444 20445 /* 20446 * If this needs to go out secure, we need 20447 * to wait till we finish the IPSEC 20448 * processing. 20449 */ 20450 if (ipsec_len == 0 && 20451 ip_mforward(ill, ipha, mp)) { 20452 freemsg(first_mp); 20453 ip1dbg(("ip_wput: mforward failed\n")); 20454 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20455 "ip_wput_ire_end: q %p (%S)", 20456 q, "mforward failed"); 20457 ire_refrele(ire); 20458 if (conn_outgoing_ill != NULL) 20459 ill_refrele(conn_outgoing_ill); 20460 return; 20461 } 20462 } 20463 } 20464 max_frag = ire->ire_max_frag; 20465 cksum += ttl_protocol; 20466 if (!FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) { 20467 /* No fragmentation required for this one. */ 20468 /* Complete the IP header checksum. */ 20469 cksum += ipha->ipha_ident; 20470 /* 20471 * Don't use frag_flag if packet is pre-built or source 20472 * routed or if multicast (since multicast packets do 20473 * not solicit ICMP "packet too big" messages). 20474 */ 20475 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20476 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20477 !ip_source_route_included(ipha)) && 20478 !CLASSD(ipha->ipha_dst)) 20479 ipha->ipha_fragment_offset_and_flags |= 20480 htons(ire->ire_frag_flag); 20481 20482 cksum += (v_hlen_tos_len >> 16)+ 20483 (v_hlen_tos_len & 0xFFFF); 20484 cksum += ipha->ipha_fragment_offset_and_flags; 20485 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20486 if (hlen) { 20487 checksumoptions: 20488 /* 20489 * Account for the IP Options in the IP 20490 * header checksum. 20491 */ 20492 up = (uint16_t *)(rptr+IP_SIMPLE_HDR_LENGTH); 20493 do { 20494 cksum += up[0]; 20495 cksum += up[1]; 20496 up += 2; 20497 } while (--hlen); 20498 } 20499 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20500 cksum = ~(cksum + (cksum >> 16)); 20501 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20502 if (ipsec_len != 0) { 20503 ipsec_out_process(q, first_mp, ire, ill_index); 20504 if (!next_mp) { 20505 ire_refrele(ire); 20506 if (conn_outgoing_ill != NULL) 20507 ill_refrele(conn_outgoing_ill); 20508 return; 20509 } 20510 goto next; 20511 } 20512 20513 /* 20514 * multirt_send has already been handled 20515 * for broadcast, but not yet for multicast 20516 * or IP options. 20517 */ 20518 if (next_mp == NULL) { 20519 if (ire->ire_flags & RTF_MULTIRT) { 20520 multirt_send = B_TRUE; 20521 } 20522 } 20523 20524 /* 20525 * In most cases, the emission loop below is 20526 * entered only once. Only in the case where 20527 * the ire holds the RTF_MULTIRT flag, do we loop 20528 * to process all RTF_MULTIRT ires in the bucket, 20529 * and send the packet through all crossed 20530 * RTF_MULTIRT routes. 20531 */ 20532 do { 20533 if (multirt_send) { 20534 irb_t *irb; 20535 20536 irb = ire->ire_bucket; 20537 ASSERT(irb != NULL); 20538 /* 20539 * We are in a multiple send case, 20540 * need to get the next IRE and make 20541 * a duplicate of the packet. 20542 */ 20543 IRB_REFHOLD(irb); 20544 for (ire1 = ire->ire_next; 20545 ire1 != NULL; 20546 ire1 = ire1->ire_next) { 20547 if (!(ire1->ire_flags & 20548 RTF_MULTIRT)) 20549 continue; 20550 if (ire1->ire_addr != 20551 ire->ire_addr) 20552 continue; 20553 if (ire1->ire_marks & 20554 (IRE_MARK_CONDEMNED| 20555 IRE_MARK_HIDDEN)) 20556 continue; 20557 20558 /* Got one */ 20559 IRE_REFHOLD(ire1); 20560 break; 20561 } 20562 IRB_REFRELE(irb); 20563 20564 if (ire1 != NULL) { 20565 next_mp = copyb(mp); 20566 if ((next_mp == NULL) || 20567 ((mp->b_cont != NULL) && 20568 ((next_mp->b_cont = 20569 dupmsg(mp->b_cont)) 20570 == NULL))) { 20571 freemsg(next_mp); 20572 next_mp = NULL; 20573 ire_refrele(ire1); 20574 ire1 = NULL; 20575 } 20576 } 20577 20578 /* 20579 * Last multiroute ire; don't loop 20580 * anymore. The emission is over 20581 * and next_mp is NULL. 20582 */ 20583 if (ire1 == NULL) { 20584 multirt_send = B_FALSE; 20585 } 20586 } 20587 20588 noprepend: 20589 ASSERT(ipsec_len == 0); 20590 mp1 = ip_wput_attach_llhdr(mp, ire, 20591 IPP_LOCAL_OUT, ill_index); 20592 if (mp1 == NULL) { 20593 BUMP_MIB(&ip_mib, ipOutDiscards); 20594 if (next_mp) { 20595 freemsg(next_mp); 20596 ire_refrele(ire1); 20597 } 20598 ire_refrele(ire); 20599 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20600 "ip_wput_ire_end: q %p (%S)", 20601 q, "discard MDATA"); 20602 if (conn_outgoing_ill != NULL) 20603 ill_refrele(conn_outgoing_ill); 20604 return; 20605 } 20606 UPDATE_OB_PKT_COUNT(ire); 20607 ire->ire_last_used_time = lbolt; 20608 20609 if (multirt_send) { 20610 /* 20611 * We are in a multiple send case, 20612 * need to re-enter the sending loop 20613 * using the next ire. 20614 */ 20615 putnext(stq, mp1); 20616 ire_refrele(ire); 20617 ire = ire1; 20618 stq = ire->ire_stq; 20619 mp = next_mp; 20620 next_mp = NULL; 20621 ipha = (ipha_t *)mp->b_rptr; 20622 ill_index = Q_TO_INDEX(stq); 20623 } 20624 } while (multirt_send); 20625 20626 if (!next_mp) { 20627 /* 20628 * Last copy going out (the ultra-common 20629 * case). Note that we intentionally replicate 20630 * the putnext rather than calling it before 20631 * the next_mp check in hopes of a little 20632 * tail-call action out of the compiler. 20633 */ 20634 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20635 "ip_wput_ire_end: q %p (%S)", 20636 q, "last copy out(1)"); 20637 putnext(stq, mp1); 20638 ire_refrele(ire); 20639 if (conn_outgoing_ill != NULL) 20640 ill_refrele(conn_outgoing_ill); 20641 return; 20642 } 20643 /* More copies going out below. */ 20644 putnext(stq, mp1); 20645 } else { 20646 int offset; 20647 fragmentit: 20648 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20649 /* 20650 * If this would generate a icmp_frag_needed message, 20651 * we need to handle it before we do the IPSEC 20652 * processing. Otherwise, we need to strip the IPSEC 20653 * headers before we send up the message to the ULPs 20654 * which becomes messy and difficult. 20655 */ 20656 if (ipsec_len != 0) { 20657 if ((max_frag < (unsigned int)(LENGTH + 20658 ipsec_len)) && (offset & IPH_DF)) { 20659 20660 BUMP_MIB(&ip_mib, ipFragFails); 20661 ipha->ipha_hdr_checksum = 0; 20662 ipha->ipha_hdr_checksum = 20663 (uint16_t)ip_csum_hdr(ipha); 20664 icmp_frag_needed(ire->ire_stq, first_mp, 20665 max_frag); 20666 if (!next_mp) { 20667 ire_refrele(ire); 20668 if (conn_outgoing_ill != NULL) { 20669 ill_refrele( 20670 conn_outgoing_ill); 20671 } 20672 return; 20673 } 20674 } else { 20675 /* 20676 * This won't cause a icmp_frag_needed 20677 * message. to be gnerated. Send it on 20678 * the wire. Note that this could still 20679 * cause fragmentation and all we 20680 * do is the generation of the message 20681 * to the ULP if needed before IPSEC. 20682 */ 20683 if (!next_mp) { 20684 ipsec_out_process(q, first_mp, 20685 ire, ill_index); 20686 TRACE_2(TR_FAC_IP, 20687 TR_IP_WPUT_IRE_END, 20688 "ip_wput_ire_end: q %p " 20689 "(%S)", q, 20690 "last ipsec_out_process"); 20691 ire_refrele(ire); 20692 if (conn_outgoing_ill != NULL) { 20693 ill_refrele( 20694 conn_outgoing_ill); 20695 } 20696 return; 20697 } 20698 ipsec_out_process(q, first_mp, 20699 ire, ill_index); 20700 } 20701 } else { 20702 /* Initiate IPPF processing */ 20703 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20704 ip_process(IPP_LOCAL_OUT, &mp, 20705 ill_index); 20706 if (mp == NULL) { 20707 BUMP_MIB(&ip_mib, 20708 ipOutDiscards); 20709 if (next_mp != NULL) { 20710 freemsg(next_mp); 20711 ire_refrele(ire1); 20712 } 20713 ire_refrele(ire); 20714 TRACE_2(TR_FAC_IP, 20715 TR_IP_WPUT_IRE_END, 20716 "ip_wput_ire: q %p (%S)", 20717 q, "discard MDATA"); 20718 if (conn_outgoing_ill != NULL) { 20719 ill_refrele( 20720 conn_outgoing_ill); 20721 } 20722 return; 20723 } 20724 } 20725 if (!next_mp) { 20726 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20727 "ip_wput_ire_end: q %p (%S)", 20728 q, "last fragmentation"); 20729 ip_wput_ire_fragmentit(mp, ire); 20730 ire_refrele(ire); 20731 if (conn_outgoing_ill != NULL) 20732 ill_refrele(conn_outgoing_ill); 20733 return; 20734 } 20735 ip_wput_ire_fragmentit(mp, ire); 20736 } 20737 } 20738 } else { 20739 nullstq: 20740 /* A NULL stq means the destination address is local. */ 20741 UPDATE_OB_PKT_COUNT(ire); 20742 ire->ire_last_used_time = lbolt; 20743 ASSERT(ire->ire_ipif != NULL); 20744 if (!next_mp) { 20745 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20746 "ip_wput_ire_end: q %p (%S)", 20747 q, "local address"); 20748 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20749 first_mp, ire, 0, ire->ire_zoneid); 20750 ire_refrele(ire); 20751 if (conn_outgoing_ill != NULL) 20752 ill_refrele(conn_outgoing_ill); 20753 return; 20754 } 20755 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20756 ire, 0, ire->ire_zoneid); 20757 } 20758 next: 20759 /* 20760 * More copies going out to additional interfaces. 20761 * ire1 has already been held. We don't need the 20762 * "ire" anymore. 20763 */ 20764 ire_refrele(ire); 20765 ire = ire1; 20766 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20767 mp = next_mp; 20768 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20769 ill = ire_to_ill(ire); 20770 first_mp = mp; 20771 if (ipsec_len != 0) { 20772 ASSERT(first_mp->b_datap->db_type == M_CTL); 20773 mp = mp->b_cont; 20774 } 20775 dst = ire->ire_addr; 20776 ipha = (ipha_t *)mp->b_rptr; 20777 /* 20778 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20779 * Restore ipha_ident "no checksum" flag. 20780 */ 20781 src = orig_src; 20782 ipha->ipha_ident = ip_hdr_included; 20783 goto another; 20784 20785 #undef rptr 20786 #undef Q_TO_INDEX 20787 } 20788 20789 /* 20790 * Routine to allocate a message that is used to notify the ULP about MDT. 20791 * The caller may provide a pointer to the link-layer MDT capabilities, 20792 * or NULL if MDT is to be disabled on the stream. 20793 */ 20794 mblk_t * 20795 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20796 { 20797 mblk_t *mp; 20798 ip_mdt_info_t *mdti; 20799 ill_mdt_capab_t *idst; 20800 20801 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20802 DB_TYPE(mp) = M_CTL; 20803 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20804 mdti = (ip_mdt_info_t *)mp->b_rptr; 20805 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20806 idst = &(mdti->mdt_capab); 20807 20808 /* 20809 * If the caller provides us with the capability, copy 20810 * it over into our notification message; otherwise 20811 * we zero out the capability portion. 20812 */ 20813 if (isrc != NULL) 20814 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20815 else 20816 bzero((caddr_t)idst, sizeof (*idst)); 20817 } 20818 return (mp); 20819 } 20820 20821 /* 20822 * Routine which determines whether MDT can be enabled on the destination 20823 * IRE and IPC combination, and if so, allocates and returns the MDT 20824 * notification mblk that may be used by ULP. We also check if we need to 20825 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 20826 * MDT usage in the past have been lifted. This gets called during IP 20827 * and ULP binding. 20828 */ 20829 mblk_t * 20830 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 20831 ill_mdt_capab_t *mdt_cap) 20832 { 20833 mblk_t *mp; 20834 boolean_t rc = B_FALSE; 20835 20836 ASSERT(dst_ire != NULL); 20837 ASSERT(connp != NULL); 20838 ASSERT(mdt_cap != NULL); 20839 20840 /* 20841 * Currently, we only support simple TCP/{IPv4,IPv6} with 20842 * Multidata, which is handled in tcp_multisend(). This 20843 * is the reason why we do all these checks here, to ensure 20844 * that we don't enable Multidata for the cases which we 20845 * can't handle at the moment. 20846 */ 20847 do { 20848 /* Only do TCP at the moment */ 20849 if (connp->conn_ulp != IPPROTO_TCP) 20850 break; 20851 20852 /* 20853 * IPSEC outbound policy present? Note that we get here 20854 * after calling ipsec_conn_cache_policy() where the global 20855 * policy checking is performed. conn_latch will be 20856 * non-NULL as long as there's a policy defined, 20857 * i.e. conn_out_enforce_policy may be NULL in such case 20858 * when the connection is non-secure, and hence we check 20859 * further if the latch refers to an outbound policy. 20860 */ 20861 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 20862 break; 20863 20864 /* CGTP (multiroute) is enabled? */ 20865 if (dst_ire->ire_flags & RTF_MULTIRT) 20866 break; 20867 20868 /* Outbound IPQoS enabled? */ 20869 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20870 /* 20871 * In this case, we disable MDT for this and all 20872 * future connections going over the interface. 20873 */ 20874 mdt_cap->ill_mdt_on = 0; 20875 break; 20876 } 20877 20878 /* socket option(s) present? */ 20879 if (!CONN_IS_MD_FASTPATH(connp)) 20880 break; 20881 20882 rc = B_TRUE; 20883 /* CONSTCOND */ 20884 } while (0); 20885 20886 /* Remember the result */ 20887 connp->conn_mdt_ok = rc; 20888 20889 if (!rc) 20890 return (NULL); 20891 else if (!mdt_cap->ill_mdt_on) { 20892 /* 20893 * If MDT has been previously turned off in the past, and we 20894 * currently can do MDT (due to IPQoS policy removal, etc.) 20895 * then enable it for this interface. 20896 */ 20897 mdt_cap->ill_mdt_on = 1; 20898 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 20899 "interface %s\n", ill_name)); 20900 } 20901 20902 /* Allocate the MDT info mblk */ 20903 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 20904 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 20905 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 20906 return (NULL); 20907 } 20908 return (mp); 20909 } 20910 20911 /* 20912 * Create destination address attribute, and fill it with the physical 20913 * destination address and SAP taken from the template DL_UNITDATA_REQ 20914 * message block. 20915 */ 20916 boolean_t 20917 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 20918 { 20919 dl_unitdata_req_t *dlurp; 20920 pattr_t *pa; 20921 pattrinfo_t pa_info; 20922 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 20923 uint_t das_len, das_off; 20924 20925 ASSERT(dlmp != NULL); 20926 20927 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 20928 das_len = dlurp->dl_dest_addr_length; 20929 das_off = dlurp->dl_dest_addr_offset; 20930 20931 pa_info.type = PATTR_DSTADDRSAP; 20932 pa_info.len = sizeof (**das) + das_len - 1; 20933 20934 /* create and associate the attribute */ 20935 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20936 if (pa != NULL) { 20937 ASSERT(*das != NULL); 20938 (*das)->addr_is_group = 0; 20939 (*das)->addr_len = (uint8_t)das_len; 20940 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 20941 } 20942 20943 return (pa != NULL); 20944 } 20945 20946 /* 20947 * Create hardware checksum attribute and fill it with the values passed. 20948 */ 20949 boolean_t 20950 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 20951 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 20952 { 20953 pattr_t *pa; 20954 pattrinfo_t pa_info; 20955 20956 ASSERT(mmd != NULL); 20957 20958 pa_info.type = PATTR_HCKSUM; 20959 pa_info.len = sizeof (pattr_hcksum_t); 20960 20961 /* create and associate the attribute */ 20962 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20963 if (pa != NULL) { 20964 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 20965 20966 hck->hcksum_start_offset = start_offset; 20967 hck->hcksum_stuff_offset = stuff_offset; 20968 hck->hcksum_end_offset = end_offset; 20969 hck->hcksum_flags = flags; 20970 } 20971 return (pa != NULL); 20972 } 20973 20974 /* 20975 * Create zerocopy attribute and fill it with the specified flags 20976 */ 20977 boolean_t 20978 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 20979 { 20980 pattr_t *pa; 20981 pattrinfo_t pa_info; 20982 20983 ASSERT(mmd != NULL); 20984 pa_info.type = PATTR_ZCOPY; 20985 pa_info.len = sizeof (pattr_zcopy_t); 20986 20987 /* create and associate the attribute */ 20988 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20989 if (pa != NULL) { 20990 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 20991 20992 zcopy->zcopy_flags = flags; 20993 } 20994 return (pa != NULL); 20995 } 20996 20997 /* 20998 * Outbound IP fragmentation routine. 20999 * 21000 * NOTE : This routine does not ire_refrele the ire that is passed in 21001 * as the argument. 21002 */ 21003 static void 21004 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 21005 uint32_t frag_flag) 21006 { 21007 int i1; 21008 mblk_t *ll_hdr_mp; 21009 int ll_hdr_len; 21010 int hdr_len; 21011 mblk_t *hdr_mp; 21012 ipha_t *ipha; 21013 int ip_data_end; 21014 int len; 21015 mblk_t *mp = mp_orig; 21016 int offset; 21017 queue_t *q; 21018 uint32_t v_hlen_tos_len; 21019 mblk_t *first_mp; 21020 boolean_t mctl_present; 21021 mblk_t *xmit_mp; 21022 mblk_t *carve_mp; 21023 ire_t *ire1 = NULL; 21024 ire_t *save_ire = NULL; 21025 mblk_t *next_mp = NULL; 21026 boolean_t last_frag = B_FALSE; 21027 boolean_t multirt_send = B_FALSE; 21028 ire_t *first_ire = NULL; 21029 irb_t *irb = NULL; 21030 21031 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21032 "ip_wput_frag_start:"); 21033 21034 if (mp->b_datap->db_type == M_CTL) { 21035 first_mp = mp; 21036 mp_orig = mp = mp->b_cont; 21037 mctl_present = B_TRUE; 21038 } else { 21039 first_mp = mp; 21040 mctl_present = B_FALSE; 21041 } 21042 21043 ipha = (ipha_t *)mp->b_rptr; 21044 21045 /* 21046 * If the Don't Fragment flag is on, generate an ICMP destination 21047 * unreachable, fragmentation needed. 21048 */ 21049 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21050 if (offset & IPH_DF) { 21051 BUMP_MIB(&ip_mib, ipFragFails); 21052 /* 21053 * Need to compute hdr checksum if called from ip_wput_ire. 21054 * Note that ip_rput_forward verifies the checksum before 21055 * calling this routine so in that case this is a noop. 21056 */ 21057 ipha->ipha_hdr_checksum = 0; 21058 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21059 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21060 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21061 "ip_wput_frag_end:(%S)", 21062 "don't fragment"); 21063 return; 21064 } 21065 if (mctl_present) 21066 freeb(first_mp); 21067 /* 21068 * Establish the starting offset. May not be zero if we are fragging 21069 * a fragment that is being forwarded. 21070 */ 21071 offset = offset & IPH_OFFSET; 21072 21073 /* TODO why is this test needed? */ 21074 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21075 if (((max_frag - LENGTH) & ~7) < 8) { 21076 /* TODO: notify ulp somehow */ 21077 BUMP_MIB(&ip_mib, ipFragFails); 21078 freemsg(mp); 21079 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21080 "ip_wput_frag_end:(%S)", 21081 "len < 8"); 21082 return; 21083 } 21084 21085 hdr_len = (V_HLEN & 0xF) << 2; 21086 ipha->ipha_hdr_checksum = 0; 21087 21088 /* Get a copy of the header for the trailing frags */ 21089 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21090 if (!hdr_mp) { 21091 BUMP_MIB(&ip_mib, ipOutDiscards); 21092 freemsg(mp); 21093 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21094 "ip_wput_frag_end:(%S)", 21095 "couldn't copy hdr"); 21096 return; 21097 } 21098 21099 /* Store the starting offset, with the MoreFrags flag. */ 21100 i1 = offset | IPH_MF | frag_flag; 21101 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21102 21103 /* Establish the ending byte offset, based on the starting offset. */ 21104 offset <<= 3; 21105 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21106 21107 /* 21108 * Establish the number of bytes maximum per frag, after putting 21109 * in the header. 21110 */ 21111 len = (max_frag - hdr_len) & ~7; 21112 21113 /* Store the length of the first fragment in the IP header. */ 21114 i1 = len + hdr_len; 21115 ASSERT(i1 <= IP_MAXPACKET); 21116 ipha->ipha_length = htons((uint16_t)i1); 21117 21118 /* 21119 * Compute the IP header checksum for the first frag. We have to 21120 * watch out that we stop at the end of the header. 21121 */ 21122 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21123 21124 /* 21125 * Now carve off the first frag. Note that this will include the 21126 * original IP header. 21127 */ 21128 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21129 BUMP_MIB(&ip_mib, ipOutDiscards); 21130 freeb(hdr_mp); 21131 freemsg(mp_orig); 21132 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21133 "ip_wput_frag_end:(%S)", 21134 "couldn't carve first"); 21135 return; 21136 } 21137 21138 /* 21139 * Multirouting case. Each fragment is replicated 21140 * via all non-condemned RTF_MULTIRT routes 21141 * currently resolved. 21142 * We ensure that first_ire is the first RTF_MULTIRT 21143 * ire in the bucket. 21144 */ 21145 if (ire->ire_flags & RTF_MULTIRT) { 21146 irb = ire->ire_bucket; 21147 ASSERT(irb != NULL); 21148 21149 multirt_send = B_TRUE; 21150 21151 /* Make sure we do not omit any multiroute ire. */ 21152 IRB_REFHOLD(irb); 21153 for (first_ire = irb->irb_ire; 21154 first_ire != NULL; 21155 first_ire = first_ire->ire_next) { 21156 if ((first_ire->ire_flags & RTF_MULTIRT) && 21157 (first_ire->ire_addr == ire->ire_addr) && 21158 !(first_ire->ire_marks & 21159 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21160 break; 21161 } 21162 21163 if (first_ire != NULL) { 21164 if (first_ire != ire) { 21165 IRE_REFHOLD(first_ire); 21166 /* 21167 * Do not release the ire passed in 21168 * as the argument. 