1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_rts.h> 87 #include <inet/optcom.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_listutils.h> 90 #include <netinet/igmp.h> 91 #include <netinet/ip_mroute.h> 92 #include <inet/ipp_common.h> 93 94 #include <net/pfkeyv2.h> 95 #include <inet/ipsec_info.h> 96 #include <inet/sadb.h> 97 #include <inet/ipsec_impl.h> 98 #include <sys/iphada.h> 99 #include <inet/tun.h> 100 #include <inet/ipdrop.h> 101 102 #include <sys/ethernet.h> 103 #include <net/if_types.h> 104 #include <sys/cpuvar.h> 105 106 #include <ipp/ipp.h> 107 #include <ipp/ipp_impl.h> 108 #include <ipp/ipgpc/ipgpc.h> 109 110 #include <sys/multidata.h> 111 #include <sys/pattr.h> 112 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/udp_impl.h> 116 117 /* 118 * Values for squeue switch: 119 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 120 * IP_SQUEUE_ENTER: squeue_enter 121 * IP_SQUEUE_FILL: squeue_fill 122 */ 123 int ip_squeue_enter = 2; 124 squeue_func_t ip_input_proc; 125 /* 126 * IP statistics. 127 */ 128 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 129 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 130 131 typedef struct ip_stat { 132 kstat_named_t ipsec_fanout_proto; 133 kstat_named_t ip_udp_fannorm; 134 kstat_named_t ip_udp_fanmb; 135 kstat_named_t ip_udp_fanothers; 136 kstat_named_t ip_udp_fast_path; 137 kstat_named_t ip_udp_slow_path; 138 kstat_named_t ip_udp_input_err; 139 kstat_named_t ip_tcppullup; 140 kstat_named_t ip_tcpoptions; 141 kstat_named_t ip_multipkttcp; 142 kstat_named_t ip_tcp_fast_path; 143 kstat_named_t ip_tcp_slow_path; 144 kstat_named_t ip_tcp_input_error; 145 kstat_named_t ip_db_ref; 146 kstat_named_t ip_notaligned1; 147 kstat_named_t ip_notaligned2; 148 kstat_named_t ip_multimblk3; 149 kstat_named_t ip_multimblk4; 150 kstat_named_t ip_ipoptions; 151 kstat_named_t ip_classify_fail; 152 kstat_named_t ip_opt; 153 kstat_named_t ip_udp_rput_local; 154 kstat_named_t ipsec_proto_ahesp; 155 kstat_named_t ip_conn_flputbq; 156 kstat_named_t ip_conn_walk_drain; 157 kstat_named_t ip_out_sw_cksum; 158 kstat_named_t ip_in_sw_cksum; 159 kstat_named_t ip_trash_ire_reclaim_calls; 160 kstat_named_t ip_trash_ire_reclaim_success; 161 kstat_named_t ip_ire_arp_timer_expired; 162 kstat_named_t ip_ire_redirect_timer_expired; 163 kstat_named_t ip_ire_pmtu_timer_expired; 164 kstat_named_t ip_input_multi_squeue; 165 kstat_named_t ip_tcp_in_full_hw_cksum_err; 166 kstat_named_t ip_tcp_in_part_hw_cksum_err; 167 kstat_named_t ip_tcp_in_sw_cksum_err; 168 kstat_named_t ip_tcp_out_sw_cksum_bytes; 169 kstat_named_t ip_udp_in_full_hw_cksum_err; 170 kstat_named_t ip_udp_in_part_hw_cksum_err; 171 kstat_named_t ip_udp_in_sw_cksum_err; 172 kstat_named_t ip_udp_out_sw_cksum_bytes; 173 kstat_named_t ip_frag_mdt_pkt_out; 174 kstat_named_t ip_frag_mdt_discarded; 175 kstat_named_t ip_frag_mdt_allocfail; 176 kstat_named_t ip_frag_mdt_addpdescfail; 177 kstat_named_t ip_frag_mdt_allocd; 178 } ip_stat_t; 179 180 static ip_stat_t ip_statistics = { 181 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 182 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 183 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 184 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 185 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 186 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 187 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 188 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 189 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 190 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 191 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 192 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 193 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 194 { "ip_db_ref", KSTAT_DATA_UINT64 }, 195 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 196 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 197 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 198 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 199 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 200 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 201 { "ip_opt", KSTAT_DATA_UINT64 }, 202 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 203 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 204 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 205 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 206 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 207 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 208 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 209 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 210 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 211 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 212 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 213 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 214 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 215 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 216 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 217 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 218 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 219 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 220 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 221 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 222 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 223 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 224 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 225 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 226 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 227 }; 228 229 static kstat_t *ip_kstat; 230 231 #define TCP6 "tcp6" 232 #define TCP "tcp" 233 #define SCTP "sctp" 234 #define SCTP6 "sctp6" 235 236 major_t TCP6_MAJ; 237 major_t TCP_MAJ; 238 major_t SCTP_MAJ; 239 major_t SCTP6_MAJ; 240 241 int ip_poll_normal_ms = 100; 242 int ip_poll_normal_ticks = 0; 243 244 /* 245 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 246 */ 247 248 struct listptr_s { 249 mblk_t *lp_head; /* pointer to the head of the list */ 250 mblk_t *lp_tail; /* pointer to the tail of the list */ 251 }; 252 253 typedef struct listptr_s listptr_t; 254 255 /* 256 * Cluster specific hooks. These should be NULL when booted as a non-cluster 257 */ 258 259 /* 260 * Hook functions to enable cluster networking 261 * On non-clustered systems these vectors must always be NULL. 262 * 263 * Hook function to Check ip specified ip address is a shared ip address 264 * in the cluster 265 * 266 */ 267 int (*cl_inet_isclusterwide)(uint8_t protocol, 268 sa_family_t addr_family, uint8_t *laddrp) = NULL; 269 270 /* 271 * Hook function to generate cluster wide ip fragment identifier 272 */ 273 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 274 uint8_t *laddrp, uint8_t *faddrp) = NULL; 275 276 /* 277 * Synchronization notes: 278 * 279 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 280 * MT level protection given by STREAMS. IP uses a combination of its own 281 * internal serialization mechanism and standard Solaris locking techniques. 282 * The internal serialization is per phyint (no IPMP) or per IPMP group. 283 * This is used to serialize plumbing operations, IPMP operations, certain 284 * multicast operations, most set ioctls, igmp/mld timers etc. 285 * 286 * Plumbing is a long sequence of operations involving message 287 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 288 * involved in plumbing operations. A natural model is to serialize these 289 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 290 * parallel without any interference. But various set ioctls on hme0 are best 291 * serialized. However if the system uses IPMP, the operations are easier if 292 * they are serialized on a per IPMP group basis since IPMP operations 293 * happen across ill's of a group. Thus the lowest common denominator is to 294 * serialize most set ioctls, multicast join/leave operations, IPMP operations 295 * igmp/mld timer operations, and processing of DLPI control messages received 296 * from drivers on a per IPMP group basis. If the system does not employ 297 * IPMP the serialization is on a per phyint basis. This serialization is 298 * provided by the ipsq_t and primitives operating on this. Details can 299 * be found in ip_if.c above the core primitives operating on ipsq_t. 300 * 301 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 302 * Simiarly lookup of an ire by a thread also returns a refheld ire. 303 * In addition ipif's and ill's referenced by the ire are also indirectly 304 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 305 * the ipif's address or netmask change as long as an ipif is refheld 306 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 307 * address of an ipif has to go through the ipsq_t. This ensures that only 308 * 1 such exclusive operation proceeds at any time on the ipif. It then 309 * deletes all ires associated with this ipif, and waits for all refcnts 310 * associated with this ipif to come down to zero. The address is changed 311 * only after the ipif has been quiesced. Then the ipif is brought up again. 312 * More details are described above the comment in ip_sioctl_flags. 313 * 314 * Packet processing is based mostly on IREs and are fully multi-threaded 315 * using standard Solaris MT techniques. 316 * 317 * There are explicit locks in IP to handle: 318 * - The ip_g_head list maintained by mi_open_link() and friends. 319 * 320 * - The reassembly data structures (one lock per hash bucket) 321 * 322 * - conn_lock is meant to protect conn_t fields. The fields actually 323 * protected by conn_lock are documented in the conn_t definition. 324 * 325 * - ire_lock to protect some of the fields of the ire, IRE tables 326 * (one lock per hash bucket). Refer to ip_ire.c for details. 327 * 328 * - ndp_g_lock and nce_lock for protecting NCEs. 329 * 330 * - ill_lock protects fields of the ill and ipif. Details in ip.h 331 * 332 * - ill_g_lock: This is a global reader/writer lock. Protects the following 333 * * The AVL tree based global multi list of all ills. 334 * * The linked list of all ipifs of an ill 335 * * The <ill-ipsq> mapping 336 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 337 * * The illgroup list threaded by ill_group_next. 338 * * <ill-phyint> association 339 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 340 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 341 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 342 * will all have to hold the ill_g_lock as writer for the actual duration 343 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 344 * may be found in the IPMP section. 345 * 346 * - ill_lock: This is a per ill mutex. 347 * It protects some members of the ill and is documented below. 348 * It also protects the <ill-ipsq> mapping 349 * It also protects the illgroup list threaded by ill_group_next. 350 * It also protects the <ill-phyint> assoc. 351 * It also protects the list of ipifs hanging off the ill. 352 * 353 * - ipsq_lock: This is a per ipsq_t mutex lock. 354 * This protects all the other members of the ipsq struct except 355 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 356 * 357 * - illgrp_lock: This is a per ill_group mutex lock. 358 * The only thing it protects is the illgrp_ill_schednext member of ill_group 359 * which dictates which is the next ill in an ill_group that is to be chosen 360 * for sending outgoing packets, through creation of an IRE_CACHE that 361 * references this ill. 362 * 363 * - phyint_lock: This is a per phyint mutex lock. Protects just the 364 * phyint_flags 365 * 366 * - ip_g_nd_lock: This is a global reader/writer lock. 367 * Any call to nd_load to load a new parameter to the ND table must hold the 368 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 369 * as reader. 370 * 371 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 372 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 373 * uniqueness check also done atomically. 374 * 375 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 376 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 377 * as a writer when adding or deleting elements from these lists, and 378 * as a reader when walking these lists to send a SADB update to the 379 * IPsec capable ills. 380 * 381 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 382 * group list linked by ill_usesrc_grp_next. It also protects the 383 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 384 * group is being added or deleted. This lock is taken as a reader when 385 * walking the list/group(eg: to get the number of members in a usesrc group). 386 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 387 * field is changing state i.e from NULL to non-NULL or vice-versa. For 388 * example, it is not necessary to take this lock in the initial portion 389 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 390 * ip_sioctl_flags since the these operations are executed exclusively and 391 * that ensures that the "usesrc group state" cannot change. The "usesrc 392 * group state" change can happen only in the latter part of 393 * ip_sioctl_slifusesrc and in ill_delete. 394 * 395 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 396 * 397 * To change the <ill-phyint> association, the ill_g_lock must be held 398 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 399 * must be held. 400 * 401 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 402 * and the ill_lock of the ill in question must be held. 403 * 404 * To change the <ill-illgroup> association the ill_g_lock must be held as 405 * writer and the ill_lock of the ill in question must be held. 406 * 407 * To add or delete an ipif from the list of ipifs hanging off the ill, 408 * ill_g_lock (writer) and ill_lock must be held and the thread must be 409 * a writer on the associated ipsq,. 410 * 411 * To add or delete an ill to the system, the ill_g_lock must be held as 412 * writer and the thread must be a writer on the associated ipsq. 413 * 414 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 415 * must be a writer on the associated ipsq. 416 * 417 * Lock hierarchy 418 * 419 * Some lock hierarchy scenarios are listed below. 420 * 421 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 422 * ill_g_lock -> illgrp_lock -> ill_lock 423 * ill_g_lock -> ill_lock(s) -> phyint_lock 424 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 425 * ill_g_lock -> ip_addr_avail_lock 426 * conn_lock -> irb_lock -> ill_lock -> ire_lock 427 * ipsa_lock -> ill_g_lock -> ill_lock 428 * ill_g_lock -> ip_g_nd_lock 429 * irb_lock -> ill_lock -> ire_mrtun_lock 430 * irb_lock -> ill_lock -> ire_srcif_table_lock 431 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 432 * ipsec_capab_ills_lock -> ipsa_lock 433 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 434 * 435 * When more than 1 ill lock is needed to be held, all ill lock addresses 436 * are sorted on address and locked starting from highest addressed lock 437 * downward. 438 * 439 * IPSEC notes : 440 * 441 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 442 * in front of the actual packet. For outbound datagrams, the M_CTL 443 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 444 * information used by the IPSEC code for applying the right level of 445 * protection. The information initialized by IP in the ipsec_out_t 446 * is determined by the per-socket policy or global policy in the system. 447 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 448 * ipsec_info.h) which starts out with nothing in it. It gets filled 449 * with the right information if it goes through the AH/ESP code, which 450 * happens if the incoming packet is secure. The information initialized 451 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 452 * the policy requirements needed by per-socket policy or global policy 453 * is met or not. 454 * 455 * If there is both per-socket policy (set using setsockopt) and there 456 * is also global policy match for the 5 tuples of the socket, 457 * ipsec_override_policy() makes the decision of which one to use. 458 * 459 * For fully connected sockets i.e dst, src [addr, port] is known, 460 * conn_policy_cached is set indicating that policy has been cached. 461 * conn_in_enforce_policy may or may not be set depending on whether 462 * there is a global policy match or per-socket policy match. 463 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 464 * Once the right policy is set on the conn_t, policy cannot change for 465 * this socket. This makes life simpler for TCP (UDP ?) where 466 * re-transmissions go out with the same policy. For symmetry, policy 467 * is cached for fully connected UDP sockets also. Thus if policy is cached, 468 * it also implies that policy is latched i.e policy cannot change 469 * on these sockets. As we have the right policy on the conn, we don't 470 * have to lookup global policy for every outbound and inbound datagram 471 * and thus serving as an optimization. Note that a global policy change 472 * does not affect fully connected sockets if they have policy. If fully 473 * connected sockets did not have any policy associated with it, global 474 * policy change may affect them. 475 * 476 * IP Flow control notes: 477 * 478 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 479 * cannot be sent down to the driver by IP, because of a canput failure, IP 480 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 481 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 482 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 483 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 484 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 485 * the queued messages, and removes the conn from the drain list, if all 486 * messages were drained. It also qenables the next conn in the drain list to 487 * continue the drain process. 488 * 489 * In reality the drain list is not a single list, but a configurable number 490 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 491 * list. If the ip_wsrv of the next qenabled conn does not run, because the 492 * stream closes, ip_close takes responsibility to qenable the next conn in 493 * the drain list. The directly called ip_wput path always does a putq, if 494 * it cannot putnext. Thus synchronization problems are handled between 495 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 496 * functions that manipulate this drain list. Furthermore conn_drain_insert 497 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 498 * running on a queue at any time. conn_drain_tail can be simultaneously called 499 * from both ip_wsrv and ip_close. 500 * 501 * IPQOS notes: 502 * 503 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 504 * and IPQoS modules. IPPF includes hooks in IP at different control points 505 * (callout positions) which direct packets to IPQoS modules for policy 506 * processing. Policies, if present, are global. 507 * 508 * The callout positions are located in the following paths: 509 * o local_in (packets destined for this host) 510 * o local_out (packets orginating from this host ) 511 * o fwd_in (packets forwarded by this m/c - inbound) 512 * o fwd_out (packets forwarded by this m/c - outbound) 513 * Hooks at these callout points can be enabled/disabled using the ndd variable 514 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 515 * By default all the callout positions are enabled. 516 * 517 * Outbound (local_out) 518 * Hooks are placed in ip_wput_ire and ipsec_out_process. 519 * 520 * Inbound (local_in) 521 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 522 * TCP and UDP fanout routines. 523 * 524 * Forwarding (in and out) 525 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 526 * 527 * IP Policy Framework processing (IPPF processing) 528 * Policy processing for a packet is initiated by ip_process, which ascertains 529 * that the classifier (ipgpc) is loaded and configured, failing which the 530 * packet resumes normal processing in IP. If the clasifier is present, the 531 * packet is acted upon by one or more IPQoS modules (action instances), per 532 * filters configured in ipgpc and resumes normal IP processing thereafter. 533 * An action instance can drop a packet in course of its processing. 534 * 535 * A boolean variable, ip_policy, is used in all the fanout routines that can 536 * invoke ip_process for a packet. This variable indicates if the packet should 537 * to be sent for policy processing. The variable is set to B_TRUE by default, 538 * i.e. when the routines are invoked in the normal ip procesing path for a 539 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 540 * ip_policy is set to B_FALSE for all the routines called in these two 541 * functions because, in the former case, we don't process loopback traffic 542 * currently while in the latter, the packets have already been processed in 543 * icmp_inbound. 544 * 545 * Zones notes: 546 * 547 * The partitioning rules for networking are as follows: 548 * 1) Packets coming from a zone must have a source address belonging to that 549 * zone. 550 * 2) Packets coming from a zone can only be sent on a physical interface on 551 * which the zone has an IP address. 552 * 3) Between two zones on the same machine, packet delivery is only allowed if 553 * there's a matching route for the destination and zone in the forwarding 554 * table. 555 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 556 * different zones can bind to the same port with the wildcard address 557 * (INADDR_ANY). 558 * 559 * The granularity of interface partitioning is at the logical interface level. 560 * Therefore, every zone has its own IP addresses, and incoming packets can be 561 * attributed to a zone unambiguously. A logical interface is placed into a zone 562 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 563 * structure. Rule (1) is implemented by modifying the source address selection 564 * algorithm so that the list of eligible addresses is filtered based on the 565 * sending process zone. 566 * 567 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 568 * across all zones, depending on their type. Here is the break-up: 569 * 570 * IRE type Shared/exclusive 571 * -------- ---------------- 572 * IRE_BROADCAST Exclusive 573 * IRE_DEFAULT (default routes) Shared (*) 574 * IRE_LOCAL Exclusive 575 * IRE_LOOPBACK Exclusive 576 * IRE_PREFIX (net routes) Shared (*) 577 * IRE_CACHE Exclusive 578 * IRE_IF_NORESOLVER (interface routes) Exclusive 579 * IRE_IF_RESOLVER (interface routes) Exclusive 580 * IRE_HOST (host routes) Shared (*) 581 * 582 * (*) A zone can only use a default or off-subnet route if the gateway is 583 * directly reachable from the zone, that is, if the gateway's address matches 584 * one of the zone's logical interfaces. 585 * 586 * Multiple zones can share a common broadcast address; typically all zones 587 * share the 255.255.255.255 address. Incoming as well as locally originated 588 * broadcast packets must be dispatched to all the zones on the broadcast 589 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 590 * since some zones may not be on the 10.16.72/24 network. To handle this, each 591 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 592 * sent to every zone that has an IRE_BROADCAST entry for the destination 593 * address on the input ill, see conn_wantpacket(). 594 * 595 * Applications in different zones can join the same multicast group address. 596 * For IPv4, group memberships are per-logical interface, so they're already 597 * inherently part of a zone. For IPv6, group memberships are per-physical 598 * interface, so we distinguish IPv6 group memberships based on group address, 599 * interface and zoneid. In both cases, received multicast packets are sent to 600 * every zone for which a group membership entry exists. On IPv6 we need to 601 * check that the target zone still has an address on the receiving physical 602 * interface; it could have been removed since the application issued the 603 * IPV6_JOIN_GROUP. 604 */ 605 606 /* 607 * Squeue Fanout flags: 608 * 0: No fanout. 609 * 1: Fanout across all squeues 610 */ 611 boolean_t ip_squeue_fanout = 0; 612 613 /* 614 * Maximum dups allowed per packet. 615 */ 616 uint_t ip_max_frag_dups = 10; 617 618 #define IS_SIMPLE_IPH(ipha) \ 619 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 620 621 /* RFC1122 Conformance */ 622 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 623 624 #define ILL_MAX_NAMELEN LIFNAMSIZ 625 626 /* Leave room for ip_newroute to tack on the src and target addresses */ 627 #define OK_RESOLVER_MP(mp) \ 628 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 629 630 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 631 632 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 633 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 634 635 static void icmp_frag_needed(queue_t *, mblk_t *, int); 636 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 637 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 638 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 639 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 640 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 641 ill_t *, zoneid_t); 642 static void icmp_options_update(ipha_t *); 643 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 644 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 645 static mblk_t *icmp_pkt_err_ok(mblk_t *); 646 static void icmp_redirect(mblk_t *); 647 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 648 649 static void ip_arp_news(queue_t *, mblk_t *); 650 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 651 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 652 char *ip_dot_addr(ipaddr_t, char *); 653 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 654 int ip_close(queue_t *, int); 655 static char *ip_dot_saddr(uchar_t *, char *); 656 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 657 boolean_t, boolean_t, ill_t *, zoneid_t); 658 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 659 boolean_t, boolean_t, zoneid_t); 660 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 661 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 662 static void ip_lrput(queue_t *, mblk_t *); 663 ipaddr_t ip_massage_options(ipha_t *); 664 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 665 ipaddr_t ip_net_mask(ipaddr_t); 666 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 667 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 668 conn_t *, uint32_t); 669 static int ip_hdr_complete(ipha_t *, zoneid_t); 670 char *ip_nv_lookup(nv_t *, int); 671 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 672 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 673 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 674 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 675 size_t); 676 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 677 void ip_rput(queue_t *, mblk_t *); 678 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 679 void *dummy_arg); 680 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 681 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 682 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 683 ire_t *); 684 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 685 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 686 uint16_t *); 687 int ip_snmp_get(queue_t *, mblk_t *); 688 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 689 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 690 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 691 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 692 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 693 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 694 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 695 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 698 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 699 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 702 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 704 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 705 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 711 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 712 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 713 static void ip_wput_local_options(ipha_t *); 714 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 715 zoneid_t); 716 717 static void conn_drain_init(void); 718 static void conn_drain_fini(void); 719 static void conn_drain_tail(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(void); 722 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 723 zoneid_t); 724 725 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 726 zoneid_t); 727 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 728 void *dummy_arg); 729 730 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 731 732 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 733 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 734 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 735 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 736 737 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 738 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 739 caddr_t, cred_t *); 740 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 741 caddr_t cp, cred_t *cr); 742 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 743 cred_t *); 744 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 745 caddr_t cp, cred_t *cr); 746 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 747 cred_t *); 748 static squeue_func_t ip_squeue_switch(int); 749 750 static void ip_kstat_init(void); 751 static void ip_kstat_fini(void); 752 static int ip_kstat_update(kstat_t *kp, int rw); 753 static void icmp_kstat_init(void); 754 static void icmp_kstat_fini(void); 755 static int icmp_kstat_update(kstat_t *kp, int rw); 756 757 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 758 759 static boolean_t ip_no_forward(ipha_t *, ill_t *); 760 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 761 762 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 763 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 764 765 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 766 767 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 768 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 769 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 770 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 771 772 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 773 uint_t ip_ire_default_index; /* Walking index used to mod in */ 774 775 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 776 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 777 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 778 779 /* How long, in seconds, we allow frags to hang around. */ 780 #define IP_FRAG_TIMEOUT 60 781 782 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 783 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 784 785 /* 786 * Threshold which determines whether MDT should be used when 787 * generating IP fragments; payload size must be greater than 788 * this threshold for MDT to take place. 789 */ 790 #define IP_WPUT_FRAG_MDT_MIN 32768 791 792 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 793 794 /* Protected by ip_mi_lock */ 795 static void *ip_g_head; /* Instance Data List Head */ 796 kmutex_t ip_mi_lock; /* Lock for list of instances */ 797 798 /* Only modified during _init and _fini thus no locking is needed. */ 799 caddr_t ip_g_nd; /* Named Dispatch List Head */ 800 801 802 static long ip_rput_pullups; 803 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 804 805 vmem_t *ip_minor_arena; 806 807 /* 808 * MIB-2 stuff for SNMP (both IP and ICMP) 809 */ 810 mib2_ip_t ip_mib; 811 mib2_icmp_t icmp_mib; 812 813 #ifdef DEBUG 814 uint32_t ipsechw_debug = 0; 815 #endif 816 817 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 818 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 819 820 uint_t loopback_packets = 0; 821 822 /* 823 * Multirouting/CGTP stuff 824 */ 825 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 826 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 827 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 828 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 829 hrtime_t ip_multirt_log_interval = 1000; 830 /* Time since last warning issued. */ 831 static hrtime_t multirt_bad_mtu_last_time = 0; 832 833 kmutex_t ip_trash_timer_lock; 834 krwlock_t ip_g_nd_lock; 835 836 /* 837 * XXX following really should only be in a header. Would need more 838 * header and .c clean up first. 839 */ 840 extern optdb_obj_t ip_opt_obj; 841 842 ulong_t ip_squeue_enter_unbound = 0; 843 844 /* 845 * Named Dispatch Parameter Table. 846 * All of these are alterable, within the min/max values given, at run time. 847 */ 848 static ipparam_t lcl_param_arr[] = { 849 /* min max value name */ 850 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 851 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 852 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 853 { 0, 1, 0, "ip_respond_to_timestamp"}, 854 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 855 { 0, 1, 1, "ip_send_redirects"}, 856 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 857 { 0, 10, 0, "ip_debug"}, 858 { 0, 10, 0, "ip_mrtdebug"}, 859 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 860 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 861 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 862 { 1, 255, 255, "ip_def_ttl" }, 863 { 0, 1, 0, "ip_forward_src_routed"}, 864 { 0, 256, 32, "ip_wroff_extra" }, 865 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 866 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 867 { 0, 1, 1, "ip_path_mtu_discovery" }, 868 { 0, 240, 30, "ip_ignore_delete_time" }, 869 { 0, 1, 0, "ip_ignore_redirect" }, 870 { 0, 1, 1, "ip_output_queue" }, 871 { 1, 254, 1, "ip_broadcast_ttl" }, 872 { 0, 99999, 100, "ip_icmp_err_interval" }, 873 { 1, 99999, 10, "ip_icmp_err_burst" }, 874 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 875 { 0, 1, 0, "ip_strict_dst_multihoming" }, 876 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 877 { 0, 1, 0, "ipsec_override_persocket_policy" }, 878 { 0, 1, 1, "icmp_accept_clear_messages" }, 879 { 0, 1, 1, "igmp_accept_clear_messages" }, 880 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 881 "ip_ndp_delay_first_probe_time"}, 882 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 883 "ip_ndp_max_unicast_solicit"}, 884 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 885 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 886 { 0, 1, 0, "ip6_forward_src_routed"}, 887 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 888 { 0, 1, 1, "ip6_send_redirects"}, 889 { 0, 1, 0, "ip6_ignore_redirect" }, 890 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 891 892 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 893 894 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 895 896 { 0, 1, 1, "pim_accept_clear_messages" }, 897 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 898 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 899 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 900 { 0, 15, 0, "ip_policy_mask" }, 901 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 902 { 0, 255, 1, "ip_multirt_ttl" }, 903 { 0, 1, 1, "ip_multidata_outbound" }, 904 #ifdef DEBUG 905 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 906 #endif 907 }; 908 909 ipparam_t *ip_param_arr = lcl_param_arr; 910 911 /* Extended NDP table */ 912 static ipndp_t lcl_ndp_arr[] = { 913 /* getf setf data name */ 914 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 915 "ip_forwarding" }, 916 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 917 "ip6_forwarding" }, 918 { ip_ill_report, NULL, NULL, 919 "ip_ill_status" }, 920 { ip_ipif_report, NULL, NULL, 921 "ip_ipif_status" }, 922 { ip_ire_report, NULL, NULL, 923 "ipv4_ire_status" }, 924 { ip_ire_report_mrtun, NULL, NULL, 925 "ipv4_mrtun_ire_status" }, 926 { ip_ire_report_srcif, NULL, NULL, 927 "ipv4_srcif_ire_status" }, 928 { ip_ire_report_v6, NULL, NULL, 929 "ipv6_ire_status" }, 930 { ip_conn_report, NULL, NULL, 931 "ip_conn_status" }, 932 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 933 "ip_rput_pullups" }, 934 { ndp_report, NULL, NULL, 935 "ip_ndp_cache_report" }, 936 { ip_srcid_report, NULL, NULL, 937 "ip_srcid_status" }, 938 { ip_param_generic_get, ip_squeue_profile_set, 939 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 940 { ip_param_generic_get, ip_squeue_bind_set, 941 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 942 { ip_param_generic_get, ip_input_proc_set, 943 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 944 { ip_param_generic_get, ip_int_set, 945 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 946 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 947 "ip_cgtp_filter" }, 948 { ip_param_generic_get, ip_int_set, 949 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 950 }; 951 952 /* 953 * ip_g_forward controls IP forwarding. It takes two values: 954 * 0: IP_FORWARD_NEVER Don't forward packets ever. 955 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 956 * 957 * RFC1122 says there must be a configuration switch to control forwarding, 958 * but that the default MUST be to not forward packets ever. Implicit 959 * control based on configuration of multiple interfaces MUST NOT be 960 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 961 * and, in fact, it was the default. That capability is now provided in the 962 * /etc/rc2.d/S69inet script. 963 */ 964 int ip_g_forward = IP_FORWARD_DEFAULT; 965 966 /* It also has an IPv6 counterpart. */ 967 968 int ipv6_forward = IP_FORWARD_DEFAULT; 969 970 /* Following line is external, and in ip.h. Normally marked with * *. */ 971 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 972 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 973 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 974 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 975 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 976 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 977 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 978 #define ip_debug ip_param_arr[7].ip_param_value /* */ 979 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 980 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 981 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 982 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 983 #define ip_def_ttl ip_param_arr[12].ip_param_value 984 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 985 #define ip_wroff_extra ip_param_arr[14].ip_param_value 986 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 987 #define ip_icmp_return ip_param_arr[16].ip_param_value 988 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 989 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 990 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 991 #define ip_output_queue ip_param_arr[20].ip_param_value 992 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 993 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 994 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 995 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 996 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 997 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 998 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 999 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 1000 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 1001 1002 /* IPv6 configuration knobs */ 1003 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1004 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1005 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1006 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1007 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1008 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1009 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1010 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1011 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1012 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1013 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1014 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1015 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1016 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1017 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1018 #define ip_policy_mask ip_param_arr[45].ip_param_value 1019 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1020 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1021 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1022 #ifdef DEBUG 1023 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1024 #else 1025 #define ipv6_drop_inbound_icmpv6 0 1026 #endif 1027 1028 1029 /* 1030 * Table of IP ioctls encoding the various properties of the ioctl and 1031 * indexed based on the last byte of the ioctl command. Occasionally there 1032 * is a clash, and there is more than 1 ioctl with the same last byte. 1033 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1034 * ioctls are encoded in the misc table. An entry in the ndx table is 1035 * retrieved by indexing on the last byte of the ioctl command and comparing 1036 * the ioctl command with the value in the ndx table. In the event of a 1037 * mismatch the misc table is then searched sequentially for the desired 1038 * ioctl command. 1039 * 1040 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1041 */ 1042 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1043 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 1054 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1055 MISC_CMD, ip_siocaddrt, NULL }, 1056 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1057 MISC_CMD, ip_siocdelrt, NULL }, 1058 1059 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1060 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1061 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1062 IF_CMD, ip_sioctl_get_addr, NULL }, 1063 1064 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1065 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1066 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1067 IPI_GET_CMD | IPI_REPL, 1068 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1069 1070 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1071 IPI_PRIV | IPI_WR | IPI_REPL, 1072 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1073 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1074 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1075 IF_CMD, ip_sioctl_get_flags, NULL }, 1076 1077 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 1080 /* copyin size cannot be coded for SIOCGIFCONF */ 1081 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1082 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1083 1084 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1085 IF_CMD, ip_sioctl_mtu, NULL }, 1086 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1087 IF_CMD, ip_sioctl_get_mtu, NULL }, 1088 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1089 IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1091 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1092 IF_CMD, ip_sioctl_brdaddr, NULL }, 1093 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1094 IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_netmask, NULL }, 1096 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1097 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1098 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1099 IPI_GET_CMD | IPI_REPL, 1100 IF_CMD, ip_sioctl_get_metric, NULL }, 1101 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1102 IF_CMD, ip_sioctl_metric, NULL }, 1103 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 1105 /* See 166-168 below for extended SIOC*XARP ioctls */ 1106 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1107 MISC_CMD, ip_sioctl_arp, NULL }, 1108 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1109 MISC_CMD, ip_sioctl_arp, NULL }, 1110 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1111 MISC_CMD, ip_sioctl_arp, NULL }, 1112 1113 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1136 MISC_CMD, if_unitsel, if_unitsel_restart }, 1137 1138 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 1157 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR | IPI_MODOK, 1159 IF_CMD, ip_sioctl_sifname, NULL }, 1160 1161 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 1175 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1176 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1177 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1178 IF_CMD, ip_sioctl_get_muxid, NULL }, 1179 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1180 IPI_PRIV | IPI_WR | IPI_REPL, 1181 IF_CMD, ip_sioctl_muxid, NULL }, 1182 1183 /* Both if and lif variants share same func */ 1184 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1185 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1186 /* Both if and lif variants share same func */ 1187 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1188 IPI_PRIV | IPI_WR | IPI_REPL, 1189 IF_CMD, ip_sioctl_slifindex, NULL }, 1190 1191 /* copyin size cannot be coded for SIOCGIFCONF */ 1192 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1193 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1194 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1208 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1210 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 1212 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1213 IPI_PRIV | IPI_WR | IPI_REPL, 1214 LIF_CMD, ip_sioctl_removeif, 1215 ip_sioctl_removeif_restart }, 1216 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1217 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1218 LIF_CMD, ip_sioctl_addif, NULL }, 1219 #define SIOCLIFADDR_NDX 112 1220 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1221 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1222 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1223 IPI_GET_CMD | IPI_REPL, 1224 LIF_CMD, ip_sioctl_get_addr, NULL }, 1225 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1227 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1228 IPI_GET_CMD | IPI_REPL, 1229 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1230 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR | IPI_REPL, 1232 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1233 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_flags, NULL }, 1236 1237 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 1240 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1241 ip_sioctl_get_lifconf, NULL }, 1242 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_mtu, NULL }, 1244 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1245 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1246 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1247 IPI_GET_CMD | IPI_REPL, 1248 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1249 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1251 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1252 IPI_GET_CMD | IPI_REPL, 1253 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1254 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1256 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_metric, NULL }, 1259 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_metric, NULL }, 1261 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1262 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1263 LIF_CMD, ip_sioctl_slifname, 1264 ip_sioctl_slifname_restart }, 1265 1266 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1267 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1268 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1269 IPI_GET_CMD | IPI_REPL, 1270 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1271 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1272 IPI_PRIV | IPI_WR | IPI_REPL, 1273 LIF_CMD, ip_sioctl_muxid, NULL }, 1274 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1275 IPI_GET_CMD | IPI_REPL, 1276 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1277 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1278 IPI_PRIV | IPI_WR | IPI_REPL, 1279 LIF_CMD, ip_sioctl_slifindex, 0 }, 1280 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1281 LIF_CMD, ip_sioctl_token, NULL }, 1282 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1283 IPI_GET_CMD | IPI_REPL, 1284 LIF_CMD, ip_sioctl_get_token, NULL }, 1285 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1286 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1287 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1288 IPI_GET_CMD | IPI_REPL, 1289 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1290 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1291 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1292 1293 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1294 IPI_GET_CMD | IPI_REPL, 1295 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1296 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1297 LIF_CMD, ip_siocdelndp_v6, NULL }, 1298 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1299 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1300 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1301 LIF_CMD, ip_siocsetndp_v6, NULL }, 1302 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1303 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1304 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1305 MISC_CMD, ip_sioctl_tonlink, NULL }, 1306 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1307 MISC_CMD, ip_sioctl_tmysite, NULL }, 1308 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1309 TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1311 IPI_PRIV | IPI_WR, 1312 TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 1314 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1315 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1316 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1317 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1318 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1319 1320 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1321 IPI_PRIV | IPI_WR | IPI_REPL, 1322 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1323 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1324 IPI_PRIV | IPI_WR | IPI_REPL, 1325 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1326 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1327 IPI_PRIV | IPI_WR, 1328 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1329 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1330 IPI_GET_CMD | IPI_REPL, 1331 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1332 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1333 IPI_GET_CMD | IPI_REPL, 1334 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1335 1336 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1337 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1338 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1339 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1340 1341 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1342 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1343 1344 /* These are handled in ip_sioctl_copyin_setup itself */ 1345 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1346 MISC_CMD, NULL, NULL }, 1347 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1348 MISC_CMD, NULL, NULL }, 1349 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1350 1351 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1352 ip_sioctl_get_lifconf, NULL }, 1353 1354 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1355 MISC_CMD, ip_sioctl_xarp, NULL }, 1356 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1357 MISC_CMD, ip_sioctl_xarp, NULL }, 1358 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1359 MISC_CMD, ip_sioctl_xarp, NULL }, 1360 1361 /* SIOCPOPSOCKFS is not handled by IP */ 1362 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1363 1364 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1365 IPI_GET_CMD | IPI_REPL, 1366 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1367 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1368 IPI_PRIV | IPI_WR | IPI_REPL, 1369 LIF_CMD, ip_sioctl_slifzone, 1370 ip_sioctl_slifzone_restart }, 1371 /* 172-174 are SCTP ioctls and not handled by IP */ 1372 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1374 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1375 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1376 IPI_GET_CMD, LIF_CMD, 1377 ip_sioctl_get_lifusesrc, 0 }, 1378 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1379 IPI_PRIV | IPI_WR, 1380 LIF_CMD, ip_sioctl_slifusesrc, 1381 NULL }, 1382 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1383 ip_sioctl_get_lifsrcof, NULL }, 1384 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1385 MISC_CMD, ip_sioctl_msfilter, NULL }, 1386 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1387 MISC_CMD, ip_sioctl_msfilter, NULL }, 1388 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1389 MISC_CMD, ip_sioctl_msfilter, NULL }, 1390 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1391 MISC_CMD, ip_sioctl_msfilter, NULL }, 1392 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1393 ip_sioctl_set_ipmpfailback, NULL } 1394 }; 1395 1396 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1397 1398 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1399 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1400 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1401 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1402 TUN_CMD, ip_sioctl_tunparam, NULL }, 1403 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1404 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1405 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1406 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1407 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1408 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1409 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1410 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1411 MISC_CMD, mrt_ioctl}, 1412 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1413 MISC_CMD, mrt_ioctl}, 1414 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1415 MISC_CMD, mrt_ioctl} 1416 }; 1417 1418 int ip_misc_ioctl_count = 1419 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1420 1421 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1422 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1423 static int conn_drain_list_index; /* Next drain_list to be used */ 1424 int conn_drain_nthreads; /* Number of drainers reqd. */ 1425 /* Settable in /etc/system */ 1426 1427 /* Defined in ip_ire.c */ 1428 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1429 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1430 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1431 1432 static nv_t ire_nv_arr[] = { 1433 { IRE_BROADCAST, "BROADCAST" }, 1434 { IRE_LOCAL, "LOCAL" }, 1435 { IRE_LOOPBACK, "LOOPBACK" }, 1436 { IRE_CACHE, "CACHE" }, 1437 { IRE_DEFAULT, "DEFAULT" }, 1438 { IRE_PREFIX, "PREFIX" }, 1439 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1440 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1441 { IRE_HOST, "HOST" }, 1442 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1443 { 0 } 1444 }; 1445 1446 nv_t *ire_nv_tbl = ire_nv_arr; 1447 1448 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1449 extern krwlock_t ipsec_capab_ills_lock; 1450 1451 /* Packet dropper for IP IPsec processing failures */ 1452 ipdropper_t ip_dropper; 1453 1454 /* Simple ICMP IP Header Template */ 1455 static ipha_t icmp_ipha = { 1456 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1457 }; 1458 1459 struct module_info ip_mod_info = { 1460 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1461 }; 1462 1463 static struct qinit rinit = { 1464 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1465 &ip_mod_info 1466 }; 1467 1468 static struct qinit winit = { 1469 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1470 &ip_mod_info 1471 }; 1472 1473 static struct qinit lrinit = { 1474 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1475 &ip_mod_info 1476 }; 1477 1478 static struct qinit lwinit = { 1479 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1480 &ip_mod_info 1481 }; 1482 1483 struct streamtab ipinfo = { 1484 &rinit, &winit, &lrinit, &lwinit 1485 }; 1486 1487 #ifdef DEBUG 1488 static boolean_t skip_sctp_cksum = B_FALSE; 1489 #endif 1490 /* 1491 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1492 */ 1493 mblk_t * 1494 ip_copymsg(mblk_t *mp) 1495 { 1496 mblk_t *nmp; 1497 ipsec_info_t *in; 1498 1499 if (mp->b_datap->db_type != M_CTL) 1500 return (copymsg(mp)); 1501 1502 in = (ipsec_info_t *)mp->b_rptr; 1503 1504 /* 1505 * Note that M_CTL is also used for delivering ICMP error messages 1506 * upstream to transport layers. 1507 */ 1508 if (in->ipsec_info_type != IPSEC_OUT && 1509 in->ipsec_info_type != IPSEC_IN) 1510 return (copymsg(mp)); 1511 1512 nmp = copymsg(mp->b_cont); 1513 1514 if (in->ipsec_info_type == IPSEC_OUT) 1515 return (ipsec_out_tag(mp, nmp)); 1516 else 1517 return (ipsec_in_tag(mp, nmp)); 1518 } 1519 1520 /* Generate an ICMP fragmentation needed message. */ 1521 static void 1522 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1523 { 1524 icmph_t icmph; 1525 mblk_t *first_mp; 1526 boolean_t mctl_present; 1527 1528 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1529 1530 if (!(mp = icmp_pkt_err_ok(mp))) { 1531 if (mctl_present) 1532 freeb(first_mp); 1533 return; 1534 } 1535 1536 bzero(&icmph, sizeof (icmph_t)); 1537 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1538 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1539 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1540 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1541 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1542 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1543 } 1544 1545 /* 1546 * icmp_inbound deals with ICMP messages in the following ways. 1547 * 1548 * 1) It needs to send a reply back and possibly delivering it 1549 * to the "interested" upper clients. 1550 * 2) It needs to send it to the upper clients only. 1551 * 3) It needs to change some values in IP only. 1552 * 4) It needs to change some values in IP and upper layers e.g TCP. 1553 * 1554 * We need to accomodate icmp messages coming in clear until we get 1555 * everything secure from the wire. If icmp_accept_clear_messages 1556 * is zero we check with the global policy and act accordingly. If 1557 * it is non-zero, we accept the message without any checks. But 1558 * *this does not mean* that this will be delivered to the upper 1559 * clients. By accepting we might send replies back, change our MTU 1560 * value etc. but delivery to the ULP/clients depends on their policy 1561 * dispositions. 1562 * 1563 * We handle the above 4 cases in the context of IPSEC in the 1564 * following way : 1565 * 1566 * 1) Send the reply back in the same way as the request came in. 1567 * If it came in encrypted, it goes out encrypted. If it came in 1568 * clear, it goes out in clear. Thus, this will prevent chosen 1569 * plain text attack. 1570 * 2) The client may or may not expect things to come in secure. 1571 * If it comes in secure, the policy constraints are checked 1572 * before delivering it to the upper layers. If it comes in 1573 * clear, ipsec_inbound_accept_clear will decide whether to 1574 * accept this in clear or not. In both the cases, if the returned 1575 * message (IP header + 8 bytes) that caused the icmp message has 1576 * AH/ESP headers, it is sent up to AH/ESP for validation before 1577 * sending up. If there are only 8 bytes of returned message, then 1578 * upper client will not be notified. 1579 * 3) Check with global policy to see whether it matches the constaints. 1580 * But this will be done only if icmp_accept_messages_in_clear is 1581 * zero. 1582 * 4) If we need to change both in IP and ULP, then the decision taken 1583 * while affecting the values in IP and while delivering up to TCP 1584 * should be the same. 1585 * 1586 * There are two cases. 1587 * 1588 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1589 * failed), we will not deliver it to the ULP, even though they 1590 * are *willing* to accept in *clear*. This is fine as our global 1591 * disposition to icmp messages asks us reject the datagram. 1592 * 1593 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1594 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1595 * to deliver it to ULP (policy failed), it can lead to 1596 * consistency problems. The cases known at this time are 1597 * ICMP_DESTINATION_UNREACHABLE messages with following code 1598 * values : 1599 * 1600 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1601 * and Upper layer rejects. Then the communication will 1602 * come to a stop. This is solved by making similar decisions 1603 * at both levels. Currently, when we are unable to deliver 1604 * to the Upper Layer (due to policy failures) while IP has 1605 * adjusted ire_max_frag, the next outbound datagram would 1606 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1607 * will be with the right level of protection. Thus the right 1608 * value will be communicated even if we are not able to 1609 * communicate when we get from the wire initially. But this 1610 * assumes there would be at least one outbound datagram after 1611 * IP has adjusted its ire_max_frag value. To make things 1612 * simpler, we accept in clear after the validation of 1613 * AH/ESP headers. 1614 * 1615 * - Other ICMP ERRORS : We may not be able to deliver it to the 1616 * upper layer depending on the level of protection the upper 1617 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1618 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1619 * should be accepted in clear when the Upper layer expects secure. 1620 * Thus the communication may get aborted by some bad ICMP 1621 * packets. 1622 * 1623 * IPQoS Notes: 1624 * The only instance when a packet is sent for processing is when there 1625 * isn't an ICMP client and if we are interested in it. 1626 * If there is a client, IPPF processing will take place in the 1627 * ip_fanout_proto routine. 1628 * 1629 * Zones notes: 1630 * The packet is only processed in the context of the specified zone: typically 1631 * only this zone will reply to an echo request, and only interested clients in 1632 * this zone will receive a copy of the packet. This means that the caller must 1633 * call icmp_inbound() for each relevant zone. 1634 */ 1635 static void 1636 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1637 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1638 ill_t *recv_ill, zoneid_t zoneid) 1639 { 1640 icmph_t *icmph; 1641 ipha_t *ipha; 1642 int iph_hdr_length; 1643 int hdr_length; 1644 boolean_t interested; 1645 uint32_t ts; 1646 uchar_t *wptr; 1647 ipif_t *ipif; 1648 mblk_t *first_mp; 1649 ipsec_in_t *ii; 1650 ire_t *src_ire; 1651 boolean_t onlink; 1652 timestruc_t now; 1653 uint32_t ill_index; 1654 1655 ASSERT(ill != NULL); 1656 1657 first_mp = mp; 1658 if (mctl_present) { 1659 mp = first_mp->b_cont; 1660 ASSERT(mp != NULL); 1661 } 1662 1663 ipha = (ipha_t *)mp->b_rptr; 1664 if (icmp_accept_clear_messages == 0) { 1665 first_mp = ipsec_check_global_policy(first_mp, NULL, 1666 ipha, NULL, mctl_present); 1667 if (first_mp == NULL) 1668 return; 1669 } 1670 /* 1671 * We have accepted the ICMP message. It means that we will 1672 * respond to the packet if needed. It may not be delivered 1673 * to the upper client depending on the policy constraints 1674 * and the disposition in ipsec_inbound_accept_clear. 1675 */ 1676 1677 ASSERT(ill != NULL); 1678 1679 BUMP_MIB(&icmp_mib, icmpInMsgs); 1680 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1681 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1682 /* Last chance to get real. */ 1683 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1684 BUMP_MIB(&icmp_mib, icmpInErrors); 1685 freemsg(first_mp); 1686 return; 1687 } 1688 /* Refresh iph following the pullup. */ 1689 ipha = (ipha_t *)mp->b_rptr; 1690 } 1691 /* ICMP header checksum, including checksum field, should be zero. */ 1692 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1693 IP_CSUM(mp, iph_hdr_length, 0)) { 1694 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1695 freemsg(first_mp); 1696 return; 1697 } 1698 /* The IP header will always be a multiple of four bytes */ 1699 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1700 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1701 icmph->icmph_code)); 1702 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1703 /* We will set "interested" to "true" if we want a copy */ 1704 interested = B_FALSE; 1705 switch (icmph->icmph_type) { 1706 case ICMP_ECHO_REPLY: 1707 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1708 break; 1709 case ICMP_DEST_UNREACHABLE: 1710 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1711 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1714 break; 1715 case ICMP_SOURCE_QUENCH: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1718 break; 1719 case ICMP_REDIRECT: 1720 if (!ip_ignore_redirect) 1721 interested = B_TRUE; 1722 BUMP_MIB(&icmp_mib, icmpInRedirects); 1723 break; 1724 case ICMP_ECHO_REQUEST: 1725 /* 1726 * Whether to respond to echo requests that come in as IP 1727 * broadcasts or as IP multicast is subject to debate 1728 * (what isn't?). We aim to please, you pick it. 1729 * Default is do it. 1730 */ 1731 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1732 /* unicast: always respond */ 1733 interested = B_TRUE; 1734 } else if (CLASSD(ipha->ipha_dst)) { 1735 /* multicast: respond based on tunable */ 1736 interested = ip_g_resp_to_echo_mcast; 1737 } else if (broadcast) { 1738 /* broadcast: respond based on tunable */ 1739 interested = ip_g_resp_to_echo_bcast; 1740 } 1741 BUMP_MIB(&icmp_mib, icmpInEchos); 1742 break; 1743 case ICMP_ROUTER_ADVERTISEMENT: 1744 case ICMP_ROUTER_SOLICITATION: 1745 break; 1746 case ICMP_TIME_EXCEEDED: 1747 interested = B_TRUE; /* Pass up to transport */ 1748 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1749 break; 1750 case ICMP_PARAM_PROBLEM: 1751 interested = B_TRUE; /* Pass up to transport */ 1752 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1753 break; 1754 case ICMP_TIME_STAMP_REQUEST: 1755 /* Response to Time Stamp Requests is local policy. */ 1756 if (ip_g_resp_to_timestamp && 1757 /* So is whether to respond if it was an IP broadcast. */ 1758 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1759 int tstamp_len = 3 * sizeof (uint32_t); 1760 1761 if (wptr + tstamp_len > mp->b_wptr) { 1762 if (!pullupmsg(mp, wptr + tstamp_len - 1763 mp->b_rptr)) { 1764 BUMP_MIB(&ip_mib, ipInDiscards); 1765 freemsg(first_mp); 1766 return; 1767 } 1768 /* Refresh ipha following the pullup. */ 1769 ipha = (ipha_t *)mp->b_rptr; 1770 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1771 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1772 } 1773 interested = B_TRUE; 1774 } 1775 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1776 break; 1777 case ICMP_TIME_STAMP_REPLY: 1778 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1779 break; 1780 case ICMP_INFO_REQUEST: 1781 /* Per RFC 1122 3.2.2.7, ignore this. */ 1782 case ICMP_INFO_REPLY: 1783 break; 1784 case ICMP_ADDRESS_MASK_REQUEST: 1785 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1786 /* TODO m_pullup of complete header? */ 1787 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1788 interested = B_TRUE; 1789 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1790 break; 1791 case ICMP_ADDRESS_MASK_REPLY: 1792 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1793 break; 1794 default: 1795 interested = B_TRUE; /* Pass up to transport */ 1796 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1797 break; 1798 } 1799 /* See if there is an ICMP client. */ 1800 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1801 /* If there is an ICMP client and we want one too, copy it. */ 1802 mblk_t *first_mp1; 1803 1804 if (!interested) { 1805 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1806 ip_policy, recv_ill, zoneid); 1807 return; 1808 } 1809 first_mp1 = ip_copymsg(first_mp); 1810 if (first_mp1 != NULL) { 1811 ip_fanout_proto(q, first_mp1, ill, ipha, 1812 0, mctl_present, ip_policy, recv_ill, zoneid); 1813 } 1814 } else if (!interested) { 1815 freemsg(first_mp); 1816 return; 1817 } else { 1818 /* 1819 * Initiate policy processing for this packet if ip_policy 1820 * is true. 1821 */ 1822 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1823 ill_index = ill->ill_phyint->phyint_ifindex; 1824 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1825 if (mp == NULL) { 1826 if (mctl_present) { 1827 freeb(first_mp); 1828 } 1829 BUMP_MIB(&icmp_mib, icmpInErrors); 1830 return; 1831 } 1832 } 1833 } 1834 /* We want to do something with it. */ 1835 /* Check db_ref to make sure we can modify the packet. */ 1836 if (mp->b_datap->db_ref > 1) { 1837 mblk_t *first_mp1; 1838 1839 first_mp1 = ip_copymsg(first_mp); 1840 freemsg(first_mp); 1841 if (!first_mp1) { 1842 BUMP_MIB(&icmp_mib, icmpOutDrops); 1843 return; 1844 } 1845 first_mp = first_mp1; 1846 if (mctl_present) { 1847 mp = first_mp->b_cont; 1848 ASSERT(mp != NULL); 1849 } else { 1850 mp = first_mp; 1851 } 1852 ipha = (ipha_t *)mp->b_rptr; 1853 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1854 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1855 } 1856 switch (icmph->icmph_type) { 1857 case ICMP_ADDRESS_MASK_REQUEST: 1858 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1859 if (ipif == NULL) { 1860 freemsg(first_mp); 1861 return; 1862 } 1863 /* 1864 * outging interface must be IPv4 1865 */ 1866 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1867 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1868 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1869 ipif_refrele(ipif); 1870 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1871 break; 1872 case ICMP_ECHO_REQUEST: 1873 icmph->icmph_type = ICMP_ECHO_REPLY; 1874 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1875 break; 1876 case ICMP_TIME_STAMP_REQUEST: { 1877 uint32_t *tsp; 1878 1879 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1880 tsp = (uint32_t *)wptr; 1881 tsp++; /* Skip past 'originate time' */ 1882 /* Compute # of milliseconds since midnight */ 1883 gethrestime(&now); 1884 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1885 now.tv_nsec / (NANOSEC / MILLISEC); 1886 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1887 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1888 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1889 break; 1890 } 1891 default: 1892 ipha = (ipha_t *)&icmph[1]; 1893 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1894 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1895 BUMP_MIB(&ip_mib, ipInDiscards); 1896 freemsg(first_mp); 1897 return; 1898 } 1899 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1900 ipha = (ipha_t *)&icmph[1]; 1901 } 1902 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1903 BUMP_MIB(&ip_mib, ipInDiscards); 1904 freemsg(first_mp); 1905 return; 1906 } 1907 hdr_length = IPH_HDR_LENGTH(ipha); 1908 if (hdr_length < sizeof (ipha_t)) { 1909 BUMP_MIB(&ip_mib, ipInDiscards); 1910 freemsg(first_mp); 1911 return; 1912 } 1913 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1914 if (!pullupmsg(mp, 1915 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1916 BUMP_MIB(&ip_mib, ipInDiscards); 1917 freemsg(first_mp); 1918 return; 1919 } 1920 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1921 ipha = (ipha_t *)&icmph[1]; 1922 } 1923 switch (icmph->icmph_type) { 1924 case ICMP_REDIRECT: 1925 /* 1926 * As there is no upper client to deliver, we don't 1927 * need the first_mp any more. 1928 */ 1929 if (mctl_present) { 1930 freeb(first_mp); 1931 } 1932 icmp_redirect(mp); 1933 return; 1934 case ICMP_DEST_UNREACHABLE: 1935 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1936 if (!icmp_inbound_too_big(icmph, ipha)) { 1937 freemsg(first_mp); 1938 return; 1939 } 1940 } 1941 /* FALLTHRU */ 1942 default : 1943 /* 1944 * IPQoS notes: Since we have already done IPQoS 1945 * processing we don't want to do it again in 1946 * the fanout routines called by 1947 * icmp_inbound_error_fanout, hence the last 1948 * argument, ip_policy, is B_FALSE. 1949 */ 1950 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1951 ipha, iph_hdr_length, hdr_length, mctl_present, 1952 B_FALSE, recv_ill, zoneid); 1953 } 1954 return; 1955 } 1956 /* Send out an ICMP packet */ 1957 icmph->icmph_checksum = 0; 1958 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1959 if (icmph->icmph_checksum == 0) 1960 icmph->icmph_checksum = 0xFFFF; 1961 if (broadcast || CLASSD(ipha->ipha_dst)) { 1962 ipif_t *ipif_chosen; 1963 /* 1964 * Make it look like it was directed to us, so we don't look 1965 * like a fool with a broadcast or multicast source address. 1966 */ 1967 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1968 /* 1969 * Make sure that we haven't grabbed an interface that's DOWN. 1970 */ 1971 if (ipif != NULL) { 1972 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1973 ipha->ipha_src, zoneid); 1974 if (ipif_chosen != NULL) { 1975 ipif_refrele(ipif); 1976 ipif = ipif_chosen; 1977 } 1978 } 1979 if (ipif == NULL) { 1980 ip0dbg(("icmp_inbound: " 1981 "No source for broadcast/multicast:\n" 1982 "\tsrc 0x%x dst 0x%x ill %p " 1983 "ipif_lcl_addr 0x%x\n", 1984 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1985 (void *)ill, 1986 ill->ill_ipif->ipif_lcl_addr)); 1987 freemsg(first_mp); 1988 return; 1989 } 1990 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1991 ipha->ipha_dst = ipif->ipif_src_addr; 1992 ipif_refrele(ipif); 1993 } 1994 /* Reset time to live. */ 1995 ipha->ipha_ttl = ip_def_ttl; 1996 { 1997 /* Swap source and destination addresses */ 1998 ipaddr_t tmp; 1999 2000 tmp = ipha->ipha_src; 2001 ipha->ipha_src = ipha->ipha_dst; 2002 ipha->ipha_dst = tmp; 2003 } 2004 ipha->ipha_ident = 0; 2005 if (!IS_SIMPLE_IPH(ipha)) 2006 icmp_options_update(ipha); 2007 2008 /* 2009 * ICMP echo replies should go out on the same interface 2010 * the request came on as probes used by in.mpathd for detecting 2011 * NIC failures are ECHO packets. We turn-off load spreading 2012 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2013 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2014 * function. This is in turn handled by ip_wput and ip_newroute 2015 * to make sure that the packet goes out on the interface it came 2016 * in on. If we don't turnoff load spreading, the packets might get 2017 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2018 * to go out and in.mpathd would wrongly detect a failure or 2019 * mis-detect a NIC failure for link failure. As load spreading 2020 * can happen only if ill_group is not NULL, we do only for 2021 * that case and this does not affect the normal case. 2022 * 2023 * We turn off load spreading only on echo packets that came from 2024 * on-link hosts. If the interface route has been deleted, this will 2025 * not be enforced as we can't do much. For off-link hosts, as the 2026 * default routes in IPv4 does not typically have an ire_ipif 2027 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2028 * Moreover, expecting a default route through this interface may 2029 * not be correct. We use ipha_dst because of the swap above. 2030 */ 2031 onlink = B_FALSE; 2032 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2033 /* 2034 * First, we need to make sure that it is not one of our 2035 * local addresses. If we set onlink when it is one of 2036 * our local addresses, we will end up creating IRE_CACHES 2037 * for one of our local addresses. Then, we will never 2038 * accept packets for them afterwards. 2039 */ 2040 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2041 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2042 if (src_ire == NULL) { 2043 ipif = ipif_get_next_ipif(NULL, ill); 2044 if (ipif == NULL) { 2045 BUMP_MIB(&ip_mib, ipInDiscards); 2046 freemsg(mp); 2047 return; 2048 } 2049 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2050 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2051 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2052 ipif_refrele(ipif); 2053 if (src_ire != NULL) { 2054 onlink = B_TRUE; 2055 ire_refrele(src_ire); 2056 } 2057 } else { 2058 ire_refrele(src_ire); 2059 } 2060 } 2061 if (!mctl_present) { 2062 /* 2063 * This packet should go out the same way as it 2064 * came in i.e in clear. To make sure that global 2065 * policy will not be applied to this in ip_wput_ire, 2066 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2067 */ 2068 ASSERT(first_mp == mp); 2069 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2070 BUMP_MIB(&ip_mib, ipInDiscards); 2071 freemsg(mp); 2072 return; 2073 } 2074 ii = (ipsec_in_t *)first_mp->b_rptr; 2075 2076 /* This is not a secure packet */ 2077 ii->ipsec_in_secure = B_FALSE; 2078 if (onlink) { 2079 ii->ipsec_in_attach_if = B_TRUE; 2080 ii->ipsec_in_ill_index = 2081 ill->ill_phyint->phyint_ifindex; 2082 ii->ipsec_in_rill_index = 2083 recv_ill->ill_phyint->phyint_ifindex; 2084 } 2085 first_mp->b_cont = mp; 2086 } else if (onlink) { 2087 ii = (ipsec_in_t *)first_mp->b_rptr; 2088 ii->ipsec_in_attach_if = B_TRUE; 2089 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2090 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2091 } else { 2092 ii = (ipsec_in_t *)first_mp->b_rptr; 2093 } 2094 ii->ipsec_in_zoneid = zoneid; 2095 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2096 BUMP_MIB(&ip_mib, ipInDiscards); 2097 return; 2098 } 2099 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2100 put(WR(q), first_mp); 2101 } 2102 2103 /* Table from RFC 1191 */ 2104 static int icmp_frag_size_table[] = 2105 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2106 2107 /* 2108 * Process received ICMP Packet too big. 2109 * After updating any IRE it does the fanout to any matching transport streams. 2110 * Assumes the message has been pulled up till the IP header that caused 2111 * the error. 2112 * 2113 * Returns B_FALSE on failure and B_TRUE on success. 2114 */ 2115 static boolean_t 2116 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2117 { 2118 ire_t *ire, *first_ire; 2119 int mtu; 2120 int hdr_length; 2121 2122 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2123 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2124 2125 hdr_length = IPH_HDR_LENGTH(ipha); 2126 2127 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2128 ALL_ZONES, MATCH_IRE_TYPE); 2129 2130 if (!first_ire) { 2131 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2132 ntohl(ipha->ipha_dst))); 2133 return (B_FALSE); 2134 } 2135 /* Drop if the original packet contained a source route */ 2136 if (ip_source_route_included(ipha)) { 2137 ire_refrele(first_ire); 2138 return (B_FALSE); 2139 } 2140 /* Check for MTU discovery advice as described in RFC 1191 */ 2141 mtu = ntohs(icmph->icmph_du_mtu); 2142 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2143 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2144 ire = ire->ire_next) { 2145 mutex_enter(&ire->ire_lock); 2146 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2147 /* Reduce the IRE max frag value as advised. */ 2148 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2149 ip1dbg(("Received mtu from router: %d\n", mtu)); 2150 } else { 2151 uint32_t length; 2152 int i; 2153 2154 /* 2155 * Use the table from RFC 1191 to figure out 2156 * the next "plateau" based on the length in 2157 * the original IP packet. 2158 */ 2159 length = ntohs(ipha->ipha_length); 2160 if (ire->ire_max_frag <= length && 2161 ire->ire_max_frag >= length - hdr_length) { 2162 /* 2163 * Handle broken BSD 4.2 systems that 2164 * return the wrong iph_length in ICMP 2165 * errors. 2166 */ 2167 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2168 length, ire->ire_max_frag)); 2169 length -= hdr_length; 2170 } 2171 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2172 if (length > icmp_frag_size_table[i]) 2173 break; 2174 } 2175 if (i == A_CNT(icmp_frag_size_table)) { 2176 /* Smaller than 68! */ 2177 ip1dbg(("Too big for packet size %d\n", 2178 length)); 2179 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2180 ire->ire_frag_flag = 0; 2181 } else { 2182 mtu = icmp_frag_size_table[i]; 2183 ip1dbg(("Calculated mtu %d, packet size %d, " 2184 "before %d", mtu, length, 2185 ire->ire_max_frag)); 2186 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2187 ip1dbg((", after %d\n", ire->ire_max_frag)); 2188 } 2189 /* Record the new max frag size for the ULP. */ 2190 icmph->icmph_du_zero = 0; 2191 icmph->icmph_du_mtu = 2192 htons((uint16_t)ire->ire_max_frag); 2193 } 2194 mutex_exit(&ire->ire_lock); 2195 } 2196 rw_exit(&first_ire->ire_bucket->irb_lock); 2197 ire_refrele(first_ire); 2198 return (B_TRUE); 2199 } 2200 2201 /* 2202 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2203 * calls this function. 2204 */ 2205 static mblk_t * 2206 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2207 { 2208 ipha_t *ipha; 2209 icmph_t *icmph; 2210 ipha_t *in_ipha; 2211 int length; 2212 2213 ASSERT(mp->b_datap->db_type == M_DATA); 2214 2215 /* 2216 * For Self-encapsulated packets, we added an extra IP header 2217 * without the options. Inner IP header is the one from which 2218 * the outer IP header was formed. Thus, we need to remove the 2219 * outer IP header. To do this, we pullup the whole message 2220 * and overlay whatever follows the outer IP header over the 2221 * outer IP header. 2222 */ 2223 2224 if (!pullupmsg(mp, -1)) { 2225 BUMP_MIB(&ip_mib, ipInDiscards); 2226 return (NULL); 2227 } 2228 2229 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2230 ipha = (ipha_t *)&icmph[1]; 2231 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2232 2233 /* 2234 * The length that we want to overlay is following the inner 2235 * IP header. Subtracting the IP header + icmp header + outer 2236 * IP header's length should give us the length that we want to 2237 * overlay. 2238 */ 2239 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2240 hdr_length; 2241 /* 2242 * Overlay whatever follows the inner header over the 2243 * outer header. 2244 */ 2245 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2246 2247 /* Set the wptr to account for the outer header */ 2248 mp->b_wptr -= hdr_length; 2249 return (mp); 2250 } 2251 2252 /* 2253 * Try to pass the ICMP message upstream in case the ULP cares. 2254 * 2255 * If the packet that caused the ICMP error is secure, we send 2256 * it to AH/ESP to make sure that the attached packet has a 2257 * valid association. ipha in the code below points to the 2258 * IP header of the packet that caused the error. 2259 * 2260 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2261 * in the context of IPSEC. Normally we tell the upper layer 2262 * whenever we send the ire (including ip_bind), the IPSEC header 2263 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2264 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2265 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2266 * same thing. As TCP has the IPSEC options size that needs to be 2267 * adjusted, we just pass the MTU unchanged. 2268 * 2269 * IFN could have been generated locally or by some router. 2270 * 2271 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2272 * This happens because IP adjusted its value of MTU on an 2273 * earlier IFN message and could not tell the upper layer, 2274 * the new adjusted value of MTU e.g. Packet was encrypted 2275 * or there was not enough information to fanout to upper 2276 * layers. Thus on the next outbound datagram, ip_wput_ire 2277 * generates the IFN, where IPSEC processing has *not* been 2278 * done. 2279 * 2280 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2281 * could have generated this. This happens because ire_max_frag 2282 * value in IP was set to a new value, while the IPSEC processing 2283 * was being done and after we made the fragmentation check in 2284 * ip_wput_ire. Thus on return from IPSEC processing, 2285 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2286 * and generates the IFN. As IPSEC processing is over, we fanout 2287 * to AH/ESP to remove the header. 2288 * 2289 * In both these cases, ipsec_in_loopback will be set indicating 2290 * that IFN was generated locally. 2291 * 2292 * ROUTER : IFN could be secure or non-secure. 2293 * 2294 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2295 * packet in error has AH/ESP headers to validate the AH/ESP 2296 * headers. AH/ESP will verify whether there is a valid SA or 2297 * not and send it back. We will fanout again if we have more 2298 * data in the packet. 2299 * 2300 * If the packet in error does not have AH/ESP, we handle it 2301 * like any other case. 2302 * 2303 * * NON_SECURE : If the packet in error has AH/ESP headers, 2304 * we attach a dummy ipsec_in and send it up to AH/ESP 2305 * for validation. AH/ESP will verify whether there is a 2306 * valid SA or not and send it back. We will fanout again if 2307 * we have more data in the packet. 2308 * 2309 * If the packet in error does not have AH/ESP, we handle it 2310 * like any other case. 2311 */ 2312 static void 2313 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2314 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2315 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2316 zoneid_t zoneid) 2317 { 2318 uint16_t *up; /* Pointer to ports in ULP header */ 2319 uint32_t ports; /* reversed ports for fanout */ 2320 ipha_t ripha; /* With reversed addresses */ 2321 mblk_t *first_mp; 2322 ipsec_in_t *ii; 2323 tcph_t *tcph; 2324 conn_t *connp; 2325 2326 first_mp = mp; 2327 if (mctl_present) { 2328 mp = first_mp->b_cont; 2329 ASSERT(mp != NULL); 2330 2331 ii = (ipsec_in_t *)first_mp->b_rptr; 2332 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2333 } else { 2334 ii = NULL; 2335 } 2336 2337 switch (ipha->ipha_protocol) { 2338 case IPPROTO_UDP: 2339 /* 2340 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2341 * transport header. 2342 */ 2343 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2344 mp->b_wptr) { 2345 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2346 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2347 BUMP_MIB(&ip_mib, ipInDiscards); 2348 goto drop_pkt; 2349 } 2350 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2351 ipha = (ipha_t *)&icmph[1]; 2352 } 2353 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2354 2355 /* 2356 * Attempt to find a client stream based on port. 2357 * Note that we do a reverse lookup since the header is 2358 * in the form we sent it out. 2359 * The ripha header is only used for the IP_UDP_MATCH and we 2360 * only set the src and dst addresses and protocol. 2361 */ 2362 ripha.ipha_src = ipha->ipha_dst; 2363 ripha.ipha_dst = ipha->ipha_src; 2364 ripha.ipha_protocol = ipha->ipha_protocol; 2365 ((uint16_t *)&ports)[0] = up[1]; 2366 ((uint16_t *)&ports)[1] = up[0]; 2367 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2368 ntohl(ipha->ipha_src), ntohs(up[0]), 2369 ntohl(ipha->ipha_dst), ntohs(up[1]), 2370 icmph->icmph_type, icmph->icmph_code)); 2371 2372 /* Have to change db_type after any pullupmsg */ 2373 DB_TYPE(mp) = M_CTL; 2374 2375 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2376 mctl_present, ip_policy, recv_ill, zoneid); 2377 return; 2378 2379 case IPPROTO_TCP: 2380 /* 2381 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2382 * transport header. 2383 */ 2384 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2385 mp->b_wptr) { 2386 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2387 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2388 BUMP_MIB(&ip_mib, ipInDiscards); 2389 goto drop_pkt; 2390 } 2391 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2392 ipha = (ipha_t *)&icmph[1]; 2393 } 2394 /* 2395 * Find a TCP client stream for this packet. 2396 * Note that we do a reverse lookup since the header is 2397 * in the form we sent it out. 2398 */ 2399 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2400 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2401 if (connp == NULL) { 2402 BUMP_MIB(&ip_mib, ipInDiscards); 2403 goto drop_pkt; 2404 } 2405 2406 /* Have to change db_type after any pullupmsg */ 2407 DB_TYPE(mp) = M_CTL; 2408 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2409 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2410 return; 2411 2412 case IPPROTO_SCTP: 2413 /* 2414 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2415 * transport header. 2416 */ 2417 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2418 mp->b_wptr) { 2419 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2420 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2421 BUMP_MIB(&ip_mib, ipInDiscards); 2422 goto drop_pkt; 2423 } 2424 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2425 ipha = (ipha_t *)&icmph[1]; 2426 } 2427 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2428 /* 2429 * Find a SCTP client stream for this packet. 2430 * Note that we do a reverse lookup since the header is 2431 * in the form we sent it out. 2432 * The ripha header is only used for the matching and we 2433 * only set the src and dst addresses, protocol, and version. 2434 */ 2435 ripha.ipha_src = ipha->ipha_dst; 2436 ripha.ipha_dst = ipha->ipha_src; 2437 ripha.ipha_protocol = ipha->ipha_protocol; 2438 ripha.ipha_version_and_hdr_length = 2439 ipha->ipha_version_and_hdr_length; 2440 ((uint16_t *)&ports)[0] = up[1]; 2441 ((uint16_t *)&ports)[1] = up[0]; 2442 2443 /* Have to change db_type after any pullupmsg */ 2444 DB_TYPE(mp) = M_CTL; 2445 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2446 mctl_present, ip_policy, 0, zoneid); 2447 return; 2448 2449 case IPPROTO_ESP: 2450 case IPPROTO_AH: { 2451 int ipsec_rc; 2452 2453 /* 2454 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2455 * We will re-use the IPSEC_IN if it is already present as 2456 * AH/ESP will not affect any fields in the IPSEC_IN for 2457 * ICMP errors. If there is no IPSEC_IN, allocate a new 2458 * one and attach it in the front. 2459 */ 2460 if (ii != NULL) { 2461 /* 2462 * ip_fanout_proto_again converts the ICMP errors 2463 * that come back from AH/ESP to M_DATA so that 2464 * if it is non-AH/ESP and we do a pullupmsg in 2465 * this function, it would work. Convert it back 2466 * to M_CTL before we send up as this is a ICMP 2467 * error. This could have been generated locally or 2468 * by some router. Validate the inner IPSEC 2469 * headers. 2470 * 2471 * NOTE : ill_index is used by ip_fanout_proto_again 2472 * to locate the ill. 2473 */ 2474 ASSERT(ill != NULL); 2475 ii->ipsec_in_ill_index = 2476 ill->ill_phyint->phyint_ifindex; 2477 ii->ipsec_in_rill_index = 2478 recv_ill->ill_phyint->phyint_ifindex; 2479 DB_TYPE(first_mp->b_cont) = M_CTL; 2480 } else { 2481 /* 2482 * IPSEC_IN is not present. We attach a ipsec_in 2483 * message and send up to IPSEC for validating 2484 * and removing the IPSEC headers. Clear 2485 * ipsec_in_secure so that when we return 2486 * from IPSEC, we don't mistakenly think that this 2487 * is a secure packet came from the network. 2488 * 2489 * NOTE : ill_index is used by ip_fanout_proto_again 2490 * to locate the ill. 2491 */ 2492 ASSERT(first_mp == mp); 2493 first_mp = ipsec_in_alloc(B_TRUE); 2494 if (first_mp == NULL) { 2495 freemsg(mp); 2496 BUMP_MIB(&ip_mib, ipInDiscards); 2497 return; 2498 } 2499 ii = (ipsec_in_t *)first_mp->b_rptr; 2500 2501 /* This is not a secure packet */ 2502 ii->ipsec_in_secure = B_FALSE; 2503 first_mp->b_cont = mp; 2504 DB_TYPE(mp) = M_CTL; 2505 ASSERT(ill != NULL); 2506 ii->ipsec_in_ill_index = 2507 ill->ill_phyint->phyint_ifindex; 2508 ii->ipsec_in_rill_index = 2509 recv_ill->ill_phyint->phyint_ifindex; 2510 } 2511 ip2dbg(("icmp_inbound_error: ipsec\n")); 2512 2513 if (!ipsec_loaded()) { 2514 ip_proto_not_sup(q, first_mp, 0, zoneid); 2515 return; 2516 } 2517 2518 if (ipha->ipha_protocol == IPPROTO_ESP) 2519 ipsec_rc = ipsecesp_icmp_error(first_mp); 2520 else 2521 ipsec_rc = ipsecah_icmp_error(first_mp); 2522 if (ipsec_rc == IPSEC_STATUS_FAILED) 2523 return; 2524 2525 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2526 return; 2527 } 2528 default: 2529 /* 2530 * The ripha header is only used for the lookup and we 2531 * only set the src and dst addresses and protocol. 2532 */ 2533 ripha.ipha_src = ipha->ipha_dst; 2534 ripha.ipha_dst = ipha->ipha_src; 2535 ripha.ipha_protocol = ipha->ipha_protocol; 2536 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2537 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2538 ntohl(ipha->ipha_dst), 2539 icmph->icmph_type, icmph->icmph_code)); 2540 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2541 ipha_t *in_ipha; 2542 2543 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2544 mp->b_wptr) { 2545 if (!pullupmsg(mp, (uchar_t *)ipha + 2546 hdr_length + sizeof (ipha_t) - 2547 mp->b_rptr)) { 2548 2549 BUMP_MIB(&ip_mib, ipInDiscards); 2550 goto drop_pkt; 2551 } 2552 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2553 ipha = (ipha_t *)&icmph[1]; 2554 } 2555 /* 2556 * Caller has verified that length has to be 2557 * at least the size of IP header. 2558 */ 2559 ASSERT(hdr_length >= sizeof (ipha_t)); 2560 /* 2561 * Check the sanity of the inner IP header like 2562 * we did for the outer header. 2563 */ 2564 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2565 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2566 BUMP_MIB(&ip_mib, ipInDiscards); 2567 goto drop_pkt; 2568 } 2569 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2570 BUMP_MIB(&ip_mib, ipInDiscards); 2571 goto drop_pkt; 2572 } 2573 /* Check for Self-encapsulated tunnels */ 2574 if (in_ipha->ipha_src == ipha->ipha_src && 2575 in_ipha->ipha_dst == ipha->ipha_dst) { 2576 2577 mp = icmp_inbound_self_encap_error(mp, 2578 iph_hdr_length, hdr_length); 2579 if (mp == NULL) 2580 goto drop_pkt; 2581 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2582 ipha = (ipha_t *)&icmph[1]; 2583 hdr_length = IPH_HDR_LENGTH(ipha); 2584 /* 2585 * The packet in error is self-encapsualted. 2586 * And we are finding it further encapsulated 2587 * which we could not have possibly generated. 2588 */ 2589 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2590 BUMP_MIB(&ip_mib, ipInDiscards); 2591 goto drop_pkt; 2592 } 2593 icmp_inbound_error_fanout(q, ill, first_mp, 2594 icmph, ipha, iph_hdr_length, hdr_length, 2595 mctl_present, ip_policy, recv_ill, zoneid); 2596 return; 2597 } 2598 } 2599 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2600 ipha->ipha_protocol == IPPROTO_IPV6) && 2601 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2602 ii != NULL && 2603 ii->ipsec_in_loopback && 2604 ii->ipsec_in_secure) { 2605 /* 2606 * For IP tunnels that get a looped-back 2607 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2608 * reported new MTU to take into account the IPsec 2609 * headers protecting this configured tunnel. 2610 * 2611 * This allows the tunnel module (tun.c) to blindly 2612 * accept the MTU reported in an ICMP "too big" 2613 * message. 2614 * 2615 * Non-looped back ICMP messages will just be 2616 * handled by the security protocols (if needed), 2617 * and the first subsequent packet will hit this 2618 * path. 2619 */ 2620 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2621 ipsec_in_extra_length(first_mp)); 2622 } 2623 /* Have to change db_type after any pullupmsg */ 2624 DB_TYPE(mp) = M_CTL; 2625 2626 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2627 ip_policy, recv_ill, zoneid); 2628 return; 2629 } 2630 /* NOTREACHED */ 2631 drop_pkt:; 2632 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2633 freemsg(first_mp); 2634 } 2635 2636 /* 2637 * Common IP options parser. 2638 * 2639 * Setup routine: fill in *optp with options-parsing state, then 2640 * tail-call ipoptp_next to return the first option. 2641 */ 2642 uint8_t 2643 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2644 { 2645 uint32_t totallen; /* total length of all options */ 2646 2647 totallen = ipha->ipha_version_and_hdr_length - 2648 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2649 totallen <<= 2; 2650 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2651 optp->ipoptp_end = optp->ipoptp_next + totallen; 2652 optp->ipoptp_flags = 0; 2653 return (ipoptp_next(optp)); 2654 } 2655 2656 /* 2657 * Common IP options parser: extract next option. 2658 */ 2659 uint8_t 2660 ipoptp_next(ipoptp_t *optp) 2661 { 2662 uint8_t *end = optp->ipoptp_end; 2663 uint8_t *cur = optp->ipoptp_next; 2664 uint8_t opt, len, pointer; 2665 2666 /* 2667 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2668 * has been corrupted. 2669 */ 2670 ASSERT(cur <= end); 2671 2672 if (cur == end) 2673 return (IPOPT_EOL); 2674 2675 opt = cur[IPOPT_OPTVAL]; 2676 2677 /* 2678 * Skip any NOP options. 2679 */ 2680 while (opt == IPOPT_NOP) { 2681 cur++; 2682 if (cur == end) 2683 return (IPOPT_EOL); 2684 opt = cur[IPOPT_OPTVAL]; 2685 } 2686 2687 if (opt == IPOPT_EOL) 2688 return (IPOPT_EOL); 2689 2690 /* 2691 * Option requiring a length. 2692 */ 2693 if ((cur + 1) >= end) { 2694 optp->ipoptp_flags |= IPOPTP_ERROR; 2695 return (IPOPT_EOL); 2696 } 2697 len = cur[IPOPT_OLEN]; 2698 if (len < 2) { 2699 optp->ipoptp_flags |= IPOPTP_ERROR; 2700 return (IPOPT_EOL); 2701 } 2702 optp->ipoptp_cur = cur; 2703 optp->ipoptp_len = len; 2704 optp->ipoptp_next = cur + len; 2705 if (cur + len > end) { 2706 optp->ipoptp_flags |= IPOPTP_ERROR; 2707 return (IPOPT_EOL); 2708 } 2709 2710 /* 2711 * For the options which require a pointer field, make sure 2712 * its there, and make sure it points to either something 2713 * inside this option, or the end of the option. 2714 */ 2715 switch (opt) { 2716 case IPOPT_RR: 2717 case IPOPT_TS: 2718 case IPOPT_LSRR: 2719 case IPOPT_SSRR: 2720 if (len <= IPOPT_OFFSET) { 2721 optp->ipoptp_flags |= IPOPTP_ERROR; 2722 return (opt); 2723 } 2724 pointer = cur[IPOPT_OFFSET]; 2725 if (pointer - 1 > len) { 2726 optp->ipoptp_flags |= IPOPTP_ERROR; 2727 return (opt); 2728 } 2729 break; 2730 } 2731 2732 /* 2733 * Sanity check the pointer field based on the type of the 2734 * option. 2735 */ 2736 switch (opt) { 2737 case IPOPT_RR: 2738 case IPOPT_SSRR: 2739 case IPOPT_LSRR: 2740 if (pointer < IPOPT_MINOFF_SR) 2741 optp->ipoptp_flags |= IPOPTP_ERROR; 2742 break; 2743 case IPOPT_TS: 2744 if (pointer < IPOPT_MINOFF_IT) 2745 optp->ipoptp_flags |= IPOPTP_ERROR; 2746 /* 2747 * Note that the Internet Timestamp option also 2748 * contains two four bit fields (the Overflow field, 2749 * and the Flag field), which follow the pointer 2750 * field. We don't need to check that these fields 2751 * fall within the length of the option because this 2752 * was implicitely done above. We've checked that the 2753 * pointer value is at least IPOPT_MINOFF_IT, and that 2754 * it falls within the option. Since IPOPT_MINOFF_IT > 2755 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2756 */ 2757 ASSERT(len > IPOPT_POS_OV_FLG); 2758 break; 2759 } 2760 2761 return (opt); 2762 } 2763 2764 /* 2765 * Update any record route or timestamp options to include this host. 2766 * Reverse any source route option. 2767 * This routine assumes that the options are well formed i.e. that they 2768 * have already been checked. 2769 */ 2770 static void 2771 icmp_options_update(ipha_t *ipha) 2772 { 2773 ipoptp_t opts; 2774 uchar_t *opt; 2775 uint8_t optval; 2776 ipaddr_t src; /* Our local address */ 2777 ipaddr_t dst; 2778 2779 ip2dbg(("icmp_options_update\n")); 2780 src = ipha->ipha_src; 2781 dst = ipha->ipha_dst; 2782 2783 for (optval = ipoptp_first(&opts, ipha); 2784 optval != IPOPT_EOL; 2785 optval = ipoptp_next(&opts)) { 2786 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2787 opt = opts.ipoptp_cur; 2788 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2789 optval, opts.ipoptp_len)); 2790 switch (optval) { 2791 int off1, off2; 2792 case IPOPT_SSRR: 2793 case IPOPT_LSRR: 2794 /* 2795 * Reverse the source route. The first entry 2796 * should be the next to last one in the current 2797 * source route (the last entry is our address). 2798 * The last entry should be the final destination. 2799 */ 2800 off1 = IPOPT_MINOFF_SR - 1; 2801 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2802 if (off2 < 0) { 2803 /* No entries in source route */ 2804 ip1dbg(( 2805 "icmp_options_update: bad src route\n")); 2806 break; 2807 } 2808 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2809 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2810 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2811 off2 -= IP_ADDR_LEN; 2812 2813 while (off1 < off2) { 2814 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2815 bcopy((char *)opt + off2, (char *)opt + off1, 2816 IP_ADDR_LEN); 2817 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2818 off1 += IP_ADDR_LEN; 2819 off2 -= IP_ADDR_LEN; 2820 } 2821 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2822 break; 2823 } 2824 } 2825 } 2826 2827 /* 2828 * Process received ICMP Redirect messages. 2829 */ 2830 /* ARGSUSED */ 2831 static void 2832 icmp_redirect(mblk_t *mp) 2833 { 2834 ipha_t *ipha; 2835 int iph_hdr_length; 2836 icmph_t *icmph; 2837 ipha_t *ipha_err; 2838 ire_t *ire; 2839 ire_t *prev_ire; 2840 ire_t *save_ire; 2841 ipaddr_t src, dst, gateway; 2842 iulp_t ulp_info = { 0 }; 2843 int error; 2844 2845 ipha = (ipha_t *)mp->b_rptr; 2846 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2847 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2848 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2849 BUMP_MIB(&icmp_mib, icmpInErrors); 2850 freemsg(mp); 2851 return; 2852 } 2853 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2854 ipha_err = (ipha_t *)&icmph[1]; 2855 src = ipha->ipha_src; 2856 dst = ipha_err->ipha_dst; 2857 gateway = icmph->icmph_rd_gateway; 2858 /* Make sure the new gateway is reachable somehow. */ 2859 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2860 ALL_ZONES, MATCH_IRE_TYPE); 2861 /* 2862 * Make sure we had a route for the dest in question and that 2863 * that route was pointing to the old gateway (the source of the 2864 * redirect packet.) 2865 */ 2866 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2867 MATCH_IRE_GW); 2868 /* 2869 * Check that 2870 * the redirect was not from ourselves 2871 * the new gateway and the old gateway are directly reachable 2872 */ 2873 if (!prev_ire || 2874 !ire || 2875 ire->ire_type == IRE_LOCAL) { 2876 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2877 freemsg(mp); 2878 if (ire != NULL) 2879 ire_refrele(ire); 2880 if (prev_ire != NULL) 2881 ire_refrele(prev_ire); 2882 return; 2883 } 2884 2885 /* 2886 * Should we use the old ULP info to create the new gateway? From 2887 * a user's perspective, we should inherit the info so that it 2888 * is a "smooth" transition. If we do not do that, then new 2889 * connections going thru the new gateway will have no route metrics, 2890 * which is counter-intuitive to user. From a network point of 2891 * view, this may or may not make sense even though the new gateway 2892 * is still directly connected to us so the route metrics should not 2893 * change much. 2894 * 2895 * But if the old ire_uinfo is not initialized, we do another 2896 * recursive lookup on the dest using the new gateway. There may 2897 * be a route to that. If so, use it to initialize the redirect 2898 * route. 2899 */ 2900 if (prev_ire->ire_uinfo.iulp_set) { 2901 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2902 } else { 2903 ire_t *tmp_ire; 2904 ire_t *sire; 2905 2906 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2907 ALL_ZONES, 0, 2908 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2909 if (sire != NULL) { 2910 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2911 /* 2912 * If sire != NULL, ire_ftable_lookup() should not 2913 * return a NULL value. 