xref: /titanic_50/usr/src/uts/common/inet/ip/ip.c (revision bd211b8556ef6b18ebf137419bd5555d65271664)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/kmem.h>
55 #include <sys/sdt.h>
56 #include <sys/socket.h>
57 #include <sys/vtrace.h>
58 #include <sys/isa_defs.h>
59 #include <sys/mac.h>
60 #include <net/if.h>
61 #include <net/if_arp.h>
62 #include <net/route.h>
63 #include <sys/sockio.h>
64 #include <netinet/in.h>
65 #include <net/if_dl.h>
66 
67 #include <inet/common.h>
68 #include <inet/mi.h>
69 #include <inet/mib2.h>
70 #include <inet/nd.h>
71 #include <inet/arp.h>
72 #include <inet/snmpcom.h>
73 #include <inet/optcom.h>
74 #include <inet/kstatcom.h>
75 
76 #include <netinet/igmp_var.h>
77 #include <netinet/ip6.h>
78 #include <netinet/icmp6.h>
79 #include <netinet/sctp.h>
80 
81 #include <inet/ip.h>
82 #include <inet/ip_impl.h>
83 #include <inet/ip6.h>
84 #include <inet/ip6_asp.h>
85 #include <inet/tcp.h>
86 #include <inet/tcp_impl.h>
87 #include <inet/ip_multi.h>
88 #include <inet/ip_if.h>
89 #include <inet/ip_ire.h>
90 #include <inet/ip_ftable.h>
91 #include <inet/ip_rts.h>
92 #include <inet/ip_ndp.h>
93 #include <inet/ip_listutils.h>
94 #include <netinet/igmp.h>
95 #include <netinet/ip_mroute.h>
96 #include <inet/ipp_common.h>
97 
98 #include <net/pfkeyv2.h>
99 #include <inet/ipsec_info.h>
100 #include <inet/sadb.h>
101 #include <inet/ipsec_impl.h>
102 #include <sys/iphada.h>
103 #include <inet/tun.h>
104 #include <inet/ipdrop.h>
105 #include <inet/ip_netinfo.h>
106 
107 #include <sys/ethernet.h>
108 #include <net/if_types.h>
109 #include <sys/cpuvar.h>
110 
111 #include <ipp/ipp.h>
112 #include <ipp/ipp_impl.h>
113 #include <ipp/ipgpc/ipgpc.h>
114 
115 #include <sys/multidata.h>
116 #include <sys/pattr.h>
117 
118 #include <inet/ipclassifier.h>
119 #include <inet/sctp_ip.h>
120 #include <inet/sctp/sctp_impl.h>
121 #include <inet/udp_impl.h>
122 #include <inet/rawip_impl.h>
123 #include <inet/rts_impl.h>
124 #include <sys/sunddi.h>
125 
126 #include <sys/tsol/label.h>
127 #include <sys/tsol/tnet.h>
128 
129 #include <rpc/pmap_prot.h>
130 
131 /*
132  * Values for squeue switch:
133  * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain
134  * IP_SQUEUE_ENTER: squeue_enter
135  * IP_SQUEUE_FILL: squeue_fill
136  */
137 int ip_squeue_enter = 2;	/* Setable in /etc/system */
138 
139 squeue_func_t ip_input_proc;
140 #define	SET_BPREV_FLAG(x)	((mblk_t *)(uintptr_t)(x))
141 
142 /*
143  * Setable in /etc/system
144  */
145 int ip_poll_normal_ms = 100;
146 int ip_poll_normal_ticks = 0;
147 int ip_modclose_ackwait_ms = 3000;
148 
149 /*
150  * It would be nice to have these present only in DEBUG systems, but the
151  * current design of the global symbol checking logic requires them to be
152  * unconditionally present.
153  */
154 uint_t ip_thread_data;			/* TSD key for debug support */
155 krwlock_t ip_thread_rwlock;
156 list_t	ip_thread_list;
157 
158 /*
159  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
160  */
161 
162 struct listptr_s {
163 	mblk_t	*lp_head;	/* pointer to the head of the list */
164 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
165 };
166 
167 typedef struct listptr_s listptr_t;
168 
169 /*
170  * This is used by ip_snmp_get_mib2_ip_route_media and
171  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
172  */
173 typedef struct iproutedata_s {
174 	uint_t		ird_idx;
175 	listptr_t	ird_route;	/* ipRouteEntryTable */
176 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
177 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
178 } iproutedata_t;
179 
180 /*
181  * Cluster specific hooks. These should be NULL when booted as a non-cluster
182  */
183 
184 /*
185  * Hook functions to enable cluster networking
186  * On non-clustered systems these vectors must always be NULL.
187  *
188  * Hook function to Check ip specified ip address is a shared ip address
189  * in the cluster
190  *
191  */
192 int (*cl_inet_isclusterwide)(uint8_t protocol,
193     sa_family_t addr_family, uint8_t *laddrp) = NULL;
194 
195 /*
196  * Hook function to generate cluster wide ip fragment identifier
197  */
198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
199     uint8_t *laddrp, uint8_t *faddrp) = NULL;
200 
201 /*
202  * Synchronization notes:
203  *
204  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
205  * MT level protection given by STREAMS. IP uses a combination of its own
206  * internal serialization mechanism and standard Solaris locking techniques.
207  * The internal serialization is per phyint (no IPMP) or per IPMP group.
208  * This is used to serialize plumbing operations, IPMP operations, certain
209  * multicast operations, most set ioctls, igmp/mld timers etc.
210  *
211  * Plumbing is a long sequence of operations involving message
212  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
213  * involved in plumbing operations. A natural model is to serialize these
214  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
215  * parallel without any interference. But various set ioctls on hme0 are best
216  * serialized. However if the system uses IPMP, the operations are easier if
217  * they are serialized on a per IPMP group basis since IPMP operations
218  * happen across ill's of a group. Thus the lowest common denominator is to
219  * serialize most set ioctls, multicast join/leave operations, IPMP operations
220  * igmp/mld timer operations, and processing of DLPI control messages received
221  * from drivers on a per IPMP group basis. If the system does not employ
222  * IPMP the serialization is on a per phyint basis. This serialization is
223  * provided by the ipsq_t and primitives operating on this. Details can
224  * be found in ip_if.c above the core primitives operating on ipsq_t.
225  *
226  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
227  * Simiarly lookup of an ire by a thread also returns a refheld ire.
228  * In addition ipif's and ill's referenced by the ire are also indirectly
229  * refheld. Thus no ipif or ill can vanish nor can critical parameters like
230  * the ipif's address or netmask change as long as an ipif is refheld
231  * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the
232  * address of an ipif has to go through the ipsq_t. This ensures that only
233  * 1 such exclusive operation proceeds at any time on the ipif. It then
234  * deletes all ires associated with this ipif, and waits for all refcnts
235  * associated with this ipif to come down to zero. The address is changed
236  * only after the ipif has been quiesced. Then the ipif is brought up again.
237  * More details are described above the comment in ip_sioctl_flags.
238  *
239  * Packet processing is based mostly on IREs and are fully multi-threaded
240  * using standard Solaris MT techniques.
241  *
242  * There are explicit locks in IP to handle:
243  * - The ip_g_head list maintained by mi_open_link() and friends.
244  *
245  * - The reassembly data structures (one lock per hash bucket)
246  *
247  * - conn_lock is meant to protect conn_t fields. The fields actually
248  *   protected by conn_lock are documented in the conn_t definition.
249  *
250  * - ire_lock to protect some of the fields of the ire, IRE tables
251  *   (one lock per hash bucket). Refer to ip_ire.c for details.
252  *
253  * - ndp_g_lock and nce_lock for protecting NCEs.
254  *
255  * - ill_lock protects fields of the ill and ipif. Details in ip.h
256  *
257  * - ill_g_lock: This is a global reader/writer lock. Protects the following
258  *	* The AVL tree based global multi list of all ills.
259  *	* The linked list of all ipifs of an ill
260  *	* The <ill-ipsq> mapping
261  *	* The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next
262  *	* The illgroup list threaded by ill_group_next.
263  *	* <ill-phyint> association
264  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
265  *   into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion
266  *   of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill
267  *   will all have to hold the ill_g_lock as writer for the actual duration
268  *   of the insertion/deletion/change. More details about the <ill-ipsq> mapping
269  *   may be found in the IPMP section.
270  *
271  * - ill_lock:  This is a per ill mutex.
272  *   It protects some members of the ill and is documented below.
273  *   It also protects the <ill-ipsq> mapping
274  *   It also protects the illgroup list threaded by ill_group_next.
275  *   It also protects the <ill-phyint> assoc.
276  *   It also protects the list of ipifs hanging off the ill.
277  *
278  * - ipsq_lock: This is a per ipsq_t mutex lock.
279  *   This protects all the other members of the ipsq struct except
280  *   ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock
281  *
282  * - illgrp_lock: This is a per ill_group mutex lock.
283  *   The only thing it protects is the illgrp_ill_schednext member of ill_group
284  *   which dictates which is the next ill in an ill_group that is to be chosen
285  *   for sending outgoing packets, through creation of an IRE_CACHE that
286  *   references this ill.
287  *
288  * - phyint_lock: This is a per phyint mutex lock. Protects just the
289  *   phyint_flags
290  *
291  * - ip_g_nd_lock: This is a global reader/writer lock.
292  *   Any call to nd_load to load a new parameter to the ND table must hold the
293  *   lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock
294  *   as reader.
295  *
296  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
297  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
298  *   uniqueness check also done atomically.
299  *
300  * - ipsec_capab_ills_lock: This readers/writer lock protects the global
301  *   lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken
302  *   as a writer when adding or deleting elements from these lists, and
303  *   as a reader when walking these lists to send a SADB update to the
304  *   IPsec capable ills.
305  *
306  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
307  *   group list linked by ill_usesrc_grp_next. It also protects the
308  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
309  *   group is being added or deleted.  This lock is taken as a reader when
310  *   walking the list/group(eg: to get the number of members in a usesrc group).
311  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
312  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
313  *   example, it is not necessary to take this lock in the initial portion
314  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and
315  *   ip_sioctl_flags since the these operations are executed exclusively and
316  *   that ensures that the "usesrc group state" cannot change. The "usesrc
317  *   group state" change can happen only in the latter part of
318  *   ip_sioctl_slifusesrc and in ill_delete.
319  *
320  * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications.
321  *
322  * To change the <ill-phyint> association, the ill_g_lock must be held
323  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
324  * must be held.
325  *
326  * To change the <ill-ipsq> association the ill_g_lock must be held as writer
327  * and the ill_lock of the ill in question must be held.
328  *
329  * To change the <ill-illgroup> association the ill_g_lock must be held as
330  * writer and the ill_lock of the ill in question must be held.
331  *
332  * To add or delete an ipif from the list of ipifs hanging off the ill,
333  * ill_g_lock (writer) and ill_lock must be held and the thread must be
334  * a writer on the associated ipsq,.
335  *
336  * To add or delete an ill to the system, the ill_g_lock must be held as
337  * writer and the thread must be a writer on the associated ipsq.
338  *
339  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
340  * must be a writer on the associated ipsq.
341  *
342  * Lock hierarchy
343  *
344  * Some lock hierarchy scenarios are listed below.
345  *
346  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
347  * ill_g_lock -> illgrp_lock -> ill_lock
348  * ill_g_lock -> ill_lock(s) -> phyint_lock
349  * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock
350  * ill_g_lock -> ip_addr_avail_lock
351  * conn_lock -> irb_lock -> ill_lock -> ire_lock
352  * ill_g_lock -> ip_g_nd_lock
353  *
354  * When more than 1 ill lock is needed to be held, all ill lock addresses
355  * are sorted on address and locked starting from highest addressed lock
356  * downward.
357  *
358  * IPsec scenarios
359  *
360  * ipsa_lock -> ill_g_lock -> ill_lock
361  * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock
362  * ipsec_capab_ills_lock -> ipsa_lock
363  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
364  *
365  * Trusted Solaris scenarios
366  *
367  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
368  * igsa_lock -> gcdb_lock
369  * gcgrp_rwlock -> ire_lock
370  * gcgrp_rwlock -> gcdb_lock
371  *
372  *
373  * Routing/forwarding table locking notes:
374  *
375  * Lock acquisition order: Radix tree lock, irb_lock.
376  * Requirements:
377  * i.  Walker must not hold any locks during the walker callback.
378  * ii  Walker must not see a truncated tree during the walk because of any node
379  *     deletion.
380  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
381  *     in many places in the code to walk the irb list. Thus even if all the
382  *     ires in a bucket have been deleted, we still can't free the radix node
383  *     until the ires have actually been inactive'd (freed).
384  *
385  * Tree traversal - Need to hold the global tree lock in read mode.
386  * Before dropping the global tree lock, need to either increment the ire_refcnt
387  * to ensure that the radix node can't be deleted.
388  *
389  * Tree add - Need to hold the global tree lock in write mode to add a
390  * radix node. To prevent the node from being deleted, increment the
391  * irb_refcnt, after the node is added to the tree. The ire itself is
392  * added later while holding the irb_lock, but not the tree lock.
393  *
394  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
395  * All associated ires must be inactive (i.e. freed), and irb_refcnt
396  * must be zero.
397  *
398  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
399  * global tree lock (read mode) for traversal.
400  *
401  * IPsec notes :
402  *
403  * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message
404  * in front of the actual packet. For outbound datagrams, the M_CTL
405  * contains a ipsec_out_t (defined in ipsec_info.h), which has the
406  * information used by the IPsec code for applying the right level of
407  * protection. The information initialized by IP in the ipsec_out_t
408  * is determined by the per-socket policy or global policy in the system.
409  * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in
410  * ipsec_info.h) which starts out with nothing in it. It gets filled
411  * with the right information if it goes through the AH/ESP code, which
412  * happens if the incoming packet is secure. The information initialized
413  * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether
414  * the policy requirements needed by per-socket policy or global policy
415  * is met or not.
416  *
417  * If there is both per-socket policy (set using setsockopt) and there
418  * is also global policy match for the 5 tuples of the socket,
419  * ipsec_override_policy() makes the decision of which one to use.
420  *
421  * For fully connected sockets i.e dst, src [addr, port] is known,
422  * conn_policy_cached is set indicating that policy has been cached.
423  * conn_in_enforce_policy may or may not be set depending on whether
424  * there is a global policy match or per-socket policy match.
425  * Policy inheriting happpens in ip_bind during the ipa_conn_t bind.
426  * Once the right policy is set on the conn_t, policy cannot change for
427  * this socket. This makes life simpler for TCP (UDP ?) where
428  * re-transmissions go out with the same policy. For symmetry, policy
429  * is cached for fully connected UDP sockets also. Thus if policy is cached,
430  * it also implies that policy is latched i.e policy cannot change
431  * on these sockets. As we have the right policy on the conn, we don't
432  * have to lookup global policy for every outbound and inbound datagram
433  * and thus serving as an optimization. Note that a global policy change
434  * does not affect fully connected sockets if they have policy. If fully
435  * connected sockets did not have any policy associated with it, global
436  * policy change may affect them.
437  *
438  * IP Flow control notes:
439  *
440  * Non-TCP streams are flow controlled by IP. On the send side, if the packet
441  * cannot be sent down to the driver by IP, because of a canput failure, IP
442  * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq.
443  * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained
444  * when the flowcontrol condition subsides. Ultimately STREAMS backenables the
445  * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the
446  * first conn in the list of conn's to be drained. ip_wsrv on this conn drains
447  * the queued messages, and removes the conn from the drain list, if all
448  * messages were drained. It also qenables the next conn in the drain list to
449  * continue the drain process.
450  *
451  * In reality the drain list is not a single list, but a configurable number
452  * of lists. The ip_wsrv on the IP module, qenables the first conn in each
453  * list. If the ip_wsrv of the next qenabled conn does not run, because the
454  * stream closes, ip_close takes responsibility to qenable the next conn in
455  * the drain list. The directly called ip_wput path always does a putq, if
456  * it cannot putnext. Thus synchronization problems are handled between
457  * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only
458  * functions that manipulate this drain list. Furthermore conn_drain_insert
459  * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv
460  * running on a queue at any time. conn_drain_tail can be simultaneously called
461  * from both ip_wsrv and ip_close.
462  *
463  * IPQOS notes:
464  *
465  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
466  * and IPQoS modules. IPPF includes hooks in IP at different control points
467  * (callout positions) which direct packets to IPQoS modules for policy
468  * processing. Policies, if present, are global.
469  *
470  * The callout positions are located in the following paths:
471  *		o local_in (packets destined for this host)
472  *		o local_out (packets orginating from this host )
473  *		o fwd_in  (packets forwarded by this m/c - inbound)
474  *		o fwd_out (packets forwarded by this m/c - outbound)
475  * Hooks at these callout points can be enabled/disabled using the ndd variable
476  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
477  * By default all the callout positions are enabled.
478  *
479  * Outbound (local_out)
480  * Hooks are placed in ip_wput_ire and ipsec_out_process.
481  *
482  * Inbound (local_in)
483  * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and
484  * TCP and UDP fanout routines.
485  *
486  * Forwarding (in and out)
487  * Hooks are placed in ip_rput_forward.
488  *
489  * IP Policy Framework processing (IPPF processing)
490  * Policy processing for a packet is initiated by ip_process, which ascertains
491  * that the classifier (ipgpc) is loaded and configured, failing which the
492  * packet resumes normal processing in IP. If the clasifier is present, the
493  * packet is acted upon by one or more IPQoS modules (action instances), per
494  * filters configured in ipgpc and resumes normal IP processing thereafter.
495  * An action instance can drop a packet in course of its processing.
496  *
497  * A boolean variable, ip_policy, is used in all the fanout routines that can
498  * invoke ip_process for a packet. This variable indicates if the packet should
499  * to be sent for policy processing. The variable is set to B_TRUE by default,
500  * i.e. when the routines are invoked in the normal ip procesing path for a
501  * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout;
502  * ip_policy is set to B_FALSE for all the routines called in these two
503  * functions because, in the former case,  we don't process loopback traffic
504  * currently while in the latter, the packets have already been processed in
505  * icmp_inbound.
506  *
507  * Zones notes:
508  *
509  * The partitioning rules for networking are as follows:
510  * 1) Packets coming from a zone must have a source address belonging to that
511  * zone.
512  * 2) Packets coming from a zone can only be sent on a physical interface on
513  * which the zone has an IP address.
514  * 3) Between two zones on the same machine, packet delivery is only allowed if
515  * there's a matching route for the destination and zone in the forwarding
516  * table.
517  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
518  * different zones can bind to the same port with the wildcard address
519  * (INADDR_ANY).
520  *
521  * The granularity of interface partitioning is at the logical interface level.
522  * Therefore, every zone has its own IP addresses, and incoming packets can be
523  * attributed to a zone unambiguously. A logical interface is placed into a zone
524  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
525  * structure. Rule (1) is implemented by modifying the source address selection
526  * algorithm so that the list of eligible addresses is filtered based on the
527  * sending process zone.
528  *
529  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
530  * across all zones, depending on their type. Here is the break-up:
531  *
532  * IRE type				Shared/exclusive
533  * --------				----------------
534  * IRE_BROADCAST			Exclusive
535  * IRE_DEFAULT (default routes)		Shared (*)
536  * IRE_LOCAL				Exclusive (x)
537  * IRE_LOOPBACK				Exclusive
538  * IRE_PREFIX (net routes)		Shared (*)
539  * IRE_CACHE				Exclusive
540  * IRE_IF_NORESOLVER (interface routes)	Exclusive
541  * IRE_IF_RESOLVER (interface routes)	Exclusive
542  * IRE_HOST (host routes)		Shared (*)
543  *
544  * (*) A zone can only use a default or off-subnet route if the gateway is
545  * directly reachable from the zone, that is, if the gateway's address matches
546  * one of the zone's logical interfaces.
547  *
548  * (x) IRE_LOCAL are handled a bit differently, since for all other entries
549  * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source
550  * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP
551  * address of the zone itself (the destination). Since IRE_LOCAL is used
552  * for communication between zones, ip_wput_ire has special logic to set
553  * the right source address when sending using an IRE_LOCAL.
554  *
555  * Furthermore, when ip_restrict_interzone_loopback is set (the default),
556  * ire_cache_lookup restricts loopback using an IRE_LOCAL
557  * between zone to the case when L2 would have conceptually looped the packet
558  * back, i.e. the loopback which is required since neither Ethernet drivers
559  * nor Ethernet hardware loops them back. This is the case when the normal
560  * routes (ignoring IREs with different zoneids) would send out the packet on
561  * the same ill (or ill group) as the ill with which is IRE_LOCAL is
562  * associated.
563  *
564  * Multiple zones can share a common broadcast address; typically all zones
565  * share the 255.255.255.255 address. Incoming as well as locally originated
566  * broadcast packets must be dispatched to all the zones on the broadcast
567  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
568  * since some zones may not be on the 10.16.72/24 network. To handle this, each
569  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
570  * sent to every zone that has an IRE_BROADCAST entry for the destination
571  * address on the input ill, see conn_wantpacket().
572  *
573  * Applications in different zones can join the same multicast group address.
574  * For IPv4, group memberships are per-logical interface, so they're already
575  * inherently part of a zone. For IPv6, group memberships are per-physical
576  * interface, so we distinguish IPv6 group memberships based on group address,
577  * interface and zoneid. In both cases, received multicast packets are sent to
578  * every zone for which a group membership entry exists. On IPv6 we need to
579  * check that the target zone still has an address on the receiving physical
580  * interface; it could have been removed since the application issued the
581  * IPV6_JOIN_GROUP.
582  */
583 
584 /*
585  * Squeue Fanout flags:
586  *	0: No fanout.
587  *	1: Fanout across all squeues
588  */
589 boolean_t	ip_squeue_fanout = 0;
590 
591 /*
592  * Maximum dups allowed per packet.
593  */
594 uint_t ip_max_frag_dups = 10;
595 
596 #define	IS_SIMPLE_IPH(ipha)						\
597 	((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION)
598 
599 /* RFC1122 Conformance */
600 #define	IP_FORWARD_DEFAULT	IP_FORWARD_NEVER
601 
602 #define	ILL_MAX_NAMELEN			LIFNAMSIZ
603 
604 static int	conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *);
605 
606 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
607 		    cred_t *credp, boolean_t isv6);
608 static mblk_t	*ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t);
609 
610 static void	icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t,
611 		    ip_stack_t *);
612 static void	icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int,
613 		    uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t);
614 static ipaddr_t	icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp);
615 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t,
616 		    mblk_t *, int, ip_stack_t *);
617 static void	icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *,
618 		    icmph_t *, ipha_t *, int, int, boolean_t, boolean_t,
619 		    ill_t *, zoneid_t);
620 static void	icmp_options_update(ipha_t *);
621 static void	icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t,
622 		    ip_stack_t *);
623 static void	icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t,
624 		    zoneid_t zoneid, ip_stack_t *);
625 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_stack_t *);
626 static void	icmp_redirect(ill_t *, mblk_t *);
627 static void	icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t,
628 		    ip_stack_t *);
629 
630 static void	ip_arp_news(queue_t *, mblk_t *);
631 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *,
632 		    ip_stack_t *);
633 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
634 char		*ip_dot_addr(ipaddr_t, char *);
635 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
636 int		ip_close(queue_t *, int);
637 static char	*ip_dot_saddr(uchar_t *, char *);
638 static void	ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
639 		    boolean_t, boolean_t, ill_t *, zoneid_t);
640 static void	ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
641 		    boolean_t, boolean_t, zoneid_t);
642 static void	ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t,
643 		    boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t);
644 static void	ip_lrput(queue_t *, mblk_t *);
645 ipaddr_t	ip_net_mask(ipaddr_t);
646 void		ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t,
647 		    ip_stack_t *);
648 static void	ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t,
649 		    conn_t *, uint32_t, zoneid_t, ip_opt_info_t *);
650 char		*ip_nv_lookup(nv_t *, int);
651 static boolean_t	ip_check_for_ipsec_opt(queue_t *, mblk_t *);
652 static int	ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *);
653 static int	ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *);
654 static boolean_t	ip_param_register(IDP *ndp, ipparam_t *, size_t,
655     ipndp_t *, size_t);
656 static int	ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
657 void	ip_rput(queue_t *, mblk_t *);
658 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
659 		    void *dummy_arg);
660 void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
661 static int	ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *,
662     ip_stack_t *);
663 static boolean_t	ip_rput_local_options(queue_t *, mblk_t *, ipha_t *,
664 			    ire_t *, ip_stack_t *);
665 static boolean_t	ip_rput_multimblk_ipoptions(queue_t *, ill_t *,
666 			    mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *);
667 static int	ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *,
668     ip_stack_t *);
669 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *,
670 		    uint16_t *);
671 int		ip_snmp_get(queue_t *, mblk_t *, int);
672 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
673 		    mib2_ipIfStatsEntry_t *, ip_stack_t *);
674 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
675 		    ip_stack_t *);
676 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *);
677 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
678 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
679 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
680 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
681 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
682 		    ip_stack_t *ipst);
683 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
684 		    ip_stack_t *ipst);
685 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
686 		    ip_stack_t *ipst);
687 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
688 		    ip_stack_t *ipst);
689 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
690 		    ip_stack_t *ipst);
691 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
692 		    ip_stack_t *ipst);
693 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
694 		    ip_stack_t *ipst);
695 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
696 		    ip_stack_t *ipst);
697 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *,
698 		    ip_stack_t *ipst);
699 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *,
700 		    ip_stack_t *ipst);
701 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
702 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
703 static int	ip_snmp_get2_v6_media(nce_t *, iproutedata_t *);
704 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
705 static boolean_t	ip_source_routed(ipha_t *, ip_stack_t *);
706 static boolean_t	ip_source_route_included(ipha_t *);
707 static void	ip_trash_ire_reclaim_stack(ip_stack_t *);
708 
709 static void	ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t,
710 		    zoneid_t, ip_stack_t *);
711 static mblk_t	*ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *);
712 static void	ip_wput_local_options(ipha_t *, ip_stack_t *);
713 static int	ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t,
714 		    zoneid_t, ip_stack_t *);
715 
716 static void	conn_drain_init(ip_stack_t *);
717 static void	conn_drain_fini(ip_stack_t *);
718 static void	conn_drain_tail(conn_t *connp, boolean_t closing);
719 
720 static void	conn_walk_drain(ip_stack_t *);
721 static void	conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *,
722     zoneid_t);
723 
724 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
725 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
726 static void	ip_stack_fini(netstackid_t stackid, void *arg);
727 
728 static boolean_t	conn_wantpacket(conn_t *, ill_t *, ipha_t *, int,
729     zoneid_t);
730 static void	ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
731     void *dummy_arg);
732 
733 static int	ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
734 
735 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
736     ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *,
737     conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *);
738 static void	ip_multirt_bad_mtu(ire_t *, uint32_t);
739 
740 static int	ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *);
741 static int	ip_cgtp_filter_set(queue_t *, mblk_t *, char *,
742     caddr_t, cred_t *);
743 extern int	ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value,
744     caddr_t cp, cred_t *cr);
745 extern int	ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t,
746     cred_t *);
747 static int	ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
748     caddr_t cp, cred_t *cr);
749 static int	ip_int_set(queue_t *, mblk_t *, char *, caddr_t,
750     cred_t *);
751 static int	ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t,
752     cred_t *);
753 static squeue_func_t ip_squeue_switch(int);
754 
755 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
756 static void	ip_kstat_fini(netstackid_t, kstat_t *);
757 static int	ip_kstat_update(kstat_t *kp, int rw);
758 static void	*icmp_kstat_init(netstackid_t);
759 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
760 static int	icmp_kstat_update(kstat_t *kp, int rw);
761 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
762 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
763 
764 static int	ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *);
765 
766 static mblk_t	*ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t,
767     ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *);
768 
769 static void	ip_rput_process_forward(queue_t *, mblk_t *, ire_t *,
770     ipha_t *, ill_t *, boolean_t);
771 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
772 
773 /* How long, in seconds, we allow frags to hang around. */
774 #define	IP_FRAG_TIMEOUT	60
775 
776 /*
777  * Threshold which determines whether MDT should be used when
778  * generating IP fragments; payload size must be greater than
779  * this threshold for MDT to take place.
