1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1272 TUN_CMD, ip_sioctl_tunparam, NULL }, 1273 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1274 IPI_PRIV | IPI_WR, 1275 TUN_CMD, ip_sioctl_tunparam, NULL }, 1276 1277 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1278 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1280 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1281 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1282 1283 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1284 1285 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1286 LIF_CMD, ip_sioctl_get_binding, NULL }, 1287 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1288 IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1290 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1291 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1292 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1293 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1294 1295 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1296 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 1300 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 1302 /* These are handled in ip_sioctl_copyin_setup itself */ 1303 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1304 MISC_CMD, NULL, NULL }, 1305 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1306 MISC_CMD, NULL, NULL }, 1307 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1308 1309 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1310 ip_sioctl_get_lifconf, NULL }, 1311 1312 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1315 XARP_CMD, ip_sioctl_arp, NULL }, 1316 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1317 XARP_CMD, ip_sioctl_arp, NULL }, 1318 1319 /* SIOCPOPSOCKFS is not handled by IP */ 1320 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1321 1322 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1323 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1324 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1325 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1326 ip_sioctl_slifzone_restart }, 1327 /* 172-174 are SCTP ioctls and not handled by IP */ 1328 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1329 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1330 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1331 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1332 IPI_GET_CMD, LIF_CMD, 1333 ip_sioctl_get_lifusesrc, 0 }, 1334 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1335 IPI_PRIV | IPI_WR, 1336 LIF_CMD, ip_sioctl_slifusesrc, 1337 NULL }, 1338 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1339 ip_sioctl_get_lifsrcof, NULL }, 1340 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1345 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1346 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1347 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1348 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* SIOCSENABLESDP is handled by SDP */ 1350 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1351 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1352 }; 1353 1354 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1355 1356 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1357 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1358 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1359 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1360 TUN_CMD, ip_sioctl_tunparam, NULL }, 1361 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1365 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1366 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1367 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1368 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1369 MISC_CMD, mrt_ioctl}, 1370 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1371 MISC_CMD, mrt_ioctl}, 1372 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1373 MISC_CMD, mrt_ioctl} 1374 }; 1375 1376 int ip_misc_ioctl_count = 1377 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1378 1379 int conn_drain_nthreads; /* Number of drainers reqd. */ 1380 /* Settable in /etc/system */ 1381 /* Defined in ip_ire.c */ 1382 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1383 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1384 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1385 1386 static nv_t ire_nv_arr[] = { 1387 { IRE_BROADCAST, "BROADCAST" }, 1388 { IRE_LOCAL, "LOCAL" }, 1389 { IRE_LOOPBACK, "LOOPBACK" }, 1390 { IRE_CACHE, "CACHE" }, 1391 { IRE_DEFAULT, "DEFAULT" }, 1392 { IRE_PREFIX, "PREFIX" }, 1393 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1394 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1395 { IRE_HOST, "HOST" }, 1396 { 0 } 1397 }; 1398 1399 nv_t *ire_nv_tbl = ire_nv_arr; 1400 1401 /* Simple ICMP IP Header Template */ 1402 static ipha_t icmp_ipha = { 1403 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1404 }; 1405 1406 struct module_info ip_mod_info = { 1407 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1408 IP_MOD_LOWAT 1409 }; 1410 1411 /* 1412 * Duplicate static symbols within a module confuses mdb; so we avoid the 1413 * problem by making the symbols here distinct from those in udp.c. 1414 */ 1415 1416 /* 1417 * Entry points for IP as a device and as a module. 1418 * FIXME: down the road we might want a separate module and driver qinit. 1419 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1420 */ 1421 static struct qinit iprinitv4 = { 1422 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1423 &ip_mod_info 1424 }; 1425 1426 struct qinit iprinitv6 = { 1427 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1428 &ip_mod_info 1429 }; 1430 1431 static struct qinit ipwinitv4 = { 1432 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1433 &ip_mod_info 1434 }; 1435 1436 struct qinit ipwinitv6 = { 1437 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1438 &ip_mod_info 1439 }; 1440 1441 static struct qinit iplrinit = { 1442 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1443 &ip_mod_info 1444 }; 1445 1446 static struct qinit iplwinit = { 1447 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1448 &ip_mod_info 1449 }; 1450 1451 /* For AF_INET aka /dev/ip */ 1452 struct streamtab ipinfov4 = { 1453 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1454 }; 1455 1456 /* For AF_INET6 aka /dev/ip6 */ 1457 struct streamtab ipinfov6 = { 1458 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 1465 /* 1466 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1467 * ip_rput_v6(), ip_output(), etc. If the message 1468 * block already has a M_CTL at the front of it, then simply set the zoneid 1469 * appropriately. 1470 */ 1471 mblk_t * 1472 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1473 { 1474 mblk_t *first_mp; 1475 ipsec_out_t *io; 1476 1477 ASSERT(zoneid != ALL_ZONES); 1478 if (mp->b_datap->db_type == M_CTL) { 1479 io = (ipsec_out_t *)mp->b_rptr; 1480 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1481 io->ipsec_out_zoneid = zoneid; 1482 return (mp); 1483 } 1484 1485 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1486 if (first_mp == NULL) 1487 return (NULL); 1488 io = (ipsec_out_t *)first_mp->b_rptr; 1489 /* This is not a secure packet */ 1490 io->ipsec_out_secure = B_FALSE; 1491 io->ipsec_out_zoneid = zoneid; 1492 first_mp->b_cont = mp; 1493 return (first_mp); 1494 } 1495 1496 /* 1497 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1498 */ 1499 mblk_t * 1500 ip_copymsg(mblk_t *mp) 1501 { 1502 mblk_t *nmp; 1503 ipsec_info_t *in; 1504 1505 if (mp->b_datap->db_type != M_CTL) 1506 return (copymsg(mp)); 1507 1508 in = (ipsec_info_t *)mp->b_rptr; 1509 1510 /* 1511 * Note that M_CTL is also used for delivering ICMP error messages 1512 * upstream to transport layers. 1513 */ 1514 if (in->ipsec_info_type != IPSEC_OUT && 1515 in->ipsec_info_type != IPSEC_IN) 1516 return (copymsg(mp)); 1517 1518 nmp = copymsg(mp->b_cont); 1519 1520 if (in->ipsec_info_type == IPSEC_OUT) { 1521 return (ipsec_out_tag(mp, nmp, 1522 ((ipsec_out_t *)in)->ipsec_out_ns)); 1523 } else { 1524 return (ipsec_in_tag(mp, nmp, 1525 ((ipsec_in_t *)in)->ipsec_in_ns)); 1526 } 1527 } 1528 1529 /* Generate an ICMP fragmentation needed message. */ 1530 static void 1531 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1532 ip_stack_t *ipst) 1533 { 1534 icmph_t icmph; 1535 mblk_t *first_mp; 1536 boolean_t mctl_present; 1537 1538 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1539 1540 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1541 if (mctl_present) 1542 freeb(first_mp); 1543 return; 1544 } 1545 1546 bzero(&icmph, sizeof (icmph_t)); 1547 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1548 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1549 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1552 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1553 ipst); 1554 } 1555 1556 /* 1557 * icmp_inbound deals with ICMP messages in the following ways. 1558 * 1559 * 1) It needs to send a reply back and possibly delivering it 1560 * to the "interested" upper clients. 1561 * 2) It needs to send it to the upper clients only. 1562 * 3) It needs to change some values in IP only. 1563 * 4) It needs to change some values in IP and upper layers e.g TCP. 1564 * 1565 * We need to accomodate icmp messages coming in clear until we get 1566 * everything secure from the wire. If icmp_accept_clear_messages 1567 * is zero we check with the global policy and act accordingly. If 1568 * it is non-zero, we accept the message without any checks. But 1569 * *this does not mean* that this will be delivered to the upper 1570 * clients. By accepting we might send replies back, change our MTU 1571 * value etc. but delivery to the ULP/clients depends on their policy 1572 * dispositions. 1573 * 1574 * We handle the above 4 cases in the context of IPsec in the 1575 * following way : 1576 * 1577 * 1) Send the reply back in the same way as the request came in. 1578 * If it came in encrypted, it goes out encrypted. If it came in 1579 * clear, it goes out in clear. Thus, this will prevent chosen 1580 * plain text attack. 1581 * 2) The client may or may not expect things to come in secure. 1582 * If it comes in secure, the policy constraints are checked 1583 * before delivering it to the upper layers. If it comes in 1584 * clear, ipsec_inbound_accept_clear will decide whether to 1585 * accept this in clear or not. In both the cases, if the returned 1586 * message (IP header + 8 bytes) that caused the icmp message has 1587 * AH/ESP headers, it is sent up to AH/ESP for validation before 1588 * sending up. If there are only 8 bytes of returned message, then 1589 * upper client will not be notified. 1590 * 3) Check with global policy to see whether it matches the constaints. 1591 * But this will be done only if icmp_accept_messages_in_clear is 1592 * zero. 1593 * 4) If we need to change both in IP and ULP, then the decision taken 1594 * while affecting the values in IP and while delivering up to TCP 1595 * should be the same. 1596 * 1597 * There are two cases. 1598 * 1599 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1600 * failed), we will not deliver it to the ULP, even though they 1601 * are *willing* to accept in *clear*. This is fine as our global 1602 * disposition to icmp messages asks us reject the datagram. 1603 * 1604 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1605 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1606 * to deliver it to ULP (policy failed), it can lead to 1607 * consistency problems. The cases known at this time are 1608 * ICMP_DESTINATION_UNREACHABLE messages with following code 1609 * values : 1610 * 1611 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1612 * and Upper layer rejects. Then the communication will 1613 * come to a stop. This is solved by making similar decisions 1614 * at both levels. Currently, when we are unable to deliver 1615 * to the Upper Layer (due to policy failures) while IP has 1616 * adjusted ire_max_frag, the next outbound datagram would 1617 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1618 * will be with the right level of protection. Thus the right 1619 * value will be communicated even if we are not able to 1620 * communicate when we get from the wire initially. But this 1621 * assumes there would be at least one outbound datagram after 1622 * IP has adjusted its ire_max_frag value. To make things 1623 * simpler, we accept in clear after the validation of 1624 * AH/ESP headers. 1625 * 1626 * - Other ICMP ERRORS : We may not be able to deliver it to the 1627 * upper layer depending on the level of protection the upper 1628 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1629 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1630 * should be accepted in clear when the Upper layer expects secure. 1631 * Thus the communication may get aborted by some bad ICMP 1632 * packets. 1633 * 1634 * IPQoS Notes: 1635 * The only instance when a packet is sent for processing is when there 1636 * isn't an ICMP client and if we are interested in it. 1637 * If there is a client, IPPF processing will take place in the 1638 * ip_fanout_proto routine. 1639 * 1640 * Zones notes: 1641 * The packet is only processed in the context of the specified zone: typically 1642 * only this zone will reply to an echo request, and only interested clients in 1643 * this zone will receive a copy of the packet. This means that the caller must 1644 * call icmp_inbound() for each relevant zone. 1645 */ 1646 static void 1647 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1648 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1649 ill_t *recv_ill, zoneid_t zoneid) 1650 { 1651 icmph_t *icmph; 1652 ipha_t *ipha; 1653 int iph_hdr_length; 1654 int hdr_length; 1655 boolean_t interested; 1656 uint32_t ts; 1657 uchar_t *wptr; 1658 ipif_t *ipif; 1659 mblk_t *first_mp; 1660 ipsec_in_t *ii; 1661 timestruc_t now; 1662 uint32_t ill_index; 1663 ip_stack_t *ipst; 1664 1665 ASSERT(ill != NULL); 1666 ipst = ill->ill_ipst; 1667 1668 first_mp = mp; 1669 if (mctl_present) { 1670 mp = first_mp->b_cont; 1671 ASSERT(mp != NULL); 1672 } 1673 1674 ipha = (ipha_t *)mp->b_rptr; 1675 if (ipst->ips_icmp_accept_clear_messages == 0) { 1676 first_mp = ipsec_check_global_policy(first_mp, NULL, 1677 ipha, NULL, mctl_present, ipst->ips_netstack); 1678 if (first_mp == NULL) 1679 return; 1680 } 1681 1682 /* 1683 * On a labeled system, we have to check whether the zone itself is 1684 * permitted to receive raw traffic. 1685 */ 1686 if (is_system_labeled()) { 1687 if (zoneid == ALL_ZONES) 1688 zoneid = tsol_packet_to_zoneid(mp); 1689 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1690 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1691 zoneid)); 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 } 1697 1698 /* 1699 * We have accepted the ICMP message. It means that we will 1700 * respond to the packet if needed. It may not be delivered 1701 * to the upper client depending on the policy constraints 1702 * and the disposition in ipsec_inbound_accept_clear. 1703 */ 1704 1705 ASSERT(ill != NULL); 1706 1707 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1708 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1709 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1710 /* Last chance to get real. */ 1711 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1713 freemsg(first_mp); 1714 return; 1715 } 1716 /* Refresh iph following the pullup. */ 1717 ipha = (ipha_t *)mp->b_rptr; 1718 } 1719 /* ICMP header checksum, including checksum field, should be zero. */ 1720 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1721 IP_CSUM(mp, iph_hdr_length, 0)) { 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1723 freemsg(first_mp); 1724 return; 1725 } 1726 /* The IP header will always be a multiple of four bytes */ 1727 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1728 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1729 icmph->icmph_code)); 1730 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1731 /* We will set "interested" to "true" if we want a copy */ 1732 interested = B_FALSE; 1733 switch (icmph->icmph_type) { 1734 case ICMP_ECHO_REPLY: 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1736 break; 1737 case ICMP_DEST_UNREACHABLE: 1738 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1739 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1740 interested = B_TRUE; /* Pass up to transport */ 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1742 break; 1743 case ICMP_SOURCE_QUENCH: 1744 interested = B_TRUE; /* Pass up to transport */ 1745 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1746 break; 1747 case ICMP_REDIRECT: 1748 if (!ipst->ips_ip_ignore_redirect) 1749 interested = B_TRUE; 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1751 break; 1752 case ICMP_ECHO_REQUEST: 1753 /* 1754 * Whether to respond to echo requests that come in as IP 1755 * broadcasts or as IP multicast is subject to debate 1756 * (what isn't?). We aim to please, you pick it. 1757 * Default is do it. 1758 */ 1759 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1760 /* unicast: always respond */ 1761 interested = B_TRUE; 1762 } else if (CLASSD(ipha->ipha_dst)) { 1763 /* multicast: respond based on tunable */ 1764 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1765 } else if (broadcast) { 1766 /* broadcast: respond based on tunable */ 1767 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1768 } 1769 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1770 break; 1771 case ICMP_ROUTER_ADVERTISEMENT: 1772 case ICMP_ROUTER_SOLICITATION: 1773 break; 1774 case ICMP_TIME_EXCEEDED: 1775 interested = B_TRUE; /* Pass up to transport */ 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1777 break; 1778 case ICMP_PARAM_PROBLEM: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1781 break; 1782 case ICMP_TIME_STAMP_REQUEST: 1783 /* Response to Time Stamp Requests is local policy. */ 1784 if (ipst->ips_ip_g_resp_to_timestamp && 1785 /* So is whether to respond if it was an IP broadcast. */ 1786 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1787 int tstamp_len = 3 * sizeof (uint32_t); 1788 1789 if (wptr + tstamp_len > mp->b_wptr) { 1790 if (!pullupmsg(mp, wptr + tstamp_len - 1791 mp->b_rptr)) { 1792 BUMP_MIB(ill->ill_ip_mib, 1793 ipIfStatsInDiscards); 1794 freemsg(first_mp); 1795 return; 1796 } 1797 /* Refresh ipha following the pullup. */ 1798 ipha = (ipha_t *)mp->b_rptr; 1799 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1800 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1801 } 1802 interested = B_TRUE; 1803 } 1804 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1805 break; 1806 case ICMP_TIME_STAMP_REPLY: 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1808 break; 1809 case ICMP_INFO_REQUEST: 1810 /* Per RFC 1122 3.2.2.7, ignore this. */ 1811 case ICMP_INFO_REPLY: 1812 break; 1813 case ICMP_ADDRESS_MASK_REQUEST: 1814 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1815 !broadcast) && 1816 /* TODO m_pullup of complete header? */ 1817 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1818 interested = B_TRUE; 1819 } 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1821 break; 1822 case ICMP_ADDRESS_MASK_REPLY: 1823 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1824 break; 1825 default: 1826 interested = B_TRUE; /* Pass up to transport */ 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1828 break; 1829 } 1830 /* See if there is an ICMP client. */ 1831 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1832 /* If there is an ICMP client and we want one too, copy it. */ 1833 mblk_t *first_mp1; 1834 1835 if (!interested) { 1836 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1837 ip_policy, recv_ill, zoneid); 1838 return; 1839 } 1840 first_mp1 = ip_copymsg(first_mp); 1841 if (first_mp1 != NULL) { 1842 ip_fanout_proto(q, first_mp1, ill, ipha, 1843 0, mctl_present, ip_policy, recv_ill, zoneid); 1844 } 1845 } else if (!interested) { 1846 freemsg(first_mp); 1847 return; 1848 } else { 1849 /* 1850 * Initiate policy processing for this packet if ip_policy 1851 * is true. 1852 */ 1853 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1854 ill_index = ill->ill_phyint->phyint_ifindex; 1855 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1856 if (mp == NULL) { 1857 if (mctl_present) { 1858 freeb(first_mp); 1859 } 1860 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1861 return; 1862 } 1863 } 1864 } 1865 /* We want to do something with it. */ 1866 /* Check db_ref to make sure we can modify the packet. */ 1867 if (mp->b_datap->db_ref > 1) { 1868 mblk_t *first_mp1; 1869 1870 first_mp1 = ip_copymsg(first_mp); 1871 freemsg(first_mp); 1872 if (!first_mp1) { 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1874 return; 1875 } 1876 first_mp = first_mp1; 1877 if (mctl_present) { 1878 mp = first_mp->b_cont; 1879 ASSERT(mp != NULL); 1880 } else { 1881 mp = first_mp; 1882 } 1883 ipha = (ipha_t *)mp->b_rptr; 1884 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1885 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1886 } 1887 switch (icmph->icmph_type) { 1888 case ICMP_ADDRESS_MASK_REQUEST: 1889 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1890 if (ipif == NULL) { 1891 freemsg(first_mp); 1892 return; 1893 } 1894 /* 1895 * outging interface must be IPv4 1896 */ 1897 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1898 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1899 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1900 ipif_refrele(ipif); 1901 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1902 break; 1903 case ICMP_ECHO_REQUEST: 1904 icmph->icmph_type = ICMP_ECHO_REPLY; 1905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1906 break; 1907 case ICMP_TIME_STAMP_REQUEST: { 1908 uint32_t *tsp; 1909 1910 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1911 tsp = (uint32_t *)wptr; 1912 tsp++; /* Skip past 'originate time' */ 1913 /* Compute # of milliseconds since midnight */ 1914 gethrestime(&now); 1915 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1916 now.tv_nsec / (NANOSEC / MILLISEC); 1917 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1918 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1919 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1920 break; 1921 } 1922 default: 1923 ipha = (ipha_t *)&icmph[1]; 1924 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1925 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1931 ipha = (ipha_t *)&icmph[1]; 1932 } 1933 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1935 freemsg(first_mp); 1936 return; 1937 } 1938 hdr_length = IPH_HDR_LENGTH(ipha); 1939 if (hdr_length < sizeof (ipha_t)) { 1940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1941 freemsg(first_mp); 1942 return; 1943 } 1944 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1945 if (!pullupmsg(mp, 1946 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1952 ipha = (ipha_t *)&icmph[1]; 1953 } 1954 switch (icmph->icmph_type) { 1955 case ICMP_REDIRECT: 1956 /* 1957 * As there is no upper client to deliver, we don't 1958 * need the first_mp any more. 1959 */ 1960 if (mctl_present) { 1961 freeb(first_mp); 1962 } 1963 icmp_redirect(ill, mp); 1964 return; 1965 case ICMP_DEST_UNREACHABLE: 1966 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1967 if (!icmp_inbound_too_big(icmph, ipha, ill, 1968 zoneid, mp, iph_hdr_length, ipst)) { 1969 freemsg(first_mp); 1970 return; 1971 } 1972 /* 1973 * icmp_inbound_too_big() may alter mp. 1974 * Resynch ipha and icmph accordingly. 1975 */ 1976 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1977 ipha = (ipha_t *)&icmph[1]; 1978 } 1979 /* FALLTHRU */ 1980 default : 1981 /* 1982 * IPQoS notes: Since we have already done IPQoS 1983 * processing we don't want to do it again in 1984 * the fanout routines called by 1985 * icmp_inbound_error_fanout, hence the last 1986 * argument, ip_policy, is B_FALSE. 1987 */ 1988 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1989 ipha, iph_hdr_length, hdr_length, mctl_present, 1990 B_FALSE, recv_ill, zoneid); 1991 } 1992 return; 1993 } 1994 /* Send out an ICMP packet */ 1995 icmph->icmph_checksum = 0; 1996 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1997 if (broadcast || CLASSD(ipha->ipha_dst)) { 1998 ipif_t *ipif_chosen; 1999 /* 2000 * Make it look like it was directed to us, so we don't look 2001 * like a fool with a broadcast or multicast source address. 2002 */ 2003 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2004 /* 2005 * Make sure that we haven't grabbed an interface that's DOWN. 2006 */ 2007 if (ipif != NULL) { 2008 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2009 ipha->ipha_src, zoneid); 2010 if (ipif_chosen != NULL) { 2011 ipif_refrele(ipif); 2012 ipif = ipif_chosen; 2013 } 2014 } 2015 if (ipif == NULL) { 2016 ip0dbg(("icmp_inbound: " 2017 "No source for broadcast/multicast:\n" 2018 "\tsrc 0x%x dst 0x%x ill %p " 2019 "ipif_lcl_addr 0x%x\n", 2020 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2021 (void *)ill, 2022 ill->ill_ipif->ipif_lcl_addr)); 2023 freemsg(first_mp); 2024 return; 2025 } 2026 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2027 ipha->ipha_dst = ipif->ipif_src_addr; 2028 ipif_refrele(ipif); 2029 } 2030 /* Reset time to live. */ 2031 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2032 { 2033 /* Swap source and destination addresses */ 2034 ipaddr_t tmp; 2035 2036 tmp = ipha->ipha_src; 2037 ipha->ipha_src = ipha->ipha_dst; 2038 ipha->ipha_dst = tmp; 2039 } 2040 ipha->ipha_ident = 0; 2041 if (!IS_SIMPLE_IPH(ipha)) 2042 icmp_options_update(ipha); 2043 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 first_mp->b_cont = mp; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } 2067 ii->ipsec_in_zoneid = zoneid; 2068 ASSERT(zoneid != ALL_ZONES); 2069 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2071 return; 2072 } 2073 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2074 put(WR(q), first_mp); 2075 } 2076 2077 static ipaddr_t 2078 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2079 { 2080 conn_t *connp; 2081 connf_t *connfp; 2082 ipaddr_t nexthop_addr = INADDR_ANY; 2083 int hdr_length = IPH_HDR_LENGTH(ipha); 2084 uint16_t *up; 2085 uint32_t ports; 2086 ip_stack_t *ipst = ill->ill_ipst; 2087 2088 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2089 switch (ipha->ipha_protocol) { 2090 case IPPROTO_TCP: 2091 { 2092 tcph_t *tcph; 2093 2094 /* do a reverse lookup */ 2095 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2096 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2097 TCPS_LISTEN, ipst); 2098 break; 2099 } 2100 case IPPROTO_UDP: 2101 { 2102 uint32_t dstport, srcport; 2103 2104 ((uint16_t *)&ports)[0] = up[1]; 2105 ((uint16_t *)&ports)[1] = up[0]; 2106 2107 /* Extract ports in net byte order */ 2108 dstport = htons(ntohl(ports) & 0xFFFF); 2109 srcport = htons(ntohl(ports) >> 16); 2110 2111 connfp = &ipst->ips_ipcl_udp_fanout[ 2112 IPCL_UDP_HASH(dstport, ipst)]; 2113 mutex_enter(&connfp->connf_lock); 2114 connp = connfp->connf_head; 2115 2116 /* do a reverse lookup */ 2117 while ((connp != NULL) && 2118 (!IPCL_UDP_MATCH(connp, dstport, 2119 ipha->ipha_src, srcport, ipha->ipha_dst) || 2120 !IPCL_ZONE_MATCH(connp, zoneid))) { 2121 connp = connp->conn_next; 2122 } 2123 if (connp != NULL) 2124 CONN_INC_REF(connp); 2125 mutex_exit(&connfp->connf_lock); 2126 break; 2127 } 2128 case IPPROTO_SCTP: 2129 { 2130 in6_addr_t map_src, map_dst; 2131 2132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2133 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2134 ((uint16_t *)&ports)[0] = up[1]; 2135 ((uint16_t *)&ports)[1] = up[0]; 2136 2137 connp = sctp_find_conn(&map_src, &map_dst, ports, 2138 zoneid, ipst->ips_netstack->netstack_sctp); 2139 if (connp == NULL) { 2140 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2141 zoneid, ports, ipha, ipst); 2142 } else { 2143 CONN_INC_REF(connp); 2144 SCTP_REFRELE(CONN2SCTP(connp)); 2145 } 2146 break; 2147 } 2148 default: 2149 { 2150 ipha_t ripha; 2151 2152 ripha.ipha_src = ipha->ipha_dst; 2153 ripha.ipha_dst = ipha->ipha_src; 2154 ripha.ipha_protocol = ipha->ipha_protocol; 2155 2156 connfp = &ipst->ips_ipcl_proto_fanout[ 2157 ipha->ipha_protocol]; 2158 mutex_enter(&connfp->connf_lock); 2159 connp = connfp->connf_head; 2160 for (connp = connfp->connf_head; connp != NULL; 2161 connp = connp->conn_next) { 2162 if (IPCL_PROTO_MATCH(connp, 2163 ipha->ipha_protocol, &ripha, ill, 2164 0, zoneid)) { 2165 CONN_INC_REF(connp); 2166 break; 2167 } 2168 } 2169 mutex_exit(&connfp->connf_lock); 2170 } 2171 } 2172 if (connp != NULL) { 2173 if (connp->conn_nexthop_set) 2174 nexthop_addr = connp->conn_nexthop_v4; 2175 CONN_DEC_REF(connp); 2176 } 2177 return (nexthop_addr); 2178 } 2179 2180 /* Table from RFC 1191 */ 2181 static int icmp_frag_size_table[] = 2182 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2183 2184 /* 2185 * Process received ICMP Packet too big. 2186 * After updating any IRE it does the fanout to any matching transport streams. 2187 * Assumes the message has been pulled up till the IP header that caused 2188 * the error. 2189 * 2190 * Returns B_FALSE on failure and B_TRUE on success. 2191 */ 2192 static boolean_t 2193 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2194 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2195 ip_stack_t *ipst) 2196 { 2197 ire_t *ire, *first_ire; 2198 int mtu, orig_mtu; 2199 int hdr_length; 2200 ipaddr_t nexthop_addr; 2201 boolean_t disable_pmtud; 2202 2203 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2204 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2205 ASSERT(ill != NULL); 2206 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 2209 /* Drop if the original packet contained a source route */ 2210 if (ip_source_route_included(ipha)) { 2211 return (B_FALSE); 2212 } 2213 /* 2214 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2215 * header. 2216 */ 2217 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2218 mp->b_wptr) { 2219 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2220 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2222 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2223 return (B_FALSE); 2224 } 2225 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2226 ipha = (ipha_t *)&icmph[1]; 2227 } 2228 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2229 if (nexthop_addr != INADDR_ANY) { 2230 /* nexthop set */ 2231 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2232 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2233 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2234 } else { 2235 /* nexthop not set */ 2236 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2237 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2238 } 2239 2240 if (!first_ire) { 2241 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2242 ntohl(ipha->ipha_dst))); 2243 return (B_FALSE); 2244 } 2245 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 orig_mtu = mtu; 2249 disable_pmtud = B_FALSE; 2250 2251 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2252 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2253 ire = ire->ire_next) { 2254 /* 2255 * Look for the connection to which this ICMP message is 2256 * directed. If it has the IP_NEXTHOP option set, then the 2257 * search is limited to IREs with the MATCH_IRE_PRIVATE 2258 * option. Else the search is limited to regular IREs. 2259 */ 2260 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != ire->ire_gateway_addr)) || 2262 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2263 (nexthop_addr != INADDR_ANY))) 2264 continue; 2265 2266 mutex_enter(&ire->ire_lock); 2267 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2268 uint32_t length; 2269 int i; 2270 2271 /* 2272 * Use the table from RFC 1191 to figure out 2273 * the next "plateau" based on the length in 2274 * the original IP packet. 2275 */ 2276 length = ntohs(ipha->ipha_length); 2277 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2278 uint32_t, length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 length -= hdr_length; 2287 } 2288 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2289 if (length > icmp_frag_size_table[i]) 2290 break; 2291 } 2292 if (i == A_CNT(icmp_frag_size_table)) { 2293 /* Smaller than 68! */ 2294 disable_pmtud = B_TRUE; 2295 mtu = ipst->ips_ip_pmtu_min; 2296 } else { 2297 mtu = icmp_frag_size_table[i]; 2298 if (mtu < ipst->ips_ip_pmtu_min) { 2299 mtu = ipst->ips_ip_pmtu_min; 2300 disable_pmtud = B_TRUE; 2301 } 2302 } 2303 /* Fool the ULP into believing our guessed PMTU. */ 2304 icmph->icmph_du_zero = 0; 2305 icmph->icmph_du_mtu = htons(mtu); 2306 } 2307 if (disable_pmtud) 2308 ire->ire_frag_flag = 0; 2309 /* Reduce the IRE max frag value as advised. */ 2310 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2311 mutex_exit(&ire->ire_lock); 2312 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2313 ire, int, orig_mtu, int, mtu); 2314 } 2315 rw_exit(&first_ire->ire_bucket->irb_lock); 2316 ire_refrele(first_ire); 2317 return (B_TRUE); 2318 } 2319 2320 /* 2321 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2322 * calls this function. 2323 */ 2324 static mblk_t * 2325 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2326 { 2327 ipha_t *ipha; 2328 icmph_t *icmph; 2329 ipha_t *in_ipha; 2330 int length; 2331 2332 ASSERT(mp->b_datap->db_type == M_DATA); 2333 2334 /* 2335 * For Self-encapsulated packets, we added an extra IP header 2336 * without the options. Inner IP header is the one from which 2337 * the outer IP header was formed. Thus, we need to remove the 2338 * outer IP header. To do this, we pullup the whole message 2339 * and overlay whatever follows the outer IP header over the 2340 * outer IP header. 2341 */ 2342 2343 if (!pullupmsg(mp, -1)) 2344 return (NULL); 2345 2346 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2347 ipha = (ipha_t *)&icmph[1]; 2348 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2349 2350 /* 2351 * The length that we want to overlay is following the inner 2352 * IP header. Subtracting the IP header + icmp header + outer 2353 * IP header's length should give us the length that we want to 2354 * overlay. 2355 */ 2356 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2357 hdr_length; 2358 /* 2359 * Overlay whatever follows the inner header over the 2360 * outer header. 2361 */ 2362 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2363 2364 /* Set the wptr to account for the outer header */ 2365 mp->b_wptr -= hdr_length; 2366 return (mp); 2367 } 2368 2369 /* 2370 * Try to pass the ICMP message upstream in case the ULP cares. 2371 * 2372 * If the packet that caused the ICMP error is secure, we send 2373 * it to AH/ESP to make sure that the attached packet has a 2374 * valid association. ipha in the code below points to the 2375 * IP header of the packet that caused the error. 2376 * 2377 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2378 * in the context of IPsec. Normally we tell the upper layer 2379 * whenever we send the ire (including ip_bind), the IPsec header 2380 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2381 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2382 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2383 * same thing. As TCP has the IPsec options size that needs to be 2384 * adjusted, we just pass the MTU unchanged. 2385 * 2386 * IFN could have been generated locally or by some router. 2387 * 2388 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2389 * This happens because IP adjusted its value of MTU on an 2390 * earlier IFN message and could not tell the upper layer, 2391 * the new adjusted value of MTU e.g. Packet was encrypted 2392 * or there was not enough information to fanout to upper 2393 * layers. Thus on the next outbound datagram, ip_wput_ire 2394 * generates the IFN, where IPsec processing has *not* been 2395 * done. 2396 * 2397 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2398 * could have generated this. This happens because ire_max_frag 2399 * value in IP was set to a new value, while the IPsec processing 2400 * was being done and after we made the fragmentation check in 2401 * ip_wput_ire. Thus on return from IPsec processing, 2402 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2403 * and generates the IFN. As IPsec processing is over, we fanout 2404 * to AH/ESP to remove the header. 2405 * 2406 * In both these cases, ipsec_in_loopback will be set indicating 2407 * that IFN was generated locally. 2408 * 2409 * ROUTER : IFN could be secure or non-secure. 2410 * 2411 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2412 * packet in error has AH/ESP headers to validate the AH/ESP 2413 * headers. AH/ESP will verify whether there is a valid SA or 2414 * not and send it back. We will fanout again if we have more 2415 * data in the packet. 2416 * 2417 * If the packet in error does not have AH/ESP, we handle it 2418 * like any other case. 2419 * 2420 * * NON_SECURE : If the packet in error has AH/ESP headers, 2421 * we attach a dummy ipsec_in and send it up to AH/ESP 2422 * for validation. AH/ESP will verify whether there is a 2423 * valid SA or not and send it back. We will fanout again if 2424 * we have more data in the packet. 2425 * 2426 * If the packet in error does not have AH/ESP, we handle it 2427 * like any other case. 2428 */ 2429 static void 2430 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2431 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2432 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2433 zoneid_t zoneid) 2434 { 2435 uint16_t *up; /* Pointer to ports in ULP header */ 2436 uint32_t ports; /* reversed ports for fanout */ 2437 ipha_t ripha; /* With reversed addresses */ 2438 mblk_t *first_mp; 2439 ipsec_in_t *ii; 2440 tcph_t *tcph; 2441 conn_t *connp; 2442 ip_stack_t *ipst; 2443 2444 ASSERT(ill != NULL); 2445 2446 ASSERT(recv_ill != NULL); 2447 ipst = recv_ill->ill_ipst; 2448 2449 first_mp = mp; 2450 if (mctl_present) { 2451 mp = first_mp->b_cont; 2452 ASSERT(mp != NULL); 2453 2454 ii = (ipsec_in_t *)first_mp->b_rptr; 2455 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2456 } else { 2457 ii = NULL; 2458 } 2459 2460 switch (ipha->ipha_protocol) { 2461 case IPPROTO_UDP: 2462 /* 2463 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2464 * transport header. 2465 */ 2466 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2467 mp->b_wptr) { 2468 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2469 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2470 goto discard_pkt; 2471 } 2472 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2473 ipha = (ipha_t *)&icmph[1]; 2474 } 2475 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2476 2477 /* 2478 * Attempt to find a client stream based on port. 2479 * Note that we do a reverse lookup since the header is 2480 * in the form we sent it out. 2481 * The ripha header is only used for the IP_UDP_MATCH and we 2482 * only set the src and dst addresses and protocol. 2483 */ 2484 ripha.ipha_src = ipha->ipha_dst; 2485 ripha.ipha_dst = ipha->ipha_src; 2486 ripha.ipha_protocol = ipha->ipha_protocol; 2487 ((uint16_t *)&ports)[0] = up[1]; 2488 ((uint16_t *)&ports)[1] = up[0]; 2489 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2490 ntohl(ipha->ipha_src), ntohs(up[0]), 2491 ntohl(ipha->ipha_dst), ntohs(up[1]), 2492 icmph->icmph_type, icmph->icmph_code)); 2493 2494 /* Have to change db_type after any pullupmsg */ 2495 DB_TYPE(mp) = M_CTL; 2496 2497 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2498 mctl_present, ip_policy, recv_ill, zoneid); 2499 return; 2500 2501 case IPPROTO_TCP: 2502 /* 2503 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2504 * transport header. 2505 */ 2506 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2507 mp->b_wptr) { 2508 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2509 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2510 goto discard_pkt; 2511 } 2512 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2513 ipha = (ipha_t *)&icmph[1]; 2514 } 2515 /* 2516 * Find a TCP client stream for this packet. 2517 * Note that we do a reverse lookup since the header is 2518 * in the form we sent it out. 2519 */ 2520 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2521 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2522 ipst); 2523 if (connp == NULL) 2524 goto discard_pkt; 2525 2526 /* Have to change db_type after any pullupmsg */ 2527 DB_TYPE(mp) = M_CTL; 2528 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2529 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2530 return; 2531 2532 case IPPROTO_SCTP: 2533 /* 2534 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2535 * transport header. 2536 */ 2537 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2538 mp->b_wptr) { 2539 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2540 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2541 goto discard_pkt; 2542 } 2543 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2544 ipha = (ipha_t *)&icmph[1]; 2545 } 2546 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2547 /* 2548 * Find a SCTP client stream for this packet. 2549 * Note that we do a reverse lookup since the header is 2550 * in the form we sent it out. 2551 * The ripha header is only used for the matching and we 2552 * only set the src and dst addresses, protocol, and version. 2553 */ 2554 ripha.ipha_src = ipha->ipha_dst; 2555 ripha.ipha_dst = ipha->ipha_src; 2556 ripha.ipha_protocol = ipha->ipha_protocol; 2557 ripha.ipha_version_and_hdr_length = 2558 ipha->ipha_version_and_hdr_length; 2559 ((uint16_t *)&ports)[0] = up[1]; 2560 ((uint16_t *)&ports)[1] = up[0]; 2561 2562 /* Have to change db_type after any pullupmsg */ 2563 DB_TYPE(mp) = M_CTL; 2564 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2565 mctl_present, ip_policy, zoneid); 2566 return; 2567 2568 case IPPROTO_ESP: 2569 case IPPROTO_AH: { 2570 int ipsec_rc; 2571 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2572 2573 /* 2574 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2575 * We will re-use the IPSEC_IN if it is already present as 2576 * AH/ESP will not affect any fields in the IPSEC_IN for 2577 * ICMP errors. If there is no IPSEC_IN, allocate a new 2578 * one and attach it in the front. 2579 */ 2580 if (ii != NULL) { 2581 /* 2582 * ip_fanout_proto_again converts the ICMP errors 2583 * that come back from AH/ESP to M_DATA so that 2584 * if it is non-AH/ESP and we do a pullupmsg in 2585 * this function, it would work. Convert it back 2586 * to M_CTL before we send up as this is a ICMP 2587 * error. This could have been generated locally or 2588 * by some router. Validate the inner IPsec 2589 * headers. 2590 * 2591 * NOTE : ill_index is used by ip_fanout_proto_again 2592 * to locate the ill. 2593 */ 2594 ASSERT(ill != NULL); 2595 ii->ipsec_in_ill_index = 2596 ill->ill_phyint->phyint_ifindex; 2597 ii->ipsec_in_rill_index = 2598 recv_ill->ill_phyint->phyint_ifindex; 2599 DB_TYPE(first_mp->b_cont) = M_CTL; 2600 } else { 2601 /* 2602 * IPSEC_IN is not present. We attach a ipsec_in 2603 * message and send up to IPsec for validating 2604 * and removing the IPsec headers. Clear 2605 * ipsec_in_secure so that when we return 2606 * from IPsec, we don't mistakenly think that this 2607 * is a secure packet came from the network. 2608 * 2609 * NOTE : ill_index is used by ip_fanout_proto_again 2610 * to locate the ill. 2611 */ 2612 ASSERT(first_mp == mp); 2613 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2614 if (first_mp == NULL) { 2615 freemsg(mp); 2616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2617 return; 2618 } 2619 ii = (ipsec_in_t *)first_mp->b_rptr; 2620 2621 /* This is not a secure packet */ 2622 ii->ipsec_in_secure = B_FALSE; 2623 first_mp->b_cont = mp; 2624 DB_TYPE(mp) = M_CTL; 2625 ASSERT(ill != NULL); 2626 ii->ipsec_in_ill_index = 2627 ill->ill_phyint->phyint_ifindex; 2628 ii->ipsec_in_rill_index = 2629 recv_ill->ill_phyint->phyint_ifindex; 2630 } 2631 ip2dbg(("icmp_inbound_error: ipsec\n")); 2632 2633 if (!ipsec_loaded(ipss)) { 2634 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2635 return; 2636 } 2637 2638 if (ipha->ipha_protocol == IPPROTO_ESP) 2639 ipsec_rc = ipsecesp_icmp_error(first_mp); 2640 else 2641 ipsec_rc = ipsecah_icmp_error(first_mp); 2642 if (ipsec_rc == IPSEC_STATUS_FAILED) 2643 return; 2644 2645 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2646 return; 2647 } 2648 default: 2649 /* 2650 * The ripha header is only used for the lookup and we 2651 * only set the src and dst addresses and protocol. 2652 */ 2653 ripha.ipha_src = ipha->ipha_dst; 2654 ripha.ipha_dst = ipha->ipha_src; 2655 ripha.ipha_protocol = ipha->ipha_protocol; 2656 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2657 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2658 ntohl(ipha->ipha_dst), 2659 icmph->icmph_type, icmph->icmph_code)); 2660 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2661 ipha_t *in_ipha; 2662 2663 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2664 mp->b_wptr) { 2665 if (!pullupmsg(mp, (uchar_t *)ipha + 2666 hdr_length + sizeof (ipha_t) - 2667 mp->b_rptr)) { 2668 goto discard_pkt; 2669 } 2670 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2671 ipha = (ipha_t *)&icmph[1]; 2672 } 2673 /* 2674 * Caller has verified that length has to be 2675 * at least the size of IP header. 2676 */ 2677 ASSERT(hdr_length >= sizeof (ipha_t)); 2678 /* 2679 * Check the sanity of the inner IP header like 2680 * we did for the outer header. 2681 */ 2682 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2683 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2684 goto discard_pkt; 2685 } 2686 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2687 goto discard_pkt; 2688 } 2689 /* Check for Self-encapsulated tunnels */ 2690 if (in_ipha->ipha_src == ipha->ipha_src && 2691 in_ipha->ipha_dst == ipha->ipha_dst) { 2692 2693 mp = icmp_inbound_self_encap_error(mp, 2694 iph_hdr_length, hdr_length); 2695 if (mp == NULL) 2696 goto discard_pkt; 2697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2698 ipha = (ipha_t *)&icmph[1]; 2699 hdr_length = IPH_HDR_LENGTH(ipha); 2700 /* 2701 * The packet in error is self-encapsualted. 2702 * And we are finding it further encapsulated 2703 * which we could not have possibly generated. 2704 */ 2705 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2706 goto discard_pkt; 2707 } 2708 icmp_inbound_error_fanout(q, ill, first_mp, 2709 icmph, ipha, iph_hdr_length, hdr_length, 2710 mctl_present, ip_policy, recv_ill, zoneid); 2711 return; 2712 } 2713 } 2714 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2715 ipha->ipha_protocol == IPPROTO_IPV6) && 2716 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2717 ii != NULL && 2718 ii->ipsec_in_loopback && 2719 ii->ipsec_in_secure) { 2720 /* 2721 * For IP tunnels that get a looped-back 2722 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2723 * reported new MTU to take into account the IPsec 2724 * headers protecting this configured tunnel. 2725 * 2726 * This allows the tunnel module (tun.c) to blindly 2727 * accept the MTU reported in an ICMP "too big" 2728 * message. 2729 * 2730 * Non-looped back ICMP messages will just be 2731 * handled by the security protocols (if needed), 2732 * and the first subsequent packet will hit this 2733 * path. 2734 */ 2735 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2736 ipsec_in_extra_length(first_mp)); 2737 } 2738 /* Have to change db_type after any pullupmsg */ 2739 DB_TYPE(mp) = M_CTL; 2740 2741 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2742 ip_policy, recv_ill, zoneid); 2743 return; 2744 } 2745 /* NOTREACHED */ 2746 discard_pkt: 2747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2748 drop_pkt:; 2749 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2750 freemsg(first_mp); 2751 } 2752 2753 /* 2754 * Common IP options parser. 2755 * 2756 * Setup routine: fill in *optp with options-parsing state, then 2757 * tail-call ipoptp_next to return the first option. 2758 */ 2759 uint8_t 2760 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2761 { 2762 uint32_t totallen; /* total length of all options */ 2763 2764 totallen = ipha->ipha_version_and_hdr_length - 2765 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2766 totallen <<= 2; 2767 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2768 optp->ipoptp_end = optp->ipoptp_next + totallen; 2769 optp->ipoptp_flags = 0; 2770 return (ipoptp_next(optp)); 2771 } 2772 2773 /* 2774 * Common IP options parser: extract next option. 2775 */ 2776 uint8_t 2777 ipoptp_next(ipoptp_t *optp) 2778 { 2779 uint8_t *end = optp->ipoptp_end; 2780 uint8_t *cur = optp->ipoptp_next; 2781 uint8_t opt, len, pointer; 2782 2783 /* 2784 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2785 * has been corrupted. 2786 */ 2787 ASSERT(cur <= end); 2788 2789 if (cur == end) 2790 return (IPOPT_EOL); 2791 2792 opt = cur[IPOPT_OPTVAL]; 2793 2794 /* 2795 * Skip any NOP options. 2796 */ 2797 while (opt == IPOPT_NOP) { 2798 cur++; 2799 if (cur == end) 2800 return (IPOPT_EOL); 2801 opt = cur[IPOPT_OPTVAL]; 2802 } 2803 2804 if (opt == IPOPT_EOL) 2805 return (IPOPT_EOL); 2806 2807 /* 2808 * Option requiring a length. 2809 */ 2810 if ((cur + 1) >= end) { 2811 optp->ipoptp_flags |= IPOPTP_ERROR; 2812 return (IPOPT_EOL); 2813 } 2814 len = cur[IPOPT_OLEN]; 2815 if (len < 2) { 2816 optp->ipoptp_flags |= IPOPTP_ERROR; 2817 return (IPOPT_EOL); 2818 } 2819 optp->ipoptp_cur = cur; 2820 optp->ipoptp_len = len; 2821 optp->ipoptp_next = cur + len; 2822 if (cur + len > end) { 2823 optp->ipoptp_flags |= IPOPTP_ERROR; 2824 return (IPOPT_EOL); 2825 } 2826 2827 /* 2828 * For the options which require a pointer field, make sure 2829 * its there, and make sure it points to either something 2830 * inside this option, or the end of the option. 2831 */ 2832 switch (opt) { 2833 case IPOPT_RR: 2834 case IPOPT_TS: 2835 case IPOPT_LSRR: 2836 case IPOPT_SSRR: 2837 if (len <= IPOPT_OFFSET) { 2838 optp->ipoptp_flags |= IPOPTP_ERROR; 2839 return (opt); 2840 } 2841 pointer = cur[IPOPT_OFFSET]; 2842 if (pointer - 1 > len) { 2843 optp->ipoptp_flags |= IPOPTP_ERROR; 2844 return (opt); 2845 } 2846 break; 2847 } 2848 2849 /* 2850 * Sanity check the pointer field based on the type of the 2851 * option. 2852 */ 2853 switch (opt) { 2854 case IPOPT_RR: 2855 case IPOPT_SSRR: 2856 case IPOPT_LSRR: 2857 if (pointer < IPOPT_MINOFF_SR) 2858 optp->ipoptp_flags |= IPOPTP_ERROR; 2859 break; 2860 case IPOPT_TS: 2861 if (pointer < IPOPT_MINOFF_IT) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 /* 2864 * Note that the Internet Timestamp option also 2865 * contains two four bit fields (the Overflow field, 2866 * and the Flag field), which follow the pointer 2867 * field. We don't need to check that these fields 2868 * fall within the length of the option because this 2869 * was implicitely done above. We've checked that the 2870 * pointer value is at least IPOPT_MINOFF_IT, and that 2871 * it falls within the option. Since IPOPT_MINOFF_IT > 2872 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2873 */ 2874 ASSERT(len > IPOPT_POS_OV_FLG); 2875 break; 2876 } 2877 2878 return (opt); 2879 } 2880 2881 /* 2882 * Use the outgoing IP header to create an IP_OPTIONS option the way 2883 * it was passed down from the application. 2884 */ 2885 int 2886 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2887 { 2888 ipoptp_t opts; 2889 const uchar_t *opt; 2890 uint8_t optval; 2891 uint8_t optlen; 2892 uint32_t len = 0; 2893 uchar_t *buf1 = buf; 2894 2895 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2896 len += IP_ADDR_LEN; 2897 bzero(buf1, IP_ADDR_LEN); 2898 2899 /* 2900 * OK to cast away const here, as we don't store through the returned 2901 * opts.ipoptp_cur pointer. 2902 */ 2903 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2904 optval != IPOPT_EOL; 2905 optval = ipoptp_next(&opts)) { 2906 int off; 2907 2908 opt = opts.ipoptp_cur; 2909 optlen = opts.ipoptp_len; 2910 switch (optval) { 2911 case IPOPT_SSRR: 2912 case IPOPT_LSRR: 2913 2914 /* 2915 * Insert ipha_dst as the first entry in the source 2916 * route and move down the entries on step. 2917 * The last entry gets placed at buf1. 2918 */ 2919 buf[IPOPT_OPTVAL] = optval; 2920 buf[IPOPT_OLEN] = optlen; 2921 buf[IPOPT_OFFSET] = optlen; 2922 2923 off = optlen - IP_ADDR_LEN; 2924 if (off < 0) { 2925 /* No entries in source route */ 2926 break; 2927 } 2928 /* Last entry in source route */ 2929 bcopy(opt + off, buf1, IP_ADDR_LEN); 2930 off -= IP_ADDR_LEN; 2931 2932 while (off > 0) { 2933 bcopy(opt + off, 2934 buf + off + IP_ADDR_LEN, 2935 IP_ADDR_LEN); 2936 off -= IP_ADDR_LEN; 2937 } 2938 /* ipha_dst into first slot */ 2939 bcopy(&ipha->ipha_dst, 2940 buf + off + IP_ADDR_LEN, 2941 IP_ADDR_LEN); 2942 buf += optlen; 2943 len += optlen; 2944 break; 2945 2946 case IPOPT_COMSEC: 2947 case IPOPT_SECURITY: 2948 /* if passing up a label is not ok, then remove */ 2949 if (is_system_labeled()) 2950 break; 2951 /* FALLTHROUGH */ 2952 default: 2953 bcopy(opt, buf, optlen); 2954 buf += optlen; 2955 len += optlen; 2956 break; 2957 } 2958 } 2959 done: 2960 /* Pad the resulting options */ 2961 while (len & 0x3) { 2962 *buf++ = IPOPT_EOL; 2963 len++; 2964 } 2965 return (len); 2966 } 2967 2968 /* 2969 * Update any record route or timestamp options to include this host. 2970 * Reverse any source route option. 2971 * This routine assumes that the options are well formed i.e. that they 2972 * have already been checked. 2973 */ 2974 static void 2975 icmp_options_update(ipha_t *ipha) 2976 { 2977 ipoptp_t opts; 2978 uchar_t *opt; 2979 uint8_t optval; 2980 ipaddr_t src; /* Our local address */ 2981 ipaddr_t dst; 2982 2983 ip2dbg(("icmp_options_update\n")); 2984 src = ipha->ipha_src; 2985 dst = ipha->ipha_dst; 2986 2987 for (optval = ipoptp_first(&opts, ipha); 2988 optval != IPOPT_EOL; 2989 optval = ipoptp_next(&opts)) { 2990 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2991 opt = opts.ipoptp_cur; 2992 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2993 optval, opts.ipoptp_len)); 2994 switch (optval) { 2995 int off1, off2; 2996 case IPOPT_SSRR: 2997 case IPOPT_LSRR: 2998 /* 2999 * Reverse the source route. The first entry 3000 * should be the next to last one in the current 3001 * source route (the last entry is our address). 3002 * The last entry should be the final destination. 3003 */ 3004 off1 = IPOPT_MINOFF_SR - 1; 3005 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3006 if (off2 < 0) { 3007 /* No entries in source route */ 3008 ip1dbg(( 3009 "icmp_options_update: bad src route\n")); 3010 break; 3011 } 3012 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3013 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3014 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3015 off2 -= IP_ADDR_LEN; 3016 3017 while (off1 < off2) { 3018 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3019 bcopy((char *)opt + off2, (char *)opt + off1, 3020 IP_ADDR_LEN); 3021 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3022 off1 += IP_ADDR_LEN; 3023 off2 -= IP_ADDR_LEN; 3024 } 3025 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3026 break; 3027 } 3028 } 3029 } 3030 3031 /* 3032 * Process received ICMP Redirect messages. 3033 */ 3034 static void 3035 icmp_redirect(ill_t *ill, mblk_t *mp) 3036 { 3037 ipha_t *ipha; 3038 int iph_hdr_length; 3039 icmph_t *icmph; 3040 ipha_t *ipha_err; 3041 ire_t *ire; 3042 ire_t *prev_ire; 3043 ire_t *save_ire; 3044 ipaddr_t src, dst, gateway; 3045 iulp_t ulp_info = { 0 }; 3046 int error; 3047 ip_stack_t *ipst; 3048 3049 ASSERT(ill != NULL); 3050 ipst = ill->ill_ipst; 3051 3052 ipha = (ipha_t *)mp->b_rptr; 3053 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3054 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3055 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3056 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3057 freemsg(mp); 3058 return; 3059 } 3060 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3061 ipha_err = (ipha_t *)&icmph[1]; 3062 src = ipha->ipha_src; 3063 dst = ipha_err->ipha_dst; 3064 gateway = icmph->icmph_rd_gateway; 3065 /* Make sure the new gateway is reachable somehow. */ 3066 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3067 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3068 /* 3069 * Make sure we had a route for the dest in question and that 3070 * that route was pointing to the old gateway (the source of the 3071 * redirect packet.) 3072 */ 3073 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3074 NULL, MATCH_IRE_GW, ipst); 3075 /* 3076 * Check that 3077 * the redirect was not from ourselves 3078 * the new gateway and the old gateway are directly reachable 3079 */ 3080 if (!prev_ire || 3081 !ire || 3082 ire->ire_type == IRE_LOCAL) { 3083 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3084 freemsg(mp); 3085 if (ire != NULL) 3086 ire_refrele(ire); 3087 if (prev_ire != NULL) 3088 ire_refrele(prev_ire); 3089 return; 3090 } 3091 3092 /* 3093 * Should we use the old ULP info to create the new gateway? From 3094 * a user's perspective, we should inherit the info so that it 3095 * is a "smooth" transition. If we do not do that, then new 3096 * connections going thru the new gateway will have no route metrics, 3097 * which is counter-intuitive to user. From a network point of 3098 * view, this may or may not make sense even though the new gateway 3099 * is still directly connected to us so the route metrics should not 3100 * change much. 3101 * 3102 * But if the old ire_uinfo is not initialized, we do another 3103 * recursive lookup on the dest using the new gateway. There may 3104 * be a route to that. If so, use it to initialize the redirect 3105 * route. 3106 */ 3107 if (prev_ire->ire_uinfo.iulp_set) { 3108 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3109 } else { 3110 ire_t *tmp_ire; 3111 ire_t *sire; 3112 3113 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3114 ALL_ZONES, 0, NULL, 3115 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3116 ipst); 3117 if (sire != NULL) { 3118 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3119 /* 3120 * If sire != NULL, ire_ftable_lookup() should not 3121 * return a NULL value. 3122 */ 3123 ASSERT(tmp_ire != NULL); 3124 ire_refrele(tmp_ire); 3125 ire_refrele(sire); 3126 } else if (tmp_ire != NULL) { 3127 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3128 sizeof (iulp_t)); 3129 ire_refrele(tmp_ire); 3130 } 3131 } 3132 if (prev_ire->ire_type == IRE_CACHE) 3133 ire_delete(prev_ire); 3134 ire_refrele(prev_ire); 3135 /* 3136 * TODO: more precise handling for cases 0, 2, 3, the latter two 3137 * require TOS routing 3138 */ 3139 switch (icmph->icmph_code) { 3140 case 0: 3141 case 1: 3142 /* TODO: TOS specificity for cases 2 and 3 */ 3143 case 2: 3144 case 3: 3145 break; 3146 default: 3147 freemsg(mp); 3148 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3149 ire_refrele(ire); 3150 return; 3151 } 3152 /* 3153 * Create a Route Association. This will allow us to remember that 3154 * someone we believe told us to use the particular gateway. 3155 */ 3156 save_ire = ire; 3157 ire = ire_create( 3158 (uchar_t *)&dst, /* dest addr */ 3159 (uchar_t *)&ip_g_all_ones, /* mask */ 3160 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3161 (uchar_t *)&gateway, /* gateway addr */ 3162 &save_ire->ire_max_frag, /* max frag */ 3163 NULL, /* no src nce */ 3164 NULL, /* no rfq */ 3165 NULL, /* no stq */ 3166 IRE_HOST, 3167 NULL, /* ipif */ 3168 0, /* cmask */ 3169 0, /* phandle */ 3170 0, /* ihandle */ 3171 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3172 &ulp_info, 3173 NULL, /* tsol_gc_t */ 3174 NULL, /* gcgrp */ 3175 ipst); 3176 3177 if (ire == NULL) { 3178 freemsg(mp); 3179 ire_refrele(save_ire); 3180 return; 3181 } 3182 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3183 ire_refrele(save_ire); 3184 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3185 3186 if (error == 0) { 3187 ire_refrele(ire); /* Held in ire_add_v4 */ 3188 /* tell routing sockets that we received a redirect */ 3189 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3190 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3191 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3192 } 3193 3194 /* 3195 * Delete any existing IRE_HOST type redirect ires for this destination. 3196 * This together with the added IRE has the effect of 3197 * modifying an existing redirect. 3198 */ 3199 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3200 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3201 if (prev_ire != NULL) { 3202 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3203 ire_delete(prev_ire); 3204 ire_refrele(prev_ire); 3205 } 3206 3207 freemsg(mp); 3208 } 3209 3210 /* 3211 * Generate an ICMP parameter problem message. 3212 */ 3213 static void 3214 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3215 ip_stack_t *ipst) 3216 { 3217 icmph_t icmph; 3218 boolean_t mctl_present; 3219 mblk_t *first_mp; 3220 3221 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3222 3223 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3224 if (mctl_present) 3225 freeb(first_mp); 3226 return; 3227 } 3228 3229 bzero(&icmph, sizeof (icmph_t)); 3230 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3231 icmph.icmph_pp_ptr = ptr; 3232 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3233 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3234 ipst); 3235 } 3236 3237 /* 3238 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3239 * the ICMP header pointed to by "stuff". (May be called as writer.) 3240 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3241 * an icmp error packet can be sent. 3242 * Assigns an appropriate source address to the packet. If ipha_dst is 3243 * one of our addresses use it for source. Otherwise pick a source based 3244 * on a route lookup back to ipha_src. 3245 * Note that ipha_src must be set here since the 3246 * packet is likely to arrive on an ill queue in ip_wput() which will 3247 * not set a source address. 3248 */ 3249 static void 3250 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3251 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3252 { 3253 ipaddr_t dst; 3254 icmph_t *icmph; 3255 ipha_t *ipha; 3256 uint_t len_needed; 3257 size_t msg_len; 3258 mblk_t *mp1; 3259 ipaddr_t src; 3260 ire_t *ire; 3261 mblk_t *ipsec_mp; 3262 ipsec_out_t *io = NULL; 3263 3264 if (mctl_present) { 3265 /* 3266 * If it is : 3267 * 3268 * 1) a IPSEC_OUT, then this is caused by outbound 3269 * datagram originating on this host. IPsec processing 3270 * may or may not have been done. Refer to comments above 3271 * icmp_inbound_error_fanout for details. 3272 * 3273 * 2) a IPSEC_IN if we are generating a icmp_message 3274 * for an incoming datagram destined for us i.e called 3275 * from ip_fanout_send_icmp. 3276 */ 3277 ipsec_info_t *in; 3278 ipsec_mp = mp; 3279 mp = ipsec_mp->b_cont; 3280 3281 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3282 ipha = (ipha_t *)mp->b_rptr; 3283 3284 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3285 in->ipsec_info_type == IPSEC_IN); 3286 3287 if (in->ipsec_info_type == IPSEC_IN) { 3288 /* 3289 * Convert the IPSEC_IN to IPSEC_OUT. 3290 */ 3291 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3292 BUMP_MIB(&ipst->ips_ip_mib, 3293 ipIfStatsOutDiscards); 3294 return; 3295 } 3296 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3297 } else { 3298 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3299 io = (ipsec_out_t *)in; 3300 /* 3301 * Clear out ipsec_out_proc_begin, so we do a fresh 3302 * ire lookup. 3303 */ 3304 io->ipsec_out_proc_begin = B_FALSE; 3305 } 3306 ASSERT(zoneid == io->ipsec_out_zoneid); 3307 ASSERT(zoneid != ALL_ZONES); 3308 } else { 3309 /* 3310 * This is in clear. The icmp message we are building 3311 * here should go out in clear. 3312 * 3313 * Pardon the convolution of it all, but it's easier to 3314 * allocate a "use cleartext" IPSEC_IN message and convert 3315 * it than it is to allocate a new one. 3316 */ 3317 ipsec_in_t *ii; 3318 ASSERT(DB_TYPE(mp) == M_DATA); 3319 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3320 if (ipsec_mp == NULL) { 3321 freemsg(mp); 3322 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3323 return; 3324 } 3325 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3326 3327 /* This is not a secure packet */ 3328 ii->ipsec_in_secure = B_FALSE; 3329 /* 3330 * For trusted extensions using a shared IP address we can 3331 * send using any zoneid. 3332 */ 3333 if (zoneid == ALL_ZONES) 3334 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3335 else 3336 ii->ipsec_in_zoneid = zoneid; 3337 ipsec_mp->b_cont = mp; 3338 ipha = (ipha_t *)mp->b_rptr; 3339 /* 3340 * Convert the IPSEC_IN to IPSEC_OUT. 3341 */ 3342 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3343 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3344 return; 3345 } 3346 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3347 } 3348 3349 /* Remember our eventual destination */ 3350 dst = ipha->ipha_src; 3351 3352 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3353 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3354 if (ire != NULL && 3355 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3356 src = ipha->ipha_dst; 3357 } else { 3358 if (ire != NULL) 3359 ire_refrele(ire); 3360 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3361 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3362 ipst); 3363 if (ire == NULL) { 3364 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3365 freemsg(ipsec_mp); 3366 return; 3367 } 3368 src = ire->ire_src_addr; 3369 } 3370 3371 if (ire != NULL) 3372 ire_refrele(ire); 3373 3374 /* 3375 * Check if we can send back more then 8 bytes in addition to 3376 * the IP header. We try to send 64 bytes of data and the internal 3377 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3378 */ 3379 len_needed = IPH_HDR_LENGTH(ipha); 3380 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3381 ipha->ipha_protocol == IPPROTO_IPV6) { 3382 3383 if (!pullupmsg(mp, -1)) { 3384 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3385 freemsg(ipsec_mp); 3386 return; 3387 } 3388 ipha = (ipha_t *)mp->b_rptr; 3389 3390 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3391 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3392 len_needed)); 3393 } else { 3394 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3395 3396 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3397 len_needed += ip_hdr_length_v6(mp, ip6h); 3398 } 3399 } 3400 len_needed += ipst->ips_ip_icmp_return; 3401 msg_len = msgdsize(mp); 3402 if (msg_len > len_needed) { 3403 (void) adjmsg(mp, len_needed - msg_len); 3404 msg_len = len_needed; 3405 } 3406 /* Make sure we propagate the cred/label for TX */ 3407 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3408 if (mp1 == NULL) { 3409 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3410 freemsg(ipsec_mp); 3411 return; 3412 } 3413 mp1->b_cont = mp; 3414 mp = mp1; 3415 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3416 ipsec_mp->b_rptr == (uint8_t *)io && 3417 io->ipsec_out_type == IPSEC_OUT); 3418 ipsec_mp->b_cont = mp; 3419 3420 /* 3421 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3422 * node generates be accepted in peace by all on-host destinations. 3423 * If we do NOT assume that all on-host destinations trust 3424 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3425 * (Look for ipsec_out_icmp_loopback). 3426 */ 3427 io->ipsec_out_icmp_loopback = B_TRUE; 3428 3429 ipha = (ipha_t *)mp->b_rptr; 3430 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3431 *ipha = icmp_ipha; 3432 ipha->ipha_src = src; 3433 ipha->ipha_dst = dst; 3434 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3435 msg_len += sizeof (icmp_ipha) + len; 3436 if (msg_len > IP_MAXPACKET) { 3437 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3438 msg_len = IP_MAXPACKET; 3439 } 3440 ipha->ipha_length = htons((uint16_t)msg_len); 3441 icmph = (icmph_t *)&ipha[1]; 3442 bcopy(stuff, icmph, len); 3443 icmph->icmph_checksum = 0; 3444 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3445 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3446 put(q, ipsec_mp); 3447 } 3448 3449 /* 3450 * Determine if an ICMP error packet can be sent given the rate limit. 3451 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3452 * in milliseconds) and a burst size. Burst size number of packets can 3453 * be sent arbitrarely closely spaced. 3454 * The state is tracked using two variables to implement an approximate 3455 * token bucket filter: 3456 * icmp_pkt_err_last - lbolt value when the last burst started 3457 * icmp_pkt_err_sent - number of packets sent in current burst 3458 */ 3459 boolean_t 3460 icmp_err_rate_limit(ip_stack_t *ipst) 3461 { 3462 clock_t now = TICK_TO_MSEC(lbolt); 3463 uint_t refilled; /* Number of packets refilled in tbf since last */ 3464 /* Guard against changes by loading into local variable */ 3465 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3466 3467 if (err_interval == 0) 3468 return (B_FALSE); 3469 3470 if (ipst->ips_icmp_pkt_err_last > now) { 3471 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3472 ipst->ips_icmp_pkt_err_last = 0; 3473 ipst->ips_icmp_pkt_err_sent = 0; 3474 } 3475 /* 3476 * If we are in a burst update the token bucket filter. 3477 * Update the "last" time to be close to "now" but make sure 3478 * we don't loose precision. 3479 */ 3480 if (ipst->ips_icmp_pkt_err_sent != 0) { 3481 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3482 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3483 ipst->ips_icmp_pkt_err_sent = 0; 3484 } else { 3485 ipst->ips_icmp_pkt_err_sent -= refilled; 3486 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3487 } 3488 } 3489 if (ipst->ips_icmp_pkt_err_sent == 0) { 3490 /* Start of new burst */ 3491 ipst->ips_icmp_pkt_err_last = now; 3492 } 3493 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3494 ipst->ips_icmp_pkt_err_sent++; 3495 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3496 ipst->ips_icmp_pkt_err_sent)); 3497 return (B_FALSE); 3498 } 3499 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3500 return (B_TRUE); 3501 } 3502 3503 /* 3504 * Check if it is ok to send an IPv4 ICMP error packet in 3505 * response to the IPv4 packet in mp. 3506 * Free the message and return null if no 3507 * ICMP error packet should be sent. 3508 */ 3509 static mblk_t * 3510 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3511 { 3512 icmph_t *icmph; 3513 ipha_t *ipha; 3514 uint_t len_needed; 3515 ire_t *src_ire; 3516 ire_t *dst_ire; 3517 3518 if (!mp) 3519 return (NULL); 3520 ipha = (ipha_t *)mp->b_rptr; 3521 if (ip_csum_hdr(ipha)) { 3522 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3523 freemsg(mp); 3524 return (NULL); 3525 } 3526 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3527 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3528 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3529 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3530 if (src_ire != NULL || dst_ire != NULL || 3531 CLASSD(ipha->ipha_dst) || 3532 CLASSD(ipha->ipha_src) || 3533 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3534 /* Note: only errors to the fragment with offset 0 */ 3535 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3536 freemsg(mp); 3537 if (src_ire != NULL) 3538 ire_refrele(src_ire); 3539 if (dst_ire != NULL) 3540 ire_refrele(dst_ire); 3541 return (NULL); 3542 } 3543 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3544 /* 3545 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3546 * errors in response to any ICMP errors. 3547 */ 3548 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3549 if (mp->b_wptr - mp->b_rptr < len_needed) { 3550 if (!pullupmsg(mp, len_needed)) { 3551 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3552 freemsg(mp); 3553 return (NULL); 3554 } 3555 ipha = (ipha_t *)mp->b_rptr; 3556 } 3557 icmph = (icmph_t *) 3558 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3559 switch (icmph->icmph_type) { 3560 case ICMP_DEST_UNREACHABLE: 3561 case ICMP_SOURCE_QUENCH: 3562 case ICMP_TIME_EXCEEDED: 3563 case ICMP_PARAM_PROBLEM: 3564 case ICMP_REDIRECT: 3565 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3566 freemsg(mp); 3567 return (NULL); 3568 default: 3569 break; 3570 } 3571 } 3572 /* 3573 * If this is a labeled system, then check to see if we're allowed to 3574 * send a response to this particular sender. If not, then just drop. 3575 */ 3576 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3577 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3578 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3579 freemsg(mp); 3580 return (NULL); 3581 } 3582 if (icmp_err_rate_limit(ipst)) { 3583 /* 3584 * Only send ICMP error packets every so often. 3585 * This should be done on a per port/source basis, 3586 * but for now this will suffice. 3587 */ 3588 freemsg(mp); 3589 return (NULL); 3590 } 3591 return (mp); 3592 } 3593 3594 /* 3595 * Generate an ICMP redirect message. 3596 */ 3597 static void 3598 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3599 { 3600 icmph_t icmph; 3601 3602 /* 3603 * We are called from ip_rput where we could 3604 * not have attached an IPSEC_IN. 3605 */ 3606 ASSERT(mp->b_datap->db_type == M_DATA); 3607 3608 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3609 return; 3610 } 3611 3612 bzero(&icmph, sizeof (icmph_t)); 3613 icmph.icmph_type = ICMP_REDIRECT; 3614 icmph.icmph_code = 1; 3615 icmph.icmph_rd_gateway = gateway; 3616 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3617 /* Redirects sent by router, and router is global zone */ 3618 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3619 } 3620 3621 /* 3622 * Generate an ICMP time exceeded message. 3623 */ 3624 void 3625 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3626 ip_stack_t *ipst) 3627 { 3628 icmph_t icmph; 3629 boolean_t mctl_present; 3630 mblk_t *first_mp; 3631 3632 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3633 3634 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3635 if (mctl_present) 3636 freeb(first_mp); 3637 return; 3638 } 3639 3640 bzero(&icmph, sizeof (icmph_t)); 3641 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3642 icmph.icmph_code = code; 3643 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3644 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3645 ipst); 3646 } 3647 3648 /* 3649 * Generate an ICMP unreachable message. 3650 */ 3651 void 3652 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3653 ip_stack_t *ipst) 3654 { 3655 icmph_t icmph; 3656 mblk_t *first_mp; 3657 boolean_t mctl_present; 3658 3659 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3660 3661 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3662 if (mctl_present) 3663 freeb(first_mp); 3664 return; 3665 } 3666 3667 bzero(&icmph, sizeof (icmph_t)); 3668 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3669 icmph.icmph_code = code; 3670 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3671 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3672 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3673 zoneid, ipst); 3674 } 3675 3676 /* 3677 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3678 * duplicate. As long as someone else holds the address, the interface will 3679 * stay down. When that conflict goes away, the interface is brought back up. 3680 * This is done so that accidental shutdowns of addresses aren't made 3681 * permanent. Your server will recover from a failure. 3682 * 3683 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3684 * user space process (dhcpagent). 3685 * 3686 * Recovery completes if ARP reports that the address is now ours (via 3687 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3688 * 3689 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3690 */ 3691 static void 3692 ipif_dup_recovery(void *arg) 3693 { 3694 ipif_t *ipif = arg; 3695 ill_t *ill = ipif->ipif_ill; 3696 mblk_t *arp_add_mp; 3697 mblk_t *arp_del_mp; 3698 ip_stack_t *ipst = ill->ill_ipst; 3699 3700 ipif->ipif_recovery_id = 0; 3701 3702 /* 3703 * No lock needed for moving or condemned check, as this is just an 3704 * optimization. 3705 */ 3706 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3707 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3708 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3709 /* No reason to try to bring this address back. */ 3710 return; 3711 } 3712 3713 /* ACE_F_UNVERIFIED restarts DAD */ 3714 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3715 goto alloc_fail; 3716 3717 if (ipif->ipif_arp_del_mp == NULL) { 3718 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3719 goto alloc_fail; 3720 ipif->ipif_arp_del_mp = arp_del_mp; 3721 } 3722 3723 putnext(ill->ill_rq, arp_add_mp); 3724 return; 3725 3726 alloc_fail: 3727 /* 3728 * On allocation failure, just restart the timer. Note that the ipif 3729 * is down here, so no other thread could be trying to start a recovery 3730 * timer. The ill_lock protects the condemned flag and the recovery 3731 * timer ID. 3732 */ 3733 freemsg(arp_add_mp); 3734 mutex_enter(&ill->ill_lock); 3735 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3736 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3737 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3738 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3739 } 3740 mutex_exit(&ill->ill_lock); 3741 } 3742 3743 /* 3744 * This is for exclusive changes due to ARP. Either tear down an interface due 3745 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3746 */ 3747 /* ARGSUSED */ 3748 static void 3749 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3750 { 3751 ill_t *ill = rq->q_ptr; 3752 arh_t *arh; 3753 ipaddr_t src; 3754 ipif_t *ipif; 3755 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3756 char hbuf[MAC_STR_LEN]; 3757 char sbuf[INET_ADDRSTRLEN]; 3758 const char *failtype; 3759 boolean_t bring_up; 3760 ip_stack_t *ipst = ill->ill_ipst; 3761 3762 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3763 case AR_CN_READY: 3764 failtype = NULL; 3765 bring_up = B_TRUE; 3766 break; 3767 case AR_CN_FAILED: 3768 failtype = "in use"; 3769 bring_up = B_FALSE; 3770 break; 3771 default: 3772 failtype = "claimed"; 3773 bring_up = B_FALSE; 3774 break; 3775 } 3776 3777 arh = (arh_t *)mp->b_cont->b_rptr; 3778 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3779 3780 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3781 sizeof (hbuf)); 3782 (void) ip_dot_addr(src, sbuf); 3783 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3784 3785 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3786 ipif->ipif_lcl_addr != src) { 3787 continue; 3788 } 3789 3790 /* 3791 * If we failed on a recovery probe, then restart the timer to 3792 * try again later. 3793 */ 3794 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3795 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3796 ill->ill_net_type == IRE_IF_RESOLVER && 3797 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3798 ipst->ips_ip_dup_recovery > 0 && 3799 ipif->ipif_recovery_id == 0) { 3800 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3801 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3802 continue; 3803 } 3804 3805 /* 3806 * If what we're trying to do has already been done, then do 3807 * nothing. 3808 */ 3809 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3810 continue; 3811 3812 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3813 3814 if (failtype == NULL) { 3815 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3816 ibuf); 3817 } else { 3818 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3819 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3820 } 3821 3822 if (bring_up) { 3823 ASSERT(ill->ill_dl_up); 3824 /* 3825 * Free up the ARP delete message so we can allocate 3826 * a fresh one through the normal path. 3827 */ 3828 freemsg(ipif->ipif_arp_del_mp); 3829 ipif->ipif_arp_del_mp = NULL; 3830 if (ipif_resolver_up(ipif, Res_act_initial) != 3831 EINPROGRESS) { 3832 ipif->ipif_addr_ready = 1; 3833 (void) ipif_up_done(ipif); 3834 ASSERT(ill->ill_move_ipif == NULL); 3835 } 3836 continue; 3837 } 3838 3839 mutex_enter(&ill->ill_lock); 3840 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3841 ipif->ipif_flags |= IPIF_DUPLICATE; 3842 ill->ill_ipif_dup_count++; 3843 mutex_exit(&ill->ill_lock); 3844 /* 3845 * Already exclusive on the ill; no need to handle deferred 3846 * processing here. 3847 */ 3848 (void) ipif_down(ipif, NULL, NULL); 3849 ipif_down_tail(ipif); 3850 mutex_enter(&ill->ill_lock); 3851 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3852 ill->ill_net_type == IRE_IF_RESOLVER && 3853 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3854 ipst->ips_ip_dup_recovery > 0) { 3855 ASSERT(ipif->ipif_recovery_id == 0); 3856 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3857 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3858 } 3859 mutex_exit(&ill->ill_lock); 3860 } 3861 freemsg(mp); 3862 } 3863 3864 /* ARGSUSED */ 3865 static void 3866 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3867 { 3868 ill_t *ill = rq->q_ptr; 3869 arh_t *arh; 3870 ipaddr_t src; 3871 ipif_t *ipif; 3872 3873 arh = (arh_t *)mp->b_cont->b_rptr; 3874 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3875 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3876 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3877 (void) ipif_resolver_up(ipif, Res_act_defend); 3878 } 3879 freemsg(mp); 3880 } 3881 3882 /* 3883 * News from ARP. ARP sends notification of interesting events down 3884 * to its clients using M_CTL messages with the interesting ARP packet 3885 * attached via b_cont. 3886 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3887 * queue as opposed to ARP sending the message to all the clients, i.e. all 3888 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3889 * table if a cache IRE is found to delete all the entries for the address in 3890 * the packet. 3891 */ 3892 static void 3893 ip_arp_news(queue_t *q, mblk_t *mp) 3894 { 3895 arcn_t *arcn; 3896 arh_t *arh; 3897 ire_t *ire = NULL; 3898 char hbuf[MAC_STR_LEN]; 3899 char sbuf[INET_ADDRSTRLEN]; 3900 ipaddr_t src; 3901 in6_addr_t v6src; 3902 boolean_t isv6 = B_FALSE; 3903 ipif_t *ipif; 3904 ill_t *ill; 3905 ip_stack_t *ipst; 3906 3907 if (CONN_Q(q)) { 3908 conn_t *connp = Q_TO_CONN(q); 3909 3910 ipst = connp->conn_netstack->netstack_ip; 3911 } else { 3912 ill_t *ill = (ill_t *)q->q_ptr; 3913 3914 ipst = ill->ill_ipst; 3915 } 3916 3917 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3918 if (q->q_next) { 3919 putnext(q, mp); 3920 } else 3921 freemsg(mp); 3922 return; 3923 } 3924 arh = (arh_t *)mp->b_cont->b_rptr; 3925 /* Is it one we are interested in? */ 3926 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3927 isv6 = B_TRUE; 3928 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3929 IPV6_ADDR_LEN); 3930 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3931 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3932 IP_ADDR_LEN); 3933 } else { 3934 freemsg(mp); 3935 return; 3936 } 3937 3938 ill = q->q_ptr; 3939 3940 arcn = (arcn_t *)mp->b_rptr; 3941 switch (arcn->arcn_code) { 3942 case AR_CN_BOGON: 3943 /* 3944 * Someone is sending ARP packets with a source protocol 3945 * address that we have published and for which we believe our 3946 * entry is authoritative and (when ill_arp_extend is set) 3947 * verified to be unique on the network. 3948 * 3949 * The ARP module internally handles the cases where the sender 3950 * is just probing (for DAD) and where the hardware address of 3951 * a non-authoritative entry has changed. Thus, these are the 3952 * real conflicts, and we have to do resolution. 3953 * 3954 * We back away quickly from the address if it's from DHCP or 3955 * otherwise temporary and hasn't been used recently (or at 3956 * all). We'd like to include "deprecated" addresses here as 3957 * well (as there's no real reason to defend something we're 3958 * discarding), but IPMP "reuses" this flag to mean something 3959 * other than the standard meaning. 3960 * 3961 * If the ARP module above is not extended (meaning that it 3962 * doesn't know how to defend the address), then we just log 3963 * the problem as we always did and continue on. It's not 3964 * right, but there's little else we can do, and those old ATM 3965 * users are going away anyway. 3966 */ 3967 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3968 hbuf, sizeof (hbuf)); 3969 (void) ip_dot_addr(src, sbuf); 3970 if (isv6) { 3971 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3972 ipst); 3973 } else { 3974 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3975 } 3976 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3977 uint32_t now; 3978 uint32_t maxage; 3979 clock_t lused; 3980 uint_t maxdefense; 3981 uint_t defs; 3982 3983 /* 3984 * First, figure out if this address hasn't been used 3985 * in a while. If it hasn't, then it's a better 3986 * candidate for abandoning. 3987 */ 3988 ipif = ire->ire_ipif; 3989 ASSERT(ipif != NULL); 3990 now = gethrestime_sec(); 3991 maxage = now - ire->ire_create_time; 3992 if (maxage > ipst->ips_ip_max_temp_idle) 3993 maxage = ipst->ips_ip_max_temp_idle; 3994 lused = drv_hztousec(ddi_get_lbolt() - 3995 ire->ire_last_used_time) / MICROSEC + 1; 3996 if (lused >= maxage && (ipif->ipif_flags & 3997 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3998 maxdefense = ipst->ips_ip_max_temp_defend; 3999 else 4000 maxdefense = ipst->ips_ip_max_defend; 4001 4002 /* 4003 * Now figure out how many times we've defended 4004 * ourselves. Ignore defenses that happened long in 4005 * the past. 4006 */ 4007 mutex_enter(&ire->ire_lock); 4008 if ((defs = ire->ire_defense_count) > 0 && 4009 now - ire->ire_defense_time > 4010 ipst->ips_ip_defend_interval) { 4011 ire->ire_defense_count = defs = 0; 4012 } 4013 ire->ire_defense_count++; 4014 ire->ire_defense_time = now; 4015 mutex_exit(&ire->ire_lock); 4016 ill_refhold(ill); 4017 ire_refrele(ire); 4018 4019 /* 4020 * If we've defended ourselves too many times already, 4021 * then give up and tear down the interface(s) using 4022 * this address. Otherwise, defend by sending out a 4023 * gratuitous ARP. 4024 */ 4025 if (defs >= maxdefense && ill->ill_arp_extend) { 4026 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4027 B_FALSE); 4028 } else { 4029 cmn_err(CE_WARN, 4030 "node %s is using our IP address %s on %s", 4031 hbuf, sbuf, ill->ill_name); 4032 /* 4033 * If this is an old (ATM) ARP module, then 4034 * don't try to defend the address. Remain 4035 * compatible with the old behavior. Defend 4036 * only with new ARP. 4037 */ 4038 if (ill->ill_arp_extend) { 4039 qwriter_ip(ill, q, mp, ip_arp_defend, 4040 NEW_OP, B_FALSE); 4041 } else { 4042 ill_refrele(ill); 4043 } 4044 } 4045 return; 4046 } 4047 cmn_err(CE_WARN, 4048 "proxy ARP problem? Node '%s' is using %s on %s", 4049 hbuf, sbuf, ill->ill_name); 4050 if (ire != NULL) 4051 ire_refrele(ire); 4052 break; 4053 case AR_CN_ANNOUNCE: 4054 if (isv6) { 4055 /* 4056 * For XRESOLV interfaces. 4057 * Delete the IRE cache entry and NCE for this 4058 * v6 address 4059 */ 4060 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4061 /* 4062 * If v6src is a non-zero, it's a router address 4063 * as below. Do the same sort of thing to clean 4064 * out off-net IRE_CACHE entries that go through 4065 * the router. 4066 */ 4067 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4068 ire_walk_v6(ire_delete_cache_gw_v6, 4069 (char *)&v6src, ALL_ZONES, ipst); 4070 } 4071 } else { 4072 nce_hw_map_t hwm; 4073 4074 /* 4075 * ARP gives us a copy of any packet where it thinks 4076 * the address has changed, so that we can update our 4077 * caches. We're responsible for caching known answers 4078 * in the current design. We check whether the 4079 * hardware address really has changed in all of our 4080 * entries that have cached this mapping, and if so, we 4081 * blow them away. This way we will immediately pick 4082 * up the rare case of a host changing hardware 4083 * address. 4084 */ 4085 if (src == 0) 4086 break; 4087 hwm.hwm_addr = src; 4088 hwm.hwm_hwlen = arh->arh_hlen; 4089 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4090 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4091 ndp_walk_common(ipst->ips_ndp4, NULL, 4092 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4093 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4094 } 4095 break; 4096 case AR_CN_READY: 4097 /* No external v6 resolver has a contract to use this */ 4098 if (isv6) 4099 break; 4100 /* If the link is down, we'll retry this later */ 4101 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4102 break; 4103 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4104 NULL, NULL, ipst); 4105 if (ipif != NULL) { 4106 /* 4107 * If this is a duplicate recovery, then we now need to 4108 * go exclusive to bring this thing back up. 4109 */ 4110 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4111 IPIF_DUPLICATE) { 4112 ipif_refrele(ipif); 4113 ill_refhold(ill); 4114 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4115 B_FALSE); 4116 return; 4117 } 4118 /* 4119 * If this is the first notice that this address is 4120 * ready, then let the user know now. 4121 */ 4122 if ((ipif->ipif_flags & IPIF_UP) && 4123 !ipif->ipif_addr_ready) { 4124 ipif_mask_reply(ipif); 4125 ipif_up_notify(ipif); 4126 } 4127 ipif->ipif_addr_ready = 1; 4128 ipif_refrele(ipif); 4129 } 4130 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4131 if (ire != NULL) { 4132 ire->ire_defense_count = 0; 4133 ire_refrele(ire); 4134 } 4135 break; 4136 case AR_CN_FAILED: 4137 /* No external v6 resolver has a contract to use this */ 4138 if (isv6) 4139 break; 4140 if (!ill->ill_arp_extend) { 4141 (void) mac_colon_addr((uint8_t *)(arh + 1), 4142 arh->arh_hlen, hbuf, sizeof (hbuf)); 4143 (void) ip_dot_addr(src, sbuf); 4144 4145 cmn_err(CE_WARN, 4146 "node %s is using our IP address %s on %s", 4147 hbuf, sbuf, ill->ill_name); 4148 break; 4149 } 4150 ill_refhold(ill); 4151 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4152 return; 4153 } 4154 freemsg(mp); 4155 } 4156 4157 /* 4158 * Create a mblk suitable for carrying the interface index and/or source link 4159 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4160 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4161 * application. 4162 */ 4163 mblk_t * 4164 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4165 ip_stack_t *ipst) 4166 { 4167 mblk_t *mp; 4168 ip_pktinfo_t *pinfo; 4169 ipha_t *ipha; 4170 struct ether_header *pether; 4171 boolean_t ipmp_ill_held = B_FALSE; 4172 4173 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4174 if (mp == NULL) { 4175 ip1dbg(("ip_add_info: allocation failure.\n")); 4176 return (data_mp); 4177 } 4178 4179 ipha = (ipha_t *)data_mp->b_rptr; 4180 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4181 bzero(pinfo, sizeof (ip_pktinfo_t)); 4182 pinfo->ip_pkt_flags = (uchar_t)flags; 4183 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4184 4185 pether = (struct ether_header *)((char *)ipha 4186 - sizeof (struct ether_header)); 4187 4188 /* 4189 * Make sure the interface is an ethernet type, since this option 4190 * is currently supported only on this type of interface. Also make 4191 * sure we are pointing correctly above db_base. 4192 */ 4193 if ((flags & IPF_RECVSLLA) && 4194 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4195 (ill->ill_type == IFT_ETHER) && 4196 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4197 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4198 bcopy(pether->ether_shost.ether_addr_octet, 4199 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4200 } else { 4201 /* 4202 * Clear the bit. Indicate to upper layer that IP is not 4203 * sending this ancillary info. 4204 */ 4205 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4206 } 4207 4208 /* 4209 * If `ill' is in an IPMP group, use the IPMP ill to determine 4210 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4211 * IPF_RECVADDR support on test addresses is not needed.) 4212 * 4213 * Note that `ill' may already be an IPMP ill if e.g. we're 4214 * processing a packet looped back to an IPMP data address 4215 * (since those IRE_LOCALs are tied to IPMP ills). 4216 */ 4217 if (IS_UNDER_IPMP(ill)) { 4218 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4219 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4220 freemsg(mp); 4221 return (data_mp); 4222 } 4223 ipmp_ill_held = B_TRUE; 4224 } 4225 4226 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4227 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4228 if (flags & IPF_RECVADDR) { 4229 ipif_t *ipif; 4230 ire_t *ire; 4231 4232 /* 4233 * Only valid for V4 4234 */ 4235 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4236 (IPV4_VERSION << 4)); 4237 4238 ipif = ipif_get_next_ipif(NULL, ill); 4239 if (ipif != NULL) { 4240 /* 4241 * Since a decision has already been made to deliver the 4242 * packet, there is no need to test for SECATTR and 4243 * ZONEONLY. 4244 * When a multicast packet is transmitted 4245 * a cache entry is created for the multicast address. 4246 * When delivering a copy of the packet or when new 4247 * packets are received we do not want to match on the 4248 * cached entry so explicitly match on 4249 * IRE_LOCAL and IRE_LOOPBACK 4250 */ 4251 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4252 IRE_LOCAL | IRE_LOOPBACK, 4253 ipif, zoneid, NULL, 4254 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4255 if (ire == NULL) { 4256 /* 4257 * packet must have come on a different 4258 * interface. 4259 * Since a decision has already been made to 4260 * deliver the packet, there is no need to test 4261 * for SECATTR and ZONEONLY. 4262 * Only match on local and broadcast ire's. 4263 * See detailed comment above. 4264 */ 4265 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4266 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4267 NULL, MATCH_IRE_TYPE, ipst); 4268 } 4269 4270 if (ire == NULL) { 4271 /* 4272 * This is either a multicast packet or 4273 * the address has been removed since 4274 * the packet was received. 4275 * Return INADDR_ANY so that normal source 4276 * selection occurs for the response. 4277 */ 4278 4279 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4280 } else { 4281 pinfo->ip_pkt_match_addr.s_addr = 4282 ire->ire_src_addr; 4283 ire_refrele(ire); 4284 } 4285 ipif_refrele(ipif); 4286 } else { 4287 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4288 } 4289 } 4290 4291 if (ipmp_ill_held) 4292 ill_refrele(ill); 4293 4294 mp->b_datap->db_type = M_CTL; 4295 mp->b_wptr += sizeof (ip_pktinfo_t); 4296 mp->b_cont = data_mp; 4297 4298 return (mp); 4299 } 4300 4301 /* 4302 * Used to determine the most accurate cred_t to use for TX. 4303 * First priority is SCM_UCRED having set the label in the message, 4304 * which is used for MLP on UDP. Second priority is the peers label (aka 4305 * conn_peercred), which is needed for MLP on TCP/SCTP. Last priority is the 4306 * open credentials. 4307 */ 4308 cred_t * 4309 ip_best_cred(mblk_t *mp, conn_t *connp) 4310 { 4311 cred_t *cr; 4312 4313 cr = msg_getcred(mp, NULL); 4314 if (cr != NULL && crgetlabel(cr) != NULL) 4315 return (cr); 4316 return (CONN_CRED(connp)); 4317 } 4318 4319 /* 4320 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4321 * part of the bind request. 4322 */ 4323 4324 boolean_t 4325 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4326 { 4327 ipsec_in_t *ii; 4328 4329 ASSERT(policy_mp != NULL); 4330 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4331 4332 ii = (ipsec_in_t *)policy_mp->b_rptr; 4333 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4334 4335 connp->conn_policy = ii->ipsec_in_policy; 4336 ii->ipsec_in_policy = NULL; 4337 4338 if (ii->ipsec_in_action != NULL) { 4339 if (connp->conn_latch == NULL) { 4340 connp->conn_latch = iplatch_create(); 4341 if (connp->conn_latch == NULL) 4342 return (B_FALSE); 4343 } 4344 ipsec_latch_inbound(connp->conn_latch, ii); 4345 } 4346 return (B_TRUE); 4347 } 4348 4349 static void 4350 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4351 { 4352 /* 4353 * Pass the IPsec headers size in ire_ipsec_overhead. 4354 * We can't do this in ip_bind_get_ire because the policy 4355 * may not have been inherited at that point in time and hence 4356 * conn_out_enforce_policy may not be set. 4357 */ 4358 if (ire_requested && connp->conn_out_enforce_policy && 4359 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4360 ire_t *ire = (ire_t *)mp->b_rptr; 4361 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4362 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4363 } 4364 } 4365 4366 /* 4367 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4368 * and to arrange for power-fanout assist. The ULP is identified by 4369 * adding a single byte at the end of the original bind message. 4370 * A ULP other than UDP or TCP that wishes to be recognized passes 4371 * down a bind with a zero length address. 4372 * 4373 * The binding works as follows: 4374 * - A zero byte address means just bind to the protocol. 4375 * - A four byte address is treated as a request to validate 4376 * that the address is a valid local address, appropriate for 4377 * an application to bind to. This does not affect any fanout 4378 * information in IP. 4379 * - A sizeof sin_t byte address is used to bind to only the local address 4380 * and port. 4381 * - A sizeof ipa_conn_t byte address contains complete fanout information 4382 * consisting of local and remote addresses and ports. In 4383 * this case, the addresses are both validated as appropriate 4384 * for this operation, and, if so, the information is retained 4385 * for use in the inbound fanout. 4386 * 4387 * The ULP (except in the zero-length bind) can append an 4388 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4389 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4390 * a copy of the source or destination IRE (source for local bind; 4391 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4392 * policy information contained should be copied on to the conn. 4393 * 4394 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4395 */ 4396 mblk_t * 4397 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4398 { 4399 ssize_t len; 4400 struct T_bind_req *tbr; 4401 sin_t *sin; 4402 ipa_conn_t *ac; 4403 uchar_t *ucp; 4404 mblk_t *mp1; 4405 boolean_t ire_requested; 4406 int error = 0; 4407 int protocol; 4408 ipa_conn_x_t *acx; 4409 cred_t *cr; 4410 4411 /* 4412 * All Solaris components should pass a db_credp 4413 * for this TPI message, hence we ASSERT. 4414 * But in case there is some other M_PROTO that looks 4415 * like a TPI message sent by some other kernel 4416 * component, we check and return an error. 4417 */ 4418 cr = msg_getcred(mp, NULL); 4419 ASSERT(cr != NULL); 4420 if (cr == NULL) { 4421 error = EINVAL; 4422 goto bad_addr; 4423 } 4424 4425 ASSERT(!connp->conn_af_isv6); 4426 connp->conn_pkt_isv6 = B_FALSE; 4427 4428 len = MBLKL(mp); 4429 if (len < (sizeof (*tbr) + 1)) { 4430 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4431 "ip_bind: bogus msg, len %ld", len); 4432 /* XXX: Need to return something better */ 4433 goto bad_addr; 4434 } 4435 /* Back up and extract the protocol identifier. */ 4436 mp->b_wptr--; 4437 protocol = *mp->b_wptr & 0xFF; 4438 tbr = (struct T_bind_req *)mp->b_rptr; 4439 /* Reset the message type in preparation for shipping it back. */ 4440 DB_TYPE(mp) = M_PCPROTO; 4441 4442 connp->conn_ulp = (uint8_t)protocol; 4443 4444 /* 4445 * Check for a zero length address. This is from a protocol that 4446 * wants to register to receive all packets of its type. 4447 */ 4448 if (tbr->ADDR_length == 0) { 4449 /* 4450 * These protocols are now intercepted in ip_bind_v6(). 4451 * Reject protocol-level binds here for now. 4452 * 4453 * For SCTP raw socket, ICMP sends down a bind with sin_t 4454 * so that the protocol type cannot be SCTP. 4455 */ 4456 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4457 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4458 goto bad_addr; 4459 } 4460 4461 /* 4462 * 4463 * The udp module never sends down a zero-length address, 4464 * and allowing this on a labeled system will break MLP 4465 * functionality. 4466 */ 4467 if (is_system_labeled() && protocol == IPPROTO_UDP) 4468 goto bad_addr; 4469 4470 if (connp->conn_mac_exempt) 4471 goto bad_addr; 4472 4473 /* No hash here really. The table is big enough. */ 4474 connp->conn_srcv6 = ipv6_all_zeros; 4475 4476 ipcl_proto_insert(connp, protocol); 4477 4478 tbr->PRIM_type = T_BIND_ACK; 4479 return (mp); 4480 } 4481 4482 /* Extract the address pointer from the message. */ 4483 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4484 tbr->ADDR_length); 4485 if (ucp == NULL) { 4486 ip1dbg(("ip_bind: no address\n")); 4487 goto bad_addr; 4488 } 4489 if (!OK_32PTR(ucp)) { 4490 ip1dbg(("ip_bind: unaligned address\n")); 4491 goto bad_addr; 4492 } 4493 /* 4494 * Check for trailing mps. 4495 */ 4496 4497 mp1 = mp->b_cont; 4498 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4499 4500 switch (tbr->ADDR_length) { 4501 default: 4502 ip1dbg(("ip_bind: bad address length %d\n", 4503 (int)tbr->ADDR_length)); 4504 goto bad_addr; 4505 4506 case IP_ADDR_LEN: 4507 /* Verification of local address only */ 4508 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4509 *(ipaddr_t *)ucp, 0, B_FALSE); 4510 break; 4511 4512 case sizeof (sin_t): 4513 sin = (sin_t *)ucp; 4514 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4515 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4516 break; 4517 4518 case sizeof (ipa_conn_t): 4519 ac = (ipa_conn_t *)ucp; 4520 /* For raw socket, the local port is not set. */ 4521 if (ac->ac_lport == 0) 4522 ac->ac_lport = connp->conn_lport; 4523 /* Always verify destination reachability. */ 4524 error = ip_bind_connected_v4(connp, &mp1, protocol, 4525 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4526 B_TRUE, B_TRUE, cr); 4527 break; 4528 4529 case sizeof (ipa_conn_x_t): 4530 acx = (ipa_conn_x_t *)ucp; 4531 /* 4532 * Whether or not to verify destination reachability depends 4533 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4534 */ 4535 error = ip_bind_connected_v4(connp, &mp1, protocol, 4536 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4537 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4538 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4539 break; 4540 } 4541 ASSERT(error != EINPROGRESS); 4542 if (error != 0) 4543 goto bad_addr; 4544 4545 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4546 4547 /* Send it home. */ 4548 mp->b_datap->db_type = M_PCPROTO; 4549 tbr->PRIM_type = T_BIND_ACK; 4550 return (mp); 4551 4552 bad_addr: 4553 /* 4554 * If error = -1 then we generate a TBADADDR - otherwise error is 4555 * a unix errno. 4556 */ 4557 if (error > 0) 4558 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4559 else 4560 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4561 return (mp); 4562 } 4563 4564 /* 4565 * Here address is verified to be a valid local address. 4566 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4567 * address is also considered a valid local address. 4568 * In the case of a broadcast/multicast address, however, the 4569 * upper protocol is expected to reset the src address 4570 * to 0 if it sees a IRE_BROADCAST type returned so that 4571 * no packets are emitted with broadcast/multicast address as 4572 * source address (that violates hosts requirements RFC 1122) 4573 * The addresses valid for bind are: 4574 * (1) - INADDR_ANY (0) 4575 * (2) - IP address of an UP interface 4576 * (3) - IP address of a DOWN interface 4577 * (4) - valid local IP broadcast addresses. In this case 4578 * the conn will only receive packets destined to 4579 * the specified broadcast address. 4580 * (5) - a multicast address. In this case 4581 * the conn will only receive packets destined to 4582 * the specified multicast address. Note: the 4583 * application still has to issue an 4584 * IP_ADD_MEMBERSHIP socket option. 4585 * 4586 * On error, return -1 for TBADADDR otherwise pass the 4587 * errno with TSYSERR reply. 4588 * 4589 * In all the above cases, the bound address must be valid in the current zone. 4590 * When the address is loopback, multicast or broadcast, there might be many 4591 * matching IREs so bind has to look up based on the zone. 4592 * 4593 * Note: lport is in network byte order. 4594 * 4595 */ 4596 int 4597 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4598 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4599 { 4600 int error = 0; 4601 ire_t *src_ire; 4602 zoneid_t zoneid; 4603 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4604 mblk_t *mp = NULL; 4605 boolean_t ire_requested = B_FALSE; 4606 boolean_t ipsec_policy_set = B_FALSE; 4607 4608 if (mpp) 4609 mp = *mpp; 4610 4611 if (mp != NULL) { 4612 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4613 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4614 } 4615 4616 /* 4617 * If it was previously connected, conn_fully_bound would have 4618 * been set. 4619 */ 4620 connp->conn_fully_bound = B_FALSE; 4621 4622 src_ire = NULL; 4623 4624 zoneid = IPCL_ZONEID(connp); 4625 4626 if (src_addr) { 4627 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4628 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4629 /* 4630 * If an address other than 0.0.0.0 is requested, 4631 * we verify that it is a valid address for bind 4632 * Note: Following code is in if-else-if form for 4633 * readability compared to a condition check. 4634 */ 4635 /* LINTED - statement has no consequence */ 4636 if (IRE_IS_LOCAL(src_ire)) { 4637 /* 4638 * (2) Bind to address of local UP interface 4639 */ 4640 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4641 /* 4642 * (4) Bind to broadcast address 4643 * Note: permitted only from transports that 4644 * request IRE 4645 */ 4646 if (!ire_requested) 4647 error = EADDRNOTAVAIL; 4648 } else { 4649 /* 4650 * (3) Bind to address of local DOWN interface 4651 * (ipif_lookup_addr() looks up all interfaces 4652 * but we do not get here for UP interfaces 4653 * - case (2) above) 4654 */ 4655 /* LINTED - statement has no consequent */ 4656 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4657 /* The address exists */ 4658 } else if (CLASSD(src_addr)) { 4659 error = 0; 4660 if (src_ire != NULL) 4661 ire_refrele(src_ire); 4662 /* 4663 * (5) bind to multicast address. 4664 * Fake out the IRE returned to upper 4665 * layer to be a broadcast IRE. 4666 */ 4667 src_ire = ire_ctable_lookup( 4668 INADDR_BROADCAST, INADDR_ANY, 4669 IRE_BROADCAST, NULL, zoneid, NULL, 4670 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4671 ipst); 4672 if (src_ire == NULL || !ire_requested) 4673 error = EADDRNOTAVAIL; 4674 } else { 4675 /* 4676 * Not a valid address for bind 4677 */ 4678 error = EADDRNOTAVAIL; 4679 } 4680 } 4681 if (error) { 4682 /* Red Alert! Attempting to be a bogon! */ 4683 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4684 ntohl(src_addr))); 4685 goto bad_addr; 4686 } 4687 } 4688 4689 /* 4690 * Allow setting new policies. For example, disconnects come 4691 * down as ipa_t bind. As we would have set conn_policy_cached 4692 * to B_TRUE before, we should set it to B_FALSE, so that policy 4693 * can change after the disconnect. 4694 */ 4695 connp->conn_policy_cached = B_FALSE; 4696 4697 /* 4698 * If not fanout_insert this was just an address verification 4699 */ 4700 if (fanout_insert) { 4701 /* 4702 * The addresses have been verified. Time to insert in 4703 * the correct fanout list. 4704 */ 4705 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4706 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4707 connp->conn_lport = lport; 4708 connp->conn_fport = 0; 4709 /* 4710 * Do we need to add a check to reject Multicast packets 4711 */ 4712 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4713 } 4714 4715 if (error == 0) { 4716 if (ire_requested) { 4717 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4718 error = -1; 4719 /* Falls through to bad_addr */ 4720 } 4721 } else if (ipsec_policy_set) { 4722 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4723 error = -1; 4724 /* Falls through to bad_addr */ 4725 } 4726 } 4727 } 4728 bad_addr: 4729 if (error != 0) { 4730 if (connp->conn_anon_port) { 4731 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4732 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4733 B_FALSE); 4734 } 4735 connp->conn_mlp_type = mlptSingle; 4736 } 4737 if (src_ire != NULL) 4738 IRE_REFRELE(src_ire); 4739 return (error); 4740 } 4741 4742 int 4743 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4744 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4745 { 4746 int error; 4747 mblk_t *mp = NULL; 4748 boolean_t ire_requested; 4749 4750 if (ire_mpp) 4751 mp = *ire_mpp; 4752 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4753 4754 ASSERT(!connp->conn_af_isv6); 4755 connp->conn_pkt_isv6 = B_FALSE; 4756 connp->conn_ulp = protocol; 4757 4758 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4759 fanout_insert); 4760 if (error == 0) { 4761 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4762 ire_requested); 4763 } else if (error < 0) { 4764 error = -TBADADDR; 4765 } 4766 return (error); 4767 } 4768 4769 /* 4770 * Verify that both the source and destination addresses 4771 * are valid. If verify_dst is false, then the destination address may be 4772 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4773 * destination reachability, while tunnels do not. 4774 * Note that we allow connect to broadcast and multicast 4775 * addresses when ire_requested is set. Thus the ULP 4776 * has to check for IRE_BROADCAST and multicast. 4777 * 4778 * Returns zero if ok. 4779 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4780 * (for use with TSYSERR reply). 4781 * 4782 * Note: lport and fport are in network byte order. 4783 */ 4784 int 4785 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4786 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4787 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4788 { 4789 4790 ire_t *src_ire; 4791 ire_t *dst_ire; 4792 int error = 0; 4793 ire_t *sire = NULL; 4794 ire_t *md_dst_ire = NULL; 4795 ire_t *lso_dst_ire = NULL; 4796 ill_t *ill = NULL; 4797 zoneid_t zoneid; 4798 ipaddr_t src_addr = *src_addrp; 4799 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4800 mblk_t *mp = NULL; 4801 boolean_t ire_requested = B_FALSE; 4802 boolean_t ipsec_policy_set = B_FALSE; 4803 ts_label_t *tsl = NULL; 4804 4805 if (mpp) 4806 mp = *mpp; 4807 4808 if (mp != NULL) { 4809 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4810 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4811 } 4812 if (cr != NULL) 4813 tsl = crgetlabel(cr); 4814 4815 src_ire = dst_ire = NULL; 4816 4817 /* 4818 * If we never got a disconnect before, clear it now. 4819 */ 4820 connp->conn_fully_bound = B_FALSE; 4821 4822 zoneid = IPCL_ZONEID(connp); 4823 4824 if (CLASSD(dst_addr)) { 4825 /* Pick up an IRE_BROADCAST */ 4826 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4827 NULL, zoneid, tsl, 4828 (MATCH_IRE_RECURSIVE | 4829 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4830 MATCH_IRE_SECATTR), ipst); 4831 } else { 4832 /* 4833 * If conn_dontroute is set or if conn_nexthop_set is set, 4834 * and onlink ipif is not found set ENETUNREACH error. 4835 */ 4836 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4837 ipif_t *ipif; 4838 4839 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4840 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4841 if (ipif == NULL) { 4842 error = ENETUNREACH; 4843 goto bad_addr; 4844 } 4845 ipif_refrele(ipif); 4846 } 4847 4848 if (connp->conn_nexthop_set) { 4849 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4850 0, 0, NULL, NULL, zoneid, tsl, 4851 MATCH_IRE_SECATTR, ipst); 4852 } else { 4853 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4854 &sire, zoneid, tsl, 4855 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4856 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4857 MATCH_IRE_SECATTR), ipst); 4858 } 4859 } 4860 /* 4861 * dst_ire can't be a broadcast when not ire_requested. 4862 * We also prevent ire's with src address INADDR_ANY to 4863 * be used, which are created temporarily for 4864 * sending out packets from endpoints that have 4865 * conn_unspec_src set. If verify_dst is true, the destination must be 4866 * reachable. If verify_dst is false, the destination needn't be 4867 * reachable. 4868 * 4869 * If we match on a reject or black hole, then we've got a 4870 * local failure. May as well fail out the connect() attempt, 4871 * since it's never going to succeed. 4872 */ 4873 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4874 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4875 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4876 /* 4877 * If we're verifying destination reachability, we always want 4878 * to complain here. 4879 * 4880 * If we're not verifying destination reachability but the 4881 * destination has a route, we still want to fail on the 4882 * temporary address and broadcast address tests. 