2914 */ 2915 ASSERT(tmp_ire != NULL); 2916 ire_refrele(tmp_ire); 2917 ire_refrele(sire); 2918 } else if (tmp_ire != NULL) { 2919 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2920 sizeof (iulp_t)); 2921 ire_refrele(tmp_ire); 2922 } 2923 } 2924 if (prev_ire->ire_type == IRE_CACHE) 2925 ire_delete(prev_ire); 2926 ire_refrele(prev_ire); 2927 /* 2928 * TODO: more precise handling for cases 0, 2, 3, the latter two 2929 * require TOS routing 2930 */ 2931 switch (icmph->icmph_code) { 2932 case 0: 2933 case 1: 2934 /* TODO: TOS specificity for cases 2 and 3 */ 2935 case 2: 2936 case 3: 2937 break; 2938 default: 2939 freemsg(mp); 2940 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2941 ire_refrele(ire); 2942 return; 2943 } 2944 /* 2945 * Create a Route Association. This will allow us to remember that 2946 * someone we believe told us to use the particular gateway. 2947 */ 2948 save_ire = ire; 2949 ire = ire_create( 2950 (uchar_t *)&dst, /* dest addr */ 2951 (uchar_t *)&ip_g_all_ones, /* mask */ 2952 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2953 (uchar_t *)&gateway, /* gateway addr */ 2954 NULL, /* no in_srcaddr */ 2955 &save_ire->ire_max_frag, /* max frag */ 2956 NULL, /* Fast Path header */ 2957 NULL, /* no rfq */ 2958 NULL, /* no stq */ 2959 IRE_HOST_REDIRECT, 2960 NULL, 2961 NULL, 2962 NULL, 2963 0, 2964 0, 2965 0, 2966 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2967 &ulp_info); 2968 2969 if (ire == NULL) { 2970 freemsg(mp); 2971 ire_refrele(save_ire); 2972 return; 2973 } 2974 error = ire_add(&ire, NULL, NULL, NULL); 2975 ire_refrele(save_ire); 2976 if (error == 0) { 2977 ire_refrele(ire); /* Held in ire_add_v4 */ 2978 /* tell routing sockets that we received a redirect */ 2979 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2980 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2981 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2982 } 2983 2984 /* 2985 * Delete any existing IRE_HOST_REDIRECT for this destination. 2986 * This together with the added IRE has the effect of 2987 * modifying an existing redirect. 2988 */ 2989 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2990 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2991 if (prev_ire) { 2992 ire_delete(prev_ire); 2993 ire_refrele(prev_ire); 2994 } 2995 2996 freemsg(mp); 2997 } 2998 2999 /* 3000 * Generate an ICMP parameter problem message. 3001 */ 3002 static void 3003 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3004 { 3005 icmph_t icmph; 3006 boolean_t mctl_present; 3007 mblk_t *first_mp; 3008 3009 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3010 3011 if (!(mp = icmp_pkt_err_ok(mp))) { 3012 if (mctl_present) 3013 freeb(first_mp); 3014 return; 3015 } 3016 3017 bzero(&icmph, sizeof (icmph_t)); 3018 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3019 icmph.icmph_pp_ptr = ptr; 3020 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3021 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3022 } 3023 3024 /* 3025 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3026 * the ICMP header pointed to by "stuff". (May be called as writer.) 3027 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3028 * an icmp error packet can be sent. 3029 * Assigns an appropriate source address to the packet. If ipha_dst is 3030 * one of our addresses use it for source. Otherwise pick a source based 3031 * on a route lookup back to ipha_src. 3032 * Note that ipha_src must be set here since the 3033 * packet is likely to arrive on an ill queue in ip_wput() which will 3034 * not set a source address. 3035 */ 3036 static void 3037 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3038 boolean_t mctl_present) 3039 { 3040 ipaddr_t dst; 3041 icmph_t *icmph; 3042 ipha_t *ipha; 3043 uint_t len_needed; 3044 size_t msg_len; 3045 mblk_t *mp1; 3046 ipaddr_t src; 3047 ire_t *ire; 3048 mblk_t *ipsec_mp; 3049 ipsec_out_t *io = NULL; 3050 boolean_t xmit_if_on = B_FALSE; 3051 zoneid_t zoneid; 3052 3053 if (mctl_present) { 3054 /* 3055 * If it is : 3056 * 3057 * 1) a IPSEC_OUT, then this is caused by outbound 3058 * datagram originating on this host. IPSEC processing 3059 * may or may not have been done. Refer to comments above 3060 * icmp_inbound_error_fanout for details. 3061 * 3062 * 2) a IPSEC_IN if we are generating a icmp_message 3063 * for an incoming datagram destined for us i.e called 3064 * from ip_fanout_send_icmp. 3065 */ 3066 ipsec_info_t *in; 3067 ipsec_mp = mp; 3068 mp = ipsec_mp->b_cont; 3069 3070 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3071 ipha = (ipha_t *)mp->b_rptr; 3072 3073 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3074 in->ipsec_info_type == IPSEC_IN); 3075 3076 if (in->ipsec_info_type == IPSEC_IN) { 3077 /* 3078 * Convert the IPSEC_IN to IPSEC_OUT. 3079 */ 3080 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3081 BUMP_MIB(&ip_mib, ipOutDiscards); 3082 return; 3083 } 3084 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3085 } else { 3086 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3087 io = (ipsec_out_t *)in; 3088 if (io->ipsec_out_xmit_if) 3089 xmit_if_on = B_TRUE; 3090 /* 3091 * Clear out ipsec_out_proc_begin, so we do a fresh 3092 * ire lookup. 3093 */ 3094 io->ipsec_out_proc_begin = B_FALSE; 3095 } 3096 zoneid = io->ipsec_out_zoneid; 3097 ASSERT(zoneid != ALL_ZONES); 3098 } else { 3099 /* 3100 * This is in clear. The icmp message we are building 3101 * here should go out in clear. 3102 * 3103 * Pardon the convolution of it all, but it's easier to 3104 * allocate a "use cleartext" IPSEC_IN message and convert 3105 * it than it is to allocate a new one. 3106 */ 3107 ipsec_in_t *ii; 3108 ASSERT(DB_TYPE(mp) == M_DATA); 3109 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3110 freemsg(mp); 3111 BUMP_MIB(&ip_mib, ipOutDiscards); 3112 return; 3113 } 3114 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3115 3116 /* This is not a secure packet */ 3117 ii->ipsec_in_secure = B_FALSE; 3118 if (CONN_Q(q)) { 3119 zoneid = Q_TO_CONN(q)->conn_zoneid; 3120 } else { 3121 zoneid = GLOBAL_ZONEID; 3122 } 3123 ii->ipsec_in_zoneid = zoneid; 3124 ipsec_mp->b_cont = mp; 3125 ipha = (ipha_t *)mp->b_rptr; 3126 /* 3127 * Convert the IPSEC_IN to IPSEC_OUT. 3128 */ 3129 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3130 BUMP_MIB(&ip_mib, ipOutDiscards); 3131 return; 3132 } 3133 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3134 } 3135 3136 /* Remember our eventual destination */ 3137 dst = ipha->ipha_src; 3138 3139 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3140 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3141 if (ire != NULL && ire->ire_zoneid == zoneid) { 3142 src = ipha->ipha_dst; 3143 } else if (!xmit_if_on) { 3144 if (ire != NULL) 3145 ire_refrele(ire); 3146 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3147 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3148 if (ire == NULL) { 3149 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3150 freemsg(ipsec_mp); 3151 return; 3152 } 3153 src = ire->ire_src_addr; 3154 } else { 3155 ipif_t *ipif = NULL; 3156 ill_t *ill; 3157 /* 3158 * This must be an ICMP error coming from 3159 * ip_mrtun_forward(). The src addr should 3160 * be equal to the IP-addr of the outgoing 3161 * interface. 3162 */ 3163 if (io == NULL) { 3164 /* This is not a IPSEC_OUT type control msg */ 3165 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3166 freemsg(ipsec_mp); 3167 return; 3168 } 3169 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3170 NULL, NULL, NULL, NULL); 3171 if (ill != NULL) { 3172 ipif = ipif_get_next_ipif(NULL, ill); 3173 ill_refrele(ill); 3174 } 3175 if (ipif == NULL) { 3176 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3177 freemsg(ipsec_mp); 3178 return; 3179 } 3180 src = ipif->ipif_src_addr; 3181 ipif_refrele(ipif); 3182 } 3183 3184 if (ire != NULL) 3185 ire_refrele(ire); 3186 3187 /* 3188 * Check if we can send back more then 8 bytes in addition 3189 * to the IP header. We will include as much as 64 bytes. 3190 */ 3191 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3192 msg_len = msgdsize(mp); 3193 if (msg_len > len_needed) { 3194 (void) adjmsg(mp, len_needed - msg_len); 3195 msg_len = len_needed; 3196 } 3197 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3198 if (!mp1) { 3199 BUMP_MIB(&icmp_mib, icmpOutErrors); 3200 freemsg(ipsec_mp); 3201 return; 3202 } 3203 mp1->b_cont = mp; 3204 mp = mp1; 3205 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3206 ipsec_mp->b_rptr == (uint8_t *)io && 3207 io->ipsec_out_type == IPSEC_OUT); 3208 ipsec_mp->b_cont = mp; 3209 3210 /* 3211 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3212 * node generates be accepted in peace by all on-host destinations. 3213 * If we do NOT assume that all on-host destinations trust 3214 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3215 * (Look for ipsec_out_icmp_loopback). 3216 */ 3217 io->ipsec_out_icmp_loopback = B_TRUE; 3218 3219 ipha = (ipha_t *)mp->b_rptr; 3220 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3221 *ipha = icmp_ipha; 3222 ipha->ipha_src = src; 3223 ipha->ipha_dst = dst; 3224 ipha->ipha_ttl = ip_def_ttl; 3225 msg_len += sizeof (icmp_ipha) + len; 3226 if (msg_len > IP_MAXPACKET) { 3227 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3228 msg_len = IP_MAXPACKET; 3229 } 3230 ipha->ipha_length = htons((uint16_t)msg_len); 3231 icmph = (icmph_t *)&ipha[1]; 3232 bcopy(stuff, icmph, len); 3233 icmph->icmph_checksum = 0; 3234 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3235 if (icmph->icmph_checksum == 0) 3236 icmph->icmph_checksum = 0xFFFF; 3237 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3238 put(q, ipsec_mp); 3239 } 3240 3241 /* 3242 * Determine if an ICMP error packet can be sent given the rate limit. 3243 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3244 * in milliseconds) and a burst size. Burst size number of packets can 3245 * be sent arbitrarely closely spaced. 3246 * The state is tracked using two variables to implement an approximate 3247 * token bucket filter: 3248 * icmp_pkt_err_last - lbolt value when the last burst started 3249 * icmp_pkt_err_sent - number of packets sent in current burst 3250 */ 3251 boolean_t 3252 icmp_err_rate_limit(void) 3253 { 3254 clock_t now = TICK_TO_MSEC(lbolt); 3255 uint_t refilled; /* Number of packets refilled in tbf since last */ 3256 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3257 3258 if (err_interval == 0) 3259 return (B_FALSE); 3260 3261 if (icmp_pkt_err_last > now) { 3262 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3263 icmp_pkt_err_last = 0; 3264 icmp_pkt_err_sent = 0; 3265 } 3266 /* 3267 * If we are in a burst update the token bucket filter. 3268 * Update the "last" time to be close to "now" but make sure 3269 * we don't loose precision. 3270 */ 3271 if (icmp_pkt_err_sent != 0) { 3272 refilled = (now - icmp_pkt_err_last)/err_interval; 3273 if (refilled > icmp_pkt_err_sent) { 3274 icmp_pkt_err_sent = 0; 3275 } else { 3276 icmp_pkt_err_sent -= refilled; 3277 icmp_pkt_err_last += refilled * err_interval; 3278 } 3279 } 3280 if (icmp_pkt_err_sent == 0) { 3281 /* Start of new burst */ 3282 icmp_pkt_err_last = now; 3283 } 3284 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3285 icmp_pkt_err_sent++; 3286 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3287 icmp_pkt_err_sent)); 3288 return (B_FALSE); 3289 } 3290 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3291 return (B_TRUE); 3292 } 3293 3294 /* 3295 * Check if it is ok to send an IPv4 ICMP error packet in 3296 * response to the IPv4 packet in mp. 3297 * Free the message and return null if no 3298 * ICMP error packet should be sent. 3299 */ 3300 static mblk_t * 3301 icmp_pkt_err_ok(mblk_t *mp) 3302 { 3303 icmph_t *icmph; 3304 ipha_t *ipha; 3305 uint_t len_needed; 3306 ire_t *src_ire; 3307 ire_t *dst_ire; 3308 3309 if (!mp) 3310 return (NULL); 3311 ipha = (ipha_t *)mp->b_rptr; 3312 if (ip_csum_hdr(ipha)) { 3313 BUMP_MIB(&ip_mib, ipInCksumErrs); 3314 freemsg(mp); 3315 return (NULL); 3316 } 3317 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3318 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3319 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3320 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3321 if (src_ire != NULL || dst_ire != NULL || 3322 CLASSD(ipha->ipha_dst) || 3323 CLASSD(ipha->ipha_src) || 3324 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3325 /* Note: only errors to the fragment with offset 0 */ 3326 BUMP_MIB(&icmp_mib, icmpOutDrops); 3327 freemsg(mp); 3328 if (src_ire != NULL) 3329 ire_refrele(src_ire); 3330 if (dst_ire != NULL) 3331 ire_refrele(dst_ire); 3332 return (NULL); 3333 } 3334 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3335 /* 3336 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3337 * errors in response to any ICMP errors. 3338 */ 3339 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3340 if (mp->b_wptr - mp->b_rptr < len_needed) { 3341 if (!pullupmsg(mp, len_needed)) { 3342 BUMP_MIB(&icmp_mib, icmpInErrors); 3343 freemsg(mp); 3344 return (NULL); 3345 } 3346 ipha = (ipha_t *)mp->b_rptr; 3347 } 3348 icmph = (icmph_t *) 3349 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3350 switch (icmph->icmph_type) { 3351 case ICMP_DEST_UNREACHABLE: 3352 case ICMP_SOURCE_QUENCH: 3353 case ICMP_TIME_EXCEEDED: 3354 case ICMP_PARAM_PROBLEM: 3355 case ICMP_REDIRECT: 3356 BUMP_MIB(&icmp_mib, icmpOutDrops); 3357 freemsg(mp); 3358 return (NULL); 3359 default: 3360 break; 3361 } 3362 } 3363 if (icmp_err_rate_limit()) { 3364 /* 3365 * Only send ICMP error packets every so often. 3366 * This should be done on a per port/source basis, 3367 * but for now this will suffice. 3368 */ 3369 freemsg(mp); 3370 return (NULL); 3371 } 3372 return (mp); 3373 } 3374 3375 /* 3376 * Generate an ICMP redirect message. 3377 */ 3378 static void 3379 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3380 { 3381 icmph_t icmph; 3382 3383 /* 3384 * We are called from ip_rput where we could 3385 * not have attached an IPSEC_IN. 3386 */ 3387 ASSERT(mp->b_datap->db_type == M_DATA); 3388 3389 if (!(mp = icmp_pkt_err_ok(mp))) { 3390 return; 3391 } 3392 3393 bzero(&icmph, sizeof (icmph_t)); 3394 icmph.icmph_type = ICMP_REDIRECT; 3395 icmph.icmph_code = 1; 3396 icmph.icmph_rd_gateway = gateway; 3397 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3398 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3399 } 3400 3401 /* 3402 * Generate an ICMP time exceeded message. 3403 */ 3404 void 3405 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3406 { 3407 icmph_t icmph; 3408 boolean_t mctl_present; 3409 mblk_t *first_mp; 3410 3411 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3412 3413 if (!(mp = icmp_pkt_err_ok(mp))) { 3414 if (mctl_present) 3415 freeb(first_mp); 3416 return; 3417 } 3418 3419 bzero(&icmph, sizeof (icmph_t)); 3420 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3421 icmph.icmph_code = code; 3422 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3423 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3424 } 3425 3426 /* 3427 * Generate an ICMP unreachable message. 3428 */ 3429 void 3430 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3431 { 3432 icmph_t icmph; 3433 mblk_t *first_mp; 3434 boolean_t mctl_present; 3435 3436 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3437 3438 if (!(mp = icmp_pkt_err_ok(mp))) { 3439 if (mctl_present) 3440 freeb(first_mp); 3441 return; 3442 } 3443 3444 bzero(&icmph, sizeof (icmph_t)); 3445 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3446 icmph.icmph_code = code; 3447 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3448 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3449 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3450 } 3451 3452 /* 3453 * News from ARP. ARP sends notification of interesting events down 3454 * to its clients using M_CTL messages with the interesting ARP packet 3455 * attached via b_cont. 3456 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3457 * queue as opposed to ARP sending the message to all the clients, i.e. all 3458 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3459 * table if a cache IRE is found to delete all the entries for the address in 3460 * the packet. 3461 */ 3462 static void 3463 ip_arp_news(queue_t *q, mblk_t *mp) 3464 { 3465 arcn_t *arcn; 3466 arh_t *arh; 3467 char *cp1; 3468 uchar_t *cp2; 3469 ire_t *ire = NULL; 3470 int i1; 3471 char hbuf[128]; 3472 char sbuf[16]; 3473 ipaddr_t src; 3474 in6_addr_t v6src; 3475 boolean_t isv6 = B_FALSE; 3476 3477 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3478 if (q->q_next) { 3479 putnext(q, mp); 3480 } else 3481 freemsg(mp); 3482 return; 3483 } 3484 arh = (arh_t *)mp->b_cont->b_rptr; 3485 /* Is it one we are interested in? */ 3486 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3487 isv6 = B_TRUE; 3488 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3489 IPV6_ADDR_LEN); 3490 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3491 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3492 IP_ADDR_LEN); 3493 } else { 3494 freemsg(mp); 3495 return; 3496 } 3497 3498 arcn = (arcn_t *)mp->b_rptr; 3499 switch (arcn->arcn_code) { 3500 case AR_CN_BOGON: 3501 /* 3502 * Someone is sending ARP packets with a source protocol 3503 * address which we have published. Either they are 3504 * pretending to be us, or we have been asked to proxy 3505 * for a machine that can do fine for itself, or two 3506 * different machines are providing proxy service for the 3507 * same protocol address, or something. We try and do 3508 * something appropriate here. 3509 */ 3510 cp2 = (uchar_t *)&arh[1]; 3511 cp1 = hbuf; 3512 *cp1 = '\0'; 3513 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3514 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3515 if (cp1 != hbuf) 3516 cp1[-1] = '\0'; 3517 (void) ip_dot_addr(src, sbuf); 3518 if (isv6) 3519 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3520 else 3521 ire = ire_cache_lookup(src, ALL_ZONES); 3522 3523 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3524 cmn_err(CE_WARN, 3525 "IP: Hardware address '%s' trying" 3526 " to be our address %s!", 3527 hbuf, sbuf); 3528 } else { 3529 cmn_err(CE_WARN, 3530 "IP: Proxy ARP problem? " 3531 "Hardware address '%s' thinks it is %s", 3532 hbuf, sbuf); 3533 } 3534 if (ire != NULL) 3535 ire_refrele(ire); 3536 break; 3537 case AR_CN_ANNOUNCE: 3538 if (isv6) { 3539 /* 3540 * For XRESOLV interfaces. 3541 * Delete the IRE cache entry and NCE for this 3542 * v6 address 3543 */ 3544 ip_ire_clookup_and_delete_v6(&v6src); 3545 /* 3546 * If v6src is a non-zero, it's a router address 3547 * as below. Do the same sort of thing to clean 3548 * out off-net IRE_CACHE entries that go through 3549 * the router. 3550 */ 3551 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3552 ire_walk_v6(ire_delete_cache_gw_v6, 3553 (char *)&v6src, ALL_ZONES); 3554 } 3555 break; 3556 } 3557 /* 3558 * ARP gives us a copy of any broadcast packet with identical 3559 * sender and receiver protocol address, in 3560 * case we want to intuit something from it. Such a packet 3561 * usually means that a machine has just come up on the net. 3562 * If we have an IRE_CACHE, we blow it away. This way we will 3563 * immediately pick up the rare case of a host changing 3564 * hardware address. ip_ire_clookup_and_delete achieves this. 3565 * 3566 * The address in "src" may be an entry for a router. 3567 * (Default router, or non-default router.) If 3568 * that's true, then any off-net IRE_CACHE entries 3569 * that go through the router with address "src" 3570 * must be clobbered. Use ire_walk to achieve this 3571 * goal. 3572 * 3573 * It should be possible to determine if the address 3574 * in src is or is not for a router. This way, 3575 * the ire_walk() isn't called all of the time here. 3576 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3577 * as it would remove all IRE_CACHE entries for onlink 3578 * destinations. All onlink destinations have 3579 * ire_gateway_addr == 0. 3580 */ 3581 if ((ip_ire_clookup_and_delete(src, NULL) || 3582 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3583 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3584 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3585 ALL_ZONES); 3586 } 3587 /* From ire_ftable_lookup */ 3588 if (ire != NULL) 3589 ire_refrele(ire); 3590 break; 3591 default: 3592 if (ire != NULL) 3593 ire_refrele(ire); 3594 break; 3595 } 3596 freemsg(mp); 3597 } 3598 3599 /* 3600 * Create a mblk suitable for carrying the interface index and/or source link 3601 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3602 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3603 * application. 3604 */ 3605 mblk_t * 3606 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3607 { 3608 mblk_t *mp; 3609 in_pktinfo_t *pinfo; 3610 ipha_t *ipha; 3611 struct ether_header *pether; 3612 3613 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3614 if (mp == NULL) { 3615 ip1dbg(("ip_add_info: allocation failure.\n")); 3616 return (data_mp); 3617 } 3618 3619 ipha = (ipha_t *)data_mp->b_rptr; 3620 pinfo = (in_pktinfo_t *)mp->b_rptr; 3621 bzero(pinfo, sizeof (in_pktinfo_t)); 3622 pinfo->in_pkt_flags = (uchar_t)flags; 3623 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3624 3625 if (flags & IPF_RECVIF) 3626 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3627 3628 pether = (struct ether_header *)((char *)ipha 3629 - sizeof (struct ether_header)); 3630 /* 3631 * Make sure the interface is an ethernet type, since this option 3632 * is currently supported only on this type of interface. Also make 3633 * sure we are pointing correctly above db_base. 3634 */ 3635 3636 if ((flags & IPF_RECVSLLA) && 3637 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3638 (ill->ill_type == IFT_ETHER) && 3639 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3640 3641 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3642 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3643 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3644 } else { 3645 /* 3646 * Clear the bit. Indicate to upper layer that IP is not 3647 * sending this ancillary info. 3648 */ 3649 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3650 } 3651 3652 mp->b_datap->db_type = M_CTL; 3653 mp->b_wptr += sizeof (in_pktinfo_t); 3654 mp->b_cont = data_mp; 3655 3656 return (mp); 3657 } 3658 3659 /* 3660 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3661 * part of the bind request. 3662 */ 3663 3664 boolean_t 3665 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3666 { 3667 ipsec_in_t *ii; 3668 3669 ASSERT(policy_mp != NULL); 3670 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3671 3672 ii = (ipsec_in_t *)policy_mp->b_rptr; 3673 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3674 3675 connp->conn_policy = ii->ipsec_in_policy; 3676 ii->ipsec_in_policy = NULL; 3677 3678 if (ii->ipsec_in_action != NULL) { 3679 if (connp->conn_latch == NULL) { 3680 connp->conn_latch = iplatch_create(); 3681 if (connp->conn_latch == NULL) 3682 return (B_FALSE); 3683 } 3684 ipsec_latch_inbound(connp->conn_latch, ii); 3685 } 3686 return (B_TRUE); 3687 } 3688 3689 /* 3690 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3691 * and to arrange for power-fanout assist. The ULP is identified by 3692 * adding a single byte at the end of the original bind message. 3693 * A ULP other than UDP or TCP that wishes to be recognized passes 3694 * down a bind with a zero length address. 3695 * 3696 * The binding works as follows: 3697 * - A zero byte address means just bind to the protocol. 3698 * - A four byte address is treated as a request to validate 3699 * that the address is a valid local address, appropriate for 3700 * an application to bind to. This does not affect any fanout 3701 * information in IP. 3702 * - A sizeof sin_t byte address is used to bind to only the local address 3703 * and port. 3704 * - A sizeof ipa_conn_t byte address contains complete fanout information 3705 * consisting of local and remote addresses and ports. In 3706 * this case, the addresses are both validated as appropriate 3707 * for this operation, and, if so, the information is retained 3708 * for use in the inbound fanout. 3709 * 3710 * The ULP (except in the zero-length bind) can append an 3711 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3712 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3713 * a copy of the source or destination IRE (source for local bind; 3714 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3715 * policy information contained should be copied on to the conn. 3716 * 3717 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3718 */ 3719 mblk_t * 3720 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3721 { 3722 ssize_t len; 3723 struct T_bind_req *tbr; 3724 sin_t *sin; 3725 ipa_conn_t *ac; 3726 uchar_t *ucp; 3727 mblk_t *mp1; 3728 boolean_t ire_requested; 3729 boolean_t ipsec_policy_set = B_FALSE; 3730 int error = 0; 3731 int protocol; 3732 ipa_conn_x_t *acx; 3733 3734 ASSERT(!connp->conn_af_isv6); 3735 connp->conn_pkt_isv6 = B_FALSE; 3736 3737 len = MBLKL(mp); 3738 if (len < (sizeof (*tbr) + 1)) { 3739 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3740 "ip_bind: bogus msg, len %ld", len); 3741 /* XXX: Need to return something better */ 3742 goto bad_addr; 3743 } 3744 /* Back up and extract the protocol identifier. */ 3745 mp->b_wptr--; 3746 protocol = *mp->b_wptr & 0xFF; 3747 tbr = (struct T_bind_req *)mp->b_rptr; 3748 /* Reset the message type in preparation for shipping it back. */ 3749 DB_TYPE(mp) = M_PCPROTO; 3750 3751 connp->conn_ulp = (uint8_t)protocol; 3752 3753 /* 3754 * Check for a zero length address. This is from a protocol that 3755 * wants to register to receive all packets of its type. 3756 */ 3757 if (tbr->ADDR_length == 0) { 3758 /* 3759 * These protocols are now intercepted in ip_bind_v6(). 3760 * Reject protocol-level binds here for now. 3761 * 3762 * For SCTP raw socket, ICMP sends down a bind with sin_t 3763 * so that the protocol type cannot be SCTP. 3764 */ 3765 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3766 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3767 goto bad_addr; 3768 } 3769 3770 /* No hash here really. The table is big enough. */ 3771 connp->conn_srcv6 = ipv6_all_zeros; 3772 3773 ipcl_proto_insert(connp, protocol); 3774 3775 tbr->PRIM_type = T_BIND_ACK; 3776 return (mp); 3777 } 3778 3779 /* Extract the address pointer from the message. */ 3780 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3781 tbr->ADDR_length); 3782 if (ucp == NULL) { 3783 ip1dbg(("ip_bind: no address\n")); 3784 goto bad_addr; 3785 } 3786 if (!OK_32PTR(ucp)) { 3787 ip1dbg(("ip_bind: unaligned address\n")); 3788 goto bad_addr; 3789 } 3790 /* 3791 * Check for trailing mps. 3792 */ 3793 3794 mp1 = mp->b_cont; 3795 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 3796 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 3797 3798 switch (tbr->ADDR_length) { 3799 default: 3800 ip1dbg(("ip_bind: bad address length %d\n", 3801 (int)tbr->ADDR_length)); 3802 goto bad_addr; 3803 3804 case IP_ADDR_LEN: 3805 /* Verification of local address only */ 3806 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3807 ire_requested, ipsec_policy_set, B_FALSE); 3808 break; 3809 3810 case sizeof (sin_t): 3811 sin = (sin_t *)ucp; 3812 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3813 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3814 if (protocol == IPPROTO_TCP) 3815 connp->conn_recv = tcp_conn_request; 3816 break; 3817 3818 case sizeof (ipa_conn_t): 3819 ac = (ipa_conn_t *)ucp; 3820 /* For raw socket, the local port is not set. */ 3821 if (ac->ac_lport == 0) 3822 ac->ac_lport = connp->conn_lport; 3823 /* Always verify destination reachability. */ 3824 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3825 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3826 ipsec_policy_set, B_TRUE, B_TRUE); 3827 if (protocol == IPPROTO_TCP) 3828 connp->conn_recv = tcp_input; 3829 break; 3830 3831 case sizeof (ipa_conn_x_t): 3832 acx = (ipa_conn_x_t *)ucp; 3833 /* 3834 * Whether or not to verify destination reachability depends 3835 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3836 */ 3837 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3838 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3839 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3840 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3841 if (protocol == IPPROTO_TCP) 3842 connp->conn_recv = tcp_input; 3843 break; 3844 } 3845 if (error == EINPROGRESS) 3846 return (NULL); 3847 else if (error != 0) 3848 goto bad_addr; 3849 /* 3850 * Pass the IPSEC headers size in ire_ipsec_overhead. 3851 * We can't do this in ip_bind_insert_ire because the policy 3852 * may not have been inherited at that point in time and hence 3853 * conn_out_enforce_policy may not be set. 3854 */ 3855 mp1 = mp->b_cont; 3856 if (ire_requested && connp->conn_out_enforce_policy && 3857 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3858 ire_t *ire = (ire_t *)mp1->b_rptr; 3859 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3860 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3861 } 3862 3863 /* Send it home. */ 3864 mp->b_datap->db_type = M_PCPROTO; 3865 tbr->PRIM_type = T_BIND_ACK; 3866 return (mp); 3867 3868 bad_addr: 3869 /* 3870 * If error = -1 then we generate a TBADADDR - otherwise error is 3871 * a unix errno. 3872 */ 3873 if (error > 0) 3874 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3875 else 3876 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3877 return (mp); 3878 } 3879 3880 /* 3881 * Here address is verified to be a valid local address. 3882 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3883 * address is also considered a valid local address. 3884 * In the case of a broadcast/multicast address, however, the 3885 * upper protocol is expected to reset the src address 3886 * to 0 if it sees a IRE_BROADCAST type returned so that 3887 * no packets are emitted with broadcast/multicast address as 3888 * source address (that violates hosts requirements RFC1122) 3889 * The addresses valid for bind are: 3890 * (1) - INADDR_ANY (0) 3891 * (2) - IP address of an UP interface 3892 * (3) - IP address of a DOWN interface 3893 * (4) - valid local IP broadcast addresses. In this case 3894 * the conn will only receive packets destined to 3895 * the specified broadcast address. 3896 * (5) - a multicast address. In this case 3897 * the conn will only receive packets destined to 3898 * the specified multicast address. Note: the 3899 * application still has to issue an 3900 * IP_ADD_MEMBERSHIP socket option. 3901 * 3902 * On error, return -1 for TBADADDR otherwise pass the 3903 * errno with TSYSERR reply. 3904 * 3905 * In all the above cases, the bound address must be valid in the current zone. 3906 * When the address is loopback, multicast or broadcast, there might be many 3907 * matching IREs so bind has to look up based on the zone. 3908 */ 3909 int 3910 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3911 boolean_t ire_requested, boolean_t ipsec_policy_set, 3912 boolean_t fanout_insert) 3913 { 3914 int error = 0; 3915 ire_t *src_ire; 3916 mblk_t *policy_mp; 3917 ipif_t *ipif; 3918 zoneid_t zoneid; 3919 3920 if (ipsec_policy_set) { 3921 policy_mp = mp->b_cont; 3922 } 3923 3924 /* 3925 * If it was previously connected, conn_fully_bound would have 3926 * been set. 3927 */ 3928 connp->conn_fully_bound = B_FALSE; 3929 3930 src_ire = NULL; 3931 ipif = NULL; 3932 3933 zoneid = connp->conn_zoneid; 3934 3935 if (src_addr) { 3936 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3937 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3938 /* 3939 * If an address other than 0.0.0.0 is requested, 3940 * we verify that it is a valid address for bind 3941 * Note: Following code is in if-else-if form for 3942 * readability compared to a condition check. 3943 */ 3944 /* LINTED - statement has no consequent */ 3945 if (IRE_IS_LOCAL(src_ire)) { 3946 /* 3947 * (2) Bind to address of local UP interface 3948 */ 3949 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3950 /* 3951 * (4) Bind to broadcast address 3952 * Note: permitted only from transports that 3953 * request IRE 3954 */ 3955 if (!ire_requested) 3956 error = EADDRNOTAVAIL; 3957 } else { 3958 /* 3959 * (3) Bind to address of local DOWN interface 3960 * (ipif_lookup_addr() looks up all interfaces 3961 * but we do not get here for UP interfaces 3962 * - case (2) above) 3963 * We put the protocol byte back into the mblk 3964 * since we may come back via ip_wput_nondata() 3965 * later with this mblk if ipif_lookup_addr chooses 3966 * to defer processing. 3967 */ 3968 *mp->b_wptr++ = (char)connp->conn_ulp; 3969 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3970 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3971 &error)) != NULL) { 3972 ipif_refrele(ipif); 3973 } else if (error == EINPROGRESS) { 3974 if (src_ire != NULL) 3975 ire_refrele(src_ire); 3976 return (EINPROGRESS); 3977 } else if (CLASSD(src_addr)) { 3978 error = 0; 3979 if (src_ire != NULL) 3980 ire_refrele(src_ire); 3981 /* 3982 * (5) bind to multicast address. 3983 * Fake out the IRE returned to upper 3984 * layer to be a broadcast IRE. 3985 */ 3986 src_ire = ire_ctable_lookup( 3987 INADDR_BROADCAST, INADDR_ANY, 3988 IRE_BROADCAST, NULL, zoneid, 3989 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3990 if (src_ire == NULL || !ire_requested) 3991 error = EADDRNOTAVAIL; 3992 } else { 3993 /* 3994 * Not a valid address for bind 3995 */ 3996 error = EADDRNOTAVAIL; 3997 } 3998 /* 3999 * Just to keep it consistent with the processing in 4000 * ip_bind_v4() 4001 */ 4002 mp->b_wptr--; 4003 } 4004 if (error) { 4005 /* Red Alert! Attempting to be a bogon! */ 4006 ip1dbg(("ip_bind: bad src address 0x%x\n", 4007 ntohl(src_addr))); 4008 goto bad_addr; 4009 } 4010 } 4011 4012 /* 4013 * Allow setting new policies. For example, disconnects come 4014 * down as ipa_t bind. As we would have set conn_policy_cached 4015 * to B_TRUE before, we should set it to B_FALSE, so that policy 4016 * can change after the disconnect. 4017 */ 4018 connp->conn_policy_cached = B_FALSE; 4019 4020 /* 4021 * If not fanout_insert this was just an address verification 4022 */ 4023 if (fanout_insert) { 4024 /* 4025 * The addresses have been verified. Time to insert in 4026 * the correct fanout list. 4027 */ 4028 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4029 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4030 connp->conn_lport = lport; 4031 connp->conn_fport = 0; 4032 /* 4033 * Do we need to add a check to reject Multicast packets 4034 */ 4035 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4036 } 4037 done: 4038 if (error == 0) { 4039 if (ire_requested) { 4040 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4041 error = -1; 4042 /* Falls through to bad_addr */ 4043 } 4044 } else if (ipsec_policy_set) { 4045 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4046 error = -1; 4047 /* Falls through to bad_addr */ 4048 } 4049 } 4050 } 4051 bad_addr: 4052 if (src_ire != NULL) 4053 IRE_REFRELE(src_ire); 4054 if (ipsec_policy_set) { 4055 ASSERT(policy_mp == mp->b_cont); 4056 ASSERT(policy_mp != NULL); 4057 freeb(policy_mp); 4058 /* 4059 * As of now assume that nothing else accompanies 4060 * IPSEC_POLICY_SET. 4061 */ 4062 mp->b_cont = NULL; 4063 } 4064 return (error); 4065 } 4066 4067 /* 4068 * Verify that both the source and destination addresses 4069 * are valid. If verify_dst is false, then the destination address may be 4070 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4071 * destination reachability, while tunnels do not. 4072 * Note that we allow connect to broadcast and multicast 4073 * addresses when ire_requested is set. Thus the ULP 4074 * has to check for IRE_BROADCAST and multicast. 4075 * 4076 * Returns zero if ok. 4077 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4078 * (for use with TSYSERR reply). 4079 */ 4080 int 4081 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4082 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4083 boolean_t ire_requested, boolean_t ipsec_policy_set, 4084 boolean_t fanout_insert, boolean_t verify_dst) 4085 { 4086 ire_t *src_ire; 4087 ire_t *dst_ire; 4088 int error = 0; 4089 int protocol; 4090 mblk_t *policy_mp; 4091 ire_t *sire = NULL; 4092 ire_t *md_dst_ire = NULL; 4093 ill_t *md_ill = NULL; 4094 zoneid_t zoneid; 4095 ipaddr_t src_addr = *src_addrp; 4096 4097 src_ire = dst_ire = NULL; 4098 protocol = *mp->b_wptr & 0xFF; 4099 4100 /* 4101 * If we never got a disconnect before, clear it now. 4102 */ 4103 connp->conn_fully_bound = B_FALSE; 4104 4105 if (ipsec_policy_set) { 4106 policy_mp = mp->b_cont; 4107 } 4108 4109 zoneid = connp->conn_zoneid; 4110 4111 if (CLASSD(dst_addr)) { 4112 /* Pick up an IRE_BROADCAST */ 4113 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4114 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4115 MATCH_IRE_RJ_BHOLE)); 4116 } else { 4117 /* 4118 * If conn_dontroute is set or if conn_nexthop_set is set, 4119 * and onlink ipif is not found set ENETUNREACH error. 4120 */ 4121 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4122 ipif_t *ipif; 4123 4124 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4125 dst_addr : connp->conn_nexthop_v4, zoneid); 4126 if (ipif == NULL) { 4127 error = ENETUNREACH; 4128 goto bad_addr; 4129 } 4130 ipif_refrele(ipif); 4131 } 4132 4133 if (connp->conn_nexthop_set) { 4134 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4135 0, 0, NULL, NULL, zoneid, 0); 4136 } else { 4137 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4138 &sire, zoneid, 4139 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4140 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4141 } 4142 } 4143 /* 4144 * dst_ire can't be a broadcast when not ire_requested. 4145 * We also prevent ire's with src address INADDR_ANY to 4146 * be used, which are created temporarily for 4147 * sending out packets from endpoints that have 4148 * conn_unspec_src set. If verify_dst is true, the destination must be 4149 * reachable. If verify_dst is false, the destination needn't be 4150 * reachable. 4151 * 4152 * If we match on a reject or black hole, then we've got a 4153 * local failure. May as well fail out the connect() attempt, 4154 * since it's never going to succeed. 4155 */ 4156 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4157 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4158 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4159 /* 4160 * If we're verifying destination reachability, we always want 4161 * to complain here. 4162 * 4163 * If we're not verifying destination reachability but the 4164 * destination has a route, we still want to fail on the 4165 * temporary address and broadcast address tests. 4166 */ 4167 if (verify_dst || (dst_ire != NULL)) { 4168 if (ip_debug > 2) { 4169 pr_addr_dbg("ip_bind_connected: bad connected " 4170 "dst %s\n", AF_INET, &dst_addr); 4171 } 4172 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4173 error = ENETUNREACH; 4174 else 4175 error = EHOSTUNREACH; 4176 goto bad_addr; 4177 } 4178 } 4179 /* 4180 * If the app does a connect(), it means that it will most likely 4181 * send more than 1 packet to the destination. It makes sense 4182 * to clear the temporary flag. 4183 */ 4184 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4185 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4186 irb_t *irb = dst_ire->ire_bucket; 4187 4188 rw_enter(&irb->irb_lock, RW_WRITER); 4189 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4190 irb->irb_tmp_ire_cnt--; 4191 rw_exit(&irb->irb_lock); 4192 } 4193 4194 /* 4195 * See if we should notify ULP about MDT; we do this whether or not 4196 * ire_requested is TRUE, in order to handle active connects; MDT 4197 * eligibility tests for passive connects are handled separately 4198 * through tcp_adapt_ire(). We do this before the source address 4199 * selection, because dst_ire may change after a call to 4200 * ipif_select_source(). This is a best-effort check, as the 4201 * packet for this connection may not actually go through 4202 * dst_ire->ire_stq, and the exact IRE can only be known after 4203 * calling ip_newroute(). This is why we further check on the 4204 * IRE during Multidata packet transmission in tcp_multisend(). 4205 */ 4206 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4207 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4208 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4209 ILL_MDT_CAPABLE(md_ill)) { 4210 md_dst_ire = dst_ire; 4211 IRE_REFHOLD(md_dst_ire); 4212 } 4213 4214 if (dst_ire != NULL && 4215 dst_ire->ire_type == IRE_LOCAL && 4216 dst_ire->ire_zoneid != zoneid) { 4217 /* 4218 * If the IRE belongs to a different zone, look for a matching 4219 * route in the forwarding table and use the source address from 4220 * that route. 4221 */ 4222 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4223 zoneid, 0, 4224 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4225 MATCH_IRE_RJ_BHOLE); 4226 if (src_ire == NULL) { 4227 error = EHOSTUNREACH; 4228 goto bad_addr; 4229 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4230 if (!(src_ire->ire_type & IRE_HOST)) 4231 error = ENETUNREACH; 4232 else 4233 error = EHOSTUNREACH; 4234 goto bad_addr; 4235 } 4236 if (src_addr == INADDR_ANY) 4237 src_addr = src_ire->ire_src_addr; 4238 ire_refrele(src_ire); 4239 src_ire = NULL; 4240 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4241 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4242 src_addr = sire->ire_src_addr; 4243 ire_refrele(dst_ire); 4244 dst_ire = sire; 4245 sire = NULL; 4246 } else { 4247 /* 4248 * Pick a source address so that a proper inbound 4249 * load spreading would happen. 4250 */ 4251 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4252 ipif_t *src_ipif = NULL; 4253 ire_t *ipif_ire; 4254 4255 /* 4256 * Supply a local source address such that inbound 4257 * load spreading happens. 4258 * 4259 * Determine the best source address on this ill for 4260 * the destination. 4261 * 4262 * 1) For broadcast, we should return a broadcast ire 4263 * found above so that upper layers know that the 4264 * destination address is a broadcast address. 4265 * 4266 * 2) If this is part of a group, select a better 4267 * source address so that better inbound load 4268 * balancing happens. Do the same if the ipif 4269 * is DEPRECATED. 4270 * 4271 * 3) If the outgoing interface is part of a usesrc 4272 * group, then try selecting a source address from 4273 * the usesrc ILL. 4274 */ 4275 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4276 ((dst_ill->ill_group != NULL) || 4277 (dst_ire->ire_ipif->ipif_flags & 4278 IPIF_DEPRECATED) || 4279 (dst_ill->ill_usesrc_ifindex != 0))) { 4280 /* 4281 * If the destination is reachable via a 4282 * given gateway, the selected source address 4283 * should be in the same subnet as the gateway. 4284 * Otherwise, the destination is not reachable. 4285 * 4286 * If there are no interfaces on the same subnet 4287 * as the destination, ipif_select_source gives 4288 * first non-deprecated interface which might be 4289 * on a different subnet than the gateway. 4290 * This is not desirable. Hence pass the dst_ire 4291 * source address to ipif_select_source. 4292 * It is sure that the destination is reachable 4293 * with the dst_ire source address subnet. 4294 * So passing dst_ire source address to 4295 * ipif_select_source will make sure that the 4296 * selected source will be on the same subnet 4297 * as dst_ire source address. 4298 */ 4299 ipaddr_t saddr = 4300 dst_ire->ire_ipif->ipif_src_addr; 4301 src_ipif = ipif_select_source(dst_ill, 4302 saddr, zoneid); 4303 if (src_ipif != NULL) { 4304 if (IS_VNI(src_ipif->ipif_ill)) { 4305 /* 4306 * For VNI there is no 4307 * interface route 4308 */ 4309 src_addr = 4310 src_ipif->ipif_src_addr; 4311 } else { 4312 ipif_ire = 4313 ipif_to_ire(src_ipif); 4314 if (ipif_ire != NULL) { 4315 IRE_REFRELE(dst_ire); 4316 dst_ire = ipif_ire; 4317 } 4318 src_addr = 4319 dst_ire->ire_src_addr; 4320 } 4321 ipif_refrele(src_ipif); 4322 } else { 4323 src_addr = dst_ire->ire_src_addr; 4324 } 4325 } else { 4326 src_addr = dst_ire->ire_src_addr; 4327 } 4328 } 4329 } 4330 4331 /* 4332 * We do ire_route_lookup() here (and not 4333 * interface lookup as we assert that 4334 * src_addr should only come from an 4335 * UP interface for hard binding. 4336 */ 4337 ASSERT(src_ire == NULL); 4338 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4339 NULL, zoneid, MATCH_IRE_ZONEONLY); 4340 /* src_ire must be a local|loopback */ 4341 if (!IRE_IS_LOCAL(src_ire)) { 4342 if (ip_debug > 2) { 4343 pr_addr_dbg("ip_bind_connected: bad connected " 4344 "src %s\n", AF_INET, &src_addr); 4345 } 4346 error = EADDRNOTAVAIL; 4347 goto bad_addr; 4348 } 4349 4350 /* 4351 * If the source address is a loopback address, the 4352 * destination had best be local or multicast. 4353 * The transports that can't handle multicast will reject 4354 * those addresses. 4355 */ 4356 if (src_ire->ire_type == IRE_LOOPBACK && 4357 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4358 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4359 error = -1; 4360 goto bad_addr; 4361 } 4362 4363 /* 4364 * Allow setting new policies. For example, disconnects come 4365 * down as ipa_t bind. As we would have set conn_policy_cached 4366 * to B_TRUE before, we should set it to B_FALSE, so that policy 4367 * can change after the disconnect. 4368 */ 4369 connp->conn_policy_cached = B_FALSE; 4370 4371 /* 4372 * Set the conn addresses/ports immediately, so the IPsec policy calls 4373 * can handle their passed-in conn's. 4374 */ 4375 4376 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4377 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4378 connp->conn_lport = lport; 4379 connp->conn_fport = fport; 4380 *src_addrp = src_addr; 4381 4382 ASSERT(!(ipsec_policy_set && ire_requested)); 4383 if (ire_requested) { 4384 iulp_t *ulp_info = NULL; 4385 4386 /* 4387 * Note that sire will not be NULL if this is an off-link 4388 * connection and there is not cache for that dest yet. 4389 * 4390 * XXX Because of an existing bug, if there are multiple 4391 * default routes, the IRE returned now may not be the actual 4392 * default route used (default routes are chosen in a 4393 * round robin fashion). So if the metrics for different 4394 * default routes are different, we may return the wrong 4395 * metrics. This will not be a problem if the existing 4396 * bug is fixed. 4397 */ 4398 if (sire != NULL) { 4399 ulp_info = &(sire->ire_uinfo); 4400 } 4401 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4402 error = -1; 4403 goto bad_addr; 4404 } 4405 } else if (ipsec_policy_set) { 4406 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4407 error = -1; 4408 goto bad_addr; 4409 } 4410 } 4411 4412 /* 4413 * Cache IPsec policy in this conn. If we have per-socket policy, 4414 * we'll cache that. If we don't, we'll inherit global policy. 4415 * 4416 * We can't insert until the conn reflects the policy. Note that 4417 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4418 * connections where we don't have a policy. This is to prevent 4419 * global policy lookups in the inbound path. 4420 * 4421 * If we insert before we set conn_policy_cached, 4422 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4423 * because global policy cound be non-empty. We normally call 4424 * ipsec_check_policy() for conn_policy_cached connections only if 4425 * ipc_in_enforce_policy is set. But in this case, 4426 * conn_policy_cached can get set anytime since we made the 4427 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4428 * called, which will make the above assumption false. Thus, we 4429 * need to insert after we set conn_policy_cached. 4430 */ 4431 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4432 goto bad_addr; 4433 4434 if (fanout_insert) { 4435 /* 4436 * The addresses have been verified. Time to insert in 4437 * the correct fanout list. 4438 */ 4439 error = ipcl_conn_insert(connp, protocol, src_addr, 4440 dst_addr, connp->conn_ports); 4441 } 4442 4443 if (error == 0) { 4444 connp->conn_fully_bound = B_TRUE; 4445 /* 4446 * Our initial checks for MDT have passed; the IRE is not 4447 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4448 * be supporting MDT. Pass the IRE, IPC and ILL into 4449 * ip_mdinfo_return(), which performs further checks 4450 * against them and upon success, returns the MDT info 4451 * mblk which we will attach to the bind acknowledgment. 4452 */ 4453 if (md_dst_ire != NULL) { 4454 mblk_t *mdinfo_mp; 4455 4456 ASSERT(md_ill != NULL); 4457 ASSERT(md_ill->ill_mdt_capab != NULL); 4458 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4459 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4460 linkb(mp, mdinfo_mp); 4461 } 4462 } 4463 bad_addr: 4464 if (ipsec_policy_set) { 4465 ASSERT(policy_mp == mp->b_cont); 4466 ASSERT(policy_mp != NULL); 4467 freeb(policy_mp); 4468 /* 4469 * As of now assume that nothing else accompanies 4470 * IPSEC_POLICY_SET. 4471 */ 4472 mp->b_cont = NULL; 4473 } 4474 if (src_ire != NULL) 4475 IRE_REFRELE(src_ire); 4476 if (dst_ire != NULL) 4477 IRE_REFRELE(dst_ire); 4478 if (sire != NULL) 4479 IRE_REFRELE(sire); 4480 if (md_dst_ire != NULL) 4481 IRE_REFRELE(md_dst_ire); 4482 return (error); 4483 } 4484 4485 /* 4486 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4487 * Prefers dst_ire over src_ire. 4488 */ 4489 static boolean_t 4490 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4491 { 4492 mblk_t *mp1; 4493 ire_t *ret_ire = NULL; 4494 4495 mp1 = mp->b_cont; 4496 ASSERT(mp1 != NULL); 4497 4498 if (ire != NULL) { 4499 /* 4500 * mp1 initialized above to IRE_DB_REQ_TYPE 4501 * appended mblk. Its <upper protocol>'s 4502 * job to make sure there is room. 4503 */ 4504 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4505 return (0); 4506 4507 mp1->b_datap->db_type = IRE_DB_TYPE; 4508 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4509 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4510 ret_ire = (ire_t *)mp1->b_rptr; 4511 /* 4512 * Pass the latest setting of the ip_path_mtu_discovery and 4513 * copy the ulp info if any. 4514 */ 4515 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4516 IPH_DF : 0; 4517 if (ulp_info != NULL) { 4518 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4519 sizeof (iulp_t)); 4520 } 4521 ret_ire->ire_mp = mp1; 4522 } else { 4523 /* 4524 * No IRE was found. Remove IRE mblk. 4525 */ 4526 mp->b_cont = mp1->b_cont; 4527 freeb(mp1); 4528 } 4529 4530 return (1); 4531 } 4532 4533 /* 4534 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4535 * the final piece where we don't. Return a pointer to the first mblk in the 4536 * result, and update the pointer to the next mblk to chew on. If anything 4537 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4538 * NULL pointer. 4539 */ 4540 mblk_t * 4541 ip_carve_mp(mblk_t **mpp, ssize_t len) 4542 { 4543 mblk_t *mp0; 4544 mblk_t *mp1; 4545 mblk_t *mp2; 4546 4547 if (!len || !mpp || !(mp0 = *mpp)) 4548 return (NULL); 4549 /* If we aren't going to consume the first mblk, we need a dup. */ 4550 if (mp0->b_wptr - mp0->b_rptr > len) { 4551 mp1 = dupb(mp0); 4552 if (mp1) { 4553 /* Partition the data between the two mblks. */ 4554 mp1->b_wptr = mp1->b_rptr + len; 4555 mp0->b_rptr = mp1->b_wptr; 4556 /* 4557 * after adjustments if mblk not consumed is now 4558 * unaligned, try to align it. If this fails free 4559 * all messages and let upper layer recover. 4560 */ 4561 if (!OK_32PTR(mp0->b_rptr)) { 4562 if (!pullupmsg(mp0, -1)) { 4563 freemsg(mp0); 4564 freemsg(mp1); 4565 *mpp = NULL; 4566 return (NULL); 4567 } 4568 } 4569 } 4570 return (mp1); 4571 } 4572 /* Eat through as many mblks as we need to get len bytes. */ 4573 len -= mp0->b_wptr - mp0->b_rptr; 4574 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4575 if (mp2->b_wptr - mp2->b_rptr > len) { 4576 /* 4577 * We won't consume the entire last mblk. Like 4578 * above, dup and partition it. 4579 */ 4580 mp1->b_cont = dupb(mp2); 4581 mp1 = mp1->b_cont; 4582 if (!mp1) { 4583 /* 4584 * Trouble. Rather than go to a lot of 4585 * trouble to clean up, we free the messages. 4586 * This won't be any worse than losing it on 4587 * the wire. 4588 */ 4589 freemsg(mp0); 4590 freemsg(mp2); 4591 *mpp = NULL; 4592 return (NULL); 4593 } 4594 mp1->b_wptr = mp1->b_rptr + len; 4595 mp2->b_rptr = mp1->b_wptr; 4596 /* 4597 * after adjustments if mblk not consumed is now 4598 * unaligned, try to align it. If this fails free 4599 * all messages and let upper layer recover. 4600 */ 4601 if (!OK_32PTR(mp2->b_rptr)) { 4602 if (!pullupmsg(mp2, -1)) { 4603 freemsg(mp0); 4604 freemsg(mp2); 4605 *mpp = NULL; 4606 return (NULL); 4607 } 4608 } 4609 *mpp = mp2; 4610 return (mp0); 4611 } 4612 /* Decrement len by the amount we just got. */ 4613 len -= mp2->b_wptr - mp2->b_rptr; 4614 } 4615 /* 4616 * len should be reduced to zero now. If not our caller has 4617 * screwed up. 4618 */ 4619 if (len) { 4620 /* Shouldn't happen! */ 4621 freemsg(mp0); 4622 *mpp = NULL; 4623 return (NULL); 4624 } 4625 /* 4626 * We consumed up to exactly the end of an mblk. Detach the part 4627 * we are returning from the rest of the chain. 4628 */ 4629 mp1->b_cont = NULL; 4630 *mpp = mp2; 4631 return (mp0); 4632 } 4633 4634 /* The ill stream is being unplumbed. Called from ip_close */ 4635 int 4636 ip_modclose(ill_t *ill) 4637 { 4638 4639 boolean_t success; 4640 ipsq_t *ipsq; 4641 ipif_t *ipif; 4642 queue_t *q = ill->ill_rq; 4643 4644 /* 4645 * Forcibly enter the ipsq after some delay. This is to take 4646 * care of the case when some ioctl does not complete because 4647 * we sent a control message to the driver and it did not 4648 * send us a reply. We want to be able to at least unplumb 4649 * and replumb rather than force the user to reboot the system. 4650 */ 4651 success = ipsq_enter(ill, B_FALSE); 4652 4653 /* 4654 * Open/close/push/pop is guaranteed to be single threaded 4655 * per stream by STREAMS. FS guarantees that all references 4656 * from top are gone before close is called. So there can't 4657 * be another close thread that has set CONDEMNED on this ill. 4658 * and cause ipsq_enter to return failure. 4659 */ 4660 ASSERT(success); 4661 ipsq = ill->ill_phyint->phyint_ipsq; 4662 4663 /* 4664 * Mark it condemned. No new reference will be made to this ill. 4665 * Lookup functions will return an error. Threads that try to 4666 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4667 * that the refcnt will drop down to zero. 4668 */ 4669 mutex_enter(&ill->ill_lock); 4670 ill->ill_state_flags |= ILL_CONDEMNED; 4671 for (ipif = ill->ill_ipif; ipif != NULL; 4672 ipif = ipif->ipif_next) { 4673 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4674 } 4675 /* 4676 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4677 * returns error if ILL_CONDEMNED is set 4678 */ 4679 cv_broadcast(&ill->ill_cv); 4680 mutex_exit(&ill->ill_lock); 4681 4682 /* 4683 * Shut down fragmentation reassembly. 4684 * ill_frag_timer won't start a timer again. 4685 * Now cancel any existing timer 4686 */ 4687 (void) untimeout(ill->ill_frag_timer_id); 4688 (void) ill_frag_timeout(ill, 0); 4689 4690 /* 4691 * If MOVE was in progress, clear the 4692 * move_in_progress fields also. 4693 */ 4694 if (ill->ill_move_in_progress) { 4695 ILL_CLEAR_MOVE(ill); 4696 } 4697 4698 /* 4699 * Call ill_delete to bring down the ipifs, ilms and ill on 4700 * this ill. Then wait for the refcnts to drop to zero. 4701 * ill_is_quiescent checks whether the ill is really quiescent. 4702 * Then make sure that threads that are waiting to enter the 4703 * ipsq have seen the error returned by ipsq_enter and have 4704 * gone away. Then we call ill_delete_tail which does the 4705 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4706 */ 4707 ill_delete(ill); 4708 mutex_enter(&ill->ill_lock); 4709 while (!ill_is_quiescent(ill)) 4710 cv_wait(&ill->ill_cv, &ill->ill_lock); 4711 while (ill->ill_waiters) 4712 cv_wait(&ill->ill_cv, &ill->ill_lock); 4713 4714 mutex_exit(&ill->ill_lock); 4715 4716 /* qprocsoff is called in ill_delete_tail */ 4717 ill_delete_tail(ill); 4718 4719 /* 4720 * Walk through all upper (conn) streams and qenable 4721 * those that have queued data. 4722 * close synchronization needs this to 4723 * be done to ensure that all upper layers blocked 4724 * due to flow control to the closing device 4725 * get unblocked. 4726 */ 4727 ip1dbg(("ip_wsrv: walking\n")); 4728 conn_walk_drain(); 4729 4730 mutex_enter(&ip_mi_lock); 4731 mi_close_unlink(&ip_g_head, (IDP)ill); 4732 mutex_exit(&ip_mi_lock); 4733 4734 /* 4735 * credp could be null if the open didn't succeed and ip_modopen 4736 * itself calls ip_close. 4737 */ 4738 if (ill->ill_credp != NULL) 4739 crfree(ill->ill_credp); 4740 4741 mi_close_free((IDP)ill); 4742 q->q_ptr = WR(q)->q_ptr = NULL; 4743 4744 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4745 4746 return (0); 4747 } 4748 4749 /* 4750 * This is called as part of close() for both IP and UDP 4751 * in order to quiesce the conn. 4752 */ 4753 void 4754 ip_quiesce_conn(conn_t *connp) 4755 { 4756 boolean_t drain_cleanup_reqd = B_FALSE; 4757 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4758 boolean_t ilg_cleanup_reqd = B_FALSE; 4759 4760 ASSERT(!IPCL_IS_TCP(connp)); 4761 4762 /* 4763 * Mark the conn as closing, and this conn must not be 4764 * inserted in future into any list. Eg. conn_drain_insert(), 4765 * won't insert this conn into the conn_drain_list. 4766 * Similarly ill_pending_mp_add() will not add any mp to 4767 * the pending mp list, after this conn has started closing. 4768 * 4769 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4770 * cannot get set henceforth. 4771 */ 4772 mutex_enter(&connp->conn_lock); 4773 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4774 connp->conn_state_flags |= CONN_CLOSING; 4775 if (connp->conn_idl != NULL) 4776 drain_cleanup_reqd = B_TRUE; 4777 if (connp->conn_oper_pending_ill != NULL) 4778 conn_ioctl_cleanup_reqd = B_TRUE; 4779 if (connp->conn_ilg_inuse != 0) 4780 ilg_cleanup_reqd = B_TRUE; 4781 mutex_exit(&connp->conn_lock); 4782 4783 if (IPCL_IS_UDP(connp)) 4784 udp_quiesce_conn(connp); 4785 4786 if (conn_ioctl_cleanup_reqd) 4787 conn_ioctl_cleanup(connp); 4788 4789 /* 4790 * Remove this conn from any fanout list it is on. 4791 * and then wait for any threads currently operating 4792 * on this endpoint to finish 4793 */ 4794 ipcl_hash_remove(connp); 4795 4796 /* 4797 * Remove this conn from the drain list, and do 4798 * any other cleanup that may be required. 4799 * (Only non-tcp streams may have a non-null conn_idl. 4800 * TCP streams are never flow controlled, and 4801 * conn_idl will be null) 4802 */ 4803 if (drain_cleanup_reqd) 4804 conn_drain_tail(connp, B_TRUE); 4805 4806 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4807 (void) ip_mrouter_done(NULL); 4808 4809 if (ilg_cleanup_reqd) 4810 ilg_delete_all(connp); 4811 4812 conn_delete_ire(connp, NULL); 4813 4814 /* 4815 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4816 * callers from write side can't be there now because close 4817 * is in progress. The only other caller is ipcl_walk 4818 * which checks for the condemned flag. 4819 */ 4820 mutex_enter(&connp->conn_lock); 4821 connp->conn_state_flags |= CONN_CONDEMNED; 4822 while (connp->conn_ref != 1) 4823 cv_wait(&connp->conn_cv, &connp->conn_lock); 4824 connp->conn_state_flags |= CONN_QUIESCED; 4825 mutex_exit(&connp->conn_lock); 4826 } 4827 4828 /* ARGSUSED */ 4829 int 4830 ip_close(queue_t *q, int flags) 4831 { 4832 conn_t *connp; 4833 4834 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4835 4836 /* 4837 * Call the appropriate delete routine depending on whether this is 4838 * a module or device. 4839 */ 4840 if (WR(q)->q_next != NULL) { 4841 /* This is a module close */ 4842 return (ip_modclose((ill_t *)q->q_ptr)); 4843 } 4844 4845 connp = q->q_ptr; 4846 ip_quiesce_conn(connp); 4847 4848 qprocsoff(q); 4849 4850 /* 4851 * Now we are truly single threaded on this stream, and can 4852 * delete the things hanging off the connp, and finally the connp. 4853 * We removed this connp from the fanout list, it cannot be 4854 * accessed thru the fanouts, and we already waited for the 4855 * conn_ref to drop to 0. We are already in close, so 4856 * there cannot be any other thread from the top. qprocsoff 4857 * has completed, and service has completed or won't run in 4858 * future. 4859 */ 4860 ASSERT(connp->conn_ref == 1); 4861 4862 /* 4863 * A conn which was previously marked as IPCL_UDP cannot 4864 * retain the flag because it would have been cleared by 4865 * udp_close(). 4866 */ 4867 ASSERT(!IPCL_IS_UDP(connp)); 4868 4869 if (connp->conn_latch != NULL) { 4870 IPLATCH_REFRELE(connp->conn_latch); 4871 connp->conn_latch = NULL; 4872 } 4873 if (connp->conn_policy != NULL) { 4874 IPPH_REFRELE(connp->conn_policy); 4875 connp->conn_policy = NULL; 4876 } 4877 if (connp->conn_ipsec_opt_mp != NULL) { 4878 freemsg(connp->conn_ipsec_opt_mp); 4879 connp->conn_ipsec_opt_mp = NULL; 4880 } 4881 if (connp->conn_cred != NULL) { 4882 crfree(connp->conn_cred); 4883 connp->conn_cred = NULL; 4884 } 4885 4886 inet_minor_free(ip_minor_arena, connp->conn_dev); 4887 4888 connp->conn_ref--; 4889 ipcl_conn_destroy(connp); 4890 4891 q->q_ptr = WR(q)->q_ptr = NULL; 4892 return (0); 4893 } 4894 4895 int 4896 ip_snmpmod_close(queue_t *q) 4897 { 4898 conn_t *connp = Q_TO_CONN(q); 4899 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4900 4901 qprocsoff(q); 4902 4903 if (connp->conn_flags & IPCL_UDPMOD) 4904 udp_close_free(connp); 4905 4906 if (connp->conn_cred != NULL) { 4907 crfree(connp->conn_cred); 4908 connp->conn_cred = NULL; 4909 } 4910 CONN_DEC_REF(connp); 4911 q->q_ptr = WR(q)->q_ptr = NULL; 4912 return (0); 4913 } 4914 4915 /* 4916 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 4917 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 4918 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 4919 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 4920 * queues as we never enqueue messages there and we don't handle any ioctls. 4921 * Everything else is freed. 4922 */ 4923 void 4924 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 4925 { 4926 conn_t *connp = q->q_ptr; 4927 pfi_t setfn; 4928 pfi_t getfn; 4929 4930 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4931 4932 switch (DB_TYPE(mp)) { 4933 case M_PROTO: 4934 case M_PCPROTO: 4935 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 4936 ((((union T_primitives *)mp->b_rptr)->type == 4937 T_SVR4_OPTMGMT_REQ) || 4938 (((union T_primitives *)mp->b_rptr)->type == 4939 T_OPTMGMT_REQ))) { 4940 /* 4941 * This is the only TPI primitive supported. Its 4942 * handling does not require tcp_t, but it does require 4943 * conn_t to check permissions. 4944 */ 4945 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 4946 4947 if (connp->conn_flags & IPCL_TCPMOD) { 4948 setfn = tcp_snmp_set; 4949 getfn = tcp_snmp_get; 4950 } else { 4951 setfn = udp_snmp_set; 4952 getfn = udp_snmp_get; 4953 } 4954 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 4955 freemsg(mp); 4956 return; 4957 } 4958 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 4959 != NULL) 4960 qreply(q, mp); 4961 break; 4962 case M_FLUSH: 4963 case M_IOCTL: 4964 putnext(q, mp); 4965 break; 4966 default: 4967 freemsg(mp); 4968 break; 4969 } 4970 } 4971 4972 /* Return the IP checksum for the IP header at "iph". */ 4973 uint16_t 4974 ip_csum_hdr(ipha_t *ipha) 4975 { 4976 uint16_t *uph; 4977 uint32_t sum; 4978 int opt_len; 4979 4980 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4981 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4982 uph = (uint16_t *)ipha; 4983 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4984 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4985 if (opt_len > 0) { 4986 do { 4987 sum += uph[10]; 4988 sum += uph[11]; 4989 uph += 2; 4990 } while (--opt_len); 4991 } 4992 sum = (sum & 0xFFFF) + (sum >> 16); 4993 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4994 if (sum == 0xffff) 4995 sum = 0; 4996 return ((uint16_t)sum); 4997 } 4998 4999 void 5000 ip_ddi_destroy(void) 5001 { 5002 tcp_ddi_destroy(); 5003 sctp_ddi_destroy(); 5004 ipsec_loader_destroy(); 5005 ipsec_policy_destroy(); 5006 ipsec_kstat_destroy(); 5007 nd_free(&ip_g_nd); 5008 mutex_destroy(&igmp_timer_lock); 5009 mutex_destroy(&mld_timer_lock); 5010 mutex_destroy(&igmp_slowtimeout_lock); 5011 mutex_destroy(&mld_slowtimeout_lock); 5012 mutex_destroy(&ip_mi_lock); 5013 mutex_destroy(&rts_clients.connf_lock); 5014 ip_ire_fini(); 5015 ip6_asp_free(); 5016 conn_drain_fini(); 5017 ipcl_destroy(); 5018 inet_minor_destroy(ip_minor_arena); 5019 icmp_kstat_fini(); 5020 ip_kstat_fini(); 5021 rw_destroy(&ipsec_capab_ills_lock); 5022 rw_destroy(&ill_g_usesrc_lock); 5023 ip_drop_unregister(&ip_dropper); 5024 } 5025 5026 5027 void 5028 ip_ddi_init(void) 5029 { 5030 TCP6_MAJ = ddi_name_to_major(TCP6); 5031 TCP_MAJ = ddi_name_to_major(TCP); 5032 SCTP_MAJ = ddi_name_to_major(SCTP); 5033 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5034 5035 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5036 5037 /* IP's IPsec code calls the packet dropper */ 5038 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5039 5040 if (!ip_g_nd) { 5041 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5042 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5043 nd_free(&ip_g_nd); 5044 } 5045 } 5046 5047 ipsec_loader_init(); 5048 ipsec_policy_init(); 5049 ipsec_kstat_init(); 5050 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5051 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5052 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5053 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5054 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5055 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5056 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5057 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5058 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5059 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5060 5061 /* 5062 * For IP and TCP the minor numbers should start from 2 since we have 4 5063 * initial devices: ip, ip6, tcp, tcp6. 5064 */ 5065 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5066 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5067 cmn_err(CE_PANIC, 5068 "ip_ddi_init: ip_minor_arena creation failed\n"); 5069 } 5070 5071 ipcl_init(); 5072 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5073 ip_ire_init(); 5074 ip6_asp_init(); 5075 ipif_init(); 5076 conn_drain_init(); 5077 tcp_ddi_init(); 5078 sctp_ddi_init(); 5079 5080 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5081 5082 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5083 "net", KSTAT_TYPE_NAMED, 5084 sizeof (ip_statistics) / sizeof (kstat_named_t), 5085 KSTAT_FLAG_VIRTUAL)) != NULL) { 5086 ip_kstat->ks_data = &ip_statistics; 5087 kstat_install(ip_kstat); 5088 } 5089 ip_kstat_init(); 5090 ip6_kstat_init(); 5091 icmp_kstat_init(); 5092 5093 ipsec_loader_start(); 5094 } 5095 5096 /* 5097 * Allocate and initialize a DLPI template of the specified length. (May be 5098 * called as writer.) 5099 */ 5100 mblk_t * 5101 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5102 { 5103 mblk_t *mp; 5104 5105 mp = allocb(len, BPRI_MED); 5106 if (!mp) 5107 return (NULL); 5108 5109 /* 5110 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5111 * of which we don't seem to use) are sent with M_PCPROTO, and 5112 * that other DLPI are M_PROTO. 5113 */ 5114 if (prim == DL_INFO_REQ) { 5115 mp->b_datap->db_type = M_PCPROTO; 5116 } else { 5117 mp->b_datap->db_type = M_PROTO; 5118 } 5119 5120 mp->b_wptr = mp->b_rptr + len; 5121 bzero(mp->b_rptr, len); 5122 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5123 return (mp); 5124 } 5125 5126 const char * 5127 dlpi_prim_str(int prim) 5128 { 5129 switch (prim) { 5130 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5131 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5132 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5133 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5134 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5135 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5136 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5137 case DL_OK_ACK: return ("DL_OK_ACK"); 5138 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5139 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5140 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5141 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5142 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5143 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5144 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5145 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5146 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5147 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5148 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5149 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5150 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5151 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5152 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5153 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5154 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5155 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5156 default: return ("<unknown primitive>"); 5157 } 5158 } 5159 5160 const char * 5161 dlpi_err_str(int err) 5162 { 5163 switch (err) { 5164 case DL_ACCESS: return ("DL_ACCESS"); 5165 case DL_BADADDR: return ("DL_BADADDR"); 5166 case DL_BADCORR: return ("DL_BADCORR"); 5167 case DL_BADDATA: return ("DL_BADDATA"); 5168 case DL_BADPPA: return ("DL_BADPPA"); 5169 case DL_BADPRIM: return ("DL_BADPRIM"); 5170 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5171 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5172 case DL_BADSAP: return ("DL_BADSAP"); 5173 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5174 case DL_BOUND: return ("DL_BOUND"); 5175 case DL_INITFAILED: return ("DL_INITFAILED"); 5176 case DL_NOADDR: return ("DL_NOADDR"); 5177 case DL_NOTINIT: return ("DL_NOTINIT"); 5178 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5179 case DL_SYSERR: return ("DL_SYSERR"); 5180 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5181 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5182 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5183 case DL_TOOMANY: return ("DL_TOOMANY"); 5184 case DL_NOTENAB: return ("DL_NOTENAB"); 5185 case DL_BUSY: return ("DL_BUSY"); 5186 case DL_NOAUTO: return ("DL_NOAUTO"); 5187 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5188 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5189 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5190 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5191 case DL_PENDING: return ("DL_PENDING"); 5192 default: return ("<unknown error>"); 5193 } 5194 } 5195 5196 /* 5197 * Debug formatting routine. Returns a character string representation of the 5198 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5199 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5200 */ 5201 char * 5202 ip_dot_addr(ipaddr_t addr, char *buf) 5203 { 5204 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5205 } 5206 5207 /* 5208 * Debug formatting routine. Returns a character string representation of the 5209 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5210 * as a pointer. The "xxx" parts including left zero padding so the final 5211 * string will fit easily in tables. It would be nice to take a padding 5212 * length argument instead. 5213 */ 5214 static char * 5215 ip_dot_saddr(uchar_t *addr, char *buf) 5216 { 5217 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5218 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5219 return (buf); 5220 } 5221 5222 /* 5223 * Send an ICMP error after patching up the packet appropriately. Returns 5224 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5225 */ 5226 static boolean_t 5227 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5228 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5229 { 5230 ipha_t *ipha; 5231 mblk_t *first_mp; 5232 boolean_t secure; 5233 unsigned char db_type; 5234 5235 first_mp = mp; 5236 if (mctl_present) { 5237 mp = mp->b_cont; 5238 secure = ipsec_in_is_secure(first_mp); 5239 ASSERT(mp != NULL); 5240 } else { 5241 /* 5242 * If this is an ICMP error being reported - which goes 5243 * up as M_CTLs, we need to convert them to M_DATA till 5244 * we finish checking with global policy because 5245 * ipsec_check_global_policy() assumes M_DATA as clear 5246 * and M_CTL as secure. 5247 */ 5248 db_type = DB_TYPE(mp); 5249 DB_TYPE(mp) = M_DATA; 5250 secure = B_FALSE; 5251 } 5252 /* 5253 * We are generating an icmp error for some inbound packet. 5254 * Called from all ip_fanout_(udp, tcp, proto) functions. 5255 * Before we generate an error, check with global policy 5256 * to see whether this is allowed to enter the system. As 5257 * there is no "conn", we are checking with global policy. 5258 */ 5259 ipha = (ipha_t *)mp->b_rptr; 5260 if (secure || ipsec_inbound_v4_policy_present) { 5261 first_mp = ipsec_check_global_policy(first_mp, NULL, 5262 ipha, NULL, mctl_present); 5263 if (first_mp == NULL) 5264 return (B_FALSE); 5265 } 5266 5267 if (!mctl_present) 5268 DB_TYPE(mp) = db_type; 5269 5270 if (flags & IP_FF_SEND_ICMP) { 5271 if (flags & IP_FF_HDR_COMPLETE) { 5272 if (ip_hdr_complete(ipha, zoneid)) { 5273 freemsg(first_mp); 5274 return (B_TRUE); 5275 } 5276 } 5277 if (flags & IP_FF_CKSUM) { 5278 /* 5279 * Have to correct checksum since 5280 * the packet might have been 5281 * fragmented and the reassembly code in ip_rput 5282 * does not restore the IP checksum. 5283 */ 5284 ipha->ipha_hdr_checksum = 0; 5285 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5286 } 5287 switch (icmp_type) { 5288 case ICMP_DEST_UNREACHABLE: 5289 icmp_unreachable(WR(q), first_mp, icmp_code); 5290 break; 5291 default: 5292 freemsg(first_mp); 5293 break; 5294 } 5295 } else { 5296 freemsg(first_mp); 5297 return (B_FALSE); 5298 } 5299 5300 return (B_TRUE); 5301 } 5302 5303 #ifdef DEBUG 5304 /* 5305 * Copy the header into the IPSEC_IN message. 5306 */ 5307 static void 5308 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5309 { 5310 mblk_t *data_mp = ipsec_mp->b_cont; 5311 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5312 ipha_t *ipha; 5313 5314 if (ii->ipsec_in_type != IPSEC_IN) 5315 return; 5316 ASSERT(data_mp != NULL); 5317 5318 ipha = (ipha_t *)data_mp->b_rptr; 5319 bcopy(ipha, ii->ipsec_in_saved_hdr, 5320 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5321 sizeof (ipha_t) : sizeof (ip6_t)); 5322 } 5323 #else 5324 #define ipsec_inbound_debug_tag(x) /* NOP */ 5325 #endif /* DEBUG */ 5326 5327 /* 5328 * Used to send an ICMP error message when a packet is received for 5329 * a protocol that is not supported. The mblk passed as argument 5330 * is consumed by this function. 5331 */ 5332 void 5333 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5334 { 5335 mblk_t *mp; 5336 ipha_t *ipha; 5337 ill_t *ill; 5338 ipsec_in_t *ii; 5339 5340 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5341 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5342 5343 mp = ipsec_mp->b_cont; 5344 ipsec_mp->b_cont = NULL; 5345 ipha = (ipha_t *)mp->b_rptr; 5346 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5347 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5348 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5349 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5350 } 5351 } else { 5352 /* Get ill from index in ipsec_in_t. */ 5353 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5354 B_TRUE, NULL, NULL, NULL, NULL); 5355 if (ill != NULL) { 5356 if (ip_fanout_send_icmp_v6(q, mp, flags, 5357 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5358 0, B_FALSE, zoneid)) { 5359 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5360 } 5361 5362 ill_refrele(ill); 5363 } else { /* re-link for the freemsg() below. */ 5364 ipsec_mp->b_cont = mp; 5365 } 5366 } 5367 5368 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5369 freemsg(ipsec_mp); 5370 } 5371 5372 /* 5373 * See if the inbound datagram has had IPsec processing applied to it. 5374 */ 5375 boolean_t 5376 ipsec_in_is_secure(mblk_t *ipsec_mp) 5377 { 5378 ipsec_in_t *ii; 5379 5380 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5381 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5382 5383 if (ii->ipsec_in_loopback) { 5384 return (ii->ipsec_in_secure); 5385 } else { 5386 return (ii->ipsec_in_ah_sa != NULL || 5387 ii->ipsec_in_esp_sa != NULL || 5388 ii->ipsec_in_decaps); 5389 } 5390 } 5391 5392 /* 5393 * Handle protocols with which IP is less intimate. There 5394 * can be more than one stream bound to a particular 5395 * protocol. When this is the case, normally each one gets a copy 5396 * of any incoming packets. 5397 * 5398 * IPSEC NOTE : 5399 * 5400 * Don't allow a secure packet going up a non-secure connection. 5401 * We don't allow this because 5402 * 5403 * 1) Reply might go out in clear which will be dropped at 5404 * the sending side. 5405 * 2) If the reply goes out in clear it will give the 5406 * adversary enough information for getting the key in 5407 * most of the cases. 5408 * 5409 * Moreover getting a secure packet when we expect clear 5410 * implies that SA's were added without checking for 5411 * policy on both ends. This should not happen once ISAKMP 5412 * is used to negotiate SAs as SAs will be added only after 5413 * verifying the policy. 5414 * 5415 * NOTE : If the packet was tunneled and not multicast we only send 5416 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5417 * back to delivering packets to AF_INET6 raw sockets. 5418 * 5419 * IPQoS Notes: 5420 * Once we have determined the client, invoke IPPF processing. 5421 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5422 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5423 * ip_policy will be false. 5424 * 5425 * Zones notes: 5426 * Currently only applications in the global zone can create raw sockets for 5427 * protocols other than ICMP. So unlike the broadcast / multicast case of 5428 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5429 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5430 */ 5431 static void 5432 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5433 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5434 zoneid_t zoneid) 5435 { 5436 queue_t *rq; 5437 mblk_t *mp1, *first_mp1; 5438 uint_t protocol = ipha->ipha_protocol; 5439 ipaddr_t dst; 5440 boolean_t one_only; 5441 mblk_t *first_mp = mp; 5442 boolean_t secure; 5443 uint32_t ill_index; 5444 conn_t *connp, *first_connp, *next_connp; 5445 connf_t *connfp; 5446 5447 if (mctl_present) { 5448 mp = first_mp->b_cont; 5449 secure = ipsec_in_is_secure(first_mp); 5450 ASSERT(mp != NULL); 5451 } else { 5452 secure = B_FALSE; 5453 } 5454 dst = ipha->ipha_dst; 5455 /* 5456 * If the packet was tunneled and not multicast we only send to it 5457 * the first match. 5458 */ 5459 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5460 !CLASSD(dst)); 5461 5462 connfp = &ipcl_proto_fanout[protocol]; 5463 mutex_enter(&connfp->connf_lock); 5464 connp = connfp->connf_head; 5465 for (connp = connfp->connf_head; connp != NULL; 5466 connp = connp->conn_next) { 5467 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5468 break; 5469 } 5470 5471 if (connp == NULL || connp->conn_upq == NULL) { 5472 /* 5473 * No one bound to these addresses. Is 5474 * there a client that wants all 5475 * unclaimed datagrams? 5476 */ 5477 mutex_exit(&connfp->connf_lock); 5478 /* 5479 * Check for IPPROTO_ENCAP... 5480 */ 5481 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5482 /* 5483 * XXX If an IPsec mblk is here on a multicast 5484 * tunnel (using ip_mroute stuff), what should 5485 * I do? 5486 * 5487 * For now, just free the IPsec mblk before 5488 * passing it up to the multicast routing 5489 * stuff. 5490 * 5491 * BTW, If I match a configured IP-in-IP 5492 * tunnel, ip_mroute_decap will never be 5493 * called. 5494 */ 5495 if (mp != first_mp) 5496 freeb(first_mp); 5497 ip_mroute_decap(q, mp); 5498 } else { 5499 /* 5500 * Otherwise send an ICMP protocol unreachable. 5501 */ 5502 if (ip_fanout_send_icmp(q, first_mp, flags, 5503 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5504 mctl_present, zoneid)) { 5505 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5506 } 5507 } 5508 return; 5509 } 5510 CONN_INC_REF(connp); 5511 first_connp = connp; 5512 5513 /* 5514 * Only send message to one tunnel driver by immediately 5515 * terminating the loop. 5516 */ 5517 connp = one_only ? NULL : connp->conn_next; 5518 5519 for (;;) { 5520 while (connp != NULL) { 5521 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5522 flags, zoneid)) 5523 break; 5524 connp = connp->conn_next; 5525 } 5526 5527 /* 5528 * Copy the packet. 5529 */ 5530 if (connp == NULL || connp->conn_upq == NULL || 5531 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5532 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5533 /* 5534 * No more interested clients or memory 5535 * allocation failed 5536 */ 5537 connp = first_connp; 5538 break; 5539 } 5540 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5541 CONN_INC_REF(connp); 5542 mutex_exit(&connfp->connf_lock); 5543 rq = connp->conn_rq; 5544 if (!canputnext(rq)) { 5545 if (flags & IP_FF_RAWIP) { 5546 BUMP_MIB(&ip_mib, rawipInOverflows); 5547 } else { 5548 BUMP_MIB(&icmp_mib, icmpInOverflows); 5549 } 5550 5551 freemsg(first_mp1); 5552 } else { 5553 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5554 first_mp1 = ipsec_check_inbound_policy 5555 (first_mp1, connp, ipha, NULL, 5556 mctl_present); 5557 } 5558 if (first_mp1 != NULL) { 5559 /* 5560 * ip_fanout_proto also gets called from 5561 * icmp_inbound_error_fanout, in which case 5562 * the msg type is M_CTL. Don't add info 5563 * in this case for the time being. In future 5564 * when there is a need for knowing the 5565 * inbound iface index for ICMP error msgs, 5566 * then this can be changed. 5567 */ 5568 if ((connp->conn_recvif != 0) && 5569 (mp->b_datap->db_type != M_CTL)) { 5570 /* 5571 * the actual data will be 5572 * contained in b_cont upon 5573 * successful return of the 5574 * following call else 5575 * original mblk is returned 5576 */ 5577 ASSERT(recv_ill != NULL); 5578 mp1 = ip_add_info(mp1, recv_ill, 5579 IPF_RECVIF); 5580 } 5581 BUMP_MIB(&ip_mib, ipInDelivers); 5582 if (mctl_present) 5583 freeb(first_mp1); 5584 putnext(rq, mp1); 5585 } 5586 } 5587 mutex_enter(&connfp->connf_lock); 5588 /* Follow the next pointer before releasing the conn. */ 5589 next_connp = connp->conn_next; 5590 CONN_DEC_REF(connp); 5591 connp = next_connp; 5592 } 5593 5594 /* Last one. Send it upstream. */ 5595 mutex_exit(&connfp->connf_lock); 5596 5597 /* 5598 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5599 * will be set to false. 5600 */ 5601 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5602 ill_index = ill->ill_phyint->phyint_ifindex; 5603 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5604 if (mp == NULL) { 5605 CONN_DEC_REF(connp); 5606 if (mctl_present) { 5607 freeb(first_mp); 5608 } 5609 return; 5610 } 5611 } 5612 5613 rq = connp->conn_rq; 5614 if (!canputnext(rq)) { 5615 if (flags & IP_FF_RAWIP) { 5616 BUMP_MIB(&ip_mib, rawipInOverflows); 5617 } else { 5618 BUMP_MIB(&icmp_mib, icmpInOverflows); 5619 } 5620 5621 freemsg(first_mp); 5622 } else { 5623 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5624 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5625 ipha, NULL, mctl_present); 5626 } 5627 if (first_mp != NULL) { 5628 /* 5629 * ip_fanout_proto also gets called 5630 * from icmp_inbound_error_fanout, in 5631 * which case the msg type is M_CTL. 5632 * Don't add info in this case for time 5633 * being. In future when there is a 5634 * need for knowing the inbound iface 5635 * index for ICMP error msgs, then this 5636 * can be changed 5637 */ 5638 if ((connp->conn_recvif != 0) && 5639 (mp->b_datap->db_type != M_CTL)) { 5640 /* 5641 * the actual data will be contained in 5642 * b_cont upon successful return 5643 * of the following call else original 5644 * mblk is returned 5645 */ 5646 ASSERT(recv_ill != NULL); 5647 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5648 } 5649 BUMP_MIB(&ip_mib, ipInDelivers); 5650 putnext(rq, mp); 5651 if (mctl_present) 5652 freeb(first_mp); 5653 } 5654 } 5655 CONN_DEC_REF(connp); 5656 } 5657 5658 /* 5659 * Fanout for TCP packets 5660 * The caller puts <fport, lport> in the ports parameter. 5661 * 5662 * IPQoS Notes 5663 * Before sending it to the client, invoke IPPF processing. 5664 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5665 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5666 * ip_policy is false. 5667 */ 5668 static void 5669 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5670 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5671 { 5672 mblk_t *first_mp; 5673 boolean_t secure; 5674 uint32_t ill_index; 5675 int ip_hdr_len; 5676 tcph_t *tcph; 5677 boolean_t syn_present = B_FALSE; 5678 conn_t *connp; 5679 5680 first_mp = mp; 5681 if (mctl_present) { 5682 ASSERT(first_mp->b_datap->db_type == M_CTL); 5683 mp = first_mp->b_cont; 5684 secure = ipsec_in_is_secure(first_mp); 5685 ASSERT(mp != NULL); 5686 } else { 5687 secure = B_FALSE; 5688 } 5689 5690 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5691 5692 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5693 NULL) { 5694 /* 5695 * No connected connection or listener. Send a 5696 * TH_RST via tcp_xmit_listeners_reset. 5697 */ 5698 5699 /* Initiate IPPf processing, if needed. */ 5700 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5701 uint32_t ill_index; 5702 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5703 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5704 if (first_mp == NULL) 5705 return; 5706 } 5707 BUMP_MIB(&ip_mib, ipInDelivers); 5708 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5709 return; 5710 } 5711 5712 /* 5713 * Allocate the SYN for the TCP connection here itself 5714 */ 5715 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5716 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5717 if (IPCL_IS_TCP(connp)) { 5718 squeue_t *sqp; 5719 5720 /* 5721 * For fused tcp loopback, assign the eager's 5722 * squeue to be that of the active connect's. 5723 * Note that we don't check for IP_FF_LOOPBACK 5724 * here since this routine gets called only 5725 * for loopback (unlike the IPv6 counterpart). 5726 */ 5727 if (do_tcp_fusion && 5728 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5729 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy) { 5730 ASSERT(Q_TO_CONN(q) != NULL); 5731 sqp = Q_TO_CONN(q)->conn_sqp; 5732 } else { 5733 sqp = IP_SQUEUE_GET(lbolt); 5734 } 5735 5736 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5737 DB_CKSUMSTART(mp) = (intptr_t)sqp; 5738 syn_present = B_TRUE; 5739 } 5740 } 5741 5742 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5743 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5744 if ((flags & TH_RST) || (flags & TH_URG)) { 5745 CONN_DEC_REF(connp); 5746 freemsg(first_mp); 5747 return; 5748 } 5749 if (flags & TH_ACK) { 5750 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5751 CONN_DEC_REF(connp); 5752 return; 5753 } 5754 5755 CONN_DEC_REF(connp); 5756 freemsg(first_mp); 5757 return; 5758 } 5759 5760 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5761 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5762 NULL, mctl_present); 5763 if (first_mp == NULL) { 5764 CONN_DEC_REF(connp); 5765 return; 5766 } 5767 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5768 ASSERT(syn_present); 5769 if (mctl_present) { 5770 ASSERT(first_mp != mp); 5771 first_mp->b_datap->db_struioflag |= 5772 STRUIO_POLICY; 5773 } else { 5774 ASSERT(first_mp == mp); 5775 mp->b_datap->db_struioflag &= 5776 ~STRUIO_EAGER; 5777 mp->b_datap->db_struioflag |= 5778 STRUIO_POLICY; 5779 } 5780 } else { 5781 /* 5782 * Discard first_mp early since we're dealing with a 5783 * fully-connected conn_t and tcp doesn't do policy in 5784 * this case. 5785 */ 5786 if (mctl_present) { 5787 freeb(first_mp); 5788 mctl_present = B_FALSE; 5789 } 5790 first_mp = mp; 5791 } 5792 } 5793 5794 /* 5795 * Initiate policy processing here if needed. If we get here from 5796 * icmp_inbound_error_fanout, ip_policy is false. 5797 */ 5798 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5799 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5800 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5801 if (mp == NULL) { 5802 CONN_DEC_REF(connp); 5803 if (mctl_present) 5804 freeb(first_mp); 5805 return; 5806 } else if (mctl_present) { 5807 ASSERT(first_mp != mp); 5808 first_mp->b_cont = mp; 5809 } else { 5810 first_mp = mp; 5811 } 5812 } 5813 5814 5815 5816 /* Handle IPv6 socket options. */ 5817 if (!syn_present && 5818 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5819 /* Add header */ 5820 ASSERT(recv_ill != NULL); 5821 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5822 if (mp == NULL) { 5823 CONN_DEC_REF(connp); 5824 if (mctl_present) 5825 freeb(first_mp); 5826 return; 5827 } else if (mctl_present) { 5828 /* 5829 * ip_add_info might return a new mp. 5830 */ 5831 ASSERT(first_mp != mp); 5832 first_mp->b_cont = mp; 5833 } else { 5834 first_mp = mp; 5835 } 5836 } 5837 5838 BUMP_MIB(&ip_mib, ipInDelivers); 5839 if (IPCL_IS_TCP(connp)) { 5840 (*ip_input_proc)(connp->conn_sqp, first_mp, 5841 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5842 } else { 5843 putnext(connp->conn_rq, first_mp); 5844 CONN_DEC_REF(connp); 5845 } 5846 } 5847 5848 /* 5849 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5850 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5851 * Caller is responsible for dropping references to the conn, and freeing 5852 * first_mp. 5853 * 5854 * IPQoS Notes 5855 * Before sending it to the client, invoke IPPF processing. Policy processing 5856 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5857 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5858 * ip_wput_local, ip_policy is false. 5859 */ 5860 static void 5861 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5862 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5863 boolean_t ip_policy) 5864 { 5865 boolean_t mctl_present = (first_mp != NULL); 5866 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5867 uint32_t ill_index; 5868 5869 if (mctl_present) 5870 first_mp->b_cont = mp; 5871 else 5872 first_mp = mp; 5873 5874 if (CONN_UDP_FLOWCTLD(connp)) { 5875 BUMP_MIB(&ip_mib, udpInOverflows); 5876 freemsg(first_mp); 5877 return; 5878 } 5879 5880 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5881 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5882 NULL, mctl_present); 5883 if (first_mp == NULL) 5884 return; /* Freed by ipsec_check_inbound_policy(). */ 5885 } 5886 if (mctl_present) 5887 freeb(first_mp); 5888 5889 if (connp->conn_recvif) 5890 in_flags = IPF_RECVIF; 5891 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5892 in_flags |= IPF_RECVSLLA; 5893 5894 /* Handle IPv6 options. */ 5895 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5896 in_flags |= IPF_RECVIF; 5897 5898 /* 5899 * Initiate IPPF processing here, if needed. Note first_mp won't be 5900 * freed if the packet is dropped. The caller will do so. 5901 */ 5902 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5903 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5904 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5905 if (mp == NULL) { 5906 return; 5907 } 5908 } 5909 if ((in_flags != 0) && 5910 (mp->b_datap->db_type != M_CTL)) { 5911 /* 5912 * The actual data will be contained in b_cont 5913 * upon successful return of the following call 5914 * else original mblk is returned 5915 */ 5916 ASSERT(recv_ill != NULL); 5917 mp = ip_add_info(mp, recv_ill, in_flags); 5918 } 5919 BUMP_MIB(&ip_mib, ipInDelivers); 5920 5921 /* Send it upstream */ 5922 CONN_UDP_RECV(connp, mp); 5923 } 5924 5925 /* 5926 * Fanout for UDP packets. 5927 * The caller puts <fport, lport> in the ports parameter. 5928 * 5929 * If SO_REUSEADDR is set all multicast and broadcast packets 5930 * will be delivered to all streams bound to the same port. 5931 * 5932 * Zones notes: 5933 * Multicast and broadcast packets will be distributed to streams in all zones. 5934 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5935 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5936 * packets. To maintain this behavior with multiple zones, the conns are grouped 5937 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5938 * each zone. If unset, all the following conns in the same zone are skipped. 5939 */ 5940 static void 5941 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5942 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5943 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5944 { 5945 uint32_t dstport, srcport; 5946 ipaddr_t dst; 5947 mblk_t *first_mp; 5948 boolean_t secure; 5949 in6_addr_t v6src; 5950 conn_t *connp; 5951 connf_t *connfp; 5952 conn_t *first_connp; 5953 conn_t *next_connp; 5954 mblk_t *mp1, *first_mp1; 5955 ipaddr_t src; 5956 zoneid_t last_zoneid; 5957 boolean_t reuseaddr; 5958 5959 first_mp = mp; 5960 if (mctl_present) { 5961 mp = first_mp->b_cont; 5962 first_mp->b_cont = NULL; 5963 secure = ipsec_in_is_secure(first_mp); 5964 ASSERT(mp != NULL); 5965 } else { 5966 first_mp = NULL; 5967 secure = B_FALSE; 5968 } 5969 5970 /* Extract ports in net byte order */ 5971 dstport = htons(ntohl(ports) & 0xFFFF); 5972 srcport = htons(ntohl(ports) >> 16); 5973 dst = ipha->ipha_dst; 5974 src = ipha->ipha_src; 5975 5976 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5977 mutex_enter(&connfp->connf_lock); 5978 connp = connfp->connf_head; 5979 if (!broadcast && !CLASSD(dst)) { 5980 /* 5981 * Not broadcast or multicast. Send to the one (first) 5982 * client we find. No need to check conn_wantpacket() 5983 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5984 * IPv4 unicast packets. 5985 */ 5986 while ((connp != NULL) && 5987 (!IPCL_UDP_MATCH(connp, dstport, dst, 5988 srcport, src) || connp->conn_zoneid != zoneid)) { 5989 connp = connp->conn_next; 5990 } 5991 5992 if (connp == NULL || connp->conn_upq == NULL) 5993 goto notfound; 5994 CONN_INC_REF(connp); 5995 mutex_exit(&connfp->connf_lock); 5996 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5997 recv_ill, ip_policy); 5998 IP_STAT(ip_udp_fannorm); 5999 CONN_DEC_REF(connp); 6000 return; 6001 } 6002 6003 /* 6004 * Broadcast and multicast case 6005 * 6006 * Need to check conn_wantpacket(). 6007 * If SO_REUSEADDR has been set on the first we send the 6008 * packet to all clients that have joined the group and 6009 * match the port. 6010 */ 6011 6012 while (connp != NULL) { 6013 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6014 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6015 break; 6016 connp = connp->conn_next; 6017 } 6018 6019 if (connp == NULL || connp->conn_upq == NULL) 6020 goto notfound; 6021 6022 first_connp = connp; 6023 /* 6024 * When SO_REUSEADDR is not set, send the packet only to the first 6025 * matching connection in its zone by keeping track of the zoneid. 6026 */ 6027 reuseaddr = first_connp->conn_reuseaddr; 6028 last_zoneid = first_connp->conn_zoneid; 6029 6030 CONN_INC_REF(connp); 6031 connp = connp->conn_next; 6032 for (;;) { 6033 while (connp != NULL) { 6034 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6035 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6036 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6037 break; 6038 connp = connp->conn_next; 6039 } 6040 /* 6041 * Just copy the data part alone. The mctl part is 6042 * needed just for verifying policy and it is never 6043 * sent up. 6044 */ 6045 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6046 ((mp1 = copymsg(mp)) == NULL))) { 6047 /* 6048 * No more interested clients or memory 6049 * allocation failed 6050 */ 6051 connp = first_connp; 6052 break; 6053 } 6054 if (connp->conn_zoneid != last_zoneid) { 6055 /* 6056 * Update the zoneid so that the packet isn't sent to 6057 * any more conns in the same zone unless SO_REUSEADDR 6058 * is set. 6059 */ 6060 reuseaddr = connp->conn_reuseaddr; 6061 last_zoneid = connp->conn_zoneid; 6062 } 6063 if (first_mp != NULL) { 6064 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6065 ipsec_info_type == IPSEC_IN); 6066 first_mp1 = ipsec_in_tag(first_mp, NULL); 6067 if (first_mp1 == NULL) { 6068 freemsg(mp1); 6069 connp = first_connp; 6070 break; 6071 } 6072 } else { 6073 first_mp1 = NULL; 6074 } 6075 CONN_INC_REF(connp); 6076 mutex_exit(&connfp->connf_lock); 6077 /* 6078 * IPQoS notes: We don't send the packet for policy 6079 * processing here, will do it for the last one (below). 6080 * i.e. we do it per-packet now, but if we do policy 6081 * processing per-conn, then we would need to do it 6082 * here too. 6083 */ 6084 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6085 ipha, flags, recv_ill, B_FALSE); 6086 mutex_enter(&connfp->connf_lock); 6087 /* Follow the next pointer before releasing the conn. */ 6088 next_connp = connp->conn_next; 6089 IP_STAT(ip_udp_fanmb); 6090 CONN_DEC_REF(connp); 6091 connp = next_connp; 6092 } 6093 6094 /* Last one. Send it upstream. */ 6095 mutex_exit(&connfp->connf_lock); 6096 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6097 ip_policy); 6098 IP_STAT(ip_udp_fanmb); 6099 CONN_DEC_REF(connp); 6100 return; 6101 6102 notfound: 6103 6104 mutex_exit(&connfp->connf_lock); 6105 IP_STAT(ip_udp_fanothers); 6106 /* 6107 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6108 * have already been matched above, since they live in the IPv4 6109 * fanout tables. This implies we only need to 6110 * check for IPv6 in6addr_any endpoints here. 6111 * Thus we compare using ipv6_all_zeros instead of the destination 6112 * address, except for the multicast group membership lookup which 6113 * uses the IPv4 destination. 6114 */ 6115 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6116 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6117 mutex_enter(&connfp->connf_lock); 6118 connp = connfp->connf_head; 6119 if (!broadcast && !CLASSD(dst)) { 6120 while (connp != NULL) { 6121 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6122 srcport, v6src) && connp->conn_zoneid == zoneid && 6123 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6124 !connp->conn_ipv6_v6only) 6125 break; 6126 connp = connp->conn_next; 6127 } 6128 6129 if (connp == NULL || connp->conn_upq == NULL) { 6130 /* 6131 * No one bound to this port. Is 6132 * there a client that wants all 6133 * unclaimed datagrams? 6134 */ 6135 mutex_exit(&connfp->connf_lock); 6136 6137 if (mctl_present) 6138 first_mp->b_cont = mp; 6139 else 6140 first_mp = mp; 6141 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6142 ip_fanout_proto(q, first_mp, ill, ipha, 6143 flags | IP_FF_RAWIP, mctl_present, 6144 ip_policy, recv_ill, zoneid); 6145 } else { 6146 if (ip_fanout_send_icmp(q, first_mp, flags, 6147 ICMP_DEST_UNREACHABLE, 6148 ICMP_PORT_UNREACHABLE, 6149 mctl_present, zoneid)) { 6150 BUMP_MIB(&ip_mib, udpNoPorts); 6151 } 6152 } 6153 return; 6154 } 6155 CONN_INC_REF(connp); 6156 mutex_exit(&connfp->connf_lock); 6157 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6158 recv_ill, ip_policy); 6159 CONN_DEC_REF(connp); 6160 return; 6161 } 6162 /* 6163 * IPv4 multicast packet being delivered to an AF_INET6 6164 * in6addr_any endpoint. 6165 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6166 * and not conn_wantpacket_v6() since any multicast membership is 6167 * for an IPv4-mapped multicast address. 6168 * The packet is sent to all clients in all zones that have joined the 6169 * group and match the port. 6170 */ 6171 while (connp != NULL) { 6172 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6173 srcport, v6src) && 6174 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6175 break; 6176 connp = connp->conn_next; 6177 } 6178 6179 if (connp == NULL || connp->conn_upq == NULL) { 6180 /* 6181 * No one bound to this port. Is 6182 * there a client that wants all 6183 * unclaimed datagrams? 6184 */ 6185 mutex_exit(&connfp->connf_lock); 6186 6187 if (mctl_present) 6188 first_mp->b_cont = mp; 6189 else 6190 first_mp = mp; 6191 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6192 ip_fanout_proto(q, first_mp, ill, ipha, 6193 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6194 recv_ill, zoneid); 6195 } else { 6196 /* 6197 * We used to attempt to send an icmp error here, but 6198 * since this is known to be a multicast packet 6199 * and we don't send icmp errors in response to 6200 * multicast, just drop the packet and give up sooner. 6201 */ 6202 BUMP_MIB(&ip_mib, udpNoPorts); 6203 freemsg(first_mp); 6204 } 6205 return; 6206 } 6207 6208 first_connp = connp; 6209 6210 CONN_INC_REF(connp); 6211 connp = connp->conn_next; 6212 for (;;) { 6213 while (connp != NULL) { 6214 if (IPCL_UDP_MATCH_V6(connp, dstport, 6215 ipv6_all_zeros, srcport, v6src) && 6216 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6217 break; 6218 connp = connp->conn_next; 6219 } 6220 /* 6221 * Just copy the data part alone. The mctl part is 6222 * needed just for verifying policy and it is never 6223 * sent up. 6224 */ 6225 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6226 ((mp1 = copymsg(mp)) == NULL))) { 6227 /* 6228 * No more intested clients or memory 6229 * allocation failed 6230 */ 6231 connp = first_connp; 6232 break; 6233 } 6234 if (first_mp != NULL) { 6235 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6236 ipsec_info_type == IPSEC_IN); 6237 first_mp1 = ipsec_in_tag(first_mp, NULL); 6238 if (first_mp1 == NULL) { 6239 freemsg(mp1); 6240 connp = first_connp; 6241 break; 6242 } 6243 } else { 6244 first_mp1 = NULL; 6245 } 6246 CONN_INC_REF(connp); 6247 mutex_exit(&connfp->connf_lock); 6248 /* 6249 * IPQoS notes: We don't send the packet for policy 6250 * processing here, will do it for the last one (below). 6251 * i.e. we do it per-packet now, but if we do policy 6252 * processing per-conn, then we would need to do it 6253 * here too. 6254 */ 6255 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6256 ipha, flags, recv_ill, B_FALSE); 6257 mutex_enter(&connfp->connf_lock); 6258 /* Follow the next pointer before releasing the conn. */ 6259 next_connp = connp->conn_next; 6260 CONN_DEC_REF(connp); 6261 connp = next_connp; 6262 } 6263 6264 /* Last one. Send it upstream. */ 6265 mutex_exit(&connfp->connf_lock); 6266 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6267 ip_policy); 6268 CONN_DEC_REF(connp); 6269 } 6270 6271 /* 6272 * Complete the ip_wput header so that it 6273 * is possible to generate ICMP 6274 * errors. 6275 */ 6276 static int 6277 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6278 { 6279 ire_t *ire; 6280 6281 if (ipha->ipha_src == INADDR_ANY) { 6282 ire = ire_lookup_local(zoneid); 6283 if (ire == NULL) { 6284 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6285 return (1); 6286 } 6287 ipha->ipha_src = ire->ire_addr; 6288 ire_refrele(ire); 6289 } 6290 ipha->ipha_ttl = ip_def_ttl; 6291 ipha->ipha_hdr_checksum = 0; 6292 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6293 return (0); 6294 } 6295 6296 /* 6297 * Nobody should be sending 6298 * packets up this stream 6299 */ 6300 static void 6301 ip_lrput(queue_t *q, mblk_t *mp) 6302 { 6303 mblk_t *mp1; 6304 6305 switch (mp->b_datap->db_type) { 6306 case M_FLUSH: 6307 /* Turn around */ 6308 if (*mp->b_rptr & FLUSHW) { 6309 *mp->b_rptr &= ~FLUSHR; 6310 qreply(q, mp); 6311 return; 6312 } 6313 break; 6314 } 6315 /* Could receive messages that passed through ar_rput */ 6316 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6317 mp1->b_prev = mp1->b_next = NULL; 6318 freemsg(mp); 6319 } 6320 6321 /* Nobody should be sending packets down this stream */ 6322 /* ARGSUSED */ 6323 void 6324 ip_lwput(queue_t *q, mblk_t *mp) 6325 { 6326 freemsg(mp); 6327 } 6328 6329 /* 6330 * Move the first hop in any source route to ipha_dst and remove that part of 6331 * the source route. Called by other protocols. Errors in option formatting 6332 * are ignored - will be handled by ip_wput_options Return the final 6333 * destination (either ipha_dst or the last entry in a source route.) 