21169 */ 21170 ire = first_ire; 21171 } else { 21172 first_ire = NULL; 21173 } 21174 } 21175 IRB_REFRELE(irb); 21176 21177 /* 21178 * Save the first ire; we will need to restore it 21179 * for the trailing frags. 21180 * We REFHOLD save_ire, as each iterated ire will be 21181 * REFRELEd. 21182 */ 21183 save_ire = ire; 21184 IRE_REFHOLD(save_ire); 21185 } 21186 21187 /* 21188 * First fragment emission loop. 21189 * In most cases, the emission loop below is entered only 21190 * once. Only in the case where the ire holds the RTF_MULTIRT 21191 * flag, do we loop to process all RTF_MULTIRT ires in the 21192 * bucket, and send the fragment through all crossed 21193 * RTF_MULTIRT routes. 21194 */ 21195 do { 21196 if (ire->ire_flags & RTF_MULTIRT) { 21197 /* 21198 * We are in a multiple send case, need to get 21199 * the next ire and make a copy of the packet. 21200 * ire1 holds here the next ire to process in the 21201 * bucket. If multirouting is expected, 21202 * any non-RTF_MULTIRT ire that has the 21203 * right destination address is ignored. 21204 * 21205 * We have to take into account the MTU of 21206 * each walked ire. max_frag is set by the 21207 * the caller and generally refers to 21208 * the primary ire entry. Here we ensure that 21209 * no route with a lower MTU will be used, as 21210 * fragments are carved once for all ires, 21211 * then replicated. 21212 */ 21213 ASSERT(irb != NULL); 21214 IRB_REFHOLD(irb); 21215 for (ire1 = ire->ire_next; 21216 ire1 != NULL; 21217 ire1 = ire1->ire_next) { 21218 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21219 continue; 21220 if (ire1->ire_addr != ire->ire_addr) 21221 continue; 21222 if (ire1->ire_marks & 21223 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21224 continue; 21225 /* 21226 * Ensure we do not exceed the MTU 21227 * of the next route. 21228 */ 21229 if (ire1->ire_max_frag < max_frag) { 21230 ip_multirt_bad_mtu(ire1, max_frag); 21231 continue; 21232 } 21233 21234 /* Got one. */ 21235 IRE_REFHOLD(ire1); 21236 break; 21237 } 21238 IRB_REFRELE(irb); 21239 21240 if (ire1 != NULL) { 21241 next_mp = copyb(mp); 21242 if ((next_mp == NULL) || 21243 ((mp->b_cont != NULL) && 21244 ((next_mp->b_cont = 21245 dupmsg(mp->b_cont)) == NULL))) { 21246 freemsg(next_mp); 21247 next_mp = NULL; 21248 ire_refrele(ire1); 21249 ire1 = NULL; 21250 } 21251 } 21252 21253 /* Last multiroute ire; don't loop anymore. */ 21254 if (ire1 == NULL) { 21255 multirt_send = B_FALSE; 21256 } 21257 } 21258 21259 ll_hdr_len = 0; 21260 LOCK_IRE_FP_MP(ire); 21261 ll_hdr_mp = ire->ire_fp_mp; 21262 if (ll_hdr_mp != NULL) { 21263 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21264 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21265 } else { 21266 ll_hdr_mp = ire->ire_dlureq_mp; 21267 } 21268 21269 /* If there is a transmit header, get a copy for this frag. */ 21270 /* 21271 * TODO: should check db_ref before calling ip_carve_mp since 21272 * it might give us a dup. 21273 */ 21274 if (!ll_hdr_mp) { 21275 /* No xmit header. */ 21276 xmit_mp = mp; 21277 } else if (mp->b_datap->db_ref == 1 && 21278 ll_hdr_len != 0 && 21279 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21280 /* M_DATA fastpath */ 21281 mp->b_rptr -= ll_hdr_len; 21282 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21283 xmit_mp = mp; 21284 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21285 UNLOCK_IRE_FP_MP(ire); 21286 BUMP_MIB(&ip_mib, ipOutDiscards); 21287 freeb(hdr_mp); 21288 freemsg(mp); 21289 freemsg(mp_orig); 21290 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21291 "ip_wput_frag_end:(%S)", 21292 "discard"); 21293 21294 if (multirt_send) { 21295 ASSERT(ire1); 21296 ASSERT(next_mp); 21297 21298 freemsg(next_mp); 21299 ire_refrele(ire1); 21300 } 21301 if (save_ire != NULL) 21302 IRE_REFRELE(save_ire); 21303 21304 if (first_ire != NULL) 21305 ire_refrele(first_ire); 21306 return; 21307 } else { 21308 xmit_mp->b_cont = mp; 21309 /* Get priority marking, if any. */ 21310 if (DB_TYPE(xmit_mp) == M_DATA) 21311 xmit_mp->b_band = mp->b_band; 21312 } 21313 UNLOCK_IRE_FP_MP(ire); 21314 q = ire->ire_stq; 21315 BUMP_MIB(&ip_mib, ipFragCreates); 21316 putnext(q, xmit_mp); 21317 if (pkt_type != OB_PKT) { 21318 /* 21319 * Update the packet count of trailing 21320 * RTF_MULTIRT ires. 21321 */ 21322 UPDATE_OB_PKT_COUNT(ire); 21323 } 21324 21325 if (multirt_send) { 21326 /* 21327 * We are in a multiple send case; look for 21328 * the next ire and re-enter the loop. 21329 */ 21330 ASSERT(ire1); 21331 ASSERT(next_mp); 21332 /* REFRELE the current ire before looping */ 21333 ire_refrele(ire); 21334 ire = ire1; 21335 ire1 = NULL; 21336 mp = next_mp; 21337 next_mp = NULL; 21338 } 21339 } while (multirt_send); 21340 21341 ASSERT(ire1 == NULL); 21342 21343 /* Restore the original ire; we need it for the trailing frags */ 21344 if (save_ire != NULL) { 21345 /* REFRELE the last iterated ire */ 21346 ire_refrele(ire); 21347 /* save_ire has been REFHOLDed */ 21348 ire = save_ire; 21349 save_ire = NULL; 21350 q = ire->ire_stq; 21351 } 21352 21353 if (pkt_type == OB_PKT) { 21354 UPDATE_OB_PKT_COUNT(ire); 21355 } else { 21356 UPDATE_IB_PKT_COUNT(ire); 21357 } 21358 21359 /* Advance the offset to the second frag starting point. */ 21360 offset += len; 21361 /* 21362 * Update hdr_len from the copied header - there might be less options 21363 * in the later fragments. 21364 */ 21365 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21366 /* Loop until done. */ 21367 for (;;) { 21368 uint16_t offset_and_flags; 21369 uint16_t ip_len; 21370 21371 if (ip_data_end - offset > len) { 21372 /* 21373 * Carve off the appropriate amount from the original 21374 * datagram. 21375 */ 21376 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21377 mp = NULL; 21378 break; 21379 } 21380 /* 21381 * More frags after this one. Get another copy 21382 * of the header. 21383 */ 21384 if (carve_mp->b_datap->db_ref == 1 && 21385 hdr_mp->b_wptr - hdr_mp->b_rptr < 21386 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21387 /* Inline IP header */ 21388 carve_mp->b_rptr -= hdr_mp->b_wptr - 21389 hdr_mp->b_rptr; 21390 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21391 hdr_mp->b_wptr - hdr_mp->b_rptr); 21392 mp = carve_mp; 21393 } else { 21394 if (!(mp = copyb(hdr_mp))) { 21395 freemsg(carve_mp); 21396 break; 21397 } 21398 /* Get priority marking, if any. */ 21399 mp->b_band = carve_mp->b_band; 21400 mp->b_cont = carve_mp; 21401 } 21402 ipha = (ipha_t *)mp->b_rptr; 21403 offset_and_flags = IPH_MF; 21404 } else { 21405 /* 21406 * Last frag. Consume the header. Set len to 21407 * the length of this last piece. 21408 */ 21409 len = ip_data_end - offset; 21410 21411 /* 21412 * Carve off the appropriate amount from the original 21413 * datagram. 21414 */ 21415 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21416 mp = NULL; 21417 break; 21418 } 21419 if (carve_mp->b_datap->db_ref == 1 && 21420 hdr_mp->b_wptr - hdr_mp->b_rptr < 21421 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21422 /* Inline IP header */ 21423 carve_mp->b_rptr -= hdr_mp->b_wptr - 21424 hdr_mp->b_rptr; 21425 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21426 hdr_mp->b_wptr - hdr_mp->b_rptr); 21427 mp = carve_mp; 21428 freeb(hdr_mp); 21429 hdr_mp = mp; 21430 } else { 21431 mp = hdr_mp; 21432 /* Get priority marking, if any. */ 21433 mp->b_band = carve_mp->b_band; 21434 mp->b_cont = carve_mp; 21435 } 21436 ipha = (ipha_t *)mp->b_rptr; 21437 /* A frag of a frag might have IPH_MF non-zero */ 21438 offset_and_flags = 21439 ntohs(ipha->ipha_fragment_offset_and_flags) & 21440 IPH_MF; 21441 } 21442 offset_and_flags |= (uint16_t)(offset >> 3); 21443 offset_and_flags |= (uint16_t)frag_flag; 21444 /* Store the offset and flags in the IP header. */ 21445 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21446 21447 /* Store the length in the IP header. */ 21448 ip_len = (uint16_t)(len + hdr_len); 21449 ipha->ipha_length = htons(ip_len); 21450 21451 /* 21452 * Set the IP header checksum. Note that mp is just 21453 * the header, so this is easy to pass to ip_csum. 21454 */ 21455 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21456 21457 /* Attach a transmit header, if any, and ship it. */ 21458 if (pkt_type == OB_PKT) { 21459 UPDATE_OB_PKT_COUNT(ire); 21460 } else { 21461 UPDATE_IB_PKT_COUNT(ire); 21462 } 21463 21464 if (ire->ire_flags & RTF_MULTIRT) { 21465 irb = ire->ire_bucket; 21466 ASSERT(irb != NULL); 21467 21468 multirt_send = B_TRUE; 21469 21470 /* 21471 * Save the original ire; we will need to restore it 21472 * for the tailing frags. 21473 */ 21474 save_ire = ire; 21475 IRE_REFHOLD(save_ire); 21476 } 21477 /* 21478 * Emission loop for this fragment, similar 21479 * to what is done for the first fragment. 21480 */ 21481 do { 21482 if (multirt_send) { 21483 /* 21484 * We are in a multiple send case, need to get 21485 * the next ire and make a copy of the packet. 21486 */ 21487 ASSERT(irb != NULL); 21488 IRB_REFHOLD(irb); 21489 for (ire1 = ire->ire_next; 21490 ire1 != NULL; 21491 ire1 = ire1->ire_next) { 21492 if (!(ire1->ire_flags & RTF_MULTIRT)) 21493 continue; 21494 if (ire1->ire_addr != ire->ire_addr) 21495 continue; 21496 if (ire1->ire_marks & 21497 (IRE_MARK_CONDEMNED| 21498 IRE_MARK_HIDDEN)) 21499 continue; 21500 /* 21501 * Ensure we do not exceed the MTU 21502 * of the next route. 21503 */ 21504 if (ire1->ire_max_frag < max_frag) { 21505 ip_multirt_bad_mtu(ire1, 21506 max_frag); 21507 continue; 21508 } 21509 21510 /* Got one. */ 21511 IRE_REFHOLD(ire1); 21512 break; 21513 } 21514 IRB_REFRELE(irb); 21515 21516 if (ire1 != NULL) { 21517 next_mp = copyb(mp); 21518 if ((next_mp == NULL) || 21519 ((mp->b_cont != NULL) && 21520 ((next_mp->b_cont = 21521 dupmsg(mp->b_cont)) == NULL))) { 21522 freemsg(next_mp); 21523 next_mp = NULL; 21524 ire_refrele(ire1); 21525 ire1 = NULL; 21526 } 21527 } 21528 21529 /* Last multiroute ire; don't loop anymore. */ 21530 if (ire1 == NULL) { 21531 multirt_send = B_FALSE; 21532 } 21533 } 21534 21535 /* Update transmit header */ 21536 ll_hdr_len = 0; 21537 LOCK_IRE_FP_MP(ire); 21538 ll_hdr_mp = ire->ire_fp_mp; 21539 if (ll_hdr_mp != NULL) { 21540 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21541 ll_hdr_len = MBLKL(ll_hdr_mp); 21542 } else { 21543 ll_hdr_mp = ire->ire_dlureq_mp; 21544 } 21545 21546 if (!ll_hdr_mp) { 21547 xmit_mp = mp; 21548 } else if (mp->b_datap->db_ref == 1 && 21549 ll_hdr_len != 0 && 21550 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21551 /* M_DATA fastpath */ 21552 mp->b_rptr -= ll_hdr_len; 21553 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 21554 ll_hdr_len); 21555 xmit_mp = mp; 21556 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 21557 xmit_mp->b_cont = mp; 21558 /* Get priority marking, if any. */ 21559 if (DB_TYPE(xmit_mp) == M_DATA) 21560 xmit_mp->b_band = mp->b_band; 21561 } else { 21562 /* 21563 * Exit both the replication and 21564 * fragmentation loops. 21565 */ 21566 UNLOCK_IRE_FP_MP(ire); 21567 goto drop_pkt; 21568 } 21569 UNLOCK_IRE_FP_MP(ire); 21570 BUMP_MIB(&ip_mib, ipFragCreates); 21571 putnext(q, xmit_mp); 21572 21573 if (pkt_type != OB_PKT) { 21574 /* 21575 * Update the packet count of trailing 21576 * RTF_MULTIRT ires. 21577 */ 21578 UPDATE_OB_PKT_COUNT(ire); 21579 } 21580 21581 /* All done if we just consumed the hdr_mp. */ 21582 if (mp == hdr_mp) { 21583 last_frag = B_TRUE; 21584 } 21585 21586 if (multirt_send) { 21587 /* 21588 * We are in a multiple send case; look for 21589 * the next ire and re-enter the loop. 21590 */ 21591 ASSERT(ire1); 21592 ASSERT(next_mp); 21593 /* REFRELE the current ire before looping */ 21594 ire_refrele(ire); 21595 ire = ire1; 21596 ire1 = NULL; 21597 q = ire->ire_stq; 21598 mp = next_mp; 21599 next_mp = NULL; 21600 } 21601 } while (multirt_send); 21602 /* 21603 * Restore the original ire; we need it for the 21604 * trailing frags 21605 */ 21606 if (save_ire != NULL) { 21607 ASSERT(ire1 == NULL); 21608 /* REFRELE the last iterated ire */ 21609 ire_refrele(ire); 21610 /* save_ire has been REFHOLDed */ 21611 ire = save_ire; 21612 q = ire->ire_stq; 21613 save_ire = NULL; 21614 } 21615 21616 if (last_frag) { 21617 BUMP_MIB(&ip_mib, ipFragOKs); 21618 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21619 "ip_wput_frag_end:(%S)", 21620 "consumed hdr_mp"); 21621 21622 if (first_ire != NULL) 21623 ire_refrele(first_ire); 21624 return; 21625 } 21626 /* Otherwise, advance and loop. */ 21627 offset += len; 21628 } 21629 21630 drop_pkt: 21631 /* Clean up following allocation failure. */ 21632 BUMP_MIB(&ip_mib, ipOutDiscards); 21633 freemsg(mp); 21634 if (mp != hdr_mp) 21635 freeb(hdr_mp); 21636 if (mp != mp_orig) 21637 freemsg(mp_orig); 21638 21639 if (save_ire != NULL) 21640 IRE_REFRELE(save_ire); 21641 if (first_ire != NULL) 21642 ire_refrele(first_ire); 21643 21644 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21645 "ip_wput_frag_end:(%S)", 21646 "end--alloc failure"); 21647 } 21648 21649 /* 21650 * Copy the header plus those options which have the copy bit set 21651 */ 21652 static mblk_t * 21653 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 21654 { 21655 mblk_t *mp; 21656 uchar_t *up; 21657 21658 /* 21659 * Quick check if we need to look for options without the copy bit 21660 * set 21661 */ 21662 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 21663 if (!mp) 21664 return (mp); 21665 mp->b_rptr += ip_wroff_extra; 21666 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 21667 bcopy(rptr, mp->b_rptr, hdr_len); 21668 mp->b_wptr += hdr_len + ip_wroff_extra; 21669 return (mp); 21670 } 21671 up = mp->b_rptr; 21672 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 21673 up += IP_SIMPLE_HDR_LENGTH; 21674 rptr += IP_SIMPLE_HDR_LENGTH; 21675 hdr_len -= IP_SIMPLE_HDR_LENGTH; 21676 while (hdr_len > 0) { 21677 uint32_t optval; 21678 uint32_t optlen; 21679 21680 optval = *rptr; 21681 if (optval == IPOPT_EOL) 21682 break; 21683 if (optval == IPOPT_NOP) 21684 optlen = 1; 21685 else 21686 optlen = rptr[1]; 21687 if (optval & IPOPT_COPY) { 21688 bcopy(rptr, up, optlen); 21689 up += optlen; 21690 } 21691 rptr += optlen; 21692 hdr_len -= optlen; 21693 } 21694 /* 21695 * Make sure that we drop an even number of words by filling 21696 * with EOL to the next word boundary. 21697 */ 21698 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 21699 hdr_len & 0x3; hdr_len++) 21700 *up++ = IPOPT_EOL; 21701 mp->b_wptr = up; 21702 /* Update header length */ 21703 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 21704 return (mp); 21705 } 21706 21707 /* 21708 * Delivery to local recipients including fanout to multiple recipients. 21709 * Does not do checksumming of UDP/TCP. 21710 * Note: q should be the read side queue for either the ill or conn. 21711 * Note: rq should be the read side q for the lower (ill) stream. 21712 * We don't send packets to IPPF processing, thus the last argument 21713 * to all the fanout calls are B_FALSE. 21714 */ 21715 void 21716 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 21717 int fanout_flags, zoneid_t zoneid) 21718 { 21719 uint32_t protocol; 21720 mblk_t *first_mp; 21721 boolean_t mctl_present; 21722 int ire_type; 21723 #define rptr ((uchar_t *)ipha) 21724 21725 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 21726 "ip_wput_local_start: q %p", q); 21727 21728 if (ire != NULL) { 21729 ire_type = ire->ire_type; 21730 } else { 21731 /* 21732 * Only ip_multicast_loopback() calls us with a NULL ire. If the 21733 * packet is not multicast, we can't tell the ire type. 21734 */ 21735 ASSERT(CLASSD(ipha->ipha_dst)); 21736 ire_type = IRE_BROADCAST; 21737 } 21738 21739 first_mp = mp; 21740 if (first_mp->b_datap->db_type == M_CTL) { 21741 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 21742 if (!io->ipsec_out_secure) { 21743 /* 21744 * This ipsec_out_t was allocated in ip_wput 21745 * for multicast packets to store the ill_index. 21746 * As this is being delivered locally, we don't 21747 * need this anymore. 21748 */ 21749 mp = first_mp->b_cont; 21750 freeb(first_mp); 21751 first_mp = mp; 21752 mctl_present = B_FALSE; 21753 } else { 21754 mctl_present = B_TRUE; 21755 mp = first_mp->b_cont; 21756 ASSERT(mp != NULL); 21757 ipsec_out_to_in(first_mp); 21758 } 21759 } else { 21760 mctl_present = B_FALSE; 21761 } 21762 21763 loopback_packets++; 21764 21765 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 21766 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 21767 if (!IS_SIMPLE_IPH(ipha)) { 21768 ip_wput_local_options(ipha); 21769 } 21770 21771 protocol = ipha->ipha_protocol; 21772 switch (protocol) { 21773 case IPPROTO_ICMP: { 21774 ire_t *ire_zone; 21775 ilm_t *ilm; 21776 mblk_t *mp1; 21777 zoneid_t last_zoneid; 21778 21779 if (CLASSD(ipha->ipha_dst) && 21780 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 21781 ASSERT(ire_type == IRE_BROADCAST); 21782 /* 21783 * In the multicast case, applications may have joined 21784 * the group from different zones, so we need to deliver 21785 * the packet to each of them. Loop through the 21786 * multicast memberships structures (ilm) on the receive 21787 * ill and send a copy of the packet up each matching 21788 * one. However, we don't do this for multicasts sent on 21789 * the loopback interface (PHYI_LOOPBACK flag set) as 21790 * they must stay in the sender's zone. 21791 * 21792 * ilm_add_v6() ensures that ilms in the same zone are 21793 * contiguous in the ill_ilm list. We use this property 21794 * to avoid sending duplicates needed when two 21795 * applications in the same zone join the same group on 21796 * different logical interfaces: we ignore the ilm if 21797 * its zoneid is the same as the last matching one. 21798 * In addition, the sending of the packet for 21799 * ire_zoneid is delayed until all of the other ilms 21800 * have been exhausted. 21801 */ 21802 last_zoneid = -1; 21803 ILM_WALKER_HOLD(ill); 21804 for (ilm = ill->ill_ilm; ilm != NULL; 21805 ilm = ilm->ilm_next) { 21806 if ((ilm->ilm_flags & ILM_DELETED) || 21807 ipha->ipha_dst != ilm->ilm_addr || 21808 ilm->ilm_zoneid == last_zoneid || 21809 ilm->ilm_zoneid == zoneid || 21810 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 21811 continue; 21812 mp1 = ip_copymsg(first_mp); 21813 if (mp1 == NULL) 21814 continue; 21815 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21816 mctl_present, B_FALSE, ill, 21817 ilm->ilm_zoneid); 21818 last_zoneid = ilm->ilm_zoneid; 21819 } 21820 ILM_WALKER_RELE(ill); 21821 /* 21822 * Loopback case: the sending endpoint has 21823 * IP_MULTICAST_LOOP disabled, therefore we don't 21824 * dispatch the multicast packet to the sending zone. 21825 */ 21826 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 21827 freemsg(first_mp); 21828 return; 21829 } 21830 } else if (ire_type == IRE_BROADCAST) { 21831 /* 21832 * In the broadcast case, there may be many zones 21833 * which need a copy of the packet delivered to them. 21834 * There is one IRE_BROADCAST per broadcast address 21835 * and per zone; we walk those using a helper function. 21836 * In addition, the sending of the packet for zoneid is 21837 * delayed until all of the other ires have been 21838 * processed. 21839 */ 21840 IRB_REFHOLD(ire->ire_bucket); 21841 ire_zone = NULL; 21842 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 21843 ire)) != NULL) { 21844 mp1 = ip_copymsg(first_mp); 21845 if (mp1 == NULL) 21846 continue; 21847 21848 UPDATE_IB_PKT_COUNT(ire_zone); 21849 ire_zone->ire_last_used_time = lbolt; 21850 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21851 mctl_present, B_FALSE, ill, 21852 ire_zone->ire_zoneid); 21853 } 21854 IRB_REFRELE(ire->ire_bucket); 21855 } 21856 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 21857 0, mctl_present, B_FALSE, ill, zoneid); 21858 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21859 "ip_wput_local_end: q %p (%S)", 21860 q, "icmp"); 21861 return; 21862 } 21863 case IPPROTO_IGMP: 21864 if (igmp_input(q, mp, ill)) { 21865 /* Bad packet - discarded by igmp_input */ 21866 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21867 "ip_wput_local_end: q %p (%S)", 21868 q, "igmp_input--bad packet"); 21869 if (mctl_present) 21870 freeb(first_mp); 21871 return; 21872 } 21873 /* 21874 * igmp_input() may have pulled up the message so ipha needs to 21875 * be reinitialized. 21876 */ 21877 ipha = (ipha_t *)mp->b_rptr; 21878 /* deliver to local raw users */ 21879 break; 21880 case IPPROTO_ENCAP: 21881 /* 21882 * This case is covered by either ip_fanout_proto, or by 21883 * the above security processing for self-tunneled packets. 21884 */ 21885 break; 21886 case IPPROTO_UDP: { 21887 uint16_t *up; 21888 uint32_t ports; 21889 21890 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 21891 UDP_PORTS_OFFSET); 21892 /* Force a 'valid' checksum. */ 21893 up[3] = 0; 21894 21895 ports = *(uint32_t *)up; 21896 ip_fanout_udp(q, first_mp, ill, ipha, ports, 21897 (ire_type == IRE_BROADCAST), 21898 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21899 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 21900 ill, zoneid); 21901 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21902 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 21903 return; 21904 } 21905 case IPPROTO_TCP: { 21906 21907 /* 21908 * For TCP, discard broadcast packets. 