780  */
781 #define	IP_WPUT_FRAG_MDT_MIN	32768
782 
783 /* Setable in /etc/system only */
784 int	ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN;
785 
786 static long ip_rput_pullups;
787 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
788 
789 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
790 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
791 
792 int	ip_debug;
793 
794 #ifdef DEBUG
795 uint32_t ipsechw_debug = 0;
796 #endif
797 
798 /*
799  * Multirouting/CGTP stuff
800  */
801 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
802 
803 /*
804  * XXX following really should only be in a header. Would need more
805  * header and .c clean up first.
806  */
807 extern optdb_obj_t	ip_opt_obj;
808 
809 ulong_t ip_squeue_enter_unbound = 0;
810 
811 /*
812  * Named Dispatch Parameter Table.
813  * All of these are alterable, within the min/max values given, at run time.
814  */
815 static ipparam_t	lcl_param_arr[] = {
816 	/* min	max	value	name */
817 	{  0,	1,	0,	"ip_respond_to_address_mask_broadcast"},
818 	{  0,	1,	1,	"ip_respond_to_echo_broadcast"},
819 	{  0,	1,	1,	"ip_respond_to_echo_multicast"},
820 	{  0,	1,	0,	"ip_respond_to_timestamp"},
821 	{  0,	1,	0,	"ip_respond_to_timestamp_broadcast"},
822 	{  0,	1,	1,	"ip_send_redirects"},
823 	{  0,	1,	0,	"ip_forward_directed_broadcasts"},
824 	{  0,	10,	0,	"ip_mrtdebug"},
825 	{  5000, 999999999,	60000, "ip_ire_timer_interval" },
826 	{  60000, 999999999,	1200000, "ip_ire_arp_interval" },
827 	{  60000, 999999999,	60000, "ip_ire_redirect_interval" },
828 	{  1,	255,	255,	"ip_def_ttl" },
829 	{  0,	1,	0,	"ip_forward_src_routed"},
830 	{  0,	256,	32,	"ip_wroff_extra" },
831 	{  5000, 999999999, 600000, "ip_ire_pathmtu_interval" },
832 	{  8,	65536,  64,	"ip_icmp_return_data_bytes" },
833 	{  0,	1,	1,	"ip_path_mtu_discovery" },
834 	{  0,	240,	30,	"ip_ignore_delete_time" },
835 	{  0,	1,	0,	"ip_ignore_redirect" },
836 	{  0,	1,	1,	"ip_output_queue" },
837 	{  1,	254,	1,	"ip_broadcast_ttl" },
838 	{  0,	99999,	100,	"ip_icmp_err_interval" },
839 	{  1,	99999,	10,	"ip_icmp_err_burst" },
840 	{  0,	999999999,	1000000, "ip_reass_queue_bytes" },
841 	{  0,	1,	0,	"ip_strict_dst_multihoming" },
842 	{  1,	MAX_ADDRS_PER_IF,	256,	"ip_addrs_per_if"},
843 	{  0,	1,	0,	"ipsec_override_persocket_policy" },
844 	{  0,	1,	1,	"icmp_accept_clear_messages" },
845 	{  0,	1,	1,	"igmp_accept_clear_messages" },
846 	{  2,	999999999, ND_DELAY_FIRST_PROBE_TIME,
847 				"ip_ndp_delay_first_probe_time"},
848 	{  1,	999999999, ND_MAX_UNICAST_SOLICIT,
849 				"ip_ndp_max_unicast_solicit"},
850 	{  1,	255,	IPV6_MAX_HOPS,	"ip6_def_hops" },
851 	{  8,	IPV6_MIN_MTU,	IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" },
852 	{  0,	1,	0,	"ip6_forward_src_routed"},
853 	{  0,	1,	1,	"ip6_respond_to_echo_multicast"},
854 	{  0,	1,	1,	"ip6_send_redirects"},
855 	{  0,	1,	0,	"ip6_ignore_redirect" },
856 	{  0,	1,	0,	"ip6_strict_dst_multihoming" },
857 
858 	{  1,	8,	3,	"ip_ire_reclaim_fraction" },
859 
860 	{  0,	999999,	1000,	"ipsec_policy_log_interval" },
861 
862 	{  0,	1,	1,	"pim_accept_clear_messages" },
863 	{  1000, 20000,	2000,	"ip_ndp_unsolicit_interval" },
864 	{  1,	20,	3,	"ip_ndp_unsolicit_count" },
865 	{  0,	1,	1,	"ip6_ignore_home_address_opt" },
866 	{  0,	15,	0,	"ip_policy_mask" },
867 	{  1000, 60000, 1000,	"ip_multirt_resolution_interval" },
868 	{  0,	255,	1,	"ip_multirt_ttl" },
869 	{  0,	1,	1,	"ip_multidata_outbound" },
870 	{  0,	3600000, 300000, "ip_ndp_defense_interval" },
871 	{  0,	999999,	60*60*24, "ip_max_temp_idle" },
872 	{  0,	1000,	1,	"ip_max_temp_defend" },
873 	{  0,	1000,	3,	"ip_max_defend" },
874 	{  0,	999999,	30,	"ip_defend_interval" },
875 	{  0,	3600000, 300000, "ip_dup_recovery" },
876 	{  0,	1,	1,	"ip_restrict_interzone_loopback" },
877 	{  0,	1,	1,	"ip_lso_outbound" },
878 	{  IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" },
879 	{  MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" },
880 #ifdef DEBUG
881 	{  0,	1,	0,	"ip6_drop_inbound_icmpv6" },
882 #else
883 	{  0,	0,	0,	"" },
884 #endif
885 };
886 
887 /*
888  * Extended NDP table
889  * The addresses for the first two are filled in to be ips_ip_g_forward
890  * and ips_ipv6_forward at init time.
891  */
892 static ipndp_t	lcl_ndp_arr[] = {
893 	/* getf			setf		data			name */
894 #define	IPNDP_IP_FORWARDING_OFFSET	0
895 	{  ip_param_generic_get,	ip_forward_set,	NULL,
896 	    "ip_forwarding" },
897 #define	IPNDP_IP6_FORWARDING_OFFSET	1
898 	{  ip_param_generic_get,	ip_forward_set,	NULL,
899 	    "ip6_forwarding" },
900 	{  ip_ill_report,	NULL,		NULL,
901 	    "ip_ill_status" },
902 	{  ip_ipif_report,	NULL,		NULL,
903 	    "ip_ipif_status" },
904 	{  ip_conn_report,	NULL,		NULL,
905 	    "ip_conn_status" },
906 	{  nd_get_long,		nd_set_long,	(caddr_t)&ip_rput_pullups,
907 	    "ip_rput_pullups" },
908 	{  ip_srcid_report,	NULL,		NULL,
909 	    "ip_srcid_status" },
910 	{ ip_param_generic_get, ip_squeue_profile_set,
911 	    (caddr_t)&ip_squeue_profile, "ip_squeue_profile" },
912 	{ ip_param_generic_get, ip_squeue_bind_set,
913 	    (caddr_t)&ip_squeue_bind, "ip_squeue_bind" },
914 	{ ip_param_generic_get, ip_input_proc_set,
915 	    (caddr_t)&ip_squeue_enter, "ip_squeue_enter" },
916 	{ ip_param_generic_get, ip_int_set,
917 	    (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" },
918 #define	IPNDP_CGTP_FILTER_OFFSET	11
919 	{  ip_cgtp_filter_get,	ip_cgtp_filter_set, NULL,
920 	    "ip_cgtp_filter" },
921 	{ ip_param_generic_get, ip_int_set,
922 	    (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" },
923 #define	IPNDP_IPMP_HOOK_OFFSET	13
924 	{  ip_param_generic_get, ipmp_hook_emulation_set, NULL,
925 	    "ipmp_hook_emulation" },
926 	{  ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug,
927 	    "ip_debug" },
928 };
929 
930 /*
931  * Table of IP ioctls encoding the various properties of the ioctl and
932  * indexed based on the last byte of the ioctl command. Occasionally there
933  * is a clash, and there is more than 1 ioctl with the same last byte.
934  * In such a case 1 ioctl is encoded in the ndx table and the remaining
935  * ioctls are encoded in the misc table. An entry in the ndx table is
936  * retrieved by indexing on the last byte of the ioctl command and comparing
937  * the ioctl command with the value in the ndx table. In the event of a
938  * mismatch the misc table is then searched sequentially for the desired
939  * ioctl command.
940  *
941  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
942  */
943 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
944 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
947 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
948 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
949 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
950 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
951 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
952 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
953 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
954 
955 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
956 			MISC_CMD, ip_siocaddrt, NULL },
957 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
958 			MISC_CMD, ip_siocdelrt, NULL },
959 
960 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
961 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
962 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
963 			IF_CMD, ip_sioctl_get_addr, NULL },
964 
965 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
966 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
967 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
968 			IPI_GET_CMD | IPI_REPL,
969 			IF_CMD, ip_sioctl_get_dstaddr, NULL },
970 
971 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
972 			IPI_PRIV | IPI_WR | IPI_REPL,
973 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
974 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
975 			IPI_MODOK | IPI_GET_CMD | IPI_REPL,
976 			IF_CMD, ip_sioctl_get_flags, NULL },
977 
978 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
979 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
980 
981 	/* copyin size cannot be coded for SIOCGIFCONF */
982 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
983 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
984 
985 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
986 			IF_CMD, ip_sioctl_mtu, NULL },
987 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
988 			IF_CMD, ip_sioctl_get_mtu, NULL },
989 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
990 			IPI_GET_CMD | IPI_REPL,
991 			IF_CMD, ip_sioctl_get_brdaddr, NULL },
992 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
993 			IF_CMD, ip_sioctl_brdaddr, NULL },
994 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
995 			IPI_GET_CMD | IPI_REPL,
996 			IF_CMD, ip_sioctl_get_netmask, NULL },
997 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
998 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
999 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
1000 			IPI_GET_CMD | IPI_REPL,
1001 			IF_CMD, ip_sioctl_get_metric, NULL },
1002 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
1003 			IF_CMD, ip_sioctl_metric, NULL },
1004 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1005 
1006 	/* See 166-168 below for extended SIOC*XARP ioctls */
1007 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV,
1008 			ARP_CMD, ip_sioctl_arp, NULL },
1009 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL,
1010 			ARP_CMD, ip_sioctl_arp, NULL },
1011 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV,
1012 			ARP_CMD, ip_sioctl_arp, NULL },
1013 
1014 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1015 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1016 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1017 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1018 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1019 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1020 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1021 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1022 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1023 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1024 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1025 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1026 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1027 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1028 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1033 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 
1036 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
1037 			MISC_CMD, if_unitsel, if_unitsel_restart },
1038 
1039 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1041 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1042 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1043 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1044 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1045 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1046 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1047 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1048 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1049 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 
1058 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
1059 			IPI_PRIV | IPI_WR | IPI_MODOK,
1060 			IF_CMD, ip_sioctl_sifname, NULL },
1061 
1062 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1063 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1064 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1065 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1066 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1067 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1068 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1069 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1070 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1071 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1072 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1073 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1074 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1075 
1076 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL,
1077 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
1078 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1079 			IF_CMD, ip_sioctl_get_muxid, NULL },
1080 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
1081 			IPI_PRIV | IPI_WR | IPI_REPL,
1082 			IF_CMD, ip_sioctl_muxid, NULL },
1083 
1084 	/* Both if and lif variants share same func */
1085 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1086 			IF_CMD, ip_sioctl_get_lifindex, NULL },
1087 	/* Both if and lif variants share same func */
1088 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
1089 			IPI_PRIV | IPI_WR | IPI_REPL,
1090 			IF_CMD, ip_sioctl_slifindex, NULL },
1091 
1092 	/* copyin size cannot be coded for SIOCGIFCONF */
1093 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
1094 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
1095 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1096 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1097 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1098 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1099 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1100 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1101 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1102 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1103 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1104 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1106 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1107 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1108 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1109 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1110 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1111 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1112 
1113 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
1114 			IPI_PRIV | IPI_WR | IPI_REPL,
1115 			LIF_CMD, ip_sioctl_removeif,
1116 			ip_sioctl_removeif_restart },
1117 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
1118 			IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL,
1119 			LIF_CMD, ip_sioctl_addif, NULL },
1120 #define	SIOCLIFADDR_NDX 112
1121 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1122 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
1123 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
1124 			IPI_GET_CMD | IPI_REPL,
1125 			LIF_CMD, ip_sioctl_get_addr, NULL },
1126 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1127 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
1128 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
1129 			IPI_GET_CMD | IPI_REPL,
1130 			LIF_CMD, ip_sioctl_get_dstaddr, NULL },
1131 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
1132 			IPI_PRIV | IPI_WR | IPI_REPL,
1133 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
1134 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
1135 			IPI_GET_CMD | IPI_MODOK | IPI_REPL,
1136 			LIF_CMD, ip_sioctl_get_flags, NULL },
1137 
1138 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1139 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1140 
1141 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1142 			ip_sioctl_get_lifconf, NULL },
1143 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1144 			LIF_CMD, ip_sioctl_mtu, NULL },
1145 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL,
1146 			LIF_CMD, ip_sioctl_get_mtu, NULL },
1147 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
1148 			IPI_GET_CMD | IPI_REPL,
1149 			LIF_CMD, ip_sioctl_get_brdaddr, NULL },
1150 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1151 			LIF_CMD, ip_sioctl_brdaddr, NULL },
1152 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
1153 			IPI_GET_CMD | IPI_REPL,
1154 			LIF_CMD, ip_sioctl_get_netmask, NULL },
1155 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1156 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
1157 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
1158 			IPI_GET_CMD | IPI_REPL,
1159 			LIF_CMD, ip_sioctl_get_metric, NULL },
1160 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1161 			LIF_CMD, ip_sioctl_metric, NULL },
1162 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
1163 			IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL,
1164 			LIF_CMD, ip_sioctl_slifname,
1165 			ip_sioctl_slifname_restart },
1166 
1167 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL,
1168 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
1169 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
1170 			IPI_GET_CMD | IPI_REPL,
1171 			LIF_CMD, ip_sioctl_get_muxid, NULL },
1172 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1173 			IPI_PRIV | IPI_WR | IPI_REPL,
1174 			LIF_CMD, ip_sioctl_muxid, NULL },
1175 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1176 			IPI_GET_CMD | IPI_REPL,
1177 			LIF_CMD, ip_sioctl_get_lifindex, 0 },
1178 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1179 			IPI_PRIV | IPI_WR | IPI_REPL,
1180 			LIF_CMD, ip_sioctl_slifindex, 0 },
1181 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1182 			LIF_CMD, ip_sioctl_token, NULL },
1183 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1184 			IPI_GET_CMD | IPI_REPL,
1185 			LIF_CMD, ip_sioctl_get_token, NULL },
1186 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1187 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1188 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1189 			IPI_GET_CMD | IPI_REPL,
1190 			LIF_CMD, ip_sioctl_get_subnet, NULL },
1191 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1192 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1193 
1194 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1195 			IPI_GET_CMD | IPI_REPL,
1196 			LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1197 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1198 			LIF_CMD, ip_siocdelndp_v6, NULL },
1199 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1200 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1201 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1202 			LIF_CMD, ip_siocsetndp_v6, NULL },
1203 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1204 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1205 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1206 			MISC_CMD, ip_sioctl_tonlink, NULL },
1207 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1208 			MISC_CMD, ip_sioctl_tmysite, NULL },
1209 	/* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL,
1210 			TUN_CMD, ip_sioctl_tunparam, NULL },
1211 	/* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req),
1212 			IPI_PRIV | IPI_WR,
1213 			TUN_CMD, ip_sioctl_tunparam, NULL },
1214 
1215 	/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1216 	/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1217 	/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1218 	/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1219 	/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1220 
1221 	/* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq),
1222 			IPI_PRIV | IPI_WR | IPI_REPL,
1223 			LIF_CMD, ip_sioctl_move, ip_sioctl_move },
1224 	/* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq),
1225 			IPI_PRIV | IPI_WR | IPI_REPL,
1226 			LIF_CMD, ip_sioctl_move, ip_sioctl_move },
1227 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1228 			IPI_PRIV | IPI_WR,
1229 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1230 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1231 			IPI_GET_CMD | IPI_REPL,
1232 			LIF_CMD, ip_sioctl_get_groupname, NULL },
1233 	/* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq),
1234 			IPI_GET_CMD | IPI_REPL,
1235 			LIF_CMD, ip_sioctl_get_oindex, NULL },
1236 
1237 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1238 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1239 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1240 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1241 
1242 	/* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1243 		    LIF_CMD, ip_sioctl_slifoindex, NULL },
1244 
1245 	/* These are handled in ip_sioctl_copyin_setup itself */
1246 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1247 			MISC_CMD, NULL, NULL },
1248 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1249 			MISC_CMD, NULL, NULL },
1250 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1251 
1252 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1253 			ip_sioctl_get_lifconf, NULL },
1254 
1255 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV,
1256 			XARP_CMD, ip_sioctl_arp, NULL },
1257 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL,
1258 			XARP_CMD, ip_sioctl_arp, NULL },
1259 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV,
1260 			XARP_CMD, ip_sioctl_arp, NULL },
1261 
1262 	/* SIOCPOPSOCKFS is not handled by IP */
1263 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1264 
1265 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1266 			IPI_GET_CMD | IPI_REPL,
1267 			LIF_CMD, ip_sioctl_get_lifzone, NULL },
1268 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1269 			IPI_PRIV | IPI_WR | IPI_REPL,
1270 			LIF_CMD, ip_sioctl_slifzone,
1271 			ip_sioctl_slifzone_restart },
1272 	/* 172-174 are SCTP ioctls and not handled by IP */
1273 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1274 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1275 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1276 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1277 			IPI_GET_CMD, LIF_CMD,
1278 			ip_sioctl_get_lifusesrc, 0 },
1279 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1280 			IPI_PRIV | IPI_WR,
1281 			LIF_CMD, ip_sioctl_slifusesrc,
1282 			NULL },
1283 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1284 			ip_sioctl_get_lifsrcof, NULL },
1285 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1286 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1287 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR,
1288 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1289 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1290 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1291 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR,
1292 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1293 	/* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD,
1294 			ip_sioctl_set_ipmpfailback, NULL },
1295 	/* SIOCSENABLESDP is handled by SDP */
1296 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1297 };
1298 
1299 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1300 
1301 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1302 	{ OSIOCGTUNPARAM, sizeof (struct old_iftun_req),
1303 		IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL },
1304 	{ OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR,
1305 		TUN_CMD, ip_sioctl_tunparam, NULL },
1306 	{ I_LINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1307 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1308 	{ I_PLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1309 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1310 	{ ND_GET,	0, IPI_PASS_DOWN, 0, NULL, NULL },
1311 	{ ND_SET,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1312 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1313 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD,
1314 		MISC_CMD, mrt_ioctl},
1315 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD,
1316 		MISC_CMD, mrt_ioctl},
1317 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD,
1318 		MISC_CMD, mrt_ioctl}
1319 };
1320 
1321 int ip_misc_ioctl_count =
1322     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1323 
1324 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1325 					/* Settable in /etc/system */
1326 /* Defined in ip_ire.c */
1327 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1328 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1329 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1330 
1331 static nv_t	ire_nv_arr[] = {
1332 	{ IRE_BROADCAST, "BROADCAST" },
1333 	{ IRE_LOCAL, "LOCAL" },
1334 	{ IRE_LOOPBACK, "LOOPBACK" },
1335 	{ IRE_CACHE, "CACHE" },
1336 	{ IRE_DEFAULT, "DEFAULT" },
1337 	{ IRE_PREFIX, "PREFIX" },
1338 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1339 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1340 	{ IRE_HOST, "HOST" },
1341 	{ 0 }
1342 };
1343 
1344 nv_t	*ire_nv_tbl = ire_nv_arr;
1345 
1346 /* Simple ICMP IP Header Template */
1347 static ipha_t icmp_ipha = {
1348 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1349 };
1350 
1351 struct module_info ip_mod_info = {
1352 	IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024
1353 };
1354 
1355 /*
1356  * Duplicate static symbols within a module confuses mdb; so we avoid the
1357  * problem by making the symbols here distinct from those in udp.c.
1358  */
1359 
1360 /*
1361  * Entry points for IP as a device and as a module.
1362  * FIXME: down the road we might want a separate module and driver qinit.
1363  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1364  */
1365 static struct qinit iprinitv4 = {
1366 	(pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1367 	&ip_mod_info
1368 };
1369 
1370 struct qinit iprinitv6 = {
1371 	(pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1372 	&ip_mod_info
1373 };
1374 
1375 static struct qinit ipwinitv4 = {
1376 	(pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1377 	&ip_mod_info
1378 };
1379 
1380 struct qinit ipwinitv6 = {
1381 	(pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1382 	&ip_mod_info
1383 };
1384 
1385 static struct qinit iplrinit = {
1386 	(pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1387 	&ip_mod_info
1388 };
1389 
1390 static struct qinit iplwinit = {
1391 	(pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1392 	&ip_mod_info
1393 };
1394 
1395 /* For AF_INET aka /dev/ip */
1396 struct streamtab ipinfov4 = {
1397 	&iprinitv4, &ipwinitv4, &iplrinit, &iplwinit
1398 };
1399 
1400 /* For AF_INET6 aka /dev/ip6 */
1401 struct streamtab ipinfov6 = {
1402 	&iprinitv6, &ipwinitv6, &iplrinit, &iplwinit
1403 };
1404 
1405 #ifdef	DEBUG
1406 static boolean_t skip_sctp_cksum = B_FALSE;
1407 #endif
1408 
1409 /*
1410  * Prepend the zoneid using an ipsec_out_t for later use by functions like
1411  * ip_rput_v6(), ip_output(), etc.  If the message
1412  * block already has a M_CTL at the front of it, then simply set the zoneid
1413  * appropriately.
1414  */
1415 mblk_t *
1416 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst)
1417 {
1418 	mblk_t		*first_mp;
1419 	ipsec_out_t	*io;
1420 
1421 	ASSERT(zoneid != ALL_ZONES);
1422 	if (mp->b_datap->db_type == M_CTL) {
1423 		io = (ipsec_out_t *)mp->b_rptr;
1424 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
1425 		io->ipsec_out_zoneid = zoneid;
1426 		return (mp);
1427 	}
1428 
1429 	first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack);
1430 	if (first_mp == NULL)
1431 		return (NULL);
1432 	io = (ipsec_out_t *)first_mp->b_rptr;
1433 	/* This is not a secure packet */
1434 	io->ipsec_out_secure = B_FALSE;
1435 	io->ipsec_out_zoneid = zoneid;
1436 	first_mp->b_cont = mp;
1437 	return (first_mp);
1438 }
1439 
1440 /*
1441  * Copy an M_CTL-tagged message, preserving reference counts appropriately.
1442  */
1443 mblk_t *
1444 ip_copymsg(mblk_t *mp)
1445 {
1446 	mblk_t *nmp;
1447 	ipsec_info_t *in;
1448 
1449 	if (mp->b_datap->db_type != M_CTL)
1450 		return (copymsg(mp));
1451 
1452 	in = (ipsec_info_t *)mp->b_rptr;
1453 
1454 	/*
1455 	 * Note that M_CTL is also used for delivering ICMP error messages
1456 	 * upstream to transport layers.
1457 	 */
1458 	if (in->ipsec_info_type != IPSEC_OUT &&
1459 	    in->ipsec_info_type != IPSEC_IN)
1460 		return (copymsg(mp));
1461 
1462 	nmp = copymsg(mp->b_cont);
1463 
1464 	if (in->ipsec_info_type == IPSEC_OUT) {
1465 		return (ipsec_out_tag(mp, nmp,
1466 		    ((ipsec_out_t *)in)->ipsec_out_ns));
1467 	} else {
1468 		return (ipsec_in_tag(mp, nmp,
1469 		    ((ipsec_in_t *)in)->ipsec_in_ns));
1470 	}
1471 }
1472 
1473 /* Generate an ICMP fragmentation needed message. */
1474 static void
1475 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid,
1476     ip_stack_t *ipst)
1477 {
1478 	icmph_t	icmph;
1479 	mblk_t *first_mp;
1480 	boolean_t mctl_present;
1481 
1482 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1483 
1484 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
1485 		if (mctl_present)
1486 			freeb(first_mp);
1487 		return;
1488 	}
1489 
1490 	bzero(&icmph, sizeof (icmph_t));
1491 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1492 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1493 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1494 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1495 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1496 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid,
1497 	    ipst);
1498 }
1499 
1500 /*
1501  * icmp_inbound deals with ICMP messages in the following ways.
1502  *
1503  * 1) It needs to send a reply back and possibly delivering it
1504  *    to the "interested" upper clients.
1505  * 2) It needs to send it to the upper clients only.
1506  * 3) It needs to change some values in IP only.
1507  * 4) It needs to change some values in IP and upper layers e.g TCP.