6334 */ 6335 ipaddr_t 6336 ip_massage_options(ipha_t *ipha) 6337 { 6338 ipoptp_t opts; 6339 uchar_t *opt; 6340 uint8_t optval; 6341 uint8_t optlen; 6342 ipaddr_t dst; 6343 int i; 6344 ire_t *ire; 6345 6346 ip2dbg(("ip_massage_options\n")); 6347 dst = ipha->ipha_dst; 6348 for (optval = ipoptp_first(&opts, ipha); 6349 optval != IPOPT_EOL; 6350 optval = ipoptp_next(&opts)) { 6351 opt = opts.ipoptp_cur; 6352 switch (optval) { 6353 uint8_t off; 6354 case IPOPT_SSRR: 6355 case IPOPT_LSRR: 6356 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6357 ip1dbg(("ip_massage_options: bad src route\n")); 6358 break; 6359 } 6360 optlen = opts.ipoptp_len; 6361 off = opt[IPOPT_OFFSET]; 6362 off--; 6363 redo_srr: 6364 if (optlen < IP_ADDR_LEN || 6365 off > optlen - IP_ADDR_LEN) { 6366 /* End of source route */ 6367 ip1dbg(("ip_massage_options: end of SR\n")); 6368 break; 6369 } 6370 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6371 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6372 ntohl(dst))); 6373 /* 6374 * Check if our address is present more than 6375 * once as consecutive hops in source route. 6376 * XXX verify per-interface ip_forwarding 6377 * for source route? 6378 */ 6379 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6380 ALL_ZONES, MATCH_IRE_TYPE); 6381 if (ire != NULL) { 6382 ire_refrele(ire); 6383 off += IP_ADDR_LEN; 6384 goto redo_srr; 6385 } 6386 if (dst == htonl(INADDR_LOOPBACK)) { 6387 ip1dbg(("ip_massage_options: loopback addr in " 6388 "source route!\n")); 6389 break; 6390 } 6391 /* 6392 * Update ipha_dst to be the first hop and remove the 6393 * first hop from the source route (by overwriting 6394 * part of the option with NOP options). 6395 */ 6396 ipha->ipha_dst = dst; 6397 /* Put the last entry in dst */ 6398 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6399 3; 6400 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6401 6402 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6403 ntohl(dst))); 6404 /* Move down and overwrite */ 6405 opt[IP_ADDR_LEN] = opt[0]; 6406 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6407 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6408 for (i = 0; i < IP_ADDR_LEN; i++) 6409 opt[i] = IPOPT_NOP; 6410 break; 6411 } 6412 } 6413 return (dst); 6414 } 6415 6416 /* 6417 * This function's job is to forward data to the reverse tunnel (FA->HA) 6418 * after doing a few checks. It is assumed that the incoming interface 6419 * of the packet is always different than the outgoing interface and the 6420 * ire_type of the found ire has to be a non-resolver type. 6421 * 6422 * IPQoS notes 6423 * IP policy is invoked twice for a forwarded packet, once on the read side 6424 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6425 * enabled. 6426 */ 6427 static void 6428 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6429 { 6430 ipha_t *ipha; 6431 queue_t *q; 6432 uint32_t pkt_len; 6433 #define rptr ((uchar_t *)ipha) 6434 uint32_t sum; 6435 uint32_t max_frag; 6436 mblk_t *first_mp; 6437 uint32_t ill_index; 6438 6439 ASSERT(ire != NULL); 6440 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6441 ASSERT(ire->ire_stq != NULL); 6442 6443 /* Initiate read side IPPF processing */ 6444 if (IPP_ENABLED(IPP_FWD_IN)) { 6445 ill_index = in_ill->ill_phyint->phyint_ifindex; 6446 ip_process(IPP_FWD_IN, &mp, ill_index); 6447 if (mp == NULL) { 6448 ip2dbg(("ip_mrtun_forward: inbound pkt " 6449 "dropped during IPPF processing\n")); 6450 return; 6451 } 6452 } 6453 6454 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6455 ILLF_ROUTER) == 0) || 6456 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6457 BUMP_MIB(&ip_mib, ipForwProhibits); 6458 ip0dbg(("ip_mrtun_forward: Can't forward :" 6459 "forwarding is not turned on\n")); 6460 goto drop_pkt; 6461 } 6462 6463 /* 6464 * Don't forward if the interface is down 6465 */ 6466 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6467 BUMP_MIB(&ip_mib, ipInDiscards); 6468 goto drop_pkt; 6469 } 6470 6471 ipha = (ipha_t *)mp->b_rptr; 6472 pkt_len = ntohs(ipha->ipha_length); 6473 /* Adjust the checksum to reflect the ttl decrement. */ 6474 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6475 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6476 if (ipha->ipha_ttl-- <= 1) { 6477 if (ip_csum_hdr(ipha)) { 6478 BUMP_MIB(&ip_mib, ipInCksumErrs); 6479 goto drop_pkt; 6480 } 6481 q = ire->ire_stq; 6482 if ((first_mp = allocb(sizeof (ipsec_info_t), 6483 BPRI_HI)) == NULL) { 6484 goto drop_pkt; 6485 } 6486 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6487 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6488 6489 return; 6490 } 6491 6492 /* Get the ill_index of the ILL */ 6493 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6494 6495 /* 6496 * ip_mrtun_forward is only used by foreign agent to reverse 6497 * tunnel the incoming packet. So it does not do any option 6498 * processing for source routing. 6499 */ 6500 max_frag = ire->ire_max_frag; 6501 if (pkt_len > max_frag) { 6502 /* 6503 * It needs fragging on its way out. We haven't 6504 * verified the header checksum yet. Since we 6505 * are going to put a surely good checksum in the 6506 * outgoing header, we have to make sure that it 6507 * was good coming in. 6508 */ 6509 if (ip_csum_hdr(ipha)) { 6510 BUMP_MIB(&ip_mib, ipInCksumErrs); 6511 goto drop_pkt; 6512 } 6513 6514 /* Initiate write side IPPF processing */ 6515 if (IPP_ENABLED(IPP_FWD_OUT)) { 6516 ip_process(IPP_FWD_OUT, &mp, ill_index); 6517 if (mp == NULL) { 6518 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6519 "dropped/deferred during ip policy "\ 6520 "processing\n")); 6521 return; 6522 } 6523 } 6524 if ((first_mp = allocb(sizeof (ipsec_info_t), 6525 BPRI_HI)) == NULL) { 6526 goto drop_pkt; 6527 } 6528 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6529 mp = first_mp; 6530 6531 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6532 return; 6533 } 6534 6535 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6536 6537 ASSERT(ire->ire_ipif != NULL); 6538 6539 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6540 if (mp == NULL) { 6541 BUMP_MIB(&ip_mib, ipInDiscards); 6542 return; 6543 } 6544 6545 /* Now send the packet to the tunnel interface */ 6546 q = ire->ire_stq; 6547 UPDATE_IB_PKT_COUNT(ire); 6548 ire->ire_last_used_time = lbolt; 6549 BUMP_MIB(&ip_mib, ipForwDatagrams); 6550 putnext(q, mp); 6551 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6552 return; 6553 6554 drop_pkt:; 6555 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6556 freemsg(mp); 6557 #undef rptr 6558 } 6559 6560 /* 6561 * Fills the ipsec_out_t data structure with appropriate fields and 6562 * prepends it to mp which contains the IP hdr + data that was meant 6563 * to be forwarded. Please note that ipsec_out_info data structure 6564 * is used here to communicate the outgoing ill path at ip_wput() 6565 * for the ICMP error packet. This has nothing to do with ipsec IP 6566 * security. ipsec_out_t is really used to pass the info to the module 6567 * IP where this information cannot be extracted from conn. 6568 * This functions is called by ip_mrtun_forward(). 6569 */ 6570 void 6571 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6572 { 6573 ipsec_out_t *io; 6574 6575 ASSERT(xmit_ill != NULL); 6576 first_mp->b_datap->db_type = M_CTL; 6577 first_mp->b_wptr += sizeof (ipsec_info_t); 6578 /* 6579 * This is to pass info to ip_wput in absence of conn. 6580 * ipsec_out_secure will be B_FALSE because of this. 6581 * Thus ipsec_out_secure being B_FALSE indicates that 6582 * this is not IPSEC security related information. 6583 */ 6584 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6585 io = (ipsec_out_t *)first_mp->b_rptr; 6586 io->ipsec_out_type = IPSEC_OUT; 6587 io->ipsec_out_len = sizeof (ipsec_out_t); 6588 first_mp->b_cont = mp; 6589 io->ipsec_out_ill_index = 6590 xmit_ill->ill_phyint->phyint_ifindex; 6591 io->ipsec_out_xmit_if = B_TRUE; 6592 } 6593 6594 /* 6595 * Return the network mask 6596 * associated with the specified address. 6597 */ 6598 ipaddr_t 6599 ip_net_mask(ipaddr_t addr) 6600 { 6601 uchar_t *up = (uchar_t *)&addr; 6602 ipaddr_t mask = 0; 6603 uchar_t *maskp = (uchar_t *)&mask; 6604 6605 #if defined(__i386) || defined(__amd64) 6606 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6607 #endif 6608 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6609 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6610 #endif 6611 if (CLASSD(addr)) { 6612 maskp[0] = 0xF0; 6613 return (mask); 6614 } 6615 if (addr == 0) 6616 return (0); 6617 maskp[0] = 0xFF; 6618 if ((up[0] & 0x80) == 0) 6619 return (mask); 6620 6621 maskp[1] = 0xFF; 6622 if ((up[0] & 0xC0) == 0x80) 6623 return (mask); 6624 6625 maskp[2] = 0xFF; 6626 if ((up[0] & 0xE0) == 0xC0) 6627 return (mask); 6628 6629 /* Must be experimental or multicast, indicate as much */ 6630 return ((ipaddr_t)0); 6631 } 6632 6633 /* 6634 * Select an ill for the packet by considering load spreading across 6635 * a different ill in the group if dst_ill is part of some group. 6636 */ 6637 static ill_t * 6638 ip_newroute_get_dst_ill(ill_t *dst_ill) 6639 { 6640 ill_t *ill; 6641 6642 /* 6643 * We schedule irrespective of whether the source address is 6644 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6645 */ 6646 ill = illgrp_scheduler(dst_ill); 6647 if (ill == NULL) 6648 return (NULL); 6649 6650 /* 6651 * For groups with names ip_sioctl_groupname ensures that all 6652 * ills are of same type. For groups without names, ifgrp_insert 6653 * ensures this. 6654 */ 6655 ASSERT(dst_ill->ill_type == ill->ill_type); 6656 6657 return (ill); 6658 } 6659 6660 /* 6661 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6662 */ 6663 ill_t * 6664 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6665 { 6666 ill_t *ret_ill; 6667 6668 ASSERT(ifindex != 0); 6669 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6670 if (ret_ill == NULL || 6671 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6672 if (isv6) { 6673 if (ill != NULL) { 6674 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6675 } else { 6676 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6677 } 6678 ip1dbg(("ip_grab_attach_ill (IPv6): " 6679 "bad ifindex %d.\n", ifindex)); 6680 } else { 6681 BUMP_MIB(&ip_mib, ipOutDiscards); 6682 ip1dbg(("ip_grab_attach_ill (IPv4): " 6683 "bad ifindex %d.\n", ifindex)); 6684 } 6685 if (ret_ill != NULL) 6686 ill_refrele(ret_ill); 6687 freemsg(first_mp); 6688 return (NULL); 6689 } 6690 6691 return (ret_ill); 6692 } 6693 6694 /* 6695 * IPv4 - 6696 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6697 * out a packet to a destination address for which we do not have specific 6698 * (or sufficient) routing information. 6699 * 6700 * NOTE : These are the scopes of some of the variables that point at IRE, 6701 * which needs to be followed while making any future modifications 6702 * to avoid memory leaks. 6703 * 6704 * - ire and sire are the entries looked up initially by 6705 * ire_ftable_lookup. 6706 * - ipif_ire is used to hold the interface ire associated with 6707 * the new cache ire. But it's scope is limited, so we always REFRELE 6708 * it before branching out to error paths. 6709 * - save_ire is initialized before ire_create, so that ire returned 6710 * by ire_create will not over-write the ire. We REFRELE save_ire 6711 * before breaking out of the switch. 6712 * 6713 * Thus on failures, we have to REFRELE only ire and sire, if they 6714 * are not NULL. 6715 */ 6716 void 6717 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6718 { 6719 areq_t *areq; 6720 ipaddr_t gw = 0; 6721 ire_t *ire = NULL; 6722 mblk_t *res_mp; 6723 ipaddr_t *addrp; 6724 ipaddr_t nexthop_addr; 6725 ipif_t *src_ipif = NULL; 6726 ill_t *dst_ill = NULL; 6727 ipha_t *ipha; 6728 ire_t *sire = NULL; 6729 mblk_t *first_mp; 6730 ire_t *save_ire; 6731 mblk_t *dlureq_mp; 6732 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6733 ushort_t ire_marks = 0; 6734 boolean_t mctl_present; 6735 ipsec_out_t *io; 6736 mblk_t *saved_mp; 6737 ire_t *first_sire = NULL; 6738 mblk_t *copy_mp = NULL; 6739 mblk_t *xmit_mp = NULL; 6740 ipaddr_t save_dst; 6741 uint32_t multirt_flags = 6742 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6743 boolean_t multirt_is_resolvable; 6744 boolean_t multirt_resolve_next; 6745 boolean_t do_attach_ill = B_FALSE; 6746 boolean_t ip_nexthop = B_FALSE; 6747 zoneid_t zoneid; 6748 6749 if (ip_debug > 2) { 6750 /* ip1dbg */ 6751 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6752 } 6753 6754 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6755 if (mctl_present) { 6756 io = (ipsec_out_t *)first_mp->b_rptr; 6757 zoneid = io->ipsec_out_zoneid; 6758 ASSERT(zoneid != ALL_ZONES); 6759 } else if (connp != NULL) { 6760 zoneid = connp->conn_zoneid; 6761 } else { 6762 zoneid = GLOBAL_ZONEID; 6763 } 6764 6765 ipha = (ipha_t *)mp->b_rptr; 6766 6767 /* All multicast lookups come through ip_newroute_ipif() */ 6768 if (CLASSD(dst)) { 6769 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6770 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6771 freemsg(first_mp); 6772 return; 6773 } 6774 6775 if (ip_loopback_src_or_dst(ipha, NULL)) { 6776 goto icmp_err_ret; 6777 } 6778 6779 if (mctl_present && io->ipsec_out_attach_if) { 6780 /* ip_grab_attach_ill returns a held ill */ 6781 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6782 io->ipsec_out_ill_index, B_FALSE); 6783 6784 /* Failure case frees things for us. */ 6785 if (attach_ill == NULL) 6786 return; 6787 6788 /* 6789 * Check if we need an ire that will not be 6790 * looked up by anybody else i.e. HIDDEN. 6791 */ 6792 if (ill_is_probeonly(attach_ill)) 6793 ire_marks = IRE_MARK_HIDDEN; 6794 } 6795 if (mctl_present && io->ipsec_out_ip_nexthop) { 6796 ip_nexthop = B_TRUE; 6797 nexthop_addr = io->ipsec_out_nexthop_addr; 6798 } 6799 /* 6800 * If this IRE is created for forwarding or it is not for 6801 * traffic for congestion controlled protocols, mark it as temporary. 6802 */ 6803 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6804 ire_marks |= IRE_MARK_TEMPORARY; 6805 6806 /* 6807 * Get what we can from ire_ftable_lookup which will follow an IRE 6808 * chain until it gets the most specific information available. 6809 * For example, we know that there is no IRE_CACHE for this dest, 6810 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6811 * ire_ftable_lookup will look up the gateway, etc. 6812 * Check if in_ill != NULL. If it is true, the packet must be 6813 * from an incoming interface where RTA_SRCIFP is set. 6814 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6815 * to the destination, of equal netmask length in the forward table, 6816 * will be recursively explored. If no information is available 6817 * for the final gateway of that route, we force the returned ire 6818 * to be equal to sire using MATCH_IRE_PARENT. 6819 * At least, in this case we have a starting point (in the buckets) 6820 * to look for other routes to the destination in the forward table. 6821 * This is actually used only for multirouting, where a list 6822 * of routes has to be processed in sequence. 6823 */ 6824 if (in_ill != NULL) { 6825 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6826 in_ill, MATCH_IRE_TYPE); 6827 } else if (ip_nexthop) { 6828 /* 6829 * The first time we come here, we look for an IRE_INTERFACE 6830 * entry for the specified nexthop, set the dst to be the 6831 * nexthop address and create an IRE_CACHE entry for the 6832 * nexthop. The next time around, we are able to find an 6833 * IRE_CACHE entry for the nexthop, set the gateway to be the 6834 * nexthop address and create an IRE_CACHE entry for the 6835 * destination address via the specified nexthop. 6836 */ 6837 ire = ire_cache_lookup(nexthop_addr, zoneid); 6838 if (ire != NULL) { 6839 gw = nexthop_addr; 6840 ire_marks |= IRE_MARK_PRIVATE_ADDR; 6841 } else { 6842 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 6843 IRE_INTERFACE, NULL, NULL, zoneid, 0, 6844 MATCH_IRE_TYPE); 6845 if (ire != NULL) { 6846 dst = nexthop_addr; 6847 } 6848 } 6849 } else if (attach_ill == NULL) { 6850 ire = ire_ftable_lookup(dst, 0, 0, 0, 6851 NULL, &sire, zoneid, 0, 6852 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6853 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6854 } else { 6855 /* 6856 * attach_ill is set only for communicating with 6857 * on-link hosts. So, don't look for DEFAULT. 6858 */ 6859 ipif_t *attach_ipif; 6860 6861 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6862 if (attach_ipif == NULL) { 6863 ill_refrele(attach_ill); 6864 goto icmp_err_ret; 6865 } 6866 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6867 &sire, zoneid, 0, 6868 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6869 ipif_refrele(attach_ipif); 6870 } 6871 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6872 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6873 6874 /* 6875 * This loop is run only once in most cases. 6876 * We loop to resolve further routes only when the destination 6877 * can be reached through multiple RTF_MULTIRT-flagged ires. 6878 */ 6879 do { 6880 /* Clear the previous iteration's values */ 6881 if (src_ipif != NULL) { 6882 ipif_refrele(src_ipif); 6883 src_ipif = NULL; 6884 } 6885 if (dst_ill != NULL) { 6886 ill_refrele(dst_ill); 6887 dst_ill = NULL; 6888 } 6889 6890 multirt_resolve_next = B_FALSE; 6891 /* 6892 * We check if packets have to be multirouted. 6893 * In this case, given the current <ire, sire> couple, 6894 * we look for the next suitable <ire, sire>. 6895 * This check is done in ire_multirt_lookup(), 6896 * which applies various criteria to find the next route 6897 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6898 * unchanged if it detects it has not been tried yet. 6899 */ 6900 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6901 ip3dbg(("ip_newroute: starting next_resolution " 6902 "with first_mp %p, tag %d\n", 6903 (void *)first_mp, 6904 MULTIRT_DEBUG_TAGGED(first_mp))); 6905 6906 ASSERT(sire != NULL); 6907 multirt_is_resolvable = 6908 ire_multirt_lookup(&ire, &sire, multirt_flags); 6909 6910 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6911 "ire %p, sire %p\n", 6912 multirt_is_resolvable, 6913 (void *)ire, (void *)sire)); 6914 6915 if (!multirt_is_resolvable) { 6916 /* 6917 * No more multirt route to resolve; give up 6918 * (all routes resolved or no more 6919 * resolvable routes). 6920 */ 6921 if (ire != NULL) { 6922 ire_refrele(ire); 6923 ire = NULL; 6924 } 6925 } else { 6926 ASSERT(sire != NULL); 6927 ASSERT(ire != NULL); 6928 /* 6929 * We simply use first_sire as a flag that 6930 * indicates if a resolvable multirt route 6931 * has already been found. 6932 * If it is not the case, we may have to send 6933 * an ICMP error to report that the 6934 * destination is unreachable. 6935 * We do not IRE_REFHOLD first_sire. 6936 */ 6937 if (first_sire == NULL) { 6938 first_sire = sire; 6939 } 6940 } 6941 } 6942 if (ire == NULL) { 6943 if (ip_debug > 3) { 6944 /* ip2dbg */ 6945 pr_addr_dbg("ip_newroute: " 6946 "can't resolve %s\n", AF_INET, &dst); 6947 } 6948 ip3dbg(("ip_newroute: " 6949 "ire %p, sire %p, first_sire %p\n", 6950 (void *)ire, (void *)sire, (void *)first_sire)); 6951 6952 if (sire != NULL) { 6953 ire_refrele(sire); 6954 sire = NULL; 6955 } 6956 6957 if (first_sire != NULL) { 6958 /* 6959 * At least one multirt route has been found 6960 * in the same call to ip_newroute(); 6961 * there is no need to report an ICMP error. 6962 * first_sire was not IRE_REFHOLDed. 6963 */ 6964 MULTIRT_DEBUG_UNTAG(first_mp); 6965 freemsg(first_mp); 6966 return; 6967 } 6968 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6969 RTA_DST); 6970 if (attach_ill != NULL) 6971 ill_refrele(attach_ill); 6972 goto icmp_err_ret; 6973 } 6974 6975 /* 6976 * When RTA_SRCIFP is used to add a route, then an interface 6977 * route is added in the source interface's routing table. 6978 * If the outgoing interface of this route is of type 6979 * IRE_IF_RESOLVER, then upon creation of the ire, 6980 * ire_dlureq_mp is set to NULL. Later, when this route is 6981 * first used for forwarding packet, ip_newroute() is called 6982 * to resolve the hardware address of the outgoing ipif. 6983 * We do not come here for IRE_IF_NORESOLVER entries in the 6984 * source interface based table. We only come here if the 6985 * outgoing interface is a resolver interface and we don't 6986 * have the ire_dlureq_mp information yet. 6987 * If in_ill is not null that means it is called from 6988 * ip_rput. 6989 */ 6990 6991 ASSERT(ire->ire_in_ill == NULL || 6992 (ire->ire_type == IRE_IF_RESOLVER && 6993 ire->ire_dlureq_mp == NULL)); 6994 6995 /* 6996 * Verify that the returned IRE does not have either 6997 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 6998 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 6999 */ 7000 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7001 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7002 if (attach_ill != NULL) 7003 ill_refrele(attach_ill); 7004 goto icmp_err_ret; 7005 } 7006 /* 7007 * Increment the ire_ob_pkt_count field for ire if it is an 7008 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7009 * increment the same for the parent IRE, sire, if it is some 7010 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7011 * and HOST_REDIRECT). 7012 */ 7013 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7014 UPDATE_OB_PKT_COUNT(ire); 7015 ire->ire_last_used_time = lbolt; 7016 } 7017 7018 if (sire != NULL) { 7019 gw = sire->ire_gateway_addr; 7020 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7021 IRE_INTERFACE)) == 0); 7022 UPDATE_OB_PKT_COUNT(sire); 7023 sire->ire_last_used_time = lbolt; 7024 } 7025 /* 7026 * We have a route to reach the destination. 7027 * 7028 * 1) If the interface is part of ill group, try to get a new 7029 * ill taking load spreading into account. 7030 * 7031 * 2) After selecting the ill, get a source address that 7032 * might create good inbound load spreading. 7033 * ipif_select_source does this for us. 7034 * 7035 * If the application specified the ill (ifindex), we still 7036 * load spread. Only if the packets needs to go out 7037 * specifically on a given ill e.g. binding to 7038 * IPIF_NOFAILOVER address, then we don't try to use a 7039 * different ill for load spreading. 7040 */ 7041 if (attach_ill == NULL) { 7042 /* 7043 * Don't perform outbound load spreading in the 7044 * case of an RTF_MULTIRT route, as we actually 7045 * typically want to replicate outgoing packets 7046 * through particular interfaces. 7047 */ 7048 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7049 dst_ill = ire->ire_ipif->ipif_ill; 7050 /* for uniformity */ 7051 ill_refhold(dst_ill); 7052 } else { 7053 /* 7054 * If we are here trying to create an IRE_CACHE 7055 * for an offlink destination and have the 7056 * IRE_CACHE for the next hop and the latter is 7057 * using virtual IP source address selection i.e 7058 * it's ire->ire_ipif is pointing to a virtual 7059 * network interface (vni) then 7060 * ip_newroute_get_dst_ll() will return the vni 7061 * interface as the dst_ill. Since the vni is 7062 * virtual i.e not associated with any physical 7063 * interface, it cannot be the dst_ill, hence 7064 * in such a case call ip_newroute_get_dst_ll() 7065 * with the stq_ill instead of the ire_ipif ILL. 7066 * The function returns a refheld ill. 7067 */ 7068 if ((ire->ire_type == IRE_CACHE) && 7069 IS_VNI(ire->ire_ipif->ipif_ill)) 7070 dst_ill = ip_newroute_get_dst_ill( 7071 ire->ire_stq->q_ptr); 7072 else 7073 dst_ill = ip_newroute_get_dst_ill( 7074 ire->ire_ipif->ipif_ill); 7075 } 7076 if (dst_ill == NULL) { 7077 if (ip_debug > 2) { 7078 pr_addr_dbg("ip_newroute: " 7079 "no dst ill for dst" 7080 " %s\n", AF_INET, &dst); 7081 } 7082 goto icmp_err_ret; 7083 } 7084 } else { 7085 dst_ill = ire->ire_ipif->ipif_ill; 7086 /* for uniformity */ 7087 ill_refhold(dst_ill); 7088 /* 7089 * We should have found a route matching ill as we 7090 * called ire_ftable_lookup with MATCH_IRE_ILL. 7091 * Rather than asserting, when there is a mismatch, 7092 * we just drop the packet. 7093 */ 7094 if (dst_ill != attach_ill) { 7095 ip0dbg(("ip_newroute: Packet dropped as " 7096 "IPIF_NOFAILOVER ill is %s, " 7097 "ire->ire_ipif->ipif_ill is %s\n", 7098 attach_ill->ill_name, 7099 dst_ill->ill_name)); 7100 ill_refrele(attach_ill); 7101 goto icmp_err_ret; 7102 } 7103 } 7104 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7105 if (attach_ill != NULL) { 7106 ill_refrele(attach_ill); 7107 attach_ill = NULL; 7108 do_attach_ill = B_TRUE; 7109 } 7110 ASSERT(dst_ill != NULL); 7111 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7112 7113 /* 7114 * Pick the best source address from dst_ill. 7115 * 7116 * 1) If it is part of a multipathing group, we would 7117 * like to spread the inbound packets across different 7118 * interfaces. ipif_select_source picks a random source 7119 * across the different ills in the group. 7120 * 7121 * 2) If it is not part of a multipathing group, we try 7122 * to pick the source address from the destination 7123 * route. Clustering assumes that when we have multiple 7124 * prefixes hosted on an interface, the prefix of the 7125 * source address matches the prefix of the destination 7126 * route. We do this only if the address is not 7127 * DEPRECATED. 7128 * 7129 * 3) If the conn is in a different zone than the ire, we 7130 * need to pick a source address from the right zone. 7131 * 7132 * NOTE : If we hit case (1) above, the prefix of the source 7133 * address picked may not match the prefix of the 7134 * destination routes prefix as ipif_select_source 7135 * does not look at "dst" while picking a source 7136 * address. 7137 * If we want the same behavior as (2), we will need 7138 * to change the behavior of ipif_select_source. 7139 */ 7140 ASSERT(src_ipif == NULL); 7141 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7142 /* 7143 * The RTF_SETSRC flag is set in the parent ire (sire). 7144 * Check that the ipif matching the requested source 7145 * address still exists. 7146 */ 7147 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7148 zoneid, NULL, NULL, NULL, NULL); 7149 } 7150 if (src_ipif == NULL) { 7151 ire_marks |= IRE_MARK_USESRC_CHECK; 7152 if ((dst_ill->ill_group != NULL) || 7153 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7154 (connp != NULL && ire->ire_zoneid != zoneid) || 7155 (dst_ill->ill_usesrc_ifindex != 0)) { 7156 /* 7157 * If the destination is reachable via a 7158 * given gateway, the selected source address 7159 * should be in the same subnet as the gateway. 7160 * Otherwise, the destination is not reachable. 7161 * 7162 * If there are no interfaces on the same subnet 7163 * as the destination, ipif_select_source gives 7164 * first non-deprecated interface which might be 7165 * on a different subnet than the gateway. 7166 * This is not desirable. Hence pass the dst_ire 7167 * source address to ipif_select_source. 7168 * It is sure that the destination is reachable 7169 * with the dst_ire source address subnet. 7170 * So passing dst_ire source address to 7171 * ipif_select_source will make sure that the 7172 * selected source will be on the same subnet 7173 * as dst_ire source address. 7174 */ 7175 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7176 src_ipif = ipif_select_source(dst_ill, saddr, 7177 zoneid); 7178 if (src_ipif == NULL) { 7179 if (ip_debug > 2) { 7180 pr_addr_dbg("ip_newroute: " 7181 "no src for dst %s ", 7182 AF_INET, &dst); 7183 printf("through interface %s\n", 7184 dst_ill->ill_name); 7185 } 7186 goto icmp_err_ret; 7187 } 7188 } else { 7189 src_ipif = ire->ire_ipif; 7190 ASSERT(src_ipif != NULL); 7191 /* hold src_ipif for uniformity */ 7192 ipif_refhold(src_ipif); 7193 } 7194 } 7195 7196 /* 7197 * Assign a source address while we have the conn. 7198 * We can't have ip_wput_ire pick a source address when the 7199 * packet returns from arp since we need to look at 7200 * conn_unspec_src and conn_zoneid, and we lose the conn when 7201 * going through arp. 7202 * 7203 * NOTE : ip_newroute_v6 does not have this piece of code as 7204 * it uses ip6i to store this information. 7205 */ 7206 if (ipha->ipha_src == INADDR_ANY && 7207 (connp == NULL || !connp->conn_unspec_src)) { 7208 ipha->ipha_src = src_ipif->ipif_src_addr; 7209 } 7210 if (ip_debug > 3) { 7211 /* ip2dbg */ 7212 pr_addr_dbg("ip_newroute: first hop %s\n", 7213 AF_INET, &gw); 7214 } 7215 ip2dbg(("\tire type %s (%d)\n", 7216 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7217 7218 /* 7219 * The TTL of multirouted packets is bounded by the 7220 * ip_multirt_ttl ndd variable. 7221 */ 7222 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7223 /* Force TTL of multirouted packets */ 7224 if ((ip_multirt_ttl > 0) && 7225 (ipha->ipha_ttl > ip_multirt_ttl)) { 7226 ip2dbg(("ip_newroute: forcing multirt TTL " 7227 "to %d (was %d), dst 0x%08x\n", 7228 ip_multirt_ttl, ipha->ipha_ttl, 7229 ntohl(sire->ire_addr))); 7230 ipha->ipha_ttl = ip_multirt_ttl; 7231 } 7232 } 7233 /* 7234 * At this point in ip_newroute(), ire is either the 7235 * IRE_CACHE of the next-hop gateway for an off-subnet 7236 * destination or an IRE_INTERFACE type that should be used 7237 * to resolve an on-subnet destination or an on-subnet 7238 * next-hop gateway. 7239 * 7240 * In the IRE_CACHE case, we have the following : 7241 * 7242 * 1) src_ipif - used for getting a source address. 7243 * 7244 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7245 * means packets using this IRE_CACHE will go out on 7246 * dst_ill. 7247 * 7248 * 3) The IRE sire will point to the prefix that is the 7249 * longest matching route for the destination. These 7250 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7251 * and IRE_HOST_REDIRECT. 7252 * 7253 * The newly created IRE_CACHE entry for the off-subnet 7254 * destination is tied to both the prefix route and the 7255 * interface route used to resolve the next-hop gateway 7256 * via the ire_phandle and ire_ihandle fields, 7257 * respectively. 7258 * 7259 * In the IRE_INTERFACE case, we have the following : 7260 * 7261 * 1) src_ipif - used for getting a source address. 7262 * 7263 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7264 * means packets using the IRE_CACHE that we will build 7265 * here will go out on dst_ill. 7266 * 7267 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7268 * to be created will only be tied to the IRE_INTERFACE 7269 * that was derived from the ire_ihandle field. 7270 * 7271 * If sire is non-NULL, it means the destination is 7272 * off-link and we will first create the IRE_CACHE for the 7273 * gateway. Next time through ip_newroute, we will create 7274 * the IRE_CACHE for the final destination as described 7275 * above. 7276 * 7277 * In both cases, after the current resolution has been 7278 * completed (or possibly initialised, in the IRE_INTERFACE 7279 * case), the loop may be re-entered to attempt the resolution 7280 * of another RTF_MULTIRT route. 7281 * 7282 * When an IRE_CACHE entry for the off-subnet destination is 7283 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7284 * for further processing in emission loops. 7285 */ 7286 save_ire = ire; 7287 switch (ire->ire_type) { 7288 case IRE_CACHE: { 7289 ire_t *ipif_ire; 7290 mblk_t *ire_fp_mp; 7291 7292 if (gw == 0) 7293 gw = ire->ire_gateway_addr; 7294 /* 7295 * We need 3 ire's to create a new cache ire for an 7296 * off-link destination from the cache ire of the 7297 * gateway. 7298 * 7299 * 1. The prefix ire 'sire' (Note that this does 7300 * not apply to the conn_nexthop_set case) 7301 * 2. The cache ire of the gateway 'ire' 7302 * 3. The interface ire 'ipif_ire' 7303 * 7304 * We have (1) and (2). We lookup (3) below. 7305 * 7306 * If there is no interface route to the gateway, 7307 * it is a race condition, where we found the cache 7308 * but the interface route has been deleted. 7309 */ 7310 if (ip_nexthop) { 7311 ipif_ire = ire_ihandle_lookup_onlink(ire); 7312 } else { 7313 ipif_ire = 7314 ire_ihandle_lookup_offlink(ire, sire); 7315 } 7316 if (ipif_ire == NULL) { 7317 ip1dbg(("ip_newroute: " 7318 "ire_ihandle_lookup_offlink failed\n")); 7319 goto icmp_err_ret; 7320 } 7321 /* 7322 * XXX We are using the same dlureq_mp 7323 * (DL_UNITDATA_REQ) though the save_ire is not 7324 * pointing at the same ill. 7325 * This is incorrect. We need to send it up to the 7326 * resolver to get the right dlureq_mp. For ethernets 7327 * this may be okay (ill_type == DL_ETHER). 7328 */ 7329 dlureq_mp = save_ire->ire_dlureq_mp; 7330 ire_fp_mp = NULL; 7331 /* 7332 * save_ire's ire_fp_mp can't change since it is 7333 * not an IRE_MIPRTUN or IRE_BROADCAST 7334 * LOCK_IRE_FP_MP does not do any useful work in 7335 * the case of IRE_CACHE. So we don't use it below. 7336 */ 7337 if (save_ire->ire_stq == dst_ill->ill_wq) 7338 ire_fp_mp = save_ire->ire_fp_mp; 7339 7340 ire = ire_create( 7341 (uchar_t *)&dst, /* dest address */ 7342 (uchar_t *)&ip_g_all_ones, /* mask */ 7343 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7344 (uchar_t *)&gw, /* gateway address */ 7345 NULL, 7346 &save_ire->ire_max_frag, 7347 ire_fp_mp, /* Fast Path header */ 7348 dst_ill->ill_rq, /* recv-from queue */ 7349 dst_ill->ill_wq, /* send-to queue */ 7350 IRE_CACHE, /* IRE type */ 7351 save_ire->ire_dlureq_mp, 7352 src_ipif, 7353 in_ill, /* incoming ill */ 7354 (sire != NULL) ? 7355 sire->ire_mask : 0, /* Parent mask */ 7356 (sire != NULL) ? 7357 sire->ire_phandle : 0, /* Parent handle */ 7358 ipif_ire->ire_ihandle, /* Interface handle */ 7359 (sire != NULL) ? (sire->ire_flags & 7360 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7361 (sire != NULL) ? 7362 &(sire->ire_uinfo) : &(save_ire->ire_uinfo)); 7363 7364 if (ire == NULL) { 7365 ire_refrele(ipif_ire); 7366 ire_refrele(save_ire); 7367 break; 7368 } 7369 ire->ire_marks |= ire_marks; 7370 7371 /* 7372 * Prevent sire and ipif_ire from getting deleted. 7373 * The newly created ire is tied to both of them via 7374 * the phandle and ihandle respectively. 7375 */ 7376 if (sire != NULL) { 7377 IRB_REFHOLD(sire->ire_bucket); 7378 /* Has it been removed already ? */ 7379 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7380 IRB_REFRELE(sire->ire_bucket); 7381 ire_refrele(ipif_ire); 7382 ire_refrele(save_ire); 7383 break; 7384 } 7385 } 7386 7387 IRB_REFHOLD(ipif_ire->ire_bucket); 7388 /* Has it been removed already ? */ 7389 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7390 IRB_REFRELE(ipif_ire->ire_bucket); 7391 if (sire != NULL) 7392 IRB_REFRELE(sire->ire_bucket); 7393 ire_refrele(ipif_ire); 7394 ire_refrele(save_ire); 7395 break; 7396 } 7397 7398 xmit_mp = first_mp; 7399 /* 7400 * In the case of multirouting, a copy 7401 * of the packet is done before its sending. 7402 * The copy is used to attempt another 7403 * route resolution, in a next loop. 7404 */ 7405 if (ire->ire_flags & RTF_MULTIRT) { 7406 copy_mp = copymsg(first_mp); 7407 if (copy_mp != NULL) { 7408 xmit_mp = copy_mp; 7409 MULTIRT_DEBUG_TAG(first_mp); 7410 } 7411 } 7412 ire_add_then_send(q, ire, xmit_mp); 7413 ire_refrele(save_ire); 7414 7415 /* Assert that sire is not deleted yet. */ 7416 if (sire != NULL) { 7417 ASSERT(sire->ire_ptpn != NULL); 7418 IRB_REFRELE(sire->ire_bucket); 7419 } 7420 7421 /* Assert that ipif_ire is not deleted yet. */ 7422 ASSERT(ipif_ire->ire_ptpn != NULL); 7423 IRB_REFRELE(ipif_ire->ire_bucket); 7424 ire_refrele(ipif_ire); 7425 7426 /* 7427 * If copy_mp is not NULL, multirouting was 7428 * requested. We loop to initiate a next 7429 * route resolution attempt, starting from sire. 7430 */ 7431 if (copy_mp != NULL) { 7432 /* 7433 * Search for the next unresolved 7434 * multirt route. 7435 */ 7436 copy_mp = NULL; 7437 ipif_ire = NULL; 7438 ire = NULL; 7439 multirt_resolve_next = B_TRUE; 7440 continue; 7441 } 7442 if (sire != NULL) 7443 ire_refrele(sire); 7444 ipif_refrele(src_ipif); 7445 ill_refrele(dst_ill); 7446 return; 7447 } 7448 case IRE_IF_NORESOLVER: { 7449 /* 7450 * We have what we need to build an IRE_CACHE. 7451 * 7452 * Create a new dlureq_mp with the IP gateway address 7453 * in destination address in the DLPI hdr if the 7454 * physical length is exactly 4 bytes. 7455 */ 7456 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7457 uchar_t *addr; 7458 7459 if (gw) 7460 addr = (uchar_t *)&gw; 7461 else 7462 addr = (uchar_t *)&dst; 7463 7464 dlureq_mp = ill_dlur_gen(addr, 7465 dst_ill->ill_phys_addr_length, 7466 dst_ill->ill_sap, 7467 dst_ill->ill_sap_length); 7468 } else { 7469 dlureq_mp = ire->ire_dlureq_mp; 7470 } 7471 7472 if (dlureq_mp == NULL) { 7473 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7474 break; 7475 } 7476 7477 ire = ire_create( 7478 (uchar_t *)&dst, /* dest address */ 7479 (uchar_t *)&ip_g_all_ones, /* mask */ 7480 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7481 (uchar_t *)&gw, /* gateway address */ 7482 NULL, 7483 &save_ire->ire_max_frag, 7484 NULL, /* Fast Path header */ 7485 dst_ill->ill_rq, /* recv-from queue */ 7486 dst_ill->ill_wq, /* send-to queue */ 7487 IRE_CACHE, 7488 dlureq_mp, 7489 src_ipif, 7490 in_ill, /* Incoming ill */ 7491 save_ire->ire_mask, /* Parent mask */ 7492 (sire != NULL) ? /* Parent handle */ 7493 sire->ire_phandle : 0, 7494 save_ire->ire_ihandle, /* Interface handle */ 7495 (sire != NULL) ? sire->ire_flags & 7496 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7497 &(save_ire->ire_uinfo)); 7498 7499 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7500 freeb(dlureq_mp); 7501 7502 if (ire == NULL) { 7503 ire_refrele(save_ire); 7504 break; 7505 } 7506 7507 ire->ire_marks |= ire_marks; 7508 7509 /* Prevent save_ire from getting deleted */ 7510 IRB_REFHOLD(save_ire->ire_bucket); 7511 /* Has it been removed already ? */ 7512 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7513 IRB_REFRELE(save_ire->ire_bucket); 7514 ire_refrele(save_ire); 7515 break; 7516 } 7517 7518 /* 7519 * In the case of multirouting, a copy 7520 * of the packet is made before it is sent. 7521 * The copy is used in the next 7522 * loop to attempt another resolution. 7523 */ 7524 xmit_mp = first_mp; 7525 if ((sire != NULL) && 7526 (sire->ire_flags & RTF_MULTIRT)) { 7527 copy_mp = copymsg(first_mp); 7528 if (copy_mp != NULL) { 7529 xmit_mp = copy_mp; 7530 MULTIRT_DEBUG_TAG(first_mp); 7531 } 7532 } 7533 ire_add_then_send(q, ire, xmit_mp); 7534 7535 /* Assert that it is not deleted yet. */ 7536 ASSERT(save_ire->ire_ptpn != NULL); 7537 IRB_REFRELE(save_ire->ire_bucket); 7538 ire_refrele(save_ire); 7539 7540 if (copy_mp != NULL) { 7541 /* 7542 * If we found a (no)resolver, we ignore any 7543 * trailing top priority IRE_CACHE in further 7544 * loops. This ensures that we do not omit any 7545 * (no)resolver. 7546 * This IRE_CACHE, if any, will be processed 7547 * by another thread entering ip_newroute(). 7548 * IRE_CACHE entries, if any, will be processed 7549 * by another thread entering ip_newroute(), 7550 * (upon resolver response, for instance). 7551 * This aims to force parallel multirt 7552 * resolutions as soon as a packet must be sent. 7553 * In the best case, after the tx of only one 7554 * packet, all reachable routes are resolved. 7555 * Otherwise, the resolution of all RTF_MULTIRT 7556 * routes would require several emissions. 7557 */ 7558 multirt_flags &= ~MULTIRT_CACHEGW; 7559 7560 /* 7561 * Search for the next unresolved multirt 7562 * route. 7563 */ 7564 copy_mp = NULL; 7565 save_ire = NULL; 7566 ire = NULL; 7567 multirt_resolve_next = B_TRUE; 7568 continue; 7569 } 7570 7571 /* 7572 * Don't need sire anymore 7573 */ 7574 if (sire != NULL) 7575 ire_refrele(sire); 7576 7577 ipif_refrele(src_ipif); 7578 ill_refrele(dst_ill); 7579 return; 7580 } 7581 case IRE_IF_RESOLVER: 7582 /* 7583 * We can't build an IRE_CACHE yet, but at least we 7584 * found a resolver that can help. 7585 */ 7586 res_mp = dst_ill->ill_resolver_mp; 7587 if (!OK_RESOLVER_MP(res_mp)) 7588 break; 7589 /* 7590 * To be at this point in the code with a non-zero gw 7591 * means that dst is reachable through a gateway that 7592 * we have never resolved. By changing dst to the gw 7593 * addr we resolve the gateway first. 7594 * When ire_add_then_send() tries to put the IP dg 7595 * to dst, it will reenter ip_newroute() at which 7596 * time we will find the IRE_CACHE for the gw and 7597 * create another IRE_CACHE in case IRE_CACHE above. 7598 */ 7599 if (gw != INADDR_ANY) { 7600 /* 7601 * The source ipif that was determined above was 7602 * relative to the destination address, not the 7603 * gateway's. If src_ipif was not taken out of 7604 * the IRE_IF_RESOLVER entry, we'll need to call 7605 * ipif_select_source() again. 7606 */ 7607 if (src_ipif != ire->ire_ipif) { 7608 ipif_refrele(src_ipif); 7609 src_ipif = ipif_select_source(dst_ill, 7610 gw, zoneid); 7611 if (src_ipif == NULL) { 7612 if (ip_debug > 2) { 7613 pr_addr_dbg( 7614 "ip_newroute: no " 7615 "src for gw %s ", 7616 AF_INET, &gw); 7617 printf("through " 7618 "interface %s\n", 7619 dst_ill->ill_name); 7620 } 7621 goto icmp_err_ret; 7622 } 7623 } 7624 save_dst = dst; 7625 dst = gw; 7626 gw = INADDR_ANY; 7627 } 7628 /* 7629 * We obtain a partial IRE_CACHE which we will pass 7630 * along with the resolver query. When the response 7631 * comes back it will be there ready for us to add. 7632 * The ire_max_frag is atomically set under the 7633 * irebucket lock in ire_add_v[46]. 7634 */ 7635 ire = ire_create_mp( 7636 (uchar_t *)&dst, /* dest address */ 7637 (uchar_t *)&ip_g_all_ones, /* mask */ 7638 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7639 (uchar_t *)&gw, /* gateway address */ 7640 NULL, /* no in_src_addr */ 7641 NULL, /* ire_max_frag */ 7642 NULL, /* Fast Path header */ 7643 dst_ill->ill_rq, /* recv-from queue */ 7644 dst_ill->ill_wq, /* send-to queue */ 7645 IRE_CACHE, 7646 res_mp, 7647 src_ipif, /* Interface ipif */ 7648 in_ill, /* Incoming ILL */ 7649 save_ire->ire_mask, /* Parent mask */ 7650 0, 7651 save_ire->ire_ihandle, /* Interface handle */ 7652 0, /* flags if any */ 7653 &(save_ire->ire_uinfo)); 7654 7655 if (ire == NULL) { 7656 ire_refrele(save_ire); 7657 break; 7658 } 7659 7660 if ((sire != NULL) && 7661 (sire->ire_flags & RTF_MULTIRT)) { 7662 copy_mp = copymsg(first_mp); 7663 if (copy_mp != NULL) 7664 MULTIRT_DEBUG_TAG(copy_mp); 7665 } 7666 7667 ire->ire_marks |= ire_marks; 7668 7669 /* 7670 * Construct message chain for the resolver 7671 * of the form: 7672 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7673 * Packet could contain a IPSEC_OUT mp. 7674 * 7675 * NOTE : ire will be added later when the response 7676 * comes back from ARP. If the response does not 7677 * come back, ARP frees the packet. For this reason, 7678 * we can't REFHOLD the bucket of save_ire to prevent 7679 * deletions. We may not be able to REFRELE the bucket 7680 * if the response never comes back. Thus, before 7681 * adding the ire, ire_add_v4 will make sure that the 7682 * interface route does not get deleted. This is the 7683 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7684 * where we can always prevent deletions because of 7685 * the synchronous nature of adding IRES i.e 7686 * ire_add_then_send is called after creating the IRE. 7687 */ 7688 ASSERT(ire->ire_mp != NULL); 7689 ire->ire_mp->b_cont = first_mp; 7690 /* Have saved_mp handy, for cleanup if canput fails */ 7691 saved_mp = mp; 7692 mp = ire->ire_dlureq_mp; 7693 ASSERT(mp != NULL); 7694 ire->ire_dlureq_mp = NULL; 7695 linkb(mp, ire->ire_mp); 7696 7697 7698 /* 7699 * Fill in the source and dest addrs for the resolver. 7700 * NOTE: this depends on memory layouts imposed by 7701 * ill_init(). 7702 */ 7703 areq = (areq_t *)mp->b_rptr; 7704 addrp = (ipaddr_t *)((char *)areq + 7705 areq->areq_sender_addr_offset); 7706 if (do_attach_ill) { 7707 /* 7708 * This is bind to no failover case. 7709 * arp packet also must go out on attach_ill. 7710 */ 7711 ASSERT(ipha->ipha_src != NULL); 7712 *addrp = ipha->ipha_src; 7713 } else { 7714 *addrp = save_ire->ire_src_addr; 7715 } 7716 7717 ire_refrele(save_ire); 7718 addrp = (ipaddr_t *)((char *)areq + 7719 areq->areq_target_addr_offset); 7720 *addrp = dst; 7721 /* Up to the resolver. */ 7722 if (canputnext(dst_ill->ill_rq)) { 7723 putnext(dst_ill->ill_rq, mp); 7724 ire = NULL; 7725 if (copy_mp != NULL) { 7726 /* 7727 * If we found a resolver, we ignore 7728 * any trailing top priority IRE_CACHE 7729 * in the further loops. This ensures 7730 * that we do not omit any resolver. 7731 * IRE_CACHE entries, if any, will be 7732 * processed next time we enter 7733 * ip_newroute(). 7734 */ 7735 multirt_flags &= ~MULTIRT_CACHEGW; 7736 /* 7737 * Search for the next unresolved 7738 * multirt route. 7739 */ 7740 first_mp = copy_mp; 7741 copy_mp = NULL; 7742 /* Prepare the next resolution loop. */ 7743 mp = first_mp; 7744 EXTRACT_PKT_MP(mp, first_mp, 7745 mctl_present); 7746 if (mctl_present) 7747 io = (ipsec_out_t *) 7748 first_mp->b_rptr; 7749 ipha = (ipha_t *)mp->b_rptr; 7750 7751 ASSERT(sire != NULL); 7752 7753 dst = save_dst; 7754 multirt_resolve_next = B_TRUE; 7755 continue; 7756 } 7757 7758 if (sire != NULL) 7759 ire_refrele(sire); 7760 7761 /* 7762 * The response will come back in ip_wput 7763 * with db_type IRE_DB_TYPE. 7764 */ 7765 ipif_refrele(src_ipif); 7766 ill_refrele(dst_ill); 7767 return; 7768 } else { 7769 /* Prepare for cleanup */ 7770 ire->ire_dlureq_mp = mp; 7771 mp->b_cont = NULL; 7772 ire_delete(ire); 7773 mp = saved_mp; 7774 ire = NULL; 7775 if (copy_mp != NULL) { 7776 MULTIRT_DEBUG_UNTAG(copy_mp); 7777 freemsg(copy_mp); 7778 copy_mp = NULL; 7779 } 7780 break; 7781 } 7782 default: 7783 break; 7784 } 7785 } while (multirt_resolve_next); 7786 7787 ip1dbg(("ip_newroute: dropped\n")); 7788 /* Did this packet originate externally? */ 7789 if (mp->b_prev) { 7790 mp->b_next = NULL; 7791 mp->b_prev = NULL; 7792 BUMP_MIB(&ip_mib, ipInDiscards); 7793 } else { 7794 BUMP_MIB(&ip_mib, ipOutDiscards); 7795 } 7796 ASSERT(copy_mp == NULL); 7797 MULTIRT_DEBUG_UNTAG(first_mp); 7798 freemsg(first_mp); 7799 if (ire != NULL) 7800 ire_refrele(ire); 7801 if (sire != NULL) 7802 ire_refrele(sire); 7803 if (src_ipif != NULL) 7804 ipif_refrele(src_ipif); 7805 if (dst_ill != NULL) 7806 ill_refrele(dst_ill); 7807 return; 7808 7809 icmp_err_ret: 7810 ip1dbg(("ip_newroute: no route\n")); 7811 if (src_ipif != NULL) 7812 ipif_refrele(src_ipif); 7813 if (dst_ill != NULL) 7814 ill_refrele(dst_ill); 7815 if (sire != NULL) 7816 ire_refrele(sire); 7817 /* Did this packet originate externally? */ 7818 if (mp->b_prev) { 7819 mp->b_next = NULL; 7820 mp->b_prev = NULL; 7821 /* XXX ipInNoRoutes */ 7822 q = WR(q); 7823 } else { 7824 /* 7825 * Since ip_wput() isn't close to finished, we fill 7826 * in enough of the header for credible error reporting. 7827 */ 7828 if (ip_hdr_complete(ipha, zoneid)) { 7829 /* Failed */ 7830 MULTIRT_DEBUG_UNTAG(first_mp); 7831 freemsg(first_mp); 7832 if (ire != NULL) 7833 ire_refrele(ire); 7834 return; 7835 } 7836 } 7837 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7838 7839 /* 7840 * At this point we will have ire only if RTF_BLACKHOLE 7841 * or RTF_REJECT flags are set on the IRE. It will not 7842 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7843 */ 7844 if (ire != NULL) { 7845 if (ire->ire_flags & RTF_BLACKHOLE) { 7846 ire_refrele(ire); 7847 MULTIRT_DEBUG_UNTAG(first_mp); 7848 freemsg(first_mp); 7849 return; 7850 } 7851 ire_refrele(ire); 7852 } 7853 if (ip_source_routed(ipha)) { 7854 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7855 return; 7856 } 7857 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7858 } 7859 7860 /* 7861 * IPv4 - 7862 * ip_newroute_ipif is called by ip_wput_multicast and 7863 * ip_rput_forward_multicast whenever we need to send 7864 * out a packet to a destination address for which we do not have specific 7865 * routing information. It is used when the packet will be sent out 7866 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7867 * socket option is set or icmp error message wants to go out on a particular 7868 * interface for a unicast packet. 7869 * 7870 * In most cases, the destination address is resolved thanks to the ipif 7871 * intrinsic resolver. However, there are some cases where the call to 7872 * ip_newroute_ipif must take into account the potential presence of 7873 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7874 * that uses the interface. This is specified through flags, 7875 * which can be a combination of: 7876 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7877 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7878 * and flags. Additionally, the packet source address has to be set to 7879 * the specified address. The caller is thus expected to set this flag 7880 * if the packet has no specific source address yet. 7881 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7882 * flag, the resulting ire will inherit the flag. All unresolved routes 7883 * to the destination must be explored in the same call to 7884 * ip_newroute_ipif(). 7885 */ 7886 static void 7887 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7888 conn_t *connp, uint32_t flags) 7889 { 7890 areq_t *areq; 7891 ire_t *ire = NULL; 7892 mblk_t *res_mp; 7893 ipaddr_t *addrp; 7894 mblk_t *first_mp; 7895 ire_t *save_ire = NULL; 7896 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7897 ipif_t *src_ipif = NULL; 7898 ushort_t ire_marks = 0; 7899 ill_t *dst_ill = NULL; 7900 boolean_t mctl_present; 7901 ipsec_out_t *io; 7902 ipha_t *ipha; 7903 int ihandle = 0; 7904 mblk_t *saved_mp; 7905 ire_t *fire = NULL; 7906 mblk_t *copy_mp = NULL; 7907 boolean_t multirt_resolve_next; 7908 ipaddr_t ipha_dst; 7909 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7910 7911 /* 7912 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7913 * here for uniformity 7914 */ 7915 ipif_refhold(ipif); 7916 7917 /* 7918 * This loop is run only once in most cases. 7919 * We loop to resolve further routes only when the destination 7920 * can be reached through multiple RTF_MULTIRT-flagged ires. 7921 */ 7922 do { 7923 if (dst_ill != NULL) { 7924 ill_refrele(dst_ill); 7925 dst_ill = NULL; 7926 } 7927 if (src_ipif != NULL) { 7928 ipif_refrele(src_ipif); 7929 src_ipif = NULL; 7930 } 7931 multirt_resolve_next = B_FALSE; 7932 7933 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7934 ipif->ipif_ill->ill_name)); 7935 7936 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7937 if (mctl_present) 7938 io = (ipsec_out_t *)first_mp->b_rptr; 7939 7940 ipha = (ipha_t *)mp->b_rptr; 7941 7942 /* 7943 * Save the packet destination address, we may need it after 7944 * the packet has been consumed. 7945 */ 7946 ipha_dst = ipha->ipha_dst; 7947 7948 /* 7949 * If the interface is a pt-pt interface we look for an 7950 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7951 * local_address and the pt-pt destination address. Otherwise 7952 * we just match the local address. 7953 * NOTE: dst could be different than ipha->ipha_dst in case 7954 * of sending igmp multicast packets over a point-to-point 7955 * connection. 7956 * Thus we must be careful enough to check ipha_dst to be a 7957 * multicast address, otherwise it will take xmit_if path for 7958 * multicast packets resulting into kernel stack overflow by 7959 * repeated calls to ip_newroute_ipif from ire_send(). 7960 */ 7961 if (CLASSD(ipha_dst) && 7962 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7963 goto err_ret; 7964 } 7965 7966 /* 7967 * We check if an IRE_OFFSUBNET for the addr that goes through 7968 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7969 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7970 * propagate its flags to the new ire. 7971 */ 7972 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7973 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7974 ip2dbg(("ip_newroute_ipif: " 7975 "ipif_lookup_multi_ire(" 7976 "ipif %p, dst %08x) = fire %p\n", 7977 (void *)ipif, ntohl(dst), (void *)fire)); 7978 } 7979 7980 if (mctl_present && io->ipsec_out_attach_if) { 7981 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7982 io->ipsec_out_ill_index, B_FALSE); 7983 7984 /* Failure case frees things for us. */ 7985 if (attach_ill == NULL) { 7986 ipif_refrele(ipif); 7987 if (fire != NULL) 7988 ire_refrele(fire); 7989 return; 7990 } 7991 7992 /* 7993 * Check if we need an ire that will not be 7994 * looked up by anybody else i.e. HIDDEN. 7995 */ 7996 if (ill_is_probeonly(attach_ill)) { 7997 ire_marks = IRE_MARK_HIDDEN; 7998 } 7999 /* 8000 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8001 * case. 8002 */ 8003 dst_ill = ipif->ipif_ill; 8004 /* attach_ill has been refheld by ip_grab_attach_ill */ 8005 ASSERT(dst_ill == attach_ill); 8006 } else { 8007 /* 8008 * If this is set by IP_XMIT_IF, then make sure that 8009 * ipif is pointing to the same ill as the IP_XMIT_IF 8010 * specified ill. 8011 */ 8012 ASSERT((connp == NULL) || 8013 (connp->conn_xmit_if_ill == NULL) || 8014 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8015 /* 8016 * If the interface belongs to an interface group, 8017 * make sure the next possible interface in the group 8018 * is used. This encourages load spreading among 8019 * peers in an interface group. 8020 * Note: load spreading is disabled for RTF_MULTIRT 8021 * routes. 8022 */ 8023 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8024 (fire->ire_flags & RTF_MULTIRT)) { 8025 /* 8026 * Don't perform outbound load spreading 8027 * in the case of an RTF_MULTIRT issued route, 8028 * we actually typically want to replicate 8029 * outgoing packets through particular 8030 * interfaces. 8031 */ 8032 dst_ill = ipif->ipif_ill; 8033 ill_refhold(dst_ill); 8034 } else { 8035 dst_ill = ip_newroute_get_dst_ill( 8036 ipif->ipif_ill); 8037 } 8038 if (dst_ill == NULL) { 8039 if (ip_debug > 2) { 8040 pr_addr_dbg("ip_newroute_ipif: " 8041 "no dst ill for dst %s\n", 8042 AF_INET, &dst); 8043 } 8044 goto err_ret; 8045 } 8046 } 8047 8048 /* 8049 * Pick a source address preferring non-deprecated ones. 8050 * Unlike ip_newroute, we don't do any source address 8051 * selection here since for multicast it really does not help 8052 * in inbound load spreading as in the unicast case. 8053 */ 8054 if ((flags & RTF_SETSRC) && (fire != NULL) && 8055 (fire->ire_flags & RTF_SETSRC)) { 8056 /* 8057 * As requested by flags, an IRE_OFFSUBNET was looked up 8058 * on that interface. This ire has RTF_SETSRC flag, so 8059 * the source address of the packet must be changed. 8060 * Check that the ipif matching the requested source 8061 * address still exists. 8062 */ 8063 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8064 zoneid, NULL, NULL, NULL, NULL); 8065 } 8066 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8067 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 8068 (src_ipif == NULL)) { 8069 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8070 if (src_ipif == NULL) { 8071 if (ip_debug > 2) { 8072 /* ip1dbg */ 8073 pr_addr_dbg("ip_newroute_ipif: " 8074 "no src for dst %s", 8075 AF_INET, &dst); 8076 } 8077 ip1dbg((" through interface %s\n", 8078 dst_ill->ill_name)); 8079 goto err_ret; 8080 } 8081 ipif_refrele(ipif); 8082 ipif = src_ipif; 8083 ipif_refhold(ipif); 8084 } 8085 if (src_ipif == NULL) { 8086 src_ipif = ipif; 8087 ipif_refhold(src_ipif); 8088 } 8089 8090 /* 8091 * Assign a source address while we have the conn. 8092 * We can't have ip_wput_ire pick a source address when the 8093 * packet returns from arp since conn_unspec_src might be set 8094 * and we loose the conn when going through arp. 8095 */ 8096 if (ipha->ipha_src == INADDR_ANY && 8097 (connp == NULL || !connp->conn_unspec_src)) { 8098 ipha->ipha_src = src_ipif->ipif_src_addr; 8099 } 8100 8101 /* 8102 * In case of IP_XMIT_IF, it is possible that the outgoing 8103 * interface does not have an interface ire. 8104 * Example: Thousands of mobileip PPP interfaces to mobile 8105 * nodes. We don't want to create interface ires because 8106 * packets from other mobile nodes must not take the route 8107 * via interface ires to the visiting mobile node without 8108 * going through the home agent, in absence of mobileip 8109 * route optimization. 8110 */ 8111 if (CLASSD(ipha_dst) && (connp == NULL || 8112 connp->conn_xmit_if_ill == NULL)) { 8113 /* ipif_to_ire returns an held ire */ 8114 ire = ipif_to_ire(ipif); 8115 if (ire == NULL) 8116 goto err_ret; 8117 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8118 goto err_ret; 8119 /* 8120 * ihandle is needed when the ire is added to 8121 * cache table. 8122 */ 8123 save_ire = ire; 8124 ihandle = save_ire->ire_ihandle; 8125 8126 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8127 "flags %04x\n", 8128 (void *)ire, (void *)ipif, flags)); 8129 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8130 (fire->ire_flags & RTF_MULTIRT)) { 8131 /* 8132 * As requested by flags, an IRE_OFFSUBNET was 8133 * looked up on that interface. This ire has 8134 * RTF_MULTIRT flag, so the resolution loop will 8135 * be re-entered to resolve additional routes on 8136 * other interfaces. For that purpose, a copy of 8137 * the packet is performed at this point. 8138 */ 8139 fire->ire_last_used_time = lbolt; 8140 copy_mp = copymsg(first_mp); 8141 if (copy_mp) { 8142 MULTIRT_DEBUG_TAG(copy_mp); 8143 } 8144 } 8145 if ((flags & RTF_SETSRC) && (fire != NULL) && 8146 (fire->ire_flags & RTF_SETSRC)) { 8147 /* 8148 * As requested by flags, an IRE_OFFSUBET was 8149 * looked up on that interface. This ire has 8150 * RTF_SETSRC flag, so the source address of the 8151 * packet must be changed. 8152 */ 8153 ipha->ipha_src = fire->ire_src_addr; 8154 } 8155 } else { 8156 ASSERT((connp == NULL) || 8157 (connp->conn_xmit_if_ill != NULL) || 8158 (connp->conn_dontroute)); 8159 /* 8160 * The only ways we can come here are: 8161 * 1) IP_XMIT_IF socket option is set 8162 * 2) ICMP error message generated from 8163 * ip_mrtun_forward() routine and it needs 8164 * to go through the specified ill. 8165 * 3) SO_DONTROUTE socket option is set 8166 * In all cases, the new ire will not be added 8167 * into cache table. 8168 */ 8169 ire_marks |= IRE_MARK_NOADD; 8170 } 8171 8172 switch (ipif->ipif_net_type) { 8173 case IRE_IF_NORESOLVER: { 8174 /* We have what we need to build an IRE_CACHE. */ 8175 mblk_t *dlureq_mp; 8176 8177 /* 8178 * Create a new dlureq_mp with the 8179 * IP gateway address as destination address in the 8180 * DLPI hdr if the physical length is exactly 4 bytes. 8181 */ 8182 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8183 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8184 dst_ill->ill_phys_addr_length, 8185 dst_ill->ill_sap, 8186 dst_ill->ill_sap_length); 8187 } else { 8188 /* use the value set in ip_ll_subnet_defaults */ 8189 dlureq_mp = ill_dlur_gen(NULL, 8190 dst_ill->ill_phys_addr_length, 8191 dst_ill->ill_sap, 8192 dst_ill->ill_sap_length); 8193 } 8194 8195 if (dlureq_mp == NULL) 8196 break; 8197 /* 8198 * The new ire inherits the IRE_OFFSUBNET flags 8199 * and source address, if this was requested. 8200 */ 8201 ire = ire_create( 8202 (uchar_t *)&dst, /* dest address */ 8203 (uchar_t *)&ip_g_all_ones, /* mask */ 8204 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8205 NULL, /* gateway address */ 8206 NULL, 8207 &ipif->ipif_mtu, 8208 NULL, /* Fast Path header */ 8209 dst_ill->ill_rq, /* recv-from queue */ 8210 dst_ill->ill_wq, /* send-to queue */ 8211 IRE_CACHE, 8212 dlureq_mp, 8213 src_ipif, 8214 NULL, 8215 (save_ire != NULL ? save_ire->ire_mask : 0), 8216 (fire != NULL) ? /* Parent handle */ 8217 fire->ire_phandle : 0, 8218 ihandle, /* Interface handle */ 8219 (fire != NULL) ? 8220 (fire->ire_flags & 8221 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8222 (save_ire == NULL ? &ire_uinfo_null : 8223 &save_ire->ire_uinfo)); 8224 8225 freeb(dlureq_mp); 8226 8227 if (ire == NULL) { 8228 if (save_ire != NULL) 8229 ire_refrele(save_ire); 8230 break; 8231 } 8232 8233 ire->ire_marks |= ire_marks; 8234 8235 /* Prevent save_ire from getting deleted */ 8236 if (save_ire != NULL) { 8237 IRB_REFHOLD(save_ire->ire_bucket); 8238 /* Has it been removed already ? */ 8239 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8240 IRB_REFRELE(save_ire->ire_bucket); 8241 ire_refrele(save_ire); 8242 break; 8243 } 8244 } 8245 8246 ire_add_then_send(q, ire, first_mp); 8247 8248 /* Assert that save_ire is not deleted yet. */ 8249 if (save_ire != NULL) { 8250 ASSERT(save_ire->ire_ptpn != NULL); 8251 IRB_REFRELE(save_ire->ire_bucket); 8252 ire_refrele(save_ire); 8253 save_ire = NULL; 8254 } 8255 if (fire != NULL) { 8256 ire_refrele(fire); 8257 fire = NULL; 8258 } 8259 8260 /* 8261 * the resolution loop is re-entered if this 8262 * was requested through flags and if we 8263 * actually are in a multirouting case. 8264 */ 8265 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8266 boolean_t need_resolve = 8267 ire_multirt_need_resolve(ipha_dst); 8268 if (!need_resolve) { 8269 MULTIRT_DEBUG_UNTAG(copy_mp); 8270 freemsg(copy_mp); 8271 copy_mp = NULL; 8272 } else { 8273 /* 8274 * ipif_lookup_group() calls 8275 * ire_lookup_multi() that uses 8276 * ire_ftable_lookup() to find 8277 * an IRE_INTERFACE for the group. 8278 * In the multirt case, 8279 * ire_lookup_multi() then invokes 8280 * ire_multirt_lookup() to find 8281 * the next resolvable ire. 8282 * As a result, we obtain an new 8283 * interface, derived from the 8284 * next ire. 8285 */ 8286 ipif_refrele(ipif); 8287 ipif = ipif_lookup_group(ipha_dst, 8288 zoneid); 8289 ip2dbg(("ip_newroute_ipif: " 8290 "multirt dst %08x, ipif %p\n", 8291 htonl(dst), (void *)ipif)); 8292 if (ipif != NULL) { 8293 mp = copy_mp; 8294 copy_mp = NULL; 8295 multirt_resolve_next = B_TRUE; 8296 continue; 8297 } else { 8298 freemsg(copy_mp); 8299 } 8300 } 8301 } 8302 if (ipif != NULL) 8303 ipif_refrele(ipif); 8304 ill_refrele(dst_ill); 8305 ipif_refrele(src_ipif); 8306 return; 8307 } 8308 case IRE_IF_RESOLVER: 8309 /* 8310 * We can't build an IRE_CACHE yet, but at least 8311 * we found a resolver that can help. 8312 */ 8313 res_mp = dst_ill->ill_resolver_mp; 8314 if (!OK_RESOLVER_MP(res_mp)) 8315 break; 8316 8317 /* 8318 * We obtain a partial IRE_CACHE which we will pass 8319 * along with the resolver query. When the response 8320 * comes back it will be there ready for us to add. 8321 * The new ire inherits the IRE_OFFSUBNET flags 8322 * and source address, if this was requested. 8323 * The ire_max_frag is atomically set under the 8324 * irebucket lock in ire_add_v[46]. Only in the 8325 * case of IRE_MARK_NOADD, we set it here itself. 8326 */ 8327 ire = ire_create_mp( 8328 (uchar_t *)&dst, /* dest address */ 8329 (uchar_t *)&ip_g_all_ones, /* mask */ 8330 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8331 NULL, /* gateway address */ 8332 NULL, /* no in_src_addr */ 8333 (ire_marks & IRE_MARK_NOADD) ? 8334 ipif->ipif_mtu : 0, /* max_frag */ 8335 NULL, /* Fast path header */ 8336 dst_ill->ill_rq, /* recv-from queue */ 8337 dst_ill->ill_wq, /* send-to queue */ 8338 IRE_CACHE, 8339 res_mp, 8340 src_ipif, 8341 NULL, 8342 (save_ire != NULL ? save_ire->ire_mask : 0), 8343 (fire != NULL) ? /* Parent handle */ 8344 fire->ire_phandle : 0, 8345 ihandle, /* Interface handle */ 8346 (fire != NULL) ? /* flags if any */ 8347 (fire->ire_flags & 8348 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8349 (save_ire == NULL ? &ire_uinfo_null : 8350 &save_ire->ire_uinfo)); 8351 8352 if (save_ire != NULL) { 8353 ire_refrele(save_ire); 8354 save_ire = NULL; 8355 } 8356 if (ire == NULL) 8357 break; 8358 8359 ire->ire_marks |= ire_marks; 8360 /* 8361 * Construct message chain for the resolver of the 8362 * form: 8363 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8364 * 8365 * NOTE : ire will be added later when the response 8366 * comes back from ARP. If the response does not 8367 * come back, ARP frees the packet. For this reason, 8368 * we can't REFHOLD the bucket of save_ire to prevent 8369 * deletions. We may not be able to REFRELE the 8370 * bucket if the response never comes back. 8371 * Thus, before adding the ire, ire_add_v4 will make 8372 * sure that the interface route does not get deleted. 8373 * This is the only case unlike ip_newroute_v6, 8374 * ip_newroute_ipif_v6 where we can always prevent 8375 * deletions because ire_add_then_send is called after 8376 * creating the IRE. 8377 * If IRE_MARK_NOADD is set, then ire_add_then_send 8378 * does not add this IRE into the IRE CACHE. 8379 */ 8380 ASSERT(ire->ire_mp != NULL); 8381 ire->ire_mp->b_cont = first_mp; 8382 /* Have saved_mp handy, for cleanup if canput fails */ 8383 saved_mp = mp; 8384 mp = ire->ire_dlureq_mp; 8385 ASSERT(mp != NULL); 8386 ire->ire_dlureq_mp = NULL; 8387 linkb(mp, ire->ire_mp); 8388 8389 /* 8390 * Fill in the source and dest addrs for the resolver. 8391 * NOTE: this depends on memory layouts imposed by 8392 * ill_init(). 8393 */ 8394 areq = (areq_t *)mp->b_rptr; 8395 addrp = (ipaddr_t *)((char *)areq + 8396 areq->areq_sender_addr_offset); 8397 *addrp = ire->ire_src_addr; 8398 addrp = (ipaddr_t *)((char *)areq + 8399 areq->areq_target_addr_offset); 8400 *addrp = dst; 8401 /* Up to the resolver. */ 8402 if (canputnext(dst_ill->ill_rq)) { 8403 putnext(dst_ill->ill_rq, mp); 8404 /* 8405 * The response will come back in ip_wput 8406 * with db_type IRE_DB_TYPE. 8407 */ 8408 } else { 8409 ire->ire_dlureq_mp = mp; 8410 mp->b_cont = NULL; 8411 ire_delete(ire); 8412 saved_mp->b_next = NULL; 8413 saved_mp->b_prev = NULL; 8414 freemsg(first_mp); 8415 ip2dbg(("ip_newroute_ipif: dropped\n")); 8416 } 8417 8418 if (fire != NULL) { 8419 ire_refrele(fire); 8420 fire = NULL; 8421 } 8422 8423 8424 /* 8425 * The resolution loop is re-entered if this was 8426 * requested through flags and we actually are 8427 * in a multirouting case. 8428 */ 8429 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8430 boolean_t need_resolve = 8431 ire_multirt_need_resolve(ipha_dst); 8432 if (!need_resolve) { 8433 MULTIRT_DEBUG_UNTAG(copy_mp); 8434 freemsg(copy_mp); 8435 copy_mp = NULL; 8436 } else { 8437 /* 8438 * ipif_lookup_group() calls 8439 * ire_lookup_multi() that uses 8440 * ire_ftable_lookup() to find 8441 * an IRE_INTERFACE for the group. 8442 * In the multirt case, 8443 * ire_lookup_multi() then invokes 8444 * ire_multirt_lookup() to find 8445 * the next resolvable ire. 8446 * As a result, we obtain an new 8447 * interface, derived from the 8448 * next ire. 8449 */ 8450 ipif_refrele(ipif); 8451 ipif = ipif_lookup_group(ipha_dst, 8452 zoneid); 8453 if (ipif != NULL) { 8454 mp = copy_mp; 8455 copy_mp = NULL; 8456 multirt_resolve_next = B_TRUE; 8457 continue; 8458 } else { 8459 freemsg(copy_mp); 8460 } 8461 } 8462 } 8463 if (ipif != NULL) 8464 ipif_refrele(ipif); 8465 ill_refrele(dst_ill); 8466 ipif_refrele(src_ipif); 8467 return; 8468 default: 8469 break; 8470 } 8471 } while (multirt_resolve_next); 8472 8473 err_ret: 8474 ip2dbg(("ip_newroute_ipif: dropped\n")); 8475 if (fire != NULL) 8476 ire_refrele(fire); 8477 ipif_refrele(ipif); 8478 /* Did this packet originate externally? */ 8479 if (dst_ill != NULL) 8480 ill_refrele(dst_ill); 8481 if (src_ipif != NULL) 8482 ipif_refrele(src_ipif); 8483 if (mp->b_prev || mp->b_next) { 8484 mp->b_next = NULL; 8485 mp->b_prev = NULL; 8486 } else { 8487 /* 8488 * Since ip_wput() isn't close to finished, we fill 8489 * in enough of the header for credible error reporting. 8490 */ 8491 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8492 /* Failed */ 8493 freemsg(first_mp); 8494 if (ire != NULL) 8495 ire_refrele(ire); 8496 return; 8497 } 8498 } 8499 /* 8500 * At this point we will have ire only if RTF_BLACKHOLE 8501 * or RTF_REJECT flags are set on the IRE. It will not 8502 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8503 */ 8504 if (ire != NULL) { 8505 if (ire->ire_flags & RTF_BLACKHOLE) { 8506 ire_refrele(ire); 8507 freemsg(first_mp); 8508 return; 8509 } 8510 ire_refrele(ire); 8511 } 8512 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8513 } 8514 8515 /* Name/Value Table Lookup Routine */ 8516 char * 8517 ip_nv_lookup(nv_t *nv, int value) 8518 { 8519 if (!nv) 8520 return (NULL); 8521 for (; nv->nv_name; nv++) { 8522 if (nv->nv_value == value) 8523 return (nv->nv_name); 8524 } 8525 return ("unknown"); 8526 } 8527 8528 /* 8529 * one day it can be patched to 1 from /etc/system for machines that have few 8530 * fast network interfaces feeding multiple cpus. 8531 */ 8532 int ill_stream_putlocks = 0; 8533 8534 /* 8535 * This is a module open, i.e. this is a control stream for access 8536 * to a DLPI device. We allocate an ill_t as the instance data in 8537 * this case. 8538 */ 8539 int 8540 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8541 { 8542 uint32_t mem_cnt; 8543 uint32_t cpu_cnt; 8544 uint32_t min_cnt; 8545 pgcnt_t mem_avail; 8546 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8547 ill_t *ill; 8548 int err; 8549 8550 /* 8551 * Prevent unprivileged processes from pushing IP so that 8552 * they can't send raw IP. 8553 */ 8554 if (secpolicy_net_rawaccess(credp) != 0) 8555 return (EPERM); 8556 8557 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8558 q->q_ptr = WR(q)->q_ptr = ill; 8559 8560 /* 8561 * ill_init initializes the ill fields and then sends down 8562 * down a DL_INFO_REQ after calling qprocson. 8563 */ 8564 err = ill_init(q, ill); 8565 if (err != 0) { 8566 mi_free(ill); 8567 q->q_ptr = NULL; 8568 WR(q)->q_ptr = NULL; 8569 return (err); 8570 } 8571 8572 /* ill_init initializes the ipsq marking this thread as writer */ 8573 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8574 /* Wait for the DL_INFO_ACK */ 8575 mutex_enter(&ill->ill_lock); 8576 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8577 /* 8578 * Return value of 0 indicates a pending signal. 8579 */ 8580 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8581 if (err == 0) { 8582 mutex_exit(&ill->ill_lock); 8583 (void) ip_close(q, 0); 8584 return (EINTR); 8585 } 8586 } 8587 mutex_exit(&ill->ill_lock); 8588 8589 /* 8590 * ip_rput_other could have set an error in ill_error on 8591 * receipt of M_ERROR. 8592 */ 8593 8594 err = ill->ill_error; 8595 if (err != 0) { 8596 (void) ip_close(q, 0); 8597 return (err); 8598 } 8599 8600 /* 8601 * ip_ire_max_bucket_cnt is sized below based on the memory 8602 * size and the cpu speed of the machine. This is upper 8603 * bounded by the compile time value of ip_ire_max_bucket_cnt 8604 * and is lower bounded by the compile time value of 8605 * ip_ire_min_bucket_cnt. Similar logic applies to 8606 * ip6_ire_max_bucket_cnt. 8607 */ 8608 mem_avail = kmem_avail(); 8609 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8610 ip_cache_table_size / sizeof (ire_t); 8611 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8612 8613 min_cnt = MIN(cpu_cnt, mem_cnt); 8614 if (min_cnt < ip_ire_min_bucket_cnt) 8615 min_cnt = ip_ire_min_bucket_cnt; 8616 if (ip_ire_max_bucket_cnt > min_cnt) { 8617 ip_ire_max_bucket_cnt = min_cnt; 8618 } 8619 8620 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8621 ip6_cache_table_size / sizeof (ire_t); 8622 min_cnt = MIN(cpu_cnt, mem_cnt); 8623 if (min_cnt < ip6_ire_min_bucket_cnt) 8624 min_cnt = ip6_ire_min_bucket_cnt; 8625 if (ip6_ire_max_bucket_cnt > min_cnt) { 8626 ip6_ire_max_bucket_cnt = min_cnt; 8627 } 8628 8629 ill->ill_credp = credp; 8630 crhold(credp); 8631 8632 mutex_enter(&ip_mi_lock); 8633 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8634 mutex_exit(&ip_mi_lock); 8635 if (err) { 8636 (void) ip_close(q, 0); 8637 return (err); 8638 } 8639 return (0); 8640 } 8641 8642 /* IP open routine. */ 8643 int 8644 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8645 { 8646 conn_t *connp; 8647 major_t maj; 8648 8649 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8650 8651 /* Allow reopen. */ 8652 if (q->q_ptr != NULL) 8653 return (0); 8654 8655 if (sflag & MODOPEN) { 8656 /* This is a module open */ 8657 return (ip_modopen(q, devp, flag, sflag, credp)); 8658 } 8659 8660 /* 8661 * We are opening as a device. This is an IP client stream, and we 8662 * allocate an conn_t as the instance data. 8663 */ 8664 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8665 connp->conn_upq = q; 8666 q->q_ptr = WR(q)->q_ptr = connp; 8667 8668 if (flag & SO_SOCKSTR) 8669 connp->conn_flags |= IPCL_SOCKET; 8670 8671 /* Minor tells us which /dev entry was opened */ 8672 if (geteminor(*devp) == IPV6_MINOR) { 8673 connp->conn_flags |= IPCL_ISV6; 8674 connp->conn_af_isv6 = B_TRUE; 8675 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8676 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8677 } else { 8678 connp->conn_af_isv6 = B_FALSE; 8679 connp->conn_pkt_isv6 = B_FALSE; 8680 } 8681 8682 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 8683 q->q_ptr = WR(q)->q_ptr = NULL; 8684 CONN_DEC_REF(connp); 8685 return (EBUSY); 8686 } 8687 8688 maj = getemajor(*devp); 8689 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8690 8691 /* 8692 * connp->conn_cred is crfree()ed in ip_close(). 8693 */ 8694 connp->conn_cred = credp; 8695 crhold(connp->conn_cred); 8696 8697 connp->conn_zoneid = getzoneid(); 8698 8699 /* 8700 * This should only happen for ndd, netstat, raw socket or other SCTP 8701 * administrative ops. In these cases, we just need a normal conn_t 8702 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8703 * an error will be returned. 8704 */ 8705 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8706 connp->conn_rq = q; 8707 connp->conn_wq = WR(q); 8708 } else { 8709 connp->conn_ulp = IPPROTO_SCTP; 8710 connp->conn_rq = connp->conn_wq = NULL; 8711 } 8712 /* Non-zero default values */ 8713 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8714 8715 /* 8716 * Make the conn globally visible to walkers 8717 */ 8718 mutex_enter(&connp->conn_lock); 8719 connp->conn_state_flags &= ~CONN_INCIPIENT; 8720 mutex_exit(&connp->conn_lock); 8721 ASSERT(connp->conn_ref == 1); 8722 8723 qprocson(q); 8724 8725 return (0); 8726 } 8727 8728 /* 8729 * Change q_qinfo based on the value of isv6. 8730 * This can not called on an ill queue. 8731 * Note that there is no race since either q_qinfo works for conn queues - it 8732 * is just an optimization to enter the best wput routine directly. 8733 */ 8734 void 8735 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8736 { 8737 ASSERT(q->q_flag & QREADR); 8738 ASSERT(WR(q)->q_next == NULL); 8739 ASSERT(q->q_ptr != NULL); 8740 8741 if (minor == IPV6_MINOR) { 8742 if (bump_mib) 8743 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8744 q->q_qinfo = &rinit_ipv6; 8745 WR(q)->q_qinfo = &winit_ipv6; 8746 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8747 } else { 8748 if (bump_mib) 8749 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8750 q->q_qinfo = &rinit; 8751 WR(q)->q_qinfo = &winit; 8752 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8753 } 8754 8755 } 8756 8757 /* 8758 * See if IPsec needs loading because of the options in mp. 8759 */ 8760 static boolean_t 8761 ipsec_opt_present(mblk_t *mp) 8762 { 8763 uint8_t *optcp, *next_optcp, *opt_endcp; 8764 struct opthdr *opt; 8765 struct T_opthdr *topt; 8766 int opthdr_len; 8767 t_uscalar_t optname, optlevel; 8768 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8769 ipsec_req_t *ipsr; 8770 8771 /* 8772 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8773 * return TRUE. 8774 */ 8775 8776 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8777 opt_endcp = optcp + tor->OPT_length; 8778 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8779 opthdr_len = sizeof (struct T_opthdr); 8780 } else { /* O_OPTMGMT_REQ */ 8781 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8782 opthdr_len = sizeof (struct opthdr); 8783 } 8784 for (; optcp < opt_endcp; optcp = next_optcp) { 8785 if (optcp + opthdr_len > opt_endcp) 8786 return (B_FALSE); /* Not enough option header. */ 8787 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8788 topt = (struct T_opthdr *)optcp; 8789 optlevel = topt->level; 8790 optname = topt->name; 8791 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8792 } else { 8793 opt = (struct opthdr *)optcp; 8794 optlevel = opt->level; 8795 optname = opt->name; 8796 next_optcp = optcp + opthdr_len + 8797 _TPI_ALIGN_OPT(opt->len); 8798 } 8799 if ((next_optcp < optcp) || /* wraparound pointer space */ 8800 ((next_optcp >= opt_endcp) && /* last option bad len */ 8801 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8802 return (B_FALSE); /* bad option buffer */ 8803 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8804 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8805 /* 8806 * Check to see if it's an all-bypass or all-zeroes 8807 * IPsec request. Don't bother loading IPsec if 8808 * the socket doesn't want to use it. (A good example 8809 * is a bypass request.) 8810 * 8811 * Basically, if any of the non-NEVER bits are set, 8812 * load IPsec. 8813 */ 8814 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8815 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8816 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8817 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8818 != 0) 8819 return (B_TRUE); 8820 } 8821 } 8822 return (B_FALSE); 8823 } 8824 8825 /* 8826 * If conn is is waiting for ipsec to finish loading, kick it. 8827 */ 8828 /* ARGSUSED */ 8829 static void 8830 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8831 { 8832 t_scalar_t optreq_prim; 8833 mblk_t *mp; 8834 cred_t *cr; 8835 int err = 0; 8836 8837 /* 8838 * This function is called, after ipsec loading is complete. 8839 * Since IP checks exclusively and atomically (i.e it prevents 8840 * ipsec load from completing until ip_optcom_req completes) 8841 * whether ipsec load is complete, there cannot be a race with IP 8842 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8843 */ 8844 mutex_enter(&connp->conn_lock); 8845 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8846 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8847 mp = connp->conn_ipsec_opt_mp; 8848 connp->conn_ipsec_opt_mp = NULL; 8849 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8850 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8851 mutex_exit(&connp->conn_lock); 8852 8853 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8854 8855 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8856 if (optreq_prim == T_OPTMGMT_REQ) { 8857 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8858 &ip_opt_obj); 8859 } else { 8860 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8861 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8862 &ip_opt_obj); 8863 } 8864 if (err != EINPROGRESS) 8865 CONN_OPER_PENDING_DONE(connp); 8866 return; 8867 } 8868 mutex_exit(&connp->conn_lock); 8869 } 8870 8871 /* 8872 * Called from the ipsec_loader thread, outside any perimeter, to tell 8873 * ip qenable any of the queues waiting for the ipsec loader to 8874 * complete. 8875 * 8876 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8877 * are done with this lock held, so it's guaranteed that none of the 8878 * links will change along the way. 8879 */ 8880 void 8881 ip_ipsec_load_complete() 8882 { 8883 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8884 } 8885 8886 /* 8887 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8888 * determines the grp on which it has to become exclusive, queues the mp 8889 * and sq draining restarts the optmgmt 8890 */ 8891 static boolean_t 8892 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8893 { 8894 conn_t *connp; 8895 8896 /* 8897 * Take IPsec requests and treat them special. 8898 */ 8899 if (ipsec_opt_present(mp)) { 8900 /* First check if IPsec is loaded. */ 8901 mutex_enter(&ipsec_loader_lock); 8902 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8903 mutex_exit(&ipsec_loader_lock); 8904 return (B_FALSE); 8905 } 8906 connp = Q_TO_CONN(q); 8907 mutex_enter(&connp->conn_lock); 8908 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8909 8910 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8911 connp->conn_ipsec_opt_mp = mp; 8912 mutex_exit(&connp->conn_lock); 8913 mutex_exit(&ipsec_loader_lock); 8914 8915 ipsec_loader_loadnow(); 8916 return (B_TRUE); 8917 } 8918 return (B_FALSE); 8919 } 8920 8921 /* 8922 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8923 * all of them are copied to the conn_t. If the req is "zero", the policy is 8924 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8925 * fields. 8926 * We keep only the latest setting of the policy and thus policy setting 8927 * is not incremental/cumulative. 8928 * 8929 * Requests to set policies with multiple alternative actions will 8930 * go through a different API. 8931 */ 8932 int 8933 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8934 { 8935 uint_t ah_req = 0; 8936 uint_t esp_req = 0; 8937 uint_t se_req = 0; 8938 ipsec_selkey_t sel; 8939 ipsec_act_t *actp = NULL; 8940 uint_t nact; 8941 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8942 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8943 ipsec_policy_root_t *pr; 8944 ipsec_policy_head_t *ph; 8945 int fam; 8946 boolean_t is_pol_reset; 8947 int error = 0; 8948 8949 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8950 8951 /* 8952 * The IP_SEC_OPT option does not allow variable length parameters, 8953 * hence a request cannot be NULL. 8954 */ 8955 if (req == NULL) 8956 return (EINVAL); 8957 8958 ah_req = req->ipsr_ah_req; 8959 esp_req = req->ipsr_esp_req; 8960 se_req = req->ipsr_self_encap_req; 8961 8962 /* 8963 * Are we dealing with a request to reset the policy (i.e. 8964 * zero requests). 8965 */ 8966 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8967 (esp_req & REQ_MASK) == 0 && 8968 (se_req & REQ_MASK) == 0); 8969 8970 if (!is_pol_reset) { 8971 /* 8972 * If we couldn't load IPsec, fail with "protocol 8973 * not supported". 8974 * IPsec may not have been loaded for a request with zero 8975 * policies, so we don't fail in this case. 8976 */ 8977 mutex_enter(&ipsec_loader_lock); 8978 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8979 mutex_exit(&ipsec_loader_lock); 8980 return (EPROTONOSUPPORT); 8981 } 8982 mutex_exit(&ipsec_loader_lock); 8983 8984 /* 8985 * Test for valid requests. Invalid algorithms 8986 * need to be tested by IPSEC code because new 8987 * algorithms can be added dynamically. 8988 */ 8989 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8990 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8991 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8992 return (EINVAL); 8993 } 8994 8995 /* 8996 * Only privileged users can issue these 8997 * requests. 8998 */ 8999 if (((ah_req & IPSEC_PREF_NEVER) || 9000 (esp_req & IPSEC_PREF_NEVER) || 9001 (se_req & IPSEC_PREF_NEVER)) && 9002 secpolicy_net_config(cr, B_FALSE) != 0) { 9003 return (EPERM); 9004 } 9005 9006 /* 9007 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9008 * are mutually exclusive. 9009 */ 9010 if (((ah_req & REQ_MASK) == REQ_MASK) || 9011 ((esp_req & REQ_MASK) == REQ_MASK) || 9012 ((se_req & REQ_MASK) == REQ_MASK)) { 9013 /* Both of them are set */ 9014 return (EINVAL); 9015 } 9016 } 9017 9018 mutex_enter(&connp->conn_lock); 9019 9020 /* 9021 * If we have already cached policies in ip_bind_connected*(), don't 9022 * let them change now. We cache policies for connections 9023 * whose src,dst [addr, port] is known. The exception to this is 9024 * tunnels. Tunnels are allowed to change policies after having 9025 * become fully bound. 9026 */ 9027 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9028 mutex_exit(&connp->conn_lock); 9029 return (EINVAL); 9030 } 9031 9032 /* 9033 * We have a zero policies, reset the connection policy if already 9034 * set. This will cause the connection to inherit the 9035 * global policy, if any. 9036 */ 9037 if (is_pol_reset) { 9038 if (connp->conn_policy != NULL) { 9039 IPPH_REFRELE(connp->conn_policy); 9040 connp->conn_policy = NULL; 9041 } 9042 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9043 connp->conn_in_enforce_policy = B_FALSE; 9044 connp->conn_out_enforce_policy = B_FALSE; 9045 mutex_exit(&connp->conn_lock); 9046 return (0); 9047 } 9048 9049 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9050 if (ph == NULL) 9051 goto enomem; 9052 9053 ipsec_actvec_from_req(req, &actp, &nact); 9054 if (actp == NULL) 9055 goto enomem; 9056 9057 /* 9058 * Always allocate IPv4 policy entries, since they can also 9059 * apply to ipv6 sockets being used in ipv4-compat mode. 9060 */ 9061 bzero(&sel, sizeof (sel)); 9062 sel.ipsl_valid = IPSL_IPV4; 9063 9064 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9065 if (pin4 == NULL) 9066 goto enomem; 9067 9068 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9069 if (pout4 == NULL) 9070 goto enomem; 9071 9072 if (connp->conn_pkt_isv6) { 9073 /* 9074 * We're looking at a v6 socket, also allocate the 9075 * v6-specific entries... 9076 */ 9077 sel.ipsl_valid = IPSL_IPV6; 9078 pin6 = ipsec_policy_create(&sel, actp, nact, 9079 IPSEC_PRIO_SOCKET); 9080 if (pin6 == NULL) 9081 goto enomem; 9082 9083 pout6 = ipsec_policy_create(&sel, actp, nact, 9084 IPSEC_PRIO_SOCKET); 9085 if (pout6 == NULL) 9086 goto enomem; 9087 9088 /* 9089 * .. and file them away in the right place. 9090 */ 9091 fam = IPSEC_AF_V6; 9092 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9093 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9094 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9095 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9096 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9097 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9098 } 9099 9100 ipsec_actvec_free(actp, nact); 9101 9102 /* 9103 * File the v4 policies. 9104 */ 9105 fam = IPSEC_AF_V4; 9106 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9107 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9108 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9109 9110 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9111 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9112 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9113 9114 /* 9115 * If the requests need security, set enforce_policy. 9116 * If the requests are IPSEC_PREF_NEVER, one should 9117 * still set conn_out_enforce_policy so that an ipsec_out 9118 * gets attached in ip_wput. This is needed so that 9119 * for connections that we don't cache policy in ip_bind, 9120 * if global policy matches in ip_wput_attach_policy, we 9121 * don't wrongly inherit global policy. Similarly, we need 9122 * to set conn_in_enforce_policy also so that we don't verify 9123 * policy wrongly. 9124 */ 9125 if ((ah_req & REQ_MASK) != 0 || 9126 (esp_req & REQ_MASK) != 0 || 9127 (se_req & REQ_MASK) != 0) { 9128 connp->conn_in_enforce_policy = B_TRUE; 9129 connp->conn_out_enforce_policy = B_TRUE; 9130 connp->conn_flags |= IPCL_CHECK_POLICY; 9131 } 9132 9133 /* 9134 * Tunnels are allowed to set policy after having been fully bound. 9135 * If that's the case, cache policy here. 9136 */ 9137 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9138 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9139 9140 mutex_exit(&connp->conn_lock); 9141 return (error); 9142 #undef REQ_MASK 9143 9144 /* 9145 * Common memory-allocation-failure exit path. 9146 */ 9147 enomem: 9148 mutex_exit(&connp->conn_lock); 9149 if (actp != NULL) 9150 ipsec_actvec_free(actp, nact); 9151 if (pin4 != NULL) 9152 IPPOL_REFRELE(pin4); 9153 if (pout4 != NULL) 9154 IPPOL_REFRELE(pout4); 9155 if (pin6 != NULL) 9156 IPPOL_REFRELE(pin6); 9157 if (pout6 != NULL) 9158 IPPOL_REFRELE(pout6); 9159 return (ENOMEM); 9160 } 9161 9162 /* 9163 * Only for options that pass in an IP addr. Currently only V4 options 9164 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9165 * So this function assumes level is IPPROTO_IP 9166 */ 9167 int 9168 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9169 mblk_t *first_mp) 9170 { 9171 ipif_t *ipif = NULL; 9172 int error; 9173 ill_t *ill; 9174 9175 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9176 9177 if (addr != INADDR_ANY || checkonly) { 9178 ASSERT(connp != NULL); 9179 if (option == IP_NEXTHOP) { 9180 ipif = 9181 ipif_lookup_onlink_addr(addr, connp->conn_zoneid); 9182 } else { 9183 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 9184 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9185 &error); 9186 } 9187 if (ipif == NULL) { 9188 if (error == EINPROGRESS) 9189 return (error); 9190 else if ((option == IP_MULTICAST_IF) || 9191 (option == IP_NEXTHOP)) 9192 return (EHOSTUNREACH); 9193 else 9194 return (EINVAL); 9195 } else if (checkonly) { 9196 if (option == IP_MULTICAST_IF) { 9197 ill = ipif->ipif_ill; 9198 /* not supported by the virtual network iface */ 9199 if (IS_VNI(ill)) { 9200 ipif_refrele(ipif); 9201 return (EINVAL); 9202 } 9203 } 9204 ipif_refrele(ipif); 9205 return (0); 9206 } 9207 ill = ipif->ipif_ill; 9208 mutex_enter(&connp->conn_lock); 9209 mutex_enter(&ill->ill_lock); 9210 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9211 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9212 mutex_exit(&ill->ill_lock); 9213 mutex_exit(&connp->conn_lock); 9214 ipif_refrele(ipif); 9215 return (option == IP_MULTICAST_IF ? 9216 EHOSTUNREACH : EINVAL); 9217 } 9218 } else { 9219 mutex_enter(&connp->conn_lock); 9220 } 9221 9222 /* None of the options below are supported on the VNI */ 9223 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9224 mutex_exit(&ill->ill_lock); 9225 mutex_exit(&connp->conn_lock); 9226 ipif_refrele(ipif); 9227 return (EINVAL); 9228 } 9229 9230 switch (option) { 9231 case IP_DONTFAILOVER_IF: 9232 /* 9233 * This option is used by in.mpathd to ensure 9234 * that IPMP probe packets only go out on the 9235 * test interfaces. in.mpathd sets this option 9236 * on the non-failover interfaces. 9237 * For backward compatibility, this option 9238 * implicitly sets IP_MULTICAST_IF, as used 9239 * be done in bind(), so that ip_wput gets 9240 * this ipif to send mcast packets. 9241 */ 9242 if (ipif != NULL) { 9243 ASSERT(addr != INADDR_ANY); 9244 connp->conn_nofailover_ill = ipif->ipif_ill; 9245 connp->conn_multicast_ipif = ipif; 9246 } else { 9247 ASSERT(addr == INADDR_ANY); 9248 connp->conn_nofailover_ill = NULL; 9249 connp->conn_multicast_ipif = NULL; 9250 } 9251 break; 9252 9253 case IP_MULTICAST_IF: 9254 connp->conn_multicast_ipif = ipif; 9255 break; 9256 case IP_NEXTHOP: 9257 connp->conn_nexthop_v4 = addr; 9258 connp->conn_nexthop_set = B_TRUE; 9259 break; 9260 } 9261 9262 if (ipif != NULL) { 9263 mutex_exit(&ill->ill_lock); 9264 mutex_exit(&connp->conn_lock); 9265 ipif_refrele(ipif); 9266 return (0); 9267 } 9268 mutex_exit(&connp->conn_lock); 9269 /* We succeded in cleared the option */ 9270 return (0); 9271 } 9272 9273 /* 9274 * For options that pass in an ifindex specifying the ill. V6 options always 9275 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9276 */ 9277 int 9278 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9279 int level, int option, mblk_t *first_mp) 9280 { 9281 ill_t *ill = NULL; 9282 int error = 0; 9283 9284 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9285 if (ifindex != 0) { 9286 ASSERT(connp != NULL); 9287 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9288 first_mp, ip_restart_optmgmt, &error); 9289 if (ill != NULL) { 9290 if (checkonly) { 9291 /* not supported by the virtual network iface */ 9292 if (IS_VNI(ill)) { 9293 ill_refrele(ill); 9294 return (EINVAL); 9295 } 9296 ill_refrele(ill); 9297 return (0); 9298 } 9299 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9300 0, NULL)) { 9301 ill_refrele(ill); 9302 ill = NULL; 9303 mutex_enter(&connp->conn_lock); 9304 goto setit; 9305 } 9306 mutex_enter(&connp->conn_lock); 9307 mutex_enter(&ill->ill_lock); 9308 if (ill->ill_state_flags & ILL_CONDEMNED) { 9309 mutex_exit(&ill->ill_lock); 9310 mutex_exit(&connp->conn_lock); 9311 ill_refrele(ill); 9312 ill = NULL; 9313 mutex_enter(&connp->conn_lock); 9314 } 9315 goto setit; 9316 } else if (error == EINPROGRESS) { 9317 return (error); 9318 } else { 9319 error = 0; 9320 } 9321 } 9322 mutex_enter(&connp->conn_lock); 9323 setit: 9324 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9325 9326 /* 9327 * The options below assume that the ILL (if any) transmits and/or 9328 * receives traffic. Neither of which is true for the virtual network 9329 * interface, so fail setting these on a VNI. 9330 */ 9331 if (IS_VNI(ill)) { 9332 ASSERT(ill != NULL); 9333 mutex_exit(&ill->ill_lock); 9334 mutex_exit(&connp->conn_lock); 9335 ill_refrele(ill); 9336 return (EINVAL); 9337 } 9338 9339 if (level == IPPROTO_IP) { 9340 switch (option) { 9341 case IP_BOUND_IF: 9342 connp->conn_incoming_ill = ill; 9343 connp->conn_outgoing_ill = ill; 9344 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9345 0 : ifindex; 9346 break; 9347 9348 case IP_XMIT_IF: 9349 /* 9350 * Similar to IP_BOUND_IF, but this only 9351 * determines the outgoing interface for 9352 * unicast packets. Also no IRE_CACHE entry 9353 * is added for the destination of the 9354 * outgoing packets. This feature is needed 9355 * for mobile IP. 9356 */ 9357 connp->conn_xmit_if_ill = ill; 9358 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9359 0 : ifindex; 9360 break; 9361 9362 case IP_MULTICAST_IF: 9363 /* 9364 * This option is an internal special. The socket 9365 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9366 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9367 * specifies an ifindex and we try first on V6 ill's. 9368 * If we don't find one, we they try using on v4 ill's 9369 * intenally and we come here. 9370 */ 9371 if (!checkonly && ill != NULL) { 9372 ipif_t *ipif; 9373 ipif = ill->ill_ipif; 9374 9375 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9376 mutex_exit(&ill->ill_lock); 9377 mutex_exit(&connp->conn_lock); 9378 ill_refrele(ill); 9379 ill = NULL; 9380 mutex_enter(&connp->conn_lock); 9381 } else { 9382 connp->conn_multicast_ipif = ipif; 9383 } 9384 } 9385 break; 9386 } 9387 } else { 9388 switch (option) { 9389 case IPV6_BOUND_IF: 9390 connp->conn_incoming_ill = ill; 9391 connp->conn_outgoing_ill = ill; 9392 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9393 0 : ifindex; 9394 break; 9395 9396 case IPV6_BOUND_PIF: 9397 /* 9398 * Limit all transmit to this ill. 9399 * Unlike IPV6_BOUND_IF, using this option 9400 * prevents load spreading and failover from 9401 * happening when the interface is part of the 9402 * group. That's why we don't need to remember 9403 * the ifindex in orig_bound_ifindex as in 9404 * IPV6_BOUND_IF. 9405 */ 9406 connp->conn_outgoing_pill = ill; 9407 break; 9408 9409 case IPV6_DONTFAILOVER_IF: 9410 /* 9411 * This option is used by in.mpathd to ensure 9412 * that IPMP probe packets only go out on the 9413 * test interfaces. in.mpathd sets this option 9414 * on the non-failover interfaces. 9415 */ 9416 connp->conn_nofailover_ill = ill; 9417 /* 9418 * For backward compatibility, this option 9419 * implicitly sets ip_multicast_ill as used in 9420 * IP_MULTICAST_IF so that ip_wput gets 9421 * this ipif to send mcast packets. 9422 */ 9423 connp->conn_multicast_ill = ill; 9424 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9425 0 : ifindex; 9426 break; 9427 9428 case IPV6_MULTICAST_IF: 9429 /* 9430 * Set conn_multicast_ill to be the IPv6 ill. 9431 * Set conn_multicast_ipif to be an IPv4 ipif 9432 * for ifindex to make IPv4 mapped addresses 9433 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9434 * Even if no IPv6 ill exists for the ifindex 9435 * we need to check for an IPv4 ifindex in order 9436 * for this to work with mapped addresses. In that 9437 * case only set conn_multicast_ipif. 9438 */ 9439 if (!checkonly) { 9440 if (ifindex == 0) { 9441 connp->conn_multicast_ill = NULL; 9442 connp->conn_orig_multicast_ifindex = 0; 9443 connp->conn_multicast_ipif = NULL; 9444 } else if (ill != NULL) { 9445 connp->conn_multicast_ill = ill; 9446 connp->conn_orig_multicast_ifindex = 9447 ifindex; 9448 } 9449 } 9450 break; 9451 } 9452 } 9453 9454 if (ill != NULL) { 9455 mutex_exit(&ill->ill_lock); 9456 mutex_exit(&connp->conn_lock); 9457 ill_refrele(ill); 9458 return (0); 9459 } 9460 mutex_exit(&connp->conn_lock); 9461 /* 9462 * We succeeded in clearing the option (ifindex == 0) or failed to 9463 * locate the ill and could not set the option (ifindex != 0) 9464 */ 9465 return (ifindex == 0 ? 0 : EINVAL); 9466 } 9467 9468 /* This routine sets socket options. */ 9469 /* ARGSUSED */ 9470 int 9471 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9472 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9473 void *dummy, cred_t *cr, mblk_t *first_mp) 9474 { 9475 int *i1 = (int *)invalp; 9476 conn_t *connp = Q_TO_CONN(q); 9477 int error = 0; 9478 boolean_t checkonly; 9479 ire_t *ire; 9480 boolean_t found; 9481 9482 switch (optset_context) { 9483 9484 case SETFN_OPTCOM_CHECKONLY: 9485 checkonly = B_TRUE; 9486 /* 9487 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9488 * inlen != 0 implies value supplied and 9489 * we have to "pretend" to set it. 9490 * inlen == 0 implies that there is no 9491 * value part in T_CHECK request and just validation 9492 * done elsewhere should be enough, we just return here. 9493 */ 9494 if (inlen == 0) { 9495 *outlenp = 0; 9496 return (0); 9497 } 9498 break; 9499 case SETFN_OPTCOM_NEGOTIATE: 9500 case SETFN_UD_NEGOTIATE: 9501 case SETFN_CONN_NEGOTIATE: 9502 checkonly = B_FALSE; 9503 break; 9504 default: 9505 /* 9506 * We should never get here 9507 */ 9508 *outlenp = 0; 9509 return (EINVAL); 9510 } 9511 9512 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9513 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9514 9515 /* 9516 * For fixed length options, no sanity check 9517 * of passed in length is done. It is assumed *_optcom_req() 9518 * routines do the right thing. 9519 */ 9520 9521 switch (level) { 9522 case SOL_SOCKET: 9523 /* 9524 * conn_lock protects the bitfields, and is used to 9525 * set the fields atomically. 9526 */ 9527 switch (name) { 9528 case SO_BROADCAST: 9529 if (!checkonly) { 9530 /* TODO: use value someplace? */ 9531 mutex_enter(&connp->conn_lock); 9532 connp->conn_broadcast = *i1 ? 1 : 0; 9533 mutex_exit(&connp->conn_lock); 9534 } 9535 break; /* goto sizeof (int) option return */ 9536 case SO_USELOOPBACK: 9537 if (!checkonly) { 9538 /* TODO: use value someplace? */ 9539 mutex_enter(&connp->conn_lock); 9540 connp->conn_loopback = *i1 ? 1 : 0; 9541 mutex_exit(&connp->conn_lock); 9542 } 9543 break; /* goto sizeof (int) option return */ 9544 case SO_DONTROUTE: 9545 if (!checkonly) { 9546 mutex_enter(&connp->conn_lock); 9547 connp->conn_dontroute = *i1 ? 1 : 0; 9548 mutex_exit(&connp->conn_lock); 9549 } 9550 break; /* goto sizeof (int) option return */ 9551 case SO_REUSEADDR: 9552 if (!checkonly) { 9553 mutex_enter(&connp->conn_lock); 9554 connp->conn_reuseaddr = *i1 ? 1 : 0; 9555 mutex_exit(&connp->conn_lock); 9556 } 9557 break; /* goto sizeof (int) option return */ 9558 case SO_PROTOTYPE: 9559 if (!checkonly) { 9560 mutex_enter(&connp->conn_lock); 9561 connp->conn_proto = *i1; 9562 mutex_exit(&connp->conn_lock); 9563 } 9564 break; /* goto sizeof (int) option return */ 9565 default: 9566 /* 9567 * "soft" error (negative) 9568 * option not handled at this level 9569 * Note: Do not modify *outlenp 9570 */ 9571 return (-EINVAL); 9572 } 9573 break; 9574 case IPPROTO_IP: 9575 switch (name) { 9576 case IP_NEXTHOP: 9577 case IP_MULTICAST_IF: 9578 case IP_DONTFAILOVER_IF: { 9579 ipaddr_t addr = *i1; 9580 9581 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9582 first_mp); 9583 if (error != 0) 9584 return (error); 9585 break; /* goto sizeof (int) option return */ 9586 } 9587 9588 case IP_MULTICAST_TTL: 9589 /* Recorded in transport above IP */ 9590 *outvalp = *invalp; 9591 *outlenp = sizeof (uchar_t); 9592 return (0); 9593 case IP_MULTICAST_LOOP: 9594 if (!checkonly) { 9595 mutex_enter(&connp->conn_lock); 9596 connp->conn_multicast_loop = *invalp ? 1 : 0; 9597 mutex_exit(&connp->conn_lock); 9598 } 9599 *outvalp = *invalp; 9600 *outlenp = sizeof (uchar_t); 9601 return (0); 9602 case IP_ADD_MEMBERSHIP: 9603 case MCAST_JOIN_GROUP: 9604 case IP_DROP_MEMBERSHIP: 9605 case MCAST_LEAVE_GROUP: { 9606 struct ip_mreq *mreqp; 9607 struct group_req *greqp; 9608 ire_t *ire; 9609 boolean_t done = B_FALSE; 9610 ipaddr_t group, ifaddr; 9611 struct sockaddr_in *sin; 9612 uint32_t *ifindexp; 9613 boolean_t mcast_opt = B_TRUE; 9614 mcast_record_t fmode; 9615 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9616 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9617 9618 switch (name) { 9619 case IP_ADD_MEMBERSHIP: 9620 mcast_opt = B_FALSE; 9621 /* FALLTHRU */ 9622 case MCAST_JOIN_GROUP: 9623 fmode = MODE_IS_EXCLUDE; 9624 optfn = ip_opt_add_group; 9625 break; 9626 9627 case IP_DROP_MEMBERSHIP: 9628 mcast_opt = B_FALSE; 9629 /* FALLTHRU */ 9630 case MCAST_LEAVE_GROUP: 9631 fmode = MODE_IS_INCLUDE; 9632 optfn = ip_opt_delete_group; 9633 break; 9634 } 9635 9636 if (mcast_opt) { 9637 greqp = (struct group_req *)i1; 9638 sin = (struct sockaddr_in *)&greqp->gr_group; 9639 if (sin->sin_family != AF_INET) { 9640 *outlenp = 0; 9641 return (ENOPROTOOPT); 9642 } 9643 group = (ipaddr_t)sin->sin_addr.s_addr; 9644 ifaddr = INADDR_ANY; 9645 ifindexp = &greqp->gr_interface; 9646 } else { 9647 mreqp = (struct ip_mreq *)i1; 9648 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9649 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9650 ifindexp = NULL; 9651 } 9652 9653 /* 9654 * In the multirouting case, we need to replicate 9655 * the request on all interfaces that will take part 9656 * in replication. We do so because multirouting is 9657 * reflective, thus we will probably receive multi- 9658 * casts on those interfaces. 9659 * The ip_multirt_apply_membership() succeeds if the 9660 * operation succeeds on at least one interface. 9661 */ 9662 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9663 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9664 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9665 if (ire != NULL) { 9666 if (ire->ire_flags & RTF_MULTIRT) { 9667 error = ip_multirt_apply_membership( 9668 optfn, ire, connp, checkonly, group, 9669 fmode, INADDR_ANY, first_mp); 9670 done = B_TRUE; 9671 } 9672 ire_refrele(ire); 9673 } 9674 if (!done) { 9675 error = optfn(connp, checkonly, group, ifaddr, 9676 ifindexp, fmode, INADDR_ANY, first_mp); 9677 } 9678 if (error) { 9679 /* 9680 * EINPROGRESS is a soft error, needs retry 9681 * so don't make *outlenp zero. 9682 */ 9683 if (error != EINPROGRESS) 9684 *outlenp = 0; 9685 return (error); 9686 } 9687 /* OK return - copy input buffer into output buffer */ 9688 if (invalp != outvalp) { 9689 /* don't trust bcopy for identical src/dst */ 9690 bcopy(invalp, outvalp, inlen); 9691 } 9692 *outlenp = inlen; 9693 return (0); 9694 } 9695 case IP_BLOCK_SOURCE: 9696 case IP_UNBLOCK_SOURCE: 9697 case IP_ADD_SOURCE_MEMBERSHIP: 9698 case IP_DROP_SOURCE_MEMBERSHIP: 9699 case MCAST_BLOCK_SOURCE: 9700 case MCAST_UNBLOCK_SOURCE: 9701 case MCAST_JOIN_SOURCE_GROUP: 9702 case MCAST_LEAVE_SOURCE_GROUP: { 9703 struct ip_mreq_source *imreqp; 9704 struct group_source_req *gsreqp; 9705 in_addr_t grp, src, ifaddr = INADDR_ANY; 9706 uint32_t ifindex = 0; 9707 mcast_record_t fmode; 9708 struct sockaddr_in *sin; 9709 ire_t *ire; 9710 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9711 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9712 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9713 9714 switch (name) { 9715 case IP_BLOCK_SOURCE: 9716 mcast_opt = B_FALSE; 9717 /* FALLTHRU */ 9718 case MCAST_BLOCK_SOURCE: 9719 fmode = MODE_IS_EXCLUDE; 9720 optfn = ip_opt_add_group; 9721 break; 9722 9723 case IP_UNBLOCK_SOURCE: 9724 mcast_opt = B_FALSE; 9725 /* FALLTHRU */ 9726 case MCAST_UNBLOCK_SOURCE: 9727 fmode = MODE_IS_EXCLUDE; 9728 optfn = ip_opt_delete_group; 9729 break; 9730 9731 case IP_ADD_SOURCE_MEMBERSHIP: 9732 mcast_opt = B_FALSE; 9733 /* FALLTHRU */ 9734 case MCAST_JOIN_SOURCE_GROUP: 9735 fmode = MODE_IS_INCLUDE; 9736 optfn = ip_opt_add_group; 9737 break; 9738 9739 case IP_DROP_SOURCE_MEMBERSHIP: 9740 mcast_opt = B_FALSE; 9741 /* FALLTHRU */ 9742 case MCAST_LEAVE_SOURCE_GROUP: 9743 fmode = MODE_IS_INCLUDE; 9744 optfn = ip_opt_delete_group; 9745 break; 9746 } 9747 9748 if (mcast_opt) { 9749 gsreqp = (struct group_source_req *)i1; 9750 if (gsreqp->gsr_group.ss_family != AF_INET) { 9751 *outlenp = 0; 9752 return (ENOPROTOOPT); 9753 } 9754 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9755 grp = (ipaddr_t)sin->sin_addr.s_addr; 9756 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9757 src = (ipaddr_t)sin->sin_addr.s_addr; 9758 ifindex = gsreqp->gsr_interface; 9759 } else { 9760 imreqp = (struct ip_mreq_source *)i1; 9761 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9762 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9763 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9764 } 9765 9766 /* 9767 * In the multirouting case, we need to replicate 9768 * the request as noted in the mcast cases above. 