21909 */ 21910 if ((ushort_t)ire_type == IRE_BROADCAST) { 21911 freemsg(first_mp); 21912 BUMP_MIB(&ip_mib, ipInDiscards); 21913 return; 21914 } 21915 21916 if (mp->b_datap->db_type == M_DATA) { 21917 /* 21918 * M_DATA mblk, so init mblk (chain) for no struio(). 21919 */ 21920 mblk_t *mp1 = mp; 21921 21922 do 21923 mp1->b_datap->db_struioflag = 0; 21924 while ((mp1 = mp1->b_cont) != NULL); 21925 } 21926 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 21927 <= mp->b_wptr); 21928 ip_fanout_tcp(q, first_mp, ill, ipha, 21929 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21930 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 21931 mctl_present, B_FALSE, zoneid); 21932 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21933 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 21934 return; 21935 } 21936 case IPPROTO_SCTP: 21937 { 21938 uint32_t ports; 21939 21940 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 21941 ip_fanout_sctp(first_mp, ill, ipha, ports, 21942 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21943 IP_FF_IP6INFO, 21944 mctl_present, B_FALSE, 0, zoneid); 21945 return; 21946 } 21947 21948 default: 21949 break; 21950 } 21951 /* 21952 * Find a client for some other protocol. We give 21953 * copies to multiple clients, if more than one is 21954 * bound. 21955 */ 21956 ip_fanout_proto(q, first_mp, ill, ipha, 21957 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 21958 mctl_present, B_FALSE, ill, zoneid); 21959 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21960 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 21961 #undef rptr 21962 } 21963 21964 /* 21965 * Update any source route, record route, or timestamp options. 21966 * Check that we are at end of strict source route. 21967 * The options have been sanity checked by ip_wput_options(). 21968 */ 21969 static void 21970 ip_wput_local_options(ipha_t *ipha) 21971 { 21972 ipoptp_t opts; 21973 uchar_t *opt; 21974 uint8_t optval; 21975 uint8_t optlen; 21976 ipaddr_t dst; 21977 uint32_t ts; 21978 ire_t *ire; 21979 timestruc_t now; 21980 21981 ip2dbg(("ip_wput_local_options\n")); 21982 for (optval = ipoptp_first(&opts, ipha); 21983 optval != IPOPT_EOL; 21984 optval = ipoptp_next(&opts)) { 21985 opt = opts.ipoptp_cur; 21986 optlen = opts.ipoptp_len; 21987 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21988 switch (optval) { 21989 uint32_t off; 21990 case IPOPT_SSRR: 21991 case IPOPT_LSRR: 21992 off = opt[IPOPT_OFFSET]; 21993 off--; 21994 if (optlen < IP_ADDR_LEN || 21995 off > optlen - IP_ADDR_LEN) { 21996 /* End of source route */ 21997 break; 21998 } 21999 /* 22000 * This will only happen if two consecutive entries 22001 * in the source route contains our address or if 22002 * it is a packet with a loose source route which 22003 * reaches us before consuming the whole source route 22004 */ 22005 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22006 if (optval == IPOPT_SSRR) { 22007 return; 22008 } 22009 /* 22010 * Hack: instead of dropping the packet truncate the 22011 * source route to what has been used by filling the 22012 * rest with IPOPT_NOP. 22013 */ 22014 opt[IPOPT_OLEN] = (uint8_t)off; 22015 while (off < optlen) { 22016 opt[off++] = IPOPT_NOP; 22017 } 22018 break; 22019 case IPOPT_RR: 22020 off = opt[IPOPT_OFFSET]; 22021 off--; 22022 if (optlen < IP_ADDR_LEN || 22023 off > optlen - IP_ADDR_LEN) { 22024 /* No more room - ignore */ 22025 ip1dbg(( 22026 "ip_wput_forward_options: end of RR\n")); 22027 break; 22028 } 22029 dst = htonl(INADDR_LOOPBACK); 22030 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22031 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22032 break; 22033 case IPOPT_TS: 22034 /* Insert timestamp if there is romm */ 22035 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22036 case IPOPT_TS_TSONLY: 22037 off = IPOPT_TS_TIMELEN; 22038 break; 22039 case IPOPT_TS_PRESPEC: 22040 case IPOPT_TS_PRESPEC_RFC791: 22041 /* Verify that the address matched */ 22042 off = opt[IPOPT_OFFSET] - 1; 22043 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22044 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22045 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22046 if (ire == NULL) { 22047 /* Not for us */ 22048 break; 22049 } 22050 ire_refrele(ire); 22051 /* FALLTHRU */ 22052 case IPOPT_TS_TSANDADDR: 22053 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22054 break; 22055 default: 22056 /* 22057 * ip_*put_options should have already 22058 * dropped this packet. 22059 */ 22060 cmn_err(CE_PANIC, "ip_wput_local_options: " 22061 "unknown IT - bug in ip_wput_options?\n"); 22062 return; /* Keep "lint" happy */ 22063 } 22064 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22065 /* Increase overflow counter */ 22066 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22067 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22068 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22069 (off << 4); 22070 break; 22071 } 22072 off = opt[IPOPT_OFFSET] - 1; 22073 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22074 case IPOPT_TS_PRESPEC: 22075 case IPOPT_TS_PRESPEC_RFC791: 22076 case IPOPT_TS_TSANDADDR: 22077 dst = htonl(INADDR_LOOPBACK); 22078 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22079 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22080 /* FALLTHRU */ 22081 case IPOPT_TS_TSONLY: 22082 off = opt[IPOPT_OFFSET] - 1; 22083 /* Compute # of milliseconds since midnight */ 22084 gethrestime(&now); 22085 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22086 now.tv_nsec / (NANOSEC / MILLISEC); 22087 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22088 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22089 break; 22090 } 22091 break; 22092 } 22093 } 22094 } 22095 22096 /* 22097 * Send out a multicast packet on interface ipif. 22098 * The sender does not have an conn. 22099 * Caller verifies that this isn't a PHYI_LOOPBACK. 22100 */ 22101 void 22102 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22103 { 22104 ipha_t *ipha; 22105 ire_t *ire; 22106 ipaddr_t dst; 22107 mblk_t *first_mp; 22108 22109 /* igmp_sendpkt always allocates a ipsec_out_t */ 22110 ASSERT(mp->b_datap->db_type == M_CTL); 22111 ASSERT(!ipif->ipif_isv6); 22112 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22113 22114 first_mp = mp; 22115 mp = first_mp->b_cont; 22116 ASSERT(mp->b_datap->db_type == M_DATA); 22117 ipha = (ipha_t *)mp->b_rptr; 22118 22119 /* 22120 * Find an IRE which matches the destination and the outgoing 22121 * queue (i.e. the outgoing interface.) 22122 */ 22123 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22124 dst = ipif->ipif_pp_dst_addr; 22125 else 22126 dst = ipha->ipha_dst; 22127 /* 22128 * The source address has already been initialized by the 22129 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22130 * be sufficient rather than MATCH_IRE_IPIF. 22131 * 22132 * This function is used for sending IGMP packets. We need 22133 * to make sure that we send the packet out of the interface 22134 * (ipif->ipif_ill) where we joined the group. This is to 22135 * prevent from switches doing IGMP snooping to send us multicast 22136 * packets for a given group on the interface we have joined. 22137 * If we can't find an ire, igmp_sendpkt has already initialized 22138 * ipsec_out_attach_if so that this will not be load spread in 22139 * ip_newroute_ipif. 22140 */ 22141 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22142 if (!ire) { 22143 /* 22144 * Mark this packet to make it be delivered to 22145 * ip_wput_ire after the new ire has been 22146 * created. 22147 */ 22148 mp->b_prev = NULL; 22149 mp->b_next = NULL; 22150 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22151 return; 22152 } 22153 22154 /* 22155 * Honor the RTF_SETSRC flag; this is the only case 22156 * where we force this addr whatever the current src addr is, 22157 * because this address is set by igmp_sendpkt(), and 22158 * cannot be specified by any user. 22159 */ 22160 if (ire->ire_flags & RTF_SETSRC) { 22161 ipha->ipha_src = ire->ire_src_addr; 22162 } 22163 22164 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22165 } 22166 22167 /* 22168 * NOTE : This function does not ire_refrele the ire argument passed in. 22169 * 22170 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22171 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22172 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22173 * the ire_lock to access the ire_fp_mp in this case. 22174 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22175 * prepending a fastpath message IPQoS processing must precede it, we also set 22176 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22177 * (IPQoS might have set the b_band for CoS marking). 22178 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22179 * must follow it so that IPQoS can mark the dl_priority field for CoS 22180 * marking, if needed. 22181 */ 22182 static mblk_t * 22183 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22184 { 22185 uint_t hlen; 22186 ipha_t *ipha; 22187 mblk_t *mp1; 22188 boolean_t qos_done = B_FALSE; 22189 uchar_t *ll_hdr; 22190 22191 #define rptr ((uchar_t *)ipha) 22192 22193 ipha = (ipha_t *)mp->b_rptr; 22194 hlen = 0; 22195 LOCK_IRE_FP_MP(ire); 22196 if ((mp1 = ire->ire_fp_mp) != NULL) { 22197 ASSERT(DB_TYPE(mp1) == M_DATA); 22198 /* Initiate IPPF processing */ 22199 if ((proc != 0) && IPP_ENABLED(proc)) { 22200 UNLOCK_IRE_FP_MP(ire); 22201 ip_process(proc, &mp, ill_index); 22202 if (mp == NULL) 22203 return (NULL); 22204 22205 ipha = (ipha_t *)mp->b_rptr; 22206 LOCK_IRE_FP_MP(ire); 22207 if ((mp1 = ire->ire_fp_mp) == NULL) { 22208 qos_done = B_TRUE; 22209 goto no_fp_mp; 22210 } 22211 ASSERT(DB_TYPE(mp1) == M_DATA); 22212 } 22213 hlen = MBLKL(mp1); 22214 /* 22215 * Check if we have enough room to prepend fastpath 22216 * header 22217 */ 22218 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22219 ll_hdr = rptr - hlen; 22220 bcopy(mp1->b_rptr, ll_hdr, hlen); 22221 /* XXX ipha is not aligned here */ 22222 ipha = (ipha_t *)(rptr - hlen); 22223 /* 22224 * Set the b_rptr to the start of the link layer 22225 * header 22226 */ 22227 mp->b_rptr = rptr; 22228 mp1 = mp; 22229 } else { 22230 mp1 = copyb(mp1); 22231 if (mp1 == NULL) 22232 goto unlock_err; 22233 mp1->b_band = mp->b_band; 22234 mp1->b_cont = mp; 22235 /* 22236 * XXX disable ICK_VALID and compute checksum 22237 * here; can happen if ire_fp_mp changes and 22238 * it can't be copied now due to insufficient 22239 * space. (unlikely, fp mp can change, but it 22240 * does not increase in length) 22241 */ 22242 } 22243 UNLOCK_IRE_FP_MP(ire); 22244 } else { 22245 no_fp_mp: 22246 mp1 = copyb(ire->ire_dlureq_mp); 22247 if (mp1 == NULL) { 22248 unlock_err: 22249 UNLOCK_IRE_FP_MP(ire); 22250 freemsg(mp); 22251 return (NULL); 22252 } 22253 UNLOCK_IRE_FP_MP(ire); 22254 mp1->b_cont = mp; 22255 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22256 ip_process(proc, &mp1, ill_index); 22257 if (mp1 == NULL) 22258 return (NULL); 22259 } 22260 } 22261 return (mp1); 22262 #undef rptr 22263 } 22264 22265 /* 22266 * Finish the outbound IPsec processing for an IPv6 packet. This function 22267 * is called from ipsec_out_process() if the IPsec packet was processed 22268 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22269 * asynchronously. 22270 */ 22271 void 22272 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22273 ire_t *ire_arg) 22274 { 22275 in6_addr_t *v6dstp; 22276 ire_t *ire; 22277 mblk_t *mp; 22278 uint_t ill_index; 22279 ipsec_out_t *io; 22280 boolean_t attach_if, hwaccel; 22281 uint32_t flags = IP6_NO_IPPOLICY; 22282 int match_flags; 22283 zoneid_t zoneid; 22284 boolean_t ill_need_rele = B_FALSE; 22285 boolean_t ire_need_rele = B_FALSE; 22286 22287 mp = ipsec_mp->b_cont; 22288 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22289 ill_index = io->ipsec_out_ill_index; 22290 if (io->ipsec_out_reachable) { 22291 flags |= IPV6_REACHABILITY_CONFIRMATION; 22292 } 22293 attach_if = io->ipsec_out_attach_if; 22294 hwaccel = io->ipsec_out_accelerated; 22295 zoneid = io->ipsec_out_zoneid; 22296 ASSERT(zoneid != ALL_ZONES); 22297 match_flags = MATCH_IRE_ILL_GROUP; 22298 /* Multicast addresses should have non-zero ill_index. */ 22299 v6dstp = &ip6h->ip6_dst; 22300 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22301 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22302 ASSERT(!attach_if || ill_index != 0); 22303 if (ill_index != 0) { 22304 if (ill == NULL) { 22305 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22306 B_TRUE); 22307 22308 /* Failure case frees things for us. */ 22309 if (ill == NULL) 22310 return; 22311 22312 ill_need_rele = B_TRUE; 22313 } 22314 /* 22315 * If this packet needs to go out on a particular interface 22316 * honor it. 22317 */ 22318 if (attach_if) { 22319 match_flags = MATCH_IRE_ILL; 22320 22321 /* 22322 * Check if we need an ire that will not be 22323 * looked up by anybody else i.e. HIDDEN. 22324 */ 22325 if (ill_is_probeonly(ill)) { 22326 match_flags |= MATCH_IRE_MARK_HIDDEN; 22327 } 22328 } 22329 } 22330 ASSERT(mp != NULL); 22331 22332 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22333 boolean_t unspec_src; 22334 ipif_t *ipif; 22335 22336 /* 22337 * Use the ill_index to get the right ill. 22338 */ 22339 unspec_src = io->ipsec_out_unspec_src; 22340 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22341 if (ipif == NULL) { 22342 if (ill_need_rele) 22343 ill_refrele(ill); 22344 freemsg(ipsec_mp); 22345 return; 22346 } 22347 22348 if (ire_arg != NULL) { 22349 ire = ire_arg; 22350 } else { 22351 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22352 zoneid, match_flags); 22353 ire_need_rele = B_TRUE; 22354 } 22355 if (ire != NULL) { 22356 ipif_refrele(ipif); 22357 /* 22358 * XXX Do the multicast forwarding now, as the IPSEC 22359 * processing has been done. 22360 */ 22361 goto send; 22362 } 22363 22364 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22365 mp->b_prev = NULL; 22366 mp->b_next = NULL; 22367 22368 /* 22369 * If the IPsec packet was processed asynchronously, 22370 * drop it now. 22371 */ 22372 if (q == NULL) { 22373 if (ill_need_rele) 22374 ill_refrele(ill); 22375 freemsg(ipsec_mp); 22376 return; 22377 } 22378 22379 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22380 unspec_src, zoneid); 22381 ipif_refrele(ipif); 22382 } else { 22383 if (attach_if) { 22384 ipif_t *ipif; 22385 22386 ipif = ipif_get_next_ipif(NULL, ill); 22387 if (ipif == NULL) { 22388 if (ill_need_rele) 22389 ill_refrele(ill); 22390 freemsg(ipsec_mp); 22391 return; 22392 } 22393 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22394 zoneid, match_flags); 22395 ire_need_rele = B_TRUE; 22396 ipif_refrele(ipif); 22397 } else { 22398 if (ire_arg != NULL) { 22399 ire = ire_arg; 22400 } else { 22401 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22402 ire_need_rele = B_TRUE; 22403 } 22404 } 22405 if (ire != NULL) 22406 goto send; 22407 /* 22408 * ire disappeared underneath. 22409 * 22410 * What we need to do here is the ip_newroute 22411 * logic to get the ire without doing the IPSEC 22412 * processing. Follow the same old path. But this 22413 * time, ip_wput or ire_add_then_send will call us 22414 * directly as all the IPSEC operations are done. 22415 */ 22416 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22417 mp->b_prev = NULL; 22418 mp->b_next = NULL; 22419 22420 /* 22421 * If the IPsec packet was processed asynchronously, 22422 * drop it now. 22423 */ 22424 if (q == NULL) { 22425 if (ill_need_rele) 22426 ill_refrele(ill); 22427 freemsg(ipsec_mp); 22428 return; 22429 } 22430 22431 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22432 zoneid); 22433 } 22434 if (ill != NULL && ill_need_rele) 22435 ill_refrele(ill); 22436 return; 22437 send: 22438 if (ill != NULL && ill_need_rele) 22439 ill_refrele(ill); 22440 22441 /* Local delivery */ 22442 if (ire->ire_stq == NULL) { 22443 ASSERT(q != NULL); 22444 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22445 ire, 0); 22446 if (ire_need_rele) 22447 ire_refrele(ire); 22448 return; 22449 } 22450 /* 22451 * Everything is done. Send it out on the wire. 22452 * We force the insertion of a fragment header using the 22453 * IPH_FRAG_HDR flag in two cases: 22454 * - after reception of an ICMPv6 "packet too big" message 22455 * with a MTU < 1280 (cf. RFC 2460 section 5) 22456 * - for multirouted IPv6 packets, so that the receiver can 22457 * discard duplicates according to their fragment identifier 22458 */ 22459 /* XXX fix flow control problems. */ 22460 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22461 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22462 if (hwaccel) { 22463 /* 22464 * hardware acceleration does not handle these 22465 * "slow path" cases. 22466 */ 22467 /* IPsec KSTATS: should bump bean counter here. */ 22468 if (ire_need_rele) 22469 ire_refrele(ire); 22470 freemsg(ipsec_mp); 22471 return; 22472 } 22473 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22474 (mp->b_cont ? msgdsize(mp) : 22475 mp->b_wptr - (uchar_t *)ip6h)) { 22476 /* IPsec KSTATS: should bump bean counter here. */ 22477 ip0dbg(("Packet length mismatch: %d, %ld\n", 22478 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22479 msgdsize(mp))); 22480 if (ire_need_rele) 22481 ire_refrele(ire); 22482 freemsg(ipsec_mp); 22483 return; 22484 } 22485 ASSERT(mp->b_prev == NULL); 22486 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22487 ntohs(ip6h->ip6_plen) + 22488 IPV6_HDR_LEN, ire->ire_max_frag)); 22489 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22490 ire->ire_max_frag); 22491 } else { 22492 UPDATE_OB_PKT_COUNT(ire); 22493 ire->ire_last_used_time = lbolt; 22494 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22495 } 22496 if (ire_need_rele) 22497 ire_refrele(ire); 22498 freeb(ipsec_mp); 22499 } 22500 22501 void 22502 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 22503 { 22504 /* EXPORT DELETE START */ 22505 mblk_t *hada_mp; /* attributes M_CTL mblk */ 22506 da_ipsec_t *hada; /* data attributes */ 22507 ill_t *ill = (ill_t *)q->q_ptr; 22508 22509 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 22510 22511 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 22512 /* IPsec KSTATS: Bump lose counter here! */ 22513 /* EXPORT DELETE END */ 22514 freemsg(mp); 22515 /* EXPORT DELETE START */ 22516 return; 22517 } 22518 22519 /* 22520 * It's an IPsec packet that must be 22521 * accelerated by the Provider, and the 22522 * outbound ill is IPsec acceleration capable. 22523 * Prepends the mblk with an IPHADA_M_CTL, and ship it 22524 * to the ill. 22525 * IPsec KSTATS: should bump packet counter here. 22526 */ 22527 22528 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 22529 if (hada_mp == NULL) { 22530 /* IPsec KSTATS: should bump packet counter here. */ 22531 freemsg(mp); 22532 return; 22533 } 22534 22535 hada_mp->b_datap->db_type = M_CTL; 22536 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 22537 hada_mp->b_cont = mp; 22538 22539 hada = (da_ipsec_t *)hada_mp->b_rptr; 22540 bzero(hada, sizeof (da_ipsec_t)); 22541 hada->da_type = IPHADA_M_CTL; 22542 22543 putnext(q, hada_mp); 22544 /* EXPORT DELETE END */ 22545 } 22546 22547 /* 22548 * Finish the outbound IPsec processing. This function is called from 22549 * ipsec_out_process() if the IPsec packet was processed 22550 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22551 * asynchronously. 22552 */ 22553 void 22554 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 22555 ire_t *ire_arg) 22556 { 22557 uint32_t v_hlen_tos_len; 22558 ipaddr_t dst; 22559 ipif_t *ipif = NULL; 22560 ire_t *ire; 22561 ire_t *ire1 = NULL; 22562 mblk_t *next_mp = NULL; 22563 uint32_t max_frag; 22564 boolean_t multirt_send = B_FALSE; 22565 mblk_t *mp; 22566 mblk_t *mp1; 22567 uint_t ill_index; 22568 ipsec_out_t *io; 22569 boolean_t attach_if; 22570 int match_flags, offset; 22571 irb_t *irb = NULL; 22572 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 22573 zoneid_t zoneid; 22574 uint32_t cksum; 22575 uint16_t *up; 22576 /* Hack until the UDP merge into IP happens. */ 22577 extern boolean_t udp_compute_checksum(void); 22578 #ifdef _BIG_ENDIAN 22579 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22580 #else 22581 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22582 #endif 22583 22584 mp = ipsec_mp->b_cont; 22585 ASSERT(mp != NULL); 22586 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22587 dst = ipha->ipha_dst; 22588 22589 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22590 ill_index = io->ipsec_out_ill_index; 22591 attach_if = io->ipsec_out_attach_if; 22592 zoneid = io->ipsec_out_zoneid; 22593 ASSERT(zoneid != ALL_ZONES); 22594 match_flags = MATCH_IRE_ILL_GROUP; 22595 if (ill_index != 0) { 22596 if (ill == NULL) { 22597 ill = ip_grab_attach_ill(NULL, ipsec_mp, 22598 ill_index, B_FALSE); 22599 22600 /* Failure case frees things for us. */ 22601 if (ill == NULL) 22602 return; 22603 22604 ill_need_rele = B_TRUE; 22605 } 22606 /* 22607 * If this packet needs to go out on a particular interface 22608 * honor it. 22609 */ 22610 if (attach_if) { 22611 match_flags = MATCH_IRE_ILL; 22612 22613 /* 22614 * Check if we need an ire that will not be 22615 * looked up by anybody else i.e. HIDDEN. 