4883 */ 4884 if (verify_dst || (dst_ire != NULL)) { 4885 if (ip_debug > 2) { 4886 pr_addr_dbg("ip_bind_connected_v4:" 4887 "bad connected dst %s\n", 4888 AF_INET, &dst_addr); 4889 } 4890 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4891 error = ENETUNREACH; 4892 else 4893 error = EHOSTUNREACH; 4894 goto bad_addr; 4895 } 4896 } 4897 4898 /* 4899 * We now know that routing will allow us to reach the destination. 4900 * Check whether Trusted Solaris policy allows communication with this 4901 * host, and pretend that the destination is unreachable if not. 4902 * 4903 * This is never a problem for TCP, since that transport is known to 4904 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4905 * handling. If the remote is unreachable, it will be detected at that 4906 * point, so there's no reason to check it here. 4907 * 4908 * Note that for sendto (and other datagram-oriented friends), this 4909 * check is done as part of the data path label computation instead. 4910 * The check here is just to make non-TCP connect() report the right 4911 * error. 4912 */ 4913 if (dst_ire != NULL && is_system_labeled() && 4914 !IPCL_IS_TCP(connp) && 4915 tsol_compute_label(cr, dst_addr, NULL, 4916 connp->conn_mac_exempt, ipst) != 0) { 4917 error = EHOSTUNREACH; 4918 if (ip_debug > 2) { 4919 pr_addr_dbg("ip_bind_connected_v4:" 4920 " no label for dst %s\n", 4921 AF_INET, &dst_addr); 4922 } 4923 goto bad_addr; 4924 } 4925 4926 /* 4927 * If the app does a connect(), it means that it will most likely 4928 * send more than 1 packet to the destination. It makes sense 4929 * to clear the temporary flag. 4930 */ 4931 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4932 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4933 irb_t *irb = dst_ire->ire_bucket; 4934 4935 rw_enter(&irb->irb_lock, RW_WRITER); 4936 /* 4937 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4938 * the lock to guarantee irb_tmp_ire_cnt. 4939 */ 4940 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4941 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4942 irb->irb_tmp_ire_cnt--; 4943 } 4944 rw_exit(&irb->irb_lock); 4945 } 4946 4947 /* 4948 * See if we should notify ULP about LSO/MDT; we do this whether or not 4949 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4950 * eligibility tests for passive connects are handled separately 4951 * through tcp_adapt_ire(). We do this before the source address 4952 * selection, because dst_ire may change after a call to 4953 * ipif_select_source(). This is a best-effort check, as the 4954 * packet for this connection may not actually go through 4955 * dst_ire->ire_stq, and the exact IRE can only be known after 4956 * calling ip_newroute(). This is why we further check on the 4957 * IRE during LSO/Multidata packet transmission in 4958 * tcp_lsosend()/tcp_multisend(). 4959 */ 4960 if (!ipsec_policy_set && dst_ire != NULL && 4961 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4962 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4963 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4964 lso_dst_ire = dst_ire; 4965 IRE_REFHOLD(lso_dst_ire); 4966 } else if (ipst->ips_ip_multidata_outbound && 4967 ILL_MDT_CAPABLE(ill)) { 4968 md_dst_ire = dst_ire; 4969 IRE_REFHOLD(md_dst_ire); 4970 } 4971 } 4972 4973 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4974 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4975 /* 4976 * If the IRE belongs to a different zone, look for a matching 4977 * route in the forwarding table and use the source address from 4978 * that route. 4979 */ 4980 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4981 zoneid, 0, NULL, 4982 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4983 MATCH_IRE_RJ_BHOLE, ipst); 4984 if (src_ire == NULL) { 4985 error = EHOSTUNREACH; 4986 goto bad_addr; 4987 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4988 if (!(src_ire->ire_type & IRE_HOST)) 4989 error = ENETUNREACH; 4990 else 4991 error = EHOSTUNREACH; 4992 goto bad_addr; 4993 } 4994 if (src_addr == INADDR_ANY) 4995 src_addr = src_ire->ire_src_addr; 4996 ire_refrele(src_ire); 4997 src_ire = NULL; 4998 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4999 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5000 src_addr = sire->ire_src_addr; 5001 ire_refrele(dst_ire); 5002 dst_ire = sire; 5003 sire = NULL; 5004 } else { 5005 /* 5006 * Pick a source address so that a proper inbound 5007 * load spreading would happen. 5008 */ 5009 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5010 ipif_t *src_ipif = NULL; 5011 ire_t *ipif_ire; 5012 5013 /* 5014 * Supply a local source address such that inbound 5015 * load spreading happens. 5016 * 5017 * Determine the best source address on this ill for 5018 * the destination. 5019 * 5020 * 1) For broadcast, we should return a broadcast ire 5021 * found above so that upper layers know that the 5022 * destination address is a broadcast address. 5023 * 5024 * 2) If the ipif is DEPRECATED, select a better 5025 * source address. Similarly, if the ipif is on 5026 * the IPMP meta-interface, pick a source address 5027 * at random to improve inbound load spreading. 5028 * 5029 * 3) If the outgoing interface is part of a usesrc 5030 * group, then try selecting a source address from 5031 * the usesrc ILL. 5032 */ 5033 if ((dst_ire->ire_zoneid != zoneid && 5034 dst_ire->ire_zoneid != ALL_ZONES) || 5035 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5036 (!(dst_ire->ire_type & IRE_BROADCAST) && 5037 (IS_IPMP(ire_ill) || 5038 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5039 (ire_ill->ill_usesrc_ifindex != 0)))) { 5040 /* 5041 * If the destination is reachable via a 5042 * given gateway, the selected source address 5043 * should be in the same subnet as the gateway. 5044 * Otherwise, the destination is not reachable. 5045 * 5046 * If there are no interfaces on the same subnet 5047 * as the destination, ipif_select_source gives 5048 * first non-deprecated interface which might be 5049 * on a different subnet than the gateway. 5050 * This is not desirable. Hence pass the dst_ire 5051 * source address to ipif_select_source. 5052 * It is sure that the destination is reachable 5053 * with the dst_ire source address subnet. 5054 * So passing dst_ire source address to 5055 * ipif_select_source will make sure that the 5056 * selected source will be on the same subnet 5057 * as dst_ire source address. 5058 */ 5059 ipaddr_t saddr = 5060 dst_ire->ire_ipif->ipif_src_addr; 5061 src_ipif = ipif_select_source(ire_ill, 5062 saddr, zoneid); 5063 if (src_ipif != NULL) { 5064 if (IS_VNI(src_ipif->ipif_ill)) { 5065 /* 5066 * For VNI there is no 5067 * interface route 5068 */ 5069 src_addr = 5070 src_ipif->ipif_src_addr; 5071 } else { 5072 ipif_ire = 5073 ipif_to_ire(src_ipif); 5074 if (ipif_ire != NULL) { 5075 IRE_REFRELE(dst_ire); 5076 dst_ire = ipif_ire; 5077 } 5078 src_addr = 5079 dst_ire->ire_src_addr; 5080 } 5081 ipif_refrele(src_ipif); 5082 } else { 5083 src_addr = dst_ire->ire_src_addr; 5084 } 5085 } else { 5086 src_addr = dst_ire->ire_src_addr; 5087 } 5088 } 5089 } 5090 5091 /* 5092 * We do ire_route_lookup() here (and not 5093 * interface lookup as we assert that 5094 * src_addr should only come from an 5095 * UP interface for hard binding. 5096 */ 5097 ASSERT(src_ire == NULL); 5098 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5099 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5100 /* src_ire must be a local|loopback */ 5101 if (!IRE_IS_LOCAL(src_ire)) { 5102 if (ip_debug > 2) { 5103 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5104 "src %s\n", AF_INET, &src_addr); 5105 } 5106 error = EADDRNOTAVAIL; 5107 goto bad_addr; 5108 } 5109 5110 /* 5111 * If the source address is a loopback address, the 5112 * destination had best be local or multicast. 5113 * The transports that can't handle multicast will reject 5114 * those addresses. 5115 */ 5116 if (src_ire->ire_type == IRE_LOOPBACK && 5117 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5118 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5119 error = -1; 5120 goto bad_addr; 5121 } 5122 5123 /* 5124 * Allow setting new policies. For example, disconnects come 5125 * down as ipa_t bind. As we would have set conn_policy_cached 5126 * to B_TRUE before, we should set it to B_FALSE, so that policy 5127 * can change after the disconnect. 5128 */ 5129 connp->conn_policy_cached = B_FALSE; 5130 5131 /* 5132 * Set the conn addresses/ports immediately, so the IPsec policy calls 5133 * can handle their passed-in conn's. 5134 */ 5135 5136 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5137 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5138 connp->conn_lport = lport; 5139 connp->conn_fport = fport; 5140 *src_addrp = src_addr; 5141 5142 ASSERT(!(ipsec_policy_set && ire_requested)); 5143 if (ire_requested) { 5144 iulp_t *ulp_info = NULL; 5145 5146 /* 5147 * Note that sire will not be NULL if this is an off-link 5148 * connection and there is not cache for that dest yet. 5149 * 5150 * XXX Because of an existing bug, if there are multiple 5151 * default routes, the IRE returned now may not be the actual 5152 * default route used (default routes are chosen in a 5153 * round robin fashion). So if the metrics for different 5154 * default routes are different, we may return the wrong 5155 * metrics. This will not be a problem if the existing 5156 * bug is fixed. 5157 */ 5158 if (sire != NULL) { 5159 ulp_info = &(sire->ire_uinfo); 5160 } 5161 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5162 error = -1; 5163 goto bad_addr; 5164 } 5165 mp = *mpp; 5166 } else if (ipsec_policy_set) { 5167 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5168 error = -1; 5169 goto bad_addr; 5170 } 5171 } 5172 5173 /* 5174 * Cache IPsec policy in this conn. If we have per-socket policy, 5175 * we'll cache that. If we don't, we'll inherit global policy. 5176 * 5177 * We can't insert until the conn reflects the policy. Note that 5178 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5179 * connections where we don't have a policy. This is to prevent 5180 * global policy lookups in the inbound path. 5181 * 5182 * If we insert before we set conn_policy_cached, 5183 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5184 * because global policy cound be non-empty. We normally call 5185 * ipsec_check_policy() for conn_policy_cached connections only if 5186 * ipc_in_enforce_policy is set. But in this case, 5187 * conn_policy_cached can get set anytime since we made the 5188 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5189 * called, which will make the above assumption false. Thus, we 5190 * need to insert after we set conn_policy_cached. 5191 */ 5192 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5193 goto bad_addr; 5194 5195 if (fanout_insert) { 5196 /* 5197 * The addresses have been verified. Time to insert in 5198 * the correct fanout list. 5199 */ 5200 error = ipcl_conn_insert(connp, protocol, src_addr, 5201 dst_addr, connp->conn_ports); 5202 } 5203 5204 if (error == 0) { 5205 connp->conn_fully_bound = B_TRUE; 5206 /* 5207 * Our initial checks for LSO/MDT have passed; the IRE is not 5208 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5209 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5210 * ip_xxinfo_return(), which performs further checks 5211 * against them and upon success, returns the LSO/MDT info 5212 * mblk which we will attach to the bind acknowledgment. 5213 */ 5214 if (lso_dst_ire != NULL) { 5215 mblk_t *lsoinfo_mp; 5216 5217 ASSERT(ill->ill_lso_capab != NULL); 5218 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5219 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5220 if (mp == NULL) { 5221 *mpp = lsoinfo_mp; 5222 } else { 5223 linkb(mp, lsoinfo_mp); 5224 } 5225 } 5226 } else if (md_dst_ire != NULL) { 5227 mblk_t *mdinfo_mp; 5228 5229 ASSERT(ill->ill_mdt_capab != NULL); 5230 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5231 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5232 if (mp == NULL) { 5233 *mpp = mdinfo_mp; 5234 } else { 5235 linkb(mp, mdinfo_mp); 5236 } 5237 } 5238 } 5239 } 5240 bad_addr: 5241 if (ipsec_policy_set) { 5242 ASSERT(mp != NULL); 5243 freeb(mp); 5244 /* 5245 * As of now assume that nothing else accompanies 5246 * IPSEC_POLICY_SET. 5247 */ 5248 *mpp = NULL; 5249 } 5250 if (src_ire != NULL) 5251 IRE_REFRELE(src_ire); 5252 if (dst_ire != NULL) 5253 IRE_REFRELE(dst_ire); 5254 if (sire != NULL) 5255 IRE_REFRELE(sire); 5256 if (md_dst_ire != NULL) 5257 IRE_REFRELE(md_dst_ire); 5258 if (lso_dst_ire != NULL) 5259 IRE_REFRELE(lso_dst_ire); 5260 return (error); 5261 } 5262 5263 int 5264 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5265 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5266 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5267 { 5268 int error; 5269 mblk_t *mp = NULL; 5270 boolean_t ire_requested; 5271 5272 if (ire_mpp) 5273 mp = *ire_mpp; 5274 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5275 5276 ASSERT(!connp->conn_af_isv6); 5277 connp->conn_pkt_isv6 = B_FALSE; 5278 connp->conn_ulp = protocol; 5279 5280 /* For raw socket, the local port is not set. */ 5281 if (lport == 0) 5282 lport = connp->conn_lport; 5283 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5284 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5285 if (error == 0) { 5286 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5287 ire_requested); 5288 } else if (error < 0) { 5289 error = -TBADADDR; 5290 } 5291 return (error); 5292 } 5293 5294 /* 5295 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5296 * Prefers dst_ire over src_ire. 5297 */ 5298 static boolean_t 5299 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5300 { 5301 mblk_t *mp = *mpp; 5302 ire_t *ret_ire; 5303 5304 ASSERT(mp != NULL); 5305 5306 if (ire != NULL) { 5307 /* 5308 * mp initialized above to IRE_DB_REQ_TYPE 5309 * appended mblk. Its <upper protocol>'s 5310 * job to make sure there is room. 5311 */ 5312 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5313 return (B_FALSE); 5314 5315 mp->b_datap->db_type = IRE_DB_TYPE; 5316 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5317 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5318 ret_ire = (ire_t *)mp->b_rptr; 5319 /* 5320 * Pass the latest setting of the ip_path_mtu_discovery and 5321 * copy the ulp info if any. 5322 */ 5323 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5324 IPH_DF : 0; 5325 if (ulp_info != NULL) { 5326 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5327 sizeof (iulp_t)); 5328 } 5329 ret_ire->ire_mp = mp; 5330 } else { 5331 /* 5332 * No IRE was found. Remove IRE mblk. 5333 */ 5334 *mpp = mp->b_cont; 5335 freeb(mp); 5336 } 5337 return (B_TRUE); 5338 } 5339 5340 /* 5341 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5342 * the final piece where we don't. Return a pointer to the first mblk in the 5343 * result, and update the pointer to the next mblk to chew on. If anything 5344 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5345 * NULL pointer. 5346 */ 5347 mblk_t * 5348 ip_carve_mp(mblk_t **mpp, ssize_t len) 5349 { 5350 mblk_t *mp0; 5351 mblk_t *mp1; 5352 mblk_t *mp2; 5353 5354 if (!len || !mpp || !(mp0 = *mpp)) 5355 return (NULL); 5356 /* If we aren't going to consume the first mblk, we need a dup. */ 5357 if (mp0->b_wptr - mp0->b_rptr > len) { 5358 mp1 = dupb(mp0); 5359 if (mp1) { 5360 /* Partition the data between the two mblks. */ 5361 mp1->b_wptr = mp1->b_rptr + len; 5362 mp0->b_rptr = mp1->b_wptr; 5363 /* 5364 * after adjustments if mblk not consumed is now 5365 * unaligned, try to align it. If this fails free 5366 * all messages and let upper layer recover. 5367 */ 5368 if (!OK_32PTR(mp0->b_rptr)) { 5369 if (!pullupmsg(mp0, -1)) { 5370 freemsg(mp0); 5371 freemsg(mp1); 5372 *mpp = NULL; 5373 return (NULL); 5374 } 5375 } 5376 } 5377 return (mp1); 5378 } 5379 /* Eat through as many mblks as we need to get len bytes. */ 5380 len -= mp0->b_wptr - mp0->b_rptr; 5381 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5382 if (mp2->b_wptr - mp2->b_rptr > len) { 5383 /* 5384 * We won't consume the entire last mblk. Like 5385 * above, dup and partition it. 5386 */ 5387 mp1->b_cont = dupb(mp2); 5388 mp1 = mp1->b_cont; 5389 if (!mp1) { 5390 /* 5391 * Trouble. Rather than go to a lot of 5392 * trouble to clean up, we free the messages. 5393 * This won't be any worse than losing it on 5394 * the wire. 5395 */ 5396 freemsg(mp0); 5397 freemsg(mp2); 5398 *mpp = NULL; 5399 return (NULL); 5400 } 5401 mp1->b_wptr = mp1->b_rptr + len; 5402 mp2->b_rptr = mp1->b_wptr; 5403 /* 5404 * after adjustments if mblk not consumed is now 5405 * unaligned, try to align it. If this fails free 5406 * all messages and let upper layer recover. 5407 */ 5408 if (!OK_32PTR(mp2->b_rptr)) { 5409 if (!pullupmsg(mp2, -1)) { 5410 freemsg(mp0); 5411 freemsg(mp2); 5412 *mpp = NULL; 5413 return (NULL); 5414 } 5415 } 5416 *mpp = mp2; 5417 return (mp0); 5418 } 5419 /* Decrement len by the amount we just got. */ 5420 len -= mp2->b_wptr - mp2->b_rptr; 5421 } 5422 /* 5423 * len should be reduced to zero now. If not our caller has 5424 * screwed up. 5425 */ 5426 if (len) { 5427 /* Shouldn't happen! */ 5428 freemsg(mp0); 5429 *mpp = NULL; 5430 return (NULL); 5431 } 5432 /* 5433 * We consumed up to exactly the end of an mblk. Detach the part 5434 * we are returning from the rest of the chain. 5435 */ 5436 mp1->b_cont = NULL; 5437 *mpp = mp2; 5438 return (mp0); 5439 } 5440 5441 /* The ill stream is being unplumbed. Called from ip_close */ 5442 int 5443 ip_modclose(ill_t *ill) 5444 { 5445 boolean_t success; 5446 ipsq_t *ipsq; 5447 ipif_t *ipif; 5448 queue_t *q = ill->ill_rq; 5449 ip_stack_t *ipst = ill->ill_ipst; 5450 int i; 5451 5452 /* 5453 * The punlink prior to this may have initiated a capability 5454 * negotiation. But ipsq_enter will block until that finishes or 5455 * times out. 5456 */ 5457 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5458 5459 /* 5460 * Open/close/push/pop is guaranteed to be single threaded 5461 * per stream by STREAMS. FS guarantees that all references 5462 * from top are gone before close is called. So there can't 5463 * be another close thread that has set CONDEMNED on this ill. 5464 * and cause ipsq_enter to return failure. 5465 */ 5466 ASSERT(success); 5467 ipsq = ill->ill_phyint->phyint_ipsq; 5468 5469 /* 5470 * Mark it condemned. No new reference will be made to this ill. 5471 * Lookup functions will return an error. Threads that try to 5472 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5473 * that the refcnt will drop down to zero. 5474 */ 5475 mutex_enter(&ill->ill_lock); 5476 ill->ill_state_flags |= ILL_CONDEMNED; 5477 for (ipif = ill->ill_ipif; ipif != NULL; 5478 ipif = ipif->ipif_next) { 5479 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5480 } 5481 /* 5482 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5483 * returns error if ILL_CONDEMNED is set 5484 */ 5485 cv_broadcast(&ill->ill_cv); 5486 mutex_exit(&ill->ill_lock); 5487 5488 /* 5489 * Send all the deferred DLPI messages downstream which came in 5490 * during the small window right before ipsq_enter(). We do this 5491 * without waiting for the ACKs because all the ACKs for M_PROTO 5492 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5493 */ 5494 ill_dlpi_send_deferred(ill); 5495 5496 /* 5497 * Shut down fragmentation reassembly. 5498 * ill_frag_timer won't start a timer again. 5499 * Now cancel any existing timer 5500 */ 5501 (void) untimeout(ill->ill_frag_timer_id); 5502 (void) ill_frag_timeout(ill, 0); 5503 5504 /* 5505 * Call ill_delete to bring down the ipifs, ilms and ill on 5506 * this ill. Then wait for the refcnts to drop to zero. 5507 * ill_is_freeable checks whether the ill is really quiescent. 5508 * Then make sure that threads that are waiting to enter the 5509 * ipsq have seen the error returned by ipsq_enter and have 5510 * gone away. Then we call ill_delete_tail which does the 5511 * DL_UNBIND_REQ with the driver and then qprocsoff. 5512 */ 5513 ill_delete(ill); 5514 mutex_enter(&ill->ill_lock); 5515 while (!ill_is_freeable(ill)) 5516 cv_wait(&ill->ill_cv, &ill->ill_lock); 5517 while (ill->ill_waiters) 5518 cv_wait(&ill->ill_cv, &ill->ill_lock); 5519 5520 mutex_exit(&ill->ill_lock); 5521 5522 /* 5523 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5524 * it held until the end of the function since the cleanup 5525 * below needs to be able to use the ip_stack_t. 5526 */ 5527 netstack_hold(ipst->ips_netstack); 5528 5529 /* qprocsoff is done via ill_delete_tail */ 5530 ill_delete_tail(ill); 5531 ASSERT(ill->ill_ipst == NULL); 5532 5533 /* 5534 * Walk through all upper (conn) streams and qenable 5535 * those that have queued data. 5536 * close synchronization needs this to 5537 * be done to ensure that all upper layers blocked 5538 * due to flow control to the closing device 5539 * get unblocked. 5540 */ 5541 ip1dbg(("ip_wsrv: walking\n")); 5542 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5543 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5544 } 5545 5546 mutex_enter(&ipst->ips_ip_mi_lock); 5547 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5548 mutex_exit(&ipst->ips_ip_mi_lock); 5549 5550 /* 5551 * credp could be null if the open didn't succeed and ip_modopen 5552 * itself calls ip_close. 5553 */ 5554 if (ill->ill_credp != NULL) 5555 crfree(ill->ill_credp); 5556 5557 /* 5558 * Now we are done with the module close pieces that 5559 * need the netstack_t. 5560 */ 5561 netstack_rele(ipst->ips_netstack); 5562 5563 mi_close_free((IDP)ill); 5564 q->q_ptr = WR(q)->q_ptr = NULL; 5565 5566 ipsq_exit(ipsq); 5567 5568 return (0); 5569 } 5570 5571 /* 5572 * This is called as part of close() for IP, UDP, ICMP, and RTS 5573 * in order to quiesce the conn. 5574 */ 5575 void 5576 ip_quiesce_conn(conn_t *connp) 5577 { 5578 boolean_t drain_cleanup_reqd = B_FALSE; 5579 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5580 boolean_t ilg_cleanup_reqd = B_FALSE; 5581 ip_stack_t *ipst; 5582 5583 ASSERT(!IPCL_IS_TCP(connp)); 5584 ipst = connp->conn_netstack->netstack_ip; 5585 5586 /* 5587 * Mark the conn as closing, and this conn must not be 5588 * inserted in future into any list. Eg. conn_drain_insert(), 5589 * won't insert this conn into the conn_drain_list. 5590 * Similarly ill_pending_mp_add() will not add any mp to 5591 * the pending mp list, after this conn has started closing. 5592 * 5593 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5594 * cannot get set henceforth. 5595 */ 5596 mutex_enter(&connp->conn_lock); 5597 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5598 connp->conn_state_flags |= CONN_CLOSING; 5599 if (connp->conn_idl != NULL) 5600 drain_cleanup_reqd = B_TRUE; 5601 if (connp->conn_oper_pending_ill != NULL) 5602 conn_ioctl_cleanup_reqd = B_TRUE; 5603 if (connp->conn_dhcpinit_ill != NULL) { 5604 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5605 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5606 connp->conn_dhcpinit_ill = NULL; 5607 } 5608 if (connp->conn_ilg_inuse != 0) 5609 ilg_cleanup_reqd = B_TRUE; 5610 mutex_exit(&connp->conn_lock); 5611 5612 if (conn_ioctl_cleanup_reqd) 5613 conn_ioctl_cleanup(connp); 5614 5615 if (is_system_labeled() && connp->conn_anon_port) { 5616 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5617 connp->conn_mlp_type, connp->conn_ulp, 5618 ntohs(connp->conn_lport), B_FALSE); 5619 connp->conn_anon_port = 0; 5620 } 5621 connp->conn_mlp_type = mlptSingle; 5622 5623 /* 5624 * Remove this conn from any fanout list it is on. 5625 * and then wait for any threads currently operating 5626 * on this endpoint to finish 5627 */ 5628 ipcl_hash_remove(connp); 5629 5630 /* 5631 * Remove this conn from the drain list, and do 5632 * any other cleanup that may be required. 5633 * (Only non-tcp streams may have a non-null conn_idl. 5634 * TCP streams are never flow controlled, and 5635 * conn_idl will be null) 5636 */ 5637 if (drain_cleanup_reqd) 5638 conn_drain_tail(connp, B_TRUE); 5639 5640 if (connp == ipst->ips_ip_g_mrouter) 5641 (void) ip_mrouter_done(NULL, ipst); 5642 5643 if (ilg_cleanup_reqd) 5644 ilg_delete_all(connp); 5645 5646 conn_delete_ire(connp, NULL); 5647 5648 /* 5649 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5650 * callers from write side can't be there now because close 5651 * is in progress. The only other caller is ipcl_walk 5652 * which checks for the condemned flag. 5653 */ 5654 mutex_enter(&connp->conn_lock); 5655 connp->conn_state_flags |= CONN_CONDEMNED; 5656 while (connp->conn_ref != 1) 5657 cv_wait(&connp->conn_cv, &connp->conn_lock); 5658 connp->conn_state_flags |= CONN_QUIESCED; 5659 mutex_exit(&connp->conn_lock); 5660 } 5661 5662 /* ARGSUSED */ 5663 int 5664 ip_close(queue_t *q, int flags) 5665 { 5666 conn_t *connp; 5667 5668 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5669 5670 /* 5671 * Call the appropriate delete routine depending on whether this is 5672 * a module or device. 5673 */ 5674 if (WR(q)->q_next != NULL) { 5675 /* This is a module close */ 5676 return (ip_modclose((ill_t *)q->q_ptr)); 5677 } 5678 5679 connp = q->q_ptr; 5680 ip_quiesce_conn(connp); 5681 5682 qprocsoff(q); 5683 5684 /* 5685 * Now we are truly single threaded on this stream, and can 5686 * delete the things hanging off the connp, and finally the connp. 5687 * We removed this connp from the fanout list, it cannot be 5688 * accessed thru the fanouts, and we already waited for the 5689 * conn_ref to drop to 0. We are already in close, so 5690 * there cannot be any other thread from the top. qprocsoff 5691 * has completed, and service has completed or won't run in 5692 * future. 5693 */ 5694 ASSERT(connp->conn_ref == 1); 5695 5696 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5697 5698 connp->conn_ref--; 5699 ipcl_conn_destroy(connp); 5700 5701 q->q_ptr = WR(q)->q_ptr = NULL; 5702 return (0); 5703 } 5704 5705 /* 5706 * Wapper around putnext() so that ip_rts_request can merely use 5707 * conn_recv. 5708 */ 5709 /*ARGSUSED2*/ 5710 static void 5711 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5712 { 5713 conn_t *connp = (conn_t *)arg1; 5714 5715 putnext(connp->conn_rq, mp); 5716 } 5717 5718 /* 5719 * Called when the module is about to be unloaded 5720 */ 5721 void 5722 ip_ddi_destroy(void) 5723 { 5724 tnet_fini(); 5725 5726 icmp_ddi_g_destroy(); 5727 rts_ddi_g_destroy(); 5728 udp_ddi_g_destroy(); 5729 sctp_ddi_g_destroy(); 5730 tcp_ddi_g_destroy(); 5731 ipsec_policy_g_destroy(); 5732 ipcl_g_destroy(); 5733 ip_net_g_destroy(); 5734 ip_ire_g_fini(); 5735 inet_minor_destroy(ip_minor_arena_sa); 5736 #if defined(_LP64) 5737 inet_minor_destroy(ip_minor_arena_la); 5738 #endif 5739 5740 #ifdef DEBUG 5741 list_destroy(&ip_thread_list); 5742 rw_destroy(&ip_thread_rwlock); 5743 tsd_destroy(&ip_thread_data); 5744 #endif 5745 5746 netstack_unregister(NS_IP); 5747 } 5748 5749 /* 5750 * First step in cleanup. 5751 */ 5752 /* ARGSUSED */ 5753 static void 5754 ip_stack_shutdown(netstackid_t stackid, void *arg) 5755 { 5756 ip_stack_t *ipst = (ip_stack_t *)arg; 5757 5758 #ifdef NS_DEBUG 5759 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5760 #endif 5761 5762 /* Get rid of loopback interfaces and their IREs */ 5763 ip_loopback_cleanup(ipst); 5764 5765 /* 5766 * The *_hook_shutdown()s start the process of notifying any 5767 * consumers that things are going away.... nothing is destroyed. 5768 */ 5769 ipv4_hook_shutdown(ipst); 5770 ipv6_hook_shutdown(ipst); 5771 5772 mutex_enter(&ipst->ips_capab_taskq_lock); 5773 ipst->ips_capab_taskq_quit = B_TRUE; 5774 cv_signal(&ipst->ips_capab_taskq_cv); 5775 mutex_exit(&ipst->ips_capab_taskq_lock); 5776 5777 mutex_enter(&ipst->ips_mrt_lock); 5778 ipst->ips_mrt_flags |= IP_MRT_STOP; 5779 cv_signal(&ipst->ips_mrt_cv); 5780 mutex_exit(&ipst->ips_mrt_lock); 5781 } 5782 5783 /* 5784 * Free the IP stack instance. 5785 */ 5786 static void 5787 ip_stack_fini(netstackid_t stackid, void *arg) 5788 { 5789 ip_stack_t *ipst = (ip_stack_t *)arg; 5790 int ret; 5791 5792 #ifdef NS_DEBUG 5793 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5794 #endif 5795 /* 5796 * At this point, all of the notifications that the events and 5797 * protocols are going away have been run, meaning that we can 5798 * now set about starting to clean things up. 5799 */ 5800 ipv4_hook_destroy(ipst); 5801 ipv6_hook_destroy(ipst); 5802 ip_net_destroy(ipst); 5803 5804 mutex_destroy(&ipst->ips_capab_taskq_lock); 5805 cv_destroy(&ipst->ips_capab_taskq_cv); 5806 list_destroy(&ipst->ips_capab_taskq_list); 5807 5808 mutex_enter(&ipst->ips_mrt_lock); 5809 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5810 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5811 mutex_destroy(&ipst->ips_mrt_lock); 5812 cv_destroy(&ipst->ips_mrt_cv); 5813 cv_destroy(&ipst->ips_mrt_done_cv); 5814 5815 ipmp_destroy(ipst); 5816 rw_destroy(&ipst->ips_srcid_lock); 5817 5818 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5819 ipst->ips_ip_mibkp = NULL; 5820 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5821 ipst->ips_icmp_mibkp = NULL; 5822 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5823 ipst->ips_ip_kstat = NULL; 5824 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5825 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5826 ipst->ips_ip6_kstat = NULL; 5827 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5828 5829 nd_free(&ipst->ips_ip_g_nd); 5830 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5831 ipst->ips_param_arr = NULL; 5832 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5833 ipst->ips_ndp_arr = NULL; 5834 5835 ip_mrouter_stack_destroy(ipst); 5836 5837 mutex_destroy(&ipst->ips_ip_mi_lock); 5838 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5839 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5840 rw_destroy(&ipst->ips_ip_g_nd_lock); 5841 5842 ret = untimeout(ipst->ips_igmp_timeout_id); 5843 if (ret == -1) { 5844 ASSERT(ipst->ips_igmp_timeout_id == 0); 5845 } else { 5846 ASSERT(ipst->ips_igmp_timeout_id != 0); 5847 ipst->ips_igmp_timeout_id = 0; 5848 } 5849 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5850 if (ret == -1) { 5851 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5852 } else { 5853 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5854 ipst->ips_igmp_slowtimeout_id = 0; 5855 } 5856 ret = untimeout(ipst->ips_mld_timeout_id); 5857 if (ret == -1) { 5858 ASSERT(ipst->ips_mld_timeout_id == 0); 5859 } else { 5860 ASSERT(ipst->ips_mld_timeout_id != 0); 5861 ipst->ips_mld_timeout_id = 0; 5862 } 5863 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5864 if (ret == -1) { 5865 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5866 } else { 5867 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5868 ipst->ips_mld_slowtimeout_id = 0; 5869 } 5870 ret = untimeout(ipst->ips_ip_ire_expire_id); 5871 if (ret == -1) { 5872 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5873 } else { 5874 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5875 ipst->ips_ip_ire_expire_id = 0; 5876 } 5877 5878 mutex_destroy(&ipst->ips_igmp_timer_lock); 5879 mutex_destroy(&ipst->ips_mld_timer_lock); 5880 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5881 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5882 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5883 rw_destroy(&ipst->ips_ill_g_lock); 5884 5885 ipobs_fini(ipst); 5886 ip_ire_fini(ipst); 5887 ip6_asp_free(ipst); 5888 conn_drain_fini(ipst); 5889 ipcl_destroy(ipst); 5890 5891 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5892 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5893 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5894 ipst->ips_ndp4 = NULL; 5895 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5896 ipst->ips_ndp6 = NULL; 5897 5898 if (ipst->ips_loopback_ksp != NULL) { 5899 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5900 ipst->ips_loopback_ksp = NULL; 5901 } 5902 5903 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5904 ipst->ips_phyint_g_list = NULL; 5905 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5906 ipst->ips_ill_g_heads = NULL; 5907 5908 ldi_ident_release(ipst->ips_ldi_ident); 5909 kmem_free(ipst, sizeof (*ipst)); 5910 } 5911 5912 /* 5913 * This function is called from the TSD destructor, and is used to debug 5914 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5915 * details. 5916 */ 5917 static void 5918 ip_thread_exit(void *phash) 5919 { 5920 th_hash_t *thh = phash; 5921 5922 rw_enter(&ip_thread_rwlock, RW_WRITER); 5923 list_remove(&ip_thread_list, thh); 5924 rw_exit(&ip_thread_rwlock); 5925 mod_hash_destroy_hash(thh->thh_hash); 5926 kmem_free(thh, sizeof (*thh)); 5927 } 5928 5929 /* 5930 * Called when the IP kernel module is loaded into the kernel 5931 */ 5932 void 5933 ip_ddi_init(void) 5934 { 5935 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5936 5937 /* 5938 * For IP and TCP the minor numbers should start from 2 since we have 4 5939 * initial devices: ip, ip6, tcp, tcp6. 5940 */ 5941 /* 5942 * If this is a 64-bit kernel, then create two separate arenas - 5943 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5944 * other for socket apps in the range 2^^18 through 2^^32-1. 5945 */ 5946 ip_minor_arena_la = NULL; 5947 ip_minor_arena_sa = NULL; 5948 #if defined(_LP64) 5949 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5950 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5951 cmn_err(CE_PANIC, 5952 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5953 } 5954 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5955 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5956 cmn_err(CE_PANIC, 5957 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5958 } 5959 #else 5960 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5961 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5962 cmn_err(CE_PANIC, 5963 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5964 } 5965 #endif 5966 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5967 5968 ipcl_g_init(); 5969 ip_ire_g_init(); 5970 ip_net_g_init(); 5971 5972 #ifdef DEBUG 5973 tsd_create(&ip_thread_data, ip_thread_exit); 5974 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5975 list_create(&ip_thread_list, sizeof (th_hash_t), 5976 offsetof(th_hash_t, thh_link)); 5977 #endif 5978 5979 /* 5980 * We want to be informed each time a stack is created or 5981 * destroyed in the kernel, so we can maintain the 5982 * set of udp_stack_t's. 5983 */ 5984 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5985 ip_stack_fini); 5986 5987 ipsec_policy_g_init(); 5988 tcp_ddi_g_init(); 5989 sctp_ddi_g_init(); 5990 5991 tnet_init(); 5992 5993 udp_ddi_g_init(); 5994 rts_ddi_g_init(); 5995 icmp_ddi_g_init(); 5996 } 5997 5998 /* 5999 * Initialize the IP stack instance. 6000 */ 6001 static void * 6002 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6003 { 6004 ip_stack_t *ipst; 6005 ipparam_t *pa; 6006 ipndp_t *na; 6007 major_t major; 6008 6009 #ifdef NS_DEBUG 6010 printf("ip_stack_init(stack %d)\n", stackid); 6011 #endif 6012 6013 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6014 ipst->ips_netstack = ns; 6015 6016 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6017 KM_SLEEP); 6018 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6019 KM_SLEEP); 6020 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6021 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6022 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6023 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6024 6025 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6026 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6027 ipst->ips_igmp_deferred_next = INFINITY; 6028 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6029 ipst->ips_mld_deferred_next = INFINITY; 6030 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6031 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6032 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6033 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6034 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6035 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6036 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6037 6038 ipcl_init(ipst); 6039 ip_ire_init(ipst); 6040 ip6_asp_init(ipst); 6041 ipif_init(ipst); 6042 conn_drain_init(ipst); 6043 ip_mrouter_stack_init(ipst); 6044 6045 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6046 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6047 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 6048 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 6049 6050 ipst->ips_ip_multirt_log_interval = 1000; 6051 6052 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6053 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6054 ipst->ips_ill_index = 1; 6055 6056 ipst->ips_saved_ip_g_forward = -1; 6057 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6058 6059 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6060 ipst->ips_param_arr = pa; 6061 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6062 6063 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6064 ipst->ips_ndp_arr = na; 6065 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6066 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6067 (caddr_t)&ipst->ips_ip_g_forward; 6068 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6069 (caddr_t)&ipst->ips_ipv6_forward; 6070 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6071 "ip_cgtp_filter") == 0); 6072 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6073 (caddr_t)&ipst->ips_ip_cgtp_filter; 6074 6075 (void) ip_param_register(&ipst->ips_ip_g_nd, 6076 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6077 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6078 6079 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6080 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6081 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6082 ipst->ips_ip6_kstat = 6083 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6084 6085 ipst->ips_ip_src_id = 1; 6086 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6087 6088 ipobs_init(ipst); 6089 ip_net_init(ipst, ns); 6090 ipv4_hook_init(ipst); 6091 ipv6_hook_init(ipst); 6092 ipmp_init(ipst); 6093 6094 /* 6095 * Create the taskq dispatcher thread and initialize related stuff. 6096 */ 6097 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6098 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6099 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6100 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6101 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6102 offsetof(mblk_t, b_next)); 6103 6104 /* 6105 * Create the mcast_restart_timers_thread() worker thread. 6106 */ 6107 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6108 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6109 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6110 ipst->ips_mrt_thread = thread_create(NULL, 0, 6111 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6112 6113 major = mod_name_to_major(INET_NAME); 6114 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6115 return (ipst); 6116 } 6117 6118 /* 6119 * Allocate and initialize a DLPI template of the specified length. (May be 6120 * called as writer.) 6121 */ 6122 mblk_t * 6123 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6124 { 6125 mblk_t *mp; 6126 6127 mp = allocb(len, BPRI_MED); 6128 if (!mp) 6129 return (NULL); 6130 6131 /* 6132 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6133 * of which we don't seem to use) are sent with M_PCPROTO, and 6134 * that other DLPI are M_PROTO. 6135 */ 6136 if (prim == DL_INFO_REQ) { 6137 mp->b_datap->db_type = M_PCPROTO; 6138 } else { 6139 mp->b_datap->db_type = M_PROTO; 6140 } 6141 6142 mp->b_wptr = mp->b_rptr + len; 6143 bzero(mp->b_rptr, len); 6144 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6145 return (mp); 6146 } 6147 6148 /* 6149 * Allocate and initialize a DLPI notification. (May be called as writer.) 6150 */ 6151 mblk_t * 6152 ip_dlnotify_alloc(uint_t notification, uint_t data) 6153 { 6154 dl_notify_ind_t *notifyp; 6155 mblk_t *mp; 6156 6157 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6158 return (NULL); 6159 6160 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6161 notifyp->dl_notification = notification; 6162 notifyp->dl_data = data; 6163 return (mp); 6164 } 6165 6166 /* 6167 * Debug formatting routine. Returns a character string representation of the 6168 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6169 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6170 * 6171 * Once the ndd table-printing interfaces are removed, this can be changed to 6172 * standard dotted-decimal form. 6173 */ 6174 char * 6175 ip_dot_addr(ipaddr_t addr, char *buf) 6176 { 6177 uint8_t *ap = (uint8_t *)&addr; 6178 6179 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6180 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6181 return (buf); 6182 } 6183 6184 /* 6185 * Write the given MAC address as a printable string in the usual colon- 6186 * separated format. 6187 */ 6188 const char * 6189 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6190 { 6191 char *bp; 6192 6193 if (alen == 0 || buflen < 4) 6194 return ("?"); 6195 bp = buf; 6196 for (;;) { 6197 /* 6198 * If there are more MAC address bytes available, but we won't 6199 * have any room to print them, then add "..." to the string 6200 * instead. See below for the 'magic number' explanation. 6201 */ 6202 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6203 (void) strcpy(bp, "..."); 6204 break; 6205 } 6206 (void) sprintf(bp, "%02x", *addr++); 6207 bp += 2; 6208 if (--alen == 0) 6209 break; 6210 *bp++ = ':'; 6211 buflen -= 3; 6212 /* 6213 * At this point, based on the first 'if' statement above, 6214 * either alen == 1 and buflen >= 3, or alen > 1 and 6215 * buflen >= 4. The first case leaves room for the final "xx" 6216 * number and trailing NUL byte. The second leaves room for at 6217 * least "...". Thus the apparently 'magic' numbers chosen for 6218 * that statement. 6219 */ 6220 } 6221 return (buf); 6222 } 6223 6224 /* 6225 * Send an ICMP error after patching up the packet appropriately. Returns 6226 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6227 */ 6228 static boolean_t 6229 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6230 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6231 zoneid_t zoneid, ip_stack_t *ipst) 6232 { 6233 ipha_t *ipha; 6234 mblk_t *first_mp; 6235 boolean_t secure; 6236 unsigned char db_type; 6237 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6238 6239 first_mp = mp; 6240 if (mctl_present) { 6241 mp = mp->b_cont; 6242 secure = ipsec_in_is_secure(first_mp); 6243 ASSERT(mp != NULL); 6244 } else { 6245 /* 6246 * If this is an ICMP error being reported - which goes 6247 * up as M_CTLs, we need to convert them to M_DATA till 6248 * we finish checking with global policy because 6249 * ipsec_check_global_policy() assumes M_DATA as clear 6250 * and M_CTL as secure. 6251 */ 6252 db_type = DB_TYPE(mp); 6253 DB_TYPE(mp) = M_DATA; 6254 secure = B_FALSE; 6255 } 6256 /* 6257 * We are generating an icmp error for some inbound packet. 6258 * Called from all ip_fanout_(udp, tcp, proto) functions. 6259 * Before we generate an error, check with global policy 6260 * to see whether this is allowed to enter the system. As 6261 * there is no "conn", we are checking with global policy. 6262 */ 6263 ipha = (ipha_t *)mp->b_rptr; 6264 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6265 first_mp = ipsec_check_global_policy(first_mp, NULL, 6266 ipha, NULL, mctl_present, ipst->ips_netstack); 6267 if (first_mp == NULL) 6268 return (B_FALSE); 6269 } 6270 6271 if (!mctl_present) 6272 DB_TYPE(mp) = db_type; 6273 6274 if (flags & IP_FF_SEND_ICMP) { 6275 if (flags & IP_FF_HDR_COMPLETE) { 6276 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6277 freemsg(first_mp); 6278 return (B_TRUE); 6279 } 6280 } 6281 if (flags & IP_FF_CKSUM) { 6282 /* 6283 * Have to correct checksum since 6284 * the packet might have been 6285 * fragmented and the reassembly code in ip_rput 6286 * does not restore the IP checksum. 6287 */ 6288 ipha->ipha_hdr_checksum = 0; 6289 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6290 } 6291 switch (icmp_type) { 6292 case ICMP_DEST_UNREACHABLE: 6293 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6294 ipst); 6295 break; 6296 default: 6297 freemsg(first_mp); 6298 break; 6299 } 6300 } else { 6301 freemsg(first_mp); 6302 return (B_FALSE); 6303 } 6304 6305 return (B_TRUE); 6306 } 6307 6308 /* 6309 * Used to send an ICMP error message when a packet is received for 6310 * a protocol that is not supported. The mblk passed as argument 6311 * is consumed by this function. 6312 */ 6313 void 6314 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6315 ip_stack_t *ipst) 6316 { 6317 mblk_t *mp; 6318 ipha_t *ipha; 6319 ill_t *ill; 6320 ipsec_in_t *ii; 6321 6322 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6323 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6324 6325 mp = ipsec_mp->b_cont; 6326 ipsec_mp->b_cont = NULL; 6327 ipha = (ipha_t *)mp->b_rptr; 6328 /* Get ill from index in ipsec_in_t. */ 6329 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6330 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6331 ipst); 6332 if (ill != NULL) { 6333 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6334 if (ip_fanout_send_icmp(q, mp, flags, 6335 ICMP_DEST_UNREACHABLE, 6336 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6337 BUMP_MIB(ill->ill_ip_mib, 6338 ipIfStatsInUnknownProtos); 6339 } 6340 } else { 6341 if (ip_fanout_send_icmp_v6(q, mp, flags, 6342 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6343 0, B_FALSE, zoneid, ipst)) { 6344 BUMP_MIB(ill->ill_ip_mib, 6345 ipIfStatsInUnknownProtos); 6346 } 6347 } 6348 ill_refrele(ill); 6349 } else { /* re-link for the freemsg() below. */ 6350 ipsec_mp->b_cont = mp; 6351 } 6352 6353 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6354 freemsg(ipsec_mp); 6355 } 6356 6357 /* 6358 * See if the inbound datagram has had IPsec processing applied to it. 6359 */ 6360 boolean_t 6361 ipsec_in_is_secure(mblk_t *ipsec_mp) 6362 { 6363 ipsec_in_t *ii; 6364 6365 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6366 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6367 6368 if (ii->ipsec_in_loopback) { 6369 return (ii->ipsec_in_secure); 6370 } else { 6371 return (ii->ipsec_in_ah_sa != NULL || 6372 ii->ipsec_in_esp_sa != NULL || 6373 ii->ipsec_in_decaps); 6374 } 6375 } 6376 6377 /* 6378 * Handle protocols with which IP is less intimate. There 6379 * can be more than one stream bound to a particular 6380 * protocol. When this is the case, normally each one gets a copy 6381 * of any incoming packets. 6382 * 6383 * IPsec NOTE : 6384 * 6385 * Don't allow a secure packet going up a non-secure connection. 6386 * We don't allow this because 6387 * 6388 * 1) Reply might go out in clear which will be dropped at 6389 * the sending side. 6390 * 2) If the reply goes out in clear it will give the 6391 * adversary enough information for getting the key in 6392 * most of the cases. 6393 * 6394 * Moreover getting a secure packet when we expect clear 6395 * implies that SA's were added without checking for 6396 * policy on both ends. This should not happen once ISAKMP 6397 * is used to negotiate SAs as SAs will be added only after 6398 * verifying the policy. 6399 * 6400 * NOTE : If the packet was tunneled and not multicast we only send 6401 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6402 * back to delivering packets to AF_INET6 raw sockets. 6403 * 6404 * IPQoS Notes: 6405 * Once we have determined the client, invoke IPPF processing. 6406 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6407 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6408 * ip_policy will be false. 6409 * 6410 * Zones notes: 6411 * Currently only applications in the global zone can create raw sockets for 6412 * protocols other than ICMP. So unlike the broadcast / multicast case of 6413 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6414 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6415 */ 6416 static void 6417 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6418 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6419 zoneid_t zoneid) 6420 { 6421 queue_t *rq; 6422 mblk_t *mp1, *first_mp1; 6423 uint_t protocol = ipha->ipha_protocol; 6424 ipaddr_t dst; 6425 boolean_t one_only; 6426 mblk_t *first_mp = mp; 6427 boolean_t secure; 6428 uint32_t ill_index; 6429 conn_t *connp, *first_connp, *next_connp; 6430 connf_t *connfp; 6431 boolean_t shared_addr; 6432 mib2_ipIfStatsEntry_t *mibptr; 6433 ip_stack_t *ipst = recv_ill->ill_ipst; 6434 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6435 6436 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6437 if (mctl_present) { 6438 mp = first_mp->b_cont; 6439 secure = ipsec_in_is_secure(first_mp); 6440 ASSERT(mp != NULL); 6441 } else { 6442 secure = B_FALSE; 6443 } 6444 dst = ipha->ipha_dst; 6445 /* 6446 * If the packet was tunneled and not multicast we only send to it 6447 * the first match. 6448 */ 6449 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6450 !CLASSD(dst)); 6451 6452 shared_addr = (zoneid == ALL_ZONES); 6453 if (shared_addr) { 6454 /* 6455 * We don't allow multilevel ports for raw IP, so no need to 6456 * check for that here. 6457 */ 6458 zoneid = tsol_packet_to_zoneid(mp); 6459 } 6460 6461 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6462 mutex_enter(&connfp->connf_lock); 6463 connp = connfp->connf_head; 6464 for (connp = connfp->connf_head; connp != NULL; 6465 connp = connp->conn_next) { 6466 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6467 zoneid) && 6468 (!is_system_labeled() || 6469 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6470 connp))) { 6471 break; 6472 } 6473 } 6474 6475 if (connp == NULL) { 6476 /* 6477 * No one bound to these addresses. Is 6478 * there a client that wants all 6479 * unclaimed datagrams? 6480 */ 6481 mutex_exit(&connfp->connf_lock); 6482 /* 6483 * Check for IPPROTO_ENCAP... 6484 */ 6485 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6486 /* 6487 * If an IPsec mblk is here on a multicast 6488 * tunnel (using ip_mroute stuff), check policy here, 6489 * THEN ship off to ip_mroute_decap(). 6490 * 6491 * BTW, If I match a configured IP-in-IP 6492 * tunnel, this path will not be reached, and 6493 * ip_mroute_decap will never be called. 6494 */ 6495 first_mp = ipsec_check_global_policy(first_mp, connp, 6496 ipha, NULL, mctl_present, ipst->ips_netstack); 6497 if (first_mp != NULL) { 6498 if (mctl_present) 6499 freeb(first_mp); 6500 ip_mroute_decap(q, mp, ill); 6501 } /* Else we already freed everything! */ 6502 } else { 6503 /* 6504 * Otherwise send an ICMP protocol unreachable. 6505 */ 6506 if (ip_fanout_send_icmp(q, first_mp, flags, 6507 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6508 mctl_present, zoneid, ipst)) { 6509 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6510 } 6511 } 6512 return; 6513 } 6514 6515 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6516 6517 CONN_INC_REF(connp); 6518 first_connp = connp; 6519 6520 /* 6521 * Only send message to one tunnel driver by immediately 6522 * terminating the loop. 6523 */ 6524 connp = one_only ? NULL : connp->conn_next; 6525 6526 for (;;) { 6527 while (connp != NULL) { 6528 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6529 flags, zoneid) && 6530 (!is_system_labeled() || 6531 tsol_receive_local(mp, &dst, IPV4_VERSION, 6532 shared_addr, connp))) 6533 break; 6534 connp = connp->conn_next; 6535 } 6536 6537 /* 6538 * Copy the packet. 6539 */ 6540 if (connp == NULL || 6541 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6542 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6543 /* 6544 * No more interested clients or memory 6545 * allocation failed 6546 */ 6547 connp = first_connp; 6548 break; 6549 } 6550 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6551 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6552 CONN_INC_REF(connp); 6553 mutex_exit(&connfp->connf_lock); 6554 rq = connp->conn_rq; 6555 6556 /* 6557 * Check flow control 6558 */ 6559 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6560 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6561 if (flags & IP_FF_RAWIP) { 6562 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6563 } else { 6564 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6565 } 6566 6567 freemsg(first_mp1); 6568 } else { 6569 /* 6570 * Don't enforce here if we're an actual tunnel - 6571 * let "tun" do it instead. 6572 */ 6573 if (!IPCL_IS_IPTUN(connp) && 6574 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6575 secure)) { 6576 first_mp1 = ipsec_check_inbound_policy 6577 (first_mp1, connp, ipha, NULL, 6578 mctl_present); 6579 } 6580 if (first_mp1 != NULL) { 6581 int in_flags = 0; 6582 /* 6583 * ip_fanout_proto also gets called from 6584 * icmp_inbound_error_fanout, in which case 6585 * the msg type is M_CTL. Don't add info 6586 * in this case for the time being. In future 6587 * when there is a need for knowing the 6588 * inbound iface index for ICMP error msgs, 6589 * then this can be changed. 6590 */ 6591 if (connp->conn_recvif) 6592 in_flags = IPF_RECVIF; 6593 /* 6594 * The ULP may support IP_RECVPKTINFO for both 6595 * IP v4 and v6 so pass the appropriate argument 6596 * based on conn IP version. 6597 */ 6598 if (connp->conn_ip_recvpktinfo) { 6599 if (connp->conn_af_isv6) { 6600 /* 6601 * V6 only needs index 6602 */ 6603 in_flags |= IPF_RECVIF; 6604 } else { 6605 /* 6606 * V4 needs index + 6607 * matching address. 6608 */ 6609 in_flags |= IPF_RECVADDR; 6610 } 6611 } 6612 if ((in_flags != 0) && 6613 (mp->b_datap->db_type != M_CTL)) { 6614 /* 6615 * the actual data will be 6616 * contained in b_cont upon 6617 * successful return of the 6618 * following call else 6619 * original mblk is returned 6620 */ 6621 ASSERT(recv_ill != NULL); 6622 mp1 = ip_add_info(mp1, recv_ill, 6623 in_flags, IPCL_ZONEID(connp), ipst); 6624 } 6625 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6626 if (mctl_present) 6627 freeb(first_mp1); 6628 (connp->conn_recv)(connp, mp1, NULL); 6629 } 6630 } 6631 mutex_enter(&connfp->connf_lock); 6632 /* Follow the next pointer before releasing the conn. */ 6633 next_connp = connp->conn_next; 6634 CONN_DEC_REF(connp); 6635 connp = next_connp; 6636 } 6637 6638 /* Last one. Send it upstream. */ 6639 mutex_exit(&connfp->connf_lock); 6640 6641 /* 6642 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6643 * will be set to false. 6644 */ 6645 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6646 ill_index = ill->ill_phyint->phyint_ifindex; 6647 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6648 if (mp == NULL) { 6649 CONN_DEC_REF(connp); 6650 if (mctl_present) { 6651 freeb(first_mp); 6652 } 6653 return; 6654 } 6655 } 6656 6657 rq = connp->conn_rq; 6658 /* 6659 * Check flow control 6660 */ 6661 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6662 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6663 if (flags & IP_FF_RAWIP) { 6664 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6665 } else { 6666 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6667 } 6668 6669 freemsg(first_mp); 6670 } else { 6671 if (IPCL_IS_IPTUN(connp)) { 6672 /* 6673 * Tunneled packet. We enforce policy in the tunnel 6674 * module itself. 6675 * 6676 * Send the WHOLE packet up (incl. IPSEC_IN) without 6677 * a policy check. 6678 * FIXME to use conn_recv for tun later. 6679 */ 6680 putnext(rq, first_mp); 6681 CONN_DEC_REF(connp); 6682 return; 6683 } 6684 6685 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6686 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6687 ipha, NULL, mctl_present); 6688 } 6689 6690 if (first_mp != NULL) { 6691 int in_flags = 0; 6692 6693 /* 6694 * ip_fanout_proto also gets called 6695 * from icmp_inbound_error_fanout, in 6696 * which case the msg type is M_CTL. 6697 * Don't add info in this case for time 6698 * being. In future when there is a 6699 * need for knowing the inbound iface 6700 * index for ICMP error msgs, then this 6701 * can be changed 6702 */ 6703 if (connp->conn_recvif) 6704 in_flags = IPF_RECVIF; 6705 if (connp->conn_ip_recvpktinfo) { 6706 if (connp->conn_af_isv6) { 6707 /* 6708 * V6 only needs index 6709 */ 6710 in_flags |= IPF_RECVIF; 6711 } else { 6712 /* 6713 * V4 needs index + 6714 * matching address. 6715 */ 6716 in_flags |= IPF_RECVADDR; 6717 } 6718 } 6719 if ((in_flags != 0) && 6720 (mp->b_datap->db_type != M_CTL)) { 6721 6722 /* 6723 * the actual data will be contained in 6724 * b_cont upon successful return 6725 * of the following call else original 6726 * mblk is returned 6727 */ 6728 ASSERT(recv_ill != NULL); 6729 mp = ip_add_info(mp, recv_ill, 6730 in_flags, IPCL_ZONEID(connp), ipst); 6731 } 6732 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6733 (connp->conn_recv)(connp, mp, NULL); 6734 if (mctl_present) 6735 freeb(first_mp); 6736 } 6737 } 6738 CONN_DEC_REF(connp); 6739 } 6740 6741 /* 6742 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6743 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6744 * the correct squeue, in this case the same squeue as a valid listener with 6745 * no current connection state for the packet we are processing. The function 6746 * is called for synchronizing both IPv4 and IPv6. 6747 */ 6748 void 6749 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6750 tcp_stack_t *tcps, conn_t *connp) 6751 { 6752 mblk_t *rst_mp; 6753 tcp_xmit_reset_event_t *eventp; 6754 6755 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6756 6757 if (rst_mp == NULL) { 6758 freemsg(mp); 6759 return; 6760 } 6761 6762 rst_mp->b_datap->db_type = M_PROTO; 6763 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6764 6765 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6766 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6767 eventp->tcp_xre_iphdrlen = hdrlen; 6768 eventp->tcp_xre_zoneid = zoneid; 6769 eventp->tcp_xre_tcps = tcps; 6770 6771 rst_mp->b_cont = mp; 6772 mp = rst_mp; 6773 6774 /* 6775 * Increment the connref, this ref will be released by the squeue 6776 * framework. 6777 */ 6778 CONN_INC_REF(connp); 6779 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6780 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6781 } 6782 6783 /* 6784 * Fanout for TCP packets 6785 * The caller puts <fport, lport> in the ports parameter. 6786 * 6787 * IPQoS Notes 6788 * Before sending it to the client, invoke IPPF processing. 6789 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6790 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6791 * ip_policy is false. 6792 */ 6793 static void 6794 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6795 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6796 { 6797 mblk_t *first_mp; 6798 boolean_t secure; 6799 uint32_t ill_index; 6800 int ip_hdr_len; 6801 tcph_t *tcph; 6802 boolean_t syn_present = B_FALSE; 6803 conn_t *connp; 6804 ip_stack_t *ipst = recv_ill->ill_ipst; 6805 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6806 6807 ASSERT(recv_ill != NULL); 6808 6809 first_mp = mp; 6810 if (mctl_present) { 6811 ASSERT(first_mp->b_datap->db_type == M_CTL); 6812 mp = first_mp->b_cont; 6813 secure = ipsec_in_is_secure(first_mp); 6814 ASSERT(mp != NULL); 6815 } else { 6816 secure = B_FALSE; 6817 } 6818 6819 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6820 6821 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6822 zoneid, ipst)) == NULL) { 6823 /* 6824 * No connected connection or listener. Send a 6825 * TH_RST via tcp_xmit_listeners_reset. 6826 */ 6827 6828 /* Initiate IPPf processing, if needed. */ 6829 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6830 uint32_t ill_index; 6831 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6832 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6833 if (first_mp == NULL) 6834 return; 6835 } 6836 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6837 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6838 zoneid)); 6839 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6840 ipst->ips_netstack->netstack_tcp, NULL); 6841 return; 6842 } 6843 6844 /* 6845 * Allocate the SYN for the TCP connection here itself 6846 */ 6847 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6848 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6849 if (IPCL_IS_TCP(connp)) { 6850 squeue_t *sqp; 6851 6852 /* 6853 * For fused tcp loopback, assign the eager's 6854 * squeue to be that of the active connect's. 6855 * Note that we don't check for IP_FF_LOOPBACK 6856 * here since this routine gets called only 6857 * for loopback (unlike the IPv6 counterpart). 6858 */ 6859 ASSERT(Q_TO_CONN(q) != NULL); 6860 if (do_tcp_fusion && 6861 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6862 !secure && 6863 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6864 IPCL_IS_TCP(Q_TO_CONN(q))) { 6865 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6866 sqp = Q_TO_CONN(q)->conn_sqp; 6867 } else { 6868 sqp = IP_SQUEUE_GET(lbolt); 6869 } 6870 6871 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6872 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6873 syn_present = B_TRUE; 6874 } 6875 } 6876 6877 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6878 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6879 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6880 if ((flags & TH_RST) || (flags & TH_URG)) { 6881 CONN_DEC_REF(connp); 6882 freemsg(first_mp); 6883 return; 6884 } 6885 if (flags & TH_ACK) { 6886 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6887 ipst->ips_netstack->netstack_tcp, connp); 6888 CONN_DEC_REF(connp); 6889 return; 6890 } 6891 6892 CONN_DEC_REF(connp); 6893 freemsg(first_mp); 6894 return; 6895 } 6896 6897 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6898 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6899 NULL, mctl_present); 6900 if (first_mp == NULL) { 6901 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6902 CONN_DEC_REF(connp); 6903 return; 6904 } 6905 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6906 ASSERT(syn_present); 6907 if (mctl_present) { 6908 ASSERT(first_mp != mp); 6909 first_mp->b_datap->db_struioflag |= 6910 STRUIO_POLICY; 6911 } else { 6912 ASSERT(first_mp == mp); 6913 mp->b_datap->db_struioflag &= 6914 ~STRUIO_EAGER; 6915 mp->b_datap->db_struioflag |= 6916 STRUIO_POLICY; 6917 } 6918 } else { 6919 /* 6920 * Discard first_mp early since we're dealing with a 6921 * fully-connected conn_t and tcp doesn't do policy in 6922 * this case. 6923 */ 6924 if (mctl_present) { 6925 freeb(first_mp); 6926 mctl_present = B_FALSE; 6927 } 6928 first_mp = mp; 6929 } 6930 } 6931 6932 /* 6933 * Initiate policy processing here if needed. If we get here from 6934 * icmp_inbound_error_fanout, ip_policy is false. 6935 */ 6936 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6937 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6938 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6939 if (mp == NULL) { 6940 CONN_DEC_REF(connp); 6941 if (mctl_present) 6942 freeb(first_mp); 6943 return; 6944 } else if (mctl_present) { 6945 ASSERT(first_mp != mp); 6946 first_mp->b_cont = mp; 6947 } else { 6948 first_mp = mp; 6949 } 6950 } 6951 6952 /* Handle socket options. */ 6953 if (!syn_present && 6954 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6955 /* Add header */ 6956 ASSERT(recv_ill != NULL); 6957 /* 6958 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6959 * IPF_RECVIF. 6960 */ 6961 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6962 ipst); 6963 if (mp == NULL) { 6964 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6965 CONN_DEC_REF(connp); 6966 if (mctl_present) 6967 freeb(first_mp); 6968 return; 6969 } else if (mctl_present) { 6970 /* 6971 * ip_add_info might return a new mp. 6972 */ 6973 ASSERT(first_mp != mp); 6974 first_mp->b_cont = mp; 6975 } else { 6976 first_mp = mp; 6977 } 6978 } 6979 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6980 if (IPCL_IS_TCP(connp)) { 6981 /* do not drain, certain use cases can blow the stack */ 6982 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6983 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6984 } else { 6985 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6986 (connp->conn_recv)(connp, first_mp, NULL); 6987 CONN_DEC_REF(connp); 6988 } 6989 } 6990 6991 /* 6992 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6993 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6994 * is not consumed. 6995 * 6996 * One of four things can happen, all of which affect the passed-in mblk: 6997 * 6998 * 1.) ICMP messages that go through here just get returned TRUE. 6999 * 7000 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 7001 * 7002 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7003 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7004 * 7005 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7006 */ 7007 static boolean_t 7008 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7009 ipsec_stack_t *ipss) 7010 { 7011 int shift, plen, iph_len; 7012 ipha_t *ipha; 7013 udpha_t *udpha; 7014 uint32_t *spi; 7015 uint32_t esp_ports; 7016 uint8_t *orptr; 7017 boolean_t free_ire; 7018 7019 if (DB_TYPE(mp) == M_CTL) { 7020 /* 7021 * ICMP message with UDP inside. Don't bother stripping, just 7022 * send it up. 7023 * 7024 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7025 * to ignore errors set by ICMP anyway ('cause they might be 7026 * forged), but that's the app's decision, not ours. 7027 */ 7028 7029 /* Bunch of reality checks for DEBUG kernels... */ 7030 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7031 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7032 7033 return (B_TRUE); 7034 } 7035 7036 ipha = (ipha_t *)mp->b_rptr; 7037 iph_len = IPH_HDR_LENGTH(ipha); 7038 plen = ntohs(ipha->ipha_length); 7039 7040 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7041 /* 7042 * Most likely a keepalive for the benefit of an intervening 7043 * NAT. These aren't for us, per se, so drop it. 7044 * 7045 * RFC 3947/8 doesn't say for sure what to do for 2-3 7046 * byte packets (keepalives are 1-byte), but we'll drop them 7047 * also. 7048 */ 7049 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7050 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7051 return (B_FALSE); 7052 } 7053 7054 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7055 /* might as well pull it all up - it might be ESP. */ 7056 if (!pullupmsg(mp, -1)) { 7057 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7058 DROPPER(ipss, ipds_esp_nomem), 7059 &ipss->ipsec_dropper); 7060 return (B_FALSE); 7061 } 7062 7063 ipha = (ipha_t *)mp->b_rptr; 7064 } 7065 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7066 if (*spi == 0) { 7067 /* UDP packet - remove 0-spi. */ 7068 shift = sizeof (uint32_t); 7069 } else { 7070 /* ESP-in-UDP packet - reduce to ESP. */ 7071 ipha->ipha_protocol = IPPROTO_ESP; 7072 shift = sizeof (udpha_t); 7073 } 7074 7075 /* Fix IP header */ 7076 ipha->ipha_length = htons(plen - shift); 7077 ipha->ipha_hdr_checksum = 0; 7078 7079 orptr = mp->b_rptr; 7080 mp->b_rptr += shift; 7081 7082 udpha = (udpha_t *)(orptr + iph_len); 7083 if (*spi == 0) { 7084 ASSERT((uint8_t *)ipha == orptr); 7085 udpha->uha_length = htons(plen - shift - iph_len); 7086 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7087 esp_ports = 0; 7088 } else { 7089 esp_ports = *((uint32_t *)udpha); 7090 ASSERT(esp_ports != 0); 7091 } 7092 ovbcopy(orptr, orptr + shift, iph_len); 7093 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7094 ipha = (ipha_t *)(orptr + shift); 7095 7096 free_ire = (ire == NULL); 7097 if (free_ire) { 7098 /* Re-acquire ire. */ 7099 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7100 ipss->ipsec_netstack->netstack_ip); 7101 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7102 if (ire != NULL) 7103 ire_refrele(ire); 7104 /* 7105 * Do a regular freemsg(), as this is an IP 7106 * error (no local route) not an IPsec one. 7107 */ 7108 freemsg(mp); 7109 } 7110 } 7111 7112 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7113 if (free_ire) 7114 ire_refrele(ire); 7115 } 7116 7117 return (esp_ports == 0); 7118 } 7119 7120 /* 7121 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7122 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7123 * Caller is responsible for dropping references to the conn, and freeing 7124 * first_mp. 7125 * 7126 * IPQoS Notes 7127 * Before sending it to the client, invoke IPPF processing. Policy processing 7128 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7129 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7130 * ip_wput_local, ip_policy is false. 7131 */ 7132 static void 7133 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7134 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7135 boolean_t ip_policy) 7136 { 7137 boolean_t mctl_present = (first_mp != NULL); 7138 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7139 uint32_t ill_index; 7140 ip_stack_t *ipst = recv_ill->ill_ipst; 7141 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7142 7143 ASSERT(ill != NULL); 7144 7145 if (mctl_present) 7146 first_mp->b_cont = mp; 7147 else 7148 first_mp = mp; 7149 7150 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7151 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7152 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7153 freemsg(first_mp); 7154 return; 7155 } 7156 7157 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7158 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7159 NULL, mctl_present); 7160 /* Freed by ipsec_check_inbound_policy(). */ 7161 if (first_mp == NULL) { 7162 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7163 return; 7164 } 7165 } 7166 if (mctl_present) 7167 freeb(first_mp); 7168 7169 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7170 if (connp->conn_udp->udp_nat_t_endpoint) { 7171 if (mctl_present) { 7172 /* mctl_present *shouldn't* happen. */ 7173 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7174 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7175 &ipss->ipsec_dropper); 7176 return; 7177 } 7178 7179 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7180 return; 7181 } 7182 7183 /* Handle options. */ 7184 if (connp->conn_recvif) 7185 in_flags = IPF_RECVIF; 7186 /* 7187 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7188 * passed to ip_add_info is based on IP version of connp. 7189 */ 7190 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7191 if (connp->conn_af_isv6) { 7192 /* 7193 * V6 only needs index 7194 */ 7195 in_flags |= IPF_RECVIF; 7196 } else { 7197 /* 7198 * V4 needs index + matching address. 7199 */ 7200 in_flags |= IPF_RECVADDR; 7201 } 7202 } 7203 7204 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7205 in_flags |= IPF_RECVSLLA; 7206 7207 /* 7208 * Initiate IPPF processing here, if needed. Note first_mp won't be 7209 * freed if the packet is dropped. The caller will do so. 7210 */ 7211 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7212 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7213 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7214 if (mp == NULL) { 7215 return; 7216 } 7217 } 7218 if ((in_flags != 0) && 7219 (mp->b_datap->db_type != M_CTL)) { 7220 /* 7221 * The actual data will be contained in b_cont 7222 * upon successful return of the following call 7223 * else original mblk is returned 7224 */ 7225 ASSERT(recv_ill != NULL); 7226 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7227 ipst); 7228 } 7229 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7230 /* Send it upstream */ 7231 (connp->conn_recv)(connp, mp, NULL); 7232 } 7233 7234 /* 7235 * Fanout for UDP packets. 7236 * The caller puts <fport, lport> in the ports parameter. 7237 * 7238 * If SO_REUSEADDR is set all multicast and broadcast packets 7239 * will be delivered to all streams bound to the same port. 7240 * 7241 * Zones notes: 7242 * Multicast and broadcast packets will be distributed to streams in all zones. 7243 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7244 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7245 * packets. To maintain this behavior with multiple zones, the conns are grouped 7246 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7247 * each zone. If unset, all the following conns in the same zone are skipped. 7248 */ 7249 static void 7250 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7251 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7252 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7253 { 7254 uint32_t dstport, srcport; 7255 ipaddr_t dst; 7256 mblk_t *first_mp; 7257 boolean_t secure; 7258 in6_addr_t v6src; 7259 conn_t *connp; 7260 connf_t *connfp; 7261 conn_t *first_connp; 7262 conn_t *next_connp; 7263 mblk_t *mp1, *first_mp1; 7264 ipaddr_t src; 7265 zoneid_t last_zoneid; 7266 boolean_t reuseaddr; 7267 boolean_t shared_addr; 7268 boolean_t unlabeled; 7269 ip_stack_t *ipst; 7270 7271 ASSERT(recv_ill != NULL); 7272 ipst = recv_ill->ill_ipst; 7273 7274 first_mp = mp; 7275 if (mctl_present) { 7276 mp = first_mp->b_cont; 7277 first_mp->b_cont = NULL; 7278 secure = ipsec_in_is_secure(first_mp); 7279 ASSERT(mp != NULL); 7280 } else { 7281 first_mp = NULL; 7282 secure = B_FALSE; 7283 } 7284 7285 /* Extract ports in net byte order */ 7286 dstport = htons(ntohl(ports) & 0xFFFF); 7287 srcport = htons(ntohl(ports) >> 16); 7288 dst = ipha->ipha_dst; 7289 src = ipha->ipha_src; 7290 7291 unlabeled = B_FALSE; 7292 if (is_system_labeled()) 7293 /* Cred cannot be null on IPv4 */ 7294 unlabeled = (msg_getlabel(mp)->tsl_flags & 7295 TSLF_UNLABELED) != 0; 7296 shared_addr = (zoneid == ALL_ZONES); 7297 if (shared_addr) { 7298 /* 7299 * No need to handle exclusive-stack zones since ALL_ZONES 7300 * only applies to the shared stack. 7301 */ 7302 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7303 /* 7304 * If no shared MLP is found, tsol_mlp_findzone returns 7305 * ALL_ZONES. In that case, we assume it's SLP, and 7306 * search for the zone based on the packet label. 7307 * 7308 * If there is such a zone, we prefer to find a 7309 * connection in it. Otherwise, we look for a 7310 * MAC-exempt connection in any zone whose label 7311 * dominates the default label on the packet. 7312 */ 7313 if (zoneid == ALL_ZONES) 7314 zoneid = tsol_packet_to_zoneid(mp); 7315 else 7316 unlabeled = B_FALSE; 7317 } 7318 7319 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7320 mutex_enter(&connfp->connf_lock); 7321 connp = connfp->connf_head; 7322 if (!broadcast && !CLASSD(dst)) { 7323 /* 7324 * Not broadcast or multicast. Send to the one (first) 7325 * client we find. No need to check conn_wantpacket() 7326 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7327 * IPv4 unicast packets. 7328 */ 7329 while ((connp != NULL) && 7330 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7331 (!IPCL_ZONE_MATCH(connp, zoneid) && 7332 !(unlabeled && connp->conn_mac_exempt)))) { 7333 /* 7334 * We keep searching since the conn did not match, 7335 * or its zone did not match and it is not either 7336 * an allzones conn or a mac exempt conn (if the 7337 * sender is unlabeled.) 7338 */ 7339 connp = connp->conn_next; 7340 } 7341 7342 if (connp == NULL || 7343 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7344 goto notfound; 7345 7346 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7347 7348 if (is_system_labeled() && 7349 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7350 connp)) 7351 goto notfound; 7352 7353 CONN_INC_REF(connp); 7354 mutex_exit(&connfp->connf_lock); 7355 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7356 flags, recv_ill, ip_policy); 7357 IP_STAT(ipst, ip_udp_fannorm); 7358 CONN_DEC_REF(connp); 7359 return; 7360 } 7361 7362 /* 7363 * Broadcast and multicast case 7364 * 7365 * Need to check conn_wantpacket(). 7366 * If SO_REUSEADDR has been set on the first we send the 7367 * packet to all clients that have joined the group and 7368 * match the port. 7369 */ 7370 7371 while (connp != NULL) { 7372 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7373 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7374 (!is_system_labeled() || 7375 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7376 connp))) 7377 break; 7378 connp = connp->conn_next; 7379 } 7380 7381 if (connp == NULL || 7382 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7383 goto notfound; 7384 7385 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7386 7387 first_connp = connp; 7388 /* 7389 * When SO_REUSEADDR is not set, send the packet only to the first 7390 * matching connection in its zone by keeping track of the zoneid. 7391 */ 7392 reuseaddr = first_connp->conn_reuseaddr; 7393 last_zoneid = first_connp->conn_zoneid; 7394 7395 CONN_INC_REF(connp); 7396 connp = connp->conn_next; 7397 for (;;) { 7398 while (connp != NULL) { 7399 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7400 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7401 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7402 (!is_system_labeled() || 7403 tsol_receive_local(mp, &dst, IPV4_VERSION, 7404 shared_addr, connp))) 7405 break; 7406 connp = connp->conn_next; 7407 } 7408 /* 7409 * Just copy the data part alone. The mctl part is 7410 * needed just for verifying policy and it is never 7411 * sent up. 7412 */ 7413 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7414 ((mp1 = copymsg(mp)) == NULL))) { 7415 /* 7416 * No more interested clients or memory 7417 * allocation failed 7418 */ 7419 connp = first_connp; 7420 break; 7421 } 7422 if (connp->conn_zoneid != last_zoneid) { 7423 /* 7424 * Update the zoneid so that the packet isn't sent to 7425 * any more conns in the same zone unless SO_REUSEADDR 7426 * is set. 7427 */ 7428 reuseaddr = connp->conn_reuseaddr; 7429 last_zoneid = connp->conn_zoneid; 7430 } 7431 if (first_mp != NULL) { 7432 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7433 ipsec_info_type == IPSEC_IN); 7434 first_mp1 = ipsec_in_tag(first_mp, NULL, 7435 ipst->ips_netstack); 7436 if (first_mp1 == NULL) { 7437 freemsg(mp1); 7438 connp = first_connp; 7439 break; 7440 } 7441 } else { 7442 first_mp1 = NULL; 7443 } 7444 CONN_INC_REF(connp); 7445 mutex_exit(&connfp->connf_lock); 7446 /* 7447 * IPQoS notes: We don't send the packet for policy 7448 * processing here, will do it for the last one (below). 7449 * i.e. we do it per-packet now, but if we do policy 7450 * processing per-conn, then we would need to do it 7451 * here too. 7452 */ 7453 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7454 ipha, flags, recv_ill, B_FALSE); 7455 mutex_enter(&connfp->connf_lock); 7456 /* Follow the next pointer before releasing the conn. */ 7457 next_connp = connp->conn_next; 7458 IP_STAT(ipst, ip_udp_fanmb); 7459 CONN_DEC_REF(connp); 7460 connp = next_connp; 7461 } 7462 7463 /* Last one. Send it upstream. */ 7464 mutex_exit(&connfp->connf_lock); 7465 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7466 recv_ill, ip_policy); 7467 IP_STAT(ipst, ip_udp_fanmb); 7468 CONN_DEC_REF(connp); 7469 return; 7470 7471 notfound: 7472 7473 mutex_exit(&connfp->connf_lock); 7474 IP_STAT(ipst, ip_udp_fanothers); 7475 /* 7476 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7477 * have already been matched above, since they live in the IPv4 7478 * fanout tables. This implies we only need to 7479 * check for IPv6 in6addr_any endpoints here. 7480 * Thus we compare using ipv6_all_zeros instead of the destination 7481 * address, except for the multicast group membership lookup which 7482 * uses the IPv4 destination. 7483 */ 7484 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7485 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7486 mutex_enter(&connfp->connf_lock); 7487 connp = connfp->connf_head; 7488 if (!broadcast && !CLASSD(dst)) { 7489 while (connp != NULL) { 7490 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7491 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7492 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7493 !connp->conn_ipv6_v6only) 7494 break; 7495 connp = connp->conn_next; 7496 } 7497 7498 if (connp != NULL && is_system_labeled() && 7499 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7500 connp)) 7501 connp = NULL; 7502 7503 if (connp == NULL || 7504 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7505 /* 7506 * No one bound to this port. Is 7507 * there a client that wants all 7508 * unclaimed datagrams? 7509 */ 7510 mutex_exit(&connfp->connf_lock); 7511 7512 if (mctl_present) 7513 first_mp->b_cont = mp; 7514 else 7515 first_mp = mp; 7516 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7517 connf_head != NULL) { 7518 ip_fanout_proto(q, first_mp, ill, ipha, 7519 flags | IP_FF_RAWIP, mctl_present, 7520 ip_policy, recv_ill, zoneid); 7521 } else { 7522 if (ip_fanout_send_icmp(q, first_mp, flags, 7523 ICMP_DEST_UNREACHABLE, 7524 ICMP_PORT_UNREACHABLE, 7525 mctl_present, zoneid, ipst)) { 7526 BUMP_MIB(ill->ill_ip_mib, 7527 udpIfStatsNoPorts); 7528 } 7529 } 7530 return; 7531 } 7532 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7533 7534 CONN_INC_REF(connp); 7535 mutex_exit(&connfp->connf_lock); 7536 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7537 flags, recv_ill, ip_policy); 7538 CONN_DEC_REF(connp); 7539 return; 7540 } 7541 /* 7542 * IPv4 multicast packet being delivered to an AF_INET6 7543 * in6addr_any endpoint. 7544 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7545 * and not conn_wantpacket_v6() since any multicast membership is 7546 * for an IPv4-mapped multicast address. 7547 * The packet is sent to all clients in all zones that have joined the 7548 * group and match the port. 7549 */ 7550 while (connp != NULL) { 7551 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7552 srcport, v6src) && 7553 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7554 (!is_system_labeled() || 7555 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7556 connp))) 7557 break; 7558 connp = connp->conn_next; 7559 } 7560 7561 if (connp == NULL || 7562 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7563 /* 7564 * No one bound to this port. Is 7565 * there a client that wants all 7566 * unclaimed datagrams? 7567 */ 7568 mutex_exit(&connfp->connf_lock); 7569 7570 if (mctl_present) 7571 first_mp->b_cont = mp; 7572 else 7573 first_mp = mp; 7574 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7575 NULL) { 7576 ip_fanout_proto(q, first_mp, ill, ipha, 7577 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7578 recv_ill, zoneid); 7579 } else { 7580 /* 7581 * We used to attempt to send an icmp error here, but 7582 * since this is known to be a multicast packet 7583 * and we don't send icmp errors in response to 7584 * multicast, just drop the packet and give up sooner. 7585 */ 7586 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7587 freemsg(first_mp); 7588 } 7589 return; 7590 } 7591 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7592 7593 first_connp = connp; 7594 7595 CONN_INC_REF(connp); 7596 connp = connp->conn_next; 7597 for (;;) { 7598 while (connp != NULL) { 7599 if (IPCL_UDP_MATCH_V6(connp, dstport, 7600 ipv6_all_zeros, srcport, v6src) && 7601 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7602 (!is_system_labeled() || 7603 tsol_receive_local(mp, &dst, IPV4_VERSION, 7604 shared_addr, connp))) 7605 break; 7606 connp = connp->conn_next; 7607 } 7608 /* 7609 * Just copy the data part alone. The mctl part is 7610 * needed just for verifying policy and it is never 7611 * sent up. 7612 */ 7613 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7614 ((mp1 = copymsg(mp)) == NULL))) { 7615 /* 7616 * No more intested clients or memory 7617 * allocation failed 7618 */ 7619 connp = first_connp; 7620 break; 7621 } 7622 if (first_mp != NULL) { 7623 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7624 ipsec_info_type == IPSEC_IN); 7625 first_mp1 = ipsec_in_tag(first_mp, NULL, 7626 ipst->ips_netstack); 7627 if (first_mp1 == NULL) { 7628 freemsg(mp1); 7629 connp = first_connp; 7630 break; 7631 } 7632 } else { 7633 first_mp1 = NULL; 7634 } 7635 CONN_INC_REF(connp); 7636 mutex_exit(&connfp->connf_lock); 7637 /* 7638 * IPQoS notes: We don't send the packet for policy 7639 * processing here, will do it for the last one (below). 7640 * i.e. we do it per-packet now, but if we do policy 7641 * processing per-conn, then we would need to do it 7642 * here too. 7643 */ 7644 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7645 ipha, flags, recv_ill, B_FALSE); 7646 mutex_enter(&connfp->connf_lock); 7647 /* Follow the next pointer before releasing the conn. */ 7648 next_connp = connp->conn_next; 7649 CONN_DEC_REF(connp); 7650 connp = next_connp; 7651 } 7652 7653 /* Last one. Send it upstream. */ 7654 mutex_exit(&connfp->connf_lock); 7655 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7656 recv_ill, ip_policy); 7657 CONN_DEC_REF(connp); 7658 } 7659 7660 /* 7661 * Complete the ip_wput header so that it 7662 * is possible to generate ICMP 7663 * errors. 7664 */ 7665 int 7666 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7667 { 7668 ire_t *ire; 7669 7670 if (ipha->ipha_src == INADDR_ANY) { 7671 ire = ire_lookup_local(zoneid, ipst); 7672 if (ire == NULL) { 7673 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7674 return (1); 7675 } 7676 ipha->ipha_src = ire->ire_addr; 7677 ire_refrele(ire); 7678 } 7679 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7680 ipha->ipha_hdr_checksum = 0; 7681 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7682 return (0); 7683 } 7684 7685 /* 7686 * Nobody should be sending 7687 * packets up this stream 7688 */ 7689 static void 7690 ip_lrput(queue_t *q, mblk_t *mp) 7691 { 7692 mblk_t *mp1; 7693 7694 switch (mp->b_datap->db_type) { 7695 case M_FLUSH: 7696 /* Turn around */ 7697 if (*mp->b_rptr & FLUSHW) { 7698 *mp->b_rptr &= ~FLUSHR; 7699 qreply(q, mp); 7700 return; 7701 } 7702 break; 7703 } 7704 /* Could receive messages that passed through ar_rput */ 7705 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7706 mp1->b_prev = mp1->b_next = NULL; 7707 freemsg(mp); 7708 } 7709 7710 /* Nobody should be sending packets down this stream */ 7711 /* ARGSUSED */ 7712 void 7713 ip_lwput(queue_t *q, mblk_t *mp) 7714 { 7715 freemsg(mp); 7716 } 7717 7718 /* 7719 * Move the first hop in any source route to ipha_dst and remove that part of 7720 * the source route. Called by other protocols. Errors in option formatting 7721 * are ignored - will be handled by ip_wput_options Return the final 7722 * destination (either ipha_dst or the last entry in a source route.) 7723 */ 7724 ipaddr_t 7725 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7726 { 7727 ipoptp_t opts; 7728 uchar_t *opt; 7729 uint8_t optval; 7730 uint8_t optlen; 7731 ipaddr_t dst; 7732 int i; 7733 ire_t *ire; 7734 ip_stack_t *ipst = ns->netstack_ip; 7735 7736 ip2dbg(("ip_massage_options\n")); 7737 dst = ipha->ipha_dst; 7738 for (optval = ipoptp_first(&opts, ipha); 7739 optval != IPOPT_EOL; 7740 optval = ipoptp_next(&opts)) { 7741 opt = opts.ipoptp_cur; 7742 switch (optval) { 7743 uint8_t off; 7744 case IPOPT_SSRR: 7745 case IPOPT_LSRR: 7746 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7747 ip1dbg(("ip_massage_options: bad src route\n")); 7748 break; 7749 } 7750 optlen = opts.ipoptp_len; 7751 off = opt[IPOPT_OFFSET]; 7752 off--; 7753 redo_srr: 7754 if (optlen < IP_ADDR_LEN || 7755 off > optlen - IP_ADDR_LEN) { 7756 /* End of source route */ 7757 ip1dbg(("ip_massage_options: end of SR\n")); 7758 break; 7759 } 7760 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7761 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7762 ntohl(dst))); 7763 /* 7764 * Check if our address is present more than 7765 * once as consecutive hops in source route. 7766 * XXX verify per-interface ip_forwarding 7767 * for source route? 7768 */ 7769 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7770 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7771 if (ire != NULL) { 7772 ire_refrele(ire); 7773 off += IP_ADDR_LEN; 7774 goto redo_srr; 7775 } 7776 if (dst == htonl(INADDR_LOOPBACK)) { 7777 ip1dbg(("ip_massage_options: loopback addr in " 7778 "source route!\n")); 7779 break; 7780 } 7781 /* 7782 * Update ipha_dst to be the first hop and remove the 7783 * first hop from the source route (by overwriting 7784 * part of the option with NOP options). 7785 */ 7786 ipha->ipha_dst = dst; 7787 /* Put the last entry in dst */ 7788 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7789 3; 7790 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7791 7792 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7793 ntohl(dst))); 7794 /* Move down and overwrite */ 7795 opt[IP_ADDR_LEN] = opt[0]; 7796 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7797 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7798 for (i = 0; i < IP_ADDR_LEN; i++) 7799 opt[i] = IPOPT_NOP; 7800 break; 7801 } 7802 } 7803 return (dst); 7804 } 7805 7806 /* 7807 * Return the network mask 7808 * associated with the specified address. 7809 */ 7810 ipaddr_t 7811 ip_net_mask(ipaddr_t addr) 7812 { 7813 uchar_t *up = (uchar_t *)&addr; 7814 ipaddr_t mask = 0; 7815 uchar_t *maskp = (uchar_t *)&mask; 7816 7817 #if defined(__i386) || defined(__amd64) 7818 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7819 #endif 7820 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7821 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7822 #endif 7823 if (CLASSD(addr)) { 7824 maskp[0] = 0xF0; 7825 return (mask); 7826 } 7827 7828 /* We assume Class E default netmask to be 32 */ 7829 if (CLASSE(addr)) 7830 return (0xffffffffU); 7831 7832 if (addr == 0) 7833 return (0); 7834 maskp[0] = 0xFF; 7835 if ((up[0] & 0x80) == 0) 7836 return (mask); 7837 7838 maskp[1] = 0xFF; 7839 if ((up[0] & 0xC0) == 0x80) 7840 return (mask); 7841 7842 maskp[2] = 0xFF; 7843 if ((up[0] & 0xE0) == 0xC0) 7844 return (mask); 7845 7846 /* Otherwise return no mask */ 7847 return ((ipaddr_t)0); 7848 } 7849 7850 /* 7851 * Helper ill lookup function used by IPsec. 7852 */ 7853 ill_t * 7854 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7855 { 7856 ill_t *ret_ill; 7857 7858 ASSERT(ifindex != 0); 7859 7860 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7861 ipst); 7862 if (ret_ill == NULL) { 7863 if (isv6) { 7864 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7865 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7866 ifindex)); 7867 } else { 7868 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7869 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7870 ifindex)); 7871 } 7872 freemsg(first_mp); 7873 return (NULL); 7874 } 7875 return (ret_ill); 7876 } 7877 7878 /* 7879 * IPv4 - 7880 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7881 * out a packet to a destination address for which we do not have specific 7882 * (or sufficient) routing information. 7883 * 7884 * NOTE : These are the scopes of some of the variables that point at IRE, 7885 * which needs to be followed while making any future modifications 7886 * to avoid memory leaks. 7887 * 7888 * - ire and sire are the entries looked up initially by 7889 * ire_ftable_lookup. 7890 * - ipif_ire is used to hold the interface ire associated with 7891 * the new cache ire. But it's scope is limited, so we always REFRELE 7892 * it before branching out to error paths. 7893 * - save_ire is initialized before ire_create, so that ire returned 7894 * by ire_create will not over-write the ire. We REFRELE save_ire 7895 * before breaking out of the switch. 7896 * 7897 * Thus on failures, we have to REFRELE only ire and sire, if they 7898 * are not NULL. 7899 */ 7900 void 7901 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7902 zoneid_t zoneid, ip_stack_t *ipst) 7903 { 7904 areq_t *areq; 7905 ipaddr_t gw = 0; 7906 ire_t *ire = NULL; 7907 mblk_t *res_mp; 7908 ipaddr_t *addrp; 7909 ipaddr_t nexthop_addr; 7910 ipif_t *src_ipif = NULL; 7911 ill_t *dst_ill = NULL; 7912 ipha_t *ipha; 7913 ire_t *sire = NULL; 7914 mblk_t *first_mp; 7915 ire_t *save_ire; 7916 ushort_t ire_marks = 0; 7917 boolean_t mctl_present; 7918 ipsec_out_t *io; 7919 mblk_t *saved_mp; 7920 ire_t *first_sire = NULL; 7921 mblk_t *copy_mp = NULL; 7922 mblk_t *xmit_mp = NULL; 7923 ipaddr_t save_dst; 7924 uint32_t multirt_flags = 7925 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7926 boolean_t multirt_is_resolvable; 7927 boolean_t multirt_resolve_next; 7928 boolean_t unspec_src; 7929 boolean_t ip_nexthop = B_FALSE; 7930 tsol_ire_gw_secattr_t *attrp = NULL; 7931 tsol_gcgrp_t *gcgrp = NULL; 7932 tsol_gcgrp_addr_t ga; 7933 7934 if (ip_debug > 2) { 7935 /* ip1dbg */ 7936 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7937 } 7938 7939 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7940 if (mctl_present) { 7941 io = (ipsec_out_t *)first_mp->b_rptr; 7942 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7943 ASSERT(zoneid == io->ipsec_out_zoneid); 7944 ASSERT(zoneid != ALL_ZONES); 7945 } 7946 7947 ipha = (ipha_t *)mp->b_rptr; 7948 7949 /* All multicast lookups come through ip_newroute_ipif() */ 7950 if (CLASSD(dst)) { 7951 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7952 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7953 freemsg(first_mp); 7954 return; 7955 } 7956 7957 if (mctl_present && io->ipsec_out_ip_nexthop) { 7958 ip_nexthop = B_TRUE; 7959 nexthop_addr = io->ipsec_out_nexthop_addr; 7960 } 7961 /* 7962 * If this IRE is created for forwarding or it is not for 7963 * traffic for congestion controlled protocols, mark it as temporary. 7964 */ 7965 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7966 ire_marks |= IRE_MARK_TEMPORARY; 7967 7968 /* 7969 * Get what we can from ire_ftable_lookup which will follow an IRE 7970 * chain until it gets the most specific information available. 7971 * For example, we know that there is no IRE_CACHE for this dest, 7972 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7973 * ire_ftable_lookup will look up the gateway, etc. 7974 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7975 * to the destination, of equal netmask length in the forward table, 7976 * will be recursively explored. If no information is available 7977 * for the final gateway of that route, we force the returned ire 7978 * to be equal to sire using MATCH_IRE_PARENT. 7979 * At least, in this case we have a starting point (in the buckets) 7980 * to look for other routes to the destination in the forward table. 7981 * This is actually used only for multirouting, where a list 7982 * of routes has to be processed in sequence. 7983 * 7984 * In the process of coming up with the most specific information, 7985 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7986 * for the gateway (i.e., one for which the ire_nce->nce_state is 7987 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7988 * Two caveats when handling incomplete ire's in ip_newroute: 7989 * - we should be careful when accessing its ire_nce (specifically 7990 * the nce_res_mp) ast it might change underneath our feet, and, 7991 * - not all legacy code path callers are prepared to handle 7992 * incomplete ire's, so we should not create/add incomplete 7993 * ire_cache entries here. (See discussion about temporary solution 7994 * further below). 7995 * 7996 * In order to minimize packet dropping, and to preserve existing 7997 * behavior, we treat this case as if there were no IRE_CACHE for the 7998 * gateway, and instead use the IF_RESOLVER ire to send out 7999 * another request to ARP (this is achieved by passing the 8000 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8001 * arp response comes back in ip_wput_nondata, we will create 8002 * a per-dst ire_cache that has an ND_COMPLETE ire. 8003 * 8004 * Note that this is a temporary solution; the correct solution is 8005 * to create an incomplete per-dst ire_cache entry, and send the 8006 * packet out when the gw's nce is resolved. In order to achieve this, 8007 * all packet processing must have been completed prior to calling 8008 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8009 * to be modified to accomodate this solution. 8010 */ 8011 if (ip_nexthop) { 8012 /* 8013 * The first time we come here, we look for an IRE_INTERFACE 8014 * entry for the specified nexthop, set the dst to be the 8015 * nexthop address and create an IRE_CACHE entry for the 8016 * nexthop. The next time around, we are able to find an 8017 * IRE_CACHE entry for the nexthop, set the gateway to be the 8018 * nexthop address and create an IRE_CACHE entry for the 8019 * destination address via the specified nexthop. 8020 */ 8021 ire = ire_cache_lookup(nexthop_addr, zoneid, 8022 msg_getlabel(mp), ipst); 8023 if (ire != NULL) { 8024 gw = nexthop_addr; 8025 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8026 } else { 8027 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8028 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8029 msg_getlabel(mp), 8030 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8031 ipst); 8032 if (ire != NULL) { 8033 dst = nexthop_addr; 8034 } 8035 } 8036 } else { 8037 ire = ire_ftable_lookup(dst, 0, 0, 0, 8038 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8039 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8040 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8041 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8042 ipst); 8043 } 8044 8045 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8046 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8047 8048 /* 8049 * This loop is run only once in most cases. 8050 * We loop to resolve further routes only when the destination 8051 * can be reached through multiple RTF_MULTIRT-flagged ires. 8052 */ 8053 do { 8054 /* Clear the previous iteration's values */ 8055 if (src_ipif != NULL) { 8056 ipif_refrele(src_ipif); 8057 src_ipif = NULL; 8058 } 8059 if (dst_ill != NULL) { 8060 ill_refrele(dst_ill); 8061 dst_ill = NULL; 8062 } 8063 8064 multirt_resolve_next = B_FALSE; 8065 /* 8066 * We check if packets have to be multirouted. 8067 * In this case, given the current <ire, sire> couple, 8068 * we look for the next suitable <ire, sire>. 8069 * This check is done in ire_multirt_lookup(), 8070 * which applies various criteria to find the next route 8071 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8072 * unchanged if it detects it has not been tried yet. 8073 */ 8074 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8075 ip3dbg(("ip_newroute: starting next_resolution " 8076 "with first_mp %p, tag %d\n", 8077 (void *)first_mp, 8078 MULTIRT_DEBUG_TAGGED(first_mp))); 8079 8080 ASSERT(sire != NULL); 8081 multirt_is_resolvable = 8082 ire_multirt_lookup(&ire, &sire, multirt_flags, 8083 msg_getlabel(mp), ipst); 8084 8085 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8086 "ire %p, sire %p\n", 8087 multirt_is_resolvable, 8088 (void *)ire, (void *)sire)); 8089 8090 if (!multirt_is_resolvable) { 8091 /* 8092 * No more multirt route to resolve; give up 8093 * (all routes resolved or no more 8094 * resolvable routes). 8095 */ 8096 if (ire != NULL) { 8097 ire_refrele(ire); 8098 ire = NULL; 8099 } 8100 } else { 8101 ASSERT(sire != NULL); 8102 ASSERT(ire != NULL); 8103 /* 8104 * We simply use first_sire as a flag that 8105 * indicates if a resolvable multirt route 8106 * has already been found. 8107 * If it is not the case, we may have to send 8108 * an ICMP error to report that the 8109 * destination is unreachable. 8110 * We do not IRE_REFHOLD first_sire. 8111 */ 8112 if (first_sire == NULL) { 8113 first_sire = sire; 8114 } 8115 } 8116 } 8117 if (ire == NULL) { 8118 if (ip_debug > 3) { 8119 /* ip2dbg */ 8120 pr_addr_dbg("ip_newroute: " 8121 "can't resolve %s\n", AF_INET, &dst); 8122 } 8123 ip3dbg(("ip_newroute: " 8124 "ire %p, sire %p, first_sire %p\n", 8125 (void *)ire, (void *)sire, (void *)first_sire)); 8126 8127 if (sire != NULL) { 8128 ire_refrele(sire); 8129 sire = NULL; 8130 } 8131 8132 if (first_sire != NULL) { 8133 /* 8134 * At least one multirt route has been found 8135 * in the same call to ip_newroute(); 8136 * there is no need to report an ICMP error. 8137 * first_sire was not IRE_REFHOLDed. 8138 */ 8139 MULTIRT_DEBUG_UNTAG(first_mp); 8140 freemsg(first_mp); 8141 return; 8142 } 8143 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8144 RTA_DST, ipst); 8145 goto icmp_err_ret; 8146 } 8147 8148 /* 8149 * Verify that the returned IRE does not have either 8150 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8151 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8152 */ 8153 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8154 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8155 goto icmp_err_ret; 8156 } 8157 /* 8158 * Increment the ire_ob_pkt_count field for ire if it is an 8159 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8160 * increment the same for the parent IRE, sire, if it is some 8161 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8162 */ 8163 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8164 UPDATE_OB_PKT_COUNT(ire); 8165 ire->ire_last_used_time = lbolt; 8166 } 8167 8168 if (sire != NULL) { 8169 gw = sire->ire_gateway_addr; 8170 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8171 IRE_INTERFACE)) == 0); 8172 UPDATE_OB_PKT_COUNT(sire); 8173 sire->ire_last_used_time = lbolt; 8174 } 8175 /* 8176 * We have a route to reach the destination. Find the 8177 * appropriate ill, then get a source address using 8178 * ipif_select_source(). 8179 * 8180 * If we are here trying to create an IRE_CACHE for an offlink 8181 * destination and have an IRE_CACHE entry for VNI, then use 8182 * ire_stq instead since VNI's queue is a black hole. 8183 */ 8184 if ((ire->ire_type == IRE_CACHE) && 8185 IS_VNI(ire->ire_ipif->ipif_ill)) { 8186 dst_ill = ire->ire_stq->q_ptr; 8187 ill_refhold(dst_ill); 8188 } else { 8189 ill_t *ill = ire->ire_ipif->ipif_ill; 8190 8191 if (IS_IPMP(ill)) { 8192 dst_ill = 8193 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8194 } else { 8195 dst_ill = ill; 8196 ill_refhold(dst_ill); 8197 } 8198 } 8199 8200 if (dst_ill == NULL) { 8201 if (ip_debug > 2) { 8202 pr_addr_dbg("ip_newroute: no dst " 8203 "ill for dst %s\n", AF_INET, &dst); 8204 } 8205 goto icmp_err_ret; 8206 } 8207 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8208 8209 /* 8210 * Pick the best source address from dst_ill. 8211 * 8212 * 1) Try to pick the source address from the destination 8213 * route. Clustering assumes that when we have multiple 8214 * prefixes hosted on an interface, the prefix of the 8215 * source address matches the prefix of the destination 8216 * route. We do this only if the address is not 8217 * DEPRECATED. 8218 * 8219 * 2) If the conn is in a different zone than the ire, we 8220 * need to pick a source address from the right zone. 8221 */ 8222 ASSERT(src_ipif == NULL); 8223 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8224 /* 8225 * The RTF_SETSRC flag is set in the parent ire (sire). 8226 * Check that the ipif matching the requested source 8227 * address still exists. 8228 */ 8229 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8230 zoneid, NULL, NULL, NULL, NULL, ipst); 8231 } 8232 8233 unspec_src = (connp != NULL && connp->conn_unspec_src); 8234 8235 if (src_ipif == NULL && 8236 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8237 ire_marks |= IRE_MARK_USESRC_CHECK; 8238 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8239 IS_IPMP(ire->ire_ipif->ipif_ill) || 8240 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8241 (connp != NULL && ire->ire_zoneid != zoneid && 8242 ire->ire_zoneid != ALL_ZONES) || 8243 (dst_ill->ill_usesrc_ifindex != 0)) { 8244 /* 8245 * If the destination is reachable via a 8246 * given gateway, the selected source address 8247 * should be in the same subnet as the gateway. 8248 * Otherwise, the destination is not reachable. 8249 * 8250 * If there are no interfaces on the same subnet 8251 * as the destination, ipif_select_source gives 8252 * first non-deprecated interface which might be 8253 * on a different subnet than the gateway. 8254 * This is not desirable. Hence pass the dst_ire 8255 * source address to ipif_select_source. 8256 * It is sure that the destination is reachable 8257 * with the dst_ire source address subnet. 8258 * So passing dst_ire source address to 8259 * ipif_select_source will make sure that the 8260 * selected source will be on the same subnet 8261 * as dst_ire source address. 8262 */ 8263 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8264 8265 src_ipif = ipif_select_source(dst_ill, saddr, 8266 zoneid); 8267 if (src_ipif == NULL) { 8268 if (ip_debug > 2) { 8269 pr_addr_dbg("ip_newroute: " 8270 "no src for dst %s ", 8271 AF_INET, &dst); 8272 printf("on interface %s\n", 8273 dst_ill->ill_name); 8274 } 8275 goto icmp_err_ret; 8276 } 8277 } else { 8278 src_ipif = ire->ire_ipif; 8279 ASSERT(src_ipif != NULL); 8280 /* hold src_ipif for uniformity */ 8281 ipif_refhold(src_ipif); 8282 } 8283 } 8284 8285 /* 8286 * Assign a source address while we have the conn. 8287 * We can't have ip_wput_ire pick a source address when the 8288 * packet returns from arp since we need to look at 8289 * conn_unspec_src and conn_zoneid, and we lose the conn when 8290 * going through arp. 8291 * 8292 * NOTE : ip_newroute_v6 does not have this piece of code as 8293 * it uses ip6i to store this information. 8294 */ 8295 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8296 ipha->ipha_src = src_ipif->ipif_src_addr; 8297 8298 if (ip_debug > 3) { 8299 /* ip2dbg */ 8300 pr_addr_dbg("ip_newroute: first hop %s\n", 8301 AF_INET, &gw); 8302 } 8303 ip2dbg(("\tire type %s (%d)\n", 8304 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8305 8306 /* 8307 * The TTL of multirouted packets is bounded by the 8308 * ip_multirt_ttl ndd variable. 8309 */ 8310 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8311 /* Force TTL of multirouted packets */ 8312 if ((ipst->ips_ip_multirt_ttl > 0) && 8313 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8314 ip2dbg(("ip_newroute: forcing multirt TTL " 8315 "to %d (was %d), dst 0x%08x\n", 8316 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8317 ntohl(sire->ire_addr))); 8318 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8319 } 8320 } 8321 /* 8322 * At this point in ip_newroute(), ire is either the 8323 * IRE_CACHE of the next-hop gateway for an off-subnet 8324 * destination or an IRE_INTERFACE type that should be used 8325 * to resolve an on-subnet destination or an on-subnet 8326 * next-hop gateway. 8327 * 8328 * In the IRE_CACHE case, we have the following : 8329 * 8330 * 1) src_ipif - used for getting a source address. 8331 * 8332 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8333 * means packets using this IRE_CACHE will go out on 8334 * dst_ill. 8335 * 8336 * 3) The IRE sire will point to the prefix that is the 8337 * longest matching route for the destination. These 8338 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8339 * 8340 * The newly created IRE_CACHE entry for the off-subnet 8341 * destination is tied to both the prefix route and the 8342 * interface route used to resolve the next-hop gateway 8343 * via the ire_phandle and ire_ihandle fields, 8344 * respectively. 8345 * 8346 * In the IRE_INTERFACE case, we have the following : 8347 * 8348 * 1) src_ipif - used for getting a source address. 8349 * 8350 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8351 * means packets using the IRE_CACHE that we will build 8352 * here will go out on dst_ill. 8353 * 8354 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8355 * to be created will only be tied to the IRE_INTERFACE 8356 * that was derived from the ire_ihandle field. 8357 * 8358 * If sire is non-NULL, it means the destination is 8359 * off-link and we will first create the IRE_CACHE for the 8360 * gateway. Next time through ip_newroute, we will create 8361 * the IRE_CACHE for the final destination as described 8362 * above. 8363 * 8364 * In both cases, after the current resolution has been 8365 * completed (or possibly initialised, in the IRE_INTERFACE 8366 * case), the loop may be re-entered to attempt the resolution 8367 * of another RTF_MULTIRT route. 8368 * 8369 * When an IRE_CACHE entry for the off-subnet destination is 8370 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8371 * for further processing in emission loops. 8372 */ 8373 save_ire = ire; 8374 switch (ire->ire_type) { 8375 case IRE_CACHE: { 8376 ire_t *ipif_ire; 8377 8378 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8379 if (gw == 0) 8380 gw = ire->ire_gateway_addr; 8381 /* 8382 * We need 3 ire's to create a new cache ire for an 8383 * off-link destination from the cache ire of the 8384 * gateway. 8385 * 8386 * 1. The prefix ire 'sire' (Note that this does 8387 * not apply to the conn_nexthop_set case) 8388 * 2. The cache ire of the gateway 'ire' 8389 * 3. The interface ire 'ipif_ire' 8390 * 8391 * We have (1) and (2). We lookup (3) below. 8392 * 8393 * If there is no interface route to the gateway, 8394 * it is a race condition, where we found the cache 8395 * but the interface route has been deleted. 8396 */ 8397 if (ip_nexthop) { 8398 ipif_ire = ire_ihandle_lookup_onlink(ire); 8399 } else { 8400 ipif_ire = 8401 ire_ihandle_lookup_offlink(ire, sire); 8402 } 8403 if (ipif_ire == NULL) { 8404 ip1dbg(("ip_newroute: " 8405 "ire_ihandle_lookup_offlink failed\n")); 8406 goto icmp_err_ret; 8407 } 8408 8409 /* 8410 * Check cached gateway IRE for any security 8411 * attributes; if found, associate the gateway 8412 * credentials group to the destination IRE. 8413 */ 8414 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8415 mutex_enter(&attrp->igsa_lock); 8416 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8417 GCGRP_REFHOLD(gcgrp); 8418 mutex_exit(&attrp->igsa_lock); 8419 } 8420 8421 /* 8422 * XXX For the source of the resolver mp, 8423 * we are using the same DL_UNITDATA_REQ 8424 * (from save_ire->ire_nce->nce_res_mp) 8425 * though the save_ire is not pointing at the same ill. 8426 * This is incorrect. We need to send it up to the 8427 * resolver to get the right res_mp. For ethernets 8428 * this may be okay (ill_type == DL_ETHER). 8429 */ 8430 8431 ire = ire_create( 8432 (uchar_t *)&dst, /* dest address */ 8433 (uchar_t *)&ip_g_all_ones, /* mask */ 8434 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8435 (uchar_t *)&gw, /* gateway address */ 8436 &save_ire->ire_max_frag, 8437 save_ire->ire_nce, /* src nce */ 8438 dst_ill->ill_rq, /* recv-from queue */ 8439 dst_ill->ill_wq, /* send-to queue */ 8440 IRE_CACHE, /* IRE type */ 8441 src_ipif, 8442 (sire != NULL) ? 8443 sire->ire_mask : 0, /* Parent mask */ 8444 (sire != NULL) ? 8445 sire->ire_phandle : 0, /* Parent handle */ 8446 ipif_ire->ire_ihandle, /* Interface handle */ 8447 (sire != NULL) ? (sire->ire_flags & 8448 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8449 (sire != NULL) ? 8450 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8451 NULL, 8452 gcgrp, 8453 ipst); 8454 8455 if (ire == NULL) { 8456 if (gcgrp != NULL) { 8457 GCGRP_REFRELE(gcgrp); 8458 gcgrp = NULL; 8459 } 8460 ire_refrele(ipif_ire); 8461 ire_refrele(save_ire); 8462 break; 8463 } 8464 8465 /* reference now held by IRE */ 8466 gcgrp = NULL; 8467 8468 ire->ire_marks |= ire_marks; 8469 8470 /* 8471 * Prevent sire and ipif_ire from getting deleted. 8472 * The newly created ire is tied to both of them via 8473 * the phandle and ihandle respectively. 8474 */ 8475 if (sire != NULL) { 8476 IRB_REFHOLD(sire->ire_bucket); 8477 /* Has it been removed already ? */ 8478 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8479 IRB_REFRELE(sire->ire_bucket); 8480 ire_refrele(ipif_ire); 8481 ire_refrele(save_ire); 8482 break; 8483 } 8484 } 8485 8486 IRB_REFHOLD(ipif_ire->ire_bucket); 8487 /* Has it been removed already ? */ 8488 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8489 IRB_REFRELE(ipif_ire->ire_bucket); 8490 if (sire != NULL) 8491 IRB_REFRELE(sire->ire_bucket); 8492 ire_refrele(ipif_ire); 8493 ire_refrele(save_ire); 8494 break; 8495 } 8496 8497 xmit_mp = first_mp; 8498 /* 8499 * In the case of multirouting, a copy 8500 * of the packet is done before its sending. 8501 * The copy is used to attempt another 8502 * route resolution, in a next loop. 8503 */ 8504 if (ire->ire_flags & RTF_MULTIRT) { 8505 copy_mp = copymsg(first_mp); 8506 if (copy_mp != NULL) { 8507 xmit_mp = copy_mp; 8508 MULTIRT_DEBUG_TAG(first_mp); 8509 } 8510 } 8511 8512 ire_add_then_send(q, ire, xmit_mp); 8513 ire_refrele(save_ire); 8514 8515 /* Assert that sire is not deleted yet. */ 8516 if (sire != NULL) { 8517 ASSERT(sire->ire_ptpn != NULL); 8518 IRB_REFRELE(sire->ire_bucket); 8519 } 8520 8521 /* Assert that ipif_ire is not deleted yet. */ 8522 ASSERT(ipif_ire->ire_ptpn != NULL); 8523 IRB_REFRELE(ipif_ire->ire_bucket); 8524 ire_refrele(ipif_ire); 8525 8526 /* 8527 * If copy_mp is not NULL, multirouting was 8528 * requested. We loop to initiate a next 8529 * route resolution attempt, starting from sire. 8530 */ 8531 if (copy_mp != NULL) { 8532 /* 8533 * Search for the next unresolved 8534 * multirt route. 