9769 */ 9770 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9771 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9772 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9773 if (ire != NULL) { 9774 if (ire->ire_flags & RTF_MULTIRT) { 9775 error = ip_multirt_apply_membership( 9776 optfn, ire, connp, checkonly, grp, 9777 fmode, src, first_mp); 9778 done = B_TRUE; 9779 } 9780 ire_refrele(ire); 9781 } 9782 if (!done) { 9783 error = optfn(connp, checkonly, grp, ifaddr, 9784 &ifindex, fmode, src, first_mp); 9785 } 9786 if (error != 0) { 9787 /* 9788 * EINPROGRESS is a soft error, needs retry 9789 * so don't make *outlenp zero. 9790 */ 9791 if (error != EINPROGRESS) 9792 *outlenp = 0; 9793 return (error); 9794 } 9795 /* OK return - copy input buffer into output buffer */ 9796 if (invalp != outvalp) { 9797 bcopy(invalp, outvalp, inlen); 9798 } 9799 *outlenp = inlen; 9800 return (0); 9801 } 9802 case IP_SEC_OPT: 9803 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9804 if (error != 0) { 9805 *outlenp = 0; 9806 return (error); 9807 } 9808 break; 9809 case IP_HDRINCL: 9810 case IP_OPTIONS: 9811 case T_IP_OPTIONS: 9812 case IP_TOS: 9813 case T_IP_TOS: 9814 case IP_TTL: 9815 case IP_RECVDSTADDR: 9816 case IP_RECVOPTS: 9817 /* OK return - copy input buffer into output buffer */ 9818 if (invalp != outvalp) { 9819 /* don't trust bcopy for identical src/dst */ 9820 bcopy(invalp, outvalp, inlen); 9821 } 9822 *outlenp = inlen; 9823 return (0); 9824 case IP_RECVIF: 9825 /* Retrieve the inbound interface index */ 9826 if (!checkonly) { 9827 mutex_enter(&connp->conn_lock); 9828 connp->conn_recvif = *i1 ? 1 : 0; 9829 mutex_exit(&connp->conn_lock); 9830 } 9831 break; /* goto sizeof (int) option return */ 9832 case IP_RECVSLLA: 9833 /* Retrieve the source link layer address */ 9834 if (!checkonly) { 9835 mutex_enter(&connp->conn_lock); 9836 connp->conn_recvslla = *i1 ? 1 : 0; 9837 mutex_exit(&connp->conn_lock); 9838 } 9839 break; /* goto sizeof (int) option return */ 9840 case MRT_INIT: 9841 case MRT_DONE: 9842 case MRT_ADD_VIF: 9843 case MRT_DEL_VIF: 9844 case MRT_ADD_MFC: 9845 case MRT_DEL_MFC: 9846 case MRT_ASSERT: 9847 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9848 *outlenp = 0; 9849 return (error); 9850 } 9851 error = ip_mrouter_set((int)name, q, checkonly, 9852 (uchar_t *)invalp, inlen, first_mp); 9853 if (error) { 9854 *outlenp = 0; 9855 return (error); 9856 } 9857 /* OK return - copy input buffer into output buffer */ 9858 if (invalp != outvalp) { 9859 /* don't trust bcopy for identical src/dst */ 9860 bcopy(invalp, outvalp, inlen); 9861 } 9862 *outlenp = inlen; 9863 return (0); 9864 case IP_BOUND_IF: 9865 case IP_XMIT_IF: 9866 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9867 level, name, first_mp); 9868 if (error != 0) 9869 return (error); 9870 break; /* goto sizeof (int) option return */ 9871 9872 case IP_UNSPEC_SRC: 9873 /* Allow sending with a zero source address */ 9874 if (!checkonly) { 9875 mutex_enter(&connp->conn_lock); 9876 connp->conn_unspec_src = *i1 ? 1 : 0; 9877 mutex_exit(&connp->conn_lock); 9878 } 9879 break; /* goto sizeof (int) option return */ 9880 default: 9881 /* 9882 * "soft" error (negative) 9883 * option not handled at this level 9884 * Note: Do not modify *outlenp 9885 */ 9886 return (-EINVAL); 9887 } 9888 break; 9889 case IPPROTO_IPV6: 9890 switch (name) { 9891 case IPV6_BOUND_IF: 9892 case IPV6_BOUND_PIF: 9893 case IPV6_DONTFAILOVER_IF: 9894 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9895 level, name, first_mp); 9896 if (error != 0) 9897 return (error); 9898 break; /* goto sizeof (int) option return */ 9899 9900 case IPV6_MULTICAST_IF: 9901 /* 9902 * The only possible errors are EINPROGRESS and 9903 * EINVAL. EINPROGRESS will be restarted and is not 9904 * a hard error. We call this option on both V4 and V6 9905 * If both return EINVAL, then this call returns 9906 * EINVAL. If at least one of them succeeds we 9907 * return success. 9908 */ 9909 found = B_FALSE; 9910 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9911 level, name, first_mp); 9912 if (error == EINPROGRESS) 9913 return (error); 9914 if (error == 0) 9915 found = B_TRUE; 9916 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9917 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9918 if (error == 0) 9919 found = B_TRUE; 9920 if (!found) 9921 return (error); 9922 break; /* goto sizeof (int) option return */ 9923 9924 case IPV6_MULTICAST_HOPS: 9925 /* Recorded in transport above IP */ 9926 break; /* goto sizeof (int) option return */ 9927 case IPV6_MULTICAST_LOOP: 9928 if (!checkonly) { 9929 mutex_enter(&connp->conn_lock); 9930 connp->conn_multicast_loop = *i1; 9931 mutex_exit(&connp->conn_lock); 9932 } 9933 break; /* goto sizeof (int) option return */ 9934 case IPV6_JOIN_GROUP: 9935 case MCAST_JOIN_GROUP: 9936 case IPV6_LEAVE_GROUP: 9937 case MCAST_LEAVE_GROUP: { 9938 struct ipv6_mreq *ip_mreqp; 9939 struct group_req *greqp; 9940 ire_t *ire; 9941 boolean_t done = B_FALSE; 9942 in6_addr_t groupv6; 9943 uint32_t ifindex; 9944 boolean_t mcast_opt = B_TRUE; 9945 mcast_record_t fmode; 9946 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9947 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9948 9949 switch (name) { 9950 case IPV6_JOIN_GROUP: 9951 mcast_opt = B_FALSE; 9952 /* FALLTHRU */ 9953 case MCAST_JOIN_GROUP: 9954 fmode = MODE_IS_EXCLUDE; 9955 optfn = ip_opt_add_group_v6; 9956 break; 9957 9958 case IPV6_LEAVE_GROUP: 9959 mcast_opt = B_FALSE; 9960 /* FALLTHRU */ 9961 case MCAST_LEAVE_GROUP: 9962 fmode = MODE_IS_INCLUDE; 9963 optfn = ip_opt_delete_group_v6; 9964 break; 9965 } 9966 9967 if (mcast_opt) { 9968 struct sockaddr_in *sin; 9969 struct sockaddr_in6 *sin6; 9970 greqp = (struct group_req *)i1; 9971 if (greqp->gr_group.ss_family == AF_INET) { 9972 sin = (struct sockaddr_in *) 9973 &(greqp->gr_group); 9974 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9975 &groupv6); 9976 } else { 9977 sin6 = (struct sockaddr_in6 *) 9978 &(greqp->gr_group); 9979 groupv6 = sin6->sin6_addr; 9980 } 9981 ifindex = greqp->gr_interface; 9982 } else { 9983 ip_mreqp = (struct ipv6_mreq *)i1; 9984 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9985 ifindex = ip_mreqp->ipv6mr_interface; 9986 } 9987 /* 9988 * In the multirouting case, we need to replicate 9989 * the request on all interfaces that will take part 9990 * in replication. We do so because multirouting is 9991 * reflective, thus we will probably receive multi- 9992 * casts on those interfaces. 9993 * The ip_multirt_apply_membership_v6() succeeds if 9994 * the operation succeeds on at least one interface. 9995 */ 9996 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9997 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9998 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9999 if (ire != NULL) { 10000 if (ire->ire_flags & RTF_MULTIRT) { 10001 error = ip_multirt_apply_membership_v6( 10002 optfn, ire, connp, checkonly, 10003 &groupv6, fmode, &ipv6_all_zeros, 10004 first_mp); 10005 done = B_TRUE; 10006 } 10007 ire_refrele(ire); 10008 } 10009 if (!done) { 10010 error = optfn(connp, checkonly, &groupv6, 10011 ifindex, fmode, &ipv6_all_zeros, first_mp); 10012 } 10013 if (error) { 10014 /* 10015 * EINPROGRESS is a soft error, needs retry 10016 * so don't make *outlenp zero. 10017 */ 10018 if (error != EINPROGRESS) 10019 *outlenp = 0; 10020 return (error); 10021 } 10022 /* OK return - copy input buffer into output buffer */ 10023 if (invalp != outvalp) { 10024 /* don't trust bcopy for identical src/dst */ 10025 bcopy(invalp, outvalp, inlen); 10026 } 10027 *outlenp = inlen; 10028 return (0); 10029 } 10030 case MCAST_BLOCK_SOURCE: 10031 case MCAST_UNBLOCK_SOURCE: 10032 case MCAST_JOIN_SOURCE_GROUP: 10033 case MCAST_LEAVE_SOURCE_GROUP: { 10034 struct group_source_req *gsreqp; 10035 in6_addr_t v6grp, v6src; 10036 uint32_t ifindex; 10037 mcast_record_t fmode; 10038 ire_t *ire; 10039 boolean_t done = B_FALSE; 10040 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10041 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10042 10043 switch (name) { 10044 case MCAST_BLOCK_SOURCE: 10045 fmode = MODE_IS_EXCLUDE; 10046 optfn = ip_opt_add_group_v6; 10047 break; 10048 case MCAST_UNBLOCK_SOURCE: 10049 fmode = MODE_IS_EXCLUDE; 10050 optfn = ip_opt_delete_group_v6; 10051 break; 10052 case MCAST_JOIN_SOURCE_GROUP: 10053 fmode = MODE_IS_INCLUDE; 10054 optfn = ip_opt_add_group_v6; 10055 break; 10056 case MCAST_LEAVE_SOURCE_GROUP: 10057 fmode = MODE_IS_INCLUDE; 10058 optfn = ip_opt_delete_group_v6; 10059 break; 10060 } 10061 10062 gsreqp = (struct group_source_req *)i1; 10063 ifindex = gsreqp->gsr_interface; 10064 if (gsreqp->gsr_group.ss_family == AF_INET) { 10065 struct sockaddr_in *s; 10066 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10067 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10068 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10069 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10070 } else { 10071 struct sockaddr_in6 *s6; 10072 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10073 v6grp = s6->sin6_addr; 10074 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10075 v6src = s6->sin6_addr; 10076 } 10077 10078 /* 10079 * In the multirouting case, we need to replicate 10080 * the request as noted in the mcast cases above. 10081 */ 10082 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10083 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 10084 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10085 if (ire != NULL) { 10086 if (ire->ire_flags & RTF_MULTIRT) { 10087 error = ip_multirt_apply_membership_v6( 10088 optfn, ire, connp, checkonly, 10089 &v6grp, fmode, &v6src, first_mp); 10090 done = B_TRUE; 10091 } 10092 ire_refrele(ire); 10093 } 10094 if (!done) { 10095 error = optfn(connp, checkonly, &v6grp, 10096 ifindex, fmode, &v6src, first_mp); 10097 } 10098 if (error != 0) { 10099 /* 10100 * EINPROGRESS is a soft error, needs retry 10101 * so don't make *outlenp zero. 10102 */ 10103 if (error != EINPROGRESS) 10104 *outlenp = 0; 10105 return (error); 10106 } 10107 /* OK return - copy input buffer into output buffer */ 10108 if (invalp != outvalp) { 10109 bcopy(invalp, outvalp, inlen); 10110 } 10111 *outlenp = inlen; 10112 return (0); 10113 } 10114 case IPV6_UNICAST_HOPS: 10115 /* Recorded in transport above IP */ 10116 break; /* goto sizeof (int) option return */ 10117 case IPV6_UNSPEC_SRC: 10118 /* Allow sending with a zero source address */ 10119 if (!checkonly) { 10120 mutex_enter(&connp->conn_lock); 10121 connp->conn_unspec_src = *i1 ? 1 : 0; 10122 mutex_exit(&connp->conn_lock); 10123 } 10124 break; /* goto sizeof (int) option return */ 10125 case IPV6_RECVPKTINFO: 10126 if (!checkonly) { 10127 mutex_enter(&connp->conn_lock); 10128 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10129 mutex_exit(&connp->conn_lock); 10130 } 10131 break; /* goto sizeof (int) option return */ 10132 case IPV6_RECVTCLASS: 10133 if (!checkonly) { 10134 if (*i1 < 0 || *i1 > 1) { 10135 return (EINVAL); 10136 } 10137 mutex_enter(&connp->conn_lock); 10138 connp->conn_ipv6_recvtclass = *i1; 10139 mutex_exit(&connp->conn_lock); 10140 } 10141 break; 10142 case IPV6_RECVPATHMTU: 10143 if (!checkonly) { 10144 if (*i1 < 0 || *i1 > 1) { 10145 return (EINVAL); 10146 } 10147 mutex_enter(&connp->conn_lock); 10148 connp->conn_ipv6_recvpathmtu = *i1; 10149 mutex_exit(&connp->conn_lock); 10150 } 10151 break; 10152 case IPV6_RECVHOPLIMIT: 10153 if (!checkonly) { 10154 mutex_enter(&connp->conn_lock); 10155 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10156 mutex_exit(&connp->conn_lock); 10157 } 10158 break; /* goto sizeof (int) option return */ 10159 case IPV6_RECVHOPOPTS: 10160 if (!checkonly) { 10161 mutex_enter(&connp->conn_lock); 10162 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10163 mutex_exit(&connp->conn_lock); 10164 } 10165 break; /* goto sizeof (int) option return */ 10166 case IPV6_RECVDSTOPTS: 10167 if (!checkonly) { 10168 mutex_enter(&connp->conn_lock); 10169 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10170 mutex_exit(&connp->conn_lock); 10171 } 10172 break; /* goto sizeof (int) option return */ 10173 case IPV6_RECVRTHDR: 10174 if (!checkonly) { 10175 mutex_enter(&connp->conn_lock); 10176 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10177 mutex_exit(&connp->conn_lock); 10178 } 10179 break; /* goto sizeof (int) option return */ 10180 case IPV6_RECVRTHDRDSTOPTS: 10181 if (!checkonly) { 10182 mutex_enter(&connp->conn_lock); 10183 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10184 mutex_exit(&connp->conn_lock); 10185 } 10186 break; /* goto sizeof (int) option return */ 10187 case IPV6_PKTINFO: 10188 if (inlen == 0) 10189 return (-EINVAL); /* clearing option */ 10190 error = ip6_set_pktinfo(cr, connp, 10191 (struct in6_pktinfo *)invalp, first_mp); 10192 if (error != 0) 10193 *outlenp = 0; 10194 else 10195 *outlenp = inlen; 10196 return (error); 10197 case IPV6_NEXTHOP: { 10198 struct sockaddr_in6 *sin6; 10199 10200 /* Verify that the nexthop is reachable */ 10201 if (inlen == 0) 10202 return (-EINVAL); /* clearing option */ 10203 10204 sin6 = (struct sockaddr_in6 *)invalp; 10205 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10206 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10207 MATCH_IRE_DEFAULT); 10208 10209 if (ire == NULL) { 10210 *outlenp = 0; 10211 return (EHOSTUNREACH); 10212 } 10213 ire_refrele(ire); 10214 return (-EINVAL); 10215 } 10216 case IPV6_SEC_OPT: 10217 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10218 if (error != 0) { 10219 *outlenp = 0; 10220 return (error); 10221 } 10222 break; 10223 case IPV6_SRC_PREFERENCES: { 10224 /* 10225 * This is implemented strictly in the ip module 10226 * (here and in tcp_opt_*() to accomodate tcp 10227 * sockets). Modules above ip pass this option 10228 * down here since ip is the only one that needs to 10229 * be aware of source address preferences. 10230 * 10231 * This socket option only affects connected 10232 * sockets that haven't already bound to a specific 10233 * IPv6 address. In other words, sockets that 10234 * don't call bind() with an address other than the 10235 * unspecified address and that call connect(). 10236 * ip_bind_connected_v6() passes these preferences 10237 * to the ipif_select_source_v6() function. 10238 */ 10239 if (inlen != sizeof (uint32_t)) 10240 return (EINVAL); 10241 error = ip6_set_src_preferences(connp, 10242 *(uint32_t *)invalp); 10243 if (error != 0) { 10244 *outlenp = 0; 10245 return (error); 10246 } else { 10247 *outlenp = sizeof (uint32_t); 10248 } 10249 break; 10250 } 10251 case IPV6_V6ONLY: 10252 if (*i1 < 0 || *i1 > 1) { 10253 return (EINVAL); 10254 } 10255 mutex_enter(&connp->conn_lock); 10256 connp->conn_ipv6_v6only = *i1; 10257 mutex_exit(&connp->conn_lock); 10258 break; 10259 default: 10260 return (-EINVAL); 10261 } 10262 break; 10263 default: 10264 /* 10265 * "soft" error (negative) 10266 * option not handled at this level 10267 * Note: Do not modify *outlenp 10268 */ 10269 return (-EINVAL); 10270 } 10271 /* 10272 * Common case of return from an option that is sizeof (int) 10273 */ 10274 *(int *)outvalp = *i1; 10275 *outlenp = sizeof (int); 10276 return (0); 10277 } 10278 10279 /* 10280 * This routine gets default values of certain options whose default 10281 * values are maintained by protocol specific code 10282 */ 10283 /* ARGSUSED */ 10284 int 10285 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10286 { 10287 int *i1 = (int *)ptr; 10288 10289 switch (level) { 10290 case IPPROTO_IP: 10291 switch (name) { 10292 case IP_MULTICAST_TTL: 10293 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10294 return (sizeof (uchar_t)); 10295 case IP_MULTICAST_LOOP: 10296 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10297 return (sizeof (uchar_t)); 10298 default: 10299 return (-1); 10300 } 10301 case IPPROTO_IPV6: 10302 switch (name) { 10303 case IPV6_UNICAST_HOPS: 10304 *i1 = ipv6_def_hops; 10305 return (sizeof (int)); 10306 case IPV6_MULTICAST_HOPS: 10307 *i1 = IP_DEFAULT_MULTICAST_TTL; 10308 return (sizeof (int)); 10309 case IPV6_MULTICAST_LOOP: 10310 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10311 return (sizeof (int)); 10312 case IPV6_V6ONLY: 10313 *i1 = 1; 10314 return (sizeof (int)); 10315 default: 10316 return (-1); 10317 } 10318 default: 10319 return (-1); 10320 } 10321 /* NOTREACHED */ 10322 } 10323 10324 /* 10325 * Given a destination address and a pointer to where to put the information 10326 * this routine fills in the mtuinfo. 10327 */ 10328 int 10329 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10330 struct ip6_mtuinfo *mtuinfo) 10331 { 10332 ire_t *ire; 10333 10334 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10335 return (-1); 10336 10337 bzero(mtuinfo, sizeof (*mtuinfo)); 10338 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10339 mtuinfo->ip6m_addr.sin6_port = port; 10340 mtuinfo->ip6m_addr.sin6_addr = *in6; 10341 10342 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10343 if (ire != NULL) { 10344 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10345 ire_refrele(ire); 10346 } else { 10347 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10348 } 10349 return (sizeof (struct ip6_mtuinfo)); 10350 } 10351 10352 /* 10353 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10354 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10355 * isn't. This doesn't matter as the error checking is done properly for the 10356 * other MRT options coming in through ip_opt_set. 10357 */ 10358 int 10359 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10360 { 10361 conn_t *connp = Q_TO_CONN(q); 10362 ipsec_req_t *req = (ipsec_req_t *)ptr; 10363 10364 switch (level) { 10365 case IPPROTO_IP: 10366 switch (name) { 10367 case MRT_VERSION: 10368 case MRT_ASSERT: 10369 (void) ip_mrouter_get(name, q, ptr); 10370 return (sizeof (int)); 10371 case IP_SEC_OPT: 10372 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10373 case IP_NEXTHOP: 10374 if (connp->conn_nexthop_set) { 10375 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10376 return (sizeof (ipaddr_t)); 10377 } else 10378 return (0); 10379 default: 10380 break; 10381 } 10382 break; 10383 case IPPROTO_IPV6: 10384 switch (name) { 10385 case IPV6_SEC_OPT: 10386 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10387 case IPV6_SRC_PREFERENCES: { 10388 return (ip6_get_src_preferences(connp, 10389 (uint32_t *)ptr)); 10390 } 10391 case IPV6_V6ONLY: 10392 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10393 return (sizeof (int)); 10394 case IPV6_PATHMTU: 10395 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10396 (struct ip6_mtuinfo *)ptr)); 10397 default: 10398 break; 10399 } 10400 break; 10401 default: 10402 break; 10403 } 10404 return (-1); 10405 } 10406 10407 /* Named Dispatch routine to get a current value out of our parameter table. */ 10408 /* ARGSUSED */ 10409 static int 10410 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10411 { 10412 ipparam_t *ippa = (ipparam_t *)cp; 10413 10414 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10415 return (0); 10416 } 10417 10418 /* ARGSUSED */ 10419 static int 10420 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10421 { 10422 10423 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10424 return (0); 10425 } 10426 10427 /* 10428 * Set ip{,6}_forwarding values. This means walking through all of the 10429 * ill's and toggling their forwarding values. 10430 */ 10431 /* ARGSUSED */ 10432 static int 10433 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10434 { 10435 long new_value; 10436 int *forwarding_value = (int *)cp; 10437 ill_t *walker; 10438 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10439 ill_walk_context_t ctx; 10440 10441 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10442 new_value < 0 || new_value > 1) { 10443 return (EINVAL); 10444 } 10445 10446 *forwarding_value = new_value; 10447 10448 /* 10449 * Regardless of the current value of ip_forwarding, set all per-ill 10450 * values of ip_forwarding to the value being set. 10451 * 10452 * Bring all the ill's up to date with the new global value. 10453 */ 10454 rw_enter(&ill_g_lock, RW_READER); 10455 10456 if (isv6) 10457 walker = ILL_START_WALK_V6(&ctx); 10458 else 10459 walker = ILL_START_WALK_V4(&ctx); 10460 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10461 (void) ill_forward_set(q, mp, (new_value != 0), 10462 (caddr_t)walker); 10463 } 10464 rw_exit(&ill_g_lock); 10465 10466 return (0); 10467 } 10468 10469 /* 10470 * Walk through the param array specified registering each element with the 10471 * Named Dispatch handler. This is called only during init. So it is ok 10472 * not to acquire any locks 10473 */ 10474 static boolean_t 10475 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10476 ipndp_t *ipnd, size_t ipnd_cnt) 10477 { 10478 for (; ippa_cnt-- > 0; ippa++) { 10479 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10480 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10481 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10482 nd_free(&ip_g_nd); 10483 return (B_FALSE); 10484 } 10485 } 10486 } 10487 10488 for (; ipnd_cnt-- > 0; ipnd++) { 10489 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10490 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10491 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10492 ipnd->ip_ndp_data)) { 10493 nd_free(&ip_g_nd); 10494 return (B_FALSE); 10495 } 10496 } 10497 } 10498 10499 return (B_TRUE); 10500 } 10501 10502 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10503 /* ARGSUSED */ 10504 static int 10505 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10506 { 10507 long new_value; 10508 ipparam_t *ippa = (ipparam_t *)cp; 10509 10510 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10511 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10512 return (EINVAL); 10513 } 10514 ippa->ip_param_value = new_value; 10515 return (0); 10516 } 10517 10518 /* 10519 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10520 * When an ipf is passed here for the first time, if 10521 * we already have in-order fragments on the queue, we convert from the fast- 10522 * path reassembly scheme to the hard-case scheme. From then on, additional 10523 * fragments are reassembled here. We keep track of the start and end offsets 10524 * of each piece, and the number of holes in the chain. When the hole count 10525 * goes to zero, we are done! 10526 * 10527 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10528 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10529 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10530 * after the call to ip_reassemble(). 10531 */ 10532 int 10533 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10534 size_t msg_len) 10535 { 10536 uint_t end; 10537 mblk_t *next_mp; 10538 mblk_t *mp1; 10539 uint_t offset; 10540 boolean_t incr_dups = B_TRUE; 10541 boolean_t offset_zero_seen = B_FALSE; 10542 boolean_t pkt_boundary_checked = B_FALSE; 10543 10544 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10545 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10546 10547 /* Add in byte count */ 10548 ipf->ipf_count += msg_len; 10549 if (ipf->ipf_end) { 10550 /* 10551 * We were part way through in-order reassembly, but now there 10552 * is a hole. We walk through messages already queued, and 10553 * mark them for hard case reassembly. We know that up till 10554 * now they were in order starting from offset zero. 10555 */ 10556 offset = 0; 10557 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10558 IP_REASS_SET_START(mp1, offset); 10559 if (offset == 0) { 10560 ASSERT(ipf->ipf_nf_hdr_len != 0); 10561 offset = -ipf->ipf_nf_hdr_len; 10562 } 10563 offset += mp1->b_wptr - mp1->b_rptr; 10564 IP_REASS_SET_END(mp1, offset); 10565 } 10566 /* One hole at the end. */ 10567 ipf->ipf_hole_cnt = 1; 10568 /* Brand it as a hard case, forever. */ 10569 ipf->ipf_end = 0; 10570 } 10571 /* Walk through all the new pieces. */ 10572 do { 10573 end = start + (mp->b_wptr - mp->b_rptr); 10574 /* 10575 * If start is 0, decrease 'end' only for the first mblk of 10576 * the fragment. Otherwise 'end' can get wrong value in the 10577 * second pass of the loop if first mblk is exactly the 10578 * size of ipf_nf_hdr_len. 10579 */ 10580 if (start == 0 && !offset_zero_seen) { 10581 /* First segment */ 10582 ASSERT(ipf->ipf_nf_hdr_len != 0); 10583 end -= ipf->ipf_nf_hdr_len; 10584 offset_zero_seen = B_TRUE; 10585 } 10586 next_mp = mp->b_cont; 10587 /* 10588 * We are checking to see if there is any interesing data 10589 * to process. If there isn't and the mblk isn't the 10590 * one which carries the unfragmentable header then we 10591 * drop it. It's possible to have just the unfragmentable 10592 * header come through without any data. That needs to be 10593 * saved. 10594 * 10595 * If the assert at the top of this function holds then the 10596 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10597 * is infrequently traveled enough that the test is left in 10598 * to protect against future code changes which break that 10599 * invariant. 10600 */ 10601 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10602 /* Empty. Blast it. */ 10603 IP_REASS_SET_START(mp, 0); 10604 IP_REASS_SET_END(mp, 0); 10605 /* 10606 * If the ipf points to the mblk we are about to free, 10607 * update ipf to point to the next mblk (or NULL 10608 * if none). 10609 */ 10610 if (ipf->ipf_mp->b_cont == mp) 10611 ipf->ipf_mp->b_cont = next_mp; 10612 freeb(mp); 10613 continue; 10614 } 10615 mp->b_cont = NULL; 10616 IP_REASS_SET_START(mp, start); 10617 IP_REASS_SET_END(mp, end); 10618 if (!ipf->ipf_tail_mp) { 10619 ipf->ipf_tail_mp = mp; 10620 ipf->ipf_mp->b_cont = mp; 10621 if (start == 0 || !more) { 10622 ipf->ipf_hole_cnt = 1; 10623 /* 10624 * if the first fragment comes in more than one 10625 * mblk, this loop will be executed for each 10626 * mblk. Need to adjust hole count so exiting 10627 * this routine will leave hole count at 1. 10628 */ 10629 if (next_mp) 10630 ipf->ipf_hole_cnt++; 10631 } else 10632 ipf->ipf_hole_cnt = 2; 10633 continue; 10634 } else if (ipf->ipf_last_frag_seen && !more && 10635 !pkt_boundary_checked) { 10636 /* 10637 * We check datagram boundary only if this fragment 10638 * claims to be the last fragment and we have seen a 10639 * last fragment in the past too. We do this only 10640 * once for a given fragment. 10641 * 10642 * start cannot be 0 here as fragments with start=0 10643 * and MF=0 gets handled as a complete packet. These 10644 * fragments should not reach here. 10645 */ 10646 10647 if (start + msgdsize(mp) != 10648 IP_REASS_END(ipf->ipf_tail_mp)) { 10649 /* 10650 * We have two fragments both of which claim 10651 * to be the last fragment but gives conflicting 10652 * information about the whole datagram size. 10653 * Something fishy is going on. Drop the 10654 * fragment and free up the reassembly list. 10655 */ 10656 return (IP_REASS_FAILED); 10657 } 10658 10659 /* 10660 * We shouldn't come to this code block again for this 10661 * particular fragment. 10662 */ 10663 pkt_boundary_checked = B_TRUE; 10664 } 10665 10666 /* New stuff at or beyond tail? */ 10667 offset = IP_REASS_END(ipf->ipf_tail_mp); 10668 if (start >= offset) { 10669 if (ipf->ipf_last_frag_seen) { 10670 /* current fragment is beyond last fragment */ 10671 return (IP_REASS_FAILED); 10672 } 10673 /* Link it on end. */ 10674 ipf->ipf_tail_mp->b_cont = mp; 10675 ipf->ipf_tail_mp = mp; 10676 if (more) { 10677 if (start != offset) 10678 ipf->ipf_hole_cnt++; 10679 } else if (start == offset && next_mp == NULL) 10680 ipf->ipf_hole_cnt--; 10681 continue; 10682 } 10683 mp1 = ipf->ipf_mp->b_cont; 10684 offset = IP_REASS_START(mp1); 10685 /* New stuff at the front? */ 10686 if (start < offset) { 10687 if (start == 0) { 10688 if (end >= offset) { 10689 /* Nailed the hole at the begining. */ 10690 ipf->ipf_hole_cnt--; 10691 } 10692 } else if (end < offset) { 10693 /* 10694 * A hole, stuff, and a hole where there used 10695 * to be just a hole. 10696 */ 10697 ipf->ipf_hole_cnt++; 10698 } 10699 mp->b_cont = mp1; 10700 /* Check for overlap. */ 10701 while (end > offset) { 10702 if (end < IP_REASS_END(mp1)) { 10703 mp->b_wptr -= end - offset; 10704 IP_REASS_SET_END(mp, offset); 10705 if (ill->ill_isv6) { 10706 BUMP_MIB(ill->ill_ip6_mib, 10707 ipv6ReasmPartDups); 10708 } else { 10709 BUMP_MIB(&ip_mib, 10710 ipReasmPartDups); 10711 } 10712 break; 10713 } 10714 /* Did we cover another hole? */ 10715 if ((mp1->b_cont && 10716 IP_REASS_END(mp1) != 10717 IP_REASS_START(mp1->b_cont) && 10718 end >= IP_REASS_START(mp1->b_cont)) || 10719 (!ipf->ipf_last_frag_seen && !more)) { 10720 ipf->ipf_hole_cnt--; 10721 } 10722 /* Clip out mp1. */ 10723 if ((mp->b_cont = mp1->b_cont) == NULL) { 10724 /* 10725 * After clipping out mp1, this guy 10726 * is now hanging off the end. 10727 */ 10728 ipf->ipf_tail_mp = mp; 10729 } 10730 IP_REASS_SET_START(mp1, 0); 10731 IP_REASS_SET_END(mp1, 0); 10732 /* Subtract byte count */ 10733 ipf->ipf_count -= mp1->b_datap->db_lim - 10734 mp1->b_datap->db_base; 10735 freeb(mp1); 10736 if (ill->ill_isv6) { 10737 BUMP_MIB(ill->ill_ip6_mib, 10738 ipv6ReasmPartDups); 10739 } else { 10740 BUMP_MIB(&ip_mib, ipReasmPartDups); 10741 } 10742 mp1 = mp->b_cont; 10743 if (!mp1) 10744 break; 10745 offset = IP_REASS_START(mp1); 10746 } 10747 ipf->ipf_mp->b_cont = mp; 10748 continue; 10749 } 10750 /* 10751 * The new piece starts somewhere between the start of the head 10752 * and before the end of the tail. 10753 */ 10754 for (; mp1; mp1 = mp1->b_cont) { 10755 offset = IP_REASS_END(mp1); 10756 if (start < offset) { 10757 if (end <= offset) { 10758 /* Nothing new. */ 10759 IP_REASS_SET_START(mp, 0); 10760 IP_REASS_SET_END(mp, 0); 10761 /* Subtract byte count */ 10762 ipf->ipf_count -= mp->b_datap->db_lim - 10763 mp->b_datap->db_base; 10764 if (incr_dups) { 10765 ipf->ipf_num_dups++; 10766 incr_dups = B_FALSE; 10767 } 10768 freeb(mp); 10769 if (ill->ill_isv6) { 10770 BUMP_MIB(ill->ill_ip6_mib, 10771 ipv6ReasmDuplicates); 10772 } else { 10773 BUMP_MIB(&ip_mib, 10774 ipReasmDuplicates); 10775 } 10776 break; 10777 } 10778 /* 10779 * Trim redundant stuff off beginning of new 10780 * piece. 10781 */ 10782 IP_REASS_SET_START(mp, offset); 10783 mp->b_rptr += offset - start; 10784 if (ill->ill_isv6) { 10785 BUMP_MIB(ill->ill_ip6_mib, 10786 ipv6ReasmPartDups); 10787 } else { 10788 BUMP_MIB(&ip_mib, ipReasmPartDups); 10789 } 10790 start = offset; 10791 if (!mp1->b_cont) { 10792 /* 10793 * After trimming, this guy is now 10794 * hanging off the end. 10795 */ 10796 mp1->b_cont = mp; 10797 ipf->ipf_tail_mp = mp; 10798 if (!more) { 10799 ipf->ipf_hole_cnt--; 10800 } 10801 break; 10802 } 10803 } 10804 if (start >= IP_REASS_START(mp1->b_cont)) 10805 continue; 10806 /* Fill a hole */ 10807 if (start > offset) 10808 ipf->ipf_hole_cnt++; 10809 mp->b_cont = mp1->b_cont; 10810 mp1->b_cont = mp; 10811 mp1 = mp->b_cont; 10812 offset = IP_REASS_START(mp1); 10813 if (end >= offset) { 10814 ipf->ipf_hole_cnt--; 10815 /* Check for overlap. */ 10816 while (end > offset) { 10817 if (end < IP_REASS_END(mp1)) { 10818 mp->b_wptr -= end - offset; 10819 IP_REASS_SET_END(mp, offset); 10820 /* 10821 * TODO we might bump 10822 * this up twice if there is 10823 * overlap at both ends. 10824 */ 10825 if (ill->ill_isv6) { 10826 BUMP_MIB( 10827 ill->ill_ip6_mib, 10828 ipv6ReasmPartDups); 10829 } else { 10830 BUMP_MIB(&ip_mib, 10831 ipReasmPartDups); 10832 } 10833 break; 10834 } 10835 /* Did we cover another hole? */ 10836 if ((mp1->b_cont && 10837 IP_REASS_END(mp1) 10838 != IP_REASS_START(mp1->b_cont) && 10839 end >= 10840 IP_REASS_START(mp1->b_cont)) || 10841 (!ipf->ipf_last_frag_seen && 10842 !more)) { 10843 ipf->ipf_hole_cnt--; 10844 } 10845 /* Clip out mp1. */ 10846 if ((mp->b_cont = mp1->b_cont) == 10847 NULL) { 10848 /* 10849 * After clipping out mp1, 10850 * this guy is now hanging 10851 * off the end. 10852 */ 10853 ipf->ipf_tail_mp = mp; 10854 } 10855 IP_REASS_SET_START(mp1, 0); 10856 IP_REASS_SET_END(mp1, 0); 10857 /* Subtract byte count */ 10858 ipf->ipf_count -= 10859 mp1->b_datap->db_lim - 10860 mp1->b_datap->db_base; 10861 freeb(mp1); 10862 if (ill->ill_isv6) { 10863 BUMP_MIB(ill->ill_ip6_mib, 10864 ipv6ReasmPartDups); 10865 } else { 10866 BUMP_MIB(&ip_mib, 10867 ipReasmPartDups); 10868 } 10869 mp1 = mp->b_cont; 10870 if (!mp1) 10871 break; 10872 offset = IP_REASS_START(mp1); 10873 } 10874 } 10875 break; 10876 } 10877 } while (start = end, mp = next_mp); 10878 10879 /* Fragment just processed could be the last one. Remember this fact */ 10880 if (!more) 10881 ipf->ipf_last_frag_seen = B_TRUE; 10882 10883 /* Still got holes? */ 10884 if (ipf->ipf_hole_cnt) 10885 return (IP_REASS_PARTIAL); 10886 /* Clean up overloaded fields to avoid upstream disasters. */ 10887 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10888 IP_REASS_SET_START(mp1, 0); 10889 IP_REASS_SET_END(mp1, 0); 10890 } 10891 return (IP_REASS_COMPLETE); 10892 } 10893 10894 /* 10895 * ipsec processing for the fast path, used for input UDP Packets 10896 */ 10897 static boolean_t 10898 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10899 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10900 { 10901 uint32_t ill_index; 10902 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10903 10904 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10905 /* The ill_index of the incoming ILL */ 10906 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10907 10908 /* pass packet up to the transport */ 10909 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10910 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10911 NULL, mctl_present); 10912 if (*first_mpp == NULL) { 10913 return (B_FALSE); 10914 } 10915 } 10916 10917 /* Initiate IPPF processing for fastpath UDP */ 10918 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10919 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10920 if (*mpp == NULL) { 10921 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10922 "deferred/dropped during IPPF processing\n")); 10923 return (B_FALSE); 10924 } 10925 } 10926 /* 10927 * We make the checks as below since we are in the fast path 10928 * and want to minimize the number of checks if the IP_RECVIF and/or 10929 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10930 */ 10931 if (connp->conn_recvif || connp->conn_recvslla || 10932 connp->conn_ipv6_recvpktinfo) { 10933 if (connp->conn_recvif || 10934 connp->conn_ipv6_recvpktinfo) { 10935 in_flags = IPF_RECVIF; 10936 } 10937 if (connp->conn_recvslla) { 10938 in_flags |= IPF_RECVSLLA; 10939 } 10940 /* 10941 * since in_flags are being set ill will be 10942 * referenced in ip_add_info, so it better not 10943 * be NULL. 10944 */ 10945 /* 10946 * the actual data will be contained in b_cont 10947 * upon successful return of the following call. 10948 * If the call fails then the original mblk is 10949 * returned. 10950 */ 10951 *mpp = ip_add_info(*mpp, ill, in_flags); 10952 } 10953 10954 return (B_TRUE); 10955 } 10956 10957 /* 10958 * Fragmentation reassembly. Each ILL has a hash table for 10959 * queuing packets undergoing reassembly for all IPIFs 10960 * associated with the ILL. The hash is based on the packet 10961 * IP ident field. The ILL frag hash table was allocated 10962 * as a timer block at the time the ILL was created. Whenever 10963 * there is anything on the reassembly queue, the timer will 10964 * be running. Returns B_TRUE if successful else B_FALSE; 10965 * frees mp on failure. 10966 */ 10967 static boolean_t 10968 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 10969 uint32_t *cksum_val, uint16_t *cksum_flags) 10970 { 10971 uint32_t frag_offset_flags; 10972 ill_t *ill = (ill_t *)q->q_ptr; 10973 mblk_t *mp = *mpp; 10974 mblk_t *t_mp; 10975 ipaddr_t dst; 10976 uint8_t proto = ipha->ipha_protocol; 10977 uint32_t sum_val; 10978 uint16_t sum_flags; 10979 ipf_t *ipf; 10980 ipf_t **ipfp; 10981 ipfb_t *ipfb; 10982 uint16_t ident; 10983 uint32_t offset; 10984 ipaddr_t src; 10985 uint_t hdr_length; 10986 uint32_t end; 10987 mblk_t *mp1; 10988 mblk_t *tail_mp; 10989 size_t count; 10990 size_t msg_len; 10991 uint8_t ecn_info = 0; 10992 uint32_t packet_size; 10993 boolean_t pruned = B_FALSE; 10994 10995 if (cksum_val != NULL) 10996 *cksum_val = 0; 10997 if (cksum_flags != NULL) 10998 *cksum_flags = 0; 10999 11000 /* 11001 * Drop the fragmented as early as possible, if 11002 * we don't have resource(s) to re-assemble. 11003 */ 11004 if (ip_reass_queue_bytes == 0) { 11005 freemsg(mp); 11006 return (B_FALSE); 11007 } 11008 11009 /* Check for fragmentation offset; return if there's none */ 11010 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11011 (IPH_MF | IPH_OFFSET)) == 0) 11012 return (B_TRUE); 11013 11014 /* 11015 * We utilize hardware computed checksum info only for UDP since 11016 * IP fragmentation is a normal occurence for the protocol. In 11017 * addition, checksum offload support for IP fragments carrying 11018 * UDP payload is commonly implemented across network adapters. 11019 */ 11020 ASSERT(ill != NULL); 11021 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11022 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11023 mblk_t *mp1 = mp->b_cont; 11024 int32_t len; 11025 11026 /* Record checksum information from the packet */ 11027 sum_val = (uint32_t)DB_CKSUM16(mp); 11028 sum_flags = DB_CKSUMFLAGS(mp); 11029 11030 /* IP payload offset from beginning of mblk */ 11031 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11032 11033 if ((sum_flags & HCK_PARTIALCKSUM) && 11034 (mp1 == NULL || mp1->b_cont == NULL) && 11035 offset >= DB_CKSUMSTART(mp) && 11036 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11037 uint32_t adj; 11038 /* 11039 * Partial checksum has been calculated by hardware 11040 * and attached to the packet; in addition, any 11041 * prepended extraneous data is even byte aligned. 11042 * If any such data exists, we adjust the checksum; 11043 * this would also handle any postpended data. 11044 */ 11045 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11046 mp, mp1, len, adj); 11047 11048 /* One's complement subtract extraneous checksum */ 11049 if (adj >= sum_val) 11050 sum_val = ~(adj - sum_val) & 0xFFFF; 11051 else 11052 sum_val -= adj; 11053 } 11054 } else { 11055 sum_val = 0; 11056 sum_flags = 0; 11057 } 11058 11059 /* Clear hardware checksumming flag */ 11060 DB_CKSUMFLAGS(mp) = 0; 11061 11062 ident = ipha->ipha_ident; 11063 offset = (frag_offset_flags << 3) & 0xFFFF; 11064 src = ipha->ipha_src; 11065 dst = ipha->ipha_dst; 11066 hdr_length = IPH_HDR_LENGTH(ipha); 11067 end = ntohs(ipha->ipha_length) - hdr_length; 11068 11069 /* If end == 0 then we have a packet with no data, so just free it */ 11070 if (end == 0) { 11071 freemsg(mp); 11072 return (B_FALSE); 11073 } 11074 11075 /* Record the ECN field info. */ 11076 ecn_info = (ipha->ipha_type_of_service & 0x3); 11077 if (offset != 0) { 11078 /* 11079 * If this isn't the first piece, strip the header, and 11080 * add the offset to the end value. 11081 */ 11082 mp->b_rptr += hdr_length; 11083 end += offset; 11084 } 11085 11086 msg_len = MBLKSIZE(mp); 11087 tail_mp = mp; 11088 while (tail_mp->b_cont != NULL) { 11089 tail_mp = tail_mp->b_cont; 11090 msg_len += MBLKSIZE(tail_mp); 11091 } 11092 11093 /* If the reassembly list for this ILL will get too big, prune it */ 11094 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11095 ip_reass_queue_bytes) { 11096 ill_frag_prune(ill, 11097 (ip_reass_queue_bytes < msg_len) ? 0 : 11098 (ip_reass_queue_bytes - msg_len)); 11099 pruned = B_TRUE; 11100 } 11101 11102 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11103 mutex_enter(&ipfb->ipfb_lock); 11104 11105 ipfp = &ipfb->ipfb_ipf; 11106 /* Try to find an existing fragment queue for this packet. */ 11107 for (;;) { 11108 ipf = ipfp[0]; 11109 if (ipf != NULL) { 11110 /* 11111 * It has to match on ident and src/dst address. 11112 */ 11113 if (ipf->ipf_ident == ident && 11114 ipf->ipf_src == src && 11115 ipf->ipf_dst == dst && 11116 ipf->ipf_protocol == proto) { 11117 /* 11118 * If we have received too many 11119 * duplicate fragments for this packet 11120 * free it. 11121 */ 11122 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11123 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11124 freemsg(mp); 11125 mutex_exit(&ipfb->ipfb_lock); 11126 return (B_FALSE); 11127 } 11128 /* Found it. */ 11129 break; 11130 } 11131 ipfp = &ipf->ipf_hash_next; 11132 continue; 11133 } 11134 11135 /* 11136 * If we pruned the list, do we want to store this new 11137 * fragment?. We apply an optimization here based on the 11138 * fact that most fragments will be received in order. 11139 * So if the offset of this incoming fragment is zero, 11140 * it is the first fragment of a new packet. We will 11141 * keep it. Otherwise drop the fragment, as we have 11142 * probably pruned the packet already (since the 11143 * packet cannot be found). 11144 */ 11145 if (pruned && offset != 0) { 11146 mutex_exit(&ipfb->ipfb_lock); 11147 freemsg(mp); 11148 return (B_FALSE); 11149 } 11150 11151 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11152 /* 11153 * Too many fragmented packets in this hash 11154 * bucket. Free the oldest. 11155 */ 11156 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11157 } 11158 11159 /* New guy. Allocate a frag message. */ 11160 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11161 if (mp1 == NULL) { 11162 BUMP_MIB(&ip_mib, ipInDiscards); 11163 freemsg(mp); 11164 reass_done: 11165 mutex_exit(&ipfb->ipfb_lock); 11166 return (B_FALSE); 11167 } 11168 11169 11170 BUMP_MIB(&ip_mib, ipReasmReqds); 11171 mp1->b_cont = mp; 11172 11173 /* Initialize the fragment header. */ 11174 ipf = (ipf_t *)mp1->b_rptr; 11175 ipf->ipf_mp = mp1; 11176 ipf->ipf_ptphn = ipfp; 11177 ipfp[0] = ipf; 11178 ipf->ipf_hash_next = NULL; 11179 ipf->ipf_ident = ident; 11180 ipf->ipf_protocol = proto; 11181 ipf->ipf_src = src; 11182 ipf->ipf_dst = dst; 11183 ipf->ipf_nf_hdr_len = 0; 11184 /* Record reassembly start time. */ 11185 ipf->ipf_timestamp = gethrestime_sec(); 11186 /* Record ipf generation and account for frag header */ 11187 ipf->ipf_gen = ill->ill_ipf_gen++; 11188 ipf->ipf_count = MBLKSIZE(mp1); 11189 ipf->ipf_last_frag_seen = B_FALSE; 11190 ipf->ipf_ecn = ecn_info; 11191 ipf->ipf_num_dups = 0; 11192 ipfb->ipfb_frag_pkts++; 11193 ipf->ipf_checksum = 0; 11194 ipf->ipf_checksum_flags = 0; 11195 11196 /* Store checksum value in fragment header */ 11197 if (sum_flags != 0) { 11198 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11199 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11200 ipf->ipf_checksum = sum_val; 11201 ipf->ipf_checksum_flags = sum_flags; 11202 } 11203 11204 /* 11205 * We handle reassembly two ways. In the easy case, 11206 * where all the fragments show up in order, we do 11207 * minimal bookkeeping, and just clip new pieces on 11208 * the end. If we ever see a hole, then we go off 11209 * to ip_reassemble which has to mark the pieces and 11210 * keep track of the number of holes, etc. Obviously, 11211 * the point of having both mechanisms is so we can 11212 * handle the easy case as efficiently as possible. 11213 */ 11214 if (offset == 0) { 11215 /* Easy case, in-order reassembly so far. */ 11216 ipf->ipf_count += msg_len; 11217 ipf->ipf_tail_mp = tail_mp; 11218 /* 11219 * Keep track of next expected offset in 11220 * ipf_end. 11221 */ 11222 ipf->ipf_end = end; 11223 ipf->ipf_nf_hdr_len = hdr_length; 11224 } else { 11225 /* Hard case, hole at the beginning. */ 11226 ipf->ipf_tail_mp = NULL; 11227 /* 11228 * ipf_end == 0 means that we have given up 11229 * on easy reassembly. 11230 */ 11231 ipf->ipf_end = 0; 11232 11233 /* Forget checksum offload from now on */ 11234 ipf->ipf_checksum_flags = 0; 11235 11236 /* 11237 * ipf_hole_cnt is set by ip_reassemble. 11238 * ipf_count is updated by ip_reassemble. 11239 * No need to check for return value here 11240 * as we don't expect reassembly to complete 11241 * or fail for the first fragment itself. 11242 */ 11243 (void) ip_reassemble(mp, ipf, 11244 (frag_offset_flags & IPH_OFFSET) << 3, 11245 (frag_offset_flags & IPH_MF), ill, msg_len); 11246 } 11247 /* Update per ipfb and ill byte counts */ 11248 ipfb->ipfb_count += ipf->ipf_count; 11249 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11250 ill->ill_frag_count += ipf->ipf_count; 11251 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11252 /* If the frag timer wasn't already going, start it. */ 11253 mutex_enter(&ill->ill_lock); 11254 ill_frag_timer_start(ill); 11255 mutex_exit(&ill->ill_lock); 11256 goto reass_done; 11257 } 11258 11259 /* 11260 * If the packet's flag has changed (it could be coming up 11261 * from an interface different than the previous, therefore 11262 * possibly different checksum capability), then forget about 11263 * any stored checksum states. Otherwise add the value to 11264 * the existing one stored in the fragment header. 11265 */ 11266 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11267 sum_val += ipf->ipf_checksum; 11268 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11269 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11270 ipf->ipf_checksum = sum_val; 11271 } else if (ipf->ipf_checksum_flags != 0) { 11272 /* Forget checksum offload from now on */ 11273 ipf->ipf_checksum_flags = 0; 11274 } 11275 11276 /* 11277 * We have a new piece of a datagram which is already being 11278 * reassembled. Update the ECN info if all IP fragments 11279 * are ECN capable. If there is one which is not, clear 11280 * all the info. If there is at least one which has CE 11281 * code point, IP needs to report that up to transport. 11282 */ 11283 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11284 if (ecn_info == IPH_ECN_CE) 11285 ipf->ipf_ecn = IPH_ECN_CE; 11286 } else { 11287 ipf->ipf_ecn = IPH_ECN_NECT; 11288 } 11289 if (offset && ipf->ipf_end == offset) { 11290 /* The new fragment fits at the end */ 11291 ipf->ipf_tail_mp->b_cont = mp; 11292 /* Update the byte count */ 11293 ipf->ipf_count += msg_len; 11294 /* Update per ipfb and ill byte counts */ 11295 ipfb->ipfb_count += msg_len; 11296 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11297 ill->ill_frag_count += msg_len; 11298 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11299 if (frag_offset_flags & IPH_MF) { 11300 /* More to come. */ 11301 ipf->ipf_end = end; 11302 ipf->ipf_tail_mp = tail_mp; 11303 goto reass_done; 11304 } 11305 } else { 11306 /* Go do the hard cases. */ 11307 int ret; 11308 11309 if (offset == 0) 11310 ipf->ipf_nf_hdr_len = hdr_length; 11311 11312 /* Save current byte count */ 11313 count = ipf->ipf_count; 11314 ret = ip_reassemble(mp, ipf, 11315 (frag_offset_flags & IPH_OFFSET) << 3, 11316 (frag_offset_flags & IPH_MF), ill, msg_len); 11317 /* Count of bytes added and subtracted (freeb()ed) */ 11318 count = ipf->ipf_count - count; 11319 if (count) { 11320 /* Update per ipfb and ill byte counts */ 11321 ipfb->ipfb_count += count; 11322 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11323 ill->ill_frag_count += count; 11324 ASSERT(ill->ill_frag_count > 0); 11325 } 11326 if (ret == IP_REASS_PARTIAL) { 11327 goto reass_done; 11328 } else if (ret == IP_REASS_FAILED) { 11329 /* Reassembly failed. Free up all resources */ 11330 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11331 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11332 IP_REASS_SET_START(t_mp, 0); 11333 IP_REASS_SET_END(t_mp, 0); 11334 } 11335 freemsg(mp); 11336 goto reass_done; 11337 } 11338 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11339 } 11340 /* 11341 * We have completed reassembly. Unhook the frag header from 11342 * the reassembly list. 11343 * 11344 * Before we free the frag header, record the ECN info 11345 * to report back to the transport. 11346 */ 11347 ecn_info = ipf->ipf_ecn; 11348 BUMP_MIB(&ip_mib, ipReasmOKs); 11349 ipfp = ipf->ipf_ptphn; 11350 11351 /* We need to supply these to caller */ 11352 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11353 sum_val = ipf->ipf_checksum; 11354 else 11355 sum_val = 0; 11356 11357 mp1 = ipf->ipf_mp; 11358 count = ipf->ipf_count; 11359 ipf = ipf->ipf_hash_next; 11360 if (ipf != NULL) 11361 ipf->ipf_ptphn = ipfp; 11362 ipfp[0] = ipf; 11363 ill->ill_frag_count -= count; 11364 ASSERT(ipfb->ipfb_count >= count); 11365 ipfb->ipfb_count -= count; 11366 ipfb->ipfb_frag_pkts--; 11367 mutex_exit(&ipfb->ipfb_lock); 11368 /* Ditch the frag header. */ 11369 mp = mp1->b_cont; 11370 11371 freeb(mp1); 11372 11373 /* Restore original IP length in header. */ 11374 packet_size = (uint32_t)msgdsize(mp); 11375 if (packet_size > IP_MAXPACKET) { 11376 freemsg(mp); 11377 BUMP_MIB(&ip_mib, ipInHdrErrors); 11378 return (B_FALSE); 11379 } 11380 11381 if (DB_REF(mp) > 1) { 11382 mblk_t *mp2 = copymsg(mp); 11383 11384 freemsg(mp); 11385 if (mp2 == NULL) { 11386 BUMP_MIB(&ip_mib, ipInDiscards); 11387 return (B_FALSE); 11388 } 11389 mp = mp2; 11390 } 11391 ipha = (ipha_t *)mp->b_rptr; 11392 11393 ipha->ipha_length = htons((uint16_t)packet_size); 11394 /* We're now complete, zip the frag state */ 11395 ipha->ipha_fragment_offset_and_flags = 0; 11396 /* Record the ECN info. */ 11397 ipha->ipha_type_of_service &= 0xFC; 11398 ipha->ipha_type_of_service |= ecn_info; 11399 *mpp = mp; 11400 11401 /* Reassembly is successful; return checksum information if needed */ 11402 if (cksum_val != NULL) 11403 *cksum_val = sum_val; 11404 if (cksum_flags != NULL) 11405 *cksum_flags = sum_flags; 11406 11407 return (B_TRUE); 11408 } 11409 11410 /* 11411 * Perform ip header check sum update local options. 11412 * return B_TRUE if all is well, else return B_FALSE and release 11413 * the mp. caller is responsible for decrementing ire ref cnt. 11414 */ 11415 static boolean_t 11416 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11417 { 11418 mblk_t *first_mp; 11419 boolean_t mctl_present; 11420 uint16_t sum; 11421 11422 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11423 /* 11424 * Don't do the checksum if it has gone through AH/ESP 11425 * processing. 11426 */ 11427 if (!mctl_present) { 11428 sum = ip_csum_hdr(ipha); 11429 if (sum != 0) { 11430 BUMP_MIB(&ip_mib, ipInCksumErrs); 11431 freemsg(first_mp); 11432 return (B_FALSE); 11433 } 11434 } 11435 11436 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11437 if (mctl_present) 11438 freeb(first_mp); 11439 return (B_FALSE); 11440 } 11441 11442 return (B_TRUE); 11443 } 11444 11445 /* 11446 * All udp packet are delivered to the local host via this routine. 11447 */ 11448 void 11449 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11450 ill_t *recv_ill) 11451 { 11452 uint32_t sum; 11453 uint32_t u1; 11454 boolean_t mctl_present; 11455 conn_t *connp; 11456 mblk_t *first_mp; 11457 uint16_t *up; 11458 ill_t *ill = (ill_t *)q->q_ptr; 11459 uint16_t reass_hck_flags = 0; 11460 11461 #define rptr ((uchar_t *)ipha) 11462 11463 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11464 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11465 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11466 11467 /* 11468 * FAST PATH for udp packets 11469 */ 11470 11471 /* u1 is # words of IP options */ 11472 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11473 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11474 11475 /* IP options present */ 11476 if (u1 != 0) 11477 goto ipoptions; 11478 11479 /* Check the IP header checksum. */ 11480 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11481 /* Clear the IP header h/w cksum flag */ 11482 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11483 } else { 11484 #define uph ((uint16_t *)ipha) 11485 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11486 uph[6] + uph[7] + uph[8] + uph[9]; 11487 #undef uph 11488 /* finish doing IP checksum */ 11489 sum = (sum & 0xFFFF) + (sum >> 16); 11490 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11491 /* 11492 * Don't verify header checksum if this packet is coming 11493 * back from AH/ESP as we already did it. 11494 */ 11495 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 11496 BUMP_MIB(&ip_mib, ipInCksumErrs); 11497 freemsg(first_mp); 11498 return; 11499 } 11500 } 11501 11502 /* 11503 * Count for SNMP of inbound packets for ire. 11504 * if mctl is present this might be a secure packet and 11505 * has already been counted for in ip_proto_input(). 11506 */ 11507 if (!mctl_present) { 11508 UPDATE_IB_PKT_COUNT(ire); 11509 ire->ire_last_used_time = lbolt; 11510 } 11511 11512 /* packet part of fragmented IP packet? */ 11513 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11514 if (u1 & (IPH_MF | IPH_OFFSET)) { 11515 goto fragmented; 11516 } 11517 11518 /* u1 = IP header length (20 bytes) */ 11519 u1 = IP_SIMPLE_HDR_LENGTH; 11520 11521 /* packet does not contain complete IP & UDP headers */ 11522 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11523 goto udppullup; 11524 11525 /* up points to UDP header */ 11526 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11527 #define iphs ((uint16_t *)ipha) 11528 11529 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11530 if (up[3] != 0) { 11531 mblk_t *mp1 = mp->b_cont; 11532 boolean_t cksum_err; 11533 uint16_t hck_flags = 0; 11534 11535 /* Pseudo-header checksum */ 11536 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11537 iphs[9] + up[2]; 11538 11539 /* 11540 * Revert to software checksum calculation if the interface 11541 * isn't capable of checksum offload or if IPsec is present. 11542 */ 11543 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11544 hck_flags = DB_CKSUMFLAGS(mp); 11545 11546 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11547 IP_STAT(ip_in_sw_cksum); 11548 11549 IP_CKSUM_RECV(hck_flags, u1, 11550 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11551 (int32_t)((uchar_t *)up - rptr), 11552 mp, mp1, cksum_err); 11553 11554 if (cksum_err) { 11555 BUMP_MIB(&ip_mib, udpInCksumErrs); 11556 11557 if (hck_flags & HCK_FULLCKSUM) 11558 IP_STAT(ip_udp_in_full_hw_cksum_err); 11559 else if (hck_flags & HCK_PARTIALCKSUM) 11560 IP_STAT(ip_udp_in_part_hw_cksum_err); 11561 else 11562 IP_STAT(ip_udp_in_sw_cksum_err); 11563 11564 freemsg(first_mp); 11565 return; 11566 } 11567 } 11568 11569 /* Non-fragmented broadcast or multicast packet? */ 11570 if (ire->ire_type == IRE_BROADCAST) 11571 goto udpslowpath; 11572 11573 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11574 ire->ire_zoneid)) != NULL) { 11575 ASSERT(connp->conn_upq != NULL); 11576 IP_STAT(ip_udp_fast_path); 11577 11578 if (CONN_UDP_FLOWCTLD(connp)) { 11579 freemsg(mp); 11580 BUMP_MIB(&ip_mib, udpInOverflows); 11581 } else { 11582 if (!mctl_present) { 11583 BUMP_MIB(&ip_mib, ipInDelivers); 11584 } 11585 /* 11586 * mp and first_mp can change. 11587 */ 11588 if (ip_udp_check(q, connp, recv_ill, 11589 ipha, &mp, &first_mp, mctl_present)) { 11590 /* Send it upstream */ 11591 CONN_UDP_RECV(connp, mp); 11592 } 11593 } 11594 /* 11595 * freeb() cannot deal with null mblk being passed 11596 * in and first_mp can be set to null in the call 11597 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11598 */ 11599 if (mctl_present && first_mp != NULL) { 11600 freeb(first_mp); 11601 } 11602 CONN_DEC_REF(connp); 11603 return; 11604 } 11605 11606 /* 11607 * if we got here we know the packet is not fragmented and 11608 * has no options. The classifier could not find a conn_t and 11609 * most likely its an icmp packet so send it through slow path. 11610 */ 11611 11612 goto udpslowpath; 11613 11614 ipoptions: 11615 if (!ip_options_cksum(q, mp, ipha, ire)) { 11616 goto slow_done; 11617 } 11618 11619 UPDATE_IB_PKT_COUNT(ire); 11620 ire->ire_last_used_time = lbolt; 11621 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11622 if (u1 & (IPH_MF | IPH_OFFSET)) { 11623 fragmented: 11624 /* 11625 * "sum" and "reass_hck_flags" are non-zero if the 11626 * reassembled packet has a valid hardware computed 11627 * checksum information associated with it. 11628 */ 11629 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 11630 goto slow_done; 11631 /* 11632 * Make sure that first_mp points back to mp as 11633 * the mp we came in with could have changed in 11634 * ip_rput_fragment(). 11635 */ 11636 ASSERT(!mctl_present); 11637 ipha = (ipha_t *)mp->b_rptr; 11638 first_mp = mp; 11639 } 11640 11641 /* Now we have a complete datagram, destined for this machine. */ 11642 u1 = IPH_HDR_LENGTH(ipha); 11643 /* Pull up the UDP header, if necessary. */ 11644 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 11645 udppullup: 11646 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11647 BUMP_MIB(&ip_mib, ipInDiscards); 11648 freemsg(first_mp); 11649 goto slow_done; 11650 } 11651 ipha = (ipha_t *)mp->b_rptr; 11652 } 11653 11654 /* 11655 * Validate the checksum for the reassembled packet; for the 11656 * pullup case we calculate the payload checksum in software. 11657 */ 11658 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11659 if (up[3] != 0) { 11660 boolean_t cksum_err; 11661 11662 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11663 IP_STAT(ip_in_sw_cksum); 11664 11665 IP_CKSUM_RECV_REASS(reass_hck_flags, 11666 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11667 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11668 iphs[9] + up[2], sum, cksum_err); 11669 11670 if (cksum_err) { 11671 BUMP_MIB(&ip_mib, udpInCksumErrs); 11672 11673 if (reass_hck_flags & HCK_FULLCKSUM) 11674 IP_STAT(ip_udp_in_full_hw_cksum_err); 11675 else if (reass_hck_flags & HCK_PARTIALCKSUM) 11676 IP_STAT(ip_udp_in_part_hw_cksum_err); 11677 else 11678 IP_STAT(ip_udp_in_sw_cksum_err); 11679 11680 freemsg(first_mp); 11681 goto slow_done; 11682 } 11683 } 11684 udpslowpath: 11685 11686 /* Clear hardware checksum flag to be safe */ 11687 DB_CKSUMFLAGS(mp) = 0; 11688 11689 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 11690 (ire->ire_type == IRE_BROADCAST), 11691 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11692 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11693 11694 slow_done: 11695 IP_STAT(ip_udp_slow_path); 11696 return; 11697 11698 #undef iphs 11699 #undef rptr 11700 } 11701 11702 /* ARGSUSED */ 11703 static mblk_t * 11704 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11705 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11706 ill_rx_ring_t *ill_ring) 11707 { 11708 conn_t *connp; 11709 uint32_t sum; 11710 uint32_t u1; 11711 uint16_t *up; 11712 int offset; 11713 ssize_t len; 11714 mblk_t *mp1; 11715 boolean_t syn_present = B_FALSE; 11716 tcph_t *tcph; 11717 uint_t ip_hdr_len; 11718 ill_t *ill = (ill_t *)q->q_ptr; 11719 zoneid_t zoneid = ire->ire_zoneid; 11720 boolean_t cksum_err; 11721 uint16_t hck_flags = 0; 11722 11723 #define rptr ((uchar_t *)ipha) 11724 11725 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11726 11727 /* 11728 * FAST PATH for tcp packets 11729 */ 11730 11731 /* u1 is # words of IP options */ 11732 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11733 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11734 11735 /* IP options present */ 11736 if (u1) { 11737 goto ipoptions; 11738 } else { 11739 /* Check the IP header checksum. */ 11740 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11741 /* Clear the IP header h/w cksum flag */ 11742 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11743 } else { 11744 #define uph ((uint16_t *)ipha) 11745 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11746 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11747 #undef uph 11748 /* finish doing IP checksum */ 11749 sum = (sum & 0xFFFF) + (sum >> 16); 11750 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11751 /* 11752 * Don't verify header checksum if this packet 11753 * is coming back from AH/ESP as we already did it. 11754 */ 11755 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11756 BUMP_MIB(&ip_mib, ipInCksumErrs); 11757 goto error; 11758 } 11759 } 11760 } 11761 11762 if (!mctl_present) { 11763 UPDATE_IB_PKT_COUNT(ire); 11764 ire->ire_last_used_time = lbolt; 11765 } 11766 11767 /* packet part of fragmented IP packet? */ 11768 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11769 if (u1 & (IPH_MF | IPH_OFFSET)) { 11770 goto fragmented; 11771 } 11772 11773 /* u1 = IP header length (20 bytes) */ 11774 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11775 11776 /* does packet contain IP+TCP headers? */ 11777 len = mp->b_wptr - rptr; 11778 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11779 IP_STAT(ip_tcppullup); 11780 goto tcppullup; 11781 } 11782 11783 /* TCP options present? */ 11784 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11785 11786 /* 11787 * If options need to be pulled up, then goto tcpoptions. 11788 * otherwise we are still in the fast path 11789 */ 11790 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11791 IP_STAT(ip_tcpoptions); 11792 goto tcpoptions; 11793 } 11794 11795 /* multiple mblks of tcp data? */ 11796 if ((mp1 = mp->b_cont) != NULL) { 11797 /* more then two? */ 11798 if (mp1->b_cont != NULL) { 11799 IP_STAT(ip_multipkttcp); 11800 goto multipkttcp; 11801 } 11802 len += mp1->b_wptr - mp1->b_rptr; 11803 } 11804 11805 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11806 11807 /* part of pseudo checksum */ 11808 11809 /* TCP datagram length */ 11810 u1 = len - IP_SIMPLE_HDR_LENGTH; 11811 11812 #define iphs ((uint16_t *)ipha) 11813 11814 #ifdef _BIG_ENDIAN 11815 u1 += IPPROTO_TCP; 11816 #else 11817 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11818 #endif 11819 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11820 11821 /* 11822 * Revert to software checksum calculation if the interface 11823 * isn't capable of checksum offload or if IPsec is present. 11824 */ 11825 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11826 hck_flags = DB_CKSUMFLAGS(mp); 11827 11828 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11829 IP_STAT(ip_in_sw_cksum); 11830 11831 IP_CKSUM_RECV(hck_flags, u1, 11832 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11833 (int32_t)((uchar_t *)up - rptr), 11834 mp, mp1, cksum_err); 11835 11836 if (cksum_err) { 11837 BUMP_MIB(&ip_mib, tcpInErrs); 11838 11839 if (hck_flags & HCK_FULLCKSUM) 11840 IP_STAT(ip_tcp_in_full_hw_cksum_err); 11841 else if (hck_flags & HCK_PARTIALCKSUM) 11842 IP_STAT(ip_tcp_in_part_hw_cksum_err); 11843 else 11844 IP_STAT(ip_tcp_in_sw_cksum_err); 11845 11846 goto error; 11847 } 11848 11849 try_again: 11850 11851 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11852 NULL) { 11853 /* Send the TH_RST */ 11854 goto no_conn; 11855 } 11856 11857 /* 11858 * TCP FAST PATH for AF_INET socket. 11859 * 11860 * TCP fast path to avoid extra work. An AF_INET socket type 11861 * does not have facility to receive extra information via 11862 * ip_process or ip_add_info. Also, when the connection was 11863 * established, we made a check if this connection is impacted 11864 * by any global IPSec policy or per connection policy (a 11865 * policy that comes in effect later will not apply to this 11866 * connection). Since all this can be determined at the 11867 * connection establishment time, a quick check of flags 11868 * can avoid extra work. 11869 */ 11870 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11871 !IPP_ENABLED(IPP_LOCAL_IN)) { 11872 ASSERT(first_mp == mp); 11873 SET_SQUEUE(mp, tcp_rput_data, connp); 11874 return (mp); 11875 } 11876 11877 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11878 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11879 if (IPCL_IS_TCP(connp)) { 11880 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11881 DB_CKSUMSTART(mp) = 11882 (intptr_t)ip_squeue_get(ill_ring); 11883 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11884 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11885 SET_SQUEUE(mp, connp->conn_recv, connp); 11886 return (mp); 11887 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11888 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11889 ip_squeue_enter_unbound++; 11890 SET_SQUEUE(mp, tcp_conn_request_unbound, 11891 connp); 11892 return (mp); 11893 } 11894 syn_present = B_TRUE; 11895 } 11896 11897 } 11898 11899 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11900 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11901 11902 /* No need to send this packet to TCP */ 11903 if ((flags & TH_RST) || (flags & TH_URG)) { 11904 CONN_DEC_REF(connp); 11905 freemsg(first_mp); 11906 return (NULL); 11907 } 11908 if (flags & TH_ACK) { 11909 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11910 CONN_DEC_REF(connp); 11911 return (NULL); 11912 } 11913 11914 CONN_DEC_REF(connp); 11915 freemsg(first_mp); 11916 return (NULL); 11917 } 11918 11919 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11920 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11921 ipha, NULL, mctl_present); 11922 if (first_mp == NULL) { 11923 CONN_DEC_REF(connp); 11924 return (NULL); 11925 } 11926 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11927 ASSERT(syn_present); 11928 if (mctl_present) { 11929 ASSERT(first_mp != mp); 11930 first_mp->b_datap->db_struioflag |= 11931 STRUIO_POLICY; 11932 } else { 11933 ASSERT(first_mp == mp); 11934 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11935 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11936 } 11937 } else { 11938 /* 11939 * Discard first_mp early since we're dealing with a 11940 * fully-connected conn_t and tcp doesn't do policy in 11941 * this case. 11942 */ 11943 if (mctl_present) { 11944 freeb(first_mp); 11945 mctl_present = B_FALSE; 11946 } 11947 first_mp = mp; 11948 } 11949 } 11950 11951 /* Initiate IPPF processing for fastpath */ 11952 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11953 uint32_t ill_index; 11954 11955 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11956 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11957 if (mp == NULL) { 11958 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11959 "deferred/dropped during IPPF processing\n")); 11960 CONN_DEC_REF(connp); 11961 if (mctl_present) 11962 freeb(first_mp); 11963 return (NULL); 11964 } else if (mctl_present) { 11965 /* 11966 * ip_process might return a new mp. 11967 */ 11968 ASSERT(first_mp != mp); 11969 first_mp->b_cont = mp; 11970 } else { 11971 first_mp = mp; 11972 } 11973 11974 } 11975 11976 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11977 mp = ip_add_info(mp, recv_ill, flags); 11978 if (mp == NULL) { 11979 CONN_DEC_REF(connp); 11980 if (mctl_present) 11981 freeb(first_mp); 11982 return (NULL); 11983 } else if (mctl_present) { 11984 /* 11985 * ip_add_info might return a new mp. 11986 */ 11987 ASSERT(first_mp != mp); 11988 first_mp->b_cont = mp; 11989 } else { 11990 first_mp = mp; 11991 } 11992 } 11993 11994 if (IPCL_IS_TCP(connp)) { 11995 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11996 return (first_mp); 11997 } else { 11998 putnext(connp->conn_rq, first_mp); 11999 CONN_DEC_REF(connp); 12000 return (NULL); 12001 } 12002 12003 no_conn: 12004 /* Initiate IPPf processing, if needed. */ 12005 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12006 uint32_t ill_index; 12007 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12008 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12009 if (first_mp == NULL) { 12010 return (NULL); 12011 } 12012 } 12013 BUMP_MIB(&ip_mib, ipInDelivers); 12014 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12015 return (NULL); 12016 ipoptions: 12017 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12018 goto slow_done; 12019 } 12020 12021 UPDATE_IB_PKT_COUNT(ire); 12022 ire->ire_last_used_time = lbolt; 12023 12024 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12025 if (u1 & (IPH_MF | IPH_OFFSET)) { 12026 fragmented: 12027 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12028 if (mctl_present) 12029 freeb(first_mp); 12030 goto slow_done; 12031 } 12032 /* 12033 * Make sure that first_mp points back to mp as 12034 * the mp we came in with could have changed in 12035 * ip_rput_fragment(). 12036 */ 12037 ASSERT(!mctl_present); 12038 ipha = (ipha_t *)mp->b_rptr; 12039 first_mp = mp; 12040 } 12041 12042 tcp_slow: 12043 /* Now we have a complete datagram, destined for this machine. */ 12044 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12045 12046 len = mp->b_wptr - mp->b_rptr; 12047 /* Pull up a minimal TCP header, if necessary. */ 12048 if (len < (u1 + 20)) { 12049 tcppullup: 12050 if (!pullupmsg(mp, u1 + 20)) { 12051 BUMP_MIB(&ip_mib, ipInDiscards); 12052 goto error; 12053 } 12054 ipha = (ipha_t *)mp->b_rptr; 12055 len = mp->b_wptr - mp->b_rptr; 12056 } 12057 12058 /* 12059 * Extract the offset field from the TCP header. As usual, we 12060 * try to help the compiler more than the reader. 12061 */ 12062 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12063 if (offset != 5) { 12064 tcpoptions: 12065 if (offset < 5) { 12066 BUMP_MIB(&ip_mib, ipInDiscards); 12067 goto error; 12068 } 12069 /* 12070 * There must be TCP options. 12071 * Make sure we can grab them. 12072 */ 12073 offset <<= 2; 12074 offset += u1; 12075 if (len < offset) { 12076 if (!pullupmsg(mp, offset)) { 12077 BUMP_MIB(&ip_mib, ipInDiscards); 12078 goto error; 12079 } 12080 ipha = (ipha_t *)mp->b_rptr; 12081 len = mp->b_wptr - rptr; 12082 } 12083 } 12084 12085 /* Get the total packet length in len, including headers. */ 12086 if (mp->b_cont) { 12087 multipkttcp: 12088 len = msgdsize(mp); 12089 } 12090 12091 /* 12092 * Check the TCP checksum by pulling together the pseudo- 12093 * header checksum, and passing it to ip_csum to be added in 12094 * with the TCP datagram. 12095 * 12096 * Since we are not using the hwcksum if available we must 12097 * clear the flag. We may come here via tcppullup or tcpoptions. 12098 * If either of these fails along the way the mblk is freed. 12099 * If this logic ever changes and mblk is reused to say send 12100 * ICMP's back, then this flag may need to be cleared in 12101 * other places as well. 12102 */ 12103 DB_CKSUMFLAGS(mp) = 0; 12104 12105 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12106 12107 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12108 #ifdef _BIG_ENDIAN 12109 u1 += IPPROTO_TCP; 12110 #else 12111 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12112 #endif 12113 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12114 /* 12115 * Not M_DATA mblk or its a dup, so do the checksum now. 12116 */ 12117 IP_STAT(ip_in_sw_cksum); 12118 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12119 BUMP_MIB(&ip_mib, tcpInErrs); 12120 goto error; 12121 } 12122 12123 IP_STAT(ip_tcp_slow_path); 12124 goto try_again; 12125 #undef iphs 12126 #undef rptr 12127 12128 error: 12129 freemsg(first_mp); 12130 slow_done: 12131 return (NULL); 12132 } 12133 12134 /* ARGSUSED */ 12135 static void 12136 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12137 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12138 { 12139 conn_t *connp; 12140 uint32_t sum; 12141 uint32_t u1; 12142 ssize_t len; 12143 sctp_hdr_t *sctph; 12144 zoneid_t zoneid = ire->ire_zoneid; 12145 uint32_t pktsum; 12146 uint32_t calcsum; 12147 uint32_t ports; 12148 uint_t ipif_seqid; 12149 in6_addr_t map_src, map_dst; 12150 ill_t *ill = (ill_t *)q->q_ptr; 12151 12152 #define rptr ((uchar_t *)ipha) 12153 12154 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12155 12156 /* u1 is # words of IP options */ 12157 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12158 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12159 12160 /* IP options present */ 12161 if (u1 > 0) { 12162 goto ipoptions; 12163 } else { 12164 /* Check the IP header checksum. */ 12165 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12166 /* 12167 * Since there is no SCTP h/w cksum support yet, just 12168 * clear the flag. 12169 */ 12170 DB_CKSUMFLAGS(mp) = 0; 12171 } else { 12172 #define uph ((uint16_t *)ipha) 12173 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12174 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12175 #undef uph 12176 /* finish doing IP checksum */ 12177 sum = (sum & 0xFFFF) + (sum >> 16); 12178 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12179 /* 12180 * Don't verify header checksum if this packet 12181 * is coming back from AH/ESP as we already did it. 12182 */ 12183 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12184 BUMP_MIB(&ip_mib, ipInCksumErrs); 12185 goto error; 12186 } 12187 } 12188 } 12189 12190 /* 12191 * Don't verify header checksum if this packet is coming 12192 * back from AH/ESP as we already did it. 12193 */ 12194 if (!mctl_present) { 12195 UPDATE_IB_PKT_COUNT(ire); 12196 ire->ire_last_used_time = lbolt; 12197 } 12198 12199 /* packet part of fragmented IP packet? */ 12200 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12201 if (u1 & (IPH_MF | IPH_OFFSET)) 12202 goto fragmented; 12203 12204 /* u1 = IP header length (20 bytes) */ 12205 u1 = IP_SIMPLE_HDR_LENGTH; 12206 12207 find_sctp_client: 12208 /* Pullup if we don't have the sctp common header. */ 12209 len = MBLKL(mp); 12210 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12211 if (mp->b_cont == NULL || 12212 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12213 BUMP_MIB(&ip_mib, ipInDiscards); 12214 goto error; 12215 } 12216 ipha = (ipha_t *)mp->b_rptr; 12217 len = MBLKL(mp); 12218 } 12219 12220 sctph = (sctp_hdr_t *)(rptr + u1); 12221 #ifdef DEBUG 12222 if (!skip_sctp_cksum) { 12223 #endif 12224 pktsum = sctph->sh_chksum; 12225 sctph->sh_chksum = 0; 12226 calcsum = sctp_cksum(mp, u1); 12227 if (calcsum != pktsum) { 12228 BUMP_MIB(&sctp_mib, sctpChecksumError); 12229 goto error; 12230 } 12231 sctph->sh_chksum = pktsum; 12232 #ifdef DEBUG /* skip_sctp_cksum */ 12233 } 12234 #endif 12235 /* get the ports */ 12236 ports = *(uint32_t *)&sctph->sh_sport; 12237 12238 ipif_seqid = ire->ire_ipif->ipif_seqid; 12239 IRE_REFRELE(ire); 12240 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12241 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12242 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12243 zoneid)) == NULL) { 12244 /* Check for raw socket or OOTB handling */ 12245 goto no_conn; 12246 } 12247 12248 /* Found a client; up it goes */ 12249 BUMP_MIB(&ip_mib, ipInDelivers); 12250 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12251 return; 12252 12253 no_conn: 12254 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12255 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12256 return; 12257 12258 ipoptions: 12259 DB_CKSUMFLAGS(mp) = 0; 12260 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12261 goto slow_done; 12262 12263 UPDATE_IB_PKT_COUNT(ire); 12264 ire->ire_last_used_time = lbolt; 12265 12266 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12267 if (u1 & (IPH_MF | IPH_OFFSET)) { 12268 fragmented: 12269 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12270 goto slow_done; 12271 /* 12272 * Make sure that first_mp points back to mp as 12273 * the mp we came in with could have changed in 12274 * ip_rput_fragment(). 12275 */ 12276 ASSERT(!mctl_present); 12277 ipha = (ipha_t *)mp->b_rptr; 12278 first_mp = mp; 12279 } 12280 12281 /* Now we have a complete datagram, destined for this machine. */ 12282 u1 = IPH_HDR_LENGTH(ipha); 12283 goto find_sctp_client; 12284 #undef iphs 12285 #undef rptr 12286 12287 error: 12288 freemsg(first_mp); 12289 slow_done: 12290 IRE_REFRELE(ire); 12291 } 12292 12293 #define VER_BITS 0xF0 12294 #define VERSION_6 0x60 12295 12296 static boolean_t 12297 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12298 ipaddr_t *dstp) 12299 { 12300 uint_t opt_len; 12301 ipha_t *ipha; 12302 ssize_t len; 12303 uint_t pkt_len; 12304 12305 IP_STAT(ip_ipoptions); 12306 ipha = *iphapp; 12307 12308 #define rptr ((uchar_t *)ipha) 12309 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12310 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12311 BUMP_MIB(&ip_mib, ipInIPv6); 12312 freemsg(mp); 12313 return (B_FALSE); 12314 } 12315 12316 /* multiple mblk or too short */ 12317 pkt_len = ntohs(ipha->ipha_length); 12318 12319 /* Get the number of words of IP options in the IP header. */ 12320 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12321 if (opt_len) { 12322 /* IP Options present! Validate and process. */ 12323 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12324 BUMP_MIB(&ip_mib, ipInHdrErrors); 12325 goto done; 12326 } 12327 /* 12328 * Recompute complete header length and make sure we 12329 * have access to all of it. 12330 */ 12331 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12332 if (len > (mp->b_wptr - rptr)) { 12333 if (len > pkt_len) { 12334 BUMP_MIB(&ip_mib, ipInHdrErrors); 12335 goto done; 12336 } 12337 if (!pullupmsg(mp, len)) { 12338 BUMP_MIB(&ip_mib, ipInDiscards); 12339 goto done; 12340 } 12341 ipha = (ipha_t *)mp->b_rptr; 12342 } 12343 /* 12344 * Go off to ip_rput_options which returns the next hop 12345 * destination address, which may have been affected 12346 * by source routing. 12347 */ 12348 IP_STAT(ip_opt); 12349 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12350 return (B_FALSE); 12351 } 12352 } 12353 *iphapp = ipha; 12354 return (B_TRUE); 12355 done: 12356 /* clear b_prev - used by ip_mroute_decap */ 12357 mp->b_prev = NULL; 12358 freemsg(mp); 12359 return (B_FALSE); 12360 #undef rptr 12361 } 12362 12363 /* 12364 * Deal with the fact that there is no ire for the destination. 12365 * The incoming ill (in_ill) is passed in to ip_newroute only 12366 * in the case of packets coming from mobile ip forward tunnel. 12367 * It must be null otherwise. 12368 */ 12369 static void 12370 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12371 ipaddr_t dst) 12372 { 12373 ipha_t *ipha; 12374 ill_t *ill; 12375 12376 ipha = (ipha_t *)mp->b_rptr; 12377 ill = (ill_t *)q->q_ptr; 12378 12379 ASSERT(ill != NULL); 12380 /* 12381 * No IRE for this destination, so it can't be for us. 12382 * Unless we are forwarding, drop the packet. 12383 * We have to let source routed packets through 12384 * since we don't yet know if they are 'ping -l' 12385 * packets i.e. if they will go out over the 12386 * same interface as they came in on. 12387 */ 12388 if (ll_multicast) { 12389 freemsg(mp); 12390 return; 12391 } 12392 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12393 BUMP_MIB(&ip_mib, ipForwProhibits); 12394 freemsg(mp); 12395 return; 12396 } 12397 12398 /* Check for Martian addresses */ 12399 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12400 freemsg(mp); 12401 return; 12402 } 12403 12404 /* Mark this packet as having originated externally */ 12405 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12406 12407 /* 12408 * Clear the indication that this may have a hardware checksum 12409 * as we are not using it 12410 */ 12411 DB_CKSUMFLAGS(mp) = 0; 12412 12413 /* 12414 * Now hand the packet to ip_newroute. 12415 */ 12416 ip_newroute(q, mp, dst, in_ill, NULL); 12417 } 12418 12419 /* 12420 * check ip header length and align it. 12421 */ 12422 static boolean_t 12423 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12424 { 12425 ssize_t len; 12426 ill_t *ill; 12427 ipha_t *ipha; 12428 12429 len = MBLKL(mp); 12430 12431 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12432 if (!OK_32PTR(mp->b_rptr)) 12433 IP_STAT(ip_notaligned1); 12434 else 12435 IP_STAT(ip_notaligned2); 12436 /* Guard against bogus device drivers */ 12437 if (len < 0) { 12438 /* clear b_prev - used by ip_mroute_decap */ 12439 mp->b_prev = NULL; 12440 BUMP_MIB(&ip_mib, ipInHdrErrors); 12441 freemsg(mp); 12442 return (B_FALSE); 12443 } 12444 12445 if (ip_rput_pullups++ == 0) { 12446 ill = (ill_t *)q->q_ptr; 12447 ipha = (ipha_t *)mp->b_rptr; 12448 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12449 "ip_check_and_align_header: %s forced us to " 12450 " pullup pkt, hdr len %ld, hdr addr %p", 12451 ill->ill_name, len, ipha); 12452 } 12453 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12454 /* clear b_prev - used by ip_mroute_decap */ 12455 mp->b_prev = NULL; 12456 BUMP_MIB(&ip_mib, ipInDiscards); 12457 freemsg(mp); 12458 return (B_FALSE); 12459 } 12460 } 12461 return (B_TRUE); 12462 } 12463 12464 static boolean_t 12465 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12466 { 12467 ill_group_t *ill_group; 12468 ill_group_t *ire_group; 12469 queue_t *q; 12470 ill_t *ire_ill; 12471 uint_t ill_ifindex; 12472 12473 q = *qp; 12474 /* 12475 * We need to check to make sure the packet came in 12476 * on the queue associated with the destination IRE. 12477 * Note that for multicast packets and broadcast packets sent to 12478 * a broadcast address which is shared between multiple interfaces 12479 * we should not do this since we just got a random broadcast ire. 12480 */ 12481 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12482 boolean_t check_multi = B_TRUE; 12483 12484 /* 12485 * This packet came in on an interface other than the 12486 * one associated with the destination address. 12487 * "Gateway" it to the appropriate interface here. 12488 * As long as the ills belong to the same group, 12489 * we don't consider them to arriving on the wrong 12490 * interface. Thus, when the switch is doing inbound 12491 * load spreading, we won't drop packets when we 12492 * are doing strict multihoming checks. Note, the 12493 * same holds true for 'usesrc groups' where the 12494 * destination address may belong to another interface 12495 * to allow multipathing to happen 12496 */ 12497 ill_group = ill->ill_group; 12498 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12499 ill_ifindex = ill->ill_usesrc_ifindex; 12500 ire_group = ire_ill->ill_group; 12501 12502 /* 12503 * If it's part of the same IPMP group, or if it's a legal 12504 * address on the 'usesrc' interface, then bypass strict 12505 * checks. 12506 */ 12507 if (ill_group != NULL && ill_group == ire_group) { 12508 check_multi = B_FALSE; 12509 } else if (ill_ifindex != 0 && 12510 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12511 check_multi = B_FALSE; 12512 } 12513 12514 if (check_multi && 12515 ip_strict_dst_multihoming && 12516 ((ill->ill_flags & 12517 ire->ire_ipif->ipif_ill->ill_flags & 12518 ILLF_ROUTER) == 0)) { 12519 /* Drop packet */ 12520 BUMP_MIB(&ip_mib, ipForwProhibits); 12521 freemsg(mp); 12522 ire_refrele(ire); 12523 return (B_TRUE); 12524 } 12525 12526 /* 12527 * Change the queue (for non-virtual destination network 12528 * interfaces) and ip_rput_local will be called with the right 12529 * queue 12530 */ 12531 q = ire->ire_rfq; 12532 } 12533 /* Must be broadcast. We'll take it. */ 12534 *qp = q; 12535 return (B_FALSE); 12536 } 12537 12538 static void 12539 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12540 ill_t *ill, int ll_multicast) 12541 { 12542 ill_group_t *ill_group; 12543 ill_group_t *ire_group; 12544 queue_t *dev_q; 12545 12546 ASSERT(ire->ire_stq != NULL); 12547 if (ll_multicast != 0) 12548 goto drop_pkt; 12549 12550 if (ip_no_forward(ipha, ill)) 12551 goto drop_pkt; 12552 12553 ill_group = ill->ill_group; 12554 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12555 /* 12556 * Check if we want to forward this one at this time. 12557 * We allow source routed packets on a host provided that 12558 * they go out the same interface or same interface group 12559 * as they came in on. 12560 * 12561 * XXX To be quicker, we may wish to not chase pointers to 12562 * get the ILLF_ROUTER flag and instead store the 12563 * forwarding policy in the ire. An unfortunate 12564 * side-effect of that would be requiring an ire flush 12565 * whenever the ILLF_ROUTER flag changes. 12566 */ 12567 if (((ill->ill_flags & 12568 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12569 ILLF_ROUTER) == 0) && 12570 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12571 (ill_group != NULL && ill_group == ire_group)))) { 12572 BUMP_MIB(&ip_mib, ipForwProhibits); 12573 if (ip_source_routed(ipha)) { 12574 q = WR(q); 12575 /* 12576 * Clear the indication that this may have 12577 * hardware checksum as we are not using it. 12578 */ 12579 DB_CKSUMFLAGS(mp) = 0; 12580 icmp_unreachable(q, mp, 12581 ICMP_SOURCE_ROUTE_FAILED); 12582 ire_refrele(ire); 12583 return; 12584 } 12585 goto drop_pkt; 12586 } 12587 12588 /* Packet is being forwarded. Turning off hwcksum flag. */ 12589 DB_CKSUMFLAGS(mp) = 0; 12590 if (ip_g_send_redirects) { 12591 /* 12592 * Check whether the incoming interface and outgoing 12593 * interface is part of the same group. If so, 12594 * send redirects. 12595 * 12596 * Check the source address to see if it originated 12597 * on the same logical subnet it is going back out on. 12598 * If so, we should be able to send it a redirect. 12599 * Avoid sending a redirect if the destination 12600 * is directly connected (gw_addr == 0), 12601 * or if the packet was source routed out this 12602 * interface. 12603 */ 12604 ipaddr_t src; 12605 mblk_t *mp1; 12606 ire_t *src_ire = NULL; 12607 12608 /* 12609 * Check whether ire_rfq and q are from the same ill 12610 * or if they are not same, they at least belong 12611 * to the same group. If so, send redirects. 12612 */ 12613 if ((ire->ire_rfq == q || 12614 (ill_group != NULL && ill_group == ire_group)) && 12615 (ire->ire_gateway_addr != 0) && 12616 !ip_source_routed(ipha)) { 12617 12618 src = ipha->ipha_src; 12619 src_ire = ire_ftable_lookup(src, 0, 0, 12620 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12621 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12622 12623 if (src_ire != NULL) { 12624 /* 12625 * The source is directly connected. 12626 * Just copy the ip header (which is 12627 * in the first mblk) 12628 */ 12629 mp1 = copyb(mp); 12630 if (mp1 != NULL) { 12631 icmp_send_redirect(WR(q), mp1, 12632 ire->ire_gateway_addr); 12633 } 12634 ire_refrele(src_ire); 12635 } 12636 } 12637 } 12638 12639 dev_q = ire->ire_stq->q_next; 12640 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12641 BUMP_MIB(&ip_mib, ipInDiscards); 12642 freemsg(mp); 12643 ire_refrele(ire); 12644 return; 12645 } 12646 12647 ip_rput_forward(ire, ipha, mp, ill); 12648 IRE_REFRELE(ire); 12649 return; 12650 12651 drop_pkt: 12652 ire_refrele(ire); 12653 ip2dbg(("ip_rput_forward: drop pkt\n")); 12654 freemsg(mp); 12655 } 12656 12657 static boolean_t 12658 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12659 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12660 { 12661 queue_t *q; 12662 ire_t *ire; 12663 uint16_t hcksumflags; 12664 12665 q = *qp; 12666 ire = *irep; 12667 12668 /* 12669 * Clear the indication that this may have hardware 12670 * checksum as we are not using it for forwarding. 12671 */ 12672 hcksumflags = DB_CKSUMFLAGS(mp); 12673 DB_CKSUMFLAGS(mp) = 0; 12674 12675 /* 12676 * Directed broadcast forwarding: if the packet came in over a 12677 * different interface then it is routed out over we can forward it. 12678 */ 12679 if (ipha->ipha_protocol == IPPROTO_TCP) { 12680 ire_refrele(ire); 12681 freemsg(mp); 12682 BUMP_MIB(&ip_mib, ipInDiscards); 12683 return (B_TRUE); 12684 } 12685 /* 12686 * For multicast we have set dst to be INADDR_BROADCAST 12687 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12688 * only for broadcast packets. 12689 */ 12690 if (!CLASSD(ipha->ipha_dst)) { 12691 ire_t *new_ire; 12692 ipif_t *ipif; 12693 /* 12694 * For ill groups, as the switch duplicates broadcasts 12695 * across all the ports, we need to filter out and 12696 * send up only one copy. There is one copy for every 12697 * broadcast address on each ill. Thus, we look for a 12698 * specific IRE on this ill and look at IRE_MARK_NORECV 12699 * later to see whether this ill is eligible to receive 12700 * them or not. ill_nominate_bcast_rcv() nominates only 12701 * one set of IREs for receiving. 12702 */ 12703 12704 ipif = ipif_get_next_ipif(NULL, ill); 12705 if (ipif == NULL) { 12706 ire_refrele(ire); 12707 freemsg(mp); 12708 BUMP_MIB(&ip_mib, ipInDiscards); 12709 return (B_TRUE); 12710 } 12711 new_ire = ire_ctable_lookup(dst, 0, 0, 12712 ipif, ALL_ZONES, MATCH_IRE_ILL); 12713 ipif_refrele(ipif); 12714 12715 if (new_ire != NULL) { 12716 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12717 ire_refrele(ire); 12718 ire_refrele(new_ire); 12719 freemsg(mp); 12720 BUMP_MIB(&ip_mib, ipInDiscards); 12721 return (B_TRUE); 12722 } 12723 /* 12724 * In the special case of multirouted broadcast 12725 * packets, we unconditionally need to "gateway" 12726 * them to the appropriate interface here. 12727 * In the normal case, this cannot happen, because 12728 * there is no broadcast IRE tagged with the 12729 * RTF_MULTIRT flag. 12730 */ 12731 if (new_ire->ire_flags & RTF_MULTIRT) { 12732 ire_refrele(new_ire); 12733 if (ire->ire_rfq != NULL) { 12734 q = ire->ire_rfq; 12735 *qp = q; 12736 } 12737 } else { 12738 ire_refrele(ire); 12739 ire = new_ire; 12740 } 12741 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12742 if (!ip_g_forward_directed_bcast) { 12743 /* 12744 * Free the message if 12745 * ip_g_forward_directed_bcast is turned 12746 * off for non-local broadcast. 12747 */ 12748 ire_refrele(ire); 12749 freemsg(mp); 12750 BUMP_MIB(&ip_mib, ipInDiscards); 12751 return (B_TRUE); 12752 } 12753 } else { 12754 /* 12755 * This CGTP packet successfully passed the 12756 * CGTP filter, but the related CGTP 12757 * broadcast IRE has not been found, 12758 * meaning that the redundant ipif is 12759 * probably down. However, if we discarded 12760 * this packet, its duplicate would be 12761 * filtered out by the CGTP filter so none 12762 * of them would get through. So we keep 12763 * going with this one. 12764 */ 12765 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12766 if (ire->ire_rfq != NULL) { 12767 q = ire->ire_rfq; 12768 *qp = q; 12769 } 12770 } 12771 } 12772 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12773 /* 12774 * Verify that there are not more then one 12775 * IRE_BROADCAST with this broadcast address which 12776 * has ire_stq set. 12777 * TODO: simplify, loop over all IRE's 12778 */ 12779 ire_t *ire1; 12780 int num_stq = 0; 12781 mblk_t *mp1; 12782 12783 /* Find the first one with ire_stq set */ 12784 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12785 for (ire1 = ire; ire1 && 12786 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12787 ire1 = ire1->ire_next) 12788 ; 12789 if (ire1) { 12790 ire_refrele(ire); 12791 ire = ire1; 12792 IRE_REFHOLD(ire); 12793 } 12794 12795 /* Check if there are additional ones with stq set */ 12796 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12797 if (ire->ire_addr != ire1->ire_addr) 12798 break; 12799 if (ire1->ire_stq) { 12800 num_stq++; 12801 break; 12802 } 12803 } 12804 rw_exit(&ire->ire_bucket->irb_lock); 12805 if (num_stq == 1 && ire->ire_stq != NULL) { 12806 ip1dbg(("ip_rput_process_broadcast: directed " 12807 "broadcast to 0x%x\n", 12808 ntohl(ire->ire_addr))); 12809 mp1 = copymsg(mp); 12810 if (mp1) { 12811 switch (ipha->ipha_protocol) { 12812 case IPPROTO_UDP: 12813 ip_udp_input(q, mp1, ipha, ire, ill); 12814 break; 12815 default: 12816 ip_proto_input(q, mp1, ipha, ire, ill); 12817 break; 12818 } 12819 } 12820 /* 12821 * Adjust ttl to 2 (1+1 - the forward engine 12822 * will decrement it by one. 12823 */ 12824 if (ip_csum_hdr(ipha)) { 12825 BUMP_MIB(&ip_mib, ipInCksumErrs); 12826 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12827 freemsg(mp); 12828 ire_refrele(ire); 12829 return (B_TRUE); 12830 } 12831 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12832 ipha->ipha_hdr_checksum = 0; 12833 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12834 ip_rput_process_forward(q, mp, ire, ipha, 12835 ill, ll_multicast); 12836 return (B_TRUE); 12837 } 12838 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12839 ntohl(ire->ire_addr))); 12840 } 12841 12842 *irep = ire; 12843 12844 /* Restore any hardware checksum flags */ 12845 DB_CKSUMFLAGS(mp) = hcksumflags; 12846 return (B_FALSE); 12847 } 12848 12849 /* ARGSUSED */ 12850 static boolean_t 12851 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12852 int *ll_multicast, ipaddr_t *dstp) 12853 { 12854 /* 12855 * Forward packets only if we have joined the allmulti 12856 * group on this interface. 12857 */ 12858 if (ip_g_mrouter && ill->ill_join_allmulti) { 12859 int retval; 12860 12861 /* 12862 * Clear the indication that this may have hardware 12863 * checksum as we are not using it. 12864 */ 12865 DB_CKSUMFLAGS(mp) = 0; 12866 retval = ip_mforward(ill, ipha, mp); 12867 /* ip_mforward updates mib variables if needed */ 12868 /* clear b_prev - used by ip_mroute_decap */ 12869 mp->b_prev = NULL; 12870 12871 switch (retval) { 12872 case 0: 12873 /* 12874 * pkt is okay and arrived on phyint. 12875 * 12876 * If we are running as a multicast router 12877 * we need to see all IGMP and/or PIM packets. 12878 */ 12879 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12880 (ipha->ipha_protocol == IPPROTO_PIM)) { 12881 goto done; 12882 } 12883 break; 12884 case -1: 12885 /* pkt is mal-formed, toss it */ 12886 goto drop_pkt; 12887 case 1: 12888 /* pkt is okay and arrived on a tunnel */ 12889 /* 12890 * If we are running a multicast router 12891 * we need to see all igmp packets. 12892 */ 12893 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12894 *dstp = INADDR_BROADCAST; 12895 *ll_multicast = 1; 12896 return (B_FALSE); 12897 } 12898 12899 goto drop_pkt; 12900 } 12901 } 12902 12903 ILM_WALKER_HOLD(ill); 12904 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12905 /* 12906 * This might just be caused by the fact that 12907 * multiple IP Multicast addresses map to the same 12908 * link layer multicast - no need to increment counter! 12909 */ 12910 ILM_WALKER_RELE(ill); 12911 freemsg(mp); 12912 return (B_TRUE); 12913 } 12914 ILM_WALKER_RELE(ill); 12915 done: 12916 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12917 /* 12918 * This assumes the we deliver to all streams for multicast 12919 * and broadcast packets. 12920 */ 12921 *dstp = INADDR_BROADCAST; 12922 *ll_multicast = 1; 12923 return (B_FALSE); 12924 drop_pkt: 12925 ip2dbg(("ip_rput: drop pkt\n")); 12926 freemsg(mp); 12927 return (B_TRUE); 12928 } 12929 12930 static boolean_t 12931 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12932 int *ll_multicast, mblk_t **mpp) 12933 { 12934 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12935 boolean_t must_copy = B_FALSE; 12936 struct iocblk *iocp; 12937 ipha_t *ipha; 12938 12939 #define rptr ((uchar_t *)ipha) 12940 12941 first_mp = *first_mpp; 12942 mp = *mpp; 12943 12944 ASSERT(first_mp == mp); 12945 12946 /* 12947 * if db_ref > 1 then copymsg and free original. Packet may be 12948 * changed and do not want other entity who has a reference to this 12949 * message to trip over the changes. This is a blind change because 12950 * trying to catch all places that might change packet is too 12951 * difficult (since it may be a module above this one) 12952 * 12953 * This corresponds to the non-fast path case. We walk down the full 12954 * chain in this case, and check the db_ref count of all the dblks, 12955 * and do a copymsg if required. It is possible that the db_ref counts 12956 * of the data blocks in the mblk chain can be different. 12957 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12958 * count of 1, followed by a M_DATA block with a ref count of 2, if 12959 * 'snoop' is running. 12960 */ 12961 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12962 if (mp1->b_datap->db_ref > 1) { 12963 must_copy = B_TRUE; 12964 break; 12965 } 12966 } 12967 12968 if (must_copy) { 12969 mp1 = copymsg(mp); 12970 if (mp1 == NULL) { 12971 for (mp1 = mp; mp1 != NULL; 12972 mp1 = mp1->b_cont) { 12973 mp1->b_next = NULL; 12974 mp1->b_prev = NULL; 12975 } 12976 freemsg(mp); 12977 BUMP_MIB(&ip_mib, ipInDiscards); 12978 return (B_TRUE); 12979 } 12980 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12981 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12982 /* Copy b_next - used in M_BREAK messages */ 12983 to_mp->b_next = from_mp->b_next; 12984 from_mp->b_next = NULL; 12985 /* Copy b_prev - used by ip_mroute_decap */ 12986 to_mp->b_prev = from_mp->b_prev; 12987 from_mp->b_prev = NULL; 12988 } 12989 *first_mpp = first_mp = mp1; 12990 freemsg(mp); 12991 mp = mp1; 12992 *mpp = mp1; 12993 } 12994 12995 ipha = (ipha_t *)mp->b_rptr; 12996 12997 /* 12998 * previous code has a case for M_DATA. 12999 * We want to check how that happens. 13000 */ 13001 ASSERT(first_mp->b_datap->db_type != M_DATA); 13002 switch (first_mp->b_datap->db_type) { 13003 case M_PROTO: 13004 case M_PCPROTO: 13005 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 13006 DL_UNITDATA_IND) { 13007 /* Go handle anything other than data elsewhere. */ 13008 ip_rput_dlpi(q, mp); 13009 return (B_TRUE); 13010 } 13011 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 13012 /* Ditch the DLPI header. */ 13013 mp1 = mp->b_cont; 13014 ASSERT(first_mp == mp); 13015 *first_mpp = mp1; 13016 freeb(mp); 13017 *mpp = mp1; 13018 return (B_FALSE); 13019 case M_BREAK: 13020 /* 13021 * A packet arrives as M_BREAK following a cycle through 13022 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 13023 * This is an IP datagram sans lower level header. 13024 * M_BREAK are also used to pass back in multicast packets 13025 * that are encapsulated with a source route. 13026 */ 13027 /* Ditch the M_BREAK mblk */ 13028 mp1 = mp->b_cont; 13029 ASSERT(first_mp == mp); 13030 *first_mpp = mp1; 13031 freeb(mp); 13032 mp = mp1; 13033 mp->b_next = NULL; 13034 *mpp = mp; 13035 *ll_multicast = 0; 13036 return (B_FALSE); 13037 case M_IOCACK: 13038 ip1dbg(("got iocack ")); 13039 iocp = (struct iocblk *)mp->b_rptr; 13040 switch (iocp->ioc_cmd) { 13041 case DL_IOC_HDR_INFO: 13042 ill = (ill_t *)q->q_ptr; 13043 ill_fastpath_ack(ill, mp); 13044 return (B_TRUE); 13045 case SIOCSTUNPARAM: 13046 case OSIOCSTUNPARAM: 13047 /* Go through qwriter_ip */ 13048 break; 13049 case SIOCGTUNPARAM: 13050 case OSIOCGTUNPARAM: 13051 ip_rput_other(NULL, q, mp, NULL); 13052 return (B_TRUE); 13053 default: 13054 putnext(q, mp); 13055 return (B_TRUE); 13056 } 13057 /* FALLTHRU */ 13058 case M_ERROR: 13059 case M_HANGUP: 13060 /* 13061 * Since this is on the ill stream we unconditionally 13062 * bump up the refcount 13063 */ 13064 ill_refhold(ill); 13065 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13066 B_FALSE); 13067 return (B_TRUE); 13068 case M_CTL: 13069 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13070 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13071 IPHADA_M_CTL)) { 13072 /* 13073 * It's an IPsec accelerated packet. 13074 * Make sure that the ill from which we received the 13075 * packet has enabled IPsec hardware acceleration. 13076 */ 13077 if (!(ill->ill_capabilities & 13078 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13079 /* IPsec kstats: bean counter */ 13080 freemsg(mp); 13081 return (B_TRUE); 13082 } 13083 13084 /* 13085 * Make mp point to the mblk following the M_CTL, 13086 * then process according to type of mp. 13087 * After this processing, first_mp will point to 13088 * the data-attributes and mp to the pkt following 13089 * the M_CTL. 13090 */ 13091 mp = first_mp->b_cont; 13092 if (mp == NULL) { 13093 freemsg(first_mp); 13094 return (B_TRUE); 13095 } 13096 /* 13097 * A Hardware Accelerated packet can only be M_DATA 13098 * ESP or AH packet. 13099 */ 13100 if (mp->b_datap->db_type != M_DATA) { 13101 /* non-M_DATA IPsec accelerated packet */ 13102 IPSECHW_DEBUG(IPSECHW_PKT, 13103 ("non-M_DATA IPsec accelerated pkt\n")); 13104 freemsg(first_mp); 13105 return (B_TRUE); 13106 } 13107 ipha = (ipha_t *)mp->b_rptr; 13108 if (ipha->ipha_protocol != IPPROTO_AH && 13109 ipha->ipha_protocol != IPPROTO_ESP) { 13110 IPSECHW_DEBUG(IPSECHW_PKT, 13111 ("non-M_DATA IPsec accelerated pkt\n")); 13112 freemsg(first_mp); 13113 return (B_TRUE); 13114 } 13115 *mpp = mp; 13116 return (B_FALSE); 13117 } 13118 putnext(q, mp); 13119 return (B_TRUE); 13120 case M_FLUSH: 13121 if (*mp->b_rptr & FLUSHW) { 13122 *mp->b_rptr &= ~FLUSHR; 13123 qreply(q, mp); 13124 return (B_TRUE); 13125 } 13126 freemsg(mp); 13127 return (B_TRUE); 13128 case M_IOCNAK: 13129 ip1dbg(("got iocnak ")); 13130 iocp = (struct iocblk *)mp->b_rptr; 13131 switch (iocp->ioc_cmd) { 13132 case DL_IOC_HDR_INFO: 13133 case SIOCSTUNPARAM: 13134 case OSIOCSTUNPARAM: 13135 /* 13136 * Since this is on the ill stream we unconditionally 13137 * bump up the refcount 13138 */ 13139 ill_refhold(ill); 13140 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13141 CUR_OP, B_FALSE); 13142 return (B_TRUE); 13143 case SIOCGTUNPARAM: 13144 case OSIOCGTUNPARAM: 13145 ip_rput_other(NULL, q, mp, NULL); 13146 return (B_TRUE); 13147 default: 13148 break; 13149 } 13150 /* FALLTHRU */ 13151 default: 13152 putnext(q, mp); 13153 return (B_TRUE); 13154 } 13155 } 13156 13157 /* Read side put procedure. Packets coming from the wire arrive here. */ 13158 void 13159 ip_rput(queue_t *q, mblk_t *mp) 13160 { 13161 ill_t *ill; 13162 13163 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13164 13165 ill = (ill_t *)q->q_ptr; 13166 13167 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13168 union DL_primitives *dl; 13169 13170 /* 13171 * Things are opening or closing. Only accept DLPI control 13172 * messages. In the open case, the ill->ill_ipif has not yet 13173 * been created. In the close case, things hanging off the 13174 * ill could have been freed already. In either case it 13175 * may not be safe to proceed further. 13176 */ 13177 13178 dl = (union DL_primitives *)mp->b_rptr; 13179 if ((mp->b_datap->db_type != M_PCPROTO) || 13180 (dl->dl_primitive == DL_UNITDATA_IND)) { 13181 /* 13182 * Also SIOC[GS]TUN* ioctls can come here. 13183 */ 13184 inet_freemsg(mp); 13185 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13186 "ip_input_end: q %p (%S)", q, "uninit"); 13187 return; 13188 } 13189 } 13190 13191 /* 13192 * if db_ref > 1 then copymsg and free original. Packet may be 13193 * changed and we do not want the other entity who has a reference to 13194 * this message to trip over the changes. This is a blind change because 13195 * trying to catch all places that might change the packet is too 13196 * difficult. 13197 * 13198 * This corresponds to the fast path case, where we have a chain of 13199 * M_DATA mblks. We check the db_ref count of only the 1st data block 13200 * in the mblk chain. There doesn't seem to be a reason why a device 13201 * driver would send up data with varying db_ref counts in the mblk 13202 * chain. In any case the Fast path is a private interface, and our 13203 * drivers don't do such a thing. Given the above assumption, there is 13204 * no need to walk down the entire mblk chain (which could have a 13205 * potential performance problem) 13206 */ 13207 if (mp->b_datap->db_ref > 1) { 13208 mblk_t *mp1; 13209 boolean_t adjusted = B_FALSE; 13210 IP_STAT(ip_db_ref); 13211 13212 /* 13213 * The IP_RECVSLLA option depends on having the link layer 13214 * header. First check that: 13215 * a> the underlying device is of type ether, since this 13216 * option is currently supported only over ethernet. 