1508  *
1509  * We need to accomodate icmp messages coming in clear until we get
1510  * everything secure from the wire. If icmp_accept_clear_messages
1511  * is zero we check with the global policy and act accordingly. If
1512  * it is non-zero, we accept the message without any checks. But
1513  * *this does not mean* that this will be delivered to the upper
1514  * clients. By accepting we might send replies back, change our MTU
1515  * value etc. but delivery to the ULP/clients depends on their policy
1516  * dispositions.
1517  *
1518  * We handle the above 4 cases in the context of IPsec in the
1519  * following way :
1520  *
1521  * 1) Send the reply back in the same way as the request came in.
1522  *    If it came in encrypted, it goes out encrypted. If it came in
1523  *    clear, it goes out in clear. Thus, this will prevent chosen
1524  *    plain text attack.
1525  * 2) The client may or may not expect things to come in secure.
1526  *    If it comes in secure, the policy constraints are checked
1527  *    before delivering it to the upper layers. If it comes in
1528  *    clear, ipsec_inbound_accept_clear will decide whether to
1529  *    accept this in clear or not. In both the cases, if the returned
1530  *    message (IP header + 8 bytes) that caused the icmp message has
1531  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1532  *    sending up. If there are only 8 bytes of returned message, then
1533  *    upper client will not be notified.
1534  * 3) Check with global policy to see whether it matches the constaints.
1535  *    But this will be done only if icmp_accept_messages_in_clear is
1536  *    zero.
1537  * 4) If we need to change both in IP and ULP, then the decision taken
1538  *    while affecting the values in IP and while delivering up to TCP
1539  *    should be the same.
1540  *
1541  * 	There are two cases.
1542  *
1543  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1544  *	   failed), we will not deliver it to the ULP, even though they
1545  *	   are *willing* to accept in *clear*. This is fine as our global
1546  *	   disposition to icmp messages asks us reject the datagram.
1547  *
1548  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1549  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1550  *	   to deliver it to ULP (policy failed), it can lead to
1551  *	   consistency problems. The cases known at this time are
1552  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1553  *	   values :
1554  *
1555  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1556  *	     and Upper layer rejects. Then the communication will
1557  *	     come to a stop. This is solved by making similar decisions
1558  *	     at both levels. Currently, when we are unable to deliver
1559  *	     to the Upper Layer (due to policy failures) while IP has
1560  *	     adjusted ire_max_frag, the next outbound datagram would
1561  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1562  *	     will be with the right level of protection. Thus the right
1563  *	     value will be communicated even if we are not able to
1564  *	     communicate when we get from the wire initially. But this
1565  *	     assumes there would be at least one outbound datagram after
1566  *	     IP has adjusted its ire_max_frag value. To make things
1567  *	     simpler, we accept in clear after the validation of
1568  *	     AH/ESP headers.
1569  *
1570  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1571  *	     upper layer depending on the level of protection the upper
1572  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1573  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1574  *	     should be accepted in clear when the Upper layer expects secure.
1575  *	     Thus the communication may get aborted by some bad ICMP
1576  *	     packets.
1577  *
1578  * IPQoS Notes:
1579  * The only instance when a packet is sent for processing is when there
1580  * isn't an ICMP client and if we are interested in it.
1581  * If there is a client, IPPF processing will take place in the
1582  * ip_fanout_proto routine.
1583  *
1584  * Zones notes:
1585  * The packet is only processed in the context of the specified zone: typically
1586  * only this zone will reply to an echo request, and only interested clients in
1587  * this zone will receive a copy of the packet. This means that the caller must
1588  * call icmp_inbound() for each relevant zone.
1589  */
1590 static void
1591 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill,
1592     int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy,
1593     ill_t *recv_ill, zoneid_t zoneid)
1594 {
1595 	icmph_t	*icmph;
1596 	ipha_t	*ipha;
1597 	int	iph_hdr_length;
1598 	int	hdr_length;
1599 	boolean_t	interested;
1600 	uint32_t	ts;
1601 	uchar_t	*wptr;
1602 	ipif_t	*ipif;
1603 	mblk_t *first_mp;
1604 	ipsec_in_t *ii;
1605 	ire_t *src_ire;
1606 	boolean_t onlink;
1607 	timestruc_t now;
1608 	uint32_t ill_index;
1609 	ip_stack_t *ipst;
1610 
1611 	ASSERT(ill != NULL);
1612 	ipst = ill->ill_ipst;
1613 
1614 	first_mp = mp;
1615 	if (mctl_present) {
1616 		mp = first_mp->b_cont;
1617 		ASSERT(mp != NULL);
1618 	}
1619 
1620 	ipha = (ipha_t *)mp->b_rptr;
1621 	if (ipst->ips_icmp_accept_clear_messages == 0) {
1622 		first_mp = ipsec_check_global_policy(first_mp, NULL,
1623 		    ipha, NULL, mctl_present, ipst->ips_netstack);
1624 		if (first_mp == NULL)
1625 			return;
1626 	}
1627 
1628 	/*
1629 	 * On a labeled system, we have to check whether the zone itself is
1630 	 * permitted to receive raw traffic.
1631 	 */
1632 	if (is_system_labeled()) {
1633 		if (zoneid == ALL_ZONES)
1634 			zoneid = tsol_packet_to_zoneid(mp);
1635 		if (!tsol_can_accept_raw(mp, B_FALSE)) {
1636 			ip1dbg(("icmp_inbound: zone %d can't receive raw",
1637 			    zoneid));
1638 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1639 			freemsg(first_mp);
1640 			return;
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * We have accepted the ICMP message. It means that we will
1646 	 * respond to the packet if needed. It may not be delivered
1647 	 * to the upper client depending on the policy constraints
1648 	 * and the disposition in ipsec_inbound_accept_clear.
1649 	 */
1650 
1651 	ASSERT(ill != NULL);
1652 
1653 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1654 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1655 	if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) {
1656 		/* Last chance to get real. */
1657 		if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) {
1658 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1659 			freemsg(first_mp);
1660 			return;
1661 		}
1662 		/* Refresh iph following the pullup. */
1663 		ipha = (ipha_t *)mp->b_rptr;
1664 	}
1665 	/* ICMP header checksum, including checksum field, should be zero. */
1666 	if (sum_valid ? (sum != 0 && sum != 0xFFFF) :
1667 	    IP_CSUM(mp, iph_hdr_length, 0)) {
1668 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs);
1669 		freemsg(first_mp);
1670 		return;
1671 	}
1672 	/* The IP header will always be a multiple of four bytes */
1673 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1674 	ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type,
1675 	    icmph->icmph_code));
1676 	wptr = (uchar_t *)icmph + ICMPH_SIZE;
1677 	/* We will set "interested" to "true" if we want a copy */
1678 	interested = B_FALSE;
1679 	switch (icmph->icmph_type) {
1680 	case ICMP_ECHO_REPLY:
1681 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1682 		break;
1683 	case ICMP_DEST_UNREACHABLE:
1684 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1685 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1686 		interested = B_TRUE;	/* Pass up to transport */
1687 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1688 		break;
1689 	case ICMP_SOURCE_QUENCH:
1690 		interested = B_TRUE;	/* Pass up to transport */
1691 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1692 		break;
1693 	case ICMP_REDIRECT:
1694 		if (!ipst->ips_ip_ignore_redirect)
1695 			interested = B_TRUE;
1696 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1697 		break;
1698 	case ICMP_ECHO_REQUEST:
1699 		/*
1700 		 * Whether to respond to echo requests that come in as IP
1701 		 * broadcasts or as IP multicast is subject to debate
1702 		 * (what isn't?).  We aim to please, you pick it.
1703 		 * Default is do it.
1704 		 */
1705 		if (!broadcast && !CLASSD(ipha->ipha_dst)) {
1706 			/* unicast: always respond */
1707 			interested = B_TRUE;
1708 		} else if (CLASSD(ipha->ipha_dst)) {
1709 			/* multicast: respond based on tunable */
1710 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1711 		} else if (broadcast) {
1712 			/* broadcast: respond based on tunable */
1713 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1714 		}
1715 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1716 		break;
1717 	case ICMP_ROUTER_ADVERTISEMENT:
1718 	case ICMP_ROUTER_SOLICITATION:
1719 		break;
1720 	case ICMP_TIME_EXCEEDED:
1721 		interested = B_TRUE;	/* Pass up to transport */
1722 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1723 		break;
1724 	case ICMP_PARAM_PROBLEM:
1725 		interested = B_TRUE;	/* Pass up to transport */
1726 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1727 		break;
1728 	case ICMP_TIME_STAMP_REQUEST:
1729 		/* Response to Time Stamp Requests is local policy. */
1730 		if (ipst->ips_ip_g_resp_to_timestamp &&
1731 		    /* So is whether to respond if it was an IP broadcast. */
1732 		    (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) {
1733 			int tstamp_len = 3 * sizeof (uint32_t);
1734 
1735 			if (wptr +  tstamp_len > mp->b_wptr) {
1736 				if (!pullupmsg(mp, wptr + tstamp_len -
1737 				    mp->b_rptr)) {
1738 					BUMP_MIB(ill->ill_ip_mib,
1739 					    ipIfStatsInDiscards);
1740 					freemsg(first_mp);
1741 					return;
1742 				}
1743 				/* Refresh ipha following the pullup. */
1744 				ipha = (ipha_t *)mp->b_rptr;
1745 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1746 				wptr = (uchar_t *)icmph + ICMPH_SIZE;
1747 			}
1748 			interested = B_TRUE;
1749 		}
1750 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1751 		break;
1752 	case ICMP_TIME_STAMP_REPLY:
1753 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1754 		break;
1755 	case ICMP_INFO_REQUEST:
1756 		/* Per RFC 1122 3.2.2.7, ignore this. */
1757 	case ICMP_INFO_REPLY:
1758 		break;
1759 	case ICMP_ADDRESS_MASK_REQUEST:
1760 		if ((ipst->ips_ip_respond_to_address_mask_broadcast ||
1761 		    !broadcast) &&
1762 		    /* TODO m_pullup of complete header? */
1763 		    (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) {
1764 			interested = B_TRUE;
1765 		}
1766 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1767 		break;
1768 	case ICMP_ADDRESS_MASK_REPLY:
1769 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1770 		break;
1771 	default:
1772 		interested = B_TRUE;	/* Pass up to transport */
1773 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1774 		break;
1775 	}
1776 	/* See if there is an ICMP client. */
1777 	if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) {
1778 		/* If there is an ICMP client and we want one too, copy it. */
1779 		mblk_t *first_mp1;
1780 
1781 		if (!interested) {
1782 			ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present,
1783 			    ip_policy, recv_ill, zoneid);
1784 			return;
1785 		}
1786 		first_mp1 = ip_copymsg(first_mp);
1787 		if (first_mp1 != NULL) {
1788 			ip_fanout_proto(q, first_mp1, ill, ipha,
1789 			    0, mctl_present, ip_policy, recv_ill, zoneid);
1790 		}
1791 	} else if (!interested) {
1792 		freemsg(first_mp);
1793 		return;
1794 	} else {
1795 		/*
1796 		 * Initiate policy processing for this packet if ip_policy
1797 		 * is true.
1798 		 */
1799 		if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
1800 			ill_index = ill->ill_phyint->phyint_ifindex;
1801 			ip_process(IPP_LOCAL_IN, &mp, ill_index);
1802 			if (mp == NULL) {
1803 				if (mctl_present) {
1804 					freeb(first_mp);
1805 				}
1806 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1807 				return;
1808 			}
1809 		}
1810 	}
1811 	/* We want to do something with it. */
1812 	/* Check db_ref to make sure we can modify the packet. */
1813 	if (mp->b_datap->db_ref > 1) {
1814 		mblk_t	*first_mp1;
1815 
1816 		first_mp1 = ip_copymsg(first_mp);
1817 		freemsg(first_mp);
1818 		if (!first_mp1) {
1819 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1820 			return;
1821 		}
1822 		first_mp = first_mp1;
1823 		if (mctl_present) {
1824 			mp = first_mp->b_cont;
1825 			ASSERT(mp != NULL);
1826 		} else {
1827 			mp = first_mp;
1828 		}
1829 		ipha = (ipha_t *)mp->b_rptr;
1830 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1831 		wptr = (uchar_t *)icmph + ICMPH_SIZE;
1832 	}
1833 	switch (icmph->icmph_type) {
1834 	case ICMP_ADDRESS_MASK_REQUEST:
1835 		ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1836 		if (ipif == NULL) {
1837 			freemsg(first_mp);
1838 			return;
1839 		}
1840 		/*
1841 		 * outging interface must be IPv4
1842 		 */
1843 		ASSERT(ipif != NULL && !ipif->ipif_isv6);
1844 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1845 		bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN);
1846 		ipif_refrele(ipif);
1847 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1848 		break;
1849 	case ICMP_ECHO_REQUEST:
1850 		icmph->icmph_type = ICMP_ECHO_REPLY;
1851 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1852 		break;
1853 	case ICMP_TIME_STAMP_REQUEST: {
1854 		uint32_t *tsp;
1855 
1856 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1857 		tsp = (uint32_t *)wptr;
1858 		tsp++;		/* Skip past 'originate time' */
1859 		/* Compute # of milliseconds since midnight */
1860 		gethrestime(&now);
1861 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1862 		    now.tv_nsec / (NANOSEC / MILLISEC);
1863 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1864 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1865 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1866 		break;
1867 	}
1868 	default:
1869 		ipha = (ipha_t *)&icmph[1];
1870 		if ((uchar_t *)&ipha[1] > mp->b_wptr) {
1871 			if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) {
1872 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1873 				freemsg(first_mp);
1874 				return;
1875 			}
1876 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1877 			ipha = (ipha_t *)&icmph[1];
1878 		}
1879 		if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) {
1880 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1881 			freemsg(first_mp);
1882 			return;
1883 		}
1884 		hdr_length = IPH_HDR_LENGTH(ipha);
1885 		if (hdr_length < sizeof (ipha_t)) {
1886 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1887 			freemsg(first_mp);
1888 			return;
1889 		}
1890 		if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
1891 			if (!pullupmsg(mp,
1892 			    (uchar_t *)ipha + hdr_length - mp->b_rptr)) {
1893 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1894 				freemsg(first_mp);
1895 				return;
1896 			}
1897 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1898 			ipha = (ipha_t *)&icmph[1];
1899 		}
1900 		switch (icmph->icmph_type) {
1901 		case ICMP_REDIRECT:
1902 			/*
1903 			 * As there is no upper client to deliver, we don't
1904 			 * need the first_mp any more.
1905 			 */
1906 			if (mctl_present) {
1907 				freeb(first_mp);
1908 			}
1909 			icmp_redirect(ill, mp);
1910 			return;
1911 		case ICMP_DEST_UNREACHABLE:
1912 			if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1913 				if (!icmp_inbound_too_big(icmph, ipha, ill,
1914 				    zoneid, mp, iph_hdr_length, ipst)) {
1915 					freemsg(first_mp);
1916 					return;
1917 				}
1918 				/*
1919 				 * icmp_inbound_too_big() may alter mp.
1920 				 * Resynch ipha and icmph accordingly.
1921 				 */
1922 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1923 				ipha = (ipha_t *)&icmph[1];
1924 			}
1925 			/* FALLTHRU */
1926 		default :
1927 			/*
1928 			 * IPQoS notes: Since we have already done IPQoS
1929 			 * processing we don't want to do it again in
1930 			 * the fanout routines called by
1931 			 * icmp_inbound_error_fanout, hence the last
1932 			 * argument, ip_policy, is B_FALSE.
1933 			 */
1934 			icmp_inbound_error_fanout(q, ill, first_mp, icmph,
1935 			    ipha, iph_hdr_length, hdr_length, mctl_present,
1936 			    B_FALSE, recv_ill, zoneid);
1937 		}
1938 		return;
1939 	}
1940 	/* Send out an ICMP packet */
1941 	icmph->icmph_checksum = 0;
1942 	icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0);
1943 	if (broadcast || CLASSD(ipha->ipha_dst)) {
1944 		ipif_t	*ipif_chosen;
1945 		/*
1946 		 * Make it look like it was directed to us, so we don't look
1947 		 * like a fool with a broadcast or multicast source address.
1948 		 */
1949 		ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1950 		/*
1951 		 * Make sure that we haven't grabbed an interface that's DOWN.
1952 		 */
1953 		if (ipif != NULL) {
1954 			ipif_chosen = ipif_select_source(ipif->ipif_ill,
1955 			    ipha->ipha_src, zoneid);
1956 			if (ipif_chosen != NULL) {
1957 				ipif_refrele(ipif);
1958 				ipif = ipif_chosen;
1959 			}
1960 		}
1961 		if (ipif == NULL) {
1962 			ip0dbg(("icmp_inbound: "
1963 			    "No source for broadcast/multicast:\n"
1964 			    "\tsrc 0x%x dst 0x%x ill %p "
1965 			    "ipif_lcl_addr 0x%x\n",
1966 			    ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst),
1967 			    (void *)ill,
1968 			    ill->ill_ipif->ipif_lcl_addr));
1969 			freemsg(first_mp);
1970 			return;
1971 		}
1972 		ASSERT(ipif != NULL && !ipif->ipif_isv6);
1973 		ipha->ipha_dst = ipif->ipif_src_addr;
1974 		ipif_refrele(ipif);
1975 	}
1976 	/* Reset time to live. */
1977 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1978 	{
1979 		/* Swap source and destination addresses */
1980 		ipaddr_t tmp;
1981 
1982 		tmp = ipha->ipha_src;
1983 		ipha->ipha_src = ipha->ipha_dst;
1984 		ipha->ipha_dst = tmp;
1985 	}
1986 	ipha->ipha_ident = 0;
1987 	if (!IS_SIMPLE_IPH(ipha))
1988 		icmp_options_update(ipha);
1989 
1990 	/*
1991 	 * ICMP echo replies should go out on the same interface
1992 	 * the request came on as probes used by in.mpathd for detecting
1993 	 * NIC failures are ECHO packets. We turn-off load spreading
1994 	 * by setting ipsec_in_attach_if to B_TRUE, which is copied
1995 	 * to ipsec_out_attach_if by ipsec_in_to_out called later in this
1996 	 * function. This is in turn handled by ip_wput and ip_newroute
1997 	 * to make sure that the packet goes out on the interface it came
1998 	 * in on. If we don't turnoff load spreading, the packets might get
1999 	 * dropped if there are no non-FAILED/INACTIVE interfaces for it
2000 	 * to go out and in.mpathd would wrongly detect a failure or
2001 	 * mis-detect a NIC failure for link failure. As load spreading
2002 	 * can happen only if ill_group is not NULL, we do only for
2003 	 * that case and this does not affect the normal case.
2004 	 *
2005 	 * We turn off load spreading only on echo packets that came from
2006 	 * on-link hosts. If the interface route has been deleted, this will
2007 	 * not be enforced as we can't do much. For off-link hosts, as the
2008 	 * default routes in IPv4 does not typically have an ire_ipif
2009 	 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute.
2010 	 * Moreover, expecting a default route through this interface may
2011 	 * not be correct. We use ipha_dst because of the swap above.
2012 	 */
2013 	onlink = B_FALSE;
2014 	if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) {
2015 		/*
2016 		 * First, we need to make sure that it is not one of our
2017 		 * local addresses. If we set onlink when it is one of
2018 		 * our local addresses, we will end up creating IRE_CACHES
2019 		 * for one of our local addresses. Then, we will never
2020 		 * accept packets for them afterwards.
2021 		 */
2022 		src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL,
2023 		    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
2024 		if (src_ire == NULL) {
2025 			ipif = ipif_get_next_ipif(NULL, ill);
2026 			if (ipif == NULL) {
2027 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2028 				freemsg(mp);
2029 				return;
2030 			}
2031 			src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0,
2032 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
2033 			    NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst);
2034 			ipif_refrele(ipif);
2035 			if (src_ire != NULL) {
2036 				onlink = B_TRUE;
2037 				ire_refrele(src_ire);
2038 			}
2039 		} else {
2040 			ire_refrele(src_ire);
2041 		}
2042 	}
2043 	if (!mctl_present) {
2044 		/*
2045 		 * This packet should go out the same way as it
2046 		 * came in i.e in clear. To make sure that global
2047 		 * policy will not be applied to this in ip_wput_ire,
2048 		 * we attach a IPSEC_IN mp and clear ipsec_in_secure.
2049 		 */
2050 		ASSERT(first_mp == mp);
2051 		first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack);
2052 		if (first_mp == NULL) {
2053 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2054 			freemsg(mp);
2055 			return;
2056 		}
2057 		ii = (ipsec_in_t *)first_mp->b_rptr;
2058 
2059 		/* This is not a secure packet */
2060 		ii->ipsec_in_secure = B_FALSE;
2061 		if (onlink) {
2062 			ii->ipsec_in_attach_if = B_TRUE;
2063 			ii->ipsec_in_ill_index =
2064 			    ill->ill_phyint->phyint_ifindex;
2065 			ii->ipsec_in_rill_index =
2066 			    recv_ill->ill_phyint->phyint_ifindex;
2067 		}
2068 		first_mp->b_cont = mp;
2069 	} else if (onlink) {
2070 		ii = (ipsec_in_t *)first_mp->b_rptr;
2071 		ii->ipsec_in_attach_if = B_TRUE;
2072 		ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex;
2073 		ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex;
2074 		ii->ipsec_in_ns = ipst->ips_netstack;	/* No netstack_hold */
2075 	} else {
2076 		ii = (ipsec_in_t *)first_mp->b_rptr;
2077 		ii->ipsec_in_ns = ipst->ips_netstack;	/* No netstack_hold */
2078 	}
2079 	ii->ipsec_in_zoneid = zoneid;
2080 	ASSERT(zoneid != ALL_ZONES);
2081 	if (!ipsec_in_to_out(first_mp, ipha, NULL)) {
2082 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2083 		return;
2084 	}
2085 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2086 	put(WR(q), first_mp);
2087 }
2088 
2089 static ipaddr_t
2090 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp)
2091 {
2092 	conn_t *connp;
2093 	connf_t *connfp;
2094 	ipaddr_t nexthop_addr = INADDR_ANY;
2095 	int hdr_length = IPH_HDR_LENGTH(ipha);
2096 	uint16_t *up;
2097 	uint32_t ports;
2098 	ip_stack_t *ipst = ill->ill_ipst;
2099 
2100 	up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2101 	switch (ipha->ipha_protocol) {
2102 		case IPPROTO_TCP:
2103 		{
2104 			tcph_t *tcph;
2105 
2106 			/* do a reverse lookup */
2107 			tcph = (tcph_t *)((uchar_t *)ipha + hdr_length);
2108 			connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph,
2109 			    TCPS_LISTEN, ipst);
2110 			break;
2111 		}
2112 		case IPPROTO_UDP:
2113 		{
2114 			uint32_t dstport, srcport;
2115 
2116 			((uint16_t *)&ports)[0] = up[1];
2117 			((uint16_t *)&ports)[1] = up[0];
2118 
2119 			/* Extract ports in net byte order */
2120 			dstport = htons(ntohl(ports) & 0xFFFF);
2121 			srcport = htons(ntohl(ports) >> 16);
2122 
2123 			connfp = &ipst->ips_ipcl_udp_fanout[
2124 			    IPCL_UDP_HASH(dstport, ipst)];
2125 			mutex_enter(&connfp->connf_lock);
2126 			connp = connfp->connf_head;
2127 
2128 			/* do a reverse lookup */
2129 			while ((connp != NULL) &&
2130 			    (!IPCL_UDP_MATCH(connp, dstport,
2131 			    ipha->ipha_src, srcport, ipha->ipha_dst) ||
2132 			    !IPCL_ZONE_MATCH(connp, zoneid))) {
2133 				connp = connp->conn_next;
2134 			}
2135 			if (connp != NULL)
2136 				CONN_INC_REF(connp);
2137 			mutex_exit(&connfp->connf_lock);
2138 			break;
2139 		}
2140 		case IPPROTO_SCTP:
2141 		{
2142 			in6_addr_t map_src, map_dst;
2143 
2144 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src);
2145 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst);
2146 			((uint16_t *)&ports)[0] = up[1];
2147 			((uint16_t *)&ports)[1] = up[0];
2148 
2149 			connp = sctp_find_conn(&map_src, &map_dst, ports,
2150 			    zoneid, ipst->ips_netstack->netstack_sctp);
2151 			if (connp == NULL) {
2152 				connp = ipcl_classify_raw(mp, IPPROTO_SCTP,
2153 				    zoneid, ports, ipha, ipst);
2154 			} else {
2155 				CONN_INC_REF(connp);
2156 				SCTP_REFRELE(CONN2SCTP(connp));
2157 			}
2158 			break;
2159 		}
2160 		default:
2161 		{
2162 			ipha_t ripha;
2163 
2164 			ripha.ipha_src = ipha->ipha_dst;
2165 			ripha.ipha_dst = ipha->ipha_src;
2166 			ripha.ipha_protocol = ipha->ipha_protocol;
2167 
2168 			connfp = &ipst->ips_ipcl_proto_fanout[
2169 			    ipha->ipha_protocol];
2170 			mutex_enter(&connfp->connf_lock);
2171 			connp = connfp->connf_head;
2172 			for (connp = connfp->connf_head; connp != NULL;
2173 			    connp = connp->conn_next) {
2174 				if (IPCL_PROTO_MATCH(connp,
2175 				    ipha->ipha_protocol, &ripha, ill,
2176 				    0, zoneid)) {
2177 					CONN_INC_REF(connp);
2178 					break;
2179 				}
2180 			}
2181 			mutex_exit(&connfp->connf_lock);
2182 		}
2183 	}
2184 	if (connp != NULL) {
2185 		if (connp->conn_nexthop_set)
2186 			nexthop_addr = connp->conn_nexthop_v4;
2187 		CONN_DEC_REF(connp);
2188 	}
2189 	return (nexthop_addr);
2190 }
2191 
2192 /* Table from RFC 1191 */
2193 static int icmp_frag_size_table[] =
2194 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
2195 
2196 /*
2197  * Process received ICMP Packet too big.
2198  * After updating any IRE it does the fanout to any matching transport streams.
2199  * Assumes the message has been pulled up till the IP header that caused
2200  * the error.
2201  *
2202  * Returns B_FALSE on failure and B_TRUE on success.