8535 */ 8536 copy_mp = NULL; 8537 ipif_ire = NULL; 8538 ire = NULL; 8539 multirt_resolve_next = B_TRUE; 8540 continue; 8541 } 8542 if (sire != NULL) 8543 ire_refrele(sire); 8544 ipif_refrele(src_ipif); 8545 ill_refrele(dst_ill); 8546 return; 8547 } 8548 case IRE_IF_NORESOLVER: { 8549 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8550 dst_ill->ill_resolver_mp == NULL) { 8551 ip1dbg(("ip_newroute: dst_ill %p " 8552 "for IRE_IF_NORESOLVER ire %p has " 8553 "no ill_resolver_mp\n", 8554 (void *)dst_ill, (void *)ire)); 8555 break; 8556 } 8557 8558 /* 8559 * TSol note: We are creating the ire cache for the 8560 * destination 'dst'. If 'dst' is offlink, going 8561 * through the first hop 'gw', the security attributes 8562 * of 'dst' must be set to point to the gateway 8563 * credentials of gateway 'gw'. If 'dst' is onlink, it 8564 * is possible that 'dst' is a potential gateway that is 8565 * referenced by some route that has some security 8566 * attributes. Thus in the former case, we need to do a 8567 * gcgrp_lookup of 'gw' while in the latter case we 8568 * need to do gcgrp_lookup of 'dst' itself. 8569 */ 8570 ga.ga_af = AF_INET; 8571 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8572 &ga.ga_addr); 8573 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8574 8575 ire = ire_create( 8576 (uchar_t *)&dst, /* dest address */ 8577 (uchar_t *)&ip_g_all_ones, /* mask */ 8578 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8579 (uchar_t *)&gw, /* gateway address */ 8580 &save_ire->ire_max_frag, 8581 NULL, /* no src nce */ 8582 dst_ill->ill_rq, /* recv-from queue */ 8583 dst_ill->ill_wq, /* send-to queue */ 8584 IRE_CACHE, 8585 src_ipif, 8586 save_ire->ire_mask, /* Parent mask */ 8587 (sire != NULL) ? /* Parent handle */ 8588 sire->ire_phandle : 0, 8589 save_ire->ire_ihandle, /* Interface handle */ 8590 (sire != NULL) ? sire->ire_flags & 8591 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8592 &(save_ire->ire_uinfo), 8593 NULL, 8594 gcgrp, 8595 ipst); 8596 8597 if (ire == NULL) { 8598 if (gcgrp != NULL) { 8599 GCGRP_REFRELE(gcgrp); 8600 gcgrp = NULL; 8601 } 8602 ire_refrele(save_ire); 8603 break; 8604 } 8605 8606 /* reference now held by IRE */ 8607 gcgrp = NULL; 8608 8609 ire->ire_marks |= ire_marks; 8610 8611 /* Prevent save_ire from getting deleted */ 8612 IRB_REFHOLD(save_ire->ire_bucket); 8613 /* Has it been removed already ? */ 8614 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8615 IRB_REFRELE(save_ire->ire_bucket); 8616 ire_refrele(save_ire); 8617 break; 8618 } 8619 8620 /* 8621 * In the case of multirouting, a copy 8622 * of the packet is made before it is sent. 8623 * The copy is used in the next 8624 * loop to attempt another resolution. 8625 */ 8626 xmit_mp = first_mp; 8627 if ((sire != NULL) && 8628 (sire->ire_flags & RTF_MULTIRT)) { 8629 copy_mp = copymsg(first_mp); 8630 if (copy_mp != NULL) { 8631 xmit_mp = copy_mp; 8632 MULTIRT_DEBUG_TAG(first_mp); 8633 } 8634 } 8635 ire_add_then_send(q, ire, xmit_mp); 8636 8637 /* Assert that it is not deleted yet. */ 8638 ASSERT(save_ire->ire_ptpn != NULL); 8639 IRB_REFRELE(save_ire->ire_bucket); 8640 ire_refrele(save_ire); 8641 8642 if (copy_mp != NULL) { 8643 /* 8644 * If we found a (no)resolver, we ignore any 8645 * trailing top priority IRE_CACHE in further 8646 * loops. This ensures that we do not omit any 8647 * (no)resolver. 8648 * This IRE_CACHE, if any, will be processed 8649 * by another thread entering ip_newroute(). 8650 * IRE_CACHE entries, if any, will be processed 8651 * by another thread entering ip_newroute(), 8652 * (upon resolver response, for instance). 8653 * This aims to force parallel multirt 8654 * resolutions as soon as a packet must be sent. 8655 * In the best case, after the tx of only one 8656 * packet, all reachable routes are resolved. 8657 * Otherwise, the resolution of all RTF_MULTIRT 8658 * routes would require several emissions. 8659 */ 8660 multirt_flags &= ~MULTIRT_CACHEGW; 8661 8662 /* 8663 * Search for the next unresolved multirt 8664 * route. 8665 */ 8666 copy_mp = NULL; 8667 save_ire = NULL; 8668 ire = NULL; 8669 multirt_resolve_next = B_TRUE; 8670 continue; 8671 } 8672 8673 /* 8674 * Don't need sire anymore 8675 */ 8676 if (sire != NULL) 8677 ire_refrele(sire); 8678 8679 ipif_refrele(src_ipif); 8680 ill_refrele(dst_ill); 8681 return; 8682 } 8683 case IRE_IF_RESOLVER: 8684 /* 8685 * We can't build an IRE_CACHE yet, but at least we 8686 * found a resolver that can help. 8687 */ 8688 res_mp = dst_ill->ill_resolver_mp; 8689 if (!OK_RESOLVER_MP(res_mp)) 8690 break; 8691 8692 /* 8693 * To be at this point in the code with a non-zero gw 8694 * means that dst is reachable through a gateway that 8695 * we have never resolved. By changing dst to the gw 8696 * addr we resolve the gateway first. 8697 * When ire_add_then_send() tries to put the IP dg 8698 * to dst, it will reenter ip_newroute() at which 8699 * time we will find the IRE_CACHE for the gw and 8700 * create another IRE_CACHE in case IRE_CACHE above. 8701 */ 8702 if (gw != INADDR_ANY) { 8703 /* 8704 * The source ipif that was determined above was 8705 * relative to the destination address, not the 8706 * gateway's. If src_ipif was not taken out of 8707 * the IRE_IF_RESOLVER entry, we'll need to call 8708 * ipif_select_source() again. 8709 */ 8710 if (src_ipif != ire->ire_ipif) { 8711 ipif_refrele(src_ipif); 8712 src_ipif = ipif_select_source(dst_ill, 8713 gw, zoneid); 8714 if (src_ipif == NULL) { 8715 if (ip_debug > 2) { 8716 pr_addr_dbg( 8717 "ip_newroute: no " 8718 "src for gw %s ", 8719 AF_INET, &gw); 8720 printf("on " 8721 "interface %s\n", 8722 dst_ill->ill_name); 8723 } 8724 goto icmp_err_ret; 8725 } 8726 } 8727 save_dst = dst; 8728 dst = gw; 8729 gw = INADDR_ANY; 8730 } 8731 8732 /* 8733 * We obtain a partial IRE_CACHE which we will pass 8734 * along with the resolver query. When the response 8735 * comes back it will be there ready for us to add. 8736 * The ire_max_frag is atomically set under the 8737 * irebucket lock in ire_add_v[46]. 8738 */ 8739 8740 ire = ire_create_mp( 8741 (uchar_t *)&dst, /* dest address */ 8742 (uchar_t *)&ip_g_all_ones, /* mask */ 8743 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8744 (uchar_t *)&gw, /* gateway address */ 8745 NULL, /* ire_max_frag */ 8746 NULL, /* no src nce */ 8747 dst_ill->ill_rq, /* recv-from queue */ 8748 dst_ill->ill_wq, /* send-to queue */ 8749 IRE_CACHE, 8750 src_ipif, /* Interface ipif */ 8751 save_ire->ire_mask, /* Parent mask */ 8752 0, 8753 save_ire->ire_ihandle, /* Interface handle */ 8754 0, /* flags if any */ 8755 &(save_ire->ire_uinfo), 8756 NULL, 8757 NULL, 8758 ipst); 8759 8760 if (ire == NULL) { 8761 ire_refrele(save_ire); 8762 break; 8763 } 8764 8765 if ((sire != NULL) && 8766 (sire->ire_flags & RTF_MULTIRT)) { 8767 copy_mp = copymsg(first_mp); 8768 if (copy_mp != NULL) 8769 MULTIRT_DEBUG_TAG(copy_mp); 8770 } 8771 8772 ire->ire_marks |= ire_marks; 8773 8774 /* 8775 * Construct message chain for the resolver 8776 * of the form: 8777 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8778 * Packet could contain a IPSEC_OUT mp. 8779 * 8780 * NOTE : ire will be added later when the response 8781 * comes back from ARP. If the response does not 8782 * come back, ARP frees the packet. For this reason, 8783 * we can't REFHOLD the bucket of save_ire to prevent 8784 * deletions. We may not be able to REFRELE the bucket 8785 * if the response never comes back. Thus, before 8786 * adding the ire, ire_add_v4 will make sure that the 8787 * interface route does not get deleted. This is the 8788 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8789 * where we can always prevent deletions because of 8790 * the synchronous nature of adding IRES i.e 8791 * ire_add_then_send is called after creating the IRE. 8792 */ 8793 ASSERT(ire->ire_mp != NULL); 8794 ire->ire_mp->b_cont = first_mp; 8795 /* Have saved_mp handy, for cleanup if canput fails */ 8796 saved_mp = mp; 8797 mp = copyb(res_mp); 8798 if (mp == NULL) { 8799 /* Prepare for cleanup */ 8800 mp = saved_mp; /* pkt */ 8801 ire_delete(ire); /* ire_mp */ 8802 ire = NULL; 8803 ire_refrele(save_ire); 8804 if (copy_mp != NULL) { 8805 MULTIRT_DEBUG_UNTAG(copy_mp); 8806 freemsg(copy_mp); 8807 copy_mp = NULL; 8808 } 8809 break; 8810 } 8811 linkb(mp, ire->ire_mp); 8812 8813 /* 8814 * Fill in the source and dest addrs for the resolver. 8815 * NOTE: this depends on memory layouts imposed by 8816 * ill_init(). 8817 */ 8818 areq = (areq_t *)mp->b_rptr; 8819 addrp = (ipaddr_t *)((char *)areq + 8820 areq->areq_sender_addr_offset); 8821 *addrp = save_ire->ire_src_addr; 8822 8823 ire_refrele(save_ire); 8824 addrp = (ipaddr_t *)((char *)areq + 8825 areq->areq_target_addr_offset); 8826 *addrp = dst; 8827 /* Up to the resolver. */ 8828 if (canputnext(dst_ill->ill_rq) && 8829 !(dst_ill->ill_arp_closing)) { 8830 putnext(dst_ill->ill_rq, mp); 8831 ire = NULL; 8832 if (copy_mp != NULL) { 8833 /* 8834 * If we found a resolver, we ignore 8835 * any trailing top priority IRE_CACHE 8836 * in the further loops. This ensures 8837 * that we do not omit any resolver. 8838 * IRE_CACHE entries, if any, will be 8839 * processed next time we enter 8840 * ip_newroute(). 8841 */ 8842 multirt_flags &= ~MULTIRT_CACHEGW; 8843 /* 8844 * Search for the next unresolved 8845 * multirt route. 8846 */ 8847 first_mp = copy_mp; 8848 copy_mp = NULL; 8849 /* Prepare the next resolution loop. */ 8850 mp = first_mp; 8851 EXTRACT_PKT_MP(mp, first_mp, 8852 mctl_present); 8853 if (mctl_present) 8854 io = (ipsec_out_t *) 8855 first_mp->b_rptr; 8856 ipha = (ipha_t *)mp->b_rptr; 8857 8858 ASSERT(sire != NULL); 8859 8860 dst = save_dst; 8861 multirt_resolve_next = B_TRUE; 8862 continue; 8863 } 8864 8865 if (sire != NULL) 8866 ire_refrele(sire); 8867 8868 /* 8869 * The response will come back in ip_wput 8870 * with db_type IRE_DB_TYPE. 8871 */ 8872 ipif_refrele(src_ipif); 8873 ill_refrele(dst_ill); 8874 return; 8875 } else { 8876 /* Prepare for cleanup */ 8877 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8878 mp); 8879 mp->b_cont = NULL; 8880 freeb(mp); /* areq */ 8881 /* 8882 * this is an ire that is not added to the 8883 * cache. ire_freemblk will handle the release 8884 * of any resources associated with the ire. 8885 */ 8886 ire_delete(ire); /* ire_mp */ 8887 mp = saved_mp; /* pkt */ 8888 ire = NULL; 8889 if (copy_mp != NULL) { 8890 MULTIRT_DEBUG_UNTAG(copy_mp); 8891 freemsg(copy_mp); 8892 copy_mp = NULL; 8893 } 8894 break; 8895 } 8896 default: 8897 break; 8898 } 8899 } while (multirt_resolve_next); 8900 8901 ip1dbg(("ip_newroute: dropped\n")); 8902 /* Did this packet originate externally? */ 8903 if (mp->b_prev) { 8904 mp->b_next = NULL; 8905 mp->b_prev = NULL; 8906 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8907 } else { 8908 if (dst_ill != NULL) { 8909 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8910 } else { 8911 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8912 } 8913 } 8914 ASSERT(copy_mp == NULL); 8915 MULTIRT_DEBUG_UNTAG(first_mp); 8916 freemsg(first_mp); 8917 if (ire != NULL) 8918 ire_refrele(ire); 8919 if (sire != NULL) 8920 ire_refrele(sire); 8921 if (src_ipif != NULL) 8922 ipif_refrele(src_ipif); 8923 if (dst_ill != NULL) 8924 ill_refrele(dst_ill); 8925 return; 8926 8927 icmp_err_ret: 8928 ip1dbg(("ip_newroute: no route\n")); 8929 if (src_ipif != NULL) 8930 ipif_refrele(src_ipif); 8931 if (dst_ill != NULL) 8932 ill_refrele(dst_ill); 8933 if (sire != NULL) 8934 ire_refrele(sire); 8935 /* Did this packet originate externally? */ 8936 if (mp->b_prev) { 8937 mp->b_next = NULL; 8938 mp->b_prev = NULL; 8939 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8940 q = WR(q); 8941 } else { 8942 /* 8943 * There is no outgoing ill, so just increment the 8944 * system MIB. 8945 */ 8946 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8947 /* 8948 * Since ip_wput() isn't close to finished, we fill 8949 * in enough of the header for credible error reporting. 8950 */ 8951 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8952 /* Failed */ 8953 MULTIRT_DEBUG_UNTAG(first_mp); 8954 freemsg(first_mp); 8955 if (ire != NULL) 8956 ire_refrele(ire); 8957 return; 8958 } 8959 } 8960 8961 /* 8962 * At this point we will have ire only if RTF_BLACKHOLE 8963 * or RTF_REJECT flags are set on the IRE. It will not 8964 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8965 */ 8966 if (ire != NULL) { 8967 if (ire->ire_flags & RTF_BLACKHOLE) { 8968 ire_refrele(ire); 8969 MULTIRT_DEBUG_UNTAG(first_mp); 8970 freemsg(first_mp); 8971 return; 8972 } 8973 ire_refrele(ire); 8974 } 8975 if (ip_source_routed(ipha, ipst)) { 8976 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8977 zoneid, ipst); 8978 return; 8979 } 8980 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8981 } 8982 8983 ip_opt_info_t zero_info; 8984 8985 /* 8986 * IPv4 - 8987 * ip_newroute_ipif is called by ip_wput_multicast and 8988 * ip_rput_forward_multicast whenever we need to send 8989 * out a packet to a destination address for which we do not have specific 8990 * routing information. It is used when the packet will be sent out 8991 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8992 * socket option is set or icmp error message wants to go out on a particular 8993 * interface for a unicast packet. 8994 * 8995 * In most cases, the destination address is resolved thanks to the ipif 8996 * intrinsic resolver. However, there are some cases where the call to 8997 * ip_newroute_ipif must take into account the potential presence of 8998 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8999 * that uses the interface. This is specified through flags, 9000 * which can be a combination of: 9001 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9002 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9003 * and flags. Additionally, the packet source address has to be set to 9004 * the specified address. The caller is thus expected to set this flag 9005 * if the packet has no specific source address yet. 9006 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9007 * flag, the resulting ire will inherit the flag. All unresolved routes 9008 * to the destination must be explored in the same call to 9009 * ip_newroute_ipif(). 9010 */ 9011 static void 9012 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9013 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9014 { 9015 areq_t *areq; 9016 ire_t *ire = NULL; 9017 mblk_t *res_mp; 9018 ipaddr_t *addrp; 9019 mblk_t *first_mp; 9020 ire_t *save_ire = NULL; 9021 ipif_t *src_ipif = NULL; 9022 ushort_t ire_marks = 0; 9023 ill_t *dst_ill = NULL; 9024 ipha_t *ipha; 9025 mblk_t *saved_mp; 9026 ire_t *fire = NULL; 9027 mblk_t *copy_mp = NULL; 9028 boolean_t multirt_resolve_next; 9029 boolean_t unspec_src; 9030 ipaddr_t ipha_dst; 9031 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9032 9033 /* 9034 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9035 * here for uniformity 9036 */ 9037 ipif_refhold(ipif); 9038 9039 /* 9040 * This loop is run only once in most cases. 9041 * We loop to resolve further routes only when the destination 9042 * can be reached through multiple RTF_MULTIRT-flagged ires. 9043 */ 9044 do { 9045 if (dst_ill != NULL) { 9046 ill_refrele(dst_ill); 9047 dst_ill = NULL; 9048 } 9049 if (src_ipif != NULL) { 9050 ipif_refrele(src_ipif); 9051 src_ipif = NULL; 9052 } 9053 multirt_resolve_next = B_FALSE; 9054 9055 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9056 ipif->ipif_ill->ill_name)); 9057 9058 first_mp = mp; 9059 if (DB_TYPE(mp) == M_CTL) 9060 mp = mp->b_cont; 9061 ipha = (ipha_t *)mp->b_rptr; 9062 9063 /* 9064 * Save the packet destination address, we may need it after 9065 * the packet has been consumed. 9066 */ 9067 ipha_dst = ipha->ipha_dst; 9068 9069 /* 9070 * If the interface is a pt-pt interface we look for an 9071 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9072 * local_address and the pt-pt destination address. Otherwise 9073 * we just match the local address. 9074 * NOTE: dst could be different than ipha->ipha_dst in case 9075 * of sending igmp multicast packets over a point-to-point 9076 * connection. 9077 * Thus we must be careful enough to check ipha_dst to be a 9078 * multicast address, otherwise it will take xmit_if path for 9079 * multicast packets resulting into kernel stack overflow by 9080 * repeated calls to ip_newroute_ipif from ire_send(). 9081 */ 9082 if (CLASSD(ipha_dst) && 9083 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9084 goto err_ret; 9085 } 9086 9087 /* 9088 * We check if an IRE_OFFSUBNET for the addr that goes through 9089 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9090 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9091 * propagate its flags to the new ire. 9092 */ 9093 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9094 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9095 ip2dbg(("ip_newroute_ipif: " 9096 "ipif_lookup_multi_ire(" 9097 "ipif %p, dst %08x) = fire %p\n", 9098 (void *)ipif, ntohl(dst), (void *)fire)); 9099 } 9100 9101 /* 9102 * Note: While we pick a dst_ill we are really only 9103 * interested in the ill for load spreading. The source 9104 * ipif is determined by source address selection below. 9105 */ 9106 if (IS_IPMP(ipif->ipif_ill)) { 9107 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9108 9109 if (CLASSD(ipha_dst)) 9110 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9111 else 9112 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9113 } else { 9114 dst_ill = ipif->ipif_ill; 9115 ill_refhold(dst_ill); 9116 } 9117 9118 if (dst_ill == NULL) { 9119 if (ip_debug > 2) { 9120 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9121 "for dst %s\n", AF_INET, &dst); 9122 } 9123 goto err_ret; 9124 } 9125 9126 /* 9127 * Pick a source address preferring non-deprecated ones. 9128 * Unlike ip_newroute, we don't do any source address 9129 * selection here since for multicast it really does not help 9130 * in inbound load spreading as in the unicast case. 9131 */ 9132 if ((flags & RTF_SETSRC) && (fire != NULL) && 9133 (fire->ire_flags & RTF_SETSRC)) { 9134 /* 9135 * As requested by flags, an IRE_OFFSUBNET was looked up 9136 * on that interface. This ire has RTF_SETSRC flag, so 9137 * the source address of the packet must be changed. 9138 * Check that the ipif matching the requested source 9139 * address still exists. 9140 */ 9141 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9142 zoneid, NULL, NULL, NULL, NULL, ipst); 9143 } 9144 9145 unspec_src = (connp != NULL && connp->conn_unspec_src); 9146 9147 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9148 (IS_IPMP(ipif->ipif_ill) || 9149 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9150 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9151 (connp != NULL && ipif->ipif_zoneid != zoneid && 9152 ipif->ipif_zoneid != ALL_ZONES)) && 9153 (src_ipif == NULL) && 9154 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9155 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9156 if (src_ipif == NULL) { 9157 if (ip_debug > 2) { 9158 /* ip1dbg */ 9159 pr_addr_dbg("ip_newroute_ipif: " 9160 "no src for dst %s", 9161 AF_INET, &dst); 9162 } 9163 ip1dbg((" on interface %s\n", 9164 dst_ill->ill_name)); 9165 goto err_ret; 9166 } 9167 ipif_refrele(ipif); 9168 ipif = src_ipif; 9169 ipif_refhold(ipif); 9170 } 9171 if (src_ipif == NULL) { 9172 src_ipif = ipif; 9173 ipif_refhold(src_ipif); 9174 } 9175 9176 /* 9177 * Assign a source address while we have the conn. 9178 * We can't have ip_wput_ire pick a source address when the 9179 * packet returns from arp since conn_unspec_src might be set 9180 * and we lose the conn when going through arp. 9181 */ 9182 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9183 ipha->ipha_src = src_ipif->ipif_src_addr; 9184 9185 /* 9186 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9187 * that the outgoing interface does not have an interface ire. 9188 */ 9189 if (CLASSD(ipha_dst) && (connp == NULL || 9190 connp->conn_outgoing_ill == NULL) && 9191 infop->ip_opt_ill_index == 0) { 9192 /* ipif_to_ire returns an held ire */ 9193 ire = ipif_to_ire(ipif); 9194 if (ire == NULL) 9195 goto err_ret; 9196 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9197 goto err_ret; 9198 save_ire = ire; 9199 9200 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9201 "flags %04x\n", 9202 (void *)ire, (void *)ipif, flags)); 9203 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9204 (fire->ire_flags & RTF_MULTIRT)) { 9205 /* 9206 * As requested by flags, an IRE_OFFSUBNET was 9207 * looked up on that interface. This ire has 9208 * RTF_MULTIRT flag, so the resolution loop will 9209 * be re-entered to resolve additional routes on 9210 * other interfaces. For that purpose, a copy of 9211 * the packet is performed at this point. 9212 */ 9213 fire->ire_last_used_time = lbolt; 9214 copy_mp = copymsg(first_mp); 9215 if (copy_mp) { 9216 MULTIRT_DEBUG_TAG(copy_mp); 9217 } 9218 } 9219 if ((flags & RTF_SETSRC) && (fire != NULL) && 9220 (fire->ire_flags & RTF_SETSRC)) { 9221 /* 9222 * As requested by flags, an IRE_OFFSUBET was 9223 * looked up on that interface. This ire has 9224 * RTF_SETSRC flag, so the source address of the 9225 * packet must be changed. 9226 */ 9227 ipha->ipha_src = fire->ire_src_addr; 9228 } 9229 } else { 9230 /* 9231 * The only ways we can come here are: 9232 * 1) IP_BOUND_IF socket option is set 9233 * 2) SO_DONTROUTE socket option is set 9234 * 3) IP_PKTINFO option is passed in as ancillary data. 9235 * In all cases, the new ire will not be added 9236 * into cache table. 9237 */ 9238 ASSERT(connp == NULL || connp->conn_dontroute || 9239 connp->conn_outgoing_ill != NULL || 9240 infop->ip_opt_ill_index != 0); 9241 ire_marks |= IRE_MARK_NOADD; 9242 } 9243 9244 switch (ipif->ipif_net_type) { 9245 case IRE_IF_NORESOLVER: { 9246 /* We have what we need to build an IRE_CACHE. */ 9247 9248 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9249 (dst_ill->ill_resolver_mp == NULL)) { 9250 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9251 "for IRE_IF_NORESOLVER ire %p has " 9252 "no ill_resolver_mp\n", 9253 (void *)dst_ill, (void *)ire)); 9254 break; 9255 } 9256 9257 /* 9258 * The new ire inherits the IRE_OFFSUBNET flags 9259 * and source address, if this was requested. 9260 */ 9261 ire = ire_create( 9262 (uchar_t *)&dst, /* dest address */ 9263 (uchar_t *)&ip_g_all_ones, /* mask */ 9264 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9265 NULL, /* gateway address */ 9266 &ipif->ipif_mtu, 9267 NULL, /* no src nce */ 9268 dst_ill->ill_rq, /* recv-from queue */ 9269 dst_ill->ill_wq, /* send-to queue */ 9270 IRE_CACHE, 9271 src_ipif, 9272 (save_ire != NULL ? save_ire->ire_mask : 0), 9273 (fire != NULL) ? /* Parent handle */ 9274 fire->ire_phandle : 0, 9275 (save_ire != NULL) ? /* Interface handle */ 9276 save_ire->ire_ihandle : 0, 9277 (fire != NULL) ? 9278 (fire->ire_flags & 9279 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9280 (save_ire == NULL ? &ire_uinfo_null : 9281 &save_ire->ire_uinfo), 9282 NULL, 9283 NULL, 9284 ipst); 9285 9286 if (ire == NULL) { 9287 if (save_ire != NULL) 9288 ire_refrele(save_ire); 9289 break; 9290 } 9291 9292 ire->ire_marks |= ire_marks; 9293 9294 /* 9295 * If IRE_MARK_NOADD is set then we need to convert 9296 * the max_fragp to a useable value now. This is 9297 * normally done in ire_add_v[46]. We also need to 9298 * associate the ire with an nce (normally would be 9299 * done in ip_wput_nondata()). 9300 * 9301 * Note that IRE_MARK_NOADD packets created here 9302 * do not have a non-null ire_mp pointer. The null 9303 * value of ire_bucket indicates that they were 9304 * never added. 9305 */ 9306 if (ire->ire_marks & IRE_MARK_NOADD) { 9307 uint_t max_frag; 9308 9309 max_frag = *ire->ire_max_fragp; 9310 ire->ire_max_fragp = NULL; 9311 ire->ire_max_frag = max_frag; 9312 9313 if ((ire->ire_nce = ndp_lookup_v4( 9314 ire_to_ill(ire), 9315 (ire->ire_gateway_addr != INADDR_ANY ? 9316 &ire->ire_gateway_addr : &ire->ire_addr), 9317 B_FALSE)) == NULL) { 9318 if (save_ire != NULL) 9319 ire_refrele(save_ire); 9320 break; 9321 } 9322 ASSERT(ire->ire_nce->nce_state == 9323 ND_REACHABLE); 9324 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9325 } 9326 9327 /* Prevent save_ire from getting deleted */ 9328 if (save_ire != NULL) { 9329 IRB_REFHOLD(save_ire->ire_bucket); 9330 /* Has it been removed already ? */ 9331 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9332 IRB_REFRELE(save_ire->ire_bucket); 9333 ire_refrele(save_ire); 9334 break; 9335 } 9336 } 9337 9338 ire_add_then_send(q, ire, first_mp); 9339 9340 /* Assert that save_ire is not deleted yet. */ 9341 if (save_ire != NULL) { 9342 ASSERT(save_ire->ire_ptpn != NULL); 9343 IRB_REFRELE(save_ire->ire_bucket); 9344 ire_refrele(save_ire); 9345 save_ire = NULL; 9346 } 9347 if (fire != NULL) { 9348 ire_refrele(fire); 9349 fire = NULL; 9350 } 9351 9352 /* 9353 * the resolution loop is re-entered if this 9354 * was requested through flags and if we 9355 * actually are in a multirouting case. 9356 */ 9357 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9358 boolean_t need_resolve = 9359 ire_multirt_need_resolve(ipha_dst, 9360 msg_getlabel(copy_mp), ipst); 9361 if (!need_resolve) { 9362 MULTIRT_DEBUG_UNTAG(copy_mp); 9363 freemsg(copy_mp); 9364 copy_mp = NULL; 9365 } else { 9366 /* 9367 * ipif_lookup_group() calls 9368 * ire_lookup_multi() that uses 9369 * ire_ftable_lookup() to find 9370 * an IRE_INTERFACE for the group. 9371 * In the multirt case, 9372 * ire_lookup_multi() then invokes 9373 * ire_multirt_lookup() to find 9374 * the next resolvable ire. 9375 * As a result, we obtain an new 9376 * interface, derived from the 9377 * next ire. 9378 */ 9379 ipif_refrele(ipif); 9380 ipif = ipif_lookup_group(ipha_dst, 9381 zoneid, ipst); 9382 ip2dbg(("ip_newroute_ipif: " 9383 "multirt dst %08x, ipif %p\n", 9384 htonl(dst), (void *)ipif)); 9385 if (ipif != NULL) { 9386 mp = copy_mp; 9387 copy_mp = NULL; 9388 multirt_resolve_next = B_TRUE; 9389 continue; 9390 } else { 9391 freemsg(copy_mp); 9392 } 9393 } 9394 } 9395 if (ipif != NULL) 9396 ipif_refrele(ipif); 9397 ill_refrele(dst_ill); 9398 ipif_refrele(src_ipif); 9399 return; 9400 } 9401 case IRE_IF_RESOLVER: 9402 /* 9403 * We can't build an IRE_CACHE yet, but at least 9404 * we found a resolver that can help. 9405 */ 9406 res_mp = dst_ill->ill_resolver_mp; 9407 if (!OK_RESOLVER_MP(res_mp)) 9408 break; 9409 9410 /* 9411 * We obtain a partial IRE_CACHE which we will pass 9412 * along with the resolver query. When the response 9413 * comes back it will be there ready for us to add. 9414 * The new ire inherits the IRE_OFFSUBNET flags 9415 * and source address, if this was requested. 9416 * The ire_max_frag is atomically set under the 9417 * irebucket lock in ire_add_v[46]. Only in the 9418 * case of IRE_MARK_NOADD, we set it here itself. 9419 */ 9420 ire = ire_create_mp( 9421 (uchar_t *)&dst, /* dest address */ 9422 (uchar_t *)&ip_g_all_ones, /* mask */ 9423 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9424 NULL, /* gateway address */ 9425 (ire_marks & IRE_MARK_NOADD) ? 9426 ipif->ipif_mtu : 0, /* max_frag */ 9427 NULL, /* no src nce */ 9428 dst_ill->ill_rq, /* recv-from queue */ 9429 dst_ill->ill_wq, /* send-to queue */ 9430 IRE_CACHE, 9431 src_ipif, 9432 (save_ire != NULL ? save_ire->ire_mask : 0), 9433 (fire != NULL) ? /* Parent handle */ 9434 fire->ire_phandle : 0, 9435 (save_ire != NULL) ? /* Interface handle */ 9436 save_ire->ire_ihandle : 0, 9437 (fire != NULL) ? /* flags if any */ 9438 (fire->ire_flags & 9439 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9440 (save_ire == NULL ? &ire_uinfo_null : 9441 &save_ire->ire_uinfo), 9442 NULL, 9443 NULL, 9444 ipst); 9445 9446 if (save_ire != NULL) { 9447 ire_refrele(save_ire); 9448 save_ire = NULL; 9449 } 9450 if (ire == NULL) 9451 break; 9452 9453 ire->ire_marks |= ire_marks; 9454 /* 9455 * Construct message chain for the resolver of the 9456 * form: 9457 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9458 * 9459 * NOTE : ire will be added later when the response 9460 * comes back from ARP. If the response does not 9461 * come back, ARP frees the packet. For this reason, 9462 * we can't REFHOLD the bucket of save_ire to prevent 9463 * deletions. We may not be able to REFRELE the 9464 * bucket if the response never comes back. 9465 * Thus, before adding the ire, ire_add_v4 will make 9466 * sure that the interface route does not get deleted. 9467 * This is the only case unlike ip_newroute_v6, 9468 * ip_newroute_ipif_v6 where we can always prevent 9469 * deletions because ire_add_then_send is called after 9470 * creating the IRE. 9471 * If IRE_MARK_NOADD is set, then ire_add_then_send 9472 * does not add this IRE into the IRE CACHE. 9473 */ 9474 ASSERT(ire->ire_mp != NULL); 9475 ire->ire_mp->b_cont = first_mp; 9476 /* Have saved_mp handy, for cleanup if canput fails */ 9477 saved_mp = mp; 9478 mp = copyb(res_mp); 9479 if (mp == NULL) { 9480 /* Prepare for cleanup */ 9481 mp = saved_mp; /* pkt */ 9482 ire_delete(ire); /* ire_mp */ 9483 ire = NULL; 9484 if (copy_mp != NULL) { 9485 MULTIRT_DEBUG_UNTAG(copy_mp); 9486 freemsg(copy_mp); 9487 copy_mp = NULL; 9488 } 9489 break; 9490 } 9491 linkb(mp, ire->ire_mp); 9492 9493 /* 9494 * Fill in the source and dest addrs for the resolver. 9495 * NOTE: this depends on memory layouts imposed by 9496 * ill_init(). There are corner cases above where we 9497 * might've created the IRE with an INADDR_ANY source 9498 * address (e.g., if the zeroth ipif on an underlying 9499 * ill in an IPMP group is 0.0.0.0, but another ipif 9500 * on the ill has a usable test address). If so, tell 9501 * ARP to use ipha_src as its sender address. 9502 */ 9503 areq = (areq_t *)mp->b_rptr; 9504 addrp = (ipaddr_t *)((char *)areq + 9505 areq->areq_sender_addr_offset); 9506 if (ire->ire_src_addr != INADDR_ANY) 9507 *addrp = ire->ire_src_addr; 9508 else 9509 *addrp = ipha->ipha_src; 9510 addrp = (ipaddr_t *)((char *)areq + 9511 areq->areq_target_addr_offset); 9512 *addrp = dst; 9513 /* Up to the resolver. */ 9514 if (canputnext(dst_ill->ill_rq) && 9515 !(dst_ill->ill_arp_closing)) { 9516 putnext(dst_ill->ill_rq, mp); 9517 /* 9518 * The response will come back in ip_wput 9519 * with db_type IRE_DB_TYPE. 9520 */ 9521 } else { 9522 mp->b_cont = NULL; 9523 freeb(mp); /* areq */ 9524 ire_delete(ire); /* ire_mp */ 9525 saved_mp->b_next = NULL; 9526 saved_mp->b_prev = NULL; 9527 freemsg(first_mp); /* pkt */ 9528 ip2dbg(("ip_newroute_ipif: dropped\n")); 9529 } 9530 9531 if (fire != NULL) { 9532 ire_refrele(fire); 9533 fire = NULL; 9534 } 9535 9536 /* 9537 * The resolution loop is re-entered if this was 9538 * requested through flags and we actually are 9539 * in a multirouting case. 9540 */ 9541 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9542 boolean_t need_resolve = 9543 ire_multirt_need_resolve(ipha_dst, 9544 msg_getlabel(copy_mp), ipst); 9545 if (!need_resolve) { 9546 MULTIRT_DEBUG_UNTAG(copy_mp); 9547 freemsg(copy_mp); 9548 copy_mp = NULL; 9549 } else { 9550 /* 9551 * ipif_lookup_group() calls 9552 * ire_lookup_multi() that uses 9553 * ire_ftable_lookup() to find 9554 * an IRE_INTERFACE for the group. 9555 * In the multirt case, 9556 * ire_lookup_multi() then invokes 9557 * ire_multirt_lookup() to find 9558 * the next resolvable ire. 9559 * As a result, we obtain an new 9560 * interface, derived from the 9561 * next ire. 9562 */ 9563 ipif_refrele(ipif); 9564 ipif = ipif_lookup_group(ipha_dst, 9565 zoneid, ipst); 9566 if (ipif != NULL) { 9567 mp = copy_mp; 9568 copy_mp = NULL; 9569 multirt_resolve_next = B_TRUE; 9570 continue; 9571 } else { 9572 freemsg(copy_mp); 9573 } 9574 } 9575 } 9576 if (ipif != NULL) 9577 ipif_refrele(ipif); 9578 ill_refrele(dst_ill); 9579 ipif_refrele(src_ipif); 9580 return; 9581 default: 9582 break; 9583 } 9584 } while (multirt_resolve_next); 9585 9586 err_ret: 9587 ip2dbg(("ip_newroute_ipif: dropped\n")); 9588 if (fire != NULL) 9589 ire_refrele(fire); 9590 ipif_refrele(ipif); 9591 /* Did this packet originate externally? */ 9592 if (dst_ill != NULL) 9593 ill_refrele(dst_ill); 9594 if (src_ipif != NULL) 9595 ipif_refrele(src_ipif); 9596 if (mp->b_prev || mp->b_next) { 9597 mp->b_next = NULL; 9598 mp->b_prev = NULL; 9599 } else { 9600 /* 9601 * Since ip_wput() isn't close to finished, we fill 9602 * in enough of the header for credible error reporting. 9603 */ 9604 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9605 /* Failed */ 9606 freemsg(first_mp); 9607 if (ire != NULL) 9608 ire_refrele(ire); 9609 return; 9610 } 9611 } 9612 /* 9613 * At this point we will have ire only if RTF_BLACKHOLE 9614 * or RTF_REJECT flags are set on the IRE. It will not 9615 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9616 */ 9617 if (ire != NULL) { 9618 if (ire->ire_flags & RTF_BLACKHOLE) { 9619 ire_refrele(ire); 9620 freemsg(first_mp); 9621 return; 9622 } 9623 ire_refrele(ire); 9624 } 9625 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9626 } 9627 9628 /* Name/Value Table Lookup Routine */ 9629 char * 9630 ip_nv_lookup(nv_t *nv, int value) 9631 { 9632 if (!nv) 9633 return (NULL); 9634 for (; nv->nv_name; nv++) { 9635 if (nv->nv_value == value) 9636 return (nv->nv_name); 9637 } 9638 return ("unknown"); 9639 } 9640 9641 /* 9642 * This is a module open, i.e. this is a control stream for access 9643 * to a DLPI device. We allocate an ill_t as the instance data in 9644 * this case. 9645 */ 9646 int 9647 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9648 { 9649 ill_t *ill; 9650 int err; 9651 zoneid_t zoneid; 9652 netstack_t *ns; 9653 ip_stack_t *ipst; 9654 9655 /* 9656 * Prevent unprivileged processes from pushing IP so that 9657 * they can't send raw IP. 9658 */ 9659 if (secpolicy_net_rawaccess(credp) != 0) 9660 return (EPERM); 9661 9662 ns = netstack_find_by_cred(credp); 9663 ASSERT(ns != NULL); 9664 ipst = ns->netstack_ip; 9665 ASSERT(ipst != NULL); 9666 9667 /* 9668 * For exclusive stacks we set the zoneid to zero 9669 * to make IP operate as if in the global zone. 9670 */ 9671 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9672 zoneid = GLOBAL_ZONEID; 9673 else 9674 zoneid = crgetzoneid(credp); 9675 9676 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9677 q->q_ptr = WR(q)->q_ptr = ill; 9678 ill->ill_ipst = ipst; 9679 ill->ill_zoneid = zoneid; 9680 9681 /* 9682 * ill_init initializes the ill fields and then sends down 9683 * down a DL_INFO_REQ after calling qprocson. 9684 */ 9685 err = ill_init(q, ill); 9686 if (err != 0) { 9687 mi_free(ill); 9688 netstack_rele(ipst->ips_netstack); 9689 q->q_ptr = NULL; 9690 WR(q)->q_ptr = NULL; 9691 return (err); 9692 } 9693 9694 /* ill_init initializes the ipsq marking this thread as writer */ 9695 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9696 /* Wait for the DL_INFO_ACK */ 9697 mutex_enter(&ill->ill_lock); 9698 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9699 /* 9700 * Return value of 0 indicates a pending signal. 9701 */ 9702 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9703 if (err == 0) { 9704 mutex_exit(&ill->ill_lock); 9705 (void) ip_close(q, 0); 9706 return (EINTR); 9707 } 9708 } 9709 mutex_exit(&ill->ill_lock); 9710 9711 /* 9712 * ip_rput_other could have set an error in ill_error on 9713 * receipt of M_ERROR. 9714 */ 9715 9716 err = ill->ill_error; 9717 if (err != 0) { 9718 (void) ip_close(q, 0); 9719 return (err); 9720 } 9721 9722 ill->ill_credp = credp; 9723 crhold(credp); 9724 9725 mutex_enter(&ipst->ips_ip_mi_lock); 9726 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9727 credp); 9728 mutex_exit(&ipst->ips_ip_mi_lock); 9729 if (err) { 9730 (void) ip_close(q, 0); 9731 return (err); 9732 } 9733 return (0); 9734 } 9735 9736 /* For /dev/ip aka AF_INET open */ 9737 int 9738 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9739 { 9740 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9741 } 9742 9743 /* For /dev/ip6 aka AF_INET6 open */ 9744 int 9745 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9746 { 9747 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9748 } 9749 9750 /* IP open routine. */ 9751 int 9752 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9753 boolean_t isv6) 9754 { 9755 conn_t *connp; 9756 major_t maj; 9757 zoneid_t zoneid; 9758 netstack_t *ns; 9759 ip_stack_t *ipst; 9760 9761 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9762 9763 /* Allow reopen. */ 9764 if (q->q_ptr != NULL) 9765 return (0); 9766 9767 if (sflag & MODOPEN) { 9768 /* This is a module open */ 9769 return (ip_modopen(q, devp, flag, sflag, credp)); 9770 } 9771 9772 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9773 /* 9774 * Non streams based socket looking for a stream 9775 * to access IP 9776 */ 9777 return (ip_helper_stream_setup(q, devp, flag, sflag, 9778 credp, isv6)); 9779 } 9780 9781 ns = netstack_find_by_cred(credp); 9782 ASSERT(ns != NULL); 9783 ipst = ns->netstack_ip; 9784 ASSERT(ipst != NULL); 9785 9786 /* 9787 * For exclusive stacks we set the zoneid to zero 9788 * to make IP operate as if in the global zone. 9789 */ 9790 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9791 zoneid = GLOBAL_ZONEID; 9792 else 9793 zoneid = crgetzoneid(credp); 9794 9795 /* 9796 * We are opening as a device. This is an IP client stream, and we 9797 * allocate an conn_t as the instance data. 9798 */ 9799 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9800 9801 /* 9802 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9803 * done by netstack_find_by_cred() 9804 */ 9805 netstack_rele(ipst->ips_netstack); 9806 9807 connp->conn_zoneid = zoneid; 9808 connp->conn_sqp = NULL; 9809 connp->conn_initial_sqp = NULL; 9810 connp->conn_final_sqp = NULL; 9811 9812 connp->conn_upq = q; 9813 q->q_ptr = WR(q)->q_ptr = connp; 9814 9815 if (flag & SO_SOCKSTR) 9816 connp->conn_flags |= IPCL_SOCKET; 9817 9818 /* Minor tells us which /dev entry was opened */ 9819 if (isv6) { 9820 connp->conn_flags |= IPCL_ISV6; 9821 connp->conn_af_isv6 = B_TRUE; 9822 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9823 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9824 } else { 9825 connp->conn_af_isv6 = B_FALSE; 9826 connp->conn_pkt_isv6 = B_FALSE; 9827 } 9828 9829 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9830 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9831 connp->conn_minor_arena = ip_minor_arena_la; 9832 } else { 9833 /* 9834 * Either minor numbers in the large arena were exhausted 9835 * or a non socket application is doing the open. 9836 * Try to allocate from the small arena. 9837 */ 9838 if ((connp->conn_dev = 9839 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9840 /* CONN_DEC_REF takes care of netstack_rele() */ 9841 q->q_ptr = WR(q)->q_ptr = NULL; 9842 CONN_DEC_REF(connp); 9843 return (EBUSY); 9844 } 9845 connp->conn_minor_arena = ip_minor_arena_sa; 9846 } 9847 9848 maj = getemajor(*devp); 9849 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9850 9851 /* 9852 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9853 */ 9854 connp->conn_cred = credp; 9855 9856 /* 9857 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9858 */ 9859 connp->conn_recv = ip_conn_input; 9860 9861 crhold(connp->conn_cred); 9862 9863 /* 9864 * If the caller has the process-wide flag set, then default to MAC 9865 * exempt mode. This allows read-down to unlabeled hosts. 9866 */ 9867 if (getpflags(NET_MAC_AWARE, credp) != 0) 9868 connp->conn_mac_exempt = B_TRUE; 9869 9870 connp->conn_rq = q; 9871 connp->conn_wq = WR(q); 9872 9873 /* Non-zero default values */ 9874 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9875 9876 /* 9877 * Make the conn globally visible to walkers 9878 */ 9879 ASSERT(connp->conn_ref == 1); 9880 mutex_enter(&connp->conn_lock); 9881 connp->conn_state_flags &= ~CONN_INCIPIENT; 9882 mutex_exit(&connp->conn_lock); 9883 9884 qprocson(q); 9885 9886 return (0); 9887 } 9888 9889 /* 9890 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9891 * Note that there is no race since either ip_output function works - it 9892 * is just an optimization to enter the best ip_output routine directly. 9893 */ 9894 void 9895 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9896 ip_stack_t *ipst) 9897 { 9898 if (isv6) { 9899 if (bump_mib) { 9900 BUMP_MIB(&ipst->ips_ip6_mib, 9901 ipIfStatsOutSwitchIPVersion); 9902 } 9903 connp->conn_send = ip_output_v6; 9904 connp->conn_pkt_isv6 = B_TRUE; 9905 } else { 9906 if (bump_mib) { 9907 BUMP_MIB(&ipst->ips_ip_mib, 9908 ipIfStatsOutSwitchIPVersion); 9909 } 9910 connp->conn_send = ip_output; 9911 connp->conn_pkt_isv6 = B_FALSE; 9912 } 9913 9914 } 9915 9916 /* 9917 * See if IPsec needs loading because of the options in mp. 9918 */ 9919 static boolean_t 9920 ipsec_opt_present(mblk_t *mp) 9921 { 9922 uint8_t *optcp, *next_optcp, *opt_endcp; 9923 struct opthdr *opt; 9924 struct T_opthdr *topt; 9925 int opthdr_len; 9926 t_uscalar_t optname, optlevel; 9927 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9928 ipsec_req_t *ipsr; 9929 9930 /* 9931 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9932 * return TRUE. 9933 */ 9934 9935 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9936 opt_endcp = optcp + tor->OPT_length; 9937 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9938 opthdr_len = sizeof (struct T_opthdr); 9939 } else { /* O_OPTMGMT_REQ */ 9940 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9941 opthdr_len = sizeof (struct opthdr); 9942 } 9943 for (; optcp < opt_endcp; optcp = next_optcp) { 9944 if (optcp + opthdr_len > opt_endcp) 9945 return (B_FALSE); /* Not enough option header. */ 9946 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9947 topt = (struct T_opthdr *)optcp; 9948 optlevel = topt->level; 9949 optname = topt->name; 9950 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9951 } else { 9952 opt = (struct opthdr *)optcp; 9953 optlevel = opt->level; 9954 optname = opt->name; 9955 next_optcp = optcp + opthdr_len + 9956 _TPI_ALIGN_OPT(opt->len); 9957 } 9958 if ((next_optcp < optcp) || /* wraparound pointer space */ 9959 ((next_optcp >= opt_endcp) && /* last option bad len */ 9960 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9961 return (B_FALSE); /* bad option buffer */ 9962 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9963 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9964 /* 9965 * Check to see if it's an all-bypass or all-zeroes 9966 * IPsec request. Don't bother loading IPsec if 9967 * the socket doesn't want to use it. (A good example 9968 * is a bypass request.) 9969 * 9970 * Basically, if any of the non-NEVER bits are set, 9971 * load IPsec. 9972 */ 9973 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9974 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9975 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9976 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9977 != 0) 9978 return (B_TRUE); 9979 } 9980 } 9981 return (B_FALSE); 9982 } 9983 9984 /* 9985 * If conn is is waiting for ipsec to finish loading, kick it. 9986 */ 9987 /* ARGSUSED */ 9988 static void 9989 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9990 { 9991 t_scalar_t optreq_prim; 9992 mblk_t *mp; 9993 cred_t *cr; 9994 int err = 0; 9995 9996 /* 9997 * This function is called, after ipsec loading is complete. 9998 * Since IP checks exclusively and atomically (i.e it prevents 9999 * ipsec load from completing until ip_optcom_req completes) 10000 * whether ipsec load is complete, there cannot be a race with IP 10001 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10002 */ 10003 mutex_enter(&connp->conn_lock); 10004 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10005 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10006 mp = connp->conn_ipsec_opt_mp; 10007 connp->conn_ipsec_opt_mp = NULL; 10008 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10009 mutex_exit(&connp->conn_lock); 10010 10011 /* 10012 * All Solaris components should pass a db_credp 10013 * for this TPI message, hence we ASSERT. 10014 * But in case there is some other M_PROTO that looks 10015 * like a TPI message sent by some other kernel 10016 * component, we check and return an error. 10017 */ 10018 cr = msg_getcred(mp, NULL); 10019 ASSERT(cr != NULL); 10020 if (cr == NULL) { 10021 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10022 if (mp != NULL) 10023 qreply(connp->conn_wq, mp); 10024 return; 10025 } 10026 10027 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10028 10029 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10030 if (optreq_prim == T_OPTMGMT_REQ) { 10031 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10032 &ip_opt_obj, B_FALSE); 10033 } else { 10034 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10035 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10036 &ip_opt_obj, B_FALSE); 10037 } 10038 if (err != EINPROGRESS) 10039 CONN_OPER_PENDING_DONE(connp); 10040 return; 10041 } 10042 mutex_exit(&connp->conn_lock); 10043 } 10044 10045 /* 10046 * Called from the ipsec_loader thread, outside any perimeter, to tell 10047 * ip qenable any of the queues waiting for the ipsec loader to 10048 * complete. 10049 */ 10050 void 10051 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10052 { 10053 netstack_t *ns = ipss->ipsec_netstack; 10054 10055 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10056 } 10057 10058 /* 10059 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10060 * determines the grp on which it has to become exclusive, queues the mp 10061 * and IPSQ draining restarts the optmgmt 10062 */ 10063 static boolean_t 10064 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10065 { 10066 conn_t *connp = Q_TO_CONN(q); 10067 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10068 10069 /* 10070 * Take IPsec requests and treat them special. 10071 */ 10072 if (ipsec_opt_present(mp)) { 10073 /* First check if IPsec is loaded. */ 10074 mutex_enter(&ipss->ipsec_loader_lock); 10075 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10076 mutex_exit(&ipss->ipsec_loader_lock); 10077 return (B_FALSE); 10078 } 10079 mutex_enter(&connp->conn_lock); 10080 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10081 10082 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10083 connp->conn_ipsec_opt_mp = mp; 10084 mutex_exit(&connp->conn_lock); 10085 mutex_exit(&ipss->ipsec_loader_lock); 10086 10087 ipsec_loader_loadnow(ipss); 10088 return (B_TRUE); 10089 } 10090 return (B_FALSE); 10091 } 10092 10093 /* 10094 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10095 * all of them are copied to the conn_t. If the req is "zero", the policy is 10096 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10097 * fields. 10098 * We keep only the latest setting of the policy and thus policy setting 10099 * is not incremental/cumulative. 10100 * 10101 * Requests to set policies with multiple alternative actions will 10102 * go through a different API. 10103 */ 10104 int 10105 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10106 { 10107 uint_t ah_req = 0; 10108 uint_t esp_req = 0; 10109 uint_t se_req = 0; 10110 ipsec_selkey_t sel; 10111 ipsec_act_t *actp = NULL; 10112 uint_t nact; 10113 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10114 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10115 ipsec_policy_root_t *pr; 10116 ipsec_policy_head_t *ph; 10117 int fam; 10118 boolean_t is_pol_reset; 10119 int error = 0; 10120 netstack_t *ns = connp->conn_netstack; 10121 ip_stack_t *ipst = ns->netstack_ip; 10122 ipsec_stack_t *ipss = ns->netstack_ipsec; 10123 10124 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10125 10126 /* 10127 * The IP_SEC_OPT option does not allow variable length parameters, 10128 * hence a request cannot be NULL. 10129 */ 10130 if (req == NULL) 10131 return (EINVAL); 10132 10133 ah_req = req->ipsr_ah_req; 10134 esp_req = req->ipsr_esp_req; 10135 se_req = req->ipsr_self_encap_req; 10136 10137 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10138 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10139 return (EINVAL); 10140 10141 /* 10142 * Are we dealing with a request to reset the policy (i.e. 10143 * zero requests). 10144 */ 10145 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10146 (esp_req & REQ_MASK) == 0 && 10147 (se_req & REQ_MASK) == 0); 10148 10149 if (!is_pol_reset) { 10150 /* 10151 * If we couldn't load IPsec, fail with "protocol 10152 * not supported". 10153 * IPsec may not have been loaded for a request with zero 10154 * policies, so we don't fail in this case. 10155 */ 10156 mutex_enter(&ipss->ipsec_loader_lock); 10157 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10158 mutex_exit(&ipss->ipsec_loader_lock); 10159 return (EPROTONOSUPPORT); 10160 } 10161 mutex_exit(&ipss->ipsec_loader_lock); 10162 10163 /* 10164 * Test for valid requests. Invalid algorithms 10165 * need to be tested by IPsec code because new 10166 * algorithms can be added dynamically. 10167 */ 10168 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10169 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10170 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10171 return (EINVAL); 10172 } 10173 10174 /* 10175 * Only privileged users can issue these 10176 * requests. 10177 */ 10178 if (((ah_req & IPSEC_PREF_NEVER) || 10179 (esp_req & IPSEC_PREF_NEVER) || 10180 (se_req & IPSEC_PREF_NEVER)) && 10181 secpolicy_ip_config(cr, B_FALSE) != 0) { 10182 return (EPERM); 10183 } 10184 10185 /* 10186 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10187 * are mutually exclusive. 10188 */ 10189 if (((ah_req & REQ_MASK) == REQ_MASK) || 10190 ((esp_req & REQ_MASK) == REQ_MASK) || 10191 ((se_req & REQ_MASK) == REQ_MASK)) { 10192 /* Both of them are set */ 10193 return (EINVAL); 10194 } 10195 } 10196 10197 mutex_enter(&connp->conn_lock); 10198 10199 /* 10200 * If we have already cached policies in ip_bind_connected*(), don't 10201 * let them change now. We cache policies for connections 10202 * whose src,dst [addr, port] is known. 10203 */ 10204 if (connp->conn_policy_cached) { 10205 mutex_exit(&connp->conn_lock); 10206 return (EINVAL); 10207 } 10208 10209 /* 10210 * We have a zero policies, reset the connection policy if already 10211 * set. This will cause the connection to inherit the 10212 * global policy, if any. 10213 */ 10214 if (is_pol_reset) { 10215 if (connp->conn_policy != NULL) { 10216 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10217 connp->conn_policy = NULL; 10218 } 10219 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10220 connp->conn_in_enforce_policy = B_FALSE; 10221 connp->conn_out_enforce_policy = B_FALSE; 10222 mutex_exit(&connp->conn_lock); 10223 return (0); 10224 } 10225 10226 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10227 ipst->ips_netstack); 10228 if (ph == NULL) 10229 goto enomem; 10230 10231 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10232 if (actp == NULL) 10233 goto enomem; 10234 10235 /* 10236 * Always allocate IPv4 policy entries, since they can also 10237 * apply to ipv6 sockets being used in ipv4-compat mode. 10238 */ 10239 bzero(&sel, sizeof (sel)); 10240 sel.ipsl_valid = IPSL_IPV4; 10241 10242 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10243 ipst->ips_netstack); 10244 if (pin4 == NULL) 10245 goto enomem; 10246 10247 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10248 ipst->ips_netstack); 10249 if (pout4 == NULL) 10250 goto enomem; 10251 10252 if (connp->conn_af_isv6) { 10253 /* 10254 * We're looking at a v6 socket, also allocate the 10255 * v6-specific entries... 10256 */ 10257 sel.ipsl_valid = IPSL_IPV6; 10258 pin6 = ipsec_policy_create(&sel, actp, nact, 10259 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10260 if (pin6 == NULL) 10261 goto enomem; 10262 10263 pout6 = ipsec_policy_create(&sel, actp, nact, 10264 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10265 if (pout6 == NULL) 10266 goto enomem; 10267 10268 /* 10269 * .. and file them away in the right place. 10270 */ 10271 fam = IPSEC_AF_V6; 10272 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10273 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10274 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10275 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10276 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10277 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10278 } 10279 10280 ipsec_actvec_free(actp, nact); 10281 10282 /* 10283 * File the v4 policies. 10284 */ 10285 fam = IPSEC_AF_V4; 10286 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10287 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10288 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10289 10290 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10291 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10292 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10293 10294 /* 10295 * If the requests need security, set enforce_policy. 10296 * If the requests are IPSEC_PREF_NEVER, one should 10297 * still set conn_out_enforce_policy so that an ipsec_out 10298 * gets attached in ip_wput. This is needed so that 10299 * for connections that we don't cache policy in ip_bind, 10300 * if global policy matches in ip_wput_attach_policy, we 10301 * don't wrongly inherit global policy. Similarly, we need 10302 * to set conn_in_enforce_policy also so that we don't verify 10303 * policy wrongly. 10304 */ 10305 if ((ah_req & REQ_MASK) != 0 || 10306 (esp_req & REQ_MASK) != 0 || 10307 (se_req & REQ_MASK) != 0) { 10308 connp->conn_in_enforce_policy = B_TRUE; 10309 connp->conn_out_enforce_policy = B_TRUE; 10310 connp->conn_flags |= IPCL_CHECK_POLICY; 10311 } 10312 10313 mutex_exit(&connp->conn_lock); 10314 return (error); 10315 #undef REQ_MASK 10316 10317 /* 10318 * Common memory-allocation-failure exit path. 10319 */ 10320 enomem: 10321 mutex_exit(&connp->conn_lock); 10322 if (actp != NULL) 10323 ipsec_actvec_free(actp, nact); 10324 if (pin4 != NULL) 10325 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10326 if (pout4 != NULL) 10327 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10328 if (pin6 != NULL) 10329 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10330 if (pout6 != NULL) 10331 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10332 return (ENOMEM); 10333 } 10334 10335 /* 10336 * Only for options that pass in an IP addr. Currently only V4 options 10337 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10338 * So this function assumes level is IPPROTO_IP 10339 */ 10340 int 10341 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10342 mblk_t *first_mp) 10343 { 10344 ipif_t *ipif = NULL; 10345 int error; 10346 ill_t *ill; 10347 int zoneid; 10348 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10349 10350 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10351 10352 if (addr != INADDR_ANY || checkonly) { 10353 ASSERT(connp != NULL); 10354 zoneid = IPCL_ZONEID(connp); 10355 if (option == IP_NEXTHOP) { 10356 ipif = ipif_lookup_onlink_addr(addr, 10357 connp->conn_zoneid, ipst); 10358 } else { 10359 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10360 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10361 &error, ipst); 10362 } 10363 if (ipif == NULL) { 10364 if (error == EINPROGRESS) 10365 return (error); 10366 if ((option == IP_MULTICAST_IF) || 10367 (option == IP_NEXTHOP)) 10368 return (EHOSTUNREACH); 10369 else 10370 return (EINVAL); 10371 } else if (checkonly) { 10372 if (option == IP_MULTICAST_IF) { 10373 ill = ipif->ipif_ill; 10374 /* not supported by the virtual network iface */ 10375 if (IS_VNI(ill)) { 10376 ipif_refrele(ipif); 10377 return (EINVAL); 10378 } 10379 } 10380 ipif_refrele(ipif); 10381 return (0); 10382 } 10383 ill = ipif->ipif_ill; 10384 mutex_enter(&connp->conn_lock); 10385 mutex_enter(&ill->ill_lock); 10386 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10387 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10388 mutex_exit(&ill->ill_lock); 10389 mutex_exit(&connp->conn_lock); 10390 ipif_refrele(ipif); 10391 return (option == IP_MULTICAST_IF ? 10392 EHOSTUNREACH : EINVAL); 10393 } 10394 } else { 10395 mutex_enter(&connp->conn_lock); 10396 } 10397 10398 /* None of the options below are supported on the VNI */ 10399 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10400 mutex_exit(&ill->ill_lock); 10401 mutex_exit(&connp->conn_lock); 10402 ipif_refrele(ipif); 10403 return (EINVAL); 10404 } 10405 10406 switch (option) { 10407 case IP_MULTICAST_IF: 10408 connp->conn_multicast_ipif = ipif; 10409 break; 10410 case IP_NEXTHOP: 10411 connp->conn_nexthop_v4 = addr; 10412 connp->conn_nexthop_set = B_TRUE; 10413 break; 10414 } 10415 10416 if (ipif != NULL) { 10417 mutex_exit(&ill->ill_lock); 10418 mutex_exit(&connp->conn_lock); 10419 ipif_refrele(ipif); 10420 return (0); 10421 } 10422 mutex_exit(&connp->conn_lock); 10423 /* We succeded in cleared the option */ 10424 return (0); 10425 } 10426 10427 /* 10428 * For options that pass in an ifindex specifying the ill. V6 options always 10429 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10430 */ 10431 int 10432 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10433 int level, int option, mblk_t *first_mp) 10434 { 10435 ill_t *ill = NULL; 10436 int error = 0; 10437 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10438 10439 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10440 if (ifindex != 0) { 10441 ASSERT(connp != NULL); 10442 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10443 first_mp, ip_restart_optmgmt, &error, ipst); 10444 if (ill != NULL) { 10445 if (checkonly) { 10446 /* not supported by the virtual network iface */ 10447 if (IS_VNI(ill)) { 10448 ill_refrele(ill); 10449 return (EINVAL); 10450 } 10451 ill_refrele(ill); 10452 return (0); 10453 } 10454 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10455 0, NULL)) { 10456 ill_refrele(ill); 10457 ill = NULL; 10458 mutex_enter(&connp->conn_lock); 10459 goto setit; 10460 } 10461 mutex_enter(&connp->conn_lock); 10462 mutex_enter(&ill->ill_lock); 10463 if (ill->ill_state_flags & ILL_CONDEMNED) { 10464 mutex_exit(&ill->ill_lock); 10465 mutex_exit(&connp->conn_lock); 10466 ill_refrele(ill); 10467 ill = NULL; 10468 mutex_enter(&connp->conn_lock); 10469 } 10470 goto setit; 10471 } else if (error == EINPROGRESS) { 10472 return (error); 10473 } else { 10474 error = 0; 10475 } 10476 } 10477 mutex_enter(&connp->conn_lock); 10478 setit: 10479 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10480 10481 /* 10482 * The options below assume that the ILL (if any) transmits and/or 10483 * receives traffic. Neither of which is true for the virtual network 10484 * interface, so fail setting these on a VNI. 10485 */ 10486 if (IS_VNI(ill)) { 10487 ASSERT(ill != NULL); 10488 mutex_exit(&ill->ill_lock); 10489 mutex_exit(&connp->conn_lock); 10490 ill_refrele(ill); 10491 return (EINVAL); 10492 } 10493 10494 if (level == IPPROTO_IP) { 10495 switch (option) { 10496 case IP_BOUND_IF: 10497 connp->conn_incoming_ill = ill; 10498 connp->conn_outgoing_ill = ill; 10499 break; 10500 10501 case IP_MULTICAST_IF: 10502 /* 10503 * This option is an internal special. The socket 10504 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10505 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10506 * specifies an ifindex and we try first on V6 ill's. 10507 * If we don't find one, we they try using on v4 ill's 10508 * intenally and we come here. 10509 */ 10510 if (!checkonly && ill != NULL) { 10511 ipif_t *ipif; 10512 ipif = ill->ill_ipif; 10513 10514 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10515 mutex_exit(&ill->ill_lock); 10516 mutex_exit(&connp->conn_lock); 10517 ill_refrele(ill); 10518 ill = NULL; 10519 mutex_enter(&connp->conn_lock); 10520 } else { 10521 connp->conn_multicast_ipif = ipif; 10522 } 10523 } 10524 break; 10525 10526 case IP_DHCPINIT_IF: 10527 if (connp->conn_dhcpinit_ill != NULL) { 10528 /* 10529 * We've locked the conn so conn_cleanup_ill() 10530 * cannot clear conn_dhcpinit_ill -- so it's 10531 * safe to access the ill. 10532 */ 10533 ill_t *oill = connp->conn_dhcpinit_ill; 10534 10535 ASSERT(oill->ill_dhcpinit != 0); 10536 atomic_dec_32(&oill->ill_dhcpinit); 10537 connp->conn_dhcpinit_ill = NULL; 10538 } 10539 10540 if (ill != NULL) { 10541 connp->conn_dhcpinit_ill = ill; 10542 atomic_inc_32(&ill->ill_dhcpinit); 10543 } 10544 break; 10545 } 10546 } else { 10547 switch (option) { 10548 case IPV6_BOUND_IF: 10549 connp->conn_incoming_ill = ill; 10550 connp->conn_outgoing_ill = ill; 10551 break; 10552 10553 case IPV6_MULTICAST_IF: 10554 /* 10555 * Set conn_multicast_ill to be the IPv6 ill. 10556 * Set conn_multicast_ipif to be an IPv4 ipif 10557 * for ifindex to make IPv4 mapped addresses 10558 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10559 * Even if no IPv6 ill exists for the ifindex 10560 * we need to check for an IPv4 ifindex in order 10561 * for this to work with mapped addresses. In that 10562 * case only set conn_multicast_ipif. 10563 */ 10564 if (!checkonly) { 10565 if (ifindex == 0) { 10566 connp->conn_multicast_ill = NULL; 10567 connp->conn_multicast_ipif = NULL; 10568 } else if (ill != NULL) { 10569 connp->conn_multicast_ill = ill; 10570 } 10571 } 10572 break; 10573 } 10574 } 10575 10576 if (ill != NULL) { 10577 mutex_exit(&ill->ill_lock); 10578 mutex_exit(&connp->conn_lock); 10579 ill_refrele(ill); 10580 return (0); 10581 } 10582 mutex_exit(&connp->conn_lock); 10583 /* 10584 * We succeeded in clearing the option (ifindex == 0) or failed to 10585 * locate the ill and could not set the option (ifindex != 0) 10586 */ 10587 return (ifindex == 0 ? 0 : EINVAL); 10588 } 10589 10590 /* This routine sets socket options. */ 10591 /* ARGSUSED */ 10592 int 10593 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10594 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10595 void *dummy, cred_t *cr, mblk_t *first_mp) 10596 { 10597 int *i1 = (int *)invalp; 10598 conn_t *connp = Q_TO_CONN(q); 10599 int error = 0; 10600 boolean_t checkonly; 10601 ire_t *ire; 10602 boolean_t found; 10603 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10604 10605 switch (optset_context) { 10606 10607 case SETFN_OPTCOM_CHECKONLY: 10608 checkonly = B_TRUE; 10609 /* 10610 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10611 * inlen != 0 implies value supplied and 10612 * we have to "pretend" to set it. 10613 * inlen == 0 implies that there is no 10614 * value part in T_CHECK request and just validation 10615 * done elsewhere should be enough, we just return here. 10616 */ 10617 if (inlen == 0) { 10618 *outlenp = 0; 10619 return (0); 10620 } 10621 break; 10622 case SETFN_OPTCOM_NEGOTIATE: 10623 case SETFN_UD_NEGOTIATE: 10624 case SETFN_CONN_NEGOTIATE: 10625 checkonly = B_FALSE; 10626 break; 10627 default: 10628 /* 10629 * We should never get here 10630 */ 10631 *outlenp = 0; 10632 return (EINVAL); 10633 } 10634 10635 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10636 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10637 10638 /* 10639 * For fixed length options, no sanity check 10640 * of passed in length is done. It is assumed *_optcom_req() 10641 * routines do the right thing. 10642 */ 10643 10644 switch (level) { 10645 case SOL_SOCKET: 10646 /* 10647 * conn_lock protects the bitfields, and is used to 10648 * set the fields atomically. 10649 */ 10650 switch (name) { 10651 case SO_BROADCAST: 10652 if (!checkonly) { 10653 /* TODO: use value someplace? */ 10654 mutex_enter(&connp->conn_lock); 10655 connp->conn_broadcast = *i1 ? 1 : 0; 10656 mutex_exit(&connp->conn_lock); 10657 } 10658 break; /* goto sizeof (int) option return */ 10659 case SO_USELOOPBACK: 10660 if (!checkonly) { 10661 /* TODO: use value someplace? */ 10662 mutex_enter(&connp->conn_lock); 10663 connp->conn_loopback = *i1 ? 1 : 0; 10664 mutex_exit(&connp->conn_lock); 10665 } 10666 break; /* goto sizeof (int) option return */ 10667 case SO_DONTROUTE: 10668 if (!checkonly) { 10669 mutex_enter(&connp->conn_lock); 10670 connp->conn_dontroute = *i1 ? 1 : 0; 10671 mutex_exit(&connp->conn_lock); 10672 } 10673 break; /* goto sizeof (int) option return */ 10674 case SO_REUSEADDR: 10675 if (!checkonly) { 10676 mutex_enter(&connp->conn_lock); 10677 connp->conn_reuseaddr = *i1 ? 1 : 0; 10678 mutex_exit(&connp->conn_lock); 10679 } 10680 break; /* goto sizeof (int) option return */ 10681 case SO_PROTOTYPE: 10682 if (!checkonly) { 10683 mutex_enter(&connp->conn_lock); 10684 connp->conn_proto = *i1; 10685 mutex_exit(&connp->conn_lock); 10686 } 10687 break; /* goto sizeof (int) option return */ 10688 case SO_ALLZONES: 10689 if (!checkonly) { 10690 mutex_enter(&connp->conn_lock); 10691 if (IPCL_IS_BOUND(connp)) { 10692 mutex_exit(&connp->conn_lock); 10693 return (EINVAL); 10694 } 10695 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10696 mutex_exit(&connp->conn_lock); 10697 } 10698 break; /* goto sizeof (int) option return */ 10699 case SO_ANON_MLP: 10700 if (!checkonly) { 10701 mutex_enter(&connp->conn_lock); 10702 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10703 mutex_exit(&connp->conn_lock); 10704 } 10705 break; /* goto sizeof (int) option return */ 10706 case SO_MAC_EXEMPT: 10707 if (secpolicy_net_mac_aware(cr) != 0 || 10708 IPCL_IS_BOUND(connp)) 10709 return (EACCES); 10710 if (!checkonly) { 10711 mutex_enter(&connp->conn_lock); 10712 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10713 mutex_exit(&connp->conn_lock); 10714 } 10715 break; /* goto sizeof (int) option return */ 10716 default: 10717 /* 10718 * "soft" error (negative) 10719 * option not handled at this level 10720 * Note: Do not modify *outlenp 10721 */ 10722 return (-EINVAL); 10723 } 10724 break; 10725 case IPPROTO_IP: 10726 switch (name) { 10727 case IP_NEXTHOP: 10728 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10729 return (EPERM); 10730 /* FALLTHRU */ 10731 case IP_MULTICAST_IF: { 10732 ipaddr_t addr = *i1; 10733 10734 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10735 first_mp); 10736 if (error != 0) 10737 return (error); 10738 break; /* goto sizeof (int) option return */ 10739 } 10740 10741 case IP_MULTICAST_TTL: 10742 /* Recorded in transport above IP */ 10743 *outvalp = *invalp; 10744 *outlenp = sizeof (uchar_t); 10745 return (0); 10746 case IP_MULTICAST_LOOP: 10747 if (!checkonly) { 10748 mutex_enter(&connp->conn_lock); 10749 connp->conn_multicast_loop = *invalp ? 1 : 0; 10750 mutex_exit(&connp->conn_lock); 10751 } 10752 *outvalp = *invalp; 10753 *outlenp = sizeof (uchar_t); 10754 return (0); 10755 case IP_ADD_MEMBERSHIP: 10756 case MCAST_JOIN_GROUP: 10757 case IP_DROP_MEMBERSHIP: 10758 case MCAST_LEAVE_GROUP: { 10759 struct ip_mreq *mreqp; 10760 struct group_req *greqp; 10761 ire_t *ire; 10762 boolean_t done = B_FALSE; 10763 ipaddr_t group, ifaddr; 10764 struct sockaddr_in *sin; 10765 uint32_t *ifindexp; 10766 boolean_t mcast_opt = B_TRUE; 10767 mcast_record_t fmode; 10768 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10769 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10770 10771 switch (name) { 10772 case IP_ADD_MEMBERSHIP: 10773 mcast_opt = B_FALSE; 10774 /* FALLTHRU */ 10775 case MCAST_JOIN_GROUP: 10776 fmode = MODE_IS_EXCLUDE; 10777 optfn = ip_opt_add_group; 10778 break; 10779 10780 case IP_DROP_MEMBERSHIP: 10781 mcast_opt = B_FALSE; 10782 /* FALLTHRU */ 10783 case MCAST_LEAVE_GROUP: 10784 fmode = MODE_IS_INCLUDE; 10785 optfn = ip_opt_delete_group; 10786 break; 10787 } 10788 10789 if (mcast_opt) { 10790 greqp = (struct group_req *)i1; 10791 sin = (struct sockaddr_in *)&greqp->gr_group; 10792 if (sin->sin_family != AF_INET) { 10793 *outlenp = 0; 10794 return (ENOPROTOOPT); 10795 } 10796 group = (ipaddr_t)sin->sin_addr.s_addr; 10797 ifaddr = INADDR_ANY; 10798 ifindexp = &greqp->gr_interface; 10799 } else { 10800 mreqp = (struct ip_mreq *)i1; 10801 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10802 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10803 ifindexp = NULL; 10804 } 10805 10806 /* 10807 * In the multirouting case, we need to replicate 10808 * the request on all interfaces that will take part 10809 * in replication. We do so because multirouting is 10810 * reflective, thus we will probably receive multi- 10811 * casts on those interfaces. 10812 * The ip_multirt_apply_membership() succeeds if the 10813 * operation succeeds on at least one interface. 10814 */ 10815 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10816 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10817 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10818 if (ire != NULL) { 10819 if (ire->ire_flags & RTF_MULTIRT) { 10820 error = ip_multirt_apply_membership( 10821 optfn, ire, connp, checkonly, group, 10822 fmode, INADDR_ANY, first_mp); 10823 done = B_TRUE; 10824 } 10825 ire_refrele(ire); 10826 } 10827 if (!done) { 10828 error = optfn(connp, checkonly, group, ifaddr, 10829 ifindexp, fmode, INADDR_ANY, first_mp); 10830 } 10831 if (error) { 10832 /* 10833 * EINPROGRESS is a soft error, needs retry 10834 * so don't make *outlenp zero. 10835 */ 10836 if (error != EINPROGRESS) 10837 *outlenp = 0; 10838 return (error); 10839 } 10840 /* OK return - copy input buffer into output buffer */ 10841 if (invalp != outvalp) { 10842 /* don't trust bcopy for identical src/dst */ 10843 bcopy(invalp, outvalp, inlen); 10844 } 10845 *outlenp = inlen; 10846 return (0); 10847 } 10848 case IP_BLOCK_SOURCE: 10849 case IP_UNBLOCK_SOURCE: 10850 case IP_ADD_SOURCE_MEMBERSHIP: 10851 case IP_DROP_SOURCE_MEMBERSHIP: 10852 case MCAST_BLOCK_SOURCE: 10853 case MCAST_UNBLOCK_SOURCE: 10854 case MCAST_JOIN_SOURCE_GROUP: 10855 case MCAST_LEAVE_SOURCE_GROUP: { 10856 struct ip_mreq_source *imreqp; 10857 struct group_source_req *gsreqp; 10858 in_addr_t grp, src, ifaddr = INADDR_ANY; 10859 uint32_t ifindex = 0; 10860 mcast_record_t fmode; 10861 struct sockaddr_in *sin; 10862 ire_t *ire; 10863 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10864 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10865 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10866 10867 switch (name) { 10868 case IP_BLOCK_SOURCE: 10869 mcast_opt = B_FALSE; 10870 /* FALLTHRU */ 10871 case MCAST_BLOCK_SOURCE: 10872 fmode = MODE_IS_EXCLUDE; 10873 optfn = ip_opt_add_group; 10874 break; 10875 10876 case IP_UNBLOCK_SOURCE: 10877 mcast_opt = B_FALSE; 10878 /* FALLTHRU */ 10879 case MCAST_UNBLOCK_SOURCE: 10880 fmode = MODE_IS_EXCLUDE; 10881 optfn = ip_opt_delete_group; 10882 break; 10883 10884 case IP_ADD_SOURCE_MEMBERSHIP: 10885 mcast_opt = B_FALSE; 10886 /* FALLTHRU */ 10887 case MCAST_JOIN_SOURCE_GROUP: 10888 fmode = MODE_IS_INCLUDE; 10889 optfn = ip_opt_add_group; 10890 break; 10891 10892 case IP_DROP_SOURCE_MEMBERSHIP: 10893 mcast_opt = B_FALSE; 10894 /* FALLTHRU */ 10895 case MCAST_LEAVE_SOURCE_GROUP: 10896 fmode = MODE_IS_INCLUDE; 10897 optfn = ip_opt_delete_group; 10898 break; 10899 } 10900 10901 if (mcast_opt) { 10902 gsreqp = (struct group_source_req *)i1; 10903 if (gsreqp->gsr_group.ss_family != AF_INET) { 10904 *outlenp = 0; 10905 return (ENOPROTOOPT); 10906 } 10907 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10908 grp = (ipaddr_t)sin->sin_addr.s_addr; 10909 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10910 src = (ipaddr_t)sin->sin_addr.s_addr; 10911 ifindex = gsreqp->gsr_interface; 10912 } else { 10913 imreqp = (struct ip_mreq_source *)i1; 10914 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10915 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10916 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10917 } 10918 10919 /* 10920 * In the multirouting case, we need to replicate 10921 * the request as noted in the mcast cases above. 10922 */ 10923 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10924 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10925 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10926 if (ire != NULL) { 10927 if (ire->ire_flags & RTF_MULTIRT) { 10928 error = ip_multirt_apply_membership( 10929 optfn, ire, connp, checkonly, grp, 10930 fmode, src, first_mp); 10931 done = B_TRUE; 10932 } 10933 ire_refrele(ire); 10934 } 10935 if (!done) { 10936 error = optfn(connp, checkonly, grp, ifaddr, 10937 &ifindex, fmode, src, first_mp); 10938 } 10939 if (error != 0) { 10940 /* 10941 * EINPROGRESS is a soft error, needs retry 10942 * so don't make *outlenp zero. 10943 */ 10944 if (error != EINPROGRESS) 10945 *outlenp = 0; 10946 return (error); 10947 } 10948 /* OK return - copy input buffer into output buffer */ 10949 if (invalp != outvalp) { 10950 bcopy(invalp, outvalp, inlen); 10951 } 10952 *outlenp = inlen; 10953 return (0); 10954 } 10955 case IP_SEC_OPT: 10956 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10957 if (error != 0) { 10958 *outlenp = 0; 10959 return (error); 10960 } 10961 break; 10962 case IP_HDRINCL: 10963 case IP_OPTIONS: 10964 case T_IP_OPTIONS: 10965 case IP_TOS: 10966 case T_IP_TOS: 10967 case IP_TTL: 10968 case IP_RECVDSTADDR: 10969 case IP_RECVOPTS: 10970 /* OK return - copy input buffer into output buffer */ 10971 if (invalp != outvalp) { 10972 /* don't trust bcopy for identical src/dst */ 10973 bcopy(invalp, outvalp, inlen); 10974 } 10975 *outlenp = inlen; 10976 return (0); 10977 case IP_RECVIF: 10978 /* Retrieve the inbound interface index */ 10979 if (!checkonly) { 10980 mutex_enter(&connp->conn_lock); 10981 connp->conn_recvif = *i1 ? 1 : 0; 10982 mutex_exit(&connp->conn_lock); 10983 } 10984 break; /* goto sizeof (int) option return */ 10985 case IP_RECVPKTINFO: 10986 if (!checkonly) { 10987 mutex_enter(&connp->conn_lock); 10988 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10989 mutex_exit(&connp->conn_lock); 10990 } 10991 break; /* goto sizeof (int) option return */ 10992 case IP_RECVSLLA: 10993 /* Retrieve the source link layer address */ 10994 if (!checkonly) { 10995 mutex_enter(&connp->conn_lock); 10996 connp->conn_recvslla = *i1 ? 1 : 0; 10997 mutex_exit(&connp->conn_lock); 10998 } 10999 break; /* goto sizeof (int) option return */ 11000 case MRT_INIT: 11001 case MRT_DONE: 11002 case MRT_ADD_VIF: 11003 case MRT_DEL_VIF: 11004 case MRT_ADD_MFC: 11005 case MRT_DEL_MFC: 11006 case MRT_ASSERT: 11007 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11008 *outlenp = 0; 11009 return (error); 11010 } 11011 error = ip_mrouter_set((int)name, q, checkonly, 11012 (uchar_t *)invalp, inlen, first_mp); 11013 if (error) { 11014 *outlenp = 0; 11015 return (error); 11016 } 11017 /* OK return - copy input buffer into output buffer */ 11018 if (invalp != outvalp) { 11019 /* don't trust bcopy for identical src/dst */ 11020 bcopy(invalp, outvalp, inlen); 11021 } 11022 *outlenp = inlen; 11023 return (0); 11024 case IP_BOUND_IF: 11025 case IP_DHCPINIT_IF: 11026 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11027 level, name, first_mp); 11028 if (error != 0) 11029 return (error); 11030 break; /* goto sizeof (int) option return */ 11031 11032 case IP_UNSPEC_SRC: 11033 /* Allow sending with a zero source address */ 11034 if (!checkonly) { 11035 mutex_enter(&connp->conn_lock); 11036 connp->conn_unspec_src = *i1 ? 1 : 0; 11037 mutex_exit(&connp->conn_lock); 11038 } 11039 break; /* goto sizeof (int) option return */ 11040 default: 11041 /* 11042 * "soft" error (negative) 11043 * option not handled at this level 11044 * Note: Do not modify *outlenp 11045 */ 11046 return (-EINVAL); 11047 } 11048 break; 11049 case IPPROTO_IPV6: 11050 switch (name) { 11051 case IPV6_BOUND_IF: 11052 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11053 level, name, first_mp); 11054 if (error != 0) 11055 return (error); 11056 break; /* goto sizeof (int) option return */ 11057 11058 case IPV6_MULTICAST_IF: 11059 /* 11060 * The only possible errors are EINPROGRESS and 11061 * EINVAL. EINPROGRESS will be restarted and is not 11062 * a hard error. We call this option on both V4 and V6 11063 * If both return EINVAL, then this call returns 11064 * EINVAL. If at least one of them succeeds we 11065 * return success. 11066 */ 11067 found = B_FALSE; 11068 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11069 level, name, first_mp); 11070 if (error == EINPROGRESS) 11071 return (error); 11072 if (error == 0) 11073 found = B_TRUE; 11074 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11075 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11076 if (error == 0) 11077 found = B_TRUE; 11078 if (!found) 11079 return (error); 11080 break; /* goto sizeof (int) option return */ 11081 11082 case IPV6_MULTICAST_HOPS: 11083 /* Recorded in transport above IP */ 11084 break; /* goto sizeof (int) option return */ 11085 case IPV6_MULTICAST_LOOP: 11086 if (!checkonly) { 11087 mutex_enter(&connp->conn_lock); 11088 connp->conn_multicast_loop = *i1; 11089 mutex_exit(&connp->conn_lock); 11090 } 11091 break; /* goto sizeof (int) option return */ 11092 case IPV6_JOIN_GROUP: 11093 case MCAST_JOIN_GROUP: 11094 case IPV6_LEAVE_GROUP: 11095 case MCAST_LEAVE_GROUP: { 11096 struct ipv6_mreq *ip_mreqp; 11097 struct group_req *greqp; 11098 ire_t *ire; 11099 boolean_t done = B_FALSE; 11100 in6_addr_t groupv6; 11101 uint32_t ifindex; 11102 boolean_t mcast_opt = B_TRUE; 11103 mcast_record_t fmode; 11104 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11105 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11106 11107 switch (name) { 11108 case IPV6_JOIN_GROUP: 11109 mcast_opt = B_FALSE; 11110 /* FALLTHRU */ 11111 case MCAST_JOIN_GROUP: 11112 fmode = MODE_IS_EXCLUDE; 11113 optfn = ip_opt_add_group_v6; 11114 break; 11115 11116 case IPV6_LEAVE_GROUP: 11117 mcast_opt = B_FALSE; 11118 /* FALLTHRU */ 11119 case MCAST_LEAVE_GROUP: 11120 fmode = MODE_IS_INCLUDE; 11121 optfn = ip_opt_delete_group_v6; 11122 break; 11123 } 11124 11125 if (mcast_opt) { 11126 struct sockaddr_in *sin; 11127 struct sockaddr_in6 *sin6; 11128 greqp = (struct group_req *)i1; 11129 if (greqp->gr_group.ss_family == AF_INET) { 11130 sin = (struct sockaddr_in *) 11131 &(greqp->gr_group); 11132 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11133 &groupv6); 11134 } else { 11135 sin6 = (struct sockaddr_in6 *) 11136 &(greqp->gr_group); 11137 groupv6 = sin6->sin6_addr; 11138 } 11139 ifindex = greqp->gr_interface; 11140 } else { 11141 ip_mreqp = (struct ipv6_mreq *)i1; 11142 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11143 ifindex = ip_mreqp->ipv6mr_interface; 11144 } 11145 /* 11146 * In the multirouting case, we need to replicate 11147 * the request on all interfaces that will take part 11148 * in replication. We do so because multirouting is 11149 * reflective, thus we will probably receive multi- 11150 * casts on those interfaces. 11151 * The ip_multirt_apply_membership_v6() succeeds if 11152 * the operation succeeds on at least one interface. 11153 */ 11154 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11155 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11156 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11157 if (ire != NULL) { 11158 if (ire->ire_flags & RTF_MULTIRT) { 11159 error = ip_multirt_apply_membership_v6( 11160 optfn, ire, connp, checkonly, 11161 &groupv6, fmode, &ipv6_all_zeros, 11162 first_mp); 11163 done = B_TRUE; 11164 } 11165 ire_refrele(ire); 11166 } 11167 if (!done) { 11168 error = optfn(connp, checkonly, &groupv6, 11169 ifindex, fmode, &ipv6_all_zeros, first_mp); 11170 } 11171 if (error) { 11172 /* 11173 * EINPROGRESS is a soft error, needs retry 11174 * so don't make *outlenp zero. 11175 */ 11176 if (error != EINPROGRESS) 11177 *outlenp = 0; 11178 return (error); 11179 } 11180 /* OK return - copy input buffer into output buffer */ 11181 if (invalp != outvalp) { 11182 /* don't trust bcopy for identical src/dst */ 11183 bcopy(invalp, outvalp, inlen); 11184 } 11185 *outlenp = inlen; 11186 return (0); 11187 } 11188 case MCAST_BLOCK_SOURCE: 11189 case MCAST_UNBLOCK_SOURCE: 11190 case MCAST_JOIN_SOURCE_GROUP: 11191 case MCAST_LEAVE_SOURCE_GROUP: { 11192 struct group_source_req *gsreqp; 11193 in6_addr_t v6grp, v6src; 11194 uint32_t ifindex; 11195 mcast_record_t fmode; 11196 ire_t *ire; 11197 boolean_t done = B_FALSE; 11198 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11199 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11200 11201 switch (name) { 11202 case MCAST_BLOCK_SOURCE: 11203 fmode = MODE_IS_EXCLUDE; 11204 optfn = ip_opt_add_group_v6; 11205 break; 11206 case MCAST_UNBLOCK_SOURCE: 11207 fmode = MODE_IS_EXCLUDE; 11208 optfn = ip_opt_delete_group_v6; 11209 break; 11210 case MCAST_JOIN_SOURCE_GROUP: 11211 fmode = MODE_IS_INCLUDE; 11212 optfn = ip_opt_add_group_v6; 11213 break; 11214 case MCAST_LEAVE_SOURCE_GROUP: 11215 fmode = MODE_IS_INCLUDE; 11216 optfn = ip_opt_delete_group_v6; 11217 break; 11218 } 11219 11220 gsreqp = (struct group_source_req *)i1; 11221 ifindex = gsreqp->gsr_interface; 11222 if (gsreqp->gsr_group.ss_family == AF_INET) { 11223 struct sockaddr_in *s; 11224 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11225 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11226 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11227 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11228 } else { 11229 struct sockaddr_in6 *s6; 11230 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11231 v6grp = s6->sin6_addr; 11232 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11233 v6src = s6->sin6_addr; 11234 } 11235 11236 /* 11237 * In the multirouting case, we need to replicate 11238 * the request as noted in the mcast cases above. 11239 */ 11240 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11241 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11242 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11243 if (ire != NULL) { 11244 if (ire->ire_flags & RTF_MULTIRT) { 11245 error = ip_multirt_apply_membership_v6( 11246 optfn, ire, connp, checkonly, 11247 &v6grp, fmode, &v6src, first_mp); 11248 done = B_TRUE; 11249 } 11250 ire_refrele(ire); 11251 } 11252 if (!done) { 11253 error = optfn(connp, checkonly, &v6grp, 11254 ifindex, fmode, &v6src, first_mp); 11255 } 11256 if (error != 0) { 11257 /* 11258 * EINPROGRESS is a soft error, needs retry 11259 * so don't make *outlenp zero. 11260 */ 11261 if (error != EINPROGRESS) 11262 *outlenp = 0; 11263 return (error); 11264 } 11265 /* OK return - copy input buffer into output buffer */ 11266 if (invalp != outvalp) { 11267 bcopy(invalp, outvalp, inlen); 11268 } 11269 *outlenp = inlen; 11270 return (0); 11271 } 11272 case IPV6_UNICAST_HOPS: 11273 /* Recorded in transport above IP */ 11274 break; /* goto sizeof (int) option return */ 11275 case IPV6_UNSPEC_SRC: 11276 /* Allow sending with a zero source address */ 11277 if (!checkonly) { 11278 mutex_enter(&connp->conn_lock); 11279 connp->conn_unspec_src = *i1 ? 1 : 0; 11280 mutex_exit(&connp->conn_lock); 11281 } 11282 break; /* goto sizeof (int) option return */ 11283 case IPV6_RECVPKTINFO: 11284 if (!checkonly) { 11285 mutex_enter(&connp->conn_lock); 11286 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11287 mutex_exit(&connp->conn_lock); 11288 } 11289 break; /* goto sizeof (int) option return */ 11290 case IPV6_RECVTCLASS: 11291 if (!checkonly) { 11292 if (*i1 < 0 || *i1 > 1) { 11293 return (EINVAL); 11294 } 11295 mutex_enter(&connp->conn_lock); 11296 connp->conn_ipv6_recvtclass = *i1; 11297 mutex_exit(&connp->conn_lock); 11298 } 11299 break; 11300 case IPV6_RECVPATHMTU: 11301 if (!checkonly) { 11302 if (*i1 < 0 || *i1 > 1) { 11303 return (EINVAL); 11304 } 11305 mutex_enter(&connp->conn_lock); 11306 connp->conn_ipv6_recvpathmtu = *i1; 11307 mutex_exit(&connp->conn_lock); 11308 } 11309 break; 11310 case IPV6_RECVHOPLIMIT: 11311 if (!checkonly) { 11312 mutex_enter(&connp->conn_lock); 11313 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11314 mutex_exit(&connp->conn_lock); 11315 } 11316 break; /* goto sizeof (int) option return */ 11317 case IPV6_RECVHOPOPTS: 11318 if (!checkonly) { 11319 mutex_enter(&connp->conn_lock); 11320 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11321 mutex_exit(&connp->conn_lock); 11322 } 11323 break; /* goto sizeof (int) option return */ 11324 case IPV6_RECVDSTOPTS: 11325 if (!checkonly) { 11326 mutex_enter(&connp->conn_lock); 11327 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11328 mutex_exit(&connp->conn_lock); 11329 } 11330 break; /* goto sizeof (int) option return */ 11331 case IPV6_RECVRTHDR: 11332 if (!checkonly) { 11333 mutex_enter(&connp->conn_lock); 11334 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11335 mutex_exit(&connp->conn_lock); 11336 } 11337 break; /* goto sizeof (int) option return */ 11338 case IPV6_RECVRTHDRDSTOPTS: 11339 if (!checkonly) { 11340 mutex_enter(&connp->conn_lock); 11341 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11342 mutex_exit(&connp->conn_lock); 11343 } 11344 break; /* goto sizeof (int) option return */ 11345 case IPV6_PKTINFO: 11346 if (inlen == 0) 11347 return (-EINVAL); /* clearing option */ 11348 error = ip6_set_pktinfo(cr, connp, 11349 (struct in6_pktinfo *)invalp); 11350 if (error != 0) 11351 *outlenp = 0; 11352 else 11353 *outlenp = inlen; 11354 return (error); 11355 case IPV6_NEXTHOP: { 11356 struct sockaddr_in6 *sin6; 11357 11358 /* Verify that the nexthop is reachable */ 11359 if (inlen == 0) 11360 return (-EINVAL); /* clearing option */ 11361 11362 sin6 = (struct sockaddr_in6 *)invalp; 11363 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11364 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11365 NULL, MATCH_IRE_DEFAULT, ipst); 11366 11367 if (ire == NULL) { 11368 *outlenp = 0; 11369 return (EHOSTUNREACH); 11370 } 11371 ire_refrele(ire); 11372 return (-EINVAL); 11373 } 11374 case IPV6_SEC_OPT: 11375 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11376 if (error != 0) { 11377 *outlenp = 0; 11378 return (error); 11379 } 11380 break; 11381 case IPV6_SRC_PREFERENCES: { 11382 /* 11383 * This is implemented strictly in the ip module 11384 * (here and in tcp_opt_*() to accomodate tcp 11385 * sockets). Modules above ip pass this option 11386 * down here since ip is the only one that needs to 11387 * be aware of source address preferences. 11388 * 11389 * This socket option only affects connected 11390 * sockets that haven't already bound to a specific 11391 * IPv6 address. In other words, sockets that 11392 * don't call bind() with an address other than the 11393 * unspecified address and that call connect(). 11394 * ip_bind_connected_v6() passes these preferences 11395 * to the ipif_select_source_v6() function. 11396 */ 11397 if (inlen != sizeof (uint32_t)) 11398 return (EINVAL); 11399 error = ip6_set_src_preferences(connp, 11400 *(uint32_t *)invalp); 11401 if (error != 0) { 11402 *outlenp = 0; 11403 return (error); 11404 } else { 11405 *outlenp = sizeof (uint32_t); 11406 } 11407 break; 11408 } 11409 case IPV6_V6ONLY: 11410 if (*i1 < 0 || *i1 > 1) { 11411 return (EINVAL); 11412 } 11413 mutex_enter(&connp->conn_lock); 11414 connp->conn_ipv6_v6only = *i1; 11415 mutex_exit(&connp->conn_lock); 11416 break; 11417 default: 11418 return (-EINVAL); 11419 } 11420 break; 11421 default: 11422 /* 11423 * "soft" error (negative) 11424 * option not handled at this level 11425 * Note: Do not modify *outlenp 11426 */ 11427 return (-EINVAL); 11428 } 11429 /* 11430 * Common case of return from an option that is sizeof (int) 11431 */ 11432 *(int *)outvalp = *i1; 11433 *outlenp = sizeof (int); 11434 return (0); 11435 } 11436 11437 /* 11438 * This routine gets default values of certain options whose default 11439 * values are maintained by protocol specific code 11440 */ 11441 /* ARGSUSED */ 11442 int 11443 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11444 { 11445 int *i1 = (int *)ptr; 11446 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11447 11448 switch (level) { 11449 case IPPROTO_IP: 11450 switch (name) { 11451 case IP_MULTICAST_TTL: 11452 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11453 return (sizeof (uchar_t)); 11454 case IP_MULTICAST_LOOP: 11455 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11456 return (sizeof (uchar_t)); 11457 default: 11458 return (-1); 11459 } 11460 case IPPROTO_IPV6: 11461 switch (name) { 11462 case IPV6_UNICAST_HOPS: 11463 *i1 = ipst->ips_ipv6_def_hops; 11464 return (sizeof (int)); 11465 case IPV6_MULTICAST_HOPS: 11466 *i1 = IP_DEFAULT_MULTICAST_TTL; 11467 return (sizeof (int)); 11468 case IPV6_MULTICAST_LOOP: 11469 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11470 return (sizeof (int)); 11471 case IPV6_V6ONLY: 11472 *i1 = 1; 11473 return (sizeof (int)); 11474 default: 11475 return (-1); 11476 } 11477 default: 11478 return (-1); 11479 } 11480 /* NOTREACHED */ 11481 } 11482 11483 /* 11484 * Given a destination address and a pointer to where to put the information 11485 * this routine fills in the mtuinfo. 11486 */ 11487 int 11488 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11489 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11490 { 11491 ire_t *ire; 11492 ip_stack_t *ipst = ns->netstack_ip; 11493 11494 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11495 return (-1); 11496 11497 bzero(mtuinfo, sizeof (*mtuinfo)); 11498 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11499 mtuinfo->ip6m_addr.sin6_port = port; 11500 mtuinfo->ip6m_addr.sin6_addr = *in6; 11501 11502 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11503 if (ire != NULL) { 11504 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11505 ire_refrele(ire); 11506 } else { 11507 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11508 } 11509 return (sizeof (struct ip6_mtuinfo)); 11510 } 11511 11512 /* 11513 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11514 * checking of cred and that ip_g_mrouter is set should be done and 11515 * isn't. This doesn't matter as the error checking is done properly for the 11516 * other MRT options coming in through ip_opt_set. 11517 */ 11518 int 11519 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11520 { 11521 conn_t *connp = Q_TO_CONN(q); 11522 ipsec_req_t *req = (ipsec_req_t *)ptr; 11523 11524 switch (level) { 11525 case IPPROTO_IP: 11526 switch (name) { 11527 case MRT_VERSION: 11528 case MRT_ASSERT: 11529 (void) ip_mrouter_get(name, q, ptr); 11530 return (sizeof (int)); 11531 case IP_SEC_OPT: 11532 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11533 case IP_NEXTHOP: 11534 if (connp->conn_nexthop_set) { 11535 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11536 return (sizeof (ipaddr_t)); 11537 } else 11538 return (0); 11539 case IP_RECVPKTINFO: 11540 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11541 return (sizeof (int)); 11542 default: 11543 break; 11544 } 11545 break; 11546 case IPPROTO_IPV6: 11547 switch (name) { 11548 case IPV6_SEC_OPT: 11549 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11550 case IPV6_SRC_PREFERENCES: { 11551 return (ip6_get_src_preferences(connp, 11552 (uint32_t *)ptr)); 11553 } 11554 case IPV6_V6ONLY: 11555 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11556 return (sizeof (int)); 11557 case IPV6_PATHMTU: 11558 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11559 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11560 default: 11561 break; 11562 } 11563 break; 11564 default: 11565 break; 11566 } 11567 return (-1); 11568 } 11569 /* Named Dispatch routine to get a current value out of our parameter table. */ 11570 /* ARGSUSED */ 11571 static int 11572 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11573 { 11574 ipparam_t *ippa = (ipparam_t *)cp; 11575 11576 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11577 return (0); 11578 } 11579 11580 /* ARGSUSED */ 11581 static int 11582 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11583 { 11584 11585 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11586 return (0); 11587 } 11588 11589 /* 11590 * Set ip{,6}_forwarding values. This means walking through all of the 11591 * ill's and toggling their forwarding values. 11592 */ 11593 /* ARGSUSED */ 11594 static int 11595 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11596 { 11597 long new_value; 11598 int *forwarding_value = (int *)cp; 11599 ill_t *ill; 11600 boolean_t isv6; 11601 ill_walk_context_t ctx; 11602 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11603 11604 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11605 11606 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11607 new_value < 0 || new_value > 1) { 11608 return (EINVAL); 11609 } 11610 11611 *forwarding_value = new_value; 11612 11613 /* 11614 * Regardless of the current value of ip_forwarding, set all per-ill 11615 * values of ip_forwarding to the value being set. 11616 * 11617 * Bring all the ill's up to date with the new global value. 11618 */ 11619 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11620 11621 if (isv6) 11622 ill = ILL_START_WALK_V6(&ctx, ipst); 11623 else 11624 ill = ILL_START_WALK_V4(&ctx, ipst); 11625 11626 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11627 (void) ill_forward_set(ill, new_value != 0); 11628 11629 rw_exit(&ipst->ips_ill_g_lock); 11630 return (0); 11631 } 11632 11633 /* 11634 * Walk through the param array specified registering each element with the 11635 * Named Dispatch handler. This is called only during init. So it is ok 11636 * not to acquire any locks 11637 */ 11638 static boolean_t 11639 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11640 ipndp_t *ipnd, size_t ipnd_cnt) 11641 { 11642 for (; ippa_cnt-- > 0; ippa++) { 11643 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11644 if (!nd_load(ndp, ippa->ip_param_name, 11645 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11646 nd_free(ndp); 11647 return (B_FALSE); 11648 } 11649 } 11650 } 11651 11652 for (; ipnd_cnt-- > 0; ipnd++) { 11653 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11654 if (!nd_load(ndp, ipnd->ip_ndp_name, 11655 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11656 ipnd->ip_ndp_data)) { 11657 nd_free(ndp); 11658 return (B_FALSE); 11659 } 11660 } 11661 } 11662 11663 return (B_TRUE); 11664 } 11665 11666 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11667 /* ARGSUSED */ 11668 static int 11669 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11670 { 11671 long new_value; 11672 ipparam_t *ippa = (ipparam_t *)cp; 11673 11674 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11675 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11676 return (EINVAL); 11677 } 11678 ippa->ip_param_value = new_value; 11679 return (0); 11680 } 11681 11682 /* 11683 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11684 * When an ipf is passed here for the first time, if 11685 * we already have in-order fragments on the queue, we convert from the fast- 11686 * path reassembly scheme to the hard-case scheme. From then on, additional 11687 * fragments are reassembled here. We keep track of the start and end offsets 11688 * of each piece, and the number of holes in the chain. When the hole count 11689 * goes to zero, we are done! 11690 * 11691 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11692 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11693 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11694 * after the call to ip_reassemble(). 11695 */ 11696 int 11697 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11698 size_t msg_len) 11699 { 11700 uint_t end; 11701 mblk_t *next_mp; 11702 mblk_t *mp1; 11703 uint_t offset; 11704 boolean_t incr_dups = B_TRUE; 11705 boolean_t offset_zero_seen = B_FALSE; 11706 boolean_t pkt_boundary_checked = B_FALSE; 11707 11708 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11709 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11710 11711 /* Add in byte count */ 11712 ipf->ipf_count += msg_len; 11713 if (ipf->ipf_end) { 11714 /* 11715 * We were part way through in-order reassembly, but now there 11716 * is a hole. We walk through messages already queued, and 11717 * mark them for hard case reassembly. We know that up till 11718 * now they were in order starting from offset zero. 11719 */ 11720 offset = 0; 11721 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11722 IP_REASS_SET_START(mp1, offset); 11723 if (offset == 0) { 11724 ASSERT(ipf->ipf_nf_hdr_len != 0); 11725 offset = -ipf->ipf_nf_hdr_len; 11726 } 11727 offset += mp1->b_wptr - mp1->b_rptr; 11728 IP_REASS_SET_END(mp1, offset); 11729 } 11730 /* One hole at the end. */ 11731 ipf->ipf_hole_cnt = 1; 11732 /* Brand it as a hard case, forever. */ 11733 ipf->ipf_end = 0; 11734 } 11735 /* Walk through all the new pieces. */ 11736 do { 11737 end = start + (mp->b_wptr - mp->b_rptr); 11738 /* 11739 * If start is 0, decrease 'end' only for the first mblk of 11740 * the fragment. Otherwise 'end' can get wrong value in the 11741 * second pass of the loop if first mblk is exactly the 11742 * size of ipf_nf_hdr_len. 11743 */ 11744 if (start == 0 && !offset_zero_seen) { 11745 /* First segment */ 11746 ASSERT(ipf->ipf_nf_hdr_len != 0); 11747 end -= ipf->ipf_nf_hdr_len; 11748 offset_zero_seen = B_TRUE; 11749 } 11750 next_mp = mp->b_cont; 11751 /* 11752 * We are checking to see if there is any interesing data 11753 * to process. If there isn't and the mblk isn't the 11754 * one which carries the unfragmentable header then we 11755 * drop it. It's possible to have just the unfragmentable 11756 * header come through without any data. That needs to be 11757 * saved. 11758 * 11759 * If the assert at the top of this function holds then the 11760 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11761 * is infrequently traveled enough that the test is left in 11762 * to protect against future code changes which break that 11763 * invariant. 11764 */ 11765 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11766 /* Empty. Blast it. */ 11767 IP_REASS_SET_START(mp, 0); 11768 IP_REASS_SET_END(mp, 0); 11769 /* 11770 * If the ipf points to the mblk we are about to free, 11771 * update ipf to point to the next mblk (or NULL 11772 * if none). 11773 */ 11774 if (ipf->ipf_mp->b_cont == mp) 11775 ipf->ipf_mp->b_cont = next_mp; 11776 freeb(mp); 11777 continue; 11778 } 11779 mp->b_cont = NULL; 11780 IP_REASS_SET_START(mp, start); 11781 IP_REASS_SET_END(mp, end); 11782 if (!ipf->ipf_tail_mp) { 11783 ipf->ipf_tail_mp = mp; 11784 ipf->ipf_mp->b_cont = mp; 11785 if (start == 0 || !more) { 11786 ipf->ipf_hole_cnt = 1; 11787 /* 11788 * if the first fragment comes in more than one 11789 * mblk, this loop will be executed for each 11790 * mblk. Need to adjust hole count so exiting 11791 * this routine will leave hole count at 1. 11792 */ 11793 if (next_mp) 11794 ipf->ipf_hole_cnt++; 11795 } else 11796 ipf->ipf_hole_cnt = 2; 11797 continue; 11798 } else if (ipf->ipf_last_frag_seen && !more && 11799 !pkt_boundary_checked) { 11800 /* 11801 * We check datagram boundary only if this fragment 11802 * claims to be the last fragment and we have seen a 11803 * last fragment in the past too. We do this only 11804 * once for a given fragment. 11805 * 11806 * start cannot be 0 here as fragments with start=0 11807 * and MF=0 gets handled as a complete packet. These 11808 * fragments should not reach here. 11809 */ 11810 11811 if (start + msgdsize(mp) != 11812 IP_REASS_END(ipf->ipf_tail_mp)) { 11813 /* 11814 * We have two fragments both of which claim 11815 * to be the last fragment but gives conflicting 11816 * information about the whole datagram size. 11817 * Something fishy is going on. Drop the 11818 * fragment and free up the reassembly list. 11819 */ 11820 return (IP_REASS_FAILED); 11821 } 11822 11823 /* 11824 * We shouldn't come to this code block again for this 11825 * particular fragment. 11826 */ 11827 pkt_boundary_checked = B_TRUE; 11828 } 11829 11830 /* New stuff at or beyond tail? */ 11831 offset = IP_REASS_END(ipf->ipf_tail_mp); 11832 if (start >= offset) { 11833 if (ipf->ipf_last_frag_seen) { 11834 /* current fragment is beyond last fragment */ 11835 return (IP_REASS_FAILED); 11836 } 11837 /* Link it on end. */ 11838 ipf->ipf_tail_mp->b_cont = mp; 11839 ipf->ipf_tail_mp = mp; 11840 if (more) { 11841 if (start != offset) 11842 ipf->ipf_hole_cnt++; 11843 } else if (start == offset && next_mp == NULL) 11844 ipf->ipf_hole_cnt--; 11845 continue; 11846 } 11847 mp1 = ipf->ipf_mp->b_cont; 11848 offset = IP_REASS_START(mp1); 11849 /* New stuff at the front? */ 11850 if (start < offset) { 11851 if (start == 0) { 11852 if (end >= offset) { 11853 /* Nailed the hole at the begining. */ 11854 ipf->ipf_hole_cnt--; 11855 } 11856 } else if (end < offset) { 11857 /* 11858 * A hole, stuff, and a hole where there used 11859 * to be just a hole. 11860 */ 11861 ipf->ipf_hole_cnt++; 11862 } 11863 mp->b_cont = mp1; 11864 /* Check for overlap. */ 11865 while (end > offset) { 11866 if (end < IP_REASS_END(mp1)) { 11867 mp->b_wptr -= end - offset; 11868 IP_REASS_SET_END(mp, offset); 11869 BUMP_MIB(ill->ill_ip_mib, 11870 ipIfStatsReasmPartDups); 11871 break; 11872 } 11873 /* Did we cover another hole? */ 11874 if ((mp1->b_cont && 11875 IP_REASS_END(mp1) != 11876 IP_REASS_START(mp1->b_cont) && 11877 end >= IP_REASS_START(mp1->b_cont)) || 11878 (!ipf->ipf_last_frag_seen && !more)) { 11879 ipf->ipf_hole_cnt--; 11880 } 11881 /* Clip out mp1. */ 11882 if ((mp->b_cont = mp1->b_cont) == NULL) { 11883 /* 11884 * After clipping out mp1, this guy 11885 * is now hanging off the end. 11886 */ 11887 ipf->ipf_tail_mp = mp; 11888 } 11889 IP_REASS_SET_START(mp1, 0); 11890 IP_REASS_SET_END(mp1, 0); 11891 /* Subtract byte count */ 11892 ipf->ipf_count -= mp1->b_datap->db_lim - 11893 mp1->b_datap->db_base; 11894 freeb(mp1); 11895 BUMP_MIB(ill->ill_ip_mib, 11896 ipIfStatsReasmPartDups); 11897 mp1 = mp->b_cont; 11898 if (!mp1) 11899 break; 11900 offset = IP_REASS_START(mp1); 11901 } 11902 ipf->ipf_mp->b_cont = mp; 11903 continue; 11904 } 11905 /* 11906 * The new piece starts somewhere between the start of the head 11907 * and before the end of the tail. 11908 */ 11909 for (; mp1; mp1 = mp1->b_cont) { 11910 offset = IP_REASS_END(mp1); 11911 if (start < offset) { 11912 if (end <= offset) { 11913 /* Nothing new. */ 11914 IP_REASS_SET_START(mp, 0); 11915 IP_REASS_SET_END(mp, 0); 11916 /* Subtract byte count */ 11917 ipf->ipf_count -= mp->b_datap->db_lim - 11918 mp->b_datap->db_base; 11919 if (incr_dups) { 11920 ipf->ipf_num_dups++; 11921 incr_dups = B_FALSE; 11922 } 11923 freeb(mp); 11924 BUMP_MIB(ill->ill_ip_mib, 11925 ipIfStatsReasmDuplicates); 11926 break; 11927 } 11928 /* 11929 * Trim redundant stuff off beginning of new 11930 * piece. 11931 */ 11932 IP_REASS_SET_START(mp, offset); 11933 mp->b_rptr += offset - start; 11934 BUMP_MIB(ill->ill_ip_mib, 11935 ipIfStatsReasmPartDups); 11936 start = offset; 11937 if (!mp1->b_cont) { 11938 /* 11939 * After trimming, this guy is now 11940 * hanging off the end. 11941 */ 11942 mp1->b_cont = mp; 11943 ipf->ipf_tail_mp = mp; 11944 if (!more) { 11945 ipf->ipf_hole_cnt--; 11946 } 11947 break; 11948 } 11949 } 11950 if (start >= IP_REASS_START(mp1->b_cont)) 11951 continue; 11952 /* Fill a hole */ 11953 if (start > offset) 11954 ipf->ipf_hole_cnt++; 11955 mp->b_cont = mp1->b_cont; 11956 mp1->b_cont = mp; 11957 mp1 = mp->b_cont; 11958 offset = IP_REASS_START(mp1); 11959 if (end >= offset) { 11960 ipf->ipf_hole_cnt--; 11961 /* Check for overlap. */ 11962 while (end > offset) { 11963 if (end < IP_REASS_END(mp1)) { 11964 mp->b_wptr -= end - offset; 11965 IP_REASS_SET_END(mp, offset); 11966 /* 11967 * TODO we might bump 11968 * this up twice if there is 11969 * overlap at both ends. 11970 */ 11971 BUMP_MIB(ill->ill_ip_mib, 11972 ipIfStatsReasmPartDups); 11973 break; 11974 } 11975 /* Did we cover another hole? */ 11976 if ((mp1->b_cont && 11977 IP_REASS_END(mp1) 11978 != IP_REASS_START(mp1->b_cont) && 11979 end >= 11980 IP_REASS_START(mp1->b_cont)) || 11981 (!ipf->ipf_last_frag_seen && 11982 !more)) { 11983 ipf->ipf_hole_cnt--; 11984 } 11985 /* Clip out mp1. */ 11986 if ((mp->b_cont = mp1->b_cont) == 11987 NULL) { 11988 /* 11989 * After clipping out mp1, 11990 * this guy is now hanging 11991 * off the end. 11992 */ 11993 ipf->ipf_tail_mp = mp; 11994 } 11995 IP_REASS_SET_START(mp1, 0); 11996 IP_REASS_SET_END(mp1, 0); 11997 /* Subtract byte count */ 11998 ipf->ipf_count -= 11999 mp1->b_datap->db_lim - 12000 mp1->b_datap->db_base; 12001 freeb(mp1); 12002 BUMP_MIB(ill->ill_ip_mib, 12003 ipIfStatsReasmPartDups); 12004 mp1 = mp->b_cont; 12005 if (!mp1) 12006 break; 12007 offset = IP_REASS_START(mp1); 12008 } 12009 } 12010 break; 12011 } 12012 } while (start = end, mp = next_mp); 12013 12014 /* Fragment just processed could be the last one. Remember this fact */ 12015 if (!more) 12016 ipf->ipf_last_frag_seen = B_TRUE; 12017 12018 /* Still got holes? */ 12019 if (ipf->ipf_hole_cnt) 12020 return (IP_REASS_PARTIAL); 12021 /* Clean up overloaded fields to avoid upstream disasters. */ 12022 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12023 IP_REASS_SET_START(mp1, 0); 12024 IP_REASS_SET_END(mp1, 0); 12025 } 12026 return (IP_REASS_COMPLETE); 12027 } 12028 12029 /* 12030 * ipsec processing for the fast path, used for input UDP Packets 12031 * Returns true if ready for passup to UDP. 12032 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12033 * was an ESP-in-UDP packet, etc.). 12034 */ 12035 static boolean_t 12036 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12037 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12038 { 12039 uint32_t ill_index; 12040 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12041 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12042 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12043 udp_t *udp = connp->conn_udp; 12044 12045 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12046 /* The ill_index of the incoming ILL */ 12047 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12048 12049 /* pass packet up to the transport */ 12050 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12051 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12052 NULL, mctl_present); 12053 if (*first_mpp == NULL) { 12054 return (B_FALSE); 12055 } 12056 } 12057 12058 /* Initiate IPPF processing for fastpath UDP */ 12059 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12060 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12061 if (*mpp == NULL) { 12062 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12063 "deferred/dropped during IPPF processing\n")); 12064 return (B_FALSE); 12065 } 12066 } 12067 /* 12068 * Remove 0-spi if it's 0, or move everything behind 12069 * the UDP header over it and forward to ESP via 12070 * ip_proto_input(). 12071 */ 12072 if (udp->udp_nat_t_endpoint) { 12073 if (mctl_present) { 12074 /* mctl_present *shouldn't* happen. */ 12075 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12076 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12077 &ipss->ipsec_dropper); 12078 *first_mpp = NULL; 12079 return (B_FALSE); 12080 } 12081 12082 /* "ill" is "recv_ill" in actuality. */ 12083 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12084 return (B_FALSE); 12085 12086 /* Else continue like a normal UDP packet. */ 12087 } 12088 12089 /* 12090 * We make the checks as below since we are in the fast path 12091 * and want to minimize the number of checks if the IP_RECVIF and/or 12092 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12093 */ 12094 if (connp->conn_recvif || connp->conn_recvslla || 12095 connp->conn_ip_recvpktinfo) { 12096 if (connp->conn_recvif) { 12097 in_flags = IPF_RECVIF; 12098 } 12099 /* 12100 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12101 * so the flag passed to ip_add_info is based on IP version 12102 * of connp. 12103 */ 12104 if (connp->conn_ip_recvpktinfo) { 12105 if (connp->conn_af_isv6) { 12106 /* 12107 * V6 only needs index 12108 */ 12109 in_flags |= IPF_RECVIF; 12110 } else { 12111 /* 12112 * V4 needs index + matching address. 12113 */ 12114 in_flags |= IPF_RECVADDR; 12115 } 12116 } 12117 if (connp->conn_recvslla) { 12118 in_flags |= IPF_RECVSLLA; 12119 } 12120 /* 12121 * since in_flags are being set ill will be 12122 * referenced in ip_add_info, so it better not 12123 * be NULL. 12124 */ 12125 /* 12126 * the actual data will be contained in b_cont 12127 * upon successful return of the following call. 12128 * If the call fails then the original mblk is 12129 * returned. 12130 */ 12131 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12132 ipst); 12133 } 12134 12135 return (B_TRUE); 12136 } 12137 12138 /* 12139 * Fragmentation reassembly. Each ILL has a hash table for 12140 * queuing packets undergoing reassembly for all IPIFs 12141 * associated with the ILL. The hash is based on the packet 12142 * IP ident field. The ILL frag hash table was allocated 12143 * as a timer block at the time the ILL was created. Whenever 12144 * there is anything on the reassembly queue, the timer will 12145 * be running. Returns B_TRUE if successful else B_FALSE; 12146 * frees mp on failure. 12147 */ 12148 static boolean_t 12149 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12150 uint32_t *cksum_val, uint16_t *cksum_flags) 12151 { 12152 uint32_t frag_offset_flags; 12153 mblk_t *mp = *mpp; 12154 mblk_t *t_mp; 12155 ipaddr_t dst; 12156 uint8_t proto = ipha->ipha_protocol; 12157 uint32_t sum_val; 12158 uint16_t sum_flags; 12159 ipf_t *ipf; 12160 ipf_t **ipfp; 12161 ipfb_t *ipfb; 12162 uint16_t ident; 12163 uint32_t offset; 12164 ipaddr_t src; 12165 uint_t hdr_length; 12166 uint32_t end; 12167 mblk_t *mp1; 12168 mblk_t *tail_mp; 12169 size_t count; 12170 size_t msg_len; 12171 uint8_t ecn_info = 0; 12172 uint32_t packet_size; 12173 boolean_t pruned = B_FALSE; 12174 ip_stack_t *ipst = ill->ill_ipst; 12175 12176 if (cksum_val != NULL) 12177 *cksum_val = 0; 12178 if (cksum_flags != NULL) 12179 *cksum_flags = 0; 12180 12181 /* 12182 * Drop the fragmented as early as possible, if 12183 * we don't have resource(s) to re-assemble. 12184 */ 12185 if (ipst->ips_ip_reass_queue_bytes == 0) { 12186 freemsg(mp); 12187 return (B_FALSE); 12188 } 12189 12190 /* Check for fragmentation offset; return if there's none */ 12191 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12192 (IPH_MF | IPH_OFFSET)) == 0) 12193 return (B_TRUE); 12194 12195 /* 12196 * We utilize hardware computed checksum info only for UDP since 12197 * IP fragmentation is a normal occurrence for the protocol. In 12198 * addition, checksum offload support for IP fragments carrying 12199 * UDP payload is commonly implemented across network adapters. 12200 */ 12201 ASSERT(recv_ill != NULL); 12202 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12203 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12204 mblk_t *mp1 = mp->b_cont; 12205 int32_t len; 12206 12207 /* Record checksum information from the packet */ 12208 sum_val = (uint32_t)DB_CKSUM16(mp); 12209 sum_flags = DB_CKSUMFLAGS(mp); 12210 12211 /* IP payload offset from beginning of mblk */ 12212 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12213 12214 if ((sum_flags & HCK_PARTIALCKSUM) && 12215 (mp1 == NULL || mp1->b_cont == NULL) && 12216 offset >= DB_CKSUMSTART(mp) && 12217 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12218 uint32_t adj; 12219 /* 12220 * Partial checksum has been calculated by hardware 12221 * and attached to the packet; in addition, any 12222 * prepended extraneous data is even byte aligned. 12223 * If any such data exists, we adjust the checksum; 12224 * this would also handle any postpended data. 12225 */ 12226 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12227 mp, mp1, len, adj); 12228 12229 /* One's complement subtract extraneous checksum */ 12230 if (adj >= sum_val) 12231 sum_val = ~(adj - sum_val) & 0xFFFF; 12232 else 12233 sum_val -= adj; 12234 } 12235 } else { 12236 sum_val = 0; 12237 sum_flags = 0; 12238 } 12239 12240 /* Clear hardware checksumming flag */ 12241 DB_CKSUMFLAGS(mp) = 0; 12242 12243 ident = ipha->ipha_ident; 12244 offset = (frag_offset_flags << 3) & 0xFFFF; 12245 src = ipha->ipha_src; 12246 dst = ipha->ipha_dst; 12247 hdr_length = IPH_HDR_LENGTH(ipha); 12248 end = ntohs(ipha->ipha_length) - hdr_length; 12249 12250 /* If end == 0 then we have a packet with no data, so just free it */ 12251 if (end == 0) { 12252 freemsg(mp); 12253 return (B_FALSE); 12254 } 12255 12256 /* Record the ECN field info. */ 12257 ecn_info = (ipha->ipha_type_of_service & 0x3); 12258 if (offset != 0) { 12259 /* 12260 * If this isn't the first piece, strip the header, and 12261 * add the offset to the end value. 12262 */ 12263 mp->b_rptr += hdr_length; 12264 end += offset; 12265 } 12266 12267 msg_len = MBLKSIZE(mp); 12268 tail_mp = mp; 12269 while (tail_mp->b_cont != NULL) { 12270 tail_mp = tail_mp->b_cont; 12271 msg_len += MBLKSIZE(tail_mp); 12272 } 12273 12274 /* If the reassembly list for this ILL will get too big, prune it */ 12275 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12276 ipst->ips_ip_reass_queue_bytes) { 12277 ill_frag_prune(ill, 12278 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12279 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12280 pruned = B_TRUE; 12281 } 12282 12283 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12284 mutex_enter(&ipfb->ipfb_lock); 12285 12286 ipfp = &ipfb->ipfb_ipf; 12287 /* Try to find an existing fragment queue for this packet. */ 12288 for (;;) { 12289 ipf = ipfp[0]; 12290 if (ipf != NULL) { 12291 /* 12292 * It has to match on ident and src/dst address. 12293 */ 12294 if (ipf->ipf_ident == ident && 12295 ipf->ipf_src == src && 12296 ipf->ipf_dst == dst && 12297 ipf->ipf_protocol == proto) { 12298 /* 12299 * If we have received too many 12300 * duplicate fragments for this packet 12301 * free it. 12302 */ 12303 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12304 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12305 freemsg(mp); 12306 mutex_exit(&ipfb->ipfb_lock); 12307 return (B_FALSE); 12308 } 12309 /* Found it. */ 12310 break; 12311 } 12312 ipfp = &ipf->ipf_hash_next; 12313 continue; 12314 } 12315 12316 /* 12317 * If we pruned the list, do we want to store this new 12318 * fragment?. We apply an optimization here based on the 12319 * fact that most fragments will be received in order. 