13217 * b> there is enough room to copy over the link layer header. 13218 * 13219 * Once the checks are done, adjust rptr so that the link layer 13220 * header will be copied via copymsg. Note that, IFT_ETHER may 13221 * be returned by some non-ethernet drivers but in this case the 13222 * second check will fail. 13223 */ 13224 if (ill->ill_type == IFT_ETHER && 13225 (mp->b_rptr - mp->b_datap->db_base) >= 13226 sizeof (struct ether_header)) { 13227 mp->b_rptr -= sizeof (struct ether_header); 13228 adjusted = B_TRUE; 13229 } 13230 mp1 = copymsg(mp); 13231 if (mp1 == NULL) { 13232 /* Clear b_next - used in M_BREAK messages */ 13233 mp->b_next = NULL; 13234 /* clear b_prev - used by ip_mroute_decap */ 13235 mp->b_prev = NULL; 13236 freemsg(mp); 13237 BUMP_MIB(&ip_mib, ipInDiscards); 13238 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13239 "ip_rput_end: q %p (%S)", q, "copymsg"); 13240 return; 13241 } 13242 if (adjusted) { 13243 /* 13244 * Copy is done. Restore the pointer in the _new_ mblk 13245 */ 13246 mp1->b_rptr += sizeof (struct ether_header); 13247 } 13248 /* Copy b_next - used in M_BREAK messages */ 13249 mp1->b_next = mp->b_next; 13250 mp->b_next = NULL; 13251 /* Copy b_prev - used by ip_mroute_decap */ 13252 mp1->b_prev = mp->b_prev; 13253 mp->b_prev = NULL; 13254 freemsg(mp); 13255 mp = mp1; 13256 } 13257 13258 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13259 "ip_rput_end: q %p (%S)", q, "end"); 13260 13261 ip_input(ill, NULL, mp, 0); 13262 } 13263 13264 /* 13265 * Direct read side procedure capable of dealing with chains. GLDv3 based 13266 * drivers call this function directly with mblk chains while STREAMS 13267 * read side procedure ip_rput() calls this for single packet with ip_ring 13268 * set to NULL to process one packet at a time. 13269 * 13270 * The ill will always be valid if this function is called directly from 13271 * the driver. 13272 */ 13273 /*ARGSUSED*/ 13274 void 13275 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13276 { 13277 ipaddr_t dst; 13278 ire_t *ire; 13279 ipha_t *ipha; 13280 uint_t pkt_len; 13281 ssize_t len; 13282 uint_t opt_len; 13283 int ll_multicast; 13284 int cgtp_flt_pkt; 13285 queue_t *q = ill->ill_rq; 13286 squeue_t *curr_sqp = NULL; 13287 mblk_t *head = NULL; 13288 mblk_t *tail = NULL; 13289 mblk_t *first_mp; 13290 mblk_t *mp; 13291 int cnt = 0; 13292 13293 ASSERT(mp_chain != NULL); 13294 ASSERT(ill != NULL); 13295 13296 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13297 13298 #define rptr ((uchar_t *)ipha) 13299 13300 while (mp_chain != NULL) { 13301 first_mp = mp = mp_chain; 13302 mp_chain = mp_chain->b_next; 13303 mp->b_next = NULL; 13304 ll_multicast = 0; 13305 ire = NULL; 13306 13307 /* 13308 * ip_input fast path 13309 */ 13310 13311 /* mblk type is not M_DATA */ 13312 if (mp->b_datap->db_type != M_DATA) { 13313 if (ip_rput_process_notdata(q, &first_mp, ill, 13314 &ll_multicast, &mp)) 13315 continue; 13316 } 13317 13318 ASSERT(mp->b_datap->db_type == M_DATA); 13319 ASSERT(mp->b_datap->db_ref == 1); 13320 13321 /* 13322 * Invoke the CGTP (multirouting) filtering module to process 13323 * the incoming packet. Packets identified as duplicates 13324 * must be discarded. Filtering is active only if the 13325 * the ip_cgtp_filter ndd variable is non-zero. 13326 */ 13327 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13328 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13329 cgtp_flt_pkt = 13330 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13331 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13332 freemsg(first_mp); 13333 continue; 13334 } 13335 } 13336 13337 ipha = (ipha_t *)mp->b_rptr; 13338 len = mp->b_wptr - rptr; 13339 13340 BUMP_MIB(&ip_mib, ipInReceives); 13341 13342 /* 13343 * IP header ptr not aligned? 13344 * OR IP header not complete in first mblk 13345 */ 13346 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13347 if (!ip_check_and_align_header(q, mp)) 13348 continue; 13349 ipha = (ipha_t *)mp->b_rptr; 13350 len = mp->b_wptr - rptr; 13351 } 13352 13353 /* multiple mblk or too short */ 13354 pkt_len = ntohs(ipha->ipha_length); 13355 len -= pkt_len; 13356 if (len != 0) { 13357 /* 13358 * Make sure we have data length consistent 13359 * with the IP header. 13360 */ 13361 if (mp->b_cont == NULL) { 13362 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13363 BUMP_MIB(&ip_mib, ipInHdrErrors); 13364 ip2dbg(("ip_input: drop pkt\n")); 13365 freemsg(mp); 13366 continue; 13367 } 13368 mp->b_wptr = rptr + pkt_len; 13369 } else if (len += msgdsize(mp->b_cont)) { 13370 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13371 BUMP_MIB(&ip_mib, ipInHdrErrors); 13372 ip2dbg(("ip_input: drop pkt\n")); 13373 freemsg(mp); 13374 continue; 13375 } 13376 (void) adjmsg(mp, -len); 13377 IP_STAT(ip_multimblk3); 13378 } 13379 } 13380 13381 if (ip_loopback_src_or_dst(ipha, ill)) { 13382 ip2dbg(("ip_input: drop pkt\n")); 13383 freemsg(mp); 13384 continue; 13385 } 13386 13387 opt_len = ipha->ipha_version_and_hdr_length - 13388 IP_SIMPLE_HDR_VERSION; 13389 /* IP version bad or there are IP options */ 13390 if (opt_len) { 13391 if (len != 0) 13392 IP_STAT(ip_multimblk4); 13393 else 13394 IP_STAT(ip_ipoptions); 13395 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13396 continue; 13397 } else { 13398 dst = ipha->ipha_dst; 13399 } 13400 13401 /* 13402 * If rsvpd is running, let RSVP daemon handle its processing 13403 * and forwarding of RSVP multicast/unicast packets. 13404 * If rsvpd is not running but mrouted is running, RSVP 13405 * multicast packets are forwarded as multicast traffic 13406 * and RSVP unicast packets are forwarded by unicast router. 13407 * If neither rsvpd nor mrouted is running, RSVP multicast 13408 * packets are not forwarded, but the unicast packets are 13409 * forwarded like unicast traffic. 13410 */ 13411 if (ipha->ipha_protocol == IPPROTO_RSVP && 13412 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13413 /* RSVP packet and rsvpd running. Treat as ours */ 13414 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13415 /* 13416 * This assumes that we deliver to all streams for 13417 * multicast and broadcast packets. 13418 * We have to force ll_multicast to 1 to handle the 13419 * M_DATA messages passed in from ip_mroute_decap. 13420 */ 13421 dst = INADDR_BROADCAST; 13422 ll_multicast = 1; 13423 } else if (CLASSD(dst)) { 13424 /* packet is multicast */ 13425 mp->b_next = NULL; 13426 if (ip_rput_process_multicast(q, mp, ill, ipha, 13427 &ll_multicast, &dst)) 13428 continue; 13429 } 13430 13431 13432 /* 13433 * Check if the packet is coming from the Mobile IP 13434 * forward tunnel interface 13435 */ 13436 if (ill->ill_srcif_refcnt > 0) { 13437 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13438 NULL, ill, MATCH_IRE_TYPE); 13439 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13440 ire->ire_ipif->ipif_net_type == 13441 IRE_IF_RESOLVER) { 13442 /* We need to resolve the link layer info */ 13443 ire_refrele(ire); 13444 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13445 ll_multicast, dst); 13446 continue; 13447 } 13448 } 13449 13450 if (ire == NULL) 13451 ire = ire_cache_lookup(dst, ALL_ZONES); 13452 13453 /* 13454 * If mipagent is running and reverse tunnel is created as per 13455 * mobile node request, then any packet coming through the 13456 * incoming interface from the mobile-node, should be reverse 13457 * tunneled to it's home agent except those that are destined 13458 * to foreign agent only. 13459 * This needs source address based ire lookup. The routing 13460 * entries for source address based lookup are only created by 13461 * mipagent program only when a reverse tunnel is created. 13462 * Reference : RFC2002, RFC2344 13463 */ 13464 if (ill->ill_mrtun_refcnt > 0) { 13465 ipaddr_t srcaddr; 13466 ire_t *tmp_ire; 13467 13468 tmp_ire = ire; /* Save, we might need it later */ 13469 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13470 ire->ire_type != IRE_BROADCAST)) { 13471 srcaddr = ipha->ipha_src; 13472 ire = ire_mrtun_lookup(srcaddr, ill); 13473 if (ire != NULL) { 13474 /* 13475 * Should not be getting iphada packet 13476 * here. we should only get those for 13477 * IRE_LOCAL traffic, excluded above. 13478 * Fail-safe (drop packet) in the event 13479 * hardware is misbehaving. 13480 */ 13481 if (first_mp != mp) { 13482 /* IPsec KSTATS: beancount me */ 13483 freemsg(first_mp); 13484 } else { 13485 /* 13486 * This packet must be forwarded 13487 * to Reverse Tunnel 13488 */ 13489 ip_mrtun_forward(ire, ill, mp); 13490 } 13491 ire_refrele(ire); 13492 if (tmp_ire != NULL) 13493 ire_refrele(tmp_ire); 13494 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13495 "ip_input_end: q %p (%S)", 13496 q, "uninit"); 13497 continue; 13498 } 13499 } 13500 /* 13501 * If this packet is from a non-mobilenode or a 13502 * mobile-node which does not request reverse 13503 * tunnel service 13504 */ 13505 ire = tmp_ire; 13506 } 13507 13508 13509 /* 13510 * If we reach here that means the incoming packet satisfies 13511 * one of the following conditions: 13512 * - packet is from a mobile node which does not request 13513 * reverse tunnel 13514 * - packet is from a non-mobile node, which is the most 13515 * common case 13516 * - packet is from a reverse tunnel enabled mobile node 13517 * and destined to foreign agent only 13518 */ 13519 13520 if (ire == NULL) { 13521 /* 13522 * No IRE for this destination, so it can't be for us. 13523 * Unless we are forwarding, drop the packet. 13524 * We have to let source routed packets through 13525 * since we don't yet know if they are 'ping -l' 13526 * packets i.e. if they will go out over the 13527 * same interface as they came in on. 13528 */ 13529 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13530 continue; 13531 } 13532 13533 /* 13534 * Broadcast IRE may indicate either broadcast or 13535 * multicast packet 13536 */ 13537 if (ire->ire_type == IRE_BROADCAST) { 13538 /* 13539 * Skip broadcast checks if packet is UDP multicast; 13540 * we'd rather not enter ip_rput_process_broadcast() 13541 * unless the packet is broadcast for real, since 13542 * that routine is a no-op for multicast. 13543 */ 13544 if ((ipha->ipha_protocol != IPPROTO_UDP || 13545 !CLASSD(ipha->ipha_dst)) && 13546 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13547 dst, cgtp_flt_pkt, ll_multicast)) { 13548 continue; 13549 } 13550 } else if (ire->ire_stq != NULL) { 13551 /* fowarding? */ 13552 ip_rput_process_forward(q, mp, ire, ipha, ill, 13553 ll_multicast); 13554 continue; 13555 } 13556 13557 /* packet not for us */ 13558 if (ire->ire_rfq != q) { 13559 if (ip_rput_notforus(&q, mp, ire, ill)) { 13560 continue; 13561 } 13562 } 13563 13564 switch (ipha->ipha_protocol) { 13565 case IPPROTO_TCP: 13566 ASSERT(first_mp == mp); 13567 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13568 mp, 0, q, ip_ring)) != NULL) { 13569 if (curr_sqp == NULL) { 13570 curr_sqp = GET_SQUEUE(mp); 13571 ASSERT(cnt == 0); 13572 cnt++; 13573 head = tail = mp; 13574 } else if (curr_sqp == GET_SQUEUE(mp)) { 13575 ASSERT(tail != NULL); 13576 cnt++; 13577 tail->b_next = mp; 13578 tail = mp; 13579 } else { 13580 /* 13581 * A different squeue. Send the 13582 * chain for the previous squeue on 13583 * its way. This shouldn't happen 13584 * often unless interrupt binding 13585 * changes. 13586 */ 13587 IP_STAT(ip_input_multi_squeue); 13588 squeue_enter_chain(curr_sqp, head, 13589 tail, cnt, SQTAG_IP_INPUT); 13590 curr_sqp = GET_SQUEUE(mp); 13591 head = mp; 13592 tail = mp; 13593 cnt = 1; 13594 } 13595 } 13596 IRE_REFRELE(ire); 13597 continue; 13598 case IPPROTO_UDP: 13599 ASSERT(first_mp == mp); 13600 ip_udp_input(q, mp, ipha, ire, ill); 13601 IRE_REFRELE(ire); 13602 continue; 13603 case IPPROTO_SCTP: 13604 ASSERT(first_mp == mp); 13605 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13606 q, dst); 13607 continue; 13608 default: 13609 ip_proto_input(q, first_mp, ipha, ire, ill); 13610 IRE_REFRELE(ire); 13611 continue; 13612 } 13613 } 13614 13615 if (head != NULL) 13616 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13617 13618 /* 13619 * This code is there just to make netperf/ttcp look good. 13620 * 13621 * Its possible that after being in polling mode (and having cleared 13622 * the backlog), squeues have turned the interrupt frequency higher 13623 * to improve latency at the expense of more CPU utilization (less 13624 * packets per interrupts or more number of interrupts). Workloads 13625 * like ttcp/netperf do manage to tickle polling once in a while 13626 * but for the remaining time, stay in higher interrupt mode since 13627 * their packet arrival rate is pretty uniform and this shows up 13628 * as higher CPU utilization. Since people care about CPU utilization 13629 * while running netperf/ttcp, turn the interrupt frequency back to 13630 * normal/default if polling has not been used in ip_poll_normal_ticks. 13631 */ 13632 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13633 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13634 ip_ring->rr_poll_state &= ~ILL_POLLING; 13635 ip_ring->rr_blank(ip_ring->rr_handle, 13636 ip_ring->rr_normal_blank_time, 13637 ip_ring->rr_normal_pkt_cnt); 13638 } 13639 } 13640 13641 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13642 "ip_input_end: q %p (%S)", q, "end"); 13643 #undef rptr 13644 } 13645 13646 static void 13647 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13648 t_uscalar_t err) 13649 { 13650 if (dl_err == DL_SYSERR) { 13651 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13652 "%s: %s failed: DL_SYSERR (errno %u)\n", 13653 ill->ill_name, dlpi_prim_str(prim), err); 13654 return; 13655 } 13656 13657 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13658 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13659 dlpi_err_str(dl_err)); 13660 } 13661 13662 /* 13663 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13664 * than DL_UNITDATA_IND messages. If we need to process this message 13665 * exclusively, we call qwriter_ip, in which case we also need to call 13666 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13667 */ 13668 void 13669 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13670 { 13671 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13672 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13673 ill_t *ill; 13674 13675 ip1dbg(("ip_rput_dlpi")); 13676 ill = (ill_t *)q->q_ptr; 13677 switch (dloa->dl_primitive) { 13678 case DL_ERROR_ACK: 13679 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13680 "%s (0x%x), unix %u\n", ill->ill_name, 13681 dlpi_prim_str(dlea->dl_error_primitive), 13682 dlea->dl_error_primitive, 13683 dlpi_err_str(dlea->dl_errno), 13684 dlea->dl_errno, 13685 dlea->dl_unix_errno)); 13686 switch (dlea->dl_error_primitive) { 13687 case DL_NOTIFY_REQ: 13688 case DL_UNBIND_REQ: 13689 case DL_ATTACH_REQ: 13690 case DL_DETACH_REQ: 13691 case DL_INFO_REQ: 13692 case DL_BIND_REQ: 13693 case DL_ENABMULTI_REQ: 13694 case DL_PHYS_ADDR_REQ: 13695 case DL_CAPABILITY_REQ: 13696 case DL_CONTROL_REQ: 13697 /* 13698 * Refhold the ill to match qwriter_ip which does a 13699 * refrele. Since this is on the ill stream we 13700 * unconditionally bump up the refcount without 13701 * checking for ILL_CAN_LOOKUP 13702 */ 13703 ill_refhold(ill); 13704 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13705 CUR_OP, B_FALSE); 13706 return; 13707 case DL_DISABMULTI_REQ: 13708 freemsg(mp); /* Don't want to pass this up */ 13709 return; 13710 default: 13711 break; 13712 } 13713 ip_dlpi_error(ill, dlea->dl_error_primitive, 13714 dlea->dl_errno, dlea->dl_unix_errno); 13715 freemsg(mp); 13716 return; 13717 case DL_INFO_ACK: 13718 case DL_BIND_ACK: 13719 case DL_PHYS_ADDR_ACK: 13720 case DL_NOTIFY_ACK: 13721 case DL_CAPABILITY_ACK: 13722 case DL_CONTROL_ACK: 13723 /* 13724 * Refhold the ill to match qwriter_ip which does a refrele 13725 * Since this is on the ill stream we unconditionally 13726 * bump up the refcount without doing ILL_CAN_LOOKUP. 13727 */ 13728 ill_refhold(ill); 13729 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13730 CUR_OP, B_FALSE); 13731 return; 13732 case DL_NOTIFY_IND: 13733 ill_refhold(ill); 13734 /* 13735 * The DL_NOTIFY_IND is an asynchronous message that has no 13736 * relation to the current ioctl in progress (if any). Hence we 13737 * pass in NEW_OP in this case. 13738 */ 13739 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13740 NEW_OP, B_FALSE); 13741 return; 13742 case DL_OK_ACK: 13743 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13744 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13745 switch (dloa->dl_correct_primitive) { 13746 case DL_UNBIND_REQ: 13747 mutex_enter(&ill->ill_lock); 13748 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13749 cv_signal(&ill->ill_cv); 13750 mutex_exit(&ill->ill_lock); 13751 /* FALLTHRU */ 13752 case DL_ATTACH_REQ: 13753 case DL_DETACH_REQ: 13754 /* 13755 * Refhold the ill to match qwriter_ip which does a 13756 * refrele. Since this is on the ill stream we 13757 * unconditionally bump up the refcount 13758 */ 13759 ill_refhold(ill); 13760 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13761 CUR_OP, B_FALSE); 13762 return; 13763 case DL_ENABMULTI_REQ: 13764 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13765 ill->ill_dlpi_multicast_state = IDMS_OK; 13766 break; 13767 13768 } 13769 break; 13770 default: 13771 break; 13772 } 13773 freemsg(mp); 13774 } 13775 13776 /* 13777 * Handling of DLPI messages that require exclusive access to the ipsq. 13778 * 13779 * Need to do ill_pending_mp_release on ioctl completion, which could 13780 * happen here. (along with mi_copy_done) 13781 */ 13782 /* ARGSUSED */ 13783 static void 13784 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13785 { 13786 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13787 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13788 int err = 0; 13789 ill_t *ill; 13790 ipif_t *ipif = NULL; 13791 mblk_t *mp1 = NULL; 13792 conn_t *connp = NULL; 13793 t_uscalar_t physaddr_req; 13794 mblk_t *mp_hw; 13795 union DL_primitives *dlp; 13796 boolean_t success; 13797 boolean_t ioctl_aborted = B_FALSE; 13798 boolean_t log = B_TRUE; 13799 13800 ip1dbg(("ip_rput_dlpi_writer ..")); 13801 ill = (ill_t *)q->q_ptr; 13802 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13803 13804 ASSERT(IAM_WRITER_ILL(ill)); 13805 13806 /* 13807 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13808 * both are null or non-null. However we can assert that only 13809 * after grabbing the ipsq_lock. So we don't make any assertion 13810 * here and in other places in the code. 13811 */ 13812 ipif = ipsq->ipsq_pending_ipif; 13813 /* 13814 * The current ioctl could have been aborted by the user and a new 13815 * ioctl to bring up another ill could have started. We could still 13816 * get a response from the driver later. 13817 */ 13818 if (ipif != NULL && ipif->ipif_ill != ill) 13819 ioctl_aborted = B_TRUE; 13820 13821 switch (dloa->dl_primitive) { 13822 case DL_ERROR_ACK: 13823 switch (dlea->dl_error_primitive) { 13824 case DL_UNBIND_REQ: 13825 case DL_ATTACH_REQ: 13826 case DL_DETACH_REQ: 13827 case DL_INFO_REQ: 13828 ill_dlpi_done(ill, dlea->dl_error_primitive); 13829 break; 13830 case DL_NOTIFY_REQ: 13831 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13832 log = B_FALSE; 13833 break; 13834 case DL_PHYS_ADDR_REQ: 13835 /* 13836 * For IPv6 only, there are two additional 13837 * phys_addr_req's sent to the driver to get the 13838 * IPv6 token and lla. This allows IP to acquire 13839 * the hardware address format for a given interface 13840 * without having built in knowledge of the hardware 13841 * address. ill_phys_addr_pend keeps track of the last 13842 * DL_PAR sent so we know which response we are 13843 * dealing with. ill_dlpi_done will update 13844 * ill_phys_addr_pend when it sends the next req. 13845 * We don't complete the IOCTL until all three DL_PARs 13846 * have been attempted, so set *_len to 0 and break. 13847 */ 13848 physaddr_req = ill->ill_phys_addr_pend; 13849 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13850 if (physaddr_req == DL_IPV6_TOKEN) { 13851 ill->ill_token_length = 0; 13852 log = B_FALSE; 13853 break; 13854 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13855 ill->ill_nd_lla_len = 0; 13856 log = B_FALSE; 13857 break; 13858 } 13859 /* 13860 * Something went wrong with the DL_PHYS_ADDR_REQ. 13861 * We presumably have an IOCTL hanging out waiting 13862 * for completion. Find it and complete the IOCTL 13863 * with the error noted. 13864 * However, ill_dl_phys was called on an ill queue 13865 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13866 * set. But the ioctl is known to be pending on ill_wq. 13867 */ 13868 if (!ill->ill_ifname_pending) 13869 break; 13870 ill->ill_ifname_pending = 0; 13871 if (!ioctl_aborted) 13872 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13873 if (mp1 != NULL) { 13874 /* 13875 * This operation (SIOCSLIFNAME) must have 13876 * happened on the ill. Assert there is no conn 13877 */ 13878 ASSERT(connp == NULL); 13879 q = ill->ill_wq; 13880 } 13881 break; 13882 case DL_BIND_REQ: 13883 ill_dlpi_done(ill, DL_BIND_REQ); 13884 if (ill->ill_ifname_pending) 13885 break; 13886 /* 13887 * Something went wrong with the bind. We presumably 13888 * have an IOCTL hanging out waiting for completion. 13889 * Find it, take down the interface that was coming 13890 * up, and complete the IOCTL with the error noted. 13891 */ 13892 if (!ioctl_aborted) 13893 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13894 if (mp1 != NULL) { 13895 /* 13896 * This operation (SIOCSLIFFLAGS) must have 13897 * happened from a conn. 13898 */ 13899 ASSERT(connp != NULL); 13900 q = CONNP_TO_WQ(connp); 13901 if (ill->ill_move_in_progress) { 13902 ILL_CLEAR_MOVE(ill); 13903 } 13904 (void) ipif_down(ipif, NULL, NULL); 13905 /* error is set below the switch */ 13906 } 13907 break; 13908 case DL_ENABMULTI_REQ: 13909 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13910 13911 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13912 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13913 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13914 ipif_t *ipif; 13915 13916 log = B_FALSE; 13917 printf("ip: joining multicasts failed (%d)" 13918 " on %s - will use link layer " 13919 "broadcasts for multicast\n", 13920 dlea->dl_errno, ill->ill_name); 13921 13922 /* 13923 * Set up the multicast mapping alone. 13924 * writer, so ok to access ill->ill_ipif 13925 * without any lock. 13926 */ 13927 ipif = ill->ill_ipif; 13928 mutex_enter(&ill->ill_phyint->phyint_lock); 13929 ill->ill_phyint->phyint_flags |= 13930 PHYI_MULTI_BCAST; 13931 mutex_exit(&ill->ill_phyint->phyint_lock); 13932 13933 if (!ill->ill_isv6) { 13934 (void) ipif_arp_setup_multicast(ipif, 13935 NULL); 13936 } else { 13937 (void) ipif_ndp_setup_multicast(ipif, 13938 NULL); 13939 } 13940 } 13941 freemsg(mp); /* Don't want to pass this up */ 13942 return; 13943 case DL_CAPABILITY_REQ: 13944 case DL_CONTROL_REQ: 13945 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13946 "DL_CAPABILITY/CONTROL REQ\n")); 13947 ill_dlpi_done(ill, dlea->dl_error_primitive); 13948 ill->ill_capab_state = IDMS_FAILED; 13949 freemsg(mp); 13950 return; 13951 } 13952 /* 13953 * Note the error for IOCTL completion (mp1 is set when 13954 * ready to complete ioctl). If ill_ifname_pending_err is 13955 * set, an error occured during plumbing (ill_ifname_pending), 13956 * so we want to report that error. 13957 * 13958 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13959 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13960 * expected to get errack'd if the driver doesn't support 13961 * these flags (e.g. ethernet). log will be set to B_FALSE 13962 * if these error conditions are encountered. 13963 */ 13964 if (mp1 != NULL) { 13965 if (ill->ill_ifname_pending_err != 0) { 13966 err = ill->ill_ifname_pending_err; 13967 ill->ill_ifname_pending_err = 0; 13968 } else { 13969 err = dlea->dl_unix_errno ? 13970 dlea->dl_unix_errno : ENXIO; 13971 } 13972 /* 13973 * If we're plumbing an interface and an error hasn't already 13974 * been saved, set ill_ifname_pending_err to the error passed 13975 * up. Ignore the error if log is B_FALSE (see comment above). 13976 */ 13977 } else if (log && ill->ill_ifname_pending && 13978 ill->ill_ifname_pending_err == 0) { 13979 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13980 dlea->dl_unix_errno : ENXIO; 13981 } 13982 13983 if (log) 13984 ip_dlpi_error(ill, dlea->dl_error_primitive, 13985 dlea->dl_errno, dlea->dl_unix_errno); 13986 break; 13987 case DL_CAPABILITY_ACK: { 13988 boolean_t reneg_flag = B_FALSE; 13989 /* Call a routine to handle this one. */ 13990 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13991 /* 13992 * Check if the ACK is due to renegotiation case since we 13993 * will need to send a new CAPABILITY_REQ later. 13994 */ 13995 if (ill->ill_capab_state == IDMS_RENEG) { 13996 /* This is the ack for a renogiation case */ 13997 reneg_flag = B_TRUE; 13998 ill->ill_capab_state = IDMS_UNKNOWN; 13999 } 14000 ill_capability_ack(ill, mp); 14001 if (reneg_flag) 14002 ill_capability_probe(ill); 14003 break; 14004 } 14005 case DL_CONTROL_ACK: 14006 /* We treat all of these as "fire and forget" */ 14007 ill_dlpi_done(ill, DL_CONTROL_REQ); 14008 break; 14009 case DL_INFO_ACK: 14010 /* Call a routine to handle this one. */ 14011 ill_dlpi_done(ill, DL_INFO_REQ); 14012 ip_ll_subnet_defaults(ill, mp); 14013 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 14014 return; 14015 case DL_BIND_ACK: 14016 /* 14017 * We should have an IOCTL waiting on this unless 14018 * sent by ill_dl_phys, in which case just return 14019 */ 14020 ill_dlpi_done(ill, DL_BIND_REQ); 14021 if (ill->ill_ifname_pending) 14022 break; 14023 14024 if (!ioctl_aborted) 14025 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14026 if (mp1 == NULL) 14027 break; 14028 ASSERT(connp != NULL); 14029 q = CONNP_TO_WQ(connp); 14030 14031 /* 14032 * We are exclusive. So nothing can change even after 14033 * we get the pending mp. If need be we can put it back 14034 * and restart, as in calling ipif_arp_up() below. 14035 */ 14036 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 14037 14038 mutex_enter(&ill->ill_lock); 14039 ill->ill_dl_up = 1; 14040 mutex_exit(&ill->ill_lock); 14041 14042 /* 14043 * Now bring up the resolver, when that is 14044 * done we'll create IREs and we are done. 14045 */ 14046 if (ill->ill_isv6) { 14047 /* 14048 * v6 interfaces. 14049 * Unlike ARP which has to do another bind 14050 * and attach, once we get here we are 14051 * done withh NDP. Except in the case of 14052 * ILLF_XRESOLV, in which case we send an 14053 * AR_INTERFACE_UP to the external resolver. 14054 * If all goes well, the ioctl will complete 14055 * in ip_rput(). If there's an error, we 14056 * complete it here. 14057 */ 14058 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14059 B_FALSE); 14060 if (err == 0) { 14061 if (ill->ill_flags & ILLF_XRESOLV) { 14062 mutex_enter(&connp->conn_lock); 14063 mutex_enter(&ill->ill_lock); 14064 success = ipsq_pending_mp_add( 14065 connp, ipif, q, mp1, 0); 14066 mutex_exit(&ill->ill_lock); 14067 mutex_exit(&connp->conn_lock); 14068 if (success) { 14069 err = ipif_resolver_up(ipif, 14070 B_FALSE); 14071 if (err == EINPROGRESS) { 14072 freemsg(mp); 14073 return; 14074 } 14075 ASSERT(err != 0); 14076 mp1 = ipsq_pending_mp_get(ipsq, 14077 &connp); 14078 ASSERT(mp1 != NULL); 14079 } else { 14080 /* conn has started closing */ 14081 err = EINTR; 14082 } 14083 } else { /* Non XRESOLV interface */ 14084 err = ipif_up_done_v6(ipif); 14085 } 14086 } 14087 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14088 /* 14089 * ARP and other v4 external resolvers. 14090 * Leave the pending mblk intact so that 14091 * the ioctl completes in ip_rput(). 14092 */ 14093 mutex_enter(&connp->conn_lock); 14094 mutex_enter(&ill->ill_lock); 14095 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14096 mutex_exit(&ill->ill_lock); 14097 mutex_exit(&connp->conn_lock); 14098 if (success) { 14099 err = ipif_resolver_up(ipif, B_FALSE); 14100 if (err == EINPROGRESS) { 14101 freemsg(mp); 14102 return; 14103 } 14104 ASSERT(err != 0); 14105 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14106 } else { 14107 /* The conn has started closing */ 14108 err = EINTR; 14109 } 14110 } else { 14111 /* 14112 * This one is complete. Reply to pending ioctl. 14113 */ 14114 err = ipif_up_done(ipif); 14115 } 14116 14117 if ((err == 0) && (ill->ill_up_ipifs)) { 14118 err = ill_up_ipifs(ill, q, mp1); 14119 if (err == EINPROGRESS) { 14120 freemsg(mp); 14121 return; 14122 } 14123 } 14124 14125 if (ill->ill_up_ipifs) { 14126 ill_group_cleanup(ill); 14127 } 14128 14129 break; 14130 case DL_NOTIFY_IND: { 14131 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14132 ire_t *ire; 14133 boolean_t need_ire_walk_v4 = B_FALSE; 14134 boolean_t need_ire_walk_v6 = B_FALSE; 14135 14136 /* 14137 * Change the address everywhere we need to. 14138 * What we're getting here is a link-level addr or phys addr. 14139 * The new addr is at notify + notify->dl_addr_offset 14140 * The address length is notify->dl_addr_length; 14141 */ 14142 switch (notify->dl_notification) { 14143 case DL_NOTE_PHYS_ADDR: 14144 mp_hw = copyb(mp); 14145 if (mp_hw == NULL) { 14146 err = ENOMEM; 14147 break; 14148 } 14149 dlp = (union DL_primitives *)mp_hw->b_rptr; 14150 /* 14151 * We currently don't support changing 14152 * the token via DL_NOTIFY_IND. 14153 * When we do support it, we have to consider 14154 * what the implications are with respect to 14155 * the token and the link local address. 14156 */ 14157 mutex_enter(&ill->ill_lock); 14158 if (dlp->notify_ind.dl_data == 14159 DL_IPV6_LINK_LAYER_ADDR) { 14160 if (ill->ill_nd_lla_mp != NULL) 14161 freemsg(ill->ill_nd_lla_mp); 14162 ill->ill_nd_lla_mp = mp_hw; 14163 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14164 dlp->notify_ind.dl_addr_offset; 14165 ill->ill_nd_lla_len = 14166 dlp->notify_ind.dl_addr_length - 14167 ABS(ill->ill_sap_length); 14168 mutex_exit(&ill->ill_lock); 14169 break; 14170 } else if (dlp->notify_ind.dl_data == 14171 DL_CURR_PHYS_ADDR) { 14172 if (ill->ill_phys_addr_mp != NULL) 14173 freemsg(ill->ill_phys_addr_mp); 14174 ill->ill_phys_addr_mp = mp_hw; 14175 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14176 dlp->notify_ind.dl_addr_offset; 14177 ill->ill_phys_addr_length = 14178 dlp->notify_ind.dl_addr_length - 14179 ABS(ill->ill_sap_length); 14180 if (ill->ill_isv6 && 14181 !(ill->ill_flags & ILLF_XRESOLV)) { 14182 if (ill->ill_nd_lla_mp != NULL) 14183 freemsg(ill->ill_nd_lla_mp); 14184 ill->ill_nd_lla_mp = copyb(mp_hw); 14185 ill->ill_nd_lla = (uchar_t *) 14186 ill->ill_nd_lla_mp->b_rptr + 14187 dlp->notify_ind.dl_addr_offset; 14188 ill->ill_nd_lla_len = 14189 ill->ill_phys_addr_length; 14190 } 14191 } 14192 mutex_exit(&ill->ill_lock); 14193 /* 14194 * Send out gratuitous arp request for our new 14195 * hardware address. 14196 */ 14197 for (ipif = ill->ill_ipif; ipif != NULL; 14198 ipif = ipif->ipif_next) { 14199 if (!(ipif->ipif_flags & IPIF_UP)) 14200 continue; 14201 if (ill->ill_isv6) { 14202 ipif_ndp_down(ipif); 14203 /* 14204 * Set B_TRUE to enable 14205 * ipif_ndp_up() to send out 14206 * unsolicited advertisements. 14207 */ 14208 err = ipif_ndp_up(ipif, 14209 &ipif->ipif_v6lcl_addr, 14210 B_TRUE); 14211 if (err) { 14212 ip1dbg(( 14213 "ip_rput_dlpi_writer: " 14214 "Failed to update ndp " 14215 "err %d\n", err)); 14216 } 14217 } else { 14218 /* 14219 * IPv4 ARP case 14220 * 14221 * Set B_TRUE, as we only want 14222 * ipif_resolver_up to send an 14223 * AR_ENTRY_ADD request up to 14224 * ARP. 14225 */ 14226 err = ipif_resolver_up(ipif, 14227 B_TRUE); 14228 if (err) { 14229 ip1dbg(( 14230 "ip_rput_dlpi_writer: " 14231 "Failed to update arp " 14232 "err %d\n", err)); 14233 } 14234 } 14235 } 14236 /* 14237 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14238 * case so that all old fastpath information can be 14239 * purged from IRE caches. 14240 */ 14241 /* FALLTHRU */ 14242 case DL_NOTE_FASTPATH_FLUSH: 14243 /* 14244 * Any fastpath probe sent henceforth will get the 14245 * new fp mp. So we first delete any ires that are 14246 * waiting for the fastpath. Then walk all ires and 14247 * delete the ire or delete the fp mp. In the case of 14248 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14249 * recreate the ire's without going through a complex 14250 * ipif up/down dance. So we don't delete the ire 14251 * itself, but just the ire_fp_mp for these 2 ire's 14252 * In the case of the other ire's we delete the ire's 14253 * themselves. Access to ire_fp_mp is completely 14254 * protected by ire_lock for IRE_MIPRTUN and 14255 * IRE_BROADCAST. Deleting the ire is preferable in the 14256 * other cases for performance. 14257 */ 14258 if (ill->ill_isv6) { 14259 nce_fastpath_list_dispatch(ill, NULL, NULL); 14260 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14261 NULL); 14262 } else { 14263 ire_fastpath_list_dispatch(ill, NULL, NULL); 14264 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14265 IRE_CACHE | IRE_BROADCAST, 14266 ire_fastpath_flush, NULL, ill); 14267 mutex_enter(&ire_mrtun_lock); 14268 if (ire_mrtun_count != 0) { 14269 mutex_exit(&ire_mrtun_lock); 14270 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14271 IRE_MIPRTUN, ire_fastpath_flush, 14272 NULL, ill); 14273 } else { 14274 mutex_exit(&ire_mrtun_lock); 14275 } 14276 } 14277 break; 14278 case DL_NOTE_SDU_SIZE: 14279 /* 14280 * Change the MTU size of the interface, of all 14281 * attached ipif's, and of all relevant ire's. The 14282 * new value's a uint32_t at notify->dl_data. 14283 * Mtu change Vs. new ire creation - protocol below. 14284 * 14285 * a Mark the ipif as IPIF_CHANGING. 14286 * b Set the new mtu in the ipif. 14287 * c Change the ire_max_frag on all affected ires 14288 * d Unmark the IPIF_CHANGING 14289 * 14290 * To see how the protocol works, assume an interface 14291 * route is also being added simultaneously by 14292 * ip_rt_add and let 'ipif' be the ipif referenced by 14293 * the ire. If the ire is created before step a, 14294 * it will be cleaned up by step c. If the ire is 14295 * created after step d, it will see the new value of 14296 * ipif_mtu. Any attempt to create the ire between 14297 * steps a to d will fail because of the IPIF_CHANGING 14298 * flag. Note that ire_create() is passed a pointer to 14299 * the ipif_mtu, and not the value. During ire_add 14300 * under the bucket lock, the ire_max_frag of the 14301 * new ire being created is set from the ipif/ire from 14302 * which it is being derived. 14303 */ 14304 mutex_enter(&ill->ill_lock); 14305 ill->ill_max_frag = (uint_t)notify->dl_data; 14306 14307 /* 14308 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14309 * leave it alone 14310 */ 14311 if (ill->ill_mtu_userspecified) { 14312 mutex_exit(&ill->ill_lock); 14313 break; 14314 } 14315 ill->ill_max_mtu = ill->ill_max_frag; 14316 if (ill->ill_isv6) { 14317 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14318 ill->ill_max_mtu = IPV6_MIN_MTU; 14319 } else { 14320 if (ill->ill_max_mtu < IP_MIN_MTU) 14321 ill->ill_max_mtu = IP_MIN_MTU; 14322 } 14323 for (ipif = ill->ill_ipif; ipif != NULL; 14324 ipif = ipif->ipif_next) { 14325 /* 14326 * Don't override the mtu if the user 14327 * has explicitly set it. 14328 */ 14329 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14330 continue; 14331 ipif->ipif_mtu = (uint_t)notify->dl_data; 14332 if (ipif->ipif_isv6) 14333 ire = ipif_to_ire_v6(ipif); 14334 else 14335 ire = ipif_to_ire(ipif); 14336 if (ire != NULL) { 14337 ire->ire_max_frag = ipif->ipif_mtu; 14338 ire_refrele(ire); 14339 } 14340 if (ipif->ipif_flags & IPIF_UP) { 14341 if (ill->ill_isv6) 14342 need_ire_walk_v6 = B_TRUE; 14343 else 14344 need_ire_walk_v4 = B_TRUE; 14345 } 14346 } 14347 mutex_exit(&ill->ill_lock); 14348 if (need_ire_walk_v4) 14349 ire_walk_v4(ill_mtu_change, (char *)ill, 14350 ALL_ZONES); 14351 if (need_ire_walk_v6) 14352 ire_walk_v6(ill_mtu_change, (char *)ill, 14353 ALL_ZONES); 14354 break; 14355 case DL_NOTE_LINK_UP: 14356 case DL_NOTE_LINK_DOWN: { 14357 /* 14358 * We are writer. ill / phyint / ipsq assocs stable. 14359 * The RUNNING flag reflects the state of the link. 14360 */ 14361 phyint_t *phyint = ill->ill_phyint; 14362 uint64_t new_phyint_flags; 14363 boolean_t changed = B_FALSE; 14364 14365 mutex_enter(&phyint->phyint_lock); 14366 new_phyint_flags = 14367 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14368 phyint->phyint_flags | PHYI_RUNNING : 14369 phyint->phyint_flags & ~PHYI_RUNNING; 14370 if (new_phyint_flags != phyint->phyint_flags) { 14371 phyint->phyint_flags = new_phyint_flags; 14372 changed = B_TRUE; 14373 } 14374 mutex_exit(&phyint->phyint_lock); 14375 /* 14376 * If the flags have changed, send a message to 14377 * the routing socket. 14378 */ 14379 if (changed) { 14380 if (phyint->phyint_illv4 != NULL) { 14381 ip_rts_ifmsg( 14382 phyint->phyint_illv4->ill_ipif); 14383 } 14384 if (phyint->phyint_illv6 != NULL) { 14385 ip_rts_ifmsg( 14386 phyint->phyint_illv6->ill_ipif); 14387 } 14388 } 14389 break; 14390 } 14391 case DL_NOTE_PROMISC_ON_PHYS: 14392 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14393 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14394 mutex_enter(&ill->ill_lock); 14395 ill->ill_promisc_on_phys = B_TRUE; 14396 mutex_exit(&ill->ill_lock); 14397 break; 14398 case DL_NOTE_PROMISC_OFF_PHYS: 14399 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14400 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14401 mutex_enter(&ill->ill_lock); 14402 ill->ill_promisc_on_phys = B_FALSE; 14403 mutex_exit(&ill->ill_lock); 14404 break; 14405 case DL_NOTE_CAPAB_RENEG: 14406 /* 14407 * Something changed on the driver side. 14408 * It wants us to renegotiate the capabilities 14409 * on this ill. The most likely cause is the 14410 * aggregation interface under us where a 14411 * port got added or went away. 14412 * 14413 * We reset the capabilities and set the 14414 * state to IDMS_RENG so that when the ack 14415 * comes back, we can start the 14416 * renegotiation process. 14417 */ 14418 ill_capability_reset(ill); 14419 ill->ill_capab_state = IDMS_RENEG; 14420 break; 14421 default: 14422 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14423 "type 0x%x for DL_NOTIFY_IND\n", 14424 notify->dl_notification)); 14425 break; 14426 } 14427 14428 /* 14429 * As this is an asynchronous operation, we 14430 * should not call ill_dlpi_done 14431 */ 14432 break; 14433 } 14434 case DL_NOTIFY_ACK: 14435 /* 14436 * Don't really need to check for what notifications 14437 * are supported; we'll process what gets sent upstream, 14438 * and we know it'll be something we support changing 14439 * based on our DL_NOTIFY_REQ. 14440 */ 14441 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14442 break; 14443 case DL_PHYS_ADDR_ACK: { 14444 /* 14445 * We should have an IOCTL waiting on this when request 14446 * sent by ill_dl_phys. 14447 * However, ill_dl_phys was called on an ill queue (from 14448 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14449 * ioctl is known to be pending on ill_wq. 14450 * There are two additional phys_addr_req's sent to the 14451 * driver to get the token and lla. ill_phys_addr_pend 14452 * keeps track of the last one sent so we know which 14453 * response we are dealing with. ill_dlpi_done will 14454 * update ill_phys_addr_pend when it sends the next req. 14455 * We don't complete the IOCTL until all three DL_PARs 14456 * have been attempted. 14457 * 14458 * We don't need any lock to update ill_nd_lla* fields, 14459 * since the ill is not yet up, We grab the lock just 14460 * for uniformity with other code that accesses ill_nd_lla. 14461 */ 14462 physaddr_req = ill->ill_phys_addr_pend; 14463 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14464 if (physaddr_req == DL_IPV6_TOKEN || 14465 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14466 if (physaddr_req == DL_IPV6_TOKEN) { 14467 /* 14468 * bcopy to low-order bits of ill_token 14469 * 14470 * XXX Temporary hack - currently, 14471 * all known tokens are 64 bits, 14472 * so I'll cheat for the moment. 14473 */ 14474 dlp = (union DL_primitives *)mp->b_rptr; 14475 14476 mutex_enter(&ill->ill_lock); 14477 bcopy((uchar_t *)(mp->b_rptr + 14478 dlp->physaddr_ack.dl_addr_offset), 14479 (void *)&ill->ill_token.s6_addr32[2], 14480 dlp->physaddr_ack.dl_addr_length); 14481 ill->ill_token_length = 14482 dlp->physaddr_ack.dl_addr_length; 14483 mutex_exit(&ill->ill_lock); 14484 } else { 14485 ASSERT(ill->ill_nd_lla_mp == NULL); 14486 mp_hw = copyb(mp); 14487 if (mp_hw == NULL) { 14488 err = ENOMEM; 14489 break; 14490 } 14491 dlp = (union DL_primitives *)mp_hw->b_rptr; 14492 mutex_enter(&ill->ill_lock); 14493 ill->ill_nd_lla_mp = mp_hw; 14494 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14495 dlp->physaddr_ack.dl_addr_offset; 14496 ill->ill_nd_lla_len = 14497 dlp->physaddr_ack.dl_addr_length; 14498 mutex_exit(&ill->ill_lock); 14499 } 14500 break; 14501 } 14502 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14503 ASSERT(ill->ill_phys_addr_mp == NULL); 14504 if (!ill->ill_ifname_pending) 14505 break; 14506 ill->ill_ifname_pending = 0; 14507 if (!ioctl_aborted) 14508 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14509 if (mp1 != NULL) { 14510 ASSERT(connp == NULL); 14511 q = ill->ill_wq; 14512 } 14513 /* 14514 * If any error acks received during the plumbing sequence, 14515 * ill_ifname_pending_err will be set. Break out and send up 14516 * the error to the pending ioctl. 14517 */ 14518 if (ill->ill_ifname_pending_err != 0) { 14519 err = ill->ill_ifname_pending_err; 14520 ill->ill_ifname_pending_err = 0; 14521 break; 14522 } 14523 /* 14524 * Get the interface token. If the zeroth interface 14525 * address is zero then set the address to the link local 14526 * address 14527 */ 14528 mp_hw = copyb(mp); 14529 if (mp_hw == NULL) { 14530 err = ENOMEM; 14531 break; 14532 } 14533 dlp = (union DL_primitives *)mp_hw->b_rptr; 14534 ill->ill_phys_addr_mp = mp_hw; 14535 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14536 dlp->physaddr_ack.dl_addr_offset; 14537 if (dlp->physaddr_ack.dl_addr_length == 0 || 14538 ill->ill_phys_addr_length == 0 || 14539 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14540 /* 14541 * Compatibility: atun driver returns a length of 0. 14542 * ipdptp has an ill_phys_addr_length of zero(from 14543 * DL_BIND_ACK) but a non-zero length here. 14544 * ipd has an ill_phys_addr_length of 4(from 14545 * DL_BIND_ACK) but a non-zero length here. 14546 */ 14547 ill->ill_phys_addr = NULL; 14548 } else if (dlp->physaddr_ack.dl_addr_length != 14549 ill->ill_phys_addr_length) { 14550 ip0dbg(("DL_PHYS_ADDR_ACK: " 14551 "Address length mismatch %d %d\n", 14552 dlp->physaddr_ack.dl_addr_length, 14553 ill->ill_phys_addr_length)); 14554 err = EINVAL; 14555 break; 14556 } 14557 mutex_enter(&ill->ill_lock); 14558 if (ill->ill_nd_lla_mp == NULL) { 14559 ill->ill_nd_lla_mp = copyb(mp_hw); 14560 if (ill->ill_nd_lla_mp == NULL) { 14561 err = ENOMEM; 14562 mutex_exit(&ill->ill_lock); 14563 break; 14564 } 14565 ill->ill_nd_lla = 14566 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14567 dlp->physaddr_ack.dl_addr_offset; 14568 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14569 } 14570 mutex_exit(&ill->ill_lock); 14571 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14572 (void) ill_setdefaulttoken(ill); 14573 14574 /* 14575 * If the ill zero interface has a zero address assign 14576 * it the proper link local address. 14577 */ 14578 ASSERT(ill->ill_ipif->ipif_id == 0); 14579 if (ipif != NULL && 14580 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14581 (void) ipif_setlinklocal(ipif); 14582 break; 14583 } 14584 case DL_OK_ACK: 14585 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14586 dlpi_prim_str((int)dloa->dl_correct_primitive), 14587 dloa->dl_correct_primitive)); 14588 switch (dloa->dl_correct_primitive) { 14589 case DL_UNBIND_REQ: 14590 case DL_ATTACH_REQ: 14591 case DL_DETACH_REQ: 14592 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14593 break; 14594 } 14595 break; 14596 default: 14597 break; 14598 } 14599 14600 freemsg(mp); 14601 if (mp1) { 14602 struct iocblk *iocp; 14603 int mode; 14604 14605 /* 14606 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14607 * SIOCSLIFNAME do a copyout. 14608 */ 14609 iocp = (struct iocblk *)mp1->b_rptr; 14610 14611 if (iocp->ioc_cmd == SIOCLIFADDIF || 14612 iocp->ioc_cmd == SIOCSLIFNAME) 14613 mode = COPYOUT; 14614 else 14615 mode = NO_COPYOUT; 14616 /* 14617 * The ioctl must complete now without EINPROGRESS 14618 * since ipsq_pending_mp_get has removed the ioctl mblk 14619 * from ipsq_pending_mp. Otherwise the ioctl will be 14620 * stuck for ever in the ipsq. 14621 */ 14622 ASSERT(err != EINPROGRESS); 14623 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14624 14625 } 14626 } 14627 14628 /* 14629 * ip_rput_other is called by ip_rput to handle messages modifying the global 14630 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14631 */ 14632 /* ARGSUSED */ 14633 void 14634 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14635 { 14636 ill_t *ill; 14637 struct iocblk *iocp; 14638 mblk_t *mp1; 14639 conn_t *connp = NULL; 14640 14641 ip1dbg(("ip_rput_other ")); 14642 ill = (ill_t *)q->q_ptr; 14643 /* 14644 * This routine is not a writer in the case of SIOCGTUNPARAM 14645 * in which case ipsq is NULL. 14646 */ 14647 if (ipsq != NULL) { 14648 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14649 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14650 } 14651 14652 switch (mp->b_datap->db_type) { 14653 case M_ERROR: 14654 case M_HANGUP: 14655 /* 14656 * The device has a problem. We force the ILL down. It can 14657 * be brought up again manually using SIOCSIFFLAGS (via 14658 * ifconfig or equivalent). 14659 */ 14660 ASSERT(ipsq != NULL); 14661 if (mp->b_rptr < mp->b_wptr) 14662 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14663 if (ill->ill_error == 0) 14664 ill->ill_error = ENXIO; 14665 if (!ill_down_start(q, mp)) 14666 return; 14667 ipif_all_down_tail(ipsq, q, mp, NULL); 14668 break; 14669 case M_IOCACK: 14670 iocp = (struct iocblk *)mp->b_rptr; 14671 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14672 switch (iocp->ioc_cmd) { 14673 case SIOCSTUNPARAM: 14674 case OSIOCSTUNPARAM: 14675 ASSERT(ipsq != NULL); 14676 /* 14677 * Finish socket ioctl passed through to tun. 14678 * We should have an IOCTL waiting on this. 14679 */ 14680 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14681 if (ill->ill_isv6) { 14682 struct iftun_req *ta; 14683 14684 /* 14685 * if a source or destination is 14686 * being set, try and set the link 14687 * local address for the tunnel 14688 */ 14689 ta = (struct iftun_req *)mp->b_cont-> 14690 b_cont->b_rptr; 14691 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14692 ipif_set_tun_llink(ill, ta); 14693 } 14694 14695 } 14696 if (mp1 != NULL) { 14697 /* 14698 * Now copy back the b_next/b_prev used by 14699 * mi code for the mi_copy* functions. 14700 * See ip_sioctl_tunparam() for the reason. 14701 * Also protect against missing b_cont. 14702 */ 14703 if (mp->b_cont != NULL) { 14704 mp->b_cont->b_next = 14705 mp1->b_cont->b_next; 14706 mp->b_cont->b_prev = 14707 mp1->b_cont->b_prev; 14708 } 14709 inet_freemsg(mp1); 14710 ASSERT(ipsq->ipsq_current_ipif != NULL); 14711 ASSERT(connp != NULL); 14712 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14713 iocp->ioc_error, NO_COPYOUT, 14714 ipsq->ipsq_current_ipif, ipsq); 14715 } else { 14716 ASSERT(connp == NULL); 14717 putnext(q, mp); 14718 } 14719 break; 14720 case SIOCGTUNPARAM: 14721 case OSIOCGTUNPARAM: 14722 /* 14723 * This is really M_IOCDATA from the tunnel driver. 14724 * convert back and complete the ioctl. 14725 * We should have an IOCTL waiting on this. 14726 */ 14727 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14728 if (mp1) { 14729 /* 14730 * Now copy back the b_next/b_prev used by 14731 * mi code for the mi_copy* functions. 14732 * See ip_sioctl_tunparam() for the reason. 14733 * Also protect against missing b_cont. 14734 */ 14735 if (mp->b_cont != NULL) { 14736 mp->b_cont->b_next = 14737 mp1->b_cont->b_next; 14738 mp->b_cont->b_prev = 14739 mp1->b_cont->b_prev; 14740 } 14741 inet_freemsg(mp1); 14742 if (iocp->ioc_error == 0) 14743 mp->b_datap->db_type = M_IOCDATA; 14744 ASSERT(connp != NULL); 14745 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14746 iocp->ioc_error, COPYOUT, NULL, NULL); 14747 } else { 14748 ASSERT(connp == NULL); 14749 putnext(q, mp); 14750 } 14751 break; 14752 default: 14753 break; 14754 } 14755 break; 14756 case M_IOCNAK: 14757 iocp = (struct iocblk *)mp->b_rptr; 14758 14759 switch (iocp->ioc_cmd) { 14760 int mode; 14761 ipif_t *ipif; 14762 14763 case DL_IOC_HDR_INFO: 14764 /* 14765 * If this was the first attempt turn of the 14766 * fastpath probing. 14767 */ 14768 mutex_enter(&ill->ill_lock); 14769 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14770 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14771 mutex_exit(&ill->ill_lock); 14772 ill_fastpath_nack(ill); 14773 ip1dbg(("ip_rput: DLPI fastpath off on " 14774 "interface %s\n", 14775 ill->ill_name)); 14776 } else { 14777 mutex_exit(&ill->ill_lock); 14778 } 14779 freemsg(mp); 14780 break; 14781 case SIOCSTUNPARAM: 14782 case OSIOCSTUNPARAM: 14783 ASSERT(ipsq != NULL); 14784 /* 14785 * Finish socket ioctl passed through to tun 14786 * We should have an IOCTL waiting on this. 14787 */ 14788 /* FALLTHRU */ 14789 case SIOCGTUNPARAM: 14790 case OSIOCGTUNPARAM: 14791 /* 14792 * This is really M_IOCDATA from the tunnel driver. 14793 * convert back and complete the ioctl. 14794 * We should have an IOCTL waiting on this. 14795 */ 14796 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14797 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14798 mp1 = ill_pending_mp_get(ill, &connp, 14799 iocp->ioc_id); 14800 mode = COPYOUT; 14801 ipsq = NULL; 14802 ipif = NULL; 14803 } else { 14804 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14805 mode = NO_COPYOUT; 14806 ASSERT(ipsq->ipsq_current_ipif != NULL); 14807 ipif = ipsq->ipsq_current_ipif; 14808 } 14809 if (mp1 != NULL) { 14810 /* 14811 * Now copy back the b_next/b_prev used by 14812 * mi code for the mi_copy* functions. 14813 * See ip_sioctl_tunparam() for the reason. 14814 * Also protect against missing b_cont. 14815 */ 14816 if (mp->b_cont != NULL) { 14817 mp->b_cont->b_next = 14818 mp1->b_cont->b_next; 14819 mp->b_cont->b_prev = 14820 mp1->b_cont->b_prev; 14821 } 14822 inet_freemsg(mp1); 14823 if (iocp->ioc_error == 0) 14824 iocp->ioc_error = EINVAL; 14825 ASSERT(connp != NULL); 14826 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14827 iocp->ioc_error, mode, ipif, ipsq); 14828 } else { 14829 ASSERT(connp == NULL); 14830 putnext(q, mp); 14831 } 14832 break; 14833 default: 14834 break; 14835 } 14836 default: 14837 break; 14838 } 14839 } 14840 14841 /* 14842 * NOTE : This function does not ire_refrele the ire argument passed in. 14843 * 14844 * IPQoS notes 14845 * IP policy is invoked twice for a forwarded packet, once on the read side 14846 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14847 * enabled. An additional parameter, in_ill, has been added for this purpose. 14848 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14849 * because ip_mroute drops this information. 14850 * 14851 */ 14852 void 14853 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14854 { 14855 uint32_t pkt_len; 14856 queue_t *q; 14857 uint32_t sum; 14858 #define rptr ((uchar_t *)ipha) 14859 uint32_t max_frag; 14860 uint32_t ill_index; 14861 14862 /* Get the ill_index of the incoming ILL */ 14863 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14864 14865 /* Initiate Read side IPPF processing */ 14866 if (IPP_ENABLED(IPP_FWD_IN)) { 14867 ip_process(IPP_FWD_IN, &mp, ill_index); 14868 if (mp == NULL) { 14869 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14870 "during IPPF processing\n")); 14871 return; 14872 } 14873 } 14874 pkt_len = ntohs(ipha->ipha_length); 14875 14876 /* Adjust the checksum to reflect the ttl decrement. */ 14877 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14878 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14879 14880 if (ipha->ipha_ttl-- <= 1) { 14881 if (ip_csum_hdr(ipha)) { 14882 BUMP_MIB(&ip_mib, ipInCksumErrs); 14883 goto drop_pkt; 14884 } 14885 /* 14886 * Note: ire_stq this will be NULL for multicast 14887 * datagrams using the long path through arp (the IRE 14888 * is not an IRE_CACHE). This should not cause 14889 * problems since we don't generate ICMP errors for 14890 * multicast packets. 14891 */ 14892 q = ire->ire_stq; 14893 if (q) 14894 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14895 else 14896 freemsg(mp); 14897 return; 14898 } 14899 14900 /* 14901 * Don't forward if the interface is down 14902 */ 14903 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14904 BUMP_MIB(&ip_mib, ipInDiscards); 14905 goto drop_pkt; 14906 } 14907 14908 /* Get the ill_index of the outgoing ILL */ 14909 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14910 14911 /* Check if there are options to update */ 14912 if (!IS_SIMPLE_IPH(ipha)) { 14913 if (ip_csum_hdr(ipha)) { 14914 BUMP_MIB(&ip_mib, ipInCksumErrs); 14915 goto drop_pkt; 14916 } 14917 if (ip_rput_forward_options(mp, ipha, ire)) { 14918 return; 14919 } 14920 14921 ipha->ipha_hdr_checksum = 0; 14922 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14923 } 14924 max_frag = ire->ire_max_frag; 14925 if (pkt_len > max_frag) { 14926 /* 14927 * It needs fragging on its way out. We haven't 14928 * verified the header checksum yet. Since we 14929 * are going to put a surely good checksum in the 14930 * outgoing header, we have to make sure that it 14931 * was good coming in. 14932 */ 14933 if (ip_csum_hdr(ipha)) { 14934 BUMP_MIB(&ip_mib, ipInCksumErrs); 14935 goto drop_pkt; 14936 } 14937 /* Initiate Write side IPPF processing */ 14938 if (IPP_ENABLED(IPP_FWD_OUT)) { 14939 ip_process(IPP_FWD_OUT, &mp, ill_index); 14940 if (mp == NULL) { 14941 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14942 " during IPPF processing\n")); 14943 return; 14944 } 14945 } 14946 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14947 return; 14948 } 14949 14950 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14951 if (mp == NULL) { 14952 BUMP_MIB(&ip_mib, ipInDiscards); 14953 return; 14954 } 14955 14956 q = ire->ire_stq; 14957 UPDATE_IB_PKT_COUNT(ire); 14958 ire->ire_last_used_time = lbolt; 14959 BUMP_MIB(&ip_mib, ipForwDatagrams); 14960 putnext(q, mp); 14961 return; 14962 14963 drop_pkt:; 14964 ip1dbg(("ip_rput_forward: drop pkt\n")); 14965 freemsg(mp); 14966 #undef rptr 14967 } 14968 14969 void 14970 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14971 { 14972 ire_t *ire; 14973 14974 ASSERT(!ipif->ipif_isv6); 14975 /* 14976 * Find an IRE which matches the destination and the outgoing 14977 * queue in the cache table. All we need is an IRE_CACHE which 14978 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14979 * then it is enough to have some IRE_CACHE in the group. 14980 */ 14981 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14982 dst = ipif->ipif_pp_dst_addr; 14983 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14984 MATCH_IRE_ILL_GROUP); 14985 if (!ire) { 14986 /* 14987 * Mark this packet to make it be delivered to 14988 * ip_rput_forward after the new ire has been 14989 * created. 14990 */ 14991 mp->b_prev = NULL; 14992 mp->b_next = mp; 14993 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14994 NULL, 0); 14995 } else { 14996 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14997 IRE_REFRELE(ire); 14998 } 14999 } 15000 15001 /* Update any source route, record route or timestamp options */ 15002 static int 15003 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 15004 { 15005 ipoptp_t opts; 15006 uchar_t *opt; 15007 uint8_t optval; 15008 uint8_t optlen; 15009 ipaddr_t dst; 15010 uint32_t ts; 15011 ire_t *dst_ire = NULL; 15012 ire_t *tmp_ire = NULL; 15013 timestruc_t now; 15014 15015 ip2dbg(("ip_rput_forward_options\n")); 15016 dst = ipha->ipha_dst; 15017 for (optval = ipoptp_first(&opts, ipha); 15018 optval != IPOPT_EOL; 15019 optval = ipoptp_next(&opts)) { 15020 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15021 opt = opts.ipoptp_cur; 15022 optlen = opts.ipoptp_len; 15023 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 15024 optval, opts.ipoptp_len)); 15025 switch (optval) { 15026 uint32_t off; 15027 case IPOPT_SSRR: 15028 case IPOPT_LSRR: 15029 /* Check if adminstratively disabled */ 15030 if (!ip_forward_src_routed) { 15031 BUMP_MIB(&ip_mib, ipForwProhibits); 15032 if (ire->ire_stq) 15033 icmp_unreachable(ire->ire_stq, mp, 15034 ICMP_SOURCE_ROUTE_FAILED); 15035 else { 15036 ip0dbg(("ip_rput_forward_options: " 15037 "unable to send unreach\n")); 15038 freemsg(mp); 15039 } 15040 return (-1); 15041 } 15042 15043 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15044 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15045 if (dst_ire == NULL) { 15046 /* 15047 * Must be partial since ip_rput_options 15048 * checked for strict. 15049 */ 15050 break; 15051 } 15052 off = opt[IPOPT_OFFSET]; 15053 off--; 15054 redo_srr: 15055 if (optlen < IP_ADDR_LEN || 15056 off > optlen - IP_ADDR_LEN) { 15057 /* End of source route */ 15058 ip1dbg(( 15059 "ip_rput_forward_options: end of SR\n")); 15060 ire_refrele(dst_ire); 15061 break; 15062 } 15063 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15064 bcopy(&ire->ire_src_addr, (char *)opt + off, 15065 IP_ADDR_LEN); 15066 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15067 ntohl(dst))); 15068 15069 /* 15070 * Check if our address is present more than 15071 * once as consecutive hops in source route. 15072 */ 15073 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15074 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15075 if (tmp_ire != NULL) { 15076 ire_refrele(tmp_ire); 15077 off += IP_ADDR_LEN; 15078 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15079 goto redo_srr; 15080 } 15081 ipha->ipha_dst = dst; 15082 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15083 ire_refrele(dst_ire); 15084 break; 15085 case IPOPT_RR: 15086 off = opt[IPOPT_OFFSET]; 15087 off--; 15088 if (optlen < IP_ADDR_LEN || 15089 off > optlen - IP_ADDR_LEN) { 15090 /* No more room - ignore */ 15091 ip1dbg(( 15092 "ip_rput_forward_options: end of RR\n")); 15093 break; 15094 } 15095 bcopy(&ire->ire_src_addr, (char *)opt + off, 15096 IP_ADDR_LEN); 15097 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15098 break; 15099 case IPOPT_TS: 15100 /* Insert timestamp if there is room */ 15101 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15102 case IPOPT_TS_TSONLY: 15103 off = IPOPT_TS_TIMELEN; 15104 break; 15105 case IPOPT_TS_PRESPEC: 15106 case IPOPT_TS_PRESPEC_RFC791: 15107 /* Verify that the address matched */ 15108 off = opt[IPOPT_OFFSET] - 1; 15109 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15110 dst_ire = ire_ctable_lookup(dst, 0, 15111 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 15112 if (dst_ire == NULL) { 15113 /* Not for us */ 15114 break; 15115 } 15116 ire_refrele(dst_ire); 15117 /* FALLTHRU */ 15118 case IPOPT_TS_TSANDADDR: 15119 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15120 break; 15121 default: 15122 /* 15123 * ip_*put_options should have already 15124 * dropped this packet. 15125 */ 15126 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15127 "unknown IT - bug in ip_rput_options?\n"); 15128 return (0); /* Keep "lint" happy */ 15129 } 15130 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15131 /* Increase overflow counter */ 15132 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15133 opt[IPOPT_POS_OV_FLG] = 15134 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15135 (off << 4)); 15136 break; 15137 } 15138 off = opt[IPOPT_OFFSET] - 1; 15139 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15140 case IPOPT_TS_PRESPEC: 15141 case IPOPT_TS_PRESPEC_RFC791: 15142 case IPOPT_TS_TSANDADDR: 15143 bcopy(&ire->ire_src_addr, 15144 (char *)opt + off, IP_ADDR_LEN); 15145 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15146 /* FALLTHRU */ 15147 case IPOPT_TS_TSONLY: 15148 off = opt[IPOPT_OFFSET] - 1; 15149 /* Compute # of milliseconds since midnight */ 15150 gethrestime(&now); 15151 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15152 now.tv_nsec / (NANOSEC / MILLISEC); 15153 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15154 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15155 break; 15156 } 15157 break; 15158 } 15159 } 15160 return (0); 15161 } 15162 15163 /* 15164 * This is called after processing at least one of AH/ESP headers. 15165 * 15166 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15167 * the actual, physical interface on which the packet was received, 15168 * but, when ip_strict_dst_multihoming is set to 1, could be the 15169 * interface which had the ipha_dst configured when the packet went 15170 * through ip_rput. The ill_index corresponding to the recv_ill 15171 * is saved in ipsec_in_rill_index 15172 */ 15173 void 15174 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15175 { 15176 mblk_t *mp; 15177 ipaddr_t dst; 15178 in6_addr_t *v6dstp; 15179 ipha_t *ipha; 15180 ip6_t *ip6h; 15181 ipsec_in_t *ii; 15182 boolean_t ill_need_rele = B_FALSE; 15183 boolean_t rill_need_rele = B_FALSE; 15184 boolean_t ire_need_rele = B_FALSE; 15185 15186 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15187 ASSERT(ii->ipsec_in_ill_index != 0); 15188 15189 mp = ipsec_mp->b_cont; 15190 ASSERT(mp != NULL); 15191 15192 15193 if (ill == NULL) { 15194 ASSERT(recv_ill == NULL); 15195 /* 15196 * We need to get the original queue on which ip_rput_local 15197 * or ip_rput_data_v6 was called. 15198 */ 15199 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15200 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15201 ill_need_rele = B_TRUE; 15202 15203 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15204 recv_ill = ill_lookup_on_ifindex( 15205 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15206 NULL, NULL, NULL, NULL); 15207 rill_need_rele = B_TRUE; 15208 } else { 15209 recv_ill = ill; 15210 } 15211 15212 if ((ill == NULL) || (recv_ill == NULL)) { 15213 ip0dbg(("ip_fanout_proto_again: interface " 15214 "disappeared\n")); 15215 if (ill != NULL) 15216 ill_refrele(ill); 15217 if (recv_ill != NULL) 15218 ill_refrele(recv_ill); 15219 freemsg(ipsec_mp); 15220 return; 15221 } 15222 } 15223 15224 ASSERT(ill != NULL && recv_ill != NULL); 15225 15226 if (mp->b_datap->db_type == M_CTL) { 15227 /* 15228 * AH/ESP is returning the ICMP message after 15229 * removing their headers. Fanout again till 15230 * it gets to the right protocol. 15231 */ 15232 if (ii->ipsec_in_v4) { 15233 icmph_t *icmph; 15234 int iph_hdr_length; 15235 int hdr_length; 15236 15237 ipha = (ipha_t *)mp->b_rptr; 15238 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15239 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15240 ipha = (ipha_t *)&icmph[1]; 15241 hdr_length = IPH_HDR_LENGTH(ipha); 15242 /* 15243 * icmp_inbound_error_fanout may need to do pullupmsg. 15244 * Reset the type to M_DATA. 15245 */ 15246 mp->b_datap->db_type = M_DATA; 15247 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15248 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15249 B_FALSE, ill, ii->ipsec_in_zoneid); 15250 } else { 15251 icmp6_t *icmp6; 15252 int hdr_length; 15253 15254 ip6h = (ip6_t *)mp->b_rptr; 15255 /* Don't call hdr_length_v6() unless you have to. */ 15256 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15257 hdr_length = ip_hdr_length_v6(mp, ip6h); 15258 else 15259 hdr_length = IPV6_HDR_LEN; 15260 15261 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15262 /* 15263 * icmp_inbound_error_fanout_v6 may need to do 15264 * pullupmsg. Reset the type to M_DATA. 15265 */ 15266 mp->b_datap->db_type = M_DATA; 15267 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15268 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15269 } 15270 if (ill_need_rele) 15271 ill_refrele(ill); 15272 if (rill_need_rele) 15273 ill_refrele(recv_ill); 15274 return; 15275 } 15276 15277 if (ii->ipsec_in_v4) { 15278 ipha = (ipha_t *)mp->b_rptr; 15279 dst = ipha->ipha_dst; 15280 if (CLASSD(dst)) { 15281 /* 15282 * Multicast has to be delivered to all streams. 15283 */ 15284 dst = INADDR_BROADCAST; 15285 } 15286 15287 if (ire == NULL) { 15288 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15289 if (ire == NULL) { 15290 if (ill_need_rele) 15291 ill_refrele(ill); 15292 if (rill_need_rele) 15293 ill_refrele(recv_ill); 15294 ip1dbg(("ip_fanout_proto_again: " 15295 "IRE not found")); 15296 freemsg(ipsec_mp); 15297 return; 15298 } 15299 ire_need_rele = B_TRUE; 15300 } 15301 15302 switch (ipha->ipha_protocol) { 15303 case IPPROTO_UDP: 15304 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15305 recv_ill); 15306 if (ire_need_rele) 15307 ire_refrele(ire); 15308 break; 15309 case IPPROTO_TCP: 15310 if (!ire_need_rele) 15311 IRE_REFHOLD(ire); 15312 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15313 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15314 IRE_REFRELE(ire); 15315 if (mp != NULL) 15316 squeue_enter_chain(GET_SQUEUE(mp), mp, 15317 mp, 1, SQTAG_IP_PROTO_AGAIN); 15318 break; 15319 case IPPROTO_SCTP: 15320 if (!ire_need_rele) 15321 IRE_REFHOLD(ire); 15322 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15323 ipsec_mp, 0, ill->ill_rq, dst); 15324 break; 15325 default: 15326 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15327 recv_ill); 15328 if (ire_need_rele) 15329 ire_refrele(ire); 15330 break; 15331 } 15332 } else { 15333 uint32_t rput_flags = 0; 15334 15335 ip6h = (ip6_t *)mp->b_rptr; 15336 v6dstp = &ip6h->ip6_dst; 15337 /* 15338 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15339 * address. 15340 * 15341 * Currently, we don't store that state in the IPSEC_IN 15342 * message, and we may need to. 15343 */ 15344 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15345 IP6_IN_LLMCAST : 0); 15346 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15347 NULL); 15348 } 15349 if (ill_need_rele) 15350 ill_refrele(ill); 15351 if (rill_need_rele) 15352 ill_refrele(recv_ill); 15353 } 15354 15355 /* 15356 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15357 * returns 'true' if there are still fragments left on the queue, in 15358 * which case we restart the timer. 15359 */ 15360 void 15361 ill_frag_timer(void *arg) 15362 { 15363 ill_t *ill = (ill_t *)arg; 15364 boolean_t frag_pending; 15365 15366 mutex_enter(&ill->ill_lock); 15367 ASSERT(!ill->ill_fragtimer_executing); 15368 if (ill->ill_state_flags & ILL_CONDEMNED) { 15369 ill->ill_frag_timer_id = 0; 15370 mutex_exit(&ill->ill_lock); 15371 return; 15372 } 15373 ill->ill_fragtimer_executing = 1; 15374 mutex_exit(&ill->ill_lock); 15375 15376 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15377 15378 /* 15379 * Restart the timer, if we have fragments pending or if someone 15380 * wanted us to be scheduled again. 15381 */ 15382 mutex_enter(&ill->ill_lock); 15383 ill->ill_fragtimer_executing = 0; 15384 ill->ill_frag_timer_id = 0; 15385 if (frag_pending || ill->ill_fragtimer_needrestart) 15386 ill_frag_timer_start(ill); 15387 mutex_exit(&ill->ill_lock); 15388 } 15389 15390 void 15391 ill_frag_timer_start(ill_t *ill) 15392 { 15393 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15394 15395 /* If the ill is closing or opening don't proceed */ 15396 if (ill->ill_state_flags & ILL_CONDEMNED) 15397 return; 15398 15399 if (ill->ill_fragtimer_executing) { 15400 /* 15401 * ill_frag_timer is currently executing. Just record the 15402 * the fact that we want the timer to be restarted. 15403 * ill_frag_timer will post a timeout before it returns, 15404 * ensuring it will be called again. 15405 */ 15406 ill->ill_fragtimer_needrestart = 1; 15407 return; 15408 } 15409 15410 if (ill->ill_frag_timer_id == 0) { 15411 /* 15412 * The timer is neither running nor is the timeout handler 15413 * executing. Post a timeout so that ill_frag_timer will be 15414 * called 15415 */ 15416 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15417 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15418 ill->ill_fragtimer_needrestart = 0; 15419 } 15420 } 15421 15422 /* 15423 * This routine is needed for loopback when forwarding multicasts. 15424 * 15425 * IPQoS Notes: 15426 * IPPF processing is done in fanout routines. 15427 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15428 * processing for IPSec packets is done when it comes back in clear. 15429 * NOTE : The callers of this function need to do the ire_refrele for the 15430 * ire that is being passed in. 15431 */ 15432 void 15433 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15434 ill_t *recv_ill) 15435 { 15436 ill_t *ill = (ill_t *)q->q_ptr; 15437 uint32_t sum; 15438 uint32_t u1; 15439 uint32_t u2; 15440 int hdr_length; 15441 boolean_t mctl_present; 15442 mblk_t *first_mp = mp; 15443 mblk_t *hada_mp = NULL; 15444 ipha_t *inner_ipha; 15445 15446 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15447 "ip_rput_locl_start: q %p", q); 15448 15449 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15450 15451 15452 #define rptr ((uchar_t *)ipha) 15453 #define iphs ((uint16_t *)ipha) 15454 15455 /* 15456 * no UDP or TCP packet should come here anymore. 15457 */ 15458 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15459 (ipha->ipha_protocol != IPPROTO_UDP)); 15460 15461 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15462 if (mctl_present && 15463 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15464 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15465 15466 /* 15467 * It's an IPsec accelerated packet. 15468 * Keep a pointer to the data attributes around until 15469 * we allocate the ipsec_info_t. 15470 */ 15471 IPSECHW_DEBUG(IPSECHW_PKT, 15472 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15473 hada_mp = first_mp; 15474 hada_mp->b_cont = NULL; 15475 /* 15476 * Since it is accelerated, it comes directly from 15477 * the ill and the data attributes is followed by 15478 * the packet data. 15479 */ 15480 ASSERT(mp->b_datap->db_type != M_CTL); 15481 first_mp = mp; 15482 mctl_present = B_FALSE; 15483 } 15484 15485 /* 15486 * IF M_CTL is not present, then ipsec_in_is_secure 15487 * should return B_TRUE. There is a case where loopback 15488 * packets has an M_CTL in the front with all the 15489 * IPSEC options set to IPSEC_PREF_NEVER - which means 15490 * ipsec_in_is_secure will return B_FALSE. As loopback 15491 * packets never comes here, it is safe to ASSERT the 15492 * following. 15493 */ 15494 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15495 15496 15497 /* u1 is # words of IP options */ 15498 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15499 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15500 15501 if (u1) { 15502 if (!ip_options_cksum(q, mp, ipha, ire)) { 15503 if (hada_mp != NULL) 15504 freemsg(hada_mp); 15505 return; 15506 } 15507 } else { 15508 /* Check the IP header checksum. */ 15509 #define uph ((uint16_t *)ipha) 15510 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15511 uph[6] + uph[7] + uph[8] + uph[9]; 15512 #undef uph 15513 /* finish doing IP checksum */ 15514 sum = (sum & 0xFFFF) + (sum >> 16); 15515 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15516 /* 15517 * Don't verify header checksum if this packet is coming 15518 * back from AH/ESP as we already did it. 15519 */ 15520 if (!mctl_present && (sum && sum != 0xFFFF)) { 15521 BUMP_MIB(&ip_mib, ipInCksumErrs); 15522 goto drop_pkt; 15523 } 15524 } 15525 15526 /* 15527 * Count for SNMP of inbound packets for ire. As ip_proto_input 15528 * might be called more than once for secure packets, count only 15529 * the first time. 15530 */ 15531 if (!mctl_present) { 15532 UPDATE_IB_PKT_COUNT(ire); 15533 ire->ire_last_used_time = lbolt; 15534 } 15535 15536 /* Check for fragmentation offset. */ 15537 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15538 u1 = u2 & (IPH_MF | IPH_OFFSET); 15539 if (u1) { 15540 /* 15541 * We re-assemble fragments before we do the AH/ESP 15542 * processing. Thus, M_CTL should not be present 15543 * while we are re-assembling. 15544 */ 15545 ASSERT(!mctl_present); 15546 ASSERT(first_mp == mp); 15547 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 15548 return; 15549 } 15550 /* 15551 * Make sure that first_mp points back to mp as 15552 * the mp we came in with could have changed in 15553 * ip_rput_fragment(). 15554 */ 15555 ipha = (ipha_t *)mp->b_rptr; 15556 first_mp = mp; 15557 } 15558 15559 /* 15560 * Clear hardware checksumming flag as it is currently only 15561 * used by TCP and UDP. 15562 */ 15563 DB_CKSUMFLAGS(mp) = 0; 15564 15565 /* Now we have a complete datagram, destined for this machine. */ 15566 u1 = IPH_HDR_LENGTH(ipha); 15567 switch (ipha->ipha_protocol) { 15568 case IPPROTO_ICMP: { 15569 ire_t *ire_zone; 15570 ilm_t *ilm; 15571 mblk_t *mp1; 15572 zoneid_t last_zoneid; 15573 15574 if (CLASSD(ipha->ipha_dst) && 15575 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15576 ASSERT(ire->ire_type == IRE_BROADCAST); 15577 /* 15578 * In the multicast case, applications may have joined 15579 * the group from different zones, so we need to deliver 15580 * the packet to each of them. Loop through the 15581 * multicast memberships structures (ilm) on the receive 15582 * ill and send a copy of the packet up each matching 15583 * one. However, we don't do this for multicasts sent on 15584 * the loopback interface (PHYI_LOOPBACK flag set) as 15585 * they must stay in the sender's zone. 15586 * 15587 * ilm_add_v6() ensures that ilms in the same zone are 15588 * contiguous in the ill_ilm list. We use this property 15589 * to avoid sending duplicates needed when two 15590 * applications in the same zone join the same group on 15591 * different logical interfaces: we ignore the ilm if 15592 * its zoneid is the same as the last matching one. 15593 * In addition, the sending of the packet for 15594 * ire_zoneid is delayed until all of the other ilms 15595 * have been exhausted. 15596 */ 15597 last_zoneid = -1; 15598 ILM_WALKER_HOLD(recv_ill); 15599 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15600 ilm = ilm->ilm_next) { 15601 if ((ilm->ilm_flags & ILM_DELETED) || 15602 ipha->ipha_dst != ilm->ilm_addr || 15603 ilm->ilm_zoneid == last_zoneid || 15604 ilm->ilm_zoneid == ire->ire_zoneid || 15605 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15606 continue; 15607 mp1 = ip_copymsg(first_mp); 15608 if (mp1 == NULL) 15609 continue; 15610 icmp_inbound(q, mp1, B_TRUE, ill, 15611 0, sum, mctl_present, B_TRUE, 15612 recv_ill, ilm->ilm_zoneid); 15613 last_zoneid = ilm->ilm_zoneid; 15614 } 15615 ILM_WALKER_RELE(recv_ill); 15616 } else if (ire->ire_type == IRE_BROADCAST) { 15617 /* 15618 * In the broadcast case, there may be many zones 15619 * which need a copy of the packet delivered to them. 15620 * There is one IRE_BROADCAST per broadcast address 15621 * and per zone; we walk those using a helper function. 15622 * In addition, the sending of the packet for ire is 15623 * delayed until all of the other ires have been 15624 * processed. 15625 */ 15626 IRB_REFHOLD(ire->ire_bucket); 15627 ire_zone = NULL; 15628 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15629 ire)) != NULL) { 15630 mp1 = ip_copymsg(first_mp); 15631 if (mp1 == NULL) 15632 continue; 15633 15634 UPDATE_IB_PKT_COUNT(ire_zone); 15635 ire_zone->ire_last_used_time = lbolt; 15636 icmp_inbound(q, mp1, B_TRUE, ill, 15637 0, sum, mctl_present, B_TRUE, 15638 recv_ill, ire_zone->ire_zoneid); 15639 } 15640 IRB_REFRELE(ire->ire_bucket); 15641 } 15642 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15643 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15644 ire->ire_zoneid); 15645 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15646 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15647 return; 15648 } 15649 case IPPROTO_IGMP: 15650 /* 15651 * If we are not willing to accept IGMP packets in clear, 15652 * then check with global policy. 15653 */ 15654 if (igmp_accept_clear_messages == 0) { 15655 first_mp = ipsec_check_global_policy(first_mp, NULL, 15656 ipha, NULL, mctl_present); 15657 if (first_mp == NULL) 15658 return; 15659 } 15660 if (igmp_input(q, mp, ill)) { 15661 /* Bad packet - discarded by igmp_input */ 15662 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15663 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15664 if (mctl_present) 15665 freeb(first_mp); 15666 return; 15667 } 15668 /* 15669 * igmp_input() may have pulled up the message so ipha needs to 15670 * be reinitialized. 15671 */ 15672 ipha = (ipha_t *)mp->b_rptr; 15673 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15674 /* No user-level listener for IGMP packets */ 15675 goto drop_pkt; 15676 } 15677 /* deliver to local raw users */ 15678 break; 15679 case IPPROTO_PIM: 15680 /* 15681 * If we are not willing to accept PIM packets in clear, 15682 * then check with global policy. 15683 */ 15684 if (pim_accept_clear_messages == 0) { 15685 first_mp = ipsec_check_global_policy(first_mp, NULL, 15686 ipha, NULL, mctl_present); 15687 if (first_mp == NULL) 15688 return; 15689 } 15690 if (pim_input(q, mp) != 0) { 15691 /* Bad packet - discarded by pim_input */ 15692 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15693 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15694 if (mctl_present) 15695 freeb(first_mp); 15696 return; 15697 } 15698 15699 /* 15700 * pim_input() may have pulled up the message so ipha needs to 15701 * be reinitialized. 15702 */ 15703 ipha = (ipha_t *)mp->b_rptr; 15704 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15705 /* No user-level listener for PIM packets */ 15706 goto drop_pkt; 15707 } 15708 /* deliver to local raw users */ 15709 break; 15710 case IPPROTO_ENCAP: 15711 /* 15712 * Handle self-encapsulated packets (IP-in-IP where 15713 * the inner addresses == the outer addresses). 15714 */ 15715 hdr_length = IPH_HDR_LENGTH(ipha); 15716 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15717 mp->b_wptr) { 15718 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15719 sizeof (ipha_t) - mp->b_rptr)) { 15720 BUMP_MIB(&ip_mib, ipInDiscards); 15721 freemsg(first_mp); 15722 return; 15723 } 15724 ipha = (ipha_t *)mp->b_rptr; 15725 } 15726 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15727 /* 15728 * Check the sanity of the inner IP header. 15729 */ 15730 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15731 BUMP_MIB(&ip_mib, ipInDiscards); 15732 freemsg(first_mp); 15733 return; 15734 } 15735 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15736 BUMP_MIB(&ip_mib, ipInDiscards); 15737 freemsg(first_mp); 15738 return; 15739 } 15740 if (inner_ipha->ipha_src == ipha->ipha_src && 15741 inner_ipha->ipha_dst == ipha->ipha_dst) { 15742 ipsec_in_t *ii; 15743 15744 /* 15745 * Self-encapsulated tunnel packet. Remove 15746 * the outer IP header and fanout again. 15747 * We also need to make sure that the inner 15748 * header is pulled up until options. 15749 */ 15750 mp->b_rptr = (uchar_t *)inner_ipha; 15751 ipha = inner_ipha; 15752 hdr_length = IPH_HDR_LENGTH(ipha); 15753 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15754 if (!pullupmsg(mp, (uchar_t *)ipha + 15755 + hdr_length - mp->b_rptr)) { 15756 freemsg(first_mp); 15757 return; 15758 } 15759 ipha = (ipha_t *)mp->b_rptr; 15760 } 15761 if (!mctl_present) { 15762 ASSERT(first_mp == mp); 15763 /* 15764 * This means that somebody is sending 15765 * Self-encapsualted packets without AH/ESP. 15766 * If AH/ESP was present, we would have already 15767 * allocated the first_mp. 15768 */ 15769 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15770 NULL) { 15771 ip1dbg(("ip_proto_input: IPSEC_IN " 15772 "allocation failure.\n")); 15773 BUMP_MIB(&ip_mib, ipInDiscards); 15774 freemsg(mp); 15775 return; 15776 } 15777 first_mp->b_cont = mp; 15778 } 15779 /* 15780 * We generally store the ill_index if we need to 15781 * do IPSEC processing as we lose the ill queue when 15782 * we come back. But in this case, we never should 15783 * have to store the ill_index here as it should have 15784 * been stored previously when we processed the 15785 * AH/ESP header in this routine or for non-ipsec 15786 * cases, we still have the queue. But for some bad 15787 * packets from the wire, we can get to IPSEC after 15788 * this and we better store the index for that case. 15789 */ 15790 ill = (ill_t *)q->q_ptr; 15791 ii = (ipsec_in_t *)first_mp->b_rptr; 15792 ii->ipsec_in_ill_index = 15793 ill->ill_phyint->phyint_ifindex; 15794 ii->ipsec_in_rill_index = 15795 recv_ill->ill_phyint->phyint_ifindex; 15796 if (ii->ipsec_in_decaps) { 15797 /* 15798 * This packet is self-encapsulated multiple 15799 * times. We don't want to recurse infinitely. 15800 * To keep it simple, drop the packet. 15801 */ 15802 BUMP_MIB(&ip_mib, ipInDiscards); 15803 freemsg(first_mp); 15804 return; 15805 } 15806 ii->ipsec_in_decaps = B_TRUE; 15807 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15808 return; 15809 } 15810 break; 15811 case IPPROTO_AH: 15812 case IPPROTO_ESP: { 15813 /* 15814 * Fast path for AH/ESP. If this is the first time 15815 * we are sending a datagram to AH/ESP, allocate 15816 * a IPSEC_IN message and prepend it. Otherwise, 15817 * just fanout. 15818 */ 15819 15820 int ipsec_rc; 15821 ipsec_in_t *ii; 15822 15823 IP_STAT(ipsec_proto_ahesp); 15824 if (!mctl_present) { 15825 ASSERT(first_mp == mp); 15826 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15827 ip1dbg(("ip_proto_input: IPSEC_IN " 15828 "allocation failure.\n")); 15829 freemsg(hada_mp); /* okay ifnull */ 15830 BUMP_MIB(&ip_mib, ipInDiscards); 15831 freemsg(mp); 15832 return; 15833 } 15834 /* 15835 * Store the ill_index so that when we come back 15836 * from IPSEC we ride on the same queue. 15837 */ 15838 ill = (ill_t *)q->q_ptr; 15839 ii = (ipsec_in_t *)first_mp->b_rptr; 15840 ii->ipsec_in_ill_index = 15841 ill->ill_phyint->phyint_ifindex; 15842 ii->ipsec_in_rill_index = 15843 recv_ill->ill_phyint->phyint_ifindex; 15844 first_mp->b_cont = mp; 15845 /* 15846 * Cache hardware acceleration info. 15847 */ 15848 if (hada_mp != NULL) { 15849 IPSECHW_DEBUG(IPSECHW_PKT, 15850 ("ip_rput_local: caching data attr.\n")); 15851 ii->ipsec_in_accelerated = B_TRUE; 15852 ii->ipsec_in_da = hada_mp; 15853 hada_mp = NULL; 15854 } 15855 } else { 15856 ii = (ipsec_in_t *)first_mp->b_rptr; 15857 } 15858 15859 if (!ipsec_loaded()) { 15860 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15861 ire->ire_zoneid); 15862 return; 15863 } 15864 15865 /* select inbound SA and have IPsec process the pkt */ 15866 if (ipha->ipha_protocol == IPPROTO_ESP) { 15867 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15868 if (esph == NULL) 15869 return; 15870 ASSERT(ii->ipsec_in_esp_sa != NULL); 15871 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15872 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15873 first_mp, esph); 15874 } else { 15875 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15876 if (ah == NULL) 15877 return; 15878 ASSERT(ii->ipsec_in_ah_sa != NULL); 15879 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15880 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15881 first_mp, ah); 15882 } 15883 15884 switch (ipsec_rc) { 15885 case IPSEC_STATUS_SUCCESS: 15886 break; 15887 case IPSEC_STATUS_FAILED: 15888 BUMP_MIB(&ip_mib, ipInDiscards); 15889 /* FALLTHRU */ 15890 case IPSEC_STATUS_PENDING: 15891 return; 15892 } 15893 /* we're done with IPsec processing, send it up */ 15894 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15895 return; 15896 } 15897 default: 15898 break; 15899 } 15900 /* 15901 * Handle protocols with which IP is less intimate. There 15902 * can be more than one stream bound to a particular 15903 * protocol. When this is the case, each one gets a copy 15904 * of any incoming packets. 15905 */ 15906 ip_fanout_proto(q, first_mp, ill, ipha, 15907 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15908 B_TRUE, recv_ill, ire->ire_zoneid); 15909 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15910 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15911 return; 15912 15913 drop_pkt: 15914 freemsg(first_mp); 15915 if (hada_mp != NULL) 15916 freeb(hada_mp); 15917 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15918 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15919 #undef rptr 15920 #undef iphs 15921 15922 } 15923 15924 /* 15925 * Update any source route, record route or timestamp options. 15926 * Check that we are at end of strict source route. 15927 * The options have already been checked for sanity in ip_rput_options(). 15928 */ 15929 static boolean_t 15930 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15931 { 15932 ipoptp_t opts; 15933 uchar_t *opt; 15934 uint8_t optval; 15935 uint8_t optlen; 15936 ipaddr_t dst; 15937 uint32_t ts; 15938 ire_t *dst_ire; 15939 timestruc_t now; 15940 15941 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15942 15943 ip2dbg(("ip_rput_local_options\n")); 15944 15945 for (optval = ipoptp_first(&opts, ipha); 15946 optval != IPOPT_EOL; 15947 optval = ipoptp_next(&opts)) { 15948 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15949 opt = opts.ipoptp_cur; 15950 optlen = opts.ipoptp_len; 15951 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15952 optval, optlen)); 15953 switch (optval) { 15954 uint32_t off; 15955 case IPOPT_SSRR: 15956 case IPOPT_LSRR: 15957 off = opt[IPOPT_OFFSET]; 15958 off--; 15959 if (optlen < IP_ADDR_LEN || 15960 off > optlen - IP_ADDR_LEN) { 15961 /* End of source route */ 15962 ip1dbg(("ip_rput_local_options: end of SR\n")); 15963 break; 15964 } 15965 /* 15966 * This will only happen if two consecutive entries 15967 * in the source route contains our address or if 15968 * it is a packet with a loose source route which 15969 * reaches us before consuming the whole source route 15970 */ 15971 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15972 if (optval == IPOPT_SSRR) { 15973 goto bad_src_route; 15974 } 15975 /* 15976 * Hack: instead of dropping the packet truncate the 15977 * source route to what has been used by filling the 15978 * rest with IPOPT_NOP. 15979 */ 15980 opt[IPOPT_OLEN] = (uint8_t)off; 15981 while (off < optlen) { 15982 opt[off++] = IPOPT_NOP; 15983 } 15984 break; 15985 case IPOPT_RR: 15986 off = opt[IPOPT_OFFSET]; 15987 off--; 15988 if (optlen < IP_ADDR_LEN || 15989 off > optlen - IP_ADDR_LEN) { 15990 /* No more room - ignore */ 15991 ip1dbg(( 15992 "ip_rput_local_options: end of RR\n")); 15993 break; 15994 } 15995 bcopy(&ire->ire_src_addr, (char *)opt + off, 15996 IP_ADDR_LEN); 15997 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15998 break; 15999 case IPOPT_TS: 16000 /* Insert timestamp if there is romm */ 16001 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16002 case IPOPT_TS_TSONLY: 16003 off = IPOPT_TS_TIMELEN; 16004 break; 16005 case IPOPT_TS_PRESPEC: 16006 case IPOPT_TS_PRESPEC_RFC791: 16007 /* Verify that the address matched */ 16008 off = opt[IPOPT_OFFSET] - 1; 16009 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16010 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16011 NULL, ALL_ZONES, MATCH_IRE_TYPE); 16012 if (dst_ire == NULL) { 16013 /* Not for us */ 16014 break; 16015 } 16016 ire_refrele(dst_ire); 16017 /* FALLTHRU */ 16018 case IPOPT_TS_TSANDADDR: 16019 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16020 break; 16021 default: 16022 /* 16023 * ip_*put_options should have already 16024 * dropped this packet. 16025 */ 16026 cmn_err(CE_PANIC, "ip_rput_local_options: " 16027 "unknown IT - bug in ip_rput_options?\n"); 16028 return (B_TRUE); /* Keep "lint" happy */ 16029 } 16030 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16031 /* Increase overflow counter */ 16032 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16033 opt[IPOPT_POS_OV_FLG] = 16034 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16035 (off << 4)); 16036 break; 16037 } 16038 off = opt[IPOPT_OFFSET] - 1; 16039 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16040 case IPOPT_TS_PRESPEC: 16041 case IPOPT_TS_PRESPEC_RFC791: 16042 case IPOPT_TS_TSANDADDR: 16043 bcopy(&ire->ire_src_addr, (char *)opt + off, 16044 IP_ADDR_LEN); 16045 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16046 /* FALLTHRU */ 16047 case IPOPT_TS_TSONLY: 16048 off = opt[IPOPT_OFFSET] - 1; 16049 /* Compute # of milliseconds since midnight */ 16050 gethrestime(&now); 16051 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16052 now.tv_nsec / (NANOSEC / MILLISEC); 16053 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16054 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16055 break; 16056 } 16057 break; 16058 } 16059 } 16060 return (B_TRUE); 16061 16062 bad_src_route: 16063 q = WR(q); 16064 /* make sure we clear any indication of a hardware checksum */ 16065 DB_CKSUMFLAGS(mp) = 0; 16066 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16067 return (B_FALSE); 16068 16069 } 16070 16071 /* 16072 * Process IP options in an inbound packet. If an option affects the 16073 * effective destination address, return the next hop address via dstp. 16074 * Returns -1 if something fails in which case an ICMP error has been sent 16075 * and mp freed. 16076 */ 16077 static int 16078 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16079 { 16080 ipoptp_t opts; 16081 uchar_t *opt; 16082 uint8_t optval; 16083 uint8_t optlen; 16084 ipaddr_t dst; 16085 intptr_t code = 0; 16086 ire_t *ire = NULL; 16087 16088 ip2dbg(("ip_rput_options\n")); 16089 dst = ipha->ipha_dst; 16090 for (optval = ipoptp_first(&opts, ipha); 16091 optval != IPOPT_EOL; 16092 optval = ipoptp_next(&opts)) { 16093 opt = opts.ipoptp_cur; 16094 optlen = opts.ipoptp_len; 16095 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16096 optval, optlen)); 16097 /* 16098 * Note: we need to verify the checksum before we 16099 * modify anything thus this routine only extracts the next 16100 * hop dst from any source route. 16101 */ 16102 switch (optval) { 16103 uint32_t off; 16104 case IPOPT_SSRR: 16105 case IPOPT_LSRR: 16106 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16107 ALL_ZONES, MATCH_IRE_TYPE); 16108 if (ire == NULL) { 16109 if (optval == IPOPT_SSRR) { 16110 ip1dbg(("ip_rput_options: not next" 16111 " strict source route 0x%x\n", 16112 ntohl(dst))); 16113 code = (char *)&ipha->ipha_dst - 16114 (char *)ipha; 16115 goto param_prob; /* RouterReq's */ 16116 } 16117 ip2dbg(("ip_rput_options: " 16118 "not next source route 0x%x\n", 16119 ntohl(dst))); 16120 break; 16121 } 16122 ire_refrele(ire); 16123 16124 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16125 ip1dbg(( 16126 "ip_rput_options: bad option offset\n")); 16127 code = (char *)&opt[IPOPT_OLEN] - 16128 (char *)ipha; 16129 goto param_prob; 16130 } 16131 off = opt[IPOPT_OFFSET]; 16132 off--; 16133 redo_srr: 16134 if (optlen < IP_ADDR_LEN || 16135 off > optlen - IP_ADDR_LEN) { 16136 /* End of source route */ 16137 ip1dbg(("ip_rput_options: end of SR\n")); 16138 break; 16139 } 16140 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16141 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16142 ntohl(dst))); 16143 16144 /* 16145 * Check if our address is present more than 16146 * once as consecutive hops in source route. 16147 * XXX verify per-interface ip_forwarding 16148 * for source route? 16149 */ 16150 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16151 ALL_ZONES, MATCH_IRE_TYPE); 16152 16153 if (ire != NULL) { 16154 ire_refrele(ire); 16155 off += IP_ADDR_LEN; 16156 goto redo_srr; 16157 } 16158 16159 if (dst == htonl(INADDR_LOOPBACK)) { 16160 ip1dbg(("ip_rput_options: loopback addr in " 16161 "source route!\n")); 16162 goto bad_src_route; 16163 } 16164 /* 16165 * For strict: verify that dst is directly 16166 * reachable. 16167 */ 16168 if (optval == IPOPT_SSRR) { 16169 ire = ire_ftable_lookup(dst, 0, 0, 16170 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16171 MATCH_IRE_TYPE); 16172 if (ire == NULL) { 16173 ip1dbg(("ip_rput_options: SSRR not " 16174 "directly reachable: 0x%x\n", 16175 ntohl(dst))); 16176 goto bad_src_route; 16177 } 16178 ire_refrele(ire); 16179 } 16180 /* 16181 * Defer update of the offset and the record route 16182 * until the packet is forwarded. 16183 */ 16184 break; 16185 case IPOPT_RR: 16186 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16187 ip1dbg(( 16188 "ip_rput_options: bad option offset\n")); 16189 code = (char *)&opt[IPOPT_OLEN] - 16190 (char *)ipha; 16191 goto param_prob; 16192 } 16193 break; 16194 case IPOPT_TS: 16195 /* 16196 * Verify that length >= 5 and that there is either 16197 * room for another timestamp or that the overflow 16198 * counter is not maxed out. 16199 */ 16200 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16201 if (optlen < IPOPT_MINLEN_IT) { 16202 goto param_prob; 16203 } 16204 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16205 ip1dbg(( 16206 "ip_rput_options: bad option offset\n")); 16207 code = (char *)&opt[IPOPT_OFFSET] - 16208 (char *)ipha; 16209 goto param_prob; 16210 } 16211 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16212 case IPOPT_TS_TSONLY: 16213 off = IPOPT_TS_TIMELEN; 16214 break; 16215 case IPOPT_TS_TSANDADDR: 16216 case IPOPT_TS_PRESPEC: 16217 case IPOPT_TS_PRESPEC_RFC791: 16218 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16219 break; 16220 default: 16221 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16222 (char *)ipha; 16223 goto param_prob; 16224 } 16225 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16226 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16227 /* 16228 * No room and the overflow counter is 15 16229 * already. 16230 */ 16231 goto param_prob; 16232 } 16233 break; 16234 } 16235 } 16236 16237 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16238 *dstp = dst; 16239 return (0); 16240 } 16241 16242 ip1dbg(("ip_rput_options: error processing IP options.")); 16243 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16244 16245 param_prob: 16246 q = WR(q); 16247 /* make sure we clear any indication of a hardware checksum */ 16248 DB_CKSUMFLAGS(mp) = 0; 16249 icmp_param_problem(q, mp, (uint8_t)code); 16250 return (-1); 16251 16252 bad_src_route: 16253 q = WR(q); 16254 /* make sure we clear any indication of a hardware checksum */ 16255 DB_CKSUMFLAGS(mp) = 0; 16256 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16257 return (-1); 16258 } 16259 16260 /* 16261 * IP & ICMP info in >=14 msg's ... 16262 * - ip fixed part (mib2_ip_t) 16263 * - icmp fixed part (mib2_icmp_t) 16264 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16265 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16266 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16267 * - ip multicast membership (ip_member_t) 16268 * - ip multicast source filtering (ip_grpsrc_t) 16269 * - igmp fixed part (struct igmpstat) 16270 * - multicast routing stats (struct mrtstat) 16271 * - multicast routing vifs (array of struct vifctl) 16272 * - multicast routing routes (array of struct mfcctl) 16273 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16274 * One per ill plus one generic 16275 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16276 * One per ill plus one generic 16277 * - ipv6RouteEntry all IPv6 IREs 16278 * - ipv6NetToMediaEntry all Neighbor Cache entries 16279 * - ipv6AddrEntry all IPv6 ipifs 16280 * - ipv6 multicast membership (ipv6_member_t) 16281 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16282 * 16283 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16284 * already present. 16285 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16286 * already filled in by caller. 16287 * Return value of 0 indicates that no messages were sent and caller 16288 * should free mpctl. 16289 */ 16290 int 16291 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16292 { 16293 16294 if (mpctl == NULL || mpctl->b_cont == NULL) { 16295 return (0); 16296 } 16297 16298 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16299 return (1); 16300 } 16301 16302 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16303 return (1); 16304 } 16305 16306 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16307 return (1); 16308 } 16309 16310 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16311 return (1); 16312 } 16313 16314 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16315 return (1); 16316 } 16317 16318 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16319 return (1); 16320 } 16321 16322 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16323 return (1); 16324 } 16325 16326 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16327 return (1); 16328 } 16329 16330 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16331 return (1); 16332 } 16333 16334 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16335 return (1); 16336 } 16337 16338 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16339 return (1); 16340 } 16341 16342 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16343 return (1); 16344 } 16345 16346 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16347 return (1); 16348 } 16349 16350 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16351 return (1); 16352 } 16353 16354 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16355 return (1); 16356 } 16357 16358 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16359 return (1); 16360 } 16361 16362 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16363 return (1); 16364 } 16365 freemsg(mpctl); 16366 return (1); 16367 } 16368 16369 16370 /* Get global IPv4 statistics */ 16371 static mblk_t * 16372 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16373 { 16374 struct opthdr *optp; 16375 mblk_t *mp2ctl; 16376 16377 /* 16378 * make a copy of the original message 16379 */ 16380 mp2ctl = copymsg(mpctl); 16381 16382 /* fixed length IP structure... */ 16383 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16384 optp->level = MIB2_IP; 16385 optp->name = 0; 16386 SET_MIB(ip_mib.ipForwarding, 16387 (WE_ARE_FORWARDING ? 1 : 2)); 16388 SET_MIB(ip_mib.ipDefaultTTL, 16389 (uint32_t)ip_def_ttl); 16390 SET_MIB(ip_mib.ipReasmTimeout, 16391 ip_g_frag_timeout); 16392 SET_MIB(ip_mib.ipAddrEntrySize, 16393 sizeof (mib2_ipAddrEntry_t)); 16394 SET_MIB(ip_mib.ipRouteEntrySize, 16395 sizeof (mib2_ipRouteEntry_t)); 16396 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16397 sizeof (mib2_ipNetToMediaEntry_t)); 16398 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16399 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16400 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16401 (int)sizeof (ip_mib))) { 16402 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16403 (uint_t)sizeof (ip_mib))); 16404 } 16405 16406 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16407 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16408 (int)optp->level, (int)optp->name, (int)optp->len)); 16409 qreply(q, mpctl); 16410 return (mp2ctl); 16411 } 16412 16413 /* Global IPv4 ICMP statistics */ 16414 static mblk_t * 16415 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16416 { 16417 struct opthdr *optp; 16418 mblk_t *mp2ctl; 16419 16420 /* 16421 * Make a copy of the original message 16422 */ 16423 mp2ctl = copymsg(mpctl); 16424 16425 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16426 optp->level = MIB2_ICMP; 16427 optp->name = 0; 16428 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16429 (int)sizeof (icmp_mib))) { 16430 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16431 (uint_t)sizeof (icmp_mib))); 16432 } 16433 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16434 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16435 (int)optp->level, (int)optp->name, (int)optp->len)); 16436 qreply(q, mpctl); 16437 return (mp2ctl); 16438 } 16439 16440 /* Global IPv4 IGMP statistics */ 16441 static mblk_t * 16442 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16443 { 16444 struct opthdr *optp; 16445 mblk_t *mp2ctl; 16446 16447 /* 16448 * make a copy of the original message 16449 */ 16450 mp2ctl = copymsg(mpctl); 16451 16452 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16453 optp->level = EXPER_IGMP; 16454 optp->name = 0; 16455 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16456 (int)sizeof (igmpstat))) { 16457 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16458 (uint_t)sizeof (igmpstat))); 16459 } 16460 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16461 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16462 (int)optp->level, (int)optp->name, (int)optp->len)); 16463 qreply(q, mpctl); 16464 return (mp2ctl); 16465 } 16466 16467 /* Global IPv4 Multicast Routing statistics */ 16468 static mblk_t * 16469 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16470 { 16471 struct opthdr *optp; 16472 mblk_t *mp2ctl; 16473 16474 /* 16475 * make a copy of the original message 16476 */ 16477 mp2ctl = copymsg(mpctl); 16478 16479 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16480 optp->level = EXPER_DVMRP; 16481 optp->name = 0; 16482 if (!ip_mroute_stats(mpctl->b_cont)) { 16483 ip0dbg(("ip_mroute_stats: failed\n")); 16484 } 16485 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16486 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16487 (int)optp->level, (int)optp->name, (int)optp->len)); 16488 qreply(q, mpctl); 16489 return (mp2ctl); 16490 } 16491 16492 /* IPv4 address information */ 16493 static mblk_t * 16494 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16495 { 16496 struct opthdr *optp; 16497 mblk_t *mp2ctl; 16498 mblk_t *mp_tail = NULL; 16499 ill_t *ill; 16500 ipif_t *ipif; 16501 uint_t bitval; 16502 mib2_ipAddrEntry_t mae; 16503 zoneid_t zoneid; 16504 ill_walk_context_t ctx; 16505 16506 /* 16507 * make a copy of the original message 16508 */ 16509 mp2ctl = copymsg(mpctl); 16510 16511 /* ipAddrEntryTable */ 16512 16513 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16514 optp->level = MIB2_IP; 16515 optp->name = MIB2_IP_ADDR; 16516 zoneid = Q_TO_CONN(q)->conn_zoneid; 16517 16518 rw_enter(&ill_g_lock, RW_READER); 16519 ill = ILL_START_WALK_V4(&ctx); 16520 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16521 for (ipif = ill->ill_ipif; ipif != NULL; 16522 ipif = ipif->ipif_next) { 16523 if (ipif->ipif_zoneid != zoneid) 16524 continue; 16525 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16526 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16527 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16528 16529 (void) ipif_get_name(ipif, 16530 mae.ipAdEntIfIndex.o_bytes, 16531 OCTET_LENGTH); 16532 mae.ipAdEntIfIndex.o_length = 16533 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16534 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16535 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16536 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16537 mae.ipAdEntInfo.ae_subnet_len = 16538 ip_mask_to_plen(ipif->ipif_net_mask); 16539 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16540 for (bitval = 1; 16541 bitval && 16542 !