2203  */
2204 static boolean_t
2205 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill,
2206     zoneid_t zoneid, mblk_t *mp, int iph_hdr_length,
2207     ip_stack_t *ipst)
2208 {
2209 	ire_t	*ire, *first_ire;
2210 	int	mtu;
2211 	int	hdr_length;
2212 	ipaddr_t nexthop_addr;
2213 
2214 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
2215 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
2216 	ASSERT(ill != NULL);
2217 
2218 	hdr_length = IPH_HDR_LENGTH(ipha);
2219 
2220 	/* Drop if the original packet contained a source route */
2221 	if (ip_source_route_included(ipha)) {
2222 		return (B_FALSE);
2223 	}
2224 	/*
2225 	 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport
2226 	 * header.
2227 	 */
2228 	if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2229 	    mp->b_wptr) {
2230 		if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2231 		    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2232 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2233 			ip1dbg(("icmp_inbound_too_big: insufficient hdr\n"));
2234 			return (B_FALSE);
2235 		}
2236 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2237 		ipha = (ipha_t *)&icmph[1];
2238 	}
2239 	nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp);
2240 	if (nexthop_addr != INADDR_ANY) {
2241 		/* nexthop set */
2242 		first_ire = ire_ctable_lookup(ipha->ipha_dst,
2243 		    nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp),
2244 		    MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst);
2245 	} else {
2246 		/* nexthop not set */
2247 		first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE,
2248 		    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
2249 	}
2250 
2251 	if (!first_ire) {
2252 		ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n",
2253 		    ntohl(ipha->ipha_dst)));
2254 		return (B_FALSE);
2255 	}
2256 	/* Check for MTU discovery advice as described in RFC 1191 */
2257 	mtu = ntohs(icmph->icmph_du_mtu);
2258 	rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER);
2259 	for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst;
2260 	    ire = ire->ire_next) {
2261 		/*
2262 		 * Look for the connection to which this ICMP message is
2263 		 * directed. If it has the IP_NEXTHOP option set, then the
2264 		 * search is limited to IREs with the MATCH_IRE_PRIVATE
2265 		 * option. Else the search is limited to regular IREs.
2266 		 */
2267 		if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) &&
2268 		    (nexthop_addr != ire->ire_gateway_addr)) ||
2269 		    (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) &&
2270 		    (nexthop_addr != INADDR_ANY)))
2271 			continue;
2272 
2273 		mutex_enter(&ire->ire_lock);
2274 		if (icmph->icmph_du_zero == 0 && mtu > 68) {
2275 			/* Reduce the IRE max frag value as advised. */
2276 			ip1dbg(("Received mtu from router: %d (was %d)\n",
2277 			    mtu, ire->ire_max_frag));
2278 			ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
2279 		} else {
2280 			uint32_t length;
2281 			int	i;
2282 
2283 			/*
2284 			 * Use the table from RFC 1191 to figure out
2285 			 * the next "plateau" based on the length in
2286 			 * the original IP packet.
2287 			 */
2288 			length = ntohs(ipha->ipha_length);
2289 			if (ire->ire_max_frag <= length &&
2290 			    ire->ire_max_frag >= length - hdr_length) {
2291 				/*
2292 				 * Handle broken BSD 4.2 systems that
2293 				 * return the wrong iph_length in ICMP
2294 				 * errors.
2295 				 */
2296 				ip1dbg(("Wrong mtu: sent %d, ire %d\n",
2297 				    length, ire->ire_max_frag));
2298 				length -= hdr_length;
2299 			}
2300 			for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
2301 				if (length > icmp_frag_size_table[i])
2302 					break;
2303 			}
2304 			if (i == A_CNT(icmp_frag_size_table)) {
2305 				/* Smaller than 68! */
2306 				ip1dbg(("Too big for packet size %d\n",
2307 				    length));
2308 				ire->ire_max_frag = MIN(ire->ire_max_frag, 576);
2309 				ire->ire_frag_flag = 0;
2310 			} else {
2311 				mtu = icmp_frag_size_table[i];
2312 				ip1dbg(("Calculated mtu %d, packet size %d, "
2313 				    "before %d", mtu, length,
2314 				    ire->ire_max_frag));
2315 				ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
2316 				ip1dbg((", after %d\n", ire->ire_max_frag));
2317 			}
2318 			/* Record the new max frag size for the ULP. */
2319 			icmph->icmph_du_zero = 0;
2320 			icmph->icmph_du_mtu =
2321 			    htons((uint16_t)ire->ire_max_frag);
2322 		}
2323 		mutex_exit(&ire->ire_lock);
2324 	}
2325 	rw_exit(&first_ire->ire_bucket->irb_lock);
2326 	ire_refrele(first_ire);
2327 	return (B_TRUE);
2328 }
2329 
2330 /*
2331  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout
2332  * calls this function.
2333  */
2334 static mblk_t *
2335 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length)
2336 {
2337 	ipha_t *ipha;
2338 	icmph_t *icmph;
2339 	ipha_t *in_ipha;
2340 	int length;
2341 
2342 	ASSERT(mp->b_datap->db_type == M_DATA);
2343 
2344 	/*
2345 	 * For Self-encapsulated packets, we added an extra IP header
2346 	 * without the options. Inner IP header is the one from which
2347 	 * the outer IP header was formed. Thus, we need to remove the
2348 	 * outer IP header. To do this, we pullup the whole message
2349 	 * and overlay whatever follows the outer IP header over the
2350 	 * outer IP header.
2351 	 */
2352 
2353 	if (!pullupmsg(mp, -1))
2354 		return (NULL);
2355 
2356 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2357 	ipha = (ipha_t *)&icmph[1];
2358 	in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2359 
2360 	/*
2361 	 * The length that we want to overlay is following the inner
2362 	 * IP header. Subtracting the IP header + icmp header + outer
2363 	 * IP header's length should give us the length that we want to
2364 	 * overlay.
2365 	 */
2366 	length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) -
2367 	    hdr_length;
2368 	/*
2369 	 * Overlay whatever follows the inner header over the
2370 	 * outer header.
2371 	 */
2372 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2373 
2374 	/* Set the wptr to account for the outer header */
2375 	mp->b_wptr -= hdr_length;
2376 	return (mp);
2377 }
2378 
2379 /*
2380  * Try to pass the ICMP message upstream in case the ULP cares.
2381  *
2382  * If the packet that caused the ICMP error is secure, we send
2383  * it to AH/ESP to make sure that the attached packet has a
2384  * valid association. ipha in the code below points to the
2385  * IP header of the packet that caused the error.
2386  *
2387  * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently
2388  * in the context of IPsec. Normally we tell the upper layer
2389  * whenever we send the ire (including ip_bind), the IPsec header
2390  * length in ire_ipsec_overhead. TCP can deduce the MSS as it
2391  * has both the MTU (ire_max_frag) and the ire_ipsec_overhead.
2392  * Similarly, we pass the new MTU icmph_du_mtu and TCP does the
2393  * same thing. As TCP has the IPsec options size that needs to be
2394  * adjusted, we just pass the MTU unchanged.
2395  *
2396  * IFN could have been generated locally or by some router.
2397  *
2398  * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this.
2399  *	    This happens because IP adjusted its value of MTU on an
2400  *	    earlier IFN message and could not tell the upper layer,
2401  *	    the new adjusted value of MTU e.g. Packet was encrypted
2402  *	    or there was not enough information to fanout to upper
2403  *	    layers. Thus on the next outbound datagram, ip_wput_ire
2404  *	    generates the IFN, where IPsec processing has *not* been
2405  *	    done.
2406  *
2407  *	   *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed
2408  *	    could have generated this. This happens because ire_max_frag
2409  *	    value in IP was set to a new value, while the IPsec processing
2410  *	    was being done and after we made the fragmentation check in
2411  *	    ip_wput_ire. Thus on return from IPsec processing,
2412  *	    ip_wput_ipsec_out finds that the new length is > ire_max_frag
2413  *	    and generates the IFN. As IPsec processing is over, we fanout
2414  *	    to AH/ESP to remove the header.
2415  *
2416  *	    In both these cases, ipsec_in_loopback will be set indicating
2417  *	    that IFN was generated locally.
2418  *
2419  * ROUTER : IFN could be secure or non-secure.
2420  *
2421  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2422  *	      packet in error has AH/ESP headers to validate the AH/ESP
2423  *	      headers. AH/ESP will verify whether there is a valid SA or
2424  *	      not and send it back. We will fanout again if we have more
2425  *	      data in the packet.
2426  *
2427  *	      If the packet in error does not have AH/ESP, we handle it
2428  *	      like any other case.
2429  *
2430  *	    * NON_SECURE : If the packet in error has AH/ESP headers,
2431  *	      we attach a dummy ipsec_in and send it up to AH/ESP
2432  *	      for validation. AH/ESP will verify whether there is a
2433  *	      valid SA or not and send it back. We will fanout again if
2434  *	      we have more data in the packet.
2435  *
2436  *	      If the packet in error does not have AH/ESP, we handle it
2437  *	      like any other case.
2438  */
2439 static void
2440 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp,
2441     icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length,
2442     boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
2443     zoneid_t zoneid)
2444 {
2445 	uint16_t *up;	/* Pointer to ports in ULP header */
2446 	uint32_t ports;	/* reversed ports for fanout */
2447 	ipha_t ripha;	/* With reversed addresses */
2448 	mblk_t *first_mp;
2449 	ipsec_in_t *ii;
2450 	tcph_t	*tcph;
2451 	conn_t	*connp;
2452 	ip_stack_t *ipst;
2453 
2454 	ASSERT(ill != NULL);
2455 
2456 	ASSERT(recv_ill != NULL);
2457 	ipst = recv_ill->ill_ipst;
2458 
2459 	first_mp = mp;
2460 	if (mctl_present) {
2461 		mp = first_mp->b_cont;
2462 		ASSERT(mp != NULL);
2463 
2464 		ii = (ipsec_in_t *)first_mp->b_rptr;
2465 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2466 	} else {
2467 		ii = NULL;
2468 	}
2469 
2470 	switch (ipha->ipha_protocol) {
2471 	case IPPROTO_UDP:
2472 		/*
2473 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2474 		 * transport header.
2475 		 */
2476 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2477 		    mp->b_wptr) {
2478 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2479 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2480 				goto discard_pkt;
2481 			}
2482 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2483 			ipha = (ipha_t *)&icmph[1];
2484 		}
2485 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2486 
2487 		/*
2488 		 * Attempt to find a client stream based on port.
2489 		 * Note that we do a reverse lookup since the header is
2490 		 * in the form we sent it out.
2491 		 * The ripha header is only used for the IP_UDP_MATCH and we
2492 		 * only set the src and dst addresses and protocol.
2493 		 */
2494 		ripha.ipha_src = ipha->ipha_dst;
2495 		ripha.ipha_dst = ipha->ipha_src;
2496 		ripha.ipha_protocol = ipha->ipha_protocol;
2497 		((uint16_t *)&ports)[0] = up[1];
2498 		((uint16_t *)&ports)[1] = up[0];
2499 		ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n",
2500 		    ntohl(ipha->ipha_src), ntohs(up[0]),
2501 		    ntohl(ipha->ipha_dst), ntohs(up[1]),
2502 		    icmph->icmph_type, icmph->icmph_code));
2503 
2504 		/* Have to change db_type after any pullupmsg */
2505 		DB_TYPE(mp) = M_CTL;
2506 
2507 		ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0,
2508 		    mctl_present, ip_policy, recv_ill, zoneid);
2509 		return;
2510 
2511 	case IPPROTO_TCP:
2512 		/*
2513 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2514 		 * transport header.
2515 		 */
2516 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2517 		    mp->b_wptr) {
2518 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2519 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2520 				goto discard_pkt;
2521 			}
2522 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2523 			ipha = (ipha_t *)&icmph[1];
2524 		}
2525 		/*
2526 		 * Find a TCP client stream for this packet.
2527 		 * Note that we do a reverse lookup since the header is
2528 		 * in the form we sent it out.
2529 		 */
2530 		tcph = (tcph_t *)((uchar_t *)ipha + hdr_length);
2531 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN,
2532 		    ipst);
2533 		if (connp == NULL)
2534 			goto discard_pkt;
2535 
2536 		/* Have to change db_type after any pullupmsg */
2537 		DB_TYPE(mp) = M_CTL;
2538 		squeue_fill(connp->conn_sqp, first_mp, tcp_input,
2539 		    connp, SQTAG_TCP_INPUT_ICMP_ERR);
2540 		return;
2541 
2542 	case IPPROTO_SCTP:
2543 		/*
2544 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2545 		 * transport header.
2546 		 */
2547 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2548 		    mp->b_wptr) {
2549 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2550 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2551 				goto discard_pkt;
2552 			}
2553 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2554 			ipha = (ipha_t *)&icmph[1];
2555 		}
2556 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2557 		/*
2558 		 * Find a SCTP client stream for this packet.
2559 		 * Note that we do a reverse lookup since the header is
2560 		 * in the form we sent it out.
2561 		 * The ripha header is only used for the matching and we
2562 		 * only set the src and dst addresses, protocol, and version.
2563 		 */
2564 		ripha.ipha_src = ipha->ipha_dst;
2565 		ripha.ipha_dst = ipha->ipha_src;
2566 		ripha.ipha_protocol = ipha->ipha_protocol;
2567 		ripha.ipha_version_and_hdr_length =
2568 		    ipha->ipha_version_and_hdr_length;
2569 		((uint16_t *)&ports)[0] = up[1];
2570 		((uint16_t *)&ports)[1] = up[0];
2571 
2572 		/* Have to change db_type after any pullupmsg */
2573 		DB_TYPE(mp) = M_CTL;
2574 		ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0,
2575 		    mctl_present, ip_policy, zoneid);
2576 		return;
2577 
2578 	case IPPROTO_ESP:
2579 	case IPPROTO_AH: {
2580 		int ipsec_rc;
2581 		ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
2582 
2583 		/*
2584 		 * We need a IPSEC_IN in the front to fanout to AH/ESP.
2585 		 * We will re-use the IPSEC_IN if it is already present as
2586 		 * AH/ESP will not affect any fields in the IPSEC_IN for
2587 		 * ICMP errors. If there is no IPSEC_IN, allocate a new
2588 		 * one and attach it in the front.
2589 		 */
2590 		if (ii != NULL) {
2591 			/*
2592 			 * ip_fanout_proto_again converts the ICMP errors
2593 			 * that come back from AH/ESP to M_DATA so that
2594 			 * if it is non-AH/ESP and we do a pullupmsg in
2595 			 * this function, it would work. Convert it back
2596 			 * to M_CTL before we send up as this is a ICMP
2597 			 * error. This could have been generated locally or
2598 			 * by some router. Validate the inner IPsec
2599 			 * headers.
2600 			 *
2601 			 * NOTE : ill_index is used by ip_fanout_proto_again
2602 			 * to locate the ill.
2603 			 */
2604 			ASSERT(ill != NULL);
2605 			ii->ipsec_in_ill_index =
2606 			    ill->ill_phyint->phyint_ifindex;
2607 			ii->ipsec_in_rill_index =
2608 			    recv_ill->ill_phyint->phyint_ifindex;
2609 			DB_TYPE(first_mp->b_cont) = M_CTL;
2610 		} else {
2611 			/*
2612 			 * IPSEC_IN is not present. We attach a ipsec_in
2613 			 * message and send up to IPsec for validating
2614 			 * and removing the IPsec headers. Clear
2615 			 * ipsec_in_secure so that when we return
2616 			 * from IPsec, we don't mistakenly think that this
2617 			 * is a secure packet came from the network.
2618 			 *
2619 			 * NOTE : ill_index is used by ip_fanout_proto_again
2620 			 * to locate the ill.
2621 			 */
2622 			ASSERT(first_mp == mp);
2623 			first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack);
2624 			if (first_mp == NULL) {
2625 				freemsg(mp);
2626 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2627 				return;
2628 			}
2629 			ii = (ipsec_in_t *)first_mp->b_rptr;
2630 
2631 			/* This is not a secure packet */
2632 			ii->ipsec_in_secure = B_FALSE;
2633 			first_mp->b_cont = mp;
2634 			DB_TYPE(mp) = M_CTL;
2635 			ASSERT(ill != NULL);
2636 			ii->ipsec_in_ill_index =
2637 			    ill->ill_phyint->phyint_ifindex;
2638 			ii->ipsec_in_rill_index =
2639 			    recv_ill->ill_phyint->phyint_ifindex;
2640 		}
2641 		ip2dbg(("icmp_inbound_error: ipsec\n"));
2642 
2643 		if (!ipsec_loaded(ipss)) {
2644 			ip_proto_not_sup(q, first_mp, 0, zoneid, ipst);
2645 			return;
2646 		}
2647 
2648 		if (ipha->ipha_protocol == IPPROTO_ESP)
2649 			ipsec_rc = ipsecesp_icmp_error(first_mp);
2650 		else
2651 			ipsec_rc = ipsecah_icmp_error(first_mp);
2652 		if (ipsec_rc == IPSEC_STATUS_FAILED)
2653 			return;
2654 
2655 		ip_fanout_proto_again(first_mp, ill, recv_ill, NULL);
2656 		return;
2657 	}
2658 	default:
2659 		/*
2660 		 * The ripha header is only used for the lookup and we
2661 		 * only set the src and dst addresses and protocol.
2662 		 */
2663 		ripha.ipha_src = ipha->ipha_dst;
2664 		ripha.ipha_dst = ipha->ipha_src;
2665 		ripha.ipha_protocol = ipha->ipha_protocol;
2666 		ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n",
2667 		    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2668 		    ntohl(ipha->ipha_dst),
2669 		    icmph->icmph_type, icmph->icmph_code));
2670 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2671 			ipha_t *in_ipha;
2672 
2673 			if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
2674 			    mp->b_wptr) {
2675 				if (!pullupmsg(mp, (uchar_t *)ipha +
2676 				    hdr_length + sizeof (ipha_t) -
2677 				    mp->b_rptr)) {
2678 					goto discard_pkt;
2679 				}
2680 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2681 				ipha = (ipha_t *)&icmph[1];
2682 			}
2683 			/*
2684 			 * Caller has verified that length has to be
2685 			 * at least the size of IP header.
2686 			 */
2687 			ASSERT(hdr_length >= sizeof (ipha_t));
2688 			/*
2689 			 * Check the sanity of the inner IP header like
2690 			 * we did for the outer header.
2691 			 */
2692 			in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2693 			if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2694 				goto discard_pkt;
2695 			}
2696 			if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2697 				goto discard_pkt;
2698 			}
2699 			/* Check for Self-encapsulated tunnels */
2700 			if (in_ipha->ipha_src == ipha->ipha_src &&
2701 			    in_ipha->ipha_dst == ipha->ipha_dst) {
2702 
2703 				mp = icmp_inbound_self_encap_error(mp,
2704 				    iph_hdr_length, hdr_length);
2705 				if (mp == NULL)
2706 					goto discard_pkt;
2707 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2708 				ipha = (ipha_t *)&icmph[1];
2709 				hdr_length = IPH_HDR_LENGTH(ipha);
2710 				/*
2711 				 * The packet in error is self-encapsualted.
2712 				 * And we are finding it further encapsulated
2713 				 * which we could not have possibly generated.
2714 				 */
2715 				if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2716 					goto discard_pkt;
2717 				}
2718 				icmp_inbound_error_fanout(q, ill, first_mp,
2719 				    icmph, ipha, iph_hdr_length, hdr_length,
2720 				    mctl_present, ip_policy, recv_ill, zoneid);
2721 				return;
2722 			}
2723 		}
2724 		if ((ipha->ipha_protocol == IPPROTO_ENCAP ||
2725 		    ipha->ipha_protocol == IPPROTO_IPV6) &&
2726 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
2727 		    ii != NULL &&
2728 		    ii->ipsec_in_loopback &&
2729 		    ii->ipsec_in_secure) {
2730 			/*
2731 			 * For IP tunnels that get a looped-back
2732 			 * ICMP_FRAGMENTATION_NEEDED message, adjust the
2733 			 * reported new MTU to take into account the IPsec
2734 			 * headers protecting this configured tunnel.
2735 			 *
2736 			 * This allows the tunnel module (tun.c) to blindly
2737 			 * accept the MTU reported in an ICMP "too big"
2738 			 * message.
2739 			 *
2740 			 * Non-looped back ICMP messages will just be
2741 			 * handled by the security protocols (if needed),
2742 			 * and the first subsequent packet will hit this
2743 			 * path.
2744 			 */
2745 			icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) -
2746 			    ipsec_in_extra_length(first_mp));
2747 		}
2748 		/* Have to change db_type after any pullupmsg */
2749 		DB_TYPE(mp) = M_CTL;
2750 
2751 		ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present,
2752 		    ip_policy, recv_ill, zoneid);
2753 		return;
2754 	}
2755 	/* NOTREACHED */
2756 discard_pkt:
2757 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2758 drop_pkt:;
2759 	ip1dbg(("icmp_inbound_error_fanout: drop pkt\n"));
2760 	freemsg(first_mp);
2761 }
2762 
2763 /*
2764  * Common IP options parser.
2765  *
2766  * Setup routine: fill in *optp with options-parsing state, then
2767  * tail-call ipoptp_next to return the first option.
2768  */
2769 uint8_t
2770 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2771 {
2772 	uint32_t totallen; /* total length of all options */
2773 
2774 	totallen = ipha->ipha_version_and_hdr_length -
2775 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2776 	totallen <<= 2;
2777 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2778 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2779 	optp->ipoptp_flags = 0;
2780 	return (ipoptp_next(optp));
2781 }
2782 
2783 /*
2784  * Common IP options parser: extract next option.
2785  */
2786 uint8_t
2787 ipoptp_next(ipoptp_t *optp)
2788 {
2789 	uint8_t *end = optp->ipoptp_end;
2790 	uint8_t *cur = optp->ipoptp_next;
2791 	uint8_t opt, len, pointer;
2792 
2793 	/*
2794 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2795 	 * has been corrupted.
2796 	 */
2797 	ASSERT(cur <= end);
2798 
2799 	if (cur == end)
2800 		return (IPOPT_EOL);
2801 
2802 	opt = cur[IPOPT_OPTVAL];
2803 
2804 	/*
2805 	 * Skip any NOP options.
2806 	 */
2807 	while (opt == IPOPT_NOP) {
2808 		cur++;
2809 		if (cur == end)
2810 			return (IPOPT_EOL);
2811 		opt = cur[IPOPT_OPTVAL];
2812 	}
2813 
2814 	if (opt == IPOPT_EOL)
2815 		return (IPOPT_EOL);
2816 
2817 	/*
2818 	 * Option requiring a length.
2819 	 */
2820 	if ((cur + 1) >= end) {
2821 		optp->ipoptp_flags |= IPOPTP_ERROR;
2822 		return (IPOPT_EOL);
2823 	}
2824 	len = cur[IPOPT_OLEN];
2825 	if (len < 2) {
2826 		optp->ipoptp_flags |= IPOPTP_ERROR;
2827 		return (IPOPT_EOL);
2828 	}
2829 	optp->ipoptp_cur = cur;
2830 	optp->ipoptp_len = len;
2831 	optp->ipoptp_next = cur + len;
2832 	if (cur + len > end) {
2833 		optp->ipoptp_flags |= IPOPTP_ERROR;
2834 		return (IPOPT_EOL);
2835 	}
2836 
2837 	/*
2838 	 * For the options which require a pointer field, make sure
2839 	 * its there, and make sure it points to either something
2840 	 * inside this option, or the end of the option.
2841 	 */
2842 	switch (opt) {
2843 	case IPOPT_RR:
2844 	case IPOPT_TS:
2845 	case IPOPT_LSRR:
2846 	case IPOPT_SSRR:
2847 		if (len <= IPOPT_OFFSET) {
2848 			optp->ipoptp_flags |= IPOPTP_ERROR;
2849 			return (opt);
2850 		}
2851 		pointer = cur[IPOPT_OFFSET];
2852 		if (pointer - 1 > len) {
2853 			optp->ipoptp_flags |= IPOPTP_ERROR;
2854 			return (opt);
2855 		}
2856 		break;
2857 	}
2858 
2859 	/*
2860 	 * Sanity check the pointer field based on the type of the
2861 	 * option.
2862 	 */
2863 	switch (opt) {
2864 	case IPOPT_RR:
2865 	case IPOPT_SSRR:
2866 	case IPOPT_LSRR:
2867 		if (pointer < IPOPT_MINOFF_SR)
2868 			optp->ipoptp_flags |= IPOPTP_ERROR;
2869 		break;
2870 	case IPOPT_TS:
2871 		if (pointer < IPOPT_MINOFF_IT)
2872 			optp->ipoptp_flags |= IPOPTP_ERROR;
2873 		/*
2874 		 * Note that the Internet Timestamp option also
2875 		 * contains two four bit fields (the Overflow field,
2876 		 * and the Flag field), which follow the pointer
2877 		 * field.  We don't need to check that these fields
2878 		 * fall within the length of the option because this
2879 		 * was implicitely done above.  We've checked that the
2880 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2881 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2882 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2883 		 */
2884 		ASSERT(len > IPOPT_POS_OV_FLG);
2885 		break;
2886 	}
2887 
2888 	return (opt);
2889 }
2890 
2891 /*
2892  * Use the outgoing IP header to create an IP_OPTIONS option the way
2893  * it was passed down from the application.
2894  */
2895 int
2896 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf)
2897 {
2898 	ipoptp_t	opts;
2899 	const uchar_t	*opt;
2900 	uint8_t		optval;
2901 	uint8_t		optlen;
2902 	uint32_t	len = 0;
2903 	uchar_t	*buf1 = buf;
2904 
2905 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2906 	len += IP_ADDR_LEN;
2907 	bzero(buf1, IP_ADDR_LEN);
2908 
2909 	/*
2910 	 * OK to cast away const here, as we don't store through the returned
2911 	 * opts.ipoptp_cur pointer.
2912 	 */
2913 	for (optval = ipoptp_first(&opts, (ipha_t *)ipha);
2914 	    optval != IPOPT_EOL;
2915 	    optval = ipoptp_next(&opts)) {
2916 		int	off;
2917 
2918 		opt = opts.ipoptp_cur;
2919 		optlen = opts.ipoptp_len;
2920 		switch (optval) {
2921 		case IPOPT_SSRR:
2922 		case IPOPT_LSRR:
2923 
2924 			/*
2925 			 * Insert ipha_dst as the first entry in the source
2926 			 * route and move down the entries on step.
2927 			 * The last entry gets placed at buf1.