12320 * So if the offset of this incoming fragment is zero, 12321 * it is the first fragment of a new packet. We will 12322 * keep it. Otherwise drop the fragment, as we have 12323 * probably pruned the packet already (since the 12324 * packet cannot be found). 12325 */ 12326 if (pruned && offset != 0) { 12327 mutex_exit(&ipfb->ipfb_lock); 12328 freemsg(mp); 12329 return (B_FALSE); 12330 } 12331 12332 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12333 /* 12334 * Too many fragmented packets in this hash 12335 * bucket. Free the oldest. 12336 */ 12337 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12338 } 12339 12340 /* New guy. Allocate a frag message. */ 12341 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12342 if (mp1 == NULL) { 12343 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12344 freemsg(mp); 12345 reass_done: 12346 mutex_exit(&ipfb->ipfb_lock); 12347 return (B_FALSE); 12348 } 12349 12350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12351 mp1->b_cont = mp; 12352 12353 /* Initialize the fragment header. */ 12354 ipf = (ipf_t *)mp1->b_rptr; 12355 ipf->ipf_mp = mp1; 12356 ipf->ipf_ptphn = ipfp; 12357 ipfp[0] = ipf; 12358 ipf->ipf_hash_next = NULL; 12359 ipf->ipf_ident = ident; 12360 ipf->ipf_protocol = proto; 12361 ipf->ipf_src = src; 12362 ipf->ipf_dst = dst; 12363 ipf->ipf_nf_hdr_len = 0; 12364 /* Record reassembly start time. */ 12365 ipf->ipf_timestamp = gethrestime_sec(); 12366 /* Record ipf generation and account for frag header */ 12367 ipf->ipf_gen = ill->ill_ipf_gen++; 12368 ipf->ipf_count = MBLKSIZE(mp1); 12369 ipf->ipf_last_frag_seen = B_FALSE; 12370 ipf->ipf_ecn = ecn_info; 12371 ipf->ipf_num_dups = 0; 12372 ipfb->ipfb_frag_pkts++; 12373 ipf->ipf_checksum = 0; 12374 ipf->ipf_checksum_flags = 0; 12375 12376 /* Store checksum value in fragment header */ 12377 if (sum_flags != 0) { 12378 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12379 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12380 ipf->ipf_checksum = sum_val; 12381 ipf->ipf_checksum_flags = sum_flags; 12382 } 12383 12384 /* 12385 * We handle reassembly two ways. In the easy case, 12386 * where all the fragments show up in order, we do 12387 * minimal bookkeeping, and just clip new pieces on 12388 * the end. If we ever see a hole, then we go off 12389 * to ip_reassemble which has to mark the pieces and 12390 * keep track of the number of holes, etc. Obviously, 12391 * the point of having both mechanisms is so we can 12392 * handle the easy case as efficiently as possible. 12393 */ 12394 if (offset == 0) { 12395 /* Easy case, in-order reassembly so far. */ 12396 ipf->ipf_count += msg_len; 12397 ipf->ipf_tail_mp = tail_mp; 12398 /* 12399 * Keep track of next expected offset in 12400 * ipf_end. 12401 */ 12402 ipf->ipf_end = end; 12403 ipf->ipf_nf_hdr_len = hdr_length; 12404 } else { 12405 /* Hard case, hole at the beginning. */ 12406 ipf->ipf_tail_mp = NULL; 12407 /* 12408 * ipf_end == 0 means that we have given up 12409 * on easy reassembly. 12410 */ 12411 ipf->ipf_end = 0; 12412 12413 /* Forget checksum offload from now on */ 12414 ipf->ipf_checksum_flags = 0; 12415 12416 /* 12417 * ipf_hole_cnt is set by ip_reassemble. 12418 * ipf_count is updated by ip_reassemble. 12419 * No need to check for return value here 12420 * as we don't expect reassembly to complete 12421 * or fail for the first fragment itself. 12422 */ 12423 (void) ip_reassemble(mp, ipf, 12424 (frag_offset_flags & IPH_OFFSET) << 3, 12425 (frag_offset_flags & IPH_MF), ill, msg_len); 12426 } 12427 /* Update per ipfb and ill byte counts */ 12428 ipfb->ipfb_count += ipf->ipf_count; 12429 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12430 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12431 /* If the frag timer wasn't already going, start it. */ 12432 mutex_enter(&ill->ill_lock); 12433 ill_frag_timer_start(ill); 12434 mutex_exit(&ill->ill_lock); 12435 goto reass_done; 12436 } 12437 12438 /* 12439 * If the packet's flag has changed (it could be coming up 12440 * from an interface different than the previous, therefore 12441 * possibly different checksum capability), then forget about 12442 * any stored checksum states. Otherwise add the value to 12443 * the existing one stored in the fragment header. 12444 */ 12445 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12446 sum_val += ipf->ipf_checksum; 12447 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12448 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12449 ipf->ipf_checksum = sum_val; 12450 } else if (ipf->ipf_checksum_flags != 0) { 12451 /* Forget checksum offload from now on */ 12452 ipf->ipf_checksum_flags = 0; 12453 } 12454 12455 /* 12456 * We have a new piece of a datagram which is already being 12457 * reassembled. Update the ECN info if all IP fragments 12458 * are ECN capable. If there is one which is not, clear 12459 * all the info. If there is at least one which has CE 12460 * code point, IP needs to report that up to transport. 12461 */ 12462 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12463 if (ecn_info == IPH_ECN_CE) 12464 ipf->ipf_ecn = IPH_ECN_CE; 12465 } else { 12466 ipf->ipf_ecn = IPH_ECN_NECT; 12467 } 12468 if (offset && ipf->ipf_end == offset) { 12469 /* The new fragment fits at the end */ 12470 ipf->ipf_tail_mp->b_cont = mp; 12471 /* Update the byte count */ 12472 ipf->ipf_count += msg_len; 12473 /* Update per ipfb and ill byte counts */ 12474 ipfb->ipfb_count += msg_len; 12475 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12476 atomic_add_32(&ill->ill_frag_count, msg_len); 12477 if (frag_offset_flags & IPH_MF) { 12478 /* More to come. */ 12479 ipf->ipf_end = end; 12480 ipf->ipf_tail_mp = tail_mp; 12481 goto reass_done; 12482 } 12483 } else { 12484 /* Go do the hard cases. */ 12485 int ret; 12486 12487 if (offset == 0) 12488 ipf->ipf_nf_hdr_len = hdr_length; 12489 12490 /* Save current byte count */ 12491 count = ipf->ipf_count; 12492 ret = ip_reassemble(mp, ipf, 12493 (frag_offset_flags & IPH_OFFSET) << 3, 12494 (frag_offset_flags & IPH_MF), ill, msg_len); 12495 /* Count of bytes added and subtracted (freeb()ed) */ 12496 count = ipf->ipf_count - count; 12497 if (count) { 12498 /* Update per ipfb and ill byte counts */ 12499 ipfb->ipfb_count += count; 12500 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12501 atomic_add_32(&ill->ill_frag_count, count); 12502 } 12503 if (ret == IP_REASS_PARTIAL) { 12504 goto reass_done; 12505 } else if (ret == IP_REASS_FAILED) { 12506 /* Reassembly failed. Free up all resources */ 12507 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12508 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12509 IP_REASS_SET_START(t_mp, 0); 12510 IP_REASS_SET_END(t_mp, 0); 12511 } 12512 freemsg(mp); 12513 goto reass_done; 12514 } 12515 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12516 } 12517 /* 12518 * We have completed reassembly. Unhook the frag header from 12519 * the reassembly list. 12520 * 12521 * Before we free the frag header, record the ECN info 12522 * to report back to the transport. 12523 */ 12524 ecn_info = ipf->ipf_ecn; 12525 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12526 ipfp = ipf->ipf_ptphn; 12527 12528 /* We need to supply these to caller */ 12529 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12530 sum_val = ipf->ipf_checksum; 12531 else 12532 sum_val = 0; 12533 12534 mp1 = ipf->ipf_mp; 12535 count = ipf->ipf_count; 12536 ipf = ipf->ipf_hash_next; 12537 if (ipf != NULL) 12538 ipf->ipf_ptphn = ipfp; 12539 ipfp[0] = ipf; 12540 atomic_add_32(&ill->ill_frag_count, -count); 12541 ASSERT(ipfb->ipfb_count >= count); 12542 ipfb->ipfb_count -= count; 12543 ipfb->ipfb_frag_pkts--; 12544 mutex_exit(&ipfb->ipfb_lock); 12545 /* Ditch the frag header. */ 12546 mp = mp1->b_cont; 12547 12548 freeb(mp1); 12549 12550 /* Restore original IP length in header. */ 12551 packet_size = (uint32_t)msgdsize(mp); 12552 if (packet_size > IP_MAXPACKET) { 12553 freemsg(mp); 12554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12555 return (B_FALSE); 12556 } 12557 12558 if (DB_REF(mp) > 1) { 12559 mblk_t *mp2 = copymsg(mp); 12560 12561 freemsg(mp); 12562 if (mp2 == NULL) { 12563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12564 return (B_FALSE); 12565 } 12566 mp = mp2; 12567 } 12568 ipha = (ipha_t *)mp->b_rptr; 12569 12570 ipha->ipha_length = htons((uint16_t)packet_size); 12571 /* We're now complete, zip the frag state */ 12572 ipha->ipha_fragment_offset_and_flags = 0; 12573 /* Record the ECN info. */ 12574 ipha->ipha_type_of_service &= 0xFC; 12575 ipha->ipha_type_of_service |= ecn_info; 12576 *mpp = mp; 12577 12578 /* Reassembly is successful; return checksum information if needed */ 12579 if (cksum_val != NULL) 12580 *cksum_val = sum_val; 12581 if (cksum_flags != NULL) 12582 *cksum_flags = sum_flags; 12583 12584 return (B_TRUE); 12585 } 12586 12587 /* 12588 * Perform ip header check sum update local options. 12589 * return B_TRUE if all is well, else return B_FALSE and release 12590 * the mp. caller is responsible for decrementing ire ref cnt. 12591 */ 12592 static boolean_t 12593 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12594 ip_stack_t *ipst) 12595 { 12596 mblk_t *first_mp; 12597 boolean_t mctl_present; 12598 uint16_t sum; 12599 12600 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12601 /* 12602 * Don't do the checksum if it has gone through AH/ESP 12603 * processing. 12604 */ 12605 if (!mctl_present) { 12606 sum = ip_csum_hdr(ipha); 12607 if (sum != 0) { 12608 if (ill != NULL) { 12609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12610 } else { 12611 BUMP_MIB(&ipst->ips_ip_mib, 12612 ipIfStatsInCksumErrs); 12613 } 12614 freemsg(first_mp); 12615 return (B_FALSE); 12616 } 12617 } 12618 12619 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12620 if (mctl_present) 12621 freeb(first_mp); 12622 return (B_FALSE); 12623 } 12624 12625 return (B_TRUE); 12626 } 12627 12628 /* 12629 * All udp packet are delivered to the local host via this routine. 12630 */ 12631 void 12632 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12633 ill_t *recv_ill) 12634 { 12635 uint32_t sum; 12636 uint32_t u1; 12637 boolean_t mctl_present; 12638 conn_t *connp; 12639 mblk_t *first_mp; 12640 uint16_t *up; 12641 ill_t *ill = (ill_t *)q->q_ptr; 12642 uint16_t reass_hck_flags = 0; 12643 ip_stack_t *ipst; 12644 12645 ASSERT(recv_ill != NULL); 12646 ipst = recv_ill->ill_ipst; 12647 12648 #define rptr ((uchar_t *)ipha) 12649 12650 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12651 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12652 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12653 ASSERT(ill != NULL); 12654 12655 /* 12656 * FAST PATH for udp packets 12657 */ 12658 12659 /* u1 is # words of IP options */ 12660 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12661 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12662 12663 /* IP options present */ 12664 if (u1 != 0) 12665 goto ipoptions; 12666 12667 /* Check the IP header checksum. */ 12668 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12669 /* Clear the IP header h/w cksum flag */ 12670 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12671 } else if (!mctl_present) { 12672 /* 12673 * Don't verify header checksum if this packet is coming 12674 * back from AH/ESP as we already did it. 12675 */ 12676 #define uph ((uint16_t *)ipha) 12677 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12678 uph[6] + uph[7] + uph[8] + uph[9]; 12679 #undef uph 12680 /* finish doing IP checksum */ 12681 sum = (sum & 0xFFFF) + (sum >> 16); 12682 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12683 if (sum != 0 && sum != 0xFFFF) { 12684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12685 freemsg(first_mp); 12686 return; 12687 } 12688 } 12689 12690 /* 12691 * Count for SNMP of inbound packets for ire. 12692 * if mctl is present this might be a secure packet and 12693 * has already been counted for in ip_proto_input(). 12694 */ 12695 if (!mctl_present) { 12696 UPDATE_IB_PKT_COUNT(ire); 12697 ire->ire_last_used_time = lbolt; 12698 } 12699 12700 /* packet part of fragmented IP packet? */ 12701 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12702 if (u1 & (IPH_MF | IPH_OFFSET)) { 12703 goto fragmented; 12704 } 12705 12706 /* u1 = IP header length (20 bytes) */ 12707 u1 = IP_SIMPLE_HDR_LENGTH; 12708 12709 /* packet does not contain complete IP & UDP headers */ 12710 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12711 goto udppullup; 12712 12713 /* up points to UDP header */ 12714 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12715 #define iphs ((uint16_t *)ipha) 12716 12717 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12718 if (up[3] != 0) { 12719 mblk_t *mp1 = mp->b_cont; 12720 boolean_t cksum_err; 12721 uint16_t hck_flags = 0; 12722 12723 /* Pseudo-header checksum */ 12724 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12725 iphs[9] + up[2]; 12726 12727 /* 12728 * Revert to software checksum calculation if the interface 12729 * isn't capable of checksum offload or if IPsec is present. 12730 */ 12731 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12732 hck_flags = DB_CKSUMFLAGS(mp); 12733 12734 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12735 IP_STAT(ipst, ip_in_sw_cksum); 12736 12737 IP_CKSUM_RECV(hck_flags, u1, 12738 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12739 (int32_t)((uchar_t *)up - rptr), 12740 mp, mp1, cksum_err); 12741 12742 if (cksum_err) { 12743 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12744 if (hck_flags & HCK_FULLCKSUM) 12745 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12746 else if (hck_flags & HCK_PARTIALCKSUM) 12747 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12748 else 12749 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12750 12751 freemsg(first_mp); 12752 return; 12753 } 12754 } 12755 12756 /* Non-fragmented broadcast or multicast packet? */ 12757 if (ire->ire_type == IRE_BROADCAST) 12758 goto udpslowpath; 12759 12760 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12761 ire->ire_zoneid, ipst)) != NULL) { 12762 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12763 IP_STAT(ipst, ip_udp_fast_path); 12764 12765 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12766 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12767 freemsg(mp); 12768 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12769 } else { 12770 if (!mctl_present) { 12771 BUMP_MIB(ill->ill_ip_mib, 12772 ipIfStatsHCInDelivers); 12773 } 12774 /* 12775 * mp and first_mp can change. 12776 */ 12777 if (ip_udp_check(q, connp, recv_ill, 12778 ipha, &mp, &first_mp, mctl_present, ire)) { 12779 /* Send it upstream */ 12780 (connp->conn_recv)(connp, mp, NULL); 12781 } 12782 } 12783 /* 12784 * freeb() cannot deal with null mblk being passed 12785 * in and first_mp can be set to null in the call 12786 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12787 */ 12788 if (mctl_present && first_mp != NULL) { 12789 freeb(first_mp); 12790 } 12791 CONN_DEC_REF(connp); 12792 return; 12793 } 12794 12795 /* 12796 * if we got here we know the packet is not fragmented and 12797 * has no options. The classifier could not find a conn_t and 12798 * most likely its an icmp packet so send it through slow path. 12799 */ 12800 12801 goto udpslowpath; 12802 12803 ipoptions: 12804 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12805 goto slow_done; 12806 } 12807 12808 UPDATE_IB_PKT_COUNT(ire); 12809 ire->ire_last_used_time = lbolt; 12810 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12811 if (u1 & (IPH_MF | IPH_OFFSET)) { 12812 fragmented: 12813 /* 12814 * "sum" and "reass_hck_flags" are non-zero if the 12815 * reassembled packet has a valid hardware computed 12816 * checksum information associated with it. 12817 */ 12818 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12819 &reass_hck_flags)) { 12820 goto slow_done; 12821 } 12822 12823 /* 12824 * Make sure that first_mp points back to mp as 12825 * the mp we came in with could have changed in 12826 * ip_rput_fragment(). 12827 */ 12828 ASSERT(!mctl_present); 12829 ipha = (ipha_t *)mp->b_rptr; 12830 first_mp = mp; 12831 } 12832 12833 /* Now we have a complete datagram, destined for this machine. */ 12834 u1 = IPH_HDR_LENGTH(ipha); 12835 /* Pull up the UDP header, if necessary. */ 12836 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12837 udppullup: 12838 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12840 freemsg(first_mp); 12841 goto slow_done; 12842 } 12843 ipha = (ipha_t *)mp->b_rptr; 12844 } 12845 12846 /* 12847 * Validate the checksum for the reassembled packet; for the 12848 * pullup case we calculate the payload checksum in software. 12849 */ 12850 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12851 if (up[3] != 0) { 12852 boolean_t cksum_err; 12853 12854 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12855 IP_STAT(ipst, ip_in_sw_cksum); 12856 12857 IP_CKSUM_RECV_REASS(reass_hck_flags, 12858 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12859 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12860 iphs[9] + up[2], sum, cksum_err); 12861 12862 if (cksum_err) { 12863 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12864 12865 if (reass_hck_flags & HCK_FULLCKSUM) 12866 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12867 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12868 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12869 else 12870 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12871 12872 freemsg(first_mp); 12873 goto slow_done; 12874 } 12875 } 12876 udpslowpath: 12877 12878 /* Clear hardware checksum flag to be safe */ 12879 DB_CKSUMFLAGS(mp) = 0; 12880 12881 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12882 (ire->ire_type == IRE_BROADCAST), 12883 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12884 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12885 12886 slow_done: 12887 IP_STAT(ipst, ip_udp_slow_path); 12888 return; 12889 12890 #undef iphs 12891 #undef rptr 12892 } 12893 12894 /* ARGSUSED */ 12895 static mblk_t * 12896 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12897 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12898 ill_rx_ring_t *ill_ring) 12899 { 12900 conn_t *connp; 12901 uint32_t sum; 12902 uint32_t u1; 12903 uint16_t *up; 12904 int offset; 12905 ssize_t len; 12906 mblk_t *mp1; 12907 boolean_t syn_present = B_FALSE; 12908 tcph_t *tcph; 12909 uint_t tcph_flags; 12910 uint_t ip_hdr_len; 12911 ill_t *ill = (ill_t *)q->q_ptr; 12912 zoneid_t zoneid = ire->ire_zoneid; 12913 boolean_t cksum_err; 12914 uint16_t hck_flags = 0; 12915 ip_stack_t *ipst = recv_ill->ill_ipst; 12916 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12917 12918 #define rptr ((uchar_t *)ipha) 12919 12920 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12921 ASSERT(ill != NULL); 12922 12923 /* 12924 * FAST PATH for tcp packets 12925 */ 12926 12927 /* u1 is # words of IP options */ 12928 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12929 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12930 12931 /* IP options present */ 12932 if (u1) { 12933 goto ipoptions; 12934 } else if (!mctl_present) { 12935 /* Check the IP header checksum. */ 12936 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12937 /* Clear the IP header h/w cksum flag */ 12938 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12939 } else if (!mctl_present) { 12940 /* 12941 * Don't verify header checksum if this packet 12942 * is coming back from AH/ESP as we already did it. 12943 */ 12944 #define uph ((uint16_t *)ipha) 12945 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12946 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12947 #undef uph 12948 /* finish doing IP checksum */ 12949 sum = (sum & 0xFFFF) + (sum >> 16); 12950 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12951 if (sum != 0 && sum != 0xFFFF) { 12952 BUMP_MIB(ill->ill_ip_mib, 12953 ipIfStatsInCksumErrs); 12954 goto error; 12955 } 12956 } 12957 } 12958 12959 if (!mctl_present) { 12960 UPDATE_IB_PKT_COUNT(ire); 12961 ire->ire_last_used_time = lbolt; 12962 } 12963 12964 /* packet part of fragmented IP packet? */ 12965 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12966 if (u1 & (IPH_MF | IPH_OFFSET)) { 12967 goto fragmented; 12968 } 12969 12970 /* u1 = IP header length (20 bytes) */ 12971 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12972 12973 /* does packet contain IP+TCP headers? */ 12974 len = mp->b_wptr - rptr; 12975 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12976 IP_STAT(ipst, ip_tcppullup); 12977 goto tcppullup; 12978 } 12979 12980 /* TCP options present? */ 12981 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12982 12983 /* 12984 * If options need to be pulled up, then goto tcpoptions. 12985 * otherwise we are still in the fast path 12986 */ 12987 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12988 IP_STAT(ipst, ip_tcpoptions); 12989 goto tcpoptions; 12990 } 12991 12992 /* multiple mblks of tcp data? */ 12993 if ((mp1 = mp->b_cont) != NULL) { 12994 IP_STAT(ipst, ip_multipkttcp); 12995 len += msgdsize(mp1); 12996 } 12997 12998 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12999 13000 /* part of pseudo checksum */ 13001 13002 /* TCP datagram length */ 13003 u1 = len - IP_SIMPLE_HDR_LENGTH; 13004 13005 #define iphs ((uint16_t *)ipha) 13006 13007 #ifdef _BIG_ENDIAN 13008 u1 += IPPROTO_TCP; 13009 #else 13010 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13011 #endif 13012 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13013 13014 /* 13015 * Revert to software checksum calculation if the interface 13016 * isn't capable of checksum offload or if IPsec is present. 13017 */ 13018 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13019 hck_flags = DB_CKSUMFLAGS(mp); 13020 13021 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13022 IP_STAT(ipst, ip_in_sw_cksum); 13023 13024 IP_CKSUM_RECV(hck_flags, u1, 13025 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13026 (int32_t)((uchar_t *)up - rptr), 13027 mp, mp1, cksum_err); 13028 13029 if (cksum_err) { 13030 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13031 13032 if (hck_flags & HCK_FULLCKSUM) 13033 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13034 else if (hck_flags & HCK_PARTIALCKSUM) 13035 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13036 else 13037 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13038 13039 goto error; 13040 } 13041 13042 try_again: 13043 13044 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13045 zoneid, ipst)) == NULL) { 13046 /* Send the TH_RST */ 13047 goto no_conn; 13048 } 13049 13050 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13051 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13052 13053 /* 13054 * TCP FAST PATH for AF_INET socket. 13055 * 13056 * TCP fast path to avoid extra work. An AF_INET socket type 13057 * does not have facility to receive extra information via 13058 * ip_process or ip_add_info. Also, when the connection was 13059 * established, we made a check if this connection is impacted 13060 * by any global IPsec policy or per connection policy (a 13061 * policy that comes in effect later will not apply to this 13062 * connection). Since all this can be determined at the 13063 * connection establishment time, a quick check of flags 13064 * can avoid extra work. 13065 */ 13066 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13067 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13068 ASSERT(first_mp == mp); 13069 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13070 if (tcph_flags != (TH_SYN | TH_ACK)) { 13071 SET_SQUEUE(mp, tcp_rput_data, connp); 13072 return (mp); 13073 } 13074 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13075 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13076 SET_SQUEUE(mp, tcp_input, connp); 13077 return (mp); 13078 } 13079 13080 if (tcph_flags == TH_SYN) { 13081 if (IPCL_IS_TCP(connp)) { 13082 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13083 DB_CKSUMSTART(mp) = 13084 (intptr_t)ip_squeue_get(ill_ring); 13085 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13086 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13087 BUMP_MIB(ill->ill_ip_mib, 13088 ipIfStatsHCInDelivers); 13089 SET_SQUEUE(mp, connp->conn_recv, connp); 13090 return (mp); 13091 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13092 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13093 BUMP_MIB(ill->ill_ip_mib, 13094 ipIfStatsHCInDelivers); 13095 ip_squeue_enter_unbound++; 13096 SET_SQUEUE(mp, tcp_conn_request_unbound, 13097 connp); 13098 return (mp); 13099 } 13100 syn_present = B_TRUE; 13101 } 13102 } 13103 13104 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13105 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13106 13107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13108 /* No need to send this packet to TCP */ 13109 if ((flags & TH_RST) || (flags & TH_URG)) { 13110 CONN_DEC_REF(connp); 13111 freemsg(first_mp); 13112 return (NULL); 13113 } 13114 if (flags & TH_ACK) { 13115 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13116 ipst->ips_netstack->netstack_tcp, connp); 13117 CONN_DEC_REF(connp); 13118 return (NULL); 13119 } 13120 13121 CONN_DEC_REF(connp); 13122 freemsg(first_mp); 13123 return (NULL); 13124 } 13125 13126 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13127 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13128 ipha, NULL, mctl_present); 13129 if (first_mp == NULL) { 13130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13131 CONN_DEC_REF(connp); 13132 return (NULL); 13133 } 13134 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13135 ASSERT(syn_present); 13136 if (mctl_present) { 13137 ASSERT(first_mp != mp); 13138 first_mp->b_datap->db_struioflag |= 13139 STRUIO_POLICY; 13140 } else { 13141 ASSERT(first_mp == mp); 13142 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13143 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13144 } 13145 } else { 13146 /* 13147 * Discard first_mp early since we're dealing with a 13148 * fully-connected conn_t and tcp doesn't do policy in 13149 * this case. 13150 */ 13151 if (mctl_present) { 13152 freeb(first_mp); 13153 mctl_present = B_FALSE; 13154 } 13155 first_mp = mp; 13156 } 13157 } 13158 13159 /* Initiate IPPF processing for fastpath */ 13160 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13161 uint32_t ill_index; 13162 13163 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13164 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13165 if (mp == NULL) { 13166 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13167 "deferred/dropped during IPPF processing\n")); 13168 CONN_DEC_REF(connp); 13169 if (mctl_present) 13170 freeb(first_mp); 13171 return (NULL); 13172 } else if (mctl_present) { 13173 /* 13174 * ip_process might return a new mp. 13175 */ 13176 ASSERT(first_mp != mp); 13177 first_mp->b_cont = mp; 13178 } else { 13179 first_mp = mp; 13180 } 13181 13182 } 13183 13184 if (!syn_present && connp->conn_ip_recvpktinfo) { 13185 /* 13186 * TCP does not support IP_RECVPKTINFO for v4 so lets 13187 * make sure IPF_RECVIF is passed to ip_add_info. 13188 */ 13189 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13190 IPCL_ZONEID(connp), ipst); 13191 if (mp == NULL) { 13192 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13193 CONN_DEC_REF(connp); 13194 if (mctl_present) 13195 freeb(first_mp); 13196 return (NULL); 13197 } else if (mctl_present) { 13198 /* 13199 * ip_add_info might return a new mp. 13200 */ 13201 ASSERT(first_mp != mp); 13202 first_mp->b_cont = mp; 13203 } else { 13204 first_mp = mp; 13205 } 13206 } 13207 13208 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13209 if (IPCL_IS_TCP(connp)) { 13210 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13211 return (first_mp); 13212 } else { 13213 /* SOCK_RAW, IPPROTO_TCP case */ 13214 (connp->conn_recv)(connp, first_mp, NULL); 13215 CONN_DEC_REF(connp); 13216 return (NULL); 13217 } 13218 13219 no_conn: 13220 /* Initiate IPPf processing, if needed. */ 13221 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13222 uint32_t ill_index; 13223 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13224 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13225 if (first_mp == NULL) { 13226 return (NULL); 13227 } 13228 } 13229 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13230 13231 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13232 ipst->ips_netstack->netstack_tcp, NULL); 13233 return (NULL); 13234 ipoptions: 13235 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13236 goto slow_done; 13237 } 13238 13239 UPDATE_IB_PKT_COUNT(ire); 13240 ire->ire_last_used_time = lbolt; 13241 13242 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13243 if (u1 & (IPH_MF | IPH_OFFSET)) { 13244 fragmented: 13245 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13246 if (mctl_present) 13247 freeb(first_mp); 13248 goto slow_done; 13249 } 13250 /* 13251 * Make sure that first_mp points back to mp as 13252 * the mp we came in with could have changed in 13253 * ip_rput_fragment(). 13254 */ 13255 ASSERT(!mctl_present); 13256 ipha = (ipha_t *)mp->b_rptr; 13257 first_mp = mp; 13258 } 13259 13260 /* Now we have a complete datagram, destined for this machine. */ 13261 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13262 13263 len = mp->b_wptr - mp->b_rptr; 13264 /* Pull up a minimal TCP header, if necessary. */ 13265 if (len < (u1 + 20)) { 13266 tcppullup: 13267 if (!pullupmsg(mp, u1 + 20)) { 13268 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13269 goto error; 13270 } 13271 ipha = (ipha_t *)mp->b_rptr; 13272 len = mp->b_wptr - mp->b_rptr; 13273 } 13274 13275 /* 13276 * Extract the offset field from the TCP header. As usual, we 13277 * try to help the compiler more than the reader. 13278 */ 13279 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13280 if (offset != 5) { 13281 tcpoptions: 13282 if (offset < 5) { 13283 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13284 goto error; 13285 } 13286 /* 13287 * There must be TCP options. 13288 * Make sure we can grab them. 13289 */ 13290 offset <<= 2; 13291 offset += u1; 13292 if (len < offset) { 13293 if (!pullupmsg(mp, offset)) { 13294 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13295 goto error; 13296 } 13297 ipha = (ipha_t *)mp->b_rptr; 13298 len = mp->b_wptr - rptr; 13299 } 13300 } 13301 13302 /* Get the total packet length in len, including headers. */ 13303 if (mp->b_cont) 13304 len = msgdsize(mp); 13305 13306 /* 13307 * Check the TCP checksum by pulling together the pseudo- 13308 * header checksum, and passing it to ip_csum to be added in 13309 * with the TCP datagram. 13310 * 13311 * Since we are not using the hwcksum if available we must 13312 * clear the flag. We may come here via tcppullup or tcpoptions. 13313 * If either of these fails along the way the mblk is freed. 13314 * If this logic ever changes and mblk is reused to say send 13315 * ICMP's back, then this flag may need to be cleared in 13316 * other places as well. 13317 */ 13318 DB_CKSUMFLAGS(mp) = 0; 13319 13320 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13321 13322 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13323 #ifdef _BIG_ENDIAN 13324 u1 += IPPROTO_TCP; 13325 #else 13326 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13327 #endif 13328 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13329 /* 13330 * Not M_DATA mblk or its a dup, so do the checksum now. 13331 */ 13332 IP_STAT(ipst, ip_in_sw_cksum); 13333 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13334 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13335 goto error; 13336 } 13337 13338 IP_STAT(ipst, ip_tcp_slow_path); 13339 goto try_again; 13340 #undef iphs 13341 #undef rptr 13342 13343 error: 13344 freemsg(first_mp); 13345 slow_done: 13346 return (NULL); 13347 } 13348 13349 /* ARGSUSED */ 13350 static void 13351 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13352 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13353 { 13354 conn_t *connp; 13355 uint32_t sum; 13356 uint32_t u1; 13357 ssize_t len; 13358 sctp_hdr_t *sctph; 13359 zoneid_t zoneid = ire->ire_zoneid; 13360 uint32_t pktsum; 13361 uint32_t calcsum; 13362 uint32_t ports; 13363 in6_addr_t map_src, map_dst; 13364 ill_t *ill = (ill_t *)q->q_ptr; 13365 ip_stack_t *ipst; 13366 sctp_stack_t *sctps; 13367 boolean_t sctp_csum_err = B_FALSE; 13368 13369 ASSERT(recv_ill != NULL); 13370 ipst = recv_ill->ill_ipst; 13371 sctps = ipst->ips_netstack->netstack_sctp; 13372 13373 #define rptr ((uchar_t *)ipha) 13374 13375 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13376 ASSERT(ill != NULL); 13377 13378 /* u1 is # words of IP options */ 13379 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13380 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13381 13382 /* IP options present */ 13383 if (u1 > 0) { 13384 goto ipoptions; 13385 } else { 13386 /* Check the IP header checksum. */ 13387 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13388 !mctl_present) { 13389 #define uph ((uint16_t *)ipha) 13390 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13391 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13392 #undef uph 13393 /* finish doing IP checksum */ 13394 sum = (sum & 0xFFFF) + (sum >> 16); 13395 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13396 /* 13397 * Don't verify header checksum if this packet 13398 * is coming back from AH/ESP as we already did it. 13399 */ 13400 if (sum != 0 && sum != 0xFFFF) { 13401 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13402 goto error; 13403 } 13404 } 13405 /* 13406 * Since there is no SCTP h/w cksum support yet, just 13407 * clear the flag. 13408 */ 13409 DB_CKSUMFLAGS(mp) = 0; 13410 } 13411 13412 /* 13413 * Don't verify header checksum if this packet is coming 13414 * back from AH/ESP as we already did it. 13415 */ 13416 if (!mctl_present) { 13417 UPDATE_IB_PKT_COUNT(ire); 13418 ire->ire_last_used_time = lbolt; 13419 } 13420 13421 /* packet part of fragmented IP packet? */ 13422 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13423 if (u1 & (IPH_MF | IPH_OFFSET)) 13424 goto fragmented; 13425 13426 /* u1 = IP header length (20 bytes) */ 13427 u1 = IP_SIMPLE_HDR_LENGTH; 13428 13429 find_sctp_client: 13430 /* Pullup if we don't have the sctp common header. */ 13431 len = MBLKL(mp); 13432 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13433 if (mp->b_cont == NULL || 13434 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13436 goto error; 13437 } 13438 ipha = (ipha_t *)mp->b_rptr; 13439 len = MBLKL(mp); 13440 } 13441 13442 sctph = (sctp_hdr_t *)(rptr + u1); 13443 #ifdef DEBUG 13444 if (!skip_sctp_cksum) { 13445 #endif 13446 pktsum = sctph->sh_chksum; 13447 sctph->sh_chksum = 0; 13448 calcsum = sctp_cksum(mp, u1); 13449 sctph->sh_chksum = pktsum; 13450 if (calcsum != pktsum) 13451 sctp_csum_err = B_TRUE; 13452 #ifdef DEBUG /* skip_sctp_cksum */ 13453 } 13454 #endif 13455 /* get the ports */ 13456 ports = *(uint32_t *)&sctph->sh_sport; 13457 13458 IRE_REFRELE(ire); 13459 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13460 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13461 if (sctp_csum_err) { 13462 /* 13463 * No potential sctp checksum errors go to the Sun 13464 * sctp stack however they might be Adler-32 summed 13465 * packets a userland stack bound to a raw IP socket 13466 * could reasonably use. Note though that Adler-32 is 13467 * a long deprecated algorithm and customer sctp 13468 * networks should eventually migrate to CRC-32 at 13469 * which time this facility should be removed. 13470 */ 13471 flags |= IP_FF_SCTP_CSUM_ERR; 13472 goto no_conn; 13473 } 13474 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13475 sctps)) == NULL) { 13476 /* Check for raw socket or OOTB handling */ 13477 goto no_conn; 13478 } 13479 13480 /* Found a client; up it goes */ 13481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13482 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13483 return; 13484 13485 no_conn: 13486 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13487 ports, mctl_present, flags, B_TRUE, zoneid); 13488 return; 13489 13490 ipoptions: 13491 DB_CKSUMFLAGS(mp) = 0; 13492 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13493 goto slow_done; 13494 13495 UPDATE_IB_PKT_COUNT(ire); 13496 ire->ire_last_used_time = lbolt; 13497 13498 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13499 if (u1 & (IPH_MF | IPH_OFFSET)) { 13500 fragmented: 13501 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13502 goto slow_done; 13503 /* 13504 * Make sure that first_mp points back to mp as 13505 * the mp we came in with could have changed in 13506 * ip_rput_fragment(). 13507 */ 13508 ASSERT(!mctl_present); 13509 ipha = (ipha_t *)mp->b_rptr; 13510 first_mp = mp; 13511 } 13512 13513 /* Now we have a complete datagram, destined for this machine. */ 13514 u1 = IPH_HDR_LENGTH(ipha); 13515 goto find_sctp_client; 13516 #undef iphs 13517 #undef rptr 13518 13519 error: 13520 freemsg(first_mp); 13521 slow_done: 13522 IRE_REFRELE(ire); 13523 } 13524 13525 #define VER_BITS 0xF0 13526 #define VERSION_6 0x60 13527 13528 static boolean_t 13529 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13530 ipaddr_t *dstp, ip_stack_t *ipst) 13531 { 13532 uint_t opt_len; 13533 ipha_t *ipha; 13534 ssize_t len; 13535 uint_t pkt_len; 13536 13537 ASSERT(ill != NULL); 13538 IP_STAT(ipst, ip_ipoptions); 13539 ipha = *iphapp; 13540 13541 #define rptr ((uchar_t *)ipha) 13542 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13543 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13545 freemsg(mp); 13546 return (B_FALSE); 13547 } 13548 13549 /* multiple mblk or too short */ 13550 pkt_len = ntohs(ipha->ipha_length); 13551 13552 /* Get the number of words of IP options in the IP header. */ 13553 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13554 if (opt_len) { 13555 /* IP Options present! Validate and process. */ 13556 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13558 goto done; 13559 } 13560 /* 13561 * Recompute complete header length and make sure we 13562 * have access to all of it. 13563 */ 13564 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13565 if (len > (mp->b_wptr - rptr)) { 13566 if (len > pkt_len) { 13567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13568 goto done; 13569 } 13570 if (!pullupmsg(mp, len)) { 13571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13572 goto done; 13573 } 13574 ipha = (ipha_t *)mp->b_rptr; 13575 } 13576 /* 13577 * Go off to ip_rput_options which returns the next hop 13578 * destination address, which may have been affected 13579 * by source routing. 13580 */ 13581 IP_STAT(ipst, ip_opt); 13582 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13584 return (B_FALSE); 13585 } 13586 } 13587 *iphapp = ipha; 13588 return (B_TRUE); 13589 done: 13590 /* clear b_prev - used by ip_mroute_decap */ 13591 mp->b_prev = NULL; 13592 freemsg(mp); 13593 return (B_FALSE); 13594 #undef rptr 13595 } 13596 13597 /* 13598 * Deal with the fact that there is no ire for the destination. 13599 */ 13600 static ire_t * 13601 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13602 { 13603 ipha_t *ipha; 13604 ill_t *ill; 13605 ire_t *ire; 13606 ip_stack_t *ipst; 13607 enum ire_forward_action ret_action; 13608 13609 ipha = (ipha_t *)mp->b_rptr; 13610 ill = (ill_t *)q->q_ptr; 13611 13612 ASSERT(ill != NULL); 13613 ipst = ill->ill_ipst; 13614 13615 /* 13616 * No IRE for this destination, so it can't be for us. 13617 * Unless we are forwarding, drop the packet. 13618 * We have to let source routed packets through 13619 * since we don't yet know if they are 'ping -l' 13620 * packets i.e. if they will go out over the 13621 * same interface as they came in on. 13622 */ 13623 if (ll_multicast) { 13624 freemsg(mp); 13625 return (NULL); 13626 } 13627 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13629 freemsg(mp); 13630 return (NULL); 13631 } 13632 13633 /* 13634 * Mark this packet as having originated externally. 13635 * 13636 * For non-forwarding code path, ire_send later double 13637 * checks this interface to see if it is still exists 13638 * post-ARP resolution. 13639 * 13640 * Also, IPQOS uses this to differentiate between 13641 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13642 * QOS packet processing in ip_wput_attach_llhdr(). 13643 * The QoS module can mark the b_band for a fastpath message 13644 * or the dl_priority field in a unitdata_req header for 13645 * CoS marking. This info can only be found in 13646 * ip_wput_attach_llhdr(). 13647 */ 13648 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13649 /* 13650 * Clear the indication that this may have a hardware checksum 13651 * as we are not using it 13652 */ 13653 DB_CKSUMFLAGS(mp) = 0; 13654 13655 ire = ire_forward(dst, &ret_action, NULL, NULL, 13656 msg_getlabel(mp), ipst); 13657 13658 if (ire == NULL && ret_action == Forward_check_multirt) { 13659 /* Let ip_newroute handle CGTP */ 13660 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13661 return (NULL); 13662 } 13663 13664 if (ire != NULL) 13665 return (ire); 13666 13667 mp->b_prev = mp->b_next = 0; 13668 13669 if (ret_action == Forward_blackhole) { 13670 freemsg(mp); 13671 return (NULL); 13672 } 13673 /* send icmp unreachable */ 13674 q = WR(q); 13675 /* Sent by forwarding path, and router is global zone */ 13676 if (ip_source_routed(ipha, ipst)) { 13677 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13678 GLOBAL_ZONEID, ipst); 13679 } else { 13680 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13681 ipst); 13682 } 13683 13684 return (NULL); 13685 13686 } 13687 13688 /* 13689 * check ip header length and align it. 13690 */ 13691 static boolean_t 13692 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13693 { 13694 ssize_t len; 13695 ill_t *ill; 13696 ipha_t *ipha; 13697 13698 len = MBLKL(mp); 13699 13700 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13701 ill = (ill_t *)q->q_ptr; 13702 13703 if (!OK_32PTR(mp->b_rptr)) 13704 IP_STAT(ipst, ip_notaligned1); 13705 else 13706 IP_STAT(ipst, ip_notaligned2); 13707 /* Guard against bogus device drivers */ 13708 if (len < 0) { 13709 /* clear b_prev - used by ip_mroute_decap */ 13710 mp->b_prev = NULL; 13711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13712 freemsg(mp); 13713 return (B_FALSE); 13714 } 13715 13716 if (ip_rput_pullups++ == 0) { 13717 ipha = (ipha_t *)mp->b_rptr; 13718 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13719 "ip_check_and_align_header: %s forced us to " 13720 " pullup pkt, hdr len %ld, hdr addr %p", 13721 ill->ill_name, len, (void *)ipha); 13722 } 13723 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13724 /* clear b_prev - used by ip_mroute_decap */ 13725 mp->b_prev = NULL; 13726 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13727 freemsg(mp); 13728 return (B_FALSE); 13729 } 13730 } 13731 return (B_TRUE); 13732 } 13733 13734 /* 13735 * Handle the situation where a packet came in on `ill' but matched an IRE 13736 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13737 * for interface statistics. 13738 */ 13739 ire_t * 13740 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13741 { 13742 ire_t *new_ire; 13743 ill_t *ire_ill; 13744 uint_t ifindex; 13745 ip_stack_t *ipst = ill->ill_ipst; 13746 boolean_t strict_check = B_FALSE; 13747 13748 /* 13749 * IPMP common case: if IRE and ILL are in the same group, there's no 13750 * issue (e.g. packet received on an underlying interface matched an 13751 * IRE_LOCAL on its associated group interface). 13752 */ 13753 if (ire->ire_rfq != NULL && 13754 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13755 return (ire); 13756 } 13757 13758 /* 13759 * Do another ire lookup here, using the ingress ill, to see if the 13760 * interface is in a usesrc group. 13761 * As long as the ills belong to the same group, we don't consider 13762 * them to be arriving on the wrong interface. Thus, if the switch 13763 * is doing inbound load spreading, we won't drop packets when the 13764 * ip*_strict_dst_multihoming switch is on. 13765 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13766 * where the local address may not be unique. In this case we were 13767 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13768 * actually returned. The new lookup, which is more specific, should 13769 * only find the IRE_LOCAL associated with the ingress ill if one 13770 * exists. 13771 */ 13772 13773 if (ire->ire_ipversion == IPV4_VERSION) { 13774 if (ipst->ips_ip_strict_dst_multihoming) 13775 strict_check = B_TRUE; 13776 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13777 ill->ill_ipif, ALL_ZONES, NULL, 13778 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13779 } else { 13780 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13781 if (ipst->ips_ipv6_strict_dst_multihoming) 13782 strict_check = B_TRUE; 13783 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13784 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13785 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13786 } 13787 /* 13788 * If the same ire that was returned in ip_input() is found then this 13789 * is an indication that usesrc groups are in use. The packet 13790 * arrived on a different ill in the group than the one associated with 13791 * the destination address. If a different ire was found then the same 13792 * IP address must be hosted on multiple ills. This is possible with 13793 * unnumbered point2point interfaces. We switch to use this new ire in 13794 * order to have accurate interface statistics. 13795 */ 13796 if (new_ire != NULL) { 13797 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13798 ire_refrele(ire); 13799 ire = new_ire; 13800 } else { 13801 ire_refrele(new_ire); 13802 } 13803 return (ire); 13804 } else if ((ire->ire_rfq == NULL) && 13805 (ire->ire_ipversion == IPV4_VERSION)) { 13806 /* 13807 * The best match could have been the original ire which 13808 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13809 * the strict multihoming checks are irrelevant as we consider 13810 * local addresses hosted on lo0 to be interface agnostic. We 13811 * only expect a null ire_rfq on IREs which are associated with 13812 * lo0 hence we can return now. 13813 */ 13814 return (ire); 13815 } 13816 13817 /* 13818 * Chase pointers once and store locally. 13819 */ 13820 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13821 (ill_t *)(ire->ire_rfq->q_ptr); 13822 ifindex = ill->ill_usesrc_ifindex; 13823 13824 /* 13825 * Check if it's a legal address on the 'usesrc' interface. 13826 */ 13827 if ((ifindex != 0) && (ire_ill != NULL) && 13828 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13829 return (ire); 13830 } 13831 13832 /* 13833 * If the ip*_strict_dst_multihoming switch is on then we can 13834 * only accept this packet if the interface is marked as routing. 13835 */ 13836 if (!(strict_check)) 13837 return (ire); 13838 13839 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13840 ILLF_ROUTER) != 0) { 13841 return (ire); 13842 } 13843 13844 ire_refrele(ire); 13845 return (NULL); 13846 } 13847 13848 /* 13849 * 13850 * This is the fast forward path. If we are here, we dont need to 13851 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13852 * needed to find the nexthop in this case is much simpler 13853 */ 13854 ire_t * 13855 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13856 { 13857 ipha_t *ipha; 13858 ire_t *src_ire; 13859 ill_t *stq_ill; 13860 uint_t hlen; 13861 uint_t pkt_len; 13862 uint32_t sum; 13863 queue_t *dev_q; 13864 ip_stack_t *ipst = ill->ill_ipst; 13865 mblk_t *fpmp; 13866 enum ire_forward_action ret_action; 13867 13868 ipha = (ipha_t *)mp->b_rptr; 13869 13870 if (ire != NULL && 13871 ire->ire_zoneid != GLOBAL_ZONEID && 13872 ire->ire_zoneid != ALL_ZONES) { 13873 /* 13874 * Should only use IREs that are visible to the global 13875 * zone for forwarding. 13876 */ 13877 ire_refrele(ire); 13878 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13879 /* 13880 * ire_cache_lookup() can return ire of IRE_LOCAL in 13881 * transient cases. In such case, just drop the packet 13882 */ 13883 if (ire->ire_type != IRE_CACHE) 13884 goto drop; 13885 } 13886 13887 /* 13888 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13889 * The loopback address check for both src and dst has already 13890 * been checked in ip_input 13891 */ 13892 13893 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13895 goto drop; 13896 } 13897 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13898 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13899 13900 if (src_ire != NULL) { 13901 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13902 ire_refrele(src_ire); 13903 goto drop; 13904 } 13905 13906 /* No ire cache of nexthop. So first create one */ 13907 if (ire == NULL) { 13908 13909 ire = ire_forward_simple(dst, &ret_action, ipst); 13910 13911 /* 13912 * We only come to ip_fast_forward if ip_cgtp_filter 13913 * is not set. So ire_forward() should not return with 13914 * Forward_check_multirt as the next action. 13915 */ 13916 ASSERT(ret_action != Forward_check_multirt); 13917 if (ire == NULL) { 13918 /* An attempt was made to forward the packet */ 13919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13920 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13921 mp->b_prev = mp->b_next = 0; 13922 /* send icmp unreachable */ 13923 /* Sent by forwarding path, and router is global zone */ 13924 if (ret_action == Forward_ret_icmp_err) { 13925 if (ip_source_routed(ipha, ipst)) { 13926 icmp_unreachable(ill->ill_wq, mp, 13927 ICMP_SOURCE_ROUTE_FAILED, 13928 GLOBAL_ZONEID, ipst); 13929 } else { 13930 icmp_unreachable(ill->ill_wq, mp, 13931 ICMP_HOST_UNREACHABLE, 13932 GLOBAL_ZONEID, ipst); 13933 } 13934 } else { 13935 freemsg(mp); 13936 } 13937 return (NULL); 13938 } 13939 } 13940 13941 /* 13942 * Forwarding fastpath exception case: 13943 * If any of the following are true, we take the slowpath: 13944 * o forwarding is not enabled 13945 * o incoming and outgoing interface are the same, or in the same 13946 * IPMP group. 13947 * o corresponding ire is in incomplete state 13948 * o packet needs fragmentation 13949 * o ARP cache is not resolved 13950 * 13951 * The codeflow from here on is thus: 13952 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13953 */ 13954 pkt_len = ntohs(ipha->ipha_length); 13955 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13956 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13957 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13958 (ire->ire_nce == NULL) || 13959 (pkt_len > ire->ire_max_frag) || 13960 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13961 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13962 ipha->ipha_ttl <= 1) { 13963 ip_rput_process_forward(ill->ill_rq, mp, ire, 13964 ipha, ill, B_FALSE, B_TRUE); 13965 return (ire); 13966 } 13967 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13968 13969 DTRACE_PROBE4(ip4__forwarding__start, 13970 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13971 13972 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13973 ipst->ips_ipv4firewall_forwarding, 13974 ill, stq_ill, ipha, mp, mp, 0, ipst); 13975 13976 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13977 13978 if (mp == NULL) 13979 goto drop; 13980 13981 mp->b_datap->db_struioun.cksum.flags = 0; 13982 /* Adjust the checksum to reflect the ttl decrement. */ 13983 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13984 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13985 ipha->ipha_ttl--; 13986 13987 /* 13988 * Write the link layer header. We can do this safely here, 13989 * because we have already tested to make sure that the IP 13990 * policy is not set, and that we have a fast path destination 13991 * header. 13992 */ 13993 mp->b_rptr -= hlen; 13994 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13995 13996 UPDATE_IB_PKT_COUNT(ire); 13997 ire->ire_last_used_time = lbolt; 13998 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13999 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14000 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14001 14002 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14003 dev_q = ire->ire_stq->q_next; 14004 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14005 goto indiscard; 14006 } 14007 14008 DTRACE_PROBE4(ip4__physical__out__start, 14009 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14010 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14011 ipst->ips_ipv4firewall_physical_out, 14012 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14013 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14014 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14015 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14016 ip6_t *, NULL, int, 0); 14017 14018 if (mp != NULL) { 14019 if (ipst->ips_ipobs_enabled) { 14020 zoneid_t szone; 14021 14022 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14023 ipst, ALL_ZONES); 14024 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14025 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14026 } 14027 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14028 } 14029 return (ire); 14030 14031 indiscard: 14032 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14033 drop: 14034 if (mp != NULL) 14035 freemsg(mp); 14036 return (ire); 14037 14038 } 14039 14040 /* 14041 * This function is called in the forwarding slowpath, when 14042 * either the ire lacks the link-layer address, or the packet needs 14043 * further processing(eg. fragmentation), before transmission. 14044 */ 14045 14046 static void 14047 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14048 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14049 { 14050 queue_t *dev_q; 14051 ire_t *src_ire; 14052 ip_stack_t *ipst = ill->ill_ipst; 14053 boolean_t same_illgrp = B_FALSE; 14054 14055 ASSERT(ire->ire_stq != NULL); 14056 14057 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14058 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14059 14060 /* 14061 * If the caller of this function is ip_fast_forward() skip the 14062 * next three checks as it does not apply. 14063 */ 14064 if (from_ip_fast_forward) 14065 goto skip; 14066 14067 if (ll_multicast != 0) { 14068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14069 goto drop_pkt; 14070 } 14071 14072 /* 14073 * check if ipha_src is a broadcast address. Note that this 14074 * check is redundant when we get here from ip_fast_forward() 14075 * which has already done this check. However, since we can 14076 * also get here from ip_rput_process_broadcast() or, for 14077 * for the slow path through ip_fast_forward(), we perform 14078 * the check again for code-reusability 14079 */ 14080 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14081 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14082 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14083 if (src_ire != NULL) 14084 ire_refrele(src_ire); 14085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14086 ip2dbg(("ip_rput_process_forward: Received packet with" 14087 " bad src/dst address on %s\n", ill->ill_name)); 14088 goto drop_pkt; 14089 } 14090 14091 /* 14092 * Check if we want to forward this one at this time. 14093 * We allow source routed packets on a host provided that 14094 * they go out the same ill or illgrp as they came in on. 14095 * 14096 * XXX To be quicker, we may wish to not chase pointers to 14097 * get the ILLF_ROUTER flag and instead store the 14098 * forwarding policy in the ire. An unfortunate 14099 * side-effect of that would be requiring an ire flush 14100 * whenever the ILLF_ROUTER flag changes. 14101 */ 14102 skip: 14103 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14104 14105 if (((ill->ill_flags & 14106 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14107 !(ip_source_routed(ipha, ipst) && 14108 (ire->ire_rfq == q || same_illgrp))) { 14109 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14110 if (ip_source_routed(ipha, ipst)) { 14111 q = WR(q); 14112 /* 14113 * Clear the indication that this may have 14114 * hardware checksum as we are not using it. 14115 */ 14116 DB_CKSUMFLAGS(mp) = 0; 14117 /* Sent by forwarding path, and router is global zone */ 14118 icmp_unreachable(q, mp, 14119 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14120 return; 14121 } 14122 goto drop_pkt; 14123 } 14124 14125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14126 14127 /* Packet is being forwarded. Turning off hwcksum flag. */ 14128 DB_CKSUMFLAGS(mp) = 0; 14129 if (ipst->ips_ip_g_send_redirects) { 14130 /* 14131 * Check whether the incoming interface and outgoing 14132 * interface is part of the same group. If so, 14133 * send redirects. 14134 * 14135 * Check the source address to see if it originated 14136 * on the same logical subnet it is going back out on. 14137 * If so, we should be able to send it a redirect. 14138 * Avoid sending a redirect if the destination 14139 * is directly connected (i.e., ipha_dst is the same 14140 * as ire_gateway_addr or the ire_addr of the 14141 * nexthop IRE_CACHE ), or if the packet was source 14142 * routed out this interface. 14143 */ 14144 ipaddr_t src, nhop; 14145 mblk_t *mp1; 14146 ire_t *nhop_ire = NULL; 14147 14148 /* 14149 * Check whether ire_rfq and q are from the same ill or illgrp. 14150 * If so, send redirects. 14151 */ 14152 if ((ire->ire_rfq == q || same_illgrp) && 14153 !ip_source_routed(ipha, ipst)) { 14154 14155 nhop = (ire->ire_gateway_addr != 0 ? 14156 ire->ire_gateway_addr : ire->ire_addr); 14157 14158 if (ipha->ipha_dst == nhop) { 14159 /* 14160 * We avoid sending a redirect if the 14161 * destination is directly connected 14162 * because it is possible that multiple 14163 * IP subnets may have been configured on 14164 * the link, and the source may not 14165 * be on the same subnet as ip destination, 14166 * even though they are on the same 14167 * physical link. 14168 */ 14169 goto sendit; 14170 } 14171 14172 src = ipha->ipha_src; 14173 14174 /* 14175 * We look up the interface ire for the nexthop, 14176 * to see if ipha_src is in the same subnet 14177 * as the nexthop. 14178 * 14179 * Note that, if, in the future, IRE_CACHE entries 14180 * are obsoleted, this lookup will not be needed, 14181 * as the ire passed to this function will be the 14182 * same as the nhop_ire computed below. 14183 */ 14184 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14185 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14186 0, NULL, MATCH_IRE_TYPE, ipst); 14187 14188 if (nhop_ire != NULL) { 14189 if ((src & nhop_ire->ire_mask) == 14190 (nhop & nhop_ire->ire_mask)) { 14191 /* 14192 * The source is directly connected. 14193 * Just copy the ip header (which is 14194 * in the first mblk) 14195 */ 14196 mp1 = copyb(mp); 14197 if (mp1 != NULL) { 14198 icmp_send_redirect(WR(q), mp1, 14199 nhop, ipst); 14200 } 14201 } 14202 ire_refrele(nhop_ire); 14203 } 14204 } 14205 } 14206 sendit: 14207 dev_q = ire->ire_stq->q_next; 14208 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14209 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14210 freemsg(mp); 14211 return; 14212 } 14213 14214 ip_rput_forward(ire, ipha, mp, ill); 14215 return; 14216 14217 drop_pkt: 14218 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14219 freemsg(mp); 14220 } 14221 14222 ire_t * 14223 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14224 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14225 { 14226 queue_t *q; 14227 uint16_t hcksumflags; 14228 ip_stack_t *ipst = ill->ill_ipst; 14229 14230 q = *qp; 14231 14232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14233 14234 /* 14235 * Clear the indication that this may have hardware 14236 * checksum as we are not using it for forwarding. 14237 */ 14238 hcksumflags = DB_CKSUMFLAGS(mp); 14239 DB_CKSUMFLAGS(mp) = 0; 14240 14241 /* 14242 * Directed broadcast forwarding: if the packet came in over a 14243 * different interface then it is routed out over we can forward it. 14244 */ 14245 if (ipha->ipha_protocol == IPPROTO_TCP) { 14246 ire_refrele(ire); 14247 freemsg(mp); 14248 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14249 return (NULL); 14250 } 14251 /* 14252 * For multicast we have set dst to be INADDR_BROADCAST 14253 * for delivering to all STREAMS. 14254 */ 14255 if (!CLASSD(ipha->ipha_dst)) { 14256 ire_t *new_ire; 14257 ipif_t *ipif; 14258 14259 ipif = ipif_get_next_ipif(NULL, ill); 14260 if (ipif == NULL) { 14261 discard: ire_refrele(ire); 14262 freemsg(mp); 14263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14264 return (NULL); 14265 } 14266 new_ire = ire_ctable_lookup(dst, 0, 0, 14267 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14268 ipif_refrele(ipif); 14269 14270 if (new_ire != NULL) { 14271 /* 14272 * If the matching IRE_BROADCAST is part of an IPMP 14273 * group, then drop the packet unless our ill has been 14274 * nominated to receive for the group. 14275 */ 14276 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14277 new_ire->ire_rfq != q) { 14278 ire_refrele(new_ire); 14279 goto discard; 14280 } 14281 14282 /* 14283 * In the special case of multirouted broadcast 14284 * packets, we unconditionally need to "gateway" 14285 * them to the appropriate interface here. 14286 * In the normal case, this cannot happen, because 14287 * there is no broadcast IRE tagged with the 14288 * RTF_MULTIRT flag. 14289 */ 14290 if (new_ire->ire_flags & RTF_MULTIRT) { 14291 ire_refrele(new_ire); 14292 if (ire->ire_rfq != NULL) { 14293 q = ire->ire_rfq; 14294 *qp = q; 14295 } 14296 } else { 14297 ire_refrele(ire); 14298 ire = new_ire; 14299 } 14300 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14301 if (!ipst->ips_ip_g_forward_directed_bcast) { 14302 /* 14303 * Free the message if 14304 * ip_g_forward_directed_bcast is turned 14305 * off for non-local broadcast. 14306 */ 14307 ire_refrele(ire); 14308 freemsg(mp); 14309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14310 return (NULL); 14311 } 14312 } else { 14313 /* 14314 * This CGTP packet successfully passed the 14315 * CGTP filter, but the related CGTP 14316 * broadcast IRE has not been found, 14317 * meaning that the redundant ipif is 14318 * probably down. However, if we discarded 14319 * this packet, its duplicate would be 14320 * filtered out by the CGTP filter so none 14321 * of them would get through. So we keep 14322 * going with this one. 14323 */ 14324 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14325 if (ire->ire_rfq != NULL) { 14326 q = ire->ire_rfq; 14327 *qp = q; 14328 } 14329 } 14330 } 14331 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14332 /* 14333 * Verify that there are not more then one 14334 * IRE_BROADCAST with this broadcast address which 14335 * has ire_stq set. 14336 * TODO: simplify, loop over all IRE's 14337 */ 14338 ire_t *ire1; 14339 int num_stq = 0; 14340 mblk_t *mp1; 14341 14342 /* Find the first one with ire_stq set */ 14343 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14344 for (ire1 = ire; ire1 && 14345 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14346 ire1 = ire1->ire_next) 14347 ; 14348 if (ire1) { 14349 ire_refrele(ire); 14350 ire = ire1; 14351 IRE_REFHOLD(ire); 14352 } 14353 14354 /* Check if there are additional ones with stq set */ 14355 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14356 if (ire->ire_addr != ire1->ire_addr) 14357 break; 14358 if (ire1->ire_stq) { 14359 num_stq++; 14360 break; 14361 } 14362 } 14363 rw_exit(&ire->ire_bucket->irb_lock); 14364 if (num_stq == 1 && ire->ire_stq != NULL) { 14365 ip1dbg(("ip_rput_process_broadcast: directed " 14366 "broadcast to 0x%x\n", 14367 ntohl(ire->ire_addr))); 14368 mp1 = copymsg(mp); 14369 if (mp1) { 14370 switch (ipha->ipha_protocol) { 14371 case IPPROTO_UDP: 14372 ip_udp_input(q, mp1, ipha, ire, ill); 14373 break; 14374 default: 14375 ip_proto_input(q, mp1, ipha, ire, ill, 14376 0); 14377 break; 14378 } 14379 } 14380 /* 14381 * Adjust ttl to 2 (1+1 - the forward engine 14382 * will decrement it by one. 14383 */ 14384 if (ip_csum_hdr(ipha)) { 14385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14386 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14387 freemsg(mp); 14388 ire_refrele(ire); 14389 return (NULL); 14390 } 14391 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14392 ipha->ipha_hdr_checksum = 0; 14393 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14394 ip_rput_process_forward(q, mp, ire, ipha, 14395 ill, ll_multicast, B_FALSE); 14396 ire_refrele(ire); 14397 return (NULL); 14398 } 14399 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14400 ntohl(ire->ire_addr))); 14401 } 14402 14403 /* Restore any hardware checksum flags */ 14404 DB_CKSUMFLAGS(mp) = hcksumflags; 14405 return (ire); 14406 } 14407 14408 /* ARGSUSED */ 14409 static boolean_t 14410 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14411 int *ll_multicast, ipaddr_t *dstp) 14412 { 14413 ip_stack_t *ipst = ill->ill_ipst; 14414 14415 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14416 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14417 ntohs(ipha->ipha_length)); 14418 14419 /* 14420 * So that we don't end up with dups, only one ill in an IPMP group is 14421 * nominated to receive multicast traffic. 14422 */ 14423 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14424 goto drop_pkt; 14425 14426 /* 14427 * Forward packets only if we have joined the allmulti 14428 * group on this interface. 14429 */ 14430 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14431 int retval; 14432 14433 /* 14434 * Clear the indication that this may have hardware 14435 * checksum as we are not using it. 14436 */ 14437 DB_CKSUMFLAGS(mp) = 0; 14438 retval = ip_mforward(ill, ipha, mp); 14439 /* ip_mforward updates mib variables if needed */ 14440 /* clear b_prev - used by ip_mroute_decap */ 14441 mp->b_prev = NULL; 14442 14443 switch (retval) { 14444 case 0: 14445 /* 14446 * pkt is okay and arrived on phyint. 14447 * 14448 * If we are running as a multicast router 14449 * we need to see all IGMP and/or PIM packets. 14450 */ 14451 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14452 (ipha->ipha_protocol == IPPROTO_PIM)) { 14453 goto done; 14454 } 14455 break; 14456 case -1: 14457 /* pkt is mal-formed, toss it */ 14458 goto drop_pkt; 14459 case 1: 14460 /* pkt is okay and arrived on a tunnel */ 14461 /* 14462 * If we are running a multicast router 14463 * we need to see all igmp packets. 14464 */ 14465 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14466 *dstp = INADDR_BROADCAST; 14467 *ll_multicast = 1; 14468 return (B_FALSE); 14469 } 14470 14471 goto drop_pkt; 14472 } 14473 } 14474 14475 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14476 /* 14477 * This might just be caused by the fact that 14478 * multiple IP Multicast addresses map to the same 14479 * link layer multicast - no need to increment counter! 14480 */ 14481 freemsg(mp); 14482 return (B_TRUE); 14483 } 14484 done: 14485 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14486 /* 14487 * This assumes the we deliver to all streams for multicast 14488 * and broadcast packets. 14489 */ 14490 *dstp = INADDR_BROADCAST; 14491 *ll_multicast = 1; 14492 return (B_FALSE); 14493 drop_pkt: 14494 ip2dbg(("ip_rput: drop pkt\n")); 14495 freemsg(mp); 14496 return (B_TRUE); 14497 } 14498 14499 /* 14500 * This function is used to both return an indication of whether or not 14501 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14502 * and in doing so, determine whether or not it is broadcast vs multicast. 14503 * For it to be a broadcast packet, we must have the appropriate mblk_t 14504 * hanging off the ill_t. If this is either not present or doesn't match 14505 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14506 * to be multicast. Thus NICs that have no broadcast address (or no 14507 * capability for one, such as point to point links) cannot return as 14508 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14509 * the return values simplifies the current use of the return value of this 14510 * function, which is to pass through the multicast/broadcast characteristic 14511 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14512 * changing the return value to some other symbol demands the appropriate 14513 * "translation" when hpe_flags is set prior to calling hook_run() for 14514 * packet events. 14515 */ 14516 int 14517 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14518 { 14519 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14520 mblk_t *bmp; 14521 14522 if (ind->dl_group_address) { 14523 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14524 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14525 MBLKL(mb) && 14526 (bmp = ill->ill_bcast_mp) != NULL) { 14527 dl_unitdata_req_t *dlur; 14528 uint8_t *bphys_addr; 14529 14530 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14531 if (ill->ill_sap_length < 0) 14532 bphys_addr = (uchar_t *)dlur + 14533 dlur->dl_dest_addr_offset; 14534 else 14535 bphys_addr = (uchar_t *)dlur + 14536 dlur->dl_dest_addr_offset + 14537 ill->ill_sap_length; 14538 14539 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14540 bphys_addr, ind->dl_dest_addr_length) == 0) { 14541 return (HPE_BROADCAST); 14542 } 14543 return (HPE_MULTICAST); 14544 } 14545 return (HPE_MULTICAST); 14546 } 14547 return (0); 14548 } 14549 14550 static boolean_t 14551 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14552 int *ll_multicast, mblk_t **mpp) 14553 { 14554 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14555 boolean_t must_copy = B_FALSE; 14556 struct iocblk *iocp; 14557 ipha_t *ipha; 14558 ip_stack_t *ipst = ill->ill_ipst; 14559 14560 #define rptr ((uchar_t *)ipha) 14561 14562 first_mp = *first_mpp; 14563 mp = *mpp; 14564 14565 ASSERT(first_mp == mp); 14566 14567 /* 14568 * if db_ref > 1 then copymsg and free original. Packet may be 14569 * changed and do not want other entity who has a reference to this 14570 * message to trip over the changes. This is a blind change because 14571 * trying to catch all places that might change packet is too 14572 * difficult (since it may be a module above this one) 14573 * 14574 * This corresponds to the non-fast path case. We walk down the full 14575 * chain in this case, and check the db_ref count of all the dblks, 14576 * and do a copymsg if required. It is possible that the db_ref counts 14577 * of the data blocks in the mblk chain can be different. 14578 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14579 * count of 1, followed by a M_DATA block with a ref count of 2, if 14580 * 'snoop' is running. 14581 */ 14582 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14583 if (mp1->b_datap->db_ref > 1) { 14584 must_copy = B_TRUE; 14585 break; 14586 } 14587 } 14588 14589 if (must_copy) { 14590 mp1 = copymsg(mp); 14591 if (mp1 == NULL) { 14592 for (mp1 = mp; mp1 != NULL; 14593 mp1 = mp1->b_cont) { 14594 mp1->b_next = NULL; 14595 mp1->b_prev = NULL; 14596 } 14597 freemsg(mp); 14598 if (ill != NULL) { 14599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14600 } else { 14601 BUMP_MIB(&ipst->ips_ip_mib, 14602 ipIfStatsInDiscards); 14603 } 14604 return (B_TRUE); 14605 } 14606 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14607 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14608 /* Copy b_prev - used by ip_mroute_decap */ 14609 to_mp->b_prev = from_mp->b_prev; 14610 from_mp->b_prev = NULL; 14611 } 14612 *first_mpp = first_mp = mp1; 14613 freemsg(mp); 14614 mp = mp1; 14615 *mpp = mp1; 14616 } 14617 14618 ipha = (ipha_t *)mp->b_rptr; 14619 14620 /* 14621 * previous code has a case for M_DATA. 14622 * We want to check how that happens. 14623 */ 14624 ASSERT(first_mp->b_datap->db_type != M_DATA); 14625 switch (first_mp->b_datap->db_type) { 14626 case M_PROTO: 14627 case M_PCPROTO: 14628 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14629 DL_UNITDATA_IND) { 14630 /* Go handle anything other than data elsewhere. */ 14631 ip_rput_dlpi(q, mp); 14632 return (B_TRUE); 14633 } 14634 14635 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14636 /* Ditch the DLPI header. */ 14637 mp1 = mp->b_cont; 14638 ASSERT(first_mp == mp); 14639 *first_mpp = mp1; 14640 freeb(mp); 14641 *mpp = mp1; 14642 return (B_FALSE); 14643 case M_IOCACK: 14644 ip1dbg(("got iocack ")); 14645 iocp = (struct iocblk *)mp->b_rptr; 14646 switch (iocp->ioc_cmd) { 14647 case DL_IOC_HDR_INFO: 14648 ill = (ill_t *)q->q_ptr; 14649 ill_fastpath_ack(ill, mp); 14650 return (B_TRUE); 14651 case SIOCSTUNPARAM: 14652 case OSIOCSTUNPARAM: 14653 /* Go through qwriter_ip */ 14654 break; 14655 case SIOCGTUNPARAM: 14656 case OSIOCGTUNPARAM: 14657 ip_rput_other(NULL, q, mp, NULL); 14658 return (B_TRUE); 14659 default: 14660 putnext(q, mp); 14661 return (B_TRUE); 14662 } 14663 /* FALLTHRU */ 14664 case M_ERROR: 14665 case M_HANGUP: 14666 /* 14667 * Since this is on the ill stream we unconditionally 14668 * bump up the refcount 14669 */ 14670 ill_refhold(ill); 14671 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14672 return (B_TRUE); 14673 case M_CTL: 14674 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14675 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14676 IPHADA_M_CTL)) { 14677 /* 14678 * It's an IPsec accelerated packet. 14679 * Make sure that the ill from which we received the 14680 * packet has enabled IPsec hardware acceleration. 14681 */ 14682 if (!(ill->ill_capabilities & 14683 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14684 /* IPsec kstats: bean counter */ 14685 freemsg(mp); 14686 return (B_TRUE); 14687 } 14688 14689 /* 14690 * Make mp point to the mblk following the M_CTL, 14691 * then process according to type of mp. 14692 * After this processing, first_mp will point to 14693 * the data-attributes and mp to the pkt following 14694 * the M_CTL. 14695 */ 14696 mp = first_mp->b_cont; 14697 if (mp == NULL) { 14698 freemsg(first_mp); 14699 return (B_TRUE); 14700 } 14701 /* 14702 * A Hardware Accelerated packet can only be M_DATA 14703 * ESP or AH packet. 14704 */ 14705 if (mp->b_datap->db_type != M_DATA) { 14706 /* non-M_DATA IPsec accelerated packet */ 14707 IPSECHW_DEBUG(IPSECHW_PKT, 14708 ("non-M_DATA IPsec accelerated pkt\n")); 14709 freemsg(first_mp); 14710 return (B_TRUE); 14711 } 14712 ipha = (ipha_t *)mp->b_rptr; 14713 if (ipha->ipha_protocol != IPPROTO_AH && 14714 ipha->ipha_protocol != IPPROTO_ESP) { 14715 IPSECHW_DEBUG(IPSECHW_PKT, 14716 ("non-M_DATA IPsec accelerated pkt\n")); 14717 freemsg(first_mp); 14718 return (B_TRUE); 14719 } 14720 *mpp = mp; 14721 return (B_FALSE); 14722 } 14723 putnext(q, mp); 14724 return (B_TRUE); 14725 case M_IOCNAK: 14726 ip1dbg(("got iocnak ")); 14727 iocp = (struct iocblk *)mp->b_rptr; 14728 switch (iocp->ioc_cmd) { 14729 case SIOCSTUNPARAM: 14730 case OSIOCSTUNPARAM: 14731 /* 14732 * Since this is on the ill stream we unconditionally 14733 * bump up the refcount 14734 */ 14735 ill_refhold(ill); 14736 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14737 return (B_TRUE); 14738 case DL_IOC_HDR_INFO: 14739 case SIOCGTUNPARAM: 14740 case OSIOCGTUNPARAM: 14741 ip_rput_other(NULL, q, mp, NULL); 14742 return (B_TRUE); 14743 default: 14744 break; 14745 } 14746 /* FALLTHRU */ 14747 default: 14748 putnext(q, mp); 14749 return (B_TRUE); 14750 } 14751 } 14752 14753 /* Read side put procedure. Packets coming from the wire arrive here. */ 14754 void 14755 ip_rput(queue_t *q, mblk_t *mp) 14756 { 14757 ill_t *ill; 14758 union DL_primitives *dl; 14759 14760 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14761 14762 ill = (ill_t *)q->q_ptr; 14763 14764 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14765 /* 14766 * If things are opening or closing, only accept high-priority 14767 * DLPI messages. (On open ill->ill_ipif has not yet been 14768 * created; on close, things hanging off the ill may have been 14769 * freed already.) 14770 */ 14771 dl = (union DL_primitives *)mp->b_rptr; 14772 if (DB_TYPE(mp) != M_PCPROTO || 14773 dl->dl_primitive == DL_UNITDATA_IND) { 14774 /* 14775 * SIOC[GS]TUNPARAM ioctls can come here. 14776 */ 14777 inet_freemsg(mp); 14778 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14779 "ip_rput_end: q %p (%S)", q, "uninit"); 14780 return; 14781 } 14782 } 14783 14784 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14785 "ip_rput_end: q %p (%S)", q, "end"); 14786 14787 ip_input(ill, NULL, mp, NULL); 14788 } 14789 14790 static mblk_t * 14791 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14792 { 14793 mblk_t *mp1; 14794 boolean_t adjusted = B_FALSE; 14795 ip_stack_t *ipst = ill->ill_ipst; 14796 14797 IP_STAT(ipst, ip_db_ref); 14798 /* 14799 * The IP_RECVSLLA option depends on having the 14800 * link layer header. First check that: 14801 * a> the underlying device is of type ether, 14802 * since this option is currently supported only 14803 * over ethernet. 14804 * b> there is enough room to copy over the link 14805 * layer header. 14806 * 14807 * Once the checks are done, adjust rptr so that 14808 * the link layer header will be copied via 14809 * copymsg. Note that, IFT_ETHER may be returned 14810 * by some non-ethernet drivers but in this case 14811 * the second check will fail. 14812 */ 14813 if (ill->ill_type == IFT_ETHER && 14814 (mp->b_rptr - mp->b_datap->db_base) >= 14815 sizeof (struct ether_header)) { 14816 mp->b_rptr -= sizeof (struct ether_header); 14817 adjusted = B_TRUE; 14818 } 14819 mp1 = copymsg(mp); 14820 14821 if (mp1 == NULL) { 14822 mp->b_next = NULL; 14823 /* clear b_prev - used by ip_mroute_decap */ 14824 mp->b_prev = NULL; 14825 freemsg(mp); 14826 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14827 return (NULL); 14828 } 14829 14830 if (adjusted) { 14831 /* 14832 * Copy is done. Restore the pointer in 14833 * the _new_ mblk 14834 */ 14835 mp1->b_rptr += sizeof (struct ether_header); 14836 } 14837 14838 /* Copy b_prev - used by ip_mroute_decap */ 14839 mp1->b_prev = mp->b_prev; 14840 mp->b_prev = NULL; 14841 14842 /* preserve the hardware checksum flags and data, if present */ 14843 if (DB_CKSUMFLAGS(mp) != 0) { 14844 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14845 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14846 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14847 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14848 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14849 } 14850 14851 freemsg(mp); 14852 return (mp1); 14853 } 14854 14855 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14856 if (tail != NULL) \ 14857 tail->b_next = mp; \ 14858 else \ 14859 head = mp; \ 14860 tail = mp; \ 14861 cnt++; \ 14862 } 14863 14864 /* 14865 * Direct read side procedure capable of dealing with chains. GLDv3 based 14866 * drivers call this function directly with mblk chains while STREAMS 14867 * read side procedure ip_rput() calls this for single packet with ip_ring 14868 * set to NULL to process one packet at a time. 14869 * 14870 * The ill will always be valid if this function is called directly from 14871 * the driver. 14872 * 14873 * If ip_input() is called from GLDv3: 14874 * 14875 * - This must be a non-VLAN IP stream. 14876 * - 'mp' is either an untagged or a special priority-tagged packet. 14877 * - Any VLAN tag that was in the MAC header has been stripped. 14878 * 14879 * If the IP header in packet is not 32-bit aligned, every message in the 14880 * chain will be aligned before further operations. This is required on SPARC 14881 * platform. 14882 */ 14883 /* ARGSUSED */ 14884 void 14885 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14886 struct mac_header_info_s *mhip) 14887 { 14888 ipaddr_t dst = NULL; 14889 ipaddr_t prev_dst; 14890 ire_t *ire = NULL; 14891 ipha_t *ipha; 14892 uint_t pkt_len; 14893 ssize_t len; 14894 uint_t opt_len; 14895 int ll_multicast; 14896 int cgtp_flt_pkt; 14897 queue_t *q = ill->ill_rq; 14898 squeue_t *curr_sqp = NULL; 14899 mblk_t *head = NULL; 14900 mblk_t *tail = NULL; 14901 mblk_t *first_mp; 14902 int cnt = 0; 14903 ip_stack_t *ipst = ill->ill_ipst; 14904 mblk_t *mp; 14905 mblk_t *dmp; 14906 uint8_t tag; 14907 14908 ASSERT(mp_chain != NULL); 14909 ASSERT(ill != NULL); 14910 14911 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14912 14913 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14914 14915 #define rptr ((uchar_t *)ipha) 14916 14917 while (mp_chain != NULL) { 14918 mp = mp_chain; 14919 mp_chain = mp_chain->b_next; 14920 mp->b_next = NULL; 14921 ll_multicast = 0; 14922 14923 /* 14924 * We do ire caching from one iteration to 14925 * another. In the event the packet chain contains 14926 * all packets from the same dst, this caching saves 14927 * an ire_cache_lookup for each of the succeeding 14928 * packets in a packet chain. 14929 */ 14930 prev_dst = dst; 14931 14932 /* 14933 * if db_ref > 1 then copymsg and free original. Packet 14934 * may be changed and we do not want the other entity 14935 * who has a reference to this message to trip over the 14936 * changes. This is a blind change because trying to 14937 * catch all places that might change the packet is too 14938 * difficult. 14939 * 14940 * This corresponds to the fast path case, where we have 14941 * a chain of M_DATA mblks. We check the db_ref count 14942 * of only the 1st data block in the mblk chain. There 14943 * doesn't seem to be a reason why a device driver would 14944 * send up data with varying db_ref counts in the mblk 14945 * chain. In any case the Fast path is a private 14946 * interface, and our drivers don't do such a thing. 14947 * Given the above assumption, there is no need to walk 14948 * down the entire mblk chain (which could have a 14949 * potential performance problem) 14950 * 14951 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14952 * to here because of exclusive ip stacks and vnics. 14953 * Packets transmitted from exclusive stack over vnic 14954 * can have db_ref > 1 and when it gets looped back to 14955 * another vnic in a different zone, you have ip_input() 14956 * getting dblks with db_ref > 1. So if someone 14957 * complains of TCP performance under this scenario, 14958 * take a serious look here on the impact of copymsg(). 14959 */ 14960 14961 if (DB_REF(mp) > 1) { 14962 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14963 continue; 14964 } 14965 14966 /* 14967 * Check and align the IP header. 14968 */ 14969 first_mp = mp; 14970 if (DB_TYPE(mp) == M_DATA) { 14971 dmp = mp; 14972 } else if (DB_TYPE(mp) == M_PROTO && 14973 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14974 dmp = mp->b_cont; 14975 } else { 14976 dmp = NULL; 14977 } 14978 if (dmp != NULL) { 14979 /* 14980 * IP header ptr not aligned? 14981 * OR IP header not complete in first mblk 14982 */ 14983 if (!OK_32PTR(dmp->b_rptr) || 14984 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14985 if (!ip_check_and_align_header(q, dmp, ipst)) 14986 continue; 14987 } 14988 } 14989 14990 /* 14991 * ip_input fast path 14992 */ 14993 14994 /* mblk type is not M_DATA */ 14995 if (DB_TYPE(mp) != M_DATA) { 14996 if (ip_rput_process_notdata(q, &first_mp, ill, 14997 &ll_multicast, &mp)) 14998 continue; 14999 15000 /* 15001 * The only way we can get here is if we had a 15002 * packet that was either a DL_UNITDATA_IND or 15003 * an M_CTL for an IPsec accelerated packet. 15004 * 15005 * In either case, the first_mp will point to 15006 * the leading M_PROTO or M_CTL. 15007 */ 15008 ASSERT(first_mp != NULL); 15009 } else if (mhip != NULL) { 15010 /* 15011 * ll_multicast is set here so that it is ready 15012 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15013 * manipulates ll_multicast in the same fashion when 15014 * called from ip_rput_process_notdata. 15015 */ 15016 switch (mhip->mhi_dsttype) { 15017 case MAC_ADDRTYPE_MULTICAST : 15018 ll_multicast = HPE_MULTICAST; 15019 break; 15020 case MAC_ADDRTYPE_BROADCAST : 15021 ll_multicast = HPE_BROADCAST; 15022 break; 15023 default : 15024 break; 15025 } 15026 } 15027 15028 /* Only M_DATA can come here and it is always aligned */ 15029 ASSERT(DB_TYPE(mp) == M_DATA); 15030 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15031 15032 ipha = (ipha_t *)mp->b_rptr; 15033 len = mp->b_wptr - rptr; 15034 pkt_len = ntohs(ipha->ipha_length); 15035 15036 /* 15037 * We must count all incoming packets, even if they end 15038 * up being dropped later on. 15039 */ 15040 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15041 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15042 15043 /* multiple mblk or too short */ 15044 len -= pkt_len; 15045 if (len != 0) { 15046 /* 15047 * Make sure we have data length consistent 15048 * with the IP header. 15049 */ 15050 if (mp->b_cont == NULL) { 15051 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15052 BUMP_MIB(ill->ill_ip_mib, 15053 ipIfStatsInHdrErrors); 15054 ip2dbg(("ip_input: drop pkt\n")); 15055 freemsg(mp); 15056 continue; 15057 } 15058 mp->b_wptr = rptr + pkt_len; 15059 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15060 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15061 BUMP_MIB(ill->ill_ip_mib, 15062 ipIfStatsInHdrErrors); 15063 ip2dbg(("ip_input: drop pkt\n")); 15064 freemsg(mp); 15065 continue; 15066 } 15067 (void) adjmsg(mp, -len); 15068 IP_STAT(ipst, ip_multimblk3); 15069 } 15070 } 15071 15072 /* Obtain the dst of the current packet */ 15073 dst = ipha->ipha_dst; 15074 15075 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15076 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15077 ipha, ip6_t *, NULL, int, 0); 15078 15079 /* 15080 * The following test for loopback is faster than 15081 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15082 * operations. 15083 * Note that these addresses are always in network byte order 15084 */ 15085 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15086 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15088 freemsg(mp); 15089 continue; 15090 } 15091 15092 /* 15093 * The event for packets being received from a 'physical' 15094 * interface is placed after validation of the source and/or 15095 * destination address as being local so that packets can be 15096 * redirected to loopback addresses using ipnat. 15097 */ 15098 DTRACE_PROBE4(ip4__physical__in__start, 15099 ill_t *, ill, ill_t *, NULL, 15100 ipha_t *, ipha, mblk_t *, first_mp); 15101 15102 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15103 ipst->ips_ipv4firewall_physical_in, 15104 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15105 15106 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15107 15108 if (first_mp == NULL) { 15109 continue; 15110 } 15111 dst = ipha->ipha_dst; 15112 /* 15113 * Attach any necessary label information to 15114 * this packet 15115 */ 15116 if (is_system_labeled() && 15117 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15119 freemsg(mp); 15120 continue; 15121 } 15122 15123 if (ipst->ips_ipobs_enabled) { 15124 zoneid_t dzone; 15125 15126 /* 15127 * On the inbound path the src zone will be unknown as 15128 * this packet has come from the wire. 15129 */ 15130 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15131 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15132 ill, IPV4_VERSION, 0, ipst); 15133 } 15134 15135 /* 15136 * Reuse the cached ire only if the ipha_dst of the previous 15137 * packet is the same as the current packet AND it is not 15138 * INADDR_ANY. 15139 */ 15140 if (!(dst == prev_dst && dst != INADDR_ANY) && 15141 (ire != NULL)) { 15142 ire_refrele(ire); 15143 ire = NULL; 15144 } 15145 15146 opt_len = ipha->ipha_version_and_hdr_length - 15147 IP_SIMPLE_HDR_VERSION; 15148 15149 /* 15150 * Check to see if we can take the fastpath. 15151 * That is possible if the following conditions are met 15152 * o Tsol disabled 15153 * o CGTP disabled 15154 * o ipp_action_count is 0 15155 * o no options in the packet 15156 * o not a RSVP packet 15157 * o not a multicast packet 15158 * o ill not in IP_DHCPINIT_IF mode 15159 */ 15160 if (!is_system_labeled() && 15161 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15162 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15163 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15164 if (ire == NULL) 15165 ire = ire_cache_lookup_simple(dst, ipst); 15166 /* 15167 * Unless forwarding is enabled, dont call 15168 * ip_fast_forward(). Incoming packet is for forwarding 15169 */ 15170 if ((ill->ill_flags & ILLF_ROUTER) && 15171 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15172 ire = ip_fast_forward(ire, dst, ill, mp); 15173 continue; 15174 } 15175 /* incoming packet is for local consumption */ 15176 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15177 goto local; 15178 } 15179 15180 /* 15181 * Disable ire caching for anything more complex 15182 * than the simple fast path case we checked for above. 15183 */ 15184 if (ire != NULL) { 15185 ire_refrele(ire); 15186 ire = NULL; 15187 } 15188 15189 /* 15190 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15191 * server to unicast DHCP packets to a DHCP client using the 15192 * IP address it is offering to the client. This can be 15193 * disabled through the "broadcast bit", but not all DHCP 15194 * servers honor that bit. Therefore, to interoperate with as 15195 * many DHCP servers as possible, the DHCP client allows the 15196 * server to unicast, but we treat those packets as broadcast 15197 * here. Note that we don't rewrite the packet itself since 15198 * (a) that would mess up the checksums and (b) the DHCP 15199 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15200 * hand it the packet regardless. 15201 */ 15202 if (ill->ill_dhcpinit != 0 && 15203 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15204 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15205 udpha_t *udpha; 15206 15207 /* 15208 * Reload ipha since pullupmsg() can change b_rptr. 15209 */ 15210 ipha = (ipha_t *)mp->b_rptr; 15211 udpha = (udpha_t *)&ipha[1]; 15212 15213 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15214 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15215 mblk_t *, mp); 15216 dst = INADDR_BROADCAST; 15217 } 15218 } 15219 15220 /* Full-blown slow path */ 15221 if (opt_len != 0) { 15222 if (len != 0) 15223 IP_STAT(ipst, ip_multimblk4); 15224 else 15225 IP_STAT(ipst, ip_ipoptions); 15226 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15227 &dst, ipst)) 15228 continue; 15229 } 15230 15231 /* 15232 * Invoke the CGTP (multirouting) filtering module to process 15233 * the incoming packet. Packets identified as duplicates 15234 * must be discarded. Filtering is active only if the 15235 * the ip_cgtp_filter ndd variable is non-zero. 15236 */ 15237 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15238 if (ipst->ips_ip_cgtp_filter && 15239 ipst->ips_ip_cgtp_filter_ops != NULL) { 15240 netstackid_t stackid; 15241 15242 stackid = ipst->ips_netstack->netstack_stackid; 15243 cgtp_flt_pkt = 15244 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15245 ill->ill_phyint->phyint_ifindex, mp); 15246 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15247 freemsg(first_mp); 15248 continue; 15249 } 15250 } 15251 15252 /* 15253 * If rsvpd is running, let RSVP daemon handle its processing 15254 * and forwarding of RSVP multicast/unicast packets. 15255 * If rsvpd is not running but mrouted is running, RSVP 15256 * multicast packets are forwarded as multicast traffic 15257 * and RSVP unicast packets are forwarded by unicast router. 15258 * If neither rsvpd nor mrouted is running, RSVP multicast 15259 * packets are not forwarded, but the unicast packets are 15260 * forwarded like unicast traffic. 15261 */ 15262 if (ipha->ipha_protocol == IPPROTO_RSVP && 15263 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15264 NULL) { 15265 /* RSVP packet and rsvpd running. Treat as ours */ 15266 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15267 /* 15268 * This assumes that we deliver to all streams for 15269 * multicast and broadcast packets. 15270 * We have to force ll_multicast to 1 to handle the 15271 * M_DATA messages passed in from ip_mroute_decap. 15272 */ 15273 dst = INADDR_BROADCAST; 15274 ll_multicast = 1; 15275 } else if (CLASSD(dst)) { 15276 /* packet is multicast */ 15277 mp->b_next = NULL; 15278 if (ip_rput_process_multicast(q, mp, ill, ipha, 15279 &ll_multicast, &dst)) 15280 continue; 15281 } 15282 15283 if (ire == NULL) { 15284 ire = ire_cache_lookup(dst, ALL_ZONES, 15285 msg_getlabel(mp), ipst); 15286 } 15287 15288 if (ire != NULL && ire->ire_stq != NULL && 15289 ire->ire_zoneid != GLOBAL_ZONEID && 15290 ire->ire_zoneid != ALL_ZONES) { 15291 /* 15292 * Should only use IREs that are visible from the 15293 * global zone for forwarding. 15294 */ 15295 ire_refrele(ire); 15296 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15297 msg_getlabel(mp), ipst); 15298 } 15299 15300 if (ire == NULL) { 15301 /* 15302 * No IRE for this destination, so it can't be for us. 15303 * Unless we are forwarding, drop the packet. 15304 * We have to let source routed packets through 15305 * since we don't yet know if they are 'ping -l' 15306 * packets i.e. if they will go out over the 15307 * same interface as they came in on. 15308 */ 15309 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15310 if (ire == NULL) 15311 continue; 15312 } 15313 15314 /* 15315 * Broadcast IRE may indicate either broadcast or 15316 * multicast packet 15317 */ 15318 if (ire->ire_type == IRE_BROADCAST) { 15319 /* 15320 * Skip broadcast checks if packet is UDP multicast; 15321 * we'd rather not enter ip_rput_process_broadcast() 15322 * unless the packet is broadcast for real, since 15323 * that routine is a no-op for multicast. 15324 */ 15325 if (ipha->ipha_protocol != IPPROTO_UDP || 15326 !CLASSD(ipha->ipha_dst)) { 15327 ire = ip_rput_process_broadcast(&q, mp, 15328 ire, ipha, ill, dst, cgtp_flt_pkt, 15329 ll_multicast); 15330 if (ire == NULL) 15331 continue; 15332 } 15333 } else if (ire->ire_stq != NULL) { 15334 /* fowarding? */ 15335 ip_rput_process_forward(q, mp, ire, ipha, ill, 15336 ll_multicast, B_FALSE); 15337 /* ip_rput_process_forward consumed the packet */ 15338 continue; 15339 } 15340 15341 local: 15342 /* 15343 * If the queue in the ire is different to the ingress queue 15344 * then we need to check to see if we can accept the packet. 15345 * Note that for multicast packets and broadcast packets sent 15346 * to a broadcast address which is shared between multiple 15347 * interfaces we should not do this since we just got a random 15348 * broadcast ire. 15349 */ 15350 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15351 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15352 if (ire == NULL) { 15353 /* Drop packet */ 15354 BUMP_MIB(ill->ill_ip_mib, 15355 ipIfStatsForwProhibits); 15356 freemsg(mp); 15357 continue; 15358 } 15359 if (ire->ire_rfq != NULL) 15360 q = ire->ire_rfq; 15361 } 15362 15363 switch (ipha->ipha_protocol) { 15364 case IPPROTO_TCP: 15365 ASSERT(first_mp == mp); 15366 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15367 mp, 0, q, ip_ring)) != NULL) { 15368 if (curr_sqp == NULL) { 15369 curr_sqp = GET_SQUEUE(mp); 15370 ASSERT(cnt == 0); 15371 cnt++; 15372 head = tail = mp; 15373 } else if (curr_sqp == GET_SQUEUE(mp)) { 15374 ASSERT(tail != NULL); 15375 cnt++; 15376 tail->b_next = mp; 15377 tail = mp; 15378 } else { 15379 /* 15380 * A different squeue. Send the 15381 * chain for the previous squeue on 15382 * its way. This shouldn't happen 15383 * often unless interrupt binding 15384 * changes. 15385 */ 15386 IP_STAT(ipst, ip_input_multi_squeue); 15387 SQUEUE_ENTER(curr_sqp, head, 15388 tail, cnt, SQ_PROCESS, tag); 15389 curr_sqp = GET_SQUEUE(mp); 15390 head = mp; 15391 tail = mp; 15392 cnt = 1; 15393 } 15394 } 15395 continue; 15396 case IPPROTO_UDP: 15397 ASSERT(first_mp == mp); 15398 ip_udp_input(q, mp, ipha, ire, ill); 15399 continue; 15400 case IPPROTO_SCTP: 15401 ASSERT(first_mp == mp); 15402 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15403 q, dst); 15404 /* ire has been released by ip_sctp_input */ 15405 ire = NULL; 15406 continue; 15407 default: 15408 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15409 continue; 15410 } 15411 } 15412 15413 if (ire != NULL) 15414 ire_refrele(ire); 15415 15416 if (head != NULL) 15417 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15418 15419 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15420 "ip_input_end: q %p (%S)", q, "end"); 15421 #undef rptr 15422 } 15423 15424 /* 15425 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15426 * a chain of packets in the poll mode. The packets have gone through the 15427 * data link processing but not IP processing. For performance and latency 15428 * reasons, the squeue wants to process the chain in line instead of feeding 15429 * it back via ip_input path. 15430 * 15431 * So this is a light weight function which checks to see if the packets 15432 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15433 * but we still do the paranoid check) meant for local machine and we don't 15434 * have labels etc enabled. Packets that meet the criterion are returned to 15435 * the squeue and processed inline while the rest go via ip_input path. 15436 */ 15437 /*ARGSUSED*/ 15438 mblk_t * 15439 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15440 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15441 { 15442 mblk_t *mp; 15443 ipaddr_t dst = NULL; 15444 ipaddr_t prev_dst; 15445 ire_t *ire = NULL; 15446 ipha_t *ipha; 15447 uint_t pkt_len; 15448 ssize_t len; 15449 uint_t opt_len; 15450 queue_t *q = ill->ill_rq; 15451 squeue_t *curr_sqp; 15452 mblk_t *ahead = NULL; /* Accepted head */ 15453 mblk_t *atail = NULL; /* Accepted tail */ 15454 uint_t acnt = 0; /* Accepted count */ 15455 mblk_t *utail = NULL; /* Unaccepted head */ 15456 mblk_t *uhead = NULL; /* Unaccepted tail */ 15457 uint_t ucnt = 0; /* Unaccepted cnt */ 15458 ip_stack_t *ipst = ill->ill_ipst; 15459 15460 *cnt = 0; 15461 15462 ASSERT(ill != NULL); 15463 ASSERT(ip_ring != NULL); 15464 15465 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15466 15467 #define rptr ((uchar_t *)ipha) 15468 15469 while (mp_chain != NULL) { 15470 mp = mp_chain; 15471 mp_chain = mp_chain->b_next; 15472 mp->b_next = NULL; 15473 15474 /* 15475 * We do ire caching from one iteration to 15476 * another. In the event the packet chain contains 15477 * all packets from the same dst, this caching saves 15478 * an ire_cache_lookup for each of the succeeding 15479 * packets in a packet chain. 15480 */ 15481 prev_dst = dst; 15482 15483 ipha = (ipha_t *)mp->b_rptr; 15484 len = mp->b_wptr - rptr; 15485 15486 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15487 15488 /* 15489 * If it is a non TCP packet, or doesn't have H/W cksum, 15490 * or doesn't have min len, reject. 15491 */ 15492 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15493 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15494 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15495 continue; 15496 } 15497 15498 pkt_len = ntohs(ipha->ipha_length); 15499 if (len != pkt_len) { 15500 if (len > pkt_len) { 15501 mp->b_wptr = rptr + pkt_len; 15502 } else { 15503 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15504 continue; 15505 } 15506 } 15507 15508 opt_len = ipha->ipha_version_and_hdr_length - 15509 IP_SIMPLE_HDR_VERSION; 15510 dst = ipha->ipha_dst; 15511 15512 /* IP version bad or there are IP options */ 15513 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15514 mp, &ipha, &dst, ipst))) 15515 continue; 15516 15517 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15518 (ipst->ips_ip_cgtp_filter && 15519 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15520 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15521 continue; 15522 } 15523 15524 /* 15525 * Reuse the cached ire only if the ipha_dst of the previous 15526 * packet is the same as the current packet AND it is not 15527 * INADDR_ANY. 15528 */ 15529 if (!(dst == prev_dst && dst != INADDR_ANY) && 15530 (ire != NULL)) { 15531 ire_refrele(ire); 15532 ire = NULL; 15533 } 15534 15535 if (ire == NULL) 15536 ire = ire_cache_lookup_simple(dst, ipst); 15537 15538 /* 15539 * Unless forwarding is enabled, dont call 15540 * ip_fast_forward(). Incoming packet is for forwarding 15541 */ 15542 if ((ill->ill_flags & ILLF_ROUTER) && 15543 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15544 15545 DTRACE_PROBE4(ip4__physical__in__start, 15546 ill_t *, ill, ill_t *, NULL, 15547 ipha_t *, ipha, mblk_t *, mp); 15548 15549 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15550 ipst->ips_ipv4firewall_physical_in, 15551 ill, NULL, ipha, mp, mp, 0, ipst); 15552 15553 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15554 15555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15556 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15557 pkt_len); 15558 15559 if (mp != NULL) 15560 ire = ip_fast_forward(ire, dst, ill, mp); 15561 continue; 15562 } 15563 15564 /* incoming packet is for local consumption */ 15565 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15566 goto local_accept; 15567 15568 /* 15569 * Disable ire caching for anything more complex 15570 * than the simple fast path case we checked for above. 15571 */ 15572 if (ire != NULL) { 15573 ire_refrele(ire); 15574 ire = NULL; 15575 } 15576 15577 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15578 ipst); 15579 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15580 ire->ire_stq != NULL) { 15581 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15582 if (ire != NULL) { 15583 ire_refrele(ire); 15584 ire = NULL; 15585 } 15586 continue; 15587 } 15588 15589 local_accept: 15590 15591 if (ire->ire_rfq != q) { 15592 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15593 if (ire != NULL) { 15594 ire_refrele(ire); 15595 ire = NULL; 15596 } 15597 continue; 15598 } 15599 15600 /* 15601 * The event for packets being received from a 'physical' 15602 * interface is placed after validation of the source and/or 15603 * destination address as being local so that packets can be 15604 * redirected to loopback addresses using ipnat. 15605 */ 15606 DTRACE_PROBE4(ip4__physical__in__start, 15607 ill_t *, ill, ill_t *, NULL, 15608 ipha_t *, ipha, mblk_t *, mp); 15609 15610 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15611 ipst->ips_ipv4firewall_physical_in, 15612 ill, NULL, ipha, mp, mp, 0, ipst); 15613 15614 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15615 15616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15617 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15618 15619 if (mp != NULL && 15620 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15621 0, q, ip_ring)) != NULL) { 15622 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15623 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15624 } else { 15625 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15626 SQ_FILL, SQTAG_IP_INPUT); 15627 } 15628 } 15629 } 15630 15631 if (ire != NULL) 15632 ire_refrele(ire); 15633 15634 if (uhead != NULL) 15635 ip_input(ill, ip_ring, uhead, NULL); 15636 15637 if (ahead != NULL) { 15638 *last = atail; 15639 *cnt = acnt; 15640 return (ahead); 15641 } 15642 15643 return (NULL); 15644 #undef rptr 15645 } 15646 15647 static void 15648 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15649 t_uscalar_t err) 15650 { 15651 if (dl_err == DL_SYSERR) { 15652 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15653 "%s: %s failed: DL_SYSERR (errno %u)\n", 15654 ill->ill_name, dl_primstr(prim), err); 15655 return; 15656 } 15657 15658 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15659 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15660 dl_errstr(dl_err)); 15661 } 15662 15663 /* 15664 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15665 * than DL_UNITDATA_IND messages. If we need to process this message 15666 * exclusively, we call qwriter_ip, in which case we also need to call 15667 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15668 */ 15669 void 15670 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15671 { 15672 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15673 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15674 ill_t *ill = q->q_ptr; 15675 t_uscalar_t prim = dloa->dl_primitive; 15676 t_uscalar_t reqprim = DL_PRIM_INVAL; 15677 15678 ip1dbg(("ip_rput_dlpi")); 15679 15680 /* 15681 * If we received an ACK but didn't send a request for it, then it 15682 * can't be part of any pending operation; discard up-front. 15683 */ 15684 switch (prim) { 15685 case DL_ERROR_ACK: 15686 reqprim = dlea->dl_error_primitive; 15687 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15688 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15689 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15690 dlea->dl_unix_errno)); 15691 break; 15692 case DL_OK_ACK: 15693 reqprim = dloa->dl_correct_primitive; 15694 break; 15695 case DL_INFO_ACK: 15696 reqprim = DL_INFO_REQ; 15697 break; 15698 case DL_BIND_ACK: 15699 reqprim = DL_BIND_REQ; 15700 break; 15701 case DL_PHYS_ADDR_ACK: 15702 reqprim = DL_PHYS_ADDR_REQ; 15703 break; 15704 case DL_NOTIFY_ACK: 15705 reqprim = DL_NOTIFY_REQ; 15706 break; 15707 case DL_CONTROL_ACK: 15708 reqprim = DL_CONTROL_REQ; 15709 break; 15710 case DL_CAPABILITY_ACK: 15711 reqprim = DL_CAPABILITY_REQ; 15712 break; 15713 } 15714 15715 if (prim != DL_NOTIFY_IND) { 15716 if (reqprim == DL_PRIM_INVAL || 15717 !ill_dlpi_pending(ill, reqprim)) { 15718 /* Not a DLPI message we support or expected */ 15719 freemsg(mp); 15720 return; 15721 } 15722 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15723 dl_primstr(reqprim))); 15724 } 15725 15726 switch (reqprim) { 15727 case DL_UNBIND_REQ: 15728 /* 15729 * NOTE: we mark the unbind as complete even if we got a 15730 * DL_ERROR_ACK, since there's not much else we can do. 15731 */ 15732 mutex_enter(&ill->ill_lock); 15733 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15734 cv_signal(&ill->ill_cv); 15735 mutex_exit(&ill->ill_lock); 15736 break; 15737 15738 case DL_ENABMULTI_REQ: 15739 if (prim == DL_OK_ACK) { 15740 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15741 ill->ill_dlpi_multicast_state = IDS_OK; 15742 } 15743 break; 15744 } 15745 15746 /* 15747 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15748 * need to become writer to continue to process it. Because an 15749 * exclusive operation doesn't complete until replies to all queued 15750 * DLPI messages have been received, we know we're in the middle of an 15751 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15752 * 15753 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15754 * Since this is on the ill stream we unconditionally bump up the 15755 * refcount without doing ILL_CAN_LOOKUP(). 15756 */ 15757 ill_refhold(ill); 15758 if (prim == DL_NOTIFY_IND) 15759 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15760 else 15761 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15762 } 15763 15764 /* 15765 * Handling of DLPI messages that require exclusive access to the ipsq. 15766 * 15767 * Need to do ill_pending_mp_release on ioctl completion, which could 15768 * happen here. (along with mi_copy_done) 15769 */ 15770 /* ARGSUSED */ 15771 static void 15772 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15773 { 15774 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15775 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15776 int err = 0; 15777 ill_t *ill; 15778 ipif_t *ipif = NULL; 15779 mblk_t *mp1 = NULL; 15780 conn_t *connp = NULL; 15781 t_uscalar_t paddrreq; 15782 mblk_t *mp_hw; 15783 boolean_t success; 15784 boolean_t ioctl_aborted = B_FALSE; 15785 boolean_t log = B_TRUE; 15786 ip_stack_t *ipst; 15787 15788 ip1dbg(("ip_rput_dlpi_writer ..")); 15789 ill = (ill_t *)q->q_ptr; 15790 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15791 ASSERT(IAM_WRITER_ILL(ill)); 15792 15793 ipst = ill->ill_ipst; 15794 15795 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15796 /* 15797 * The current ioctl could have been aborted by the user and a new 15798 * ioctl to bring up another ill could have started. We could still 15799 * get a response from the driver later. 15800 */ 15801 if (ipif != NULL && ipif->ipif_ill != ill) 15802 ioctl_aborted = B_TRUE; 15803 15804 switch (dloa->dl_primitive) { 15805 case DL_ERROR_ACK: 15806 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15807 dl_primstr(dlea->dl_error_primitive))); 15808 15809 switch (dlea->dl_error_primitive) { 15810 case DL_DISABMULTI_REQ: 15811 ill_dlpi_done(ill, dlea->dl_error_primitive); 15812 break; 15813 case DL_PROMISCON_REQ: 15814 case DL_PROMISCOFF_REQ: 15815 case DL_UNBIND_REQ: 15816 case DL_ATTACH_REQ: 15817 case DL_INFO_REQ: 15818 ill_dlpi_done(ill, dlea->dl_error_primitive); 15819 break; 15820 case DL_NOTIFY_REQ: 15821 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15822 log = B_FALSE; 15823 break; 15824 case DL_PHYS_ADDR_REQ: 15825 /* 15826 * For IPv6 only, there are two additional 15827 * phys_addr_req's sent to the driver to get the 15828 * IPv6 token and lla. This allows IP to acquire 15829 * the hardware address format for a given interface 15830 * without having built in knowledge of the hardware 15831 * address. ill_phys_addr_pend keeps track of the last 15832 * DL_PAR sent so we know which response we are 15833 * dealing with. ill_dlpi_done will update 15834 * ill_phys_addr_pend when it sends the next req. 15835 * We don't complete the IOCTL until all three DL_PARs 15836 * have been attempted, so set *_len to 0 and break. 15837 */ 15838 paddrreq = ill->ill_phys_addr_pend; 15839 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15840 if (paddrreq == DL_IPV6_TOKEN) { 15841 ill->ill_token_length = 0; 15842 log = B_FALSE; 15843 break; 15844 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15845 ill->ill_nd_lla_len = 0; 15846 log = B_FALSE; 15847 break; 15848 } 15849 /* 15850 * Something went wrong with the DL_PHYS_ADDR_REQ. 15851 * We presumably have an IOCTL hanging out waiting 15852 * for completion. Find it and complete the IOCTL 15853 * with the error noted. 15854 * However, ill_dl_phys was called on an ill queue 15855 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15856 * set. But the ioctl is known to be pending on ill_wq. 15857 */ 15858 if (!ill->ill_ifname_pending) 15859 break; 15860 ill->ill_ifname_pending = 0; 15861 if (!ioctl_aborted) 15862 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15863 if (mp1 != NULL) { 15864 /* 15865 * This operation (SIOCSLIFNAME) must have 15866 * happened on the ill. Assert there is no conn 15867 */ 15868 ASSERT(connp == NULL); 15869 q = ill->ill_wq; 15870 } 15871 break; 15872 case DL_BIND_REQ: 15873 ill_dlpi_done(ill, DL_BIND_REQ); 15874 if (ill->ill_ifname_pending) 15875 break; 15876 /* 15877 * Something went wrong with the bind. We presumably 15878 * have an IOCTL hanging out waiting for completion. 15879 * Find it, take down the interface that was coming 15880 * up, and complete the IOCTL with the error noted. 15881 */ 15882 if (!ioctl_aborted) 15883 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15884 if (mp1 != NULL) { 15885 /* 15886 * This might be a result of a DL_NOTE_REPLUMB 15887 * notification. In that case, connp is NULL. 15888 */ 15889 if (connp != NULL) 15890 q = CONNP_TO_WQ(connp); 15891 15892 (void) ipif_down(ipif, NULL, NULL); 15893 /* error is set below the switch */ 15894 } 15895 break; 15896 case DL_ENABMULTI_REQ: 15897 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15898 15899 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15900 ill->ill_dlpi_multicast_state = IDS_FAILED; 15901 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15902 ipif_t *ipif; 15903 15904 printf("ip: joining multicasts failed (%d)" 15905 " on %s - will use link layer " 15906 "broadcasts for multicast\n", 15907 dlea->dl_errno, ill->ill_name); 15908 15909 /* 15910 * Set up the multicast mapping alone. 15911 * writer, so ok to access ill->ill_ipif 15912 * without any lock. 15913 */ 15914 ipif = ill->ill_ipif; 15915 mutex_enter(&ill->ill_phyint->phyint_lock); 15916 ill->ill_phyint->phyint_flags |= 15917 PHYI_MULTI_BCAST; 15918 mutex_exit(&ill->ill_phyint->phyint_lock); 15919 15920 if (!ill->ill_isv6) { 15921 (void) ipif_arp_setup_multicast(ipif, 15922 NULL); 15923 } else { 15924 (void) ipif_ndp_setup_multicast(ipif, 15925 NULL); 15926 } 15927 } 15928 freemsg(mp); /* Don't want to pass this up */ 15929 return; 15930 case DL_CONTROL_REQ: 15931 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15932 "DL_CONTROL_REQ\n")); 15933 ill_dlpi_done(ill, dlea->dl_error_primitive); 15934 freemsg(mp); 15935 return; 15936 case DL_CAPABILITY_REQ: 15937 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15938 "DL_CAPABILITY REQ\n")); 15939 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15940 ill->ill_dlpi_capab_state = IDCS_FAILED; 15941 ill_capability_done(ill); 15942 freemsg(mp); 15943 return; 15944 } 15945 /* 15946 * Note the error for IOCTL completion (mp1 is set when 15947 * ready to complete ioctl). If ill_ifname_pending_err is 15948 * set, an error occured during plumbing (ill_ifname_pending), 15949 * so we want to report that error. 15950 * 15951 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15952 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15953 * expected to get errack'd if the driver doesn't support 15954 * these flags (e.g. ethernet). log will be set to B_FALSE 15955 * if these error conditions are encountered. 