(bitval & ipif->ipif_brd_addr); 16543 bitval <<= 1) 16544 noop; 16545 mae.ipAdEntBcastAddr = bitval; 16546 mae.ipAdEntReasmMaxSize = 65535; 16547 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16548 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16549 mae.ipAdEntInfo.ae_broadcast_addr = 16550 ipif->ipif_brd_addr; 16551 mae.ipAdEntInfo.ae_pp_dst_addr = 16552 ipif->ipif_pp_dst_addr; 16553 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16554 ill->ill_flags | ill->ill_phyint->phyint_flags; 16555 16556 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16557 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16558 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16559 "allocate %u bytes\n", 16560 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16561 } 16562 } 16563 } 16564 rw_exit(&ill_g_lock); 16565 16566 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16567 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16568 (int)optp->level, (int)optp->name, (int)optp->len)); 16569 qreply(q, mpctl); 16570 return (mp2ctl); 16571 } 16572 16573 /* IPv6 address information */ 16574 static mblk_t * 16575 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16576 { 16577 struct opthdr *optp; 16578 mblk_t *mp2ctl; 16579 mblk_t *mp_tail = NULL; 16580 ill_t *ill; 16581 ipif_t *ipif; 16582 mib2_ipv6AddrEntry_t mae6; 16583 zoneid_t zoneid; 16584 ill_walk_context_t ctx; 16585 16586 /* 16587 * make a copy of the original message 16588 */ 16589 mp2ctl = copymsg(mpctl); 16590 16591 /* ipv6AddrEntryTable */ 16592 16593 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16594 optp->level = MIB2_IP6; 16595 optp->name = MIB2_IP6_ADDR; 16596 zoneid = Q_TO_CONN(q)->conn_zoneid; 16597 16598 rw_enter(&ill_g_lock, RW_READER); 16599 ill = ILL_START_WALK_V6(&ctx); 16600 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16601 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16602 if (ipif->ipif_zoneid != zoneid) 16603 continue; 16604 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16605 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16606 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16607 16608 (void) ipif_get_name(ipif, 16609 mae6.ipv6AddrIfIndex.o_bytes, 16610 OCTET_LENGTH); 16611 mae6.ipv6AddrIfIndex.o_length = 16612 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16613 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16614 mae6.ipv6AddrPfxLength = 16615 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16616 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16617 mae6.ipv6AddrInfo.ae_subnet_len = 16618 mae6.ipv6AddrPfxLength; 16619 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16620 16621 /* Type: stateless(1), stateful(2), unknown(3) */ 16622 if (ipif->ipif_flags & IPIF_ADDRCONF) 16623 mae6.ipv6AddrType = 1; 16624 else 16625 mae6.ipv6AddrType = 2; 16626 /* Anycast: true(1), false(2) */ 16627 if (ipif->ipif_flags & IPIF_ANYCAST) 16628 mae6.ipv6AddrAnycastFlag = 1; 16629 else 16630 mae6.ipv6AddrAnycastFlag = 2; 16631 16632 /* 16633 * Address status: preferred(1), deprecated(2), 16634 * invalid(3), inaccessible(4), unknown(5) 16635 */ 16636 if (ipif->ipif_flags & IPIF_NOLOCAL) 16637 mae6.ipv6AddrStatus = 3; 16638 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16639 mae6.ipv6AddrStatus = 2; 16640 else 16641 mae6.ipv6AddrStatus = 1; 16642 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16643 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16644 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16645 ipif->ipif_v6pp_dst_addr; 16646 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16647 ill->ill_flags | ill->ill_phyint->phyint_flags; 16648 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16649 (char *)&mae6, 16650 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16651 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16652 "allocate %u bytes\n", 16653 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16654 } 16655 } 16656 } 16657 rw_exit(&ill_g_lock); 16658 16659 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16660 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16661 (int)optp->level, (int)optp->name, (int)optp->len)); 16662 qreply(q, mpctl); 16663 return (mp2ctl); 16664 } 16665 16666 /* IPv4 multicast group membership. */ 16667 static mblk_t * 16668 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16669 { 16670 struct opthdr *optp; 16671 mblk_t *mp2ctl; 16672 ill_t *ill; 16673 ipif_t *ipif; 16674 ilm_t *ilm; 16675 ip_member_t ipm; 16676 mblk_t *mp_tail = NULL; 16677 ill_walk_context_t ctx; 16678 zoneid_t zoneid; 16679 16680 /* 16681 * make a copy of the original message 16682 */ 16683 mp2ctl = copymsg(mpctl); 16684 zoneid = Q_TO_CONN(q)->conn_zoneid; 16685 16686 /* ipGroupMember table */ 16687 optp = (struct opthdr *)&mpctl->b_rptr[ 16688 sizeof (struct T_optmgmt_ack)]; 16689 optp->level = MIB2_IP; 16690 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16691 16692 rw_enter(&ill_g_lock, RW_READER); 16693 ill = ILL_START_WALK_V4(&ctx); 16694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16695 ILM_WALKER_HOLD(ill); 16696 for (ipif = ill->ill_ipif; ipif != NULL; 16697 ipif = ipif->ipif_next) { 16698 if (ipif->ipif_zoneid != zoneid) 16699 continue; /* not this zone */ 16700 (void) ipif_get_name(ipif, 16701 ipm.ipGroupMemberIfIndex.o_bytes, 16702 OCTET_LENGTH); 16703 ipm.ipGroupMemberIfIndex.o_length = 16704 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16705 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16706 ASSERT(ilm->ilm_ipif != NULL); 16707 ASSERT(ilm->ilm_ill == NULL); 16708 if (ilm->ilm_ipif != ipif) 16709 continue; 16710 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16711 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16712 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16713 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16714 (char *)&ipm, (int)sizeof (ipm))) { 16715 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16716 "failed to allocate %u bytes\n", 16717 (uint_t)sizeof (ipm))); 16718 } 16719 } 16720 } 16721 ILM_WALKER_RELE(ill); 16722 } 16723 rw_exit(&ill_g_lock); 16724 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16725 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16726 (int)optp->level, (int)optp->name, (int)optp->len)); 16727 qreply(q, mpctl); 16728 return (mp2ctl); 16729 } 16730 16731 /* IPv6 multicast group membership. */ 16732 static mblk_t * 16733 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16734 { 16735 struct opthdr *optp; 16736 mblk_t *mp2ctl; 16737 ill_t *ill; 16738 ilm_t *ilm; 16739 ipv6_member_t ipm6; 16740 mblk_t *mp_tail = NULL; 16741 ill_walk_context_t ctx; 16742 zoneid_t zoneid; 16743 16744 /* 16745 * make a copy of the original message 16746 */ 16747 mp2ctl = copymsg(mpctl); 16748 zoneid = Q_TO_CONN(q)->conn_zoneid; 16749 16750 /* ip6GroupMember table */ 16751 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16752 optp->level = MIB2_IP6; 16753 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16754 16755 rw_enter(&ill_g_lock, RW_READER); 16756 ill = ILL_START_WALK_V6(&ctx); 16757 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16758 ILM_WALKER_HOLD(ill); 16759 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16760 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16761 ASSERT(ilm->ilm_ipif == NULL); 16762 ASSERT(ilm->ilm_ill != NULL); 16763 if (ilm->ilm_zoneid != zoneid) 16764 continue; /* not this zone */ 16765 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16766 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16767 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16768 if (!snmp_append_data2(mpctl->b_cont, 16769 &mp_tail, 16770 (char *)&ipm6, (int)sizeof (ipm6))) { 16771 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16772 "failed to allocate %u bytes\n", 16773 (uint_t)sizeof (ipm6))); 16774 } 16775 } 16776 ILM_WALKER_RELE(ill); 16777 } 16778 rw_exit(&ill_g_lock); 16779 16780 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16781 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16782 (int)optp->level, (int)optp->name, (int)optp->len)); 16783 qreply(q, mpctl); 16784 return (mp2ctl); 16785 } 16786 16787 /* IP multicast filtered sources */ 16788 static mblk_t * 16789 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16790 { 16791 struct opthdr *optp; 16792 mblk_t *mp2ctl; 16793 ill_t *ill; 16794 ipif_t *ipif; 16795 ilm_t *ilm; 16796 ip_grpsrc_t ips; 16797 mblk_t *mp_tail = NULL; 16798 ill_walk_context_t ctx; 16799 zoneid_t zoneid; 16800 int i; 16801 slist_t *sl; 16802 16803 /* 16804 * make a copy of the original message 16805 */ 16806 mp2ctl = copymsg(mpctl); 16807 zoneid = Q_TO_CONN(q)->conn_zoneid; 16808 16809 /* ipGroupSource table */ 16810 optp = (struct opthdr *)&mpctl->b_rptr[ 16811 sizeof (struct T_optmgmt_ack)]; 16812 optp->level = MIB2_IP; 16813 optp->name = EXPER_IP_GROUP_SOURCES; 16814 16815 rw_enter(&ill_g_lock, RW_READER); 16816 ill = ILL_START_WALK_V4(&ctx); 16817 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16818 ILM_WALKER_HOLD(ill); 16819 for (ipif = ill->ill_ipif; ipif != NULL; 16820 ipif = ipif->ipif_next) { 16821 if (ipif->ipif_zoneid != zoneid) 16822 continue; /* not this zone */ 16823 (void) ipif_get_name(ipif, 16824 ips.ipGroupSourceIfIndex.o_bytes, 16825 OCTET_LENGTH); 16826 ips.ipGroupSourceIfIndex.o_length = 16827 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16828 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16829 ASSERT(ilm->ilm_ipif != NULL); 16830 ASSERT(ilm->ilm_ill == NULL); 16831 sl = ilm->ilm_filter; 16832 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16833 continue; 16834 ips.ipGroupSourceGroup = ilm->ilm_addr; 16835 for (i = 0; i < sl->sl_numsrc; i++) { 16836 if (!IN6_IS_ADDR_V4MAPPED( 16837 &sl->sl_addr[i])) 16838 continue; 16839 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16840 ips.ipGroupSourceAddress); 16841 if (snmp_append_data2(mpctl->b_cont, 16842 &mp_tail, (char *)&ips, 16843 (int)sizeof (ips)) == 0) { 16844 ip1dbg(("ip_snmp_get_mib2_" 16845 "ip_group_src: failed to " 16846 "allocate %u bytes\n", 16847 (uint_t)sizeof (ips))); 16848 } 16849 } 16850 } 16851 } 16852 ILM_WALKER_RELE(ill); 16853 } 16854 rw_exit(&ill_g_lock); 16855 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16856 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16857 (int)optp->level, (int)optp->name, (int)optp->len)); 16858 qreply(q, mpctl); 16859 return (mp2ctl); 16860 } 16861 16862 /* IPv6 multicast filtered sources. */ 16863 static mblk_t * 16864 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16865 { 16866 struct opthdr *optp; 16867 mblk_t *mp2ctl; 16868 ill_t *ill; 16869 ilm_t *ilm; 16870 ipv6_grpsrc_t ips6; 16871 mblk_t *mp_tail = NULL; 16872 ill_walk_context_t ctx; 16873 zoneid_t zoneid; 16874 int i; 16875 slist_t *sl; 16876 16877 /* 16878 * make a copy of the original message 16879 */ 16880 mp2ctl = copymsg(mpctl); 16881 zoneid = Q_TO_CONN(q)->conn_zoneid; 16882 16883 /* ip6GroupMember table */ 16884 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16885 optp->level = MIB2_IP6; 16886 optp->name = EXPER_IP6_GROUP_SOURCES; 16887 16888 rw_enter(&ill_g_lock, RW_READER); 16889 ill = ILL_START_WALK_V6(&ctx); 16890 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16891 ILM_WALKER_HOLD(ill); 16892 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16893 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16894 ASSERT(ilm->ilm_ipif == NULL); 16895 ASSERT(ilm->ilm_ill != NULL); 16896 sl = ilm->ilm_filter; 16897 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16898 continue; 16899 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16900 for (i = 0; i < sl->sl_numsrc; i++) { 16901 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16902 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16903 (char *)&ips6, (int)sizeof (ips6))) { 16904 ip1dbg(("ip_snmp_get_mib2_ip6_" 16905 "group_src: failed to allocate " 16906 "%u bytes\n", 16907 (uint_t)sizeof (ips6))); 16908 } 16909 } 16910 } 16911 ILM_WALKER_RELE(ill); 16912 } 16913 rw_exit(&ill_g_lock); 16914 16915 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16916 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16917 (int)optp->level, (int)optp->name, (int)optp->len)); 16918 qreply(q, mpctl); 16919 return (mp2ctl); 16920 } 16921 16922 /* Multicast routing virtual interface table. */ 16923 static mblk_t * 16924 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16925 { 16926 struct opthdr *optp; 16927 mblk_t *mp2ctl; 16928 16929 /* 16930 * make a copy of the original message 16931 */ 16932 mp2ctl = copymsg(mpctl); 16933 16934 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16935 optp->level = EXPER_DVMRP; 16936 optp->name = EXPER_DVMRP_VIF; 16937 if (!ip_mroute_vif(mpctl->b_cont)) { 16938 ip0dbg(("ip_mroute_vif: failed\n")); 16939 } 16940 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16941 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16942 (int)optp->level, (int)optp->name, (int)optp->len)); 16943 qreply(q, mpctl); 16944 return (mp2ctl); 16945 } 16946 16947 /* Multicast routing table. */ 16948 static mblk_t * 16949 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16950 { 16951 struct opthdr *optp; 16952 mblk_t *mp2ctl; 16953 16954 /* 16955 * make a copy of the original message 16956 */ 16957 mp2ctl = copymsg(mpctl); 16958 16959 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16960 optp->level = EXPER_DVMRP; 16961 optp->name = EXPER_DVMRP_MRT; 16962 if (!ip_mroute_mrt(mpctl->b_cont)) { 16963 ip0dbg(("ip_mroute_mrt: failed\n")); 16964 } 16965 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16966 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16967 (int)optp->level, (int)optp->name, (int)optp->len)); 16968 qreply(q, mpctl); 16969 return (mp2ctl); 16970 } 16971 16972 /* 16973 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16974 * in one IRE walk. 16975 */ 16976 static mblk_t * 16977 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16978 { 16979 struct opthdr *optp; 16980 mblk_t *mp2ctl; /* Returned */ 16981 mblk_t *mp3ctl; /* nettomedia */ 16982 /* 16983 * We need two listptrs, for ipRouteEntryTable and 16984 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16985 */ 16986 listptr_t re_ntme_v4[2]; 16987 zoneid_t zoneid; 16988 16989 /* 16990 * make a copy of the original message 16991 */ 16992 mp2ctl = copymsg(mpctl); 16993 mp3ctl = copymsg(mpctl); 16994 if (mp3ctl == NULL) { 16995 freemsg(mp2ctl); 16996 freemsg(mpctl); 16997 return (NULL); 16998 } 16999 17000 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 17001 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 17002 /* 17003 * We assign NULL to tail ptrs as snmp_append_data2() will assign 17004 * proper values when called. 17005 */ 17006 re_ntme_v4[0].lp_tail = NULL; 17007 re_ntme_v4[1].lp_tail = NULL; 17008 17009 zoneid = Q_TO_CONN(q)->conn_zoneid; 17010 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 17011 if (zoneid == GLOBAL_ZONEID) { 17012 /* 17013 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 17014 * the sys_net_config privilege, it can only run in the global 17015 * zone, so we don't display these IREs in the other zones. 17016 */ 17017 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 17018 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 17019 NULL); 17020 } 17021 17022 /* ipRouteEntryTable in mpctl */ 17023 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17024 optp->level = MIB2_IP; 17025 optp->name = MIB2_IP_ROUTE; 17026 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 17027 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17028 (int)optp->level, (int)optp->name, (int)optp->len)); 17029 qreply(q, mpctl); 17030 17031 /* ipNetToMediaEntryTable in mp3ctl */ 17032 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17033 optp->level = MIB2_IP; 17034 optp->name = MIB2_IP_MEDIA; 17035 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 17036 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17037 (int)optp->level, (int)optp->name, (int)optp->len)); 17038 qreply(q, mp3ctl); 17039 return (mp2ctl); 17040 } 17041 17042 /* 17043 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 17044 * in one IRE walk. 17045 */ 17046 static mblk_t * 17047 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17048 { 17049 struct opthdr *optp; 17050 mblk_t *mp2ctl; /* Returned */ 17051 mblk_t *mp3ctl; /* nettomedia */ 17052 listptr_t re_ntme_v6; 17053 zoneid_t zoneid; 17054 17055 /* 17056 * make a copy of the original message 17057 */ 17058 mp2ctl = copymsg(mpctl); 17059 mp3ctl = copymsg(mpctl); 17060 if (mp3ctl == NULL) { 17061 freemsg(mp2ctl); 17062 freemsg(mpctl); 17063 return (NULL); 17064 } 17065 17066 /* 17067 * We assign NULL to tail ptrs as snmp_append_data2() will assign 17068 * proper values when called. ipv6RouteEntryTable in is placed 17069 * in mpctl. 17070 */ 17071 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 17072 re_ntme_v6.lp_tail = NULL; 17073 zoneid = Q_TO_CONN(q)->conn_zoneid; 17074 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 17075 17076 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17077 optp->level = MIB2_IP6; 17078 optp->name = MIB2_IP6_ROUTE; 17079 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 17080 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17081 (int)optp->level, (int)optp->name, (int)optp->len)); 17082 qreply(q, mpctl); 17083 17084 /* ipv6NetToMediaEntryTable in mp3ctl */ 17085 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 17086 re_ntme_v6.lp_tail = NULL; 17087 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 17088 17089 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17090 optp->level = MIB2_IP6; 17091 optp->name = MIB2_IP6_MEDIA; 17092 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 17093 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17094 (int)optp->level, (int)optp->name, (int)optp->len)); 17095 qreply(q, mp3ctl); 17096 return (mp2ctl); 17097 } 17098 17099 /* 17100 * ICMPv6 mib: One per ill 17101 */ 17102 static mblk_t * 17103 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 17104 { 17105 struct opthdr *optp; 17106 mblk_t *mp2ctl; 17107 ill_t *ill; 17108 ill_walk_context_t ctx; 17109 mblk_t *mp_tail = NULL; 17110 17111 /* 17112 * Make a copy of the original message 17113 */ 17114 mp2ctl = copymsg(mpctl); 17115 17116 /* fixed length IPv6 structure ... */ 17117 17118 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17119 optp->level = MIB2_IP6; 17120 optp->name = 0; 17121 /* Include "unknown interface" ip6_mib */ 17122 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17123 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17124 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17125 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17126 sizeof (mib2_ipv6IfStatsEntry_t)); 17127 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17128 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17129 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17130 sizeof (mib2_ipv6NetToMediaEntry_t)); 17131 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17132 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17133 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17134 (int)sizeof (ip6_mib))) { 17135 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17136 (uint_t)sizeof (ip6_mib))); 17137 } 17138 17139 rw_enter(&ill_g_lock, RW_READER); 17140 ill = ILL_START_WALK_V6(&ctx); 17141 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17142 ill->ill_ip6_mib->ipv6IfIndex = 17143 ill->ill_phyint->phyint_ifindex; 17144 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17145 ipv6_forward ? 1 : 2); 17146 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17147 ill->ill_max_hops); 17148 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17149 sizeof (mib2_ipv6IfStatsEntry_t)); 17150 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17151 sizeof (mib2_ipv6AddrEntry_t)); 17152 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17153 sizeof (mib2_ipv6RouteEntry_t)); 17154 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17155 sizeof (mib2_ipv6NetToMediaEntry_t)); 17156 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17157 sizeof (ipv6_member_t)); 17158 17159 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17160 (char *)ill->ill_ip6_mib, 17161 (int)sizeof (*ill->ill_ip6_mib))) { 17162 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17163 "%u bytes\n", 17164 (uint_t)sizeof (*ill->ill_ip6_mib))); 17165 } 17166 } 17167 rw_exit(&ill_g_lock); 17168 17169 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17170 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17171 (int)optp->level, (int)optp->name, (int)optp->len)); 17172 qreply(q, mpctl); 17173 return (mp2ctl); 17174 } 17175 17176 /* 17177 * ICMPv6 mib: One per ill 17178 */ 17179 static mblk_t * 17180 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17181 { 17182 struct opthdr *optp; 17183 mblk_t *mp2ctl; 17184 ill_t *ill; 17185 ill_walk_context_t ctx; 17186 mblk_t *mp_tail = NULL; 17187 /* 17188 * Make a copy of the original message 17189 */ 17190 mp2ctl = copymsg(mpctl); 17191 17192 /* fixed length ICMPv6 structure ... */ 17193 17194 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17195 optp->level = MIB2_ICMP6; 17196 optp->name = 0; 17197 /* Include "unknown interface" icmp6_mib */ 17198 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17199 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17200 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17201 (int)sizeof (icmp6_mib))) { 17202 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17203 (uint_t)sizeof (icmp6_mib))); 17204 } 17205 17206 rw_enter(&ill_g_lock, RW_READER); 17207 ill = ILL_START_WALK_V6(&ctx); 17208 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17209 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17210 ill->ill_phyint->phyint_ifindex; 17211 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17212 sizeof (mib2_ipv6IfIcmpEntry_t); 17213 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17214 (char *)ill->ill_icmp6_mib, 17215 (int)sizeof (*ill->ill_icmp6_mib))) { 17216 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17217 "%u bytes\n", 17218 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17219 } 17220 } 17221 rw_exit(&ill_g_lock); 17222 17223 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17224 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17225 (int)optp->level, (int)optp->name, (int)optp->len)); 17226 qreply(q, mpctl); 17227 return (mp2ctl); 17228 } 17229 17230 /* 17231 * ire_walk routine to create both ipRouteEntryTable and 17232 * ipNetToMediaEntryTable in one IRE walk 17233 */ 17234 static void 17235 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17236 { 17237 ill_t *ill; 17238 ipif_t *ipif; 17239 mblk_t *llmp; 17240 dl_unitdata_req_t *dlup; 17241 mib2_ipRouteEntry_t re; 17242 mib2_ipNetToMediaEntry_t ntme; 17243 ipaddr_t gw_addr; 17244 17245 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17246 17247 /* 17248 * Return all IRE types for route table... let caller pick and choose 17249 */ 17250 re.ipRouteDest = ire->ire_addr; 17251 ipif = ire->ire_ipif; 17252 re.ipRouteIfIndex.o_length = 0; 17253 if (ire->ire_type == IRE_CACHE) { 17254 ill = (ill_t *)ire->ire_stq->q_ptr; 17255 re.ipRouteIfIndex.o_length = 17256 ill->ill_name_length == 0 ? 0 : 17257 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17258 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17259 re.ipRouteIfIndex.o_length); 17260 } else if (ipif != NULL) { 17261 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17262 OCTET_LENGTH); 17263 re.ipRouteIfIndex.o_length = 17264 mi_strlen(re.ipRouteIfIndex.o_bytes); 17265 } 17266 re.ipRouteMetric1 = -1; 17267 re.ipRouteMetric2 = -1; 17268 re.ipRouteMetric3 = -1; 17269 re.ipRouteMetric4 = -1; 17270 17271 gw_addr = ire->ire_gateway_addr; 17272 17273 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17274 re.ipRouteNextHop = ire->ire_src_addr; 17275 else 17276 re.ipRouteNextHop = gw_addr; 17277 /* indirect(4), direct(3), or invalid(2) */ 17278 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17279 re.ipRouteType = 2; 17280 else 17281 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17282 re.ipRouteProto = -1; 17283 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17284 re.ipRouteMask = ire->ire_mask; 17285 re.ipRouteMetric5 = -1; 17286 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17287 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17288 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17289 llmp = ire->ire_dlureq_mp; 17290 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17291 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17292 re.ipRouteInfo.re_ire_type = ire->ire_type; 17293 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17294 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17295 re.ipRouteInfo.re_flags = ire->ire_flags; 17296 re.ipRouteInfo.re_in_ill.o_length = 0; 17297 if (ire->ire_in_ill != NULL) { 17298 re.ipRouteInfo.re_in_ill.o_length = 17299 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17300 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17301 bcopy(ire->ire_in_ill->ill_name, 17302 re.ipRouteInfo.re_in_ill.o_bytes, 17303 re.ipRouteInfo.re_in_ill.o_length); 17304 } 17305 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17306 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17307 (char *)&re, (int)sizeof (re))) { 17308 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17309 (uint_t)sizeof (re))); 17310 } 17311 17312 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17313 return; 17314 /* 17315 * only IRE_CACHE entries that are for a directly connected subnet 17316 * get appended to net -> phys addr table 17317 * (others in arp) 17318 */ 17319 ntme.ipNetToMediaIfIndex.o_length = 0; 17320 ill = ire_to_ill(ire); 17321 ASSERT(ill != NULL); 17322 ntme.ipNetToMediaIfIndex.o_length = 17323 ill->ill_name_length == 0 ? 0 : 17324 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17325 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17326 ntme.ipNetToMediaIfIndex.o_length); 17327 17328 ntme.ipNetToMediaPhysAddress.o_length = 0; 17329 if (llmp) { 17330 uchar_t *addr; 17331 17332 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17333 /* Remove sap from address */ 17334 if (ill->ill_sap_length < 0) 17335 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17336 else 17337 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17338 ill->ill_sap_length; 17339 17340 ntme.ipNetToMediaPhysAddress.o_length = 17341 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17342 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17343 ntme.ipNetToMediaPhysAddress.o_length); 17344 } 17345 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17346 /* assume dynamic (may be changed in arp) */ 17347 ntme.ipNetToMediaType = 3; 17348 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17349 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17350 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17351 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17352 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17353 (char *)&ntme, (int)sizeof (ntme))) { 17354 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17355 (uint_t)sizeof (ntme))); 17356 } 17357 } 17358 17359 /* 17360 * ire_walk routine to create ipv6RouteEntryTable. 17361 */ 17362 static void 17363 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17364 { 17365 ill_t *ill; 17366 ipif_t *ipif; 17367 mib2_ipv6RouteEntry_t re; 17368 in6_addr_t gw_addr_v6; 17369 17370 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17371 17372 /* 17373 * Return all IRE types for route table... let caller pick and choose 17374 */ 17375 re.ipv6RouteDest = ire->ire_addr_v6; 17376 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17377 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17378 re.ipv6RouteIfIndex.o_length = 0; 17379 ipif = ire->ire_ipif; 17380 if (ire->ire_type == IRE_CACHE) { 17381 ill = (ill_t *)ire->ire_stq->q_ptr; 17382 re.ipv6RouteIfIndex.o_length = 17383 ill->ill_name_length == 0 ? 0 : 17384 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17385 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17386 re.ipv6RouteIfIndex.o_length); 17387 } else if (ipif != NULL) { 17388 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17389 OCTET_LENGTH); 17390 re.ipv6RouteIfIndex.o_length = 17391 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17392 } 17393 17394 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17395 17396 mutex_enter(&ire->ire_lock); 17397 gw_addr_v6 = ire->ire_gateway_addr_v6; 17398 mutex_exit(&ire->ire_lock); 17399 17400 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17401 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17402 else 17403 re.ipv6RouteNextHop = gw_addr_v6; 17404 17405 /* remote(4), local(3), or discard(2) */ 17406 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17407 re.ipv6RouteType = 2; 17408 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17409 re.ipv6RouteType = 3; 17410 else 17411 re.ipv6RouteType = 4; 17412 17413 re.ipv6RouteProtocol = -1; 17414 re.ipv6RoutePolicy = 0; 17415 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17416 re.ipv6RouteNextHopRDI = 0; 17417 re.ipv6RouteWeight = 0; 17418 re.ipv6RouteMetric = 0; 17419 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17420 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17421 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17422 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17423 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17424 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17425 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17426 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17427 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17428 17429 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17430 (char *)&re, (int)sizeof (re))) { 17431 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17432 (uint_t)sizeof (re))); 17433 } 17434 } 17435 17436 /* 17437 * ndp_walk routine to create ipv6NetToMediaEntryTable 17438 */ 17439 static int 17440 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17441 { 17442 ill_t *ill; 17443 mib2_ipv6NetToMediaEntry_t ntme; 17444 dl_unitdata_req_t *dl; 17445 17446 ill = nce->nce_ill; 17447 ASSERT(ill->ill_isv6); 17448 17449 /* 17450 * Neighbor cache entry attached to IRE with on-link 17451 * destination. 17452 */ 17453 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17454 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17455 if ((ill->ill_flags & ILLF_XRESOLV) && 17456 (nce->nce_res_mp != NULL)) { 17457 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17458 ntme.ipv6NetToMediaPhysAddress.o_length = 17459 dl->dl_dest_addr_length; 17460 } else { 17461 ntme.ipv6NetToMediaPhysAddress.o_length = 17462 ill->ill_phys_addr_length; 17463 } 17464 if (nce->nce_res_mp != NULL) { 17465 bcopy((char *)nce->nce_res_mp->b_rptr + 17466 NCE_LL_ADDR_OFFSET(ill), 17467 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17468 ntme.ipv6NetToMediaPhysAddress.o_length); 17469 } else { 17470 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17471 ill->ill_phys_addr_length); 17472 } 17473 /* 17474 * Note: Returns ND_* states. Should be: 17475 * reachable(1), stale(2), delay(3), probe(4), 17476 * invalid(5), unknown(6) 17477 */ 17478 ntme.ipv6NetToMediaState = nce->nce_state; 17479 ntme.ipv6NetToMediaLastUpdated = 0; 17480 17481 /* other(1), dynamic(2), static(3), local(4) */ 17482 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17483 ntme.ipv6NetToMediaType = 4; 17484 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17485 ntme.ipv6NetToMediaType = 1; 17486 } else { 17487 ntme.ipv6NetToMediaType = 2; 17488 } 17489 17490 if (!snmp_append_data2(re_ntme->lp_head, 17491 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17492 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17493 (uint_t)sizeof (ntme))); 17494 } 17495 return (0); 17496 } 17497 17498 /* 17499 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17500 */ 17501 /* ARGSUSED */ 17502 int 17503 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17504 { 17505 switch (level) { 17506 case MIB2_IP: 17507 case MIB2_ICMP: 17508 switch (name) { 17509 default: 17510 break; 17511 } 17512 return (1); 17513 default: 17514 return (1); 17515 } 17516 } 17517 17518 /* 17519 * Called before the options are updated to check if this packet will 17520 * be source routed from here. 17521 * This routine assumes that the options are well formed i.e. that they 17522 * have already been checked. 17523 */ 17524 static boolean_t 17525 ip_source_routed(ipha_t *ipha) 17526 { 17527 ipoptp_t opts; 17528 uchar_t *opt; 17529 uint8_t optval; 17530 uint8_t optlen; 17531 ipaddr_t dst; 17532 ire_t *ire; 17533 17534 if (IS_SIMPLE_IPH(ipha)) { 17535 ip2dbg(("not source routed\n")); 17536 return (B_FALSE); 17537 } 17538 dst = ipha->ipha_dst; 17539 for (optval = ipoptp_first(&opts, ipha); 17540 optval != IPOPT_EOL; 17541 optval = ipoptp_next(&opts)) { 17542 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17543 opt = opts.ipoptp_cur; 17544 optlen = opts.ipoptp_len; 17545 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17546 optval, optlen)); 17547 switch (optval) { 17548 uint32_t off; 17549 case IPOPT_SSRR: 17550 case IPOPT_LSRR: 17551 /* 17552 * If dst is one of our addresses and there are some 17553 * entries left in the source route return (true). 17554 */ 17555 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17556 ALL_ZONES, MATCH_IRE_TYPE); 17557 if (ire == NULL) { 17558 ip2dbg(("ip_source_routed: not next" 17559 " source route 0x%x\n", 17560 ntohl(dst))); 17561 return (B_FALSE); 17562 } 17563 ire_refrele(ire); 17564 off = opt[IPOPT_OFFSET]; 17565 off--; 17566 if (optlen < IP_ADDR_LEN || 17567 off > optlen - IP_ADDR_LEN) { 17568 /* End of source route */ 17569 ip1dbg(("ip_source_routed: end of SR\n")); 17570 return (B_FALSE); 17571 } 17572 return (B_TRUE); 17573 } 17574 } 17575 ip2dbg(("not source routed\n")); 17576 return (B_FALSE); 17577 } 17578 17579 /* 17580 * Check if the packet contains any source route. 17581 */ 17582 static boolean_t 17583 ip_source_route_included(ipha_t *ipha) 17584 { 17585 ipoptp_t opts; 17586 uint8_t optval; 17587 17588 if (IS_SIMPLE_IPH(ipha)) 17589 return (B_FALSE); 17590 for (optval = ipoptp_first(&opts, ipha); 17591 optval != IPOPT_EOL; 17592 optval = ipoptp_next(&opts)) { 17593 switch (optval) { 17594 case IPOPT_SSRR: 17595 case IPOPT_LSRR: 17596 return (B_TRUE); 17597 } 17598 } 17599 return (B_FALSE); 17600 } 17601 17602 /* 17603 * Called when the IRE expiration timer fires. 17604 */ 17605 /* ARGSUSED */ 17606 void 17607 ip_trash_timer_expire(void *args) 17608 { 17609 int flush_flag = 0; 17610 17611 /* 17612 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17613 * This lock makes sure that a new invocation of this function 17614 * that occurs due to an almost immediate timer firing will not 17615 * progress beyond this point until the current invocation is done 17616 */ 17617 mutex_enter(&ip_trash_timer_lock); 17618 ip_ire_expire_id = 0; 17619 mutex_exit(&ip_trash_timer_lock); 17620 17621 /* Periodic timer */ 17622 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17623 /* 17624 * Remove all IRE_CACHE entries since they might 17625 * contain arp information. 17626 */ 17627 flush_flag |= FLUSH_ARP_TIME; 17628 ip_ire_arp_time_elapsed = 0; 17629 IP_STAT(ip_ire_arp_timer_expired); 17630 } 17631 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17632 /* Remove all redirects */ 17633 flush_flag |= FLUSH_REDIRECT_TIME; 17634 ip_ire_rd_time_elapsed = 0; 17635 IP_STAT(ip_ire_redirect_timer_expired); 17636 } 17637 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17638 /* Increase path mtu */ 17639 flush_flag |= FLUSH_MTU_TIME; 17640 ip_ire_pmtu_time_elapsed = 0; 17641 IP_STAT(ip_ire_pmtu_timer_expired); 17642 } 17643 if (flush_flag != 0) { 17644 /* Walk all IPv4 IRE's and update them */ 17645 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17646 ALL_ZONES); 17647 } 17648 if (flush_flag & FLUSH_MTU_TIME) { 17649 /* 17650 * Walk all IPv6 IRE's and update them 17651 * Note that ARP and redirect timers are not 17652 * needed since NUD handles stale entries. 17653 */ 17654 flush_flag = FLUSH_MTU_TIME; 17655 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17656 ALL_ZONES); 17657 } 17658 17659 ip_ire_arp_time_elapsed += ip_timer_interval; 17660 ip_ire_rd_time_elapsed += ip_timer_interval; 17661 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17662 17663 /* 17664 * Hold the lock to serialize timeout calls and prevent 17665 * stale values in ip_ire_expire_id. Otherwise it is possible 17666 * for the timer to fire and a new invocation of this function 17667 * to start before the return value of timeout has been stored 17668 * in ip_ire_expire_id by the current invocation. 17669 */ 17670 mutex_enter(&ip_trash_timer_lock); 17671 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17672 MSEC_TO_TICK(ip_timer_interval)); 17673 mutex_exit(&ip_trash_timer_lock); 17674 } 17675 17676 /* 17677 * Called by the memory allocator subsystem directly, when the system 17678 * is running low on memory. 17679 */ 17680 /* ARGSUSED */ 17681 void 17682 ip_trash_ire_reclaim(void *args) 17683 { 17684 ire_cache_count_t icc; 17685 ire_cache_reclaim_t icr; 17686 ncc_cache_count_t ncc; 17687 nce_cache_reclaim_t ncr; 17688 uint_t delete_cnt; 17689 /* 17690 * Memory reclaim call back. 17691 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17692 * Then, with a target of freeing 1/Nth of IRE_CACHE 17693 * entries, determine what fraction to free for 17694 * each category of IRE_CACHE entries giving absolute priority 17695 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17696 * entry will be freed unless all offlink entries are freed). 17697 */ 17698 icc.icc_total = 0; 17699 icc.icc_unused = 0; 17700 icc.icc_offlink = 0; 17701 icc.icc_pmtu = 0; 17702 icc.icc_onlink = 0; 17703 ire_walk(ire_cache_count, (char *)&icc); 17704 17705 /* 17706 * Free NCEs for IPv6 like the onlink ires. 17707 */ 17708 ncc.ncc_total = 0; 17709 ncc.ncc_host = 0; 17710 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17711 17712 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17713 icc.icc_pmtu + icc.icc_onlink); 17714 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17715 IP_STAT(ip_trash_ire_reclaim_calls); 17716 if (delete_cnt == 0) 17717 return; 17718 IP_STAT(ip_trash_ire_reclaim_success); 17719 /* Always delete all unused offlink entries */ 17720 icr.icr_unused = 1; 17721 if (delete_cnt <= icc.icc_unused) { 17722 /* 17723 * Only need to free unused entries. In other words, 17724 * there are enough unused entries to free to meet our 17725 * target number of freed ire cache entries. 17726 */ 17727 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17728 ncr.ncr_host = 0; 17729 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17730 /* 17731 * Only need to free unused entries, plus a fraction of offlink 17732 * entries. It follows from the first if statement that 17733 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17734 */ 17735 delete_cnt -= icc.icc_unused; 17736 /* Round up # deleted by truncating fraction */ 17737 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17738 icr.icr_pmtu = icr.icr_onlink = 0; 17739 ncr.ncr_host = 0; 17740 } else if (delete_cnt <= 17741 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17742 /* 17743 * Free all unused and offlink entries, plus a fraction of 17744 * pmtu entries. It follows from the previous if statement 17745 * that icc_pmtu is non-zero, and that 17746 * delete_cnt != icc_unused + icc_offlink. 17747 */ 17748 icr.icr_offlink = 1; 17749 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17750 /* Round up # deleted by truncating fraction */ 17751 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17752 icr.icr_onlink = 0; 17753 ncr.ncr_host = 0; 17754 } else { 17755 /* 17756 * Free all unused, offlink, and pmtu entries, plus a fraction 17757 * of onlink entries. If we're here, then we know that 17758 * icc_onlink is non-zero, and that 17759 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17760 */ 17761 icr.icr_offlink = icr.icr_pmtu = 1; 17762 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17763 icc.icc_pmtu; 17764 /* Round up # deleted by truncating fraction */ 17765 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17766 /* Using the same delete fraction as for onlink IREs */ 17767 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17768 } 17769 #ifdef DEBUG 17770 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17771 "fractions %d/%d/%d/%d\n", 17772 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17773 icc.icc_unused, icc.icc_offlink, 17774 icc.icc_pmtu, icc.icc_onlink, 17775 icr.icr_unused, icr.icr_offlink, 17776 icr.icr_pmtu, icr.icr_onlink)); 17777 #endif 17778 ire_walk(ire_cache_reclaim, (char *)&icr); 17779 if (ncr.ncr_host != 0) 17780 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17781 (uchar_t *)&ncr); 17782 #ifdef DEBUG 17783 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17784 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17785 ire_walk(ire_cache_count, (char *)&icc); 17786 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17787 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17788 icc.icc_pmtu, icc.icc_onlink)); 17789 #endif 17790 } 17791 17792 /* 17793 * ip_unbind is called when a copy of an unbind request is received from the 17794 * upper level protocol. We remove this conn from any fanout hash list it is 17795 * on, and zero out the bind information. No reply is expected up above. 17796 */ 17797 mblk_t * 17798 ip_unbind(queue_t *q, mblk_t *mp) 17799 { 17800 conn_t *connp = Q_TO_CONN(q); 17801 17802 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17803 17804 ipcl_hash_remove(connp); 17805 17806 ASSERT(mp->b_cont == NULL); 17807 /* 17808 * Convert mp into a T_OK_ACK 17809 */ 17810 mp = mi_tpi_ok_ack_alloc(mp); 17811 17812 /* 17813 * should not happen in practice... T_OK_ACK is smaller than the 17814 * original message. 17815 */ 17816 if (mp == NULL) 17817 return (NULL); 17818 17819 /* 17820 * Don't bzero the ports if its TCP since TCP still needs the 17821 * lport to remove it from its own bind hash. TCP will do the 17822 * cleanup. 17823 */ 17824 if (!IPCL_IS_TCP(connp)) 17825 bzero(&connp->u_port, sizeof (connp->u_port)); 17826 17827 return (mp); 17828 } 17829 17830 /* 17831 * Write side put procedure. Outbound data, IOCTLs, responses from 17832 * resolvers, etc, come down through here. 17833 */ 17834 void 17835 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17836 { 17837 conn_t *connp = NULL; 17838 queue_t *q = (queue_t *)arg2; 17839 ipha_t *ipha; 17840 #define rptr ((uchar_t *)ipha) 17841 ire_t *ire = NULL; 17842 ire_t *sctp_ire = NULL; 17843 uint32_t v_hlen_tos_len; 17844 ipaddr_t dst; 17845 mblk_t *first_mp = NULL; 17846 boolean_t mctl_present; 17847 ipsec_out_t *io; 17848 int match_flags; 17849 ill_t *attach_ill = NULL; 17850 /* Bind to IPIF_NOFAILOVER ill etc. */ 17851 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17852 ipif_t *dst_ipif; 17853 boolean_t multirt_need_resolve = B_FALSE; 17854 mblk_t *copy_mp = NULL; 17855 int err; 17856 zoneid_t zoneid; 17857 boolean_t need_decref = B_FALSE; 17858 boolean_t ignore_dontroute = B_FALSE; 17859 boolean_t ignore_nexthop = B_FALSE; 17860 boolean_t ip_nexthop = B_FALSE; 17861 ipaddr_t nexthop_addr; 17862 17863 #ifdef _BIG_ENDIAN 17864 #define V_HLEN (v_hlen_tos_len >> 24) 17865 #else 17866 #define V_HLEN (v_hlen_tos_len & 0xFF) 17867 #endif 17868 17869 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17870 "ip_wput_start: q %p", q); 17871 17872 /* 17873 * ip_wput fast path 17874 */ 17875 17876 /* is packet from ARP ? */ 17877 if (q->q_next != NULL) 17878 goto qnext; 17879 17880 connp = (conn_t *)arg; 17881 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17882 17883 /* is queue flow controlled? */ 17884 if ((q->q_first != NULL || connp->conn_draining) && 17885 (caller == IP_WPUT)) { 17886 ASSERT(!need_decref); 17887 (void) putq(q, mp); 17888 return; 17889 } 17890 17891 /* Multidata transmit? */ 17892 if (DB_TYPE(mp) == M_MULTIDATA) { 17893 /* 17894 * We should never get here, since all Multidata messages 17895 * originating from tcp should have been directed over to 17896 * tcp_multisend() in the first place. 17897 */ 17898 BUMP_MIB(&ip_mib, ipOutDiscards); 17899 freemsg(mp); 17900 return; 17901 } else if (DB_TYPE(mp) != M_DATA) 17902 goto notdata; 17903 if (mp->b_flag & MSGHASREF) { 17904 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17905 mp->b_flag &= ~MSGHASREF; 17906 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17907 need_decref = B_TRUE; 17908 } 17909 ipha = (ipha_t *)mp->b_rptr; 17910 17911 /* is IP header non-aligned or mblk smaller than basic IP header */ 17912 #ifndef SAFETY_BEFORE_SPEED 17913 if (!OK_32PTR(rptr) || 17914 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17915 goto hdrtoosmall; 17916 #endif 17917 17918 /* 17919 * If there is a policy, try to attach an ipsec_out in 17920 * the front. At the end, first_mp either points to a 17921 * M_DATA message or IPSEC_OUT message linked to a 17922 * M_DATA message. We have to do it now as we might 17923 * lose the "conn" if we go through ip_newroute. 17924 */ 17925 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17926 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17927 ipha->ipha_protocol)) == NULL)) { 17928 if (need_decref) 17929 CONN_DEC_REF(connp); 17930 return; 17931 } else { 17932 ASSERT(mp->b_datap->db_type == M_CTL); 17933 first_mp = mp; 17934 mp = mp->b_cont; 17935 mctl_present = B_TRUE; 17936 } 17937 } else { 17938 first_mp = mp; 17939 mctl_present = B_FALSE; 17940 } 17941 17942 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17943 17944 /* is wrong version or IP options present */ 17945 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17946 goto version_hdrlen_check; 17947 dst = ipha->ipha_dst; 17948 17949 if (connp->conn_nofailover_ill != NULL) { 17950 attach_ill = conn_get_held_ill(connp, 17951 &connp->conn_nofailover_ill, &err); 17952 if (err == ILL_LOOKUP_FAILED) { 17953 if (need_decref) 17954 CONN_DEC_REF(connp); 17955 freemsg(first_mp); 17956 return; 17957 } 17958 } 17959 17960 /* is packet multicast? */ 17961 if (CLASSD(dst)) 17962 goto multicast; 17963 17964 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 17965 (connp->conn_nexthop_set)) { 17966 /* 17967 * If the destination is a broadcast or a loopback 17968 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 17969 * through the standard path. But in the case of local 17970 * destination only SO_DONTROUTE and IP_NEXTHOP go through 17971 * the standard path not IP_XMIT_IF. 17972 */ 17973 ire = ire_cache_lookup(dst, zoneid); 17974 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17975 (ire->ire_type != IRE_LOOPBACK))) { 17976 if ((connp->conn_dontroute || 17977 connp->conn_nexthop_set) && (ire != NULL) && 17978 (ire->ire_type == IRE_LOCAL)) 17979 goto standard_path; 17980 17981 if (ire != NULL) { 17982 ire_refrele(ire); 17983 /* No more access to ire */ 17984 ire = NULL; 17985 } 17986 /* 17987 * bypass routing checks and go directly to 17988 * interface. 17989 */ 17990 if (connp->conn_dontroute) { 17991 goto dontroute; 17992 } else if (connp->conn_nexthop_set) { 17993 ip_nexthop = B_TRUE; 17994 nexthop_addr = connp->conn_nexthop_v4; 17995 goto send_from_ill; 17996 } 17997 17998 /* 17999 * If IP_XMIT_IF socket option is set, 18000 * then we allow unicast and multicast 18001 * packets to go through the ill. It is 18002 * quite possible that the destination 18003 * is not in the ire cache table and we 18004 * do not want to go to ip_newroute() 18005 * instead we call ip_newroute_ipif. 18006 */ 18007 xmit_ill = conn_get_held_ill(connp, 18008 &connp->conn_xmit_if_ill, &err); 18009 if (err == ILL_LOOKUP_FAILED) { 18010 if (attach_ill != NULL) 18011 ill_refrele(attach_ill); 18012 if (need_decref) 18013 CONN_DEC_REF(connp); 18014 freemsg(first_mp); 18015 return; 18016 } 18017 goto send_from_ill; 18018 } 18019 standard_path: 18020 /* Must be a broadcast, a loopback or a local ire */ 18021 if (ire != NULL) { 18022 ire_refrele(ire); 18023 /* No more access to ire */ 18024 ire = NULL; 18025 } 18026 } 18027 18028 if (attach_ill != NULL) 18029 goto send_from_ill; 18030 18031 /* 18032 * We cache IRE_CACHEs to avoid lookups. We don't do 18033 * this for the tcp global queue and listen end point 18034 * as it does not really have a real destination to 18035 * talk to. This is also true for SCTP. 18036 */ 18037 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 18038 !connp->conn_fully_bound) { 18039 ire = ire_cache_lookup(dst, zoneid); 18040 if (ire == NULL) 18041 goto noirefound; 18042 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18043 "ip_wput_end: q %p (%S)", q, "end"); 18044 18045 /* 18046 * Check if the ire has the RTF_MULTIRT flag, inherited 18047 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18048 */ 18049 if (ire->ire_flags & RTF_MULTIRT) { 18050 18051 /* 18052 * Force the TTL of multirouted packets if required. 18053 * The TTL of such packets is bounded by the 18054 * ip_multirt_ttl ndd variable. 18055 */ 18056 if ((ip_multirt_ttl > 0) && 18057 (ipha->ipha_ttl > ip_multirt_ttl)) { 18058 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18059 "(was %d), dst 0x%08x\n", 18060 ip_multirt_ttl, ipha->ipha_ttl, 18061 ntohl(ire->ire_addr))); 18062 ipha->ipha_ttl = ip_multirt_ttl; 18063 } 18064 /* 18065 * We look at this point if there are pending 18066 * unresolved routes. ire_multirt_resolvable() 18067 * checks in O(n) that all IRE_OFFSUBNET ire 18068 * entries for the packet's destination and 18069 * flagged RTF_MULTIRT are currently resolved. 18070 * If some remain unresolved, we make a copy 18071 * of the current message. It will be used 18072 * to initiate additional route resolutions. 18073 */ 18074 multirt_need_resolve = 18075 ire_multirt_need_resolve(ire->ire_addr); 18076 ip2dbg(("ip_wput[TCP]: ire %p, " 18077 "multirt_need_resolve %d, first_mp %p\n", 18078 (void *)ire, multirt_need_resolve, 18079 (void *)first_mp)); 18080 if (multirt_need_resolve) { 18081 copy_mp = copymsg(first_mp); 18082 if (copy_mp != NULL) { 18083 MULTIRT_DEBUG_TAG(copy_mp); 18084 } 18085 } 18086 } 18087 18088 ip_wput_ire(q, first_mp, ire, connp, caller); 18089 18090 /* 18091 * Try to resolve another multiroute if 18092 * ire_multirt_need_resolve() deemed it necessary. 18093 */ 18094 if (copy_mp != NULL) { 18095 ip_newroute(q, copy_mp, dst, NULL, connp); 18096 } 18097 if (need_decref) 18098 CONN_DEC_REF(connp); 18099 return; 18100 } 18101 18102 /* 18103 * Access to conn_ire_cache. (protected by conn_lock) 18104 * 18105 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 18106 * the ire bucket lock here to check for CONDEMNED as it is okay to 18107 * send a packet or two with the IRE_CACHE that is going away. 18108 * Access to the ire requires an ire refhold on the ire prior to 18109 * its use since an interface unplumb thread may delete the cached 18110 * ire and release the refhold at any time. 18111 * 18112 * Caching an ire in the conn_ire_cache 18113 * 18114 * o Caching an ire pointer in the conn requires a strict check for 18115 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 18116 * ires before cleaning up the conns. So the caching of an ire pointer 18117 * in the conn is done after making sure under the bucket lock that the 18118 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18119 * caching an ire after the unplumb thread has cleaned up the conn. 18120 * If the conn does not send a packet subsequently the unplumb thread 18121 * will be hanging waiting for the ire count to drop to zero. 18122 * 18123 * o We also need to atomically test for a null conn_ire_cache and 18124 * set the conn_ire_cache under the the protection of the conn_lock 18125 * to avoid races among concurrent threads trying to simultaneously 18126 * cache an ire in the conn_ire_cache. 18127 */ 18128 mutex_enter(&connp->conn_lock); 18129 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18130 18131 if (ire != NULL && ire->ire_addr == dst && 18132 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18133 18134 IRE_REFHOLD(ire); 18135 mutex_exit(&connp->conn_lock); 18136 18137 } else { 18138 boolean_t cached = B_FALSE; 18139 connp->conn_ire_cache = NULL; 18140 mutex_exit(&connp->conn_lock); 18141 /* Release the old ire */ 18142 if (ire != NULL && sctp_ire == NULL) 18143 IRE_REFRELE_NOTR(ire); 18144 18145 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 18146 if (ire == NULL) 18147 goto noirefound; 18148 IRE_REFHOLD_NOTR(ire); 18149 18150 mutex_enter(&connp->conn_lock); 18151 if (!(connp->conn_state_flags & CONN_CLOSING) && 18152 connp->conn_ire_cache == NULL) { 18153 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18154 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18155 connp->conn_ire_cache = ire; 18156 cached = B_TRUE; 18157 } 18158 rw_exit(&ire->ire_bucket->irb_lock); 18159 } 18160 mutex_exit(&connp->conn_lock); 18161 18162 /* 18163 * We can continue to use the ire but since it was 18164 * not cached, we should drop the extra reference. 18165 */ 18166 if (!cached) 18167 IRE_REFRELE_NOTR(ire); 18168 } 18169 18170 18171 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18172 "ip_wput_end: q %p (%S)", q, "end"); 18173 18174 /* 18175 * Check if the ire has the RTF_MULTIRT flag, inherited 18176 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18177 */ 18178 if (ire->ire_flags & RTF_MULTIRT) { 18179 18180 /* 18181 * Force the TTL of multirouted packets if required. 18182 * The TTL of such packets is bounded by the 18183 * ip_multirt_ttl ndd variable. 18184 */ 18185 if ((ip_multirt_ttl > 0) && 18186 (ipha->ipha_ttl > ip_multirt_ttl)) { 18187 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18188 "(was %d), dst 0x%08x\n", 18189 ip_multirt_ttl, ipha->ipha_ttl, 18190 ntohl(ire->ire_addr))); 18191 ipha->ipha_ttl = ip_multirt_ttl; 18192 } 18193 18194 /* 18195 * At this point, we check to see if there are any pending 18196 * unresolved routes. ire_multirt_resolvable() 18197 * checks in O(n) that all IRE_OFFSUBNET ire 18198 * entries for the packet's destination and 18199 * flagged RTF_MULTIRT are currently resolved. 18200 * If some remain unresolved, we make a copy 18201 * of the current message. It will be used 18202 * to initiate additional route resolutions. 18203 */ 18204 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18205 ip2dbg(("ip_wput[not TCP]: ire %p, " 18206 "multirt_need_resolve %d, first_mp %p\n", 18207 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18208 if (multirt_need_resolve) { 18209 copy_mp = copymsg(first_mp); 18210 if (copy_mp != NULL) { 18211 MULTIRT_DEBUG_TAG(copy_mp); 18212 } 18213 } 18214 } 18215 18216 ip_wput_ire(q, first_mp, ire, connp, caller); 18217 18218 /* 18219 * Try to resolve another multiroute if 18220 * ire_multirt_resolvable() deemed it necessary 18221 */ 18222 if (copy_mp != NULL) { 18223 ip_newroute(q, copy_mp, dst, NULL, connp); 18224 } 18225 if (need_decref) 18226 CONN_DEC_REF(connp); 18227 return; 18228 18229 qnext: 18230 /* 18231 * Upper Level Protocols pass down complete IP datagrams 18232 * as M_DATA messages. Everything else is a sideshow. 18233 * 18234 * 1) We could be re-entering ip_wput because of ip_neworute 18235 * in which case we could have a IPSEC_OUT message. We 18236 * need to pass through ip_wput like other datagrams and 18237 * hence cannot branch to ip_wput_nondata. 18238 * 18239 * 2) ARP, AH, ESP, and other clients who are on the module 18240 * instance of IP stream, give us something to deal with. 18241 * We will handle AH and ESP here and rest in ip_wput_nondata. 18242 * 18243 * 3) ICMP replies also could come here. 18244 */ 18245 if (DB_TYPE(mp) != M_DATA) { 18246 notdata: 18247 if (DB_TYPE(mp) == M_CTL) { 18248 /* 18249 * M_CTL messages are used by ARP, AH and ESP to 18250 * communicate with IP. We deal with IPSEC_IN and 18251 * IPSEC_OUT here. ip_wput_nondata handles other 18252 * cases. 18253 */ 18254 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18255 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18256 first_mp = mp->b_cont; 18257 first_mp->b_flag &= ~MSGHASREF; 18258 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18259 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18260 CONN_DEC_REF(connp); 18261 connp = NULL; 18262 } 18263 if (ii->ipsec_info_type == IPSEC_IN) { 18264 /* 18265 * Either this message goes back to 18266 * IPSEC for further processing or to 18267 * ULP after policy checks. 18268 */ 18269 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18270 return; 18271 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18272 io = (ipsec_out_t *)ii; 18273 if (io->ipsec_out_proc_begin) { 18274 /* 18275 * IPSEC processing has already started. 18276 * Complete it. 18277 * IPQoS notes: We don't care what is 18278 * in ipsec_out_ill_index since this 18279 * won't be processed for IPQoS policies 18280 * in ipsec_out_process. 18281 */ 18282 ipsec_out_process(q, mp, NULL, 18283 io->ipsec_out_ill_index); 18284 return; 18285 } else { 18286 connp = (q->q_next != NULL) ? 18287 NULL : Q_TO_CONN(q); 18288 first_mp = mp; 18289 mp = mp->b_cont; 18290 mctl_present = B_TRUE; 18291 } 18292 zoneid = io->ipsec_out_zoneid; 18293 ASSERT(zoneid != ALL_ZONES); 18294 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18295 /* 18296 * It's an IPsec control message requesting 18297 * an SADB update to be sent to the IPsec 18298 * hardware acceleration capable ills. 18299 */ 18300 ipsec_ctl_t *ipsec_ctl = 18301 (ipsec_ctl_t *)mp->b_rptr; 18302 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18303 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18304 mblk_t *cmp = mp->b_cont; 18305 18306 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18307 ASSERT(cmp != NULL); 18308 18309 freeb(mp); 18310 ill_ipsec_capab_send_all(satype, cmp, sa); 18311 return; 18312 } else { 18313 /* 18314 * This must be ARP. 18315 */ 18316 ip_wput_nondata(NULL, q, mp, NULL); 18317 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18318 "ip_wput_end: q %p (%S)", q, "nondata"); 18319 return; 18320 } 18321 } else { 18322 /* 18323 * This must be non-(ARP/AH/ESP) messages. 18324 */ 18325 ASSERT(!need_decref); 18326 ip_wput_nondata(NULL, q, mp, NULL); 18327 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18328 "ip_wput_end: q %p (%S)", q, "nondata"); 18329 return; 18330 } 18331 } else { 18332 first_mp = mp; 18333 mctl_present = B_FALSE; 18334 } 18335 18336 ASSERT(first_mp != NULL); 18337 /* 18338 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18339 * to make sure that this packet goes out on the same interface it 18340 * came in. We handle that here. 18341 */ 18342 if (mctl_present) { 18343 uint_t ifindex; 18344 18345 io = (ipsec_out_t *)first_mp->b_rptr; 18346 if (io->ipsec_out_attach_if || 18347 io->ipsec_out_xmit_if || 18348 io->ipsec_out_ip_nexthop) { 18349 ill_t *ill; 18350 18351 /* 18352 * We may have lost the conn context if we are 18353 * coming here from ip_newroute(). Copy the 18354 * nexthop information. 18355 */ 18356 if (io->ipsec_out_ip_nexthop) { 18357 ip_nexthop = B_TRUE; 18358 nexthop_addr = io->ipsec_out_nexthop_addr; 18359 18360 ipha = (ipha_t *)mp->b_rptr; 18361 dst = ipha->ipha_dst; 18362 goto send_from_ill; 18363 } else { 18364 ASSERT(io->ipsec_out_ill_index != 0); 18365 ifindex = io->ipsec_out_ill_index; 18366 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18367 NULL, NULL, NULL, NULL); 18368 /* 18369 * ipsec_out_xmit_if bit is used to tell 18370 * ip_wput to use the ill to send outgoing data 18371 * as we have no conn when data comes from ICMP 18372 * error msg routines. Currently this feature is 18373 * only used by ip_mrtun_forward routine. 18374 */ 18375 if (io->ipsec_out_xmit_if) { 18376 xmit_ill = ill; 18377 if (xmit_ill == NULL) { 18378 ip1dbg(("ip_output:bad ifindex " 18379 "for xmit_ill %d\n", 18380 ifindex)); 18381 freemsg(first_mp); 18382 BUMP_MIB(&ip_mib, 18383 ipOutDiscards); 18384 ASSERT(!need_decref); 18385 return; 18386 } 18387 /* Free up the ipsec_out_t mblk */ 18388 ASSERT(first_mp->b_cont == mp); 18389 first_mp->b_cont = NULL; 18390 freeb(first_mp); 18391 /* Just send the IP header+ICMP+data */ 18392 first_mp = mp; 18393 ipha = (ipha_t *)mp->b_rptr; 18394 dst = ipha->ipha_dst; 18395 goto send_from_ill; 18396 } else { 18397 attach_ill = ill; 18398 } 18399 18400 if (attach_ill == NULL) { 18401 ASSERT(xmit_ill == NULL); 18402 ip1dbg(("ip_output: bad ifindex for " 18403 "(BIND TO IPIF_NOFAILOVER) %d\n", 18404 ifindex)); 18405 freemsg(first_mp); 18406 BUMP_MIB(&ip_mib, ipOutDiscards); 18407 ASSERT(!need_decref); 18408 return; 18409 } 18410 } 18411 } 18412 } 18413 18414 ASSERT(xmit_ill == NULL); 18415 18416 /* We have a complete IP datagram heading outbound. */ 18417 ipha = (ipha_t *)mp->b_rptr; 18418 18419 #ifndef SPEED_BEFORE_SAFETY 18420 /* 18421 * Make sure we have a full-word aligned message and that at least 18422 * a simple IP header is accessible in the first message. If not, 18423 * try a pullup. 18424 */ 18425 if (!OK_32PTR(rptr) || 18426 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18427 hdrtoosmall: 18428 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18429 BUMP_MIB(&ip_mib, ipOutDiscards); 18430 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18431 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18432 if (first_mp == NULL) 18433 first_mp = mp; 18434 goto drop_pkt; 18435 } 18436 ipha = (ipha_t *)mp->b_rptr; 18437 if (first_mp == NULL) { 18438 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18439 /* 18440 * If we got here because of "goto hdrtoosmall" 18441 * We need to attach a IPSEC_OUT. 18442 */ 18443 if (connp->conn_out_enforce_policy) { 18444 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18445 NULL, ipha->ipha_protocol)) == NULL)) { 18446 if (need_decref) 18447 CONN_DEC_REF(connp); 18448 return; 18449 } else { 18450 ASSERT(mp->b_datap->db_type == M_CTL); 18451 first_mp = mp; 18452 mp = mp->b_cont; 18453 mctl_present = B_TRUE; 18454 } 18455 } else { 18456 first_mp = mp; 18457 mctl_present = B_FALSE; 18458 } 18459 } 18460 } 18461 #endif 18462 18463 /* Most of the code below is written for speed, not readability */ 18464 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18465 18466 /* 18467 * If ip_newroute() fails, we're going to need a full 18468 * header for the icmp wraparound. 18469 */ 18470 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18471 uint_t v_hlen; 18472 version_hdrlen_check: 18473 ASSERT(first_mp != NULL); 18474 v_hlen = V_HLEN; 18475 /* 18476 * siphon off IPv6 packets coming down from transport 18477 * layer modules here. 18478 * Note: high-order bit carries NUD reachability confirmation 18479 */ 18480 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18481 /* 18482 * XXX implement a IPv4 and IPv6 packet counter per 18483 * conn and switch when ratio exceeds e.g. 10:1 18484 */ 18485 #ifdef notyet 18486 if (q->q_next == NULL) /* Avoid ill queue */ 18487 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18488 #endif 18489 BUMP_MIB(&ip_mib, ipOutIPv6); 18490 ASSERT(xmit_ill == NULL); 18491 if (attach_ill != NULL) 18492 ill_refrele(attach_ill); 18493 if (need_decref) 18494 mp->b_flag |= MSGHASREF; 18495 (void) ip_output_v6(connp, first_mp, q, caller); 18496 return; 18497 } 18498 18499 if ((v_hlen >> 4) != IP_VERSION) { 18500 BUMP_MIB(&ip_mib, ipOutDiscards); 18501 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18502 "ip_wput_end: q %p (%S)", q, "badvers"); 18503 goto drop_pkt; 18504 } 18505 /* 18506 * Is the header length at least 20 bytes? 18507 * 18508 * Are there enough bytes accessible in the header? If 18509 * not, try a pullup. 18510 */ 18511 v_hlen &= 0xF; 18512 v_hlen <<= 2; 18513 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18514 BUMP_MIB(&ip_mib, ipOutDiscards); 18515 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18516 "ip_wput_end: q %p (%S)", q, "badlen"); 18517 goto drop_pkt; 18518 } 18519 if (v_hlen > (mp->b_wptr - rptr)) { 18520 if (!pullupmsg(mp, v_hlen)) { 18521 BUMP_MIB(&ip_mib, ipOutDiscards); 18522 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18523 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18524 goto drop_pkt; 18525 } 18526 ipha = (ipha_t *)mp->b_rptr; 18527 } 18528 /* 18529 * Move first entry from any source route into ipha_dst and 18530 * verify the options 18531 */ 18532 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18533 ASSERT(xmit_ill == NULL); 18534 if (attach_ill != NULL) 18535 ill_refrele(attach_ill); 18536 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18537 "ip_wput_end: q %p (%S)", q, "badopts"); 18538 if (need_decref) 18539 CONN_DEC_REF(connp); 18540 return; 18541 } 18542 } 18543 dst = ipha->ipha_dst; 18544 18545 /* 18546 * Try to get an IRE_CACHE for the destination address. If we can't, 18547 * we have to run the packet through ip_newroute which will take 18548 * the appropriate action to arrange for an IRE_CACHE, such as querying 18549 * a resolver, or assigning a default gateway, etc. 18550 */ 18551 if (CLASSD(dst)) { 18552 ipif_t *ipif; 18553 uint32_t setsrc = 0; 18554 18555 multicast: 18556 ASSERT(first_mp != NULL); 18557 ASSERT(xmit_ill == NULL); 18558 ip2dbg(("ip_wput: CLASSD\n")); 18559 if (connp == NULL) { 18560 /* 18561 * Use the first good ipif on the ill. 18562 * XXX Should this ever happen? (Appears 18563 * to show up with just ppp and no ethernet due 18564 * to in.rdisc.) 18565 * However, ire_send should be able to 18566 * call ip_wput_ire directly. 18567 * 18568 * XXX Also, this can happen for ICMP and other packets 18569 * with multicast source addresses. Perhaps we should 18570 * fix things so that we drop the packet in question, 18571 * but for now, just run with it. 18572 */ 18573 ill_t *ill = (ill_t *)q->q_ptr; 18574 18575 /* 18576 * Don't honor attach_if for this case. If ill 18577 * is part of the group, ipif could belong to 18578 * any ill and we cannot maintain attach_ill 18579 * and ipif_ill same anymore and the assert 18580 * below would fail. 18581 */ 18582 if (mctl_present) { 18583 io->ipsec_out_ill_index = 0; 18584 io->ipsec_out_attach_if = B_FALSE; 18585 ASSERT(attach_ill != NULL); 18586 ill_refrele(attach_ill); 18587 attach_ill = NULL; 18588 } 18589 18590 ASSERT(attach_ill == NULL); 18591 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18592 if (ipif == NULL) { 18593 if (need_decref) 18594 CONN_DEC_REF(connp); 18595 freemsg(first_mp); 18596 return; 18597 } 18598 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18599 ntohl(dst), ill->ill_name)); 18600 } else { 18601 /* 18602 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18603 * IP_XMIT_IF is honoured. 18604 * Block comment above this function explains the 18605 * locking mechanism used here 18606 */ 18607 xmit_ill = conn_get_held_ill(connp, 18608 &connp->conn_xmit_if_ill, &err); 18609 if (err == ILL_LOOKUP_FAILED) { 18610 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18611 goto drop_pkt; 18612 } 18613 if (xmit_ill == NULL) { 18614 ipif = conn_get_held_ipif(connp, 18615 &connp->conn_multicast_ipif, &err); 18616 if (err == IPIF_LOOKUP_FAILED) { 18617 ip1dbg(("ip_wput: No ipif for " 18618 "multicast\n")); 18619 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18620 goto drop_pkt; 18621 } 18622 } 18623 if (xmit_ill != NULL) { 18624 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18625 if (ipif == NULL) { 18626 ip1dbg(("ip_wput: No ipif for " 18627 "IP_XMIT_IF\n")); 18628 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18629 goto drop_pkt; 18630 } 18631 } else if (ipif == NULL || ipif->ipif_isv6) { 18632 /* 18633 * We must do this ipif determination here 18634 * else we could pass through ip_newroute 18635 * and come back here without the conn context. 18636 * 18637 * Note: we do late binding i.e. we bind to 18638 * the interface when the first packet is sent. 18639 * For performance reasons we do not rebind on 18640 * each packet but keep the binding until the 18641 * next IP_MULTICAST_IF option. 18642 * 18643 * conn_multicast_{ipif,ill} are shared between 18644 * IPv4 and IPv6 and AF_INET6 sockets can 18645 * send both IPv4 and IPv6 packets. Hence 18646 * we have to check that "isv6" matches above. 18647 */ 18648 if (ipif != NULL) 18649 ipif_refrele(ipif); 18650 ipif = ipif_lookup_group(dst, zoneid); 18651 if (ipif == NULL) { 18652 ip1dbg(("ip_wput: No ipif for " 18653 "multicast\n")); 18654 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18655 goto drop_pkt; 18656 } 18657 err = conn_set_held_ipif(connp, 18658 &connp->conn_multicast_ipif, ipif); 18659 if (err == IPIF_LOOKUP_FAILED) { 18660 ipif_refrele(ipif); 18661 ip1dbg(("ip_wput: No ipif for " 18662 "multicast\n")); 18663 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18664 goto drop_pkt; 18665 } 18666 } 18667 } 18668 ASSERT(!ipif->ipif_isv6); 18669 /* 18670 * As we may lose the conn by the time we reach ip_wput_ire, 18671 * we copy conn_multicast_loop and conn_dontroute on to an 18672 * ipsec_out. In case if this datagram goes out secure, 18673 * we need the ill_index also. Copy that also into the 18674 * ipsec_out. 18675 */ 18676 if (mctl_present) { 18677 io = (ipsec_out_t *)first_mp->b_rptr; 18678 ASSERT(first_mp->b_datap->db_type == M_CTL); 18679 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18680 } else { 18681 ASSERT(mp == first_mp); 18682 if ((first_mp = allocb(sizeof (ipsec_info_t), 18683 BPRI_HI)) == NULL) { 18684 ipif_refrele(ipif); 18685 first_mp = mp; 18686 goto drop_pkt; 18687 } 18688 first_mp->b_datap->db_type = M_CTL; 18689 first_mp->b_wptr += sizeof (ipsec_info_t); 18690 /* ipsec_out_secure is B_FALSE now */ 18691 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18692 io = (ipsec_out_t *)first_mp->b_rptr; 18693 io->ipsec_out_type = IPSEC_OUT; 18694 io->ipsec_out_len = sizeof (ipsec_out_t); 18695 io->ipsec_out_use_global_policy = B_TRUE; 18696 first_mp->b_cont = mp; 18697 mctl_present = B_TRUE; 18698 } 18699 if (attach_ill != NULL) { 18700 ASSERT(attach_ill == ipif->ipif_ill); 18701 match_flags = MATCH_IRE_ILL; 18702 18703 /* 18704 * Check if we need an ire that will not be 18705 * looked up by anybody else i.e. HIDDEN. 18706 */ 18707 if (ill_is_probeonly(attach_ill)) { 18708 match_flags |= MATCH_IRE_MARK_HIDDEN; 18709 } 18710 io->ipsec_out_ill_index = 18711 attach_ill->ill_phyint->phyint_ifindex; 18712 io->ipsec_out_attach_if = B_TRUE; 18713 } else { 18714 match_flags = MATCH_IRE_ILL_GROUP; 18715 io->ipsec_out_ill_index = 18716 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18717 } 18718 if (connp != NULL) { 18719 io->ipsec_out_multicast_loop = 18720 connp->conn_multicast_loop; 18721 io->ipsec_out_dontroute = connp->conn_dontroute; 18722 io->ipsec_out_zoneid = connp->conn_zoneid; 18723 } 18724 /* 18725 * If the application uses IP_MULTICAST_IF with 18726 * different logical addresses of the same ILL, we 18727 * need to make sure that the soruce address of 18728 * the packet matches the logical IP address used 18729 * in the option. We do it by initializing ipha_src 18730 * here. This should keep IPSEC also happy as 18731 * when we return from IPSEC processing, we don't 18732 * have to worry about getting the right address on 18733 * the packet. Thus it is sufficient to look for 18734 * IRE_CACHE using MATCH_IRE_ILL rathen than 18735 * MATCH_IRE_IPIF. 18736 * 18737 * NOTE : We need to do it for non-secure case also as 18738 * this might go out secure if there is a global policy 18739 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18740 * address, the source should be initialized already and 18741 * hence we won't be initializing here. 18742 * 18743 * As we do not have the ire yet, it is possible that 18744 * we set the source address here and then later discover 18745 * that the ire implies the source address to be assigned 18746 * through the RTF_SETSRC flag. 18747 * In that case, the setsrc variable will remind us 18748 * that overwritting the source address by the one 18749 * of the RTF_SETSRC-flagged ire is allowed. 18750 */ 18751 if (ipha->ipha_src == INADDR_ANY && 18752 (connp == NULL || !connp->conn_unspec_src)) { 18753 ipha->ipha_src = ipif->ipif_src_addr; 18754 setsrc = RTF_SETSRC; 18755 } 18756 /* 18757 * Find an IRE which matches the destination and the outgoing 18758 * queue (i.e. the outgoing interface.) 18759 * For loopback use a unicast IP address for 18760 * the ire lookup. 18761 */ 18762 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18763 PHYI_LOOPBACK) { 18764 dst = ipif->ipif_lcl_addr; 18765 } 18766 /* 18767 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18768 * We don't need to lookup ire in ctable as the packet 18769 * needs to be sent to the destination through the specified 18770 * ill irrespective of ires in the cache table. 18771 */ 18772 ire = NULL; 18773 if (xmit_ill == NULL) { 18774 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18775 zoneid, match_flags); 18776 } 18777 18778 /* 18779 * refrele attach_ill as its not needed anymore. 18780 */ 18781 if (attach_ill != NULL) { 18782 ill_refrele(attach_ill); 18783 attach_ill = NULL; 18784 } 18785 18786 if (ire == NULL) { 18787 /* 18788 * Multicast loopback and multicast forwarding is 18789 * done in ip_wput_ire. 18790 * 18791 * Mark this packet to make it be delivered to 18792 * ip_wput_ire after the new ire has been 18793 * created. 18794 * 18795 * The call to ip_newroute_ipif takes into account 18796 * the setsrc reminder. In any case, we take care 18797 * of the RTF_MULTIRT flag. 18798 */ 18799 mp->b_prev = mp->b_next = NULL; 18800 if (xmit_ill == NULL || 18801 xmit_ill->ill_ipif_up_count > 0) { 18802 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18803 setsrc | RTF_MULTIRT); 18804 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18805 "ip_wput_end: q %p (%S)", q, "noire"); 18806 } else { 18807 freemsg(first_mp); 18808 } 18809 ipif_refrele(ipif); 18810 if (xmit_ill != NULL) 18811 ill_refrele(xmit_ill); 18812 if (need_decref) 18813 CONN_DEC_REF(connp); 18814 return; 18815 } 18816 18817 ipif_refrele(ipif); 18818 ipif = NULL; 18819 ASSERT(xmit_ill == NULL); 18820 18821 /* 18822 * Honor the RTF_SETSRC flag for multicast packets, 18823 * if allowed by the setsrc reminder. 18824 */ 18825 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18826 ipha->ipha_src = ire->ire_src_addr; 18827 } 18828 18829 /* 18830 * Unconditionally force the TTL to 1 for 18831 * multirouted multicast packets: 18832 * multirouted multicast should not cross 18833 * multicast routers. 18834 */ 18835 if (ire->ire_flags & RTF_MULTIRT) { 18836 if (ipha->ipha_ttl > 1) { 18837 ip2dbg(("ip_wput: forcing multicast " 18838 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18839 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18840 ipha->ipha_ttl = 1; 18841 } 18842 } 18843 } else { 18844 ire = ire_cache_lookup(dst, zoneid); 18845 if ((ire != NULL) && (ire->ire_type & 18846 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18847 ignore_dontroute = B_TRUE; 18848 ignore_nexthop = B_TRUE; 18849 } 18850 if (ire != NULL) { 18851 ire_refrele(ire); 18852 ire = NULL; 18853 } 18854 /* 18855 * Guard against coming in from arp in which case conn is NULL. 18856 * Also guard against non M_DATA with dontroute set but 18857 * destined to local, loopback or broadcast addresses. 18858 */ 18859 if (connp != NULL && connp->conn_dontroute && 18860 !ignore_dontroute) { 18861 dontroute: 18862 /* 18863 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18864 * routing protocols from seeing false direct 18865 * connectivity. 18866 */ 18867 ipha->ipha_ttl = 1; 18868 /* 18869 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18870 * along with SO_DONTROUTE, higher precedence is 18871 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18872 */ 18873 if (connp->conn_xmit_if_ill == NULL) { 18874 /* If suitable ipif not found, drop packet */ 18875 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18876 if (dst_ipif == NULL) { 18877 ip1dbg(("ip_wput: no route for " 18878 "dst using SO_DONTROUTE\n")); 18879 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18880 mp->b_prev = mp->b_next = NULL; 18881 if (first_mp == NULL) 18882 first_mp = mp; 18883 goto drop_pkt; 18884 } else { 18885 /* 18886 * If suitable ipif has been found, set 18887 * xmit_ill to the corresponding 18888 * ipif_ill because we'll be following 18889 * the IP_XMIT_IF logic. 18890 */ 18891 ASSERT(xmit_ill == NULL); 18892 xmit_ill = dst_ipif->ipif_ill; 18893 mutex_enter(&xmit_ill->ill_lock); 18894 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18895 mutex_exit(&xmit_ill->ill_lock); 18896 xmit_ill = NULL; 18897 ipif_refrele(dst_ipif); 18898 ip1dbg(("ip_wput: no route for" 18899 " dst using" 18900 " SO_DONTROUTE\n")); 18901 BUMP_MIB(&ip_mib, 18902 ipOutNoRoutes); 18903 mp->b_prev = mp->b_next = NULL; 18904 if (first_mp == NULL) 18905 first_mp = mp; 18906 goto drop_pkt; 18907 } 18908 ill_refhold_locked(xmit_ill); 18909 mutex_exit(&xmit_ill->ill_lock); 18910 ipif_refrele(dst_ipif); 18911 } 18912 } 18913 18914 } 18915 /* 18916 * If we are bound to IPIF_NOFAILOVER address, look for 18917 * an IRE_CACHE matching the ill. 18918 */ 18919 send_from_ill: 18920 if (attach_ill != NULL) { 18921 ipif_t *attach_ipif; 18922 18923 match_flags = MATCH_IRE_ILL; 18924 18925 /* 18926 * Check if we need an ire that will not be 18927 * looked up by anybody else i.e. HIDDEN. 18928 */ 18929 if (ill_is_probeonly(attach_ill)) { 18930 match_flags |= MATCH_IRE_MARK_HIDDEN; 18931 } 18932 18933 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18934 if (attach_ipif == NULL) { 18935 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18936 goto drop_pkt; 18937 } 18938 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18939 zoneid, match_flags); 18940 ipif_refrele(attach_ipif); 18941 } else if (xmit_ill != NULL || (connp != NULL && 18942 connp->conn_xmit_if_ill != NULL)) { 18943 /* 18944 * Mark this packet as originated locally 18945 */ 18946 mp->b_prev = mp->b_next = NULL; 18947 /* 18948 * xmit_ill could be NULL if SO_DONTROUTE 18949 * is also set. 18950 */ 18951 if (xmit_ill == NULL) { 18952 xmit_ill = conn_get_held_ill(connp, 18953 &connp->conn_xmit_if_ill, &err); 18954 if (err == ILL_LOOKUP_FAILED) { 18955 if (need_decref) 18956 CONN_DEC_REF(connp); 18957 freemsg(first_mp); 18958 return; 18959 } 18960 if (xmit_ill == NULL) { 18961 if (connp->conn_dontroute) 18962 goto dontroute; 18963 goto send_from_ill; 18964 } 18965 } 18966 /* 18967 * could be SO_DONTROUTE case also. 18968 * check at least one interface is UP as 18969 * spcified by this ILL, and then call 18970 * ip_newroute_ipif() 18971 */ 18972 if (xmit_ill->ill_ipif_up_count > 0) { 18973 ipif_t *ipif; 18974 18975 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18976 if (ipif != NULL) { 18977 ip_newroute_ipif(q, first_mp, ipif, 18978 dst, connp, 0); 18979 ipif_refrele(ipif); 18980 ip1dbg(("ip_wput: ip_unicast_if\n")); 18981 } 18982 } else { 18983 freemsg(first_mp); 18984 } 18985 ill_refrele(xmit_ill); 18986 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18987 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18988 if (need_decref) 18989 CONN_DEC_REF(connp); 18990 return; 18991 } else if (ip_nexthop || (connp != NULL && 18992 (connp->conn_nexthop_set)) && !ignore_nexthop) { 18993 if (!ip_nexthop) { 18994 ip_nexthop = B_TRUE; 18995 nexthop_addr = connp->conn_nexthop_v4; 18996 } 18997 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 18998 MATCH_IRE_GW; 18999 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 19000 NULL, zoneid, match_flags); 19001 } else { 19002 ire = ire_cache_lookup(dst, zoneid); 19003 } 19004 if (!ire) { 19005 /* 19006 * Make sure we don't load spread if this 19007 * is IPIF_NOFAILOVER case. 19008 */ 19009 if ((attach_ill != NULL) || 19010 (ip_nexthop && !ignore_nexthop)) { 19011 if (mctl_present) { 19012 io = (ipsec_out_t *)first_mp->b_rptr; 19013 ASSERT(first_mp->b_datap->db_type == 19014 M_CTL); 19015 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19016 } else { 19017 ASSERT(mp == first_mp); 19018 first_mp = allocb( 19019 sizeof (ipsec_info_t), BPRI_HI); 19020 if (first_mp == NULL) { 19021 first_mp = mp; 19022 goto drop_pkt; 19023 } 19024 first_mp->b_datap->db_type = M_CTL; 19025 first_mp->b_wptr += 19026 sizeof (ipsec_info_t); 19027 /* ipsec_out_secure is B_FALSE now */ 19028 bzero(first_mp->b_rptr, 19029 sizeof (ipsec_info_t)); 19030 io = (ipsec_out_t *)first_mp->b_rptr; 19031 io->ipsec_out_type = IPSEC_OUT; 19032 io->ipsec_out_len = 19033 sizeof (ipsec_out_t); 19034 io->ipsec_out_use_global_policy = 19035 B_TRUE; 19036 first_mp->b_cont = mp; 19037 mctl_present = B_TRUE; 19038 } 19039 if (attach_ill != NULL) { 19040 io->ipsec_out_ill_index = attach_ill-> 19041 ill_phyint->phyint_ifindex; 19042 io->ipsec_out_attach_if = B_TRUE; 19043 } else { 19044 io->ipsec_out_ip_nexthop = ip_nexthop; 19045 io->ipsec_out_nexthop_addr = 19046 nexthop_addr; 19047 } 19048 } 19049 noirefound: 19050 /* 19051 * Mark this packet as having originated on 19052 * this machine. This will be noted in 19053 * ire_add_then_send, which needs to know 19054 * whether to run it back through ip_wput or 19055 * ip_rput following successful resolution. 19056 */ 19057 mp->b_prev = NULL; 19058 mp->b_next = NULL; 19059 ip_newroute(q, first_mp, dst, NULL, connp); 19060 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19061 "ip_wput_end: q %p (%S)", q, "newroute"); 19062 if (attach_ill != NULL) 19063 ill_refrele(attach_ill); 19064 if (xmit_ill != NULL) 19065 ill_refrele(xmit_ill); 19066 if (need_decref) 19067 CONN_DEC_REF(connp); 19068 return; 19069 } 19070 } 19071 19072 /* We now know where we are going with it. */ 19073 19074 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19075 "ip_wput_end: q %p (%S)", q, "end"); 19076 19077 /* 19078 * Check if the ire has the RTF_MULTIRT flag, inherited 19079 * from an IRE_OFFSUBNET ire entry in ip_newroute. 19080 */ 19081 if (ire->ire_flags & RTF_MULTIRT) { 19082 /* 19083 * Force the TTL of multirouted packets if required. 19084 * The TTL of such packets is bounded by the 19085 * ip_multirt_ttl ndd variable. 19086 */ 19087 if ((ip_multirt_ttl > 0) && 19088 (ipha->ipha_ttl > ip_multirt_ttl)) { 19089 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19090 "(was %d), dst 0x%08x\n", 19091 ip_multirt_ttl, ipha->ipha_ttl, 19092 ntohl(ire->ire_addr))); 19093 ipha->ipha_ttl = ip_multirt_ttl; 19094 } 19095 /* 19096 * At this point, we check to see if there are any pending 19097 * unresolved routes. ire_multirt_resolvable() 19098 * checks in O(n) that all IRE_OFFSUBNET ire 19099 * entries for the packet's destination and 19100 * flagged RTF_MULTIRT are currently resolved. 19101 * If some remain unresolved, we make a copy 19102 * of the current message. It will be used 19103 * to initiate additional route resolutions. 19104 */ 19105 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 19106 ip2dbg(("ip_wput[noirefound]: ire %p, " 19107 "multirt_need_resolve %d, first_mp %p\n", 19108 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19109 if (multirt_need_resolve) { 19110 copy_mp = copymsg(first_mp); 19111 if (copy_mp != NULL) { 19112 MULTIRT_DEBUG_TAG(copy_mp); 19113 } 19114 } 19115 } 19116 19117 ip_wput_ire(q, first_mp, ire, connp, caller); 19118 /* 19119 * Try to resolve another multiroute if 19120 * ire_multirt_resolvable() deemed it necessary. 19121 * At this point, we need to distinguish 19122 * multicasts from other packets. For multicasts, 19123 * we call ip_newroute_ipif() and request that both 19124 * multirouting and setsrc flags are checked. 19125 */ 19126 if (copy_mp != NULL) { 19127 if (CLASSD(dst)) { 19128 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 19129 if (ipif) { 19130 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 19131 RTF_SETSRC | RTF_MULTIRT); 19132 ipif_refrele(ipif); 19133 } else { 19134 MULTIRT_DEBUG_UNTAG(copy_mp); 19135 freemsg(copy_mp); 19136 copy_mp = NULL; 19137 } 19138 } else { 19139 ip_newroute(q, copy_mp, dst, NULL, connp); 19140 } 19141 } 19142 if (attach_ill != NULL) 19143 ill_refrele(attach_ill); 19144 if (xmit_ill != NULL) 19145 ill_refrele(xmit_ill); 19146 if (need_decref) 19147 CONN_DEC_REF(connp); 19148 return; 19149 19150 drop_pkt: 19151 ip1dbg(("ip_wput: dropped packet\n")); 19152 if (ire != NULL) 19153 ire_refrele(ire); 19154 if (need_decref) 19155 CONN_DEC_REF(connp); 19156 freemsg(first_mp); 19157 if (attach_ill != NULL) 19158 ill_refrele(attach_ill); 19159 if (xmit_ill != NULL) 19160 ill_refrele(xmit_ill); 19161 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19162 "ip_wput_end: q %p (%S)", q, "droppkt"); 19163 } 19164 19165 void 19166 ip_wput(queue_t *q, mblk_t *mp) 19167 { 19168 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 19169 } 19170 19171 /* 19172 * 19173 * The following rules must be observed when accessing any ipif or ill 19174 * that has been cached in the conn. Typically conn_nofailover_ill, 19175 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 19176 * 19177 * Access: The ipif or ill pointed to from the conn can be accessed under 19178 * the protection of the conn_lock or after it has been refheld under the 19179 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 19180 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 19181 * The reason for this is that a concurrent unplumb could actually be 19182 * cleaning up these cached pointers by walking the conns and might have 19183 * finished cleaning up the conn in question. The macros check that an 19184 * unplumb has not yet started on the ipif or ill. 19185 * 19186 * Caching: An ipif or ill pointer may be cached in the conn only after 19187 * making sure that an unplumb has not started. So the caching is done 19188 * while holding both the conn_lock and the ill_lock and after using the 19189 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 19190 * flag before starting the cleanup of conns. 19191 * 19192 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 19193 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 19194 * or a reference to the ipif or a reference to an ire that references the 19195 * ipif. An ipif does not change its ill except for failover/failback. Since 19196 * failover/failback happens only after bringing down the ipif and making sure 19197 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 19198 * the above holds. 19199 */ 19200 ipif_t * 19201 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 19202 { 19203 ipif_t *ipif; 19204 ill_t *ill; 19205 19206 *err = 0; 19207 rw_enter(&ill_g_lock, RW_READER); 19208 mutex_enter(&connp->conn_lock); 19209 ipif = *ipifp; 19210 if (ipif != NULL) { 19211 ill = ipif->ipif_ill; 19212 mutex_enter(&ill->ill_lock); 19213 if (IPIF_CAN_LOOKUP(ipif)) { 19214 ipif_refhold_locked(ipif); 19215 mutex_exit(&ill->ill_lock); 19216 mutex_exit(&connp->conn_lock); 19217 rw_exit(&ill_g_lock); 19218 return (ipif); 19219 } else { 19220 *err = IPIF_LOOKUP_FAILED; 19221 } 19222 mutex_exit(&ill->ill_lock); 19223 } 19224 mutex_exit(&connp->conn_lock); 19225 rw_exit(&ill_g_lock); 19226 return (NULL); 19227 } 19228 19229 ill_t * 19230 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 19231 { 19232 ill_t *ill; 19233 19234 *err = 0; 19235 mutex_enter(&connp->conn_lock); 19236 ill = *illp; 19237 if (ill != NULL) { 19238 mutex_enter(&ill->ill_lock); 19239 if (ILL_CAN_LOOKUP(ill)) { 19240 ill_refhold_locked(ill); 19241 mutex_exit(&ill->ill_lock); 19242 mutex_exit(&connp->conn_lock); 19243 return (ill); 19244 } else { 19245 *err = ILL_LOOKUP_FAILED; 19246 } 19247 mutex_exit(&ill->ill_lock); 19248 } 19249 mutex_exit(&connp->conn_lock); 19250 return (NULL); 19251 } 19252 19253 static int 19254 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 19255 { 19256 ill_t *ill; 19257 19258 ill = ipif->ipif_ill; 19259 mutex_enter(&connp->conn_lock); 19260 mutex_enter(&ill->ill_lock); 19261 if (IPIF_CAN_LOOKUP(ipif)) { 19262 *ipifp = ipif; 19263 mutex_exit(&ill->ill_lock); 19264 mutex_exit(&connp->conn_lock); 19265 return (0); 19266 } 19267 mutex_exit(&ill->ill_lock); 19268 mutex_exit(&connp->conn_lock); 19269 return (IPIF_LOOKUP_FAILED); 19270 } 19271 19272 /* 19273 * This is called if the outbound datagram needs fragmentation. 19274 * 19275 * NOTE : This function does not ire_refrele the ire argument passed in. 19276 */ 19277 static void 19278 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19279 { 19280 ipha_t *ipha; 19281 mblk_t *mp; 19282 uint32_t v_hlen_tos_len; 19283 uint32_t max_frag; 19284 uint32_t frag_flag; 19285 boolean_t dont_use; 19286 19287 if (ipsec_mp->b_datap->db_type == M_CTL) { 19288 mp = ipsec_mp->b_cont; 19289 } else { 19290 mp = ipsec_mp; 19291 } 19292 19293 ipha = (ipha_t *)mp->b_rptr; 19294 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19295 19296 #ifdef _BIG_ENDIAN 19297 #define V_HLEN (v_hlen_tos_len >> 24) 19298 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19299 #else 19300 #define V_HLEN (v_hlen_tos_len & 0xFF) 19301 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19302 #endif 19303 19304 #ifndef SPEED_BEFORE_SAFETY 19305 /* 19306 * Check that ipha_length is consistent with 19307 * the mblk length 19308 */ 19309 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19310 ip0dbg(("Packet length mismatch: %d, %ld\n", 19311 LENGTH, msgdsize(mp))); 19312 freemsg(ipsec_mp); 19313 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19314 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19315 "packet length mismatch"); 19316 return; 19317 } 19318 #endif 19319 /* 19320 * Don't use frag_flag if pre-built packet or source 19321 * routed or if multicast (since multicast packets do not solicit 19322 * ICMP "packet too big" messages). Get the values of 19323 * max_frag and frag_flag atomically by acquiring the 19324 * ire_lock. 19325 */ 19326 mutex_enter(&ire->ire_lock); 19327 max_frag = ire->ire_max_frag; 19328 frag_flag = ire->ire_frag_flag; 19329 mutex_exit(&ire->ire_lock); 19330 19331 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19332 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19333 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19334 19335 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19336 (dont_use ? 0 : frag_flag)); 19337 } 19338 19339 /* 19340 * Used for deciding the MSS size for the upper layer. Thus 19341 * we need to check the outbound policy values in the conn. 19342 */ 19343 int 19344 conn_ipsec_length(conn_t *connp) 19345 { 19346 ipsec_latch_t *ipl; 19347 19348 ipl = connp->conn_latch; 19349 if (ipl == NULL) 19350 return (0); 19351 19352 if (ipl->ipl_out_policy == NULL) 19353 return (0); 19354 19355 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19356 } 19357 19358 /* 19359 * Returns an estimate of the IPSEC headers size. This is used if 19360 * we don't want to call into IPSEC to get the exact size. 19361 */ 19362 int 19363 ipsec_out_extra_length(mblk_t *ipsec_mp) 19364 { 19365 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19366 ipsec_action_t *a; 19367 19368 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19369 if (!io->ipsec_out_secure) 19370 return (0); 19371 19372 a = io->ipsec_out_act; 19373 19374 if (a == NULL) { 19375 ASSERT(io->ipsec_out_policy != NULL); 19376 a = io->ipsec_out_policy->ipsp_act; 19377 } 19378 ASSERT(a != NULL); 19379 19380 return (a->ipa_ovhd); 19381 } 19382 19383 /* 19384 * Returns an estimate of the IPSEC headers size. This is used if 19385 * we don't want to call into IPSEC to get the exact size. 19386 */ 19387 int 19388 ipsec_in_extra_length(mblk_t *ipsec_mp) 19389 { 19390 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19391 ipsec_action_t *a; 19392 19393 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19394 19395 a = ii->ipsec_in_action; 19396 return (a == NULL ? 0 : a->ipa_ovhd); 19397 } 19398 19399 /* 19400 * If there are any source route options, return the true final 19401 * destination. Otherwise, return the destination. 19402 */ 19403 ipaddr_t 19404 ip_get_dst(ipha_t *ipha) 19405 { 19406 ipoptp_t opts; 19407 uchar_t *opt; 19408 uint8_t optval; 19409 uint8_t optlen; 19410 ipaddr_t dst; 19411 uint32_t off; 19412 19413 dst = ipha->ipha_dst; 19414 19415 if (IS_SIMPLE_IPH(ipha)) 19416 return (dst); 19417 19418 for (optval = ipoptp_first(&opts, ipha); 19419 optval != IPOPT_EOL; 19420 optval = ipoptp_next(&opts)) { 19421 opt = opts.ipoptp_cur; 19422 optlen = opts.ipoptp_len; 19423 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19424 switch (optval) { 19425 case IPOPT_SSRR: 19426 case IPOPT_LSRR: 19427 off = opt[IPOPT_OFFSET]; 19428 /* 19429 * If one of the conditions is true, it means 19430 * end of options and dst already has the right 19431 * value. 19432 */ 19433 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19434 off = optlen - IP_ADDR_LEN; 19435 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19436 } 19437 return (dst); 19438 default: 19439 break; 19440 } 19441 } 19442 19443 return (dst); 19444 } 19445 19446 mblk_t * 19447 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19448 conn_t *connp, boolean_t unspec_src) 19449 { 19450 ipsec_out_t *io; 19451 mblk_t *first_mp; 19452 boolean_t policy_present; 19453 19454 first_mp = mp; 19455 if (mp->b_datap->db_type == M_CTL) { 19456 io = (ipsec_out_t *)first_mp->b_rptr; 19457 /* 19458 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19459 * 19460 * 1) There is per-socket policy (including cached global 19461 * policy). 19462 * 2) There is no per-socket policy, but it is 19463 * a multicast packet that needs to go out 19464 * on a specific interface. This is the case 19465 * where (ip_wput and ip_wput_multicast) attaches 19466 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19467 * 19468 * In case (2) we check with global policy to 19469 * see if there is a match and set the ill_index 19470 * appropriately so that we can lookup the ire 19471 * properly in ip_wput_ipsec_out. 19472 */ 19473 19474 /* 19475 * ipsec_out_use_global_policy is set to B_FALSE 19476 * in ipsec_in_to_out(). Refer to that function for 19477 * details. 19478 */ 19479 if ((io->ipsec_out_latch == NULL) && 19480 (io->ipsec_out_use_global_policy)) { 19481 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19482 ire, connp, unspec_src)); 19483 } 19484 if (!io->ipsec_out_secure) { 19485 /* 19486 * If this is not a secure packet, drop 19487 * the IPSEC_OUT mp and treat it as a clear 19488 * packet. This happens when we are sending 19489 * a ICMP reply back to a clear packet. See 19490 * ipsec_in_to_out() for details. 19491 */ 19492 mp = first_mp->b_cont; 19493 freeb(first_mp); 19494 } 19495 return (mp); 19496 } 19497 /* 19498 * See whether we need to attach a global policy here. We 19499 * don't depend on the conn (as it could be null) for deciding 19500 * what policy this datagram should go through because it 19501 * should have happened in ip_wput if there was some 19502 * policy. This normally happens for connections which are not 19503 * fully bound preventing us from caching policies in 19504 * ip_bind. Packets coming from the TCP listener/global queue 19505 * - which are non-hard_bound - could also be affected by 19506 * applying policy here. 19507 * 19508 * If this packet is coming from tcp global queue or listener, 19509 * we will be applying policy here. This may not be *right* 19510 * if these packets are coming from the detached connection as 19511 * it could have gone in clear before. This happens only if a 19512 * TCP connection started when there is no policy and somebody 19513 * added policy before it became detached. Thus packets of the 19514 * detached connection could go out secure and the other end 19515 * would drop it because it will be expecting in clear. The 19516 * converse is not true i.e if somebody starts a TCP 19517 * connection and deletes the policy, all the packets will 19518 * still go out with the policy that existed before deleting 19519 * because ip_unbind sends up policy information which is used 19520 * by TCP on subsequent ip_wputs. The right solution is to fix 19521 * TCP to attach a dummy IPSEC_OUT and set 19522 * ipsec_out_use_global_policy to B_FALSE. As this might 19523 * affect performance for normal cases, we are not doing it. 19524 * Thus, set policy before starting any TCP connections. 19525 * 19526 * NOTE - We might apply policy even for a hard bound connection 19527 * - for which we cached policy in ip_bind - if somebody added 19528 * global policy after we inherited the policy in ip_bind. 19529 * This means that the packets that were going out in clear 19530 * previously would start going secure and hence get dropped 19531 * on the other side. To fix this, TCP attaches a dummy 19532 * ipsec_out and make sure that we don't apply global policy. 19533 */ 19534 if (ipha != NULL) 19535 policy_present = ipsec_outbound_v4_policy_present; 19536 else 19537 policy_present = ipsec_outbound_v6_policy_present; 19538 if (!policy_present) 19539 return (mp); 19540 19541 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19542 } 19543 19544 ire_t * 19545 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19546 { 19547 ipaddr_t addr; 19548 ire_t *save_ire; 19549 irb_t *irb; 19550 ill_group_t *illgrp; 19551 int err; 19552 19553 save_ire = ire; 19554 addr = ire->ire_addr; 19555 19556 ASSERT(ire->ire_type == IRE_BROADCAST); 19557 19558 illgrp = connp->conn_outgoing_ill->ill_group; 19559 if (illgrp == NULL) { 19560 *conn_outgoing_ill = conn_get_held_ill(connp, 19561 &connp->conn_outgoing_ill, &err); 19562 if (err == ILL_LOOKUP_FAILED) { 19563 ire_refrele(save_ire); 19564 return (NULL); 19565 } 19566 return (save_ire); 19567 } 19568 /* 19569 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19570 * If it is part of the group, we need to send on the ire 19571 * that has been cleared of IRE_MARK_NORECV and that belongs 19572 * to this group. This is okay as IP_BOUND_IF really means 19573 * any ill in the group. We depend on the fact that the 19574 * first ire in the group is always cleared of IRE_MARK_NORECV 19575 * if such an ire exists. This is possible only if you have 19576 * at least one ill in the group that has not failed. 19577 * 19578 * First get to the ire that matches the address and group. 19579 * 19580 * We don't look for an ire with a matching zoneid because a given zone 19581 * won't always have broadcast ires on all ills in the group. 19582 */ 19583 irb = ire->ire_bucket; 19584 rw_enter(&irb->irb_lock, RW_READER); 19585 if (ire->ire_marks & IRE_MARK_NORECV) { 19586 /* 19587 * If the current zone only has an ire broadcast for this 19588 * address marked NORECV, the ire we want is ahead in the 19589 * bucket, so we look it up deliberately ignoring the zoneid. 19590 */ 19591 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19592 if (ire->ire_addr != addr) 19593 continue; 19594 /* skip over deleted ires */ 19595 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19596 continue; 19597 } 19598 } 19599 while (ire != NULL) { 19600 /* 19601 * If a new interface is coming up, we could end up 19602 * seeing the loopback ire and the non-loopback ire 19603 * may not have been added yet. So check for ire_stq 19604 */ 19605 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19606 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19607 break; 19608 } 19609 ire = ire->ire_next; 19610 } 19611 if (ire != NULL && ire->ire_addr == addr && 19612 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19613 IRE_REFHOLD(ire); 19614 rw_exit(&irb->irb_lock); 19615 ire_refrele(save_ire); 19616 *conn_outgoing_ill = ire_to_ill(ire); 19617 /* 19618 * Refhold the ill to make the conn_outgoing_ill 19619 * independent of the ire. ip_wput_ire goes in a loop 19620 * and may refrele the ire. Since we have an ire at this 19621 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19622 */ 19623 ill_refhold(*conn_outgoing_ill); 19624 return (ire); 19625 } 19626 rw_exit(&irb->irb_lock); 19627 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19628 /* 19629 * If we can't find a suitable ire, return the original ire. 19630 */ 19631 return (save_ire); 19632 } 19633 19634 /* 19635 * This function does the ire_refrele of the ire passed in as the 19636 * argument. As this function looks up more ires i.e broadcast ires, 19637 * it needs to REFRELE them. Currently, for simplicity we don't 19638 * differentiate the one passed in and looked up here. We always 19639 * REFRELE. 19640 * IPQoS Notes: 19641 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19642 * IPSec packets are done in ipsec_out_process. 19643 * 19644 */ 19645 void 19646 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19647 { 19648 ipha_t *ipha; 19649 #define rptr ((uchar_t *)ipha) 19650 mblk_t *mp1; 19651 queue_t *stq; 19652 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19653 uint32_t v_hlen_tos_len; 19654 uint32_t ttl_protocol; 19655 ipaddr_t src; 19656 ipaddr_t dst; 19657 uint32_t cksum; 19658 ipaddr_t orig_src; 19659 ire_t *ire1; 19660 mblk_t *next_mp; 19661 uint_t hlen; 19662 uint16_t *up; 19663 uint32_t max_frag = ire->ire_max_frag; 19664 ill_t *ill = ire_to_ill(ire); 19665 int clusterwide; 19666 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19667 int ipsec_len; 19668 mblk_t *first_mp; 19669 ipsec_out_t *io; 19670 boolean_t conn_dontroute; /* conn value for multicast */ 19671 boolean_t conn_multicast_loop; /* conn value for multicast */ 19672 boolean_t multicast_forward; /* Should we forward ? */ 19673 boolean_t unspec_src; 19674 ill_t *conn_outgoing_ill = NULL; 19675 ill_t *ire_ill; 19676 ill_t *ire1_ill; 19677 uint32_t ill_index = 0; 19678 boolean_t multirt_send = B_FALSE; 19679 int err; 19680 zoneid_t zoneid; 19681 19682 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19683 "ip_wput_ire_start: q %p", q); 19684 19685 multicast_forward = B_FALSE; 19686 unspec_src = (connp != NULL && connp->conn_unspec_src); 19687 19688 if (ire->ire_flags & RTF_MULTIRT) { 19689 /* 19690 * Multirouting case. The bucket where ire is stored 19691 * probably holds other RTF_MULTIRT flagged ire 19692 * to the destination. In this call to ip_wput_ire, 19693 * we attempt to send the packet through all 19694 * those ires. Thus, we first ensure that ire is the 19695 * first RTF_MULTIRT ire in the bucket, 19696 * before walking the ire list. 19697 */ 19698 ire_t *first_ire; 19699 irb_t *irb = ire->ire_bucket; 19700 ASSERT(irb != NULL); 19701 19702 /* Make sure we do not omit any multiroute ire. */ 19703 IRB_REFHOLD(irb); 19704 for (first_ire = irb->irb_ire; 19705 first_ire != NULL; 19706 first_ire = first_ire->ire_next) { 19707 if ((first_ire->ire_flags & RTF_MULTIRT) && 19708 (first_ire->ire_addr == ire->ire_addr) && 19709 !(first_ire->ire_marks & 19710 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19711 break; 19712 } 19713 19714 if ((first_ire != NULL) && (first_ire != ire)) { 19715 IRE_REFHOLD(first_ire); 19716 ire_refrele(ire); 19717 ire = first_ire; 19718 ill = ire_to_ill(ire); 19719 } 19720 IRB_REFRELE(irb); 19721 } 19722 19723 /* 19724 * conn_outgoing_ill is used only in the broadcast loop. 19725 * for performance we don't grab the mutexs in the fastpath 19726 */ 19727 if ((connp != NULL) && 19728 (connp->conn_xmit_if_ill == NULL) && 19729 (ire->ire_type == IRE_BROADCAST) && 19730 ((connp->conn_nofailover_ill != NULL) || 19731 (connp->conn_outgoing_ill != NULL))) { 19732 /* 19733 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19734 * option. So, see if this endpoint is bound to a 19735 * IPIF_NOFAILOVER address. If so, honor it. This implies 19736 * that if the interface is failed, we will still send 19737 * the packet on the same ill which is what we want. 19738 */ 19739 conn_outgoing_ill = conn_get_held_ill(connp, 19740 &connp->conn_nofailover_ill, &err); 19741 if (err == ILL_LOOKUP_FAILED) { 19742 ire_refrele(ire); 19743 freemsg(mp); 19744 return; 19745 } 19746 if (conn_outgoing_ill == NULL) { 19747 /* 19748 * Choose a good ill in the group to send the 19749 * packets on. 19750 */ 19751 ire = conn_set_outgoing_ill(connp, ire, 19752 &conn_outgoing_ill); 19753 if (ire == NULL) { 19754 freemsg(mp); 19755 return; 19756 } 19757 } 19758 } 19759 19760 if (mp->b_datap->db_type != M_CTL) { 19761 ipha = (ipha_t *)mp->b_rptr; 19762 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19763 } else { 19764 io = (ipsec_out_t *)mp->b_rptr; 19765 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19766 zoneid = io->ipsec_out_zoneid; 19767 ASSERT(zoneid != ALL_ZONES); 19768 ipha = (ipha_t *)mp->b_cont->b_rptr; 19769 dst = ipha->ipha_dst; 19770 /* 19771 * For the multicast case, ipsec_out carries conn_dontroute and 19772 * conn_multicast_loop as conn may not be available here. We 19773 * need this for multicast loopback and forwarding which is done 19774 * later in the code. 19775 */ 19776 if (CLASSD(dst)) { 19777 conn_dontroute = io->ipsec_out_dontroute; 19778 conn_multicast_loop = io->ipsec_out_multicast_loop; 19779 /* 19780 * If conn_dontroute is not set or conn_multicast_loop 19781 * is set, we need to do forwarding/loopback. For 19782 * datagrams from ip_wput_multicast, conn_dontroute is 19783 * set to B_TRUE and conn_multicast_loop is set to 19784 * B_FALSE so that we neither do forwarding nor 19785 * loopback. 