2928 			 */
2929 			buf[IPOPT_OPTVAL] = optval;
2930 			buf[IPOPT_OLEN] = optlen;
2931 			buf[IPOPT_OFFSET] = optlen;
2932 
2933 			off = optlen - IP_ADDR_LEN;
2934 			if (off < 0) {
2935 				/* No entries in source route */
2936 				break;
2937 			}
2938 			/* Last entry in source route */
2939 			bcopy(opt + off, buf1, IP_ADDR_LEN);
2940 			off -= IP_ADDR_LEN;
2941 
2942 			while (off > 0) {
2943 				bcopy(opt + off,
2944 				    buf + off + IP_ADDR_LEN,
2945 				    IP_ADDR_LEN);
2946 				off -= IP_ADDR_LEN;
2947 			}
2948 			/* ipha_dst into first slot */
2949 			bcopy(&ipha->ipha_dst,
2950 			    buf + off + IP_ADDR_LEN,
2951 			    IP_ADDR_LEN);
2952 			buf += optlen;
2953 			len += optlen;
2954 			break;
2955 
2956 		case IPOPT_COMSEC:
2957 		case IPOPT_SECURITY:
2958 			/* if passing up a label is not ok, then remove */
2959 			if (is_system_labeled())
2960 				break;
2961 			/* FALLTHROUGH */
2962 		default:
2963 			bcopy(opt, buf, optlen);
2964 			buf += optlen;
2965 			len += optlen;
2966 			break;
2967 		}
2968 	}
2969 done:
2970 	/* Pad the resulting options */
2971 	while (len & 0x3) {
2972 		*buf++ = IPOPT_EOL;
2973 		len++;
2974 	}
2975 	return (len);
2976 }
2977 
2978 /*
2979  * Update any record route or timestamp options to include this host.
2980  * Reverse any source route option.
2981  * This routine assumes that the options are well formed i.e. that they
2982  * have already been checked.
2983  */
2984 static void
2985 icmp_options_update(ipha_t *ipha)
2986 {
2987 	ipoptp_t	opts;
2988 	uchar_t		*opt;
2989 	uint8_t		optval;
2990 	ipaddr_t	src;		/* Our local address */
2991 	ipaddr_t	dst;
2992 
2993 	ip2dbg(("icmp_options_update\n"));
2994 	src = ipha->ipha_src;
2995 	dst = ipha->ipha_dst;
2996 
2997 	for (optval = ipoptp_first(&opts, ipha);
2998 	    optval != IPOPT_EOL;
2999 	    optval = ipoptp_next(&opts)) {
3000 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
3001 		opt = opts.ipoptp_cur;
3002 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
3003 		    optval, opts.ipoptp_len));
3004 		switch (optval) {
3005 			int off1, off2;
3006 		case IPOPT_SSRR:
3007 		case IPOPT_LSRR:
3008 			/*
3009 			 * Reverse the source route.  The first entry
3010 			 * should be the next to last one in the current
3011 			 * source route (the last entry is our address).
3012 			 * The last entry should be the final destination.
3013 			 */
3014 			off1 = IPOPT_MINOFF_SR - 1;
3015 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
3016 			if (off2 < 0) {
3017 				/* No entries in source route */
3018 				ip1dbg((
3019 				    "icmp_options_update: bad src route\n"));
3020 				break;
3021 			}
3022 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
3023 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
3024 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
3025 			off2 -= IP_ADDR_LEN;
3026 
3027 			while (off1 < off2) {
3028 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
3029 				bcopy((char *)opt + off2, (char *)opt + off1,
3030 				    IP_ADDR_LEN);
3031 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
3032 				off1 += IP_ADDR_LEN;
3033 				off2 -= IP_ADDR_LEN;
3034 			}
3035 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
3036 			break;
3037 		}
3038 	}
3039 }
3040 
3041 /*
3042  * Process received ICMP Redirect messages.
3043  */
3044 static void
3045 icmp_redirect(ill_t *ill, mblk_t *mp)
3046 {
3047 	ipha_t	*ipha;
3048 	int	iph_hdr_length;
3049 	icmph_t	*icmph;
3050 	ipha_t	*ipha_err;
3051 	ire_t	*ire;
3052 	ire_t	*prev_ire;
3053 	ire_t	*save_ire;
3054 	ipaddr_t  src, dst, gateway;
3055 	iulp_t	ulp_info = { 0 };
3056 	int	error;
3057 	ip_stack_t *ipst;
3058 
3059 	ASSERT(ill != NULL);
3060 	ipst = ill->ill_ipst;
3061 
3062 	ipha = (ipha_t *)mp->b_rptr;
3063 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
3064 	if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) <
3065 	    sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) {
3066 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3067 		freemsg(mp);
3068 		return;
3069 	}
3070 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
3071 	ipha_err = (ipha_t *)&icmph[1];
3072 	src = ipha->ipha_src;
3073 	dst = ipha_err->ipha_dst;
3074 	gateway = icmph->icmph_rd_gateway;
3075 	/* Make sure the new gateway is reachable somehow. */
3076 	ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL,
3077 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3078 	/*
3079 	 * Make sure we had a route for the dest in question and that
3080 	 * that route was pointing to the old gateway (the source of the
3081 	 * redirect packet.)
3082 	 */
3083 	prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES,
3084 	    NULL, MATCH_IRE_GW, ipst);
3085 	/*
3086 	 * Check that
3087 	 *	the redirect was not from ourselves
3088 	 *	the new gateway and the old gateway are directly reachable
3089 	 */
3090 	if (!prev_ire ||
3091 	    !ire ||
3092 	    ire->ire_type == IRE_LOCAL) {
3093 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
3094 		freemsg(mp);
3095 		if (ire != NULL)
3096 			ire_refrele(ire);
3097 		if (prev_ire != NULL)
3098 			ire_refrele(prev_ire);
3099 		return;
3100 	}
3101 
3102 	/*
3103 	 * Should we use the old ULP info to create the new gateway?  From
3104 	 * a user's perspective, we should inherit the info so that it
3105 	 * is a "smooth" transition.  If we do not do that, then new
3106 	 * connections going thru the new gateway will have no route metrics,
3107 	 * which is counter-intuitive to user.  From a network point of
3108 	 * view, this may or may not make sense even though the new gateway
3109 	 * is still directly connected to us so the route metrics should not
3110 	 * change much.
3111 	 *
3112 	 * But if the old ire_uinfo is not initialized, we do another
3113 	 * recursive lookup on the dest using the new gateway.  There may
3114 	 * be a route to that.  If so, use it to initialize the redirect
3115 	 * route.
3116 	 */
3117 	if (prev_ire->ire_uinfo.iulp_set) {
3118 		bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t));
3119 	} else {
3120 		ire_t *tmp_ire;
3121 		ire_t *sire;
3122 
3123 		tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire,
3124 		    ALL_ZONES, 0, NULL,
3125 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT),
3126 		    ipst);
3127 		if (sire != NULL) {
3128 			bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t));
3129 			/*
3130 			 * If sire != NULL, ire_ftable_lookup() should not
3131 			 * return a NULL value.
3132 			 */
3133 			ASSERT(tmp_ire != NULL);
3134 			ire_refrele(tmp_ire);
3135 			ire_refrele(sire);
3136 		} else if (tmp_ire != NULL) {
3137 			bcopy(&tmp_ire->ire_uinfo, &ulp_info,
3138 			    sizeof (iulp_t));
3139 			ire_refrele(tmp_ire);
3140 		}
3141 	}
3142 	if (prev_ire->ire_type == IRE_CACHE)
3143 		ire_delete(prev_ire);
3144 	ire_refrele(prev_ire);
3145 	/*
3146 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
3147 	 * require TOS routing
3148 	 */
3149 	switch (icmph->icmph_code) {
3150 	case 0:
3151 	case 1:
3152 		/* TODO: TOS specificity for cases 2 and 3 */
3153 	case 2:
3154 	case 3:
3155 		break;
3156 	default:
3157 		freemsg(mp);
3158 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
3159 		ire_refrele(ire);
3160 		return;
3161 	}
3162 	/*
3163 	 * Create a Route Association.  This will allow us to remember that
3164 	 * someone we believe told us to use the particular gateway.
3165 	 */
3166 	save_ire = ire;
3167 	ire = ire_create(
3168 	    (uchar_t *)&dst,			/* dest addr */
3169 	    (uchar_t *)&ip_g_all_ones,		/* mask */
3170 	    (uchar_t *)&save_ire->ire_src_addr,	/* source addr */
3171 	    (uchar_t *)&gateway,		/* gateway addr */
3172 	    &save_ire->ire_max_frag,		/* max frag */
3173 	    NULL,				/* no src nce */
3174 	    NULL,				/* no rfq */
3175 	    NULL,				/* no stq */
3176 	    IRE_HOST,
3177 	    NULL,				/* ipif */
3178 	    0,					/* cmask */
3179 	    0,					/* phandle */
3180 	    0,					/* ihandle */
3181 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
3182 	    &ulp_info,
3183 	    NULL,				/* tsol_gc_t */
3184 	    NULL,				/* gcgrp */
3185 	    ipst);
3186 
3187 	if (ire == NULL) {
3188 		freemsg(mp);
3189 		ire_refrele(save_ire);
3190 		return;
3191 	}
3192 	error = ire_add(&ire, NULL, NULL, NULL, B_FALSE);
3193 	ire_refrele(save_ire);
3194 	atomic_inc_32(&ipst->ips_ip_redirect_cnt);
3195 
3196 	if (error == 0) {
3197 		ire_refrele(ire);		/* Held in ire_add_v4 */
3198 		/* tell routing sockets that we received a redirect */
3199 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
3200 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
3201 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
3202 	}
3203 
3204 	/*
3205 	 * Delete any existing IRE_HOST type redirect ires for this destination.
3206 	 * This together with the added IRE has the effect of
3207 	 * modifying an existing redirect.
3208 	 */
3209 	prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL,
3210 	    ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst);
3211 	if (prev_ire != NULL) {
3212 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
3213 			ire_delete(prev_ire);
3214 		ire_refrele(prev_ire);
3215 	}
3216 
3217 	freemsg(mp);
3218 }
3219 
3220 /*
3221  * Generate an ICMP parameter problem message.
3222  */
3223 static void
3224 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid,
3225 	ip_stack_t *ipst)
3226 {
3227 	icmph_t	icmph;
3228 	boolean_t mctl_present;
3229 	mblk_t *first_mp;
3230 
3231 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3232 
3233 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3234 		if (mctl_present)
3235 			freeb(first_mp);
3236 		return;
3237 	}
3238 
3239 	bzero(&icmph, sizeof (icmph_t));
3240 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
3241 	icmph.icmph_pp_ptr = ptr;
3242 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
3243 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid,
3244 	    ipst);
3245 }
3246 
3247 /*
3248  * Build and ship an IPv4 ICMP message using the packet data in mp, and
3249  * the ICMP header pointed to by "stuff".  (May be called as writer.)
3250  * Note: assumes that icmp_pkt_err_ok has been called to verify that
3251  * an icmp error packet can be sent.
3252  * Assigns an appropriate source address to the packet. If ipha_dst is
3253  * one of our addresses use it for source. Otherwise pick a source based
3254  * on a route lookup back to ipha_src.
3255  * Note that ipha_src must be set here since the
3256  * packet is likely to arrive on an ill queue in ip_wput() which will
3257  * not set a source address.
3258  */
3259 static void
3260 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len,
3261     boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst)
3262 {
3263 	ipaddr_t dst;
3264 	icmph_t	*icmph;
3265 	ipha_t	*ipha;
3266 	uint_t	len_needed;
3267 	size_t	msg_len;
3268 	mblk_t	*mp1;
3269 	ipaddr_t src;
3270 	ire_t	*ire;
3271 	mblk_t *ipsec_mp;
3272 	ipsec_out_t	*io = NULL;
3273 
3274 	if (mctl_present) {
3275 		/*
3276 		 * If it is :
3277 		 *
3278 		 * 1) a IPSEC_OUT, then this is caused by outbound
3279 		 *    datagram originating on this host. IPsec processing
3280 		 *    may or may not have been done. Refer to comments above
3281 		 *    icmp_inbound_error_fanout for details.
3282 		 *
3283 		 * 2) a IPSEC_IN if we are generating a icmp_message
3284 		 *    for an incoming datagram destined for us i.e called
3285 		 *    from ip_fanout_send_icmp.
3286 		 */
3287 		ipsec_info_t *in;
3288 		ipsec_mp = mp;
3289 		mp = ipsec_mp->b_cont;
3290 
3291 		in = (ipsec_info_t *)ipsec_mp->b_rptr;
3292 		ipha = (ipha_t *)mp->b_rptr;
3293 
3294 		ASSERT(in->ipsec_info_type == IPSEC_OUT ||
3295 		    in->ipsec_info_type == IPSEC_IN);
3296 
3297 		if (in->ipsec_info_type == IPSEC_IN) {
3298 			/*
3299 			 * Convert the IPSEC_IN to IPSEC_OUT.
3300 			 */
3301 			if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
3302 				BUMP_MIB(&ipst->ips_ip_mib,
3303 				    ipIfStatsOutDiscards);
3304 				return;
3305 			}
3306 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
3307 		} else {
3308 			ASSERT(in->ipsec_info_type == IPSEC_OUT);
3309 			io = (ipsec_out_t *)in;
3310 			/*
3311 			 * Clear out ipsec_out_proc_begin, so we do a fresh
3312 			 * ire lookup.
3313 			 */
3314 			io->ipsec_out_proc_begin = B_FALSE;
3315 		}
3316 		ASSERT(zoneid == io->ipsec_out_zoneid);
3317 		ASSERT(zoneid != ALL_ZONES);
3318 	} else {
3319 		/*
3320 		 * This is in clear. The icmp message we are building
3321 		 * here should go out in clear.
3322 		 *
3323 		 * Pardon the convolution of it all, but it's easier to
3324 		 * allocate a "use cleartext" IPSEC_IN message and convert
3325 		 * it than it is to allocate a new one.
3326 		 */
3327 		ipsec_in_t *ii;
3328 		ASSERT(DB_TYPE(mp) == M_DATA);
3329 		ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack);
3330 		if (ipsec_mp == NULL) {
3331 			freemsg(mp);
3332 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
3333 			return;
3334 		}
3335 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3336 
3337 		/* This is not a secure packet */
3338 		ii->ipsec_in_secure = B_FALSE;
3339 		/*
3340 		 * For trusted extensions using a shared IP address we can
3341 		 * send using any zoneid.
3342 		 */
3343 		if (zoneid == ALL_ZONES)
3344 			ii->ipsec_in_zoneid = GLOBAL_ZONEID;
3345 		else
3346 			ii->ipsec_in_zoneid = zoneid;
3347 		ipsec_mp->b_cont = mp;
3348 		ipha = (ipha_t *)mp->b_rptr;
3349 		/*
3350 		 * Convert the IPSEC_IN to IPSEC_OUT.
3351 		 */
3352 		if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
3353 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
3354 			return;
3355 		}
3356 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
3357 	}
3358 
3359 	/* Remember our eventual destination */
3360 	dst = ipha->ipha_src;
3361 
3362 	ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK),
3363 	    NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst);
3364 	if (ire != NULL &&
3365 	    (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) {
3366 		src = ipha->ipha_dst;
3367 	} else {
3368 		if (ire != NULL)
3369 			ire_refrele(ire);
3370 		ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL,
3371 		    (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY),
3372 		    ipst);
3373 		if (ire == NULL) {
3374 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
3375 			freemsg(ipsec_mp);
3376 			return;
3377 		}
3378 		src = ire->ire_src_addr;
3379 	}
3380 
3381 	if (ire != NULL)
3382 		ire_refrele(ire);
3383 
3384 	/*
3385 	 * Check if we can send back more then 8 bytes in addition to
3386 	 * the IP header.  We try to send 64 bytes of data and the internal
3387 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
3388 	 */
3389 	len_needed = IPH_HDR_LENGTH(ipha);
3390 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
3391 	    ipha->ipha_protocol == IPPROTO_IPV6) {
3392 
3393 		if (!pullupmsg(mp, -1)) {
3394 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
3395 			freemsg(ipsec_mp);
3396 			return;
3397 		}
3398 		ipha = (ipha_t *)mp->b_rptr;
3399 
3400 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
3401 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
3402 			    len_needed));
3403 		} else {
3404 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
3405 
3406 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
3407 			len_needed += ip_hdr_length_v6(mp, ip6h);
3408 		}
3409 	}
3410 	len_needed += ipst->ips_ip_icmp_return;
3411 	msg_len = msgdsize(mp);
3412 	if (msg_len > len_needed) {
3413 		(void) adjmsg(mp, len_needed - msg_len);
3414 		msg_len = len_needed;
3415 	}
3416 	mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp);
3417 	if (mp1 == NULL) {
3418 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
3419 		freemsg(ipsec_mp);
3420 		return;
3421 	}
3422 	mp1->b_cont = mp;
3423 	mp = mp1;
3424 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL &&
3425 	    ipsec_mp->b_rptr == (uint8_t *)io &&
3426 	    io->ipsec_out_type == IPSEC_OUT);
3427 	ipsec_mp->b_cont = mp;
3428 
3429 	/*
3430 	 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this
3431 	 * node generates be accepted in peace by all on-host destinations.
3432 	 * If we do NOT assume that all on-host destinations trust
3433 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
3434 	 * (Look for ipsec_out_icmp_loopback).
3435 	 */
3436 	io->ipsec_out_icmp_loopback = B_TRUE;
3437 
3438 	ipha = (ipha_t *)mp->b_rptr;
3439 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
3440 	*ipha = icmp_ipha;
3441 	ipha->ipha_src = src;
3442 	ipha->ipha_dst = dst;
3443 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
3444 	msg_len += sizeof (icmp_ipha) + len;
3445 	if (msg_len > IP_MAXPACKET) {
3446 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
3447 		msg_len = IP_MAXPACKET;
3448 	}
3449 	ipha->ipha_length = htons((uint16_t)msg_len);
3450 	icmph = (icmph_t *)&ipha[1];
3451 	bcopy(stuff, icmph, len);
3452 	icmph->icmph_checksum = 0;
3453 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
3454 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
3455 	put(q, ipsec_mp);
3456 }
3457 
3458 /*
3459  * Determine if an ICMP error packet can be sent given the rate limit.
3460  * The limit consists of an average frequency (icmp_pkt_err_interval measured
3461  * in milliseconds) and a burst size. Burst size number of packets can
3462  * be sent arbitrarely closely spaced.
3463  * The state is tracked using two variables to implement an approximate
3464  * token bucket filter:
3465  *	icmp_pkt_err_last - lbolt value when the last burst started
3466  *	icmp_pkt_err_sent - number of packets sent in current burst
3467  */
3468 boolean_t
3469 icmp_err_rate_limit(ip_stack_t *ipst)
3470 {
3471 	clock_t now = TICK_TO_MSEC(lbolt);
3472 	uint_t refilled; /* Number of packets refilled in tbf since last */
3473 	/* Guard against changes by loading into local variable */
3474 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
3475 
3476 	if (err_interval == 0)
3477 		return (B_FALSE);
3478 
3479 	if (ipst->ips_icmp_pkt_err_last > now) {
3480 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
3481 		ipst->ips_icmp_pkt_err_last = 0;
3482 		ipst->ips_icmp_pkt_err_sent = 0;
3483 	}
3484 	/*
3485 	 * If we are in a burst update the token bucket filter.
3486 	 * Update the "last" time to be close to "now" but make sure
3487 	 * we don't loose precision.
3488 	 */
3489 	if (ipst->ips_icmp_pkt_err_sent != 0) {
3490 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
3491 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
3492 			ipst->ips_icmp_pkt_err_sent = 0;
3493 		} else {
3494 			ipst->ips_icmp_pkt_err_sent -= refilled;
3495 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
3496 		}
3497 	}
3498 	if (ipst->ips_icmp_pkt_err_sent == 0) {
3499 		/* Start of new burst */
3500 		ipst->ips_icmp_pkt_err_last = now;
3501 	}
3502 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
3503 		ipst->ips_icmp_pkt_err_sent++;
3504 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
3505 		    ipst->ips_icmp_pkt_err_sent));
3506 		return (B_FALSE);
3507 	}
3508 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
3509 	return (B_TRUE);
3510 }
3511 
3512 /*
3513  * Check if it is ok to send an IPv4 ICMP error packet in
3514  * response to the IPv4 packet in mp.
3515  * Free the message and return null if no
3516  * ICMP error packet should be sent.
3517  */
3518 static mblk_t *
3519 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst)
3520 {
3521 	icmph_t	*icmph;
3522 	ipha_t	*ipha;
3523 	uint_t	len_needed;
3524 	ire_t	*src_ire;
3525 	ire_t	*dst_ire;
3526 
3527 	if (!mp)
3528 		return (NULL);
3529 	ipha = (ipha_t *)mp->b_rptr;
3530 	if (ip_csum_hdr(ipha)) {
3531 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
3532 		freemsg(mp);
3533 		return (NULL);
3534 	}
3535 	src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST,
3536 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3537 	dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST,
3538 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3539 	if (src_ire != NULL || dst_ire != NULL ||
3540 	    CLASSD(ipha->ipha_dst) ||
3541 	    CLASSD(ipha->ipha_src) ||
3542 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
3543 		/* Note: only errors to the fragment with offset 0 */
3544 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3545 		freemsg(mp);
3546 		if (src_ire != NULL)
3547 			ire_refrele(src_ire);
3548 		if (dst_ire != NULL)
3549 			ire_refrele(dst_ire);
3550 		return (NULL);
3551 	}
3552 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3553 		/*
3554 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3555 		 * errors in response to any ICMP errors.
3556 		 */
3557 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3558 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3559 			if (!pullupmsg(mp, len_needed)) {
3560 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3561 				freemsg(mp);
3562 				return (NULL);
3563 			}
3564 			ipha = (ipha_t *)mp->b_rptr;
3565 		}
3566 		icmph = (icmph_t *)
3567 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3568 		switch (icmph->icmph_type) {
3569 		case ICMP_DEST_UNREACHABLE:
3570 		case ICMP_SOURCE_QUENCH:
3571 		case ICMP_TIME_EXCEEDED:
3572 		case ICMP_PARAM_PROBLEM:
3573 		case ICMP_REDIRECT:
3574 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3575 			freemsg(mp);
3576 			return (NULL);
3577 		default:
3578 			break;
3579 		}
3580 	}
3581 	/*
3582 	 * If this is a labeled system, then check to see if we're allowed to
3583 	 * send a response to this particular sender.  If not, then just drop.
3584 	 */
3585 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
3586 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3587 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3588 		freemsg(mp);
3589 		return (NULL);
3590 	}
3591 	if (icmp_err_rate_limit(ipst)) {
3592 		/*
3593 		 * Only send ICMP error packets every so often.
3594 		 * This should be done on a per port/source basis,
3595 		 * but for now this will suffice.
3596 		 */
3597 		freemsg(mp);
3598 		return (NULL);
3599 	}
3600 	return (mp);
3601 }
3602 
3603 /*
3604  * Generate an ICMP redirect message.
3605  */
3606 static void
3607 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst)
3608 {
3609 	icmph_t	icmph;
3610 
3611 	/*
3612 	 * We are called from ip_rput where we could
3613 	 * not have attached an IPSEC_IN.
3614 	 */
3615 	ASSERT(mp->b_datap->db_type == M_DATA);
3616 
3617 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3618 		return;
3619 	}
3620 
3621 	bzero(&icmph, sizeof (icmph_t));
3622 	icmph.icmph_type = ICMP_REDIRECT;
3623 	icmph.icmph_code = 1;
3624 	icmph.icmph_rd_gateway = gateway;
3625 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3626 	/* Redirects sent by router, and router is global zone */
3627 	icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst);
3628 }
3629 
3630 /*
3631  * Generate an ICMP time exceeded message.
3632  */
3633 void
3634 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid,
3635     ip_stack_t *ipst)
3636 {
3637 	icmph_t	icmph;
3638 	boolean_t mctl_present;
3639 	mblk_t *first_mp;
3640 
3641 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3642 
3643 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3644 		if (mctl_present)
3645 			freeb(first_mp);
3646 		return;
3647 	}
3648 
3649 	bzero(&icmph, sizeof (icmph_t));
3650 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3651 	icmph.icmph_code = code;
3652 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3653 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid,
3654 	    ipst);
3655 }
3656 
3657 /*
3658  * Generate an ICMP unreachable message.
3659  */
3660 void
3661 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid,
3662     ip_stack_t *ipst)
3663 {
3664 	icmph_t	icmph;
3665 	mblk_t *first_mp;
3666 	boolean_t mctl_present;
3667 
3668 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3669 
3670 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3671 		if (mctl_present)
3672 			freeb(first_mp);
3673 		return;
3674 	}
3675 
3676 	bzero(&icmph, sizeof (icmph_t));
3677 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3678 	icmph.icmph_code = code;
3679 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3680 	ip2dbg(("send icmp destination unreachable code %d\n", code));
3681 	icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present,
3682 	    zoneid, ipst);
3683 }
3684 
3685 /*
3686  * Attempt to start recovery of an IPv4 interface that's been shut down as a
3687  * duplicate.  As long as someone else holds the address, the interface will
3688  * stay down.  When that conflict goes away, the interface is brought back up.
3689  * This is done so that accidental shutdowns of addresses aren't made
3690  * permanent.  Your server will recover from a failure.
3691  *
3692  * For DHCP, recovery is not done in the kernel.  Instead, it's handled by a
3693  * user space process (dhcpagent).
3694  *
3695  * Recovery completes if ARP reports that the address is now ours (via
3696  * AR_CN_READY).  In that case, we go to ip_arp_excl to finish the operation.
3697  *
3698  * This function is entered on a timer expiry; the ID is in ipif_recovery_id.
3699  */
3700 static void
3701 ipif_dup_recovery(void *arg)
3702 {
3703 	ipif_t *ipif = arg;
3704 	ill_t *ill = ipif->ipif_ill;
3705 	mblk_t *arp_add_mp;
3706 	mblk_t *arp_del_mp;
3707 	area_t *area;
3708 	ip_stack_t *ipst = ill->ill_ipst;
3709 
3710 	ipif->ipif_recovery_id = 0;
3711 
3712 	/*
3713 	 * No lock needed for moving or condemned check, as this is just an
3714 	 * optimization.