22616 */ 22617 if (ill_is_probeonly(ill)) { 22618 match_flags |= MATCH_IRE_MARK_HIDDEN; 22619 } 22620 } 22621 } 22622 22623 if (CLASSD(dst)) { 22624 boolean_t conn_dontroute; 22625 /* 22626 * Use the ill_index to get the right ipif. 22627 */ 22628 conn_dontroute = io->ipsec_out_dontroute; 22629 if (ill_index == 0) 22630 ipif = ipif_lookup_group(dst, zoneid); 22631 else 22632 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22633 if (ipif == NULL) { 22634 ip1dbg(("ip_wput_ipsec_out: No ipif for" 22635 " multicast\n")); 22636 BUMP_MIB(&ip_mib, ipOutNoRoutes); 22637 freemsg(ipsec_mp); 22638 goto done; 22639 } 22640 /* 22641 * ipha_src has already been intialized with the 22642 * value of the ipif in ip_wput. All we need now is 22643 * an ire to send this downstream. 22644 */ 22645 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 22646 if (ire != NULL) { 22647 ill_t *ill1; 22648 /* 22649 * Do the multicast forwarding now, as the IPSEC 22650 * processing has been done. 22651 */ 22652 if (ip_g_mrouter && !conn_dontroute && 22653 (ill1 = ire_to_ill(ire))) { 22654 if (ip_mforward(ill1, ipha, mp)) { 22655 freemsg(ipsec_mp); 22656 ip1dbg(("ip_wput_ipsec_out: mforward " 22657 "failed\n")); 22658 ire_refrele(ire); 22659 goto done; 22660 } 22661 } 22662 goto send; 22663 } 22664 22665 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 22666 mp->b_prev = NULL; 22667 mp->b_next = NULL; 22668 22669 /* 22670 * If the IPsec packet was processed asynchronously, 22671 * drop it now. 22672 */ 22673 if (q == NULL) { 22674 freemsg(ipsec_mp); 22675 goto done; 22676 } 22677 22678 /* 22679 * We may be using a wrong ipif to create the ire. 22680 * But it is okay as the source address is assigned 22681 * for the packet already. Next outbound packet would 22682 * create the IRE with the right IPIF in ip_wput. 22683 * 22684 * Also handle RTF_MULTIRT routes. 22685 */ 22686 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 22687 } else { 22688 if (attach_if) { 22689 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 22690 zoneid, match_flags); 22691 } else { 22692 if (ire_arg != NULL) { 22693 ire = ire_arg; 22694 ire_need_rele = B_FALSE; 22695 } else { 22696 ire = ire_cache_lookup(dst, zoneid); 22697 } 22698 } 22699 if (ire != NULL) { 22700 goto send; 22701 } 22702 22703 /* 22704 * ire disappeared underneath. 22705 * 22706 * What we need to do here is the ip_newroute 22707 * logic to get the ire without doing the IPSEC 22708 * processing. Follow the same old path. But this 22709 * time, ip_wput or ire_add_then_put will call us 22710 * directly as all the IPSEC operations are done. 22711 */ 22712 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 22713 mp->b_prev = NULL; 22714 mp->b_next = NULL; 22715 22716 /* 22717 * If the IPsec packet was processed asynchronously, 22718 * drop it now. 22719 */ 22720 if (q == NULL) { 22721 freemsg(ipsec_mp); 22722 goto done; 22723 } 22724 22725 /* 22726 * Since we're going through ip_newroute() again, we 22727 * need to make sure we don't: 22728 * 22729 * 1.) Trigger the ASSERT() with the ipha_ident 22730 * overloading. 22731 * 2.) Redo transport-layer checksumming, since we've 22732 * already done all that to get this far. 22733 * 22734 * The easiest way not do either of the above is to set 22735 * the ipha_ident field to IP_HDR_INCLUDED. 22736 */ 22737 ipha->ipha_ident = IP_HDR_INCLUDED; 22738 ip_newroute(q, ipsec_mp, dst, NULL, 22739 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 22740 } 22741 goto done; 22742 send: 22743 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 22744 /* 22745 * ESP NAT-Traversal packet. 22746 * 22747 * Just do software checksum for now. 22748 */ 22749 22750 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 22751 IP_STAT(ip_out_sw_cksum); 22752 #define iphs ((uint16_t *)ipha) 22753 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 22754 iphs[9] + ntohs(htons(ipha->ipha_length) - 22755 IP_SIMPLE_HDR_LENGTH); 22756 #undef iphs 22757 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 22758 cksum = 0xFFFF; 22759 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 22760 if (mp1->b_wptr - mp1->b_rptr >= 22761 offset + sizeof (uint16_t)) { 22762 up = (uint16_t *)(mp1->b_rptr + offset); 22763 *up = cksum; 22764 break; /* out of for loop */ 22765 } else { 22766 offset -= (mp->b_wptr - mp->b_rptr); 22767 } 22768 } /* Otherwise, just keep the all-zero checksum. */ 22769 22770 if (ire->ire_stq == NULL) { 22771 /* 22772 * Loopbacks go through ip_wput_local except for one case. 22773 * We come here if we generate a icmp_frag_needed message 22774 * after IPSEC processing is over. When this function calls 22775 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 22776 * icmp_frag_needed. The message generated comes back here 22777 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 22778 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 22779 * source address as it is usually set in ip_wput_ire. As 22780 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 22781 * and we end up here. We can't enter ip_wput_ire once the 22782 * IPSEC processing is over and hence we need to do it here. 22783 */ 22784 ASSERT(q != NULL); 22785 UPDATE_OB_PKT_COUNT(ire); 22786 ire->ire_last_used_time = lbolt; 22787 if (ipha->ipha_src == 0) 22788 ipha->ipha_src = ire->ire_src_addr; 22789 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 22790 ire, 0, zoneid); 22791 if (ire_need_rele) 22792 ire_refrele(ire); 22793 goto done; 22794 } 22795 22796 if (ire->ire_max_frag < (unsigned int)LENGTH) { 22797 /* 22798 * We are through with IPSEC processing. 22799 * Fragment this and send it on the wire. 22800 */ 22801 if (io->ipsec_out_accelerated) { 22802 /* 22803 * The packet has been accelerated but must 22804 * be fragmented. This should not happen 22805 * since AH and ESP must not accelerate 22806 * packets that need fragmentation, however 22807 * the configuration could have changed 22808 * since the AH or ESP processing. 22809 * Drop packet. 22810 * IPsec KSTATS: bump bean counter here. 22811 */ 22812 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 22813 "fragmented accelerated packet!\n")); 22814 freemsg(ipsec_mp); 22815 } else { 22816 ip_wput_ire_fragmentit(ipsec_mp, ire); 22817 } 22818 if (ire_need_rele) 22819 ire_refrele(ire); 22820 goto done; 22821 } 22822 22823 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 22824 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 22825 (void *)ire->ire_ipif, (void *)ipif)); 22826 22827 /* 22828 * Multiroute the secured packet, unless IPsec really 22829 * requires the packet to go out only through a particular 22830 * interface. 22831 */ 22832 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 22833 ire_t *first_ire; 22834 irb = ire->ire_bucket; 22835 ASSERT(irb != NULL); 22836 /* 22837 * This ire has been looked up as the one that 22838 * goes through the given ipif; 22839 * make sure we do not omit any other multiroute ire 22840 * that may be present in the bucket before this one. 22841 */ 22842 IRB_REFHOLD(irb); 22843 for (first_ire = irb->irb_ire; 22844 first_ire != NULL; 22845 first_ire = first_ire->ire_next) { 22846 if ((first_ire->ire_flags & RTF_MULTIRT) && 22847 (first_ire->ire_addr == ire->ire_addr) && 22848 !(first_ire->ire_marks & 22849 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22850 break; 22851 } 22852 22853 if ((first_ire != NULL) && (first_ire != ire)) { 22854 /* 22855 * Don't change the ire if the packet must 22856 * be fragmented if sent via this new one. 22857 */ 22858 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 22859 IRE_REFHOLD(first_ire); 22860 if (ire_need_rele) 22861 ire_refrele(ire); 22862 else 22863 ire_need_rele = B_TRUE; 22864 ire = first_ire; 22865 } 22866 } 22867 IRB_REFRELE(irb); 22868 22869 multirt_send = B_TRUE; 22870 max_frag = ire->ire_max_frag; 22871 } else { 22872 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 22873 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 22874 "flag, attach_if %d\n", attach_if)); 22875 } 22876 } 22877 22878 /* 22879 * In most cases, the emission loop below is entered only once. 22880 * Only in the case where the ire holds the RTF_MULTIRT 22881 * flag, we loop to process all RTF_MULTIRT ires in the 22882 * bucket, and send the packet through all crossed 22883 * RTF_MULTIRT routes. 22884 */ 22885 do { 22886 if (multirt_send) { 22887 /* 22888 * ire1 holds here the next ire to process in the 22889 * bucket. If multirouting is expected, 22890 * any non-RTF_MULTIRT ire that has the 22891 * right destination address is ignored. 22892 */ 22893 ASSERT(irb != NULL); 22894 IRB_REFHOLD(irb); 22895 for (ire1 = ire->ire_next; 22896 ire1 != NULL; 22897 ire1 = ire1->ire_next) { 22898 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22899 continue; 22900 if (ire1->ire_addr != ire->ire_addr) 22901 continue; 22902 if (ire1->ire_marks & 22903 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22904 continue; 22905 /* No loopback here */ 22906 if (ire1->ire_stq == NULL) 22907 continue; 22908 /* 22909 * Ensure we do not exceed the MTU 22910 * of the next route. 22911 */ 22912 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 22913 ip_multirt_bad_mtu(ire1, max_frag); 22914 continue; 22915 } 22916 22917 IRE_REFHOLD(ire1); 22918 break; 22919 } 22920 IRB_REFRELE(irb); 22921 if (ire1 != NULL) { 22922 /* 22923 * We are in a multiple send case, need to 22924 * make a copy of the packet. 22925 */ 22926 next_mp = copymsg(ipsec_mp); 22927 if (next_mp == NULL) { 22928 ire_refrele(ire1); 22929 ire1 = NULL; 22930 } 22931 } 22932 } 22933 22934 /* Everything is done. Send it out on the wire */ 22935 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 22936 if (mp1 == NULL) { 22937 BUMP_MIB(&ip_mib, ipOutDiscards); 22938 freemsg(ipsec_mp); 22939 if (ire_need_rele) 22940 ire_refrele(ire); 22941 if (ire1 != NULL) { 22942 ire_refrele(ire1); 22943 freemsg(next_mp); 22944 } 22945 goto done; 22946 } 22947 UPDATE_OB_PKT_COUNT(ire); 22948 ire->ire_last_used_time = lbolt; 22949 if (!io->ipsec_out_accelerated) { 22950 putnext(ire->ire_stq, mp1); 22951 } else { 22952 /* 22953 * Safety Pup says: make sure this is going to 22954 * the right interface! 22955 */ 22956 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 22957 int ifindex = ill1->ill_phyint->phyint_ifindex; 22958 22959 if (ifindex != io->ipsec_out_capab_ill_index) { 22960 /* IPsec kstats: bump lose counter */ 22961 freemsg(mp1); 22962 } else { 22963 ipsec_hw_putnext(ire->ire_stq, mp1); 22964 } 22965 } 22966 22967 freeb(ipsec_mp); 22968 if (ire_need_rele) 22969 ire_refrele(ire); 22970 22971 if (ire1 != NULL) { 22972 ire = ire1; 22973 ire_need_rele = B_TRUE; 22974 ASSERT(next_mp); 22975 ipsec_mp = next_mp; 22976 mp = ipsec_mp->b_cont; 22977 ire1 = NULL; 22978 next_mp = NULL; 22979 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22980 } else { 22981 multirt_send = B_FALSE; 22982 } 22983 } while (multirt_send); 22984 done: 22985 if (ill != NULL && ill_need_rele) 22986 ill_refrele(ill); 22987 if (ipif != NULL) 22988 ipif_refrele(ipif); 22989 } 22990 22991 /* 22992 * Get the ill corresponding to the specified ire, and compare its 22993 * capabilities with the protocol and algorithms specified by the 22994 * the SA obtained from ipsec_out. If they match, annotate the 22995 * ipsec_out structure to indicate that the packet needs acceleration. 22996 * 22997 * 22998 * A packet is eligible for outbound hardware acceleration if the 22999 * following conditions are satisfied: 23000 * 23001 * 1. the packet will not be fragmented 23002 * 2. the provider supports the algorithm 23003 * 3. there is no pending control message being exchanged 23004 * 4. snoop is not attached 23005 * 5. the destination address is not a broadcast or multicast address. 23006 * 23007 * Rationale: 23008 * - Hardware drivers do not support fragmentation with 23009 * the current interface. 23010 * - snoop, multicast, and broadcast may result in exposure of 23011 * a cleartext datagram. 23012 * We check all five of these conditions here. 23013 * 23014 * XXX would like to nuke "ire_t *" parameter here; problem is that 23015 * IRE is only way to figure out if a v4 address is a broadcast and 23016 * thus ineligible for acceleration... 23017 */ 23018 static void 23019 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23020 { 23021 ipsec_out_t *io; 23022 mblk_t *data_mp; 23023 uint_t plen, overhead; 23024 23025 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23026 return; 23027 23028 if (ill == NULL) 23029 return; 23030 23031 /* 23032 * Destination address is a broadcast or multicast. Punt. 23033 */ 23034 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23035 IRE_LOCAL))) 23036 return; 23037 23038 data_mp = ipsec_mp->b_cont; 23039 23040 if (ill->ill_isv6) { 23041 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23042 23043 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23044 return; 23045 23046 plen = ip6h->ip6_plen; 23047 } else { 23048 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23049 23050 if (CLASSD(ipha->ipha_dst)) 23051 return; 23052 23053 plen = ipha->ipha_length; 23054 } 23055 /* 23056 * Is there a pending DLPI control message being exchanged 23057 * between IP/IPsec and the DLS Provider? If there is, it 23058 * could be a SADB update, and the state of the DLS Provider 23059 * SADB might not be in sync with the SADB maintained by 23060 * IPsec. To avoid dropping packets or using the wrong keying 23061 * material, we do not accelerate this packet. 23062 */ 23063 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23064 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23065 "ill_dlpi_pending! don't accelerate packet\n")); 23066 return; 23067 } 23068 23069 /* 23070 * Is the Provider in promiscous mode? If it does, we don't 23071 * accelerate the packet since it will bounce back up to the 23072 * listeners in the clear. 23073 */ 23074 if (ill->ill_promisc_on_phys) { 23075 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23076 "ill in promiscous mode, don't accelerate packet\n")); 23077 return; 23078 } 23079 23080 /* 23081 * Will the packet require fragmentation? 23082 */ 23083 23084 /* 23085 * IPsec ESP note: this is a pessimistic estimate, but the same 23086 * as is used elsewhere. 23087 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23088 * + 2-byte trailer 23089 */ 23090 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23091 IPSEC_BASE_ESP_HDR_SIZE(sa); 23092 23093 if ((plen + overhead) > ill->ill_max_mtu) 23094 return; 23095 23096 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23097 23098 /* 23099 * Can the ill accelerate this IPsec protocol and algorithm 23100 * specified by the SA? 23101 */ 23102 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23103 ill->ill_isv6, sa)) { 23104 return; 23105 } 23106 23107 /* 23108 * Tell AH or ESP that the outbound ill is capable of 23109 * accelerating this packet. 23110 */ 23111 io->ipsec_out_is_capab_ill = B_TRUE; 23112 } 23113 23114 /* 23115 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23116 * 23117 * If this function returns B_TRUE, the requested SA's have been filled 23118 * into the ipsec_out_*_sa pointers. 23119 * 23120 * If the function returns B_FALSE, the packet has been "consumed", most 23121 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23122 * 23123 * The SA references created by the protocol-specific "select" 23124 * function will be released when the ipsec_mp is freed, thanks to the 23125 * ipsec_out_free destructor -- see spd.c. 23126 */ 23127 static boolean_t 23128 ipsec_out_select_sa(mblk_t *ipsec_mp) 23129 { 23130 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23131 ipsec_out_t *io; 23132 ipsec_policy_t *pp; 23133 ipsec_action_t *ap; 23134 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23135 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23136 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23137 23138 if (!io->ipsec_out_secure) { 23139 /* 23140 * We came here by mistake. 23141 * Don't bother with ipsec processing 23142 * We should "discourage" this path in the future. 23143 */ 23144 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23145 return (B_FALSE); 23146 } 23147 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23148 ASSERT((io->ipsec_out_policy != NULL) || 23149 (io->ipsec_out_act != NULL)); 23150 23151 ASSERT(io->ipsec_out_failed == B_FALSE); 23152 23153 /* 23154 * IPSEC processing has started. 23155 */ 23156 io->ipsec_out_proc_begin = B_TRUE; 23157 ap = io->ipsec_out_act; 23158 if (ap == NULL) { 23159 pp = io->ipsec_out_policy; 23160 ASSERT(pp != NULL); 23161 ap = pp->ipsp_act; 23162 ASSERT(ap != NULL); 23163 } 23164 23165 /* 23166 * We have an action. now, let's select SA's. 23167 * (In the future, we can cache this in the conn_t..) 23168 */ 23169 if (ap->ipa_want_esp) { 23170 if (io->ipsec_out_esp_sa == NULL) { 23171 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23172 IPPROTO_ESP); 23173 } 23174 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23175 } 23176 23177 if (ap->ipa_want_ah) { 23178 if (io->ipsec_out_ah_sa == NULL) { 23179 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23180 IPPROTO_AH); 23181 } 23182 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23183 /* 23184 * The ESP and AH processing order needs to be preserved 23185 * when both protocols are required (ESP should be applied 23186 * before AH for an outbound packet). Force an ESP ACQUIRE 23187 * when both ESP and AH are required, and an AH ACQUIRE 23188 * is needed. 23189 */ 23190 if (ap->ipa_want_esp && need_ah_acquire) 23191 need_esp_acquire = B_TRUE; 23192 } 23193 23194 /* 23195 * Send an ACQUIRE (extended, regular, or both) if we need one. 23196 * Release SAs that got referenced, but will not be used until we 23197 * acquire _all_ of the SAs we need. 23198 */ 23199 if (need_ah_acquire || need_esp_acquire) { 23200 if (io->ipsec_out_ah_sa != NULL) { 23201 IPSA_REFRELE(io->ipsec_out_ah_sa); 23202 io->ipsec_out_ah_sa = NULL; 23203 } 23204 if (io->ipsec_out_esp_sa != NULL) { 23205 IPSA_REFRELE(io->ipsec_out_esp_sa); 23206 io->ipsec_out_esp_sa = NULL; 23207 } 23208 23209 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23210 return (B_FALSE); 23211 } 23212 23213 return (B_TRUE); 23214 } 23215 23216 /* 23217 * Process an IPSEC_OUT message and see what you can 23218 * do with it. 23219 * IPQoS Notes: 23220 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23221 * IPSec. 23222 * XXX would like to nuke ire_t. 23223 * XXX ill_index better be "real" 23224 */ 23225 void 23226 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23227 { 23228 ipsec_out_t *io; 23229 ipsec_policy_t *pp; 23230 ipsec_action_t *ap; 23231 ipha_t *ipha; 23232 ip6_t *ip6h; 23233 mblk_t *mp; 23234 ill_t *ill; 23235 zoneid_t zoneid; 23236 ipsec_status_t ipsec_rc; 23237 boolean_t ill_need_rele = B_FALSE; 23238 23239 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23240 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23241 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23242 mp = ipsec_mp->b_cont; 23243 23244 /* 23245 * Initiate IPPF processing. We do it here to account for packets 23246 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23247 * We can check for ipsec_out_proc_begin even for such packets, as 23248 * they will always be false (asserted below). 23249 */ 23250 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23251 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23252 io->ipsec_out_ill_index : ill_index); 23253 if (mp == NULL) { 23254 ip2dbg(("ipsec_out_process: packet dropped "\ 23255 "during IPPF processing\n")); 23256 freeb(ipsec_mp); 23257 BUMP_MIB(&ip_mib, ipOutDiscards); 23258 return; 23259 } 23260 } 23261 23262 if (!io->ipsec_out_secure) { 23263 /* 23264 * We came here by mistake. 23265 * Don't bother with ipsec processing 23266 * Should "discourage" this path in the future. 23267 */ 23268 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23269 goto done; 23270 } 23271 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23272 ASSERT((io->ipsec_out_policy != NULL) || 23273 (io->ipsec_out_act != NULL)); 23274 ASSERT(io->ipsec_out_failed == B_FALSE); 23275 23276 if (!ipsec_loaded()) { 23277 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23278 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23279 BUMP_MIB(&ip_mib, ipOutDiscards); 23280 } else { 23281 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23282 } 23283 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23284 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23285 return; 23286 } 23287 23288 /* 23289 * IPSEC processing has started. 23290 */ 23291 io->ipsec_out_proc_begin = B_TRUE; 23292 ap = io->ipsec_out_act; 23293 if (ap == NULL) { 23294 pp = io->ipsec_out_policy; 23295 ASSERT(pp != NULL); 23296 ap = pp->ipsp_act; 23297 ASSERT(ap != NULL); 23298 } 23299 23300 /* 23301 * Save the outbound ill index. When the packet comes back 23302 * from IPsec, we make sure the ill hasn't changed or disappeared 23303 * before sending it the accelerated packet. 