19786 */ 19787 if (!conn_dontroute || conn_multicast_loop) 19788 multicast_forward = B_TRUE; 19789 } 19790 } 19791 19792 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19793 /* 19794 * When a zone sends a packet to another zone, we try to deliver 19795 * the packet under the same conditions as if the destination 19796 * was a real node on the network. To do so, we look for a 19797 * matching route in the forwarding table. 19798 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19799 * ip_newroute() does. 19800 */ 19801 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19802 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19803 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19804 if (src_ire != NULL && 19805 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19806 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19807 ipha->ipha_src = src_ire->ire_src_addr; 19808 ire_refrele(src_ire); 19809 } else { 19810 ire_refrele(ire); 19811 if (conn_outgoing_ill != NULL) 19812 ill_refrele(conn_outgoing_ill); 19813 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19814 if (src_ire != NULL) { 19815 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19816 ire_refrele(src_ire); 19817 freemsg(mp); 19818 return; 19819 } 19820 ire_refrele(src_ire); 19821 } 19822 if (ip_hdr_complete(ipha, zoneid)) { 19823 /* Failed */ 19824 freemsg(mp); 19825 return; 19826 } 19827 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19828 return; 19829 } 19830 } 19831 19832 if (mp->b_datap->db_type == M_CTL || 19833 ipsec_outbound_v4_policy_present) { 19834 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19835 unspec_src); 19836 if (mp == NULL) { 19837 ire_refrele(ire); 19838 if (conn_outgoing_ill != NULL) 19839 ill_refrele(conn_outgoing_ill); 19840 return; 19841 } 19842 } 19843 19844 first_mp = mp; 19845 ipsec_len = 0; 19846 19847 if (first_mp->b_datap->db_type == M_CTL) { 19848 io = (ipsec_out_t *)first_mp->b_rptr; 19849 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19850 mp = first_mp->b_cont; 19851 ipsec_len = ipsec_out_extra_length(first_mp); 19852 ASSERT(ipsec_len >= 0); 19853 zoneid = io->ipsec_out_zoneid; 19854 ASSERT(zoneid != ALL_ZONES); 19855 19856 /* 19857 * Drop M_CTL here if IPsec processing is not needed. 19858 * (Non-IPsec use of M_CTL extracted any information it 19859 * needed above). 19860 */ 19861 if (ipsec_len == 0) { 19862 freeb(first_mp); 19863 first_mp = mp; 19864 } 19865 } 19866 19867 /* 19868 * Fast path for ip_wput_ire 19869 */ 19870 19871 ipha = (ipha_t *)mp->b_rptr; 19872 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19873 dst = ipha->ipha_dst; 19874 19875 /* 19876 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19877 * if the socket is a SOCK_RAW type. The transport checksum should 19878 * be provided in the pre-built packet, so we don't need to compute it. 19879 * Also, other application set flags, like DF, should not be altered. 19880 * Other transport MUST pass down zero. 19881 */ 19882 ip_hdr_included = ipha->ipha_ident; 19883 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19884 19885 if (CLASSD(dst)) { 19886 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19887 ntohl(dst), 19888 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19889 ntohl(ire->ire_addr))); 19890 } 19891 19892 /* Macros to extract header fields from data already in registers */ 19893 #ifdef _BIG_ENDIAN 19894 #define V_HLEN (v_hlen_tos_len >> 24) 19895 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19896 #define PROTO (ttl_protocol & 0xFF) 19897 #else 19898 #define V_HLEN (v_hlen_tos_len & 0xFF) 19899 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19900 #define PROTO (ttl_protocol >> 8) 19901 #endif 19902 19903 19904 orig_src = src = ipha->ipha_src; 19905 /* (The loop back to "another" is explained down below.) */ 19906 another:; 19907 /* 19908 * Assign an ident value for this packet. We assign idents on 19909 * a per destination basis out of the IRE. There could be 19910 * other threads targeting the same destination, so we have to 19911 * arrange for a atomic increment. Note that we use a 32-bit 19912 * atomic add because it has better performance than its 19913 * 16-bit sibling. 19914 * 19915 * If running in cluster mode and if the source address 19916 * belongs to a replicated service then vector through 19917 * cl_inet_ipident vector to allocate ip identifier 19918 * NOTE: This is a contract private interface with the 19919 * clustering group. 19920 */ 19921 clusterwide = 0; 19922 if (cl_inet_ipident) { 19923 ASSERT(cl_inet_isclusterwide); 19924 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19925 AF_INET, (uint8_t *)(uintptr_t)src)) { 19926 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19927 AF_INET, (uint8_t *)(uintptr_t)src, 19928 (uint8_t *)(uintptr_t)dst); 19929 clusterwide = 1; 19930 } 19931 } 19932 if (!clusterwide) { 19933 ipha->ipha_ident = 19934 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19935 } 19936 19937 #ifndef _BIG_ENDIAN 19938 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19939 #endif 19940 19941 /* 19942 * Set source address unless sent on an ill or conn_unspec_src is set. 19943 * This is needed to obey conn_unspec_src when packets go through 19944 * ip_newroute + arp. 19945 * Assumes ip_newroute{,_multi} sets the source address as well. 19946 */ 19947 if (src == INADDR_ANY && !unspec_src) { 19948 /* 19949 * Assign the appropriate source address from the IRE if none 19950 * was specified. 19951 */ 19952 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19953 19954 /* 19955 * With IP multipathing, broadcast packets are sent on the ire 19956 * that has been cleared of IRE_MARK_NORECV and that belongs to 19957 * the group. However, this ire might not be in the same zone so 19958 * we can't always use its source address. We look for a 19959 * broadcast ire in the same group and in the right zone. 19960 */ 19961 if (ire->ire_type == IRE_BROADCAST && 19962 ire->ire_zoneid != zoneid) { 19963 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19964 IRE_BROADCAST, ire->ire_ipif, zoneid, 19965 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19966 if (src_ire != NULL) { 19967 src = src_ire->ire_src_addr; 19968 ire_refrele(src_ire); 19969 } else { 19970 ire_refrele(ire); 19971 if (conn_outgoing_ill != NULL) 19972 ill_refrele(conn_outgoing_ill); 19973 freemsg(first_mp); 19974 BUMP_MIB(&ip_mib, ipOutDiscards); 19975 return; 19976 } 19977 } else { 19978 src = ire->ire_src_addr; 19979 } 19980 19981 if (connp == NULL) { 19982 ip1dbg(("ip_wput_ire: no connp and no src " 19983 "address for dst 0x%x, using src 0x%x\n", 19984 ntohl(dst), 19985 ntohl(src))); 19986 } 19987 ipha->ipha_src = src; 19988 } 19989 stq = ire->ire_stq; 19990 19991 /* 19992 * We only allow ire chains for broadcasts since there will 19993 * be multiple IRE_CACHE entries for the same multicast 19994 * address (one per ipif). 19995 */ 19996 next_mp = NULL; 19997 19998 /* broadcast packet */ 19999 if (ire->ire_type == IRE_BROADCAST) 20000 goto broadcast; 20001 20002 /* loopback ? */ 20003 if (stq == NULL) 20004 goto nullstq; 20005 20006 /* The ill_index for outbound ILL */ 20007 ill_index = Q_TO_INDEX(stq); 20008 20009 BUMP_MIB(&ip_mib, ipOutRequests); 20010 ttl_protocol = ((uint16_t *)ipha)[4]; 20011 20012 /* pseudo checksum (do it in parts for IP header checksum) */ 20013 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20014 20015 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 20016 queue_t *dev_q = stq->q_next; 20017 20018 /* flow controlled */ 20019 if ((dev_q->q_next || dev_q->q_first) && 20020 !canput(dev_q)) 20021 goto blocked; 20022 if ((PROTO == IPPROTO_UDP) && 20023 (ip_hdr_included != IP_HDR_INCLUDED)) { 20024 hlen = (V_HLEN & 0xF) << 2; 20025 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20026 if (*up != 0) { 20027 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 20028 hlen, LENGTH, max_frag, ipsec_len, cksum); 20029 /* Software checksum? */ 20030 if (DB_CKSUMFLAGS(mp) == 0) { 20031 IP_STAT(ip_out_sw_cksum); 20032 IP_STAT_UPDATE( 20033 ip_udp_out_sw_cksum_bytes, 20034 LENGTH - hlen); 20035 } 20036 } 20037 } 20038 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 20039 hlen = (V_HLEN & 0xF) << 2; 20040 if (PROTO == IPPROTO_TCP) { 20041 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20042 /* 20043 * The packet header is processed once and for all, even 20044 * in the multirouting case. We disable hardware 20045 * checksum if the packet is multirouted, as it will be 20046 * replicated via several interfaces, and not all of 20047 * them may have this capability. 20048 */ 20049 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 20050 LENGTH, max_frag, ipsec_len, cksum); 20051 /* Software checksum? */ 20052 if (DB_CKSUMFLAGS(mp) == 0) { 20053 IP_STAT(ip_out_sw_cksum); 20054 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20055 LENGTH - hlen); 20056 } 20057 } else { 20058 sctp_hdr_t *sctph; 20059 20060 ASSERT(PROTO == IPPROTO_SCTP); 20061 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20062 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20063 /* 20064 * Zero out the checksum field to ensure proper 20065 * checksum calculation. 20066 */ 20067 sctph->sh_chksum = 0; 20068 #ifdef DEBUG 20069 if (!skip_sctp_cksum) 20070 #endif 20071 sctph->sh_chksum = sctp_cksum(mp, hlen); 20072 } 20073 } 20074 20075 /* 20076 * If this is a multicast packet and originated from ip_wput 20077 * we need to do loopback and forwarding checks. If it comes 20078 * from ip_wput_multicast, we SHOULD not do this. 20079 */ 20080 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 20081 20082 /* checksum */ 20083 cksum += ttl_protocol; 20084 20085 /* fragment the packet */ 20086 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 20087 goto fragmentit; 20088 /* 20089 * Don't use frag_flag if packet is pre-built or source 20090 * routed or if multicast (since multicast packets do 20091 * not solicit ICMP "packet too big" messages). 20092 */ 20093 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20094 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20095 !ip_source_route_included(ipha)) && 20096 !CLASSD(ipha->ipha_dst)) 20097 ipha->ipha_fragment_offset_and_flags |= 20098 htons(ire->ire_frag_flag); 20099 20100 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20101 /* calculate IP header checksum */ 20102 cksum += ipha->ipha_ident; 20103 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 20104 cksum += ipha->ipha_fragment_offset_and_flags; 20105 20106 /* IP options present */ 20107 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20108 if (hlen) 20109 goto checksumoptions; 20110 20111 /* calculate hdr checksum */ 20112 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20113 cksum = ~(cksum + (cksum >> 16)); 20114 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20115 } 20116 if (ipsec_len != 0) { 20117 /* 20118 * We will do the rest of the processing after 20119 * we come back from IPSEC in ip_wput_ipsec_out(). 20120 */ 20121 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 20122 20123 io = (ipsec_out_t *)first_mp->b_rptr; 20124 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 20125 ill_phyint->phyint_ifindex; 20126 20127 ipsec_out_process(q, first_mp, ire, ill_index); 20128 ire_refrele(ire); 20129 if (conn_outgoing_ill != NULL) 20130 ill_refrele(conn_outgoing_ill); 20131 return; 20132 } 20133 20134 /* 20135 * In most cases, the emission loop below is entered only 20136 * once. Only in the case where the ire holds the 20137 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 20138 * flagged ires in the bucket, and send the packet 20139 * through all crossed RTF_MULTIRT routes. 20140 */ 20141 if (ire->ire_flags & RTF_MULTIRT) { 20142 multirt_send = B_TRUE; 20143 } 20144 do { 20145 if (multirt_send) { 20146 irb_t *irb; 20147 /* 20148 * We are in a multiple send case, need to get 20149 * the next ire and make a duplicate of the packet. 20150 * ire1 holds here the next ire to process in the 20151 * bucket. If multirouting is expected, 20152 * any non-RTF_MULTIRT ire that has the 20153 * right destination address is ignored. 20154 */ 20155 irb = ire->ire_bucket; 20156 ASSERT(irb != NULL); 20157 20158 IRB_REFHOLD(irb); 20159 for (ire1 = ire->ire_next; 20160 ire1 != NULL; 20161 ire1 = ire1->ire_next) { 20162 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20163 continue; 20164 if (ire1->ire_addr != ire->ire_addr) 20165 continue; 20166 if (ire1->ire_marks & 20167 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 20168 continue; 20169 20170 /* Got one */ 20171 IRE_REFHOLD(ire1); 20172 break; 20173 } 20174 IRB_REFRELE(irb); 20175 20176 if (ire1 != NULL) { 20177 next_mp = copyb(mp); 20178 if ((next_mp == NULL) || 20179 ((mp->b_cont != NULL) && 20180 ((next_mp->b_cont = 20181 dupmsg(mp->b_cont)) == NULL))) { 20182 freemsg(next_mp); 20183 next_mp = NULL; 20184 ire_refrele(ire1); 20185 ire1 = NULL; 20186 } 20187 } 20188 20189 /* Last multiroute ire; don't loop anymore. */ 20190 if (ire1 == NULL) { 20191 multirt_send = B_FALSE; 20192 } 20193 } 20194 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20195 if (mp == NULL) { 20196 BUMP_MIB(&ip_mib, ipOutDiscards); 20197 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20198 "during IPPF processing\n")); 20199 ire_refrele(ire); 20200 if (next_mp != NULL) { 20201 freemsg(next_mp); 20202 ire_refrele(ire1); 20203 } 20204 if (conn_outgoing_ill != NULL) 20205 ill_refrele(conn_outgoing_ill); 20206 return; 20207 } 20208 UPDATE_OB_PKT_COUNT(ire); 20209 ire->ire_last_used_time = lbolt; 20210 20211 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20212 "ip_wput_ire_end: q %p (%S)", 20213 q, "last copy out"); 20214 putnext(stq, mp); 20215 IRE_REFRELE(ire); 20216 20217 if (multirt_send) { 20218 ASSERT(ire1); 20219 /* 20220 * Proceed with the next RTF_MULTIRT ire, 20221 * Also set up the send-to queue accordingly. 20222 */ 20223 ire = ire1; 20224 ire1 = NULL; 20225 stq = ire->ire_stq; 20226 mp = next_mp; 20227 next_mp = NULL; 20228 ipha = (ipha_t *)mp->b_rptr; 20229 ill_index = Q_TO_INDEX(stq); 20230 } 20231 } while (multirt_send); 20232 if (conn_outgoing_ill != NULL) 20233 ill_refrele(conn_outgoing_ill); 20234 return; 20235 20236 /* 20237 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20238 */ 20239 broadcast: 20240 { 20241 /* 20242 * Avoid broadcast storms by setting the ttl to 1 20243 * for broadcasts. This parameter can be set 20244 * via ndd, so make sure that for the SO_DONTROUTE 20245 * case that ipha_ttl is always set to 1. 20246 * In the event that we are replying to incoming 20247 * ICMP packets, conn could be NULL. 20248 */ 20249 if ((connp != NULL) && connp->conn_dontroute) 20250 ipha->ipha_ttl = 1; 20251 else 20252 ipha->ipha_ttl = ip_broadcast_ttl; 20253 20254 /* 20255 * Note that we are not doing a IRB_REFHOLD here. 20256 * Actually we don't care if the list changes i.e 20257 * if somebody deletes an IRE from the list while 20258 * we drop the lock, the next time we come around 20259 * ire_next will be NULL and hence we won't send 20260 * out multiple copies which is fine. 20261 */ 20262 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20263 ire1 = ire->ire_next; 20264 if (conn_outgoing_ill != NULL) { 20265 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20266 ASSERT(ire1 == ire->ire_next); 20267 if (ire1 != NULL && ire1->ire_addr == dst) { 20268 ire_refrele(ire); 20269 ire = ire1; 20270 IRE_REFHOLD(ire); 20271 ire1 = ire->ire_next; 20272 continue; 20273 } 20274 rw_exit(&ire->ire_bucket->irb_lock); 20275 /* Did not find a matching ill */ 20276 ip1dbg(("ip_wput_ire: broadcast with no " 20277 "matching IP_BOUND_IF ill %s\n", 20278 conn_outgoing_ill->ill_name)); 20279 freemsg(first_mp); 20280 if (ire != NULL) 20281 ire_refrele(ire); 20282 ill_refrele(conn_outgoing_ill); 20283 return; 20284 } 20285 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20286 /* 20287 * If the next IRE has the same address and is not one 20288 * of the two copies that we need to send, try to see 20289 * whether this copy should be sent at all. This 20290 * assumes that we insert loopbacks first and then 20291 * non-loopbacks. This is acheived by inserting the 20292 * loopback always before non-loopback. 20293 * This is used to send a single copy of a broadcast 20294 * packet out all physical interfaces that have an 20295 * matching IRE_BROADCAST while also looping 20296 * back one copy (to ip_wput_local) for each 20297 * matching physical interface. However, we avoid 20298 * sending packets out different logical that match by 20299 * having ipif_up/ipif_down supress duplicate 20300 * IRE_BROADCASTS. 20301 * 20302 * This feature is currently used to get broadcasts 20303 * sent to multiple interfaces, when the broadcast 20304 * address being used applies to multiple interfaces. 20305 * For example, a whole net broadcast will be 20306 * replicated on every connected subnet of 20307 * the target net. 20308 * 20309 * Each zone has its own set of IRE_BROADCASTs, so that 20310 * we're able to distribute inbound packets to multiple 20311 * zones who share a broadcast address. We avoid looping 20312 * back outbound packets in different zones but on the 20313 * same ill, as the application would see duplicates. 20314 * 20315 * If the interfaces are part of the same group, 20316 * we would want to send only one copy out for 20317 * whole group. 20318 * 20319 * This logic assumes that ire_add_v4() groups the 20320 * IRE_BROADCAST entries so that those with the same 20321 * ire_addr and ill_group are kept together. 20322 */ 20323 ire_ill = ire->ire_ipif->ipif_ill; 20324 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20325 if (ire_ill->ill_group != NULL && 20326 (ire->ire_marks & IRE_MARK_NORECV)) { 20327 /* 20328 * If the current zone only has an ire 20329 * broadcast for this address marked 20330 * NORECV, the ire we want is ahead in 20331 * the bucket, so we look it up 20332 * deliberately ignoring the zoneid. 20333 */ 20334 for (ire1 = ire->ire_bucket->irb_ire; 20335 ire1 != NULL; 20336 ire1 = ire1->ire_next) { 20337 ire1_ill = 20338 ire1->ire_ipif->ipif_ill; 20339 if (ire1->ire_addr != dst) 20340 continue; 20341 /* skip over the current ire */ 20342 if (ire1 == ire) 20343 continue; 20344 /* skip over deleted ires */ 20345 if (ire1->ire_marks & 20346 IRE_MARK_CONDEMNED) 20347 continue; 20348 /* 20349 * non-loopback ire in our 20350 * group: use it for the next 20351 * pass in the loop 20352 */ 20353 if (ire1->ire_stq != NULL && 20354 ire1_ill->ill_group == 20355 ire_ill->ill_group) 20356 break; 20357 } 20358 } 20359 } else { 20360 while (ire1 != NULL && ire1->ire_addr == dst) { 20361 ire1_ill = ire1->ire_ipif->ipif_ill; 20362 /* 20363 * We can have two broadcast ires on the 20364 * same ill in different zones; here 20365 * we'll send a copy of the packet on 20366 * each ill and the fanout code will 20367 * call conn_wantpacket() to check that 20368 * the zone has the broadcast address 20369 * configured on the ill. If the two 20370 * ires are in the same group we only 20371 * send one copy up. 20372 */ 20373 if (ire1_ill != ire_ill && 20374 (ire1_ill->ill_group == NULL || 20375 ire_ill->ill_group == NULL || 20376 ire1_ill->ill_group != 20377 ire_ill->ill_group)) { 20378 break; 20379 } 20380 ire1 = ire1->ire_next; 20381 } 20382 } 20383 } 20384 ASSERT(multirt_send == B_FALSE); 20385 if (ire1 != NULL && ire1->ire_addr == dst) { 20386 if ((ire->ire_flags & RTF_MULTIRT) && 20387 (ire1->ire_flags & RTF_MULTIRT)) { 20388 /* 20389 * We are in the multirouting case. 20390 * The message must be sent at least 20391 * on both ires. These ires have been 20392 * inserted AFTER the standard ones 20393 * in ip_rt_add(). There are thus no 20394 * other ire entries for the destination 20395 * address in the rest of the bucket 20396 * that do not have the RTF_MULTIRT 20397 * flag. We don't process a copy 20398 * of the message here. This will be 20399 * done in the final sending loop. 20400 */ 20401 multirt_send = B_TRUE; 20402 } else { 20403 next_mp = ip_copymsg(first_mp); 20404 if (next_mp != NULL) 20405 IRE_REFHOLD(ire1); 20406 } 20407 } 20408 rw_exit(&ire->ire_bucket->irb_lock); 20409 } 20410 20411 if (stq) { 20412 /* 20413 * A non-NULL send-to queue means this packet is going 20414 * out of this machine. 20415 */ 20416 20417 BUMP_MIB(&ip_mib, ipOutRequests); 20418 ttl_protocol = ((uint16_t *)ipha)[4]; 20419 /* 20420 * We accumulate the pseudo header checksum in cksum. 20421 * This is pretty hairy code, so watch close. One 20422 * thing to keep in mind is that UDP and TCP have 20423 * stored their respective datagram lengths in their 20424 * checksum fields. This lines things up real nice. 20425 */ 20426 cksum = (dst >> 16) + (dst & 0xFFFF) + 20427 (src >> 16) + (src & 0xFFFF); 20428 /* 20429 * We assume the udp checksum field contains the 20430 * length, so to compute the pseudo header checksum, 20431 * all we need is the protocol number and src/dst. 20432 */ 20433 /* Provide the checksums for UDP and TCP. */ 20434 if ((PROTO == IPPROTO_TCP) && 20435 (ip_hdr_included != IP_HDR_INCLUDED)) { 20436 /* hlen gets the number of uchar_ts in the IP header */ 20437 hlen = (V_HLEN & 0xF) << 2; 20438 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20439 IP_STAT(ip_out_sw_cksum); 20440 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20441 LENGTH - hlen); 20442 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20443 if (*up == 0) 20444 *up = 0xFFFF; 20445 } else if (PROTO == IPPROTO_SCTP && 20446 (ip_hdr_included != IP_HDR_INCLUDED)) { 20447 sctp_hdr_t *sctph; 20448 20449 hlen = (V_HLEN & 0xF) << 2; 20450 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20451 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20452 sctph->sh_chksum = 0; 20453 #ifdef DEBUG 20454 if (!skip_sctp_cksum) 20455 #endif 20456 sctph->sh_chksum = sctp_cksum(mp, hlen); 20457 } else { 20458 queue_t *dev_q = stq->q_next; 20459 20460 if ((dev_q->q_next || dev_q->q_first) && 20461 !canput(dev_q)) { 20462 blocked: 20463 ipha->ipha_ident = ip_hdr_included; 20464 /* 20465 * If we don't have a conn to apply 20466 * backpressure, free the message. 20467 * In the ire_send path, we don't know 20468 * the position to requeue the packet. Rather 20469 * than reorder packets, we just drop this 20470 * packet. 20471 */ 20472 if (ip_output_queue && connp != NULL && 20473 caller != IRE_SEND) { 20474 if (caller == IP_WSRV) { 20475 connp->conn_did_putbq = 1; 20476 (void) putbq(connp->conn_wq, 20477 first_mp); 20478 conn_drain_insert(connp); 20479 /* 20480 * This is the service thread, 20481 * and the queue is already 20482 * noenabled. The check for 20483 * canput and the putbq is not 20484 * atomic. So we need to check 20485 * again. 20486 */ 20487 if (canput(stq->q_next)) 20488 connp->conn_did_putbq 20489 = 0; 20490 IP_STAT(ip_conn_flputbq); 20491 } else { 20492 /* 20493 * We are not the service proc. 20494 * ip_wsrv will be scheduled or 20495 * is already running. 20496 */ 20497 (void) putq(connp->conn_wq, 20498 first_mp); 20499 } 20500 } else { 20501 BUMP_MIB(&ip_mib, ipOutDiscards); 20502 freemsg(first_mp); 20503 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20504 "ip_wput_ire_end: q %p (%S)", 20505 q, "discard"); 20506 } 20507 ire_refrele(ire); 20508 if (next_mp) { 20509 ire_refrele(ire1); 20510 freemsg(next_mp); 20511 } 20512 if (conn_outgoing_ill != NULL) 20513 ill_refrele(conn_outgoing_ill); 20514 return; 20515 } 20516 if ((PROTO == IPPROTO_UDP) && 20517 (ip_hdr_included != IP_HDR_INCLUDED)) { 20518 /* 20519 * hlen gets the number of uchar_ts in the 20520 * IP header 20521 */ 20522 hlen = (V_HLEN & 0xF) << 2; 20523 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20524 max_frag = ire->ire_max_frag; 20525 if (*up != 0) { 20526 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 20527 up, PROTO, hlen, LENGTH, max_frag, 20528 ipsec_len, cksum); 20529 /* Software checksum? */ 20530 if (DB_CKSUMFLAGS(mp) == 0) { 20531 IP_STAT(ip_out_sw_cksum); 20532 IP_STAT_UPDATE( 20533 ip_udp_out_sw_cksum_bytes, 20534 LENGTH - hlen); 20535 } 20536 } 20537 } 20538 } 20539 /* 20540 * Need to do this even when fragmenting. The local 20541 * loopback can be done without computing checksums 20542 * but forwarding out other interface must be done 20543 * after the IP checksum (and ULP checksums) have been 20544 * computed. 20545 * 20546 * NOTE : multicast_forward is set only if this packet 20547 * originated from ip_wput. For packets originating from 20548 * ip_wput_multicast, it is not set. 20549 */ 20550 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20551 multi_loopback: 20552 ip2dbg(("ip_wput: multicast, loop %d\n", 20553 conn_multicast_loop)); 20554 20555 /* Forget header checksum offload */ 20556 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 20557 20558 /* 20559 * Local loopback of multicasts? Check the 20560 * ill. 20561 * 20562 * Note that the loopback function will not come 20563 * in through ip_rput - it will only do the 20564 * client fanout thus we need to do an mforward 20565 * as well. The is different from the BSD 20566 * logic. 20567 */ 20568 if (ill != NULL) { 20569 ilm_t *ilm; 20570 20571 ILM_WALKER_HOLD(ill); 20572 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20573 ALL_ZONES); 20574 ILM_WALKER_RELE(ill); 20575 if (ilm != NULL) { 20576 /* 20577 * Pass along the virtual output q. 20578 * ip_wput_local() will distribute the 20579 * packet to all the matching zones, 20580 * except the sending zone when 20581 * IP_MULTICAST_LOOP is false. 20582 */ 20583 ip_multicast_loopback(q, ill, first_mp, 20584 conn_multicast_loop ? 0 : 20585 IP_FF_NO_MCAST_LOOP, zoneid); 20586 } 20587 } 20588 if (ipha->ipha_ttl == 0) { 20589 /* 20590 * 0 => only to this host i.e. we are 20591 * done. We are also done if this was the 20592 * loopback interface since it is sufficient 20593 * to loopback one copy of a multicast packet. 20594 */ 20595 freemsg(first_mp); 20596 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20597 "ip_wput_ire_end: q %p (%S)", 20598 q, "loopback"); 20599 ire_refrele(ire); 20600 if (conn_outgoing_ill != NULL) 20601 ill_refrele(conn_outgoing_ill); 20602 return; 20603 } 20604 /* 20605 * ILLF_MULTICAST is checked in ip_newroute 20606 * i.e. we don't need to check it here since 20607 * all IRE_CACHEs come from ip_newroute. 20608 * For multicast traffic, SO_DONTROUTE is interpreted 20609 * to mean only send the packet out the interface 20610 * (optionally specified with IP_MULTICAST_IF) 20611 * and do not forward it out additional interfaces. 20612 * RSVP and the rsvp daemon is an example of a 20613 * protocol and user level process that 20614 * handles it's own routing. Hence, it uses the 20615 * SO_DONTROUTE option to accomplish this. 20616 */ 20617 20618 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20619 /* Unconditionally redo the checksum */ 20620 ipha->ipha_hdr_checksum = 0; 20621 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20622 20623 /* 20624 * If this needs to go out secure, we need 20625 * to wait till we finish the IPSEC 20626 * processing. 20627 */ 20628 if (ipsec_len == 0 && 20629 ip_mforward(ill, ipha, mp)) { 20630 freemsg(first_mp); 20631 ip1dbg(("ip_wput: mforward failed\n")); 20632 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20633 "ip_wput_ire_end: q %p (%S)", 20634 q, "mforward failed"); 20635 ire_refrele(ire); 20636 if (conn_outgoing_ill != NULL) 20637 ill_refrele(conn_outgoing_ill); 20638 return; 20639 } 20640 } 20641 } 20642 max_frag = ire->ire_max_frag; 20643 cksum += ttl_protocol; 20644 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 20645 /* No fragmentation required for this one. */ 20646 /* 20647 * Don't use frag_flag if packet is pre-built or source 20648 * routed or if multicast (since multicast packets do 20649 * not solicit ICMP "packet too big" messages). 20650 */ 20651 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20652 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20653 !ip_source_route_included(ipha)) && 20654 !CLASSD(ipha->ipha_dst)) 20655 ipha->ipha_fragment_offset_and_flags |= 20656 htons(ire->ire_frag_flag); 20657 20658 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20659 /* Complete the IP header checksum. */ 20660 cksum += ipha->ipha_ident; 20661 cksum += (v_hlen_tos_len >> 16)+ 20662 (v_hlen_tos_len & 0xFFFF); 20663 cksum += ipha->ipha_fragment_offset_and_flags; 20664 hlen = (V_HLEN & 0xF) - 20665 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20666 if (hlen) { 20667 checksumoptions: 20668 /* 20669 * Account for the IP Options in the IP 20670 * header checksum. 20671 */ 20672 up = (uint16_t *)(rptr+ 20673 IP_SIMPLE_HDR_LENGTH); 20674 do { 20675 cksum += up[0]; 20676 cksum += up[1]; 20677 up += 2; 20678 } while (--hlen); 20679 } 20680 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20681 cksum = ~(cksum + (cksum >> 16)); 20682 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20683 } 20684 if (ipsec_len != 0) { 20685 ipsec_out_process(q, first_mp, ire, ill_index); 20686 if (!next_mp) { 20687 ire_refrele(ire); 20688 if (conn_outgoing_ill != NULL) 20689 ill_refrele(conn_outgoing_ill); 20690 return; 20691 } 20692 goto next; 20693 } 20694 20695 /* 20696 * multirt_send has already been handled 20697 * for broadcast, but not yet for multicast 20698 * or IP options. 20699 */ 20700 if (next_mp == NULL) { 20701 if (ire->ire_flags & RTF_MULTIRT) { 20702 multirt_send = B_TRUE; 20703 } 20704 } 20705 20706 /* 20707 * In most cases, the emission loop below is 20708 * entered only once. Only in the case where 20709 * the ire holds the RTF_MULTIRT flag, do we loop 20710 * to process all RTF_MULTIRT ires in the bucket, 20711 * and send the packet through all crossed 20712 * RTF_MULTIRT routes. 20713 */ 20714 do { 20715 if (multirt_send) { 20716 irb_t *irb; 20717 20718 irb = ire->ire_bucket; 20719 ASSERT(irb != NULL); 20720 /* 20721 * We are in a multiple send case, 20722 * need to get the next IRE and make 20723 * a duplicate of the packet. 20724 */ 20725 IRB_REFHOLD(irb); 20726 for (ire1 = ire->ire_next; 20727 ire1 != NULL; 20728 ire1 = ire1->ire_next) { 20729 if (!(ire1->ire_flags & 20730 RTF_MULTIRT)) 20731 continue; 20732 if (ire1->ire_addr != 20733 ire->ire_addr) 20734 continue; 20735 if (ire1->ire_marks & 20736 (IRE_MARK_CONDEMNED| 20737 IRE_MARK_HIDDEN)) 20738 continue; 20739 20740 /* Got one */ 20741 IRE_REFHOLD(ire1); 20742 break; 20743 } 20744 IRB_REFRELE(irb); 20745 20746 if (ire1 != NULL) { 20747 next_mp = copyb(mp); 20748 if ((next_mp == NULL) || 20749 ((mp->b_cont != NULL) && 20750 ((next_mp->b_cont = 20751 dupmsg(mp->b_cont)) 20752 == NULL))) { 20753 freemsg(next_mp); 20754 next_mp = NULL; 20755 ire_refrele(ire1); 20756 ire1 = NULL; 20757 } 20758 } 20759 20760 /* 20761 * Last multiroute ire; don't loop 20762 * anymore. The emission is over 20763 * and next_mp is NULL. 20764 */ 20765 if (ire1 == NULL) { 20766 multirt_send = B_FALSE; 20767 } 20768 } 20769 20770 noprepend: 20771 ASSERT(ipsec_len == 0); 20772 mp1 = ip_wput_attach_llhdr(mp, ire, 20773 IPP_LOCAL_OUT, ill_index); 20774 if (mp1 == NULL) { 20775 BUMP_MIB(&ip_mib, ipOutDiscards); 20776 if (next_mp) { 20777 freemsg(next_mp); 20778 ire_refrele(ire1); 20779 } 20780 ire_refrele(ire); 20781 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20782 "ip_wput_ire_end: q %p (%S)", 20783 q, "discard MDATA"); 20784 if (conn_outgoing_ill != NULL) 20785 ill_refrele(conn_outgoing_ill); 20786 return; 20787 } 20788 UPDATE_OB_PKT_COUNT(ire); 20789 ire->ire_last_used_time = lbolt; 20790 20791 if (multirt_send) { 20792 /* 20793 * We are in a multiple send case, 20794 * need to re-enter the sending loop 20795 * using the next ire. 20796 */ 20797 putnext(stq, mp1); 20798 ire_refrele(ire); 20799 ire = ire1; 20800 stq = ire->ire_stq; 20801 mp = next_mp; 20802 next_mp = NULL; 20803 ipha = (ipha_t *)mp->b_rptr; 20804 ill_index = Q_TO_INDEX(stq); 20805 } 20806 } while (multirt_send); 20807 20808 if (!next_mp) { 20809 /* 20810 * Last copy going out (the ultra-common 20811 * case). Note that we intentionally replicate 20812 * the putnext rather than calling it before 20813 * the next_mp check in hopes of a little 20814 * tail-call action out of the compiler. 20815 */ 20816 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20817 "ip_wput_ire_end: q %p (%S)", 20818 q, "last copy out(1)"); 20819 putnext(stq, mp1); 20820 ire_refrele(ire); 20821 if (conn_outgoing_ill != NULL) 20822 ill_refrele(conn_outgoing_ill); 20823 return; 20824 } 20825 /* More copies going out below. */ 20826 putnext(stq, mp1); 20827 } else { 20828 int offset; 20829 fragmentit: 20830 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20831 /* 20832 * If this would generate a icmp_frag_needed message, 20833 * we need to handle it before we do the IPSEC 20834 * processing. Otherwise, we need to strip the IPSEC 20835 * headers before we send up the message to the ULPs 20836 * which becomes messy and difficult. 20837 */ 20838 if (ipsec_len != 0) { 20839 if ((max_frag < (unsigned int)(LENGTH + 20840 ipsec_len)) && (offset & IPH_DF)) { 20841 20842 BUMP_MIB(&ip_mib, ipFragFails); 20843 ipha->ipha_hdr_checksum = 0; 20844 ipha->ipha_hdr_checksum = 20845 (uint16_t)ip_csum_hdr(ipha); 20846 icmp_frag_needed(ire->ire_stq, first_mp, 20847 max_frag); 20848 if (!next_mp) { 20849 ire_refrele(ire); 20850 if (conn_outgoing_ill != NULL) { 20851 ill_refrele( 20852 conn_outgoing_ill); 20853 } 20854 return; 20855 } 20856 } else { 20857 /* 20858 * This won't cause a icmp_frag_needed 20859 * message. to be gnerated. Send it on 20860 * the wire. Note that this could still 20861 * cause fragmentation and all we 20862 * do is the generation of the message 20863 * to the ULP if needed before IPSEC. 20864 */ 20865 if (!next_mp) { 20866 ipsec_out_process(q, first_mp, 20867 ire, ill_index); 20868 TRACE_2(TR_FAC_IP, 20869 TR_IP_WPUT_IRE_END, 20870 "ip_wput_ire_end: q %p " 20871 "(%S)", q, 20872 "last ipsec_out_process"); 20873 ire_refrele(ire); 20874 if (conn_outgoing_ill != NULL) { 20875 ill_refrele( 20876 conn_outgoing_ill); 20877 } 20878 return; 20879 } 20880 ipsec_out_process(q, first_mp, 20881 ire, ill_index); 20882 } 20883 } else { 20884 /* Initiate IPPF processing */ 20885 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20886 ip_process(IPP_LOCAL_OUT, &mp, 20887 ill_index); 20888 if (mp == NULL) { 20889 BUMP_MIB(&ip_mib, 20890 ipOutDiscards); 20891 if (next_mp != NULL) { 20892 freemsg(next_mp); 20893 ire_refrele(ire1); 20894 } 20895 ire_refrele(ire); 20896 TRACE_2(TR_FAC_IP, 20897 TR_IP_WPUT_IRE_END, 20898 "ip_wput_ire: q %p (%S)", 20899 q, "discard MDATA"); 20900 if (conn_outgoing_ill != NULL) { 20901 ill_refrele( 20902 conn_outgoing_ill); 20903 } 20904 return; 20905 } 20906 } 20907 if (!next_mp) { 20908 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20909 "ip_wput_ire_end: q %p (%S)", 20910 q, "last fragmentation"); 20911 ip_wput_ire_fragmentit(mp, ire); 20912 ire_refrele(ire); 20913 if (conn_outgoing_ill != NULL) 20914 ill_refrele(conn_outgoing_ill); 20915 return; 20916 } 20917 ip_wput_ire_fragmentit(mp, ire); 20918 } 20919 } 20920 } else { 20921 nullstq: 20922 /* A NULL stq means the destination address is local. */ 20923 UPDATE_OB_PKT_COUNT(ire); 20924 ire->ire_last_used_time = lbolt; 20925 ASSERT(ire->ire_ipif != NULL); 20926 if (!next_mp) { 20927 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20928 "ip_wput_ire_end: q %p (%S)", 20929 q, "local address"); 20930 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20931 first_mp, ire, 0, ire->ire_zoneid); 20932 ire_refrele(ire); 20933 if (conn_outgoing_ill != NULL) 20934 ill_refrele(conn_outgoing_ill); 20935 return; 20936 } 20937 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20938 ire, 0, ire->ire_zoneid); 20939 } 20940 next: 20941 /* 20942 * More copies going out to additional interfaces. 20943 * ire1 has already been held. We don't need the 20944 * "ire" anymore. 20945 */ 20946 ire_refrele(ire); 20947 ire = ire1; 20948 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20949 mp = next_mp; 20950 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20951 ill = ire_to_ill(ire); 20952 first_mp = mp; 20953 if (ipsec_len != 0) { 20954 ASSERT(first_mp->b_datap->db_type == M_CTL); 20955 mp = mp->b_cont; 20956 } 20957 dst = ire->ire_addr; 20958 ipha = (ipha_t *)mp->b_rptr; 20959 /* 20960 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20961 * Restore ipha_ident "no checksum" flag. 20962 */ 20963 src = orig_src; 20964 ipha->ipha_ident = ip_hdr_included; 20965 goto another; 20966 20967 #undef rptr 20968 #undef Q_TO_INDEX 20969 } 20970 20971 /* 20972 * Routine to allocate a message that is used to notify the ULP about MDT. 20973 * The caller may provide a pointer to the link-layer MDT capabilities, 20974 * or NULL if MDT is to be disabled on the stream. 20975 */ 20976 mblk_t * 20977 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20978 { 20979 mblk_t *mp; 20980 ip_mdt_info_t *mdti; 20981 ill_mdt_capab_t *idst; 20982 20983 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20984 DB_TYPE(mp) = M_CTL; 20985 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20986 mdti = (ip_mdt_info_t *)mp->b_rptr; 20987 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20988 idst = &(mdti->mdt_capab); 20989 20990 /* 20991 * If the caller provides us with the capability, copy 20992 * it over into our notification message; otherwise 20993 * we zero out the capability portion. 20994 */ 20995 if (isrc != NULL) 20996 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20997 else 20998 bzero((caddr_t)idst, sizeof (*idst)); 20999 } 21000 return (mp); 21001 } 21002 21003 /* 21004 * Routine which determines whether MDT can be enabled on the destination 21005 * IRE and IPC combination, and if so, allocates and returns the MDT 21006 * notification mblk that may be used by ULP. We also check if we need to 21007 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 21008 * MDT usage in the past have been lifted. This gets called during IP 21009 * and ULP binding. 21010 */ 21011 mblk_t * 21012 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 21013 ill_mdt_capab_t *mdt_cap) 21014 { 21015 mblk_t *mp; 21016 boolean_t rc = B_FALSE; 21017 21018 ASSERT(dst_ire != NULL); 21019 ASSERT(connp != NULL); 21020 ASSERT(mdt_cap != NULL); 21021 21022 /* 21023 * Currently, we only support simple TCP/{IPv4,IPv6} with 21024 * Multidata, which is handled in tcp_multisend(). This 21025 * is the reason why we do all these checks here, to ensure 21026 * that we don't enable Multidata for the cases which we 21027 * can't handle at the moment. 21028 */ 21029 do { 21030 /* Only do TCP at the moment */ 21031 if (connp->conn_ulp != IPPROTO_TCP) 21032 break; 21033 21034 /* 21035 * IPSEC outbound policy present? Note that we get here 21036 * after calling ipsec_conn_cache_policy() where the global 21037 * policy checking is performed. conn_latch will be 21038 * non-NULL as long as there's a policy defined, 21039 * i.e. conn_out_enforce_policy may be NULL in such case 21040 * when the connection is non-secure, and hence we check 21041 * further if the latch refers to an outbound policy. 21042 */ 21043 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 21044 break; 21045 21046 /* CGTP (multiroute) is enabled? */ 21047 if (dst_ire->ire_flags & RTF_MULTIRT) 21048 break; 21049 21050 /* Outbound IPQoS enabled? */ 21051 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21052 /* 21053 * In this case, we disable MDT for this and all 21054 * future connections going over the interface. 21055 */ 21056 mdt_cap->ill_mdt_on = 0; 21057 break; 21058 } 21059 21060 /* socket option(s) present? */ 21061 if (!CONN_IS_MD_FASTPATH(connp)) 21062 break; 21063 21064 rc = B_TRUE; 21065 /* CONSTCOND */ 21066 } while (0); 21067 21068 /* Remember the result */ 21069 connp->conn_mdt_ok = rc; 21070 21071 if (!rc) 21072 return (NULL); 21073 else if (!mdt_cap->ill_mdt_on) { 21074 /* 21075 * If MDT has been previously turned off in the past, and we 21076 * currently can do MDT (due to IPQoS policy removal, etc.) 21077 * then enable it for this interface. 21078 */ 21079 mdt_cap->ill_mdt_on = 1; 21080 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 21081 "interface %s\n", ill_name)); 21082 } 21083 21084 /* Allocate the MDT info mblk */ 21085 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 21086 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 21087 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 21088 return (NULL); 21089 } 21090 return (mp); 21091 } 21092 21093 /* 21094 * Create destination address attribute, and fill it with the physical 21095 * destination address and SAP taken from the template DL_UNITDATA_REQ 21096 * message block. 21097 */ 21098 boolean_t 21099 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 21100 { 21101 dl_unitdata_req_t *dlurp; 21102 pattr_t *pa; 21103 pattrinfo_t pa_info; 21104 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 21105 uint_t das_len, das_off; 21106 21107 ASSERT(dlmp != NULL); 21108 21109 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 21110 das_len = dlurp->dl_dest_addr_length; 21111 das_off = dlurp->dl_dest_addr_offset; 21112 21113 pa_info.type = PATTR_DSTADDRSAP; 21114 pa_info.len = sizeof (**das) + das_len - 1; 21115 21116 /* create and associate the attribute */ 21117 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21118 if (pa != NULL) { 21119 ASSERT(*das != NULL); 21120 (*das)->addr_is_group = 0; 21121 (*das)->addr_len = (uint8_t)das_len; 21122 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 21123 } 21124 21125 return (pa != NULL); 21126 } 21127 21128 /* 21129 * Create hardware checksum attribute and fill it with the values passed. 21130 */ 21131 boolean_t 21132 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 21133 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 21134 { 21135 pattr_t *pa; 21136 pattrinfo_t pa_info; 21137 21138 ASSERT(mmd != NULL); 21139 21140 pa_info.type = PATTR_HCKSUM; 21141 pa_info.len = sizeof (pattr_hcksum_t); 21142 21143 /* create and associate the attribute */ 21144 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21145 if (pa != NULL) { 21146 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 21147 21148 hck->hcksum_start_offset = start_offset; 21149 hck->hcksum_stuff_offset = stuff_offset; 21150 hck->hcksum_end_offset = end_offset; 21151 hck->hcksum_flags = flags; 21152 } 21153 return (pa != NULL); 21154 } 21155 21156 /* 21157 * Create zerocopy attribute and fill it with the specified flags 21158 */ 21159 boolean_t 21160 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21161 { 21162 pattr_t *pa; 21163 pattrinfo_t pa_info; 21164 21165 ASSERT(mmd != NULL); 21166 pa_info.type = PATTR_ZCOPY; 21167 pa_info.len = sizeof (pattr_zcopy_t); 21168 21169 /* create and associate the attribute */ 21170 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21171 if (pa != NULL) { 21172 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 21173 21174 zcopy->zcopy_flags = flags; 21175 } 21176 return (pa != NULL); 21177 } 21178 21179 /* 21180 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 21181 * block chain. We could rewrite to handle arbitrary message block chains but 21182 * that would make the code complicated and slow. Right now there three 21183 * restrictions: 21184 * 21185 * 1. The first message block must contain the complete IP header and 21186 * at least 1 byte of payload data. 21187 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 21188 * so that we can use a single Multidata message. 21189 * 3. No frag must be distributed over two or more message blocks so 21190 * that we don't need more than two packet descriptors per frag. 21191 * 21192 * The above restrictions allow us to support userland applications (which 21193 * will send down a single message block) and NFS over UDP (which will 21194 * send down a chain of at most three message blocks). 21195 * 21196 * We also don't use MDT for payloads with less than or equal to 21197 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 21198 */ 21199 boolean_t 21200 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 21201 { 21202 int blocks; 21203 ssize_t total, missing, size; 21204 21205 ASSERT(mp != NULL); 21206 ASSERT(hdr_len > 0); 21207 21208 size = MBLKL(mp) - hdr_len; 21209 if (size <= 0) 21210 return (B_FALSE); 21211 21212 /* The first mblk contains the header and some payload. */ 21213 blocks = 1; 21214 total = size; 21215 size %= len; 21216 missing = (size == 0) ? 0 : (len - size); 21217 mp = mp->b_cont; 21218 21219 while (mp != NULL) { 21220 /* 21221 * Give up if we encounter a zero length message block. 21222 * In practice, this should rarely happen and therefore 21223 * not worth the trouble of freeing and re-linking the 21224 * mblk from the chain to handle such case. 21225 */ 21226 if ((size = MBLKL(mp)) == 0) 21227 return (B_FALSE); 21228 21229 /* Too many payload buffers for a single Multidata message? */ 21230 if (++blocks > MULTIDATA_MAX_PBUFS) 21231 return (B_FALSE); 21232 21233 total += size; 21234 /* Is a frag distributed over two or more message blocks? */ 21235 if (missing > size) 21236 return (B_FALSE); 21237 size -= missing; 21238 21239 size %= len; 21240 missing = (size == 0) ? 0 : (len - size); 21241 21242 mp = mp->b_cont; 21243 } 21244 21245 return (total > ip_wput_frag_mdt_min); 21246 } 21247 21248 /* 21249 * Outbound IPv4 fragmentation routine using MDT. 21250 */ 21251 static void 21252 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 21253 uint32_t frag_flag, int offset) 21254 { 21255 ipha_t *ipha_orig; 21256 int i1, ip_data_end; 21257 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 21258 mblk_t *hdr_mp, *md_mp = NULL; 21259 unsigned char *hdr_ptr, *pld_ptr; 21260 multidata_t *mmd; 21261 ip_pdescinfo_t pdi; 21262 21263 ASSERT(DB_TYPE(mp) == M_DATA); 21264 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 21265 21266 ipha_orig = (ipha_t *)mp->b_rptr; 21267 mp->b_rptr += sizeof (ipha_t); 21268 21269 /* Calculate how many packets we will send out */ 21270 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 21271 pkts = (i1 + len - 1) / len; 21272 ASSERT(pkts > 1); 21273 21274 /* Allocate a message block which will hold all the IP Headers. */ 21275 wroff = ip_wroff_extra; 21276 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 21277 21278 i1 = pkts * hdr_chunk_len; 21279 /* 21280 * Create the header buffer, Multidata and destination address 21281 * and SAP attribute that should be associated with it. 21282 */ 21283 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 21284 ((hdr_mp->b_wptr += i1), 21285 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 21286 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 21287 freemsg(mp); 21288 if (md_mp == NULL) { 21289 freemsg(hdr_mp); 21290 } else { 21291 free_mmd: IP_STAT(ip_frag_mdt_discarded); 21292 freemsg(md_mp); 21293 } 21294 IP_STAT(ip_frag_mdt_allocfail); 21295 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 21296 return; 21297 } 21298 IP_STAT(ip_frag_mdt_allocd); 21299 21300 /* 21301 * Add a payload buffer to the Multidata; this operation must not 21302 * fail, or otherwise our logic in this routine is broken. There 21303 * is no memory allocation done by the routine, so any returned 21304 * failure simply tells us that we've done something wrong. 21305 * 21306 * A failure tells us that either we're adding the same payload 21307 * buffer more than once, or we're trying to add more buffers than 21308 * allowed. None of the above cases should happen, and we panic 21309 * because either there's horrible heap corruption, and/or 21310 * programming mistake. 21311 */ 21312 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21313 goto pbuf_panic; 21314 21315 hdr_ptr = hdr_mp->b_rptr; 21316 pld_ptr = mp->b_rptr; 21317 21318 /* Establish the ending byte offset, based on the starting offset. */ 21319 offset <<= 3; 21320 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 21321 IP_SIMPLE_HDR_LENGTH; 21322 21323 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 21324 21325 while (pld_ptr < mp->b_wptr) { 21326 ipha_t *ipha; 21327 uint16_t offset_and_flags; 21328 uint16_t ip_len; 21329 int error; 21330 21331 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 21332 ipha = (ipha_t *)(hdr_ptr + wroff); 21333 ASSERT(OK_32PTR(ipha)); 21334 *ipha = *ipha_orig; 21335 21336 if (ip_data_end - offset > len) { 21337 offset_and_flags = IPH_MF; 21338 } else { 21339 /* 21340 * Last frag. Set len to the length of this last piece. 21341 */ 21342 len = ip_data_end - offset; 21343 /* A frag of a frag might have IPH_MF non-zero */ 21344 offset_and_flags = 21345 ntohs(ipha->ipha_fragment_offset_and_flags) & 21346 IPH_MF; 21347 } 21348 offset_and_flags |= (uint16_t)(offset >> 3); 21349 offset_and_flags |= (uint16_t)frag_flag; 21350 /* Store the offset and flags in the IP header. */ 21351 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21352 21353 /* Store the length in the IP header. */ 21354 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 21355 ipha->ipha_length = htons(ip_len); 21356 21357 /* 21358 * Set the IP header checksum. Note that mp is just 21359 * the header, so this is easy to pass to ip_csum. 21360 */ 21361 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21362 21363 /* 21364 * Record offset and size of header and data of the next packet 21365 * in the multidata message. 21366 */ 21367 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 21368 PDESC_PLD_INIT(&pdi); 21369 i1 = MIN(mp->b_wptr - pld_ptr, len); 21370 ASSERT(i1 > 0); 21371 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 21372 if (i1 == len) { 21373 pld_ptr += len; 21374 } else { 21375 i1 = len - i1; 21376 mp = mp->b_cont; 21377 ASSERT(mp != NULL); 21378 ASSERT(MBLKL(mp) >= i1); 21379 /* 21380 * Attach the next payload message block to the 21381 * multidata message. 21382 */ 21383 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21384 goto pbuf_panic; 21385 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 21386 pld_ptr = mp->b_rptr + i1; 21387 } 21388 21389 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 21390 KM_NOSLEEP)) == NULL) { 21391 /* 21392 * Any failure other than ENOMEM indicates that we 21393 * have passed in invalid pdesc info or parameters 21394 * to mmd_addpdesc, which must not happen. 21395 * 21396 * EINVAL is a result of failure on boundary checks 21397 * against the pdesc info contents. It should not 21398 * happen, and we panic because either there's 21399 * horrible heap corruption, and/or programming 21400 * mistake. 21401 */ 21402 if (error != ENOMEM) { 21403 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 21404 "pdesc logic error detected for " 21405 "mmd %p pinfo %p (%d)\n", 21406 (void *)mmd, (void *)&pdi, error); 21407 /* NOTREACHED */ 21408 } 21409 IP_STAT(ip_frag_mdt_addpdescfail); 21410 /* Free unattached payload message blocks as well */ 21411 md_mp->b_cont = mp->b_cont; 21412 goto free_mmd; 21413 } 21414 21415 /* Advance fragment offset. */ 21416 offset += len; 21417 21418 /* Advance to location for next header in the buffer. */ 21419 hdr_ptr += hdr_chunk_len; 21420 21421 /* Did we reach the next payload message block? */ 21422 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 21423 mp = mp->b_cont; 21424 /* 21425 * Attach the next message block with payload 21426 * data to the multidata message. 21427 */ 21428 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21429 goto pbuf_panic; 21430 pld_ptr = mp->b_rptr; 21431 } 21432 } 21433 21434 ASSERT(hdr_mp->b_wptr == hdr_ptr); 21435 ASSERT(mp->b_wptr == pld_ptr); 21436 21437 /* Update IP statistics */ 21438 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 21439 BUMP_MIB(&ip_mib, ipFragOKs); 21440 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 21441 21442 if (pkt_type == OB_PKT) { 21443 ire->ire_ob_pkt_count += pkts; 21444 if (ire->ire_ipif != NULL) 21445 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 21446 } else { 21447 /* 21448 * The type is IB_PKT in the forwarding path and in 21449 * the mobile IP case when the packet is being reverse- 21450 * tunneled to the home agent. 21451 */ 21452 ire->ire_ib_pkt_count += pkts; 21453 ASSERT(!IRE_IS_LOCAL(ire)); 21454 if (ire->ire_type & IRE_BROADCAST) 21455 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 21456 else 21457 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 21458 } 21459 ire->ire_last_used_time = lbolt; 21460 /* Send it down */ 21461 putnext(ire->ire_stq, md_mp); 21462 return; 21463 21464 pbuf_panic: 21465 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 21466 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 21467 pbuf_idx); 21468 /* NOTREACHED */ 21469 } 21470 21471 /* 21472 * Outbound IP fragmentation routine. 21473 * 21474 * NOTE : This routine does not ire_refrele the ire that is passed in 21475 * as the argument. 21476 */ 21477 static void 21478 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 21479 uint32_t frag_flag) 21480 { 21481 int i1; 21482 mblk_t *ll_hdr_mp; 21483 int ll_hdr_len; 21484 int hdr_len; 21485 mblk_t *hdr_mp; 21486 ipha_t *ipha; 21487 int ip_data_end; 21488 int len; 21489 mblk_t *mp = mp_orig; 21490 int offset; 21491 queue_t *q; 21492 uint32_t v_hlen_tos_len; 21493 mblk_t *first_mp; 21494 boolean_t mctl_present; 21495 ill_t *ill; 21496 mblk_t *xmit_mp; 21497 mblk_t *carve_mp; 21498 ire_t *ire1 = NULL; 21499 ire_t *save_ire = NULL; 21500 mblk_t *next_mp = NULL; 21501 boolean_t last_frag = B_FALSE; 21502 boolean_t multirt_send = B_FALSE; 21503 ire_t *first_ire = NULL; 21504 irb_t *irb = NULL; 21505 21506 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21507 "ip_wput_frag_start:"); 21508 21509 if (mp->b_datap->db_type == M_CTL) { 21510 first_mp = mp; 21511 mp_orig = mp = mp->b_cont; 21512 mctl_present = B_TRUE; 21513 } else { 21514 first_mp = mp; 21515 mctl_present = B_FALSE; 21516 } 21517 21518 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 21519 ipha = (ipha_t *)mp->b_rptr; 21520 21521 /* 21522 * If the Don't Fragment flag is on, generate an ICMP destination 21523 * unreachable, fragmentation needed. 21524 */ 21525 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21526 if (offset & IPH_DF) { 21527 BUMP_MIB(&ip_mib, ipFragFails); 21528 /* 21529 * Need to compute hdr checksum if called from ip_wput_ire. 21530 * Note that ip_rput_forward verifies the checksum before 21531 * calling this routine so in that case this is a noop. 21532 */ 21533 ipha->ipha_hdr_checksum = 0; 21534 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21535 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21536 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21537 "ip_wput_frag_end:(%S)", 21538 "don't fragment"); 21539 return; 21540 } 21541 if (mctl_present) 21542 freeb(first_mp); 21543 /* 21544 * Establish the starting offset. May not be zero if we are fragging 21545 * a fragment that is being forwarded. 21546 */ 21547 offset = offset & IPH_OFFSET; 21548 21549 /* TODO why is this test needed? */ 21550 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21551 if (((max_frag - LENGTH) & ~7) < 8) { 21552 /* TODO: notify ulp somehow */ 21553 BUMP_MIB(&ip_mib, ipFragFails); 21554 freemsg(mp); 21555 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21556 "ip_wput_frag_end:(%S)", 21557 "len < 8"); 21558 return; 21559 } 21560 21561 hdr_len = (V_HLEN & 0xF) << 2; 21562 21563 ipha->ipha_hdr_checksum = 0; 21564 21565 /* 21566 * Establish the number of bytes maximum per frag, after putting 21567 * in the header. 21568 */ 21569 len = (max_frag - hdr_len) & ~7; 21570 21571 /* Check if we can use MDT to send out the frags. */ 21572 ASSERT(!IRE_IS_LOCAL(ire)); 21573 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 21574 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 21575 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 21576 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 21577 ASSERT(ill->ill_mdt_capab != NULL); 21578 if (!ill->ill_mdt_capab->ill_mdt_on) { 21579 /* 21580 * If MDT has been previously turned off in the past, 21581 * and we currently can do MDT (due to IPQoS policy 21582 * removal, etc.) then enable it for this interface. 21583 */ 21584 ill->ill_mdt_capab->ill_mdt_on = 1; 21585 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 21586 ill->ill_name)); 21587 } 21588 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 21589 offset); 21590 return; 21591 } 21592 21593 /* Get a copy of the header for the trailing frags */ 21594 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21595 if (!hdr_mp) { 21596 BUMP_MIB(&ip_mib, ipOutDiscards); 21597 freemsg(mp); 21598 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21599 "ip_wput_frag_end:(%S)", 21600 "couldn't copy hdr"); 21601 return; 21602 } 21603 21604 /* Store the starting offset, with the MoreFrags flag. */ 21605 i1 = offset | IPH_MF | frag_flag; 21606 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21607 21608 /* Establish the ending byte offset, based on the starting offset. */ 21609 offset <<= 3; 21610 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21611 21612 /* Store the length of the first fragment in the IP header. */ 21613 i1 = len + hdr_len; 21614 ASSERT(i1 <= IP_MAXPACKET); 21615 ipha->ipha_length = htons((uint16_t)i1); 21616 21617 /* 21618 * Compute the IP header checksum for the first frag. We have to 21619 * watch out that we stop at the end of the header. 21620 */ 21621 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21622 21623 /* 21624 * Now carve off the first frag. Note that this will include the 21625 * original IP header. 21626 */ 21627 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21628 BUMP_MIB(&ip_mib, ipOutDiscards); 21629 freeb(hdr_mp); 21630 freemsg(mp_orig); 21631 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21632 "ip_wput_frag_end:(%S)", 21633 "couldn't carve first"); 21634 return; 21635 } 21636 21637 /* 21638 * Multirouting case. Each fragment is replicated 21639 * via all non-condemned RTF_MULTIRT routes 21640 * currently resolved. 21641 * We ensure that first_ire is the first RTF_MULTIRT 21642 * ire in the bucket. 21643 */ 21644 if (ire->ire_flags & RTF_MULTIRT) { 21645 irb = ire->ire_bucket; 21646 ASSERT(irb != NULL); 21647 21648 multirt_send = B_TRUE; 21649 21650 /* Make sure we do not omit any multiroute ire. */ 21651 IRB_REFHOLD(irb); 21652 for (first_ire = irb->irb_ire; 21653 first_ire != NULL; 21654 first_ire = first_ire->ire_next) { 21655 if ((first_ire->ire_flags & RTF_MULTIRT) && 21656 (first_ire->ire_addr == ire->ire_addr) && 21657 !(first_ire->ire_marks & 21658 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21659 break; 21660 } 21661 21662 if (first_ire != NULL) { 21663 if (first_ire != ire) { 21664 IRE_REFHOLD(first_ire); 21665 /* 21666 * Do not release the ire passed in 21667 * as the argument. 21668 */ 21669 ire = first_ire; 21670 } else { 21671 first_ire = NULL; 21672 } 21673 } 21674 IRB_REFRELE(irb); 21675 21676 /* 21677 * Save the first ire; we will need to restore it 21678 * for the trailing frags. 21679 * We REFHOLD save_ire, as each iterated ire will be 21680 * REFRELEd. 21681 */ 21682 save_ire = ire; 21683 IRE_REFHOLD(save_ire); 21684 } 21685 21686 /* 21687 * First fragment emission loop. 21688 * In most cases, the emission loop below is entered only 21689 * once. Only in the case where the ire holds the RTF_MULTIRT 21690 * flag, do we loop to process all RTF_MULTIRT ires in the 21691 * bucket, and send the fragment through all crossed 21692 * RTF_MULTIRT routes. 21693 */ 21694 do { 21695 if (ire->ire_flags & RTF_MULTIRT) { 21696 /* 21697 * We are in a multiple send case, need to get 21698 * the next ire and make a copy of the packet. 21699 * ire1 holds here the next ire to process in the 21700 * bucket. If multirouting is expected, 21701 * any non-RTF_MULTIRT ire that has the 21702 * right destination address is ignored. 21703 * 21704 * We have to take into account the MTU of 21705 * each walked ire. max_frag is set by the 21706 * the caller and generally refers to 21707 * the primary ire entry. Here we ensure that 21708 * no route with a lower MTU will be used, as 21709 * fragments are carved once for all ires, 21710 * then replicated. 21711 */ 21712 ASSERT(irb != NULL); 21713 IRB_REFHOLD(irb); 21714 for (ire1 = ire->ire_next; 21715 ire1 != NULL; 21716 ire1 = ire1->ire_next) { 21717 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21718 continue; 21719 if (ire1->ire_addr != ire->ire_addr) 21720 continue; 21721 if (ire1->ire_marks & 21722 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21723 continue; 21724 /* 21725 * Ensure we do not exceed the MTU 21726 * of the next route. 21727 */ 21728 if (ire1->ire_max_frag < max_frag) { 21729 ip_multirt_bad_mtu(ire1, max_frag); 21730 continue; 21731 } 21732 21733 /* Got one. */ 21734 IRE_REFHOLD(ire1); 21735 break; 21736 } 21737 IRB_REFRELE(irb); 21738 21739 if (ire1 != NULL) { 21740 next_mp = copyb(mp); 21741 if ((next_mp == NULL) || 21742 ((mp->b_cont != NULL) && 21743 ((next_mp->b_cont = 21744 dupmsg(mp->b_cont)) == NULL))) { 21745 freemsg(next_mp); 21746 next_mp = NULL; 21747 ire_refrele(ire1); 21748 ire1 = NULL; 21749 } 21750 } 21751 21752 /* Last multiroute ire; don't loop anymore. */ 21753 if (ire1 == NULL) { 21754 multirt_send = B_FALSE; 21755 } 21756 } 21757 21758 ll_hdr_len = 0; 21759 LOCK_IRE_FP_MP(ire); 21760 ll_hdr_mp = ire->ire_fp_mp; 21761 if (ll_hdr_mp != NULL) { 21762 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21763 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21764 } else { 21765 ll_hdr_mp = ire->ire_dlureq_mp; 21766 } 21767 21768 /* If there is a transmit header, get a copy for this frag. */ 21769 /* 21770 * TODO: should check db_ref before calling ip_carve_mp since 21771 * it might give us a dup. 21772 */ 21773 if (!ll_hdr_mp) { 21774 /* No xmit header. */ 21775 xmit_mp = mp; 21776 } else if (mp->b_datap->db_ref == 1 && 21777 ll_hdr_len != 0 && 21778 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21779 /* M_DATA fastpath */ 21780 mp->b_rptr -= ll_hdr_len; 21781 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21782 xmit_mp = mp; 21783 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21784 UNLOCK_IRE_FP_MP(ire); 21785 BUMP_MIB(&ip_mib, ipOutDiscards); 21786 freeb(hdr_mp); 21787 freemsg(mp); 21788 freemsg(mp_orig); 21789 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21790 "ip_wput_frag_end:(%S)", 21791 "discard"); 21792 21793 if (multirt_send) { 21794 ASSERT(ire1); 21795 ASSERT(next_mp); 21796 21797 freemsg(next_mp); 21798 ire_refrele(ire1); 21799 } 21800 if (save_ire != NULL) 21801 IRE_REFRELE(save_ire); 21802 21803 if (first_ire != NULL) 21804 ire_refrele(first_ire); 21805 return; 21806 } else { 21807 xmit_mp->b_cont = mp; 21808 /* Get priority marking, if any. */ 21809 if (DB_TYPE(xmit_mp) == M_DATA) 21810 xmit_mp->b_band = mp->b_band; 21811 } 21812 UNLOCK_IRE_FP_MP(ire); 21813 q = ire->ire_stq; 21814 BUMP_MIB(&ip_mib, ipFragCreates); 21815 putnext(q, xmit_mp); 21816 if (pkt_type != OB_PKT) { 21817 /* 21818 * Update the packet count of trailing 21819 * RTF_MULTIRT ires. 21820 */ 21821 UPDATE_OB_PKT_COUNT(ire); 21822 } 21823 21824 if (multirt_send) { 21825 /* 21826 * We are in a multiple send case; look for 21827 * the next ire and re-enter the loop. 21828 */ 21829 ASSERT(ire1); 21830 ASSERT(next_mp); 21831 /* REFRELE the current ire before looping */ 21832 ire_refrele(ire); 21833 ire = ire1; 21834 ire1 = NULL; 21835 mp = next_mp; 21836 next_mp = NULL; 21837 } 21838 } while (multirt_send); 21839 21840 ASSERT(ire1 == NULL); 21841 21842 /* Restore the original ire; we need it for the trailing frags */ 21843 if (save_ire != NULL) { 21844 /* REFRELE the last iterated ire */ 21845 ire_refrele(ire); 21846 /* save_ire has been REFHOLDed */ 21847 ire = save_ire; 21848 save_ire = NULL; 21849 q = ire->ire_stq; 21850 } 21851 21852 if (pkt_type == OB_PKT) { 21853 UPDATE_OB_PKT_COUNT(ire); 21854 } else { 21855 UPDATE_IB_PKT_COUNT(ire); 21856 } 21857 21858 /* Advance the offset to the second frag starting point. */ 21859 offset += len; 21860 /* 21861 * Update hdr_len from the copied header - there might be less options 21862 * in the later fragments. 21863 */ 21864 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21865 /* Loop until done. */ 21866 for (;;) { 21867 uint16_t offset_and_flags; 21868 uint16_t ip_len; 21869 21870 if (ip_data_end - offset > len) { 21871 /* 21872 * Carve off the appropriate amount from the original 21873 * datagram. 21874 */ 21875 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21876 mp = NULL; 21877 break; 21878 } 21879 /* 21880 * More frags after this one. Get another copy 21881 * of the header. 21882 */ 21883 if (carve_mp->b_datap->db_ref == 1 && 21884 hdr_mp->b_wptr - hdr_mp->b_rptr < 21885 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21886 /* Inline IP header */ 21887 carve_mp->b_rptr -= hdr_mp->b_wptr - 21888 hdr_mp->b_rptr; 21889 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21890 hdr_mp->b_wptr - hdr_mp->b_rptr); 21891 mp = carve_mp; 21892 } else { 21893 if (!(mp = copyb(hdr_mp))) { 21894 freemsg(carve_mp); 21895 break; 21896 } 21897 /* Get priority marking, if any. */ 21898 mp->b_band = carve_mp->b_band; 21899 mp->b_cont = carve_mp; 21900 } 21901 ipha = (ipha_t *)mp->b_rptr; 21902 offset_and_flags = IPH_MF; 21903 } else { 21904 /* 21905 * Last frag. Consume the header. Set len to 21906 * the length of this last piece. 21907 */ 21908 len = ip_data_end - offset; 21909 21910 /* 21911 * Carve off the appropriate amount from the original 21912 * datagram. 21913 */ 21914 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21915 mp = NULL; 21916 break; 21917 } 21918 if (carve_mp->b_datap->db_ref == 1 && 21919 hdr_mp->b_wptr - hdr_mp->b_rptr < 21920 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21921 /* Inline IP header */ 21922 carve_mp->b_rptr -= hdr_mp->b_wptr - 21923 hdr_mp->b_rptr; 21924 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21925 hdr_mp->b_wptr - hdr_mp->b_rptr); 21926 mp = carve_mp; 21927 freeb(hdr_mp); 21928 hdr_mp = mp; 21929 } else { 21930 mp = hdr_mp; 21931 /* Get priority marking, if any. */ 21932 mp->b_band = carve_mp->b_band; 21933 mp->b_cont = carve_mp; 21934 } 21935 ipha = (ipha_t *)mp->b_rptr; 21936 /* A frag of a frag might have IPH_MF non-zero */ 21937 offset_and_flags = 21938 ntohs(ipha->ipha_fragment_offset_and_flags) & 21939 IPH_MF; 21940 } 21941 offset_and_flags |= (uint16_t)(offset >> 3); 21942 offset_and_flags |= (uint16_t)frag_flag; 21943 /* Store the offset and flags in the IP header. */ 21944 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21945 21946 /* Store the length in the IP header. */ 21947 ip_len = (uint16_t)(len + hdr_len); 21948 ipha->ipha_length = htons(ip_len); 21949 21950 /* 21951 * Set the IP header checksum. Note that mp is just 21952 * the header, so this is easy to pass to ip_csum. 21953 */ 21954 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21955 21956 /* Attach a transmit header, if any, and ship it. */ 21957 if (pkt_type == OB_PKT) { 21958 UPDATE_OB_PKT_COUNT(ire); 21959 } else { 21960 UPDATE_IB_PKT_COUNT(ire); 21961 } 21962 21963 if (ire->ire_flags & RTF_MULTIRT) { 21964 irb = ire->ire_bucket; 21965 ASSERT(irb != NULL); 21966 21967 multirt_send = B_TRUE; 21968 21969 /* 21970 * Save the original ire; we will need to restore it 21971 * for the tailing frags. 21972 */ 21973 save_ire = ire; 21974 IRE_REFHOLD(save_ire); 21975 } 21976 /* 21977 * Emission loop for this fragment, similar 21978 * to what is done for the first fragment. 21979 */ 21980 do { 21981 if (multirt_send) { 21982 /* 21983 * We are in a multiple send case, need to get 21984 * the next ire and make a copy of the packet. 21985 */ 21986 ASSERT(irb != NULL); 21987 IRB_REFHOLD(irb); 21988 for (ire1 = ire->ire_next; 21989 ire1 != NULL; 21990 ire1 = ire1->ire_next) { 21991 if (!(ire1->ire_flags & RTF_MULTIRT)) 21992 continue; 21993 if (ire1->ire_addr != ire->ire_addr) 21994 continue; 21995 if (ire1->ire_marks & 21996 (IRE_MARK_CONDEMNED| 21997 IRE_MARK_HIDDEN)) 21998 continue; 21999 /* 22000 * Ensure we do not exceed the MTU 22001 * of the next route. 22002 */ 22003 if (ire1->ire_max_frag < max_frag) { 22004 ip_multirt_bad_mtu(ire1, 22005 max_frag); 22006 continue; 22007 } 22008 22009 /* Got one. */ 22010 IRE_REFHOLD(ire1); 22011 break; 22012 } 22013 IRB_REFRELE(irb); 22014 22015 if (ire1 != NULL) { 22016 next_mp = copyb(mp); 22017 if ((next_mp == NULL) || 22018 ((mp->b_cont != NULL) && 22019 ((next_mp->b_cont = 22020 dupmsg(mp->b_cont)) == NULL))) { 22021 freemsg(next_mp); 22022 next_mp = NULL; 22023 ire_refrele(ire1); 22024 ire1 = NULL; 22025 } 22026 } 22027 22028 /* Last multiroute ire; don't loop anymore. */ 22029 if (ire1 == NULL) { 22030 multirt_send = B_FALSE; 22031 } 22032 } 22033 22034 /* Update transmit header */ 22035 ll_hdr_len = 0; 22036 LOCK_IRE_FP_MP(ire); 22037 ll_hdr_mp = ire->ire_fp_mp; 22038 if (ll_hdr_mp != NULL) { 22039 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22040 ll_hdr_len = MBLKL(ll_hdr_mp); 22041 } else { 22042 ll_hdr_mp = ire->ire_dlureq_mp; 22043 } 22044 22045 if (!ll_hdr_mp) { 22046 xmit_mp = mp; 22047 } else if (mp->b_datap->db_ref == 1 && 22048 ll_hdr_len != 0 && 22049 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22050 /* M_DATA fastpath */ 22051 mp->b_rptr -= ll_hdr_len; 22052 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 22053 ll_hdr_len); 22054 xmit_mp = mp; 22055 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 22056 xmit_mp->b_cont = mp; 22057 /* Get priority marking, if any. */ 22058 if (DB_TYPE(xmit_mp) == M_DATA) 22059 xmit_mp->b_band = mp->b_band; 22060 } else { 22061 /* 22062 * Exit both the replication and 22063 * fragmentation loops. 22064 */ 22065 UNLOCK_IRE_FP_MP(ire); 22066 goto drop_pkt; 22067 } 22068 UNLOCK_IRE_FP_MP(ire); 22069 BUMP_MIB(&ip_mib, ipFragCreates); 22070 putnext(q, xmit_mp); 22071 22072 if (pkt_type != OB_PKT) { 22073 /* 22074 * Update the packet count of trailing 22075 * RTF_MULTIRT ires. 22076 */ 22077 UPDATE_OB_PKT_COUNT(ire); 22078 } 22079 22080 /* All done if we just consumed the hdr_mp. */ 22081 if (mp == hdr_mp) { 22082 last_frag = B_TRUE; 22083 } 22084 22085 if (multirt_send) { 22086 /* 22087 * We are in a multiple send case; look for 22088 * the next ire and re-enter the loop. 22089 */ 22090 ASSERT(ire1); 22091 ASSERT(next_mp); 22092 /* REFRELE the current ire before looping */ 22093 ire_refrele(ire); 22094 ire = ire1; 22095 ire1 = NULL; 22096 q = ire->ire_stq; 22097 mp = next_mp; 22098 next_mp = NULL; 22099 } 22100 } while (multirt_send); 22101 /* 22102 * Restore the original ire; we need it for the 22103 * trailing frags 22104 */ 22105 if (save_ire != NULL) { 22106 ASSERT(ire1 == NULL); 22107 /* REFRELE the last iterated ire */ 22108 ire_refrele(ire); 22109 /* save_ire has been REFHOLDed */ 22110 ire = save_ire; 22111 q = ire->ire_stq; 22112 save_ire = NULL; 22113 } 22114 22115 if (last_frag) { 22116 BUMP_MIB(&ip_mib, ipFragOKs); 22117 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22118 "ip_wput_frag_end:(%S)", 22119 "consumed hdr_mp"); 22120 22121 if (first_ire != NULL) 22122 ire_refrele(first_ire); 22123 return; 22124 } 22125 /* Otherwise, advance and loop. */ 22126 offset += len; 22127 } 22128 22129 drop_pkt: 22130 /* Clean up following allocation failure. */ 22131 BUMP_MIB(&ip_mib, ipOutDiscards); 22132 freemsg(mp); 22133 if (mp != hdr_mp) 22134 freeb(hdr_mp); 22135 if (mp != mp_orig) 22136 freemsg(mp_orig); 22137 22138 if (save_ire != NULL) 22139 IRE_REFRELE(save_ire); 22140 if (first_ire != NULL) 22141 ire_refrele(first_ire); 22142 22143 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22144 "ip_wput_frag_end:(%S)", 22145 "end--alloc failure"); 22146 } 22147 22148 /* 22149 * Copy the header plus those options which have the copy bit set 22150 */ 22151 static mblk_t * 22152 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22153 { 22154 mblk_t *mp; 22155 uchar_t *up; 22156 22157 /* 22158 * Quick check if we need to look for options without the copy bit 22159 * set 22160 */ 22161 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 22162 if (!mp) 22163 return (mp); 22164 mp->b_rptr += ip_wroff_extra; 22165 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 22166 bcopy(rptr, mp->b_rptr, hdr_len); 22167 mp->b_wptr += hdr_len + ip_wroff_extra; 22168 return (mp); 22169 } 22170 up = mp->b_rptr; 22171 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 22172 up += IP_SIMPLE_HDR_LENGTH; 22173 rptr += IP_SIMPLE_HDR_LENGTH; 22174 hdr_len -= IP_SIMPLE_HDR_LENGTH; 22175 while (hdr_len > 0) { 22176 uint32_t optval; 22177 uint32_t optlen; 22178 22179 optval = *rptr; 22180 if (optval == IPOPT_EOL) 22181 break; 22182 if (optval == IPOPT_NOP) 22183 optlen = 1; 22184 else 22185 optlen = rptr[1]; 22186 if (optval & IPOPT_COPY) { 22187 bcopy(rptr, up, optlen); 22188 up += optlen; 22189 } 22190 rptr += optlen; 22191 hdr_len -= optlen; 22192 } 22193 /* 22194 * Make sure that we drop an even number of words by filling 22195 * with EOL to the next word boundary. 22196 */ 22197 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 22198 hdr_len & 0x3; hdr_len++) 22199 *up++ = IPOPT_EOL; 22200 mp->b_wptr = up; 22201 /* Update header length */ 22202 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 22203 return (mp); 22204 } 22205 22206 /* 22207 * Delivery to local recipients including fanout to multiple recipients. 22208 * Does not do checksumming of UDP/TCP. 22209 * Note: q should be the read side queue for either the ill or conn. 22210 * Note: rq should be the read side q for the lower (ill) stream. 22211 * We don't send packets to IPPF processing, thus the last argument 22212 * to all the fanout calls are B_FALSE. 22213 */ 22214 void 22215 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 22216 int fanout_flags, zoneid_t zoneid) 22217 { 22218 uint32_t protocol; 22219 mblk_t *first_mp; 22220 boolean_t mctl_present; 22221 int ire_type; 22222 #define rptr ((uchar_t *)ipha) 22223 22224 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 22225 "ip_wput_local_start: q %p", q); 22226 22227 if (ire != NULL) { 22228 ire_type = ire->ire_type; 22229 } else { 22230 /* 22231 * Only ip_multicast_loopback() calls us with a NULL ire. If the 22232 * packet is not multicast, we can't tell the ire type. 22233 */ 22234 ASSERT(CLASSD(ipha->ipha_dst)); 22235 ire_type = IRE_BROADCAST; 22236 } 22237 22238 first_mp = mp; 22239 if (first_mp->b_datap->db_type == M_CTL) { 22240 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 22241 if (!io->ipsec_out_secure) { 22242 /* 22243 * This ipsec_out_t was allocated in ip_wput 22244 * for multicast packets to store the ill_index. 22245 * As this is being delivered locally, we don't 22246 * need this anymore. 22247 */ 22248 mp = first_mp->b_cont; 22249 freeb(first_mp); 22250 first_mp = mp; 22251 mctl_present = B_FALSE; 22252 } else { 22253 mctl_present = B_TRUE; 22254 mp = first_mp->b_cont; 22255 ASSERT(mp != NULL); 22256 ipsec_out_to_in(first_mp); 22257 } 22258 } else { 22259 mctl_present = B_FALSE; 22260 } 22261 22262 loopback_packets++; 22263 22264 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 22265 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 22266 if (!IS_SIMPLE_IPH(ipha)) { 22267 ip_wput_local_options(ipha); 22268 } 22269 22270 protocol = ipha->ipha_protocol; 22271 switch (protocol) { 22272 case IPPROTO_ICMP: { 22273 ire_t *ire_zone; 22274 ilm_t *ilm; 22275 mblk_t *mp1; 22276 zoneid_t last_zoneid; 22277 22278 if (CLASSD(ipha->ipha_dst) && 22279 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 22280 ASSERT(ire_type == IRE_BROADCAST); 22281 /* 22282 * In the multicast case, applications may have joined 22283 * the group from different zones, so we need to deliver 22284 * the packet to each of them. Loop through the 22285 * multicast memberships structures (ilm) on the receive 22286 * ill and send a copy of the packet up each matching 22287 * one. However, we don't do this for multicasts sent on 22288 * the loopback interface (PHYI_LOOPBACK flag set) as 22289 * they must stay in the sender's zone. 22290 * 22291 * ilm_add_v6() ensures that ilms in the same zone are 22292 * contiguous in the ill_ilm list. We use this property 22293 * to avoid sending duplicates needed when two 22294 * applications in the same zone join the same group on 22295 * different logical interfaces: we ignore the ilm if 22296 * its zoneid is the same as the last matching one. 22297 * In addition, the sending of the packet for 22298 * ire_zoneid is delayed until all of the other ilms 22299 * have been exhausted. 22300 */ 22301 last_zoneid = -1; 22302 ILM_WALKER_HOLD(ill); 22303 for (ilm = ill->ill_ilm; ilm != NULL; 22304 ilm = ilm->ilm_next) { 22305 if ((ilm->ilm_flags & ILM_DELETED) || 22306 ipha->ipha_dst != ilm->ilm_addr || 22307 ilm->ilm_zoneid == last_zoneid || 22308 ilm->ilm_zoneid == zoneid || 22309 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 22310 continue; 22311 mp1 = ip_copymsg(first_mp); 22312 if (mp1 == NULL) 22313 continue; 22314 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22315 mctl_present, B_FALSE, ill, 22316 ilm->ilm_zoneid); 22317 last_zoneid = ilm->ilm_zoneid; 22318 } 22319 ILM_WALKER_RELE(ill); 22320 /* 22321 * Loopback case: the sending endpoint has 22322 * IP_MULTICAST_LOOP disabled, therefore we don't 22323 * dispatch the multicast packet to the sending zone. 22324 */ 22325 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 22326 freemsg(first_mp); 22327 return; 22328 } 22329 } else if (ire_type == IRE_BROADCAST) { 22330 /* 22331 * In the broadcast case, there may be many zones 22332 * which need a copy of the packet delivered to them. 22333 * There is one IRE_BROADCAST per broadcast address 22334 * and per zone; we walk those using a helper function. 22335 * In addition, the sending of the packet for zoneid is 22336 * delayed until all of the other ires have been 22337 * processed. 22338 */ 22339 IRB_REFHOLD(ire->ire_bucket); 22340 ire_zone = NULL; 22341 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 22342 ire)) != NULL) { 22343 mp1 = ip_copymsg(first_mp); 22344 if (mp1 == NULL) 22345 continue; 22346 22347 UPDATE_IB_PKT_COUNT(ire_zone); 22348 ire_zone->ire_last_used_time = lbolt; 22349 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22350 mctl_present, B_FALSE, ill, 22351 ire_zone->ire_zoneid); 22352 } 22353 IRB_REFRELE(ire->ire_bucket); 22354 } 22355 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 22356 0, mctl_present, B_FALSE, ill, zoneid); 22357 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22358 "ip_wput_local_end: q %p (%S)", 22359 q, "icmp"); 22360 return; 22361 } 22362 case IPPROTO_IGMP: 22363 if (igmp_input(q, mp, ill)) { 22364 /* Bad packet - discarded by igmp_input */ 22365 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22366 "ip_wput_local_end: q %p (%S)", 22367 q, "igmp_input--bad packet"); 22368 if (mctl_present) 22369 freeb(first_mp); 22370 return; 22371 } 22372 /* 22373 * igmp_input() may have pulled up the message so ipha needs to 22374 * be reinitialized. 22375 */ 22376 ipha = (ipha_t *)mp->b_rptr; 22377 /* deliver to local raw users */ 22378 break; 22379 case IPPROTO_ENCAP: 22380 /* 22381 * This case is covered by either ip_fanout_proto, or by 22382 * the above security processing for self-tunneled packets. 22383 */ 22384 break; 22385 case IPPROTO_UDP: { 22386 uint16_t *up; 22387 uint32_t ports; 22388 22389 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 22390 UDP_PORTS_OFFSET); 22391 /* Force a 'valid' checksum. */ 22392 up[3] = 0; 22393 22394 ports = *(uint32_t *)up; 22395 ip_fanout_udp(q, first_mp, ill, ipha, ports, 22396 (ire_type == IRE_BROADCAST), 22397 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22398 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 22399 ill, zoneid); 22400 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22401 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 22402 return; 22403 } 22404 case IPPROTO_TCP: { 22405 22406 /* 22407 * For TCP, discard broadcast packets. 22408 */ 22409 if ((ushort_t)ire_type == IRE_BROADCAST) { 22410 freemsg(first_mp); 22411 BUMP_MIB(&ip_mib, ipInDiscards); 22412 return; 22413 } 22414 22415 if (mp->b_datap->db_type == M_DATA) { 22416 /* 22417 * M_DATA mblk, so init mblk (chain) for no struio(). 22418 */ 22419 mblk_t *mp1 = mp; 22420 22421 do 22422 mp1->b_datap->db_struioflag = 0; 22423 while ((mp1 = mp1->b_cont) != NULL); 22424 } 22425 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 22426 <= mp->b_wptr); 22427 ip_fanout_tcp(q, first_mp, ill, ipha, 22428 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22429 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 22430 mctl_present, B_FALSE, zoneid); 22431 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22432 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 22433 return; 22434 } 22435 case IPPROTO_SCTP: 22436 { 22437 uint32_t ports; 22438 22439 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 22440 ip_fanout_sctp(first_mp, ill, ipha, ports, 22441 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22442 IP_FF_IP6INFO, 22443 mctl_present, B_FALSE, 0, zoneid); 22444 return; 22445 } 22446 22447 default: 22448 break; 22449 } 22450 /* 22451 * Find a client for some other protocol. We give 22452 * copies to multiple clients, if more than one is 22453 * bound. 22454 */ 22455 ip_fanout_proto(q, first_mp, ill, ipha, 22456 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 22457 mctl_present, B_FALSE, ill, zoneid); 22458 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22459 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 22460 #undef rptr 22461 } 22462 22463 /* 22464 * Update any source route, record route, or timestamp options. 22465 * Check that we are at end of strict source route. 22466 * The options have been sanity checked by ip_wput_options(). 22467 */ 22468 static void 22469 ip_wput_local_options(ipha_t *ipha) 22470 { 22471 ipoptp_t opts; 22472 uchar_t *opt; 22473 uint8_t optval; 22474 uint8_t optlen; 22475 ipaddr_t dst; 22476 uint32_t ts; 22477 ire_t *ire; 22478 timestruc_t now; 22479 22480 ip2dbg(("ip_wput_local_options\n")); 22481 for (optval = ipoptp_first(&opts, ipha); 22482 optval != IPOPT_EOL; 22483 optval = ipoptp_next(&opts)) { 22484 opt = opts.ipoptp_cur; 22485 optlen = opts.ipoptp_len; 22486 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22487 switch (optval) { 22488 uint32_t off; 22489 case IPOPT_SSRR: 22490 case IPOPT_LSRR: 22491 off = opt[IPOPT_OFFSET]; 22492 off--; 22493 if (optlen < IP_ADDR_LEN || 22494 off > optlen - IP_ADDR_LEN) { 22495 /* End of source route */ 22496 break; 22497 } 22498 /* 22499 * This will only happen if two consecutive entries 22500 * in the source route contains our address or if 22501 * it is a packet with a loose source route which 22502 * reaches us before consuming the whole source route 22503 */ 22504 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22505 if (optval == IPOPT_SSRR) { 22506 return; 22507 } 22508 /* 22509 * Hack: instead of dropping the packet truncate the 22510 * source route to what has been used by filling the 22511 * rest with IPOPT_NOP. 22512 */ 22513 opt[IPOPT_OLEN] = (uint8_t)off; 22514 while (off < optlen) { 22515 opt[off++] = IPOPT_NOP; 22516 } 22517 break; 22518 case IPOPT_RR: 22519 off = opt[IPOPT_OFFSET]; 22520 off--; 22521 if (optlen < IP_ADDR_LEN || 22522 off > optlen - IP_ADDR_LEN) { 22523 /* No more room - ignore */ 22524 ip1dbg(( 22525 "ip_wput_forward_options: end of RR\n")); 22526 break; 22527 } 22528 dst = htonl(INADDR_LOOPBACK); 22529 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22530 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22531 break; 22532 case IPOPT_TS: 22533 /* Insert timestamp if there is romm */ 22534 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22535 case IPOPT_TS_TSONLY: 22536 off = IPOPT_TS_TIMELEN; 22537 break; 22538 case IPOPT_TS_PRESPEC: 22539 case IPOPT_TS_PRESPEC_RFC791: 22540 /* Verify that the address matched */ 22541 off = opt[IPOPT_OFFSET] - 1; 22542 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22543 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22544 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22545 if (ire == NULL) { 22546 /* Not for us */ 22547 break; 22548 } 22549 ire_refrele(ire); 22550 /* FALLTHRU */ 22551 case IPOPT_TS_TSANDADDR: 22552 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22553 break; 22554 default: 22555 /* 22556 * ip_*put_options should have already 22557 * dropped this packet. 22558 */ 22559 cmn_err(CE_PANIC, "ip_wput_local_options: " 22560 "unknown IT - bug in ip_wput_options?\n"); 22561 return; /* Keep "lint" happy */ 22562 } 22563 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22564 /* Increase overflow counter */ 22565 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22566 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22567 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22568 (off << 4); 22569 break; 22570 } 22571 off = opt[IPOPT_OFFSET] - 1; 22572 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22573 case IPOPT_TS_PRESPEC: 22574 case IPOPT_TS_PRESPEC_RFC791: 22575 case IPOPT_TS_TSANDADDR: 22576 dst = htonl(INADDR_LOOPBACK); 22577 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22578 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22579 /* FALLTHRU */ 22580 case IPOPT_TS_TSONLY: 22581 off = opt[IPOPT_OFFSET] - 1; 22582 /* Compute # of milliseconds since midnight */ 22583 gethrestime(&now); 22584 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22585 now.tv_nsec / (NANOSEC / MILLISEC); 22586 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22587 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22588 break; 22589 } 22590 break; 22591 } 22592 } 22593 } 22594 22595 /* 22596 * Send out a multicast packet on interface ipif. 22597 * The sender does not have an conn. 22598 * Caller verifies that this isn't a PHYI_LOOPBACK. 22599 */ 22600 void 22601 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22602 { 22603 ipha_t *ipha; 22604 ire_t *ire; 22605 ipaddr_t dst; 22606 mblk_t *first_mp; 22607 22608 /* igmp_sendpkt always allocates a ipsec_out_t */ 22609 ASSERT(mp->b_datap->db_type == M_CTL); 22610 ASSERT(!ipif->ipif_isv6); 22611 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22612 22613 first_mp = mp; 22614 mp = first_mp->b_cont; 22615 ASSERT(mp->b_datap->db_type == M_DATA); 22616 ipha = (ipha_t *)mp->b_rptr; 22617 22618 /* 22619 * Find an IRE which matches the destination and the outgoing 22620 * queue (i.e. the outgoing interface.) 22621 */ 22622 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22623 dst = ipif->ipif_pp_dst_addr; 22624 else 22625 dst = ipha->ipha_dst; 22626 /* 22627 * The source address has already been initialized by the 22628 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22629 * be sufficient rather than MATCH_IRE_IPIF. 22630 * 22631 * This function is used for sending IGMP packets. We need 22632 * to make sure that we send the packet out of the interface 22633 * (ipif->ipif_ill) where we joined the group. This is to 22634 * prevent from switches doing IGMP snooping to send us multicast 22635 * packets for a given group on the interface we have joined. 22636 * If we can't find an ire, igmp_sendpkt has already initialized 22637 * ipsec_out_attach_if so that this will not be load spread in 22638 * ip_newroute_ipif. 22639 */ 22640 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22641 if (!ire) { 22642 /* 22643 * Mark this packet to make it be delivered to 22644 * ip_wput_ire after the new ire has been 22645 * created. 22646 */ 22647 mp->b_prev = NULL; 22648 mp->b_next = NULL; 22649 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22650 return; 22651 } 22652 22653 /* 22654 * Honor the RTF_SETSRC flag; this is the only case 22655 * where we force this addr whatever the current src addr is, 22656 * because this address is set by igmp_sendpkt(), and 22657 * cannot be specified by any user. 22658 */ 22659 if (ire->ire_flags & RTF_SETSRC) { 22660 ipha->ipha_src = ire->ire_src_addr; 22661 } 22662 22663 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22664 } 22665 22666 /* 22667 * NOTE : This function does not ire_refrele the ire argument passed in. 22668 * 22669 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22670 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22671 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22672 * the ire_lock to access the ire_fp_mp in this case. 22673 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22674 * prepending a fastpath message IPQoS processing must precede it, we also set 22675 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22676 * (IPQoS might have set the b_band for CoS marking). 22677 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22678 * must follow it so that IPQoS can mark the dl_priority field for CoS 22679 * marking, if needed. 22680 */ 22681 static mblk_t * 22682 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22683 { 22684 uint_t hlen; 22685 ipha_t *ipha; 22686 mblk_t *mp1; 22687 boolean_t qos_done = B_FALSE; 22688 uchar_t *ll_hdr; 22689 22690 #define rptr ((uchar_t *)ipha) 22691 22692 ipha = (ipha_t *)mp->b_rptr; 22693 hlen = 0; 22694 LOCK_IRE_FP_MP(ire); 22695 if ((mp1 = ire->ire_fp_mp) != NULL) { 22696 ASSERT(DB_TYPE(mp1) == M_DATA); 22697 /* Initiate IPPF processing */ 22698 if ((proc != 0) && IPP_ENABLED(proc)) { 22699 UNLOCK_IRE_FP_MP(ire); 22700 ip_process(proc, &mp, ill_index); 22701 if (mp == NULL) 22702 return (NULL); 22703 22704 ipha = (ipha_t *)mp->b_rptr; 22705 LOCK_IRE_FP_MP(ire); 22706 if ((mp1 = ire->ire_fp_mp) == NULL) { 22707 qos_done = B_TRUE; 22708 goto no_fp_mp; 22709 } 22710 ASSERT(DB_TYPE(mp1) == M_DATA); 22711 } 22712 hlen = MBLKL(mp1); 22713 /* 22714 * Check if we have enough room to prepend fastpath 22715 * header 22716 */ 22717 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22718 ll_hdr = rptr - hlen; 22719 bcopy(mp1->b_rptr, ll_hdr, hlen); 22720 /* XXX ipha is not aligned here */ 22721 ipha = (ipha_t *)(rptr - hlen); 22722 /* 22723 * Set the b_rptr to the start of the link layer 22724 * header 22725 */ 22726 mp->b_rptr = rptr; 22727 mp1 = mp; 22728 } else { 22729 mp1 = copyb(mp1); 22730 if (mp1 == NULL) 22731 goto unlock_err; 22732 mp1->b_band = mp->b_band; 22733 mp1->b_cont = mp; 22734 /* 22735 * XXX disable ICK_VALID and compute checksum 22736 * here; can happen if ire_fp_mp changes and 22737 * it can't be copied now due to insufficient 22738 * space. (unlikely, fp mp can change, but it 22739 * does not increase in length) 22740 */ 22741 } 22742 UNLOCK_IRE_FP_MP(ire); 22743 } else { 22744 no_fp_mp: 22745 mp1 = copyb(ire->ire_dlureq_mp); 22746 if (mp1 == NULL) { 22747 unlock_err: 22748 UNLOCK_IRE_FP_MP(ire); 22749 freemsg(mp); 22750 return (NULL); 22751 } 22752 UNLOCK_IRE_FP_MP(ire); 22753 mp1->b_cont = mp; 22754 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22755 ip_process(proc, &mp1, ill_index); 22756 if (mp1 == NULL) 22757 return (NULL); 22758 } 22759 } 22760 return (mp1); 22761 #undef rptr 22762 } 22763 22764 /* 22765 * Finish the outbound IPsec processing for an IPv6 packet. This function 22766 * is called from ipsec_out_process() if the IPsec packet was processed 22767 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22768 * asynchronously. 22769 */ 22770 void 22771 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22772 ire_t *ire_arg) 22773 { 22774 in6_addr_t *v6dstp; 22775 ire_t *ire; 22776 mblk_t *mp; 22777 uint_t ill_index; 22778 ipsec_out_t *io; 22779 boolean_t attach_if, hwaccel; 22780 uint32_t flags = IP6_NO_IPPOLICY; 22781 int match_flags; 22782 zoneid_t zoneid; 22783 boolean_t ill_need_rele = B_FALSE; 22784 boolean_t ire_need_rele = B_FALSE; 22785 22786 mp = ipsec_mp->b_cont; 22787 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22788 ill_index = io->ipsec_out_ill_index; 22789 if (io->ipsec_out_reachable) { 22790 flags |= IPV6_REACHABILITY_CONFIRMATION; 22791 } 22792 attach_if = io->ipsec_out_attach_if; 22793 hwaccel = io->ipsec_out_accelerated; 22794 zoneid = io->ipsec_out_zoneid; 22795 ASSERT(zoneid != ALL_ZONES); 22796 match_flags = MATCH_IRE_ILL_GROUP; 22797 /* Multicast addresses should have non-zero ill_index. */ 22798 v6dstp = &ip6h->ip6_dst; 22799 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22800 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22801 ASSERT(!attach_if || ill_index != 0); 22802 if (ill_index != 0) { 22803 if (ill == NULL) { 22804 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22805 B_TRUE); 22806 22807 /* Failure case frees things for us. */ 22808 if (ill == NULL) 22809 return; 22810 22811 ill_need_rele = B_TRUE; 22812 } 22813 /* 22814 * If this packet needs to go out on a particular interface 22815 * honor it. 22816 */ 22817 if (attach_if) { 22818 match_flags = MATCH_IRE_ILL; 22819 22820 /* 22821 * Check if we need an ire that will not be 22822 * looked up by anybody else i.e. HIDDEN. 22823 */ 22824 if (ill_is_probeonly(ill)) { 22825 match_flags |= MATCH_IRE_MARK_HIDDEN; 22826 } 22827 } 22828 } 22829 ASSERT(mp != NULL); 22830 22831 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22832 boolean_t unspec_src; 22833 ipif_t *ipif; 22834 22835 /* 22836 * Use the ill_index to get the right ill. 22837 */ 22838 unspec_src = io->ipsec_out_unspec_src; 22839 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22840 if (ipif == NULL) { 22841 if (ill_need_rele) 22842 ill_refrele(ill); 22843 freemsg(ipsec_mp); 22844 return; 22845 } 22846 22847 if (ire_arg != NULL) { 22848 ire = ire_arg; 22849 } else { 22850 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22851 zoneid, match_flags); 22852 ire_need_rele = B_TRUE; 22853 } 22854 if (ire != NULL) { 22855 ipif_refrele(ipif); 22856 /* 22857 * XXX Do the multicast forwarding now, as the IPSEC 22858 * processing has been done. 22859 */ 22860 goto send; 22861 } 22862 22863 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22864 mp->b_prev = NULL; 22865 mp->b_next = NULL; 22866 22867 /* 22868 * If the IPsec packet was processed asynchronously, 22869 * drop it now. 22870 */ 22871 if (q == NULL) { 22872 if (ill_need_rele) 22873 ill_refrele(ill); 22874 freemsg(ipsec_mp); 22875 return; 22876 } 22877 22878 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22879 unspec_src, zoneid); 22880 ipif_refrele(ipif); 22881 } else { 22882 if (attach_if) { 22883 ipif_t *ipif; 22884 22885 ipif = ipif_get_next_ipif(NULL, ill); 22886 if (ipif == NULL) { 22887 if (ill_need_rele) 22888 ill_refrele(ill); 22889 freemsg(ipsec_mp); 22890 return; 22891 } 22892 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22893 zoneid, match_flags); 22894 ire_need_rele = B_TRUE; 22895 ipif_refrele(ipif); 22896 } else { 22897 if (ire_arg != NULL) { 22898 ire = ire_arg; 22899 } else { 22900 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22901 ire_need_rele = B_TRUE; 22902 } 22903 } 22904 if (ire != NULL) 22905 goto send; 22906 /* 22907 * ire disappeared underneath. 22908 * 22909 * What we need to do here is the ip_newroute 22910 * logic to get the ire without doing the IPSEC 22911 * processing. Follow the same old path. But this 22912 * time, ip_wput or ire_add_then_send will call us 22913 * directly as all the IPSEC operations are done. 22914 */ 22915 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22916 mp->b_prev = NULL; 22917 mp->b_next = NULL; 22918 22919 /* 22920 * If the IPsec packet was processed asynchronously, 22921 * drop it now. 22922 */ 22923 if (q == NULL) { 22924 if (ill_need_rele) 22925 ill_refrele(ill); 22926 freemsg(ipsec_mp); 22927 return; 22928 } 22929 22930 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22931 zoneid); 22932 } 22933 if (ill != NULL && ill_need_rele) 22934 ill_refrele(ill); 22935 return; 22936 send: 22937 if (ill != NULL && ill_need_rele) 22938 ill_refrele(ill); 22939 22940 /* Local delivery */ 22941 if (ire->ire_stq == NULL) { 22942 ASSERT(q != NULL); 22943 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22944 ire, 0); 22945 if (ire_need_rele) 22946 ire_refrele(ire); 22947 return; 22948 } 22949 /* 22950 * Everything is done. Send it out on the wire. 22951 * We force the insertion of a fragment header using the 22952 * IPH_FRAG_HDR flag in two cases: 22953 * - after reception of an ICMPv6 "packet too big" message 22954 * with a MTU < 1280 (cf. RFC 2460 section 5) 22955 * - for multirouted IPv6 packets, so that the receiver can 22956 * discard duplicates according to their fragment identifier 22957 */ 22958 /* XXX fix flow control problems. */ 22959 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22960 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22961 if (hwaccel) { 22962 /* 22963 * hardware acceleration does not handle these 22964 * "slow path" cases. 22965 */ 22966 /* IPsec KSTATS: should bump bean counter here. */ 22967 if (ire_need_rele) 22968 ire_refrele(ire); 22969 freemsg(ipsec_mp); 22970 return; 22971 } 22972 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22973 (mp->b_cont ? msgdsize(mp) : 22974 mp->b_wptr - (uchar_t *)ip6h)) { 22975 /* IPsec KSTATS: should bump bean counter here. */ 22976 ip0dbg(("Packet length mismatch: %d, %ld\n", 22977 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22978 msgdsize(mp))); 22979 if (ire_need_rele) 22980 ire_refrele(ire); 22981 freemsg(ipsec_mp); 22982 return; 22983 } 22984 ASSERT(mp->b_prev == NULL); 22985 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22986 ntohs(ip6h->ip6_plen) + 22987 IPV6_HDR_LEN, ire->ire_max_frag)); 22988 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22989 ire->ire_max_frag); 22990 } else { 22991 UPDATE_OB_PKT_COUNT(ire); 22992 ire->ire_last_used_time = lbolt; 22993 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22994 } 22995 if (ire_need_rele) 22996 ire_refrele(ire); 22997 freeb(ipsec_mp); 22998 } 22999 23000 void 23001 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 23002 { 23003 mblk_t *hada_mp; /* attributes M_CTL mblk */ 23004 da_ipsec_t *hada; /* data attributes */ 23005 ill_t *ill = (ill_t *)q->q_ptr; 23006 23007 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 23008 23009 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 23010 /* IPsec KSTATS: Bump lose counter here! */ 23011 freemsg(mp); 23012 return; 23013 } 23014 23015 /* 23016 * It's an IPsec packet that must be 23017 * accelerated by the Provider, and the 23018 * outbound ill is IPsec acceleration capable. 23019 * Prepends the mblk with an IPHADA_M_CTL, and ship it 23020 * to the ill. 23021 * IPsec KSTATS: should bump packet counter here. 23022 */ 23023 23024 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 23025 if (hada_mp == NULL) { 23026 /* IPsec KSTATS: should bump packet counter here. */ 23027 freemsg(mp); 23028 return; 23029 } 23030 23031 hada_mp->b_datap->db_type = M_CTL; 23032 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 23033 hada_mp->b_cont = mp; 23034 23035 hada = (da_ipsec_t *)hada_mp->b_rptr; 23036 bzero(hada, sizeof (da_ipsec_t)); 23037 hada->da_type = IPHADA_M_CTL; 23038 23039 putnext(q, hada_mp); 23040 } 23041 23042 /* 23043 * Finish the outbound IPsec processing. This function is called from 23044 * ipsec_out_process() if the IPsec packet was processed 23045 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23046 * asynchronously. 23047 */ 23048 void 23049 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 23050 ire_t *ire_arg) 23051 { 23052 uint32_t v_hlen_tos_len; 23053 ipaddr_t dst; 23054 ipif_t *ipif = NULL; 23055 ire_t *ire; 23056 ire_t *ire1 = NULL; 23057 mblk_t *next_mp = NULL; 23058 uint32_t max_frag; 23059 boolean_t multirt_send = B_FALSE; 23060 mblk_t *mp; 23061 mblk_t *mp1; 23062 uint_t ill_index; 23063 ipsec_out_t *io; 23064 boolean_t attach_if; 23065 int match_flags, offset; 23066 irb_t *irb = NULL; 23067 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 23068 zoneid_t zoneid; 23069 uint32_t cksum; 23070 uint16_t *up; 23071 #ifdef _BIG_ENDIAN 23072 #define LENGTH (v_hlen_tos_len & 0xFFFF) 23073 #else 23074 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 23075 #endif 23076 23077 mp = ipsec_mp->b_cont; 23078 ASSERT(mp != NULL); 23079 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23080 dst = ipha->ipha_dst; 23081 23082 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23083 ill_index = io->ipsec_out_ill_index; 23084 attach_if = io->ipsec_out_attach_if; 23085 zoneid = io->ipsec_out_zoneid; 23086 ASSERT(zoneid != ALL_ZONES); 23087 match_flags = MATCH_IRE_ILL_GROUP; 23088 if (ill_index != 0) { 23089 if (ill == NULL) { 23090 ill = ip_grab_attach_ill(NULL, ipsec_mp, 23091 ill_index, B_FALSE); 23092 23093 /* Failure case frees things for us. */ 23094 if (ill == NULL) 23095 return; 23096 23097 ill_need_rele = B_TRUE; 23098 } 23099 /* 23100 * If this packet needs to go out on a particular interface 23101 * honor it. 23102 */ 23103 if (attach_if) { 23104 match_flags = MATCH_IRE_ILL; 23105 23106 /* 23107 * Check if we need an ire that will not be 23108 * looked up by anybody else i.e. HIDDEN. 23109 */ 23110 if (ill_is_probeonly(ill)) { 23111 match_flags |= MATCH_IRE_MARK_HIDDEN; 23112 } 23113 } 23114 } 23115 23116 if (CLASSD(dst)) { 23117 boolean_t conn_dontroute; 23118 /* 23119 * Use the ill_index to get the right ipif. 23120 */ 23121 conn_dontroute = io->ipsec_out_dontroute; 23122 if (ill_index == 0) 23123 ipif = ipif_lookup_group(dst, zoneid); 23124 else 23125 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23126 if (ipif == NULL) { 23127 ip1dbg(("ip_wput_ipsec_out: No ipif for" 23128 " multicast\n")); 23129 BUMP_MIB(&ip_mib, ipOutNoRoutes); 23130 freemsg(ipsec_mp); 23131 goto done; 23132 } 23133 /* 23134 * ipha_src has already been intialized with the 23135 * value of the ipif in ip_wput. All we need now is 23136 * an ire to send this downstream. 23137 */ 23138 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 23139 if (ire != NULL) { 23140 ill_t *ill1; 23141 /* 23142 * Do the multicast forwarding now, as the IPSEC 23143 * processing has been done. 23144 */ 23145 if (ip_g_mrouter && !conn_dontroute && 23146 (ill1 = ire_to_ill(ire))) { 23147 if (ip_mforward(ill1, ipha, mp)) { 23148 freemsg(ipsec_mp); 23149 ip1dbg(("ip_wput_ipsec_out: mforward " 23150 "failed\n")); 23151 ire_refrele(ire); 23152 goto done; 23153 } 23154 } 23155 goto send; 23156 } 23157 23158 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 23159 mp->b_prev = NULL; 23160 mp->b_next = NULL; 23161 23162 /* 23163 * If the IPsec packet was processed asynchronously, 23164 * drop it now. 23165 */ 23166 if (q == NULL) { 23167 freemsg(ipsec_mp); 23168 goto done; 23169 } 23170 23171 /* 23172 * We may be using a wrong ipif to create the ire. 23173 * But it is okay as the source address is assigned 23174 * for the packet already. Next outbound packet would 23175 * create the IRE with the right IPIF in ip_wput. 23176 * 23177 * Also handle RTF_MULTIRT routes. 23178 */ 23179 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 23180 } else { 23181 if (attach_if) { 23182 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 23183 zoneid, match_flags); 23184 } else { 23185 if (ire_arg != NULL) { 23186 ire = ire_arg; 23187 ire_need_rele = B_FALSE; 23188 } else { 23189 ire = ire_cache_lookup(dst, zoneid); 23190 } 23191 } 23192 if (ire != NULL) { 23193 goto send; 23194 } 23195 23196 /* 23197 * ire disappeared underneath. 