3715 	 */
3716 	if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) ||
3717 	    (ipif->ipif_flags & IPIF_POINTOPOINT) ||
3718 	    (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) {
3719 		/* No reason to try to bring this address back. */
3720 		return;
3721 	}
3722 
3723 	if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL)
3724 		goto alloc_fail;
3725 
3726 	if (ipif->ipif_arp_del_mp == NULL) {
3727 		if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL)
3728 			goto alloc_fail;
3729 		ipif->ipif_arp_del_mp = arp_del_mp;
3730 	}
3731 
3732 	/* Setting the 'unverified' flag restarts DAD */
3733 	area = (area_t *)arp_add_mp->b_rptr;
3734 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
3735 	    ACE_F_UNVERIFIED;
3736 	putnext(ill->ill_rq, arp_add_mp);
3737 	return;
3738 
3739 alloc_fail:
3740 	/*
3741 	 * On allocation failure, just restart the timer.  Note that the ipif
3742 	 * is down here, so no other thread could be trying to start a recovery
3743 	 * timer.  The ill_lock protects the condemned flag and the recovery
3744 	 * timer ID.
3745 	 */
3746 	freemsg(arp_add_mp);
3747 	mutex_enter(&ill->ill_lock);
3748 	if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 &&
3749 	    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
3750 		ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif,
3751 		    MSEC_TO_TICK(ipst->ips_ip_dup_recovery));
3752 	}
3753 	mutex_exit(&ill->ill_lock);
3754 }
3755 
3756 /*
3757  * This is for exclusive changes due to ARP.  Either tear down an interface due
3758  * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery.
3759  */
3760 /* ARGSUSED */
3761 static void
3762 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg)
3763 {
3764 	ill_t	*ill = rq->q_ptr;
3765 	arh_t *arh;
3766 	ipaddr_t src;
3767 	ipif_t	*ipif;
3768 	char ibuf[LIFNAMSIZ + 10];	/* 10 digits for logical i/f number */
3769 	char hbuf[MAC_STR_LEN];
3770 	char sbuf[INET_ADDRSTRLEN];
3771 	const char *failtype;
3772 	boolean_t bring_up;
3773 	ip_stack_t *ipst = ill->ill_ipst;
3774 
3775 	switch (((arcn_t *)mp->b_rptr)->arcn_code) {
3776 	case AR_CN_READY:
3777 		failtype = NULL;
3778 		bring_up = B_TRUE;
3779 		break;
3780 	case AR_CN_FAILED:
3781 		failtype = "in use";
3782 		bring_up = B_FALSE;
3783 		break;
3784 	default:
3785 		failtype = "claimed";
3786 		bring_up = B_FALSE;
3787 		break;
3788 	}
3789 
3790 	arh = (arh_t *)mp->b_cont->b_rptr;
3791 	bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN);
3792 
3793 	/* Handle failures due to probes */
3794 	if (src == 0) {
3795 		bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src,
3796 		    IP_ADDR_LEN);
3797 	}
3798 
3799 	(void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf,
3800 	    sizeof (hbuf));
3801 	(void) ip_dot_addr(src, sbuf);
3802 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3803 
3804 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) ||
3805 		    ipif->ipif_lcl_addr != src) {
3806 			continue;
3807 		}
3808 
3809 		/*
3810 		 * If we failed on a recovery probe, then restart the timer to
3811 		 * try again later.
3812 		 */
3813 		if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) &&
3814 		    !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) &&
3815 		    ill->ill_net_type == IRE_IF_RESOLVER &&
3816 		    !(ipif->ipif_state_flags & IPIF_CONDEMNED) &&
3817 		    ipst->ips_ip_dup_recovery > 0 &&
3818 		    ipif->ipif_recovery_id == 0) {
3819 			ipif->ipif_recovery_id = timeout(ipif_dup_recovery,
3820 			    ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery));
3821 			continue;
3822 		}
3823 
3824 		/*
3825 		 * If what we're trying to do has already been done, then do
3826 		 * nothing.
3827 		 */
3828 		if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0))
3829 			continue;
3830 
3831 		ipif_get_name(ipif, ibuf, sizeof (ibuf));
3832 
3833 		if (failtype == NULL) {
3834 			cmn_err(CE_NOTE, "recovered address %s on %s", sbuf,
3835 			    ibuf);
3836 		} else {
3837 			cmn_err(CE_WARN, "%s has duplicate address %s (%s "
3838 			    "by %s); disabled", ibuf, sbuf, failtype, hbuf);
3839 		}
3840 
3841 		if (bring_up) {
3842 			ASSERT(ill->ill_dl_up);
3843 			/*
3844 			 * Free up the ARP delete message so we can allocate
3845 			 * a fresh one through the normal path.
3846 			 */
3847 			freemsg(ipif->ipif_arp_del_mp);
3848 			ipif->ipif_arp_del_mp = NULL;
3849 			if (ipif_resolver_up(ipif, Res_act_initial) !=
3850 			    EINPROGRESS) {
3851 				ipif->ipif_addr_ready = 1;
3852 				(void) ipif_up_done(ipif);
3853 			}
3854 			continue;
3855 		}
3856 
3857 		mutex_enter(&ill->ill_lock);
3858 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
3859 		ipif->ipif_flags |= IPIF_DUPLICATE;
3860 		ill->ill_ipif_dup_count++;
3861 		mutex_exit(&ill->ill_lock);
3862 		/*
3863 		 * Already exclusive on the ill; no need to handle deferred
3864 		 * processing here.
3865 		 */
3866 		(void) ipif_down(ipif, NULL, NULL);
3867 		ipif_down_tail(ipif);
3868 		mutex_enter(&ill->ill_lock);
3869 		if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) &&
3870 		    ill->ill_net_type == IRE_IF_RESOLVER &&
3871 		    !(ipif->ipif_state_flags & IPIF_CONDEMNED) &&
3872 		    ipst->ips_ip_dup_recovery > 0) {
3873 			ipif->ipif_recovery_id = timeout(ipif_dup_recovery,
3874 			    ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery));
3875 		}
3876 		mutex_exit(&ill->ill_lock);
3877 	}
3878 	freemsg(mp);
3879 }
3880 
3881 /* ARGSUSED */
3882 static void
3883 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg)
3884 {
3885 	ill_t	*ill = rq->q_ptr;
3886 	arh_t *arh;
3887 	ipaddr_t src;
3888 	ipif_t	*ipif;
3889 
3890 	arh = (arh_t *)mp->b_cont->b_rptr;
3891 	bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN);
3892 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3893 		if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src)
3894 			(void) ipif_resolver_up(ipif, Res_act_defend);
3895 	}
3896 	freemsg(mp);
3897 }
3898 
3899 /*
3900  * News from ARP.  ARP sends notification of interesting events down
3901  * to its clients using M_CTL messages with the interesting ARP packet
3902  * attached via b_cont.
3903  * The interesting event from a device comes up the corresponding ARP-IP-DEV
3904  * queue as opposed to ARP sending the message to all the clients, i.e. all
3905  * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache
3906  * table if a cache IRE is found to delete all the entries for the address in
3907  * the packet.
3908  */
3909 static void
3910 ip_arp_news(queue_t *q, mblk_t *mp)
3911 {
3912 	arcn_t		*arcn;
3913 	arh_t		*arh;
3914 	ire_t		*ire = NULL;
3915 	char		hbuf[MAC_STR_LEN];
3916 	char		sbuf[INET_ADDRSTRLEN];
3917 	ipaddr_t	src;
3918 	in6_addr_t	v6src;
3919 	boolean_t	isv6 = B_FALSE;
3920 	ipif_t		*ipif;
3921 	ill_t		*ill;
3922 	ip_stack_t	*ipst;
3923 
3924 	if (CONN_Q(q)) {
3925 		conn_t *connp = Q_TO_CONN(q);
3926 
3927 		ipst = connp->conn_netstack->netstack_ip;
3928 	} else {
3929 		ill_t *ill = (ill_t *)q->q_ptr;
3930 
3931 		ipst = ill->ill_ipst;
3932 	}
3933 
3934 	if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t)	|| !mp->b_cont) {
3935 		if (q->q_next) {
3936 			putnext(q, mp);
3937 		} else
3938 			freemsg(mp);
3939 		return;
3940 	}
3941 	arh = (arh_t *)mp->b_cont->b_rptr;
3942 	/* Is it one we are interested in? */
3943 	if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) {
3944 		isv6 = B_TRUE;
3945 		bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src,
3946 		    IPV6_ADDR_LEN);
3947 	} else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) {
3948 		bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src,
3949 		    IP_ADDR_LEN);
3950 	} else {
3951 		freemsg(mp);
3952 		return;
3953 	}
3954 
3955 	ill = q->q_ptr;
3956 
3957 	arcn = (arcn_t *)mp->b_rptr;
3958 	switch (arcn->arcn_code) {
3959 	case AR_CN_BOGON:
3960 		/*
3961 		 * Someone is sending ARP packets with a source protocol
3962 		 * address that we have published and for which we believe our
3963 		 * entry is authoritative and (when ill_arp_extend is set)
3964 		 * verified to be unique on the network.
3965 		 *
3966 		 * The ARP module internally handles the cases where the sender
3967 		 * is just probing (for DAD) and where the hardware address of
3968 		 * a non-authoritative entry has changed.  Thus, these are the
3969 		 * real conflicts, and we have to do resolution.
3970 		 *
3971 		 * We back away quickly from the address if it's from DHCP or
3972 		 * otherwise temporary and hasn't been used recently (or at
3973 		 * all).  We'd like to include "deprecated" addresses here as
3974 		 * well (as there's no real reason to defend something we're
3975 		 * discarding), but IPMP "reuses" this flag to mean something
3976 		 * other than the standard meaning.
3977 		 *
3978 		 * If the ARP module above is not extended (meaning that it
3979 		 * doesn't know how to defend the address), then we just log
3980 		 * the problem as we always did and continue on.  It's not
3981 		 * right, but there's little else we can do, and those old ATM
3982 		 * users are going away anyway.
3983 		 */
3984 		(void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen,
3985 		    hbuf, sizeof (hbuf));
3986 		(void) ip_dot_addr(src, sbuf);
3987 		if (isv6) {
3988 			ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL,
3989 			    ipst);
3990 		} else {
3991 			ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst);
3992 		}
3993 		if (ire != NULL	&& IRE_IS_LOCAL(ire)) {
3994 			uint32_t now;
3995 			uint32_t maxage;
3996 			clock_t lused;
3997 			uint_t maxdefense;
3998 			uint_t defs;
3999 
4000 			/*
4001 			 * First, figure out if this address hasn't been used
4002 			 * in a while.  If it hasn't, then it's a better
4003 			 * candidate for abandoning.
4004 			 */
4005 			ipif = ire->ire_ipif;
4006 			ASSERT(ipif != NULL);
4007 			now = gethrestime_sec();
4008 			maxage = now - ire->ire_create_time;
4009 			if (maxage > ipst->ips_ip_max_temp_idle)
4010 				maxage = ipst->ips_ip_max_temp_idle;
4011 			lused = drv_hztousec(ddi_get_lbolt() -
4012 			    ire->ire_last_used_time) / MICROSEC + 1;
4013 			if (lused >= maxage && (ipif->ipif_flags &
4014 			    (IPIF_DHCPRUNNING | IPIF_TEMPORARY)))
4015 				maxdefense = ipst->ips_ip_max_temp_defend;
4016 			else
4017 				maxdefense = ipst->ips_ip_max_defend;
4018 
4019 			/*
4020 			 * Now figure out how many times we've defended
4021 			 * ourselves.  Ignore defenses that happened long in
4022 			 * the past.
4023 			 */
4024 			mutex_enter(&ire->ire_lock);
4025 			if ((defs = ire->ire_defense_count) > 0 &&
4026 			    now - ire->ire_defense_time >
4027 			    ipst->ips_ip_defend_interval) {
4028 				ire->ire_defense_count = defs = 0;
4029 			}
4030 			ire->ire_defense_count++;
4031 			ire->ire_defense_time = now;
4032 			mutex_exit(&ire->ire_lock);
4033 			ill_refhold(ill);
4034 			ire_refrele(ire);
4035 
4036 			/*
4037 			 * If we've defended ourselves too many times already,
4038 			 * then give up and tear down the interface(s) using
4039 			 * this address.  Otherwise, defend by sending out a
4040 			 * gratuitous ARP.
4041 			 */
4042 			if (defs >= maxdefense && ill->ill_arp_extend) {
4043 				qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP,
4044 				    B_FALSE);
4045 			} else {
4046 				cmn_err(CE_WARN,
4047 				    "node %s is using our IP address %s on %s",
4048 				    hbuf, sbuf, ill->ill_name);
4049 				/*
4050 				 * If this is an old (ATM) ARP module, then
4051 				 * don't try to defend the address.  Remain
4052 				 * compatible with the old behavior.  Defend
4053 				 * only with new ARP.
4054 				 */
4055 				if (ill->ill_arp_extend) {
4056 					qwriter_ip(ill, q, mp, ip_arp_defend,
4057 					    NEW_OP, B_FALSE);
4058 				} else {
4059 					ill_refrele(ill);
4060 				}
4061 			}
4062 			return;
4063 		}
4064 		cmn_err(CE_WARN,
4065 		    "proxy ARP problem?  Node '%s' is using %s on %s",
4066 		    hbuf, sbuf, ill->ill_name);
4067 		if (ire != NULL)
4068 			ire_refrele(ire);
4069 		break;
4070 	case AR_CN_ANNOUNCE:
4071 		if (isv6) {
4072 			/*
4073 			 * For XRESOLV interfaces.
4074 			 * Delete the IRE cache entry and NCE for this
4075 			 * v6 address
4076 			 */
4077 			ip_ire_clookup_and_delete_v6(&v6src, ipst);
4078 			/*
4079 			 * If v6src is a non-zero, it's a router address
4080 			 * as below. Do the same sort of thing to clean
4081 			 * out off-net IRE_CACHE entries that go through
4082 			 * the router.
4083 			 */
4084 			if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
4085 				ire_walk_v6(ire_delete_cache_gw_v6,
4086 				    (char *)&v6src, ALL_ZONES, ipst);
4087 			}
4088 		} else {
4089 			nce_hw_map_t hwm;
4090 
4091 			/*
4092 			 * ARP gives us a copy of any packet where it thinks
4093 			 * the address has changed, so that we can update our
4094 			 * caches.  We're responsible for caching known answers
4095 			 * in the current design.  We check whether the
4096 			 * hardware address really has changed in all of our
4097 			 * entries that have cached this mapping, and if so, we
4098 			 * blow them away.  This way we will immediately pick
4099 			 * up the rare case of a host changing hardware
4100 			 * address.
4101 			 */
4102 			if (src == 0)
4103 				break;
4104 			hwm.hwm_addr = src;
4105 			hwm.hwm_hwlen = arh->arh_hlen;
4106 			hwm.hwm_hwaddr = (uchar_t *)(arh + 1);
4107 			NDP_HW_CHANGE_INCR(ipst->ips_ndp4);
4108 			ndp_walk_common(ipst->ips_ndp4, NULL,
4109 			    (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES);
4110 			NDP_HW_CHANGE_DECR(ipst->ips_ndp4);
4111 		}
4112 		break;
4113 	case AR_CN_READY:
4114 		/* No external v6 resolver has a contract to use this */
4115 		if (isv6)
4116 			break;
4117 		/* If the link is down, we'll retry this later */
4118 		if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING))
4119 			break;
4120 		ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL,
4121 		    NULL, NULL, ipst);
4122 		if (ipif != NULL) {
4123 			/*
4124 			 * If this is a duplicate recovery, then we now need to
4125 			 * go exclusive to bring this thing back up.
4126 			 */
4127 			if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) ==
4128 			    IPIF_DUPLICATE) {
4129 				ipif_refrele(ipif);
4130 				ill_refhold(ill);
4131 				qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP,
4132 				    B_FALSE);
4133 				return;
4134 			}
4135 			/*
4136 			 * If this is the first notice that this address is
4137 			 * ready, then let the user know now.
4138 			 */
4139 			if ((ipif->ipif_flags & IPIF_UP) &&
4140 			    !ipif->ipif_addr_ready) {
4141 				ipif_mask_reply(ipif);
4142 				ip_rts_ifmsg(ipif);
4143 				ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
4144 				sctp_update_ipif(ipif, SCTP_IPIF_UP);
4145 			}
4146 			ipif->ipif_addr_ready = 1;
4147 			ipif_refrele(ipif);
4148 		}
4149 		ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst);
4150 		if (ire != NULL) {
4151 			ire->ire_defense_count = 0;
4152 			ire_refrele(ire);
4153 		}
4154 		break;
4155 	case AR_CN_FAILED:
4156 		/* No external v6 resolver has a contract to use this */
4157 		if (isv6)
4158 			break;
4159 		ill_refhold(ill);
4160 		qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE);
4161 		return;
4162 	}
4163 	freemsg(mp);
4164 }
4165 
4166 /*
4167  * Create a mblk suitable for carrying the interface index and/or source link
4168  * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used
4169  * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user
4170  * application.
4171  */
4172 mblk_t *
4173 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid,
4174     ip_stack_t *ipst)
4175 {
4176 	mblk_t		*mp;
4177 	ip_pktinfo_t	*pinfo;
4178 	ipha_t *ipha;
4179 	struct ether_header *pether;
4180 
4181 	mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED);
4182 	if (mp == NULL) {
4183 		ip1dbg(("ip_add_info: allocation failure.\n"));
4184 		return (data_mp);
4185 	}
4186 
4187 	ipha	= (ipha_t *)data_mp->b_rptr;
4188 	pinfo = (ip_pktinfo_t *)mp->b_rptr;
4189 	bzero(pinfo, sizeof (ip_pktinfo_t));
4190 	pinfo->ip_pkt_flags = (uchar_t)flags;
4191 	pinfo->ip_pkt_ulp_type = IN_PKTINFO;	/* Tell ULP what type of info */
4192 
4193 	if (flags & (IPF_RECVIF | IPF_RECVADDR))
4194 		pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex;
4195 	if (flags & IPF_RECVADDR) {
4196 		ipif_t	*ipif;
4197 		ire_t	*ire;
4198 
4199 		/*
4200 		 * Only valid for V4
4201 		 */
4202 		ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) ==
4203 		    (IPV4_VERSION << 4));
4204 
4205 		ipif = ipif_get_next_ipif(NULL, ill);
4206 		if (ipif != NULL) {
4207 			/*
4208 			 * Since a decision has already been made to deliver the
4209 			 * packet, there is no need to test for SECATTR and
4210 			 * ZONEONLY.
4211 			 * When a multicast packet is transmitted
4212 			 * a cache entry is created for the multicast address.
4213 			 * When delivering a copy of the packet or when new
4214 			 * packets are received we do not want to match on the
4215 			 * cached entry so explicitly match on
4216 			 * IRE_LOCAL and IRE_LOOPBACK
4217 			 */
4218 			ire = ire_ctable_lookup(ipha->ipha_dst, 0,
4219 			    IRE_LOCAL | IRE_LOOPBACK,
4220 			    ipif, zoneid, NULL,
4221 			    MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst);
4222 			if (ire == NULL) {
4223 				/*
4224 				 * packet must have come on a different
4225 				 * interface.
4226 				 * Since a decision has already been made to
4227 				 * deliver the packet, there is no need to test
4228 				 * for SECATTR and ZONEONLY.
4229 				 * Only match on local and broadcast ire's.
4230 				 * See detailed comment above.
4231 				 */
4232 				ire = ire_ctable_lookup(ipha->ipha_dst, 0,
4233 				    IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid,
4234 				    NULL, MATCH_IRE_TYPE, ipst);
4235 			}
4236 
4237 			if (ire == NULL) {
4238 				/*
4239 				 * This is either a multicast packet or
4240 				 * the address has been removed since
4241 				 * the packet was received.
4242 				 * Return INADDR_ANY so that normal source
4243 				 * selection occurs for the response.
4244 				 */
4245 
4246 				pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY;
4247 			} else {
4248 				pinfo->ip_pkt_match_addr.s_addr =
4249 				    ire->ire_src_addr;
4250 				ire_refrele(ire);
4251 			}
4252 			ipif_refrele(ipif);
4253 		} else {
4254 			pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY;
4255 		}
4256 	}
4257 
4258 	pether = (struct ether_header *)((char *)ipha
4259 	    - sizeof (struct ether_header));
4260 	/*
4261 	 * Make sure the interface is an ethernet type, since this option
4262 	 * is currently supported only on this type of interface. Also make
4263 	 * sure we are pointing correctly above db_base.
4264 	 */
4265 
4266 	if ((flags & IPF_RECVSLLA) &&
4267 	    ((uchar_t *)pether >= data_mp->b_datap->db_base) &&
4268 	    (ill->ill_type == IFT_ETHER) &&
4269 	    (ill->ill_net_type == IRE_IF_RESOLVER)) {
4270 
4271 		pinfo->ip_pkt_slla.sdl_type = IFT_ETHER;
4272 		bcopy((uchar_t *)pether->ether_shost.ether_addr_octet,
4273 		    (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL);
4274 	} else {
4275 		/*
4276 		 * Clear the bit. Indicate to upper layer that IP is not
4277 		 * sending this ancillary info.
4278 		 */
4279 		pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA;
4280 	}
4281 
4282 	mp->b_datap->db_type = M_CTL;
4283 	mp->b_wptr += sizeof (ip_pktinfo_t);
4284 	mp->b_cont = data_mp;
4285 
4286 	return (mp);
4287 }
4288 
4289 /*
4290  * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as
4291  * part of the bind request.
4292  */
4293 
4294 boolean_t
4295 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp)
4296 {
4297 	ipsec_in_t *ii;
4298 
4299 	ASSERT(policy_mp != NULL);
4300 	ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET);
4301 
4302 	ii = (ipsec_in_t *)policy_mp->b_rptr;
4303 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
4304 
4305 	connp->conn_policy = ii->ipsec_in_policy;
4306 	ii->ipsec_in_policy = NULL;
4307 
4308 	if (ii->ipsec_in_action != NULL) {
4309 		if (connp->conn_latch == NULL) {
4310 			connp->conn_latch = iplatch_create();
4311 			if (connp->conn_latch == NULL)
4312 				return (B_FALSE);
4313 		}
4314 		ipsec_latch_inbound(connp->conn_latch, ii);
4315 	}
4316 	return (B_TRUE);
4317 }
4318 
4319 /*
4320  * Upper level protocols (ULP) pass through bind requests to IP for inspection
4321  * and to arrange for power-fanout assist.  The ULP is identified by
4322  * adding a single byte at the end of the original bind message.
4323  * A ULP other than UDP or TCP that wishes to be recognized passes
4324  * down a bind with a zero length address.
4325  *
4326  * The binding works as follows:
4327  * - A zero byte address means just bind to the protocol.
4328  * - A four byte address is treated as a request to validate
4329  *   that the address is a valid local address, appropriate for
4330  *   an application to bind to. This does not affect any fanout
4331  *   information in IP.
4332  * - A sizeof sin_t byte address is used to bind to only the local address
4333  *   and port.
4334  * - A sizeof ipa_conn_t byte address contains complete fanout information
4335  *   consisting of local and remote addresses and ports.  In
4336  *   this case, the addresses are both validated as appropriate
4337  *   for this operation, and, if so, the information is retained
4338  *   for use in the inbound fanout.
4339  *
4340  * The ULP (except in the zero-length bind) can append an
4341  * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the
4342  * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants
4343  * a copy of the source or destination IRE (source for local bind;
4344  * destination for complete bind). IPSEC_POLICY_SET indicates that the
4345  * policy information contained should be copied on to the conn.
4346  *
4347  * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present.
4348  */
4349 mblk_t *
4350 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp)
4351 {
4352 	ssize_t		len;
4353 	struct T_bind_req	*tbr;
4354 	sin_t		*sin;
4355 	ipa_conn_t	*ac;
4356 	uchar_t		*ucp;
4357 	mblk_t		*mp1;
4358 	boolean_t	ire_requested;
4359 	boolean_t	ipsec_policy_set = B_FALSE;
4360 	int		error = 0;
4361 	int		protocol;
4362 	ipa_conn_x_t	*acx;
4363 
4364 	ASSERT(!connp->conn_af_isv6);
4365 	connp->conn_pkt_isv6 = B_FALSE;
4366 
4367 	len = MBLKL(mp);
4368 	if (len < (sizeof (*tbr) + 1)) {
4369 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
4370 		    "ip_bind: bogus msg, len %ld", len);
4371 		/* XXX: Need to return something better */
4372 		goto bad_addr;
4373 	}
4374 	/* Back up and extract the protocol identifier. */
4375 	mp->b_wptr--;
4376 	protocol = *mp->b_wptr & 0xFF;
4377 	tbr = (struct T_bind_req *)mp->b_rptr;
4378 	/* Reset the message type in preparation for shipping it back. */
4379 	DB_TYPE(mp) = M_PCPROTO;
4380 
4381 	connp->conn_ulp = (uint8_t)protocol;
4382 
4383 	/*
4384 	 * Check for a zero length address.  This is from a protocol that
4385 	 * wants to register to receive all packets of its type.
4386 	 */
4387 	if (tbr->ADDR_length == 0) {
4388 		/*
4389 		 * These protocols are now intercepted in ip_bind_v6().
4390 		 * Reject protocol-level binds here for now.
4391 		 *
4392 		 * For SCTP raw socket, ICMP sends down a bind with sin_t
4393 		 * so that the protocol type cannot be SCTP.
4394 		 */
4395 		if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH ||
4396 		    protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) {
4397 			goto bad_addr;
4398 		}
4399 
4400 		/*
4401 		 *
4402 		 * The udp module never sends down a zero-length address,
4403 		 * and allowing this on a labeled system will break MLP
4404 		 * functionality.
4405 		 */
4406 		if (is_system_labeled() && protocol == IPPROTO_UDP)
4407 			goto bad_addr;
4408 
4409 		if (connp->conn_mac_exempt)
4410 			goto bad_addr;
4411 
4412 		/* No hash here really.  The table is big enough. */
4413 		connp->conn_srcv6 = ipv6_all_zeros;
4414 
4415 		ipcl_proto_insert(connp, protocol);
4416 
4417 		tbr->PRIM_type = T_BIND_ACK;
4418 		return (mp);
4419 	}
4420 
4421 	/* Extract the address pointer from the message. */
4422 	ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset,
4423 	    tbr->ADDR_length);
4424 	if (ucp == NULL) {
4425 		ip1dbg(("ip_bind: no address\n"));
4426 		goto bad_addr;
4427 	}
4428 	if (!OK_32PTR(ucp)) {
4429 		ip1dbg(("ip_bind: unaligned address\n"));
4430 		goto bad_addr;
4431 	}
4432 	/*
4433 	 * Check for trailing mps.