23304 */ 23305 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23306 int ifindex; 23307 ill = ire_to_ill(ire); 23308 ifindex = ill->ill_phyint->phyint_ifindex; 23309 io->ipsec_out_capab_ill_index = ifindex; 23310 } 23311 23312 /* 23313 * The order of processing is first insert a IP header if needed. 23314 * Then insert the ESP header and then the AH header. 23315 */ 23316 if ((io->ipsec_out_se_done == B_FALSE) && 23317 (ap->ipa_want_se)) { 23318 /* 23319 * First get the outer IP header before sending 23320 * it to ESP. 23321 */ 23322 ipha_t *oipha, *iipha; 23323 mblk_t *outer_mp, *inner_mp; 23324 23325 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23326 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23327 "ipsec_out_process: " 23328 "Self-Encapsulation failed: Out of memory\n"); 23329 freemsg(ipsec_mp); 23330 BUMP_MIB(&ip_mib, ipOutDiscards); 23331 return; 23332 } 23333 inner_mp = ipsec_mp->b_cont; 23334 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23335 oipha = (ipha_t *)outer_mp->b_rptr; 23336 iipha = (ipha_t *)inner_mp->b_rptr; 23337 *oipha = *iipha; 23338 outer_mp->b_wptr += sizeof (ipha_t); 23339 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23340 sizeof (ipha_t)); 23341 oipha->ipha_protocol = IPPROTO_ENCAP; 23342 oipha->ipha_version_and_hdr_length = 23343 IP_SIMPLE_HDR_VERSION; 23344 oipha->ipha_hdr_checksum = 0; 23345 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23346 outer_mp->b_cont = inner_mp; 23347 ipsec_mp->b_cont = outer_mp; 23348 23349 io->ipsec_out_se_done = B_TRUE; 23350 io->ipsec_out_encaps = B_TRUE; 23351 } 23352 23353 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23354 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23355 !ipsec_out_select_sa(ipsec_mp)) 23356 return; 23357 23358 /* 23359 * By now, we know what SA's to use. Toss over to ESP & AH 23360 * to do the heavy lifting. 23361 */ 23362 zoneid = io->ipsec_out_zoneid; 23363 ASSERT(zoneid != ALL_ZONES); 23364 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23365 ASSERT(io->ipsec_out_esp_sa != NULL); 23366 io->ipsec_out_esp_done = B_TRUE; 23367 /* 23368 * Note that since hw accel can only apply one transform, 23369 * not two, we skip hw accel for ESP if we also have AH 23370 * This is an design limitation of the interface 23371 * which should be revisited. 23372 */ 23373 ASSERT(ire != NULL); 23374 if (io->ipsec_out_ah_sa == NULL) { 23375 ill = (ill_t *)ire->ire_stq->q_ptr; 23376 ipsec_out_is_accelerated(ipsec_mp, 23377 io->ipsec_out_esp_sa, ill, ire); 23378 } 23379 23380 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23381 switch (ipsec_rc) { 23382 case IPSEC_STATUS_SUCCESS: 23383 break; 23384 case IPSEC_STATUS_FAILED: 23385 BUMP_MIB(&ip_mib, ipOutDiscards); 23386 /* FALLTHRU */ 23387 case IPSEC_STATUS_PENDING: 23388 return; 23389 } 23390 } 23391 23392 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23393 ASSERT(io->ipsec_out_ah_sa != NULL); 23394 io->ipsec_out_ah_done = B_TRUE; 23395 if (ire == NULL) { 23396 int idx = io->ipsec_out_capab_ill_index; 23397 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23398 NULL, NULL, NULL, NULL); 23399 ill_need_rele = B_TRUE; 23400 } else { 23401 ill = (ill_t *)ire->ire_stq->q_ptr; 23402 } 23403 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23404 ire); 23405 23406 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23407 switch (ipsec_rc) { 23408 case IPSEC_STATUS_SUCCESS: 23409 break; 23410 case IPSEC_STATUS_FAILED: 23411 BUMP_MIB(&ip_mib, ipOutDiscards); 23412 /* FALLTHRU */ 23413 case IPSEC_STATUS_PENDING: 23414 if (ill != NULL && ill_need_rele) 23415 ill_refrele(ill); 23416 return; 23417 } 23418 } 23419 /* 23420 * We are done with IPSEC processing. Send it over 23421 * the wire. 23422 */ 23423 done: 23424 mp = ipsec_mp->b_cont; 23425 ipha = (ipha_t *)mp->b_rptr; 23426 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23427 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23428 } else { 23429 ip6h = (ip6_t *)ipha; 23430 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23431 } 23432 if (ill != NULL && ill_need_rele) 23433 ill_refrele(ill); 23434 } 23435 23436 /* ARGSUSED */ 23437 void 23438 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23439 { 23440 opt_restart_t *or; 23441 int err; 23442 conn_t *connp; 23443 23444 ASSERT(CONN_Q(q)); 23445 connp = Q_TO_CONN(q); 23446 23447 ASSERT(first_mp->b_datap->db_type == M_CTL); 23448 or = (opt_restart_t *)first_mp->b_rptr; 23449 /* 23450 * We don't need to pass any credentials here since this is just 23451 * a restart. The credentials are passed in when svr4_optcom_req 23452 * is called the first time (from ip_wput_nondata). 23453 */ 23454 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23455 err = svr4_optcom_req(q, first_mp, NULL, 23456 &ip_opt_obj); 23457 } else { 23458 ASSERT(or->or_type == T_OPTMGMT_REQ); 23459 err = tpi_optcom_req(q, first_mp, NULL, 23460 &ip_opt_obj); 23461 } 23462 if (err != EINPROGRESS) { 23463 /* operation is done */ 23464 CONN_OPER_PENDING_DONE(connp); 23465 } 23466 } 23467 23468 /* 23469 * ioctls that go through a down/up sequence may need to wait for the down 23470 * to complete. This involves waiting for the ire and ipif refcnts to go down 23471 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23472 */ 23473 /* ARGSUSED */ 23474 void 23475 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23476 { 23477 struct iocblk *iocp; 23478 mblk_t *mp1; 23479 ipif_t *ipif; 23480 ip_ioctl_cmd_t *ipip; 23481 int err; 23482 sin_t *sin; 23483 struct lifreq *lifr; 23484 struct ifreq *ifr; 23485 23486 iocp = (struct iocblk *)mp->b_rptr; 23487 ASSERT(ipsq != NULL); 23488 /* Existence of mp1 verified in ip_wput_nondata */ 23489 mp1 = mp->b_cont->b_cont; 23490 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23491 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23492 ill_t *ill; 23493 /* 23494 * Special case where ipsq_current_ipif may not be set. 23495 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23496 * ill could also have become part of a ipmp group in the 23497 * process, we are here as were not able to complete the 23498 * operation in ipif_set_values because we could not become 23499 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23500 * will not be set so we need to set it. 23501 */ 23502 ill = (ill_t *)q->q_ptr; 23503 ipsq->ipsq_current_ipif = ill->ill_ipif; 23504 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23505 } 23506 23507 ipif = ipsq->ipsq_current_ipif; 23508 ASSERT(ipif != NULL); 23509 if (ipip->ipi_cmd_type == IF_CMD) { 23510 /* This a old style SIOC[GS]IF* command */ 23511 ifr = (struct ifreq *)mp1->b_rptr; 23512 sin = (sin_t *)&ifr->ifr_addr; 23513 } else if (ipip->ipi_cmd_type == LIF_CMD) { 23514 /* This a new style SIOC[GS]LIF* command */ 23515 lifr = (struct lifreq *)mp1->b_rptr; 23516 sin = (sin_t *)&lifr->lifr_addr; 23517 } else { 23518 sin = NULL; 23519 } 23520 23521 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 23522 (void *)mp1->b_rptr); 23523 23524 /* SIOCLIFREMOVEIF could have removed the ipif */ 23525 ip_ioctl_finish(q, mp, err, 23526 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23527 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 23528 } 23529 23530 /* 23531 * ioctl processing 23532 * 23533 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 23534 * the ioctl command in the ioctl tables and determines the copyin data size 23535 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 23536 * size. 23537 * 23538 * ioctl processing then continues when the M_IOCDATA makes its way down. 23539 * Now the ioctl is looked up again in the ioctl table, and its properties are 23540 * extracted. The associated 'conn' is then refheld till the end of the ioctl 23541 * and the general ioctl processing function ip_process_ioctl is called. 23542 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 23543 * so goes thru the serialization primitive ipsq_try_enter. Then the 23544 * appropriate function to handle the ioctl is called based on the entry in 23545 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 23546 * which also refreleases the 'conn' that was refheld at the start of the 23547 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 23548 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 23549 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 23550 * 23551 * Many exclusive ioctls go thru an internal down up sequence as part of 23552 * the operation. For example an attempt to change the IP address of an 23553 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 23554 * does all the cleanup such as deleting all ires that use this address. 23555 * Then we need to wait till all references to the interface go away. 23556 */ 23557 void 23558 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23559 { 23560 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 23561 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 23562 cmd_info_t ci; 23563 int err; 23564 boolean_t entered_ipsq = B_FALSE; 23565 23566 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 23567 23568 if (ipip == NULL) 23569 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23570 23571 /* 23572 * SIOCLIFADDIF needs to go thru a special path since the 23573 * ill may not exist yet. This happens in the case of lo0 23574 * which is created using this ioctl. 23575 */ 23576 if (ipip->ipi_cmd == SIOCLIFADDIF) { 23577 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 23578 ip_ioctl_finish(q, mp, err, 23579 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23580 NULL, NULL); 23581 return; 23582 } 23583 23584 ci.ci_ipif = NULL; 23585 switch (ipip->ipi_cmd_type) { 23586 case IF_CMD: 23587 case LIF_CMD: 23588 /* 23589 * ioctls that pass in a [l]ifreq appear here. 23590 * ip_extract_lifreq_cmn returns a refheld ipif in 23591 * ci.ci_ipif 23592 */ 23593 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 23594 ipip->ipi_flags, &ci, ip_process_ioctl); 23595 if (err != 0) { 23596 ip_ioctl_finish(q, mp, err, 23597 ipip->ipi_flags & IPI_GET_CMD ? 23598 COPYOUT : NO_COPYOUT, NULL, NULL); 23599 return; 23600 } 23601 ASSERT(ci.ci_ipif != NULL); 23602 break; 23603 23604 case TUN_CMD: 23605 /* 23606 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 23607 * a refheld ipif in ci.ci_ipif 23608 */ 23609 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 23610 if (err != 0) { 23611 ip_ioctl_finish(q, mp, err, 23612 ipip->ipi_flags & IPI_GET_CMD ? 23613 COPYOUT : NO_COPYOUT, NULL, NULL); 23614 return; 23615 } 23616 ASSERT(ci.ci_ipif != NULL); 23617 break; 23618 23619 case MISC_CMD: 23620 /* 23621 * ioctls that neither pass in [l]ifreq or iftun_req come here 23622 * For eg. SIOCGLIFCONF will appear here. 23623 */ 23624 switch (ipip->ipi_cmd) { 23625 case IF_UNITSEL: 23626 /* ioctl comes down the ill */ 23627 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 23628 ipif_refhold(ci.ci_ipif); 23629 break; 23630 case SIOCGMSFILTER: 23631 case SIOCSMSFILTER: 23632 case SIOCGIPMSFILTER: 23633 case SIOCSIPMSFILTER: 23634 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 23635 ip_process_ioctl); 23636 if (err != 0) { 23637 ip_ioctl_finish(q, mp, err, 23638 ipip->ipi_flags & IPI_GET_CMD ? 23639 COPYOUT : NO_COPYOUT, NULL, NULL); 23640 return; 23641 } 23642 break; 23643 } 23644 err = 0; 23645 ci.ci_sin = NULL; 23646 ci.ci_sin6 = NULL; 23647 ci.ci_lifr = NULL; 23648 break; 23649 } 23650 23651 /* 23652 * If ipsq is non-null, we are already being called exclusively 23653 */ 23654 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 23655 if (!(ipip->ipi_flags & IPI_WR)) { 23656 /* 23657 * A return value of EINPROGRESS means the ioctl is 23658 * either queued and waiting for some reason or has 23659 * already completed. 23660 */ 23661 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23662 ci.ci_lifr); 23663 if (ci.ci_ipif != NULL) 23664 ipif_refrele(ci.ci_ipif); 23665 ip_ioctl_finish(q, mp, err, 23666 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23667 NULL, NULL); 23668 return; 23669 } 23670 23671 ASSERT(ci.ci_ipif != NULL); 23672 23673 if (ipsq == NULL) { 23674 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 23675 ip_process_ioctl, NEW_OP, B_TRUE); 23676 entered_ipsq = B_TRUE; 23677 } 23678 /* 23679 * Release the ipif so that ipif_down and friends that wait for 23680 * references to go away are not misled about the current ipif_refcnt 23681 * values. We are writer so we can access the ipif even after releasing 23682 * the ipif. 23683 */ 23684 ipif_refrele(ci.ci_ipif); 23685 if (ipsq == NULL) 23686 return; 23687 23688 mutex_enter(&ipsq->ipsq_lock); 23689 ASSERT(ipsq->ipsq_current_ipif == NULL); 23690 ipsq->ipsq_current_ipif = ci.ci_ipif; 23691 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23692 mutex_exit(&ipsq->ipsq_lock); 23693 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 23694 /* 23695 * For most set ioctls that come here, this serves as a single point 23696 * where we set the IPIF_CHANGING flag. This ensures that there won't 23697 * be any new references to the ipif. This helps functions that go 23698 * through this path and end up trying to wait for the refcnts 23699 * associated with the ipif to go down to zero. Some exceptions are 23700 * Failover, Failback, and Groupname commands that operate on more than 23701 * just the ci.ci_ipif. These commands internally determine the 23702 * set of ipif's they operate on and set and clear the IPIF_CHANGING 23703 * flags on that set. Another exception is the Removeif command that 23704 * sets the IPIF_CONDEMNED flag internally after identifying the right 23705 * ipif to operate on. 23706 */ 23707 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 23708 ipip->ipi_cmd != SIOCLIFFAILOVER && 23709 ipip->ipi_cmd != SIOCLIFFAILBACK && 23710 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 23711 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 23712 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 23713 23714 /* 23715 * A return value of EINPROGRESS means the ioctl is 23716 * either queued and waiting for some reason or has 23717 * already completed. 23718 */ 23719 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23720 ci.ci_lifr); 23721 23722 /* SIOCLIFREMOVEIF could have removed the ipif */ 23723 ip_ioctl_finish(q, mp, err, 23724 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23725 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 23726 23727 if (entered_ipsq) 23728 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23729 } 23730 23731 /* 23732 * Complete the ioctl. Typically ioctls use the mi package and need to 23733 * do mi_copyout/mi_copy_done. 23734 */ 23735 void 23736 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 23737 ipif_t *ipif, ipsq_t *ipsq) 23738 { 23739 conn_t *connp = NULL; 23740 23741 if (err == EINPROGRESS) 23742 return; 23743 23744 if (CONN_Q(q)) { 23745 connp = Q_TO_CONN(q); 23746 ASSERT(connp->conn_ref >= 2); 23747 } 23748 23749 switch (mode) { 23750 case COPYOUT: 23751 if (err == 0) 23752 mi_copyout(q, mp); 23753 else 23754 mi_copy_done(q, mp, err); 23755 break; 23756 23757 case NO_COPYOUT: 23758 mi_copy_done(q, mp, err); 23759 break; 23760 23761 default: 23762 /* An ioctl aborted through a conn close would take this path */ 23763 break; 23764 } 23765 23766 /* 23767 * The refhold placed at the start of the ioctl is released here. 23768 */ 23769 if (connp != NULL) 23770 CONN_OPER_PENDING_DONE(connp); 23771 23772 /* 23773 * If the ioctl were an exclusive ioctl it would have set 23774 * IPIF_CHANGING at the start of the ioctl which is undone here. 23775 */ 23776 if (ipif != NULL) { 23777 mutex_enter(&(ipif)->ipif_ill->ill_lock); 23778 ipif->ipif_state_flags &= ~IPIF_CHANGING; 23779 mutex_exit(&(ipif)->ipif_ill->ill_lock); 23780 } 23781 23782 /* 23783 * Clear the current ipif in the ipsq at the completion of the ioctl. 23784 * Note that a non-null ipsq_current_ipif prevents new ioctls from 23785 * entering the ipsq 23786 */ 23787 if (ipsq != NULL) { 23788 mutex_enter(&ipsq->ipsq_lock); 23789 ipsq->ipsq_current_ipif = NULL; 23790 mutex_exit(&ipsq->ipsq_lock); 23791 } 23792 } 23793 23794 /* 23795 * This is called from ip_wput_nondata to resume a deferred TCP bind. 23796 */ 23797 /* ARGSUSED */ 23798 void 23799 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 23800 { 23801 conn_t *connp = (conn_t *)arg; 23802 tcp_t *tcp; 23803 23804 ASSERT(connp != NULL && connp->conn_tcp != NULL); 23805 tcp = connp->conn_tcp; 23806 23807 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 23808 freemsg(mp); 23809 else 23810 tcp_rput_other(tcp, mp); 23811 CONN_OPER_PENDING_DONE(connp); 23812 23813 } 23814 23815 /* Called from ip_wput for all non data messages */ 23816 /* ARGSUSED */ 23817 void 23818 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23819 { 23820 mblk_t *mp1; 23821 ire_t *ire; 23822 ill_t *ill; 23823 struct iocblk *iocp; 23824 ip_ioctl_cmd_t *ipip; 23825 cred_t *cr; 23826 conn_t *connp = NULL; 23827 int cmd, err; 23828 23829 if (CONN_Q(q)) 23830 connp = Q_TO_CONN(q); 23831 23832 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 23833 23834 /* Check if it is a queue to /dev/sctp. */ 23835 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 23836 connp->conn_rq == NULL) { 23837 sctp_wput(q, mp); 23838 return; 23839 } 23840 23841 switch (DB_TYPE(mp)) { 23842 case M_IOCTL: 23843 /* 23844 * IOCTL processing begins in ip_sioctl_copyin_setup which 23845 * will arrange to copy in associated control structures. 23846 */ 23847 ip_sioctl_copyin_setup(q, mp); 23848 return; 23849 case M_IOCDATA: 23850 /* 23851 * Ensure that this is associated with one of our trans- 23852 * parent ioctls. If it's not ours, discard it if we're 23853 * running as a driver, or pass it on if we're a module. 23854 */ 23855 iocp = (struct iocblk *)mp->b_rptr; 23856 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23857 if (ipip == NULL) { 23858 if (q->q_next == NULL) { 23859 goto nak; 23860 } else { 23861 putnext(q, mp); 23862 } 23863 return; 23864 } else if ((q->q_next != NULL) && 23865 !(ipip->ipi_flags & IPI_MODOK)) { 23866 /* 23867 * the ioctl is one we recognise, but is not 23868 * consumed by IP as a module, pass M_IOCDATA 23869 * for processing downstream, but only for 23870 * common Streams ioctls. 23871 */ 23872 if (ipip->ipi_flags & IPI_PASS_DOWN) { 23873 putnext(q, mp); 23874 return; 23875 } else { 23876 goto nak; 23877 } 23878 } 23879 23880 /* IOCTL continuation following copyin or copyout. */ 23881 if (mi_copy_state(q, mp, NULL) == -1) { 23882 /* 23883 * The copy operation failed. mi_copy_state already 23884 * cleaned up, so we're out of here. 23885 */ 23886 return; 23887 } 23888 /* 23889 * If we just completed a copy in, we become writer and 23890 * continue processing in ip_sioctl_copyin_done. If it 23891 * was a copy out, we call mi_copyout again. If there is 23892 * nothing more to copy out, it will complete the IOCTL. 23893 */ 23894 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 23895 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 23896 mi_copy_done(q, mp, EPROTO); 23897 return; 23898 } 23899 /* 23900 * Check for cases that need more copying. A return 23901 * value of 0 means a second copyin has been started, 23902 * so we return; a return value of 1 means no more 23903 * copying is needed, so we continue. 23904 */ 23905 cmd = iocp->ioc_cmd; 23906 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 23907 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 23908 MI_COPY_COUNT(mp) == 1) { 23909 if (ip_copyin_msfilter(q, mp) == 0) 23910 return; 23911 } 23912 /* 23913 * Refhold the conn, till the ioctl completes. This is 23914 * needed in case the ioctl ends up in the pending mp 23915 * list. Every mp in the ill_pending_mp list and 23916 * the ipsq_pending_mp must have a refhold on the conn 23917 * to resume processing. The refhold is released when 23918 * the ioctl completes. (normally or abnormally) 23919 * In all cases ip_ioctl_finish is called to finish 23920 * the ioctl. 23921 */ 23922 if (connp != NULL) { 23923 /* This is not a reentry */ 23924 ASSERT(ipsq == NULL); 23925 CONN_INC_REF(connp); 23926 } else { 23927 if (!(ipip->ipi_flags & IPI_MODOK)) { 23928 mi_copy_done(q, mp, EINVAL); 23929 return; 23930 } 23931 } 23932 23933 ip_process_ioctl(ipsq, q, mp, ipip); 23934 23935 } else { 23936 mi_copyout(q, mp); 23937 } 23938 return; 23939 nak: 23940 iocp->ioc_error = EINVAL; 23941 mp->b_datap->db_type = M_IOCNAK; 23942 iocp->ioc_count = 0; 23943 qreply(q, mp); 23944 return; 23945 23946 case M_IOCNAK: 23947 /* 23948 * The only way we could get here is if a resolver didn't like 23949 * an IOCTL we sent it. This shouldn't happen. 