15956 */ 15957 if (mp1 != NULL) { 15958 if (ill->ill_ifname_pending_err != 0) { 15959 err = ill->ill_ifname_pending_err; 15960 ill->ill_ifname_pending_err = 0; 15961 } else { 15962 err = dlea->dl_unix_errno ? 15963 dlea->dl_unix_errno : ENXIO; 15964 } 15965 /* 15966 * If we're plumbing an interface and an error hasn't already 15967 * been saved, set ill_ifname_pending_err to the error passed 15968 * up. Ignore the error if log is B_FALSE (see comment above). 15969 */ 15970 } else if (log && ill->ill_ifname_pending && 15971 ill->ill_ifname_pending_err == 0) { 15972 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15973 dlea->dl_unix_errno : ENXIO; 15974 } 15975 15976 if (log) 15977 ip_dlpi_error(ill, dlea->dl_error_primitive, 15978 dlea->dl_errno, dlea->dl_unix_errno); 15979 break; 15980 case DL_CAPABILITY_ACK: 15981 ill_capability_ack(ill, mp); 15982 /* 15983 * The message has been handed off to ill_capability_ack 15984 * and must not be freed below 15985 */ 15986 mp = NULL; 15987 break; 15988 15989 case DL_CONTROL_ACK: 15990 /* We treat all of these as "fire and forget" */ 15991 ill_dlpi_done(ill, DL_CONTROL_REQ); 15992 break; 15993 case DL_INFO_ACK: 15994 /* Call a routine to handle this one. */ 15995 ill_dlpi_done(ill, DL_INFO_REQ); 15996 ip_ll_subnet_defaults(ill, mp); 15997 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15998 return; 15999 case DL_BIND_ACK: 16000 /* 16001 * We should have an IOCTL waiting on this unless 16002 * sent by ill_dl_phys, in which case just return 16003 */ 16004 ill_dlpi_done(ill, DL_BIND_REQ); 16005 if (ill->ill_ifname_pending) 16006 break; 16007 16008 if (!ioctl_aborted) 16009 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16010 if (mp1 == NULL) 16011 break; 16012 /* 16013 * mp1 was added by ill_dl_up(). if that is a result of 16014 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16015 */ 16016 if (connp != NULL) 16017 q = CONNP_TO_WQ(connp); 16018 16019 /* 16020 * We are exclusive. So nothing can change even after 16021 * we get the pending mp. If need be we can put it back 16022 * and restart, as in calling ipif_arp_up() below. 16023 */ 16024 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16025 16026 mutex_enter(&ill->ill_lock); 16027 ill->ill_dl_up = 1; 16028 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16029 mutex_exit(&ill->ill_lock); 16030 16031 /* 16032 * Now bring up the resolver; when that is complete, we'll 16033 * create IREs. Note that we intentionally mirror what 16034 * ipif_up() would have done, because we got here by way of 16035 * ill_dl_up(), which stopped ipif_up()'s processing. 16036 */ 16037 if (ill->ill_isv6) { 16038 if (ill->ill_flags & ILLF_XRESOLV) { 16039 if (connp != NULL) 16040 mutex_enter(&connp->conn_lock); 16041 mutex_enter(&ill->ill_lock); 16042 success = ipsq_pending_mp_add(connp, ipif, q, 16043 mp1, 0); 16044 mutex_exit(&ill->ill_lock); 16045 if (connp != NULL) 16046 mutex_exit(&connp->conn_lock); 16047 if (success) { 16048 err = ipif_resolver_up(ipif, 16049 Res_act_initial); 16050 if (err == EINPROGRESS) { 16051 freemsg(mp); 16052 return; 16053 } 16054 ASSERT(err != 0); 16055 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16056 ASSERT(mp1 != NULL); 16057 } else { 16058 /* conn has started closing */ 16059 err = EINTR; 16060 } 16061 } else { /* Non XRESOLV interface */ 16062 (void) ipif_resolver_up(ipif, Res_act_initial); 16063 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16064 err = ipif_up_done_v6(ipif); 16065 } 16066 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16067 /* 16068 * ARP and other v4 external resolvers. 16069 * Leave the pending mblk intact so that 16070 * the ioctl completes in ip_rput(). 16071 */ 16072 if (connp != NULL) 16073 mutex_enter(&connp->conn_lock); 16074 mutex_enter(&ill->ill_lock); 16075 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16076 mutex_exit(&ill->ill_lock); 16077 if (connp != NULL) 16078 mutex_exit(&connp->conn_lock); 16079 if (success) { 16080 err = ipif_resolver_up(ipif, Res_act_initial); 16081 if (err == EINPROGRESS) { 16082 freemsg(mp); 16083 return; 16084 } 16085 ASSERT(err != 0); 16086 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16087 } else { 16088 /* The conn has started closing */ 16089 err = EINTR; 16090 } 16091 } else { 16092 /* 16093 * This one is complete. Reply to pending ioctl. 16094 */ 16095 (void) ipif_resolver_up(ipif, Res_act_initial); 16096 err = ipif_up_done(ipif); 16097 } 16098 16099 if ((err == 0) && (ill->ill_up_ipifs)) { 16100 err = ill_up_ipifs(ill, q, mp1); 16101 if (err == EINPROGRESS) { 16102 freemsg(mp); 16103 return; 16104 } 16105 } 16106 16107 /* 16108 * If we have a moved ipif to bring up, and everything has 16109 * succeeded to this point, bring it up on the IPMP ill. 16110 * Otherwise, leave it down -- the admin can try to bring it 16111 * up by hand if need be. 16112 */ 16113 if (ill->ill_move_ipif != NULL) { 16114 if (err != 0) { 16115 ill->ill_move_ipif = NULL; 16116 } else { 16117 ipif = ill->ill_move_ipif; 16118 ill->ill_move_ipif = NULL; 16119 err = ipif_up(ipif, q, mp1); 16120 if (err == EINPROGRESS) { 16121 freemsg(mp); 16122 return; 16123 } 16124 } 16125 } 16126 break; 16127 16128 case DL_NOTIFY_IND: { 16129 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16130 ire_t *ire; 16131 uint_t orig_mtu; 16132 boolean_t need_ire_walk_v4 = B_FALSE; 16133 boolean_t need_ire_walk_v6 = B_FALSE; 16134 16135 switch (notify->dl_notification) { 16136 case DL_NOTE_PHYS_ADDR: 16137 err = ill_set_phys_addr(ill, mp); 16138 break; 16139 16140 case DL_NOTE_REPLUMB: 16141 /* 16142 * Directly return after calling ill_replumb(). 16143 * Note that we should not free mp as it is reused 16144 * in the ill_replumb() function. 16145 */ 16146 err = ill_replumb(ill, mp); 16147 return; 16148 16149 case DL_NOTE_FASTPATH_FLUSH: 16150 ill_fastpath_flush(ill); 16151 break; 16152 16153 case DL_NOTE_SDU_SIZE: 16154 /* 16155 * Change the MTU size of the interface, of all 16156 * attached ipif's, and of all relevant ire's. The 16157 * new value's a uint32_t at notify->dl_data. 16158 * Mtu change Vs. new ire creation - protocol below. 16159 * 16160 * a Mark the ipif as IPIF_CHANGING. 16161 * b Set the new mtu in the ipif. 16162 * c Change the ire_max_frag on all affected ires 16163 * d Unmark the IPIF_CHANGING 16164 * 16165 * To see how the protocol works, assume an interface 16166 * route is also being added simultaneously by 16167 * ip_rt_add and let 'ipif' be the ipif referenced by 16168 * the ire. If the ire is created before step a, 16169 * it will be cleaned up by step c. If the ire is 16170 * created after step d, it will see the new value of 16171 * ipif_mtu. Any attempt to create the ire between 16172 * steps a to d will fail because of the IPIF_CHANGING 16173 * flag. Note that ire_create() is passed a pointer to 16174 * the ipif_mtu, and not the value. During ire_add 16175 * under the bucket lock, the ire_max_frag of the 16176 * new ire being created is set from the ipif/ire from 16177 * which it is being derived. 16178 */ 16179 mutex_enter(&ill->ill_lock); 16180 16181 orig_mtu = ill->ill_max_mtu; 16182 ill->ill_max_frag = (uint_t)notify->dl_data; 16183 ill->ill_max_mtu = (uint_t)notify->dl_data; 16184 16185 /* 16186 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16187 * clamp ill_max_mtu at it. 16188 */ 16189 if (ill->ill_user_mtu != 0 && 16190 ill->ill_user_mtu < ill->ill_max_mtu) 16191 ill->ill_max_mtu = ill->ill_user_mtu; 16192 16193 /* 16194 * If the MTU is unchanged, we're done. 16195 */ 16196 if (orig_mtu == ill->ill_max_mtu) { 16197 mutex_exit(&ill->ill_lock); 16198 break; 16199 } 16200 16201 if (ill->ill_isv6) { 16202 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16203 ill->ill_max_mtu = IPV6_MIN_MTU; 16204 } else { 16205 if (ill->ill_max_mtu < IP_MIN_MTU) 16206 ill->ill_max_mtu = IP_MIN_MTU; 16207 } 16208 for (ipif = ill->ill_ipif; ipif != NULL; 16209 ipif = ipif->ipif_next) { 16210 /* 16211 * Don't override the mtu if the user 16212 * has explicitly set it. 16213 */ 16214 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16215 continue; 16216 ipif->ipif_mtu = (uint_t)notify->dl_data; 16217 if (ipif->ipif_isv6) 16218 ire = ipif_to_ire_v6(ipif); 16219 else 16220 ire = ipif_to_ire(ipif); 16221 if (ire != NULL) { 16222 ire->ire_max_frag = ipif->ipif_mtu; 16223 ire_refrele(ire); 16224 } 16225 if (ipif->ipif_flags & IPIF_UP) { 16226 if (ill->ill_isv6) 16227 need_ire_walk_v6 = B_TRUE; 16228 else 16229 need_ire_walk_v4 = B_TRUE; 16230 } 16231 } 16232 mutex_exit(&ill->ill_lock); 16233 if (need_ire_walk_v4) 16234 ire_walk_v4(ill_mtu_change, (char *)ill, 16235 ALL_ZONES, ipst); 16236 if (need_ire_walk_v6) 16237 ire_walk_v6(ill_mtu_change, (char *)ill, 16238 ALL_ZONES, ipst); 16239 16240 /* 16241 * Refresh IPMP meta-interface MTU if necessary. 16242 */ 16243 if (IS_UNDER_IPMP(ill)) 16244 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16245 break; 16246 16247 case DL_NOTE_LINK_UP: 16248 case DL_NOTE_LINK_DOWN: { 16249 /* 16250 * We are writer. ill / phyint / ipsq assocs stable. 16251 * The RUNNING flag reflects the state of the link. 16252 */ 16253 phyint_t *phyint = ill->ill_phyint; 16254 uint64_t new_phyint_flags; 16255 boolean_t changed = B_FALSE; 16256 boolean_t went_up; 16257 16258 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16259 mutex_enter(&phyint->phyint_lock); 16260 16261 new_phyint_flags = went_up ? 16262 phyint->phyint_flags | PHYI_RUNNING : 16263 phyint->phyint_flags & ~PHYI_RUNNING; 16264 16265 if (IS_IPMP(ill)) { 16266 new_phyint_flags = went_up ? 16267 new_phyint_flags & ~PHYI_FAILED : 16268 new_phyint_flags | PHYI_FAILED; 16269 } 16270 16271 if (new_phyint_flags != phyint->phyint_flags) { 16272 phyint->phyint_flags = new_phyint_flags; 16273 changed = B_TRUE; 16274 } 16275 mutex_exit(&phyint->phyint_lock); 16276 /* 16277 * ill_restart_dad handles the DAD restart and routing 16278 * socket notification logic. 16279 */ 16280 if (changed) { 16281 ill_restart_dad(phyint->phyint_illv4, went_up); 16282 ill_restart_dad(phyint->phyint_illv6, went_up); 16283 } 16284 break; 16285 } 16286 case DL_NOTE_PROMISC_ON_PHYS: 16287 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16288 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16289 mutex_enter(&ill->ill_lock); 16290 ill->ill_promisc_on_phys = B_TRUE; 16291 mutex_exit(&ill->ill_lock); 16292 break; 16293 case DL_NOTE_PROMISC_OFF_PHYS: 16294 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16295 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16296 mutex_enter(&ill->ill_lock); 16297 ill->ill_promisc_on_phys = B_FALSE; 16298 mutex_exit(&ill->ill_lock); 16299 break; 16300 case DL_NOTE_CAPAB_RENEG: 16301 /* 16302 * Something changed on the driver side. 16303 * It wants us to renegotiate the capabilities 16304 * on this ill. One possible cause is the aggregation 16305 * interface under us where a port got added or 16306 * went away. 16307 * 16308 * If the capability negotiation is already done 16309 * or is in progress, reset the capabilities and 16310 * mark the ill's ill_capab_reneg to be B_TRUE, 16311 * so that when the ack comes back, we can start 16312 * the renegotiation process. 16313 * 16314 * Note that if ill_capab_reneg is already B_TRUE 16315 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16316 * the capability resetting request has been sent 16317 * and the renegotiation has not been started yet; 16318 * nothing needs to be done in this case. 16319 */ 16320 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16321 ill_capability_reset(ill, B_TRUE); 16322 ipsq_current_finish(ipsq); 16323 break; 16324 default: 16325 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16326 "type 0x%x for DL_NOTIFY_IND\n", 16327 notify->dl_notification)); 16328 break; 16329 } 16330 16331 /* 16332 * As this is an asynchronous operation, we 16333 * should not call ill_dlpi_done 16334 */ 16335 break; 16336 } 16337 case DL_NOTIFY_ACK: { 16338 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16339 16340 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16341 ill->ill_note_link = 1; 16342 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16343 break; 16344 } 16345 case DL_PHYS_ADDR_ACK: { 16346 /* 16347 * As part of plumbing the interface via SIOCSLIFNAME, 16348 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16349 * whose answers we receive here. As each answer is received, 16350 * we call ill_dlpi_done() to dispatch the next request as 16351 * we're processing the current one. Once all answers have 16352 * been received, we use ipsq_pending_mp_get() to dequeue the 16353 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16354 * is invoked from an ill queue, conn_oper_pending_ill is not 16355 * available, but we know the ioctl is pending on ill_wq.) 16356 */ 16357 uint_t paddrlen, paddroff; 16358 16359 paddrreq = ill->ill_phys_addr_pend; 16360 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16361 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16362 16363 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16364 if (paddrreq == DL_IPV6_TOKEN) { 16365 /* 16366 * bcopy to low-order bits of ill_token 16367 * 16368 * XXX Temporary hack - currently, all known tokens 16369 * are 64 bits, so I'll cheat for the moment. 16370 */ 16371 bcopy(mp->b_rptr + paddroff, 16372 &ill->ill_token.s6_addr32[2], paddrlen); 16373 ill->ill_token_length = paddrlen; 16374 break; 16375 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16376 ASSERT(ill->ill_nd_lla_mp == NULL); 16377 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16378 mp = NULL; 16379 break; 16380 } 16381 16382 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16383 ASSERT(ill->ill_phys_addr_mp == NULL); 16384 if (!ill->ill_ifname_pending) 16385 break; 16386 ill->ill_ifname_pending = 0; 16387 if (!ioctl_aborted) 16388 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16389 if (mp1 != NULL) { 16390 ASSERT(connp == NULL); 16391 q = ill->ill_wq; 16392 } 16393 /* 16394 * If any error acks received during the plumbing sequence, 16395 * ill_ifname_pending_err will be set. Break out and send up 16396 * the error to the pending ioctl. 16397 */ 16398 if (ill->ill_ifname_pending_err != 0) { 16399 err = ill->ill_ifname_pending_err; 16400 ill->ill_ifname_pending_err = 0; 16401 break; 16402 } 16403 16404 ill->ill_phys_addr_mp = mp; 16405 ill->ill_phys_addr = mp->b_rptr + paddroff; 16406 mp = NULL; 16407 16408 /* 16409 * If paddrlen is zero, the DLPI provider doesn't support 16410 * physical addresses. The other two tests were historical 16411 * workarounds for bugs in our former PPP implementation, but 16412 * now other things have grown dependencies on them -- e.g., 16413 * the tun module specifies a dl_addr_length of zero in its 16414 * DL_BIND_ACK, but then specifies an incorrect value in its 16415 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16416 * but only after careful testing ensures that all dependent 16417 * broken DLPI providers have been fixed. 16418 */ 16419 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16420 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16421 ill->ill_phys_addr = NULL; 16422 } else if (paddrlen != ill->ill_phys_addr_length) { 16423 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16424 paddrlen, ill->ill_phys_addr_length)); 16425 err = EINVAL; 16426 break; 16427 } 16428 16429 if (ill->ill_nd_lla_mp == NULL) { 16430 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16431 err = ENOMEM; 16432 break; 16433 } 16434 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16435 } 16436 16437 /* 16438 * Set the interface token. If the zeroth interface address 16439 * is unspecified, then set it to the link local address. 16440 */ 16441 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16442 (void) ill_setdefaulttoken(ill); 16443 16444 ASSERT(ill->ill_ipif->ipif_id == 0); 16445 if (ipif != NULL && 16446 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16447 (void) ipif_setlinklocal(ipif); 16448 } 16449 break; 16450 } 16451 case DL_OK_ACK: 16452 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16453 dl_primstr((int)dloa->dl_correct_primitive), 16454 dloa->dl_correct_primitive)); 16455 switch (dloa->dl_correct_primitive) { 16456 case DL_ENABMULTI_REQ: 16457 case DL_DISABMULTI_REQ: 16458 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16459 break; 16460 case DL_PROMISCON_REQ: 16461 case DL_PROMISCOFF_REQ: 16462 case DL_UNBIND_REQ: 16463 case DL_ATTACH_REQ: 16464 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16465 break; 16466 } 16467 break; 16468 default: 16469 break; 16470 } 16471 16472 freemsg(mp); 16473 if (mp1 == NULL) 16474 return; 16475 16476 /* 16477 * The operation must complete without EINPROGRESS since 16478 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16479 * the operation will be stuck forever inside the IPSQ. 16480 */ 16481 ASSERT(err != EINPROGRESS); 16482 16483 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16484 case 0: 16485 ipsq_current_finish(ipsq); 16486 break; 16487 16488 case SIOCSLIFNAME: 16489 case IF_UNITSEL: { 16490 ill_t *ill_other = ILL_OTHER(ill); 16491 16492 /* 16493 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16494 * ill has a peer which is in an IPMP group, then place ill 16495 * into the same group. One catch: although ifconfig plumbs 16496 * the appropriate IPMP meta-interface prior to plumbing this 16497 * ill, it is possible for multiple ifconfig applications to 16498 * race (or for another application to adjust plumbing), in 16499 * which case the IPMP meta-interface we need will be missing. 16500 * If so, kick the phyint out of the group. 16501 */ 16502 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16503 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16504 ipmp_illgrp_t *illg; 16505 16506 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16507 if (illg == NULL) 16508 ipmp_phyint_leave_grp(ill->ill_phyint); 16509 else 16510 ipmp_ill_join_illgrp(ill, illg); 16511 } 16512 16513 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16514 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16515 else 16516 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16517 break; 16518 } 16519 case SIOCLIFADDIF: 16520 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16521 break; 16522 16523 default: 16524 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16525 break; 16526 } 16527 } 16528 16529 /* 16530 * ip_rput_other is called by ip_rput to handle messages modifying the global 16531 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16532 */ 16533 /* ARGSUSED */ 16534 void 16535 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16536 { 16537 ill_t *ill = q->q_ptr; 16538 struct iocblk *iocp; 16539 mblk_t *mp1; 16540 conn_t *connp = NULL; 16541 16542 ip1dbg(("ip_rput_other ")); 16543 if (ipsq != NULL) { 16544 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16545 ASSERT(ipsq->ipsq_xop == 16546 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16547 } 16548 16549 switch (mp->b_datap->db_type) { 16550 case M_ERROR: 16551 case M_HANGUP: 16552 /* 16553 * The device has a problem. We force the ILL down. It can 16554 * be brought up again manually using SIOCSIFFLAGS (via 16555 * ifconfig or equivalent). 16556 */ 16557 ASSERT(ipsq != NULL); 16558 if (mp->b_rptr < mp->b_wptr) 16559 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16560 if (ill->ill_error == 0) 16561 ill->ill_error = ENXIO; 16562 if (!ill_down_start(q, mp)) 16563 return; 16564 ipif_all_down_tail(ipsq, q, mp, NULL); 16565 break; 16566 case M_IOCACK: 16567 iocp = (struct iocblk *)mp->b_rptr; 16568 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16569 switch (iocp->ioc_cmd) { 16570 case SIOCSTUNPARAM: 16571 case OSIOCSTUNPARAM: 16572 ASSERT(ipsq != NULL); 16573 /* 16574 * Finish socket ioctl passed through to tun. 16575 * We should have an IOCTL waiting on this. 16576 */ 16577 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16578 if (ill->ill_isv6) { 16579 struct iftun_req *ta; 16580 16581 /* 16582 * if a source or destination is 16583 * being set, try and set the link 16584 * local address for the tunnel 16585 */ 16586 ta = (struct iftun_req *)mp->b_cont-> 16587 b_cont->b_rptr; 16588 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16589 ipif_set_tun_llink(ill, ta); 16590 } 16591 16592 } 16593 if (mp1 != NULL) { 16594 /* 16595 * Now copy back the b_next/b_prev used by 16596 * mi code for the mi_copy* functions. 16597 * See ip_sioctl_tunparam() for the reason. 16598 * Also protect against missing b_cont. 16599 */ 16600 if (mp->b_cont != NULL) { 16601 mp->b_cont->b_next = 16602 mp1->b_cont->b_next; 16603 mp->b_cont->b_prev = 16604 mp1->b_cont->b_prev; 16605 } 16606 inet_freemsg(mp1); 16607 ASSERT(connp != NULL); 16608 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16609 iocp->ioc_error, NO_COPYOUT, ipsq); 16610 } else { 16611 ASSERT(connp == NULL); 16612 putnext(q, mp); 16613 } 16614 break; 16615 case SIOCGTUNPARAM: 16616 case OSIOCGTUNPARAM: 16617 /* 16618 * This is really M_IOCDATA from the tunnel driver. 16619 * convert back and complete the ioctl. 16620 * We should have an IOCTL waiting on this. 16621 */ 16622 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16623 if (mp1) { 16624 /* 16625 * Now copy back the b_next/b_prev used by 16626 * mi code for the mi_copy* functions. 16627 * See ip_sioctl_tunparam() for the reason. 16628 * Also protect against missing b_cont. 16629 */ 16630 if (mp->b_cont != NULL) { 16631 mp->b_cont->b_next = 16632 mp1->b_cont->b_next; 16633 mp->b_cont->b_prev = 16634 mp1->b_cont->b_prev; 16635 } 16636 inet_freemsg(mp1); 16637 if (iocp->ioc_error == 0) 16638 mp->b_datap->db_type = M_IOCDATA; 16639 ASSERT(connp != NULL); 16640 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16641 iocp->ioc_error, COPYOUT, NULL); 16642 } else { 16643 ASSERT(connp == NULL); 16644 putnext(q, mp); 16645 } 16646 break; 16647 default: 16648 break; 16649 } 16650 break; 16651 case M_IOCNAK: 16652 iocp = (struct iocblk *)mp->b_rptr; 16653 16654 switch (iocp->ioc_cmd) { 16655 int mode; 16656 16657 case DL_IOC_HDR_INFO: 16658 /* 16659 * If this was the first attempt, turn off the 16660 * fastpath probing. 16661 */ 16662 mutex_enter(&ill->ill_lock); 16663 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16664 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16665 mutex_exit(&ill->ill_lock); 16666 ill_fastpath_nack(ill); 16667 ip1dbg(("ip_rput: DLPI fastpath off on " 16668 "interface %s\n", 16669 ill->ill_name)); 16670 } else { 16671 mutex_exit(&ill->ill_lock); 16672 } 16673 freemsg(mp); 16674 break; 16675 case SIOCSTUNPARAM: 16676 case OSIOCSTUNPARAM: 16677 ASSERT(ipsq != NULL); 16678 /* 16679 * Finish socket ioctl passed through to tun 16680 * We should have an IOCTL waiting on this. 16681 */ 16682 /* FALLTHRU */ 16683 case SIOCGTUNPARAM: 16684 case OSIOCGTUNPARAM: 16685 /* 16686 * This is really M_IOCDATA from the tunnel driver. 16687 * convert back and complete the ioctl. 16688 * We should have an IOCTL waiting on this. 16689 */ 16690 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16691 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16692 mp1 = ill_pending_mp_get(ill, &connp, 16693 iocp->ioc_id); 16694 mode = COPYOUT; 16695 ipsq = NULL; 16696 } else { 16697 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16698 mode = NO_COPYOUT; 16699 } 16700 if (mp1 != NULL) { 16701 /* 16702 * Now copy back the b_next/b_prev used by 16703 * mi code for the mi_copy* functions. 16704 * See ip_sioctl_tunparam() for the reason. 16705 * Also protect against missing b_cont. 16706 */ 16707 if (mp->b_cont != NULL) { 16708 mp->b_cont->b_next = 16709 mp1->b_cont->b_next; 16710 mp->b_cont->b_prev = 16711 mp1->b_cont->b_prev; 16712 } 16713 inet_freemsg(mp1); 16714 if (iocp->ioc_error == 0) 16715 iocp->ioc_error = EINVAL; 16716 ASSERT(connp != NULL); 16717 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16718 iocp->ioc_error, mode, ipsq); 16719 } else { 16720 ASSERT(connp == NULL); 16721 putnext(q, mp); 16722 } 16723 break; 16724 default: 16725 break; 16726 } 16727 default: 16728 break; 16729 } 16730 } 16731 16732 /* 16733 * NOTE : This function does not ire_refrele the ire argument passed in. 16734 * 16735 * IPQoS notes 16736 * IP policy is invoked twice for a forwarded packet, once on the read side 16737 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16738 * enabled. An additional parameter, in_ill, has been added for this purpose. 16739 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16740 * because ip_mroute drops this information. 16741 * 16742 */ 16743 void 16744 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16745 { 16746 uint32_t old_pkt_len; 16747 uint32_t pkt_len; 16748 queue_t *q; 16749 uint32_t sum; 16750 #define rptr ((uchar_t *)ipha) 16751 uint32_t max_frag; 16752 uint32_t ill_index; 16753 ill_t *out_ill; 16754 mib2_ipIfStatsEntry_t *mibptr; 16755 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16756 16757 /* Get the ill_index of the incoming ILL */ 16758 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16759 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16760 16761 /* Initiate Read side IPPF processing */ 16762 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16763 ip_process(IPP_FWD_IN, &mp, ill_index); 16764 if (mp == NULL) { 16765 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16766 "during IPPF processing\n")); 16767 return; 16768 } 16769 } 16770 16771 /* Adjust the checksum to reflect the ttl decrement. */ 16772 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16773 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16774 16775 if (ipha->ipha_ttl-- <= 1) { 16776 if (ip_csum_hdr(ipha)) { 16777 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16778 goto drop_pkt; 16779 } 16780 /* 16781 * Note: ire_stq this will be NULL for multicast 16782 * datagrams using the long path through arp (the IRE 16783 * is not an IRE_CACHE). This should not cause 16784 * problems since we don't generate ICMP errors for 16785 * multicast packets. 16786 */ 16787 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16788 q = ire->ire_stq; 16789 if (q != NULL) { 16790 /* Sent by forwarding path, and router is global zone */ 16791 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16792 GLOBAL_ZONEID, ipst); 16793 } else 16794 freemsg(mp); 16795 return; 16796 } 16797 16798 /* 16799 * Don't forward if the interface is down 16800 */ 16801 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16802 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16803 ip2dbg(("ip_rput_forward:interface is down\n")); 16804 goto drop_pkt; 16805 } 16806 16807 /* Get the ill_index of the outgoing ILL */ 16808 out_ill = ire_to_ill(ire); 16809 ill_index = out_ill->ill_phyint->phyint_ifindex; 16810 16811 DTRACE_PROBE4(ip4__forwarding__start, 16812 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16813 16814 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16815 ipst->ips_ipv4firewall_forwarding, 16816 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16817 16818 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16819 16820 if (mp == NULL) 16821 return; 16822 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16823 16824 if (is_system_labeled()) { 16825 mblk_t *mp1; 16826 16827 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16828 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16829 goto drop_pkt; 16830 } 16831 /* Size may have changed */ 16832 mp = mp1; 16833 ipha = (ipha_t *)mp->b_rptr; 16834 pkt_len = ntohs(ipha->ipha_length); 16835 } 16836 16837 /* Check if there are options to update */ 16838 if (!IS_SIMPLE_IPH(ipha)) { 16839 if (ip_csum_hdr(ipha)) { 16840 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16841 goto drop_pkt; 16842 } 16843 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16844 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16845 return; 16846 } 16847 16848 ipha->ipha_hdr_checksum = 0; 16849 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16850 } 16851 max_frag = ire->ire_max_frag; 16852 if (pkt_len > max_frag) { 16853 /* 16854 * It needs fragging on its way out. We haven't 16855 * verified the header checksum yet. Since we 16856 * are going to put a surely good checksum in the 16857 * outgoing header, we have to make sure that it 16858 * was good coming in. 16859 */ 16860 if (ip_csum_hdr(ipha)) { 16861 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16862 goto drop_pkt; 16863 } 16864 /* Initiate Write side IPPF processing */ 16865 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16866 ip_process(IPP_FWD_OUT, &mp, ill_index); 16867 if (mp == NULL) { 16868 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16869 " during IPPF processing\n")); 16870 return; 16871 } 16872 } 16873 /* 16874 * Handle labeled packet resizing. 16875 * 16876 * If we have added a label, inform ip_wput_frag() of its 16877 * effect on the MTU for ICMP messages. 16878 */ 16879 if (pkt_len > old_pkt_len) { 16880 uint32_t secopt_size; 16881 16882 secopt_size = pkt_len - old_pkt_len; 16883 if (secopt_size < max_frag) 16884 max_frag -= secopt_size; 16885 } 16886 16887 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16888 GLOBAL_ZONEID, ipst, NULL); 16889 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16890 return; 16891 } 16892 16893 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16894 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16895 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16896 ipst->ips_ipv4firewall_physical_out, 16897 NULL, out_ill, ipha, mp, mp, 0, ipst); 16898 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16899 if (mp == NULL) 16900 return; 16901 16902 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16903 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16904 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16905 /* ip_xmit_v4 always consumes the packet */ 16906 return; 16907 16908 drop_pkt:; 16909 ip1dbg(("ip_rput_forward: drop pkt\n")); 16910 freemsg(mp); 16911 #undef rptr 16912 } 16913 16914 void 16915 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16916 { 16917 ire_t *ire; 16918 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16919 16920 ASSERT(!ipif->ipif_isv6); 16921 /* 16922 * Find an IRE which matches the destination and the outgoing 16923 * queue in the cache table. All we need is an IRE_CACHE which 16924 * is pointing at ipif->ipif_ill. 16925 */ 16926 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16927 dst = ipif->ipif_pp_dst_addr; 16928 16929 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16930 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16931 if (ire == NULL) { 16932 /* 16933 * Mark this packet to make it be delivered to 16934 * ip_rput_forward after the new ire has been 16935 * created. 16936 */ 16937 mp->b_prev = NULL; 16938 mp->b_next = mp; 16939 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16940 NULL, 0, GLOBAL_ZONEID, &zero_info); 16941 } else { 16942 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16943 IRE_REFRELE(ire); 16944 } 16945 } 16946 16947 /* Update any source route, record route or timestamp options */ 16948 static int 16949 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16950 { 16951 ipoptp_t opts; 16952 uchar_t *opt; 16953 uint8_t optval; 16954 uint8_t optlen; 16955 ipaddr_t dst; 16956 uint32_t ts; 16957 ire_t *dst_ire = NULL; 16958 ire_t *tmp_ire = NULL; 16959 timestruc_t now; 16960 16961 ip2dbg(("ip_rput_forward_options\n")); 16962 dst = ipha->ipha_dst; 16963 for (optval = ipoptp_first(&opts, ipha); 16964 optval != IPOPT_EOL; 16965 optval = ipoptp_next(&opts)) { 16966 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16967 opt = opts.ipoptp_cur; 16968 optlen = opts.ipoptp_len; 16969 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16970 optval, opts.ipoptp_len)); 16971 switch (optval) { 16972 uint32_t off; 16973 case IPOPT_SSRR: 16974 case IPOPT_LSRR: 16975 /* Check if adminstratively disabled */ 16976 if (!ipst->ips_ip_forward_src_routed) { 16977 if (ire->ire_stq != NULL) { 16978 /* 16979 * Sent by forwarding path, and router 16980 * is global zone 16981 */ 16982 icmp_unreachable(ire->ire_stq, mp, 16983 ICMP_SOURCE_ROUTE_FAILED, 16984 GLOBAL_ZONEID, ipst); 16985 } else { 16986 ip0dbg(("ip_rput_forward_options: " 16987 "unable to send unreach\n")); 16988 freemsg(mp); 16989 } 16990 return (-1); 16991 } 16992 16993 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16994 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16995 if (dst_ire == NULL) { 16996 /* 16997 * Must be partial since ip_rput_options 16998 * checked for strict. 16999 */ 17000 break; 17001 } 17002 off = opt[IPOPT_OFFSET]; 17003 off--; 17004 redo_srr: 17005 if (optlen < IP_ADDR_LEN || 17006 off > optlen - IP_ADDR_LEN) { 17007 /* End of source route */ 17008 ip1dbg(( 17009 "ip_rput_forward_options: end of SR\n")); 17010 ire_refrele(dst_ire); 17011 break; 17012 } 17013 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17014 bcopy(&ire->ire_src_addr, (char *)opt + off, 17015 IP_ADDR_LEN); 17016 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17017 ntohl(dst))); 17018 17019 /* 17020 * Check if our address is present more than 17021 * once as consecutive hops in source route. 17022 */ 17023 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17024 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17025 if (tmp_ire != NULL) { 17026 ire_refrele(tmp_ire); 17027 off += IP_ADDR_LEN; 17028 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17029 goto redo_srr; 17030 } 17031 ipha->ipha_dst = dst; 17032 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17033 ire_refrele(dst_ire); 17034 break; 17035 case IPOPT_RR: 17036 off = opt[IPOPT_OFFSET]; 17037 off--; 17038 if (optlen < IP_ADDR_LEN || 17039 off > optlen - IP_ADDR_LEN) { 17040 /* No more room - ignore */ 17041 ip1dbg(( 17042 "ip_rput_forward_options: end of RR\n")); 17043 break; 17044 } 17045 bcopy(&ire->ire_src_addr, (char *)opt + off, 17046 IP_ADDR_LEN); 17047 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17048 break; 17049 case IPOPT_TS: 17050 /* Insert timestamp if there is room */ 17051 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17052 case IPOPT_TS_TSONLY: 17053 off = IPOPT_TS_TIMELEN; 17054 break; 17055 case IPOPT_TS_PRESPEC: 17056 case IPOPT_TS_PRESPEC_RFC791: 17057 /* Verify that the address matched */ 17058 off = opt[IPOPT_OFFSET] - 1; 17059 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17060 dst_ire = ire_ctable_lookup(dst, 0, 17061 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17062 MATCH_IRE_TYPE, ipst); 17063 if (dst_ire == NULL) { 17064 /* Not for us */ 17065 break; 17066 } 17067 ire_refrele(dst_ire); 17068 /* FALLTHRU */ 17069 case IPOPT_TS_TSANDADDR: 17070 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17071 break; 17072 default: 17073 /* 17074 * ip_*put_options should have already 17075 * dropped this packet. 17076 */ 17077 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17078 "unknown IT - bug in ip_rput_options?\n"); 17079 return (0); /* Keep "lint" happy */ 17080 } 17081 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17082 /* Increase overflow counter */ 17083 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17084 opt[IPOPT_POS_OV_FLG] = 17085 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17086 (off << 4)); 17087 break; 17088 } 17089 off = opt[IPOPT_OFFSET] - 1; 17090 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17091 case IPOPT_TS_PRESPEC: 17092 case IPOPT_TS_PRESPEC_RFC791: 17093 case IPOPT_TS_TSANDADDR: 17094 bcopy(&ire->ire_src_addr, 17095 (char *)opt + off, IP_ADDR_LEN); 17096 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17097 /* FALLTHRU */ 17098 case IPOPT_TS_TSONLY: 17099 off = opt[IPOPT_OFFSET] - 1; 17100 /* Compute # of milliseconds since midnight */ 17101 gethrestime(&now); 17102 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17103 now.tv_nsec / (NANOSEC / MILLISEC); 17104 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17105 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17106 break; 17107 } 17108 break; 17109 } 17110 } 17111 return (0); 17112 } 17113 17114 /* 17115 * This is called after processing at least one of AH/ESP headers. 17116 * 17117 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17118 * the actual, physical interface on which the packet was received, 17119 * but, when ip_strict_dst_multihoming is set to 1, could be the 17120 * interface which had the ipha_dst configured when the packet went 17121 * through ip_rput. The ill_index corresponding to the recv_ill 17122 * is saved in ipsec_in_rill_index 17123 * 17124 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17125 * cannot assume "ire" points to valid data for any IPv6 cases. 17126 */ 17127 void 17128 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17129 { 17130 mblk_t *mp; 17131 ipaddr_t dst; 17132 in6_addr_t *v6dstp; 17133 ipha_t *ipha; 17134 ip6_t *ip6h; 17135 ipsec_in_t *ii; 17136 boolean_t ill_need_rele = B_FALSE; 17137 boolean_t rill_need_rele = B_FALSE; 17138 boolean_t ire_need_rele = B_FALSE; 17139 netstack_t *ns; 17140 ip_stack_t *ipst; 17141 17142 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17143 ASSERT(ii->ipsec_in_ill_index != 0); 17144 ns = ii->ipsec_in_ns; 17145 ASSERT(ii->ipsec_in_ns != NULL); 17146 ipst = ns->netstack_ip; 17147 17148 mp = ipsec_mp->b_cont; 17149 ASSERT(mp != NULL); 17150 17151 if (ill == NULL) { 17152 ASSERT(recv_ill == NULL); 17153 /* 17154 * We need to get the original queue on which ip_rput_local 17155 * or ip_rput_data_v6 was called. 17156 */ 17157 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17158 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17159 ill_need_rele = B_TRUE; 17160 17161 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17162 recv_ill = ill_lookup_on_ifindex( 17163 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17164 NULL, NULL, NULL, NULL, ipst); 17165 rill_need_rele = B_TRUE; 17166 } else { 17167 recv_ill = ill; 17168 } 17169 17170 if ((ill == NULL) || (recv_ill == NULL)) { 17171 ip0dbg(("ip_fanout_proto_again: interface " 17172 "disappeared\n")); 17173 if (ill != NULL) 17174 ill_refrele(ill); 17175 if (recv_ill != NULL) 17176 ill_refrele(recv_ill); 17177 freemsg(ipsec_mp); 17178 return; 17179 } 17180 } 17181 17182 ASSERT(ill != NULL && recv_ill != NULL); 17183 17184 if (mp->b_datap->db_type == M_CTL) { 17185 /* 17186 * AH/ESP is returning the ICMP message after 17187 * removing their headers. Fanout again till 17188 * it gets to the right protocol. 17189 */ 17190 if (ii->ipsec_in_v4) { 17191 icmph_t *icmph; 17192 int iph_hdr_length; 17193 int hdr_length; 17194 17195 ipha = (ipha_t *)mp->b_rptr; 17196 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17197 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17198 ipha = (ipha_t *)&icmph[1]; 17199 hdr_length = IPH_HDR_LENGTH(ipha); 17200 /* 17201 * icmp_inbound_error_fanout may need to do pullupmsg. 17202 * Reset the type to M_DATA. 17203 */ 17204 mp->b_datap->db_type = M_DATA; 17205 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17206 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17207 B_FALSE, ill, ii->ipsec_in_zoneid); 17208 } else { 17209 icmp6_t *icmp6; 17210 int hdr_length; 17211 17212 ip6h = (ip6_t *)mp->b_rptr; 17213 /* Don't call hdr_length_v6() unless you have to. */ 17214 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17215 hdr_length = ip_hdr_length_v6(mp, ip6h); 17216 else 17217 hdr_length = IPV6_HDR_LEN; 17218 17219 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17220 /* 17221 * icmp_inbound_error_fanout_v6 may need to do 17222 * pullupmsg. Reset the type to M_DATA. 17223 */ 17224 mp->b_datap->db_type = M_DATA; 17225 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17226 ip6h, icmp6, ill, recv_ill, B_TRUE, 17227 ii->ipsec_in_zoneid); 17228 } 17229 if (ill_need_rele) 17230 ill_refrele(ill); 17231 if (rill_need_rele) 17232 ill_refrele(recv_ill); 17233 return; 17234 } 17235 17236 if (ii->ipsec_in_v4) { 17237 ipha = (ipha_t *)mp->b_rptr; 17238 dst = ipha->ipha_dst; 17239 if (CLASSD(dst)) { 17240 /* 17241 * Multicast has to be delivered to all streams. 17242 */ 17243 dst = INADDR_BROADCAST; 17244 } 17245 17246 if (ire == NULL) { 17247 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17248 msg_getlabel(mp), ipst); 17249 if (ire == NULL) { 17250 if (ill_need_rele) 17251 ill_refrele(ill); 17252 if (rill_need_rele) 17253 ill_refrele(recv_ill); 17254 ip1dbg(("ip_fanout_proto_again: " 17255 "IRE not found")); 17256 freemsg(ipsec_mp); 17257 return; 17258 } 17259 ire_need_rele = B_TRUE; 17260 } 17261 17262 switch (ipha->ipha_protocol) { 17263 case IPPROTO_UDP: 17264 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17265 recv_ill); 17266 if (ire_need_rele) 17267 ire_refrele(ire); 17268 break; 17269 case IPPROTO_TCP: 17270 if (!ire_need_rele) 17271 IRE_REFHOLD(ire); 17272 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17273 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17274 IRE_REFRELE(ire); 17275 if (mp != NULL) { 17276 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17277 mp, 1, SQ_PROCESS, 17278 SQTAG_IP_PROTO_AGAIN); 17279 } 17280 break; 17281 case IPPROTO_SCTP: 17282 if (!ire_need_rele) 17283 IRE_REFHOLD(ire); 17284 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17285 ipsec_mp, 0, ill->ill_rq, dst); 17286 break; 17287 default: 17288 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17289 recv_ill, 0); 17290 if (ire_need_rele) 17291 ire_refrele(ire); 17292 break; 17293 } 17294 } else { 17295 uint32_t rput_flags = 0; 17296 17297 ip6h = (ip6_t *)mp->b_rptr; 17298 v6dstp = &ip6h->ip6_dst; 17299 /* 17300 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17301 * address. 17302 * 17303 * Currently, we don't store that state in the IPSEC_IN 17304 * message, and we may need to. 17305 */ 17306 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17307 IP6_IN_LLMCAST : 0); 17308 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17309 NULL, NULL); 17310 } 17311 if (ill_need_rele) 17312 ill_refrele(ill); 17313 if (rill_need_rele) 17314 ill_refrele(recv_ill); 17315 } 17316 17317 /* 17318 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17319 * returns 'true' if there are still fragments left on the queue, in 17320 * which case we restart the timer. 17321 */ 17322 void 17323 ill_frag_timer(void *arg) 17324 { 17325 ill_t *ill = (ill_t *)arg; 17326 boolean_t frag_pending; 17327 ip_stack_t *ipst = ill->ill_ipst; 17328 time_t timeout; 17329 17330 mutex_enter(&ill->ill_lock); 17331 ASSERT(!ill->ill_fragtimer_executing); 17332 if (ill->ill_state_flags & ILL_CONDEMNED) { 17333 ill->ill_frag_timer_id = 0; 17334 mutex_exit(&ill->ill_lock); 17335 return; 17336 } 17337 ill->ill_fragtimer_executing = 1; 17338 mutex_exit(&ill->ill_lock); 17339 17340 if (ill->ill_isv6) 17341 timeout = ipst->ips_ipv6_frag_timeout; 17342 else 17343 timeout = ipst->ips_ip_g_frag_timeout; 17344 17345 frag_pending = ill_frag_timeout(ill, timeout); 17346 17347 /* 17348 * Restart the timer, if we have fragments pending or if someone 17349 * wanted us to be scheduled again. 17350 */ 17351 mutex_enter(&ill->ill_lock); 17352 ill->ill_fragtimer_executing = 0; 17353 ill->ill_frag_timer_id = 0; 17354 if (frag_pending || ill->ill_fragtimer_needrestart) 17355 ill_frag_timer_start(ill); 17356 mutex_exit(&ill->ill_lock); 17357 } 17358 17359 void 17360 ill_frag_timer_start(ill_t *ill) 17361 { 17362 ip_stack_t *ipst = ill->ill_ipst; 17363 clock_t timeo_ms; 17364 17365 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17366 17367 /* If the ill is closing or opening don't proceed */ 17368 if (ill->ill_state_flags & ILL_CONDEMNED) 17369 return; 17370 17371 if (ill->ill_fragtimer_executing) { 17372 /* 17373 * ill_frag_timer is currently executing. Just record the 17374 * the fact that we want the timer to be restarted. 17375 * ill_frag_timer will post a timeout before it returns, 17376 * ensuring it will be called again. 17377 */ 17378 ill->ill_fragtimer_needrestart = 1; 17379 return; 17380 } 17381 17382 if (ill->ill_frag_timer_id == 0) { 17383 if (ill->ill_isv6) 17384 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17385 else 17386 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17387 /* 17388 * The timer is neither running nor is the timeout handler 17389 * executing. Post a timeout so that ill_frag_timer will be 17390 * called 17391 */ 17392 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17393 MSEC_TO_TICK(timeo_ms >> 1)); 17394 ill->ill_fragtimer_needrestart = 0; 17395 } 17396 } 17397 17398 /* 17399 * This routine is needed for loopback when forwarding multicasts. 17400 * 17401 * IPQoS Notes: 17402 * IPPF processing is done in fanout routines. 17403 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17404 * processing for IPsec packets is done when it comes back in clear. 17405 * NOTE : The callers of this function need to do the ire_refrele for the 17406 * ire that is being passed in. 17407 */ 17408 void 17409 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17410 ill_t *recv_ill, uint32_t esp_udp_ports) 17411 { 17412 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17413 ill_t *ill = (ill_t *)q->q_ptr; 17414 uint32_t sum; 17415 uint32_t u1; 17416 uint32_t u2; 17417 int hdr_length; 17418 boolean_t mctl_present; 17419 mblk_t *first_mp = mp; 17420 mblk_t *hada_mp = NULL; 17421 ipha_t *inner_ipha; 17422 ip_stack_t *ipst; 17423 17424 ASSERT(recv_ill != NULL); 17425 ipst = recv_ill->ill_ipst; 17426 17427 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17428 "ip_rput_locl_start: q %p", q); 17429 17430 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17431 ASSERT(ill != NULL); 17432 17433 #define rptr ((uchar_t *)ipha) 17434 #define iphs ((uint16_t *)ipha) 17435 17436 /* 17437 * no UDP or TCP packet should come here anymore. 17438 */ 17439 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17440 ipha->ipha_protocol != IPPROTO_UDP); 17441 17442 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17443 if (mctl_present && 17444 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17445 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17446 17447 /* 17448 * It's an IPsec accelerated packet. 17449 * Keep a pointer to the data attributes around until 17450 * we allocate the ipsec_info_t. 17451 */ 17452 IPSECHW_DEBUG(IPSECHW_PKT, 17453 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17454 hada_mp = first_mp; 17455 hada_mp->b_cont = NULL; 17456 /* 17457 * Since it is accelerated, it comes directly from 17458 * the ill and the data attributes is followed by 17459 * the packet data. 17460 */ 17461 ASSERT(mp->b_datap->db_type != M_CTL); 17462 first_mp = mp; 17463 mctl_present = B_FALSE; 17464 } 17465 17466 /* 17467 * IF M_CTL is not present, then ipsec_in_is_secure 17468 * should return B_TRUE. There is a case where loopback 17469 * packets has an M_CTL in the front with all the 17470 * IPsec options set to IPSEC_PREF_NEVER - which means 17471 * ipsec_in_is_secure will return B_FALSE. As loopback 17472 * packets never comes here, it is safe to ASSERT the 17473 * following. 17474 */ 17475 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17476 17477 /* 17478 * Also, we should never have an mctl_present if this is an 17479 * ESP-in-UDP packet. 17480 */ 17481 ASSERT(!mctl_present || !esp_in_udp_packet); 17482 17483 /* u1 is # words of IP options */ 17484 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17485 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17486 17487 /* 17488 * Don't verify header checksum if we just removed UDP header or 17489 * packet is coming back from AH/ESP. 17490 */ 17491 if (!esp_in_udp_packet && !mctl_present) { 17492 if (u1) { 17493 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17494 if (hada_mp != NULL) 17495 freemsg(hada_mp); 17496 return; 17497 } 17498 } else { 17499 /* Check the IP header checksum. */ 17500 #define uph ((uint16_t *)ipha) 17501 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17502 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17503 #undef uph 17504 /* finish doing IP checksum */ 17505 sum = (sum & 0xFFFF) + (sum >> 16); 17506 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17507 if (sum && sum != 0xFFFF) { 17508 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17509 goto drop_pkt; 17510 } 17511 } 17512 } 17513 17514 /* 17515 * Count for SNMP of inbound packets for ire. As ip_proto_input 17516 * might be called more than once for secure packets, count only 17517 * the first time. 17518 */ 17519 if (!mctl_present) { 17520 UPDATE_IB_PKT_COUNT(ire); 17521 ire->ire_last_used_time = lbolt; 17522 } 17523 17524 /* Check for fragmentation offset. */ 17525 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17526 u1 = u2 & (IPH_MF | IPH_OFFSET); 17527 if (u1) { 17528 /* 17529 * We re-assemble fragments before we do the AH/ESP 17530 * processing. Thus, M_CTL should not be present 17531 * while we are re-assembling. 17532 */ 17533 ASSERT(!mctl_present); 17534 ASSERT(first_mp == mp); 17535 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17536 return; 17537 17538 /* 17539 * Make sure that first_mp points back to mp as 17540 * the mp we came in with could have changed in 17541 * ip_rput_fragment(). 17542 */ 17543 ipha = (ipha_t *)mp->b_rptr; 17544 first_mp = mp; 17545 } 17546 17547 /* 17548 * Clear hardware checksumming flag as it is currently only 17549 * used by TCP and UDP. 17550 */ 17551 DB_CKSUMFLAGS(mp) = 0; 17552 17553 /* Now we have a complete datagram, destined for this machine. */ 17554 u1 = IPH_HDR_LENGTH(ipha); 17555 switch (ipha->ipha_protocol) { 17556 case IPPROTO_ICMP: { 17557 ire_t *ire_zone; 17558 ilm_t *ilm; 17559 mblk_t *mp1; 17560 zoneid_t last_zoneid; 17561 ilm_walker_t ilw; 17562 17563 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17564 ASSERT(ire->ire_type == IRE_BROADCAST); 17565 17566 /* 17567 * In the multicast case, applications may have joined 17568 * the group from different zones, so we need to deliver 17569 * the packet to each of them. Loop through the 17570 * multicast memberships structures (ilm) on the receive 17571 * ill and send a copy of the packet up each matching 17572 * one. However, we don't do this for multicasts sent on 17573 * the loopback interface (PHYI_LOOPBACK flag set) as 17574 * they must stay in the sender's zone. 17575 * 17576 * ilm_add_v6() ensures that ilms in the same zone are 17577 * contiguous in the ill_ilm list. We use this property 17578 * to avoid sending duplicates needed when two 17579 * applications in the same zone join the same group on 17580 * different logical interfaces: we ignore the ilm if 17581 * its zoneid is the same as the last matching one. 17582 * In addition, the sending of the packet for 17583 * ire_zoneid is delayed until all of the other ilms 17584 * have been exhausted. 17585 */ 17586 last_zoneid = -1; 17587 ilm = ilm_walker_start(&ilw, recv_ill); 17588 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17589 if (ipha->ipha_dst != ilm->ilm_addr || 17590 ilm->ilm_zoneid == last_zoneid || 17591 ilm->ilm_zoneid == ire->ire_zoneid || 17592 ilm->ilm_zoneid == ALL_ZONES || 17593 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17594 continue; 17595 mp1 = ip_copymsg(first_mp); 17596 if (mp1 == NULL) 17597 continue; 17598 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17599 0, sum, mctl_present, B_TRUE, 17600 recv_ill, ilm->ilm_zoneid); 17601 last_zoneid = ilm->ilm_zoneid; 17602 } 17603 ilm_walker_finish(&ilw); 17604 } else if (ire->ire_type == IRE_BROADCAST) { 17605 /* 17606 * In the broadcast case, there may be many zones 17607 * which need a copy of the packet delivered to them. 17608 * There is one IRE_BROADCAST per broadcast address 17609 * and per zone; we walk those using a helper function. 17610 * In addition, the sending of the packet for ire is 17611 * delayed until all of the other ires have been 17612 * processed. 17613 */ 17614 IRB_REFHOLD(ire->ire_bucket); 17615 ire_zone = NULL; 17616 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17617 ire)) != NULL) { 17618 mp1 = ip_copymsg(first_mp); 17619 if (mp1 == NULL) 17620 continue; 17621 17622 UPDATE_IB_PKT_COUNT(ire_zone); 17623 ire_zone->ire_last_used_time = lbolt; 17624 icmp_inbound(q, mp1, B_TRUE, ill, 17625 0, sum, mctl_present, B_TRUE, 17626 recv_ill, ire_zone->ire_zoneid); 17627 } 17628 IRB_REFRELE(ire->ire_bucket); 17629 } 17630 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17631 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17632 ire->ire_zoneid); 17633 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17634 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17635 return; 17636 } 17637 case IPPROTO_IGMP: 17638 /* 17639 * If we are not willing to accept IGMP packets in clear, 17640 * then check with global policy. 17641 */ 17642 if (ipst->ips_igmp_accept_clear_messages == 0) { 17643 first_mp = ipsec_check_global_policy(first_mp, NULL, 17644 ipha, NULL, mctl_present, ipst->ips_netstack); 17645 if (first_mp == NULL) 17646 return; 17647 } 17648 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17649 freemsg(first_mp); 17650 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17652 return; 17653 } 17654 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17655 /* Bad packet - discarded by igmp_input */ 17656 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17657 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17658 if (mctl_present) 17659 freeb(first_mp); 17660 return; 17661 } 17662 /* 17663 * igmp_input() may have returned the pulled up message. 17664 * So first_mp and ipha need to be reinitialized. 17665 */ 17666 ipha = (ipha_t *)mp->b_rptr; 17667 if (mctl_present) 17668 first_mp->b_cont = mp; 17669 else 17670 first_mp = mp; 17671 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17672 connf_head != NULL) { 17673 /* No user-level listener for IGMP packets */ 17674 goto drop_pkt; 17675 } 17676 /* deliver to local raw users */ 17677 break; 17678 case IPPROTO_PIM: 17679 /* 17680 * If we are not willing to accept PIM packets in clear, 17681 * then check with global policy. 17682 */ 17683 if (ipst->ips_pim_accept_clear_messages == 0) { 17684 first_mp = ipsec_check_global_policy(first_mp, NULL, 17685 ipha, NULL, mctl_present, ipst->ips_netstack); 17686 if (first_mp == NULL) 17687 return; 17688 } 17689 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17690 freemsg(first_mp); 17691 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17692 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17693 return; 17694 } 17695 if (pim_input(q, mp, ill) != 0) { 17696 /* Bad packet - discarded by pim_input */ 17697 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17698 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17699 if (mctl_present) 17700 freeb(first_mp); 17701 return; 17702 } 17703 17704 /* 17705 * pim_input() may have pulled up the message so ipha needs to 17706 * be reinitialized. 17707 */ 17708 ipha = (ipha_t *)mp->b_rptr; 17709 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17710 connf_head != NULL) { 17711 /* No user-level listener for PIM packets */ 17712 goto drop_pkt; 17713 } 17714 /* deliver to local raw users */ 17715 break; 17716 case IPPROTO_ENCAP: 17717 /* 17718 * Handle self-encapsulated packets (IP-in-IP where 17719 * the inner addresses == the outer addresses). 17720 */ 17721 hdr_length = IPH_HDR_LENGTH(ipha); 17722 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17723 mp->b_wptr) { 17724 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17725 sizeof (ipha_t) - mp->b_rptr)) { 17726 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17727 freemsg(first_mp); 17728 return; 17729 } 17730 ipha = (ipha_t *)mp->b_rptr; 17731 } 17732 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17733 /* 17734 * Check the sanity of the inner IP header. 17735 */ 17736 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17738 freemsg(first_mp); 17739 return; 17740 } 17741 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17743 freemsg(first_mp); 17744 return; 17745 } 17746 if (inner_ipha->ipha_src == ipha->ipha_src && 17747 inner_ipha->ipha_dst == ipha->ipha_dst) { 17748 ipsec_in_t *ii; 17749 17750 /* 17751 * Self-encapsulated tunnel packet. Remove 17752 * the outer IP header and fanout again. 17753 * We also need to make sure that the inner 17754 * header is pulled up until options. 17755 */ 17756 mp->b_rptr = (uchar_t *)inner_ipha; 17757 ipha = inner_ipha; 17758 hdr_length = IPH_HDR_LENGTH(ipha); 17759 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17760 if (!pullupmsg(mp, (uchar_t *)ipha + 17761 + hdr_length - mp->b_rptr)) { 17762 freemsg(first_mp); 17763 return; 17764 } 17765 ipha = (ipha_t *)mp->b_rptr; 17766 } 17767 if (hdr_length > sizeof (ipha_t)) { 17768 /* We got options on the inner packet. */ 17769 ipaddr_t dst = ipha->ipha_dst; 17770 17771 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17772 -1) { 17773 /* Bad options! */ 17774 return; 17775 } 17776 if (dst != ipha->ipha_dst) { 17777 /* 17778 * Someone put a source-route in 17779 * the inside header of a self- 17780 * encapsulated packet. Drop it 17781 * with extreme prejudice and let 17782 * the sender know. 17783 */ 17784 icmp_unreachable(q, first_mp, 17785 ICMP_SOURCE_ROUTE_FAILED, 17786 recv_ill->ill_zoneid, ipst); 17787 return; 17788 } 17789 } 17790 if (!mctl_present) { 17791 ASSERT(first_mp == mp); 17792 /* 17793 * This means that somebody is sending 17794 * Self-encapsualted packets without AH/ESP. 17795 * If AH/ESP was present, we would have already 17796 * allocated the first_mp. 17797 * 17798 * Send this packet to find a tunnel endpoint. 17799 * if I can't find one, an ICMP 17800 * PROTOCOL_UNREACHABLE will get sent. 17801 */ 17802 goto fanout; 17803 } 17804 /* 17805 * We generally store the ill_index if we need to 17806 * do IPsec processing as we lose the ill queue when 17807 * we come back. But in this case, we never should 17808 * have to store the ill_index here as it should have 17809 * been stored previously when we processed the 17810 * AH/ESP header in this routine or for non-ipsec 17811 * cases, we still have the queue. But for some bad 17812 * packets from the wire, we can get to IPsec after 17813 * this and we better store the index for that case. 17814 */ 17815 ill = (ill_t *)q->q_ptr; 17816 ii = (ipsec_in_t *)first_mp->b_rptr; 17817 ii->ipsec_in_ill_index = 17818 ill->ill_phyint->phyint_ifindex; 17819 ii->ipsec_in_rill_index = 17820 recv_ill->ill_phyint->phyint_ifindex; 17821 if (ii->ipsec_in_decaps) { 17822 /* 17823 * This packet is self-encapsulated multiple 17824 * times. We don't want to recurse infinitely. 17825 * To keep it simple, drop the packet. 17826 */ 17827 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17828 freemsg(first_mp); 17829 return; 17830 } 17831 ii->ipsec_in_decaps = B_TRUE; 17832 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17833 ire); 17834 return; 17835 } 17836 break; 17837 case IPPROTO_AH: 17838 case IPPROTO_ESP: { 17839 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17840 17841 /* 17842 * Fast path for AH/ESP. If this is the first time 17843 * we are sending a datagram to AH/ESP, allocate 17844 * a IPSEC_IN message and prepend it. Otherwise, 17845 * just fanout. 17846 */ 17847 17848 int ipsec_rc; 17849 ipsec_in_t *ii; 17850 netstack_t *ns = ipst->ips_netstack; 17851 17852 IP_STAT(ipst, ipsec_proto_ahesp); 17853 if (!mctl_present) { 17854 ASSERT(first_mp == mp); 17855 first_mp = ipsec_in_alloc(B_TRUE, ns); 17856 if (first_mp == NULL) { 17857 ip1dbg(("ip_proto_input: IPSEC_IN " 17858 "allocation failure.\n")); 17859 freemsg(hada_mp); /* okay ifnull */ 17860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17861 freemsg(mp); 17862 return; 17863 } 17864 /* 17865 * Store the ill_index so that when we come back 17866 * from IPsec we ride on the same queue. 17867 */ 17868 ill = (ill_t *)q->q_ptr; 17869 ii = (ipsec_in_t *)first_mp->b_rptr; 17870 ii->ipsec_in_ill_index = 17871 ill->ill_phyint->phyint_ifindex; 17872 ii->ipsec_in_rill_index = 17873 recv_ill->ill_phyint->phyint_ifindex; 17874 first_mp->b_cont = mp; 17875 /* 17876 * Cache hardware acceleration info. 17877 */ 17878 if (hada_mp != NULL) { 17879 IPSECHW_DEBUG(IPSECHW_PKT, 17880 ("ip_rput_local: caching data attr.\n")); 17881 ii->ipsec_in_accelerated = B_TRUE; 17882 ii->ipsec_in_da = hada_mp; 17883 hada_mp = NULL; 17884 } 17885 } else { 17886 ii = (ipsec_in_t *)first_mp->b_rptr; 17887 } 17888 17889 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17890 17891 if (!ipsec_loaded(ipss)) { 17892 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17893 ire->ire_zoneid, ipst); 17894 return; 17895 } 17896 17897 ns = ipst->ips_netstack; 17898 /* select inbound SA and have IPsec process the pkt */ 17899 if (ipha->ipha_protocol == IPPROTO_ESP) { 17900 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17901 boolean_t esp_in_udp_sa; 17902 if (esph == NULL) 17903 return; 17904 ASSERT(ii->ipsec_in_esp_sa != NULL); 17905 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17906 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17907 IPSA_F_NATT) != 0); 17908 /* 17909 * The following is a fancy, but quick, way of saying: 17910 * ESP-in-UDP SA and Raw ESP packet --> drop 17911 * OR 17912 * ESP SA and ESP-in-UDP packet --> drop 17913 */ 17914 if (esp_in_udp_sa != esp_in_udp_packet) { 17915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17916 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17917 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17918 &ns->netstack_ipsec->ipsec_dropper); 17919 return; 17920 } 17921 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17922 first_mp, esph); 17923 } else { 17924 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17925 if (ah == NULL) 17926 return; 17927 ASSERT(ii->ipsec_in_ah_sa != NULL); 17928 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17929 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17930 first_mp, ah); 17931 } 17932 17933 switch (ipsec_rc) { 17934 case IPSEC_STATUS_SUCCESS: 17935 break; 17936 case IPSEC_STATUS_FAILED: 17937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17938 /* FALLTHRU */ 17939 case IPSEC_STATUS_PENDING: 17940 return; 17941 } 17942 /* we're done with IPsec processing, send it up */ 17943 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17944 return; 17945 } 17946 default: 17947 break; 17948 } 17949 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17950 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17951 ire->ire_zoneid)); 17952 goto drop_pkt; 17953 } 17954 /* 17955 * Handle protocols with which IP is less intimate. There 17956 * can be more than one stream bound to a particular 17957 * protocol. When this is the case, each one gets a copy 17958 * of any incoming packets. 17959 */ 17960 fanout: 17961 ip_fanout_proto(q, first_mp, ill, ipha, 17962 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17963 B_TRUE, recv_ill, ire->ire_zoneid); 17964 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17965 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17966 return; 17967 17968 drop_pkt: 17969 freemsg(first_mp); 17970 if (hada_mp != NULL) 17971 freeb(hada_mp); 17972 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17973 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17974 #undef rptr 17975 #undef iphs 17976 17977 } 17978 17979 /* 17980 * Update any source route, record route or timestamp options. 17981 * Check that we are at end of strict source route. 17982 * The options have already been checked for sanity in ip_rput_options(). 17983 */ 17984 static boolean_t 17985 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17986 ip_stack_t *ipst) 17987 { 17988 ipoptp_t opts; 17989 uchar_t *opt; 17990 uint8_t optval; 17991 uint8_t optlen; 17992 ipaddr_t dst; 17993 uint32_t ts; 17994 ire_t *dst_ire; 17995 timestruc_t now; 17996 zoneid_t zoneid; 17997 ill_t *ill; 17998 17999 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18000 18001 ip2dbg(("ip_rput_local_options\n")); 18002 18003 for (optval = ipoptp_first(&opts, ipha); 18004 optval != IPOPT_EOL; 18005 optval = ipoptp_next(&opts)) { 18006 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18007 opt = opts.ipoptp_cur; 18008 optlen = opts.ipoptp_len; 18009 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18010 optval, optlen)); 18011 switch (optval) { 18012 uint32_t off; 18013 case IPOPT_SSRR: 18014 case IPOPT_LSRR: 18015 off = opt[IPOPT_OFFSET]; 18016 off--; 18017 if (optlen < IP_ADDR_LEN || 18018 off > optlen - IP_ADDR_LEN) { 18019 /* End of source route */ 18020 ip1dbg(("ip_rput_local_options: end of SR\n")); 18021 break; 18022 } 18023 /* 18024 * This will only happen if two consecutive entries 18025 * in the source route contains our address or if 18026 * it is a packet with a loose source route which 18027 * reaches us before consuming the whole source route 18028 */ 18029 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18030 if (optval == IPOPT_SSRR) { 18031 goto bad_src_route; 18032 } 18033 /* 18034 * Hack: instead of dropping the packet truncate the 18035 * source route to what has been used by filling the 18036 * rest with IPOPT_NOP. 18037 */ 18038 opt[IPOPT_OLEN] = (uint8_t)off; 18039 while (off < optlen) { 18040 opt[off++] = IPOPT_NOP; 18041 } 18042 break; 18043 case IPOPT_RR: 18044 off = opt[IPOPT_OFFSET]; 18045 off--; 18046 if (optlen < IP_ADDR_LEN || 18047 off > optlen - IP_ADDR_LEN) { 18048 /* No more room - ignore */ 18049 ip1dbg(( 18050 "ip_rput_local_options: end of RR\n")); 18051 break; 18052 } 18053 bcopy(&ire->ire_src_addr, (char *)opt + off, 18054 IP_ADDR_LEN); 18055 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18056 break; 18057 case IPOPT_TS: 18058 /* Insert timestamp if there is romm */ 18059 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18060 case IPOPT_TS_TSONLY: 18061 off = IPOPT_TS_TIMELEN; 18062 break; 18063 case IPOPT_TS_PRESPEC: 18064 case IPOPT_TS_PRESPEC_RFC791: 18065 /* Verify that the address matched */ 18066 off = opt[IPOPT_OFFSET] - 1; 18067 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18068 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18069 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18070 ipst); 18071 if (dst_ire == NULL) { 18072 /* Not for us */ 18073 break; 18074 } 18075 ire_refrele(dst_ire); 18076 /* FALLTHRU */ 18077 case IPOPT_TS_TSANDADDR: 18078 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18079 break; 18080 default: 18081 /* 18082 * ip_*put_options should have already 18083 * dropped this packet. 18084 */ 18085 cmn_err(CE_PANIC, "ip_rput_local_options: " 18086 "unknown IT - bug in ip_rput_options?\n"); 18087 return (B_TRUE); /* Keep "lint" happy */ 18088 } 18089 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18090 /* Increase overflow counter */ 18091 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18092 opt[IPOPT_POS_OV_FLG] = 18093 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18094 (off << 4)); 18095 break; 18096 } 18097 off = opt[IPOPT_OFFSET] - 1; 18098 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18099 case IPOPT_TS_PRESPEC: 18100 case IPOPT_TS_PRESPEC_RFC791: 18101 case IPOPT_TS_TSANDADDR: 18102 bcopy(&ire->ire_src_addr, (char *)opt + off, 18103 IP_ADDR_LEN); 18104 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18105 /* FALLTHRU */ 18106 case IPOPT_TS_TSONLY: 18107 off = opt[IPOPT_OFFSET] - 1; 18108 /* Compute # of milliseconds since midnight */ 18109 gethrestime(&now); 18110 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18111 now.tv_nsec / (NANOSEC / MILLISEC); 18112 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18113 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18114 break; 18115 } 18116 break; 18117 } 18118 } 18119 return (B_TRUE); 18120 18121 bad_src_route: 18122 q = WR(q); 18123 if (q->q_next != NULL) 18124 ill = q->q_ptr; 18125 else 18126 ill = NULL; 18127 18128 /* make sure we clear any indication of a hardware checksum */ 18129 DB_CKSUMFLAGS(mp) = 0; 18130 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18131 if (zoneid == ALL_ZONES) 18132 freemsg(mp); 18133 else 18134 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18135 return (B_FALSE); 18136 18137 } 18138 18139 /* 18140 * Process IP options in an inbound packet. If an option affects the 18141 * effective destination address, return the next hop address via dstp. 18142 * Returns -1 if something fails in which case an ICMP error has been sent 18143 * and mp freed. 18144 */ 18145 static int 18146 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18147 ip_stack_t *ipst) 18148 { 18149 ipoptp_t opts; 18150 uchar_t *opt; 18151 uint8_t optval; 18152 uint8_t optlen; 18153 ipaddr_t dst; 18154 intptr_t code = 0; 18155 ire_t *ire = NULL; 18156 zoneid_t zoneid; 18157 ill_t *ill; 18158 18159 ip2dbg(("ip_rput_options\n")); 18160 dst = ipha->ipha_dst; 18161 for (optval = ipoptp_first(&opts, ipha); 18162 optval != IPOPT_EOL; 18163 optval = ipoptp_next(&opts)) { 18164 opt = opts.ipoptp_cur; 18165 optlen = opts.ipoptp_len; 18166 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18167 optval, optlen)); 18168 /* 18169 * Note: we need to verify the checksum before we 18170 * modify anything thus this routine only extracts the next 18171 * hop dst from any source route. 18172 */ 18173 switch (optval) { 18174 uint32_t off; 18175 case IPOPT_SSRR: 18176 case IPOPT_LSRR: 18177 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18178 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18179 if (ire == NULL) { 18180 if (optval == IPOPT_SSRR) { 18181 ip1dbg(("ip_rput_options: not next" 18182 " strict source route 0x%x\n", 18183 ntohl(dst))); 18184 code = (char *)&ipha->ipha_dst - 18185 (char *)ipha; 18186 goto param_prob; /* RouterReq's */ 18187 } 18188 ip2dbg(("ip_rput_options: " 18189 "not next source route 0x%x\n", 18190 ntohl(dst))); 18191 break; 18192 } 18193 ire_refrele(ire); 18194 18195 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18196 ip1dbg(( 18197 "ip_rput_options: bad option offset\n")); 18198 code = (char *)&opt[IPOPT_OLEN] - 18199 (char *)ipha; 18200 goto param_prob; 18201 } 18202 off = opt[IPOPT_OFFSET]; 18203 off--; 18204 redo_srr: 18205 if (optlen < IP_ADDR_LEN || 18206 off > optlen - IP_ADDR_LEN) { 18207 /* End of source route */ 18208 ip1dbg(("ip_rput_options: end of SR\n")); 18209 break; 18210 } 18211 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18212 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18213 ntohl(dst))); 18214 18215 /* 18216 * Check if our address is present more than 18217 * once as consecutive hops in source route. 18218 * XXX verify per-interface ip_forwarding 18219 * for source route? 18220 */ 18221 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18222 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18223 18224 if (ire != NULL) { 18225 ire_refrele(ire); 18226 off += IP_ADDR_LEN; 18227 goto redo_srr; 18228 } 18229 18230 if (dst == htonl(INADDR_LOOPBACK)) { 18231 ip1dbg(("ip_rput_options: loopback addr in " 18232 "source route!\n")); 18233 goto bad_src_route; 18234 } 18235 /* 18236 * For strict: verify that dst is directly 18237 * reachable. 18238 */ 18239 if (optval == IPOPT_SSRR) { 18240 ire = ire_ftable_lookup(dst, 0, 0, 18241 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18242 msg_getlabel(mp), 18243 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18244 if (ire == NULL) { 18245 ip1dbg(("ip_rput_options: SSRR not " 18246 "directly reachable: 0x%x\n", 18247 ntohl(dst))); 18248 goto bad_src_route; 18249 } 18250 ire_refrele(ire); 18251 } 18252 /* 18253 * Defer update of the offset and the record route 18254 * until the packet is forwarded. 18255 */ 18256 break; 18257 case IPOPT_RR: 18258 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18259 ip1dbg(( 18260 "ip_rput_options: bad option offset\n")); 18261 code = (char *)&opt[IPOPT_OLEN] - 18262 (char *)ipha; 18263 goto param_prob; 18264 } 18265 break; 18266 case IPOPT_TS: 18267 /* 18268 * Verify that length >= 5 and that there is either 18269 * room for another timestamp or that the overflow 18270 * counter is not maxed out. 18271 */ 18272 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18273 if (optlen < IPOPT_MINLEN_IT) { 18274 goto param_prob; 18275 } 18276 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18277 ip1dbg(( 18278 "ip_rput_options: bad option offset\n")); 18279 code = (char *)&opt[IPOPT_OFFSET] - 18280 (char *)ipha; 18281 goto param_prob; 18282 } 18283 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18284 case IPOPT_TS_TSONLY: 18285 off = IPOPT_TS_TIMELEN; 18286 break; 18287 case IPOPT_TS_TSANDADDR: 18288 case IPOPT_TS_PRESPEC: 18289 case IPOPT_TS_PRESPEC_RFC791: 18290 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18291 break; 18292 default: 18293 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18294 (char *)ipha; 18295 goto param_prob; 18296 } 18297 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18298 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18299 /* 18300 * No room and the overflow counter is 15 18301 * already. 18302 */ 18303 goto param_prob; 18304 } 18305 break; 18306 } 18307 } 18308 18309 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18310 *dstp = dst; 18311 return (0); 18312 } 18313 18314 ip1dbg(("ip_rput_options: error processing IP options.")); 18315 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18316 18317 param_prob: 18318 q = WR(q); 18319 if (q->q_next != NULL) 18320 ill = q->q_ptr; 18321 else 18322 ill = NULL; 18323 18324 /* make sure we clear any indication of a hardware checksum */ 18325 DB_CKSUMFLAGS(mp) = 0; 18326 /* Don't know whether this is for non-global or global/forwarding */ 18327 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18328 if (zoneid == ALL_ZONES) 18329 freemsg(mp); 18330 else 18331 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18332 return (-1); 18333 18334 bad_src_route: 18335 q = WR(q); 18336 if (q->q_next != NULL) 18337 ill = q->q_ptr; 18338 else 18339 ill = NULL; 18340 18341 /* make sure we clear any indication of a hardware checksum */ 18342 DB_CKSUMFLAGS(mp) = 0; 18343 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18344 if (zoneid == ALL_ZONES) 18345 freemsg(mp); 18346 else 18347 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18348 return (-1); 18349 } 18350 18351 /* 18352 * IP & ICMP info in >=14 msg's ... 18353 * - ip fixed part (mib2_ip_t) 18354 * - icmp fixed part (mib2_icmp_t) 18355 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18356 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18357 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18358 * - ipRouteAttributeTable (ip 102) labeled routes 18359 * - ip multicast membership (ip_member_t) 18360 * - ip multicast source filtering (ip_grpsrc_t) 18361 * - igmp fixed part (struct igmpstat) 18362 * - multicast routing stats (struct mrtstat) 18363 * - multicast routing vifs (array of struct vifctl) 18364 * - multicast routing routes (array of struct mfcctl) 18365 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18366 * One per ill plus one generic 18367 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18368 * One per ill plus one generic 18369 * - ipv6RouteEntry all IPv6 IREs 18370 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18371 * - ipv6NetToMediaEntry all Neighbor Cache entries 18372 * - ipv6AddrEntry all IPv6 ipifs 18373 * - ipv6 multicast membership (ipv6_member_t) 18374 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18375 * 18376 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18377 * 18378 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18379 * already filled in by the caller. 18380 * Return value of 0 indicates that no messages were sent and caller 18381 * should free mpctl. 18382 */ 18383 int 18384 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18385 { 18386 ip_stack_t *ipst; 18387 sctp_stack_t *sctps; 18388 18389 if (q->q_next != NULL) { 18390 ipst = ILLQ_TO_IPST(q); 18391 } else { 18392 ipst = CONNQ_TO_IPST(q); 18393 } 18394 ASSERT(ipst != NULL); 18395 sctps = ipst->ips_netstack->netstack_sctp; 18396 18397 if (mpctl == NULL || mpctl->b_cont == NULL) { 18398 return (0); 18399 } 18400 18401 /* 18402 * For the purposes of the (broken) packet shell use 18403 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18404 * to make TCP and UDP appear first in the list of mib items. 18405 * TBD: We could expand this and use it in netstat so that 18406 * the kernel doesn't have to produce large tables (connections, 18407 * routes, etc) when netstat only wants the statistics or a particular 18408 * table. 18409 */ 18410 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18411 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18412 return (1); 18413 } 18414 } 18415 18416 if (level != MIB2_TCP) { 18417 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18418 return (1); 18419 } 18420 } 18421 18422 if (level != MIB2_UDP) { 18423 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18424 return (1); 18425 } 18426 } 18427 18428 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18429 ipst)) == NULL) { 18430 return (1); 18431 } 18432 18433 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18434 return (1); 18435 } 18436 18437 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18438 return (1); 18439 } 18440 18441 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18442 return (1); 18443 } 18444 18445 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18446 return (1); 18447 } 18448 18449 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18450 return (1); 18451 } 18452 18453 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18454 return (1); 18455 } 18456 18457 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18458 return (1); 18459 } 18460 18461 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18462 return (1); 18463 } 18464 18465 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18466 return (1); 18467 } 18468 18469 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18470 return (1); 18471 } 18472 18473 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18474 return (1); 18475 } 18476 18477 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18478 return (1); 18479 } 18480 18481 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18482 return (1); 18483 } 18484 18485 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18486 if (mpctl == NULL) 18487 return (1); 18488 18489 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18490 if (mpctl == NULL) 18491 return (1); 18492 18493 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18494 return (1); 18495 } 18496 freemsg(mpctl); 18497 return (1); 18498 } 18499 18500 /* Get global (legacy) IPv4 statistics */ 18501 static mblk_t * 18502 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18503 ip_stack_t *ipst) 18504 { 18505 mib2_ip_t old_ip_mib; 18506 struct opthdr *optp; 18507 mblk_t *mp2ctl; 18508 18509 /* 18510 * make a copy of the original message 18511 */ 18512 mp2ctl = copymsg(mpctl); 18513 18514 /* fixed length IP structure... */ 18515 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18516 optp->level = MIB2_IP; 18517 optp->name = 0; 18518 SET_MIB(old_ip_mib.ipForwarding, 18519 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18520 SET_MIB(old_ip_mib.ipDefaultTTL, 18521 (uint32_t)ipst->ips_ip_def_ttl); 18522 SET_MIB(old_ip_mib.ipReasmTimeout, 18523 ipst->ips_ip_g_frag_timeout); 18524 SET_MIB(old_ip_mib.ipAddrEntrySize, 18525 sizeof (mib2_ipAddrEntry_t)); 18526 SET_MIB(old_ip_mib.ipRouteEntrySize, 18527 sizeof (mib2_ipRouteEntry_t)); 18528 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18529 sizeof (mib2_ipNetToMediaEntry_t)); 18530 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18531 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18532 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18533 sizeof (mib2_ipAttributeEntry_t)); 18534 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18535 18536 /* 18537 * Grab the statistics from the new IP MIB 18538 */ 18539 SET_MIB(old_ip_mib.ipInReceives, 18540 (uint32_t)ipmib->ipIfStatsHCInReceives); 18541 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18542 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18543 SET_MIB(old_ip_mib.ipForwDatagrams, 18544 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18545 SET_MIB(old_ip_mib.ipInUnknownProtos, 18546 ipmib->ipIfStatsInUnknownProtos); 18547 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18548 SET_MIB(old_ip_mib.ipInDelivers, 18549 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18550 SET_MIB(old_ip_mib.ipOutRequests, 18551 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18552 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18553 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18554 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18555 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18556 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18557 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18558 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18559 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18560 18561 /* ipRoutingDiscards is not being used */ 18562 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18563 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18564 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18565 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18566 SET_MIB(old_ip_mib.ipReasmDuplicates, 18567 ipmib->ipIfStatsReasmDuplicates); 18568 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18569 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18570 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18571 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18572 SET_MIB(old_ip_mib.rawipInOverflows, 18573 ipmib->rawipIfStatsInOverflows); 18574 18575 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18576 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18577 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18578 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18579 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18580 ipmib->ipIfStatsOutSwitchIPVersion); 18581 18582 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18583 (int)sizeof (old_ip_mib))) { 18584 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18585 (uint_t)sizeof (old_ip_mib))); 18586 } 18587 18588 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18589 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18590 (int)optp->level, (int)optp->name, (int)optp->len)); 18591 qreply(q, mpctl); 18592 return (mp2ctl); 18593 } 18594 18595 /* Per interface IPv4 statistics */ 18596 static mblk_t * 18597 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18598 { 18599 struct opthdr *optp; 18600 mblk_t *mp2ctl; 18601 ill_t *ill; 18602 ill_walk_context_t ctx; 18603 mblk_t *mp_tail = NULL; 18604 mib2_ipIfStatsEntry_t global_ip_mib; 18605 18606 /* 18607 * Make a copy of the original message 18608 */ 18609 mp2ctl = copymsg(mpctl); 18610 18611 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18612 optp->level = MIB2_IP; 18613 optp->name = MIB2_IP_TRAFFIC_STATS; 18614 /* Include "unknown interface" ip_mib */ 18615 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18616 ipst->ips_ip_mib.ipIfStatsIfIndex = 18617 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18618 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18619 (ipst->ips_ip_g_forward ? 1 : 2)); 18620 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18621 (uint32_t)ipst->ips_ip_def_ttl); 18622 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18623 sizeof (mib2_ipIfStatsEntry_t)); 18624 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18625 sizeof (mib2_ipAddrEntry_t)); 18626 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18627 sizeof (mib2_ipRouteEntry_t)); 18628 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18629 sizeof (mib2_ipNetToMediaEntry_t)); 18630 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18631 sizeof (ip_member_t)); 18632 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18633 sizeof (ip_grpsrc_t)); 18634 18635 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18636 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18637 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18638 "failed to allocate %u bytes\n", 18639 (uint_t)sizeof (ipst->ips_ip_mib))); 18640 } 18641 18642 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18643 18644 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18645 ill = ILL_START_WALK_V4(&ctx, ipst); 18646 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18647 ill->ill_ip_mib->ipIfStatsIfIndex = 18648 ill->ill_phyint->phyint_ifindex; 18649 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18650 (ipst->ips_ip_g_forward ? 1 : 2)); 18651 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18652 (uint32_t)ipst->ips_ip_def_ttl); 18653 18654 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18655 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18656 (char *)ill->ill_ip_mib, 18657 (int)sizeof (*ill->ill_ip_mib))) { 18658 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18659 "failed to allocate %u bytes\n", 18660 (uint_t)sizeof (*ill->ill_ip_mib))); 18661 } 18662 } 18663 rw_exit(&ipst->ips_ill_g_lock); 18664 18665 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18666 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18667 "level %d, name %d, len %d\n", 18668 (int)optp->level, (int)optp->name, (int)optp->len)); 18669 qreply(q, mpctl); 18670 18671 if (mp2ctl == NULL) 18672 return (NULL); 18673 18674 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18675 } 18676 18677 /* Global IPv4 ICMP statistics */ 18678 static mblk_t * 18679 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18680 { 18681 struct opthdr *optp; 18682 mblk_t *mp2ctl; 18683 18684 /* 18685 * Make a copy of the original message 18686 */ 18687 mp2ctl = copymsg(mpctl); 18688 18689 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18690 optp->level = MIB2_ICMP; 18691 optp->name = 0; 18692 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18693 (int)sizeof (ipst->ips_icmp_mib))) { 18694 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18695 (uint_t)sizeof (ipst->ips_icmp_mib))); 18696 } 18697 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18698 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18699 (int)optp->level, (int)optp->name, (int)optp->len)); 18700 qreply(q, mpctl); 18701 return (mp2ctl); 18702 } 18703 18704 /* Global IPv4 IGMP statistics */ 18705 static mblk_t * 18706 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18707 { 18708 struct opthdr *optp; 18709 mblk_t *mp2ctl; 18710 18711 /* 18712 * make a copy of the original message 18713 */ 18714 mp2ctl = copymsg(mpctl); 18715 18716 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18717 optp->level = EXPER_IGMP; 18718 optp->name = 0; 18719 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18720 (int)sizeof (ipst->ips_igmpstat))) { 18721 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18722 (uint_t)sizeof (ipst->ips_igmpstat))); 18723 } 18724 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18725 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18726 (int)optp->level, (int)optp->name, (int)optp->len)); 18727 qreply(q, mpctl); 18728 return (mp2ctl); 18729 } 18730 18731 /* Global IPv4 Multicast Routing statistics */ 18732 static mblk_t * 18733 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18734 { 18735 struct opthdr *optp; 18736 mblk_t *mp2ctl; 18737 18738 /* 18739 * make a copy of the original message 18740 */ 18741 mp2ctl = copymsg(mpctl); 18742 18743 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18744 optp->level = EXPER_DVMRP; 18745 optp->name = 0; 18746 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18747 ip0dbg(("ip_mroute_stats: failed\n")); 18748 } 18749 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18750 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18751 (int)optp->level, (int)optp->name, (int)optp->len)); 18752 qreply(q, mpctl); 18753 return (mp2ctl); 18754 } 18755 18756 /* IPv4 address information */ 18757 static mblk_t * 18758 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18759 { 18760 struct opthdr *optp; 18761 mblk_t *mp2ctl; 18762 mblk_t *mp_tail = NULL; 18763 ill_t *ill; 18764 ipif_t *ipif; 18765 uint_t bitval; 18766 mib2_ipAddrEntry_t mae; 18767 zoneid_t zoneid; 18768 ill_walk_context_t ctx; 18769 18770 /* 18771 * make a copy of the original message 18772 */ 18773 mp2ctl = copymsg(mpctl); 18774 18775 /* ipAddrEntryTable */ 18776 18777 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18778 optp->level = MIB2_IP; 18779 optp->name = MIB2_IP_ADDR; 18780 zoneid = Q_TO_CONN(q)->conn_zoneid; 18781 18782 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18783 ill = ILL_START_WALK_V4(&ctx, ipst); 18784 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18785 for (ipif = ill->ill_ipif; ipif != NULL; 18786 ipif = ipif->ipif_next) { 18787 if (ipif->ipif_zoneid != zoneid && 18788 ipif->ipif_zoneid != ALL_ZONES) 18789 continue; 18790 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18791 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18792 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18793 18794 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18795 OCTET_LENGTH); 18796 mae.ipAdEntIfIndex.o_length = 18797 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18798 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18799 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18800 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18801 mae.ipAdEntInfo.ae_subnet_len = 18802 ip_mask_to_plen(ipif->ipif_net_mask); 18803 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18804 for (bitval = 1; 18805 bitval && 18806 !(bitval & ipif->ipif_brd_addr); 18807 bitval <<= 1) 18808 noop; 18809 mae.ipAdEntBcastAddr = bitval; 18810 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18811 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18812 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18813 mae.ipAdEntInfo.ae_broadcast_addr = 18814 ipif->ipif_brd_addr; 18815 mae.ipAdEntInfo.ae_pp_dst_addr = 18816 ipif->ipif_pp_dst_addr; 18817 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18818 ill->ill_flags | ill->ill_phyint->phyint_flags; 18819 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18820 18821 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18822 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18823 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18824 "allocate %u bytes\n", 18825 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18826 } 18827 } 18828 } 18829 rw_exit(&ipst->ips_ill_g_lock); 18830 18831 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18832 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18833 (int)optp->level, (int)optp->name, (int)optp->len)); 18834 qreply(q, mpctl); 18835 return (mp2ctl); 18836 } 18837 18838 /* IPv6 address information */ 18839 static mblk_t * 18840 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18841 { 18842 struct opthdr *optp; 18843 mblk_t *mp2ctl; 18844 mblk_t *mp_tail = NULL; 18845 ill_t *ill; 18846 ipif_t *ipif; 18847 mib2_ipv6AddrEntry_t mae6; 18848 zoneid_t zoneid; 18849 ill_walk_context_t ctx; 18850 18851 /* 18852 * make a copy of the original message 18853 */ 18854 mp2ctl = copymsg(mpctl); 18855 18856 /* ipv6AddrEntryTable */ 18857 18858 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18859 optp->level = MIB2_IP6; 18860 optp->name = MIB2_IP6_ADDR; 18861 zoneid = Q_TO_CONN(q)->conn_zoneid; 18862 18863 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18864 ill = ILL_START_WALK_V6(&ctx, ipst); 18865 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18866 for (ipif = ill->ill_ipif; ipif != NULL; 18867 ipif = ipif->ipif_next) { 18868 if (ipif->ipif_zoneid != zoneid && 18869 ipif->ipif_zoneid != ALL_ZONES) 18870 continue; 18871 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18872 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18873 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18874 18875 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18876 OCTET_LENGTH); 18877 mae6.ipv6AddrIfIndex.o_length = 18878 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18879 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18880 mae6.ipv6AddrPfxLength = 18881 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18882 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18883 mae6.ipv6AddrInfo.ae_subnet_len = 18884 mae6.ipv6AddrPfxLength; 18885 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18886 18887 /* Type: stateless(1), stateful(2), unknown(3) */ 18888 if (ipif->ipif_flags & IPIF_ADDRCONF) 18889 mae6.ipv6AddrType = 1; 18890 else 18891 mae6.ipv6AddrType = 2; 18892 /* Anycast: true(1), false(2) */ 18893 if (ipif->ipif_flags & IPIF_ANYCAST) 18894 mae6.ipv6AddrAnycastFlag = 1; 18895 else 18896 mae6.ipv6AddrAnycastFlag = 2; 18897 18898 /* 18899 * Address status: preferred(1), deprecated(2), 18900 * invalid(3), inaccessible(4), unknown(5) 18901 */ 18902 if (ipif->ipif_flags & IPIF_NOLOCAL) 18903 mae6.ipv6AddrStatus = 3; 18904 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18905 mae6.ipv6AddrStatus = 2; 18906 else 18907 mae6.ipv6AddrStatus = 1; 18908 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18909 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18910 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18911 ipif->ipif_v6pp_dst_addr; 18912 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18913 ill->ill_flags | ill->ill_phyint->phyint_flags; 18914 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18915 mae6.ipv6AddrIdentifier = ill->ill_token; 18916 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18917 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18918 mae6.ipv6AddrRetransmitTime = 18919 ill->ill_reachable_retrans_time; 18920 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18921 (char *)&mae6, 18922 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18923 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18924 "allocate %u bytes\n", 18925 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18926 } 18927 } 18928 } 18929 rw_exit(&ipst->ips_ill_g_lock); 18930 18931 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18932 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18933 (int)optp->level, (int)optp->name, (int)optp->len)); 18934 qreply(q, mpctl); 18935 return (mp2ctl); 18936 } 18937 18938 /* IPv4 multicast group membership. */ 18939 static mblk_t * 18940 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18941 { 18942 struct opthdr *optp; 18943 mblk_t *mp2ctl; 18944 ill_t *ill; 18945 ipif_t *ipif; 18946 ilm_t *ilm; 18947 ip_member_t ipm; 18948 mblk_t *mp_tail = NULL; 18949 ill_walk_context_t ctx; 18950 zoneid_t zoneid; 18951 ilm_walker_t ilw; 18952 18953 /* 18954 * make a copy of the original message 18955 */ 18956 mp2ctl = copymsg(mpctl); 18957 zoneid = Q_TO_CONN(q)->conn_zoneid; 18958 18959 /* ipGroupMember table */ 18960 optp = (struct opthdr *)&mpctl->b_rptr[ 18961 sizeof (struct T_optmgmt_ack)]; 18962 optp->level = MIB2_IP; 18963 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18964 18965 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18966 ill = ILL_START_WALK_V4(&ctx, ipst); 18967 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18968 if (IS_UNDER_IPMP(ill)) 18969 continue; 18970 18971 ilm = ilm_walker_start(&ilw, ill); 18972 for (ipif = ill->ill_ipif; ipif != NULL; 18973 ipif = ipif->ipif_next) { 18974 if (ipif->ipif_zoneid != zoneid && 18975 ipif->ipif_zoneid != ALL_ZONES) 18976 continue; /* not this zone */ 18977 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18978 OCTET_LENGTH); 18979 ipm.ipGroupMemberIfIndex.o_length = 18980 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18981 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18982 ASSERT(ilm->ilm_ipif != NULL); 18983 ASSERT(ilm->ilm_ill == NULL); 18984 if (ilm->ilm_ipif != ipif) 18985 continue; 18986 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18987 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18988 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18989 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18990 (char *)&ipm, (int)sizeof (ipm))) { 18991 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18992 "failed to allocate %u bytes\n", 18993 (uint_t)sizeof (ipm))); 18994 } 18995 } 18996 } 18997 ilm_walker_finish(&ilw); 18998 } 18999 rw_exit(&ipst->ips_ill_g_lock); 19000 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19001 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19002 (int)optp->level, (int)optp->name, (int)optp->len)); 19003 qreply(q, mpctl); 19004 return (mp2ctl); 19005 } 19006 19007 /* IPv6 multicast group membership. */ 19008 static mblk_t * 19009 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19010 { 19011 struct opthdr *optp; 19012 mblk_t *mp2ctl; 19013 ill_t *ill; 19014 ilm_t *ilm; 19015 ipv6_member_t ipm6; 19016 mblk_t *mp_tail = NULL; 19017 ill_walk_context_t ctx; 19018 zoneid_t zoneid; 19019 ilm_walker_t ilw; 19020 19021 /* 19022 * make a copy of the original message 19023 */ 19024 mp2ctl = copymsg(mpctl); 19025 zoneid = Q_TO_CONN(q)->conn_zoneid; 19026 19027 /* ip6GroupMember table */ 19028 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19029 optp->level = MIB2_IP6; 19030 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19031 19032 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19033 ill = ILL_START_WALK_V6(&ctx, ipst); 19034 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19035 if (IS_UNDER_IPMP(ill)) 19036 continue; 19037 19038 ilm = ilm_walker_start(&ilw, ill); 19039 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19040 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19041 ASSERT(ilm->ilm_ipif == NULL); 19042 ASSERT(ilm->ilm_ill != NULL); 19043 if (ilm->ilm_zoneid != zoneid) 19044 continue; /* not this zone */ 19045 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19046 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19047 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19048 if (!snmp_append_data2(mpctl->b_cont, 19049 &mp_tail, 19050 (char *)&ipm6, (int)sizeof (ipm6))) { 19051 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19052 "failed to allocate %u bytes\n", 19053 (uint_t)sizeof (ipm6))); 19054 } 19055 } 19056 ilm_walker_finish(&ilw); 19057 } 19058 rw_exit(&ipst->ips_ill_g_lock); 19059 19060 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19061 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19062 (int)optp->level, (int)optp->name, (int)optp->len)); 19063 qreply(q, mpctl); 19064 return (mp2ctl); 19065 } 19066 19067 /* IP multicast filtered sources */ 19068 static mblk_t * 19069 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19070 { 19071 struct opthdr *optp; 19072 mblk_t *mp2ctl; 19073 ill_t *ill; 19074 ipif_t *ipif; 19075 ilm_t *ilm; 19076 ip_grpsrc_t ips; 19077 mblk_t *mp_tail = NULL; 19078 ill_walk_context_t ctx; 19079 zoneid_t zoneid; 19080 int i; 19081 slist_t *sl; 19082 ilm_walker_t ilw; 19083 19084 /* 19085 * make a copy of the original message 19086 */ 19087 mp2ctl = copymsg(mpctl); 19088 zoneid = Q_TO_CONN(q)->conn_zoneid; 19089 19090 /* ipGroupSource table */ 19091 optp = (struct opthdr *)&mpctl->b_rptr[ 19092 sizeof (struct T_optmgmt_ack)]; 19093 optp->level = MIB2_IP; 19094 optp->name = EXPER_IP_GROUP_SOURCES; 19095 19096 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19097 ill = ILL_START_WALK_V4(&ctx, ipst); 19098 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19099 if (IS_UNDER_IPMP(ill)) 19100 continue; 19101 19102 ilm = ilm_walker_start(&ilw, ill); 19103 for (ipif = ill->ill_ipif; ipif != NULL; 19104 ipif = ipif->ipif_next) { 19105 if (ipif->ipif_zoneid != zoneid) 19106 continue; /* not this zone */ 19107 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19108 OCTET_LENGTH); 19109 ips.ipGroupSourceIfIndex.o_length = 19110 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19111 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19112 ASSERT(ilm->ilm_ipif != NULL); 19113 ASSERT(ilm->ilm_ill == NULL); 19114 sl = ilm->ilm_filter; 19115 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19116 continue; 19117 ips.ipGroupSourceGroup = ilm->ilm_addr; 19118 for (i = 0; i < sl->sl_numsrc; i++) { 19119 if (!IN6_IS_ADDR_V4MAPPED( 19120 &sl->sl_addr[i])) 19121 continue; 19122 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19123 ips.ipGroupSourceAddress); 19124 if (snmp_append_data2(mpctl->b_cont, 19125 &mp_tail, (char *)&ips, 19126 (int)sizeof (ips)) == 0) { 19127 ip1dbg(("ip_snmp_get_mib2_" 19128 "ip_group_src: failed to " 19129 "allocate %u bytes\n", 19130 (uint_t)sizeof (ips))); 19131 } 19132 } 19133 } 19134 } 19135 ilm_walker_finish(&ilw); 19136 } 19137 rw_exit(&ipst->ips_ill_g_lock); 19138 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19139 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19140 (int)optp->level, (int)optp->name, (int)optp->len)); 19141 qreply(q, mpctl); 19142 return (mp2ctl); 19143 } 19144 19145 /* IPv6 multicast filtered sources. */ 19146 static mblk_t * 19147 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19148 { 19149 struct opthdr *optp; 19150 mblk_t *mp2ctl; 19151 ill_t *ill; 19152 ilm_t *ilm; 19153 ipv6_grpsrc_t ips6; 19154 mblk_t *mp_tail = NULL; 19155 ill_walk_context_t ctx; 19156 zoneid_t zoneid; 19157 int i; 19158 slist_t *sl; 19159 ilm_walker_t ilw; 19160 19161 /* 19162 * make a copy of the original message 19163 */ 19164 mp2ctl = copymsg(mpctl); 19165 zoneid = Q_TO_CONN(q)->conn_zoneid; 19166 19167 /* ip6GroupMember table */ 19168 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19169 optp->level = MIB2_IP6; 19170 optp->name = EXPER_IP6_GROUP_SOURCES; 19171 19172 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19173 ill = ILL_START_WALK_V6(&ctx, ipst); 19174 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19175 if (IS_UNDER_IPMP(ill)) 19176 continue; 19177 19178 ilm = ilm_walker_start(&ilw, ill); 19179 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19180 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19181 ASSERT(ilm->ilm_ipif == NULL); 19182 ASSERT(ilm->ilm_ill != NULL); 19183 sl = ilm->ilm_filter; 19184 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19185 continue; 19186 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19187 for (i = 0; i < sl->sl_numsrc; i++) { 19188 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19189 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19190 (char *)&ips6, (int)sizeof (ips6))) { 19191 ip1dbg(("ip_snmp_get_mib2_ip6_" 19192 "group_src: failed to allocate " 19193 "%u bytes\n", 19194 (uint_t)sizeof (ips6))); 19195 } 19196 } 19197 } 19198 ilm_walker_finish(&ilw); 19199 } 19200 rw_exit(&ipst->ips_ill_g_lock); 19201 19202 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19203 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19204 (int)optp->level, (int)optp->name, (int)optp->len)); 19205 qreply(q, mpctl); 19206 return (mp2ctl); 19207 } 19208 19209 /* Multicast routing virtual interface table. */ 19210 static mblk_t * 19211 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19212 { 19213 struct opthdr *optp; 19214 mblk_t *mp2ctl; 19215 19216 /* 19217 * make a copy of the original message 19218 */ 19219 mp2ctl = copymsg(mpctl); 19220 19221 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19222 optp->level = EXPER_DVMRP; 19223 optp->name = EXPER_DVMRP_VIF; 19224 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19225 ip0dbg(("ip_mroute_vif: failed\n")); 19226 } 19227 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19228 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19229 (int)optp->level, (int)optp->name, (int)optp->len)); 19230 qreply(q, mpctl); 19231 return (mp2ctl); 19232 } 19233 19234 /* Multicast routing table. */ 19235 static mblk_t * 19236 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19237 { 19238 struct opthdr *optp; 19239 mblk_t *mp2ctl; 19240 19241 /* 19242 * make a copy of the original message 19243 */ 19244 mp2ctl = copymsg(mpctl); 19245 19246 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19247 optp->level = EXPER_DVMRP; 19248 optp->name = EXPER_DVMRP_MRT; 19249 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19250 ip0dbg(("ip_mroute_mrt: failed\n")); 19251 } 19252 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19253 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19254 (int)optp->level, (int)optp->name, (int)optp->len)); 19255 qreply(q, mpctl); 19256 return (mp2ctl); 19257 } 19258 19259 /* 19260 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19261 * in one IRE walk. 19262 */ 19263 static mblk_t * 19264 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19265 ip_stack_t *ipst) 19266 { 19267 struct opthdr *optp; 19268 mblk_t *mp2ctl; /* Returned */ 19269 mblk_t *mp3ctl; /* nettomedia */ 19270 mblk_t *mp4ctl; /* routeattrs */ 19271 iproutedata_t ird; 19272 zoneid_t zoneid; 19273 19274 /* 19275 * make copies of the original message 19276 * - mp2ctl is returned unchanged to the caller for his use 19277 * - mpctl is sent upstream as ipRouteEntryTable 19278 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19279 * - mp4ctl is sent upstream as ipRouteAttributeTable 19280 */ 19281 mp2ctl = copymsg(mpctl); 19282 mp3ctl = copymsg(mpctl); 19283 mp4ctl = copymsg(mpctl); 19284 if (mp3ctl == NULL || mp4ctl == NULL) { 19285 freemsg(mp4ctl); 19286 freemsg(mp3ctl); 19287 freemsg(mp2ctl); 19288 freemsg(mpctl); 19289 return (NULL); 19290 } 19291 19292 bzero(&ird, sizeof (ird)); 19293 19294 ird.ird_route.lp_head = mpctl->b_cont; 19295 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19296 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19297 /* 19298 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19299 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19300 * intended a temporary solution until a proper MIB API is provided 19301 * that provides complete filtering/caller-opt-in. 19302 */ 19303 if (level == EXPER_IP_AND_TESTHIDDEN) 19304 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19305 19306 zoneid = Q_TO_CONN(q)->conn_zoneid; 19307 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19308 19309 /* ipRouteEntryTable in mpctl */ 19310 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19311 optp->level = MIB2_IP; 19312 optp->name = MIB2_IP_ROUTE; 19313 optp->len = msgdsize(ird.ird_route.lp_head); 19314 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19315 (int)optp->level, (int)optp->name, (int)optp->len)); 19316 qreply(q, mpctl); 19317 19318 /* ipNetToMediaEntryTable in mp3ctl */ 19319 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19320 optp->level = MIB2_IP; 19321 optp->name = MIB2_IP_MEDIA; 19322 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19323 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19324 (int)optp->level, (int)optp->name, (int)optp->len)); 19325 qreply(q, mp3ctl); 19326 19327 /* ipRouteAttributeTable in mp4ctl */ 19328 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19329 optp->level = MIB2_IP; 19330 optp->name = EXPER_IP_RTATTR; 19331 optp->len = msgdsize(ird.ird_attrs.lp_head); 19332 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19333 (int)optp->level, (int)optp->name, (int)optp->len)); 19334 if (optp->len == 0) 19335 freemsg(mp4ctl); 19336 else 19337 qreply(q, mp4ctl); 19338 19339 return (mp2ctl); 19340 } 19341 19342 /* 19343 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19344 * ipv6NetToMediaEntryTable in an NDP walk. 19345 */ 19346 static mblk_t * 19347 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19348 ip_stack_t *ipst) 19349 { 19350 struct opthdr *optp; 19351 mblk_t *mp2ctl; /* Returned */ 19352 mblk_t *mp3ctl; /* nettomedia */ 19353 mblk_t *mp4ctl; /* routeattrs */ 19354 iproutedata_t ird; 19355 zoneid_t zoneid; 19356 19357 /* 19358 * make copies of the original message 19359 * - mp2ctl is returned unchanged to the caller for his use 19360 * - mpctl is sent upstream as ipv6RouteEntryTable 19361 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19362 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19363 */ 19364 mp2ctl = copymsg(mpctl); 19365 mp3ctl = copymsg(mpctl); 19366 mp4ctl = copymsg(mpctl); 19367 if (mp3ctl == NULL || mp4ctl == NULL) { 19368 freemsg(mp4ctl); 19369 freemsg(mp3ctl); 19370 freemsg(mp2ctl); 19371 freemsg(mpctl); 19372 return (NULL); 19373 } 19374 19375 bzero(&ird, sizeof (ird)); 19376 19377 ird.ird_route.lp_head = mpctl->b_cont; 19378 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19379 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19380 /* 19381 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19382 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19383 * intended a temporary solution until a proper MIB API is provided 19384 * that provides complete filtering/caller-opt-in. 19385 */ 19386 if (level == EXPER_IP_AND_TESTHIDDEN) 19387 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19388 19389 zoneid = Q_TO_CONN(q)->conn_zoneid; 19390 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19391 19392 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19393 optp->level = MIB2_IP6; 19394 optp->name = MIB2_IP6_ROUTE; 19395 optp->len = msgdsize(ird.ird_route.lp_head); 19396 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19397 (int)optp->level, (int)optp->name, (int)optp->len)); 19398 qreply(q, mpctl); 19399 19400 /* ipv6NetToMediaEntryTable in mp3ctl */ 19401 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19402 19403 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19404 optp->level = MIB2_IP6; 19405 optp->name = MIB2_IP6_MEDIA; 19406 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19407 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19408 (int)optp->level, (int)optp->name, (int)optp->len)); 19409 qreply(q, mp3ctl); 19410 19411 /* ipv6RouteAttributeTable in mp4ctl */ 19412 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19413 optp->level = MIB2_IP6; 19414 optp->name = EXPER_IP_RTATTR; 19415 optp->len = msgdsize(ird.ird_attrs.lp_head); 19416 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19417 (int)optp->level, (int)optp->name, (int)optp->len)); 19418 if (optp->len == 0) 19419 freemsg(mp4ctl); 19420 else 19421 qreply(q, mp4ctl); 19422 19423 return (mp2ctl); 19424 } 19425 19426 /* 19427 * IPv6 mib: One per ill 19428 */ 19429 static mblk_t * 19430 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19431 { 19432 struct opthdr *optp; 19433 mblk_t *mp2ctl; 19434 ill_t *ill; 19435 ill_walk_context_t ctx; 19436 mblk_t *mp_tail = NULL; 19437 19438 /* 19439 * Make a copy of the original message 19440 */ 19441 mp2ctl = copymsg(mpctl); 19442 19443 /* fixed length IPv6 structure ... */ 19444 19445 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19446 optp->level = MIB2_IP6; 19447 optp->name = 0; 19448 /* Include "unknown interface" ip6_mib */ 19449 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19450 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19451 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19452 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19453 ipst->ips_ipv6_forward ? 1 : 2); 19454 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19455 ipst->ips_ipv6_def_hops); 19456 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19457 sizeof (mib2_ipIfStatsEntry_t)); 19458 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19459 sizeof (mib2_ipv6AddrEntry_t)); 19460 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19461 sizeof (mib2_ipv6RouteEntry_t)); 19462 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19463 sizeof (mib2_ipv6NetToMediaEntry_t)); 19464 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19465 sizeof (ipv6_member_t)); 19466 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19467 sizeof (ipv6_grpsrc_t)); 19468 19469 /* 19470 * Synchronize 64- and 32-bit counters 19471 */ 19472 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19473 ipIfStatsHCInReceives); 19474 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19475 ipIfStatsHCInDelivers); 19476 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19477 ipIfStatsHCOutRequests); 19478 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19479 ipIfStatsHCOutForwDatagrams); 19480 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19481 ipIfStatsHCOutMcastPkts); 19482 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19483 ipIfStatsHCInMcastPkts); 19484 19485 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19486 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19487 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19488 (uint_t)sizeof (ipst->ips_ip6_mib))); 19489 } 19490 19491 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19492 ill = ILL_START_WALK_V6(&ctx, ipst); 19493 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19494 ill->ill_ip_mib->ipIfStatsIfIndex = 19495 ill->ill_phyint->phyint_ifindex; 19496 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19497 ipst->ips_ipv6_forward ? 