23198 * 23199 * What we need to do here is the ip_newroute 23200 * logic to get the ire without doing the IPSEC 23201 * processing. Follow the same old path. But this 23202 * time, ip_wput or ire_add_then_put will call us 23203 * directly as all the IPSEC operations are done. 23204 */ 23205 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 23206 mp->b_prev = NULL; 23207 mp->b_next = NULL; 23208 23209 /* 23210 * If the IPsec packet was processed asynchronously, 23211 * drop it now. 23212 */ 23213 if (q == NULL) { 23214 freemsg(ipsec_mp); 23215 goto done; 23216 } 23217 23218 /* 23219 * Since we're going through ip_newroute() again, we 23220 * need to make sure we don't: 23221 * 23222 * 1.) Trigger the ASSERT() with the ipha_ident 23223 * overloading. 23224 * 2.) Redo transport-layer checksumming, since we've 23225 * already done all that to get this far. 23226 * 23227 * The easiest way not do either of the above is to set 23228 * the ipha_ident field to IP_HDR_INCLUDED. 23229 */ 23230 ipha->ipha_ident = IP_HDR_INCLUDED; 23231 ip_newroute(q, ipsec_mp, dst, NULL, 23232 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 23233 } 23234 goto done; 23235 send: 23236 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 23237 /* 23238 * ESP NAT-Traversal packet. 23239 * 23240 * Just do software checksum for now. 23241 */ 23242 23243 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 23244 IP_STAT(ip_out_sw_cksum); 23245 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 23246 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 23247 #define iphs ((uint16_t *)ipha) 23248 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 23249 iphs[9] + ntohs(htons(ipha->ipha_length) - 23250 IP_SIMPLE_HDR_LENGTH); 23251 #undef iphs 23252 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 23253 cksum = 0xFFFF; 23254 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 23255 if (mp1->b_wptr - mp1->b_rptr >= 23256 offset + sizeof (uint16_t)) { 23257 up = (uint16_t *)(mp1->b_rptr + offset); 23258 *up = cksum; 23259 break; /* out of for loop */ 23260 } else { 23261 offset -= (mp->b_wptr - mp->b_rptr); 23262 } 23263 } /* Otherwise, just keep the all-zero checksum. */ 23264 23265 if (ire->ire_stq == NULL) { 23266 /* 23267 * Loopbacks go through ip_wput_local except for one case. 23268 * We come here if we generate a icmp_frag_needed message 23269 * after IPSEC processing is over. When this function calls 23270 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 23271 * icmp_frag_needed. The message generated comes back here 23272 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 23273 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 23274 * source address as it is usually set in ip_wput_ire. As 23275 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 23276 * and we end up here. We can't enter ip_wput_ire once the 23277 * IPSEC processing is over and hence we need to do it here. 23278 */ 23279 ASSERT(q != NULL); 23280 UPDATE_OB_PKT_COUNT(ire); 23281 ire->ire_last_used_time = lbolt; 23282 if (ipha->ipha_src == 0) 23283 ipha->ipha_src = ire->ire_src_addr; 23284 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 23285 ire, 0, zoneid); 23286 if (ire_need_rele) 23287 ire_refrele(ire); 23288 goto done; 23289 } 23290 23291 if (ire->ire_max_frag < (unsigned int)LENGTH) { 23292 /* 23293 * We are through with IPSEC processing. 23294 * Fragment this and send it on the wire. 23295 */ 23296 if (io->ipsec_out_accelerated) { 23297 /* 23298 * The packet has been accelerated but must 23299 * be fragmented. This should not happen 23300 * since AH and ESP must not accelerate 23301 * packets that need fragmentation, however 23302 * the configuration could have changed 23303 * since the AH or ESP processing. 23304 * Drop packet. 23305 * IPsec KSTATS: bump bean counter here. 23306 */ 23307 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 23308 "fragmented accelerated packet!\n")); 23309 freemsg(ipsec_mp); 23310 } else { 23311 ip_wput_ire_fragmentit(ipsec_mp, ire); 23312 } 23313 if (ire_need_rele) 23314 ire_refrele(ire); 23315 goto done; 23316 } 23317 23318 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 23319 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 23320 (void *)ire->ire_ipif, (void *)ipif)); 23321 23322 /* 23323 * Multiroute the secured packet, unless IPsec really 23324 * requires the packet to go out only through a particular 23325 * interface. 23326 */ 23327 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 23328 ire_t *first_ire; 23329 irb = ire->ire_bucket; 23330 ASSERT(irb != NULL); 23331 /* 23332 * This ire has been looked up as the one that 23333 * goes through the given ipif; 23334 * make sure we do not omit any other multiroute ire 23335 * that may be present in the bucket before this one. 23336 */ 23337 IRB_REFHOLD(irb); 23338 for (first_ire = irb->irb_ire; 23339 first_ire != NULL; 23340 first_ire = first_ire->ire_next) { 23341 if ((first_ire->ire_flags & RTF_MULTIRT) && 23342 (first_ire->ire_addr == ire->ire_addr) && 23343 !(first_ire->ire_marks & 23344 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23345 break; 23346 } 23347 23348 if ((first_ire != NULL) && (first_ire != ire)) { 23349 /* 23350 * Don't change the ire if the packet must 23351 * be fragmented if sent via this new one. 23352 */ 23353 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 23354 IRE_REFHOLD(first_ire); 23355 if (ire_need_rele) 23356 ire_refrele(ire); 23357 else 23358 ire_need_rele = B_TRUE; 23359 ire = first_ire; 23360 } 23361 } 23362 IRB_REFRELE(irb); 23363 23364 multirt_send = B_TRUE; 23365 max_frag = ire->ire_max_frag; 23366 } else { 23367 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 23368 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 23369 "flag, attach_if %d\n", attach_if)); 23370 } 23371 } 23372 23373 /* 23374 * In most cases, the emission loop below is entered only once. 23375 * Only in the case where the ire holds the RTF_MULTIRT 23376 * flag, we loop to process all RTF_MULTIRT ires in the 23377 * bucket, and send the packet through all crossed 23378 * RTF_MULTIRT routes. 23379 */ 23380 do { 23381 if (multirt_send) { 23382 /* 23383 * ire1 holds here the next ire to process in the 23384 * bucket. If multirouting is expected, 23385 * any non-RTF_MULTIRT ire that has the 23386 * right destination address is ignored. 23387 */ 23388 ASSERT(irb != NULL); 23389 IRB_REFHOLD(irb); 23390 for (ire1 = ire->ire_next; 23391 ire1 != NULL; 23392 ire1 = ire1->ire_next) { 23393 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23394 continue; 23395 if (ire1->ire_addr != ire->ire_addr) 23396 continue; 23397 if (ire1->ire_marks & 23398 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23399 continue; 23400 /* No loopback here */ 23401 if (ire1->ire_stq == NULL) 23402 continue; 23403 /* 23404 * Ensure we do not exceed the MTU 23405 * of the next route. 23406 */ 23407 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 23408 ip_multirt_bad_mtu(ire1, max_frag); 23409 continue; 23410 } 23411 23412 IRE_REFHOLD(ire1); 23413 break; 23414 } 23415 IRB_REFRELE(irb); 23416 if (ire1 != NULL) { 23417 /* 23418 * We are in a multiple send case, need to 23419 * make a copy of the packet. 23420 */ 23421 next_mp = copymsg(ipsec_mp); 23422 if (next_mp == NULL) { 23423 ire_refrele(ire1); 23424 ire1 = NULL; 23425 } 23426 } 23427 } 23428 23429 /* Everything is done. Send it out on the wire */ 23430 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 23431 if (mp1 == NULL) { 23432 BUMP_MIB(&ip_mib, ipOutDiscards); 23433 freemsg(ipsec_mp); 23434 if (ire_need_rele) 23435 ire_refrele(ire); 23436 if (ire1 != NULL) { 23437 ire_refrele(ire1); 23438 freemsg(next_mp); 23439 } 23440 goto done; 23441 } 23442 UPDATE_OB_PKT_COUNT(ire); 23443 ire->ire_last_used_time = lbolt; 23444 if (!io->ipsec_out_accelerated) { 23445 putnext(ire->ire_stq, mp1); 23446 } else { 23447 /* 23448 * Safety Pup says: make sure this is going to 23449 * the right interface! 23450 */ 23451 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 23452 int ifindex = ill1->ill_phyint->phyint_ifindex; 23453 23454 if (ifindex != io->ipsec_out_capab_ill_index) { 23455 /* IPsec kstats: bump lose counter */ 23456 freemsg(mp1); 23457 } else { 23458 ipsec_hw_putnext(ire->ire_stq, mp1); 23459 } 23460 } 23461 23462 freeb(ipsec_mp); 23463 if (ire_need_rele) 23464 ire_refrele(ire); 23465 23466 if (ire1 != NULL) { 23467 ire = ire1; 23468 ire_need_rele = B_TRUE; 23469 ASSERT(next_mp); 23470 ipsec_mp = next_mp; 23471 mp = ipsec_mp->b_cont; 23472 ire1 = NULL; 23473 next_mp = NULL; 23474 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23475 } else { 23476 multirt_send = B_FALSE; 23477 } 23478 } while (multirt_send); 23479 done: 23480 if (ill != NULL && ill_need_rele) 23481 ill_refrele(ill); 23482 if (ipif != NULL) 23483 ipif_refrele(ipif); 23484 } 23485 23486 /* 23487 * Get the ill corresponding to the specified ire, and compare its 23488 * capabilities with the protocol and algorithms specified by the 23489 * the SA obtained from ipsec_out. If they match, annotate the 23490 * ipsec_out structure to indicate that the packet needs acceleration. 23491 * 23492 * 23493 * A packet is eligible for outbound hardware acceleration if the 23494 * following conditions are satisfied: 23495 * 23496 * 1. the packet will not be fragmented 23497 * 2. the provider supports the algorithm 23498 * 3. there is no pending control message being exchanged 23499 * 4. snoop is not attached 23500 * 5. the destination address is not a broadcast or multicast address. 23501 * 23502 * Rationale: 23503 * - Hardware drivers do not support fragmentation with 23504 * the current interface. 23505 * - snoop, multicast, and broadcast may result in exposure of 23506 * a cleartext datagram. 23507 * We check all five of these conditions here. 23508 * 23509 * XXX would like to nuke "ire_t *" parameter here; problem is that 23510 * IRE is only way to figure out if a v4 address is a broadcast and 23511 * thus ineligible for acceleration... 23512 */ 23513 static void 23514 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23515 { 23516 ipsec_out_t *io; 23517 mblk_t *data_mp; 23518 uint_t plen, overhead; 23519 23520 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23521 return; 23522 23523 if (ill == NULL) 23524 return; 23525 23526 /* 23527 * Destination address is a broadcast or multicast. Punt. 23528 */ 23529 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23530 IRE_LOCAL))) 23531 return; 23532 23533 data_mp = ipsec_mp->b_cont; 23534 23535 if (ill->ill_isv6) { 23536 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23537 23538 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23539 return; 23540 23541 plen = ip6h->ip6_plen; 23542 } else { 23543 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23544 23545 if (CLASSD(ipha->ipha_dst)) 23546 return; 23547 23548 plen = ipha->ipha_length; 23549 } 23550 /* 23551 * Is there a pending DLPI control message being exchanged 23552 * between IP/IPsec and the DLS Provider? If there is, it 23553 * could be a SADB update, and the state of the DLS Provider 23554 * SADB might not be in sync with the SADB maintained by 23555 * IPsec. To avoid dropping packets or using the wrong keying 23556 * material, we do not accelerate this packet. 23557 */ 23558 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23559 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23560 "ill_dlpi_pending! don't accelerate packet\n")); 23561 return; 23562 } 23563 23564 /* 23565 * Is the Provider in promiscous mode? If it does, we don't 23566 * accelerate the packet since it will bounce back up to the 23567 * listeners in the clear. 23568 */ 23569 if (ill->ill_promisc_on_phys) { 23570 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23571 "ill in promiscous mode, don't accelerate packet\n")); 23572 return; 23573 } 23574 23575 /* 23576 * Will the packet require fragmentation? 23577 */ 23578 23579 /* 23580 * IPsec ESP note: this is a pessimistic estimate, but the same 23581 * as is used elsewhere. 23582 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23583 * + 2-byte trailer 23584 */ 23585 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23586 IPSEC_BASE_ESP_HDR_SIZE(sa); 23587 23588 if ((plen + overhead) > ill->ill_max_mtu) 23589 return; 23590 23591 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23592 23593 /* 23594 * Can the ill accelerate this IPsec protocol and algorithm 23595 * specified by the SA? 23596 */ 23597 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23598 ill->ill_isv6, sa)) { 23599 return; 23600 } 23601 23602 /* 23603 * Tell AH or ESP that the outbound ill is capable of 23604 * accelerating this packet. 23605 */ 23606 io->ipsec_out_is_capab_ill = B_TRUE; 23607 } 23608 23609 /* 23610 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23611 * 23612 * If this function returns B_TRUE, the requested SA's have been filled 23613 * into the ipsec_out_*_sa pointers. 23614 * 23615 * If the function returns B_FALSE, the packet has been "consumed", most 23616 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23617 * 23618 * The SA references created by the protocol-specific "select" 23619 * function will be released when the ipsec_mp is freed, thanks to the 23620 * ipsec_out_free destructor -- see spd.c. 23621 */ 23622 static boolean_t 23623 ipsec_out_select_sa(mblk_t *ipsec_mp) 23624 { 23625 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23626 ipsec_out_t *io; 23627 ipsec_policy_t *pp; 23628 ipsec_action_t *ap; 23629 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23630 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23631 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23632 23633 if (!io->ipsec_out_secure) { 23634 /* 23635 * We came here by mistake. 23636 * Don't bother with ipsec processing 23637 * We should "discourage" this path in the future. 23638 */ 23639 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23640 return (B_FALSE); 23641 } 23642 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23643 ASSERT((io->ipsec_out_policy != NULL) || 23644 (io->ipsec_out_act != NULL)); 23645 23646 ASSERT(io->ipsec_out_failed == B_FALSE); 23647 23648 /* 23649 * IPSEC processing has started. 23650 */ 23651 io->ipsec_out_proc_begin = B_TRUE; 23652 ap = io->ipsec_out_act; 23653 if (ap == NULL) { 23654 pp = io->ipsec_out_policy; 23655 ASSERT(pp != NULL); 23656 ap = pp->ipsp_act; 23657 ASSERT(ap != NULL); 23658 } 23659 23660 /* 23661 * We have an action. now, let's select SA's. 23662 * (In the future, we can cache this in the conn_t..) 23663 */ 23664 if (ap->ipa_want_esp) { 23665 if (io->ipsec_out_esp_sa == NULL) { 23666 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23667 IPPROTO_ESP); 23668 } 23669 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23670 } 23671 23672 if (ap->ipa_want_ah) { 23673 if (io->ipsec_out_ah_sa == NULL) { 23674 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23675 IPPROTO_AH); 23676 } 23677 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23678 /* 23679 * The ESP and AH processing order needs to be preserved 23680 * when both protocols are required (ESP should be applied 23681 * before AH for an outbound packet). Force an ESP ACQUIRE 23682 * when both ESP and AH are required, and an AH ACQUIRE 23683 * is needed. 23684 */ 23685 if (ap->ipa_want_esp && need_ah_acquire) 23686 need_esp_acquire = B_TRUE; 23687 } 23688 23689 /* 23690 * Send an ACQUIRE (extended, regular, or both) if we need one. 23691 * Release SAs that got referenced, but will not be used until we 23692 * acquire _all_ of the SAs we need. 23693 */ 23694 if (need_ah_acquire || need_esp_acquire) { 23695 if (io->ipsec_out_ah_sa != NULL) { 23696 IPSA_REFRELE(io->ipsec_out_ah_sa); 23697 io->ipsec_out_ah_sa = NULL; 23698 } 23699 if (io->ipsec_out_esp_sa != NULL) { 23700 IPSA_REFRELE(io->ipsec_out_esp_sa); 23701 io->ipsec_out_esp_sa = NULL; 23702 } 23703 23704 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23705 return (B_FALSE); 23706 } 23707 23708 return (B_TRUE); 23709 } 23710 23711 /* 23712 * Process an IPSEC_OUT message and see what you can 23713 * do with it. 23714 * IPQoS Notes: 23715 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23716 * IPSec. 23717 * XXX would like to nuke ire_t. 23718 * XXX ill_index better be "real" 23719 */ 23720 void 23721 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23722 { 23723 ipsec_out_t *io; 23724 ipsec_policy_t *pp; 23725 ipsec_action_t *ap; 23726 ipha_t *ipha; 23727 ip6_t *ip6h; 23728 mblk_t *mp; 23729 ill_t *ill; 23730 zoneid_t zoneid; 23731 ipsec_status_t ipsec_rc; 23732 boolean_t ill_need_rele = B_FALSE; 23733 23734 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23735 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23736 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23737 mp = ipsec_mp->b_cont; 23738 23739 /* 23740 * Initiate IPPF processing. We do it here to account for packets 23741 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23742 * We can check for ipsec_out_proc_begin even for such packets, as 23743 * they will always be false (asserted below). 23744 */ 23745 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23746 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23747 io->ipsec_out_ill_index : ill_index); 23748 if (mp == NULL) { 23749 ip2dbg(("ipsec_out_process: packet dropped "\ 23750 "during IPPF processing\n")); 23751 freeb(ipsec_mp); 23752 BUMP_MIB(&ip_mib, ipOutDiscards); 23753 return; 23754 } 23755 } 23756 23757 if (!io->ipsec_out_secure) { 23758 /* 23759 * We came here by mistake. 23760 * Don't bother with ipsec processing 23761 * Should "discourage" this path in the future. 23762 */ 23763 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23764 goto done; 23765 } 23766 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23767 ASSERT((io->ipsec_out_policy != NULL) || 23768 (io->ipsec_out_act != NULL)); 23769 ASSERT(io->ipsec_out_failed == B_FALSE); 23770 23771 if (!ipsec_loaded()) { 23772 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23773 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23774 BUMP_MIB(&ip_mib, ipOutDiscards); 23775 } else { 23776 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23777 } 23778 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23779 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23780 return; 23781 } 23782 23783 /* 23784 * IPSEC processing has started. 23785 */ 23786 io->ipsec_out_proc_begin = B_TRUE; 23787 ap = io->ipsec_out_act; 23788 if (ap == NULL) { 23789 pp = io->ipsec_out_policy; 23790 ASSERT(pp != NULL); 23791 ap = pp->ipsp_act; 23792 ASSERT(ap != NULL); 23793 } 23794 23795 /* 23796 * Save the outbound ill index. When the packet comes back 23797 * from IPsec, we make sure the ill hasn't changed or disappeared 23798 * before sending it the accelerated packet. 23799 */ 23800 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23801 int ifindex; 23802 ill = ire_to_ill(ire); 23803 ifindex = ill->ill_phyint->phyint_ifindex; 23804 io->ipsec_out_capab_ill_index = ifindex; 23805 } 23806 23807 /* 23808 * The order of processing is first insert a IP header if needed. 23809 * Then insert the ESP header and then the AH header. 23810 */ 23811 if ((io->ipsec_out_se_done == B_FALSE) && 23812 (ap->ipa_want_se)) { 23813 /* 23814 * First get the outer IP header before sending 23815 * it to ESP. 23816 */ 23817 ipha_t *oipha, *iipha; 23818 mblk_t *outer_mp, *inner_mp; 23819 23820 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23821 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23822 "ipsec_out_process: " 23823 "Self-Encapsulation failed: Out of memory\n"); 23824 freemsg(ipsec_mp); 23825 BUMP_MIB(&ip_mib, ipOutDiscards); 23826 return; 23827 } 23828 inner_mp = ipsec_mp->b_cont; 23829 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23830 oipha = (ipha_t *)outer_mp->b_rptr; 23831 iipha = (ipha_t *)inner_mp->b_rptr; 23832 *oipha = *iipha; 23833 outer_mp->b_wptr += sizeof (ipha_t); 23834 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23835 sizeof (ipha_t)); 23836 oipha->ipha_protocol = IPPROTO_ENCAP; 23837 oipha->ipha_version_and_hdr_length = 23838 IP_SIMPLE_HDR_VERSION; 23839 oipha->ipha_hdr_checksum = 0; 23840 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23841 outer_mp->b_cont = inner_mp; 23842 ipsec_mp->b_cont = outer_mp; 23843 23844 io->ipsec_out_se_done = B_TRUE; 23845 io->ipsec_out_encaps = B_TRUE; 23846 } 23847 23848 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23849 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23850 !ipsec_out_select_sa(ipsec_mp)) 23851 return; 23852 23853 /* 23854 * By now, we know what SA's to use. Toss over to ESP & AH 23855 * to do the heavy lifting. 23856 */ 23857 zoneid = io->ipsec_out_zoneid; 23858 ASSERT(zoneid != ALL_ZONES); 23859 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23860 ASSERT(io->ipsec_out_esp_sa != NULL); 23861 io->ipsec_out_esp_done = B_TRUE; 23862 /* 23863 * Note that since hw accel can only apply one transform, 23864 * not two, we skip hw accel for ESP if we also have AH 23865 * This is an design limitation of the interface 23866 * which should be revisited. 23867 */ 23868 ASSERT(ire != NULL); 23869 if (io->ipsec_out_ah_sa == NULL) { 23870 ill = (ill_t *)ire->ire_stq->q_ptr; 23871 ipsec_out_is_accelerated(ipsec_mp, 23872 io->ipsec_out_esp_sa, ill, ire); 23873 } 23874 23875 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23876 switch (ipsec_rc) { 23877 case IPSEC_STATUS_SUCCESS: 23878 break; 23879 case IPSEC_STATUS_FAILED: 23880 BUMP_MIB(&ip_mib, ipOutDiscards); 23881 /* FALLTHRU */ 23882 case IPSEC_STATUS_PENDING: 23883 return; 23884 } 23885 } 23886 23887 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23888 ASSERT(io->ipsec_out_ah_sa != NULL); 23889 io->ipsec_out_ah_done = B_TRUE; 23890 if (ire == NULL) { 23891 int idx = io->ipsec_out_capab_ill_index; 23892 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23893 NULL, NULL, NULL, NULL); 23894 ill_need_rele = B_TRUE; 23895 } else { 23896 ill = (ill_t *)ire->ire_stq->q_ptr; 23897 } 23898 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23899 ire); 23900 23901 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23902 switch (ipsec_rc) { 23903 case IPSEC_STATUS_SUCCESS: 23904 break; 23905 case IPSEC_STATUS_FAILED: 23906 BUMP_MIB(&ip_mib, ipOutDiscards); 23907 /* FALLTHRU */ 23908 case IPSEC_STATUS_PENDING: 23909 if (ill != NULL && ill_need_rele) 23910 ill_refrele(ill); 23911 return; 23912 } 23913 } 23914 /* 23915 * We are done with IPSEC processing. Send it over 23916 * the wire. 23917 */ 23918 done: 23919 mp = ipsec_mp->b_cont; 23920 ipha = (ipha_t *)mp->b_rptr; 23921 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23922 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23923 } else { 23924 ip6h = (ip6_t *)ipha; 23925 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23926 } 23927 if (ill != NULL && ill_need_rele) 23928 ill_refrele(ill); 23929 } 23930 23931 /* ARGSUSED */ 23932 void 23933 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23934 { 23935 opt_restart_t *or; 23936 int err; 23937 conn_t *connp; 23938 23939 ASSERT(CONN_Q(q)); 23940 connp = Q_TO_CONN(q); 23941 23942 ASSERT(first_mp->b_datap->db_type == M_CTL); 23943 or = (opt_restart_t *)first_mp->b_rptr; 23944 /* 23945 * We don't need to pass any credentials here since this is just 23946 * a restart. The credentials are passed in when svr4_optcom_req 23947 * is called the first time (from ip_wput_nondata). 23948 */ 23949 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23950 err = svr4_optcom_req(q, first_mp, NULL, 23951 &ip_opt_obj); 23952 } else { 23953 ASSERT(or->or_type == T_OPTMGMT_REQ); 23954 err = tpi_optcom_req(q, first_mp, NULL, 23955 &ip_opt_obj); 23956 } 23957 if (err != EINPROGRESS) { 23958 /* operation is done */ 23959 CONN_OPER_PENDING_DONE(connp); 23960 } 23961 } 23962 23963 /* 23964 * ioctls that go through a down/up sequence may need to wait for the down 23965 * to complete. This involves waiting for the ire and ipif refcnts to go down 23966 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23967 */ 23968 /* ARGSUSED */ 23969 void 23970 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23971 { 23972 struct iocblk *iocp; 23973 mblk_t *mp1; 23974 ipif_t *ipif; 23975 ip_ioctl_cmd_t *ipip; 23976 int err; 23977 sin_t *sin; 23978 struct lifreq *lifr; 23979 struct ifreq *ifr; 23980 23981 iocp = (struct iocblk *)mp->b_rptr; 23982 ASSERT(ipsq != NULL); 23983 /* Existence of mp1 verified in ip_wput_nondata */ 23984 mp1 = mp->b_cont->b_cont; 23985 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23986 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23987 ill_t *ill; 23988 /* 23989 * Special case where ipsq_current_ipif may not be set. 23990 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23991 * ill could also have become part of a ipmp group in the 23992 * process, we are here as were not able to complete the 23993 * operation in ipif_set_values because we could not become 23994 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23995 * will not be set so we need to set it. 23996 */ 23997 ill = (ill_t *)q->q_ptr; 23998 ipsq->ipsq_current_ipif = ill->ill_ipif; 23999 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24000 } 24001 24002 ipif = ipsq->ipsq_current_ipif; 24003 ASSERT(ipif != NULL); 24004 if (ipip->ipi_cmd_type == IF_CMD) { 24005 /* This a old style SIOC[GS]IF* command */ 24006 ifr = (struct ifreq *)mp1->b_rptr; 24007 sin = (sin_t *)&ifr->ifr_addr; 24008 } else if (ipip->ipi_cmd_type == LIF_CMD) { 24009 /* This a new style SIOC[GS]LIF* command */ 24010 lifr = (struct lifreq *)mp1->b_rptr; 24011 sin = (sin_t *)&lifr->lifr_addr; 24012 } else { 24013 sin = NULL; 24014 } 24015 24016 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 24017 (void *)mp1->b_rptr); 24018 24019 /* SIOCLIFREMOVEIF could have removed the ipif */ 24020 ip_ioctl_finish(q, mp, err, 24021 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24022 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 24023 } 24024 24025 /* 24026 * ioctl processing 24027 * 24028 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 24029 * the ioctl command in the ioctl tables and determines the copyin data size 24030 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 24031 * size. 24032 * 24033 * ioctl processing then continues when the M_IOCDATA makes its way down. 24034 * Now the ioctl is looked up again in the ioctl table, and its properties are 24035 * extracted. The associated 'conn' is then refheld till the end of the ioctl 24036 * and the general ioctl processing function ip_process_ioctl is called. 24037 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 24038 * so goes thru the serialization primitive ipsq_try_enter. Then the 24039 * appropriate function to handle the ioctl is called based on the entry in 24040 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 24041 * which also refreleases the 'conn' that was refheld at the start of the 24042 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 24043 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 24044 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 24045 * 24046 * Many exclusive ioctls go thru an internal down up sequence as part of 24047 * the operation. For example an attempt to change the IP address of an 24048 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 24049 * does all the cleanup such as deleting all ires that use this address. 24050 * Then we need to wait till all references to the interface go away. 24051 */ 24052 void 24053 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24054 { 24055 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 24056 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 24057 cmd_info_t ci; 24058 int err; 24059 boolean_t entered_ipsq = B_FALSE; 24060 24061 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 24062 24063 if (ipip == NULL) 24064 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24065 24066 /* 24067 * SIOCLIFADDIF needs to go thru a special path since the 24068 * ill may not exist yet. This happens in the case of lo0 24069 * which is created using this ioctl. 24070 */ 24071 if (ipip->ipi_cmd == SIOCLIFADDIF) { 24072 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 24073 ip_ioctl_finish(q, mp, err, 24074 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24075 NULL, NULL); 24076 return; 24077 } 24078 24079 ci.ci_ipif = NULL; 24080 switch (ipip->ipi_cmd_type) { 24081 case IF_CMD: 24082 case LIF_CMD: 24083 /* 24084 * ioctls that pass in a [l]ifreq appear here. 24085 * ip_extract_lifreq_cmn returns a refheld ipif in 24086 * ci.ci_ipif 24087 */ 24088 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 24089 ipip->ipi_flags, &ci, ip_process_ioctl); 24090 if (err != 0) { 24091 ip_ioctl_finish(q, mp, err, 24092 ipip->ipi_flags & IPI_GET_CMD ? 24093 COPYOUT : NO_COPYOUT, NULL, NULL); 24094 return; 24095 } 24096 ASSERT(ci.ci_ipif != NULL); 24097 break; 24098 24099 case TUN_CMD: 24100 /* 24101 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 24102 * a refheld ipif in ci.ci_ipif 24103 */ 24104 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 24105 if (err != 0) { 24106 ip_ioctl_finish(q, mp, err, 24107 ipip->ipi_flags & IPI_GET_CMD ? 24108 COPYOUT : NO_COPYOUT, NULL, NULL); 24109 return; 24110 } 24111 ASSERT(ci.ci_ipif != NULL); 24112 break; 24113 24114 case MISC_CMD: 24115 /* 24116 * ioctls that neither pass in [l]ifreq or iftun_req come here 24117 * For eg. SIOCGLIFCONF will appear here. 24118 */ 24119 switch (ipip->ipi_cmd) { 24120 case IF_UNITSEL: 24121 /* ioctl comes down the ill */ 24122 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 24123 ipif_refhold(ci.ci_ipif); 24124 break; 24125 case SIOCGMSFILTER: 24126 case SIOCSMSFILTER: 24127 case SIOCGIPMSFILTER: 24128 case SIOCSIPMSFILTER: 24129 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 24130 ip_process_ioctl); 24131 if (err != 0) { 24132 ip_ioctl_finish(q, mp, err, 24133 ipip->ipi_flags & IPI_GET_CMD ? 24134 COPYOUT : NO_COPYOUT, NULL, NULL); 24135 return; 24136 } 24137 break; 24138 } 24139 err = 0; 24140 ci.ci_sin = NULL; 24141 ci.ci_sin6 = NULL; 24142 ci.ci_lifr = NULL; 24143 break; 24144 } 24145 24146 /* 24147 * If ipsq is non-null, we are already being called exclusively 24148 */ 24149 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 24150 if (!(ipip->ipi_flags & IPI_WR)) { 24151 /* 24152 * A return value of EINPROGRESS means the ioctl is 24153 * either queued and waiting for some reason or has 24154 * already completed. 24155 */ 24156 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24157 ci.ci_lifr); 24158 if (ci.ci_ipif != NULL) 24159 ipif_refrele(ci.ci_ipif); 24160 ip_ioctl_finish(q, mp, err, 24161 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24162 NULL, NULL); 24163 return; 24164 } 24165 24166 ASSERT(ci.ci_ipif != NULL); 24167 24168 if (ipsq == NULL) { 24169 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 24170 ip_process_ioctl, NEW_OP, B_TRUE); 24171 entered_ipsq = B_TRUE; 24172 } 24173 /* 24174 * Release the ipif so that ipif_down and friends that wait for 24175 * references to go away are not misled about the current ipif_refcnt 24176 * values. We are writer so we can access the ipif even after releasing 24177 * the ipif. 24178 */ 24179 ipif_refrele(ci.ci_ipif); 24180 if (ipsq == NULL) 24181 return; 24182 24183 mutex_enter(&ipsq->ipsq_lock); 24184 ASSERT(ipsq->ipsq_current_ipif == NULL); 24185 ipsq->ipsq_current_ipif = ci.ci_ipif; 24186 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24187 mutex_exit(&ipsq->ipsq_lock); 24188 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 24189 /* 24190 * For most set ioctls that come here, this serves as a single point 24191 * where we set the IPIF_CHANGING flag. This ensures that there won't 24192 * be any new references to the ipif. This helps functions that go 24193 * through this path and end up trying to wait for the refcnts 24194 * associated with the ipif to go down to zero. Some exceptions are 24195 * Failover, Failback, and Groupname commands that operate on more than 24196 * just the ci.ci_ipif. These commands internally determine the 24197 * set of ipif's they operate on and set and clear the IPIF_CHANGING 24198 * flags on that set. Another exception is the Removeif command that 24199 * sets the IPIF_CONDEMNED flag internally after identifying the right 24200 * ipif to operate on. 24201 */ 24202 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 24203 ipip->ipi_cmd != SIOCLIFFAILOVER && 24204 ipip->ipi_cmd != SIOCLIFFAILBACK && 24205 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 24206 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 24207 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 24208 24209 /* 24210 * A return value of EINPROGRESS means the ioctl is 24211 * either queued and waiting for some reason or has 24212 * already completed. 24213 */ 24214 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24215 ci.ci_lifr); 24216 24217 /* SIOCLIFREMOVEIF could have removed the ipif */ 24218 ip_ioctl_finish(q, mp, err, 24219 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24220 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 24221 24222 if (entered_ipsq) 24223 ipsq_exit(ipsq, B_TRUE, B_TRUE); 24224 } 24225 24226 /* 24227 * Complete the ioctl. Typically ioctls use the mi package and need to 24228 * do mi_copyout/mi_copy_done. 24229 */ 24230 void 24231 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 24232 ipif_t *ipif, ipsq_t *ipsq) 24233 { 24234 conn_t *connp = NULL; 24235 24236 if (err == EINPROGRESS) 24237 return; 24238 24239 if (CONN_Q(q)) { 24240 connp = Q_TO_CONN(q); 24241 ASSERT(connp->conn_ref >= 2); 24242 } 24243 24244 switch (mode) { 24245 case COPYOUT: 24246 if (err == 0) 24247 mi_copyout(q, mp); 24248 else 24249 mi_copy_done(q, mp, err); 24250 break; 24251 24252 case NO_COPYOUT: 24253 mi_copy_done(q, mp, err); 24254 break; 24255 24256 default: 24257 /* An ioctl aborted through a conn close would take this path */ 24258 break; 24259 } 24260 24261 /* 24262 * The refhold placed at the start of the ioctl is released here. 24263 */ 24264 if (connp != NULL) 24265 CONN_OPER_PENDING_DONE(connp); 24266 24267 /* 24268 * If the ioctl were an exclusive ioctl it would have set 24269 * IPIF_CHANGING at the start of the ioctl which is undone here. 24270 */ 24271 if (ipif != NULL) { 24272 mutex_enter(&(ipif)->ipif_ill->ill_lock); 24273 ipif->ipif_state_flags &= ~IPIF_CHANGING; 24274 mutex_exit(&(ipif)->ipif_ill->ill_lock); 24275 } 24276 24277 /* 24278 * Clear the current ipif in the ipsq at the completion of the ioctl. 24279 * Note that a non-null ipsq_current_ipif prevents new ioctls from 24280 * entering the ipsq 24281 */ 24282 if (ipsq != NULL) { 24283 mutex_enter(&ipsq->ipsq_lock); 24284 ipsq->ipsq_current_ipif = NULL; 24285 mutex_exit(&ipsq->ipsq_lock); 24286 } 24287 } 24288 24289 /* 24290 * This is called from ip_wput_nondata to resume a deferred TCP bind. 24291 */ 24292 /* ARGSUSED */ 24293 void 24294 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 24295 { 24296 conn_t *connp = arg; 24297 tcp_t *tcp; 24298 24299 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 24300 tcp = connp->conn_tcp; 24301 24302 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 24303 freemsg(mp); 24304 else 24305 tcp_rput_other(tcp, mp); 24306 CONN_OPER_PENDING_DONE(connp); 24307 } 24308 24309 /* Called from ip_wput for all non data messages */ 24310 /* ARGSUSED */ 24311 void 24312 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24313 { 24314 mblk_t *mp1; 24315 ire_t *ire; 24316 ill_t *ill; 24317 struct iocblk *iocp; 24318 ip_ioctl_cmd_t *ipip; 24319 cred_t *cr; 24320 conn_t *connp = NULL; 24321 int cmd, err; 24322 24323 if (CONN_Q(q)) 24324 connp = Q_TO_CONN(q); 24325 24326 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 24327 24328 /* Check if it is a queue to /dev/sctp. */ 24329 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 24330 connp->conn_rq == NULL) { 24331 sctp_wput(q, mp); 24332 return; 24333 } 24334 24335 switch (DB_TYPE(mp)) { 24336 case M_IOCTL: 24337 /* 24338 * IOCTL processing begins in ip_sioctl_copyin_setup which 24339 * will arrange to copy in associated control structures. 24340 */ 24341 ip_sioctl_copyin_setup(q, mp); 24342 return; 24343 case M_IOCDATA: 24344 /* 24345 * Ensure that this is associated with one of our trans- 24346 * parent ioctls. If it's not ours, discard it if we're 24347 * running as a driver, or pass it on if we're a module. 24348 */ 24349 iocp = (struct iocblk *)mp->b_rptr; 24350 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24351 if (ipip == NULL) { 24352 if (q->q_next == NULL) { 24353 goto nak; 24354 } else { 24355 putnext(q, mp); 24356 } 24357 return; 24358 } else if ((q->q_next != NULL) && 24359 !(ipip->ipi_flags & IPI_MODOK)) { 24360 /* 24361 * the ioctl is one we recognise, but is not 24362 * consumed by IP as a module, pass M_IOCDATA 24363 * for processing downstream, but only for 24364 * common Streams ioctls. 24365 */ 24366 if (ipip->ipi_flags & IPI_PASS_DOWN) { 24367 putnext(q, mp); 24368 return; 24369 } else { 24370 goto nak; 24371 } 24372 } 24373 24374 /* IOCTL continuation following copyin or copyout. */ 24375 if (mi_copy_state(q, mp, NULL) == -1) { 24376 /* 24377 * The copy operation failed. mi_copy_state already 24378 * cleaned up, so we're out of here. 24379 */ 24380 return; 24381 } 24382 /* 24383 * If we just completed a copy in, we become writer and 24384 * continue processing in ip_sioctl_copyin_done. If it 24385 * was a copy out, we call mi_copyout again. If there is 24386 * nothing more to copy out, it will complete the IOCTL. 24387 */ 24388 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 24389 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 24390 mi_copy_done(q, mp, EPROTO); 24391 return; 24392 } 24393 /* 24394 * Check for cases that need more copying. A return 24395 * value of 0 means a second copyin has been started, 24396 * so we return; a return value of 1 means no more 24397 * copying is needed, so we continue. 24398 */ 24399 cmd = iocp->ioc_cmd; 24400 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 24401 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 24402 MI_COPY_COUNT(mp) == 1) { 24403 if (ip_copyin_msfilter(q, mp) == 0) 24404 return; 24405 } 24406 /* 24407 * Refhold the conn, till the ioctl completes. This is 24408 * needed in case the ioctl ends up in the pending mp 24409 * list. Every mp in the ill_pending_mp list and 24410 * the ipsq_pending_mp must have a refhold on the conn 24411 * to resume processing. The refhold is released when 24412 * the ioctl completes. (normally or abnormally) 24413 * In all cases ip_ioctl_finish is called to finish 24414 * the ioctl. 24415 */ 24416 if (connp != NULL) { 24417 /* This is not a reentry */ 24418 ASSERT(ipsq == NULL); 24419 CONN_INC_REF(connp); 24420 } else { 24421 if (!(ipip->ipi_flags & IPI_MODOK)) { 24422 mi_copy_done(q, mp, EINVAL); 24423 return; 24424 } 24425 } 24426 24427 ip_process_ioctl(ipsq, q, mp, ipip); 24428 24429 } else { 24430 mi_copyout(q, mp); 24431 } 24432 return; 24433 nak: 24434 iocp->ioc_error = EINVAL; 24435 mp->b_datap->db_type = M_IOCNAK; 24436 iocp->ioc_count = 0; 24437 qreply(q, mp); 24438 return; 24439 24440 case M_IOCNAK: 24441 /* 24442 * The only way we could get here is if a resolver didn't like 24443 * an IOCTL we sent it. This shouldn't happen. 24444 */ 24445 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 24446 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 24447 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 24448 freemsg(mp); 24449 return; 24450 case M_IOCACK: 24451 /* Finish socket ioctls passed through to ARP. */ 24452 ip_sioctl_iocack(q, mp); 24453 return; 24454 case M_FLUSH: 24455 if (*mp->b_rptr & FLUSHW) 24456 flushq(q, FLUSHALL); 24457 if (q->q_next) { 24458 /* 24459 * M_FLUSH is sent up to IP by some drivers during 24460 * unbind. ip_rput has already replied to it. We are 24461 * here for the M_FLUSH that we originated in IP 24462 * before sending the unbind request to the driver. 24463 * Just free it as we don't queue packets in IP 24464 * on the write side of the device instance. 24465 */ 24466 freemsg(mp); 24467 return; 24468 } 24469 if (*mp->b_rptr & FLUSHR) { 24470 *mp->b_rptr &= ~FLUSHW; 24471 qreply(q, mp); 24472 return; 24473 } 24474 freemsg(mp); 24475 return; 24476 case IRE_DB_REQ_TYPE: 24477 /* An Upper Level Protocol wants a copy of an IRE. */ 24478 ip_ire_req(q, mp); 24479 return; 24480 case M_CTL: 24481 /* M_CTL messages are used by ARP to tell us things. */ 24482 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 24483 break; 24484 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 24485 case AR_ENTRY_SQUERY: 24486 ip_wput_ctl(q, mp); 24487 return; 24488 case AR_CLIENT_NOTIFY: 24489 ip_arp_news(q, mp); 24490 return; 24491 case AR_DLPIOP_DONE: 24492 ASSERT(q->q_next != NULL); 24493 ill = (ill_t *)q->q_ptr; 24494 /* qwriter_ip releases the refhold */ 24495 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 24496 ill_refhold(ill); 24497 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 24498 CUR_OP, B_FALSE); 24499 return; 24500 case AR_ARP_CLOSING: 24501 /* 24502 * ARP (above us) is closing. If no ARP bringup is 24503 * currently pending, ack the message so that ARP 24504 * can complete its close. Also mark ill_arp_closing 24505 * so that new ARP bringups will fail. If any 24506 * ARP bringup is currently in progress, we will 24507 * ack this when the current ARP bringup completes. 24508 */ 24509 ASSERT(q->q_next != NULL); 24510 ill = (ill_t *)q->q_ptr; 24511 mutex_enter(&ill->ill_lock); 24512 ill->ill_arp_closing = 1; 24513 if (!ill->ill_arp_bringup_pending) { 24514 mutex_exit(&ill->ill_lock); 24515 qreply(q, mp); 24516 } else { 24517 mutex_exit(&ill->ill_lock); 24518 freemsg(mp); 24519 } 24520 return; 24521 default: 24522 break; 24523 } 24524 break; 24525 case M_PROTO: 24526 case M_PCPROTO: 24527 /* 24528 * The only PROTO messages we expect are ULP binds and 24529 * copies of option negotiation acknowledgements. 24530 */ 24531 switch (((union T_primitives *)mp->b_rptr)->type) { 24532 case O_T_BIND_REQ: 24533 case T_BIND_REQ: { 24534 /* Request can get queued in bind */ 24535 ASSERT(connp != NULL); 24536 /* 24537 * Both TCP and UDP call ip_bind_{v4,v6}() directly 24538 * instead of going through this path. We only get 24539 * here in the following cases: 24540 * 24541 * a. Bind retries, where ipsq is non-NULL. 24542 * b. T_BIND_REQ is issued from non TCP/UDP 24543 * transport, e.g. icmp for raw socket, 24544 * in which case ipsq will be NULL. 24545 */ 24546 ASSERT(ipsq != NULL || 24547 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 24548 24549 /* Don't increment refcnt if this is a re-entry */ 24550 if (ipsq == NULL) 24551 CONN_INC_REF(connp); 24552 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 24553 connp, NULL) : ip_bind_v4(q, mp, connp); 24554 if (mp == NULL) 24555 return; 24556 if (IPCL_IS_TCP(connp)) { 24557 /* 24558 * In the case of TCP endpoint we 24559 * come here only for bind retries 24560 */ 24561 ASSERT(ipsq != NULL); 24562 CONN_INC_REF(connp); 24563 squeue_fill(connp->conn_sqp, mp, 24564 ip_resume_tcp_bind, connp, 24565 SQTAG_BIND_RETRY); 24566 return; 24567 } else if (IPCL_IS_UDP(connp)) { 24568 /* 24569 * In the case of UDP endpoint we 24570 * come here only for bind retries 24571 */ 24572 ASSERT(ipsq != NULL); 24573 udp_resume_bind(connp, mp); 24574 return; 24575 } 24576 qreply(q, mp); 24577 CONN_OPER_PENDING_DONE(connp); 24578 return; 24579 } 24580 case T_SVR4_OPTMGMT_REQ: 24581 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24582 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24583 24584 ASSERT(connp != NULL); 24585 if (!snmpcom_req(q, mp, ip_snmp_set, 24586 ip_snmp_get, cr)) { 24587 /* 24588 * Call svr4_optcom_req so that it can 24589 * generate the ack. We don't come here 24590 * if this operation is being restarted. 24591 * ip_restart_optmgmt will drop the conn ref. 24592 * In the case of ipsec option after the ipsec 24593 * load is complete conn_restart_ipsec_waiter 24594 * drops the conn ref. 24595 */ 24596 ASSERT(ipsq == NULL); 24597 CONN_INC_REF(connp); 24598 if (ip_check_for_ipsec_opt(q, mp)) 24599 return; 24600 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24601 if (err != EINPROGRESS) { 24602 /* Operation is done */ 24603 CONN_OPER_PENDING_DONE(connp); 24604 } 24605 } 24606 return; 24607 case T_OPTMGMT_REQ: 24608 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24609 /* 24610 * Note: No snmpcom_req support through new 24611 * T_OPTMGMT_REQ. 24612 * Call tpi_optcom_req so that it can 24613 * generate the ack. 24614 */ 24615 ASSERT(connp != NULL); 24616 ASSERT(ipsq == NULL); 24617 /* 24618 * We don't come here for restart. ip_restart_optmgmt 24619 * will drop the conn ref. In the case of ipsec option 24620 * after the ipsec load is complete 24621 * conn_restart_ipsec_waiter drops the conn ref. 24622 */ 24623 CONN_INC_REF(connp); 24624 if (ip_check_for_ipsec_opt(q, mp)) 24625 return; 24626 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24627 if (err != EINPROGRESS) { 24628 /* Operation is done */ 24629 CONN_OPER_PENDING_DONE(connp); 24630 } 24631 return; 24632 case T_UNBIND_REQ: 24633 mp = ip_unbind(q, mp); 24634 qreply(q, mp); 24635 return; 24636 default: 24637 /* 24638 * Have to drop any DLPI messages coming down from 24639 * arp (such as an info_req which would cause ip 24640 * to receive an extra info_ack if it was passed 24641 * through. 24642 */ 24643 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24644 (int)*(uint_t *)mp->b_rptr)); 24645 freemsg(mp); 24646 return; 24647 } 24648 /* NOTREACHED */ 24649 case IRE_DB_TYPE: { 24650 nce_t *nce; 24651 ill_t *ill; 24652 in6_addr_t gw_addr_v6; 24653 24654 24655 /* 24656 * This is a response back from a resolver. It 24657 * consists of a message chain containing: 24658 * IRE_MBLK-->LL_HDR_MBLK->pkt 24659 * The IRE_MBLK is the one we allocated in ip_newroute. 24660 * The LL_HDR_MBLK is the DLPI header to use to get 24661 * the attached packet, and subsequent ones for the 24662 * same destination, transmitted. 24663 */ 24664 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24665 break; 24666 /* 24667 * First, check to make sure the resolution succeeded. 24668 * If it failed, the second mblk will be empty. 24669 * If it is, free the chain, dropping the packet. 24670 * (We must ire_delete the ire; that frees the ire mblk) 24671 * We're doing this now to support PVCs for ATM; it's 24672 * a partial xresolv implementation. When we fully implement 24673 * xresolv interfaces, instead of freeing everything here 24674 * we'll initiate neighbor discovery. 24675 * 24676 * For v4 (ARP and other external resolvers) the resolver 24677 * frees the message, so no check is needed. This check 24678 * is required, though, for a full xresolve implementation. 24679 * Including this code here now both shows how external 24680 * resolvers can NACK a resolution request using an 24681 * existing design that has no specific provisions for NACKs, 24682 * and also takes into account that the current non-ARP 24683 * external resolver has been coded to use this method of 24684 * NACKing for all IPv6 (xresolv) cases, 24685 * whether our xresolv implementation is complete or not. 24686 * 24687 */ 24688 ire = (ire_t *)mp->b_rptr; 24689 ill = ire_to_ill(ire); 24690 mp1 = mp->b_cont; /* dl_unitdata_req */ 24691 if (mp1->b_rptr == mp1->b_wptr) { 24692 if (ire->ire_ipversion == IPV6_VERSION) { 24693 /* 24694 * XRESOLV interface. 24695 */ 24696 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24697 mutex_enter(&ire->ire_lock); 24698 gw_addr_v6 = ire->ire_gateway_addr_v6; 24699 mutex_exit(&ire->ire_lock); 24700 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24701 nce = ndp_lookup(ill, 24702 &ire->ire_addr_v6, B_FALSE); 24703 } else { 24704 nce = ndp_lookup(ill, &gw_addr_v6, 24705 B_FALSE); 24706 } 24707 if (nce != NULL) { 24708 nce_resolv_failed(nce); 24709 ndp_delete(nce); 24710 NCE_REFRELE(nce); 24711 } 24712 } 24713 mp->b_cont = NULL; 24714 freemsg(mp1); /* frees the pkt as well */ 24715 ire_delete((ire_t *)mp->b_rptr); 24716 return; 24717 } 24718 /* 24719 * Split them into IRE_MBLK and pkt and feed it into 24720 * ire_add_then_send. Then in ire_add_then_send 24721 * the IRE will be added, and then the packet will be 24722 * run back through ip_wput. This time it will make 24723 * it to the wire. 24724 */ 24725 mp->b_cont = NULL; 24726 mp = mp1->b_cont; /* now, mp points to pkt */ 24727 mp1->b_cont = NULL; 24728 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24729 if (ire->ire_ipversion == IPV6_VERSION) { 24730 /* 24731 * XRESOLV interface. Find the nce and put a copy 24732 * of the dl_unitdata_req in nce_res_mp 24733 */ 24734 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24735 mutex_enter(&ire->ire_lock); 24736 gw_addr_v6 = ire->ire_gateway_addr_v6; 24737 mutex_exit(&ire->ire_lock); 24738 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24739 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24740 B_FALSE); 24741 } else { 24742 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24743 } 24744 if (nce != NULL) { 24745 /* 24746 * We have to protect nce_res_mp here 24747 * from being accessed by other threads 24748 * while we change the mblk pointer. 24749 * Other functions will also lock the nce when 24750 * accessing nce_res_mp. 24751 * 24752 * The reason we change the mblk pointer 24753 * here rather than copying the resolved address 24754 * into the template is that, unlike with 24755 * ethernet, we have no guarantee that the 24756 * resolved address length will be 24757 * smaller than or equal to the lla length 24758 * with which the template was allocated, 24759 * (for ethernet, they're equal) 24760 * so we have to use the actual resolved 24761 * address mblk - which holds the real 24762 * dl_unitdata_req with the resolved address. 24763 * 24764 * Doing this is the same behavior as was 24765 * previously used in the v4 ARP case. 24766 */ 24767 mutex_enter(&nce->nce_lock); 24768 if (nce->nce_res_mp != NULL) 24769 freemsg(nce->nce_res_mp); 24770 nce->nce_res_mp = mp1; 24771 mutex_exit(&nce->nce_lock); 24772 /* 24773 * We do a fastpath probe here because 24774 * we have resolved the address without 24775 * using Neighbor Discovery. 24776 * In the non-XRESOLV v6 case, the fastpath 24777 * probe is done right after neighbor 24778 * discovery completes. 24779 */ 24780 if (nce->nce_res_mp != NULL) { 24781 int res; 24782 nce_fastpath_list_add(nce); 24783 res = ill_fastpath_probe(ill, 24784 nce->nce_res_mp); 24785 if (res != 0 && res != EAGAIN) 24786 nce_fastpath_list_delete(nce); 24787 } 24788 24789 ire_add_then_send(q, ire, mp); 24790 /* 24791 * Now we have to clean out any packets 24792 * that may have been queued on the nce 24793 * while it was waiting for address resolution 24794 * to complete. 24795 */ 24796 mutex_enter(&nce->nce_lock); 24797 mp1 = nce->nce_qd_mp; 24798 nce->nce_qd_mp = NULL; 24799 mutex_exit(&nce->nce_lock); 24800 while (mp1 != NULL) { 24801 mblk_t *nxt_mp; 24802 queue_t *fwdq = NULL; 24803 ill_t *inbound_ill; 24804 uint_t ifindex; 24805 24806 nxt_mp = mp1->b_next; 24807 mp1->b_next = NULL; 24808 /* 24809 * Retrieve ifindex stored in 24810 * ip_rput_data_v6() 24811 */ 24812 ifindex = 24813 (uint_t)(uintptr_t)mp1->b_prev; 24814 inbound_ill = 24815 ill_lookup_on_ifindex(ifindex, 24816 B_TRUE, NULL, NULL, NULL, 24817 NULL); 24818 mp1->b_prev = NULL; 24819 if (inbound_ill != NULL) 24820 fwdq = inbound_ill->ill_rq; 24821 24822 if (fwdq != NULL) { 24823 put(fwdq, mp1); 24824 ill_refrele(inbound_ill); 24825 } else 24826 put(WR(ill->ill_rq), mp1); 24827 mp1 = nxt_mp; 24828 } 24829 NCE_REFRELE(nce); 24830 } else { /* nce is NULL; clean up */ 24831 ire_delete(ire); 24832 freemsg(mp); 24833 freemsg(mp1); 24834 return; 24835 } 24836 } else { 24837 ire->ire_dlureq_mp = mp1; 24838 ire_add_then_send(q, ire, mp); 24839 } 24840 return; /* All is well, the packet has been sent. */ 24841 } 24842 default: 24843 break; 24844 } 24845 if (q->q_next) { 24846 putnext(q, mp); 24847 } else 24848 freemsg(mp); 24849 } 24850 24851 /* 24852 * Process IP options in an outbound packet. Modify the destination if there 24853 * is a source route option. 24854 * Returns non-zero if something fails in which case an ICMP error has been 24855 * sent and mp freed. 24856 */ 24857 static int 24858 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24859 boolean_t mctl_present, zoneid_t zoneid) 24860 { 24861 ipoptp_t opts; 24862 uchar_t *opt; 24863 uint8_t optval; 24864 uint8_t optlen; 24865 ipaddr_t dst; 24866 intptr_t code = 0; 24867 mblk_t *mp; 24868 ire_t *ire = NULL; 24869 24870 ip2dbg(("ip_wput_options\n")); 24871 mp = ipsec_mp; 24872 if (mctl_present) { 24873 mp = ipsec_mp->b_cont; 24874 } 24875 24876 dst = ipha->ipha_dst; 24877 for (optval = ipoptp_first(&opts, ipha); 24878 optval != IPOPT_EOL; 24879 optval = ipoptp_next(&opts)) { 24880 opt = opts.ipoptp_cur; 24881 optlen = opts.ipoptp_len; 24882 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24883 optval, optlen)); 24884 switch (optval) { 24885 uint32_t off; 24886 case IPOPT_SSRR: 24887 case IPOPT_LSRR: 24888 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24889 ip1dbg(( 24890 "ip_wput_options: bad option offset\n")); 24891 code = (char *)&opt[IPOPT_OLEN] - 24892 (char *)ipha; 24893 goto param_prob; 24894 } 24895 off = opt[IPOPT_OFFSET]; 24896 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24897 ntohl(dst))); 24898 /* 24899 * For strict: verify that dst is directly 24900 * reachable. 24901 */ 24902 if (optval == IPOPT_SSRR) { 24903 ire = ire_ftable_lookup(dst, 0, 0, 24904 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24905 MATCH_IRE_TYPE); 24906 if (ire == NULL) { 24907 ip1dbg(("ip_wput_options: SSRR not" 24908 " directly reachable: 0x%x\n", 24909 ntohl(dst))); 24910 goto bad_src_route; 24911 } 24912 ire_refrele(ire); 24913 } 24914 break; 24915 case IPOPT_RR: 24916 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24917 ip1dbg(( 24918 "ip_wput_options: bad option offset\n")); 24919 code = (char *)&opt[IPOPT_OLEN] - 24920 (char *)ipha; 24921 goto param_prob; 24922 } 24923 break; 24924 case IPOPT_TS: 24925 /* 24926 * Verify that length >=5 and that there is either 24927 * room for another timestamp or that the overflow 24928 * counter is not maxed out. 24929 */ 24930 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24931 if (optlen < IPOPT_MINLEN_IT) { 24932 goto param_prob; 24933 } 24934 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24935 ip1dbg(( 24936 "ip_wput_options: bad option offset\n")); 24937 code = (char *)&opt[IPOPT_OFFSET] - 24938 (char *)ipha; 24939 goto param_prob; 24940 } 24941 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24942 case IPOPT_TS_TSONLY: 24943 off = IPOPT_TS_TIMELEN; 24944 break; 24945 case IPOPT_TS_TSANDADDR: 24946 case IPOPT_TS_PRESPEC: 24947 case IPOPT_TS_PRESPEC_RFC791: 24948 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24949 break; 24950 default: 24951 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24952 (char *)ipha; 24953 goto param_prob; 24954 } 24955 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24956 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24957 /* 24958 * No room and the overflow counter is 15 24959 * already. 24960 */ 24961 goto param_prob; 24962 } 24963 break; 24964 } 24965 } 24966 24967 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24968 return (0); 24969 24970 ip1dbg(("ip_wput_options: error processing IP options.")); 24971 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24972 24973 param_prob: 24974 /* 24975 * Since ip_wput() isn't close to finished, we fill 24976 * in enough of the header for credible error reporting. 24977 */ 24978 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24979 /* Failed */ 24980 freemsg(ipsec_mp); 24981 return (-1); 24982 } 24983 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24984 return (-1); 24985 24986 bad_src_route: 24987 /* 24988 * Since ip_wput() isn't close to finished, we fill 24989 * in enough of the header for credible error reporting. 24990 */ 24991 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24992 /* Failed */ 24993 freemsg(ipsec_mp); 24994 return (-1); 24995 } 24996 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24997 return (-1); 24998 } 24999 25000 /* 25001 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 25002 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 25003 * thru /etc/system. 25004 */ 25005 #define CONN_MAXDRAINCNT 64 25006 25007 static void 25008 conn_drain_init(void) 25009 { 25010 int i; 25011 25012 conn_drain_list_cnt = conn_drain_nthreads; 25013 25014 if ((conn_drain_list_cnt == 0) || 25015 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 25016 /* 25017 * Default value of the number of drainers is the 25018 * number of cpus, subject to maximum of 8 drainers. 25019 */ 25020 if (boot_max_ncpus != -1) 25021 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 25022 else 25023 conn_drain_list_cnt = MIN(max_ncpus, 8); 25024 } 25025 25026 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 25027 KM_SLEEP); 25028 25029 for (i = 0; i < conn_drain_list_cnt; i++) { 25030 mutex_init(&conn_drain_list[i].idl_lock, NULL, 25031 MUTEX_DEFAULT, NULL); 25032 } 25033 } 25034 25035 static void 25036 conn_drain_fini(void) 25037 { 25038 int i; 25039 25040 for (i = 0; i < conn_drain_list_cnt; i++) 25041 mutex_destroy(&conn_drain_list[i].idl_lock); 25042 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 25043 conn_drain_list = NULL; 25044 } 25045 25046 /* 25047 * Note: For an overview of how flowcontrol is handled in IP please see the 25048 * IP Flowcontrol notes at the top of this file. 25049 * 25050 * Flow control has blocked us from proceeding. Insert the given conn in one 25051 * of the conn drain lists. These conn wq's will be qenabled later on when 25052 * STREAMS flow control does a backenable. conn_walk_drain will enable 25053 * the first conn in each of these drain lists. Each of these qenabled conns 25054 * in turn enables the next in the list, after it runs, or when it closes, 25055 * thus sustaining the drain process. 25056 * 25057 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 25058 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 25059 * running at any time, on a given conn, since there can be only 1 service proc 25060 * running on a queue at any time. 25061 */ 25062 void 25063 conn_drain_insert(conn_t *connp) 25064 { 25065 idl_t *idl; 25066 uint_t index; 25067 25068 mutex_enter(&connp->conn_lock); 25069 if (connp->conn_state_flags & CONN_CLOSING) { 25070 /* 25071 * The conn is closing as a result of which CONN_CLOSING 25072 * is set. Return. 25073 */ 25074 mutex_exit(&connp->conn_lock); 25075 return; 25076 } else if (connp->conn_idl == NULL) { 25077 /* 25078 * Assign the next drain list round robin. We dont' use 25079 * a lock, and thus it may not be strictly round robin. 25080 * Atomicity of load/stores is enough to make sure that 25081 * conn_drain_list_index is always within bounds. 25082 */ 25083 index = conn_drain_list_index; 25084 ASSERT(index < conn_drain_list_cnt); 25085 connp->conn_idl = &conn_drain_list[index]; 25086 index++; 25087 if (index == conn_drain_list_cnt) 25088 index = 0; 25089 conn_drain_list_index = index; 25090 } 25091 mutex_exit(&connp->conn_lock); 25092 25093 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25094 if ((connp->conn_drain_prev != NULL) || 25095 (connp->conn_state_flags & CONN_CLOSING)) { 25096 /* 25097 * The conn is already in the drain list, OR 25098 * the conn is closing. We need to check again for 25099 * the closing case again since close can happen 25100 * after we drop the conn_lock, and before we 25101 * acquire the CONN_DRAIN_LIST_LOCK. 25102 */ 25103 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25104 return; 25105 } else { 25106 idl = connp->conn_idl; 25107 } 25108 25109 /* 25110 * The conn is not in the drain list. Insert it at the 25111 * tail of the drain list. The drain list is circular 25112 * and doubly linked. idl_conn points to the 1st element 25113 * in the list. 25114 */ 25115 if (idl->idl_conn == NULL) { 25116 idl->idl_conn = connp; 25117 connp->conn_drain_next = connp; 25118 connp->conn_drain_prev = connp; 25119 } else { 25120 conn_t *head = idl->idl_conn; 25121 25122 connp->conn_drain_next = head; 25123 connp->conn_drain_prev = head->conn_drain_prev; 25124 head->conn_drain_prev->conn_drain_next = connp; 25125 head->conn_drain_prev = connp; 25126 } 25127 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25128 } 25129 25130 /* 25131 * This conn is closing, and we are called from ip_close. OR 25132 * This conn has been serviced by ip_wsrv, and we need to do the tail 25133 * processing. 25134 * If this conn is part of the drain list, we may need to sustain the drain 25135 * process by qenabling the next conn in the drain list. We may also need to 25136 * remove this conn from the list, if it is done. 25137 */ 25138 static void 25139 conn_drain_tail(conn_t *connp, boolean_t closing) 25140 { 25141 idl_t *idl; 25142 25143 /* 25144 * connp->conn_idl is stable at this point, and no lock is needed 25145 * to check it. If we are called from ip_close, close has already 25146 * set CONN_CLOSING, thus freezing the value of conn_idl, and 25147 * called us only because conn_idl is non-null. If we are called thru 25148 * service, conn_idl could be null, but it cannot change because 25149 * service is single-threaded per queue, and there cannot be another 25150 * instance of service trying to call conn_drain_insert on this conn 25151 * now. 25152 */ 25153 ASSERT(!closing || (connp->conn_idl != NULL)); 25154 25155 /* 25156 * If connp->conn_idl is null, the conn has not been inserted into any 25157 * drain list even once since creation of the conn. Just return. 25158 */ 25159 if (connp->conn_idl == NULL) 25160 return; 25161 25162 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25163 25164 if (connp->conn_drain_prev == NULL) { 25165 /* This conn is currently not in the drain list. */ 25166 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25167 return; 25168 } 25169 idl = connp->conn_idl; 25170 if (idl->idl_conn_draining == connp) { 25171 /* 25172 * This conn is the current drainer. If this is the last conn 25173 * in the drain list, we need to do more checks, in the 'if' 25174 * below. Otherwwise we need to just qenable the next conn, 25175 * to sustain the draining, and is handled in the 'else' 25176 * below. 25177 */ 25178 if (connp->conn_drain_next == idl->idl_conn) { 25179 /* 25180 * This conn is the last in this list. This round 25181 * of draining is complete. If idl_repeat is set, 25182 * it means another flow enabling has happened from 25183 * the driver/streams and we need to another round 25184 * of draining. 25185 * If there are more than 2 conns in the drain list, 25186 * do a left rotate by 1, so that all conns except the 25187 * conn at the head move towards the head by 1, and the 25188 * the conn at the head goes to the tail. This attempts 25189 * a more even share for all queues that are being 25190 * drained. 25191 */ 25192 if ((connp->conn_drain_next != connp) && 25193 (idl->idl_conn->conn_drain_next != connp)) { 25194 idl->idl_conn = idl->idl_conn->conn_drain_next; 25195 } 25196 if (idl->idl_repeat) { 25197 qenable(idl->idl_conn->conn_wq); 25198 idl->idl_conn_draining = idl->idl_conn; 25199 idl->idl_repeat = 0; 25200 } else { 25201 idl->idl_conn_draining = NULL; 25202 } 25203 } else { 25204 /* 25205 * If the next queue that we are now qenable'ing, 25206 * is closing, it will remove itself from this list 25207 * and qenable the subsequent queue in ip_close(). 25208 * Serialization is acheived thru idl_lock. 25209 */ 25210 qenable(connp->conn_drain_next->conn_wq); 25211 idl->idl_conn_draining = connp->conn_drain_next; 25212 } 25213 } 25214 if (!connp->conn_did_putbq || closing) { 25215 /* 25216 * Remove ourself from the drain list, if we did not do 25217 * a putbq, or if the conn is closing. 25218 * Note: It is possible that q->q_first is non-null. It means 25219 * that these messages landed after we did a enableok() in 25220 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 25221 * service them. 25222 */ 25223 if (connp->conn_drain_next == connp) { 25224 /* Singleton in the list */ 25225 ASSERT(connp->conn_drain_prev == connp); 25226 idl->idl_conn = NULL; 25227 idl->idl_conn_draining = NULL; 25228 } else { 25229 connp->conn_drain_prev->conn_drain_next = 25230 connp->conn_drain_next; 25231 connp->conn_drain_next->conn_drain_prev = 25232 connp->conn_drain_prev; 25233 if (idl->idl_conn == connp) 25234 idl->idl_conn = connp->conn_drain_next; 25235 ASSERT(idl->idl_conn_draining != connp); 25236 25237 } 25238 connp->conn_drain_next = NULL; 25239 connp->conn_drain_prev = NULL; 25240 } 25241 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25242 } 25243 25244 /* 25245 * Write service routine. Shared perimeter entry point. 25246 * ip_wsrv can be called in any of the following ways. 25247 * 1. The device queue's messages has fallen below the low water mark 25248 * and STREAMS has backenabled the ill_wq. We walk thru all the 25249 * the drain lists and backenable the first conn in each list. 25250 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 25251 * qenabled non-tcp upper layers. We start dequeing messages and call 25252 * ip_wput for each message. 25253 */ 25254 25255 void 25256 ip_wsrv(queue_t *q) 25257 { 25258 conn_t *connp; 25259 ill_t *ill; 25260 mblk_t *mp; 25261 25262 if (q->q_next) { 25263 ill = (ill_t *)q->q_ptr; 25264 if (ill->ill_state_flags == 0) { 25265 /* 25266 * The device flow control has opened up. 25267 * Walk through conn drain lists and qenable the 25268 * first conn in each list. This makes sense only 25269 * if the stream is fully plumbed and setup. 25270 * Hence the if check above. 25271 */ 25272 ip1dbg(("ip_wsrv: walking\n")); 25273 conn_walk_drain(); 25274 } 25275 return; 25276 } 25277 25278 connp = Q_TO_CONN(q); 25279 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 25280 25281 /* 25282 * 1. Set conn_draining flag to signal that service is active. 25283 * 25284 * 2. ip_output determines whether it has been called from service, 25285 * based on the last parameter. If it is IP_WSRV it concludes it 25286 * has been called from service. 25287 * 25288 * 3. Message ordering is preserved by the following logic. 25289 * i. A directly called ip_output (i.e. not thru service) will queue 25290 * the message at the tail, if conn_draining is set (i.e. service 25291 * is running) or if q->q_first is non-null. 25292 * 25293 * ii. If ip_output is called from service, and if ip_output cannot 25294 * putnext due to flow control, it does a putbq. 25295 * 25296 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 25297 * (causing an infinite loop). 25298 */ 25299 ASSERT(!connp->conn_did_putbq); 25300 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 25301 connp->conn_draining = 1; 25302 noenable(q); 25303 while ((mp = getq(q)) != NULL) { 25304 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 25305 if (connp->conn_did_putbq) { 25306 /* ip_wput did a putbq */ 25307 break; 25308 } 25309 } 25310 /* 25311 * At this point, a thread coming down from top, calling 25312 * ip_wput, may end up queueing the message. We have not yet 25313 * enabled the queue, so ip_wsrv won't be called again. 25314 * To avoid this race, check q->q_first again (in the loop) 25315 * If the other thread queued the message before we call 25316 * enableok(), we will catch it in the q->q_first check. 25317 * If the other thread queues the message after we call 25318 * enableok(), ip_wsrv will be called again by STREAMS. 25319 */ 25320 connp->conn_draining = 0; 25321 enableok(q); 25322 } 25323 25324 /* Enable the next conn for draining */ 25325 conn_drain_tail(connp, B_FALSE); 25326 25327 connp->conn_did_putbq = 0; 25328 } 25329 25330 /* 25331 * Walk the list of all conn's calling the function provided with the 25332 * specified argument for each. Note that this only walks conn's that 25333 * have been bound. 25334 * Applies to both IPv4 and IPv6. 25335 */ 25336 static void 25337 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 25338 { 25339 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 25340 func, arg, zoneid); 25341 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 25342 func, arg, zoneid); 25343 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 25344 func, arg, zoneid); 25345 conn_walk_fanout_table(ipcl_proto_fanout, 25346 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 25347 conn_walk_fanout_table(ipcl_proto_fanout_v6, 25348 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 25349 } 25350 25351 /* 25352 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 25353 * of conns that need to be drained, check if drain is already in progress. 25354 * If so set the idl_repeat bit, indicating that the last conn in the list 25355 * needs to reinitiate the drain once again, for the list. If drain is not 25356 * in progress for the list, initiate the draining, by qenabling the 1st 25357 * conn in the list. The drain is self-sustaining, each qenabled conn will 25358 * in turn qenable the next conn, when it is done/blocked/closing. 25359 */ 25360 static void 25361 conn_walk_drain(void) 25362 { 25363 int i; 25364 idl_t *idl; 25365 25366 IP_STAT(ip_conn_walk_drain); 25367 25368 for (i = 0; i < conn_drain_list_cnt; i++) { 25369 idl = &conn_drain_list[i]; 25370 mutex_enter(&idl->idl_lock); 25371 if (idl->idl_conn == NULL) { 25372 mutex_exit(&idl->idl_lock); 25373 continue; 25374 } 25375 /* 25376 * If this list is not being drained currently by 25377 * an ip_wsrv thread, start the process. 25378 */ 25379 if (idl->idl_conn_draining == NULL) { 25380 ASSERT(idl->idl_repeat == 0); 25381 qenable(idl->idl_conn->conn_wq); 25382 idl->idl_conn_draining = idl->idl_conn; 25383 } else { 25384 idl->idl_repeat = 1; 25385 } 25386 mutex_exit(&idl->idl_lock); 25387 } 25388 } 25389 25390 /* 25391 * Walk an conn hash table of `count' buckets, calling func for each entry. 25392 */ 25393 static void 25394 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 25395 zoneid_t zoneid) 25396 { 25397 conn_t *connp; 25398 25399 while (count-- > 0) { 25400 mutex_enter(&connfp->connf_lock); 25401 for (connp = connfp->connf_head; connp != NULL; 25402 connp = connp->conn_next) { 25403 if (zoneid == GLOBAL_ZONEID || 25404 zoneid == connp->conn_zoneid) { 25405 CONN_INC_REF(connp); 25406 mutex_exit(&connfp->connf_lock); 25407 (*func)(connp, arg); 25408 mutex_enter(&connfp->connf_lock); 25409 CONN_DEC_REF(connp); 25410 } 25411 } 25412 mutex_exit(&connfp->connf_lock); 25413 connfp++; 25414 } 25415 } 25416 25417 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 25418 static void 25419 conn_report1(conn_t *connp, void *mp) 25420 { 25421 char buf1[INET6_ADDRSTRLEN]; 25422 char buf2[INET6_ADDRSTRLEN]; 25423 uint_t print_len, buf_len; 25424 25425 ASSERT(connp != NULL); 25426 25427 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 25428 if (buf_len <= 0) 25429 return; 25430 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 25431 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 25432 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 25433 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 25434 "%5d %s/%05d %s/%05d\n", 25435 (void *)connp, (void *)CONNP_TO_RQ(connp), 25436 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 25437 buf1, connp->conn_lport, 25438 buf2, connp->conn_fport); 25439 if (print_len < buf_len) { 25440 ((mblk_t *)mp)->b_wptr += print_len; 25441 } else { 25442 ((mblk_t *)mp)->b_wptr += buf_len; 25443 } 25444 } 25445 25446 /* 25447 * Named Dispatch routine to produce a formatted report on all conns 25448 * that are listed in one of the fanout tables. 25449 * This report is accessed by using the ndd utility to "get" ND variable 25450 * "ip_conn_status". 25451 */ 25452 /* ARGSUSED */ 25453 static int 25454 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 25455 { 25456 (void) mi_mpprintf(mp, 25457 "CONN " MI_COL_HDRPAD_STR 25458 "rfq " MI_COL_HDRPAD_STR 25459 "stq " MI_COL_HDRPAD_STR 25460 " zone local remote"); 25461 25462 /* 25463 * Because of the ndd constraint, at most we can have 64K buffer 25464 * to put in all conn info. So to be more efficient, just 25465 * allocate a 64K buffer here, assuming we need that large buffer. 25466 * This should be OK as only privileged processes can do ndd /dev/ip. 25467 */ 25468 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 25469 /* The following may work even if we cannot get a large buf. */ 25470 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 25471 return (0); 25472 } 25473 25474 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 25475 return (0); 25476 } 25477 25478 /* 25479 * Determine if the ill and multicast aspects of that packets 25480 * "matches" the conn. 25481 */ 25482 boolean_t 25483 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 25484 zoneid_t zoneid) 25485 { 25486 ill_t *in_ill; 25487 boolean_t found; 25488 ipif_t *ipif; 25489 ire_t *ire; 25490 ipaddr_t dst, src; 25491 25492 dst = ipha->ipha_dst; 25493 src = ipha->ipha_src; 25494 25495 /* 25496 * conn_incoming_ill is set by IP_BOUND_IF which limits 25497 * unicast, broadcast and multicast reception to 25498 * conn_incoming_ill. conn_wantpacket itself is called 25499 * only for BROADCAST and multicast. 25500 * 25501 * 1) ip_rput supresses duplicate broadcasts if the ill 25502 * is part of a group. Hence, we should be receiving 25503 * just one copy of broadcast for the whole group. 25504 * Thus, if it is part of the group the packet could 25505 * come on any ill of the group and hence we need a 25506 * match on the group. Otherwise, match on ill should 25507 * be sufficient. 25508 * 25509 * 2) ip_rput does not suppress duplicate multicast packets. 25510 * If there are two interfaces in a ill group and we have 25511 * 2 applications (conns) joined a multicast group G on 25512 * both the interfaces, ilm_lookup_ill filter in ip_rput 25513 * will give us two packets because we join G on both the 25514 * interfaces rather than nominating just one interface 25515 * for receiving multicast like broadcast above. So, 25516 * we have to call ilg_lookup_ill to filter out duplicate 25517 * copies, if ill is part of a group. 25518 */ 25519 in_ill = connp->conn_incoming_ill; 25520 if (in_ill != NULL) { 25521 if (in_ill->ill_group == NULL) { 25522 if (in_ill != ill) 25523 return (B_FALSE); 25524 } else if (in_ill->ill_group != ill->ill_group) { 25525 return (B_FALSE); 25526 } 25527 } 25528 25529 if (!CLASSD(dst)) { 25530 if (connp->conn_zoneid == zoneid) 25531 return (B_TRUE); 25532 /* 25533 * The conn is in a different zone; we need to check that this 25534 * broadcast address is configured in the application's zone and 25535 * on one ill in the group. 25536 */ 25537 ipif = ipif_get_next_ipif(NULL, ill); 25538 if (ipif == NULL) 25539 return (B_FALSE); 25540 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25541 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25542 ipif_refrele(ipif); 25543 if (ire != NULL) { 25544 ire_refrele(ire); 25545 return (B_TRUE); 25546 } else { 25547 return (B_FALSE); 25548 } 25549 } 25550 25551 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25552 connp->conn_zoneid == zoneid) { 25553 /* 25554 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25555 * disabled, therefore we don't dispatch the multicast packet to 25556 * the sending zone. 25557 */ 25558 return (B_FALSE); 25559 } 25560 25561 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25562 connp->conn_zoneid != zoneid) { 25563 /* 25564 * Multicast packet on the loopback interface: we only match 25565 * conns who joined the group in the specified zone. 25566 */ 25567 return (B_FALSE); 25568 } 25569 25570 if (connp->conn_multi_router) { 25571 /* multicast packet and multicast router socket: send up */ 25572 return (B_TRUE); 25573 } 25574 25575 mutex_enter(&connp->conn_lock); 25576 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25577 mutex_exit(&connp->conn_lock); 25578 return (found); 25579 } 25580 25581 /* 25582 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25583 */ 25584 /* ARGSUSED */ 25585 static void 25586 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25587 { 25588 ill_t *ill = (ill_t *)q->q_ptr; 25589 mblk_t *mp1, *mp2; 25590 ipif_t *ipif; 25591 int err = 0; 25592 conn_t *connp = NULL; 25593 ipsq_t *ipsq; 25594 arc_t *arc; 25595 25596 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25597 25598 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25599 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25600 25601 ASSERT(IAM_WRITER_ILL(ill)); 25602 mp2 = mp->b_cont; 25603 mp->b_cont = NULL; 25604 25605 /* 25606 * We have now received the arp bringup completion message 25607 * from ARP. Mark the arp bringup as done. Also if the arp 25608 * stream has already started closing, send up the AR_ARP_CLOSING 25609 * ack now since ARP is waiting in close for this ack. 25610 */ 25611 mutex_enter(&ill->ill_lock); 25612 ill->ill_arp_bringup_pending = 0; 25613 if (ill->ill_arp_closing) { 25614 mutex_exit(&ill->ill_lock); 25615 /* Let's reuse the mp for sending the ack */ 25616 arc = (arc_t *)mp->b_rptr; 25617 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25618 arc->arc_cmd = AR_ARP_CLOSING; 25619 qreply(q, mp); 25620 } else { 25621 mutex_exit(&ill->ill_lock); 25622 freeb(mp); 25623 } 25624 25625 /* We should have an IOCTL waiting on this. */ 25626 ipsq = ill->ill_phyint->phyint_ipsq; 25627 ipif = ipsq->ipsq_pending_ipif; 25628 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25629 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25630 if (mp1 == NULL) { 25631 /* bringup was aborted by the user */ 25632 freemsg(mp2); 25633 return; 25634 } 25635 ASSERT(connp != NULL); 25636 q = CONNP_TO_WQ(connp); 25637 /* 25638 * If the DL_BIND_REQ fails, it is noted 25639 * in arc_name_offset. 25640 */ 25641 err = *((int *)mp2->b_rptr); 25642 if (err == 0) { 25643 if (ipif->ipif_isv6) { 25644 if ((err = ipif_up_done_v6(ipif)) != 0) 25645 ip0dbg(("ip_arp_done: init failed\n")); 25646 } else { 25647 if ((err = ipif_up_done(ipif)) != 0) 25648 ip0dbg(("ip_arp_done: init failed\n")); 25649 } 25650 } else { 25651 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25652 } 25653 25654 freemsg(mp2); 25655 25656 if ((err == 0) && (ill->ill_up_ipifs)) { 25657 err = ill_up_ipifs(ill, q, mp1); 25658 if (err == EINPROGRESS) 25659 return; 25660 } 25661 25662 if (ill->ill_up_ipifs) { 25663 ill_group_cleanup(ill); 25664 } 25665 25666 /* 25667 * The ioctl must complete now without EINPROGRESS 25668 * since ipsq_pending_mp_get has removed the ioctl mblk 25669 * from ipsq_pending_mp. Otherwise the ioctl will be 25670 * stuck for ever in the ipsq. 25671 */ 25672 ASSERT(err != EINPROGRESS); 25673 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25674 } 25675 25676 /* Allocate the private structure */ 25677 static int 25678 ip_priv_alloc(void **bufp) 25679 { 25680 void *buf; 25681 25682 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25683 return (ENOMEM); 25684 25685 *bufp = buf; 25686 return (0); 25687 } 25688 25689 /* Function to delete the private structure */ 25690 void 25691 ip_priv_free(void *buf) 25692 { 25693 ASSERT(buf != NULL); 25694 kmem_free(buf, sizeof (ip_priv_t)); 25695 } 25696 25697 /* 25698 * The entry point for IPPF processing. 25699 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25700 * routine just returns. 25701 * 25702 * When called, ip_process generates an ipp_packet_t structure 25703 * which holds the state information for this packet and invokes the 25704 * the classifier (via ipp_packet_process). The classification, depending on 25705 * configured filters, results in a list of actions for this packet. Invoking 25706 * an action may cause the packet to be dropped, in which case the resulting 25707 * mblk (*mpp) is NULL. proc indicates the callout position for 25708 * this packet and ill_index is the interface this packet on or will leave 25709 * on (inbound and outbound resp.). 25710 */ 25711 void 25712 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25713 { 25714 mblk_t *mp; 25715 ip_priv_t *priv; 25716 ipp_action_id_t aid; 25717 int rc = 0; 25718 ipp_packet_t *pp; 25719 #define IP_CLASS "ip" 25720 25721 /* If the classifier is not loaded, return */ 25722 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25723 return; 25724 } 25725 25726 mp = *mpp; 25727 ASSERT(mp != NULL); 25728 25729 /* Allocate the packet structure */ 25730 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25731 if (rc != 0) { 25732 *mpp = NULL; 25733 freemsg(mp); 25734 return; 25735 } 25736 25737 /* Allocate the private structure */ 25738 rc = ip_priv_alloc((void **)&priv); 25739 if (rc != 0) { 25740 *mpp = NULL; 25741 freemsg(mp); 25742 ipp_packet_free(pp); 25743 return; 25744 } 25745 priv->proc = proc; 25746 priv->ill_index = ill_index; 25747 ipp_packet_set_private(pp, priv, ip_priv_free); 25748 ipp_packet_set_data(pp, mp); 25749 25750 /* Invoke the classifier */ 25751 rc = ipp_packet_process(&pp); 25752 if (pp != NULL) { 25753 mp = ipp_packet_get_data(pp); 25754 ipp_packet_free(pp); 25755 if (rc != 0) { 25756 freemsg(mp); 25757 *mpp = NULL; 25758 } 25759 } else { 25760 *mpp = NULL; 25761 } 25762 #undef IP_CLASS 25763 } 25764 25765 /* 25766 * Propagate a multicast group membership operation (add/drop) on 25767 * all the interfaces crossed by the related multirt routes. 25768 * The call is considered successful if the operation succeeds 25769 * on at least one interface. 25770 */ 25771 static int 25772 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25773 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25774 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25775 mblk_t *first_mp) 25776 { 25777 ire_t *ire_gw; 25778 irb_t *irb; 25779 int error = 0; 25780 opt_restart_t *or; 25781 25782 irb = ire->ire_bucket; 25783 ASSERT(irb != NULL); 25784 25785 ASSERT(DB_TYPE(first_mp) == M_CTL); 25786 25787 or = (opt_restart_t *)first_mp->b_rptr; 25788 IRB_REFHOLD(irb); 25789 for (; ire != NULL; ire = ire->ire_next) { 25790 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25791 continue; 25792 if (ire->ire_addr != group) 25793 continue; 25794 25795 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25796 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25797 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25798 /* No resolver exists for the gateway; skip this ire. */ 25799 if (ire_gw == NULL) 25800 continue; 25801 25802 /* 25803 * This function can return EINPROGRESS. If so the operation 25804 * will be restarted from ip_restart_optmgmt which will 25805 * call ip_opt_set and option processing will restart for 25806 * this option. So we may end up calling 'fn' more than once. 25807 * This requires that 'fn' is idempotent except for the 25808 * return value. The operation is considered a success if 25809 * it succeeds at least once on any one interface. 25810 */ 25811 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25812 NULL, fmode, src, first_mp); 25813 if (error == 0) 25814 or->or_private = CGTP_MCAST_SUCCESS; 25815 25816 if (ip_debug > 0) { 25817 ulong_t off; 25818 char *ksym; 25819 ksym = kobj_getsymname((uintptr_t)fn, &off); 25820 ip2dbg(("ip_multirt_apply_membership: " 25821 "called %s, multirt group 0x%08x via itf 0x%08x, " 25822 "error %d [success %u]\n", 25823 ksym ? ksym : "?", 25824 ntohl(group), ntohl(ire_gw->ire_src_addr), 25825 error, or->or_private)); 25826 } 25827 25828 ire_refrele(ire_gw); 25829 if (error == EINPROGRESS) { 25830 IRB_REFRELE(irb); 25831 return (error); 25832 } 25833 } 25834 IRB_REFRELE(irb); 25835 /* 25836 * Consider the call as successful if we succeeded on at least 25837 * one interface. Otherwise, return the last encountered error. 25838 */ 25839 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25840 } 25841 25842 25843 /* 25844 * Issue a warning regarding a route crossing an interface with an 25845 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25846 * amount of time is logged. 25847 */ 25848 static void 25849 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25850 { 25851 hrtime_t current = gethrtime(); 25852 char buf[16]; 25853 25854 /* Convert interval in ms to hrtime in ns */ 25855 if (multirt_bad_mtu_last_time + 25856 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25857 current) { 25858 cmn_err(CE_WARN, "ip: ignoring multiroute " 25859 "to %s, incorrect MTU %u (expected %u)\n", 25860 ip_dot_addr(ire->ire_addr, buf), 25861 ire->ire_max_frag, max_frag); 25862 25863 multirt_bad_mtu_last_time = current; 25864 } 25865 } 25866 25867 25868 /* 25869 * Get the CGTP (multirouting) filtering status. 25870 * If 0, the CGTP hooks are transparent. 25871 */ 25872 /* ARGSUSED */ 25873 static int 25874 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25875 { 25876 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25877 25878 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25879 return (0); 25880 } 25881 25882 25883 /* 25884 * Set the CGTP (multirouting) filtering status. 25885 * If the status is changed from active to transparent 25886 * or from transparent to active, forward the new status 25887 * to the filtering module (if loaded). 25888 */ 25889 /* ARGSUSED */ 25890 static int 25891 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25892 cred_t *ioc_cr) 25893 { 25894 long new_value; 25895 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25896 25897 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25898 new_value < 0 || new_value > 1) { 25899 return (EINVAL); 25900 } 25901 25902 /* 25903 * Do not enable CGTP filtering - thus preventing the hooks 25904 * from being invoked - if the version number of the 25905 * filtering module hooks does not match. 25906 */ 25907 if ((ip_cgtp_filter_ops != NULL) && 25908 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25909 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25910 "(module hooks version %d, expecting %d)\n", 25911 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25912 return (ENOTSUP); 25913 } 25914 25915 if ((!*ip_cgtp_filter_value) && new_value) { 25916 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25917 ip_cgtp_filter_ops == NULL ? 25918 " (module not loaded)" : ""); 25919 } 25920 if (*ip_cgtp_filter_value && (!new_value)) { 25921 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25922 ip_cgtp_filter_ops == NULL ? 25923 " (module not loaded)" : ""); 25924 } 25925 25926 if (ip_cgtp_filter_ops != NULL) { 25927 int res; 25928 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25929 return (res); 25930 } 25931 } 25932 25933 *ip_cgtp_filter_value = (boolean_t)new_value; 25934 25935 return (0); 25936 } 25937 25938 25939 /* 25940 * Return the expected CGTP hooks version number. 25941 */ 25942 int 25943 ip_cgtp_filter_supported(void) 25944 { 25945 return (ip_cgtp_filter_rev); 25946 } 25947 25948 25949 /* 25950 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25951 * or by invoking this function. In the first case, the version number 25952 * of the registered structure is checked at hooks activation time 25953 * in ip_cgtp_filter_set(). 25954 */ 25955 int 25956 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25957 { 25958 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25959 return (ENOTSUP); 25960 25961 ip_cgtp_filter_ops = ops; 25962 return (0); 25963 } 25964 25965 static squeue_func_t 25966 ip_squeue_switch(int val) 25967 { 25968 squeue_func_t rval = squeue_fill; 25969 25970 switch (val) { 25971 case IP_SQUEUE_ENTER_NODRAIN: 25972 rval = squeue_enter_nodrain; 25973 break; 25974 case IP_SQUEUE_ENTER: 25975 rval = squeue_enter; 25976 break; 25977 default: 25978 break; 25979 } 25980 return (rval); 25981 } 25982 25983 /* ARGSUSED */ 25984 static int 25985 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25986 caddr_t addr, cred_t *cr) 25987 { 25988 int *v = (int *)addr; 25989 long new_value; 25990 25991 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25992 return (EINVAL); 25993 25994 ip_input_proc = ip_squeue_switch(new_value); 25995 *v = new_value; 25996 return (0); 25997 } 25998 25999 /* ARGSUSED */ 26000 static int 26001 ip_int_set(queue_t *q, mblk_t *mp, char *value, 26002 caddr_t addr, cred_t *cr) 26003 { 26004 int *v = (int *)addr; 26005 long new_value; 26006 26007 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26008 return (EINVAL); 26009 26010 *v = new_value; 26011 return (0); 26012 } 26013 26014 static void 26015 ip_kstat_init(void) 26016 { 26017 ip_named_kstat_t template = { 26018 { "forwarding", KSTAT_DATA_UINT32, 0 }, 26019 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 26020 { "inReceives", KSTAT_DATA_UINT32, 0 }, 26021 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 26022 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 26023 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 26024 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 26025 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 26026 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 26027 { "outRequests", KSTAT_DATA_UINT32, 0 }, 26028 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 26029 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 26030 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 26031 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 26032 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 26033 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 26034 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 26035 { "fragFails", KSTAT_DATA_UINT32, 0 }, 26036 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 26037 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 26038 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 26039 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 26040 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 26041 { "inErrs", KSTAT_DATA_UINT32, 0 }, 26042 { "noPorts", KSTAT_DATA_UINT32, 0 }, 26043 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 26044 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 26045 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 26046 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 26047 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 26048 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 26049 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 26050 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 26051 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 26052 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 26053 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 26054 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 26055 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 26056 }; 26057 26058 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 26059 NUM_OF_FIELDS(ip_named_kstat_t), 26060 0); 26061 if (!ip_mibkp) 26062 return; 26063 26064 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 26065 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 26066 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 26067 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 26068 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 26069 26070 template.netToMediaEntrySize.value.i32 = 26071 sizeof (mib2_ipNetToMediaEntry_t); 26072 26073 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 26074 26075 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 26076 26077 ip_mibkp->ks_update = ip_kstat_update; 26078 26079 kstat_install(ip_mibkp); 26080 } 26081 26082 static void 26083 ip_kstat_fini(void) 26084 { 26085 26086 if (ip_mibkp != NULL) { 26087 kstat_delete(ip_mibkp); 26088 ip_mibkp = NULL; 26089 } 26090 } 26091 26092 static int 26093 ip_kstat_update(kstat_t *kp, int rw) 26094 { 26095 ip_named_kstat_t *ipkp; 26096 26097 if (!kp || !kp->ks_data) 26098 return (EIO); 26099 26100 if (rw == KSTAT_WRITE) 26101 return (EACCES); 26102 26103 ipkp = (ip_named_kstat_t *)kp->ks_data; 26104 26105 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 26106 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 26107 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 26108 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 26109 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 26110 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 26111 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 26112 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 26113 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 26114 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 26115 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 26116 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 26117 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 26118 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 26119 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 26120 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 26121 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 26122 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 26123 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 26124 26125 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 26126 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 26127 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 26128 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 26129 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 26130 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 26131 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 26132 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 26133 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 26134 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 26135 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 26136 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 26137 26138 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 26139 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 26140 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 26141 26142 return (0); 26143 } 26144 26145 static void 26146 icmp_kstat_init(void) 26147 { 26148 icmp_named_kstat_t template = { 26149 { "inMsgs", KSTAT_DATA_UINT32 }, 26150 { "inErrors", KSTAT_DATA_UINT32 }, 26151 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 26152 { "inTimeExcds", KSTAT_DATA_UINT32 }, 26153 { "inParmProbs", KSTAT_DATA_UINT32 }, 26154 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 26155 { "inRedirects", KSTAT_DATA_UINT32 }, 26156 { "inEchos", KSTAT_DATA_UINT32 }, 26157 { "inEchoReps", KSTAT_DATA_UINT32 }, 26158 { "inTimestamps", KSTAT_DATA_UINT32 }, 26159 { "inTimestampReps", KSTAT_DATA_UINT32 }, 26160 { "inAddrMasks", KSTAT_DATA_UINT32 }, 26161 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 26162 { "outMsgs", KSTAT_DATA_UINT32 }, 26163 { "outErrors", KSTAT_DATA_UINT32 }, 26164 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 26165 { "outTimeExcds", KSTAT_DATA_UINT32 }, 26166 { "outParmProbs", KSTAT_DATA_UINT32 }, 26167 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 26168 { "outRedirects", KSTAT_DATA_UINT32 }, 26169 { "outEchos", KSTAT_DATA_UINT32 }, 26170 { "outEchoReps", KSTAT_DATA_UINT32 }, 26171 { "outTimestamps", KSTAT_DATA_UINT32 }, 26172 { "outTimestampReps", KSTAT_DATA_UINT32 }, 26173 { "outAddrMasks", KSTAT_DATA_UINT32 }, 26174 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 26175 { "inChksumErrs", KSTAT_DATA_UINT32 }, 26176 { "inUnknowns", KSTAT_DATA_UINT32 }, 26177 { "inFragNeeded", KSTAT_DATA_UINT32 }, 26178 { "outFragNeeded", KSTAT_DATA_UINT32 }, 26179 { "outDrops", KSTAT_DATA_UINT32 }, 26180 { "inOverFlows", KSTAT_DATA_UINT32 }, 26181 { "inBadRedirects", KSTAT_DATA_UINT32 }, 26182 }; 26183 26184 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 26185 NUM_OF_FIELDS(icmp_named_kstat_t), 26186 0); 26187 if (icmp_mibkp == NULL) 26188 return; 26189 26190 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 26191 26192 icmp_mibkp->ks_update = icmp_kstat_update; 26193 26194 kstat_install(icmp_mibkp); 26195 } 26196 26197 static void 26198 icmp_kstat_fini(void) 26199 { 26200 26201 if (icmp_mibkp != NULL) { 26202 kstat_delete(icmp_mibkp); 26203 icmp_mibkp = NULL; 26204 } 26205 } 26206 26207 static int 26208 icmp_kstat_update(kstat_t *kp, int rw) 26209 { 26210 icmp_named_kstat_t *icmpkp; 26211 26212 if ((kp == NULL) || (kp->ks_data == NULL)) 26213 return (EIO); 26214 26215 if (rw == KSTAT_WRITE) 26216 return (EACCES); 26217 26218 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 26219 26220 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 26221 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 26222 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 26223 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 26224 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 26225 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 26226 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 26227 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 26228 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 26229 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 26230 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 26231 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 26232 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 26233 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 26234 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 26235 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 26236 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 26237 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 26238 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 26239 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 26240 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 26241 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 26242 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 26243 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 26244 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 26245 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 26246 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 26247 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 26248 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 26249 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 26250 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 26251 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 26252 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 26253 26254 return (0); 26255 } 26256 26257 /* 26258 * This is the fanout function for raw socket opened for SCTP. Note 26259 * that it is called after SCTP checks that there is no socket which 26260 * wants a packet. Then before SCTP handles this out of the blue packet, 26261 * this function is called to see if there is any raw socket for SCTP. 26262 * If there is and it is bound to the correct address, the packet will 26263 * be sent to that socket. Note that only one raw socket can be bound to 26264 * a port. This is assured in ipcl_sctp_hash_insert(); 26265 */ 26266 void 26267 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 26268 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 26269 uint_t ipif_seqid, zoneid_t zoneid) 26270 { 26271 conn_t *connp; 26272 queue_t *rq; 26273 mblk_t *first_mp; 26274 boolean_t secure; 26275 ip6_t *ip6h; 26276 26277 first_mp = mp; 26278 if (mctl_present) { 26279 mp = first_mp->b_cont; 26280 secure = ipsec_in_is_secure(first_mp); 26281 ASSERT(mp != NULL); 26282 } else { 26283 secure = B_FALSE; 26284 } 26285 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 26286 26287 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 26288 if (connp == NULL) { 26289 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 26290 mctl_present); 26291 return; 26292 } 26293 rq = connp->conn_rq; 26294 if (!canputnext(rq)) { 26295 CONN_DEC_REF(connp); 26296 BUMP_MIB(&ip_mib, rawipInOverflows); 26297 freemsg(first_mp); 26298 return; 26299 } 26300 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 26301 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 26302 first_mp = ipsec_check_inbound_policy(first_mp, connp, 26303 (isv4 ? ipha : NULL), ip6h, mctl_present); 26304 if (first_mp == NULL) { 26305 CONN_DEC_REF(connp); 26306 return; 26307 } 26308 } 26309 /* 26310 * We probably should not send M_CTL message up to 26311 * raw socket. 26312 */ 26313 if (mctl_present) 26314 freeb(first_mp); 26315 26316 /* Initiate IPPF processing here if needed. */ 26317 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 26318 (!isv4 && IP6_IN_IPP(flags))) { 26319 ip_process(IPP_LOCAL_IN, &mp, 26320 recv_ill->ill_phyint->phyint_ifindex); 26321 if (mp == NULL) { 26322 CONN_DEC_REF(connp); 26323 return; 26324 } 26325 } 26326 26327 if (connp->conn_recvif || connp->conn_recvslla || 26328 ((connp->conn_ipv6_recvpktinfo || 26329 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 26330 (flags & IP_FF_IP6INFO))) { 26331 int in_flags = 0; 26332 26333 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 26334 in_flags = IPF_RECVIF; 26335 } 26336 if (connp->conn_recvslla) { 26337 in_flags |= IPF_RECVSLLA; 26338 } 26339 if (isv4) { 26340 mp = ip_add_info(mp, recv_ill, in_flags); 26341 } else { 26342 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 26343 if (mp == NULL) { 26344 CONN_DEC_REF(connp); 26345 return; 26346 } 26347 } 26348 } 26349 26350 BUMP_MIB(&ip_mib, ipInDelivers); 26351 /* 26352 * We are sending the IPSEC_IN message also up. Refer 26353 * to comments above this function. 26354 */ 26355 putnext(rq, mp); 26356 CONN_DEC_REF(connp); 26357 } 26358 26359 /* 26360 * Martian Address Filtering [RFC 1812, Section 5.3.7] 26361 */ 26362 static boolean_t 26363 ip_no_forward(ipha_t *ipha, ill_t *ill) 26364 { 26365 ipaddr_t ip_src, ip_dst; 26366 ire_t *src_ire = NULL; 26367 26368 ip_src = ntohl(ipha->ipha_src); 26369 ip_dst = ntohl(ipha->ipha_dst); 26370 26371 if (ip_dst == INADDR_ANY) 26372 goto dont_forward; 26373 26374 if (IN_CLASSD(ip_src)) 26375 goto dont_forward; 26376 26377 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 26378 goto dont_forward; 26379 26380 if (IN_BADCLASS(ip_dst)) 26381 goto dont_forward; 26382 26383 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 26384 ALL_ZONES, MATCH_IRE_TYPE); 26385 if (src_ire != NULL) { 26386 ire_refrele(src_ire); 26387 goto dont_forward; 26388 } 26389 26390 return (B_FALSE); 26391 26392 dont_forward: 26393 if (ip_debug > 2) { 26394 printf("ip_no_forward: dropping packet received on %s\n", 26395 ill->ill_name); 26396 pr_addr_dbg("ip_no_forward: from src %s\n", 26397 AF_INET, &ipha->ipha_src); 26398 pr_addr_dbg("ip_no_forward: to dst %s\n", 26399 AF_INET, &ipha->ipha_dst); 26400 } 26401 BUMP_MIB(&ip_mib, ipForwProhibits); 26402 return (B_TRUE); 26403 } 26404 26405 static boolean_t 26406 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 26407 { 26408 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 26409 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 26410 if (ip_debug > 2) { 26411 if (ill != NULL) { 26412 printf("ip_loopback_src_or_dst: " 26413 "dropping packet received on %s\n", 26414 ill->ill_name); 26415 } else { 26416 printf("ip_loopback_src_or_dst: " 26417 "dropping packet\n"); 26418 } 26419 26420 pr_addr_dbg( 26421 "ip_loopback_src_or_dst: from src %s\n", 26422 AF_INET, &ipha->ipha_src); 26423 pr_addr_dbg( 26424 "ip_loopback_src_or_dst: to dst %s\n", 26425 AF_INET, &ipha->ipha_dst); 26426 } 26427 26428 BUMP_MIB(&ip_mib, ipInAddrErrors); 26429 return (B_TRUE); 26430 } 26431 return (B_FALSE); 26432 } 26433