23950 */ 23951 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 23952 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 23953 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 23954 freemsg(mp); 23955 return; 23956 case M_IOCACK: 23957 /* Finish socket ioctls passed through to ARP. */ 23958 ip_sioctl_iocack(q, mp); 23959 return; 23960 case M_FLUSH: 23961 if (*mp->b_rptr & FLUSHW) 23962 flushq(q, FLUSHALL); 23963 if (q->q_next) { 23964 /* 23965 * M_FLUSH is sent up to IP by some drivers during 23966 * unbind. ip_rput has already replied to it. We are 23967 * here for the M_FLUSH that we originated in IP 23968 * before sending the unbind request to the driver. 23969 * Just free it as we don't queue packets in IP 23970 * on the write side of the device instance. 23971 */ 23972 freemsg(mp); 23973 return; 23974 } 23975 if (*mp->b_rptr & FLUSHR) { 23976 *mp->b_rptr &= ~FLUSHW; 23977 qreply(q, mp); 23978 return; 23979 } 23980 freemsg(mp); 23981 return; 23982 case IRE_DB_REQ_TYPE: 23983 /* An Upper Level Protocol wants a copy of an IRE. */ 23984 ip_ire_req(q, mp); 23985 return; 23986 case M_CTL: 23987 /* M_CTL messages are used by ARP to tell us things. */ 23988 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 23989 break; 23990 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 23991 case AR_ENTRY_SQUERY: 23992 ip_wput_ctl(q, mp); 23993 return; 23994 case AR_CLIENT_NOTIFY: 23995 ip_arp_news(q, mp); 23996 return; 23997 case AR_DLPIOP_DONE: 23998 ASSERT(q->q_next != NULL); 23999 ill = (ill_t *)q->q_ptr; 24000 /* qwriter_ip releases the refhold */ 24001 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 24002 ill_refhold(ill); 24003 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 24004 CUR_OP, B_FALSE); 24005 return; 24006 case AR_ARP_CLOSING: 24007 /* 24008 * ARP (above us) is closing. If no ARP bringup is 24009 * currently pending, ack the message so that ARP 24010 * can complete its close. Also mark ill_arp_closing 24011 * so that new ARP bringups will fail. If any 24012 * ARP bringup is currently in progress, we will 24013 * ack this when the current ARP bringup completes. 24014 */ 24015 ASSERT(q->q_next != NULL); 24016 ill = (ill_t *)q->q_ptr; 24017 mutex_enter(&ill->ill_lock); 24018 ill->ill_arp_closing = 1; 24019 if (!ill->ill_arp_bringup_pending) { 24020 mutex_exit(&ill->ill_lock); 24021 qreply(q, mp); 24022 } else { 24023 mutex_exit(&ill->ill_lock); 24024 freemsg(mp); 24025 } 24026 return; 24027 default: 24028 break; 24029 } 24030 break; 24031 case M_PROTO: 24032 case M_PCPROTO: 24033 /* 24034 * The only PROTO messages we expect are ULP binds and 24035 * copies of option negotiation acknowledgements. 24036 */ 24037 switch (((union T_primitives *)mp->b_rptr)->type) { 24038 case O_T_BIND_REQ: 24039 case T_BIND_REQ: { 24040 /* Request can get queued in bind */ 24041 ASSERT(connp != NULL); 24042 /* Don't increment refcnt if this is a re-entry */ 24043 if (ipsq == NULL) 24044 CONN_INC_REF(connp); 24045 mp = connp->conn_af_isv6 ? 24046 ip_bind_v6(q, mp, connp, NULL) : 24047 ip_bind_v4(q, mp, connp); 24048 if (mp != NULL) { 24049 tcp_t *tcp; 24050 24051 tcp = connp->conn_tcp; 24052 if (tcp != NULL) { 24053 if (ipsq == NULL) { 24054 tcp_rput_other(tcp, mp); 24055 } else { 24056 CONN_INC_REF(connp); 24057 squeue_fill(connp->conn_sqp, mp, 24058 ip_resume_tcp_bind, 24059 connp, SQTAG_TCP_RPUTOTHER); 24060 return; 24061 } 24062 } else { 24063 qreply(q, mp); 24064 } 24065 CONN_OPER_PENDING_DONE(connp); 24066 } 24067 return; 24068 } 24069 case T_SVR4_OPTMGMT_REQ: 24070 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24071 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24072 24073 ASSERT(connp != NULL); 24074 if (!snmpcom_req(q, mp, ip_snmp_set, 24075 ip_snmp_get, cr)) { 24076 /* 24077 * Call svr4_optcom_req so that it can 24078 * generate the ack. We don't come here 24079 * if this operation is being restarted. 24080 * ip_restart_optmgmt will drop the conn ref. 24081 * In the case of ipsec option after the ipsec 24082 * load is complete conn_restart_ipsec_waiter 24083 * drops the conn ref. 24084 */ 24085 ASSERT(ipsq == NULL); 24086 CONN_INC_REF(connp); 24087 if (ip_check_for_ipsec_opt(q, mp)) 24088 return; 24089 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24090 if (err != EINPROGRESS) { 24091 /* Operation is done */ 24092 CONN_OPER_PENDING_DONE(connp); 24093 } 24094 } 24095 return; 24096 case T_OPTMGMT_REQ: 24097 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24098 /* 24099 * Note: No snmpcom_req support through new 24100 * T_OPTMGMT_REQ. 24101 * Call tpi_optcom_req so that it can 24102 * generate the ack. 24103 */ 24104 ASSERT(connp != NULL); 24105 ASSERT(ipsq == NULL); 24106 /* 24107 * We don't come here for restart. ip_restart_optmgmt 24108 * will drop the conn ref. In the case of ipsec option 24109 * after the ipsec load is complete 24110 * conn_restart_ipsec_waiter drops the conn ref. 24111 */ 24112 CONN_INC_REF(connp); 24113 if (ip_check_for_ipsec_opt(q, mp)) 24114 return; 24115 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24116 if (err != EINPROGRESS) { 24117 /* Operation is done */ 24118 CONN_OPER_PENDING_DONE(connp); 24119 } 24120 return; 24121 case T_UNBIND_REQ: 24122 ip_unbind(q, mp); 24123 return; 24124 default: 24125 /* 24126 * Have to drop any DLPI messages coming down from 24127 * arp (such as an info_req which would cause ip 24128 * to receive an extra info_ack if it was passed 24129 * through. 24130 */ 24131 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24132 (int)*(uint_t *)mp->b_rptr)); 24133 freemsg(mp); 24134 return; 24135 } 24136 /* NOTREACHED */ 24137 case IRE_DB_TYPE: { 24138 nce_t *nce; 24139 ill_t *ill; 24140 in6_addr_t gw_addr_v6; 24141 24142 24143 /* 24144 * This is a response back from a resolver. It 24145 * consists of a message chain containing: 24146 * IRE_MBLK-->LL_HDR_MBLK->pkt 24147 * The IRE_MBLK is the one we allocated in ip_newroute. 24148 * The LL_HDR_MBLK is the DLPI header to use to get 24149 * the attached packet, and subsequent ones for the 24150 * same destination, transmitted. 24151 */ 24152 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24153 break; 24154 /* 24155 * First, check to make sure the resolution succeeded. 24156 * If it failed, the second mblk will be empty. 24157 * If it is, free the chain, dropping the packet. 24158 * (We must ire_delete the ire; that frees the ire mblk) 24159 * We're doing this now to support PVCs for ATM; it's 24160 * a partial xresolv implementation. When we fully implement 24161 * xresolv interfaces, instead of freeing everything here 24162 * we'll initiate neighbor discovery. 24163 * 24164 * For v4 (ARP and other external resolvers) the resolver 24165 * frees the message, so no check is needed. This check 24166 * is required, though, for a full xresolve implementation. 24167 * Including this code here now both shows how external 24168 * resolvers can NACK a resolution request using an 24169 * existing design that has no specific provisions for NACKs, 24170 * and also takes into account that the current non-ARP 24171 * external resolver has been coded to use this method of 24172 * NACKing for all IPv6 (xresolv) cases, 24173 * whether our xresolv implementation is complete or not. 24174 * 24175 */ 24176 ire = (ire_t *)mp->b_rptr; 24177 ill = ire_to_ill(ire); 24178 mp1 = mp->b_cont; /* dl_unitdata_req */ 24179 if (mp1->b_rptr == mp1->b_wptr) { 24180 if (ire->ire_ipversion == IPV6_VERSION) { 24181 /* 24182 * XRESOLV interface. 24183 */ 24184 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24185 mutex_enter(&ire->ire_lock); 24186 gw_addr_v6 = ire->ire_gateway_addr_v6; 24187 mutex_exit(&ire->ire_lock); 24188 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24189 nce = ndp_lookup(ill, 24190 &ire->ire_addr_v6, B_FALSE); 24191 } else { 24192 nce = ndp_lookup(ill, &gw_addr_v6, 24193 B_FALSE); 24194 } 24195 if (nce != NULL) { 24196 nce_resolv_failed(nce); 24197 ndp_delete(nce); 24198 NCE_REFRELE(nce); 24199 } 24200 } 24201 mp->b_cont = NULL; 24202 freemsg(mp1); /* frees the pkt as well */ 24203 ire_delete((ire_t *)mp->b_rptr); 24204 return; 24205 } 24206 /* 24207 * Split them into IRE_MBLK and pkt and feed it into 24208 * ire_add_then_send. Then in ire_add_then_send 24209 * the IRE will be added, and then the packet will be 24210 * run back through ip_wput. This time it will make 24211 * it to the wire. 24212 */ 24213 mp->b_cont = NULL; 24214 mp = mp1->b_cont; /* now, mp points to pkt */ 24215 mp1->b_cont = NULL; 24216 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24217 if (ire->ire_ipversion == IPV6_VERSION) { 24218 /* 24219 * XRESOLV interface. Find the nce and put a copy 24220 * of the dl_unitdata_req in nce_res_mp 24221 */ 24222 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24223 mutex_enter(&ire->ire_lock); 24224 gw_addr_v6 = ire->ire_gateway_addr_v6; 24225 mutex_exit(&ire->ire_lock); 24226 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24227 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24228 B_FALSE); 24229 } else { 24230 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24231 } 24232 if (nce != NULL) { 24233 /* 24234 * We have to protect nce_res_mp here 24235 * from being accessed by other threads 24236 * while we change the mblk pointer. 24237 * Other functions will also lock the nce when 24238 * accessing nce_res_mp. 24239 * 24240 * The reason we change the mblk pointer 24241 * here rather than copying the resolved address 24242 * into the template is that, unlike with 24243 * ethernet, we have no guarantee that the 24244 * resolved address length will be 24245 * smaller than or equal to the lla length 24246 * with which the template was allocated, 24247 * (for ethernet, they're equal) 24248 * so we have to use the actual resolved 24249 * address mblk - which holds the real 24250 * dl_unitdata_req with the resolved address. 24251 * 24252 * Doing this is the same behavior as was 24253 * previously used in the v4 ARP case. 24254 */ 24255 mutex_enter(&nce->nce_lock); 24256 if (nce->nce_res_mp != NULL) 24257 freemsg(nce->nce_res_mp); 24258 nce->nce_res_mp = mp1; 24259 mutex_exit(&nce->nce_lock); 24260 /* 24261 * We do a fastpath probe here because 24262 * we have resolved the address without 24263 * using Neighbor Discovery. 24264 * In the non-XRESOLV v6 case, the fastpath 24265 * probe is done right after neighbor 24266 * discovery completes. 24267 */ 24268 if (nce->nce_res_mp != NULL) { 24269 int res; 24270 nce_fastpath_list_add(nce); 24271 res = ill_fastpath_probe(ill, 24272 nce->nce_res_mp); 24273 if (res != 0 && res != EAGAIN) 24274 nce_fastpath_list_delete(nce); 24275 } 24276 24277 ire_add_then_send(q, ire, mp); 24278 /* 24279 * Now we have to clean out any packets 24280 * that may have been queued on the nce 24281 * while it was waiting for address resolution 24282 * to complete. 24283 */ 24284 mutex_enter(&nce->nce_lock); 24285 mp1 = nce->nce_qd_mp; 24286 nce->nce_qd_mp = NULL; 24287 mutex_exit(&nce->nce_lock); 24288 while (mp1 != NULL) { 24289 mblk_t *nxt_mp; 24290 queue_t *fwdq = NULL; 24291 ill_t *inbound_ill; 24292 uint_t ifindex; 24293 24294 nxt_mp = mp1->b_next; 24295 mp1->b_next = NULL; 24296 /* 24297 * Retrieve ifindex stored in 24298 * ip_rput_data_v6() 24299 */ 24300 ifindex = 24301 (uint_t)(uintptr_t)mp1->b_prev; 24302 inbound_ill = 24303 ill_lookup_on_ifindex(ifindex, 24304 B_TRUE, NULL, NULL, NULL, 24305 NULL); 24306 mp1->b_prev = NULL; 24307 if (inbound_ill != NULL) 24308 fwdq = inbound_ill->ill_rq; 24309 24310 if (fwdq != NULL) { 24311 put(fwdq, mp1); 24312 ill_refrele(inbound_ill); 24313 } else 24314 put(WR(ill->ill_rq), mp1); 24315 mp1 = nxt_mp; 24316 } 24317 NCE_REFRELE(nce); 24318 } else { /* nce is NULL; clean up */ 24319 ire_delete(ire); 24320 freemsg(mp); 24321 freemsg(mp1); 24322 return; 24323 } 24324 } else { 24325 ire->ire_dlureq_mp = mp1; 24326 ire_add_then_send(q, ire, mp); 24327 } 24328 return; /* All is well, the packet has been sent. */ 24329 } 24330 default: 24331 break; 24332 } 24333 if (q->q_next) { 24334 putnext(q, mp); 24335 } else 24336 freemsg(mp); 24337 } 24338 24339 /* 24340 * Process IP options in an outbound packet. Modify the destination if there 24341 * is a source route option. 24342 * Returns non-zero if something fails in which case an ICMP error has been 24343 * sent and mp freed. 24344 */ 24345 static int 24346 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24347 boolean_t mctl_present, zoneid_t zoneid) 24348 { 24349 ipoptp_t opts; 24350 uchar_t *opt; 24351 uint8_t optval; 24352 uint8_t optlen; 24353 ipaddr_t dst; 24354 intptr_t code = 0; 24355 mblk_t *mp; 24356 ire_t *ire = NULL; 24357 24358 ip2dbg(("ip_wput_options\n")); 24359 mp = ipsec_mp; 24360 if (mctl_present) { 24361 mp = ipsec_mp->b_cont; 24362 } 24363 24364 dst = ipha->ipha_dst; 24365 for (optval = ipoptp_first(&opts, ipha); 24366 optval != IPOPT_EOL; 24367 optval = ipoptp_next(&opts)) { 24368 opt = opts.ipoptp_cur; 24369 optlen = opts.ipoptp_len; 24370 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24371 optval, optlen)); 24372 switch (optval) { 24373 uint32_t off; 24374 case IPOPT_SSRR: 24375 case IPOPT_LSRR: 24376 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24377 ip1dbg(( 24378 "ip_wput_options: bad option offset\n")); 24379 code = (char *)&opt[IPOPT_OLEN] - 24380 (char *)ipha; 24381 goto param_prob; 24382 } 24383 off = opt[IPOPT_OFFSET]; 24384 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24385 ntohl(dst))); 24386 /* 24387 * For strict: verify that dst is directly 24388 * reachable. 24389 */ 24390 if (optval == IPOPT_SSRR) { 24391 ire = ire_ftable_lookup(dst, 0, 0, 24392 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24393 MATCH_IRE_TYPE); 24394 if (ire == NULL) { 24395 ip1dbg(("ip_wput_options: SSRR not" 24396 " directly reachable: 0x%x\n", 24397 ntohl(dst))); 24398 goto bad_src_route; 24399 } 24400 ire_refrele(ire); 24401 } 24402 break; 24403 case IPOPT_RR: 24404 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24405 ip1dbg(( 24406 "ip_wput_options: bad option offset\n")); 24407 code = (char *)&opt[IPOPT_OLEN] - 24408 (char *)ipha; 24409 goto param_prob; 24410 } 24411 break; 24412 case IPOPT_TS: 24413 /* 24414 * Verify that length >=5 and that there is either 24415 * room for another timestamp or that the overflow 24416 * counter is not maxed out. 24417 */ 24418 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24419 if (optlen < IPOPT_MINLEN_IT) { 24420 goto param_prob; 24421 } 24422 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24423 ip1dbg(( 24424 "ip_wput_options: bad option offset\n")); 24425 code = (char *)&opt[IPOPT_OFFSET] - 24426 (char *)ipha; 24427 goto param_prob; 24428 } 24429 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24430 case IPOPT_TS_TSONLY: 24431 off = IPOPT_TS_TIMELEN; 24432 break; 24433 case IPOPT_TS_TSANDADDR: 24434 case IPOPT_TS_PRESPEC: 24435 case IPOPT_TS_PRESPEC_RFC791: 24436 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24437 break; 24438 default: 24439 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24440 (char *)ipha; 24441 goto param_prob; 24442 } 24443 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24444 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24445 /* 24446 * No room and the overflow counter is 15 24447 * already. 24448 */ 24449 goto param_prob; 24450 } 24451 break; 24452 } 24453 } 24454 24455 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24456 return (0); 24457 24458 ip1dbg(("ip_wput_options: error processing IP options.")); 24459 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24460 24461 param_prob: 24462 /* 24463 * Since ip_wput() isn't close to finished, we fill 24464 * in enough of the header for credible error reporting. 24465 */ 24466 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24467 /* Failed */ 24468 freemsg(ipsec_mp); 24469 return (-1); 24470 } 24471 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24472 return (-1); 24473 24474 bad_src_route: 24475 /* 24476 * Since ip_wput() isn't close to finished, we fill 24477 * in enough of the header for credible error reporting. 24478 */ 24479 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24480 /* Failed */ 24481 freemsg(ipsec_mp); 24482 return (-1); 24483 } 24484 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24485 return (-1); 24486 } 24487 24488 /* 24489 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 24490 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 24491 * thru /etc/system. 24492 */ 24493 #define CONN_MAXDRAINCNT 64 24494 24495 static void 24496 conn_drain_init(void) 24497 { 24498 int i; 24499 24500 conn_drain_list_cnt = conn_drain_nthreads; 24501 24502 if ((conn_drain_list_cnt == 0) || 24503 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 24504 /* 24505 * Default value of the number of drainers is the 24506 * number of cpus, subject to maximum of 8 drainers. 24507 */ 24508 if (boot_max_ncpus != -1) 24509 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 24510 else 24511 conn_drain_list_cnt = MIN(max_ncpus, 8); 24512 } 24513 24514 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 24515 KM_SLEEP); 24516 24517 for (i = 0; i < conn_drain_list_cnt; i++) { 24518 mutex_init(&conn_drain_list[i].idl_lock, NULL, 24519 MUTEX_DEFAULT, NULL); 24520 } 24521 } 24522 24523 static void 24524 conn_drain_fini(void) 24525 { 24526 int i; 24527 24528 for (i = 0; i < conn_drain_list_cnt; i++) 24529 mutex_destroy(&conn_drain_list[i].idl_lock); 24530 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 24531 conn_drain_list = NULL; 24532 } 24533 24534 /* 24535 * Note: For an overview of how flowcontrol is handled in IP please see the 24536 * IP Flowcontrol notes at the top of this file. 24537 * 24538 * Flow control has blocked us from proceeding. Insert the given conn in one 24539 * of the conn drain lists. These conn wq's will be qenabled later on when 24540 * STREAMS flow control does a backenable. conn_walk_drain will enable 24541 * the first conn in each of these drain lists. Each of these qenabled conns 24542 * in turn enables the next in the list, after it runs, or when it closes, 24543 * thus sustaining the drain process. 24544 * 24545 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 24546 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 24547 * running at any time, on a given conn, since there can be only 1 service proc 24548 * running on a queue at any time. 24549 */ 24550 void 24551 conn_drain_insert(conn_t *connp) 24552 { 24553 idl_t *idl; 24554 uint_t index; 24555 24556 mutex_enter(&connp->conn_lock); 24557 if (connp->conn_state_flags & CONN_CLOSING) { 24558 /* 24559 * The conn is closing as a result of which CONN_CLOSING 24560 * is set. Return. 24561 */ 24562 mutex_exit(&connp->conn_lock); 24563 return; 24564 } else if (connp->conn_idl == NULL) { 24565 /* 24566 * Assign the next drain list round robin. We dont' use 24567 * a lock, and thus it may not be strictly round robin. 24568 * Atomicity of load/stores is enough to make sure that 24569 * conn_drain_list_index is always within bounds. 24570 */ 24571 index = conn_drain_list_index; 24572 ASSERT(index < conn_drain_list_cnt); 24573 connp->conn_idl = &conn_drain_list[index]; 24574 index++; 24575 if (index == conn_drain_list_cnt) 24576 index = 0; 24577 conn_drain_list_index = index; 24578 } 24579 mutex_exit(&connp->conn_lock); 24580 24581 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24582 if ((connp->conn_drain_prev != NULL) || 24583 (connp->conn_state_flags & CONN_CLOSING)) { 24584 /* 24585 * The conn is already in the drain list, OR 24586 * the conn is closing. We need to check again for 24587 * the closing case again since close can happen 24588 * after we drop the conn_lock, and before we 24589 * acquire the CONN_DRAIN_LIST_LOCK. 24590 */ 24591 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24592 return; 24593 } else { 24594 idl = connp->conn_idl; 24595 } 24596 24597 /* 24598 * The conn is not in the drain list. Insert it at the 24599 * tail of the drain list. The drain list is circular 24600 * and doubly linked. idl_conn points to the 1st element 24601 * in the list. 24602 */ 24603 if (idl->idl_conn == NULL) { 24604 idl->idl_conn = connp; 24605 connp->conn_drain_next = connp; 24606 connp->conn_drain_prev = connp; 24607 } else { 24608 conn_t *head = idl->idl_conn; 24609 24610 connp->conn_drain_next = head; 24611 connp->conn_drain_prev = head->conn_drain_prev; 24612 head->conn_drain_prev->conn_drain_next = connp; 24613 head->conn_drain_prev = connp; 24614 } 24615 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24616 } 24617 24618 /* 24619 * This conn is closing, and we are called from ip_close. OR 24620 * This conn has been serviced by ip_wsrv, and we need to do the tail 24621 * processing. 24622 * If this conn is part of the drain list, we may need to sustain the drain 24623 * process by qenabling the next conn in the drain list. We may also need to 24624 * remove this conn from the list, if it is done. 24625 */ 24626 static void 24627 conn_drain_tail(conn_t *connp, boolean_t closing) 24628 { 24629 idl_t *idl; 24630 24631 /* 24632 * connp->conn_idl is stable at this point, and no lock is needed 24633 * to check it. If we are called from ip_close, close has already 24634 * set CONN_CLOSING, thus freezing the value of conn_idl, and 24635 * called us only because conn_idl is non-null. If we are called thru 24636 * service, conn_idl could be null, but it cannot change because 24637 * service is single-threaded per queue, and there cannot be another 24638 * instance of service trying to call conn_drain_insert on this conn 24639 * now. 24640 */ 24641 ASSERT(!closing || (connp->conn_idl != NULL)); 24642 24643 /* 24644 * If connp->conn_idl is null, the conn has not been inserted into any 24645 * drain list even once since creation of the conn. Just return. 