1 : 2); 19498 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19499 ill->ill_max_hops); 19500 19501 /* 19502 * Synchronize 64- and 32-bit counters 19503 */ 19504 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19505 ipIfStatsHCInReceives); 19506 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19507 ipIfStatsHCInDelivers); 19508 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19509 ipIfStatsHCOutRequests); 19510 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19511 ipIfStatsHCOutForwDatagrams); 19512 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19513 ipIfStatsHCOutMcastPkts); 19514 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19515 ipIfStatsHCInMcastPkts); 19516 19517 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19518 (char *)ill->ill_ip_mib, 19519 (int)sizeof (*ill->ill_ip_mib))) { 19520 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19521 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19522 } 19523 } 19524 rw_exit(&ipst->ips_ill_g_lock); 19525 19526 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19527 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19528 (int)optp->level, (int)optp->name, (int)optp->len)); 19529 qreply(q, mpctl); 19530 return (mp2ctl); 19531 } 19532 19533 /* 19534 * ICMPv6 mib: One per ill 19535 */ 19536 static mblk_t * 19537 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19538 { 19539 struct opthdr *optp; 19540 mblk_t *mp2ctl; 19541 ill_t *ill; 19542 ill_walk_context_t ctx; 19543 mblk_t *mp_tail = NULL; 19544 /* 19545 * Make a copy of the original message 19546 */ 19547 mp2ctl = copymsg(mpctl); 19548 19549 /* fixed length ICMPv6 structure ... */ 19550 19551 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19552 optp->level = MIB2_ICMP6; 19553 optp->name = 0; 19554 /* Include "unknown interface" icmp6_mib */ 19555 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19556 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19557 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19558 sizeof (mib2_ipv6IfIcmpEntry_t); 19559 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19560 (char *)&ipst->ips_icmp6_mib, 19561 (int)sizeof (ipst->ips_icmp6_mib))) { 19562 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19563 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19564 } 19565 19566 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19567 ill = ILL_START_WALK_V6(&ctx, ipst); 19568 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19569 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19570 ill->ill_phyint->phyint_ifindex; 19571 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19572 (char *)ill->ill_icmp6_mib, 19573 (int)sizeof (*ill->ill_icmp6_mib))) { 19574 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19575 "%u bytes\n", 19576 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19577 } 19578 } 19579 rw_exit(&ipst->ips_ill_g_lock); 19580 19581 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19582 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19583 (int)optp->level, (int)optp->name, (int)optp->len)); 19584 qreply(q, mpctl); 19585 return (mp2ctl); 19586 } 19587 19588 /* 19589 * ire_walk routine to create both ipRouteEntryTable and 19590 * ipRouteAttributeTable in one IRE walk 19591 */ 19592 static void 19593 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19594 { 19595 ill_t *ill; 19596 ipif_t *ipif; 19597 mib2_ipRouteEntry_t *re; 19598 mib2_ipAttributeEntry_t *iae, *iaeptr; 19599 ipaddr_t gw_addr; 19600 tsol_ire_gw_secattr_t *attrp; 19601 tsol_gc_t *gc = NULL; 19602 tsol_gcgrp_t *gcgrp = NULL; 19603 uint_t sacnt = 0; 19604 int i; 19605 19606 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19607 19608 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19609 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19610 return; 19611 } 19612 19613 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19614 return; 19615 19616 if ((attrp = ire->ire_gw_secattr) != NULL) { 19617 mutex_enter(&attrp->igsa_lock); 19618 if ((gc = attrp->igsa_gc) != NULL) { 19619 gcgrp = gc->gc_grp; 19620 ASSERT(gcgrp != NULL); 19621 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19622 sacnt = 1; 19623 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19624 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19625 gc = gcgrp->gcgrp_head; 19626 sacnt = gcgrp->gcgrp_count; 19627 } 19628 mutex_exit(&attrp->igsa_lock); 19629 19630 /* do nothing if there's no gc to report */ 19631 if (gc == NULL) { 19632 ASSERT(sacnt == 0); 19633 if (gcgrp != NULL) { 19634 /* we might as well drop the lock now */ 19635 rw_exit(&gcgrp->gcgrp_rwlock); 19636 gcgrp = NULL; 19637 } 19638 attrp = NULL; 19639 } 19640 19641 ASSERT(gc == NULL || (gcgrp != NULL && 19642 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19643 } 19644 ASSERT(sacnt == 0 || gc != NULL); 19645 19646 if (sacnt != 0 && 19647 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19648 kmem_free(re, sizeof (*re)); 19649 rw_exit(&gcgrp->gcgrp_rwlock); 19650 return; 19651 } 19652 19653 /* 19654 * Return all IRE types for route table... let caller pick and choose 19655 */ 19656 re->ipRouteDest = ire->ire_addr; 19657 ipif = ire->ire_ipif; 19658 re->ipRouteIfIndex.o_length = 0; 19659 if (ire->ire_type == IRE_CACHE) { 19660 ill = (ill_t *)ire->ire_stq->q_ptr; 19661 re->ipRouteIfIndex.o_length = 19662 ill->ill_name_length == 0 ? 0 : 19663 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19664 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19665 re->ipRouteIfIndex.o_length); 19666 } else if (ipif != NULL) { 19667 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19668 re->ipRouteIfIndex.o_length = 19669 mi_strlen(re->ipRouteIfIndex.o_bytes); 19670 } 19671 re->ipRouteMetric1 = -1; 19672 re->ipRouteMetric2 = -1; 19673 re->ipRouteMetric3 = -1; 19674 re->ipRouteMetric4 = -1; 19675 19676 gw_addr = ire->ire_gateway_addr; 19677 19678 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19679 re->ipRouteNextHop = ire->ire_src_addr; 19680 else 19681 re->ipRouteNextHop = gw_addr; 19682 /* indirect(4), direct(3), or invalid(2) */ 19683 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19684 re->ipRouteType = 2; 19685 else 19686 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19687 re->ipRouteProto = -1; 19688 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19689 re->ipRouteMask = ire->ire_mask; 19690 re->ipRouteMetric5 = -1; 19691 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19692 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19693 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19694 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19695 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19696 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19697 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19698 re->ipRouteInfo.re_flags = ire->ire_flags; 19699 19700 if (ire->ire_flags & RTF_DYNAMIC) { 19701 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19702 } else { 19703 re->ipRouteInfo.re_ire_type = ire->ire_type; 19704 } 19705 19706 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19707 (char *)re, (int)sizeof (*re))) { 19708 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19709 (uint_t)sizeof (*re))); 19710 } 19711 19712 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19713 iaeptr->iae_routeidx = ird->ird_idx; 19714 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19715 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19716 } 19717 19718 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19719 (char *)iae, sacnt * sizeof (*iae))) { 19720 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19721 (unsigned)(sacnt * sizeof (*iae)))); 19722 } 19723 19724 /* bump route index for next pass */ 19725 ird->ird_idx++; 19726 19727 kmem_free(re, sizeof (*re)); 19728 if (sacnt != 0) 19729 kmem_free(iae, sacnt * sizeof (*iae)); 19730 19731 if (gcgrp != NULL) 19732 rw_exit(&gcgrp->gcgrp_rwlock); 19733 } 19734 19735 /* 19736 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19737 */ 19738 static void 19739 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19740 { 19741 ill_t *ill; 19742 ipif_t *ipif; 19743 mib2_ipv6RouteEntry_t *re; 19744 mib2_ipAttributeEntry_t *iae, *iaeptr; 19745 in6_addr_t gw_addr_v6; 19746 tsol_ire_gw_secattr_t *attrp; 19747 tsol_gc_t *gc = NULL; 19748 tsol_gcgrp_t *gcgrp = NULL; 19749 uint_t sacnt = 0; 19750 int i; 19751 19752 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19753 19754 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19755 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19756 return; 19757 } 19758 19759 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19760 return; 19761 19762 if ((attrp = ire->ire_gw_secattr) != NULL) { 19763 mutex_enter(&attrp->igsa_lock); 19764 if ((gc = attrp->igsa_gc) != NULL) { 19765 gcgrp = gc->gc_grp; 19766 ASSERT(gcgrp != NULL); 19767 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19768 sacnt = 1; 19769 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19770 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19771 gc = gcgrp->gcgrp_head; 19772 sacnt = gcgrp->gcgrp_count; 19773 } 19774 mutex_exit(&attrp->igsa_lock); 19775 19776 /* do nothing if there's no gc to report */ 19777 if (gc == NULL) { 19778 ASSERT(sacnt == 0); 19779 if (gcgrp != NULL) { 19780 /* we might as well drop the lock now */ 19781 rw_exit(&gcgrp->gcgrp_rwlock); 19782 gcgrp = NULL; 19783 } 19784 attrp = NULL; 19785 } 19786 19787 ASSERT(gc == NULL || (gcgrp != NULL && 19788 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19789 } 19790 ASSERT(sacnt == 0 || gc != NULL); 19791 19792 if (sacnt != 0 && 19793 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19794 kmem_free(re, sizeof (*re)); 19795 rw_exit(&gcgrp->gcgrp_rwlock); 19796 return; 19797 } 19798 19799 /* 19800 * Return all IRE types for route table... let caller pick and choose 19801 */ 19802 re->ipv6RouteDest = ire->ire_addr_v6; 19803 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19804 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19805 re->ipv6RouteIfIndex.o_length = 0; 19806 ipif = ire->ire_ipif; 19807 if (ire->ire_type == IRE_CACHE) { 19808 ill = (ill_t *)ire->ire_stq->q_ptr; 19809 re->ipv6RouteIfIndex.o_length = 19810 ill->ill_name_length == 0 ? 0 : 19811 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19812 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19813 re->ipv6RouteIfIndex.o_length); 19814 } else if (ipif != NULL) { 19815 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19816 re->ipv6RouteIfIndex.o_length = 19817 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19818 } 19819 19820 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19821 19822 mutex_enter(&ire->ire_lock); 19823 gw_addr_v6 = ire->ire_gateway_addr_v6; 19824 mutex_exit(&ire->ire_lock); 19825 19826 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19827 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19828 else 19829 re->ipv6RouteNextHop = gw_addr_v6; 19830 19831 /* remote(4), local(3), or discard(2) */ 19832 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19833 re->ipv6RouteType = 2; 19834 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19835 re->ipv6RouteType = 3; 19836 else 19837 re->ipv6RouteType = 4; 19838 19839 re->ipv6RouteProtocol = -1; 19840 re->ipv6RoutePolicy = 0; 19841 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19842 re->ipv6RouteNextHopRDI = 0; 19843 re->ipv6RouteWeight = 0; 19844 re->ipv6RouteMetric = 0; 19845 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19846 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19847 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19848 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19849 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19850 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19851 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19852 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19853 19854 if (ire->ire_flags & RTF_DYNAMIC) { 19855 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19856 } else { 19857 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19858 } 19859 19860 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19861 (char *)re, (int)sizeof (*re))) { 19862 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19863 (uint_t)sizeof (*re))); 19864 } 19865 19866 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19867 iaeptr->iae_routeidx = ird->ird_idx; 19868 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19869 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19870 } 19871 19872 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19873 (char *)iae, sacnt * sizeof (*iae))) { 19874 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19875 (unsigned)(sacnt * sizeof (*iae)))); 19876 } 19877 19878 /* bump route index for next pass */ 19879 ird->ird_idx++; 19880 19881 kmem_free(re, sizeof (*re)); 19882 if (sacnt != 0) 19883 kmem_free(iae, sacnt * sizeof (*iae)); 19884 19885 if (gcgrp != NULL) 19886 rw_exit(&gcgrp->gcgrp_rwlock); 19887 } 19888 19889 /* 19890 * ndp_walk routine to create ipv6NetToMediaEntryTable 19891 */ 19892 static int 19893 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19894 { 19895 ill_t *ill; 19896 mib2_ipv6NetToMediaEntry_t ntme; 19897 dl_unitdata_req_t *dl; 19898 19899 ill = nce->nce_ill; 19900 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19901 return (0); 19902 19903 /* 19904 * Neighbor cache entry attached to IRE with on-link 19905 * destination. 19906 */ 19907 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19908 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19909 if ((ill->ill_flags & ILLF_XRESOLV) && 19910 (nce->nce_res_mp != NULL)) { 19911 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19912 ntme.ipv6NetToMediaPhysAddress.o_length = 19913 dl->dl_dest_addr_length; 19914 } else { 19915 ntme.ipv6NetToMediaPhysAddress.o_length = 19916 ill->ill_phys_addr_length; 19917 } 19918 if (nce->nce_res_mp != NULL) { 19919 bcopy((char *)nce->nce_res_mp->b_rptr + 19920 NCE_LL_ADDR_OFFSET(ill), 19921 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19922 ntme.ipv6NetToMediaPhysAddress.o_length); 19923 } else { 19924 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19925 ill->ill_phys_addr_length); 19926 } 19927 /* 19928 * Note: Returns ND_* states. Should be: 19929 * reachable(1), stale(2), delay(3), probe(4), 19930 * invalid(5), unknown(6) 19931 */ 19932 ntme.ipv6NetToMediaState = nce->nce_state; 19933 ntme.ipv6NetToMediaLastUpdated = 0; 19934 19935 /* other(1), dynamic(2), static(3), local(4) */ 19936 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19937 ntme.ipv6NetToMediaType = 4; 19938 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19939 ntme.ipv6NetToMediaType = 1; 19940 } else { 19941 ntme.ipv6NetToMediaType = 2; 19942 } 19943 19944 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19945 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19946 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19947 (uint_t)sizeof (ntme))); 19948 } 19949 return (0); 19950 } 19951 19952 /* 19953 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19954 */ 19955 /* ARGSUSED */ 19956 int 19957 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19958 { 19959 switch (level) { 19960 case MIB2_IP: 19961 case MIB2_ICMP: 19962 switch (name) { 19963 default: 19964 break; 19965 } 19966 return (1); 19967 default: 19968 return (1); 19969 } 19970 } 19971 19972 /* 19973 * When there exists both a 64- and 32-bit counter of a particular type 19974 * (i.e., InReceives), only the 64-bit counters are added. 19975 */ 19976 void 19977 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19978 { 19979 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19980 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19981 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19982 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19983 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19984 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19985 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19986 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19987 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19988 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19989 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19990 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19991 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19992 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19993 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19994 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19995 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19996 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19997 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19998 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19999 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 20000 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 20001 o2->ipIfStatsInWrongIPVersion); 20002 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20003 o2->ipIfStatsInWrongIPVersion); 20004 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20005 o2->ipIfStatsOutSwitchIPVersion); 20006 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20007 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20008 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20009 o2->ipIfStatsHCInForwDatagrams); 20010 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20011 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20012 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20013 o2->ipIfStatsHCOutForwDatagrams); 20014 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20015 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20016 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20017 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20018 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20019 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20020 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20021 o2->ipIfStatsHCOutMcastOctets); 20022 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20023 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20024 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20025 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20026 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20027 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20028 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20029 } 20030 20031 void 20032 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20033 { 20034 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20035 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20036 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20037 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20038 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20039 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20040 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20041 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20042 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20043 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20044 o2->ipv6IfIcmpInRouterSolicits); 20045 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20046 o2->ipv6IfIcmpInRouterAdvertisements); 20047 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20048 o2->ipv6IfIcmpInNeighborSolicits); 20049 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20050 o2->ipv6IfIcmpInNeighborAdvertisements); 20051 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20052 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20053 o2->ipv6IfIcmpInGroupMembQueries); 20054 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20055 o2->ipv6IfIcmpInGroupMembResponses); 20056 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20057 o2->ipv6IfIcmpInGroupMembReductions); 20058 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20059 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20060 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20061 o2->ipv6IfIcmpOutDestUnreachs); 20062 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20063 o2->ipv6IfIcmpOutAdminProhibs); 20064 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20065 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20066 o2->ipv6IfIcmpOutParmProblems); 20067 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20068 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20069 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20070 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20071 o2->ipv6IfIcmpOutRouterSolicits); 20072 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20073 o2->ipv6IfIcmpOutRouterAdvertisements); 20074 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20075 o2->ipv6IfIcmpOutNeighborSolicits); 20076 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20077 o2->ipv6IfIcmpOutNeighborAdvertisements); 20078 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20079 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20080 o2->ipv6IfIcmpOutGroupMembQueries); 20081 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20082 o2->ipv6IfIcmpOutGroupMembResponses); 20083 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20084 o2->ipv6IfIcmpOutGroupMembReductions); 20085 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20086 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20087 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20088 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20089 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20090 o2->ipv6IfIcmpInBadNeighborSolicitations); 20091 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20092 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20093 o2->ipv6IfIcmpInGroupMembTotal); 20094 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20095 o2->ipv6IfIcmpInGroupMembBadQueries); 20096 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20097 o2->ipv6IfIcmpInGroupMembBadReports); 20098 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20099 o2->ipv6IfIcmpInGroupMembOurReports); 20100 } 20101 20102 /* 20103 * Called before the options are updated to check if this packet will 20104 * be source routed from here. 20105 * This routine assumes that the options are well formed i.e. that they 20106 * have already been checked. 20107 */ 20108 static boolean_t 20109 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20110 { 20111 ipoptp_t opts; 20112 uchar_t *opt; 20113 uint8_t optval; 20114 uint8_t optlen; 20115 ipaddr_t dst; 20116 ire_t *ire; 20117 20118 if (IS_SIMPLE_IPH(ipha)) { 20119 ip2dbg(("not source routed\n")); 20120 return (B_FALSE); 20121 } 20122 dst = ipha->ipha_dst; 20123 for (optval = ipoptp_first(&opts, ipha); 20124 optval != IPOPT_EOL; 20125 optval = ipoptp_next(&opts)) { 20126 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20127 opt = opts.ipoptp_cur; 20128 optlen = opts.ipoptp_len; 20129 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20130 optval, optlen)); 20131 switch (optval) { 20132 uint32_t off; 20133 case IPOPT_SSRR: 20134 case IPOPT_LSRR: 20135 /* 20136 * If dst is one of our addresses and there are some 20137 * entries left in the source route return (true). 20138 */ 20139 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20140 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20141 if (ire == NULL) { 20142 ip2dbg(("ip_source_routed: not next" 20143 " source route 0x%x\n", 20144 ntohl(dst))); 20145 return (B_FALSE); 20146 } 20147 ire_refrele(ire); 20148 off = opt[IPOPT_OFFSET]; 20149 off--; 20150 if (optlen < IP_ADDR_LEN || 20151 off > optlen - IP_ADDR_LEN) { 20152 /* End of source route */ 20153 ip1dbg(("ip_source_routed: end of SR\n")); 20154 return (B_FALSE); 20155 } 20156 return (B_TRUE); 20157 } 20158 } 20159 ip2dbg(("not source routed\n")); 20160 return (B_FALSE); 20161 } 20162 20163 /* 20164 * Check if the packet contains any source route. 20165 */ 20166 static boolean_t 20167 ip_source_route_included(ipha_t *ipha) 20168 { 20169 ipoptp_t opts; 20170 uint8_t optval; 20171 20172 if (IS_SIMPLE_IPH(ipha)) 20173 return (B_FALSE); 20174 for (optval = ipoptp_first(&opts, ipha); 20175 optval != IPOPT_EOL; 20176 optval = ipoptp_next(&opts)) { 20177 switch (optval) { 20178 case IPOPT_SSRR: 20179 case IPOPT_LSRR: 20180 return (B_TRUE); 20181 } 20182 } 20183 return (B_FALSE); 20184 } 20185 20186 /* 20187 * Called when the IRE expiration timer fires. 20188 */ 20189 void 20190 ip_trash_timer_expire(void *args) 20191 { 20192 int flush_flag = 0; 20193 ire_expire_arg_t iea; 20194 ip_stack_t *ipst = (ip_stack_t *)args; 20195 20196 iea.iea_ipst = ipst; /* No netstack_hold */ 20197 20198 /* 20199 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20200 * This lock makes sure that a new invocation of this function 20201 * that occurs due to an almost immediate timer firing will not 20202 * progress beyond this point until the current invocation is done 20203 */ 20204 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20205 ipst->ips_ip_ire_expire_id = 0; 20206 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20207 20208 /* Periodic timer */ 20209 if (ipst->ips_ip_ire_arp_time_elapsed >= 20210 ipst->ips_ip_ire_arp_interval) { 20211 /* 20212 * Remove all IRE_CACHE entries since they might 20213 * contain arp information. 20214 */ 20215 flush_flag |= FLUSH_ARP_TIME; 20216 ipst->ips_ip_ire_arp_time_elapsed = 0; 20217 IP_STAT(ipst, ip_ire_arp_timer_expired); 20218 } 20219 if (ipst->ips_ip_ire_rd_time_elapsed >= 20220 ipst->ips_ip_ire_redir_interval) { 20221 /* Remove all redirects */ 20222 flush_flag |= FLUSH_REDIRECT_TIME; 20223 ipst->ips_ip_ire_rd_time_elapsed = 0; 20224 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20225 } 20226 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20227 ipst->ips_ip_ire_pathmtu_interval) { 20228 /* Increase path mtu */ 20229 flush_flag |= FLUSH_MTU_TIME; 20230 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20231 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20232 } 20233 20234 /* 20235 * Optimize for the case when there are no redirects in the 20236 * ftable, that is, no need to walk the ftable in that case. 20237 */ 20238 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20239 iea.iea_flush_flag = flush_flag; 20240 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20241 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20242 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20243 NULL, ALL_ZONES, ipst); 20244 } 20245 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20246 ipst->ips_ip_redirect_cnt > 0) { 20247 iea.iea_flush_flag = flush_flag; 20248 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20249 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20250 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20251 } 20252 if (flush_flag & FLUSH_MTU_TIME) { 20253 /* 20254 * Walk all IPv6 IRE's and update them 20255 * Note that ARP and redirect timers are not 20256 * needed since NUD handles stale entries. 20257 */ 20258 flush_flag = FLUSH_MTU_TIME; 20259 iea.iea_flush_flag = flush_flag; 20260 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20261 ALL_ZONES, ipst); 20262 } 20263 20264 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20265 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20266 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20267 20268 /* 20269 * Hold the lock to serialize timeout calls and prevent 20270 * stale values in ip_ire_expire_id. Otherwise it is possible 20271 * for the timer to fire and a new invocation of this function 20272 * to start before the return value of timeout has been stored 20273 * in ip_ire_expire_id by the current invocation. 20274 */ 20275 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20276 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20277 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20278 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20279 } 20280 20281 /* 20282 * Called by the memory allocator subsystem directly, when the system 20283 * is running low on memory. 20284 */ 20285 /* ARGSUSED */ 20286 void 20287 ip_trash_ire_reclaim(void *args) 20288 { 20289 netstack_handle_t nh; 20290 netstack_t *ns; 20291 20292 netstack_next_init(&nh); 20293 while ((ns = netstack_next(&nh)) != NULL) { 20294 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20295 netstack_rele(ns); 20296 } 20297 netstack_next_fini(&nh); 20298 } 20299 20300 static void 20301 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20302 { 20303 ire_cache_count_t icc; 20304 ire_cache_reclaim_t icr; 20305 ncc_cache_count_t ncc; 20306 nce_cache_reclaim_t ncr; 20307 uint_t delete_cnt; 20308 /* 20309 * Memory reclaim call back. 20310 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20311 * Then, with a target of freeing 1/Nth of IRE_CACHE 20312 * entries, determine what fraction to free for 20313 * each category of IRE_CACHE entries giving absolute priority 20314 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20315 * entry will be freed unless all offlink entries are freed). 20316 */ 20317 icc.icc_total = 0; 20318 icc.icc_unused = 0; 20319 icc.icc_offlink = 0; 20320 icc.icc_pmtu = 0; 20321 icc.icc_onlink = 0; 20322 ire_walk(ire_cache_count, (char *)&icc, ipst); 20323 20324 /* 20325 * Free NCEs for IPv6 like the onlink ires. 20326 */ 20327 ncc.ncc_total = 0; 20328 ncc.ncc_host = 0; 20329 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20330 20331 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20332 icc.icc_pmtu + icc.icc_onlink); 20333 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20334 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20335 if (delete_cnt == 0) 20336 return; 20337 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20338 /* Always delete all unused offlink entries */ 20339 icr.icr_ipst = ipst; 20340 icr.icr_unused = 1; 20341 if (delete_cnt <= icc.icc_unused) { 20342 /* 20343 * Only need to free unused entries. In other words, 20344 * there are enough unused entries to free to meet our 20345 * target number of freed ire cache entries. 20346 */ 20347 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20348 ncr.ncr_host = 0; 20349 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20350 /* 20351 * Only need to free unused entries, plus a fraction of offlink 20352 * entries. It follows from the first if statement that 20353 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20354 */ 20355 delete_cnt -= icc.icc_unused; 20356 /* Round up # deleted by truncating fraction */ 20357 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20358 icr.icr_pmtu = icr.icr_onlink = 0; 20359 ncr.ncr_host = 0; 20360 } else if (delete_cnt <= 20361 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20362 /* 20363 * Free all unused and offlink entries, plus a fraction of 20364 * pmtu entries. It follows from the previous if statement 20365 * that icc_pmtu is non-zero, and that 20366 * delete_cnt != icc_unused + icc_offlink. 20367 */ 20368 icr.icr_offlink = 1; 20369 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20370 /* Round up # deleted by truncating fraction */ 20371 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20372 icr.icr_onlink = 0; 20373 ncr.ncr_host = 0; 20374 } else { 20375 /* 20376 * Free all unused, offlink, and pmtu entries, plus a fraction 20377 * of onlink entries. If we're here, then we know that 20378 * icc_onlink is non-zero, and that 20379 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20380 */ 20381 icr.icr_offlink = icr.icr_pmtu = 1; 20382 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20383 icc.icc_pmtu; 20384 /* Round up # deleted by truncating fraction */ 20385 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20386 /* Using the same delete fraction as for onlink IREs */ 20387 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20388 } 20389 #ifdef DEBUG 20390 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20391 "fractions %d/%d/%d/%d\n", 20392 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20393 icc.icc_unused, icc.icc_offlink, 20394 icc.icc_pmtu, icc.icc_onlink, 20395 icr.icr_unused, icr.icr_offlink, 20396 icr.icr_pmtu, icr.icr_onlink)); 20397 #endif 20398 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20399 if (ncr.ncr_host != 0) 20400 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20401 (uchar_t *)&ncr, ipst); 20402 #ifdef DEBUG 20403 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20404 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20405 ire_walk(ire_cache_count, (char *)&icc, ipst); 20406 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20407 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20408 icc.icc_pmtu, icc.icc_onlink)); 20409 #endif 20410 } 20411 20412 /* 20413 * ip_unbind is called when a copy of an unbind request is received from the 20414 * upper level protocol. We remove this conn from any fanout hash list it is 20415 * on, and zero out the bind information. No reply is expected up above. 20416 */ 20417 void 20418 ip_unbind(conn_t *connp) 20419 { 20420 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20421 20422 if (is_system_labeled() && connp->conn_anon_port) { 20423 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20424 connp->conn_mlp_type, connp->conn_ulp, 20425 ntohs(connp->conn_lport), B_FALSE); 20426 connp->conn_anon_port = 0; 20427 } 20428 connp->conn_mlp_type = mlptSingle; 20429 20430 ipcl_hash_remove(connp); 20431 20432 } 20433 20434 /* 20435 * Write side put procedure. Outbound data, IOCTLs, responses from 20436 * resolvers, etc, come down through here. 20437 * 20438 * arg2 is always a queue_t *. 20439 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20440 * the zoneid. 20441 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20442 */ 20443 void 20444 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20445 { 20446 ip_output_options(arg, mp, arg2, caller, &zero_info); 20447 } 20448 20449 void 20450 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20451 ip_opt_info_t *infop) 20452 { 20453 conn_t *connp = NULL; 20454 queue_t *q = (queue_t *)arg2; 20455 ipha_t *ipha; 20456 #define rptr ((uchar_t *)ipha) 20457 ire_t *ire = NULL; 20458 ire_t *sctp_ire = NULL; 20459 uint32_t v_hlen_tos_len; 20460 ipaddr_t dst; 20461 mblk_t *first_mp = NULL; 20462 boolean_t mctl_present; 20463 ipsec_out_t *io; 20464 int match_flags; 20465 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20466 ipif_t *dst_ipif; 20467 boolean_t multirt_need_resolve = B_FALSE; 20468 mblk_t *copy_mp = NULL; 20469 int err; 20470 zoneid_t zoneid; 20471 boolean_t need_decref = B_FALSE; 20472 boolean_t ignore_dontroute = B_FALSE; 20473 boolean_t ignore_nexthop = B_FALSE; 20474 boolean_t ip_nexthop = B_FALSE; 20475 ipaddr_t nexthop_addr; 20476 ip_stack_t *ipst; 20477 20478 #ifdef _BIG_ENDIAN 20479 #define V_HLEN (v_hlen_tos_len >> 24) 20480 #else 20481 #define V_HLEN (v_hlen_tos_len & 0xFF) 20482 #endif 20483 20484 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20485 "ip_wput_start: q %p", q); 20486 20487 /* 20488 * ip_wput fast path 20489 */ 20490 20491 /* is packet from ARP ? */ 20492 if (q->q_next != NULL) { 20493 zoneid = (zoneid_t)(uintptr_t)arg; 20494 goto qnext; 20495 } 20496 20497 connp = (conn_t *)arg; 20498 ASSERT(connp != NULL); 20499 zoneid = connp->conn_zoneid; 20500 ipst = connp->conn_netstack->netstack_ip; 20501 ASSERT(ipst != NULL); 20502 20503 /* is queue flow controlled? */ 20504 if ((q->q_first != NULL || connp->conn_draining) && 20505 (caller == IP_WPUT)) { 20506 ASSERT(!need_decref); 20507 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20508 (void) putq(q, mp); 20509 return; 20510 } 20511 20512 /* Multidata transmit? */ 20513 if (DB_TYPE(mp) == M_MULTIDATA) { 20514 /* 20515 * We should never get here, since all Multidata messages 20516 * originating from tcp should have been directed over to 20517 * tcp_multisend() in the first place. 20518 */ 20519 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20520 freemsg(mp); 20521 return; 20522 } else if (DB_TYPE(mp) != M_DATA) 20523 goto notdata; 20524 20525 if (mp->b_flag & MSGHASREF) { 20526 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20527 mp->b_flag &= ~MSGHASREF; 20528 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20529 need_decref = B_TRUE; 20530 } 20531 ipha = (ipha_t *)mp->b_rptr; 20532 20533 /* is IP header non-aligned or mblk smaller than basic IP header */ 20534 #ifndef SAFETY_BEFORE_SPEED 20535 if (!OK_32PTR(rptr) || 20536 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20537 goto hdrtoosmall; 20538 #endif 20539 20540 ASSERT(OK_32PTR(ipha)); 20541 20542 /* 20543 * This function assumes that mp points to an IPv4 packet. If it's the 20544 * wrong version, we'll catch it again in ip_output_v6. 20545 * 20546 * Note that this is *only* locally-generated output here, and never 20547 * forwarded data, and that we need to deal only with transports that 20548 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20549 * label.) 20550 */ 20551 if (is_system_labeled() && 20552 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20553 !connp->conn_ulp_labeled) { 20554 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20555 connp->conn_mac_exempt, ipst); 20556 ipha = (ipha_t *)mp->b_rptr; 20557 if (err != 0) { 20558 first_mp = mp; 20559 if (err == EINVAL) 20560 goto icmp_parameter_problem; 20561 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20562 goto discard_pkt; 20563 } 20564 } 20565 20566 ASSERT(infop != NULL); 20567 20568 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20569 /* 20570 * IP_PKTINFO ancillary option is present. 20571 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20572 * allows using address of any zone as the source address. 20573 */ 20574 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20575 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20576 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20577 if (ire == NULL) 20578 goto drop_pkt; 20579 ire_refrele(ire); 20580 ire = NULL; 20581 } 20582 20583 /* 20584 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20585 */ 20586 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20587 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20588 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20589 20590 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20591 goto drop_pkt; 20592 /* 20593 * check that there is an ipif belonging 20594 * to our zone. IPCL_ZONEID is not used because 20595 * IP_ALLZONES option is valid only when the ill is 20596 * accessible from all zones i.e has a valid ipif in 20597 * all zones. 20598 */ 20599 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20600 goto drop_pkt; 20601 } 20602 } 20603 20604 /* 20605 * If there is a policy, try to attach an ipsec_out in 20606 * the front. At the end, first_mp either points to a 20607 * M_DATA message or IPSEC_OUT message linked to a 20608 * M_DATA message. We have to do it now as we might 20609 * lose the "conn" if we go through ip_newroute. 20610 */ 20611 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20612 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20613 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20614 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20615 if (need_decref) 20616 CONN_DEC_REF(connp); 20617 return; 20618 } else { 20619 ASSERT(mp->b_datap->db_type == M_CTL); 20620 first_mp = mp; 20621 mp = mp->b_cont; 20622 mctl_present = B_TRUE; 20623 } 20624 } else { 20625 first_mp = mp; 20626 mctl_present = B_FALSE; 20627 } 20628 20629 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20630 20631 /* is wrong version or IP options present */ 20632 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20633 goto version_hdrlen_check; 20634 dst = ipha->ipha_dst; 20635 20636 /* If IP_BOUND_IF has been set, use that ill. */ 20637 if (connp->conn_outgoing_ill != NULL) { 20638 xmit_ill = conn_get_held_ill(connp, 20639 &connp->conn_outgoing_ill, &err); 20640 if (err == ILL_LOOKUP_FAILED) 20641 goto drop_pkt; 20642 20643 goto send_from_ill; 20644 } 20645 20646 /* is packet multicast? */ 20647 if (CLASSD(dst)) 20648 goto multicast; 20649 20650 /* 20651 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20652 * takes precedence over conn_dontroute and conn_nexthop_set 20653 */ 20654 if (xmit_ill != NULL) 20655 goto send_from_ill; 20656 20657 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20658 /* 20659 * If the destination is a broadcast, local, or loopback 20660 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20661 * standard path. 20662 */ 20663 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20664 if ((ire == NULL) || (ire->ire_type & 20665 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20666 if (ire != NULL) { 20667 ire_refrele(ire); 20668 /* No more access to ire */ 20669 ire = NULL; 20670 } 20671 /* 20672 * bypass routing checks and go directly to interface. 20673 */ 20674 if (connp->conn_dontroute) 20675 goto dontroute; 20676 20677 ASSERT(connp->conn_nexthop_set); 20678 ip_nexthop = B_TRUE; 20679 nexthop_addr = connp->conn_nexthop_v4; 20680 goto send_from_ill; 20681 } 20682 20683 /* Must be a broadcast, a loopback or a local ire */ 20684 ire_refrele(ire); 20685 /* No more access to ire */ 20686 ire = NULL; 20687 } 20688 20689 /* 20690 * We cache IRE_CACHEs to avoid lookups. We don't do 20691 * this for the tcp global queue and listen end point 20692 * as it does not really have a real destination to 20693 * talk to. This is also true for SCTP. 20694 */ 20695 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20696 !connp->conn_fully_bound) { 20697 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20698 if (ire == NULL) 20699 goto noirefound; 20700 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20701 "ip_wput_end: q %p (%S)", q, "end"); 20702 20703 /* 20704 * Check if the ire has the RTF_MULTIRT flag, inherited 20705 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20706 */ 20707 if (ire->ire_flags & RTF_MULTIRT) { 20708 20709 /* 20710 * Force the TTL of multirouted packets if required. 20711 * The TTL of such packets is bounded by the 20712 * ip_multirt_ttl ndd variable. 20713 */ 20714 if ((ipst->ips_ip_multirt_ttl > 0) && 20715 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20716 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20717 "(was %d), dst 0x%08x\n", 20718 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20719 ntohl(ire->ire_addr))); 20720 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20721 } 20722 /* 20723 * We look at this point if there are pending 20724 * unresolved routes. ire_multirt_resolvable() 20725 * checks in O(n) that all IRE_OFFSUBNET ire 20726 * entries for the packet's destination and 20727 * flagged RTF_MULTIRT are currently resolved. 20728 * If some remain unresolved, we make a copy 20729 * of the current message. It will be used 20730 * to initiate additional route resolutions. 20731 */ 20732 multirt_need_resolve = 20733 ire_multirt_need_resolve(ire->ire_addr, 20734 msg_getlabel(first_mp), ipst); 20735 ip2dbg(("ip_wput[TCP]: ire %p, " 20736 "multirt_need_resolve %d, first_mp %p\n", 20737 (void *)ire, multirt_need_resolve, 20738 (void *)first_mp)); 20739 if (multirt_need_resolve) { 20740 copy_mp = copymsg(first_mp); 20741 if (copy_mp != NULL) { 20742 MULTIRT_DEBUG_TAG(copy_mp); 20743 } 20744 } 20745 } 20746 20747 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20748 20749 /* 20750 * Try to resolve another multiroute if 20751 * ire_multirt_need_resolve() deemed it necessary. 20752 */ 20753 if (copy_mp != NULL) 20754 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20755 if (need_decref) 20756 CONN_DEC_REF(connp); 20757 return; 20758 } 20759 20760 /* 20761 * Access to conn_ire_cache. (protected by conn_lock) 20762 * 20763 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20764 * the ire bucket lock here to check for CONDEMNED as it is okay to 20765 * send a packet or two with the IRE_CACHE that is going away. 20766 * Access to the ire requires an ire refhold on the ire prior to 20767 * its use since an interface unplumb thread may delete the cached 20768 * ire and release the refhold at any time. 20769 * 20770 * Caching an ire in the conn_ire_cache 20771 * 20772 * o Caching an ire pointer in the conn requires a strict check for 20773 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20774 * ires before cleaning up the conns. So the caching of an ire pointer 20775 * in the conn is done after making sure under the bucket lock that the 20776 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20777 * caching an ire after the unplumb thread has cleaned up the conn. 20778 * If the conn does not send a packet subsequently the unplumb thread 20779 * will be hanging waiting for the ire count to drop to zero. 20780 * 20781 * o We also need to atomically test for a null conn_ire_cache and 20782 * set the conn_ire_cache under the the protection of the conn_lock 20783 * to avoid races among concurrent threads trying to simultaneously 20784 * cache an ire in the conn_ire_cache. 20785 */ 20786 mutex_enter(&connp->conn_lock); 20787 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20788 20789 if (ire != NULL && ire->ire_addr == dst && 20790 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20791 20792 IRE_REFHOLD(ire); 20793 mutex_exit(&connp->conn_lock); 20794 20795 } else { 20796 boolean_t cached = B_FALSE; 20797 connp->conn_ire_cache = NULL; 20798 mutex_exit(&connp->conn_lock); 20799 /* Release the old ire */ 20800 if (ire != NULL && sctp_ire == NULL) 20801 IRE_REFRELE_NOTR(ire); 20802 20803 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20804 if (ire == NULL) 20805 goto noirefound; 20806 IRE_REFHOLD_NOTR(ire); 20807 20808 mutex_enter(&connp->conn_lock); 20809 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20810 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20811 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20812 if (connp->conn_ulp == IPPROTO_TCP) 20813 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20814 connp->conn_ire_cache = ire; 20815 cached = B_TRUE; 20816 } 20817 rw_exit(&ire->ire_bucket->irb_lock); 20818 } 20819 mutex_exit(&connp->conn_lock); 20820 20821 /* 20822 * We can continue to use the ire but since it was 20823 * not cached, we should drop the extra reference. 20824 */ 20825 if (!cached) 20826 IRE_REFRELE_NOTR(ire); 20827 } 20828 20829 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20830 "ip_wput_end: q %p (%S)", q, "end"); 20831 20832 /* 20833 * Check if the ire has the RTF_MULTIRT flag, inherited 20834 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20835 */ 20836 if (ire->ire_flags & RTF_MULTIRT) { 20837 /* 20838 * Force the TTL of multirouted packets if required. 20839 * The TTL of such packets is bounded by the 20840 * ip_multirt_ttl ndd variable. 20841 */ 20842 if ((ipst->ips_ip_multirt_ttl > 0) && 20843 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20844 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20845 "(was %d), dst 0x%08x\n", 20846 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20847 ntohl(ire->ire_addr))); 20848 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20849 } 20850 20851 /* 20852 * At this point, we check to see if there are any pending 20853 * unresolved routes. ire_multirt_resolvable() 20854 * checks in O(n) that all IRE_OFFSUBNET ire 20855 * entries for the packet's destination and 20856 * flagged RTF_MULTIRT are currently resolved. 20857 * If some remain unresolved, we make a copy 20858 * of the current message. It will be used 20859 * to initiate additional route resolutions. 20860 */ 20861 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20862 msg_getlabel(first_mp), ipst); 20863 ip2dbg(("ip_wput[not TCP]: ire %p, " 20864 "multirt_need_resolve %d, first_mp %p\n", 20865 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20866 if (multirt_need_resolve) { 20867 copy_mp = copymsg(first_mp); 20868 if (copy_mp != NULL) { 20869 MULTIRT_DEBUG_TAG(copy_mp); 20870 } 20871 } 20872 } 20873 20874 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20875 20876 /* 20877 * Try to resolve another multiroute if 20878 * ire_multirt_resolvable() deemed it necessary 20879 */ 20880 if (copy_mp != NULL) 20881 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20882 if (need_decref) 20883 CONN_DEC_REF(connp); 20884 return; 20885 20886 qnext: 20887 /* 20888 * Upper Level Protocols pass down complete IP datagrams 20889 * as M_DATA messages. Everything else is a sideshow. 20890 * 20891 * 1) We could be re-entering ip_wput because of ip_neworute 20892 * in which case we could have a IPSEC_OUT message. We 20893 * need to pass through ip_wput like other datagrams and 20894 * hence cannot branch to ip_wput_nondata. 20895 * 20896 * 2) ARP, AH, ESP, and other clients who are on the module 20897 * instance of IP stream, give us something to deal with. 20898 * We will handle AH and ESP here and rest in ip_wput_nondata. 20899 * 20900 * 3) ICMP replies also could come here. 20901 */ 20902 ipst = ILLQ_TO_IPST(q); 20903 20904 if (DB_TYPE(mp) != M_DATA) { 20905 notdata: 20906 if (DB_TYPE(mp) == M_CTL) { 20907 /* 20908 * M_CTL messages are used by ARP, AH and ESP to 20909 * communicate with IP. We deal with IPSEC_IN and 20910 * IPSEC_OUT here. ip_wput_nondata handles other 20911 * cases. 20912 */ 20913 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20914 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20915 first_mp = mp->b_cont; 20916 first_mp->b_flag &= ~MSGHASREF; 20917 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20918 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20919 CONN_DEC_REF(connp); 20920 connp = NULL; 20921 } 20922 if (ii->ipsec_info_type == IPSEC_IN) { 20923 /* 20924 * Either this message goes back to 20925 * IPsec for further processing or to 20926 * ULP after policy checks. 20927 */ 20928 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20929 return; 20930 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20931 io = (ipsec_out_t *)ii; 20932 if (io->ipsec_out_proc_begin) { 20933 /* 20934 * IPsec processing has already started. 20935 * Complete it. 20936 * IPQoS notes: We don't care what is 20937 * in ipsec_out_ill_index since this 20938 * won't be processed for IPQoS policies 20939 * in ipsec_out_process. 20940 */ 20941 ipsec_out_process(q, mp, NULL, 20942 io->ipsec_out_ill_index); 20943 return; 20944 } else { 20945 connp = (q->q_next != NULL) ? 20946 NULL : Q_TO_CONN(q); 20947 first_mp = mp; 20948 mp = mp->b_cont; 20949 mctl_present = B_TRUE; 20950 } 20951 zoneid = io->ipsec_out_zoneid; 20952 ASSERT(zoneid != ALL_ZONES); 20953 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20954 /* 20955 * It's an IPsec control message requesting 20956 * an SADB update to be sent to the IPsec 20957 * hardware acceleration capable ills. 20958 */ 20959 ipsec_ctl_t *ipsec_ctl = 20960 (ipsec_ctl_t *)mp->b_rptr; 20961 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20962 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20963 mblk_t *cmp = mp->b_cont; 20964 20965 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20966 ASSERT(cmp != NULL); 20967 20968 freeb(mp); 20969 ill_ipsec_capab_send_all(satype, cmp, sa, 20970 ipst->ips_netstack); 20971 return; 20972 } else { 20973 /* 20974 * This must be ARP or special TSOL signaling. 20975 */ 20976 ip_wput_nondata(NULL, q, mp, NULL); 20977 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20978 "ip_wput_end: q %p (%S)", q, "nondata"); 20979 return; 20980 } 20981 } else { 20982 /* 20983 * This must be non-(ARP/AH/ESP) messages. 20984 */ 20985 ASSERT(!need_decref); 20986 ip_wput_nondata(NULL, q, mp, NULL); 20987 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20988 "ip_wput_end: q %p (%S)", q, "nondata"); 20989 return; 20990 } 20991 } else { 20992 first_mp = mp; 20993 mctl_present = B_FALSE; 20994 } 20995 20996 ASSERT(first_mp != NULL); 20997 20998 if (mctl_present) { 20999 io = (ipsec_out_t *)first_mp->b_rptr; 21000 if (io->ipsec_out_ip_nexthop) { 21001 /* 21002 * We may have lost the conn context if we are 21003 * coming here from ip_newroute(). Copy the 21004 * nexthop information. 21005 */ 21006 ip_nexthop = B_TRUE; 21007 nexthop_addr = io->ipsec_out_nexthop_addr; 21008 21009 ipha = (ipha_t *)mp->b_rptr; 21010 dst = ipha->ipha_dst; 21011 goto send_from_ill; 21012 } 21013 } 21014 21015 ASSERT(xmit_ill == NULL); 21016 21017 /* We have a complete IP datagram heading outbound. */ 21018 ipha = (ipha_t *)mp->b_rptr; 21019 21020 #ifndef SPEED_BEFORE_SAFETY 21021 /* 21022 * Make sure we have a full-word aligned message and that at least 21023 * a simple IP header is accessible in the first message. If not, 21024 * try a pullup. For labeled systems we need to always take this 21025 * path as M_CTLs are "notdata" but have trailing data to process. 21026 */ 21027 if (!OK_32PTR(rptr) || 21028 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21029 hdrtoosmall: 21030 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21031 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21032 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21033 if (first_mp == NULL) 21034 first_mp = mp; 21035 goto discard_pkt; 21036 } 21037 21038 /* This function assumes that mp points to an IPv4 packet. */ 21039 if (is_system_labeled() && q->q_next == NULL && 21040 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21041 !connp->conn_ulp_labeled) { 21042 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21043 connp->conn_mac_exempt, ipst); 21044 ipha = (ipha_t *)mp->b_rptr; 21045 if (first_mp != NULL) 21046 first_mp->b_cont = mp; 21047 if (err != 0) { 21048 if (first_mp == NULL) 21049 first_mp = mp; 21050 if (err == EINVAL) 21051 goto icmp_parameter_problem; 21052 ip2dbg(("ip_wput: label check failed (%d)\n", 21053 err)); 21054 goto discard_pkt; 21055 } 21056 } 21057 21058 ipha = (ipha_t *)mp->b_rptr; 21059 if (first_mp == NULL) { 21060 ASSERT(xmit_ill == NULL); 21061 /* 21062 * If we got here because of "goto hdrtoosmall" 21063 * We need to attach a IPSEC_OUT. 21064 */ 21065 if (connp->conn_out_enforce_policy) { 21066 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21067 NULL, ipha->ipha_protocol, 21068 ipst->ips_netstack)) == NULL)) { 21069 BUMP_MIB(&ipst->ips_ip_mib, 21070 ipIfStatsOutDiscards); 21071 if (need_decref) 21072 CONN_DEC_REF(connp); 21073 return; 21074 } else { 21075 ASSERT(mp->b_datap->db_type == M_CTL); 21076 first_mp = mp; 21077 mp = mp->b_cont; 21078 mctl_present = B_TRUE; 21079 } 21080 } else { 21081 first_mp = mp; 21082 mctl_present = B_FALSE; 21083 } 21084 } 21085 } 21086 #endif 21087 21088 /* Most of the code below is written for speed, not readability */ 21089 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21090 21091 /* 21092 * If ip_newroute() fails, we're going to need a full 21093 * header for the icmp wraparound. 21094 */ 21095 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21096 uint_t v_hlen; 21097 version_hdrlen_check: 21098 ASSERT(first_mp != NULL); 21099 v_hlen = V_HLEN; 21100 /* 21101 * siphon off IPv6 packets coming down from transport 21102 * layer modules here. 21103 * Note: high-order bit carries NUD reachability confirmation 21104 */ 21105 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21106 /* 21107 * FIXME: assume that callers of ip_output* call 21108 * the right version? 21109 */ 21110 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21111 ASSERT(xmit_ill == NULL); 21112 if (need_decref) 21113 mp->b_flag |= MSGHASREF; 21114 (void) ip_output_v6(arg, first_mp, arg2, caller); 21115 return; 21116 } 21117 21118 if ((v_hlen >> 4) != IP_VERSION) { 21119 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21120 "ip_wput_end: q %p (%S)", q, "badvers"); 21121 goto discard_pkt; 21122 } 21123 /* 21124 * Is the header length at least 20 bytes? 21125 * 21126 * Are there enough bytes accessible in the header? If 21127 * not, try a pullup. 21128 */ 21129 v_hlen &= 0xF; 21130 v_hlen <<= 2; 21131 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21132 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21133 "ip_wput_end: q %p (%S)", q, "badlen"); 21134 goto discard_pkt; 21135 } 21136 if (v_hlen > (mp->b_wptr - rptr)) { 21137 if (!pullupmsg(mp, v_hlen)) { 21138 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21139 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21140 goto discard_pkt; 21141 } 21142 ipha = (ipha_t *)mp->b_rptr; 21143 } 21144 /* 21145 * Move first entry from any source route into ipha_dst and 21146 * verify the options 21147 */ 21148 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21149 zoneid, ipst)) { 21150 ASSERT(xmit_ill == NULL); 21151 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21152 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21153 "ip_wput_end: q %p (%S)", q, "badopts"); 21154 if (need_decref) 21155 CONN_DEC_REF(connp); 21156 return; 21157 } 21158 } 21159 dst = ipha->ipha_dst; 21160 21161 /* 21162 * Try to get an IRE_CACHE for the destination address. If we can't, 21163 * we have to run the packet through ip_newroute which will take 21164 * the appropriate action to arrange for an IRE_CACHE, such as querying 21165 * a resolver, or assigning a default gateway, etc. 21166 */ 21167 if (CLASSD(dst)) { 21168 ipif_t *ipif; 21169 uint32_t setsrc = 0; 21170 21171 multicast: 21172 ASSERT(first_mp != NULL); 21173 ip2dbg(("ip_wput: CLASSD\n")); 21174 if (connp == NULL) { 21175 /* 21176 * Use the first good ipif on the ill. 21177 * XXX Should this ever happen? (Appears 21178 * to show up with just ppp and no ethernet due 21179 * to in.rdisc.) 21180 * However, ire_send should be able to 21181 * call ip_wput_ire directly. 21182 * 21183 * XXX Also, this can happen for ICMP and other packets 21184 * with multicast source addresses. Perhaps we should 21185 * fix things so that we drop the packet in question, 21186 * but for now, just run with it. 21187 */ 21188 ill_t *ill = (ill_t *)q->q_ptr; 21189 21190 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21191 if (ipif == NULL) { 21192 if (need_decref) 21193 CONN_DEC_REF(connp); 21194 freemsg(first_mp); 21195 return; 21196 } 21197 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21198 ntohl(dst), ill->ill_name)); 21199 } else { 21200 /* 21201 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21202 * and IP_MULTICAST_IF. The block comment above this 21203 * function explains the locking mechanism used here. 21204 */ 21205 if (xmit_ill == NULL) { 21206 xmit_ill = conn_get_held_ill(connp, 21207 &connp->conn_outgoing_ill, &err); 21208 if (err == ILL_LOOKUP_FAILED) { 21209 ip1dbg(("ip_wput: No ill for " 21210 "IP_BOUND_IF\n")); 21211 BUMP_MIB(&ipst->ips_ip_mib, 21212 ipIfStatsOutNoRoutes); 21213 goto drop_pkt; 21214 } 21215 } 21216 21217 if (xmit_ill == NULL) { 21218 ipif = conn_get_held_ipif(connp, 21219 &connp->conn_multicast_ipif, &err); 21220 if (err == IPIF_LOOKUP_FAILED) { 21221 ip1dbg(("ip_wput: No ipif for " 21222 "multicast\n")); 21223 BUMP_MIB(&ipst->ips_ip_mib, 21224 ipIfStatsOutNoRoutes); 21225 goto drop_pkt; 21226 } 21227 } 21228 if (xmit_ill != NULL) { 21229 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21230 if (ipif == NULL) { 21231 ip1dbg(("ip_wput: No ipif for " 21232 "xmit_ill\n")); 21233 BUMP_MIB(&ipst->ips_ip_mib, 21234 ipIfStatsOutNoRoutes); 21235 goto drop_pkt; 21236 } 21237 } else if (ipif == NULL || ipif->ipif_isv6) { 21238 /* 21239 * We must do this ipif determination here 21240 * else we could pass through ip_newroute 21241 * and come back here without the conn context. 21242 * 21243 * Note: we do late binding i.e. we bind to 21244 * the interface when the first packet is sent. 21245 * For performance reasons we do not rebind on 21246 * each packet but keep the binding until the 21247 * next IP_MULTICAST_IF option. 21248 * 21249 * conn_multicast_{ipif,ill} are shared between 21250 * IPv4 and IPv6 and AF_INET6 sockets can 21251 * send both IPv4 and IPv6 packets. Hence 21252 * we have to check that "isv6" matches above. 21253 */ 21254 if (ipif != NULL) 21255 ipif_refrele(ipif); 21256 ipif = ipif_lookup_group(dst, zoneid, ipst); 21257 if (ipif == NULL) { 21258 ip1dbg(("ip_wput: No ipif for " 21259 "multicast\n")); 21260 BUMP_MIB(&ipst->ips_ip_mib, 21261 ipIfStatsOutNoRoutes); 21262 goto drop_pkt; 21263 } 21264 err = conn_set_held_ipif(connp, 21265 &connp->conn_multicast_ipif, ipif); 21266 if (err == IPIF_LOOKUP_FAILED) { 21267 ipif_refrele(ipif); 21268 ip1dbg(("ip_wput: No ipif for " 21269 "multicast\n")); 21270 BUMP_MIB(&ipst->ips_ip_mib, 21271 ipIfStatsOutNoRoutes); 21272 goto drop_pkt; 21273 } 21274 } 21275 } 21276 ASSERT(!ipif->ipif_isv6); 21277 /* 21278 * As we may lose the conn by the time we reach ip_wput_ire, 21279 * we copy conn_multicast_loop and conn_dontroute on to an 21280 * ipsec_out. In case if this datagram goes out secure, 21281 * we need the ill_index also. Copy that also into the 21282 * ipsec_out. 21283 */ 21284 if (mctl_present) { 21285 io = (ipsec_out_t *)first_mp->b_rptr; 21286 ASSERT(first_mp->b_datap->db_type == M_CTL); 21287 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21288 } else { 21289 ASSERT(mp == first_mp); 21290 if ((first_mp = allocb(sizeof (ipsec_info_t), 21291 BPRI_HI)) == NULL) { 21292 ipif_refrele(ipif); 21293 first_mp = mp; 21294 goto discard_pkt; 21295 } 21296 first_mp->b_datap->db_type = M_CTL; 21297 first_mp->b_wptr += sizeof (ipsec_info_t); 21298 /* ipsec_out_secure is B_FALSE now */ 21299 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21300 io = (ipsec_out_t *)first_mp->b_rptr; 21301 io->ipsec_out_type = IPSEC_OUT; 21302 io->ipsec_out_len = sizeof (ipsec_out_t); 21303 io->ipsec_out_use_global_policy = B_TRUE; 21304 io->ipsec_out_ns = ipst->ips_netstack; 21305 first_mp->b_cont = mp; 21306 mctl_present = B_TRUE; 21307 } 21308 21309 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21310 io->ipsec_out_ill_index = 21311 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21312 21313 if (connp != NULL) { 21314 io->ipsec_out_multicast_loop = 21315 connp->conn_multicast_loop; 21316 io->ipsec_out_dontroute = connp->conn_dontroute; 21317 io->ipsec_out_zoneid = connp->conn_zoneid; 21318 } 21319 /* 21320 * If the application uses IP_MULTICAST_IF with 21321 * different logical addresses of the same ILL, we 21322 * need to make sure that the soruce address of 21323 * the packet matches the logical IP address used 21324 * in the option. We do it by initializing ipha_src 21325 * here. This should keep IPsec also happy as 21326 * when we return from IPsec processing, we don't 21327 * have to worry about getting the right address on 21328 * the packet. Thus it is sufficient to look for 21329 * IRE_CACHE using MATCH_IRE_ILL rathen than 21330 * MATCH_IRE_IPIF. 21331 * 21332 * NOTE : We need to do it for non-secure case also as 21333 * this might go out secure if there is a global policy 21334 * match in ip_wput_ire. 21335 * 21336 * As we do not have the ire yet, it is possible that 21337 * we set the source address here and then later discover 21338 * that the ire implies the source address to be assigned 21339 * through the RTF_SETSRC flag. 21340 * In that case, the setsrc variable will remind us 21341 * that overwritting the source address by the one 21342 * of the RTF_SETSRC-flagged ire is allowed. 21343 */ 21344 if (ipha->ipha_src == INADDR_ANY && 21345 (connp == NULL || !connp->conn_unspec_src)) { 21346 ipha->ipha_src = ipif->ipif_src_addr; 21347 setsrc = RTF_SETSRC; 21348 } 21349 /* 21350 * Find an IRE which matches the destination and the outgoing 21351 * queue (i.e. the outgoing interface.) 21352 * For loopback use a unicast IP address for 21353 * the ire lookup. 21354 */ 21355 if (IS_LOOPBACK(ipif->ipif_ill)) 21356 dst = ipif->ipif_lcl_addr; 21357 21358 /* 21359 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21360 * We don't need to lookup ire in ctable as the packet 21361 * needs to be sent to the destination through the specified 21362 * ill irrespective of ires in the cache table. 21363 */ 21364 ire = NULL; 21365 if (xmit_ill == NULL) { 21366 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21367 zoneid, msg_getlabel(mp), match_flags, ipst); 21368 } 21369 21370 if (ire == NULL) { 21371 /* 21372 * Multicast loopback and multicast forwarding is 21373 * done in ip_wput_ire. 21374 * 21375 * Mark this packet to make it be delivered to 21376 * ip_wput_ire after the new ire has been 21377 * created. 21378 * 21379 * The call to ip_newroute_ipif takes into account 21380 * the setsrc reminder. In any case, we take care 21381 * of the RTF_MULTIRT flag. 21382 */ 21383 mp->b_prev = mp->b_next = NULL; 21384 if (xmit_ill == NULL || 21385 xmit_ill->ill_ipif_up_count > 0) { 21386 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21387 setsrc | RTF_MULTIRT, zoneid, infop); 21388 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21389 "ip_wput_end: q %p (%S)", q, "noire"); 21390 } else { 21391 freemsg(first_mp); 21392 } 21393 ipif_refrele(ipif); 21394 if (xmit_ill != NULL) 21395 ill_refrele(xmit_ill); 21396 if (need_decref) 21397 CONN_DEC_REF(connp); 21398 return; 21399 } 21400 21401 ipif_refrele(ipif); 21402 ipif = NULL; 21403 ASSERT(xmit_ill == NULL); 21404 21405 /* 21406 * Honor the RTF_SETSRC flag for multicast packets, 21407 * if allowed by the setsrc reminder. 21408 */ 21409 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21410 ipha->ipha_src = ire->ire_src_addr; 21411 } 21412 21413 /* 21414 * Unconditionally force the TTL to 1 for 21415 * multirouted multicast packets: 21416 * multirouted multicast should not cross 21417 * multicast routers. 21418 */ 21419 if (ire->ire_flags & RTF_MULTIRT) { 21420 if (ipha->ipha_ttl > 1) { 21421 ip2dbg(("ip_wput: forcing multicast " 21422 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21423 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21424 ipha->ipha_ttl = 1; 21425 } 21426 } 21427 } else { 21428 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21429 if ((ire != NULL) && (ire->ire_type & 21430 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21431 ignore_dontroute = B_TRUE; 21432 ignore_nexthop = B_TRUE; 21433 } 21434 if (ire != NULL) { 21435 ire_refrele(ire); 21436 ire = NULL; 21437 } 21438 /* 21439 * Guard against coming in from arp in which case conn is NULL. 21440 * Also guard against non M_DATA with dontroute set but 21441 * destined to local, loopback or broadcast addresses. 21442 */ 21443 if (connp != NULL && connp->conn_dontroute && 21444 !ignore_dontroute) { 21445 dontroute: 21446 /* 21447 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21448 * routing protocols from seeing false direct 21449 * connectivity. 21450 */ 21451 ipha->ipha_ttl = 1; 21452 /* If suitable ipif not found, drop packet */ 21453 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21454 if (dst_ipif == NULL) { 21455 noroute: 21456 ip1dbg(("ip_wput: no route for dst using" 21457 " SO_DONTROUTE\n")); 21458 BUMP_MIB(&ipst->ips_ip_mib, 21459 ipIfStatsOutNoRoutes); 21460 mp->b_prev = mp->b_next = NULL; 21461 if (first_mp == NULL) 21462 first_mp = mp; 21463 goto drop_pkt; 21464 } else { 21465 /* 21466 * If suitable ipif has been found, set 21467 * xmit_ill to the corresponding 21468 * ipif_ill because we'll be using the 21469 * send_from_ill logic below. 21470 */ 21471 ASSERT(xmit_ill == NULL); 21472 xmit_ill = dst_ipif->ipif_ill; 21473 mutex_enter(&xmit_ill->ill_lock); 21474 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21475 mutex_exit(&xmit_ill->ill_lock); 21476 xmit_ill = NULL; 21477 ipif_refrele(dst_ipif); 21478 goto noroute; 21479 } 21480 ill_refhold_locked(xmit_ill); 21481 mutex_exit(&xmit_ill->ill_lock); 21482 ipif_refrele(dst_ipif); 21483 } 21484 } 21485 21486 send_from_ill: 21487 if (xmit_ill != NULL) { 21488 ipif_t *ipif; 21489 21490 /* 21491 * Mark this packet as originated locally 21492 */ 21493 mp->b_prev = mp->b_next = NULL; 21494 21495 /* 21496 * Could be SO_DONTROUTE case also. 21497 * Verify that at least one ipif is up on the ill. 21498 */ 21499 if (xmit_ill->ill_ipif_up_count == 0) { 21500 ip1dbg(("ip_output: xmit_ill %s is down\n", 21501 xmit_ill->ill_name)); 21502 goto drop_pkt; 21503 } 21504 21505 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21506 if (ipif == NULL) { 21507 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21508 xmit_ill->ill_name)); 21509 goto drop_pkt; 21510 } 21511 21512 match_flags = 0; 21513 if (IS_UNDER_IPMP(xmit_ill)) 21514 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21515 21516 /* 21517 * Look for a ire that is part of the group, 21518 * if found use it else call ip_newroute_ipif. 21519 * IPCL_ZONEID is not used for matching because 21520 * IP_ALLZONES option is valid only when the 21521 * ill is accessible from all zones i.e has a 21522 * valid ipif in all zones. 21523 */ 21524 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21525 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21526 msg_getlabel(mp), match_flags, ipst); 21527 /* 21528 * If an ire exists use it or else create 21529 * an ire but don't add it to the cache. 21530 * Adding an ire may cause issues with 21531 * asymmetric routing. 21532 * In case of multiroute always act as if 21533 * ire does not exist. 21534 */ 21535 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21536 if (ire != NULL) 21537 ire_refrele(ire); 21538 ip_newroute_ipif(q, first_mp, ipif, 21539 dst, connp, 0, zoneid, infop); 21540 ipif_refrele(ipif); 21541 ip1dbg(("ip_output: xmit_ill via %s\n", 21542 xmit_ill->ill_name)); 21543 ill_refrele(xmit_ill); 21544 if (need_decref) 21545 CONN_DEC_REF(connp); 21546 return; 21547 } 21548 ipif_refrele(ipif); 21549 } else if (ip_nexthop || (connp != NULL && 21550 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21551 if (!ip_nexthop) { 21552 ip_nexthop = B_TRUE; 21553 nexthop_addr = connp->conn_nexthop_v4; 21554 } 21555 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21556 MATCH_IRE_GW; 21557 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21558 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21559 } else { 21560 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21561 ipst); 21562 } 21563 if (!ire) { 21564 if (ip_nexthop && !ignore_nexthop) { 21565 if (mctl_present) { 21566 io = (ipsec_out_t *)first_mp->b_rptr; 21567 ASSERT(first_mp->b_datap->db_type == 21568 M_CTL); 21569 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21570 } else { 21571 ASSERT(mp == first_mp); 21572 first_mp = allocb( 21573 sizeof (ipsec_info_t), BPRI_HI); 21574 if (first_mp == NULL) { 21575 first_mp = mp; 21576 goto discard_pkt; 21577 } 21578 first_mp->b_datap->db_type = M_CTL; 21579 first_mp->b_wptr += 21580 sizeof (ipsec_info_t); 21581 /* ipsec_out_secure is B_FALSE now */ 21582 bzero(first_mp->b_rptr, 21583 sizeof (ipsec_info_t)); 21584 io = (ipsec_out_t *)first_mp->b_rptr; 21585 io->ipsec_out_type = IPSEC_OUT; 21586 io->ipsec_out_len = 21587 sizeof (ipsec_out_t); 21588 io->ipsec_out_use_global_policy = 21589 B_TRUE; 21590 io->ipsec_out_ns = ipst->ips_netstack; 21591 first_mp->b_cont = mp; 21592 mctl_present = B_TRUE; 21593 } 21594 io->ipsec_out_ip_nexthop = ip_nexthop; 21595 io->ipsec_out_nexthop_addr = nexthop_addr; 21596 } 21597 noirefound: 21598 /* 21599 * Mark this packet as having originated on 21600 * this machine. This will be noted in 21601 * ire_add_then_send, which needs to know 21602 * whether to run it back through ip_wput or 21603 * ip_rput following successful resolution. 21604 */ 21605 mp->b_prev = NULL; 21606 mp->b_next = NULL; 21607 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21608 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21609 "ip_wput_end: q %p (%S)", q, "newroute"); 21610 if (xmit_ill != NULL) 21611 ill_refrele(xmit_ill); 21612 if (need_decref) 21613 CONN_DEC_REF(connp); 21614 return; 21615 } 21616 } 21617 21618 /* We now know where we are going with it. */ 21619 21620 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21621 "ip_wput_end: q %p (%S)", q, "end"); 21622 21623 /* 21624 * Check if the ire has the RTF_MULTIRT flag, inherited 21625 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21626 */ 21627 if (ire->ire_flags & RTF_MULTIRT) { 21628 /* 21629 * Force the TTL of multirouted packets if required. 21630 * The TTL of such packets is bounded by the 21631 * ip_multirt_ttl ndd variable. 21632 */ 21633 if ((ipst->ips_ip_multirt_ttl > 0) && 21634 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21635 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21636 "(was %d), dst 0x%08x\n", 21637 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21638 ntohl(ire->ire_addr))); 21639 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21640 } 21641 /* 21642 * At this point, we check to see if there are any pending 21643 * unresolved routes. ire_multirt_resolvable() 21644 * checks in O(n) that all IRE_OFFSUBNET ire 21645 * entries for the packet's destination and 21646 * flagged RTF_MULTIRT are currently resolved. 21647 * If some remain unresolved, we make a copy 21648 * of the current message. It will be used 21649 * to initiate additional route resolutions. 21650 */ 21651 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21652 msg_getlabel(first_mp), ipst); 21653 ip2dbg(("ip_wput[noirefound]: ire %p, " 21654 "multirt_need_resolve %d, first_mp %p\n", 21655 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21656 if (multirt_need_resolve) { 21657 copy_mp = copymsg(first_mp); 21658 if (copy_mp != NULL) { 21659 MULTIRT_DEBUG_TAG(copy_mp); 21660 } 21661 } 21662 } 21663 21664 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21665 /* 21666 * Try to resolve another multiroute if 21667 * ire_multirt_resolvable() deemed it necessary. 21668 * At this point, we need to distinguish 21669 * multicasts from other packets. For multicasts, 21670 * we call ip_newroute_ipif() and request that both 21671 * multirouting and setsrc flags are checked. 21672 */ 21673 if (copy_mp != NULL) { 21674 if (CLASSD(dst)) { 21675 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21676 if (ipif) { 21677 ASSERT(infop->ip_opt_ill_index == 0); 21678 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21679 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21680 ipif_refrele(ipif); 21681 } else { 21682 MULTIRT_DEBUG_UNTAG(copy_mp); 21683 freemsg(copy_mp); 21684 copy_mp = NULL; 21685 } 21686 } else { 21687 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21688 } 21689 } 21690 if (xmit_ill != NULL) 21691 ill_refrele(xmit_ill); 21692 if (need_decref) 21693 CONN_DEC_REF(connp); 21694 return; 21695 21696 icmp_parameter_problem: 21697 /* could not have originated externally */ 21698 ASSERT(mp->b_prev == NULL); 21699 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21700 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21701 /* it's the IP header length that's in trouble */ 21702 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21703 first_mp = NULL; 21704 } 21705 21706 discard_pkt: 21707 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21708 drop_pkt: 21709 ip1dbg(("ip_wput: dropped packet\n")); 21710 if (ire != NULL) 21711 ire_refrele(ire); 21712 if (need_decref) 21713 CONN_DEC_REF(connp); 21714 freemsg(first_mp); 21715 if (xmit_ill != NULL) 21716 ill_refrele(xmit_ill); 21717 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21718 "ip_wput_end: q %p (%S)", q, "droppkt"); 21719 } 21720 21721 /* 21722 * If this is a conn_t queue, then we pass in the conn. This includes the 21723 * zoneid. 21724 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21725 * in which case we use the global zoneid since those are all part of 21726 * the global zone. 21727 */ 21728 void 21729 ip_wput(queue_t *q, mblk_t *mp) 21730 { 21731 if (CONN_Q(q)) 21732 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21733 else 21734 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21735 } 21736 21737 /* 21738 * 21739 * The following rules must be observed when accessing any ipif or ill 21740 * that has been cached in the conn. Typically conn_outgoing_ill, 21741 * conn_multicast_ipif and conn_multicast_ill. 21742 * 21743 * Access: The ipif or ill pointed to from the conn can be accessed under 21744 * the protection of the conn_lock or after it has been refheld under the 21745 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21746 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21747 * The reason for this is that a concurrent unplumb could actually be 21748 * cleaning up these cached pointers by walking the conns and might have 21749 * finished cleaning up the conn in question. The macros check that an 21750 * unplumb has not yet started on the ipif or ill. 21751 * 21752 * Caching: An ipif or ill pointer may be cached in the conn only after 21753 * making sure that an unplumb has not started. So the caching is done 21754 * while holding both the conn_lock and the ill_lock and after using the 21755 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21756 * flag before starting the cleanup of conns. 21757 * 21758 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21759 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21760 * or a reference to the ipif or a reference to an ire that references the 21761 * ipif. An ipif only changes its ill when migrating from an underlying ill 21762 * to an IPMP ill in ipif_up(). 21763 */ 21764 ipif_t * 21765 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21766 { 21767 ipif_t *ipif; 21768 ill_t *ill; 21769 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21770 21771 *err = 0; 21772 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21773 mutex_enter(&connp->conn_lock); 21774 ipif = *ipifp; 21775 if (ipif != NULL) { 21776 ill = ipif->ipif_ill; 21777 mutex_enter(&ill->ill_lock); 21778 if (IPIF_CAN_LOOKUP(ipif)) { 21779 ipif_refhold_locked(ipif); 21780 mutex_exit(&ill->ill_lock); 21781 mutex_exit(&connp->conn_lock); 21782 rw_exit(&ipst->ips_ill_g_lock); 21783 return (ipif); 21784 } else { 21785 *err = IPIF_LOOKUP_FAILED; 21786 } 21787 mutex_exit(&ill->ill_lock); 21788 } 21789 mutex_exit(&connp->conn_lock); 21790 rw_exit(&ipst->ips_ill_g_lock); 21791 return (NULL); 21792 } 21793 21794 ill_t * 21795 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21796 { 21797 ill_t *ill; 21798 21799 *err = 0; 21800 mutex_enter(&connp->conn_lock); 21801 ill = *illp; 21802 if (ill != NULL) { 21803 mutex_enter(&ill->ill_lock); 21804 if (ILL_CAN_LOOKUP(ill)) { 21805 ill_refhold_locked(ill); 21806 mutex_exit(&ill->ill_lock); 21807 mutex_exit(&connp->conn_lock); 21808 return (ill); 21809 } else { 21810 *err = ILL_LOOKUP_FAILED; 21811 } 21812 mutex_exit(&ill->ill_lock); 21813 } 21814 mutex_exit(&connp->conn_lock); 21815 return (NULL); 21816 } 21817 21818 static int 21819 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21820 { 21821 ill_t *ill; 21822 21823 ill = ipif->ipif_ill; 21824 mutex_enter(&connp->conn_lock); 21825 mutex_enter(&ill->ill_lock); 21826 if (IPIF_CAN_LOOKUP(ipif)) { 21827 *ipifp = ipif; 21828 mutex_exit(&ill->ill_lock); 21829 mutex_exit(&connp->conn_lock); 21830 return (0); 21831 } 21832 mutex_exit(&ill->ill_lock); 21833 mutex_exit(&connp->conn_lock); 21834 return (IPIF_LOOKUP_FAILED); 21835 } 21836 21837 /* 21838 * This is called if the outbound datagram needs fragmentation. 21839 * 21840 * NOTE : This function does not ire_refrele the ire argument passed in. 21841 */ 21842 static void 21843 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21844 ip_stack_t *ipst, conn_t *connp) 21845 { 21846 ipha_t *ipha; 21847 mblk_t *mp; 21848 uint32_t v_hlen_tos_len; 21849 uint32_t max_frag; 21850 uint32_t frag_flag; 21851 boolean_t dont_use; 21852 21853 if (ipsec_mp->b_datap->db_type == M_CTL) { 21854 mp = ipsec_mp->b_cont; 21855 } else { 21856 mp = ipsec_mp; 21857 } 21858 21859 ipha = (ipha_t *)mp->b_rptr; 21860 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21861 21862 #ifdef _BIG_ENDIAN 21863 #define V_HLEN (v_hlen_tos_len >> 24) 21864 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21865 #else 21866 #define V_HLEN (v_hlen_tos_len & 0xFF) 21867 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21868 #endif 21869 21870 #ifndef SPEED_BEFORE_SAFETY 21871 /* 21872 * Check that ipha_length is consistent with 21873 * the mblk length 21874 */ 21875 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21876 ip0dbg(("Packet length mismatch: %d, %ld\n", 21877 LENGTH, msgdsize(mp))); 21878 freemsg(ipsec_mp); 21879 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21880 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21881 "packet length mismatch"); 21882 return; 21883 } 21884 #endif 21885 /* 21886 * Don't use frag_flag if pre-built packet or source 21887 * routed or if multicast (since multicast packets do not solicit 21888 * ICMP "packet too big" messages). Get the values of 21889 * max_frag and frag_flag atomically by acquiring the 21890 * ire_lock. 21891 */ 21892 mutex_enter(&ire->ire_lock); 21893 max_frag = ire->ire_max_frag; 21894 frag_flag = ire->ire_frag_flag; 21895 mutex_exit(&ire->ire_lock); 21896 21897 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21898 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21899 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21900 21901 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21902 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21903 } 21904 21905 /* 21906 * Used for deciding the MSS size for the upper layer. Thus 21907 * we need to check the outbound policy values in the conn. 21908 */ 21909 int 21910 conn_ipsec_length(conn_t *connp) 21911 { 21912 ipsec_latch_t *ipl; 21913 21914 ipl = connp->conn_latch; 21915 if (ipl == NULL) 21916 return (0); 21917 21918 if (ipl->ipl_out_policy == NULL) 21919 return (0); 21920 21921 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21922 } 21923 21924 /* 21925 * Returns an estimate of the IPsec headers size. This is used if 21926 * we don't want to call into IPsec to get the exact size. 21927 */ 21928 int 21929 ipsec_out_extra_length(mblk_t *ipsec_mp) 21930 { 21931 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21932 ipsec_action_t *a; 21933 21934 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21935 if (!io->ipsec_out_secure) 21936 return (0); 21937 21938 a = io->ipsec_out_act; 21939 21940 if (a == NULL) { 21941 ASSERT(io->ipsec_out_policy != NULL); 21942 a = io->ipsec_out_policy->ipsp_act; 21943 } 21944 ASSERT(a != NULL); 21945 21946 return (a->ipa_ovhd); 21947 } 21948 21949 /* 21950 * Returns an estimate of the IPsec headers size. This is used if 21951 * we don't want to call into IPsec to get the exact size. 21952 */ 21953 int 21954 ipsec_in_extra_length(mblk_t *ipsec_mp) 21955 { 21956 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21957 ipsec_action_t *a; 21958 21959 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21960 21961 a = ii->ipsec_in_action; 21962 return (a == NULL ? 0 : a->ipa_ovhd); 21963 } 21964 21965 /* 21966 * If there are any source route options, return the true final 21967 * destination. Otherwise, return the destination. 21968 */ 21969 ipaddr_t 21970 ip_get_dst(ipha_t *ipha) 21971 { 21972 ipoptp_t opts; 21973 uchar_t *opt; 21974 uint8_t optval; 21975 uint8_t optlen; 21976 ipaddr_t dst; 21977 uint32_t off; 21978 21979 dst = ipha->ipha_dst; 21980 21981 if (IS_SIMPLE_IPH(ipha)) 21982 return (dst); 21983 21984 for (optval = ipoptp_first(&opts, ipha); 21985 optval != IPOPT_EOL; 21986 optval = ipoptp_next(&opts)) { 21987 opt = opts.ipoptp_cur; 21988 optlen = opts.ipoptp_len; 21989 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21990 switch (optval) { 21991 case IPOPT_SSRR: 21992 case IPOPT_LSRR: 21993 off = opt[IPOPT_OFFSET]; 21994 /* 21995 * If one of the conditions is true, it means 21996 * end of options and dst already has the right 21997 * value. 21998 */ 21999 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22000 off = optlen - IP_ADDR_LEN; 22001 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22002 } 22003 return (dst); 22004 default: 22005 break; 22006 } 22007 } 22008 22009 return (dst); 22010 } 22011 22012 mblk_t * 22013 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22014 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22015 { 22016 ipsec_out_t *io; 22017 mblk_t *first_mp; 22018 boolean_t policy_present; 22019 ip_stack_t *ipst; 22020 ipsec_stack_t *ipss; 22021 22022 ASSERT(ire != NULL); 22023 ipst = ire->ire_ipst; 22024 ipss = ipst->ips_netstack->netstack_ipsec; 22025 22026 first_mp = mp; 22027 if (mp->b_datap->db_type == M_CTL) { 22028 io = (ipsec_out_t *)first_mp->b_rptr; 22029 /* 22030 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22031 * 22032 * 1) There is per-socket policy (including cached global 22033 * policy) or a policy on the IP-in-IP tunnel. 22034 * 2) There is no per-socket policy, but it is 22035 * a multicast packet that needs to go out 22036 * on a specific interface. This is the case 22037 * where (ip_wput and ip_wput_multicast) attaches 22038 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22039 * 22040 * In case (2) we check with global policy to 22041 * see if there is a match and set the ill_index 22042 * appropriately so that we can lookup the ire 22043 * properly in ip_wput_ipsec_out. 22044 */ 22045 22046 /* 22047 * ipsec_out_use_global_policy is set to B_FALSE 22048 * in ipsec_in_to_out(). Refer to that function for 22049 * details. 22050 */ 22051 if ((io->ipsec_out_latch == NULL) && 22052 (io->ipsec_out_use_global_policy)) { 22053 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22054 ire, connp, unspec_src, zoneid)); 22055 } 22056 if (!io->ipsec_out_secure) { 22057 /* 22058 * If this is not a secure packet, drop 22059 * the IPSEC_OUT mp and treat it as a clear 22060 * packet. This happens when we are sending 22061 * a ICMP reply back to a clear packet. See 22062 * ipsec_in_to_out() for details. 22063 */ 22064 mp = first_mp->b_cont; 22065 freeb(first_mp); 22066 } 22067 return (mp); 22068 } 22069 /* 22070 * See whether we need to attach a global policy here. We 22071 * don't depend on the conn (as it could be null) for deciding 22072 * what policy this datagram should go through because it 22073 * should have happened in ip_wput if there was some 22074 * policy. This normally happens for connections which are not 22075 * fully bound preventing us from caching policies in 22076 * ip_bind. Packets coming from the TCP listener/global queue 22077 * - which are non-hard_bound - could also be affected by 22078 * applying policy here. 22079 * 22080 * If this packet is coming from tcp global queue or listener, 22081 * we will be applying policy here. This may not be *right* 22082 * if these packets are coming from the detached connection as 22083 * it could have gone in clear before. This happens only if a 22084 * TCP connection started when there is no policy and somebody 22085 * added policy before it became detached. Thus packets of the 22086 * detached connection could go out secure and the other end 22087 * would drop it because it will be expecting in clear. The 22088 * converse is not true i.e if somebody starts a TCP 22089 * connection and deletes the policy, all the packets will 22090 * still go out with the policy that existed before deleting 22091 * because ip_unbind sends up policy information which is used 22092 * by TCP on subsequent ip_wputs. The right solution is to fix 22093 * TCP to attach a dummy IPSEC_OUT and set 22094 * ipsec_out_use_global_policy to B_FALSE. As this might 22095 * affect performance for normal cases, we are not doing it. 22096 * Thus, set policy before starting any TCP connections. 22097 * 22098 * NOTE - We might apply policy even for a hard bound connection 22099 * - for which we cached policy in ip_bind - if somebody added 22100 * global policy after we inherited the policy in ip_bind. 22101 * This means that the packets that were going out in clear 22102 * previously would start going secure and hence get dropped 22103 * on the other side. To fix this, TCP attaches a dummy 22104 * ipsec_out and make sure that we don't apply global policy. 22105 */ 22106 if (ipha != NULL) 22107 policy_present = ipss->ipsec_outbound_v4_policy_present; 22108 else 22109 policy_present = ipss->ipsec_outbound_v6_policy_present; 22110 if (!policy_present) 22111 return (mp); 22112 22113 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22114 zoneid)); 22115 } 22116 22117 /* 22118 * This function does the ire_refrele of the ire passed in as the 22119 * argument. As this function looks up more ires i.e broadcast ires, 22120 * it needs to REFRELE them. Currently, for simplicity we don't 22121 * differentiate the one passed in and looked up here. We always 22122 * REFRELE. 22123 * IPQoS Notes: 22124 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22125 * IPsec packets are done in ipsec_out_process. 22126 */ 22127 void 22128 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22129 zoneid_t zoneid) 22130 { 22131 ipha_t *ipha; 22132 #define rptr ((uchar_t *)ipha) 22133 queue_t *stq; 22134 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22135 uint32_t v_hlen_tos_len; 22136 uint32_t ttl_protocol; 22137 ipaddr_t src; 22138 ipaddr_t dst; 22139 uint32_t cksum; 22140 ipaddr_t orig_src; 22141 ire_t *ire1; 22142 mblk_t *next_mp; 22143 uint_t hlen; 22144 uint16_t *up; 22145 uint32_t max_frag = ire->ire_max_frag; 22146 ill_t *ill = ire_to_ill(ire); 22147 int clusterwide; 22148 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22149 int ipsec_len; 22150 mblk_t *first_mp; 22151 ipsec_out_t *io; 22152 boolean_t conn_dontroute; /* conn value for multicast */ 22153 boolean_t conn_multicast_loop; /* conn value for multicast */ 22154 boolean_t multicast_forward; /* Should we forward ? */ 22155 boolean_t unspec_src; 22156 ill_t *conn_outgoing_ill = NULL; 22157 ill_t *ire_ill; 22158 ill_t *ire1_ill; 22159 ill_t *out_ill; 22160 uint32_t ill_index = 0; 22161 boolean_t multirt_send = B_FALSE; 22162 int err; 22163 ipxmit_state_t pktxmit_state; 22164 ip_stack_t *ipst = ire->ire_ipst; 22165 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22166 22167 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22168 "ip_wput_ire_start: q %p", q); 22169 22170 multicast_forward = B_FALSE; 22171 unspec_src = (connp != NULL && connp->conn_unspec_src); 22172 22173 if (ire->ire_flags & RTF_MULTIRT) { 22174 /* 22175 * Multirouting case. The bucket where ire is stored 22176 * probably holds other RTF_MULTIRT flagged ire 22177 * to the destination. In this call to ip_wput_ire, 22178 * we attempt to send the packet through all 22179 * those ires. Thus, we first ensure that ire is the 22180 * first RTF_MULTIRT ire in the bucket, 22181 * before walking the ire list. 22182 */ 22183 ire_t *first_ire; 22184 irb_t *irb = ire->ire_bucket; 22185 ASSERT(irb != NULL); 22186 22187 /* Make sure we do not omit any multiroute ire. */ 22188 IRB_REFHOLD(irb); 22189 for (first_ire = irb->irb_ire; 22190 first_ire != NULL; 22191 first_ire = first_ire->ire_next) { 22192 if ((first_ire->ire_flags & RTF_MULTIRT) && 22193 (first_ire->ire_addr == ire->ire_addr) && 22194 !(first_ire->ire_marks & 22195 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22196 break; 22197 } 22198 22199 if ((first_ire != NULL) && (first_ire != ire)) { 22200 IRE_REFHOLD(first_ire); 22201 ire_refrele(ire); 22202 ire = first_ire; 22203 ill = ire_to_ill(ire); 22204 } 22205 IRB_REFRELE(irb); 22206 } 22207 22208 /* 22209 * conn_outgoing_ill variable is used only in the broadcast loop. 22210 * for performance we don't grab the mutexs in the fastpath 22211 */ 22212 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22213 connp->conn_outgoing_ill != NULL) { 22214 conn_outgoing_ill = conn_get_held_ill(connp, 22215 &connp->conn_outgoing_ill, &err); 22216 if (err == ILL_LOOKUP_FAILED) { 22217 ire_refrele(ire); 22218 freemsg(mp); 22219 return; 22220 } 22221 } 22222 22223 if (mp->b_datap->db_type != M_CTL) { 22224 ipha = (ipha_t *)mp->b_rptr; 22225 } else { 22226 io = (ipsec_out_t *)mp->b_rptr; 22227 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22228 ASSERT(zoneid == io->ipsec_out_zoneid); 22229 ASSERT(zoneid != ALL_ZONES); 22230 ipha = (ipha_t *)mp->b_cont->b_rptr; 22231 dst = ipha->ipha_dst; 22232 /* 22233 * For the multicast case, ipsec_out carries conn_dontroute and 22234 * conn_multicast_loop as conn may not be available here. We 22235 * need this for multicast loopback and forwarding which is done 22236 * later in the code. 22237 */ 22238 if (CLASSD(dst)) { 22239 conn_dontroute = io->ipsec_out_dontroute; 22240 conn_multicast_loop = io->ipsec_out_multicast_loop; 22241 /* 22242 * If conn_dontroute is not set or conn_multicast_loop 22243 * is set, we need to do forwarding/loopback. For 22244 * datagrams from ip_wput_multicast, conn_dontroute is 22245 * set to B_TRUE and conn_multicast_loop is set to 22246 * B_FALSE so that we neither do forwarding nor 22247 * loopback. 22248 */ 22249 if (!conn_dontroute || conn_multicast_loop) 22250 multicast_forward = B_TRUE; 22251 } 22252 } 22253 22254 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22255 ire->ire_zoneid != ALL_ZONES) { 22256 /* 22257 * When a zone sends a packet to another zone, we try to deliver 22258 * the packet under the same conditions as if the destination 22259 * was a real node on the network. To do so, we look for a 22260 * matching route in the forwarding table. 22261 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22262 * ip_newroute() does. 22263 * Note that IRE_LOCAL are special, since they are used 22264 * when the zoneid doesn't match in some cases. This means that 22265 * we need to handle ipha_src differently since ire_src_addr 22266 * belongs to the receiving zone instead of the sending zone. 22267 * When ip_restrict_interzone_loopback is set, then 22268 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22269 * for loopback between zones when the logical "Ethernet" would 22270 * have looped them back. 22271 */ 22272 ire_t *src_ire; 22273 22274 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22275 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22276 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22277 if (src_ire != NULL && 22278 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22279 (!ipst->ips_ip_restrict_interzone_loopback || 22280 ire_local_same_lan(ire, src_ire))) { 22281 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22282 ipha->ipha_src = src_ire->ire_src_addr; 22283 ire_refrele(src_ire); 22284 } else { 22285 ire_refrele(ire); 22286 if (conn_outgoing_ill != NULL) 22287 ill_refrele(conn_outgoing_ill); 22288 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22289 if (src_ire != NULL) { 22290 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22291 ire_refrele(src_ire); 22292 freemsg(mp); 22293 return; 22294 } 22295 ire_refrele(src_ire); 22296 } 22297 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22298 /* Failed */ 22299 freemsg(mp); 22300 return; 22301 } 22302 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22303 ipst); 22304 return; 22305 } 22306 } 22307 22308 if (mp->b_datap->db_type == M_CTL || 22309 ipss->ipsec_outbound_v4_policy_present) { 22310 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22311 unspec_src, zoneid); 22312 if (mp == NULL) { 22313 ire_refrele(ire); 22314 if (conn_outgoing_ill != NULL) 22315 ill_refrele(conn_outgoing_ill); 22316 return; 22317 } 22318 /* 22319 * Trusted Extensions supports all-zones interfaces, so 22320 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22321 * the global zone. 22322 */ 22323 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22324 io = (ipsec_out_t *)mp->b_rptr; 22325 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22326 zoneid = io->ipsec_out_zoneid; 22327 } 22328 } 22329 22330 first_mp = mp; 22331 ipsec_len = 0; 22332 22333 if (first_mp->b_datap->db_type == M_CTL) { 22334 io = (ipsec_out_t *)first_mp->b_rptr; 22335 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22336 mp = first_mp->b_cont; 22337 ipsec_len = ipsec_out_extra_length(first_mp); 22338 ASSERT(ipsec_len >= 0); 22339 /* We already picked up the zoneid from the M_CTL above */ 22340 ASSERT(zoneid == io->ipsec_out_zoneid); 22341 ASSERT(zoneid != ALL_ZONES); 22342 22343 /* 22344 * Drop M_CTL here if IPsec processing is not needed. 22345 * (Non-IPsec use of M_CTL extracted any information it 22346 * needed above). 22347 */ 22348 if (ipsec_len == 0) { 22349 freeb(first_mp); 22350 first_mp = mp; 22351 } 22352 } 22353 22354 /* 22355 * Fast path for ip_wput_ire 22356 */ 22357 22358 ipha = (ipha_t *)mp->b_rptr; 22359 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22360 dst = ipha->ipha_dst; 22361 22362 /* 22363 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22364 * if the socket is a SOCK_RAW type. The transport checksum should 22365 * be provided in the pre-built packet, so we don't need to compute it. 22366 * Also, other application set flags, like DF, should not be altered. 22367 * Other transport MUST pass down zero. 22368 */ 22369 ip_hdr_included = ipha->ipha_ident; 22370 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22371 22372 if (CLASSD(dst)) { 22373 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22374 ntohl(dst), 22375 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22376 ntohl(ire->ire_addr))); 22377 } 22378 22379 /* Macros to extract header fields from data already in registers */ 22380 #ifdef _BIG_ENDIAN 22381 #define V_HLEN (v_hlen_tos_len >> 24) 22382 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22383 #define PROTO (ttl_protocol & 0xFF) 22384 #else 22385 #define V_HLEN (v_hlen_tos_len & 0xFF) 22386 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22387 #define PROTO (ttl_protocol >> 8) 22388 #endif 22389 22390 orig_src = src = ipha->ipha_src; 22391 /* (The loop back to "another" is explained down below.) */ 22392 another:; 22393 /* 22394 * Assign an ident value for this packet. We assign idents on 22395 * a per destination basis out of the IRE. There could be 22396 * other threads targeting the same destination, so we have to 22397 * arrange for a atomic increment. Note that we use a 32-bit 22398 * atomic add because it has better performance than its 22399 * 16-bit sibling. 22400 * 22401 * If running in cluster mode and if the source address 22402 * belongs to a replicated service then vector through 22403 * cl_inet_ipident vector to allocate ip identifier 22404 * NOTE: This is a contract private interface with the 22405 * clustering group. 22406 */ 22407 clusterwide = 0; 22408 if (cl_inet_ipident) { 22409 ASSERT(cl_inet_isclusterwide); 22410 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22411 22412 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22413 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22414 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22415 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22416 (uint8_t *)(uintptr_t)dst, NULL); 22417 clusterwide = 1; 22418 } 22419 } 22420 if (!clusterwide) { 22421 ipha->ipha_ident = 22422 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22423 } 22424 22425 #ifndef _BIG_ENDIAN 22426 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22427 #endif 22428 22429 /* 22430 * Set source address unless sent on an ill or conn_unspec_src is set. 22431 * This is needed to obey conn_unspec_src when packets go through 22432 * ip_newroute + arp. 22433 * Assumes ip_newroute{,_multi} sets the source address as well. 22434 */ 22435 if (src == INADDR_ANY && !unspec_src) { 22436 /* 22437 * Assign the appropriate source address from the IRE if none 22438 * was specified. 22439 */ 22440 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22441 22442 src = ire->ire_src_addr; 22443 if (connp == NULL) { 22444 ip1dbg(("ip_wput_ire: no connp and no src " 22445 "address for dst 0x%x, using src 0x%x\n", 22446 ntohl(dst), 22447 ntohl(src))); 22448 } 22449 ipha->ipha_src = src; 22450 } 22451 stq = ire->ire_stq; 22452 22453 /* 22454 * We only allow ire chains for broadcasts since there will 22455 * be multiple IRE_CACHE entries for the same multicast 22456 * address (one per ipif). 22457 */ 22458 next_mp = NULL; 22459 22460 /* broadcast packet */ 22461 if (ire->ire_type == IRE_BROADCAST) 22462 goto broadcast; 22463 22464 /* loopback ? */ 22465 if (stq == NULL) 22466 goto nullstq; 22467 22468 /* The ill_index for outbound ILL */ 22469 ill_index = Q_TO_INDEX(stq); 22470 22471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22472 ttl_protocol = ((uint16_t *)ipha)[4]; 22473 22474 /* pseudo checksum (do it in parts for IP header checksum) */ 22475 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22476 22477 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22478 queue_t *dev_q = stq->q_next; 22479 22480 /* 22481 * For DIRECT_CAPABLE, we do flow control at 22482 * the time of sending the packet. See 22483 * ILL_SEND_TX(). 22484 */ 22485 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22486 (DEV_Q_FLOW_BLOCKED(dev_q))) 22487 goto blocked; 22488 22489 if ((PROTO == IPPROTO_UDP) && 22490 (ip_hdr_included != IP_HDR_INCLUDED)) { 22491 hlen = (V_HLEN & 0xF) << 2; 22492 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22493 if (*up != 0) { 22494 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22495 hlen, LENGTH, max_frag, ipsec_len, cksum); 22496 /* Software checksum? */ 22497 if (DB_CKSUMFLAGS(mp) == 0) { 22498 IP_STAT(ipst, ip_out_sw_cksum); 22499 IP_STAT_UPDATE(ipst, 22500 ip_udp_out_sw_cksum_bytes, 22501 LENGTH - hlen); 22502 } 22503 } 22504 } 22505 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22506 hlen = (V_HLEN & 0xF) << 2; 22507 if (PROTO == IPPROTO_TCP) { 22508 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22509 /* 22510 * The packet header is processed once and for all, even 22511 * in the multirouting case. We disable hardware 22512 * checksum if the packet is multirouted, as it will be 22513 * replicated via several interfaces, and not all of 22514 * them may have this capability. 22515 */ 22516 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22517 LENGTH, max_frag, ipsec_len, cksum); 22518 /* Software checksum? */ 22519 if (DB_CKSUMFLAGS(mp) == 0) { 22520 IP_STAT(ipst, ip_out_sw_cksum); 22521 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22522 LENGTH - hlen); 22523 } 22524 } else { 22525 sctp_hdr_t *sctph; 22526 22527 ASSERT(PROTO == IPPROTO_SCTP); 22528 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22529 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22530 /* 22531 * Zero out the checksum field to ensure proper 22532 * checksum calculation. 22533 */ 22534 sctph->sh_chksum = 0; 22535 #ifdef DEBUG 22536 if (!skip_sctp_cksum) 22537 #endif 22538 sctph->sh_chksum = sctp_cksum(mp, hlen); 22539 } 22540 } 22541 22542 /* 22543 * If this is a multicast packet and originated from ip_wput 22544 * we need to do loopback and forwarding checks. If it comes 22545 * from ip_wput_multicast, we SHOULD not do this. 22546 */ 22547 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22548 22549 /* checksum */ 22550 cksum += ttl_protocol; 22551 22552 /* fragment the packet */ 22553 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22554 goto fragmentit; 22555 /* 22556 * Don't use frag_flag if packet is pre-built or source 22557 * routed or if multicast (since multicast packets do 22558 * not solicit ICMP "packet too big" messages). 22559 */ 22560 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22561 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22562 !ip_source_route_included(ipha)) && 22563 !CLASSD(ipha->ipha_dst)) 22564 ipha->ipha_fragment_offset_and_flags |= 22565 htons(ire->ire_frag_flag); 22566 22567 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22568 /* calculate IP header checksum */ 22569 cksum += ipha->ipha_ident; 22570 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22571 cksum += ipha->ipha_fragment_offset_and_flags; 22572 22573 /* IP options present */ 22574 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22575 if (hlen) 22576 goto checksumoptions; 22577 22578 /* calculate hdr checksum */ 22579 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22580 cksum = ~(cksum + (cksum >> 16)); 22581 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22582 } 22583 if (ipsec_len != 0) { 22584 /* 22585 * We will do the rest of the processing after 22586 * we come back from IPsec in ip_wput_ipsec_out(). 22587 */ 22588 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22589 22590 io = (ipsec_out_t *)first_mp->b_rptr; 22591 io->ipsec_out_ill_index = 22592 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22593 ipsec_out_process(q, first_mp, ire, 0); 22594 ire_refrele(ire); 22595 if (conn_outgoing_ill != NULL) 22596 ill_refrele(conn_outgoing_ill); 22597 return; 22598 } 22599 22600 /* 22601 * In most cases, the emission loop below is entered only 22602 * once. Only in the case where the ire holds the 22603 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22604 * flagged ires in the bucket, and send the packet 22605 * through all crossed RTF_MULTIRT routes. 22606 */ 22607 if (ire->ire_flags & RTF_MULTIRT) { 22608 multirt_send = B_TRUE; 22609 } 22610 do { 22611 if (multirt_send) { 22612 irb_t *irb; 22613 /* 22614 * We are in a multiple send case, need to get 22615 * the next ire and make a duplicate of the packet. 22616 * ire1 holds here the next ire to process in the 22617 * bucket. If multirouting is expected, 22618 * any non-RTF_MULTIRT ire that has the 22619 * right destination address is ignored. 22620 */ 22621 irb = ire->ire_bucket; 22622 ASSERT(irb != NULL); 22623 22624 IRB_REFHOLD(irb); 22625 for (ire1 = ire->ire_next; 22626 ire1 != NULL; 22627 ire1 = ire1->ire_next) { 22628 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22629 continue; 22630 if (ire1->ire_addr != ire->ire_addr) 22631 continue; 22632 if (ire1->ire_marks & 22633 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22634 continue; 22635 22636 /* Got one */ 22637 IRE_REFHOLD(ire1); 22638 break; 22639 } 22640 IRB_REFRELE(irb); 22641 22642 if (ire1 != NULL) { 22643 next_mp = copyb(mp); 22644 if ((next_mp == NULL) || 22645 ((mp->b_cont != NULL) && 22646 ((next_mp->b_cont = 22647 dupmsg(mp->b_cont)) == NULL))) { 22648 freemsg(next_mp); 22649 next_mp = NULL; 22650 ire_refrele(ire1); 22651 ire1 = NULL; 22652 } 22653 } 22654 22655 /* Last multiroute ire; don't loop anymore. */ 22656 if (ire1 == NULL) { 22657 multirt_send = B_FALSE; 22658 } 22659 } 22660 22661 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22662 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22663 mblk_t *, mp); 22664 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22665 ipst->ips_ipv4firewall_physical_out, 22666 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22667 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22668 22669 if (mp == NULL) 22670 goto release_ire_and_ill; 22671 22672 if (ipst->ips_ipobs_enabled) { 22673 zoneid_t szone; 22674 22675 /* 22676 * On the outbound path the destination zone will be 22677 * unknown as we're sending this packet out on the 22678 * wire. 22679 */ 22680 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22681 ALL_ZONES); 22682 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22683 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22684 } 22685 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22686 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22687 22688 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22689 22690 if ((pktxmit_state == SEND_FAILED) || 22691 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22692 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22693 "- packet dropped\n")); 22694 release_ire_and_ill: 22695 ire_refrele(ire); 22696 if (next_mp != NULL) { 22697 freemsg(next_mp); 22698 ire_refrele(ire1); 22699 } 22700 if (conn_outgoing_ill != NULL) 22701 ill_refrele(conn_outgoing_ill); 22702 return; 22703 } 22704 22705 if (CLASSD(dst)) { 22706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22707 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22708 LENGTH); 22709 } 22710 22711 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22712 "ip_wput_ire_end: q %p (%S)", 22713 q, "last copy out"); 22714 IRE_REFRELE(ire); 22715 22716 if (multirt_send) { 22717 ASSERT(ire1); 22718 /* 22719 * Proceed with the next RTF_MULTIRT ire, 22720 * Also set up the send-to queue accordingly. 22721 */ 22722 ire = ire1; 22723 ire1 = NULL; 22724 stq = ire->ire_stq; 22725 mp = next_mp; 22726 next_mp = NULL; 22727 ipha = (ipha_t *)mp->b_rptr; 22728 ill_index = Q_TO_INDEX(stq); 22729 ill = (ill_t *)stq->q_ptr; 22730 } 22731 } while (multirt_send); 22732 if (conn_outgoing_ill != NULL) 22733 ill_refrele(conn_outgoing_ill); 22734 return; 22735 22736 /* 22737 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22738 */ 22739 broadcast: 22740 { 22741 /* 22742 * To avoid broadcast storms, we usually set the TTL to 1 for 22743 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22744 * can be overridden stack-wide through the ip_broadcast_ttl 22745 * ndd tunable, or on a per-connection basis through the 22746 * IP_BROADCAST_TTL socket option. 22747 * 22748 * In the event that we are replying to incoming ICMP packets, 22749 * connp could be NULL. 22750 */ 22751 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22752 if (connp != NULL) { 22753 if (connp->conn_dontroute) 22754 ipha->ipha_ttl = 1; 22755 else if (connp->conn_broadcast_ttl != 0) 22756 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22757 } 22758 22759 /* 22760 * Note that we are not doing a IRB_REFHOLD here. 22761 * Actually we don't care if the list changes i.e 22762 * if somebody deletes an IRE from the list while 22763 * we drop the lock, the next time we come around 22764 * ire_next will be NULL and hence we won't send 22765 * out multiple copies which is fine. 22766 */ 22767 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22768 ire1 = ire->ire_next; 22769 if (conn_outgoing_ill != NULL) { 22770 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22771 ASSERT(ire1 == ire->ire_next); 22772 if (ire1 != NULL && ire1->ire_addr == dst) { 22773 ire_refrele(ire); 22774 ire = ire1; 22775 IRE_REFHOLD(ire); 22776 ire1 = ire->ire_next; 22777 continue; 22778 } 22779 rw_exit(&ire->ire_bucket->irb_lock); 22780 /* Did not find a matching ill */ 22781 ip1dbg(("ip_wput_ire: broadcast with no " 22782 "matching IP_BOUND_IF ill %s dst %x\n", 22783 conn_outgoing_ill->ill_name, dst)); 22784 freemsg(first_mp); 22785 if (ire != NULL) 22786 ire_refrele(ire); 22787 ill_refrele(conn_outgoing_ill); 22788 return; 22789 } 22790 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22791 /* 22792 * If the next IRE has the same address and is not one 22793 * of the two copies that we need to send, try to see 22794 * whether this copy should be sent at all. This 22795 * assumes that we insert loopbacks first and then 22796 * non-loopbacks. This is acheived by inserting the 22797 * loopback always before non-loopback. 22798 * This is used to send a single copy of a broadcast 22799 * packet out all physical interfaces that have an 22800 * matching IRE_BROADCAST while also looping 22801 * back one copy (to ip_wput_local) for each 22802 * matching physical interface. However, we avoid 22803 * sending packets out different logical that match by 22804 * having ipif_up/ipif_down supress duplicate 22805 * IRE_BROADCASTS. 22806 * 22807 * This feature is currently used to get broadcasts 22808 * sent to multiple interfaces, when the broadcast 22809 * address being used applies to multiple interfaces. 22810 * For example, a whole net broadcast will be 22811 * replicated on every connected subnet of 22812 * the target net. 22813 * 22814 * Each zone has its own set of IRE_BROADCASTs, so that 22815 * we're able to distribute inbound packets to multiple 22816 * zones who share a broadcast address. We avoid looping 22817 * back outbound packets in different zones but on the 22818 * same ill, as the application would see duplicates. 22819 * 22820 * This logic assumes that ire_add_v4() groups the 22821 * IRE_BROADCAST entries so that those with the same 22822 * ire_addr are kept together. 22823 */ 22824 ire_ill = ire->ire_ipif->ipif_ill; 22825 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22826 while (ire1 != NULL && ire1->ire_addr == dst) { 22827 ire1_ill = ire1->ire_ipif->ipif_ill; 22828 if (ire1_ill != ire_ill) 22829 break; 22830 ire1 = ire1->ire_next; 22831 } 22832 } 22833 } 22834 ASSERT(multirt_send == B_FALSE); 22835 if (ire1 != NULL && ire1->ire_addr == dst) { 22836 if ((ire->ire_flags & RTF_MULTIRT) && 22837 (ire1->ire_flags & RTF_MULTIRT)) { 22838 /* 22839 * We are in the multirouting case. 22840 * The message must be sent at least 22841 * on both ires. These ires have been 22842 * inserted AFTER the standard ones 22843 * in ip_rt_add(). There are thus no 22844 * other ire entries for the destination 22845 * address in the rest of the bucket 22846 * that do not have the RTF_MULTIRT 22847 * flag. We don't process a copy 22848 * of the message here. This will be 22849 * done in the final sending loop. 22850 */ 22851 multirt_send = B_TRUE; 22852 } else { 22853 next_mp = ip_copymsg(first_mp); 22854 if (next_mp != NULL) 22855 IRE_REFHOLD(ire1); 22856 } 22857 } 22858 rw_exit(&ire->ire_bucket->irb_lock); 22859 } 22860 22861 if (stq) { 22862 /* 22863 * A non-NULL send-to queue means this packet is going 22864 * out of this machine. 22865 */ 22866 out_ill = (ill_t *)stq->q_ptr; 22867 22868 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22869 ttl_protocol = ((uint16_t *)ipha)[4]; 22870 /* 22871 * We accumulate the pseudo header checksum in cksum. 