4434 	 */
4435 
4436 	mp1 = mp->b_cont;
4437 	ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE);
4438 	ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET);
4439 
4440 	switch (tbr->ADDR_length) {
4441 	default:
4442 		ip1dbg(("ip_bind: bad address length %d\n",
4443 		    (int)tbr->ADDR_length));
4444 		goto bad_addr;
4445 
4446 	case IP_ADDR_LEN:
4447 		/* Verification of local address only */
4448 		error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0,
4449 		    ire_requested, ipsec_policy_set, B_FALSE);
4450 		break;
4451 
4452 	case sizeof (sin_t):
4453 		sin = (sin_t *)ucp;
4454 		error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr,
4455 		    sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE);
4456 		break;
4457 
4458 	case sizeof (ipa_conn_t):
4459 		ac = (ipa_conn_t *)ucp;
4460 		/* For raw socket, the local port is not set. */
4461 		if (ac->ac_lport == 0)
4462 			ac->ac_lport = connp->conn_lport;
4463 		/* Always verify destination reachability. */
4464 		error = ip_bind_connected(connp, mp, &ac->ac_laddr,
4465 		    ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested,
4466 		    ipsec_policy_set, B_TRUE, B_TRUE);
4467 		break;
4468 
4469 	case sizeof (ipa_conn_x_t):
4470 		acx = (ipa_conn_x_t *)ucp;
4471 		/*
4472 		 * Whether or not to verify destination reachability depends
4473 		 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags.
4474 		 */
4475 		error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr,
4476 		    acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr,
4477 		    acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set,
4478 		    B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0);
4479 		break;
4480 	}
4481 	if (error == EINPROGRESS)
4482 		return (NULL);
4483 	else if (error != 0)
4484 		goto bad_addr;
4485 	/*
4486 	 * Pass the IPsec headers size in ire_ipsec_overhead.
4487 	 * We can't do this in ip_bind_insert_ire because the policy
4488 	 * may not have been inherited at that point in time and hence
4489 	 * conn_out_enforce_policy may not be set.
4490 	 */
4491 	mp1 = mp->b_cont;
4492 	if (ire_requested && connp->conn_out_enforce_policy &&
4493 	    mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) {
4494 		ire_t *ire = (ire_t *)mp1->b_rptr;
4495 		ASSERT(MBLKL(mp1) >= sizeof (ire_t));
4496 		ire->ire_ipsec_overhead = conn_ipsec_length(connp);
4497 	}
4498 
4499 	/* Send it home. */
4500 	mp->b_datap->db_type = M_PCPROTO;
4501 	tbr->PRIM_type = T_BIND_ACK;
4502 	return (mp);
4503 
4504 bad_addr:
4505 	/*
4506 	 * If error = -1 then we generate a TBADADDR - otherwise error is
4507 	 * a unix errno.
4508 	 */
4509 	if (error > 0)
4510 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
4511 	else
4512 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
4513 	return (mp);
4514 }
4515 
4516 /*
4517  * Here address is verified to be a valid local address.
4518  * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast
4519  * address is also considered a valid local address.
4520  * In the case of a broadcast/multicast address, however, the
4521  * upper protocol is expected to reset the src address
4522  * to 0 if it sees a IRE_BROADCAST type returned so that
4523  * no packets are emitted with broadcast/multicast address as
4524  * source address (that violates hosts requirements RFC1122)
4525  * The addresses valid for bind are:
4526  *	(1) - INADDR_ANY (0)
4527  *	(2) - IP address of an UP interface
4528  *	(3) - IP address of a DOWN interface
4529  *	(4) - valid local IP broadcast addresses. In this case
4530  *	the conn will only receive packets destined to
4531  *	the specified broadcast address.
4532  *	(5) - a multicast address. In this case
4533  *	the conn will only receive packets destined to
4534  *	the specified multicast address. Note: the
4535  *	application still has to issue an
4536  *	IP_ADD_MEMBERSHIP socket option.
4537  *
4538  * On error, return -1 for TBADADDR otherwise pass the
4539  * errno with TSYSERR reply.
4540  *
4541  * In all the above cases, the bound address must be valid in the current zone.
4542  * When the address is loopback, multicast or broadcast, there might be many
4543  * matching IREs so bind has to look up based on the zone.
4544  *
4545  * Note: lport is in network byte order.
4546  */
4547 int
4548 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport,
4549     boolean_t ire_requested, boolean_t ipsec_policy_set,
4550     boolean_t fanout_insert)
4551 {
4552 	int		error = 0;
4553 	ire_t		*src_ire;
4554 	mblk_t		*policy_mp;
4555 	ipif_t		*ipif;
4556 	zoneid_t	zoneid;
4557 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
4558 
4559 	if (ipsec_policy_set) {
4560 		policy_mp = mp->b_cont;
4561 	}
4562 
4563 	/*
4564 	 * If it was previously connected, conn_fully_bound would have
4565 	 * been set.
4566 	 */
4567 	connp->conn_fully_bound = B_FALSE;
4568 
4569 	src_ire = NULL;
4570 	ipif = NULL;
4571 
4572 	zoneid = IPCL_ZONEID(connp);
4573 
4574 	if (src_addr) {
4575 		src_ire = ire_route_lookup(src_addr, 0, 0, 0,
4576 		    NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst);
4577 		/*
4578 		 * If an address other than 0.0.0.0 is requested,
4579 		 * we verify that it is a valid address for bind
4580 		 * Note: Following code is in if-else-if form for
4581 		 * readability compared to a condition check.
4582 		 */
4583 		/* LINTED - statement has no consequent */
4584 		if (IRE_IS_LOCAL(src_ire)) {
4585 			/*
4586 			 * (2) Bind to address of local UP interface
4587 			 */
4588 		} else if (src_ire && src_ire->ire_type == IRE_BROADCAST) {
4589 			/*
4590 			 * (4) Bind to broadcast address
4591 			 * Note: permitted only from transports that
4592 			 * request IRE
4593 			 */
4594 			if (!ire_requested)
4595 				error = EADDRNOTAVAIL;
4596 		} else {
4597 			/*
4598 			 * (3) Bind to address of local DOWN interface
4599 			 * (ipif_lookup_addr() looks up all interfaces
4600 			 * but we do not get here for UP interfaces
4601 			 * - case (2) above)
4602 			 * We put the protocol byte back into the mblk
4603 			 * since we may come back via ip_wput_nondata()
4604 			 * later with this mblk if ipif_lookup_addr chooses
4605 			 * to defer processing.
4606 			 */
4607 			*mp->b_wptr++ = (char)connp->conn_ulp;
4608 			if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid,
4609 			    CONNP_TO_WQ(connp), mp, ip_wput_nondata,
4610 			    &error, ipst)) != NULL) {
4611 				ipif_refrele(ipif);
4612 			} else if (error == EINPROGRESS) {
4613 				if (src_ire != NULL)
4614 					ire_refrele(src_ire);
4615 				return (EINPROGRESS);
4616 			} else if (CLASSD(src_addr)) {
4617 				error = 0;
4618 				if (src_ire != NULL)
4619 					ire_refrele(src_ire);
4620 				/*
4621 				 * (5) bind to multicast address.
4622 				 * Fake out the IRE returned to upper
4623 				 * layer to be a broadcast IRE.
4624 				 */
4625 				src_ire = ire_ctable_lookup(
4626 				    INADDR_BROADCAST, INADDR_ANY,
4627 				    IRE_BROADCAST, NULL, zoneid, NULL,
4628 				    (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY),
4629 				    ipst);
4630 				if (src_ire == NULL || !ire_requested)
4631 					error = EADDRNOTAVAIL;
4632 			} else {
4633 				/*
4634 				 * Not a valid address for bind
4635 				 */
4636 				error = EADDRNOTAVAIL;
4637 			}
4638 			/*
4639 			 * Just to keep it consistent with the processing in
4640 			 * ip_bind_v4()
4641 			 */
4642 			mp->b_wptr--;
4643 		}
4644 		if (error) {
4645 			/* Red Alert!  Attempting to be a bogon! */
4646 			ip1dbg(("ip_bind: bad src address 0x%x\n",
4647 			    ntohl(src_addr)));
4648 			goto bad_addr;
4649 		}
4650 	}
4651 
4652 	/*
4653 	 * Allow setting new policies. For example, disconnects come
4654 	 * down as ipa_t bind. As we would have set conn_policy_cached
4655 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
4656 	 * can change after the disconnect.
4657 	 */
4658 	connp->conn_policy_cached = B_FALSE;
4659 
4660 	/*
4661 	 * If not fanout_insert this was just an address verification
4662 	 */
4663 	if (fanout_insert) {
4664 		/*
4665 		 * The addresses have been verified. Time to insert in
4666 		 * the correct fanout list.
4667 		 */
4668 		IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
4669 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6);
4670 		connp->conn_lport = lport;
4671 		connp->conn_fport = 0;
4672 		/*
4673 		 * Do we need to add a check to reject Multicast packets
4674 		 */
4675 		error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport);
4676 	}
4677 
4678 	if (error == 0) {
4679 		if (ire_requested) {
4680 			if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) {
4681 				error = -1;
4682 				/* Falls through to bad_addr */
4683 			}
4684 		} else if (ipsec_policy_set) {
4685 			if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
4686 				error = -1;
4687 				/* Falls through to bad_addr */
4688 			}
4689 		}
4690 	}
4691 bad_addr:
4692 	if (error != 0) {
4693 		if (connp->conn_anon_port) {
4694 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4695 			    connp->conn_mlp_type, connp->conn_ulp, ntohs(lport),
4696 			    B_FALSE);
4697 		}
4698 		connp->conn_mlp_type = mlptSingle;
4699 	}
4700 	if (src_ire != NULL)
4701 		IRE_REFRELE(src_ire);
4702 	if (ipsec_policy_set) {
4703 		ASSERT(policy_mp == mp->b_cont);
4704 		ASSERT(policy_mp != NULL);
4705 		freeb(policy_mp);
4706 		/*
4707 		 * As of now assume that nothing else accompanies
4708 		 * IPSEC_POLICY_SET.
4709 		 */
4710 		mp->b_cont = NULL;
4711 	}
4712 	return (error);
4713 }
4714 
4715 /*
4716  * Verify that both the source and destination addresses
4717  * are valid.  If verify_dst is false, then the destination address may be
4718  * unreachable, i.e. have no route to it.  Protocols like TCP want to verify
4719  * destination reachability, while tunnels do not.
4720  * Note that we allow connect to broadcast and multicast
4721  * addresses when ire_requested is set. Thus the ULP
4722  * has to check for IRE_BROADCAST and multicast.
4723  *
4724  * Returns zero if ok.
4725  * On error: returns -1 to mean TBADADDR otherwise returns an errno
4726  * (for use with TSYSERR reply).
4727  *
4728  * Note: lport and fport are in network byte order.
4729  */
4730 int
4731 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp,
4732     uint16_t lport, ipaddr_t dst_addr, uint16_t fport,
4733     boolean_t ire_requested, boolean_t ipsec_policy_set,
4734     boolean_t fanout_insert, boolean_t verify_dst)
4735 {
4736 	ire_t		*src_ire;
4737 	ire_t		*dst_ire;
4738 	int		error = 0;
4739 	int 		protocol;
4740 	mblk_t		*policy_mp;
4741 	ire_t		*sire = NULL;
4742 	ire_t		*md_dst_ire = NULL;
4743 	ire_t		*lso_dst_ire = NULL;
4744 	ill_t		*ill = NULL;
4745 	zoneid_t	zoneid;
4746 	ipaddr_t	src_addr = *src_addrp;
4747 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
4748 
4749 	src_ire = dst_ire = NULL;
4750 	protocol = *mp->b_wptr & 0xFF;
4751 
4752 	/*
4753 	 * If we never got a disconnect before, clear it now.
4754 	 */
4755 	connp->conn_fully_bound = B_FALSE;
4756 
4757 	if (ipsec_policy_set) {
4758 		policy_mp = mp->b_cont;
4759 	}
4760 
4761 	zoneid = IPCL_ZONEID(connp);
4762 
4763 	if (CLASSD(dst_addr)) {
4764 		/* Pick up an IRE_BROADCAST */
4765 		dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL,
4766 		    NULL, zoneid, MBLK_GETLABEL(mp),
4767 		    (MATCH_IRE_RECURSIVE |
4768 		    MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE |
4769 		    MATCH_IRE_SECATTR), ipst);
4770 	} else {
4771 		/*
4772 		 * If conn_dontroute is set or if conn_nexthop_set is set,
4773 		 * and onlink ipif is not found set ENETUNREACH error.
4774 		 */
4775 		if (connp->conn_dontroute || connp->conn_nexthop_set) {
4776 			ipif_t *ipif;
4777 
4778 			ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ?
4779 			    dst_addr : connp->conn_nexthop_v4, zoneid, ipst);
4780 			if (ipif == NULL) {
4781 				error = ENETUNREACH;
4782 				goto bad_addr;
4783 			}
4784 			ipif_refrele(ipif);
4785 		}
4786 
4787 		if (connp->conn_nexthop_set) {
4788 			dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0,
4789 			    0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp),
4790 			    MATCH_IRE_SECATTR, ipst);
4791 		} else {
4792 			dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL,
4793 			    &sire, zoneid, MBLK_GETLABEL(mp),
4794 			    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4795 			    MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE |
4796 			    MATCH_IRE_SECATTR), ipst);
4797 		}
4798 	}
4799 	/*
4800 	 * dst_ire can't be a broadcast when not ire_requested.
4801 	 * We also prevent ire's with src address INADDR_ANY to
4802 	 * be used, which are created temporarily for
4803 	 * sending out packets from endpoints that have
4804 	 * conn_unspec_src set.  If verify_dst is true, the destination must be
4805 	 * reachable.  If verify_dst is false, the destination needn't be
4806 	 * reachable.
4807 	 *
4808 	 * If we match on a reject or black hole, then we've got a
4809 	 * local failure.  May as well fail out the connect() attempt,
4810 	 * since it's never going to succeed.
4811 	 */
4812 	if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY ||
4813 	    (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
4814 	    ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) {
4815 		/*
4816 		 * If we're verifying destination reachability, we always want
4817 		 * to complain here.
4818 		 *
4819 		 * If we're not verifying destination reachability but the
4820 		 * destination has a route, we still want to fail on the
4821 		 * temporary address and broadcast address tests.
4822 		 */
4823 		if (verify_dst || (dst_ire != NULL)) {
4824 			if (ip_debug > 2) {
4825 				pr_addr_dbg("ip_bind_connected: bad connected "
4826 				    "dst %s\n", AF_INET, &dst_addr);
4827 			}
4828 			if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST))
4829 				error = ENETUNREACH;
4830 			else
4831 				error = EHOSTUNREACH;
4832 			goto bad_addr;
4833 		}
4834 	}
4835 
4836 	/*
4837 	 * We now know that routing will allow us to reach the destination.
4838 	 * Check whether Trusted Solaris policy allows communication with this
4839 	 * host, and pretend that the destination is unreachable if not.
4840 	 *
4841 	 * This is never a problem for TCP, since that transport is known to
4842 	 * compute the label properly as part of the tcp_rput_other T_BIND_ACK
4843 	 * handling.  If the remote is unreachable, it will be detected at that
4844 	 * point, so there's no reason to check it here.
4845 	 *
4846 	 * Note that for sendto (and other datagram-oriented friends), this
4847 	 * check is done as part of the data path label computation instead.
4848 	 * The check here is just to make non-TCP connect() report the right
4849 	 * error.
4850 	 */
4851 	if (dst_ire != NULL && is_system_labeled() &&
4852 	    !IPCL_IS_TCP(connp) &&
4853 	    tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL,
4854 	    connp->conn_mac_exempt, ipst) != 0) {
4855 		error = EHOSTUNREACH;
4856 		if (ip_debug > 2) {
4857 			pr_addr_dbg("ip_bind_connected: no label for dst %s\n",
4858 			    AF_INET, &dst_addr);
4859 		}
4860 		goto bad_addr;
4861 	}
4862 
4863 	/*
4864 	 * If the app does a connect(), it means that it will most likely
4865 	 * send more than 1 packet to the destination.  It makes sense
4866 	 * to clear the temporary flag.
4867 	 */
4868 	if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE &&
4869 	    (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) {
4870 		irb_t *irb = dst_ire->ire_bucket;
4871 
4872 		rw_enter(&irb->irb_lock, RW_WRITER);
4873 		/*
4874 		 * We need to recheck for IRE_MARK_TEMPORARY after acquiring
4875 		 * the lock to guarantee irb_tmp_ire_cnt.
4876 		 */
4877 		if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) {
4878 			dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY;
4879 			irb->irb_tmp_ire_cnt--;
4880 		}
4881 		rw_exit(&irb->irb_lock);
4882 	}
4883 
4884 	/*
4885 	 * See if we should notify ULP about LSO/MDT; we do this whether or not
4886 	 * ire_requested is TRUE, in order to handle active connects; LSO/MDT
4887 	 * eligibility tests for passive connects are handled separately
4888 	 * through tcp_adapt_ire().  We do this before the source address
4889 	 * selection, because dst_ire may change after a call to
4890 	 * ipif_select_source().  This is a best-effort check, as the
4891 	 * packet for this connection may not actually go through
4892 	 * dst_ire->ire_stq, and the exact IRE can only be known after
4893 	 * calling ip_newroute().  This is why we further check on the
4894 	 * IRE during LSO/Multidata packet transmission in
4895 	 * tcp_lsosend()/tcp_multisend().
4896 	 */
4897 	if (!ipsec_policy_set && dst_ire != NULL &&
4898 	    !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) &&
4899 	    (ill = ire_to_ill(dst_ire), ill != NULL)) {
4900 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
4901 			lso_dst_ire = dst_ire;
4902 			IRE_REFHOLD(lso_dst_ire);
4903 		} else if (ipst->ips_ip_multidata_outbound &&
4904 		    ILL_MDT_CAPABLE(ill)) {
4905 			md_dst_ire = dst_ire;
4906 			IRE_REFHOLD(md_dst_ire);
4907 		}
4908 	}
4909 
4910 	if (dst_ire != NULL &&
4911 	    dst_ire->ire_type == IRE_LOCAL &&
4912 	    dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) {
4913 		/*
4914 		 * If the IRE belongs to a different zone, look for a matching
4915 		 * route in the forwarding table and use the source address from
4916 		 * that route.
4917 		 */
4918 		src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL,
4919 		    zoneid, 0, NULL,
4920 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4921 		    MATCH_IRE_RJ_BHOLE, ipst);
4922 		if (src_ire == NULL) {
4923 			error = EHOSTUNREACH;
4924 			goto bad_addr;
4925 		} else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4926 			if (!(src_ire->ire_type & IRE_HOST))
4927 				error = ENETUNREACH;
4928 			else
4929 				error = EHOSTUNREACH;
4930 			goto bad_addr;
4931 		}
4932 		if (src_addr == INADDR_ANY)
4933 			src_addr = src_ire->ire_src_addr;
4934 		ire_refrele(src_ire);
4935 		src_ire = NULL;
4936 	} else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) {
4937 		if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
4938 			src_addr = sire->ire_src_addr;
4939 			ire_refrele(dst_ire);
4940 			dst_ire = sire;
4941 			sire = NULL;
4942 		} else {
4943 			/*
4944 			 * Pick a source address so that a proper inbound
4945 			 * load spreading would happen.
4946 			 */
4947 			ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill;
4948 			ipif_t *src_ipif = NULL;
4949 			ire_t *ipif_ire;
4950 
4951 			/*
4952 			 * Supply a local source address such that inbound
4953 			 * load spreading happens.
4954 			 *
4955 			 * Determine the best source address on this ill for
4956 			 * the destination.
4957 			 *
4958 			 * 1) For broadcast, we should return a broadcast ire
4959 			 *    found above so that upper layers know that the
4960 			 *    destination address is a broadcast address.
4961 			 *
4962 			 * 2) If this is part of a group, select a better
4963 			 *    source address so that better inbound load
4964 			 *    balancing happens. Do the same if the ipif
4965 			 *    is DEPRECATED.
4966 			 *
4967 			 * 3) If the outgoing interface is part of a usesrc
4968 			 *    group, then try selecting a source address from
4969 			 *    the usesrc ILL.
4970 			 */
4971 			if ((dst_ire->ire_zoneid != zoneid &&
4972 			    dst_ire->ire_zoneid != ALL_ZONES) ||
4973 			    (!(dst_ire->ire_flags & RTF_SETSRC)) &&
4974 			    (!(dst_ire->ire_type & IRE_BROADCAST) &&
4975 			    ((dst_ill->ill_group != NULL) ||
4976 			    (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
4977 			    (dst_ill->ill_usesrc_ifindex != 0)))) {
4978 				/*
4979 				 * If the destination is reachable via a
4980 				 * given gateway, the selected source address
4981 				 * should be in the same subnet as the gateway.
4982 				 * Otherwise, the destination is not reachable.
4983 				 *
4984 				 * If there are no interfaces on the same subnet
4985 				 * as the destination, ipif_select_source gives
4986 				 * first non-deprecated interface which might be
4987 				 * on a different subnet than the gateway.
4988 				 * This is not desirable. Hence pass the dst_ire
4989 				 * source address to ipif_select_source.
4990 				 * It is sure that the destination is reachable
4991 				 * with the dst_ire source address subnet.
4992 				 * So passing dst_ire source address to
4993 				 * ipif_select_source will make sure that the
4994 				 * selected source will be on the same subnet
4995 				 * as dst_ire source address.
4996 				 */
4997 				ipaddr_t saddr =
4998 				    dst_ire->ire_ipif->ipif_src_addr;
4999 				src_ipif = ipif_select_source(dst_ill,
5000 				    saddr, zoneid);
5001 				if (src_ipif != NULL) {
5002 					if (IS_VNI(src_ipif->ipif_ill)) {
5003 						/*
5004 						 * For VNI there is no
5005 						 * interface route
5006 						 */
5007 						src_addr =
5008 						    src_ipif->ipif_src_addr;
5009 					} else {
5010 						ipif_ire =
5011 						    ipif_to_ire(src_ipif);
5012 						if (ipif_ire != NULL) {
5013 							IRE_REFRELE(dst_ire);
5014 							dst_ire = ipif_ire;
5015 						}
5016 						src_addr =
5017 						    dst_ire->ire_src_addr;
5018 					}
5019 					ipif_refrele(src_ipif);
5020 				} else {
5021 					src_addr = dst_ire->ire_src_addr;
5022 				}
5023 			} else {
5024 				src_addr = dst_ire->ire_src_addr;
5025 			}
5026 		}
5027 	}
5028 
5029 	/*
5030 	 * We do ire_route_lookup() here (and not
5031 	 * interface lookup as we assert that
5032 	 * src_addr should only come from an
5033 	 * UP interface for hard binding.
5034 	 */
5035 	ASSERT(src_ire == NULL);
5036 	src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL,
5037 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst);
5038 	/* src_ire must be a local|loopback */
5039 	if (!IRE_IS_LOCAL(src_ire)) {
5040 		if (ip_debug > 2) {
5041 			pr_addr_dbg("ip_bind_connected: bad connected "
5042 			    "src %s\n", AF_INET, &src_addr);
5043 		}
5044 		error = EADDRNOTAVAIL;
5045 		goto bad_addr;
5046 	}
5047 
5048 	/*
5049 	 * If the source address is a loopback address, the
5050 	 * destination had best be local or multicast.
5051 	 * The transports that can't handle multicast will reject
5052 	 * those addresses.
5053 	 */
5054 	if (src_ire->ire_type == IRE_LOOPBACK &&
5055 	    !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) {
5056 		ip1dbg(("ip_bind_connected: bad connected loopback\n"));
5057 		error = -1;
5058 		goto bad_addr;
5059 	}
5060 
5061 	/*
5062 	 * Allow setting new policies. For example, disconnects come
5063 	 * down as ipa_t bind. As we would have set conn_policy_cached
5064 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
5065 	 * can change after the disconnect.
5066 	 */
5067 	connp->conn_policy_cached = B_FALSE;
5068 
5069 	/*
5070 	 * Set the conn addresses/ports immediately, so the IPsec policy calls
5071 	 * can handle their passed-in conn's.
5072 	 */
5073 
5074 	IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
5075 	IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6);
5076 	connp->conn_lport = lport;
5077 	connp->conn_fport = fport;
5078 	*src_addrp = src_addr;
5079 
5080 	ASSERT(!(ipsec_policy_set && ire_requested));
5081 	if (ire_requested) {
5082 		iulp_t *ulp_info = NULL;
5083 
5084 		/*
5085 		 * Note that sire will not be NULL if this is an off-link
5086 		 * connection and there is not cache for that dest yet.
5087 		 *
5088 		 * XXX Because of an existing bug, if there are multiple
5089 		 * default routes, the IRE returned now may not be the actual
5090 		 * default route used (default routes are chosen in a
5091 		 * round robin fashion).  So if the metrics for different
5092 		 * default routes are different, we may return the wrong
5093 		 * metrics.  This will not be a problem if the existing
5094 		 * bug is fixed.
5095 		 */
5096 		if (sire != NULL) {
5097 			ulp_info = &(sire->ire_uinfo);
5098 		}
5099 		if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) {
5100 			error = -1;
5101 			goto bad_addr;
5102 		}
5103 	} else if (ipsec_policy_set) {
5104 		if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
5105 			error = -1;
5106 			goto bad_addr;
5107 		}
5108 	}
5109 
5110 	/*
5111 	 * Cache IPsec policy in this conn.  If we have per-socket policy,
5112 	 * we'll cache that.  If we don't, we'll inherit global policy.
5113 	 *
5114 	 * We can't insert until the conn reflects the policy. Note that
5115 	 * conn_policy_cached is set by ipsec_conn_cache_policy() even for
5116 	 * connections where we don't have a policy. This is to prevent
5117 	 * global policy lookups in the inbound path.
5118 	 *
5119 	 * If we insert before we set conn_policy_cached,
5120 	 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true
5121 	 * because global policy cound be non-empty. We normally call
5122 	 * ipsec_check_policy() for conn_policy_cached connections only if
5123 	 * ipc_in_enforce_policy is set. But in this case,
5124 	 * conn_policy_cached can get set anytime since we made the
5125 	 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is
5126 	 * called, which will make the above assumption false.  Thus, we
5127 	 * need to insert after we set conn_policy_cached.
5128 	 */
5129 	if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0)
5130 		goto bad_addr;
5131 
5132 	if (fanout_insert) {
5133 		/*
5134 		 * The addresses have been verified. Time to insert in
5135 		 * the correct fanout list.