24646 */ 24647 if (connp->conn_idl == NULL) 24648 return; 24649 24650 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24651 24652 if (connp->conn_drain_prev == NULL) { 24653 /* This conn is currently not in the drain list. */ 24654 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24655 return; 24656 } 24657 idl = connp->conn_idl; 24658 if (idl->idl_conn_draining == connp) { 24659 /* 24660 * This conn is the current drainer. If this is the last conn 24661 * in the drain list, we need to do more checks, in the 'if' 24662 * below. Otherwwise we need to just qenable the next conn, 24663 * to sustain the draining, and is handled in the 'else' 24664 * below. 24665 */ 24666 if (connp->conn_drain_next == idl->idl_conn) { 24667 /* 24668 * This conn is the last in this list. This round 24669 * of draining is complete. If idl_repeat is set, 24670 * it means another flow enabling has happened from 24671 * the driver/streams and we need to another round 24672 * of draining. 24673 * If there are more than 2 conns in the drain list, 24674 * do a left rotate by 1, so that all conns except the 24675 * conn at the head move towards the head by 1, and the 24676 * the conn at the head goes to the tail. This attempts 24677 * a more even share for all queues that are being 24678 * drained. 24679 */ 24680 if ((connp->conn_drain_next != connp) && 24681 (idl->idl_conn->conn_drain_next != connp)) { 24682 idl->idl_conn = idl->idl_conn->conn_drain_next; 24683 } 24684 if (idl->idl_repeat) { 24685 qenable(idl->idl_conn->conn_wq); 24686 idl->idl_conn_draining = idl->idl_conn; 24687 idl->idl_repeat = 0; 24688 } else { 24689 idl->idl_conn_draining = NULL; 24690 } 24691 } else { 24692 /* 24693 * If the next queue that we are now qenable'ing, 24694 * is closing, it will remove itself from this list 24695 * and qenable the subsequent queue in ip_close(). 24696 * Serialization is acheived thru idl_lock. 24697 */ 24698 qenable(connp->conn_drain_next->conn_wq); 24699 idl->idl_conn_draining = connp->conn_drain_next; 24700 } 24701 } 24702 if (!connp->conn_did_putbq || closing) { 24703 /* 24704 * Remove ourself from the drain list, if we did not do 24705 * a putbq, or if the conn is closing. 24706 * Note: It is possible that q->q_first is non-null. It means 24707 * that these messages landed after we did a enableok() in 24708 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 24709 * service them. 24710 */ 24711 if (connp->conn_drain_next == connp) { 24712 /* Singleton in the list */ 24713 ASSERT(connp->conn_drain_prev == connp); 24714 idl->idl_conn = NULL; 24715 idl->idl_conn_draining = NULL; 24716 } else { 24717 connp->conn_drain_prev->conn_drain_next = 24718 connp->conn_drain_next; 24719 connp->conn_drain_next->conn_drain_prev = 24720 connp->conn_drain_prev; 24721 if (idl->idl_conn == connp) 24722 idl->idl_conn = connp->conn_drain_next; 24723 ASSERT(idl->idl_conn_draining != connp); 24724 24725 } 24726 connp->conn_drain_next = NULL; 24727 connp->conn_drain_prev = NULL; 24728 } 24729 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24730 } 24731 24732 /* 24733 * Write service routine. Shared perimeter entry point. 24734 * ip_wsrv can be called in any of the following ways. 24735 * 1. The device queue's messages has fallen below the low water mark 24736 * and STREAMS has backenabled the ill_wq. We walk thru all the 24737 * the drain lists and backenable the first conn in each list. 24738 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 24739 * qenabled non-tcp upper layers. We start dequeing messages and call 24740 * ip_wput for each message. 24741 */ 24742 24743 void 24744 ip_wsrv(queue_t *q) 24745 { 24746 conn_t *connp; 24747 ill_t *ill; 24748 mblk_t *mp; 24749 24750 if (q->q_next) { 24751 ill = (ill_t *)q->q_ptr; 24752 if (ill->ill_state_flags == 0) { 24753 /* 24754 * The device flow control has opened up. 24755 * Walk through conn drain lists and qenable the 24756 * first conn in each list. This makes sense only 24757 * if the stream is fully plumbed and setup. 24758 * Hence the if check above. 24759 */ 24760 ip1dbg(("ip_wsrv: walking\n")); 24761 conn_walk_drain(); 24762 } 24763 return; 24764 } 24765 24766 connp = Q_TO_CONN(q); 24767 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 24768 24769 /* 24770 * 1. Set conn_draining flag to signal that service is active. 24771 * 24772 * 2. ip_output determines whether it has been called from service, 24773 * based on the last parameter. If it is IP_WSRV it concludes it 24774 * has been called from service. 24775 * 24776 * 3. Message ordering is preserved by the following logic. 24777 * i. A directly called ip_output (i.e. not thru service) will queue 24778 * the message at the tail, if conn_draining is set (i.e. service 24779 * is running) or if q->q_first is non-null. 24780 * 24781 * ii. If ip_output is called from service, and if ip_output cannot 24782 * putnext due to flow control, it does a putbq. 24783 * 24784 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 24785 * (causing an infinite loop). 24786 */ 24787 ASSERT(!connp->conn_did_putbq); 24788 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 24789 connp->conn_draining = 1; 24790 noenable(q); 24791 while ((mp = getq(q)) != NULL) { 24792 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 24793 if (connp->conn_did_putbq) { 24794 /* ip_wput did a putbq */ 24795 break; 24796 } 24797 } 24798 /* 24799 * At this point, a thread coming down from top, calling 24800 * ip_wput, may end up queueing the message. We have not yet 24801 * enabled the queue, so ip_wsrv won't be called again. 24802 * To avoid this race, check q->q_first again (in the loop) 24803 * If the other thread queued the message before we call 24804 * enableok(), we will catch it in the q->q_first check. 24805 * If the other thread queues the message after we call 24806 * enableok(), ip_wsrv will be called again by STREAMS. 24807 */ 24808 connp->conn_draining = 0; 24809 enableok(q); 24810 } 24811 24812 /* Enable the next conn for draining */ 24813 conn_drain_tail(connp, B_FALSE); 24814 24815 connp->conn_did_putbq = 0; 24816 } 24817 24818 /* 24819 * Walk the list of all conn's calling the function provided with the 24820 * specified argument for each. Note that this only walks conn's that 24821 * have been bound. 24822 * Applies to both IPv4 and IPv6. 24823 */ 24824 static void 24825 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 24826 { 24827 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 24828 func, arg, zoneid); 24829 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 24830 func, arg, zoneid); 24831 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 24832 func, arg, zoneid); 24833 conn_walk_fanout_table(ipcl_proto_fanout, 24834 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 24835 conn_walk_fanout_table(ipcl_proto_fanout_v6, 24836 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 24837 } 24838 24839 /* 24840 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 24841 * of conns that need to be drained, check if drain is already in progress. 24842 * If so set the idl_repeat bit, indicating that the last conn in the list 24843 * needs to reinitiate the drain once again, for the list. If drain is not 24844 * in progress for the list, initiate the draining, by qenabling the 1st 24845 * conn in the list. The drain is self-sustaining, each qenabled conn will 24846 * in turn qenable the next conn, when it is done/blocked/closing. 24847 */ 24848 static void 24849 conn_walk_drain(void) 24850 { 24851 int i; 24852 idl_t *idl; 24853 24854 IP_STAT(ip_conn_walk_drain); 24855 24856 for (i = 0; i < conn_drain_list_cnt; i++) { 24857 idl = &conn_drain_list[i]; 24858 mutex_enter(&idl->idl_lock); 24859 if (idl->idl_conn == NULL) { 24860 mutex_exit(&idl->idl_lock); 24861 continue; 24862 } 24863 /* 24864 * If this list is not being drained currently by 24865 * an ip_wsrv thread, start the process. 24866 */ 24867 if (idl->idl_conn_draining == NULL) { 24868 ASSERT(idl->idl_repeat == 0); 24869 qenable(idl->idl_conn->conn_wq); 24870 idl->idl_conn_draining = idl->idl_conn; 24871 } else { 24872 idl->idl_repeat = 1; 24873 } 24874 mutex_exit(&idl->idl_lock); 24875 } 24876 } 24877 24878 /* 24879 * Walk an conn hash table of `count' buckets, calling func for each entry. 24880 */ 24881 static void 24882 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 24883 zoneid_t zoneid) 24884 { 24885 conn_t *connp; 24886 24887 while (count-- > 0) { 24888 mutex_enter(&connfp->connf_lock); 24889 for (connp = connfp->connf_head; connp != NULL; 24890 connp = connp->conn_next) { 24891 if (zoneid == GLOBAL_ZONEID || 24892 zoneid == connp->conn_zoneid) { 24893 CONN_INC_REF(connp); 24894 mutex_exit(&connfp->connf_lock); 24895 (*func)(connp, arg); 24896 mutex_enter(&connfp->connf_lock); 24897 CONN_DEC_REF(connp); 24898 } 24899 } 24900 mutex_exit(&connfp->connf_lock); 24901 connfp++; 24902 } 24903 } 24904 24905 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 24906 static void 24907 conn_report1(conn_t *connp, void *mp) 24908 { 24909 char buf1[INET6_ADDRSTRLEN]; 24910 char buf2[INET6_ADDRSTRLEN]; 24911 uint_t print_len, buf_len; 24912 24913 ASSERT(connp != NULL); 24914 24915 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 24916 if (buf_len <= 0) 24917 return; 24918 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 24919 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 24920 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 24921 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 24922 "%5d %s/%05d %s/%05d\n", 24923 (void *)connp, (void *)CONNP_TO_RQ(connp), 24924 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 24925 buf1, connp->conn_lport, 24926 buf2, connp->conn_fport); 24927 if (print_len < buf_len) { 24928 ((mblk_t *)mp)->b_wptr += print_len; 24929 } else { 24930 ((mblk_t *)mp)->b_wptr += buf_len; 24931 } 24932 } 24933 24934 /* 24935 * Named Dispatch routine to produce a formatted report on all conns 24936 * that are listed in one of the fanout tables. 24937 * This report is accessed by using the ndd utility to "get" ND variable 24938 * "ip_conn_status". 24939 */ 24940 /* ARGSUSED */ 24941 static int 24942 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 24943 { 24944 (void) mi_mpprintf(mp, 24945 "CONN " MI_COL_HDRPAD_STR 24946 "rfq " MI_COL_HDRPAD_STR 24947 "stq " MI_COL_HDRPAD_STR 24948 " zone local remote"); 24949 24950 /* 24951 * Because of the ndd constraint, at most we can have 64K buffer 24952 * to put in all conn info. So to be more efficient, just 24953 * allocate a 64K buffer here, assuming we need that large buffer. 24954 * This should be OK as only privileged processes can do ndd /dev/ip. 24955 */ 24956 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 24957 /* The following may work even if we cannot get a large buf. */ 24958 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 24959 return (0); 24960 } 24961 24962 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 24963 return (0); 24964 } 24965 24966 /* 24967 * Determine if the ill and multicast aspects of that packets 24968 * "matches" the conn. 24969 */ 24970 boolean_t 24971 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 24972 zoneid_t zoneid) 24973 { 24974 ill_t *in_ill; 24975 boolean_t found; 24976 ipif_t *ipif; 24977 ire_t *ire; 24978 ipaddr_t dst, src; 24979 24980 dst = ipha->ipha_dst; 24981 src = ipha->ipha_src; 24982 24983 /* 24984 * conn_incoming_ill is set by IP_BOUND_IF which limits 24985 * unicast, broadcast and multicast reception to 24986 * conn_incoming_ill. conn_wantpacket itself is called 24987 * only for BROADCAST and multicast. 24988 * 24989 * 1) ip_rput supresses duplicate broadcasts if the ill 24990 * is part of a group. Hence, we should be receiving 24991 * just one copy of broadcast for the whole group. 24992 * Thus, if it is part of the group the packet could 24993 * come on any ill of the group and hence we need a 24994 * match on the group. Otherwise, match on ill should 24995 * be sufficient. 24996 * 24997 * 2) ip_rput does not suppress duplicate multicast packets. 24998 * If there are two interfaces in a ill group and we have 24999 * 2 applications (conns) joined a multicast group G on 25000 * both the interfaces, ilm_lookup_ill filter in ip_rput 25001 * will give us two packets because we join G on both the 25002 * interfaces rather than nominating just one interface 25003 * for receiving multicast like broadcast above. So, 25004 * we have to call ilg_lookup_ill to filter out duplicate 25005 * copies, if ill is part of a group. 25006 */ 25007 in_ill = connp->conn_incoming_ill; 25008 if (in_ill != NULL) { 25009 if (in_ill->ill_group == NULL) { 25010 if (in_ill != ill) 25011 return (B_FALSE); 25012 } else if (in_ill->ill_group != ill->ill_group) { 25013 return (B_FALSE); 25014 } 25015 } 25016 25017 if (!CLASSD(dst)) { 25018 if (connp->conn_zoneid == zoneid) 25019 return (B_TRUE); 25020 /* 25021 * The conn is in a different zone; we need to check that this 25022 * broadcast address is configured in the application's zone and 25023 * on one ill in the group. 25024 */ 25025 ipif = ipif_get_next_ipif(NULL, ill); 25026 if (ipif == NULL) 25027 return (B_FALSE); 25028 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25029 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25030 ipif_refrele(ipif); 25031 if (ire != NULL) { 25032 ire_refrele(ire); 25033 return (B_TRUE); 25034 } else { 25035 return (B_FALSE); 25036 } 25037 } 25038 25039 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25040 connp->conn_zoneid == zoneid) { 25041 /* 25042 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25043 * disabled, therefore we don't dispatch the multicast packet to 25044 * the sending zone. 25045 */ 25046 return (B_FALSE); 25047 } 25048 25049 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25050 connp->conn_zoneid != zoneid) { 25051 /* 25052 * Multicast packet on the loopback interface: we only match 25053 * conns who joined the group in the specified zone. 25054 */ 25055 return (B_FALSE); 25056 } 25057 25058 if (connp->conn_multi_router) { 25059 /* multicast packet and multicast router socket: send up */ 25060 return (B_TRUE); 25061 } 25062 25063 mutex_enter(&connp->conn_lock); 25064 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25065 mutex_exit(&connp->conn_lock); 25066 return (found); 25067 } 25068 25069 /* 25070 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25071 */ 25072 /* ARGSUSED */ 25073 static void 25074 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25075 { 25076 ill_t *ill = (ill_t *)q->q_ptr; 25077 mblk_t *mp1, *mp2; 25078 ipif_t *ipif; 25079 int err = 0; 25080 conn_t *connp = NULL; 25081 ipsq_t *ipsq; 25082 arc_t *arc; 25083 25084 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25085 25086 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25087 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25088 25089 ASSERT(IAM_WRITER_ILL(ill)); 25090 mp2 = mp->b_cont; 25091 mp->b_cont = NULL; 25092 25093 /* 25094 * We have now received the arp bringup completion message 25095 * from ARP. Mark the arp bringup as done. Also if the arp 25096 * stream has already started closing, send up the AR_ARP_CLOSING 25097 * ack now since ARP is waiting in close for this ack. 25098 */ 25099 mutex_enter(&ill->ill_lock); 25100 ill->ill_arp_bringup_pending = 0; 25101 if (ill->ill_arp_closing) { 25102 mutex_exit(&ill->ill_lock); 25103 /* Let's reuse the mp for sending the ack */ 25104 arc = (arc_t *)mp->b_rptr; 25105 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25106 arc->arc_cmd = AR_ARP_CLOSING; 25107 qreply(q, mp); 25108 } else { 25109 mutex_exit(&ill->ill_lock); 25110 freeb(mp); 25111 } 25112 25113 /* We should have an IOCTL waiting on this. */ 25114 ipsq = ill->ill_phyint->phyint_ipsq; 25115 ipif = ipsq->ipsq_pending_ipif; 25116 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25117 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25118 if (mp1 == NULL) { 25119 /* bringup was aborted by the user */ 25120 freemsg(mp2); 25121 return; 25122 } 25123 ASSERT(connp != NULL); 25124 q = CONNP_TO_WQ(connp); 25125 /* 25126 * If the DL_BIND_REQ fails, it is noted 25127 * in arc_name_offset. 25128 */ 25129 err = *((int *)mp2->b_rptr); 25130 if (err == 0) { 25131 if (ipif->ipif_isv6) { 25132 if ((err = ipif_up_done_v6(ipif)) != 0) 25133 ip0dbg(("ip_arp_done: init failed\n")); 25134 } else { 25135 if ((err = ipif_up_done(ipif)) != 0) 25136 ip0dbg(("ip_arp_done: init failed\n")); 25137 } 25138 } else { 25139 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25140 } 25141 25142 freemsg(mp2); 25143 25144 if ((err == 0) && (ill->ill_up_ipifs)) { 25145 err = ill_up_ipifs(ill, q, mp1); 25146 if (err == EINPROGRESS) 25147 return; 25148 } 25149 25150 if (ill->ill_up_ipifs) { 25151 ill_group_cleanup(ill); 25152 } 25153 25154 /* 25155 * The ioctl must complete now without EINPROGRESS 25156 * since ipsq_pending_mp_get has removed the ioctl mblk 25157 * from ipsq_pending_mp. Otherwise the ioctl will be 25158 * stuck for ever in the ipsq. 25159 */ 25160 ASSERT(err != EINPROGRESS); 25161 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25162 } 25163 25164 /* Allocate the private structure */ 25165 static int 25166 ip_priv_alloc(void **bufp) 25167 { 25168 void *buf; 25169 25170 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25171 return (ENOMEM); 25172 25173 *bufp = buf; 25174 return (0); 25175 } 25176 25177 /* Function to delete the private structure */ 25178 void 25179 ip_priv_free(void *buf) 25180 { 25181 ASSERT(buf != NULL); 25182 kmem_free(buf, sizeof (ip_priv_t)); 25183 } 25184 25185 /* 25186 * The entry point for IPPF processing. 25187 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25188 * routine just returns. 25189 * 25190 * When called, ip_process generates an ipp_packet_t structure 25191 * which holds the state information for this packet and invokes the 25192 * the classifier (via ipp_packet_process). The classification, depending on 25193 * configured filters, results in a list of actions for this packet. Invoking 25194 * an action may cause the packet to be dropped, in which case the resulting 25195 * mblk (*mpp) is NULL. proc indicates the callout position for 25196 * this packet and ill_index is the interface this packet on or will leave 25197 * on (inbound and outbound resp.). 25198 */ 25199 void 25200 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25201 { 25202 mblk_t *mp; 25203 ip_priv_t *priv; 25204 ipp_action_id_t aid; 25205 int rc = 0; 25206 ipp_packet_t *pp; 25207 #define IP_CLASS "ip" 25208 25209 /* If the classifier is not loaded, return */ 25210 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25211 return; 25212 } 25213 25214 mp = *mpp; 25215 ASSERT(mp != NULL); 25216 25217 /* Allocate the packet structure */ 25218 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25219 if (rc != 0) { 25220 *mpp = NULL; 25221 freemsg(mp); 25222 return; 25223 } 25224 25225 /* Allocate the private structure */ 25226 rc = ip_priv_alloc((void **)&priv); 25227 if (rc != 0) { 25228 *mpp = NULL; 25229 freemsg(mp); 25230 ipp_packet_free(pp); 25231 return; 25232 } 25233 priv->proc = proc; 25234 priv->ill_index = ill_index; 25235 ipp_packet_set_private(pp, priv, ip_priv_free); 25236 ipp_packet_set_data(pp, mp); 25237 25238 /* Invoke the classifier */ 25239 rc = ipp_packet_process(&pp); 25240 if (pp != NULL) { 25241 mp = ipp_packet_get_data(pp); 25242 ipp_packet_free(pp); 25243 if (rc != 0) { 25244 freemsg(mp); 25245 *mpp = NULL; 25246 } 25247 } else { 25248 *mpp = NULL; 25249 } 25250 #undef IP_CLASS 25251 } 25252 25253 /* 25254 * Propagate a multicast group membership operation (add/drop) on 25255 * all the interfaces crossed by the related multirt routes. 25256 * The call is considered successful if the operation succeeds 25257 * on at least one interface. 25258 */ 25259 static int 25260 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25261 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25262 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25263 mblk_t *first_mp) 25264 { 25265 ire_t *ire_gw; 25266 irb_t *irb; 25267 int error = 0; 25268 opt_restart_t *or; 25269 25270 irb = ire->ire_bucket; 25271 ASSERT(irb != NULL); 25272 25273 ASSERT(DB_TYPE(first_mp) == M_CTL); 25274 25275 or = (opt_restart_t *)first_mp->b_rptr; 25276 IRB_REFHOLD(irb); 25277 for (; ire != NULL; ire = ire->ire_next) { 25278 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25279 continue; 25280 if (ire->ire_addr != group) 25281 continue; 25282 25283 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25284 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25285 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25286 /* No resolver exists for the gateway; skip this ire. */ 25287 if (ire_gw == NULL) 25288 continue; 25289 25290 /* 25291 * This function can return EINPROGRESS. If so the operation 25292 * will be restarted from ip_restart_optmgmt which will 25293 * call ip_opt_set and option processing will restart for 25294 * this option. So we may end up calling 'fn' more than once. 25295 * This requires that 'fn' is idempotent except for the 25296 * return value. The operation is considered a success if 25297 * it succeeds at least once on any one interface. 