22872 * This is pretty hairy code, so watch close. One 22873 * thing to keep in mind is that UDP and TCP have 22874 * stored their respective datagram lengths in their 22875 * checksum fields. This lines things up real nice. 22876 */ 22877 cksum = (dst >> 16) + (dst & 0xFFFF) + 22878 (src >> 16) + (src & 0xFFFF); 22879 /* 22880 * We assume the udp checksum field contains the 22881 * length, so to compute the pseudo header checksum, 22882 * all we need is the protocol number and src/dst. 22883 */ 22884 /* Provide the checksums for UDP and TCP. */ 22885 if ((PROTO == IPPROTO_TCP) && 22886 (ip_hdr_included != IP_HDR_INCLUDED)) { 22887 /* hlen gets the number of uchar_ts in the IP header */ 22888 hlen = (V_HLEN & 0xF) << 2; 22889 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22890 IP_STAT(ipst, ip_out_sw_cksum); 22891 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22892 LENGTH - hlen); 22893 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22894 } else if (PROTO == IPPROTO_SCTP && 22895 (ip_hdr_included != IP_HDR_INCLUDED)) { 22896 sctp_hdr_t *sctph; 22897 22898 hlen = (V_HLEN & 0xF) << 2; 22899 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22900 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22901 sctph->sh_chksum = 0; 22902 #ifdef DEBUG 22903 if (!skip_sctp_cksum) 22904 #endif 22905 sctph->sh_chksum = sctp_cksum(mp, hlen); 22906 } else { 22907 queue_t *dev_q = stq->q_next; 22908 22909 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22910 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22911 blocked: 22912 ipha->ipha_ident = ip_hdr_included; 22913 /* 22914 * If we don't have a conn to apply 22915 * backpressure, free the message. 22916 * In the ire_send path, we don't know 22917 * the position to requeue the packet. Rather 22918 * than reorder packets, we just drop this 22919 * packet. 22920 */ 22921 if (ipst->ips_ip_output_queue && 22922 connp != NULL && 22923 caller != IRE_SEND) { 22924 if (caller == IP_WSRV) { 22925 idl_tx_list_t *idl_txl; 22926 22927 idl_txl = 22928 &ipst->ips_idl_tx_list[0]; 22929 connp->conn_did_putbq = 1; 22930 (void) putbq(connp->conn_wq, 22931 first_mp); 22932 conn_drain_insert(connp, 22933 idl_txl); 22934 /* 22935 * This is the service thread, 22936 * and the queue is already 22937 * noenabled. The check for 22938 * canput and the putbq is not 22939 * atomic. So we need to check 22940 * again. 22941 */ 22942 if (canput(stq->q_next)) 22943 connp->conn_did_putbq 22944 = 0; 22945 IP_STAT(ipst, ip_conn_flputbq); 22946 } else { 22947 /* 22948 * We are not the service proc. 22949 * ip_wsrv will be scheduled or 22950 * is already running. 22951 */ 22952 22953 (void) putq(connp->conn_wq, 22954 first_mp); 22955 } 22956 } else { 22957 out_ill = (ill_t *)stq->q_ptr; 22958 BUMP_MIB(out_ill->ill_ip_mib, 22959 ipIfStatsOutDiscards); 22960 freemsg(first_mp); 22961 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22962 "ip_wput_ire_end: q %p (%S)", 22963 q, "discard"); 22964 } 22965 ire_refrele(ire); 22966 if (next_mp) { 22967 ire_refrele(ire1); 22968 freemsg(next_mp); 22969 } 22970 if (conn_outgoing_ill != NULL) 22971 ill_refrele(conn_outgoing_ill); 22972 return; 22973 } 22974 if ((PROTO == IPPROTO_UDP) && 22975 (ip_hdr_included != IP_HDR_INCLUDED)) { 22976 /* 22977 * hlen gets the number of uchar_ts in the 22978 * IP header 22979 */ 22980 hlen = (V_HLEN & 0xF) << 2; 22981 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22982 max_frag = ire->ire_max_frag; 22983 if (*up != 0) { 22984 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22985 up, PROTO, hlen, LENGTH, max_frag, 22986 ipsec_len, cksum); 22987 /* Software checksum? */ 22988 if (DB_CKSUMFLAGS(mp) == 0) { 22989 IP_STAT(ipst, ip_out_sw_cksum); 22990 IP_STAT_UPDATE(ipst, 22991 ip_udp_out_sw_cksum_bytes, 22992 LENGTH - hlen); 22993 } 22994 } 22995 } 22996 } 22997 /* 22998 * Need to do this even when fragmenting. The local 22999 * loopback can be done without computing checksums 23000 * but forwarding out other interface must be done 23001 * after the IP checksum (and ULP checksums) have been 23002 * computed. 23003 * 23004 * NOTE : multicast_forward is set only if this packet 23005 * originated from ip_wput. For packets originating from 23006 * ip_wput_multicast, it is not set. 23007 */ 23008 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23009 multi_loopback: 23010 ip2dbg(("ip_wput: multicast, loop %d\n", 23011 conn_multicast_loop)); 23012 23013 /* Forget header checksum offload */ 23014 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23015 23016 /* 23017 * Local loopback of multicasts? Check the 23018 * ill. 23019 * 23020 * Note that the loopback function will not come 23021 * in through ip_rput - it will only do the 23022 * client fanout thus we need to do an mforward 23023 * as well. The is different from the BSD 23024 * logic. 23025 */ 23026 if (ill != NULL) { 23027 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23028 ALL_ZONES) != NULL) { 23029 /* 23030 * Pass along the virtual output q. 23031 * ip_wput_local() will distribute the 23032 * packet to all the matching zones, 23033 * except the sending zone when 23034 * IP_MULTICAST_LOOP is false. 23035 */ 23036 ip_multicast_loopback(q, ill, first_mp, 23037 conn_multicast_loop ? 0 : 23038 IP_FF_NO_MCAST_LOOP, zoneid); 23039 } 23040 } 23041 if (ipha->ipha_ttl == 0) { 23042 /* 23043 * 0 => only to this host i.e. we are 23044 * done. We are also done if this was the 23045 * loopback interface since it is sufficient 23046 * to loopback one copy of a multicast packet. 23047 */ 23048 freemsg(first_mp); 23049 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23050 "ip_wput_ire_end: q %p (%S)", 23051 q, "loopback"); 23052 ire_refrele(ire); 23053 if (conn_outgoing_ill != NULL) 23054 ill_refrele(conn_outgoing_ill); 23055 return; 23056 } 23057 /* 23058 * ILLF_MULTICAST is checked in ip_newroute 23059 * i.e. we don't need to check it here since 23060 * all IRE_CACHEs come from ip_newroute. 23061 * For multicast traffic, SO_DONTROUTE is interpreted 23062 * to mean only send the packet out the interface 23063 * (optionally specified with IP_MULTICAST_IF) 23064 * and do not forward it out additional interfaces. 23065 * RSVP and the rsvp daemon is an example of a 23066 * protocol and user level process that 23067 * handles it's own routing. Hence, it uses the 23068 * SO_DONTROUTE option to accomplish this. 23069 */ 23070 23071 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23072 ill != NULL) { 23073 /* Unconditionally redo the checksum */ 23074 ipha->ipha_hdr_checksum = 0; 23075 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23076 23077 /* 23078 * If this needs to go out secure, we need 23079 * to wait till we finish the IPsec 23080 * processing. 23081 */ 23082 if (ipsec_len == 0 && 23083 ip_mforward(ill, ipha, mp)) { 23084 freemsg(first_mp); 23085 ip1dbg(("ip_wput: mforward failed\n")); 23086 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23087 "ip_wput_ire_end: q %p (%S)", 23088 q, "mforward failed"); 23089 ire_refrele(ire); 23090 if (conn_outgoing_ill != NULL) 23091 ill_refrele(conn_outgoing_ill); 23092 return; 23093 } 23094 } 23095 } 23096 max_frag = ire->ire_max_frag; 23097 cksum += ttl_protocol; 23098 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23099 /* No fragmentation required for this one. */ 23100 /* 23101 * Don't use frag_flag if packet is pre-built or source 23102 * routed or if multicast (since multicast packets do 23103 * not solicit ICMP "packet too big" messages). 23104 */ 23105 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23106 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23107 !ip_source_route_included(ipha)) && 23108 !CLASSD(ipha->ipha_dst)) 23109 ipha->ipha_fragment_offset_and_flags |= 23110 htons(ire->ire_frag_flag); 23111 23112 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23113 /* Complete the IP header checksum. */ 23114 cksum += ipha->ipha_ident; 23115 cksum += (v_hlen_tos_len >> 16)+ 23116 (v_hlen_tos_len & 0xFFFF); 23117 cksum += ipha->ipha_fragment_offset_and_flags; 23118 hlen = (V_HLEN & 0xF) - 23119 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23120 if (hlen) { 23121 checksumoptions: 23122 /* 23123 * Account for the IP Options in the IP 23124 * header checksum. 23125 */ 23126 up = (uint16_t *)(rptr+ 23127 IP_SIMPLE_HDR_LENGTH); 23128 do { 23129 cksum += up[0]; 23130 cksum += up[1]; 23131 up += 2; 23132 } while (--hlen); 23133 } 23134 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23135 cksum = ~(cksum + (cksum >> 16)); 23136 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23137 } 23138 if (ipsec_len != 0) { 23139 ipsec_out_process(q, first_mp, ire, ill_index); 23140 if (!next_mp) { 23141 ire_refrele(ire); 23142 if (conn_outgoing_ill != NULL) 23143 ill_refrele(conn_outgoing_ill); 23144 return; 23145 } 23146 goto next; 23147 } 23148 23149 /* 23150 * multirt_send has already been handled 23151 * for broadcast, but not yet for multicast 23152 * or IP options. 23153 */ 23154 if (next_mp == NULL) { 23155 if (ire->ire_flags & RTF_MULTIRT) { 23156 multirt_send = B_TRUE; 23157 } 23158 } 23159 23160 /* 23161 * In most cases, the emission loop below is 23162 * entered only once. Only in the case where 23163 * the ire holds the RTF_MULTIRT flag, do we loop 23164 * to process all RTF_MULTIRT ires in the bucket, 23165 * and send the packet through all crossed 23166 * RTF_MULTIRT routes. 23167 */ 23168 do { 23169 if (multirt_send) { 23170 irb_t *irb; 23171 23172 irb = ire->ire_bucket; 23173 ASSERT(irb != NULL); 23174 /* 23175 * We are in a multiple send case, 23176 * need to get the next IRE and make 23177 * a duplicate of the packet. 23178 */ 23179 IRB_REFHOLD(irb); 23180 for (ire1 = ire->ire_next; 23181 ire1 != NULL; 23182 ire1 = ire1->ire_next) { 23183 if (!(ire1->ire_flags & 23184 RTF_MULTIRT)) 23185 continue; 23186 23187 if (ire1->ire_addr != 23188 ire->ire_addr) 23189 continue; 23190 23191 if (ire1->ire_marks & 23192 (IRE_MARK_CONDEMNED | 23193 IRE_MARK_TESTHIDDEN)) 23194 continue; 23195 23196 /* Got one */ 23197 IRE_REFHOLD(ire1); 23198 break; 23199 } 23200 IRB_REFRELE(irb); 23201 23202 if (ire1 != NULL) { 23203 next_mp = copyb(mp); 23204 if ((next_mp == NULL) || 23205 ((mp->b_cont != NULL) && 23206 ((next_mp->b_cont = 23207 dupmsg(mp->b_cont)) 23208 == NULL))) { 23209 freemsg(next_mp); 23210 next_mp = NULL; 23211 ire_refrele(ire1); 23212 ire1 = NULL; 23213 } 23214 } 23215 23216 /* 23217 * Last multiroute ire; don't loop 23218 * anymore. The emission is over 23219 * and next_mp is NULL. 23220 */ 23221 if (ire1 == NULL) { 23222 multirt_send = B_FALSE; 23223 } 23224 } 23225 23226 out_ill = ire_to_ill(ire); 23227 DTRACE_PROBE4(ip4__physical__out__start, 23228 ill_t *, NULL, 23229 ill_t *, out_ill, 23230 ipha_t *, ipha, mblk_t *, mp); 23231 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23232 ipst->ips_ipv4firewall_physical_out, 23233 NULL, out_ill, ipha, mp, mp, 0, ipst); 23234 DTRACE_PROBE1(ip4__physical__out__end, 23235 mblk_t *, mp); 23236 if (mp == NULL) 23237 goto release_ire_and_ill_2; 23238 23239 ASSERT(ipsec_len == 0); 23240 mp->b_prev = 23241 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23242 DTRACE_PROBE2(ip__xmit__2, 23243 mblk_t *, mp, ire_t *, ire); 23244 pktxmit_state = ip_xmit_v4(mp, ire, 23245 NULL, B_TRUE, connp); 23246 if ((pktxmit_state == SEND_FAILED) || 23247 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23248 release_ire_and_ill_2: 23249 if (next_mp) { 23250 freemsg(next_mp); 23251 ire_refrele(ire1); 23252 } 23253 ire_refrele(ire); 23254 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23255 "ip_wput_ire_end: q %p (%S)", 23256 q, "discard MDATA"); 23257 if (conn_outgoing_ill != NULL) 23258 ill_refrele(conn_outgoing_ill); 23259 return; 23260 } 23261 23262 if (CLASSD(dst)) { 23263 BUMP_MIB(out_ill->ill_ip_mib, 23264 ipIfStatsHCOutMcastPkts); 23265 UPDATE_MIB(out_ill->ill_ip_mib, 23266 ipIfStatsHCOutMcastOctets, 23267 LENGTH); 23268 } else if (ire->ire_type == IRE_BROADCAST) { 23269 BUMP_MIB(out_ill->ill_ip_mib, 23270 ipIfStatsHCOutBcastPkts); 23271 } 23272 23273 if (multirt_send) { 23274 /* 23275 * We are in a multiple send case, 23276 * need to re-enter the sending loop 23277 * using the next ire. 23278 */ 23279 ire_refrele(ire); 23280 ire = ire1; 23281 stq = ire->ire_stq; 23282 mp = next_mp; 23283 next_mp = NULL; 23284 ipha = (ipha_t *)mp->b_rptr; 23285 ill_index = Q_TO_INDEX(stq); 23286 } 23287 } while (multirt_send); 23288 23289 if (!next_mp) { 23290 /* 23291 * Last copy going out (the ultra-common 23292 * case). Note that we intentionally replicate 23293 * the putnext rather than calling it before 23294 * the next_mp check in hopes of a little 23295 * tail-call action out of the compiler. 23296 */ 23297 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23298 "ip_wput_ire_end: q %p (%S)", 23299 q, "last copy out(1)"); 23300 ire_refrele(ire); 23301 if (conn_outgoing_ill != NULL) 23302 ill_refrele(conn_outgoing_ill); 23303 return; 23304 } 23305 /* More copies going out below. */ 23306 } else { 23307 int offset; 23308 fragmentit: 23309 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23310 /* 23311 * If this would generate a icmp_frag_needed message, 23312 * we need to handle it before we do the IPsec 23313 * processing. Otherwise, we need to strip the IPsec 23314 * headers before we send up the message to the ULPs 23315 * which becomes messy and difficult. 23316 */ 23317 if (ipsec_len != 0) { 23318 if ((max_frag < (unsigned int)(LENGTH + 23319 ipsec_len)) && (offset & IPH_DF)) { 23320 out_ill = (ill_t *)stq->q_ptr; 23321 BUMP_MIB(out_ill->ill_ip_mib, 23322 ipIfStatsOutFragFails); 23323 BUMP_MIB(out_ill->ill_ip_mib, 23324 ipIfStatsOutFragReqds); 23325 ipha->ipha_hdr_checksum = 0; 23326 ipha->ipha_hdr_checksum = 23327 (uint16_t)ip_csum_hdr(ipha); 23328 icmp_frag_needed(ire->ire_stq, first_mp, 23329 max_frag, zoneid, ipst); 23330 if (!next_mp) { 23331 ire_refrele(ire); 23332 if (conn_outgoing_ill != NULL) { 23333 ill_refrele( 23334 conn_outgoing_ill); 23335 } 23336 return; 23337 } 23338 } else { 23339 /* 23340 * This won't cause a icmp_frag_needed 23341 * message. to be generated. Send it on 23342 * the wire. Note that this could still 23343 * cause fragmentation and all we 23344 * do is the generation of the message 23345 * to the ULP if needed before IPsec. 23346 */ 23347 if (!next_mp) { 23348 ipsec_out_process(q, first_mp, 23349 ire, ill_index); 23350 TRACE_2(TR_FAC_IP, 23351 TR_IP_WPUT_IRE_END, 23352 "ip_wput_ire_end: q %p " 23353 "(%S)", q, 23354 "last ipsec_out_process"); 23355 ire_refrele(ire); 23356 if (conn_outgoing_ill != NULL) { 23357 ill_refrele( 23358 conn_outgoing_ill); 23359 } 23360 return; 23361 } 23362 ipsec_out_process(q, first_mp, 23363 ire, ill_index); 23364 } 23365 } else { 23366 /* 23367 * Initiate IPPF processing. For 23368 * fragmentable packets we finish 23369 * all QOS packet processing before 23370 * calling: 23371 * ip_wput_ire_fragmentit->ip_wput_frag 23372 */ 23373 23374 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23375 ip_process(IPP_LOCAL_OUT, &mp, 23376 ill_index); 23377 if (mp == NULL) { 23378 out_ill = (ill_t *)stq->q_ptr; 23379 BUMP_MIB(out_ill->ill_ip_mib, 23380 ipIfStatsOutDiscards); 23381 if (next_mp != NULL) { 23382 freemsg(next_mp); 23383 ire_refrele(ire1); 23384 } 23385 ire_refrele(ire); 23386 TRACE_2(TR_FAC_IP, 23387 TR_IP_WPUT_IRE_END, 23388 "ip_wput_ire: q %p (%S)", 23389 q, "discard MDATA"); 23390 if (conn_outgoing_ill != NULL) { 23391 ill_refrele( 23392 conn_outgoing_ill); 23393 } 23394 return; 23395 } 23396 } 23397 if (!next_mp) { 23398 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23399 "ip_wput_ire_end: q %p (%S)", 23400 q, "last fragmentation"); 23401 ip_wput_ire_fragmentit(mp, ire, 23402 zoneid, ipst, connp); 23403 ire_refrele(ire); 23404 if (conn_outgoing_ill != NULL) 23405 ill_refrele(conn_outgoing_ill); 23406 return; 23407 } 23408 ip_wput_ire_fragmentit(mp, ire, 23409 zoneid, ipst, connp); 23410 } 23411 } 23412 } else { 23413 nullstq: 23414 /* A NULL stq means the destination address is local. */ 23415 UPDATE_OB_PKT_COUNT(ire); 23416 ire->ire_last_used_time = lbolt; 23417 ASSERT(ire->ire_ipif != NULL); 23418 if (!next_mp) { 23419 /* 23420 * Is there an "in" and "out" for traffic local 23421 * to a host (loopback)? The code in Solaris doesn't 23422 * explicitly draw a line in its code for in vs out, 23423 * so we've had to draw a line in the sand: ip_wput_ire 23424 * is considered to be the "output" side and 23425 * ip_wput_local to be the "input" side. 23426 */ 23427 out_ill = ire_to_ill(ire); 23428 23429 /* 23430 * DTrace this as ip:::send. A blocked packet will 23431 * fire the send probe, but not the receive probe. 23432 */ 23433 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23434 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23435 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23436 23437 DTRACE_PROBE4(ip4__loopback__out__start, 23438 ill_t *, NULL, ill_t *, out_ill, 23439 ipha_t *, ipha, mblk_t *, first_mp); 23440 23441 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23442 ipst->ips_ipv4firewall_loopback_out, 23443 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23444 23445 DTRACE_PROBE1(ip4__loopback__out_end, 23446 mblk_t *, first_mp); 23447 23448 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23449 "ip_wput_ire_end: q %p (%S)", 23450 q, "local address"); 23451 23452 if (first_mp != NULL) 23453 ip_wput_local(q, out_ill, ipha, 23454 first_mp, ire, 0, ire->ire_zoneid); 23455 ire_refrele(ire); 23456 if (conn_outgoing_ill != NULL) 23457 ill_refrele(conn_outgoing_ill); 23458 return; 23459 } 23460 23461 out_ill = ire_to_ill(ire); 23462 23463 /* 23464 * DTrace this as ip:::send. A blocked packet will fire the 23465 * send probe, but not the receive probe. 23466 */ 23467 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23468 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23469 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23470 23471 DTRACE_PROBE4(ip4__loopback__out__start, 23472 ill_t *, NULL, ill_t *, out_ill, 23473 ipha_t *, ipha, mblk_t *, first_mp); 23474 23475 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23476 ipst->ips_ipv4firewall_loopback_out, 23477 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23478 23479 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23480 23481 if (first_mp != NULL) 23482 ip_wput_local(q, out_ill, ipha, 23483 first_mp, ire, 0, ire->ire_zoneid); 23484 } 23485 next: 23486 /* 23487 * More copies going out to additional interfaces. 23488 * ire1 has already been held. We don't need the 23489 * "ire" anymore. 23490 */ 23491 ire_refrele(ire); 23492 ire = ire1; 23493 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23494 mp = next_mp; 23495 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23496 ill = ire_to_ill(ire); 23497 first_mp = mp; 23498 if (ipsec_len != 0) { 23499 ASSERT(first_mp->b_datap->db_type == M_CTL); 23500 mp = mp->b_cont; 23501 } 23502 dst = ire->ire_addr; 23503 ipha = (ipha_t *)mp->b_rptr; 23504 /* 23505 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23506 * Restore ipha_ident "no checksum" flag. 23507 */ 23508 src = orig_src; 23509 ipha->ipha_ident = ip_hdr_included; 23510 goto another; 23511 23512 #undef rptr 23513 #undef Q_TO_INDEX 23514 } 23515 23516 /* 23517 * Routine to allocate a message that is used to notify the ULP about MDT. 23518 * The caller may provide a pointer to the link-layer MDT capabilities, 23519 * or NULL if MDT is to be disabled on the stream. 23520 */ 23521 mblk_t * 23522 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23523 { 23524 mblk_t *mp; 23525 ip_mdt_info_t *mdti; 23526 ill_mdt_capab_t *idst; 23527 23528 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23529 DB_TYPE(mp) = M_CTL; 23530 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23531 mdti = (ip_mdt_info_t *)mp->b_rptr; 23532 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23533 idst = &(mdti->mdt_capab); 23534 23535 /* 23536 * If the caller provides us with the capability, copy 23537 * it over into our notification message; otherwise 23538 * we zero out the capability portion. 23539 */ 23540 if (isrc != NULL) 23541 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23542 else 23543 bzero((caddr_t)idst, sizeof (*idst)); 23544 } 23545 return (mp); 23546 } 23547 23548 /* 23549 * Routine which determines whether MDT can be enabled on the destination 23550 * IRE and IPC combination, and if so, allocates and returns the MDT 23551 * notification mblk that may be used by ULP. We also check if we need to 23552 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23553 * MDT usage in the past have been lifted. This gets called during IP 23554 * and ULP binding. 23555 */ 23556 mblk_t * 23557 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23558 ill_mdt_capab_t *mdt_cap) 23559 { 23560 mblk_t *mp; 23561 boolean_t rc = B_FALSE; 23562 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23563 23564 ASSERT(dst_ire != NULL); 23565 ASSERT(connp != NULL); 23566 ASSERT(mdt_cap != NULL); 23567 23568 /* 23569 * Currently, we only support simple TCP/{IPv4,IPv6} with 23570 * Multidata, which is handled in tcp_multisend(). This 23571 * is the reason why we do all these checks here, to ensure 23572 * that we don't enable Multidata for the cases which we 23573 * can't handle at the moment. 23574 */ 23575 do { 23576 /* Only do TCP at the moment */ 23577 if (connp->conn_ulp != IPPROTO_TCP) 23578 break; 23579 23580 /* 23581 * IPsec outbound policy present? Note that we get here 23582 * after calling ipsec_conn_cache_policy() where the global 23583 * policy checking is performed. conn_latch will be 23584 * non-NULL as long as there's a policy defined, 23585 * i.e. conn_out_enforce_policy may be NULL in such case 23586 * when the connection is non-secure, and hence we check 23587 * further if the latch refers to an outbound policy. 23588 */ 23589 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23590 break; 23591 23592 /* CGTP (multiroute) is enabled? */ 23593 if (dst_ire->ire_flags & RTF_MULTIRT) 23594 break; 23595 23596 /* Outbound IPQoS enabled? */ 23597 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23598 /* 23599 * In this case, we disable MDT for this and all 23600 * future connections going over the interface. 23601 */ 23602 mdt_cap->ill_mdt_on = 0; 23603 break; 23604 } 23605 23606 /* socket option(s) present? */ 23607 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23608 break; 23609 23610 rc = B_TRUE; 23611 /* CONSTCOND */ 23612 } while (0); 23613 23614 /* Remember the result */ 23615 connp->conn_mdt_ok = rc; 23616 23617 if (!rc) 23618 return (NULL); 23619 else if (!mdt_cap->ill_mdt_on) { 23620 /* 23621 * If MDT has been previously turned off in the past, and we 23622 * currently can do MDT (due to IPQoS policy removal, etc.) 23623 * then enable it for this interface. 23624 */ 23625 mdt_cap->ill_mdt_on = 1; 23626 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23627 "interface %s\n", ill_name)); 23628 } 23629 23630 /* Allocate the MDT info mblk */ 23631 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23632 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23633 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23634 return (NULL); 23635 } 23636 return (mp); 23637 } 23638 23639 /* 23640 * Routine to allocate a message that is used to notify the ULP about LSO. 23641 * The caller may provide a pointer to the link-layer LSO capabilities, 23642 * or NULL if LSO is to be disabled on the stream. 23643 */ 23644 mblk_t * 23645 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23646 { 23647 mblk_t *mp; 23648 ip_lso_info_t *lsoi; 23649 ill_lso_capab_t *idst; 23650 23651 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23652 DB_TYPE(mp) = M_CTL; 23653 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23654 lsoi = (ip_lso_info_t *)mp->b_rptr; 23655 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23656 idst = &(lsoi->lso_capab); 23657 23658 /* 23659 * If the caller provides us with the capability, copy 23660 * it over into our notification message; otherwise 23661 * we zero out the capability portion. 23662 */ 23663 if (isrc != NULL) 23664 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23665 else 23666 bzero((caddr_t)idst, sizeof (*idst)); 23667 } 23668 return (mp); 23669 } 23670 23671 /* 23672 * Routine which determines whether LSO can be enabled on the destination 23673 * IRE and IPC combination, and if so, allocates and returns the LSO 23674 * notification mblk that may be used by ULP. We also check if we need to 23675 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23676 * LSO usage in the past have been lifted. This gets called during IP 23677 * and ULP binding. 23678 */ 23679 mblk_t * 23680 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23681 ill_lso_capab_t *lso_cap) 23682 { 23683 mblk_t *mp; 23684 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23685 23686 ASSERT(dst_ire != NULL); 23687 ASSERT(connp != NULL); 23688 ASSERT(lso_cap != NULL); 23689 23690 connp->conn_lso_ok = B_TRUE; 23691 23692 if ((connp->conn_ulp != IPPROTO_TCP) || 23693 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23694 (dst_ire->ire_flags & RTF_MULTIRT) || 23695 !CONN_IS_LSO_MD_FASTPATH(connp) || 23696 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23697 connp->conn_lso_ok = B_FALSE; 23698 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23699 /* 23700 * Disable LSO for this and all future connections going 23701 * over the interface. 23702 */ 23703 lso_cap->ill_lso_on = 0; 23704 } 23705 } 23706 23707 if (!connp->conn_lso_ok) 23708 return (NULL); 23709 else if (!lso_cap->ill_lso_on) { 23710 /* 23711 * If LSO has been previously turned off in the past, and we 23712 * currently can do LSO (due to IPQoS policy removal, etc.) 23713 * then enable it for this interface. 23714 */ 23715 lso_cap->ill_lso_on = 1; 23716 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23717 ill_name)); 23718 } 23719 23720 /* Allocate the LSO info mblk */ 23721 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23722 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23723 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23724 23725 return (mp); 23726 } 23727 23728 /* 23729 * Create destination address attribute, and fill it with the physical 23730 * destination address and SAP taken from the template DL_UNITDATA_REQ 23731 * message block. 23732 */ 23733 boolean_t 23734 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23735 { 23736 dl_unitdata_req_t *dlurp; 23737 pattr_t *pa; 23738 pattrinfo_t pa_info; 23739 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23740 uint_t das_len, das_off; 23741 23742 ASSERT(dlmp != NULL); 23743 23744 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23745 das_len = dlurp->dl_dest_addr_length; 23746 das_off = dlurp->dl_dest_addr_offset; 23747 23748 pa_info.type = PATTR_DSTADDRSAP; 23749 pa_info.len = sizeof (**das) + das_len - 1; 23750 23751 /* create and associate the attribute */ 23752 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23753 if (pa != NULL) { 23754 ASSERT(*das != NULL); 23755 (*das)->addr_is_group = 0; 23756 (*das)->addr_len = (uint8_t)das_len; 23757 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23758 } 23759 23760 return (pa != NULL); 23761 } 23762 23763 /* 23764 * Create hardware checksum attribute and fill it with the values passed. 23765 */ 23766 boolean_t 23767 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23768 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23769 { 23770 pattr_t *pa; 23771 pattrinfo_t pa_info; 23772 23773 ASSERT(mmd != NULL); 23774 23775 pa_info.type = PATTR_HCKSUM; 23776 pa_info.len = sizeof (pattr_hcksum_t); 23777 23778 /* create and associate the attribute */ 23779 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23780 if (pa != NULL) { 23781 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23782 23783 hck->hcksum_start_offset = start_offset; 23784 hck->hcksum_stuff_offset = stuff_offset; 23785 hck->hcksum_end_offset = end_offset; 23786 hck->hcksum_flags = flags; 23787 } 23788 return (pa != NULL); 23789 } 23790 23791 /* 23792 * Create zerocopy attribute and fill it with the specified flags 23793 */ 23794 boolean_t 23795 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23796 { 23797 pattr_t *pa; 23798 pattrinfo_t pa_info; 23799 23800 ASSERT(mmd != NULL); 23801 pa_info.type = PATTR_ZCOPY; 23802 pa_info.len = sizeof (pattr_zcopy_t); 23803 23804 /* create and associate the attribute */ 23805 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23806 if (pa != NULL) { 23807 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23808 23809 zcopy->zcopy_flags = flags; 23810 } 23811 return (pa != NULL); 23812 } 23813 23814 /* 23815 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23816 * block chain. We could rewrite to handle arbitrary message block chains but 23817 * that would make the code complicated and slow. Right now there three 23818 * restrictions: 23819 * 23820 * 1. The first message block must contain the complete IP header and 23821 * at least 1 byte of payload data. 23822 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23823 * so that we can use a single Multidata message. 23824 * 3. No frag must be distributed over two or more message blocks so 23825 * that we don't need more than two packet descriptors per frag. 23826 * 23827 * The above restrictions allow us to support userland applications (which 23828 * will send down a single message block) and NFS over UDP (which will 23829 * send down a chain of at most three message blocks). 23830 * 23831 * We also don't use MDT for payloads with less than or equal to 23832 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23833 */ 23834 boolean_t 23835 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23836 { 23837 int blocks; 23838 ssize_t total, missing, size; 23839 23840 ASSERT(mp != NULL); 23841 ASSERT(hdr_len > 0); 23842 23843 size = MBLKL(mp) - hdr_len; 23844 if (size <= 0) 23845 return (B_FALSE); 23846 23847 /* The first mblk contains the header and some payload. */ 23848 blocks = 1; 23849 total = size; 23850 size %= len; 23851 missing = (size == 0) ? 0 : (len - size); 23852 mp = mp->b_cont; 23853 23854 while (mp != NULL) { 23855 /* 23856 * Give up if we encounter a zero length message block. 23857 * In practice, this should rarely happen and therefore 23858 * not worth the trouble of freeing and re-linking the 23859 * mblk from the chain to handle such case. 23860 */ 23861 if ((size = MBLKL(mp)) == 0) 23862 return (B_FALSE); 23863 23864 /* Too many payload buffers for a single Multidata message? */ 23865 if (++blocks > MULTIDATA_MAX_PBUFS) 23866 return (B_FALSE); 23867 23868 total += size; 23869 /* Is a frag distributed over two or more message blocks? */ 23870 if (missing > size) 23871 return (B_FALSE); 23872 size -= missing; 23873 23874 size %= len; 23875 missing = (size == 0) ? 0 : (len - size); 23876 23877 mp = mp->b_cont; 23878 } 23879 23880 return (total > ip_wput_frag_mdt_min); 23881 } 23882 23883 /* 23884 * Outbound IPv4 fragmentation routine using MDT. 23885 */ 23886 static void 23887 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23888 uint32_t frag_flag, int offset) 23889 { 23890 ipha_t *ipha_orig; 23891 int i1, ip_data_end; 23892 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23893 mblk_t *hdr_mp, *md_mp = NULL; 23894 unsigned char *hdr_ptr, *pld_ptr; 23895 multidata_t *mmd; 23896 ip_pdescinfo_t pdi; 23897 ill_t *ill; 23898 ip_stack_t *ipst = ire->ire_ipst; 23899 23900 ASSERT(DB_TYPE(mp) == M_DATA); 23901 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23902 23903 ill = ire_to_ill(ire); 23904 ASSERT(ill != NULL); 23905 23906 ipha_orig = (ipha_t *)mp->b_rptr; 23907 mp->b_rptr += sizeof (ipha_t); 23908 23909 /* Calculate how many packets we will send out */ 23910 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23911 pkts = (i1 + len - 1) / len; 23912 ASSERT(pkts > 1); 23913 23914 /* Allocate a message block which will hold all the IP Headers. */ 23915 wroff = ipst->ips_ip_wroff_extra; 23916 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23917 23918 i1 = pkts * hdr_chunk_len; 23919 /* 23920 * Create the header buffer, Multidata and destination address 23921 * and SAP attribute that should be associated with it. 23922 */ 23923 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23924 ((hdr_mp->b_wptr += i1), 23925 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23926 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23927 freemsg(mp); 23928 if (md_mp == NULL) { 23929 freemsg(hdr_mp); 23930 } else { 23931 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23932 freemsg(md_mp); 23933 } 23934 IP_STAT(ipst, ip_frag_mdt_allocfail); 23935 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23936 return; 23937 } 23938 IP_STAT(ipst, ip_frag_mdt_allocd); 23939 23940 /* 23941 * Add a payload buffer to the Multidata; this operation must not 23942 * fail, or otherwise our logic in this routine is broken. There 23943 * is no memory allocation done by the routine, so any returned 23944 * failure simply tells us that we've done something wrong. 23945 * 23946 * A failure tells us that either we're adding the same payload 23947 * buffer more than once, or we're trying to add more buffers than 23948 * allowed. None of the above cases should happen, and we panic 23949 * because either there's horrible heap corruption, and/or 23950 * programming mistake. 23951 */ 23952 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23953 goto pbuf_panic; 23954 23955 hdr_ptr = hdr_mp->b_rptr; 23956 pld_ptr = mp->b_rptr; 23957 23958 /* Establish the ending byte offset, based on the starting offset. */ 23959 offset <<= 3; 23960 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23961 IP_SIMPLE_HDR_LENGTH; 23962 23963 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23964 23965 while (pld_ptr < mp->b_wptr) { 23966 ipha_t *ipha; 23967 uint16_t offset_and_flags; 23968 uint16_t ip_len; 23969 int error; 23970 23971 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23972 ipha = (ipha_t *)(hdr_ptr + wroff); 23973 ASSERT(OK_32PTR(ipha)); 23974 *ipha = *ipha_orig; 23975 23976 if (ip_data_end - offset > len) { 23977 offset_and_flags = IPH_MF; 23978 } else { 23979 /* 23980 * Last frag. Set len to the length of this last piece. 23981 */ 23982 len = ip_data_end - offset; 23983 /* A frag of a frag might have IPH_MF non-zero */ 23984 offset_and_flags = 23985 ntohs(ipha->ipha_fragment_offset_and_flags) & 23986 IPH_MF; 23987 } 23988 offset_and_flags |= (uint16_t)(offset >> 3); 23989 offset_and_flags |= (uint16_t)frag_flag; 23990 /* Store the offset and flags in the IP header. */ 23991 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23992 23993 /* Store the length in the IP header. */ 23994 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23995 ipha->ipha_length = htons(ip_len); 23996 23997 /* 23998 * Set the IP header checksum. Note that mp is just 23999 * the header, so this is easy to pass to ip_csum. 24000 */ 24001 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24002 24003 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24004 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24005 NULL, int, 0); 24006 24007 /* 24008 * Record offset and size of header and data of the next packet 24009 * in the multidata message. 24010 */ 24011 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24012 PDESC_PLD_INIT(&pdi); 24013 i1 = MIN(mp->b_wptr - pld_ptr, len); 24014 ASSERT(i1 > 0); 24015 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24016 if (i1 == len) { 24017 pld_ptr += len; 24018 } else { 24019 i1 = len - i1; 24020 mp = mp->b_cont; 24021 ASSERT(mp != NULL); 24022 ASSERT(MBLKL(mp) >= i1); 24023 /* 24024 * Attach the next payload message block to the 24025 * multidata message. 24026 */ 24027 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24028 goto pbuf_panic; 24029 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24030 pld_ptr = mp->b_rptr + i1; 24031 } 24032 24033 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24034 KM_NOSLEEP)) == NULL) { 24035 /* 24036 * Any failure other than ENOMEM indicates that we 24037 * have passed in invalid pdesc info or parameters 24038 * to mmd_addpdesc, which must not happen. 24039 * 24040 * EINVAL is a result of failure on boundary checks 24041 * against the pdesc info contents. It should not 24042 * happen, and we panic because either there's 24043 * horrible heap corruption, and/or programming 24044 * mistake. 24045 */ 24046 if (error != ENOMEM) { 24047 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24048 "pdesc logic error detected for " 24049 "mmd %p pinfo %p (%d)\n", 24050 (void *)mmd, (void *)&pdi, error); 24051 /* NOTREACHED */ 24052 } 24053 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24054 /* Free unattached payload message blocks as well */ 24055 md_mp->b_cont = mp->b_cont; 24056 goto free_mmd; 24057 } 24058 24059 /* Advance fragment offset. */ 24060 offset += len; 24061 24062 /* Advance to location for next header in the buffer. */ 24063 hdr_ptr += hdr_chunk_len; 24064 24065 /* Did we reach the next payload message block? */ 24066 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24067 mp = mp->b_cont; 24068 /* 24069 * Attach the next message block with payload 24070 * data to the multidata message. 24071 */ 24072 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24073 goto pbuf_panic; 24074 pld_ptr = mp->b_rptr; 24075 } 24076 } 24077 24078 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24079 ASSERT(mp->b_wptr == pld_ptr); 24080 24081 /* Update IP statistics */ 24082 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24083 24084 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24086 24087 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24088 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24089 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24090 24091 if (pkt_type == OB_PKT) { 24092 ire->ire_ob_pkt_count += pkts; 24093 if (ire->ire_ipif != NULL) 24094 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24095 } else { 24096 /* The type is IB_PKT in the forwarding path. */ 24097 ire->ire_ib_pkt_count += pkts; 24098 ASSERT(!IRE_IS_LOCAL(ire)); 24099 if (ire->ire_type & IRE_BROADCAST) { 24100 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24101 } else { 24102 UPDATE_MIB(ill->ill_ip_mib, 24103 ipIfStatsHCOutForwDatagrams, pkts); 24104 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24105 } 24106 } 24107 ire->ire_last_used_time = lbolt; 24108 /* Send it down */ 24109 putnext(ire->ire_stq, md_mp); 24110 return; 24111 24112 pbuf_panic: 24113 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24114 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24115 pbuf_idx); 24116 /* NOTREACHED */ 24117 } 24118 24119 /* 24120 * Outbound IP fragmentation routine. 24121 * 24122 * NOTE : This routine does not ire_refrele the ire that is passed in 24123 * as the argument. 24124 */ 24125 static void 24126 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24127 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24128 { 24129 int i1; 24130 mblk_t *ll_hdr_mp; 24131 int ll_hdr_len; 24132 int hdr_len; 24133 mblk_t *hdr_mp; 24134 ipha_t *ipha; 24135 int ip_data_end; 24136 int len; 24137 mblk_t *mp = mp_orig, *mp1; 24138 int offset; 24139 queue_t *q; 24140 uint32_t v_hlen_tos_len; 24141 mblk_t *first_mp; 24142 boolean_t mctl_present; 24143 ill_t *ill; 24144 ill_t *out_ill; 24145 mblk_t *xmit_mp; 24146 mblk_t *carve_mp; 24147 ire_t *ire1 = NULL; 24148 ire_t *save_ire = NULL; 24149 mblk_t *next_mp = NULL; 24150 boolean_t last_frag = B_FALSE; 24151 boolean_t multirt_send = B_FALSE; 24152 ire_t *first_ire = NULL; 24153 irb_t *irb = NULL; 24154 mib2_ipIfStatsEntry_t *mibptr = NULL; 24155 24156 ill = ire_to_ill(ire); 24157 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24158 24159 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24160 24161 if (max_frag == 0) { 24162 ip1dbg(("ip_wput_frag: ire frag size is 0" 24163 " - dropping packet\n")); 24164 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24165 freemsg(mp); 24166 return; 24167 } 24168 24169 /* 24170 * IPsec does not allow hw accelerated packets to be fragmented 24171 * This check is made in ip_wput_ipsec_out prior to coming here 24172 * via ip_wput_ire_fragmentit. 24173 * 24174 * If at this point we have an ire whose ARP request has not 24175 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24176 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24177 * This packet and all fragmentable packets for this ire will 24178 * continue to get dropped while ire_nce->nce_state remains in 24179 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24180 * ND_REACHABLE, all subsquent large packets for this ire will 24181 * get fragemented and sent out by this function. 24182 */ 24183 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24184 /* If nce_state is ND_INITIAL, trigger ARP query */ 24185 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24186 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24187 " - dropping packet\n")); 24188 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24189 freemsg(mp); 24190 return; 24191 } 24192 24193 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24194 "ip_wput_frag_start:"); 24195 24196 if (mp->b_datap->db_type == M_CTL) { 24197 first_mp = mp; 24198 mp_orig = mp = mp->b_cont; 24199 mctl_present = B_TRUE; 24200 } else { 24201 first_mp = mp; 24202 mctl_present = B_FALSE; 24203 } 24204 24205 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24206 ipha = (ipha_t *)mp->b_rptr; 24207 24208 /* 24209 * If the Don't Fragment flag is on, generate an ICMP destination 24210 * unreachable, fragmentation needed. 24211 */ 24212 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24213 if (offset & IPH_DF) { 24214 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24215 if (is_system_labeled()) { 24216 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24217 ire->ire_max_frag - max_frag, AF_INET); 24218 } 24219 /* 24220 * Need to compute hdr checksum if called from ip_wput_ire. 24221 * Note that ip_rput_forward verifies the checksum before 24222 * calling this routine so in that case this is a noop. 24223 */ 24224 ipha->ipha_hdr_checksum = 0; 24225 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24226 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24227 ipst); 24228 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24229 "ip_wput_frag_end:(%S)", 24230 "don't fragment"); 24231 return; 24232 } 24233 /* 24234 * Labeled systems adjust max_frag if they add a label 24235 * to send the correct path mtu. We need the real mtu since we 24236 * are fragmenting the packet after label adjustment. 24237 */ 24238 if (is_system_labeled()) 24239 max_frag = ire->ire_max_frag; 24240 if (mctl_present) 24241 freeb(first_mp); 24242 /* 24243 * Establish the starting offset. May not be zero if we are fragging 24244 * a fragment that is being forwarded. 24245 */ 24246 offset = offset & IPH_OFFSET; 24247 24248 /* TODO why is this test needed? */ 24249 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24250 if (((max_frag - LENGTH) & ~7) < 8) { 24251 /* TODO: notify ulp somehow */ 24252 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24253 freemsg(mp); 24254 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24255 "ip_wput_frag_end:(%S)", 24256 "len < 8"); 24257 return; 24258 } 24259 24260 hdr_len = (V_HLEN & 0xF) << 2; 24261 24262 ipha->ipha_hdr_checksum = 0; 24263 24264 /* 24265 * Establish the number of bytes maximum per frag, after putting 24266 * in the header. 24267 */ 24268 len = (max_frag - hdr_len) & ~7; 24269 24270 /* Check if we can use MDT to send out the frags. */ 24271 ASSERT(!IRE_IS_LOCAL(ire)); 24272 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24273 ipst->ips_ip_multidata_outbound && 24274 !(ire->ire_flags & RTF_MULTIRT) && 24275 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24276 ill != NULL && ILL_MDT_CAPABLE(ill) && 24277 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24278 ASSERT(ill->ill_mdt_capab != NULL); 24279 if (!ill->ill_mdt_capab->ill_mdt_on) { 24280 /* 24281 * If MDT has been previously turned off in the past, 24282 * and we currently can do MDT (due to IPQoS policy 24283 * removal, etc.) then enable it for this interface. 24284 */ 24285 ill->ill_mdt_capab->ill_mdt_on = 1; 24286 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24287 ill->ill_name)); 24288 } 24289 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24290 offset); 24291 return; 24292 } 24293 24294 /* Get a copy of the header for the trailing frags */ 24295 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24296 mp); 24297 if (!hdr_mp) { 24298 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24299 freemsg(mp); 24300 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24301 "ip_wput_frag_end:(%S)", 24302 "couldn't copy hdr"); 24303 return; 24304 } 24305 24306 /* Store the starting offset, with the MoreFrags flag. */ 24307 i1 = offset | IPH_MF | frag_flag; 24308 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24309 24310 /* Establish the ending byte offset, based on the starting offset. */ 24311 offset <<= 3; 24312 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24313 24314 /* Store the length of the first fragment in the IP header. */ 24315 i1 = len + hdr_len; 24316 ASSERT(i1 <= IP_MAXPACKET); 24317 ipha->ipha_length = htons((uint16_t)i1); 24318 24319 /* 24320 * Compute the IP header checksum for the first frag. We have to 24321 * watch out that we stop at the end of the header. 24322 */ 24323 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24324 24325 /* 24326 * Now carve off the first frag. Note that this will include the 24327 * original IP header. 24328 */ 24329 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24330 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24331 freeb(hdr_mp); 24332 freemsg(mp_orig); 24333 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24334 "ip_wput_frag_end:(%S)", 24335 "couldn't carve first"); 24336 return; 24337 } 24338 24339 /* 24340 * Multirouting case. Each fragment is replicated 24341 * via all non-condemned RTF_MULTIRT routes 24342 * currently resolved. 24343 * We ensure that first_ire is the first RTF_MULTIRT 24344 * ire in the bucket. 24345 */ 24346 if (ire->ire_flags & RTF_MULTIRT) { 24347 irb = ire->ire_bucket; 24348 ASSERT(irb != NULL); 24349 24350 multirt_send = B_TRUE; 24351 24352 /* Make sure we do not omit any multiroute ire. */ 24353 IRB_REFHOLD(irb); 24354 for (first_ire = irb->irb_ire; 24355 first_ire != NULL; 24356 first_ire = first_ire->ire_next) { 24357 if ((first_ire->ire_flags & RTF_MULTIRT) && 24358 (first_ire->ire_addr == ire->ire_addr) && 24359 !(first_ire->ire_marks & 24360 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24361 break; 24362 } 24363 24364 if (first_ire != NULL) { 24365 if (first_ire != ire) { 24366 IRE_REFHOLD(first_ire); 24367 /* 24368 * Do not release the ire passed in 24369 * as the argument. 24370 */ 24371 ire = first_ire; 24372 } else { 24373 first_ire = NULL; 24374 } 24375 } 24376 IRB_REFRELE(irb); 24377 24378 /* 24379 * Save the first ire; we will need to restore it 24380 * for the trailing frags. 24381 * We REFHOLD save_ire, as each iterated ire will be 24382 * REFRELEd. 24383 */ 24384 save_ire = ire; 24385 IRE_REFHOLD(save_ire); 24386 } 24387 24388 /* 24389 * First fragment emission loop. 24390 * In most cases, the emission loop below is entered only 24391 * once. Only in the case where the ire holds the RTF_MULTIRT 24392 * flag, do we loop to process all RTF_MULTIRT ires in the 24393 * bucket, and send the fragment through all crossed 24394 * RTF_MULTIRT routes. 24395 */ 24396 do { 24397 if (ire->ire_flags & RTF_MULTIRT) { 24398 /* 24399 * We are in a multiple send case, need to get 24400 * the next ire and make a copy of the packet. 24401 * ire1 holds here the next ire to process in the 24402 * bucket. If multirouting is expected, 24403 * any non-RTF_MULTIRT ire that has the 24404 * right destination address is ignored. 24405 * 24406 * We have to take into account the MTU of 24407 * each walked ire. max_frag is set by the 24408 * the caller and generally refers to 24409 * the primary ire entry. Here we ensure that 24410 * no route with a lower MTU will be used, as 24411 * fragments are carved once for all ires, 24412 * then replicated. 24413 */ 24414 ASSERT(irb != NULL); 24415 IRB_REFHOLD(irb); 24416 for (ire1 = ire->ire_next; 24417 ire1 != NULL; 24418 ire1 = ire1->ire_next) { 24419 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24420 continue; 24421 if (ire1->ire_addr != ire->ire_addr) 24422 continue; 24423 if (ire1->ire_marks & 24424 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24425 continue; 24426 /* 24427 * Ensure we do not exceed the MTU 24428 * of the next route. 24429 */ 24430 if (ire1->ire_max_frag < max_frag) { 24431 ip_multirt_bad_mtu(ire1, max_frag); 24432 continue; 24433 } 24434 24435 /* Got one. */ 24436 IRE_REFHOLD(ire1); 24437 break; 24438 } 24439 IRB_REFRELE(irb); 24440 24441 if (ire1 != NULL) { 24442 next_mp = copyb(mp); 24443 if ((next_mp == NULL) || 24444 ((mp->b_cont != NULL) && 24445 ((next_mp->b_cont = 24446 dupmsg(mp->b_cont)) == NULL))) { 24447 freemsg(next_mp); 24448 next_mp = NULL; 24449 ire_refrele(ire1); 24450 ire1 = NULL; 24451 } 24452 } 24453 24454 /* Last multiroute ire; don't loop anymore. */ 24455 if (ire1 == NULL) { 24456 multirt_send = B_FALSE; 24457 } 24458 } 24459 24460 ll_hdr_len = 0; 24461 LOCK_IRE_FP_MP(ire); 24462 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24463 if (ll_hdr_mp != NULL) { 24464 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24465 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24466 } else { 24467 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24468 } 24469 24470 /* If there is a transmit header, get a copy for this frag. */ 24471 /* 24472 * TODO: should check db_ref before calling ip_carve_mp since 24473 * it might give us a dup. 24474 */ 24475 if (!ll_hdr_mp) { 24476 /* No xmit header. */ 24477 xmit_mp = mp; 24478 24479 /* We have a link-layer header that can fit in our mblk. */ 24480 } else if (mp->b_datap->db_ref == 1 && 24481 ll_hdr_len != 0 && 24482 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24483 /* M_DATA fastpath */ 24484 mp->b_rptr -= ll_hdr_len; 24485 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24486 xmit_mp = mp; 24487 24488 /* Corner case if copyb has failed */ 24489 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24490 UNLOCK_IRE_FP_MP(ire); 24491 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24492 freeb(hdr_mp); 24493 freemsg(mp); 24494 freemsg(mp_orig); 24495 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24496 "ip_wput_frag_end:(%S)", 24497 "discard"); 24498 24499 if (multirt_send) { 24500 ASSERT(ire1); 24501 ASSERT(next_mp); 24502 24503 freemsg(next_mp); 24504 ire_refrele(ire1); 24505 } 24506 if (save_ire != NULL) 24507 IRE_REFRELE(save_ire); 24508 24509 if (first_ire != NULL) 24510 ire_refrele(first_ire); 24511 return; 24512 24513 /* 24514 * Case of res_mp OR the fastpath mp can't fit 24515 * in the mblk 24516 */ 24517 } else { 24518 xmit_mp->b_cont = mp; 24519 24520 /* 24521 * Get priority marking, if any. 24522 * We propagate the CoS marking from the 24523 * original packet that went to QoS processing 24524 * in ip_wput_ire to the newly carved mp. 24525 */ 24526 if (DB_TYPE(xmit_mp) == M_DATA) 24527 xmit_mp->b_band = mp->b_band; 24528 } 24529 UNLOCK_IRE_FP_MP(ire); 24530 24531 q = ire->ire_stq; 24532 out_ill = (ill_t *)q->q_ptr; 24533 24534 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24535 24536 DTRACE_PROBE4(ip4__physical__out__start, 24537 ill_t *, NULL, ill_t *, out_ill, 24538 ipha_t *, ipha, mblk_t *, xmit_mp); 24539 24540 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24541 ipst->ips_ipv4firewall_physical_out, 24542 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24543 24544 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24545 24546 if (xmit_mp != NULL) { 24547 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24548 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24549 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24550 24551 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24552 24553 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24554 UPDATE_MIB(out_ill->ill_ip_mib, 24555 ipIfStatsHCOutOctets, i1); 24556 24557 if (pkt_type != OB_PKT) { 24558 /* 24559 * Update the packet count and MIB stats 24560 * of trailing RTF_MULTIRT ires. 24561 */ 24562 UPDATE_OB_PKT_COUNT(ire); 24563 BUMP_MIB(out_ill->ill_ip_mib, 24564 ipIfStatsOutFragReqds); 24565 } 24566 } 24567 24568 if (multirt_send) { 24569 /* 24570 * We are in a multiple send case; look for 24571 * the next ire and re-enter the loop. 24572 */ 24573 ASSERT(ire1); 24574 ASSERT(next_mp); 24575 /* REFRELE the current ire before looping */ 24576 ire_refrele(ire); 24577 ire = ire1; 24578 ire1 = NULL; 24579 mp = next_mp; 24580 next_mp = NULL; 24581 } 24582 } while (multirt_send); 24583 24584 ASSERT(ire1 == NULL); 24585 24586 /* Restore the original ire; we need it for the trailing frags */ 24587 if (save_ire != NULL) { 24588 /* REFRELE the last iterated ire */ 24589 ire_refrele(ire); 24590 /* save_ire has been REFHOLDed */ 24591 ire = save_ire; 24592 save_ire = NULL; 24593 q = ire->ire_stq; 24594 } 24595 24596 if (pkt_type == OB_PKT) { 24597 UPDATE_OB_PKT_COUNT(ire); 24598 } else { 24599 out_ill = (ill_t *)q->q_ptr; 24600 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24601 UPDATE_IB_PKT_COUNT(ire); 24602 } 24603 24604 /* Advance the offset to the second frag starting point. */ 24605 offset += len; 24606 /* 24607 * Update hdr_len from the copied header - there might be less options 24608 * in the later fragments. 24609 */ 24610 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24611 /* Loop until done. */ 24612 for (;;) { 24613 uint16_t offset_and_flags; 24614 uint16_t ip_len; 24615 24616 if (ip_data_end - offset > len) { 24617 /* 24618 * Carve off the appropriate amount from the original 24619 * datagram. 24620 */ 24621 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24622 mp = NULL; 24623 break; 24624 } 24625 /* 24626 * More frags after this one. Get another copy 24627 * of the header. 24628 */ 24629 if (carve_mp->b_datap->db_ref == 1 && 24630 hdr_mp->b_wptr - hdr_mp->b_rptr < 24631 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24632 /* Inline IP header */ 24633 carve_mp->b_rptr -= hdr_mp->b_wptr - 24634 hdr_mp->b_rptr; 24635 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24636 hdr_mp->b_wptr - hdr_mp->b_rptr); 24637 mp = carve_mp; 24638 } else { 24639 if (!(mp = copyb(hdr_mp))) { 24640 freemsg(carve_mp); 24641 break; 24642 } 24643 /* Get priority marking, if any. */ 24644 mp->b_band = carve_mp->b_band; 24645 mp->b_cont = carve_mp; 24646 } 24647 ipha = (ipha_t *)mp->b_rptr; 24648 offset_and_flags = IPH_MF; 24649 } else { 24650 /* 24651 * Last frag. Consume the header. Set len to 24652 * the length of this last piece. 24653 */ 24654 len = ip_data_end - offset; 24655 24656 /* 24657 * Carve off the appropriate amount from the original 24658 * datagram. 24659 */ 24660 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24661 mp = NULL; 24662 break; 24663 } 24664 if (carve_mp->b_datap->db_ref == 1 && 24665 hdr_mp->b_wptr - hdr_mp->b_rptr < 24666 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24667 /* Inline IP header */ 24668 carve_mp->b_rptr -= hdr_mp->b_wptr - 24669 hdr_mp->b_rptr; 24670 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24671 hdr_mp->b_wptr - hdr_mp->b_rptr); 24672 mp = carve_mp; 24673 freeb(hdr_mp); 24674 hdr_mp = mp; 24675 } else { 24676 mp = hdr_mp; 24677 /* Get priority marking, if any. */ 24678 mp->b_band = carve_mp->b_band; 24679 mp->b_cont = carve_mp; 24680 } 24681 ipha = (ipha_t *)mp->b_rptr; 24682 /* A frag of a frag might have IPH_MF non-zero */ 24683 offset_and_flags = 24684 ntohs(ipha->ipha_fragment_offset_and_flags) & 24685 IPH_MF; 24686 } 24687 offset_and_flags |= (uint16_t)(offset >> 3); 24688 offset_and_flags |= (uint16_t)frag_flag; 24689 /* Store the offset and flags in the IP header. */ 24690 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24691 24692 /* Store the length in the IP header. */ 24693 ip_len = (uint16_t)(len + hdr_len); 24694 ipha->ipha_length = htons(ip_len); 24695 24696 /* 24697 * Set the IP header checksum. Note that mp is just 24698 * the header, so this is easy to pass to ip_csum. 24699 */ 24700 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24701 24702 /* Attach a transmit header, if any, and ship it. */ 24703 if (pkt_type == OB_PKT) { 24704 UPDATE_OB_PKT_COUNT(ire); 24705 } else { 24706 out_ill = (ill_t *)q->q_ptr; 24707 BUMP_MIB(out_ill->ill_ip_mib, 24708 ipIfStatsHCOutForwDatagrams); 24709 UPDATE_IB_PKT_COUNT(ire); 24710 } 24711 24712 if (ire->ire_flags & RTF_MULTIRT) { 24713 irb = ire->ire_bucket; 24714 ASSERT(irb != NULL); 24715 24716 multirt_send = B_TRUE; 24717 24718 /* 24719 * Save the original ire; we will need to restore it 24720 * for the tailing frags. 24721 */ 24722 save_ire = ire; 24723 IRE_REFHOLD(save_ire); 24724 } 24725 /* 24726 * Emission loop for this fragment, similar 24727 * to what is done for the first fragment. 24728 */ 24729 do { 24730 if (multirt_send) { 24731 /* 24732 * We are in a multiple send case, need to get 24733 * the next ire and make a copy of the packet. 24734 */ 24735 ASSERT(irb != NULL); 24736 IRB_REFHOLD(irb); 24737 for (ire1 = ire->ire_next; 24738 ire1 != NULL; 24739 ire1 = ire1->ire_next) { 24740 if (!(ire1->ire_flags & RTF_MULTIRT)) 24741 continue; 24742 if (ire1->ire_addr != ire->ire_addr) 24743 continue; 24744 if (ire1->ire_marks & 24745 (IRE_MARK_CONDEMNED | 24746 IRE_MARK_TESTHIDDEN)) 24747 continue; 24748 /* 24749 * Ensure we do not exceed the MTU 24750 * of the next route. 24751 */ 24752 if (ire1->ire_max_frag < max_frag) { 24753 ip_multirt_bad_mtu(ire1, 24754 max_frag); 24755 continue; 24756 } 24757 24758 /* Got one. */ 24759 IRE_REFHOLD(ire1); 24760 break; 24761 } 24762 IRB_REFRELE(irb); 24763 24764 if (ire1 != NULL) { 24765 next_mp = copyb(mp); 24766 if ((next_mp == NULL) || 24767 ((mp->b_cont != NULL) && 24768 ((next_mp->b_cont = 24769 dupmsg(mp->b_cont)) == NULL))) { 24770 freemsg(next_mp); 24771 next_mp = NULL; 24772 ire_refrele(ire1); 24773 ire1 = NULL; 24774 } 24775 } 24776 24777 /* Last multiroute ire; don't loop anymore. */ 24778 if (ire1 == NULL) { 24779 multirt_send = B_FALSE; 24780 } 24781 } 24782 24783 /* Update transmit header */ 24784 ll_hdr_len = 0; 24785 LOCK_IRE_FP_MP(ire); 24786 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24787 if (ll_hdr_mp != NULL) { 24788 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24789 ll_hdr_len = MBLKL(ll_hdr_mp); 24790 } else { 24791 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24792 } 24793 24794 if (!ll_hdr_mp) { 24795 xmit_mp = mp; 24796 24797 /* 24798 * We have link-layer header that can fit in 24799 * our mblk. 24800 */ 24801 } else if (mp->b_datap->db_ref == 1 && 24802 ll_hdr_len != 0 && 24803 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24804 /* M_DATA fastpath */ 24805 mp->b_rptr -= ll_hdr_len; 24806 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24807 ll_hdr_len); 24808 xmit_mp = mp; 24809 24810 /* 24811 * Case of res_mp OR the fastpath mp can't fit 24812 * in the mblk 24813 */ 24814 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24815 xmit_mp->b_cont = mp; 24816 /* Get priority marking, if any. */ 24817 if (DB_TYPE(xmit_mp) == M_DATA) 24818 xmit_mp->b_band = mp->b_band; 24819 24820 /* Corner case if copyb failed */ 24821 } else { 24822 /* 24823 * Exit both the replication and 24824 * fragmentation loops. 24825 */ 24826 UNLOCK_IRE_FP_MP(ire); 24827 goto drop_pkt; 24828 } 24829 UNLOCK_IRE_FP_MP(ire); 24830 24831 mp1 = mp; 24832 out_ill = (ill_t *)q->q_ptr; 24833 24834 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24835 24836 DTRACE_PROBE4(ip4__physical__out__start, 24837 ill_t *, NULL, ill_t *, out_ill, 24838 ipha_t *, ipha, mblk_t *, xmit_mp); 24839 24840 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24841 ipst->ips_ipv4firewall_physical_out, 24842 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24843 24844 DTRACE_PROBE1(ip4__physical__out__end, 24845 mblk_t *, xmit_mp); 24846 24847 if (mp != mp1 && hdr_mp == mp1) 24848 hdr_mp = mp; 24849 if (mp != mp1 && mp_orig == mp1) 24850 mp_orig = mp; 24851 24852 if (xmit_mp != NULL) { 24853 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24854 NULL, void_ip_t *, ipha, 24855 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24856 ipha, ip6_t *, NULL, int, 0); 24857 24858 ILL_SEND_TX(out_ill, ire, connp, 24859 xmit_mp, 0, connp); 24860 24861 BUMP_MIB(out_ill->ill_ip_mib, 24862 ipIfStatsHCOutTransmits); 24863 UPDATE_MIB(out_ill->ill_ip_mib, 24864 ipIfStatsHCOutOctets, ip_len); 24865 24866 if (pkt_type != OB_PKT) { 24867 /* 24868 * Update the packet count of trailing 24869 * RTF_MULTIRT ires. 24870 */ 24871 UPDATE_OB_PKT_COUNT(ire); 24872 } 24873 } 24874 24875 /* All done if we just consumed the hdr_mp. */ 24876 if (mp == hdr_mp) { 24877 last_frag = B_TRUE; 24878 BUMP_MIB(out_ill->ill_ip_mib, 24879 ipIfStatsOutFragOKs); 24880 } 24881 24882 if (multirt_send) { 24883 /* 24884 * We are in a multiple send case; look for 24885 * the next ire and re-enter the loop. 24886 */ 24887 ASSERT(ire1); 24888 ASSERT(next_mp); 24889 /* REFRELE the current ire before looping */ 24890 ire_refrele(ire); 24891 ire = ire1; 24892 ire1 = NULL; 24893 q = ire->ire_stq; 24894 mp = next_mp; 24895 next_mp = NULL; 24896 } 24897 } while (multirt_send); 24898 /* 24899 * Restore the original ire; we need it for the 24900 * trailing frags 24901 */ 24902 if (save_ire != NULL) { 24903 ASSERT(ire1 == NULL); 24904 /* REFRELE the last iterated ire */ 24905 ire_refrele(ire); 24906 /* save_ire has been REFHOLDed */ 24907 ire = save_ire; 24908 q = ire->ire_stq; 24909 save_ire = NULL; 24910 } 24911 24912 if (last_frag) { 24913 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24914 "ip_wput_frag_end:(%S)", 24915 "consumed hdr_mp"); 24916 24917 if (first_ire != NULL) 24918 ire_refrele(first_ire); 24919 return; 24920 } 24921 /* Otherwise, advance and loop. */ 24922 offset += len; 24923 } 24924 24925 drop_pkt: 24926 /* Clean up following allocation failure. */ 24927 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24928 freemsg(mp); 24929 if (mp != hdr_mp) 24930 freeb(hdr_mp); 24931 if (mp != mp_orig) 24932 freemsg(mp_orig); 24933 24934 if (save_ire != NULL) 24935 IRE_REFRELE(save_ire); 24936 if (first_ire != NULL) 24937 ire_refrele(first_ire); 24938 24939 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24940 "ip_wput_frag_end:(%S)", 24941 "end--alloc failure"); 24942 } 24943 24944 /* 24945 * Copy the header plus those options which have the copy bit set 24946 * src is the template to make sure we preserve the cred for TX purposes. 24947 */ 24948 static mblk_t * 24949 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24950 mblk_t *src) 24951 { 24952 mblk_t *mp; 24953 uchar_t *up; 24954 24955 /* 24956 * Quick check if we need to look for options without the copy bit 24957 * set 24958 */ 24959 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24960 if (!mp) 24961 return (mp); 24962 mp->b_rptr += ipst->ips_ip_wroff_extra; 24963 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24964 bcopy(rptr, mp->b_rptr, hdr_len); 24965 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24966 return (mp); 24967 } 24968 up = mp->b_rptr; 24969 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24970 up += IP_SIMPLE_HDR_LENGTH; 24971 rptr += IP_SIMPLE_HDR_LENGTH; 24972 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24973 while (hdr_len > 0) { 24974 uint32_t optval; 24975 uint32_t optlen; 24976 24977 optval = *rptr; 24978 if (optval == IPOPT_EOL) 24979 break; 24980 if (optval == IPOPT_NOP) 24981 optlen = 1; 24982 else 24983 optlen = rptr[1]; 24984 if (optval & IPOPT_COPY) { 24985 bcopy(rptr, up, optlen); 24986 up += optlen; 24987 } 24988 rptr += optlen; 24989 hdr_len -= optlen; 24990 } 24991 /* 24992 * Make sure that we drop an even number of words by filling 24993 * with EOL to the next word boundary. 24994 */ 24995 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24996 hdr_len & 0x3; hdr_len++) 24997 *up++ = IPOPT_EOL; 24998 mp->b_wptr = up; 24999 /* Update header length */ 25000 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25001 return (mp); 25002 } 25003 25004 /* 25005 * Delivery to local recipients including fanout to multiple recipients. 25006 * Does not do checksumming of UDP/TCP. 25007 * Note: q should be the read side queue for either the ill or conn. 25008 * Note: rq should be the read side q for the lower (ill) stream. 25009 * We don't send packets to IPPF processing, thus the last argument 25010 * to all the fanout calls are B_FALSE. 25011 */ 25012 void 25013 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25014 int fanout_flags, zoneid_t zoneid) 25015 { 25016 uint32_t protocol; 25017 mblk_t *first_mp; 25018 boolean_t mctl_present; 25019 int ire_type; 25020 #define rptr ((uchar_t *)ipha) 25021 ip_stack_t *ipst = ill->ill_ipst; 25022 25023 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25024 "ip_wput_local_start: q %p", q); 25025 25026 if (ire != NULL) { 25027 ire_type = ire->ire_type; 25028 } else { 25029 /* 25030 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25031 * packet is not multicast, we can't tell the ire type. 25032 */ 25033 ASSERT(CLASSD(ipha->ipha_dst)); 25034 ire_type = IRE_BROADCAST; 25035 } 25036 25037 first_mp = mp; 25038 if (first_mp->b_datap->db_type == M_CTL) { 25039 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25040 if (!io->ipsec_out_secure) { 25041 /* 25042 * This ipsec_out_t was allocated in ip_wput 25043 * for multicast packets to store the ill_index. 25044 * As this is being delivered locally, we don't 25045 * need this anymore. 25046 */ 25047 mp = first_mp->b_cont; 25048 freeb(first_mp); 25049 first_mp = mp; 25050 mctl_present = B_FALSE; 25051 } else { 25052 /* 25053 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25054 * security properties for the looped-back packet. 25055 */ 25056 mctl_present = B_TRUE; 25057 mp = first_mp->b_cont; 25058 ASSERT(mp != NULL); 25059 ipsec_out_to_in(first_mp); 25060 } 25061 } else { 25062 mctl_present = B_FALSE; 25063 } 25064 25065 DTRACE_PROBE4(ip4__loopback__in__start, 25066 ill_t *, ill, ill_t *, NULL, 25067 ipha_t *, ipha, mblk_t *, first_mp); 25068 25069 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25070 ipst->ips_ipv4firewall_loopback_in, 25071 ill, NULL, ipha, first_mp, mp, 0, ipst); 25072 25073 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25074 25075 if (first_mp == NULL) 25076 return; 25077 25078 if (ipst->ips_ipobs_enabled) { 25079 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25080 zoneid_t stackzoneid = netstackid_to_zoneid( 25081 ipst->ips_netstack->netstack_stackid); 25082 25083 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25084 /* 25085 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25086 * address. Restrict the lookup below to the destination zone. 25087 */ 25088 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25089 lookup_zoneid = zoneid; 25090 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25091 lookup_zoneid); 25092 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25093 IPV4_VERSION, 0, ipst); 25094 } 25095 25096 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25097 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25098 int, 1); 25099 25100 ipst->ips_loopback_packets++; 25101 25102 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25103 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25104 if (!IS_SIMPLE_IPH(ipha)) { 25105 ip_wput_local_options(ipha, ipst); 25106 } 25107 25108 protocol = ipha->ipha_protocol; 25109 switch (protocol) { 25110 case IPPROTO_ICMP: { 25111 ire_t *ire_zone; 25112 ilm_t *ilm; 25113 mblk_t *mp1; 25114 zoneid_t last_zoneid; 25115 ilm_walker_t ilw; 25116 25117 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25118 ASSERT(ire_type == IRE_BROADCAST); 25119 /* 25120 * In the multicast case, applications may have joined 25121 * the group from different zones, so we need to deliver 25122 * the packet to each of them. Loop through the 25123 * multicast memberships structures (ilm) on the receive 25124 * ill and send a copy of the packet up each matching 25125 * one. However, we don't do this for multicasts sent on 25126 * the loopback interface (PHYI_LOOPBACK flag set) as 25127 * they must stay in the sender's zone. 25128 * 25129 * ilm_add_v6() ensures that ilms in the same zone are 25130 * contiguous in the ill_ilm list. We use this property 25131 * to avoid sending duplicates needed when two 25132 * applications in the same zone join the same group on 25133 * different logical interfaces: we ignore the ilm if 25134 * it's zoneid is the same as the last matching one. 25135 * In addition, the sending of the packet for 25136 * ire_zoneid is delayed until all of the other ilms 25137 * have been exhausted. 25138 */ 25139 last_zoneid = -1; 25140 ilm = ilm_walker_start(&ilw, ill); 25141 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25142 if (ipha->ipha_dst != ilm->ilm_addr || 25143 ilm->ilm_zoneid == last_zoneid || 25144 ilm->ilm_zoneid == zoneid || 25145 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25146 continue; 25147 mp1 = ip_copymsg(first_mp); 25148 if (mp1 == NULL) 25149 continue; 25150 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25151 0, 0, mctl_present, B_FALSE, ill, 25152 ilm->ilm_zoneid); 25153 last_zoneid = ilm->ilm_zoneid; 25154 } 25155 ilm_walker_finish(&ilw); 25156 /* 25157 * Loopback case: the sending endpoint has 25158 * IP_MULTICAST_LOOP disabled, therefore we don't 25159 * dispatch the multicast packet to the sending zone. 25160 */ 25161 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25162 freemsg(first_mp); 25163 return; 25164 } 25165 } else if (ire_type == IRE_BROADCAST) { 25166 /* 25167 * In the broadcast case, there may be many zones 25168 * which need a copy of the packet delivered to them. 25169 * There is one IRE_BROADCAST per broadcast address 25170 * and per zone; we walk those using a helper function. 25171 * In addition, the sending of the packet for zoneid is 25172 * delayed until all of the other ires have been 25173 * processed. 25174 */ 25175 IRB_REFHOLD(ire->ire_bucket); 25176 ire_zone = NULL; 25177 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25178 ire)) != NULL) { 25179 mp1 = ip_copymsg(first_mp); 25180 if (mp1 == NULL) 25181 continue; 25182 25183 UPDATE_IB_PKT_COUNT(ire_zone); 25184 ire_zone->ire_last_used_time = lbolt; 25185 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25186 mctl_present, B_FALSE, ill, 25187 ire_zone->ire_zoneid); 25188 } 25189 IRB_REFRELE(ire->ire_bucket); 25190 } 25191 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25192 0, mctl_present, B_FALSE, ill, zoneid); 25193 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25194 "ip_wput_local_end: q %p (%S)", 25195 q, "icmp"); 25196 return; 25197 } 25198 case IPPROTO_IGMP: 25199 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25200 /* Bad packet - discarded by igmp_input */ 25201 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25202 "ip_wput_local_end: q %p (%S)", 25203 q, "igmp_input--bad packet"); 25204 if (mctl_present) 25205 freeb(first_mp); 25206 return; 25207 } 25208 /* 25209 * igmp_input() may have returned the pulled up message. 25210 * So first_mp and ipha need to be reinitialized. 25211 */ 25212 ipha = (ipha_t *)mp->b_rptr; 25213 if (mctl_present) 25214 first_mp->b_cont = mp; 25215 else 25216 first_mp = mp; 25217 /* deliver to local raw users */ 25218 break; 25219 case IPPROTO_ENCAP: 25220 /* 25221 * This case is covered by either ip_fanout_proto, or by 25222 * the above security processing for self-tunneled packets. 25223 */ 25224 break; 25225 case IPPROTO_UDP: { 25226 uint16_t *up; 25227 uint32_t ports; 25228 25229 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25230 UDP_PORTS_OFFSET); 25231 /* Force a 'valid' checksum. */ 25232 up[3] = 0; 25233 25234 ports = *(uint32_t *)up; 25235 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25236 (ire_type == IRE_BROADCAST), 25237 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25238 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25239 ill, zoneid); 25240 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25241 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25242 return; 25243 } 25244 case IPPROTO_TCP: { 25245 25246 /* 25247 * For TCP, discard broadcast packets. 25248 */ 25249 if ((ushort_t)ire_type == IRE_BROADCAST) { 25250 freemsg(first_mp); 25251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25252 ip2dbg(("ip_wput_local: discard broadcast\n")); 25253 return; 25254 } 25255 25256 if (mp->b_datap->db_type == M_DATA) { 25257 /* 25258 * M_DATA mblk, so init mblk (chain) for no struio(). 25259 */ 25260 mblk_t *mp1 = mp; 25261 25262 do { 25263 mp1->b_datap->db_struioflag = 0; 25264 } while ((mp1 = mp1->b_cont) != NULL); 25265 } 25266 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25267 <= mp->b_wptr); 25268 ip_fanout_tcp(q, first_mp, ill, ipha, 25269 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25270 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25271 mctl_present, B_FALSE, zoneid); 25272 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25273 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25274 return; 25275 } 25276 case IPPROTO_SCTP: 25277 { 25278 uint32_t ports; 25279 25280 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25281 ip_fanout_sctp(first_mp, ill, ipha, ports, 25282 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25283 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25284 return; 25285 } 25286 25287 default: 25288 break; 25289 } 25290 /* 25291 * Find a client for some other protocol. We give 25292 * copies to multiple clients, if more than one is 25293 * bound. 25294 */ 25295 ip_fanout_proto(q, first_mp, ill, ipha, 25296 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25297 mctl_present, B_FALSE, ill, zoneid); 25298 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25299 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25300 #undef rptr 25301 } 25302 25303 /* 25304 * Update any source route, record route, or timestamp options. 25305 * Check that we are at end of strict source route. 25306 * The options have been sanity checked by ip_wput_options(). 25307 */ 25308 static void 25309 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25310 { 25311 ipoptp_t opts; 25312 uchar_t *opt; 25313 uint8_t optval; 25314 uint8_t optlen; 25315 ipaddr_t dst; 25316 uint32_t ts; 25317 ire_t *ire; 25318 timestruc_t now; 25319 25320 ip2dbg(("ip_wput_local_options\n")); 25321 for (optval = ipoptp_first(&opts, ipha); 25322 optval != IPOPT_EOL; 25323 optval = ipoptp_next(&opts)) { 25324 opt = opts.ipoptp_cur; 25325 optlen = opts.ipoptp_len; 25326 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25327 switch (optval) { 25328 uint32_t off; 25329 case IPOPT_SSRR: 25330 case IPOPT_LSRR: 25331 off = opt[IPOPT_OFFSET]; 25332 off--; 25333 if (optlen < IP_ADDR_LEN || 25334 off > optlen - IP_ADDR_LEN) { 25335 /* End of source route */ 25336 break; 25337 } 25338 /* 25339 * This will only happen if two consecutive entries 25340 * in the source route contains our address or if 25341 * it is a packet with a loose source route which 25342 * reaches us before consuming the whole source route 25343 */ 25344 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25345 if (optval == IPOPT_SSRR) { 25346 return; 25347 } 25348 /* 25349 * Hack: instead of dropping the packet truncate the 25350 * source route to what has been used by filling the 25351 * rest with IPOPT_NOP. 25352 */ 25353 opt[IPOPT_OLEN] = (uint8_t)off; 25354 while (off < optlen) { 25355 opt[off++] = IPOPT_NOP; 25356 } 25357 break; 25358 case IPOPT_RR: 25359 off = opt[IPOPT_OFFSET]; 25360 off--; 25361 if (optlen < IP_ADDR_LEN || 25362 off > optlen - IP_ADDR_LEN) { 25363 /* No more room - ignore */ 25364 ip1dbg(( 25365 "ip_wput_forward_options: end of RR\n")); 25366 break; 25367 } 25368 dst = htonl(INADDR_LOOPBACK); 25369 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25370 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25371 break; 25372 case IPOPT_TS: 25373 /* Insert timestamp if there is romm */ 25374 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25375 case IPOPT_TS_TSONLY: 25376 off = IPOPT_TS_TIMELEN; 25377 break; 25378 case IPOPT_TS_PRESPEC: 25379 case IPOPT_TS_PRESPEC_RFC791: 25380 /* Verify that the address matched */ 25381 off = opt[IPOPT_OFFSET] - 1; 25382 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25383 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25384 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25385 ipst); 25386 if (ire == NULL) { 25387 /* Not for us */ 25388 break; 25389 } 25390 ire_refrele(ire); 25391 /* FALLTHRU */ 25392 case IPOPT_TS_TSANDADDR: 25393 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25394 break; 25395 default: 25396 /* 25397 * ip_*put_options should have already 25398 * dropped this packet. 25399 */ 25400 cmn_err(CE_PANIC, "ip_wput_local_options: " 25401 "unknown IT - bug in ip_wput_options?\n"); 25402 return; /* Keep "lint" happy */ 25403 } 25404 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25405 /* Increase overflow counter */ 25406 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25407 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25408 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25409 (off << 4); 25410 break; 25411 } 25412 off = opt[IPOPT_OFFSET] - 1; 25413 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25414 case IPOPT_TS_PRESPEC: 25415 case IPOPT_TS_PRESPEC_RFC791: 25416 case IPOPT_TS_TSANDADDR: 25417 dst = htonl(INADDR_LOOPBACK); 25418 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25419 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25420 /* FALLTHRU */ 25421 case IPOPT_TS_TSONLY: 25422 off = opt[IPOPT_OFFSET] - 1; 25423 /* Compute # of milliseconds since midnight */ 25424 gethrestime(&now); 25425 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25426 now.tv_nsec / (NANOSEC / MILLISEC); 25427 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25428 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25429 break; 25430 } 25431 break; 25432 } 25433 } 25434 } 25435 25436 /* 25437 * Send out a multicast packet on interface ipif. 25438 * The sender does not have an conn. 25439 * Caller verifies that this isn't a PHYI_LOOPBACK. 25440 */ 25441 void 25442 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25443 { 25444 ipha_t *ipha; 25445 ire_t *ire; 25446 ipaddr_t dst; 25447 mblk_t *first_mp; 25448 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25449 25450 /* igmp_sendpkt always allocates a ipsec_out_t */ 25451 ASSERT(mp->b_datap->db_type == M_CTL); 25452 ASSERT(!ipif->ipif_isv6); 25453 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25454 25455 first_mp = mp; 25456 mp = first_mp->b_cont; 25457 ASSERT(mp->b_datap->db_type == M_DATA); 25458 ipha = (ipha_t *)mp->b_rptr; 25459 25460 /* 25461 * Find an IRE which matches the destination and the outgoing 25462 * queue (i.e. the outgoing interface.) 25463 */ 25464 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25465 dst = ipif->ipif_pp_dst_addr; 25466 else 25467 dst = ipha->ipha_dst; 25468 /* 25469 * The source address has already been initialized by the 25470 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25471 * be sufficient rather than MATCH_IRE_IPIF. 25472 * 25473 * This function is used for sending IGMP packets. For IPMP, 25474 * we sidestep IGMP snooping issues by sending all multicast 25475 * traffic on a single interface in the IPMP group. 25476 */ 25477 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25478 MATCH_IRE_ILL, ipst); 25479 if (!ire) { 25480 /* 25481 * Mark this packet to make it be delivered to 25482 * ip_wput_ire after the new ire has been 25483 * created. 25484 */ 25485 mp->b_prev = NULL; 25486 mp->b_next = NULL; 25487 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25488 zoneid, &zero_info); 25489 return; 25490 } 25491 25492 /* 25493 * Honor the RTF_SETSRC flag; this is the only case 25494 * where we force this addr whatever the current src addr is, 25495 * because this address is set by igmp_sendpkt(), and 25496 * cannot be specified by any user. 25497 */ 25498 if (ire->ire_flags & RTF_SETSRC) { 25499 ipha->ipha_src = ire->ire_src_addr; 25500 } 25501 25502 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25503 } 25504 25505 /* 25506 * NOTE : This function does not ire_refrele the ire argument passed in. 25507 * 25508 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25509 * failure. The nce_fp_mp can vanish any time in the case of 25510 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25511 * the ire_lock to access the nce_fp_mp in this case. 25512 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25513 * prepending a fastpath message IPQoS processing must precede it, we also set 25514 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25515 * (IPQoS might have set the b_band for CoS marking). 25516 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25517 * must follow it so that IPQoS can mark the dl_priority field for CoS 25518 * marking, if needed. 25519 */ 25520 static mblk_t * 25521 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25522 uint32_t ill_index, ipha_t **iphap) 25523 { 25524 uint_t hlen; 25525 ipha_t *ipha; 25526 mblk_t *mp1; 25527 boolean_t qos_done = B_FALSE; 25528 uchar_t *ll_hdr; 25529 ip_stack_t *ipst = ire->ire_ipst; 25530 25531 #define rptr ((uchar_t *)ipha) 25532 25533 ipha = (ipha_t *)mp->b_rptr; 25534 hlen = 0; 25535 LOCK_IRE_FP_MP(ire); 25536 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25537 ASSERT(DB_TYPE(mp1) == M_DATA); 25538 /* Initiate IPPF processing */ 25539 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25540 UNLOCK_IRE_FP_MP(ire); 25541 ip_process(proc, &mp, ill_index); 25542 if (mp == NULL) 25543 return (NULL); 25544 25545 ipha = (ipha_t *)mp->b_rptr; 25546 LOCK_IRE_FP_MP(ire); 25547 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25548 qos_done = B_TRUE; 25549 goto no_fp_mp; 25550 } 25551 ASSERT(DB_TYPE(mp1) == M_DATA); 25552 } 25553 hlen = MBLKL(mp1); 25554 /* 25555 * Check if we have enough room to prepend fastpath 25556 * header 25557 */ 25558 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25559 ll_hdr = rptr - hlen; 25560 bcopy(mp1->b_rptr, ll_hdr, hlen); 25561 /* 25562 * Set the b_rptr to the start of the link layer 25563 * header 25564 */ 25565 mp->b_rptr = ll_hdr; 25566 mp1 = mp; 25567 } else { 25568 mp1 = copyb(mp1); 25569 if (mp1 == NULL) 25570 goto unlock_err; 25571 mp1->b_band = mp->b_band; 25572 mp1->b_cont = mp; 25573 /* 25574 * XXX disable ICK_VALID and compute checksum 25575 * here; can happen if nce_fp_mp changes and 25576 * it can't be copied now due to insufficient 25577 * space. (unlikely, fp mp can change, but it 25578 * does not increase in length) 25579 */ 25580 } 25581 UNLOCK_IRE_FP_MP(ire); 25582 } else { 25583 no_fp_mp: 25584 mp1 = copyb(ire->ire_nce->nce_res_mp); 25585 if (mp1 == NULL) { 25586 unlock_err: 25587 UNLOCK_IRE_FP_MP(ire); 25588 freemsg(mp); 25589 return (NULL); 25590 } 25591 UNLOCK_IRE_FP_MP(ire); 25592 mp1->b_cont = mp; 25593 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25594 ip_process(proc, &mp1, ill_index); 25595 if (mp1 == NULL) 25596 return (NULL); 25597 25598 if (mp1->b_cont == NULL) 25599 ipha = NULL; 25600 else 25601 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25602 } 25603 } 25604 25605 *iphap = ipha; 25606 return (mp1); 25607 #undef rptr 25608 } 25609 25610 /* 25611 * Finish the outbound IPsec processing for an IPv6 packet. This function 25612 * is called from ipsec_out_process() if the IPsec packet was processed 25613 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25614 * asynchronously. 25615 */ 25616 void 25617 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25618 ire_t *ire_arg) 25619 { 25620 in6_addr_t *v6dstp; 25621 ire_t *ire; 25622 mblk_t *mp; 25623 ip6_t *ip6h1; 25624 uint_t ill_index; 25625 ipsec_out_t *io; 25626 boolean_t hwaccel; 25627 uint32_t flags = IP6_NO_IPPOLICY; 25628 int match_flags; 25629 zoneid_t zoneid; 25630 boolean_t ill_need_rele = B_FALSE; 25631 boolean_t ire_need_rele = B_FALSE; 25632 ip_stack_t *ipst; 25633 25634 mp = ipsec_mp->b_cont; 25635 ip6h1 = (ip6_t *)mp->b_rptr; 25636 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25637 ASSERT(io->ipsec_out_ns != NULL); 25638 ipst = io->ipsec_out_ns->netstack_ip; 25639 ill_index = io->ipsec_out_ill_index; 25640 if (io->ipsec_out_reachable) { 25641 flags |= IPV6_REACHABILITY_CONFIRMATION; 25642 } 25643 hwaccel = io->ipsec_out_accelerated; 25644 zoneid = io->ipsec_out_zoneid; 25645 ASSERT(zoneid != ALL_ZONES); 25646 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25647 /* Multicast addresses should have non-zero ill_index. */ 25648 v6dstp = &ip6h->ip6_dst; 25649 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25650 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25651 25652 if (ill == NULL && ill_index != 0) { 25653 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25654 /* Failure case frees things for us. */ 25655 if (ill == NULL) 25656 return; 25657 25658 ill_need_rele = B_TRUE; 25659 } 25660 ASSERT(mp != NULL); 25661 25662 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25663 boolean_t unspec_src; 25664 ipif_t *ipif; 25665 25666 /* 25667 * Use the ill_index to get the right ill. 25668 */ 25669 unspec_src = io->ipsec_out_unspec_src; 25670 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25671 if (ipif == NULL) { 25672 if (ill_need_rele) 25673 ill_refrele(ill); 25674 freemsg(ipsec_mp); 25675 return; 25676 } 25677 25678 if (ire_arg != NULL) { 25679 ire = ire_arg; 25680 } else { 25681 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25682 zoneid, msg_getlabel(mp), match_flags, ipst); 25683 ire_need_rele = B_TRUE; 25684 } 25685 if (ire != NULL) { 25686 ipif_refrele(ipif); 25687 /* 25688 * XXX Do the multicast forwarding now, as the IPsec 25689 * processing has been done. 25690 */ 25691 goto send; 25692 } 25693 25694 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25695 mp->b_prev = NULL; 25696 mp->b_next = NULL; 25697 25698 /* 25699 * If the IPsec packet was processed asynchronously, 25700 * drop it now. 25701 */ 25702 if (q == NULL) { 25703 if (ill_need_rele) 25704 ill_refrele(ill); 25705 freemsg(ipsec_mp); 25706 return; 25707 } 25708 25709 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25710 unspec_src, zoneid); 25711 ipif_refrele(ipif); 25712 } else { 25713 if (ire_arg != NULL) { 25714 ire = ire_arg; 25715 } else { 25716 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25717 ire_need_rele = B_TRUE; 25718 } 25719 if (ire != NULL) 25720 goto send; 25721 /* 25722 * ire disappeared underneath. 25723 * 25724 * What we need to do here is the ip_newroute 25725 * logic to get the ire without doing the IPsec 25726 * processing. Follow the same old path. But this 25727 * time, ip_wput or ire_add_then_send will call us 25728 * directly as all the IPsec operations are done. 25729 */ 25730 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25731 mp->b_prev = NULL; 25732 mp->b_next = NULL; 25733 25734 /* 25735 * If the IPsec packet was processed asynchronously, 25736 * drop it now. 25737 */ 25738 if (q == NULL) { 25739 if (ill_need_rele) 25740 ill_refrele(ill); 25741 freemsg(ipsec_mp); 25742 return; 25743 } 25744 25745 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25746 zoneid, ipst); 25747 } 25748 if (ill != NULL && ill_need_rele) 25749 ill_refrele(ill); 25750 return; 25751 send: 25752 if (ill != NULL && ill_need_rele) 25753 ill_refrele(ill); 25754 25755 /* Local delivery */ 25756 if (ire->ire_stq == NULL) { 25757 ill_t *out_ill; 25758 ASSERT(q != NULL); 25759 25760 /* PFHooks: LOOPBACK_OUT */ 25761 out_ill = ire_to_ill(ire); 25762 25763 /* 25764 * DTrace this as ip:::send. A blocked packet will fire the 25765 * send probe, but not the receive probe. 25766 */ 25767 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25768 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25769 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25770 25771 DTRACE_PROBE4(ip6__loopback__out__start, 25772 ill_t *, NULL, ill_t *, out_ill, 25773 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25774 25775 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25776 ipst->ips_ipv6firewall_loopback_out, 25777 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25778 25779 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25780 25781 if (ipsec_mp != NULL) { 25782 ip_wput_local_v6(RD(q), out_ill, 25783 ip6h, ipsec_mp, ire, 0, zoneid); 25784 } 25785 if (ire_need_rele) 25786 ire_refrele(ire); 25787 return; 25788 } 25789 /* 25790 * Everything is done. Send it out on the wire. 25791 * We force the insertion of a fragment header using the 25792 * IPH_FRAG_HDR flag in two cases: 25793 * - after reception of an ICMPv6 "packet too big" message 25794 * with a MTU < 1280 (cf. RFC 2460 section 5) 25795 * - for multirouted IPv6 packets, so that the receiver can 25796 * discard duplicates according to their fragment identifier 25797 */ 25798 /* XXX fix flow control problems. */ 25799 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25800 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25801 if (hwaccel) { 25802 /* 25803 * hardware acceleration does not handle these 25804 * "slow path" cases. 25805 */ 25806 /* IPsec KSTATS: should bump bean counter here. */ 25807 if (ire_need_rele) 25808 ire_refrele(ire); 25809 freemsg(ipsec_mp); 25810 return; 25811 } 25812 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25813 (mp->b_cont ? msgdsize(mp) : 25814 mp->b_wptr - (uchar_t *)ip6h)) { 25815 /* IPsec KSTATS: should bump bean counter here. */ 25816 ip0dbg(("Packet length mismatch: %d, %ld\n", 25817 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25818 msgdsize(mp))); 25819 if (ire_need_rele) 25820 ire_refrele(ire); 25821 freemsg(ipsec_mp); 25822 return; 25823 } 25824 ASSERT(mp->b_prev == NULL); 25825 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25826 ntohs(ip6h->ip6_plen) + 25827 IPV6_HDR_LEN, ire->ire_max_frag)); 25828 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25829 ire->ire_max_frag); 25830 } else { 25831 UPDATE_OB_PKT_COUNT(ire); 25832 ire->ire_last_used_time = lbolt; 25833 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25834 } 25835 if (ire_need_rele) 25836 ire_refrele(ire); 25837 freeb(ipsec_mp); 25838 } 25839 25840 void 25841 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25842 { 25843 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25844 da_ipsec_t *hada; /* data attributes */ 25845 ill_t *ill = (ill_t *)q->q_ptr; 25846 25847 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25848 25849 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25850 /* IPsec KSTATS: Bump lose counter here! */ 25851 freemsg(mp); 25852 return; 25853 } 25854 25855 /* 25856 * It's an IPsec packet that must be 25857 * accelerated by the Provider, and the 25858 * outbound ill is IPsec acceleration capable. 25859 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25860 * to the ill. 25861 * IPsec KSTATS: should bump packet counter here. 25862 */ 25863 25864 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25865 if (hada_mp == NULL) { 25866 /* IPsec KSTATS: should bump packet counter here. */ 25867 freemsg(mp); 25868 return; 25869 } 25870 25871 hada_mp->b_datap->db_type = M_CTL; 25872 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25873 hada_mp->b_cont = mp; 25874 25875 hada = (da_ipsec_t *)hada_mp->b_rptr; 25876 bzero(hada, sizeof (da_ipsec_t)); 25877 hada->da_type = IPHADA_M_CTL; 25878 25879 putnext(q, hada_mp); 25880 } 25881 25882 /* 25883 * Finish the outbound IPsec processing. This function is called from 25884 * ipsec_out_process() if the IPsec packet was processed 25885 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25886 * asynchronously. 25887 */ 25888 void 25889 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25890 ire_t *ire_arg) 25891 { 25892 uint32_t v_hlen_tos_len; 25893 ipaddr_t dst; 25894 ipif_t *ipif = NULL; 25895 ire_t *ire; 25896 ire_t *ire1 = NULL; 25897 mblk_t *next_mp = NULL; 25898 uint32_t max_frag; 25899 boolean_t multirt_send = B_FALSE; 25900 mblk_t *mp; 25901 ipha_t *ipha1; 25902 uint_t ill_index; 25903 ipsec_out_t *io; 25904 int match_flags; 25905 irb_t *irb = NULL; 25906 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25907 zoneid_t zoneid; 25908 ipxmit_state_t pktxmit_state; 25909 ip_stack_t *ipst; 25910 25911 #ifdef _BIG_ENDIAN 25912 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25913 #else 25914 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25915 #endif 25916 25917 mp = ipsec_mp->b_cont; 25918 ipha1 = (ipha_t *)mp->b_rptr; 25919 ASSERT(mp != NULL); 25920 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25921 dst = ipha->ipha_dst; 25922 25923 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25924 ill_index = io->ipsec_out_ill_index; 25925 zoneid = io->ipsec_out_zoneid; 25926 ASSERT(zoneid != ALL_ZONES); 25927 ipst = io->ipsec_out_ns->netstack_ip; 25928 ASSERT(io->ipsec_out_ns != NULL); 25929 25930 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25931 if (ill == NULL && ill_index != 0) { 25932 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25933 /* Failure case frees things for us. */ 25934 if (ill == NULL) 25935 return; 25936 25937 ill_need_rele = B_TRUE; 25938 } 25939 25940 if (CLASSD(dst)) { 25941 boolean_t conn_dontroute; 25942 /* 25943 * Use the ill_index to get the right ipif. 25944 */ 25945 conn_dontroute = io->ipsec_out_dontroute; 25946 if (ill_index == 0) 25947 ipif = ipif_lookup_group(dst, zoneid, ipst); 25948 else 25949 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25950 if (ipif == NULL) { 25951 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25952 " multicast\n")); 25953 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25954 freemsg(ipsec_mp); 25955 goto done; 25956 } 25957 /* 25958 * ipha_src has already been intialized with the 25959 * value of the ipif in ip_wput. All we need now is 25960 * an ire to send this downstream. 25961 */ 25962 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25963 msg_getlabel(mp), match_flags, ipst); 25964 if (ire != NULL) { 25965 ill_t *ill1; 25966 /* 25967 * Do the multicast forwarding now, as the IPsec 25968 * processing has been done. 25969 */ 25970 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25971 (ill1 = ire_to_ill(ire))) { 25972 if (ip_mforward(ill1, ipha, mp)) { 25973 freemsg(ipsec_mp); 25974 ip1dbg(("ip_wput_ipsec_out: mforward " 25975 "failed\n")); 25976 ire_refrele(ire); 25977 goto done; 25978 } 25979 } 25980 goto send; 25981 } 25982 25983 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25984 mp->b_prev = NULL; 25985 mp->b_next = NULL; 25986 25987 /* 25988 * If the IPsec packet was processed asynchronously, 25989 * drop it now. 25990 */ 25991 if (q == NULL) { 25992 freemsg(ipsec_mp); 25993 goto done; 25994 } 25995 25996 /* 25997 * We may be using a wrong ipif to create the ire. 25998 * But it is okay as the source address is assigned 25999 * for the packet already. Next outbound packet would 26000 * create the IRE with the right IPIF in ip_wput. 26001 * 26002 * Also handle RTF_MULTIRT routes. 26003 */ 26004 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26005 zoneid, &zero_info); 26006 } else { 26007 if (ire_arg != NULL) { 26008 ire = ire_arg; 26009 ire_need_rele = B_FALSE; 26010 } else { 26011 ire = ire_cache_lookup(dst, zoneid, 26012 msg_getlabel(mp), ipst); 26013 } 26014 if (ire != NULL) { 26015 goto send; 26016 } 26017 26018 /* 26019 * ire disappeared underneath. 26020 * 26021 * What we need to do here is the ip_newroute 26022 * logic to get the ire without doing the IPsec 26023 * processing. Follow the same old path. But this 26024 * time, ip_wput or ire_add_then_put will call us 26025 * directly as all the IPsec operations are done. 26026 */ 26027 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26028 mp->b_prev = NULL; 26029 mp->b_next = NULL; 26030 26031 /* 26032 * If the IPsec packet was processed asynchronously, 26033 * drop it now. 26034 */ 26035 if (q == NULL) { 26036 freemsg(ipsec_mp); 26037 goto done; 26038 } 26039 26040 /* 26041 * Since we're going through ip_newroute() again, we 26042 * need to make sure we don't: 26043 * 26044 * 1.) Trigger the ASSERT() with the ipha_ident 26045 * overloading. 26046 * 2.) Redo transport-layer checksumming, since we've 26047 * already done all that to get this far. 26048 * 26049 * The easiest way not do either of the above is to set 26050 * the ipha_ident field to IP_HDR_INCLUDED. 26051 */ 26052 ipha->ipha_ident = IP_HDR_INCLUDED; 26053 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26054 zoneid, ipst); 26055 } 26056 goto done; 26057 send: 26058 if (ire->ire_stq == NULL) { 26059 ill_t *out_ill; 26060 /* 26061 * Loopbacks go through ip_wput_local except for one case. 26062 * We come here if we generate a icmp_frag_needed message 26063 * after IPsec processing is over. When this function calls 26064 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26065 * icmp_frag_needed. The message generated comes back here 26066 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26067 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26068 * source address as it is usually set in ip_wput_ire. As 26069 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26070 * and we end up here. We can't enter ip_wput_ire once the 26071 * IPsec processing is over and hence we need to do it here. 26072 */ 26073 ASSERT(q != NULL); 26074 UPDATE_OB_PKT_COUNT(ire); 26075 ire->ire_last_used_time = lbolt; 26076 if (ipha->ipha_src == 0) 26077 ipha->ipha_src = ire->ire_src_addr; 26078 26079 /* PFHooks: LOOPBACK_OUT */ 26080 out_ill = ire_to_ill(ire); 26081 26082 /* 26083 * DTrace this as ip:::send. A blocked packet will fire the 26084 * send probe, but not the receive probe. 26085 */ 26086 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26087 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26088 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26089 26090 DTRACE_PROBE4(ip4__loopback__out__start, 26091 ill_t *, NULL, ill_t *, out_ill, 26092 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26093 26094 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26095 ipst->ips_ipv4firewall_loopback_out, 26096 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26097 26098 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26099 26100 if (ipsec_mp != NULL) 26101 ip_wput_local(RD(q), out_ill, 26102 ipha, ipsec_mp, ire, 0, zoneid); 26103 if (ire_need_rele) 26104 ire_refrele(ire); 26105 goto done; 26106 } 26107 26108 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26109 /* 26110 * We are through with IPsec processing. 26111 * Fragment this and send it on the wire. 26112 */ 26113 if (io->ipsec_out_accelerated) { 26114 /* 26115 * The packet has been accelerated but must 26116 * be fragmented. This should not happen 26117 * since AH and ESP must not accelerate 26118 * packets that need fragmentation, however 26119 * the configuration could have changed 26120 * since the AH or ESP processing. 26121 * Drop packet. 26122 * IPsec KSTATS: bump bean counter here. 26123 */ 26124 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26125 "fragmented accelerated packet!\n")); 26126 freemsg(ipsec_mp); 26127 } else { 26128 ip_wput_ire_fragmentit(ipsec_mp, ire, 26129 zoneid, ipst, NULL); 26130 } 26131 if (ire_need_rele) 26132 ire_refrele(ire); 26133 goto done; 26134 } 26135 26136 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26137 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26138 (void *)ire->ire_ipif, (void *)ipif)); 26139 26140 /* 26141 * Multiroute the secured packet. 26142 */ 26143 if (ire->ire_flags & RTF_MULTIRT) { 26144 ire_t *first_ire; 26145 irb = ire->ire_bucket; 26146 ASSERT(irb != NULL); 26147 /* 26148 * This ire has been looked up as the one that 26149 * goes through the given ipif; 26150 * make sure we do not omit any other multiroute ire 26151 * that may be present in the bucket before this one. 26152 */ 26153 IRB_REFHOLD(irb); 26154 for (first_ire = irb->irb_ire; 26155 first_ire != NULL; 26156 first_ire = first_ire->ire_next) { 26157 if ((first_ire->ire_flags & RTF_MULTIRT) && 26158 (first_ire->ire_addr == ire->ire_addr) && 26159 !(first_ire->ire_marks & 26160 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26161 break; 26162 } 26163 26164 if ((first_ire != NULL) && (first_ire != ire)) { 26165 /* 26166 * Don't change the ire if the packet must 26167 * be fragmented if sent via this new one. 26168 */ 26169 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26170 IRE_REFHOLD(first_ire); 26171 if (ire_need_rele) 26172 ire_refrele(ire); 26173 else 26174 ire_need_rele = B_TRUE; 26175 ire = first_ire; 26176 } 26177 } 26178 IRB_REFRELE(irb); 26179 26180 multirt_send = B_TRUE; 26181 max_frag = ire->ire_max_frag; 26182 } 26183 26184 /* 26185 * In most cases, the emission loop below is entered only once. 26186 * Only in the case where the ire holds the RTF_MULTIRT 26187 * flag, we loop to process all RTF_MULTIRT ires in the 26188 * bucket, and send the packet through all crossed 26189 * RTF_MULTIRT routes. 26190 */ 26191 do { 26192 if (multirt_send) { 26193 /* 26194 * ire1 holds here the next ire to process in the 26195 * bucket. If multirouting is expected, 26196 * any non-RTF_MULTIRT ire that has the 26197 * right destination address is ignored. 26198 */ 26199 ASSERT(irb != NULL); 26200 IRB_REFHOLD(irb); 26201 for (ire1 = ire->ire_next; 26202 ire1 != NULL; 26203 ire1 = ire1->ire_next) { 26204 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26205 continue; 26206 if (ire1->ire_addr != ire->ire_addr) 26207 continue; 26208 if (ire1->ire_marks & 26209 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26210 continue; 26211 /* No loopback here */ 26212 if (ire1->ire_stq == NULL) 26213 continue; 26214 /* 26215 * Ensure we do not exceed the MTU 26216 * of the next route. 26217 */ 26218 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26219 ip_multirt_bad_mtu(ire1, max_frag); 26220 continue; 26221 } 26222 26223 IRE_REFHOLD(ire1); 26224 break; 26225 } 26226 IRB_REFRELE(irb); 26227 if (ire1 != NULL) { 26228 /* 26229 * We are in a multiple send case, need to 26230 * make a copy of the packet. 26231 */ 26232 next_mp = copymsg(ipsec_mp); 26233 if (next_mp == NULL) { 26234 ire_refrele(ire1); 26235 ire1 = NULL; 26236 } 26237 } 26238 } 26239 /* 26240 * Everything is done. Send it out on the wire 26241 * 26242 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26243 * either send it on the wire or, in the case of 26244 * HW acceleration, call ipsec_hw_putnext. 26245 */ 26246 if (ire->ire_nce && 26247 ire->ire_nce->nce_state != ND_REACHABLE) { 26248 DTRACE_PROBE2(ip__wput__ipsec__bail, 26249 (ire_t *), ire, (mblk_t *), ipsec_mp); 26250 /* 26251 * If ire's link-layer is unresolved (this 26252 * would only happen if the incomplete ire 26253 * was added to cachetable via forwarding path) 26254 * don't bother going to ip_xmit_v4. Just drop the 26255 * packet. 26256 * There is a slight risk here, in that, if we 26257 * have the forwarding path create an incomplete 26258 * IRE, then until the IRE is completed, any 26259 * transmitted IPsec packets will be dropped 26260 * instead of being queued waiting for resolution. 26261 * 26262 * But the likelihood of a forwarding packet and a wput 26263 * packet sending to the same dst at the same time 26264 * and there not yet be an ARP entry for it is small. 26265 * Furthermore, if this actually happens, it might 26266 * be likely that wput would generate multiple 26267 * packets (and forwarding would also have a train 26268 * of packets) for that destination. If this is 26269 * the case, some of them would have been dropped 26270 * anyway, since ARP only queues a few packets while 26271 * waiting for resolution 26272 * 26273 * NOTE: We should really call ip_xmit_v4, 26274 * and let it queue the packet and send the 26275 * ARP query and have ARP come back thus: 26276 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26277 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26278 * hw accel work. But it's too complex to get 26279 * the IPsec hw acceleration approach to fit 26280 * well with ip_xmit_v4 doing ARP without 26281 * doing IPsec simplification. For now, we just 26282 * poke ip_xmit_v4 to trigger the arp resolve, so 26283 * that we can continue with the send on the next 26284 * attempt. 26285 * 26286 * XXX THis should be revisited, when 26287 * the IPsec/IP interaction is cleaned up 26288 */ 26289 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26290 " - dropping packet\n")); 26291 freemsg(ipsec_mp); 26292 /* 26293 * Call ip_xmit_v4() to trigger ARP query 26294 * in case the nce_state is ND_INITIAL 26295 */ 26296 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26297 goto drop_pkt; 26298 } 26299 26300 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26301 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26302 mblk_t *, ipsec_mp); 26303 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26304 ipst->ips_ipv4firewall_physical_out, NULL, 26305 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26306 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26307 if (ipsec_mp == NULL) 26308 goto drop_pkt; 26309 26310 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26311 pktxmit_state = ip_xmit_v4(mp, ire, 26312 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26313 26314 if ((pktxmit_state == SEND_FAILED) || 26315 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26316 26317 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26318 drop_pkt: 26319 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26320 ipIfStatsOutDiscards); 26321 if (ire_need_rele) 26322 ire_refrele(ire); 26323 if (ire1 != NULL) { 26324 ire_refrele(ire1); 26325 freemsg(next_mp); 26326 } 26327 goto done; 26328 } 26329 26330 freeb(ipsec_mp); 26331 if (ire_need_rele) 26332 ire_refrele(ire); 26333 26334 if (ire1 != NULL) { 26335 ire = ire1; 26336 ire_need_rele = B_TRUE; 26337 ASSERT(next_mp); 26338 ipsec_mp = next_mp; 26339 mp = ipsec_mp->b_cont; 26340 ire1 = NULL; 26341 next_mp = NULL; 26342 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26343 } else { 26344 multirt_send = B_FALSE; 26345 } 26346 } while (multirt_send); 26347 done: 26348 if (ill != NULL && ill_need_rele) 26349 ill_refrele(ill); 26350 if (ipif != NULL) 26351 ipif_refrele(ipif); 26352 } 26353 26354 /* 26355 * Get the ill corresponding to the specified ire, and compare its 26356 * capabilities with the protocol and algorithms specified by the 26357 * the SA obtained from ipsec_out. If they match, annotate the 26358 * ipsec_out structure to indicate that the packet needs acceleration. 26359 * 26360 * 26361 * A packet is eligible for outbound hardware acceleration if the 26362 * following conditions are satisfied: 26363 * 26364 * 1. the packet will not be fragmented 26365 * 2. the provider supports the algorithm 26366 * 3. there is no pending control message being exchanged 26367 * 4. snoop is not attached 26368 * 5. the destination address is not a broadcast or multicast address. 26369 * 26370 * Rationale: 26371 * - Hardware drivers do not support fragmentation with 26372 * the current interface. 26373 * - snoop, multicast, and broadcast may result in exposure of 26374 * a cleartext datagram. 26375 * We check all five of these conditions here. 26376 * 26377 * XXX would like to nuke "ire_t *" parameter here; problem is that 26378 * IRE is only way to figure out if a v4 address is a broadcast and 26379 * thus ineligible for acceleration... 26380 */ 26381 static void 26382 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26383 { 26384 ipsec_out_t *io; 26385 mblk_t *data_mp; 26386 uint_t plen, overhead; 26387 ip_stack_t *ipst; 26388 26389 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26390 return; 26391 26392 if (ill == NULL) 26393 return; 26394 ipst = ill->ill_ipst; 26395 /* 26396 * Destination address is a broadcast or multicast. Punt. 26397 */ 26398 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26399 IRE_LOCAL))) 26400 return; 26401 26402 data_mp = ipsec_mp->b_cont; 26403 26404 if (ill->ill_isv6) { 26405 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26406 26407 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26408 return; 26409 26410 plen = ip6h->ip6_plen; 26411 } else { 26412 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26413 26414 if (CLASSD(ipha->ipha_dst)) 26415 return; 26416 26417 plen = ipha->ipha_length; 26418 } 26419 /* 26420 * Is there a pending DLPI control message being exchanged 26421 * between IP/IPsec and the DLS Provider? If there is, it 26422 * could be a SADB update, and the state of the DLS Provider 26423 * SADB might not be in sync with the SADB maintained by 26424 * IPsec. To avoid dropping packets or using the wrong keying 26425 * material, we do not accelerate this packet. 26426 */ 26427 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26428 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26429 "ill_dlpi_pending! don't accelerate packet\n")); 26430 return; 26431 } 26432 26433 /* 26434 * Is the Provider in promiscous mode? If it does, we don't 26435 * accelerate the packet since it will bounce back up to the 26436 * listeners in the clear. 26437 */ 26438 if (ill->ill_promisc_on_phys) { 26439 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26440 "ill in promiscous mode, don't accelerate packet\n")); 26441 return; 26442 } 26443 26444 /* 26445 * Will the packet require fragmentation? 26446 */ 26447 26448 /* 26449 * IPsec ESP note: this is a pessimistic estimate, but the same 26450 * as is used elsewhere. 26451 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26452 * + 2-byte trailer 26453 */ 26454 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26455 IPSEC_BASE_ESP_HDR_SIZE(sa); 26456 26457 if ((plen + overhead) > ill->ill_max_mtu) 26458 return; 26459 26460 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26461 26462 /* 26463 * Can the ill accelerate this IPsec protocol and algorithm 26464 * specified by the SA? 26465 */ 26466 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26467 ill->ill_isv6, sa, ipst->ips_netstack)) { 26468 return; 26469 } 26470 26471 /* 26472 * Tell AH or ESP that the outbound ill is capable of 26473 * accelerating this packet. 26474 */ 26475 io->ipsec_out_is_capab_ill = B_TRUE; 26476 } 26477 26478 /* 26479 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26480 * 26481 * If this function returns B_TRUE, the requested SA's have been filled 26482 * into the ipsec_out_*_sa pointers. 26483 * 26484 * If the function returns B_FALSE, the packet has been "consumed", most 26485 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26486 * 26487 * The SA references created by the protocol-specific "select" 26488 * function will be released when the ipsec_mp is freed, thanks to the 26489 * ipsec_out_free destructor -- see spd.c. 26490 */ 26491 static boolean_t 26492 ipsec_out_select_sa(mblk_t *ipsec_mp) 26493 { 26494 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26495 ipsec_out_t *io; 26496 ipsec_policy_t *pp; 26497 ipsec_action_t *ap; 26498 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26499 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26500 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26501 26502 if (!io->ipsec_out_secure) { 26503 /* 26504 * We came here by mistake. 26505 * Don't bother with ipsec processing 26506 * We should "discourage" this path in the future. 26507 */ 26508 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26509 return (B_FALSE); 26510 } 26511 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26512 ASSERT((io->ipsec_out_policy != NULL) || 26513 (io->ipsec_out_act != NULL)); 26514 26515 ASSERT(io->ipsec_out_failed == B_FALSE); 26516 26517 /* 26518 * IPsec processing has started. 26519 */ 26520 io->ipsec_out_proc_begin = B_TRUE; 26521 ap = io->ipsec_out_act; 26522 if (ap == NULL) { 26523 pp = io->ipsec_out_policy; 26524 ASSERT(pp != NULL); 26525 ap = pp->ipsp_act; 26526 ASSERT(ap != NULL); 26527 } 26528 26529 /* 26530 * We have an action. now, let's select SA's. 26531 * (In the future, we can cache this in the conn_t..) 26532 */ 26533 if (ap->ipa_want_esp) { 26534 if (io->ipsec_out_esp_sa == NULL) { 26535 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26536 IPPROTO_ESP); 26537 } 26538 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26539 } 26540 26541 if (ap->ipa_want_ah) { 26542 if (io->ipsec_out_ah_sa == NULL) { 26543 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26544 IPPROTO_AH); 26545 } 26546 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26547 /* 26548 * The ESP and AH processing order needs to be preserved 26549 * when both protocols are required (ESP should be applied 26550 * before AH for an outbound packet). Force an ESP ACQUIRE 26551 * when both ESP and AH are required, and an AH ACQUIRE 26552 * is needed. 26553 */ 26554 if (ap->ipa_want_esp && need_ah_acquire) 26555 need_esp_acquire = B_TRUE; 26556 } 26557 26558 /* 26559 * Send an ACQUIRE (extended, regular, or both) if we need one. 26560 * Release SAs that got referenced, but will not be used until we 26561 * acquire _all_ of the SAs we need. 26562 */ 26563 if (need_ah_acquire || need_esp_acquire) { 26564 if (io->ipsec_out_ah_sa != NULL) { 26565 IPSA_REFRELE(io->ipsec_out_ah_sa); 26566 io->ipsec_out_ah_sa = NULL; 26567 } 26568 if (io->ipsec_out_esp_sa != NULL) { 26569 IPSA_REFRELE(io->ipsec_out_esp_sa); 26570 io->ipsec_out_esp_sa = NULL; 26571 } 26572 26573 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26574 return (B_FALSE); 26575 } 26576 26577 return (B_TRUE); 26578 } 26579 26580 /* 26581 * Process an IPSEC_OUT message and see what you can 26582 * do with it. 26583 * IPQoS Notes: 26584 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26585 * IPsec. 26586 * XXX would like to nuke ire_t. 26587 * XXX ill_index better be "real" 26588 */ 26589 void 26590 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26591 { 26592 ipsec_out_t *io; 26593 ipsec_policy_t *pp; 26594 ipsec_action_t *ap; 26595 ipha_t *ipha; 26596 ip6_t *ip6h; 26597 mblk_t *mp; 26598 ill_t *ill; 26599 zoneid_t zoneid; 26600 ipsec_status_t ipsec_rc; 26601 boolean_t ill_need_rele = B_FALSE; 26602 ip_stack_t *ipst; 26603 ipsec_stack_t *ipss; 26604 26605 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26606 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26607 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26608 ipst = io->ipsec_out_ns->netstack_ip; 26609 mp = ipsec_mp->b_cont; 26610 26611 /* 26612 * Initiate IPPF processing. We do it here to account for packets 26613 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26614 * We can check for ipsec_out_proc_begin even for such packets, as 26615 * they will always be false (asserted below). 26616 */ 26617 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26618 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26619 io->ipsec_out_ill_index : ill_index); 26620 if (mp == NULL) { 26621 ip2dbg(("ipsec_out_process: packet dropped "\ 26622 "during IPPF processing\n")); 26623 freeb(ipsec_mp); 26624 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26625 return; 26626 } 26627 } 26628 26629 if (!io->ipsec_out_secure) { 26630 /* 26631 * We came here by mistake. 26632 * Don't bother with ipsec processing 26633 * Should "discourage" this path in the future. 26634 */ 26635 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26636 goto done; 26637 } 26638 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26639 ASSERT((io->ipsec_out_policy != NULL) || 26640 (io->ipsec_out_act != NULL)); 26641 ASSERT(io->ipsec_out_failed == B_FALSE); 26642 26643 ipss = ipst->ips_netstack->netstack_ipsec; 26644 if (!ipsec_loaded(ipss)) { 26645 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26646 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26647 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26648 } else { 26649 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26650 } 26651 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26652 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26653 &ipss->ipsec_dropper); 26654 return; 26655 } 26656 26657 /* 26658 * IPsec processing has started. 26659 */ 26660 io->ipsec_out_proc_begin = B_TRUE; 26661 ap = io->ipsec_out_act; 26662 if (ap == NULL) { 26663 pp = io->ipsec_out_policy; 26664 ASSERT(pp != NULL); 26665 ap = pp->ipsp_act; 26666 ASSERT(ap != NULL); 26667 } 26668 26669 /* 26670 * Save the outbound ill index. When the packet comes back 26671 * from IPsec, we make sure the ill hasn't changed or disappeared 26672 * before sending it the accelerated packet. 26673 */ 26674 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26675 ill = ire_to_ill(ire); 26676 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26677 } 26678 26679 /* 26680 * The order of processing is first insert a IP header if needed. 26681 * Then insert the ESP header and then the AH header. 26682 */ 26683 if ((io->ipsec_out_se_done == B_FALSE) && 26684 (ap->ipa_want_se)) { 26685 /* 26686 * First get the outer IP header before sending 26687 * it to ESP. 26688 */ 26689 ipha_t *oipha, *iipha; 26690 mblk_t *outer_mp, *inner_mp; 26691 26692 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26693 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26694 "ipsec_out_process: " 26695 "Self-Encapsulation failed: Out of memory\n"); 26696 freemsg(ipsec_mp); 26697 if (ill != NULL) { 26698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26699 } else { 26700 BUMP_MIB(&ipst->ips_ip_mib, 26701 ipIfStatsOutDiscards); 26702 } 26703 return; 26704 } 26705 inner_mp = ipsec_mp->b_cont; 26706 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26707 oipha = (ipha_t *)outer_mp->b_rptr; 26708 iipha = (ipha_t *)inner_mp->b_rptr; 26709 *oipha = *iipha; 26710 outer_mp->b_wptr += sizeof (ipha_t); 26711 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26712 sizeof (ipha_t)); 26713 oipha->ipha_protocol = IPPROTO_ENCAP; 26714 oipha->ipha_version_and_hdr_length = 26715 IP_SIMPLE_HDR_VERSION; 26716 oipha->ipha_hdr_checksum = 0; 26717 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26718 outer_mp->b_cont = inner_mp; 26719 ipsec_mp->b_cont = outer_mp; 26720 26721 io->ipsec_out_se_done = B_TRUE; 26722 io->ipsec_out_tunnel = B_TRUE; 26723 } 26724 26725 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26726 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26727 !ipsec_out_select_sa(ipsec_mp)) 26728 return; 26729 26730 /* 26731 * By now, we know what SA's to use. Toss over to ESP & AH 26732 * to do the heavy lifting. 26733 */ 26734 zoneid = io->ipsec_out_zoneid; 26735 ASSERT(zoneid != ALL_ZONES); 26736 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26737 ASSERT(io->ipsec_out_esp_sa != NULL); 26738 io->ipsec_out_esp_done = B_TRUE; 26739 /* 26740 * Note that since hw accel can only apply one transform, 26741 * not two, we skip hw accel for ESP if we also have AH 26742 * This is an design limitation of the interface 26743 * which should be revisited. 26744 */ 26745 ASSERT(ire != NULL); 26746 if (io->ipsec_out_ah_sa == NULL) { 26747 ill = (ill_t *)ire->ire_stq->q_ptr; 26748 ipsec_out_is_accelerated(ipsec_mp, 26749 io->ipsec_out_esp_sa, ill, ire); 26750 } 26751 26752 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26753 switch (ipsec_rc) { 26754 case IPSEC_STATUS_SUCCESS: 26755 break; 26756 case IPSEC_STATUS_FAILED: 26757 if (ill != NULL) { 26758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26759 } else { 26760 BUMP_MIB(&ipst->ips_ip_mib, 26761 ipIfStatsOutDiscards); 26762 } 26763 /* FALLTHRU */ 26764 case IPSEC_STATUS_PENDING: 26765 return; 26766 } 26767 } 26768 26769 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26770 ASSERT(io->ipsec_out_ah_sa != NULL); 26771 io->ipsec_out_ah_done = B_TRUE; 26772 if (ire == NULL) { 26773 int idx = io->ipsec_out_capab_ill_index; 26774 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26775 NULL, NULL, NULL, NULL, ipst); 26776 ill_need_rele = B_TRUE; 26777 } else { 26778 ill = (ill_t *)ire->ire_stq->q_ptr; 26779 } 26780 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26781 ire); 26782 26783 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26784 switch (ipsec_rc) { 26785 case IPSEC_STATUS_SUCCESS: 26786 break; 26787 case IPSEC_STATUS_FAILED: 26788 if (ill != NULL) { 26789 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26790 } else { 26791 BUMP_MIB(&ipst->ips_ip_mib, 26792 ipIfStatsOutDiscards); 26793 } 26794 /* FALLTHRU */ 26795 case IPSEC_STATUS_PENDING: 26796 if (ill != NULL && ill_need_rele) 26797 ill_refrele(ill); 26798 return; 26799 } 26800 } 26801 /* 26802 * We are done with IPsec processing. Send it over the wire. 26803 */ 26804 done: 26805 mp = ipsec_mp->b_cont; 26806 ipha = (ipha_t *)mp->b_rptr; 26807 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26808 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26809 ire); 26810 } else { 26811 ip6h = (ip6_t *)ipha; 26812 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26813 ire); 26814 } 26815 if (ill != NULL && ill_need_rele) 26816 ill_refrele(ill); 26817 } 26818 26819 /* ARGSUSED */ 26820 void 26821 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26822 { 26823 opt_restart_t *or; 26824 int err; 26825 conn_t *connp; 26826 cred_t *cr; 26827 26828 ASSERT(CONN_Q(q)); 26829 connp = Q_TO_CONN(q); 26830 26831 ASSERT(first_mp->b_datap->db_type == M_CTL); 26832 or = (opt_restart_t *)first_mp->b_rptr; 26833 /* 26834 * We checked for a db_credp the first time svr4_optcom_req 26835 * was called (from ip_wput_nondata). So we can just ASSERT here. 26836 */ 26837 cr = msg_getcred(first_mp, NULL); 26838 ASSERT(cr != NULL); 26839 26840 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26841 err = svr4_optcom_req(q, first_mp, cr, 26842 &ip_opt_obj, B_FALSE); 26843 } else { 26844 ASSERT(or->or_type == T_OPTMGMT_REQ); 26845 err = tpi_optcom_req(q, first_mp, cr, 26846 &ip_opt_obj, B_FALSE); 26847 } 26848 if (err != EINPROGRESS) { 26849 /* operation is done */ 26850 CONN_OPER_PENDING_DONE(connp); 26851 } 26852 } 26853 26854 /* 26855 * ioctls that go through a down/up sequence may need to wait for the down 26856 * to complete. This involves waiting for the ire and ipif refcnts to go down 26857 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26858 */ 26859 /* ARGSUSED */ 26860 void 26861 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26862 { 26863 struct iocblk *iocp; 26864 mblk_t *mp1; 26865 ip_ioctl_cmd_t *ipip; 26866 int err; 26867 sin_t *sin; 26868 struct lifreq *lifr; 26869 struct ifreq *ifr; 26870 26871 iocp = (struct iocblk *)mp->b_rptr; 26872 ASSERT(ipsq != NULL); 26873 /* Existence of mp1 verified in ip_wput_nondata */ 26874 mp1 = mp->b_cont->b_cont; 26875 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26876 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26877 /* 26878 * Special case where ipx_current_ipif is not set: 26879 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26880 * We are here as were not able to complete the operation in 26881 * ipif_set_values because we could not become exclusive on 26882 * the new ipsq. 26883 */ 26884 ill_t *ill = q->q_ptr; 26885 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26886 } 26887 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26888 26889 if (ipip->ipi_cmd_type == IF_CMD) { 26890 /* This a old style SIOC[GS]IF* command */ 26891 ifr = (struct ifreq *)mp1->b_rptr; 26892 sin = (sin_t *)&ifr->ifr_addr; 26893 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26894 /* This a new style SIOC[GS]LIF* command */ 26895 lifr = (struct lifreq *)mp1->b_rptr; 26896 sin = (sin_t *)&lifr->lifr_addr; 26897 } else { 26898 sin = NULL; 26899 } 26900 26901 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26902 q, mp, ipip, mp1->b_rptr); 26903 26904 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26905 } 26906 26907 /* 26908 * ioctl processing 26909 * 26910 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26911 * the ioctl command in the ioctl tables, determines the copyin data size 26912 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26913 * 26914 * ioctl processing then continues when the M_IOCDATA makes its way down to 26915 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26916 * associated 'conn' is refheld till the end of the ioctl and the general 26917 * ioctl processing function ip_process_ioctl() is called to extract the 26918 * arguments and process the ioctl. To simplify extraction, ioctl commands 26919 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26920 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26921 * is used to extract the ioctl's arguments. 26922 * 26923 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26924 * so goes thru the serialization primitive ipsq_try_enter. Then the 26925 * appropriate function to handle the ioctl is called based on the entry in 26926 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26927 * which also refreleases the 'conn' that was refheld at the start of the 26928 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26929 * 26930 * Many exclusive ioctls go thru an internal down up sequence as part of 26931 * the operation. For example an attempt to change the IP address of an 26932 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26933 * does all the cleanup such as deleting all ires that use this address. 26934 * Then we need to wait till all references to the interface go away. 26935 */ 26936 void 26937 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26938 { 26939 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26940 ip_ioctl_cmd_t *ipip = arg; 26941 ip_extract_func_t *extract_funcp; 26942 cmd_info_t ci; 26943 int err; 26944 boolean_t entered_ipsq = B_FALSE; 26945 26946 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26947 26948 if (ipip == NULL) 26949 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26950 26951 /* 26952 * SIOCLIFADDIF needs to go thru a special path since the 26953 * ill may not exist yet. This happens in the case of lo0 26954 * which is created using this ioctl. 26955 */ 26956 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26957 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26958 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26959 return; 26960 } 26961 26962 ci.ci_ipif = NULL; 26963 if (ipip->ipi_cmd_type == MISC_CMD) { 26964 /* 26965 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26966 */ 26967 if (ipip->ipi_cmd == IF_UNITSEL) { 26968 /* ioctl comes down the ill */ 26969 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26970 ipif_refhold(ci.ci_ipif); 26971 } 26972 err = 0; 26973 ci.ci_sin = NULL; 26974 ci.ci_sin6 = NULL; 26975 ci.ci_lifr = NULL; 26976 } else { 26977 switch (ipip->ipi_cmd_type) { 26978 case IF_CMD: 26979 case LIF_CMD: 26980 extract_funcp = ip_extract_lifreq; 26981 break; 26982 26983 case ARP_CMD: 26984 case XARP_CMD: 26985 extract_funcp = ip_extract_arpreq; 26986 break; 26987 26988 case TUN_CMD: 26989 extract_funcp = ip_extract_tunreq; 26990 break; 26991 26992 case MSFILT_CMD: 26993 extract_funcp = ip_extract_msfilter; 26994 break; 26995 26996 default: 26997 ASSERT(0); 26998 } 26999 27000 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27001 if (err != 0) { 27002 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27003 return; 27004 } 27005 27006 /* 27007 * All of the extraction functions return a refheld ipif. 27008 */ 27009 ASSERT(ci.ci_ipif != NULL); 27010 } 27011 27012 if (!(ipip->ipi_flags & IPI_WR)) { 27013 /* 27014 * A return value of EINPROGRESS means the ioctl is 27015 * either queued and waiting for some reason or has 27016 * already completed. 27017 */ 27018 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27019 ci.ci_lifr); 27020 if (ci.ci_ipif != NULL) 27021 ipif_refrele(ci.ci_ipif); 27022 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27023 return; 27024 } 27025 27026 ASSERT(ci.ci_ipif != NULL); 27027 27028 /* 27029 * If ipsq is non-NULL, we are already being called exclusively. 27030 */ 27031 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27032 if (ipsq == NULL) { 27033 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27034 NEW_OP, B_TRUE); 27035 if (ipsq == NULL) { 27036 ipif_refrele(ci.ci_ipif); 27037 return; 27038 } 27039 entered_ipsq = B_TRUE; 27040 } 27041 27042 /* 27043 * Release the ipif so that ipif_down and friends that wait for 27044 * references to go away are not misled about the current ipif_refcnt 27045 * values. We are writer so we can access the ipif even after releasing 27046 * the ipif. 27047 */ 27048 ipif_refrele(ci.ci_ipif); 27049 27050 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27051 27052 /* 27053 * A return value of EINPROGRESS means the ioctl is 27054 * either queued and waiting for some reason or has 27055 * already completed. 27056 */ 27057 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27058 27059 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27060 27061 if (entered_ipsq) 27062 ipsq_exit(ipsq); 27063 } 27064 27065 /* 27066 * Complete the ioctl. Typically ioctls use the mi package and need to 27067 * do mi_copyout/mi_copy_done. 27068 */ 27069 void 27070 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27071 { 27072 conn_t *connp = NULL; 27073 27074 if (err == EINPROGRESS) 27075 return; 27076 27077 if (CONN_Q(q)) { 27078 connp = Q_TO_CONN(q); 27079 ASSERT(connp->conn_ref >= 2); 27080 } 27081 27082 switch (mode) { 27083 case COPYOUT: 27084 if (err == 0) 27085 mi_copyout(q, mp); 27086 else 27087 mi_copy_done(q, mp, err); 27088 break; 27089 27090 case NO_COPYOUT: 27091 mi_copy_done(q, mp, err); 27092 break; 27093 27094 default: 27095 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27096 break; 27097 } 27098 27099 /* 27100 * The refhold placed at the start of the ioctl is released here. 27101 */ 27102 if (connp != NULL) 27103 CONN_OPER_PENDING_DONE(connp); 27104 27105 if (ipsq != NULL) 27106 ipsq_current_finish(ipsq); 27107 } 27108 27109 /* Called from ip_wput for all non data messages */ 27110 /* ARGSUSED */ 27111 void 27112 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27113 { 27114 mblk_t *mp1; 27115 ire_t *ire, *fake_ire; 27116 ill_t *ill; 27117 struct iocblk *iocp; 27118 ip_ioctl_cmd_t *ipip; 27119 cred_t *cr; 27120 conn_t *connp; 27121 int err; 27122 nce_t *nce; 27123 ipif_t *ipif; 27124 ip_stack_t *ipst; 27125 char *proto_str; 27126 27127 if (CONN_Q(q)) { 27128 connp = Q_TO_CONN(q); 27129 ipst = connp->conn_netstack->netstack_ip; 27130 } else { 27131 connp = NULL; 27132 ipst = ILLQ_TO_IPST(q); 27133 } 27134 27135 switch (DB_TYPE(mp)) { 27136 case M_IOCTL: 27137 /* 27138 * IOCTL processing begins in ip_sioctl_copyin_setup which 27139 * will arrange to copy in associated control structures. 27140 */ 27141 ip_sioctl_copyin_setup(q, mp); 27142 return; 27143 case M_IOCDATA: 27144 /* 27145 * Ensure that this is associated with one of our trans- 27146 * parent ioctls. If it's not ours, discard it if we're 27147 * running as a driver, or pass it on if we're a module. 27148 */ 27149 iocp = (struct iocblk *)mp->b_rptr; 27150 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27151 if (ipip == NULL) { 27152 if (q->q_next == NULL) { 27153 goto nak; 27154 } else { 27155 putnext(q, mp); 27156 } 27157 return; 27158 } 27159 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27160 /* 27161 * the ioctl is one we recognise, but is not 27162 * consumed by IP as a module, pass M_IOCDATA 27163 * for processing downstream, but only for 27164 * common Streams ioctls. 27165 */ 27166 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27167 putnext(q, mp); 27168 return; 27169 } else { 27170 goto nak; 27171 } 27172 } 27173 27174 /* IOCTL continuation following copyin or copyout. */ 27175 if (mi_copy_state(q, mp, NULL) == -1) { 27176 /* 27177 * The copy operation failed. mi_copy_state already 27178 * cleaned up, so we're out of here. 27179 */ 27180 return; 27181 } 27182 /* 27183 * If we just completed a copy in, we become writer and 27184 * continue processing in ip_sioctl_copyin_done. If it 27185 * was a copy out, we call mi_copyout again. If there is 27186 * nothing more to copy out, it will complete the IOCTL. 27187 */ 27188 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27189 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27190 mi_copy_done(q, mp, EPROTO); 27191 return; 27192 } 27193 /* 27194 * Check for cases that need more copying. A return 27195 * value of 0 means a second copyin has been started, 27196 * so we return; a return value of 1 means no more 27197 * copying is needed, so we continue. 27198 */ 27199 if (ipip->ipi_cmd_type == MSFILT_CMD && 27200 MI_COPY_COUNT(mp) == 1) { 27201 if (ip_copyin_msfilter(q, mp) == 0) 27202 return; 27203 } 27204 /* 27205 * Refhold the conn, till the ioctl completes. This is 27206 * needed in case the ioctl ends up in the pending mp 27207 * list. Every mp in the ill_pending_mp list and 27208 * the ipx_pending_mp must have a refhold on the conn 27209 * to resume processing. The refhold is released when 27210 * the ioctl completes. (normally or abnormally) 27211 * In all cases ip_ioctl_finish is called to finish 27212 * the ioctl. 27213 */ 27214 if (connp != NULL) { 27215 /* This is not a reentry */ 27216 ASSERT(ipsq == NULL); 27217 CONN_INC_REF(connp); 27218 } else { 27219 if (!(ipip->ipi_flags & IPI_MODOK)) { 27220 mi_copy_done(q, mp, EINVAL); 27221 return; 27222 } 27223 } 27224 27225 ip_process_ioctl(ipsq, q, mp, ipip); 27226 27227 } else { 27228 mi_copyout(q, mp); 27229 } 27230 return; 27231 nak: 27232 iocp->ioc_error = EINVAL; 27233 mp->b_datap->db_type = M_IOCNAK; 27234 iocp->ioc_count = 0; 27235 qreply(q, mp); 27236 return; 27237 27238 case M_IOCNAK: 27239 /* 27240 * The only way we could get here is if a resolver didn't like 27241 * an IOCTL we sent it. This shouldn't happen. 27242 */ 27243 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27244 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27245 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27246 freemsg(mp); 27247 return; 27248 case M_IOCACK: 27249 /* /dev/ip shouldn't see this */ 27250 if (CONN_Q(q)) 27251 goto nak; 27252 27253 /* 27254 * Finish socket ioctls passed through to ARP. We use the 27255 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27256 * we need to become writer before calling ip_sioctl_iocack(). 27257 * Note that qwriter_ip() will release the refhold, and that a 27258 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27259 * ill stream. 27260 */ 27261 iocp = (struct iocblk *)mp->b_rptr; 27262 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27263 ip_sioctl_iocack(NULL, q, mp, NULL); 27264 return; 27265 } 27266 27267 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27268 iocp->ioc_cmd == AR_ENTRY_ADD); 27269 ill = q->q_ptr; 27270 ill_refhold(ill); 27271 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27272 return; 27273 case M_FLUSH: 27274 if (*mp->b_rptr & FLUSHW) 27275 flushq(q, FLUSHALL); 27276 if (q->q_next) { 27277 putnext(q, mp); 27278 return; 27279 } 27280 if (*mp->b_rptr & FLUSHR) { 27281 *mp->b_rptr &= ~FLUSHW; 27282 qreply(q, mp); 27283 return; 27284 } 27285 freemsg(mp); 27286 return; 27287 case IRE_DB_REQ_TYPE: 27288 if (connp == NULL) { 27289 proto_str = "IRE_DB_REQ_TYPE"; 27290 goto protonak; 27291 } 27292 /* An Upper Level Protocol wants a copy of an IRE. */ 27293 ip_ire_req(q, mp); 27294 return; 27295 case M_CTL: 27296 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27297 break; 27298 27299 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27300 TUN_HELLO) { 27301 ASSERT(connp != NULL); 27302 connp->conn_flags |= IPCL_IPTUN; 27303 freeb(mp); 27304 return; 27305 } 27306 27307 /* M_CTL messages are used by ARP to tell us things. */ 27308 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27309 break; 27310 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27311 case AR_ENTRY_SQUERY: 27312 putnext(q, mp); 27313 return; 27314 case AR_CLIENT_NOTIFY: 27315 ip_arp_news(q, mp); 27316 return; 27317 case AR_DLPIOP_DONE: 27318 ASSERT(q->q_next != NULL); 27319 ill = (ill_t *)q->q_ptr; 27320 /* qwriter_ip releases the refhold */ 27321 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27322 ill_refhold(ill); 27323 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27324 return; 27325 case AR_ARP_CLOSING: 27326 /* 27327 * ARP (above us) is closing. If no ARP bringup is 27328 * currently pending, ack the message so that ARP 27329 * can complete its close. Also mark ill_arp_closing 27330 * so that new ARP bringups will fail. If any 27331 * ARP bringup is currently in progress, we will 27332 * ack this when the current ARP bringup completes. 27333 */ 27334 ASSERT(q->q_next != NULL); 27335 ill = (ill_t *)q->q_ptr; 27336 mutex_enter(&ill->ill_lock); 27337 ill->ill_arp_closing = 1; 27338 if (!ill->ill_arp_bringup_pending) { 27339 mutex_exit(&ill->ill_lock); 27340 qreply(q, mp); 27341 } else { 27342 mutex_exit(&ill->ill_lock); 27343 freemsg(mp); 27344 } 27345 return; 27346 case AR_ARP_EXTEND: 27347 /* 27348 * The ARP module above us is capable of duplicate 27349 * address detection. Old ATM drivers will not send 27350 * this message. 27351 */ 27352 ASSERT(q->q_next != NULL); 27353 ill = (ill_t *)q->q_ptr; 27354 ill->ill_arp_extend = B_TRUE; 27355 freemsg(mp); 27356 return; 27357 default: 27358 break; 27359 } 27360 break; 27361 case M_PROTO: 27362 case M_PCPROTO: 27363 /* 27364 * The only PROTO messages we expect are copies of option 27365 * negotiation acknowledgements, AH and ESP bind requests 27366 * are also expected. 27367 */ 27368 switch (((union T_primitives *)mp->b_rptr)->type) { 27369 case O_T_BIND_REQ: 27370 case T_BIND_REQ: { 27371 /* Request can get queued in bind */ 27372 if (connp == NULL) { 27373 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27374 goto protonak; 27375 } 27376 /* 27377 * The transports except SCTP call ip_bind_{v4,v6}() 27378 * directly instead of a a putnext. SCTP doesn't 27379 * generate any T_BIND_REQ since it has its own 27380 * fanout data structures. However, ESP and AH 27381 * come in for regular binds; all other cases are 27382 * bind retries. 27383 */ 27384 ASSERT(!IPCL_IS_SCTP(connp)); 27385 27386 /* Don't increment refcnt if this is a re-entry */ 27387 if (ipsq == NULL) 27388 CONN_INC_REF(connp); 27389 27390 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27391 connp, NULL) : ip_bind_v4(q, mp, connp); 27392 ASSERT(mp != NULL); 27393 27394 ASSERT(!IPCL_IS_TCP(connp)); 27395 ASSERT(!IPCL_IS_UDP(connp)); 27396 ASSERT(!IPCL_IS_RAWIP(connp)); 27397 27398 /* The case of AH and ESP */ 27399 qreply(q, mp); 27400 CONN_OPER_PENDING_DONE(connp); 27401 return; 27402 } 27403 case T_SVR4_OPTMGMT_REQ: 27404 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27405 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27406 27407 if (connp == NULL) { 27408 proto_str = "T_SVR4_OPTMGMT_REQ"; 27409 goto protonak; 27410 } 27411 27412 /* 27413 * All Solaris components should pass a db_credp 27414 * for this TPI message, hence we ASSERT. 27415 * But in case there is some other M_PROTO that looks 27416 * like a TPI message sent by some other kernel 27417 * component, we check and return an error. 27418 */ 27419 cr = msg_getcred(mp, NULL); 27420 ASSERT(cr != NULL); 27421 if (cr == NULL) { 27422 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27423 if (mp != NULL) 27424 qreply(q, mp); 27425 return; 27426 } 27427 27428 if (!snmpcom_req(q, mp, ip_snmp_set, 27429 ip_snmp_get, cr)) { 27430 /* 27431 * Call svr4_optcom_req so that it can 27432 * generate the ack. We don't come here 27433 * if this operation is being restarted. 27434 * ip_restart_optmgmt will drop the conn ref. 27435 * In the case of ipsec option after the ipsec 27436 * load is complete conn_restart_ipsec_waiter 27437 * drops the conn ref. 27438 */ 27439 ASSERT(ipsq == NULL); 27440 CONN_INC_REF(connp); 27441 if (ip_check_for_ipsec_opt(q, mp)) 27442 return; 27443 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27444 B_FALSE); 27445 if (err != EINPROGRESS) { 27446 /* Operation is done */ 27447 CONN_OPER_PENDING_DONE(connp); 27448 } 27449 } 27450 return; 27451 case T_OPTMGMT_REQ: 27452 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27453 /* 27454 * Note: No snmpcom_req support through new 27455 * T_OPTMGMT_REQ. 27456 * Call tpi_optcom_req so that it can 27457 * generate the ack. 27458 */ 27459 if (connp == NULL) { 27460 proto_str = "T_OPTMGMT_REQ"; 27461 goto protonak; 27462 } 27463 27464 /* 27465 * All Solaris components should pass a db_credp 27466 * for this TPI message, hence we ASSERT. 27467 * But in case there is some other M_PROTO that looks 27468 * like a TPI message sent by some other kernel 27469 * component, we check and return an error. 27470 */ 27471 cr = msg_getcred(mp, NULL); 27472 ASSERT(cr != NULL); 27473 if (cr == NULL) { 27474 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27475 if (mp != NULL) 27476 qreply(q, mp); 27477 return; 27478 } 27479 ASSERT(ipsq == NULL); 27480 /* 27481 * We don't come here for restart. ip_restart_optmgmt 27482 * will drop the conn ref. In the case of ipsec option 27483 * after the ipsec load is complete 27484 * conn_restart_ipsec_waiter drops the conn ref. 27485 */ 27486 CONN_INC_REF(connp); 27487 if (ip_check_for_ipsec_opt(q, mp)) 27488 return; 27489 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27490 if (err != EINPROGRESS) { 27491 /* Operation is done */ 27492 CONN_OPER_PENDING_DONE(connp); 27493 } 27494 return; 27495 case T_UNBIND_REQ: 27496 if (connp == NULL) { 27497 proto_str = "T_UNBIND_REQ"; 27498 goto protonak; 27499 } 27500 ip_unbind(Q_TO_CONN(q)); 27501 mp = mi_tpi_ok_ack_alloc(mp); 27502 qreply(q, mp); 27503 return; 27504 default: 27505 /* 27506 * Have to drop any DLPI messages coming down from 27507 * arp (such as an info_req which would cause ip 27508 * to receive an extra info_ack if it was passed 27509 * through. 27510 */ 27511 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27512 (int)*(uint_t *)mp->b_rptr)); 27513 freemsg(mp); 27514 return; 27515 } 27516 /* NOTREACHED */ 27517 case IRE_DB_TYPE: { 27518 nce_t *nce; 27519 ill_t *ill; 27520 in6_addr_t gw_addr_v6; 27521 27522 /* 27523 * This is a response back from a resolver. It 27524 * consists of a message chain containing: 27525 * IRE_MBLK-->LL_HDR_MBLK->pkt 27526 * The IRE_MBLK is the one we allocated in ip_newroute. 27527 * The LL_HDR_MBLK is the DLPI header to use to get 27528 * the attached packet, and subsequent ones for the 27529 * same destination, transmitted. 27530 */ 27531 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27532 break; 27533 /* 27534 * First, check to make sure the resolution succeeded. 27535 * If it failed, the second mblk will be empty. 27536 * If it is, free the chain, dropping the packet. 27537 * (We must ire_delete the ire; that frees the ire mblk) 27538 * We're doing this now to support PVCs for ATM; it's 27539 * a partial xresolv implementation. When we fully implement 27540 * xresolv interfaces, instead of freeing everything here 27541 * we'll initiate neighbor discovery. 27542 * 27543 * For v4 (ARP and other external resolvers) the resolver 27544 * frees the message, so no check is needed. This check 27545 * is required, though, for a full xresolve implementation. 27546 * Including this code here now both shows how external 27547 * resolvers can NACK a resolution request using an 27548 * existing design that has no specific provisions for NACKs, 27549 * and also takes into account that the current non-ARP 27550 * external resolver has been coded to use this method of 27551 * NACKing for all IPv6 (xresolv) cases, 27552 * whether our xresolv implementation is complete or not. 27553 * 27554 */ 27555 ire = (ire_t *)mp->b_rptr; 27556 ill = ire_to_ill(ire); 27557 mp1 = mp->b_cont; /* dl_unitdata_req */ 27558 if (mp1->b_rptr == mp1->b_wptr) { 27559 if (ire->ire_ipversion == IPV6_VERSION) { 27560 /* 27561 * XRESOLV interface. 27562 */ 27563 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27564 mutex_enter(&ire->ire_lock); 27565 gw_addr_v6 = ire->ire_gateway_addr_v6; 27566 mutex_exit(&ire->ire_lock); 27567 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27568 nce = ndp_lookup_v6(ill, B_FALSE, 27569 &ire->ire_addr_v6, B_FALSE); 27570 } else { 27571 nce = ndp_lookup_v6(ill, B_FALSE, 27572 &gw_addr_v6, B_FALSE); 27573 } 27574 if (nce != NULL) { 27575 nce_resolv_failed(nce); 27576 ndp_delete(nce); 27577 NCE_REFRELE(nce); 27578 } 27579 } 27580 mp->b_cont = NULL; 27581 freemsg(mp1); /* frees the pkt as well */ 27582 ASSERT(ire->ire_nce == NULL); 27583 ire_delete((ire_t *)mp->b_rptr); 27584 return; 27585 } 27586 27587 /* 27588 * Split them into IRE_MBLK and pkt and feed it into 27589 * ire_add_then_send. Then in ire_add_then_send 27590 * the IRE will be added, and then the packet will be 27591 * run back through ip_wput. This time it will make 27592 * it to the wire. 27593 */ 27594 mp->b_cont = NULL; 27595 mp = mp1->b_cont; /* now, mp points to pkt */ 27596 mp1->b_cont = NULL; 27597 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27598 if (ire->ire_ipversion == IPV6_VERSION) { 27599 /* 27600 * XRESOLV interface. Find the nce and put a copy 27601 * of the dl_unitdata_req in nce_res_mp 27602 */ 27603 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27604 mutex_enter(&ire->ire_lock); 27605 gw_addr_v6 = ire->ire_gateway_addr_v6; 27606 mutex_exit(&ire->ire_lock); 27607 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27608 nce = ndp_lookup_v6(ill, B_FALSE, 27609 &ire->ire_addr_v6, B_FALSE); 27610 } else { 27611 nce = ndp_lookup_v6(ill, B_FALSE, 27612 &gw_addr_v6, B_FALSE); 27613 } 27614 if (nce != NULL) { 27615 /* 27616 * We have to protect nce_res_mp here 27617 * from being accessed by other threads 27618 * while we change the mblk pointer. 27619 * Other functions will also lock the nce when 27620 * accessing nce_res_mp. 27621 * 27622 * The reason we change the mblk pointer 27623 * here rather than copying the resolved address 27624 * into the template is that, unlike with 27625 * ethernet, we have no guarantee that the 27626 * resolved address length will be 27627 * smaller than or equal to the lla length 27628 * with which the template was allocated, 27629 * (for ethernet, they're equal) 27630 * so we have to use the actual resolved 27631 * address mblk - which holds the real 27632 * dl_unitdata_req with the resolved address. 27633 * 27634 * Doing this is the same behavior as was 27635 * previously used in the v4 ARP case. 27636 */ 27637 mutex_enter(&nce->nce_lock); 27638 if (nce->nce_res_mp != NULL) 27639 freemsg(nce->nce_res_mp); 27640 nce->nce_res_mp = mp1; 27641 mutex_exit(&nce->nce_lock); 27642 /* 27643 * We do a fastpath probe here because 27644 * we have resolved the address without 27645 * using Neighbor Discovery. 27646 * In the non-XRESOLV v6 case, the fastpath 27647 * probe is done right after neighbor 27648 * discovery completes. 27649 */ 27650 if (nce->nce_res_mp != NULL) { 27651 int res; 27652 nce_fastpath_list_add(nce); 27653 res = ill_fastpath_probe(ill, 27654 nce->nce_res_mp); 27655 if (res != 0 && res != EAGAIN) 27656 nce_fastpath_list_delete(nce); 27657 } 27658 27659 ire_add_then_send(q, ire, mp); 27660 /* 27661 * Now we have to clean out any packets 27662 * that may have been queued on the nce 27663 * while it was waiting for address resolution 27664 * to complete. 27665 */ 27666 mutex_enter(&nce->nce_lock); 27667 mp1 = nce->nce_qd_mp; 27668 nce->nce_qd_mp = NULL; 27669 mutex_exit(&nce->nce_lock); 27670 while (mp1 != NULL) { 27671 mblk_t *nxt_mp; 27672 queue_t *fwdq = NULL; 27673 ill_t *inbound_ill; 27674 uint_t ifindex; 27675 27676 nxt_mp = mp1->b_next; 27677 mp1->b_next = NULL; 27678 /* 27679 * Retrieve ifindex stored in 27680 * ip_rput_data_v6() 27681 */ 27682 ifindex = 27683 (uint_t)(uintptr_t)mp1->b_prev; 27684 inbound_ill = 27685 ill_lookup_on_ifindex(ifindex, 27686 B_TRUE, NULL, NULL, NULL, 27687 NULL, ipst); 27688 mp1->b_prev = NULL; 27689 if (inbound_ill != NULL) 27690 fwdq = inbound_ill->ill_rq; 27691 27692 if (fwdq != NULL) { 27693 put(fwdq, mp1); 27694 ill_refrele(inbound_ill); 27695 } else 27696 put(WR(ill->ill_rq), mp1); 27697 mp1 = nxt_mp; 27698 } 27699 NCE_REFRELE(nce); 27700 } else { /* nce is NULL; clean up */ 27701 ire_delete(ire); 27702 freemsg(mp); 27703 freemsg(mp1); 27704 return; 27705 } 27706 } else { 27707 nce_t *arpce; 27708 /* 27709 * Link layer resolution succeeded. Recompute the 27710 * ire_nce. 27711 */ 27712 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27713 if ((arpce = ndp_lookup_v4(ill, 27714 (ire->ire_gateway_addr != INADDR_ANY ? 27715 &ire->ire_gateway_addr : &ire->ire_addr), 27716 B_FALSE)) == NULL) { 27717 freeb(ire->ire_mp); 27718 freeb(mp1); 27719 freemsg(mp); 27720 return; 27721 } 27722 mutex_enter(&arpce->nce_lock); 27723 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27724 if (arpce->nce_state == ND_REACHABLE) { 27725 /* 27726 * Someone resolved this before us; 27727 * cleanup the res_mp. Since ire has 27728 * not been added yet, the call to ire_add_v4 27729 * from ire_add_then_send (when a dup is 27730 * detected) will clean up the ire. 27731 */ 27732 freeb(mp1); 27733 } else { 27734 ASSERT(arpce->nce_res_mp == NULL); 27735 arpce->nce_res_mp = mp1; 27736 arpce->nce_state = ND_REACHABLE; 27737 } 27738 mutex_exit(&arpce->nce_lock); 27739 if (ire->ire_marks & IRE_MARK_NOADD) { 27740 /* 27741 * this ire will not be added to the ire 27742 * cache table, so we can set the ire_nce 27743 * here, as there are no atomicity constraints. 27744 */ 27745 ire->ire_nce = arpce; 27746 /* 27747 * We are associating this nce with the ire 27748 * so change the nce ref taken in 27749 * ndp_lookup_v4() from 27750 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27751 */ 27752 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27753 } else { 27754 NCE_REFRELE(arpce); 27755 } 27756 ire_add_then_send(q, ire, mp); 27757 } 27758 return; /* All is well, the packet has been sent. */ 27759 } 27760 case IRE_ARPRESOLVE_TYPE: { 27761 27762 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27763 break; 27764 mp1 = mp->b_cont; /* dl_unitdata_req */ 27765 mp->b_cont = NULL; 27766 /* 27767 * First, check to make sure the resolution succeeded. 27768 * If it failed, the second mblk will be empty. 27769 */ 27770 if (mp1->b_rptr == mp1->b_wptr) { 27771 /* cleanup the incomplete ire, free queued packets */ 27772 freemsg(mp); /* fake ire */ 27773 freeb(mp1); /* dl_unitdata response */ 27774 return; 27775 } 27776 27777 /* 27778 * Update any incomplete nce_t found. We search the ctable 27779 * and find the nce from the ire->ire_nce because we need 27780 * to pass the ire to ip_xmit_v4 later, and can find both 27781 * ire and nce in one lookup. 27782 */ 27783 fake_ire = (ire_t *)mp->b_rptr; 27784 27785 /* 27786 * By the time we come back here from ARP the logical outgoing 27787 * interface of the incomplete ire we added in ire_forward() 27788 * could have disappeared, causing the incomplete ire to also 27789 * disappear. So we need to retreive the proper ipif for the 27790 * ire before looking in ctable. In the case of IPMP, the 27791 * ipif may be on the IPMP ill, so look it up based on the 27792 * ire_ipif_ifindex we stashed back in ire_init_common(). 27793 * Then, we can verify that ire_ipif_seqid still exists. 27794 */ 27795 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27796 NULL, NULL, NULL, NULL, ipst); 27797 if (ill == NULL) { 27798 ip1dbg(("ill for incomplete ire vanished\n")); 27799 freemsg(mp); /* fake ire */ 27800 freeb(mp1); /* dl_unitdata response */ 27801 return; 27802 } 27803 27804 /* Get the outgoing ipif */ 27805 mutex_enter(&ill->ill_lock); 27806 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27807 if (ipif == NULL) { 27808 mutex_exit(&ill->ill_lock); 27809 ill_refrele(ill); 27810 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27811 freemsg(mp); /* fake_ire */ 27812 freeb(mp1); /* dl_unitdata response */ 27813 return; 27814 } 27815 27816 ipif_refhold_locked(ipif); 27817 mutex_exit(&ill->ill_lock); 27818 ill_refrele(ill); 27819 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27820 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27821 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27822 ipif_refrele(ipif); 27823 if (ire == NULL) { 27824 /* 27825 * no ire was found; check if there is an nce 27826 * for this lookup; if it has no ire's pointing at it 27827 * cleanup. 27828 */ 27829 if ((nce = ndp_lookup_v4(q->q_ptr, 27830 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27831 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27832 B_FALSE)) != NULL) { 27833 /* 27834 * cleanup: 27835 * We check for refcnt 2 (one for the nce 27836 * hash list + 1 for the ref taken by 27837 * ndp_lookup_v4) to check that there are 27838 * no ire's pointing at the nce. 27839 */ 27840 if (nce->nce_refcnt == 2) 27841 ndp_delete(nce); 27842 NCE_REFRELE(nce); 27843 } 27844 freeb(mp1); /* dl_unitdata response */ 27845 freemsg(mp); /* fake ire */ 27846 return; 27847 } 27848 27849 nce = ire->ire_nce; 27850 DTRACE_PROBE2(ire__arpresolve__type, 27851 ire_t *, ire, nce_t *, nce); 27852 mutex_enter(&nce->nce_lock); 27853 nce->nce_last = TICK_TO_MSEC(lbolt64); 27854 if (nce->nce_state == ND_REACHABLE) { 27855 /* 27856 * Someone resolved this before us; 27857 * our response is not needed any more. 27858 */ 27859 mutex_exit(&nce->nce_lock); 27860 freeb(mp1); /* dl_unitdata response */ 27861 } else { 27862 ASSERT(nce->nce_res_mp == NULL); 27863 nce->nce_res_mp = mp1; 27864 nce->nce_state = ND_REACHABLE; 27865 mutex_exit(&nce->nce_lock); 27866 nce_fastpath(nce); 27867 } 27868 /* 27869 * The cached nce_t has been updated to be reachable; 27870 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27871 */ 27872 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27873 freemsg(mp); 27874 /* 27875 * send out queued packets. 27876 */ 27877 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27878 27879 IRE_REFRELE(ire); 27880 return; 27881 } 27882 default: 27883 break; 27884 } 27885 if (q->q_next) { 27886 putnext(q, mp); 27887 } else 27888 freemsg(mp); 27889 return; 27890 27891 protonak: 27892 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27893 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27894 qreply(q, mp); 27895 } 27896 27897 /* 27898 * Process IP options in an outbound packet. Modify the destination if there 27899 * is a source route option. 27900 * Returns non-zero if something fails in which case an ICMP error has been 27901 * sent and mp freed. 27902 */ 27903 static int 27904 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27905 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27906 { 27907 ipoptp_t opts; 27908 uchar_t *opt; 27909 uint8_t optval; 27910 uint8_t optlen; 27911 ipaddr_t dst; 27912 intptr_t code = 0; 27913 mblk_t *mp; 27914 ire_t *ire = NULL; 27915 27916 ip2dbg(("ip_wput_options\n")); 27917 mp = ipsec_mp; 27918 if (mctl_present) { 27919 mp = ipsec_mp->b_cont; 27920 } 27921 27922 dst = ipha->ipha_dst; 27923 for (optval = ipoptp_first(&opts, ipha); 27924 optval != IPOPT_EOL; 27925 optval = ipoptp_next(&opts)) { 27926 opt = opts.ipoptp_cur; 27927 optlen = opts.ipoptp_len; 27928 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27929 optval, optlen)); 27930 switch (optval) { 27931 uint32_t off; 27932 case IPOPT_SSRR: 27933 case IPOPT_LSRR: 27934 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27935 ip1dbg(( 27936 "ip_wput_options: bad option offset\n")); 27937 code = (char *)&opt[IPOPT_OLEN] - 27938 (char *)ipha; 27939 goto param_prob; 27940 } 27941 off = opt[IPOPT_OFFSET]; 27942 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27943 ntohl(dst))); 27944 /* 27945 * For strict: verify that dst is directly 27946 * reachable. 27947 */ 27948 if (optval == IPOPT_SSRR) { 27949 ire = ire_ftable_lookup(dst, 0, 0, 27950 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27951 msg_getlabel(mp), 27952 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27953 if (ire == NULL) { 27954 ip1dbg(("ip_wput_options: SSRR not" 27955 " directly reachable: 0x%x\n", 27956 ntohl(dst))); 27957 goto bad_src_route; 27958 } 27959 ire_refrele(ire); 27960 } 27961 break; 27962 case IPOPT_RR: 27963 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27964 ip1dbg(( 27965 "ip_wput_options: bad option offset\n")); 27966 code = (char *)&opt[IPOPT_OLEN] - 27967 (char *)ipha; 27968 goto param_prob; 27969 } 27970 break; 27971 case IPOPT_TS: 27972 /* 27973 * Verify that length >=5 and that there is either 27974 * room for another timestamp or that the overflow 27975 * counter is not maxed out. 27976 */ 27977 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27978 if (optlen < IPOPT_MINLEN_IT) { 27979 goto param_prob; 27980 } 27981 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27982 ip1dbg(( 27983 "ip_wput_options: bad option offset\n")); 27984 code = (char *)&opt[IPOPT_OFFSET] - 27985 (char *)ipha; 27986 goto param_prob; 27987 } 27988 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27989 case IPOPT_TS_TSONLY: 27990 off = IPOPT_TS_TIMELEN; 27991 break; 27992 case IPOPT_TS_TSANDADDR: 27993 case IPOPT_TS_PRESPEC: 27994 case IPOPT_TS_PRESPEC_RFC791: 27995 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27996 break; 27997 default: 27998 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27999 (char *)ipha; 28000 goto param_prob; 28001 } 28002 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28003 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28004 /* 28005 * No room and the overflow counter is 15 28006 * already. 28007 */ 28008 goto param_prob; 28009 } 28010 break; 28011 } 28012 } 28013 28014 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28015 return (0); 28016 28017 ip1dbg(("ip_wput_options: error processing IP options.")); 28018 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28019 28020 param_prob: 28021 /* 28022 * Since ip_wput() isn't close to finished, we fill 28023 * in enough of the header for credible error reporting. 28024 */ 28025 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28026 /* Failed */ 28027 freemsg(ipsec_mp); 28028 return (-1); 28029 } 28030 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28031 return (-1); 28032 28033 bad_src_route: 28034 /* 28035 * Since ip_wput() isn't close to finished, we fill 28036 * in enough of the header for credible error reporting. 28037 */ 28038 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28039 /* Failed */ 28040 freemsg(ipsec_mp); 28041 return (-1); 28042 } 28043 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28044 return (-1); 28045 } 28046 28047 /* 28048 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28049 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28050 * thru /etc/system. 28051 */ 28052 #define CONN_MAXDRAINCNT 64 28053 28054 static void 28055 conn_drain_init(ip_stack_t *ipst) 28056 { 28057 int i, j; 28058 idl_tx_list_t *itl_tx; 28059 28060 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28061 28062 if ((ipst->ips_conn_drain_list_cnt == 0) || 28063 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28064 /* 28065 * Default value of the number of drainers is the 28066 * number of cpus, subject to maximum of 8 drainers. 28067 */ 28068 if (boot_max_ncpus != -1) 28069 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28070 else 28071 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28072 } 28073 28074 ipst->ips_idl_tx_list = 28075 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28076 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28077 itl_tx = &ipst->ips_idl_tx_list[i]; 28078 itl_tx->txl_drain_list = 28079 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28080 sizeof (idl_t), KM_SLEEP); 28081 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28082 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28083 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28084 MUTEX_DEFAULT, NULL); 28085 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28086 } 28087 } 28088 } 28089 28090 static void 28091 conn_drain_fini(ip_stack_t *ipst) 28092 { 28093 int i; 28094 idl_tx_list_t *itl_tx; 28095 28096 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28097 itl_tx = &ipst->ips_idl_tx_list[i]; 28098 kmem_free(itl_tx->txl_drain_list, 28099 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28100 } 28101 kmem_free(ipst->ips_idl_tx_list, 28102 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28103 ipst->ips_idl_tx_list = NULL; 28104 } 28105 28106 /* 28107 * Note: For an overview of how flowcontrol is handled in IP please see the 28108 * IP Flowcontrol notes at the top of this file. 28109 * 28110 * Flow control has blocked us from proceeding. Insert the given conn in one 28111 * of the conn drain lists. These conn wq's will be qenabled later on when 28112 * STREAMS flow control does a backenable. conn_walk_drain will enable 28113 * the first conn in each of these drain lists. Each of these qenabled conns 28114 * in turn enables the next in the list, after it runs, or when it closes, 28115 * thus sustaining the drain process. 28116 */ 28117 void 28118 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28119 { 28120 idl_t *idl = tx_list->txl_drain_list; 28121 uint_t index; 28122 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28123 28124 mutex_enter(&connp->conn_lock); 28125 if (connp->conn_state_flags & CONN_CLOSING) { 28126 /* 28127 * The conn is closing as a result of which CONN_CLOSING 28128 * is set. Return. 28129 */ 28130 mutex_exit(&connp->conn_lock); 28131 return; 28132 } else if (connp->conn_idl == NULL) { 28133 /* 28134 * Assign the next drain list round robin. We dont' use 28135 * a lock, and thus it may not be strictly round robin. 28136 * Atomicity of load/stores is enough to make sure that 28137 * conn_drain_list_index is always within bounds. 28138 */ 28139 index = tx_list->txl_drain_index; 28140 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28141 connp->conn_idl = &tx_list->txl_drain_list[index]; 28142 index++; 28143 if (index == ipst->ips_conn_drain_list_cnt) 28144 index = 0; 28145 tx_list->txl_drain_index = index; 28146 } 28147 mutex_exit(&connp->conn_lock); 28148 28149 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28150 if ((connp->conn_drain_prev != NULL) || 28151 (connp->conn_state_flags & CONN_CLOSING)) { 28152 /* 28153 * The conn is already in the drain list, OR 28154 * the conn is closing. We need to check again for 28155 * the closing case again since close can happen 28156 * after we drop the conn_lock, and before we 28157 * acquire the CONN_DRAIN_LIST_LOCK. 28158 */ 28159 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28160 return; 28161 } else { 28162 idl = connp->conn_idl; 28163 } 28164 28165 /* 28166 * The conn is not in the drain list. Insert it at the 28167 * tail of the drain list. The drain list is circular 28168 * and doubly linked. idl_conn points to the 1st element 28169 * in the list. 28170 */ 28171 if (idl->idl_conn == NULL) { 28172 idl->idl_conn = connp; 28173 connp->conn_drain_next = connp; 28174 connp->conn_drain_prev = connp; 28175 } else { 28176 conn_t *head = idl->idl_conn; 28177 28178 connp->conn_drain_next = head; 28179 connp->conn_drain_prev = head->conn_drain_prev; 28180 head->conn_drain_prev->conn_drain_next = connp; 28181 head->conn_drain_prev = connp; 28182 } 28183 /* 28184 * For non streams based sockets assert flow control. 28185 */ 28186 if (IPCL_IS_NONSTR(connp)) { 28187 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28188 (*connp->conn_upcalls->su_txq_full) 28189 (connp->conn_upper_handle, B_TRUE); 28190 } else { 28191 conn_setqfull(connp); 28192 noenable(connp->conn_wq); 28193 } 28194 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28195 } 28196 28197 /* 28198 * This conn is closing, and we are called from ip_close. OR 28199 * This conn has been serviced by ip_wsrv, and we need to do the tail 28200 * processing. 28201 * If this conn is part of the drain list, we may need to sustain the drain 28202 * process by qenabling the next conn in the drain list. We may also need to 28203 * remove this conn from the list, if it is done. 28204 */ 28205 static void 28206 conn_drain_tail(conn_t *connp, boolean_t closing) 28207 { 28208 idl_t *idl; 28209 28210 /* 28211 * connp->conn_idl is stable at this point, and no lock is needed 28212 * to check it. If we are called from ip_close, close has already 28213 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28214 * called us only because conn_idl is non-null. If we are called thru 28215 * service, conn_idl could be null, but it cannot change because 28216 * service is single-threaded per queue, and there cannot be another 28217 * instance of service trying to call conn_drain_insert on this conn 28218 * now. 28219 */ 28220 ASSERT(!closing || (connp->conn_idl != NULL)); 28221 28222 /* 28223 * If connp->conn_idl is null, the conn has not been inserted into any 28224 * drain list even once since creation of the conn. Just return. 28225 */ 28226 if (connp->conn_idl == NULL) 28227 return; 28228 28229 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28230 28231 if (connp->conn_drain_prev == NULL) { 28232 /* This conn is currently not in the drain list. */ 28233 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28234 return; 28235 } 28236 idl = connp->conn_idl; 28237 if (idl->idl_conn_draining == connp) { 28238 /* 28239 * This conn is the current drainer. If this is the last conn 28240 * in the drain list, we need to do more checks, in the 'if' 28241 * below. Otherwwise we need to just qenable the next conn, 28242 * to sustain the draining, and is handled in the 'else' 28243 * below. 28244 */ 28245 if (connp->conn_drain_next == idl->idl_conn) { 28246 /* 28247 * This conn is the last in this list. This round 28248 * of draining is complete. If idl_repeat is set, 28249 * it means another flow enabling has happened from 28250 * the driver/streams and we need to another round 28251 * of draining. 28252 * If there are more than 2 conns in the drain list, 28253 * do a left rotate by 1, so that all conns except the 28254 * conn at the head move towards the head by 1, and the 28255 * the conn at the head goes to the tail. This attempts 28256 * a more even share for all queues that are being 28257 * drained. 28258 */ 28259 if ((connp->conn_drain_next != connp) && 28260 (idl->idl_conn->conn_drain_next != connp)) { 28261 idl->idl_conn = idl->idl_conn->conn_drain_next; 28262 } 28263 if (idl->idl_repeat) { 28264 qenable(idl->idl_conn->conn_wq); 28265 idl->idl_conn_draining = idl->idl_conn; 28266 idl->idl_repeat = 0; 28267 } else { 28268 idl->idl_conn_draining = NULL; 28269 } 28270 } else { 28271 /* 28272 * If the next queue that we are now qenable'ing, 28273 * is closing, it will remove itself from this list 28274 * and qenable the subsequent queue in ip_close(). 28275 * Serialization is acheived thru idl_lock. 28276 */ 28277 qenable(connp->conn_drain_next->conn_wq); 28278 idl->idl_conn_draining = connp->conn_drain_next; 28279 } 28280 } 28281 if (!connp->conn_did_putbq || closing) { 28282 /* 28283 * Remove ourself from the drain list, if we did not do 28284 * a putbq, or if the conn is closing. 28285 * Note: It is possible that q->q_first is non-null. It means 28286 * that these messages landed after we did a enableok() in 28287 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28288 * service them. 28289 */ 28290 if (connp->conn_drain_next == connp) { 28291 /* Singleton in the list */ 28292 ASSERT(connp->conn_drain_prev == connp); 28293 idl->idl_conn = NULL; 28294 idl->idl_conn_draining = NULL; 28295 } else { 28296 connp->conn_drain_prev->conn_drain_next = 28297 connp->conn_drain_next; 28298 connp->conn_drain_next->conn_drain_prev = 28299 connp->conn_drain_prev; 28300 if (idl->idl_conn == connp) 28301 idl->idl_conn = connp->conn_drain_next; 28302 ASSERT(idl->idl_conn_draining != connp); 28303 28304 } 28305 connp->conn_drain_next = NULL; 28306 connp->conn_drain_prev = NULL; 28307 28308 /* 28309 * For non streams based sockets open up flow control. 28310 */ 28311 if (IPCL_IS_NONSTR(connp)) { 28312 (*connp->conn_upcalls->su_txq_full) 28313 (connp->conn_upper_handle, B_FALSE); 28314 } else { 28315 conn_clrqfull(connp); 28316 enableok(connp->conn_wq); 28317 } 28318 } 28319 28320 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28321 } 28322 28323 /* 28324 * Write service routine. Shared perimeter entry point. 28325 * ip_wsrv can be called in any of the following ways. 28326 * 1. The device queue's messages has fallen below the low water mark 28327 * and STREAMS has backenabled the ill_wq. We walk thru all the 28328 * the drain lists and backenable the first conn in each list. 28329 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28330 * qenabled non-tcp upper layers. We start dequeing messages and call 28331 * ip_wput for each message. 28332 */ 28333 28334 void 28335 ip_wsrv(queue_t *q) 28336 { 28337 conn_t *connp; 28338 ill_t *ill; 28339 mblk_t *mp; 28340 28341 if (q->q_next) { 28342 ill = (ill_t *)q->q_ptr; 28343 if (ill->ill_state_flags == 0) { 28344 ip_stack_t *ipst = ill->ill_ipst; 28345 28346 /* 28347 * The device flow control has opened up. 28348 * Walk through conn drain lists and qenable the 28349 * first conn in each list. This makes sense only 28350 * if the stream is fully plumbed and setup. 28351 * Hence the if check above. 28352 */ 28353 ip1dbg(("ip_wsrv: walking\n")); 28354 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28355 } 28356 return; 28357 } 28358 28359 connp = Q_TO_CONN(q); 28360 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28361 28362 /* 28363 * 1. Set conn_draining flag to signal that service is active. 28364 * 28365 * 2. ip_output determines whether it has been called from service, 28366 * based on the last parameter. If it is IP_WSRV it concludes it 28367 * has been called from service. 28368 * 28369 * 3. Message ordering is preserved by the following logic. 28370 * i. A directly called ip_output (i.e. not thru service) will queue 28371 * the message at the tail, if conn_draining is set (i.e. service 28372 * is running) or if q->q_first is non-null. 28373 * 28374 * ii. If ip_output is called from service, and if ip_output cannot 28375 * putnext due to flow control, it does a putbq. 28376 * 28377 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28378 * (causing an infinite loop). 28379 */ 28380 ASSERT(!connp->conn_did_putbq); 28381 28382 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28383 connp->conn_draining = 1; 28384 noenable(q); 28385 while ((mp = getq(q)) != NULL) { 28386 ASSERT(CONN_Q(q)); 28387 28388 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28389 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28390 if (connp->conn_did_putbq) { 28391 /* ip_wput did a putbq */ 28392 break; 28393 } 28394 } 28395 /* 28396 * At this point, a thread coming down from top, calling 28397 * ip_wput, may end up queueing the message. We have not yet 28398 * enabled the queue, so ip_wsrv won't be called again. 28399 * To avoid this race, check q->q_first again (in the loop) 28400 * If the other thread queued the message before we call 28401 * enableok(), we will catch it in the q->q_first check. 28402 * If the other thread queues the message after we call 28403 * enableok(), ip_wsrv will be called again by STREAMS. 28404 */ 28405 connp->conn_draining = 0; 28406 enableok(q); 28407 } 28408 28409 /* Enable the next conn for draining */ 28410 conn_drain_tail(connp, B_FALSE); 28411 28412 /* 28413 * conn_direct_blocked is used to indicate blocked 28414 * condition for direct path (ILL_DIRECT_CAPABLE()). 28415 * This is the only place where it is set without 28416 * checking for ILL_DIRECT_CAPABLE() and setting it 28417 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28418 */ 28419 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28420 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28421 connp->conn_direct_blocked = B_FALSE; 28422 } 28423 28424 connp->conn_did_putbq = 0; 28425 } 28426 28427 /* 28428 * Callback to disable flow control in IP. 28429 * 28430 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28431 * is enabled. 28432 * 28433 * When MAC_TX() is not able to send any more packets, dld sets its queue 28434 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28435 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28436 * function and wakes up corresponding mac worker threads, which in turn 28437 * calls this callback function, and disables flow control. 28438 */ 28439 void 28440 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28441 { 28442 ill_t *ill = (ill_t *)arg; 28443 ip_stack_t *ipst = ill->ill_ipst; 28444 idl_tx_list_t *idl_txl; 28445 28446 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28447 mutex_enter(&idl_txl->txl_lock); 28448 /* add code to to set a flag to indicate idl_txl is enabled */ 28449 conn_walk_drain(ipst, idl_txl); 28450 mutex_exit(&idl_txl->txl_lock); 28451 } 28452 28453 /* 28454 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28455 * of conns that need to be drained, check if drain is already in progress. 28456 * If so set the idl_repeat bit, indicating that the last conn in the list 28457 * needs to reinitiate the drain once again, for the list. If drain is not 28458 * in progress for the list, initiate the draining, by qenabling the 1st 28459 * conn in the list. The drain is self-sustaining, each qenabled conn will 28460 * in turn qenable the next conn, when it is done/blocked/closing. 28461 */ 28462 static void 28463 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28464 { 28465 int i; 28466 idl_t *idl; 28467 28468 IP_STAT(ipst, ip_conn_walk_drain); 28469 28470 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28471 idl = &tx_list->txl_drain_list[i]; 28472 mutex_enter(&idl->idl_lock); 28473 if (idl->idl_conn == NULL) { 28474 mutex_exit(&idl->idl_lock); 28475 continue; 28476 } 28477 /* 28478 * If this list is not being drained currently by 28479 * an ip_wsrv thread, start the process. 28480 */ 28481 if (idl->idl_conn_draining == NULL) { 28482 ASSERT(idl->idl_repeat == 0); 28483 qenable(idl->idl_conn->conn_wq); 28484 idl->idl_conn_draining = idl->idl_conn; 28485 } else { 28486 idl->idl_repeat = 1; 28487 } 28488 mutex_exit(&idl->idl_lock); 28489 } 28490 } 28491 28492 /* 28493 * Determine if the ill and multicast aspects of that packets 28494 * "matches" the conn. 28495 */ 28496 boolean_t 28497 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28498 zoneid_t zoneid) 28499 { 28500 ill_t *bound_ill; 28501 boolean_t found; 28502 ipif_t *ipif; 28503 ire_t *ire; 28504 ipaddr_t dst, src; 28505 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28506 28507 dst = ipha->ipha_dst; 28508 src = ipha->ipha_src; 28509 28510 /* 28511 * conn_incoming_ill is set by IP_BOUND_IF which limits 28512 * unicast, broadcast and multicast reception to 28513 * conn_incoming_ill. conn_wantpacket itself is called 28514 * only for BROADCAST and multicast. 28515 */ 28516 bound_ill = connp->conn_incoming_ill; 28517 if (bound_ill != NULL) { 28518 if (IS_IPMP(bound_ill)) { 28519 if (bound_ill->ill_grp != ill->ill_grp) 28520 return (B_FALSE); 28521 } else { 28522 if (bound_ill != ill) 28523 return (B_FALSE); 28524 } 28525 } 28526 28527 if (!CLASSD(dst)) { 28528 if (IPCL_ZONE_MATCH(connp, zoneid)) 28529 return (B_TRUE); 28530 /* 28531 * The conn is in a different zone; we need to check that this 28532 * broadcast address is configured in the application's zone. 28533 */ 28534 ipif = ipif_get_next_ipif(NULL, ill); 28535 if (ipif == NULL) 28536 return (B_FALSE); 28537 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28538 connp->conn_zoneid, NULL, 28539 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28540 ipif_refrele(ipif); 28541 if (ire != NULL) { 28542 ire_refrele(ire); 28543 return (B_TRUE); 28544 } else { 28545 return (B_FALSE); 28546 } 28547 } 28548 28549 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28550 connp->conn_zoneid == zoneid) { 28551 /* 28552 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28553 * disabled, therefore we don't dispatch the multicast packet to 28554 * the sending zone. 28555 */ 28556 return (B_FALSE); 28557 } 28558 28559 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28560 /* 28561 * Multicast packet on the loopback interface: we only match 28562 * conns who joined the group in the specified zone. 28563 */ 28564 return (B_FALSE); 28565 } 28566 28567 if (connp->conn_multi_router) { 28568 /* multicast packet and multicast router socket: send up */ 28569 return (B_TRUE); 28570 } 28571 28572 mutex_enter(&connp->conn_lock); 28573 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28574 mutex_exit(&connp->conn_lock); 28575 return (found); 28576 } 28577 28578 static void 28579 conn_setqfull(conn_t *connp) 28580 { 28581 queue_t *q = connp->conn_wq; 28582 28583 if (!(q->q_flag & QFULL)) { 28584 mutex_enter(QLOCK(q)); 28585 if (!(q->q_flag & QFULL)) { 28586 /* still need to set QFULL */ 28587 q->q_flag |= QFULL; 28588 mutex_exit(QLOCK(q)); 28589 } else { 28590 mutex_exit(QLOCK(q)); 28591 } 28592 } 28593 } 28594 28595 static void 28596 conn_clrqfull(conn_t *connp) 28597 { 28598 queue_t *q = connp->conn_wq; 28599 28600 if (q->q_flag & QFULL) { 28601 mutex_enter(QLOCK(q)); 28602 if (q->q_flag & QFULL) { 28603 q->q_flag &= ~QFULL; 28604 mutex_exit(QLOCK(q)); 28605 if (q->q_flag & QWANTW) 28606 qbackenable(q, 0); 28607 } else { 28608 mutex_exit(QLOCK(q)); 28609 } 28610 } 28611 } 28612 28613 /* 28614 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28615 */ 28616 /* ARGSUSED */ 28617 static void 28618 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28619 { 28620 ill_t *ill = (ill_t *)q->q_ptr; 28621 mblk_t *mp1, *mp2; 28622 ipif_t *ipif; 28623 int err = 0; 28624 conn_t *connp = NULL; 28625 ipsq_t *ipsq; 28626 arc_t *arc; 28627 28628 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28629 28630 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28631 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28632 28633 ASSERT(IAM_WRITER_ILL(ill)); 28634 mp2 = mp->b_cont; 28635 mp->b_cont = NULL; 28636 28637 /* 28638 * We have now received the arp bringup completion message 28639 * from ARP. Mark the arp bringup as done. Also if the arp 28640 * stream has already started closing, send up the AR_ARP_CLOSING 28641 * ack now since ARP is waiting in close for this ack. 28642 */ 28643 mutex_enter(&ill->ill_lock); 28644 ill->ill_arp_bringup_pending = 0; 28645 if (ill->ill_arp_closing) { 28646 mutex_exit(&ill->ill_lock); 28647 /* Let's reuse the mp for sending the ack */ 28648 arc = (arc_t *)mp->b_rptr; 28649 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28650 arc->arc_cmd = AR_ARP_CLOSING; 28651 qreply(q, mp); 28652 } else { 28653 mutex_exit(&ill->ill_lock); 28654 freeb(mp); 28655 } 28656 28657 ipsq = ill->ill_phyint->phyint_ipsq; 28658 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28659 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28660 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28661 if (mp1 == NULL) { 28662 /* bringup was aborted by the user */ 28663 freemsg(mp2); 28664 return; 28665 } 28666 28667 /* 28668 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28669 * must have an associated conn_t. Otherwise, we're bringing this 28670 * interface back up as part of handling an asynchronous event (e.g., 28671 * physical address change). 28672 */ 28673 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28674 ASSERT(connp != NULL); 28675 q = CONNP_TO_WQ(connp); 28676 } else { 28677 ASSERT(connp == NULL); 28678 q = ill->ill_rq; 28679 } 28680 28681 /* 28682 * If the DL_BIND_REQ fails, it is noted 28683 * in arc_name_offset. 28684 */ 28685 err = *((int *)mp2->b_rptr); 28686 if (err == 0) { 28687 if (ipif->ipif_isv6) { 28688 if ((err = ipif_up_done_v6(ipif)) != 0) 28689 ip0dbg(("ip_arp_done: init failed\n")); 28690 } else { 28691 if ((err = ipif_up_done(ipif)) != 0) 28692 ip0dbg(("ip_arp_done: init failed\n")); 28693 } 28694 } else { 28695 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28696 } 28697 28698 freemsg(mp2); 28699 28700 if ((err == 0) && (ill->ill_up_ipifs)) { 28701 err = ill_up_ipifs(ill, q, mp1); 28702 if (err == EINPROGRESS) 28703 return; 28704 } 28705 28706 /* 28707 * If we have a moved ipif to bring up, and everything has succeeded 28708 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28709 * down -- the admin can try to bring it up by hand if need be. 28710 */ 28711 if (ill->ill_move_ipif != NULL) { 28712 ipif = ill->ill_move_ipif; 28713 ill->ill_move_ipif = NULL; 28714 if (err == 0) { 28715 err = ipif_up(ipif, q, mp1); 28716 if (err == EINPROGRESS) 28717 return; 28718 } 28719 } 28720 28721 /* 28722 * The operation must complete without EINPROGRESS since 28723 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28724 * operation will be stuck forever in the ipsq. 28725 */ 28726 ASSERT(err != EINPROGRESS); 28727 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28728 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28729 else 28730 ipsq_current_finish(ipsq); 28731 } 28732 28733 /* Allocate the private structure */ 28734 static int 28735 ip_priv_alloc(void **bufp) 28736 { 28737 void *buf; 28738 28739 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28740 return (ENOMEM); 28741 28742 *bufp = buf; 28743 return (0); 28744 } 28745 28746 /* Function to delete the private structure */ 28747 void 28748 ip_priv_free(void *buf) 28749 { 28750 ASSERT(buf != NULL); 28751 kmem_free(buf, sizeof (ip_priv_t)); 28752 } 28753 28754 /* 28755 * The entry point for IPPF processing. 28756 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28757 * routine just returns. 28758 * 28759 * When called, ip_process generates an ipp_packet_t structure 28760 * which holds the state information for this packet and invokes the 28761 * the classifier (via ipp_packet_process). The classification, depending on 28762 * configured filters, results in a list of actions for this packet. Invoking 28763 * an action may cause the packet to be dropped, in which case the resulting 28764 * mblk (*mpp) is NULL. proc indicates the callout position for 28765 * this packet and ill_index is the interface this packet on or will leave 28766 * on (inbound and outbound resp.). 28767 */ 28768 void 28769 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28770 { 28771 mblk_t *mp; 28772 ip_priv_t *priv; 28773 ipp_action_id_t aid; 28774 int rc = 0; 28775 ipp_packet_t *pp; 28776 #define IP_CLASS "ip" 28777 28778 /* If the classifier is not loaded, return */ 28779 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28780 return; 28781 } 28782 28783 mp = *mpp; 28784 ASSERT(mp != NULL); 28785 28786 /* Allocate the packet structure */ 28787 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28788 if (rc != 0) { 28789 *mpp = NULL; 28790 freemsg(mp); 28791 return; 28792 } 28793 28794 /* Allocate the private structure */ 28795 rc = ip_priv_alloc((void **)&priv); 28796 if (rc != 0) { 28797 *mpp = NULL; 28798 freemsg(mp); 28799 ipp_packet_free(pp); 28800 return; 28801 } 28802 priv->proc = proc; 28803 priv->ill_index = ill_index; 28804 ipp_packet_set_private(pp, priv, ip_priv_free); 28805 ipp_packet_set_data(pp, mp); 28806 28807 /* Invoke the classifier */ 28808 rc = ipp_packet_process(&pp); 28809 if (pp != NULL) { 28810 mp = ipp_packet_get_data(pp); 28811 ipp_packet_free(pp); 28812 if (rc != 0) { 28813 freemsg(mp); 28814 *mpp = NULL; 28815 } 28816 } else { 28817 *mpp = NULL; 28818 } 28819 #undef IP_CLASS 28820 } 28821 28822 /* 28823 * Propagate a multicast group membership operation (add/drop) on 28824 * all the interfaces crossed by the related multirt routes. 28825 * The call is considered successful if the operation succeeds 28826 * on at least one interface. 28827 */ 28828 static int 28829 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28830 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28831 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28832 mblk_t *first_mp) 28833 { 28834 ire_t *ire_gw; 28835 irb_t *irb; 28836 int error = 0; 28837 opt_restart_t *or; 28838 ip_stack_t *ipst = ire->ire_ipst; 28839 28840 irb = ire->ire_bucket; 28841 ASSERT(irb != NULL); 28842 28843 ASSERT(DB_TYPE(first_mp) == M_CTL); 28844 28845 or = (opt_restart_t *)first_mp->b_rptr; 28846 IRB_REFHOLD(irb); 28847 for (; ire != NULL; ire = ire->ire_next) { 28848 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28849 continue; 28850 if (ire->ire_addr != group) 28851 continue; 28852 28853 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28854 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28855 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28856 /* No resolver exists for the gateway; skip this ire. */ 28857 if (ire_gw == NULL) 28858 continue; 28859 28860 /* 28861 * This function can return EINPROGRESS. If so the operation 28862 * will be restarted from ip_restart_optmgmt which will 28863 * call ip_opt_set and option processing will restart for 28864 * this option. So we may end up calling 'fn' more than once. 28865 * This requires that 'fn' is idempotent except for the 28866 * return value. The operation is considered a success if 28867 * it succeeds at least once on any one interface. 28868 */ 28869 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28870 NULL, fmode, src, first_mp); 28871 if (error == 0) 28872 or->or_private = CGTP_MCAST_SUCCESS; 28873 28874 if (ip_debug > 0) { 28875 ulong_t off; 28876 char *ksym; 28877 ksym = kobj_getsymname((uintptr_t)fn, &off); 28878 ip2dbg(("ip_multirt_apply_membership: " 28879 "called %s, multirt group 0x%08x via itf 0x%08x, " 28880 "error %d [success %u]\n", 28881 ksym ? ksym : "?", 28882 ntohl(group), ntohl(ire_gw->ire_src_addr), 28883 error, or->or_private)); 28884 } 28885 28886 ire_refrele(ire_gw); 28887 if (error == EINPROGRESS) { 28888 IRB_REFRELE(irb); 28889 return (error); 28890 } 28891 } 28892 IRB_REFRELE(irb); 28893 /* 28894 * Consider the call as successful if we succeeded on at least 28895 * one interface. Otherwise, return the last encountered error. 28896 */ 28897 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28898 } 28899 28900 /* 28901 * Issue a warning regarding a route crossing an interface with an 28902 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28903 * amount of time is logged. 28904 */ 28905 static void 28906 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28907 { 28908 hrtime_t current = gethrtime(); 28909 char buf[INET_ADDRSTRLEN]; 28910 ip_stack_t *ipst = ire->ire_ipst; 28911 28912 /* Convert interval in ms to hrtime in ns */ 28913 if (ipst->ips_multirt_bad_mtu_last_time + 28914 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28915 current) { 28916 cmn_err(CE_WARN, "ip: ignoring multiroute " 28917 "to %s, incorrect MTU %u (expected %u)\n", 28918 ip_dot_addr(ire->ire_addr, buf), 28919 ire->ire_max_frag, max_frag); 28920 28921 ipst->ips_multirt_bad_mtu_last_time = current; 28922 } 28923 } 28924 28925 /* 28926 * Get the CGTP (multirouting) filtering status. 28927 * If 0, the CGTP hooks are transparent. 28928 */ 28929 /* ARGSUSED */ 28930 static int 28931 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28932 { 28933 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28934 28935 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28936 return (0); 28937 } 28938 28939 /* 28940 * Set the CGTP (multirouting) filtering status. 28941 * If the status is changed from active to transparent 28942 * or from transparent to active, forward the new status 28943 * to the filtering module (if loaded). 28944 */ 28945 /* ARGSUSED */ 28946 static int 28947 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28948 cred_t *ioc_cr) 28949 { 28950 long new_value; 28951 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28952 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28953 28954 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28955 return (EPERM); 28956 28957 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28958 new_value < 0 || new_value > 1) { 28959 return (EINVAL); 28960 } 28961 28962 if ((!*ip_cgtp_filter_value) && new_value) { 28963 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28964 ipst->ips_ip_cgtp_filter_ops == NULL ? 28965 " (module not loaded)" : ""); 28966 } 28967 if (*ip_cgtp_filter_value && (!new_value)) { 28968 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28969 ipst->ips_ip_cgtp_filter_ops == NULL ? 28970 " (module not loaded)" : ""); 28971 } 28972 28973 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28974 int res; 28975 netstackid_t stackid; 28976 28977 stackid = ipst->ips_netstack->netstack_stackid; 28978 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28979 new_value); 28980 if (res) 28981 return (res); 28982 } 28983 28984 *ip_cgtp_filter_value = (boolean_t)new_value; 28985 28986 return (0); 28987 } 28988 28989 /* 28990 * Return the expected CGTP hooks version number. 28991 */ 28992 int 28993 ip_cgtp_filter_supported(void) 28994 { 28995 return (ip_cgtp_filter_rev); 28996 } 28997 28998 /* 28999 * CGTP hooks can be registered by invoking this function. 29000 * Checks that the version number matches. 29001 */ 29002 int 29003 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29004 { 29005 netstack_t *ns; 29006 ip_stack_t *ipst; 29007 29008 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29009 return (ENOTSUP); 29010 29011 ns = netstack_find_by_stackid(stackid); 29012 if (ns == NULL) 29013 return (EINVAL); 29014 ipst = ns->netstack_ip; 29015 ASSERT(ipst != NULL); 29016 29017 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29018 netstack_rele(ns); 29019 return (EALREADY); 29020 } 29021 29022 ipst->ips_ip_cgtp_filter_ops = ops; 29023 netstack_rele(ns); 29024 return (0); 29025 } 29026 29027 /* 29028 * CGTP hooks can be unregistered by invoking this function. 29029 * Returns ENXIO if there was no registration. 29030 * Returns EBUSY if the ndd variable has not been turned off. 29031 */ 29032 int 29033 ip_cgtp_filter_unregister(netstackid_t stackid) 29034 { 29035 netstack_t *ns; 29036 ip_stack_t *ipst; 29037 29038 ns = netstack_find_by_stackid(stackid); 29039 if (ns == NULL) 29040 return (EINVAL); 29041 ipst = ns->netstack_ip; 29042 ASSERT(ipst != NULL); 29043 29044 if (ipst->ips_ip_cgtp_filter) { 29045 netstack_rele(ns); 29046 return (EBUSY); 29047 } 29048 29049 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29050 netstack_rele(ns); 29051 return (ENXIO); 29052 } 29053 ipst->ips_ip_cgtp_filter_ops = NULL; 29054 netstack_rele(ns); 29055 return (0); 29056 } 29057 29058 /* 29059 * Check whether there is a CGTP filter registration. 29060 * Returns non-zero if there is a registration, otherwise returns zero. 29061 * Note: returns zero if bad stackid. 29062 */ 29063 int 29064 ip_cgtp_filter_is_registered(netstackid_t stackid) 29065 { 29066 netstack_t *ns; 29067 ip_stack_t *ipst; 29068 int ret; 29069 29070 ns = netstack_find_by_stackid(stackid); 29071 if (ns == NULL) 29072 return (0); 29073 ipst = ns->netstack_ip; 29074 ASSERT(ipst != NULL); 29075 29076 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29077 ret = 1; 29078 else 29079 ret = 0; 29080 29081 netstack_rele(ns); 29082 return (ret); 29083 } 29084 29085 static int 29086 ip_squeue_switch(int val) 29087 { 29088 int rval = SQ_FILL; 29089 29090 switch (val) { 29091 case IP_SQUEUE_ENTER_NODRAIN: 29092 rval = SQ_NODRAIN; 29093 break; 29094 case IP_SQUEUE_ENTER: 29095 rval = SQ_PROCESS; 29096 break; 29097 default: 29098 break; 29099 } 29100 return (rval); 29101 } 29102 29103 /* ARGSUSED */ 29104 static int 29105 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29106 caddr_t addr, cred_t *cr) 29107 { 29108 int *v = (int *)addr; 29109 long new_value; 29110 29111 if (secpolicy_net_config(cr, B_FALSE) != 0) 29112 return (EPERM); 29113 29114 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29115 return (EINVAL); 29116 29117 ip_squeue_flag = ip_squeue_switch(new_value); 29118 *v = new_value; 29119 return (0); 29120 } 29121 29122 /* 29123 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29124 * ip_debug. 29125 */ 29126 /* ARGSUSED */ 29127 static int 29128 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29129 caddr_t addr, cred_t *cr) 29130 { 29131 int *v = (int *)addr; 29132 long new_value; 29133 29134 if (secpolicy_net_config(cr, B_FALSE) != 0) 29135 return (EPERM); 29136 29137 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29138 return (EINVAL); 29139 29140 *v = new_value; 29141 return (0); 29142 } 29143 29144 static void * 29145 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29146 { 29147 kstat_t *ksp; 29148 29149 ip_stat_t template = { 29150 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29151 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29152 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29153 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29154 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29155 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29156 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29157 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29158 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29159 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29160 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29161 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29162 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29163 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29164 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29165 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29166 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29167 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29168 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29169 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29170 { "ip_opt", KSTAT_DATA_UINT64 }, 29171 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29172 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29173 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29174 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29175 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29176 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29177 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29178 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29179 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29180 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29181 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29182 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29183 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29184 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29185 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29186 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29187 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29188 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29189 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29190 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29191 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29192 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29193 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29194 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29195 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29196 }; 29197 29198 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29199 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29200 KSTAT_FLAG_VIRTUAL, stackid); 29201 29202 if (ksp == NULL) 29203 return (NULL); 29204 29205 bcopy(&template, ip_statisticsp, sizeof (template)); 29206 ksp->ks_data = (void *)ip_statisticsp; 29207 ksp->ks_private = (void *)(uintptr_t)stackid; 29208 29209 kstat_install(ksp); 29210 return (ksp); 29211 } 29212 29213 static void 29214 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29215 { 29216 if (ksp != NULL) { 29217 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29218 kstat_delete_netstack(ksp, stackid); 29219 } 29220 } 29221 29222 static void * 29223 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29224 { 29225 kstat_t *ksp; 29226 29227 ip_named_kstat_t template = { 29228 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29229 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29230 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29231 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29232 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29233 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29234 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29235 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29236 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29237 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29238 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29239 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29240 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29241 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29242 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29243 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29244 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29245 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29246 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29247 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29248 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29249 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29250 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29251 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29252 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29253 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29254 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29255 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29256 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29257 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29258 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29259 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29260 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29261 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29262 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29263 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29264 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29265 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29266 }; 29267 29268 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29269 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29270 if (ksp == NULL || ksp->ks_data == NULL) 29271 return (NULL); 29272 29273 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29274 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29275 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29276 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29277 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29278 29279 template.netToMediaEntrySize.value.i32 = 29280 sizeof (mib2_ipNetToMediaEntry_t); 29281 29282 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29283 29284 bcopy(&template, ksp->ks_data, sizeof (template)); 29285 ksp->ks_update = ip_kstat_update; 29286 ksp->ks_private = (void *)(uintptr_t)stackid; 29287 29288 kstat_install(ksp); 29289 return (ksp); 29290 } 29291 29292 static void 29293 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29294 { 29295 if (ksp != NULL) { 29296 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29297 kstat_delete_netstack(ksp, stackid); 29298 } 29299 } 29300 29301 static int 29302 ip_kstat_update(kstat_t *kp, int rw) 29303 { 29304 ip_named_kstat_t *ipkp; 29305 mib2_ipIfStatsEntry_t ipmib; 29306 ill_walk_context_t ctx; 29307 ill_t *ill; 29308 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29309 netstack_t *ns; 29310 ip_stack_t *ipst; 29311 29312 if (kp == NULL || kp->ks_data == NULL) 29313 return (EIO); 29314 29315 if (rw == KSTAT_WRITE) 29316 return (EACCES); 29317 29318 ns = netstack_find_by_stackid(stackid); 29319 if (ns == NULL) 29320 return (-1); 29321 ipst = ns->netstack_ip; 29322 if (ipst == NULL) { 29323 netstack_rele(ns); 29324 return (-1); 29325 } 29326 ipkp = (ip_named_kstat_t *)kp->ks_data; 29327 29328 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29329 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29330 ill = ILL_START_WALK_V4(&ctx, ipst); 29331 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29332 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29333 rw_exit(&ipst->ips_ill_g_lock); 29334 29335 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29336 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29337 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29338 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29339 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29340 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29341 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29342 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29343 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29344 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29345 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29346 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29347 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29348 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29349 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29350 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29351 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29352 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29353 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29354 29355 ipkp->routingDiscards.value.ui32 = 0; 29356 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29357 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29358 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29359 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29360 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29361 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29362 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29363 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29364 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29365 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29366 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29367 29368 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29369 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29370 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29371 29372 netstack_rele(ns); 29373 29374 return (0); 29375 } 29376 29377 static void * 29378 icmp_kstat_init(netstackid_t stackid) 29379 { 29380 kstat_t *ksp; 29381 29382 icmp_named_kstat_t template = { 29383 { "inMsgs", KSTAT_DATA_UINT32 }, 29384 { "inErrors", KSTAT_DATA_UINT32 }, 29385 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29386 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29387 { "inParmProbs", KSTAT_DATA_UINT32 }, 29388 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29389 { "inRedirects", KSTAT_DATA_UINT32 }, 29390 { "inEchos", KSTAT_DATA_UINT32 }, 29391 { "inEchoReps", KSTAT_DATA_UINT32 }, 29392 { "inTimestamps", KSTAT_DATA_UINT32 }, 29393 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29394 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29395 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29396 { "outMsgs", KSTAT_DATA_UINT32 }, 29397 { "outErrors", KSTAT_DATA_UINT32 }, 29398 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29399 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29400 { "outParmProbs", KSTAT_DATA_UINT32 }, 29401 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29402 { "outRedirects", KSTAT_DATA_UINT32 }, 29403 { "outEchos", KSTAT_DATA_UINT32 }, 29404 { "outEchoReps", KSTAT_DATA_UINT32 }, 29405 { "outTimestamps", KSTAT_DATA_UINT32 }, 29406 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29407 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29408 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29409 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29410 { "inUnknowns", KSTAT_DATA_UINT32 }, 29411 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29412 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29413 { "outDrops", KSTAT_DATA_UINT32 }, 29414 { "inOverFlows", KSTAT_DATA_UINT32 }, 29415 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29416 }; 29417 29418 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29419 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29420 if (ksp == NULL || ksp->ks_data == NULL) 29421 return (NULL); 29422 29423 bcopy(&template, ksp->ks_data, sizeof (template)); 29424 29425 ksp->ks_update = icmp_kstat_update; 29426 ksp->ks_private = (void *)(uintptr_t)stackid; 29427 29428 kstat_install(ksp); 29429 return (ksp); 29430 } 29431 29432 static void 29433 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29434 { 29435 if (ksp != NULL) { 29436 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29437 kstat_delete_netstack(ksp, stackid); 29438 } 29439 } 29440 29441 static int 29442 icmp_kstat_update(kstat_t *kp, int rw) 29443 { 29444 icmp_named_kstat_t *icmpkp; 29445 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29446 netstack_t *ns; 29447 ip_stack_t *ipst; 29448 29449 if ((kp == NULL) || (kp->ks_data == NULL)) 29450 return (EIO); 29451 29452 if (rw == KSTAT_WRITE) 29453 return (EACCES); 29454 29455 ns = netstack_find_by_stackid(stackid); 29456 if (ns == NULL) 29457 return (-1); 29458 ipst = ns->netstack_ip; 29459 if (ipst == NULL) { 29460 netstack_rele(ns); 29461 return (-1); 29462 } 29463 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29464 29465 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29466 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29467 icmpkp->inDestUnreachs.value.ui32 = 29468 ipst->ips_icmp_mib.icmpInDestUnreachs; 29469 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29470 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29471 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29472 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29473 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29474 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29475 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29476 icmpkp->inTimestampReps.value.ui32 = 29477 ipst->ips_icmp_mib.icmpInTimestampReps; 29478 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29479 icmpkp->inAddrMaskReps.value.ui32 = 29480 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29481 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29482 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29483 icmpkp->outDestUnreachs.value.ui32 = 29484 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29485 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29486 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29487 icmpkp->outSrcQuenchs.value.ui32 = 29488 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29489 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29490 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29491 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29492 icmpkp->outTimestamps.value.ui32 = 29493 ipst->ips_icmp_mib.icmpOutTimestamps; 29494 icmpkp->outTimestampReps.value.ui32 = 29495 ipst->ips_icmp_mib.icmpOutTimestampReps; 29496 icmpkp->outAddrMasks.value.ui32 = 29497 ipst->ips_icmp_mib.icmpOutAddrMasks; 29498 icmpkp->outAddrMaskReps.value.ui32 = 29499 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29500 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29501 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29502 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29503 icmpkp->outFragNeeded.value.ui32 = 29504 ipst->ips_icmp_mib.icmpOutFragNeeded; 29505 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29506 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29507 icmpkp->inBadRedirects.value.ui32 = 29508 ipst->ips_icmp_mib.icmpInBadRedirects; 29509 29510 netstack_rele(ns); 29511 return (0); 29512 } 29513 29514 /* 29515 * This is the fanout function for raw socket opened for SCTP. Note 29516 * that it is called after SCTP checks that there is no socket which 29517 * wants a packet. Then before SCTP handles this out of the blue packet, 29518 * this function is called to see if there is any raw socket for SCTP. 29519 * If there is and it is bound to the correct address, the packet will 29520 * be sent to that socket. Note that only one raw socket can be bound to 29521 * a port. This is assured in ipcl_sctp_hash_insert(); 29522 */ 29523 void 29524 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29525 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29526 zoneid_t zoneid) 29527 { 29528 conn_t *connp; 29529 queue_t *rq; 29530 mblk_t *first_mp; 29531 boolean_t secure; 29532 ip6_t *ip6h; 29533 ip_stack_t *ipst = recv_ill->ill_ipst; 29534 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29535 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29536 boolean_t sctp_csum_err = B_FALSE; 29537 29538 if (flags & IP_FF_SCTP_CSUM_ERR) { 29539 sctp_csum_err = B_TRUE; 29540 flags &= ~IP_FF_SCTP_CSUM_ERR; 29541 } 29542 29543 first_mp = mp; 29544 if (mctl_present) { 29545 mp = first_mp->b_cont; 29546 secure = ipsec_in_is_secure(first_mp); 29547 ASSERT(mp != NULL); 29548 } else { 29549 secure = B_FALSE; 29550 } 29551 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29552 29553 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29554 if (connp == NULL) { 29555 /* 29556 * Although raw sctp is not summed, OOB chunks must be. 29557 * Drop the packet here if the sctp checksum failed. 29558 */ 29559 if (sctp_csum_err) { 29560 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29561 freemsg(first_mp); 29562 return; 29563 } 29564 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29565 return; 29566 } 29567 rq = connp->conn_rq; 29568 if (!canputnext(rq)) { 29569 CONN_DEC_REF(connp); 29570 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29571 freemsg(first_mp); 29572 return; 29573 } 29574 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29575 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29576 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29577 (isv4 ? ipha : NULL), ip6h, mctl_present); 29578 if (first_mp == NULL) { 29579 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29580 CONN_DEC_REF(connp); 29581 return; 29582 } 29583 } 29584 /* 29585 * We probably should not send M_CTL message up to 29586 * raw socket. 29587 */ 29588 if (mctl_present) 29589 freeb(first_mp); 29590 29591 /* Initiate IPPF processing here if needed. */ 29592 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29593 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29594 ip_process(IPP_LOCAL_IN, &mp, 29595 recv_ill->ill_phyint->phyint_ifindex); 29596 if (mp == NULL) { 29597 CONN_DEC_REF(connp); 29598 return; 29599 } 29600 } 29601 29602 if (connp->conn_recvif || connp->conn_recvslla || 29603 ((connp->conn_ip_recvpktinfo || 29604 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29605 (flags & IP_FF_IPINFO))) { 29606 int in_flags = 0; 29607 29608 /* 29609 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29610 * IPF_RECVIF. 29611 */ 29612 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29613 in_flags = IPF_RECVIF; 29614 } 29615 if (connp->conn_recvslla) { 29616 in_flags |= IPF_RECVSLLA; 29617 } 29618 if (isv4) { 29619 mp = ip_add_info(mp, recv_ill, in_flags, 29620 IPCL_ZONEID(connp), ipst); 29621 } else { 29622 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29623 if (mp == NULL) { 29624 BUMP_MIB(recv_ill->ill_ip_mib, 29625 ipIfStatsInDiscards); 29626 CONN_DEC_REF(connp); 29627 return; 29628 } 29629 } 29630 } 29631 29632 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29633 /* 29634 * We are sending the IPSEC_IN message also up. Refer 29635 * to comments above this function. 29636 * This is the SOCK_RAW, IPPROTO_SCTP case. 29637 */ 29638 (connp->conn_recv)(connp, mp, NULL); 29639 CONN_DEC_REF(connp); 29640 } 29641 29642 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29643 { \ 29644 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29645 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29646 } 29647 /* 29648 * This function should be called only if all packet processing 29649 * including fragmentation is complete. Callers of this function 29650 * must set mp->b_prev to one of these values: 29651 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29652 * prior to handing over the mp as first argument to this function. 29653 * 29654 * If the ire passed by caller is incomplete, this function 29655 * queues the packet and if necessary, sends ARP request and bails. 29656 * If the ire passed is fully resolved, we simply prepend 29657 * the link-layer header to the packet, do ipsec hw acceleration 29658 * work if necessary, and send the packet out on the wire. 29659 * 29660 * NOTE: IPsec will only call this function with fully resolved 29661 * ires if hw acceleration is involved. 29662 * TODO list : 29663 * a Handle M_MULTIDATA so that 29664 * tcp_multisend->tcp_multisend_data can 29665 * call ip_xmit_v4 directly 29666 * b Handle post-ARP work for fragments so that 29667 * ip_wput_frag can call this function. 29668 */ 29669 ipxmit_state_t 29670 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29671 boolean_t flow_ctl_enabled, conn_t *connp) 29672 { 29673 nce_t *arpce; 29674 ipha_t *ipha; 29675 queue_t *q; 29676 int ill_index; 29677 mblk_t *nxt_mp, *first_mp; 29678 boolean_t xmit_drop = B_FALSE; 29679 ip_proc_t proc; 29680 ill_t *out_ill; 29681 int pkt_len; 29682 29683 arpce = ire->ire_nce; 29684 ASSERT(arpce != NULL); 29685 29686 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29687 29688 mutex_enter(&arpce->nce_lock); 29689 switch (arpce->nce_state) { 29690 case ND_REACHABLE: 29691 /* If there are other queued packets, queue this packet */ 29692 if (arpce->nce_qd_mp != NULL) { 29693 if (mp != NULL) 29694 nce_queue_mp_common(arpce, mp, B_FALSE); 29695 mp = arpce->nce_qd_mp; 29696 } 29697 arpce->nce_qd_mp = NULL; 29698 mutex_exit(&arpce->nce_lock); 29699 29700 /* 29701 * Flush the queue. In the common case, where the 29702 * ARP is already resolved, it will go through the 29703 * while loop only once. 29704 */ 29705 while (mp != NULL) { 29706 29707 nxt_mp = mp->b_next; 29708 mp->b_next = NULL; 29709 ASSERT(mp->b_datap->db_type != M_CTL); 29710 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29711 /* 29712 * This info is needed for IPQOS to do COS marking 29713 * in ip_wput_attach_llhdr->ip_process. 29714 */ 29715 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29716 mp->b_prev = NULL; 29717 29718 /* set up ill index for outbound qos processing */ 29719 out_ill = ire_to_ill(ire); 29720 ill_index = out_ill->ill_phyint->phyint_ifindex; 29721 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29722 ill_index, &ipha); 29723 if (first_mp == NULL) { 29724 xmit_drop = B_TRUE; 29725 BUMP_MIB(out_ill->ill_ip_mib, 29726 ipIfStatsOutDiscards); 29727 goto next_mp; 29728 } 29729 29730 /* non-ipsec hw accel case */ 29731 if (io == NULL || !io->ipsec_out_accelerated) { 29732 /* send it */ 29733 q = ire->ire_stq; 29734 if (proc == IPP_FWD_OUT) { 29735 UPDATE_IB_PKT_COUNT(ire); 29736 } else { 29737 UPDATE_OB_PKT_COUNT(ire); 29738 } 29739 ire->ire_last_used_time = lbolt; 29740 29741 if (flow_ctl_enabled || canputnext(q)) { 29742 if (proc == IPP_FWD_OUT) { 29743 29744 BUMP_MIB(out_ill->ill_ip_mib, 29745 ipIfStatsHCOutForwDatagrams); 29746 29747 } 29748 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29749 pkt_len); 29750 29751 DTRACE_IP7(send, mblk_t *, first_mp, 29752 conn_t *, NULL, void_ip_t *, ipha, 29753 __dtrace_ipsr_ill_t *, out_ill, 29754 ipha_t *, ipha, ip6_t *, NULL, int, 29755 0); 29756 29757 ILL_SEND_TX(out_ill, 29758 ire, connp, first_mp, 0, connp); 29759 } else { 29760 BUMP_MIB(out_ill->ill_ip_mib, 29761 ipIfStatsOutDiscards); 29762 xmit_drop = B_TRUE; 29763 freemsg(first_mp); 29764 } 29765 } else { 29766 /* 29767 * Safety Pup says: make sure this 29768 * is going to the right interface! 29769 */ 29770 ill_t *ill1 = 29771 (ill_t *)ire->ire_stq->q_ptr; 29772 int ifindex = 29773 ill1->ill_phyint->phyint_ifindex; 29774 if (ifindex != 29775 io->ipsec_out_capab_ill_index) { 29776 xmit_drop = B_TRUE; 29777 freemsg(mp); 29778 } else { 29779 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29780 pkt_len); 29781 29782 DTRACE_IP7(send, mblk_t *, first_mp, 29783 conn_t *, NULL, void_ip_t *, ipha, 29784 __dtrace_ipsr_ill_t *, ill1, 29785 ipha_t *, ipha, ip6_t *, NULL, 29786 int, 0); 29787 29788 ipsec_hw_putnext(ire->ire_stq, mp); 29789 } 29790 } 29791 next_mp: 29792 mp = nxt_mp; 29793 } /* while (mp != NULL) */ 29794 if (xmit_drop) 29795 return (SEND_FAILED); 29796 else 29797 return (SEND_PASSED); 29798 29799 case ND_INITIAL: 29800 case ND_INCOMPLETE: 29801 29802 /* 29803 * While we do send off packets to dests that 29804 * use fully-resolved CGTP routes, we do not 29805 * handle unresolved CGTP routes. 29806 */ 29807 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29808 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29809 29810 if (mp != NULL) { 29811 /* queue the packet */ 29812 nce_queue_mp_common(arpce, mp, B_FALSE); 29813 } 29814 29815 if (arpce->nce_state == ND_INCOMPLETE) { 29816 mutex_exit(&arpce->nce_lock); 29817 DTRACE_PROBE3(ip__xmit__incomplete, 29818 (ire_t *), ire, (mblk_t *), mp, 29819 (ipsec_out_t *), io); 29820 return (LOOKUP_IN_PROGRESS); 29821 } 29822 29823 arpce->nce_state = ND_INCOMPLETE; 29824 mutex_exit(&arpce->nce_lock); 29825 29826 /* 29827 * Note that ire_add() (called from ire_forward()) 29828 * holds a ref on the ire until ARP is completed. 29829 */ 29830 ire_arpresolve(ire); 29831 return (LOOKUP_IN_PROGRESS); 29832 default: 29833 ASSERT(0); 29834 mutex_exit(&arpce->nce_lock); 29835 return (LLHDR_RESLV_FAILED); 29836 } 29837 } 29838 29839 #undef UPDATE_IP_MIB_OB_COUNTERS 29840 29841 /* 29842 * Return B_TRUE if the buffers differ in length or content. 29843 * This is used for comparing extension header buffers. 29844 * Note that an extension header would be declared different 29845 * even if all that changed was the next header value in that header i.e. 29846 * what really changed is the next extension header. 29847 */ 29848 boolean_t 29849 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29850 uint_t blen) 29851 { 29852 if (!b_valid) 29853 blen = 0; 29854 29855 if (alen != blen) 29856 return (B_TRUE); 29857 if (alen == 0) 29858 return (B_FALSE); /* Both zero length */ 29859 return (bcmp(abuf, bbuf, alen)); 29860 } 29861 29862 /* 29863 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29864 * Return B_FALSE if memory allocation fails - don't change any state! 29865 */ 29866 boolean_t 29867 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29868 const void *src, uint_t srclen) 29869 { 29870 void *dst; 29871 29872 if (!src_valid) 29873 srclen = 0; 29874 29875 ASSERT(*dstlenp == 0); 29876 if (src != NULL && srclen != 0) { 29877 dst = mi_alloc(srclen, BPRI_MED); 29878 if (dst == NULL) 29879 return (B_FALSE); 29880 } else { 29881 dst = NULL; 29882 } 29883 if (*dstp != NULL) 29884 mi_free(*dstp); 29885 *dstp = dst; 29886 *dstlenp = dst == NULL ? 0 : srclen; 29887 return (B_TRUE); 29888 } 29889 29890 /* 29891 * Replace what is in *dst, *dstlen with the source. 29892 * Assumes ip_allocbuf has already been called. 29893 */ 29894 void 29895 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29896 const void *src, uint_t srclen) 29897 { 29898 if (!src_valid) 29899 srclen = 0; 29900 29901 ASSERT(*dstlenp == srclen); 29902 if (src != NULL && srclen != 0) 29903 bcopy(src, *dstp, srclen); 29904 } 29905 29906 /* 29907 * Free the storage pointed to by the members of an ip6_pkt_t. 29908 */ 29909 void 29910 ip6_pkt_free(ip6_pkt_t *ipp) 29911 { 29912 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29913 29914 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29915 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29916 ipp->ipp_hopopts = NULL; 29917 ipp->ipp_hopoptslen = 0; 29918 } 29919 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29920 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29921 ipp->ipp_rtdstopts = NULL; 29922 ipp->ipp_rtdstoptslen = 0; 29923 } 29924 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29925 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29926 ipp->ipp_dstopts = NULL; 29927 ipp->ipp_dstoptslen = 0; 29928 } 29929 if (ipp->ipp_fields & IPPF_RTHDR) { 29930 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29931 ipp->ipp_rthdr = NULL; 29932 ipp->ipp_rthdrlen = 0; 29933 } 29934 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29935 IPPF_RTHDR); 29936 } 29937 29938 zoneid_t 29939 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29940 zoneid_t lookup_zoneid) 29941 { 29942 ire_t *ire; 29943 int ire_flags = MATCH_IRE_TYPE; 29944 zoneid_t zoneid = ALL_ZONES; 29945 29946 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29947 return (ALL_ZONES); 29948 29949 if (lookup_zoneid != ALL_ZONES) 29950 ire_flags |= MATCH_IRE_ZONEONLY; 29951 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29952 lookup_zoneid, NULL, ire_flags, ipst); 29953 if (ire != NULL) { 29954 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29955 ire_refrele(ire); 29956 } 29957 return (zoneid); 29958 } 29959 29960 zoneid_t 29961 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29962 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29963 { 29964 ire_t *ire; 29965 int ire_flags = MATCH_IRE_TYPE; 29966 zoneid_t zoneid = ALL_ZONES; 29967 ipif_t *ipif_arg = NULL; 29968 29969 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29970 return (ALL_ZONES); 29971 29972 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29973 ire_flags |= MATCH_IRE_ILL; 29974 ipif_arg = ill->ill_ipif; 29975 } 29976 if (lookup_zoneid != ALL_ZONES) 29977 ire_flags |= MATCH_IRE_ZONEONLY; 29978 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29979 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29980 if (ire != NULL) { 29981 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29982 ire_refrele(ire); 29983 } 29984 return (zoneid); 29985 } 29986 29987 /* 29988 * IP obserability hook support functions. 29989 */ 29990 29991 static void 29992 ipobs_init(ip_stack_t *ipst) 29993 { 29994 ipst->ips_ipobs_enabled = B_FALSE; 29995 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 29996 offsetof(ipobs_cb_t, ipobs_cbnext)); 29997 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 29998 ipst->ips_ipobs_cb_nwalkers = 0; 29999 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30000 } 30001 30002 static void 30003 ipobs_fini(ip_stack_t *ipst) 30004 { 30005 ipobs_cb_t *cb; 30006 30007 mutex_enter(&ipst->ips_ipobs_cb_lock); 30008 while (ipst->ips_ipobs_cb_nwalkers != 0) 30009 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30010 30011 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30012 list_remove(&ipst->ips_ipobs_cb_list, cb); 30013 kmem_free(cb, sizeof (*cb)); 30014 } 30015 list_destroy(&ipst->ips_ipobs_cb_list); 30016 mutex_exit(&ipst->ips_ipobs_cb_lock); 30017 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30018 cv_destroy(&ipst->ips_ipobs_cb_cv); 30019 } 30020 30021 void 30022 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30023 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30024 { 30025 mblk_t *mp2; 30026 ipobs_cb_t *ipobs_cb; 30027 ipobs_hook_data_t *ihd; 30028 uint64_t grifindex = 0; 30029 30030 ASSERT(DB_TYPE(mp) == M_DATA); 30031 30032 if (IS_UNDER_IPMP(ill)) 30033 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30034 30035 mutex_enter(&ipst->ips_ipobs_cb_lock); 30036 ipst->ips_ipobs_cb_nwalkers++; 30037 mutex_exit(&ipst->ips_ipobs_cb_lock); 30038 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30039 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30040 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30041 if (mp2 != NULL) { 30042 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30043 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30044 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30045 freemsg(mp2); 30046 continue; 30047 } 30048 ihd->ihd_mp->b_rptr += hlen; 30049 ihd->ihd_htype = htype; 30050 ihd->ihd_ipver = ipver; 30051 ihd->ihd_zsrc = zsrc; 30052 ihd->ihd_zdst = zdst; 30053 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30054 ihd->ihd_grifindex = grifindex; 30055 ihd->ihd_stack = ipst->ips_netstack; 30056 mp2->b_wptr += sizeof (*ihd); 30057 ipobs_cb->ipobs_cbfunc(mp2); 30058 } 30059 } 30060 mutex_enter(&ipst->ips_ipobs_cb_lock); 30061 ipst->ips_ipobs_cb_nwalkers--; 30062 if (ipst->ips_ipobs_cb_nwalkers == 0) 30063 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30064 mutex_exit(&ipst->ips_ipobs_cb_lock); 30065 } 30066 30067 void 30068 ipobs_register_hook(netstack_t *ns, pfv_t func) 30069 { 30070 ipobs_cb_t *cb; 30071 ip_stack_t *ipst = ns->netstack_ip; 30072 30073 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30074 30075 mutex_enter(&ipst->ips_ipobs_cb_lock); 30076 while (ipst->ips_ipobs_cb_nwalkers != 0) 30077 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30078 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30079 30080 cb->ipobs_cbfunc = func; 30081 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30082 ipst->ips_ipobs_enabled = B_TRUE; 30083 mutex_exit(&ipst->ips_ipobs_cb_lock); 30084 } 30085 30086 void 30087 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30088 { 30089 ipobs_cb_t *curcb; 30090 ip_stack_t *ipst = ns->netstack_ip; 30091 30092 mutex_enter(&ipst->ips_ipobs_cb_lock); 30093 while (ipst->ips_ipobs_cb_nwalkers != 0) 30094 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30095 30096 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30097 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30098 if (func == curcb->ipobs_cbfunc) { 30099 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30100 kmem_free(curcb, sizeof (*curcb)); 30101 break; 30102 } 30103 } 30104 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30105 ipst->ips_ipobs_enabled = B_FALSE; 30106 mutex_exit(&ipst->ips_ipobs_cb_lock); 30107 } 30108