25298 */ 25299 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25300 NULL, fmode, src, first_mp); 25301 if (error == 0) 25302 or->or_private = CGTP_MCAST_SUCCESS; 25303 25304 if (ip_debug > 0) { 25305 ulong_t off; 25306 char *ksym; 25307 ksym = kobj_getsymname((uintptr_t)fn, &off); 25308 ip2dbg(("ip_multirt_apply_membership: " 25309 "called %s, multirt group 0x%08x via itf 0x%08x, " 25310 "error %d [success %u]\n", 25311 ksym ? ksym : "?", 25312 ntohl(group), ntohl(ire_gw->ire_src_addr), 25313 error, or->or_private)); 25314 } 25315 25316 ire_refrele(ire_gw); 25317 if (error == EINPROGRESS) { 25318 IRB_REFRELE(irb); 25319 return (error); 25320 } 25321 } 25322 IRB_REFRELE(irb); 25323 /* 25324 * Consider the call as successful if we succeeded on at least 25325 * one interface. Otherwise, return the last encountered error. 25326 */ 25327 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25328 } 25329 25330 25331 /* 25332 * Issue a warning regarding a route crossing an interface with an 25333 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25334 * amount of time is logged. 25335 */ 25336 static void 25337 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25338 { 25339 hrtime_t current = gethrtime(); 25340 char buf[16]; 25341 25342 /* Convert interval in ms to hrtime in ns */ 25343 if (multirt_bad_mtu_last_time + 25344 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25345 current) { 25346 cmn_err(CE_WARN, "ip: ignoring multiroute " 25347 "to %s, incorrect MTU %u (expected %u)\n", 25348 ip_dot_addr(ire->ire_addr, buf), 25349 ire->ire_max_frag, max_frag); 25350 25351 multirt_bad_mtu_last_time = current; 25352 } 25353 } 25354 25355 25356 /* 25357 * Get the CGTP (multirouting) filtering status. 25358 * If 0, the CGTP hooks are transparent. 25359 */ 25360 /* ARGSUSED */ 25361 static int 25362 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25363 { 25364 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25365 25366 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25367 return (0); 25368 } 25369 25370 25371 /* 25372 * Set the CGTP (multirouting) filtering status. 25373 * If the status is changed from active to transparent 25374 * or from transparent to active, forward the new status 25375 * to the filtering module (if loaded). 25376 */ 25377 /* ARGSUSED */ 25378 static int 25379 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25380 cred_t *ioc_cr) 25381 { 25382 long new_value; 25383 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25384 25385 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25386 new_value < 0 || new_value > 1) { 25387 return (EINVAL); 25388 } 25389 25390 /* 25391 * Do not enable CGTP filtering - thus preventing the hooks 25392 * from being invoked - if the version number of the 25393 * filtering module hooks does not match. 25394 */ 25395 if ((ip_cgtp_filter_ops != NULL) && 25396 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25397 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25398 "(module hooks version %d, expecting %d)\n", 25399 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25400 return (ENOTSUP); 25401 } 25402 25403 if ((!*ip_cgtp_filter_value) && new_value) { 25404 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25405 ip_cgtp_filter_ops == NULL ? 25406 " (module not loaded)" : ""); 25407 } 25408 if (*ip_cgtp_filter_value && (!new_value)) { 25409 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25410 ip_cgtp_filter_ops == NULL ? 25411 " (module not loaded)" : ""); 25412 } 25413 25414 if (ip_cgtp_filter_ops != NULL) { 25415 int res; 25416 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25417 return (res); 25418 } 25419 } 25420 25421 *ip_cgtp_filter_value = (boolean_t)new_value; 25422 25423 return (0); 25424 } 25425 25426 25427 /* 25428 * Return the expected CGTP hooks version number. 25429 */ 25430 int 25431 ip_cgtp_filter_supported(void) 25432 { 25433 return (ip_cgtp_filter_rev); 25434 } 25435 25436 25437 /* 25438 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25439 * or by invoking this function. In the first case, the version number 25440 * of the registered structure is checked at hooks activation time 25441 * in ip_cgtp_filter_set(). 25442 */ 25443 int 25444 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25445 { 25446 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25447 return (ENOTSUP); 25448 25449 ip_cgtp_filter_ops = ops; 25450 return (0); 25451 } 25452 25453 static squeue_func_t 25454 ip_squeue_switch(int val) 25455 { 25456 squeue_func_t rval = squeue_fill; 25457 25458 switch (val) { 25459 case IP_SQUEUE_ENTER_NODRAIN: 25460 rval = squeue_enter_nodrain; 25461 break; 25462 case IP_SQUEUE_ENTER: 25463 rval = squeue_enter; 25464 break; 25465 default: 25466 break; 25467 } 25468 return (rval); 25469 } 25470 25471 /* ARGSUSED */ 25472 static int 25473 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25474 caddr_t addr, cred_t *cr) 25475 { 25476 int *v = (int *)addr; 25477 long new_value; 25478 25479 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25480 return (EINVAL); 25481 25482 ip_input_proc = ip_squeue_switch(new_value); 25483 *v = new_value; 25484 return (0); 25485 } 25486 25487 /* ARGSUSED */ 25488 static int 25489 ip_fanout_set(queue_t *q, mblk_t *mp, char *value, 25490 caddr_t addr, cred_t *cr) 25491 { 25492 int *v = (int *)addr; 25493 long new_value; 25494 25495 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25496 return (EINVAL); 25497 25498 *v = new_value; 25499 return (0); 25500 } 25501 25502 25503 static void 25504 ip_kstat_init(void) 25505 { 25506 ip_named_kstat_t template = { 25507 { "forwarding", KSTAT_DATA_UINT32, 0 }, 25508 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 25509 { "inReceives", KSTAT_DATA_UINT32, 0 }, 25510 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 25511 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 25512 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 25513 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 25514 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 25515 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 25516 { "outRequests", KSTAT_DATA_UINT32, 0 }, 25517 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 25518 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 25519 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 25520 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 25521 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 25522 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 25523 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 25524 { "fragFails", KSTAT_DATA_UINT32, 0 }, 25525 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 25526 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 25527 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 25528 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 25529 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 25530 { "inErrs", KSTAT_DATA_UINT32, 0 }, 25531 { "noPorts", KSTAT_DATA_UINT32, 0 }, 25532 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 25533 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 25534 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 25535 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 25536 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 25537 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 25538 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 25539 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 25540 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 25541 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 25542 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 25543 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 25544 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 25545 }; 25546 25547 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 25548 NUM_OF_FIELDS(ip_named_kstat_t), 25549 0); 25550 if (!ip_mibkp) 25551 return; 25552 25553 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 25554 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 25555 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 25556 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 25557 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 25558 25559 template.netToMediaEntrySize.value.i32 = 25560 sizeof (mib2_ipNetToMediaEntry_t); 25561 25562 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 25563 25564 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 25565 25566 ip_mibkp->ks_update = ip_kstat_update; 25567 25568 kstat_install(ip_mibkp); 25569 } 25570 25571 static void 25572 ip_kstat_fini(void) 25573 { 25574 25575 if (ip_mibkp != NULL) { 25576 kstat_delete(ip_mibkp); 25577 ip_mibkp = NULL; 25578 } 25579 } 25580 25581 static int 25582 ip_kstat_update(kstat_t *kp, int rw) 25583 { 25584 ip_named_kstat_t *ipkp; 25585 25586 if (!kp || !kp->ks_data) 25587 return (EIO); 25588 25589 if (rw == KSTAT_WRITE) 25590 return (EACCES); 25591 25592 ipkp = (ip_named_kstat_t *)kp->ks_data; 25593 25594 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 25595 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 25596 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 25597 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 25598 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 25599 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 25600 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 25601 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 25602 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 25603 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 25604 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 25605 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 25606 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 25607 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 25608 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 25609 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 25610 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 25611 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 25612 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 25613 25614 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 25615 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 25616 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 25617 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 25618 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 25619 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 25620 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 25621 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 25622 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 25623 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 25624 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 25625 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 25626 25627 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 25628 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 25629 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 25630 25631 return (0); 25632 } 25633 25634 static void 25635 icmp_kstat_init(void) 25636 { 25637 icmp_named_kstat_t template = { 25638 { "inMsgs", KSTAT_DATA_UINT32 }, 25639 { "inErrors", KSTAT_DATA_UINT32 }, 25640 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 25641 { "inTimeExcds", KSTAT_DATA_UINT32 }, 25642 { "inParmProbs", KSTAT_DATA_UINT32 }, 25643 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 25644 { "inRedirects", KSTAT_DATA_UINT32 }, 25645 { "inEchos", KSTAT_DATA_UINT32 }, 25646 { "inEchoReps", KSTAT_DATA_UINT32 }, 25647 { "inTimestamps", KSTAT_DATA_UINT32 }, 25648 { "inTimestampReps", KSTAT_DATA_UINT32 }, 25649 { "inAddrMasks", KSTAT_DATA_UINT32 }, 25650 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 25651 { "outMsgs", KSTAT_DATA_UINT32 }, 25652 { "outErrors", KSTAT_DATA_UINT32 }, 25653 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 25654 { "outTimeExcds", KSTAT_DATA_UINT32 }, 25655 { "outParmProbs", KSTAT_DATA_UINT32 }, 25656 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 25657 { "outRedirects", KSTAT_DATA_UINT32 }, 25658 { "outEchos", KSTAT_DATA_UINT32 }, 25659 { "outEchoReps", KSTAT_DATA_UINT32 }, 25660 { "outTimestamps", KSTAT_DATA_UINT32 }, 25661 { "outTimestampReps", KSTAT_DATA_UINT32 }, 25662 { "outAddrMasks", KSTAT_DATA_UINT32 }, 25663 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 25664 { "inChksumErrs", KSTAT_DATA_UINT32 }, 25665 { "inUnknowns", KSTAT_DATA_UINT32 }, 25666 { "inFragNeeded", KSTAT_DATA_UINT32 }, 25667 { "outFragNeeded", KSTAT_DATA_UINT32 }, 25668 { "outDrops", KSTAT_DATA_UINT32 }, 25669 { "inOverFlows", KSTAT_DATA_UINT32 }, 25670 { "inBadRedirects", KSTAT_DATA_UINT32 }, 25671 }; 25672 25673 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 25674 NUM_OF_FIELDS(icmp_named_kstat_t), 25675 0); 25676 if (icmp_mibkp == NULL) 25677 return; 25678 25679 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 25680 25681 icmp_mibkp->ks_update = icmp_kstat_update; 25682 25683 kstat_install(icmp_mibkp); 25684 } 25685 25686 static void 25687 icmp_kstat_fini(void) 25688 { 25689 25690 if (icmp_mibkp != NULL) { 25691 kstat_delete(icmp_mibkp); 25692 icmp_mibkp = NULL; 25693 } 25694 } 25695 25696 static int 25697 icmp_kstat_update(kstat_t *kp, int rw) 25698 { 25699 icmp_named_kstat_t *icmpkp; 25700 25701 if ((kp == NULL) || (kp->ks_data == NULL)) 25702 return (EIO); 25703 25704 if (rw == KSTAT_WRITE) 25705 return (EACCES); 25706 25707 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 25708 25709 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 25710 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 25711 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 25712 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 25713 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 25714 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 25715 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 25716 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 25717 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 25718 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 25719 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 25720 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 25721 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 25722 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 25723 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 25724 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 25725 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 25726 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 25727 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 25728 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 25729 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 25730 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 25731 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 25732 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 25733 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 25734 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 25735 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 25736 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 25737 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 25738 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 25739 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 25740 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 25741 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 25742 25743 return (0); 25744 } 25745 25746 /* 25747 * This is the fanout function for raw socket opened for SCTP. Note 25748 * that it is called after SCTP checks that there is no socket which 25749 * wants a packet. Then before SCTP handles this out of the blue packet, 25750 * this function is called to see if there is any raw socket for SCTP. 25751 * If there is and it is bound to the correct address, the packet will 25752 * be sent to that socket. Note that only one raw socket can be bound to 25753 * a port. This is assured in ipcl_sctp_hash_insert(); 25754 */ 25755 void 25756 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 25757 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 25758 uint_t ipif_seqid, zoneid_t zoneid) 25759 { 25760 conn_t *connp; 25761 queue_t *rq; 25762 mblk_t *first_mp; 25763 boolean_t secure; 25764 ip6_t *ip6h; 25765 25766 first_mp = mp; 25767 if (mctl_present) { 25768 mp = first_mp->b_cont; 25769 secure = ipsec_in_is_secure(first_mp); 25770 ASSERT(mp != NULL); 25771 } else { 25772 secure = B_FALSE; 25773 } 25774 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 25775 25776 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 25777 if (connp == NULL) { 25778 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 25779 mctl_present); 25780 return; 25781 } 25782 rq = connp->conn_rq; 25783 if (!canputnext(rq)) { 25784 CONN_DEC_REF(connp); 25785 BUMP_MIB(&ip_mib, rawipInOverflows); 25786 freemsg(first_mp); 25787 return; 25788 } 25789 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 25790 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 25791 first_mp = ipsec_check_inbound_policy(first_mp, connp, 25792 (isv4 ? ipha : NULL), ip6h, mctl_present); 25793 if (first_mp == NULL) { 25794 CONN_DEC_REF(connp); 25795 return; 25796 } 25797 } 25798 /* 25799 * We probably should not send M_CTL message up to 25800 * raw socket. 25801 */ 25802 if (mctl_present) 25803 freeb(first_mp); 25804 25805 /* Initiate IPPF processing here if needed. */ 25806 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 25807 (!isv4 && IP6_IN_IPP(flags))) { 25808 ip_process(IPP_LOCAL_IN, &mp, 25809 recv_ill->ill_phyint->phyint_ifindex); 25810 if (mp == NULL) { 25811 CONN_DEC_REF(connp); 25812 return; 25813 } 25814 } 25815 25816 if (connp->conn_recvif || connp->conn_recvslla || 25817 ((connp->conn_ipv6_recvpktinfo || 25818 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 25819 (flags & IP_FF_IP6INFO))) { 25820 int in_flags = 0; 25821 25822 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 25823 in_flags = IPF_RECVIF; 25824 } 25825 if (connp->conn_recvslla) { 25826 in_flags |= IPF_RECVSLLA; 25827 } 25828 if (isv4) { 25829 mp = ip_add_info(mp, recv_ill, in_flags); 25830 } else { 25831 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 25832 if (mp == NULL) { 25833 CONN_DEC_REF(connp); 25834 return; 25835 } 25836 } 25837 } 25838 25839 BUMP_MIB(&ip_mib, ipInDelivers); 25840 /* 25841 * We are sending the IPSEC_IN message also up. Refer 25842 * to comments above this function. 25843 */ 25844 putnext(rq, mp); 25845 CONN_DEC_REF(connp); 25846 } 25847 25848 /* 25849 * Martian Address Filtering [RFC 1812, Section 5.3.7] 25850 */ 25851 static boolean_t 25852 ip_no_forward(ipha_t *ipha, ill_t *ill) 25853 { 25854 ipaddr_t ip_src, ip_dst; 25855 ire_t *src_ire = NULL; 25856 25857 ip_src = ntohl(ipha->ipha_src); 25858 ip_dst = ntohl(ipha->ipha_dst); 25859 25860 if (ip_dst == INADDR_ANY) 25861 goto dont_forward; 25862 25863 if (IN_CLASSD(ip_src)) 25864 goto dont_forward; 25865 25866 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 25867 goto dont_forward; 25868 25869 if (IN_BADCLASS(ip_dst)) 25870 goto dont_forward; 25871 25872 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 25873 ALL_ZONES, MATCH_IRE_TYPE); 25874 if (src_ire != NULL) { 25875 ire_refrele(src_ire); 25876 goto dont_forward; 25877 } 25878 25879 return (B_FALSE); 25880 25881 dont_forward: 25882 if (ip_debug > 2) { 25883 printf("ip_no_forward: dropping packet received on %s\n", 25884 ill->ill_name); 25885 pr_addr_dbg("ip_no_forward: from src %s\n", 25886 AF_INET, &ipha->ipha_src); 25887 pr_addr_dbg("ip_no_forward: to dst %s\n", 25888 AF_INET, &ipha->ipha_dst); 25889 } 25890 BUMP_MIB(&ip_mib, ipForwProhibits); 25891 return (B_TRUE); 25892 } 25893 25894 static boolean_t 25895 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 25896 { 25897 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 25898 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 25899 if (ip_debug > 2) { 25900 if (ill != NULL) { 25901 printf("ip_loopback_src_or_dst: " 25902 "dropping packet received on %s\n", 25903 ill->ill_name); 25904 } else { 25905 printf("ip_loopback_src_or_dst: " 25906 "dropping packet\n"); 25907 } 25908 25909 pr_addr_dbg( 25910 "ip_loopback_src_or_dst: from src %s\n", 25911 AF_INET, &ipha->ipha_src); 25912 pr_addr_dbg( 25913 "ip_loopback_src_or_dst: to dst %s\n", 25914 AF_INET, &ipha->ipha_dst); 25915 } 25916 25917 BUMP_MIB(&ip_mib, ipInAddrErrors); 25918 return (B_TRUE); 25919 } 25920 return (B_FALSE); 25921 } 25922