5136 		 */
5137 		error = ipcl_conn_insert(connp, protocol, src_addr,
5138 		    dst_addr, connp->conn_ports);
5139 	}
5140 
5141 	if (error == 0) {
5142 		connp->conn_fully_bound = B_TRUE;
5143 		/*
5144 		 * Our initial checks for LSO/MDT have passed; the IRE is not
5145 		 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to
5146 		 * be supporting LSO/MDT.  Pass the IRE, IPC and ILL into
5147 		 * ip_xxinfo_return(), which performs further checks
5148 		 * against them and upon success, returns the LSO/MDT info
5149 		 * mblk which we will attach to the bind acknowledgment.
5150 		 */
5151 		if (lso_dst_ire != NULL) {
5152 			mblk_t *lsoinfo_mp;
5153 
5154 			ASSERT(ill->ill_lso_capab != NULL);
5155 			if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp,
5156 			    ill->ill_name, ill->ill_lso_capab)) != NULL)
5157 				linkb(mp, lsoinfo_mp);
5158 		} else if (md_dst_ire != NULL) {
5159 			mblk_t *mdinfo_mp;
5160 
5161 			ASSERT(ill->ill_mdt_capab != NULL);
5162 			if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp,
5163 			    ill->ill_name, ill->ill_mdt_capab)) != NULL)
5164 				linkb(mp, mdinfo_mp);
5165 		}
5166 	}
5167 bad_addr:
5168 	if (ipsec_policy_set) {
5169 		ASSERT(policy_mp == mp->b_cont);
5170 		ASSERT(policy_mp != NULL);
5171 		freeb(policy_mp);
5172 		/*
5173 		 * As of now assume that nothing else accompanies
5174 		 * IPSEC_POLICY_SET.
5175 		 */
5176 		mp->b_cont = NULL;
5177 	}
5178 	if (src_ire != NULL)
5179 		IRE_REFRELE(src_ire);
5180 	if (dst_ire != NULL)
5181 		IRE_REFRELE(dst_ire);
5182 	if (sire != NULL)
5183 		IRE_REFRELE(sire);
5184 	if (md_dst_ire != NULL)
5185 		IRE_REFRELE(md_dst_ire);
5186 	if (lso_dst_ire != NULL)
5187 		IRE_REFRELE(lso_dst_ire);
5188 	return (error);
5189 }
5190 
5191 /*
5192  * Insert the ire in b_cont. Returns false if it fails (due to lack of space).
5193  * Prefers dst_ire over src_ire.
5194  */
5195 static boolean_t
5196 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst)
5197 {
5198 	mblk_t	*mp1;
5199 	ire_t *ret_ire = NULL;
5200 
5201 	mp1 = mp->b_cont;
5202 	ASSERT(mp1 != NULL);
5203 
5204 	if (ire != NULL) {
5205 		/*
5206 		 * mp1 initialized above to IRE_DB_REQ_TYPE
5207 		 * appended mblk. Its <upper protocol>'s
5208 		 * job to make sure there is room.
5209 		 */
5210 		if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t))
5211 			return (0);
5212 
5213 		mp1->b_datap->db_type = IRE_DB_TYPE;
5214 		mp1->b_wptr = mp1->b_rptr + sizeof (ire_t);
5215 		bcopy(ire, mp1->b_rptr, sizeof (ire_t));
5216 		ret_ire = (ire_t *)mp1->b_rptr;
5217 		/*
5218 		 * Pass the latest setting of the ip_path_mtu_discovery and
5219 		 * copy the ulp info if any.
5220 		 */
5221 		ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ?
5222 		    IPH_DF : 0;
5223 		if (ulp_info != NULL) {
5224 			bcopy(ulp_info, &(ret_ire->ire_uinfo),
5225 			    sizeof (iulp_t));
5226 		}
5227 		ret_ire->ire_mp = mp1;
5228 	} else {
5229 		/*
5230 		 * No IRE was found. Remove IRE mblk.
5231 		 */
5232 		mp->b_cont = mp1->b_cont;
5233 		freeb(mp1);
5234 	}
5235 
5236 	return (1);
5237 }
5238 
5239 /*
5240  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
5241  * the final piece where we don't.  Return a pointer to the first mblk in the
5242  * result, and update the pointer to the next mblk to chew on.  If anything
5243  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
5244  * NULL pointer.
5245  */
5246 mblk_t *
5247 ip_carve_mp(mblk_t **mpp, ssize_t len)
5248 {
5249 	mblk_t	*mp0;
5250 	mblk_t	*mp1;
5251 	mblk_t	*mp2;
5252 
5253 	if (!len || !mpp || !(mp0 = *mpp))
5254 		return (NULL);
5255 	/* If we aren't going to consume the first mblk, we need a dup. */
5256 	if (mp0->b_wptr - mp0->b_rptr > len) {
5257 		mp1 = dupb(mp0);
5258 		if (mp1) {
5259 			/* Partition the data between the two mblks. */
5260 			mp1->b_wptr = mp1->b_rptr + len;
5261 			mp0->b_rptr = mp1->b_wptr;
5262 			/*
5263 			 * after adjustments if mblk not consumed is now
5264 			 * unaligned, try to align it. If this fails free
5265 			 * all messages and let upper layer recover.
5266 			 */
5267 			if (!OK_32PTR(mp0->b_rptr)) {
5268 				if (!pullupmsg(mp0, -1)) {
5269 					freemsg(mp0);
5270 					freemsg(mp1);
5271 					*mpp = NULL;
5272 					return (NULL);
5273 				}
5274 			}
5275 		}
5276 		return (mp1);
5277 	}
5278 	/* Eat through as many mblks as we need to get len bytes. */
5279 	len -= mp0->b_wptr - mp0->b_rptr;
5280 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
5281 		if (mp2->b_wptr - mp2->b_rptr > len) {
5282 			/*
5283 			 * We won't consume the entire last mblk.  Like
5284 			 * above, dup and partition it.
5285 			 */
5286 			mp1->b_cont = dupb(mp2);
5287 			mp1 = mp1->b_cont;
5288 			if (!mp1) {
5289 				/*
5290 				 * Trouble.  Rather than go to a lot of
5291 				 * trouble to clean up, we free the messages.
5292 				 * This won't be any worse than losing it on
5293 				 * the wire.
5294 				 */
5295 				freemsg(mp0);
5296 				freemsg(mp2);
5297 				*mpp = NULL;
5298 				return (NULL);
5299 			}
5300 			mp1->b_wptr = mp1->b_rptr + len;
5301 			mp2->b_rptr = mp1->b_wptr;
5302 			/*
5303 			 * after adjustments if mblk not consumed is now
5304 			 * unaligned, try to align it. If this fails free
5305 			 * all messages and let upper layer recover.
5306 			 */
5307 			if (!OK_32PTR(mp2->b_rptr)) {
5308 				if (!pullupmsg(mp2, -1)) {
5309 					freemsg(mp0);
5310 					freemsg(mp2);
5311 					*mpp = NULL;
5312 					return (NULL);
5313 				}
5314 			}
5315 			*mpp = mp2;
5316 			return (mp0);
5317 		}
5318 		/* Decrement len by the amount we just got. */
5319 		len -= mp2->b_wptr - mp2->b_rptr;
5320 	}
5321 	/*
5322 	 * len should be reduced to zero now.  If not our caller has
5323 	 * screwed up.
5324 	 */
5325 	if (len) {
5326 		/* Shouldn't happen! */
5327 		freemsg(mp0);
5328 		*mpp = NULL;
5329 		return (NULL);
5330 	}
5331 	/*
5332 	 * We consumed up to exactly the end of an mblk.  Detach the part
5333 	 * we are returning from the rest of the chain.
5334 	 */
5335 	mp1->b_cont = NULL;
5336 	*mpp = mp2;
5337 	return (mp0);
5338 }
5339 
5340 /* The ill stream is being unplumbed. Called from ip_close */
5341 int
5342 ip_modclose(ill_t *ill)
5343 {
5344 	boolean_t success;
5345 	ipsq_t	*ipsq;
5346 	ipif_t	*ipif;
5347 	queue_t	*q = ill->ill_rq;
5348 	ip_stack_t	*ipst = ill->ill_ipst;
5349 	clock_t timeout;
5350 
5351 	/*
5352 	 * Wait for the ACKs of all deferred control messages to be processed.
5353 	 * In particular, we wait for a potential capability reset initiated
5354 	 * in ip_sioctl_plink() to complete before proceeding.
5355 	 *
5356 	 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms)
5357 	 * in case the driver never replies.
5358 	 */
5359 	timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms);
5360 	mutex_enter(&ill->ill_lock);
5361 	while (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
5362 		if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) {
5363 			/* Timeout */
5364 			break;
5365 		}
5366 	}
5367 	mutex_exit(&ill->ill_lock);
5368 
5369 	/*
5370 	 * Forcibly enter the ipsq after some delay. This is to take
5371 	 * care of the case when some ioctl does not complete because
5372 	 * we sent a control message to the driver and it did not
5373 	 * send us a reply. We want to be able to at least unplumb
5374 	 * and replumb rather than force the user to reboot the system.
5375 	 */
5376 	success = ipsq_enter(ill, B_FALSE);
5377 
5378 	/*
5379 	 * Open/close/push/pop is guaranteed to be single threaded
5380 	 * per stream by STREAMS. FS guarantees that all references
5381 	 * from top are gone before close is called. So there can't
5382 	 * be another close thread that has set CONDEMNED on this ill.
5383 	 * and cause ipsq_enter to return failure.
5384 	 */
5385 	ASSERT(success);
5386 	ipsq = ill->ill_phyint->phyint_ipsq;
5387 
5388 	/*
5389 	 * Mark it condemned. No new reference will be made to this ill.
5390 	 * Lookup functions will return an error. Threads that try to
5391 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
5392 	 * that the refcnt will drop down to zero.
5393 	 */
5394 	mutex_enter(&ill->ill_lock);
5395 	ill->ill_state_flags |= ILL_CONDEMNED;
5396 	for (ipif = ill->ill_ipif; ipif != NULL;
5397 	    ipif = ipif->ipif_next) {
5398 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
5399 	}
5400 	/*
5401 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
5402 	 * returns  error if ILL_CONDEMNED is set
5403 	 */
5404 	cv_broadcast(&ill->ill_cv);
5405 	mutex_exit(&ill->ill_lock);
5406 
5407 	/*
5408 	 * Send all the deferred DLPI messages downstream which came in
5409 	 * during the small window right before ipsq_enter(). We do this
5410 	 * without waiting for the ACKs because all the ACKs for M_PROTO
5411 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
5412 	 */
5413 	ill_dlpi_send_deferred(ill);
5414 
5415 	/*
5416 	 * Shut down fragmentation reassembly.
5417 	 * ill_frag_timer won't start a timer again.
5418 	 * Now cancel any existing timer
5419 	 */
5420 	(void) untimeout(ill->ill_frag_timer_id);
5421 	(void) ill_frag_timeout(ill, 0);
5422 
5423 	/*
5424 	 * If MOVE was in progress, clear the
5425 	 * move_in_progress fields also.
5426 	 */
5427 	if (ill->ill_move_in_progress) {
5428 		ILL_CLEAR_MOVE(ill);
5429 	}
5430 
5431 	/*
5432 	 * Call ill_delete to bring down the ipifs, ilms and ill on
5433 	 * this ill. Then wait for the refcnts to drop to zero.
5434 	 * ill_is_freeable checks whether the ill is really quiescent.
5435 	 * Then make sure that threads that are waiting to enter the
5436 	 * ipsq have seen the error returned by ipsq_enter and have
5437 	 * gone away. Then we call ill_delete_tail which does the
5438 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
5439 	 */
5440 	ill_delete(ill);
5441 	mutex_enter(&ill->ill_lock);
5442 	while (!ill_is_freeable(ill))
5443 		cv_wait(&ill->ill_cv, &ill->ill_lock);
5444 	while (ill->ill_waiters)
5445 		cv_wait(&ill->ill_cv, &ill->ill_lock);
5446 
5447 	mutex_exit(&ill->ill_lock);
5448 
5449 	/*
5450 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
5451 	 * it held until the end of the function since the cleanup
5452 	 * below needs to be able to use the ip_stack_t.
5453 	 */
5454 	netstack_hold(ipst->ips_netstack);
5455 
5456 	/* qprocsoff is called in ill_delete_tail */
5457 	ill_delete_tail(ill);
5458 	ASSERT(ill->ill_ipst == NULL);
5459 
5460 	/*
5461 	 * Walk through all upper (conn) streams and qenable
5462 	 * those that have queued data.
5463 	 * close synchronization needs this to
5464 	 * be done to ensure that all upper layers blocked
5465 	 * due to flow control to the closing device
5466 	 * get unblocked.
5467 	 */
5468 	ip1dbg(("ip_wsrv: walking\n"));
5469 	conn_walk_drain(ipst);
5470 
5471 	mutex_enter(&ipst->ips_ip_mi_lock);
5472 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
5473 	mutex_exit(&ipst->ips_ip_mi_lock);
5474 
5475 	/*
5476 	 * credp could be null if the open didn't succeed and ip_modopen
5477 	 * itself calls ip_close.
5478 	 */
5479 	if (ill->ill_credp != NULL)
5480 		crfree(ill->ill_credp);
5481 
5482 	mutex_enter(&ill->ill_lock);
5483 	ill_nic_info_dispatch(ill);
5484 	mutex_exit(&ill->ill_lock);
5485 
5486 	/*
5487 	 * Now we are done with the module close pieces that
5488 	 * need the netstack_t.
5489 	 */
5490 	netstack_rele(ipst->ips_netstack);
5491 
5492 	mi_close_free((IDP)ill);
5493 	q->q_ptr = WR(q)->q_ptr = NULL;
5494 
5495 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
5496 
5497 	return (0);
5498 }
5499 
5500 /*
5501  * This is called as part of close() for IP, UDP, ICMP, and RTS
5502  * in order to quiesce the conn.
5503  */
5504 void
5505 ip_quiesce_conn(conn_t *connp)
5506 {
5507 	boolean_t	drain_cleanup_reqd = B_FALSE;
5508 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
5509 	boolean_t	ilg_cleanup_reqd = B_FALSE;
5510 	ip_stack_t	*ipst;
5511 
5512 	ASSERT(!IPCL_IS_TCP(connp));
5513 	ipst = connp->conn_netstack->netstack_ip;
5514 
5515 	/*
5516 	 * Mark the conn as closing, and this conn must not be
5517 	 * inserted in future into any list. Eg. conn_drain_insert(),
5518 	 * won't insert this conn into the conn_drain_list.
5519 	 * Similarly ill_pending_mp_add() will not add any mp to
5520 	 * the pending mp list, after this conn has started closing.
5521 	 *
5522 	 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg
5523 	 * cannot get set henceforth.
5524 	 */
5525 	mutex_enter(&connp->conn_lock);
5526 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
5527 	connp->conn_state_flags |= CONN_CLOSING;
5528 	if (connp->conn_idl != NULL)
5529 		drain_cleanup_reqd = B_TRUE;
5530 	if (connp->conn_oper_pending_ill != NULL)
5531 		conn_ioctl_cleanup_reqd = B_TRUE;
5532 	if (connp->conn_dhcpinit_ill != NULL) {
5533 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
5534 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
5535 		connp->conn_dhcpinit_ill = NULL;
5536 	}
5537 	if (connp->conn_ilg_inuse != 0)
5538 		ilg_cleanup_reqd = B_TRUE;
5539 	mutex_exit(&connp->conn_lock);
5540 
5541 	if (conn_ioctl_cleanup_reqd)
5542 		conn_ioctl_cleanup(connp);
5543 
5544 	if (is_system_labeled() && connp->conn_anon_port) {
5545 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
5546 		    connp->conn_mlp_type, connp->conn_ulp,
5547 		    ntohs(connp->conn_lport), B_FALSE);
5548 		connp->conn_anon_port = 0;
5549 	}
5550 	connp->conn_mlp_type = mlptSingle;
5551 
5552 	/*
5553 	 * Remove this conn from any fanout list it is on.
5554 	 * and then wait for any threads currently operating
5555 	 * on this endpoint to finish
5556 	 */
5557 	ipcl_hash_remove(connp);
5558 
5559 	/*
5560 	 * Remove this conn from the drain list, and do
5561 	 * any other cleanup that may be required.
5562 	 * (Only non-tcp streams may have a non-null conn_idl.
5563 	 * TCP streams are never flow controlled, and
5564 	 * conn_idl will be null)
5565 	 */
5566 	if (drain_cleanup_reqd)
5567 		conn_drain_tail(connp, B_TRUE);
5568 
5569 	if (connp == ipst->ips_ip_g_mrouter)
5570 		(void) ip_mrouter_done(NULL, ipst);
5571 
5572 	if (ilg_cleanup_reqd)
5573 		ilg_delete_all(connp);
5574 
5575 	conn_delete_ire(connp, NULL);
5576 
5577 	/*
5578 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
5579 	 * callers from write side can't be there now because close
5580 	 * is in progress. The only other caller is ipcl_walk
5581 	 * which checks for the condemned flag.
5582 	 */
5583 	mutex_enter(&connp->conn_lock);
5584 	connp->conn_state_flags |= CONN_CONDEMNED;
5585 	while (connp->conn_ref != 1)
5586 		cv_wait(&connp->conn_cv, &connp->conn_lock);
5587 	connp->conn_state_flags |= CONN_QUIESCED;
5588 	mutex_exit(&connp->conn_lock);
5589 }
5590 
5591 /* ARGSUSED */
5592 int
5593 ip_close(queue_t *q, int flags)
5594 {
5595 	conn_t		*connp;
5596 
5597 	TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q);
5598 
5599 	/*
5600 	 * Call the appropriate delete routine depending on whether this is
5601 	 * a module or device.
5602 	 */
5603 	if (WR(q)->q_next != NULL) {
5604 		/* This is a module close */
5605 		return (ip_modclose((ill_t *)q->q_ptr));
5606 	}
5607 
5608 	connp = q->q_ptr;
5609 	ip_quiesce_conn(connp);
5610 
5611 	qprocsoff(q);
5612 
5613 	/*
5614 	 * Now we are truly single threaded on this stream, and can
5615 	 * delete the things hanging off the connp, and finally the connp.
5616 	 * We removed this connp from the fanout list, it cannot be
5617 	 * accessed thru the fanouts, and we already waited for the
5618 	 * conn_ref to drop to 0. We are already in close, so
5619 	 * there cannot be any other thread from the top. qprocsoff
5620 	 * has completed, and service has completed or won't run in
5621 	 * future.
5622 	 */
5623 	ASSERT(connp->conn_ref == 1);
5624 
5625 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
5626 
5627 	connp->conn_ref--;
5628 	ipcl_conn_destroy(connp);
5629 
5630 	q->q_ptr = WR(q)->q_ptr = NULL;
5631 	return (0);
5632 }
5633 
5634 /*
5635  * Wapper around putnext() so that ip_rts_request can merely use
5636  * conn_recv.
5637  */
5638 /*ARGSUSED2*/
5639 static void
5640 ip_conn_input(void *arg1, mblk_t *mp, void *arg2)
5641 {
5642 	conn_t *connp = (conn_t *)arg1;
5643 
5644 	putnext(connp->conn_rq, mp);
5645 }
5646 
5647 /* Return the IP checksum for the IP header at "iph". */
5648 uint16_t
5649 ip_csum_hdr(ipha_t *ipha)
5650 {
5651 	uint16_t	*uph;
5652 	uint32_t	sum;
5653 	int		opt_len;
5654 
5655 	opt_len = (ipha->ipha_version_and_hdr_length & 0xF) -
5656 	    IP_SIMPLE_HDR_LENGTH_IN_WORDS;
5657 	uph = (uint16_t *)ipha;
5658 	sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
5659 	    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
5660 	if (opt_len > 0) {
5661 		do {
5662 			sum += uph[10];
5663 			sum += uph[11];
5664 			uph += 2;
5665 		} while (--opt_len);
5666 	}
5667 	sum = (sum & 0xFFFF) + (sum >> 16);
5668 	sum = ~(sum + (sum >> 16)) & 0xFFFF;
5669 	if (sum == 0xffff)
5670 		sum = 0;
5671 	return ((uint16_t)sum);
5672 }
5673 
5674 /*
5675  * Called when the module is about to be unloaded
5676  */
5677 void
5678 ip_ddi_destroy(void)
5679 {
5680 	tnet_fini();
5681 
5682 	icmp_ddi_destroy();
5683 	rts_ddi_destroy();
5684 	udp_ddi_destroy();
5685 	sctp_ddi_g_destroy();
5686 	tcp_ddi_g_destroy();
5687 	ipsec_policy_g_destroy();
5688 	ipcl_g_destroy();
5689 	ip_net_g_destroy();
5690 	ip_ire_g_fini();
5691 	inet_minor_destroy(ip_minor_arena_sa);
5692 #if defined(_LP64)
5693 	inet_minor_destroy(ip_minor_arena_la);
5694 #endif
5695 
5696 #ifdef DEBUG
5697 	list_destroy(&ip_thread_list);
5698 	rw_destroy(&ip_thread_rwlock);
5699 	tsd_destroy(&ip_thread_data);
5700 #endif
5701 
5702 	netstack_unregister(NS_IP);
5703 }
5704 
5705 /*
5706  * First step in cleanup.
5707  */
5708 /* ARGSUSED */
5709 static void
5710 ip_stack_shutdown(netstackid_t stackid, void *arg)
5711 {
5712 	ip_stack_t *ipst = (ip_stack_t *)arg;
5713 
5714 #ifdef NS_DEBUG
5715 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
5716 #endif
5717 
5718 	/* Get rid of loopback interfaces and their IREs */
5719 	ip_loopback_cleanup(ipst);
5720 }
5721 
5722 /*
5723  * Free the IP stack instance.
5724  */
5725 static void
5726 ip_stack_fini(netstackid_t stackid, void *arg)
5727 {
5728 	ip_stack_t *ipst = (ip_stack_t *)arg;
5729 	int ret;
5730 
5731 #ifdef NS_DEBUG
5732 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
5733 #endif
5734 	ipv4_hook_destroy(ipst);
5735 	ipv6_hook_destroy(ipst);
5736 	ip_net_destroy(ipst);
5737 
5738 	rw_destroy(&ipst->ips_srcid_lock);
5739 
5740 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
5741 	ipst->ips_ip_mibkp = NULL;
5742 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
5743 	ipst->ips_icmp_mibkp = NULL;
5744 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
5745 	ipst->ips_ip_kstat = NULL;
5746 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
5747 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
5748 	ipst->ips_ip6_kstat = NULL;
5749 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
5750 
5751 	nd_free(&ipst->ips_ip_g_nd);
5752 	kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr));
5753 	ipst->ips_param_arr = NULL;
5754 	kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr));
5755 	ipst->ips_ndp_arr = NULL;
5756 
5757 	ip_mrouter_stack_destroy(ipst);
5758 
5759 	mutex_destroy(&ipst->ips_ip_mi_lock);
5760 	rw_destroy(&ipst->ips_ipsec_capab_ills_lock);
5761 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
5762 	rw_destroy(&ipst->ips_ip_g_nd_lock);
5763 
5764 	ret = untimeout(ipst->ips_igmp_timeout_id);
5765 	if (ret == -1) {
5766 		ASSERT(ipst->ips_igmp_timeout_id == 0);
5767 	} else {
5768 		ASSERT(ipst->ips_igmp_timeout_id != 0);
5769 		ipst->ips_igmp_timeout_id = 0;
5770 	}
5771 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
5772 	if (ret == -1) {
5773 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
5774 	} else {
5775 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
5776 		ipst->ips_igmp_slowtimeout_id = 0;
5777 	}
5778 	ret = untimeout(ipst->ips_mld_timeout_id);
5779 	if (ret == -1) {
5780 		ASSERT(ipst->ips_mld_timeout_id == 0);
5781 	} else {
5782 		ASSERT(ipst->ips_mld_timeout_id != 0);
5783 		ipst->ips_mld_timeout_id = 0;
5784 	}
5785 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
5786 	if (ret == -1) {
5787 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
5788 	} else {
5789 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
5790 		ipst->ips_mld_slowtimeout_id = 0;
5791 	}
5792 	ret = untimeout(ipst->ips_ip_ire_expire_id);
5793 	if (ret == -1) {
5794 		ASSERT(ipst->ips_ip_ire_expire_id == 0);
5795 	} else {
5796 		ASSERT(ipst->ips_ip_ire_expire_id != 0);
5797 		ipst->ips_ip_ire_expire_id = 0;
5798 	}
5799 
5800 	mutex_destroy(&ipst->ips_igmp_timer_lock);
5801 	mutex_destroy(&ipst->ips_mld_timer_lock);
5802 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
5803 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
5804 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
5805 	rw_destroy(&ipst->ips_ill_g_lock);
5806 
5807 	ip_ire_fini(ipst);
5808 	ip6_asp_free(ipst);
5809 	conn_drain_fini(ipst);
5810 	ipcl_destroy(ipst);
5811 
5812 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
5813 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
5814 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
5815 	ipst->ips_ndp4 = NULL;
5816 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
5817 	ipst->ips_ndp6 = NULL;
5818 
5819 	if (ipst->ips_loopback_ksp != NULL) {
5820 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
5821 		ipst->ips_loopback_ksp = NULL;
5822 	}
5823 
5824 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
5825 	ipst->ips_phyint_g_list = NULL;
5826 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
5827 	ipst->ips_ill_g_heads = NULL;
5828 
5829 	kmem_free(ipst, sizeof (*ipst));
5830 }
5831 
5832 /*
5833  * This function is called from the TSD destructor, and is used to debug
5834  * reference count issues in IP. See block comment in <inet/ip_if.h> for
5835  * details.
5836  */
5837 static void
5838 ip_thread_exit(void *phash)
5839 {
5840 	th_hash_t *thh = phash;
5841 
5842 	rw_enter(&ip_thread_rwlock, RW_WRITER);
5843 	list_remove(&ip_thread_list, thh);
5844 	rw_exit(&ip_thread_rwlock);
5845 	mod_hash_destroy_hash(thh->thh_hash);
5846 	kmem_free(thh, sizeof (*thh));
5847 }
5848 
5849 /*
5850  * Called when the IP kernel module is loaded into the kernel
5851  */
5852 void
5853 ip_ddi_init(void)
5854 {
5855 	ip_input_proc = ip_squeue_switch(ip_squeue_enter);
5856 
5857 	/*
5858 	 * For IP and TCP the minor numbers should start from 2 since we have 4
5859 	 * initial devices: ip, ip6, tcp, tcp6.
5860 	 */
5861 	/*
5862 	 * If this is a 64-bit kernel, then create two separate arenas -
5863 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
5864 	 * other for socket apps in the range 2^^18 through 2^^32-1.
5865 	 */
5866 	ip_minor_arena_la = NULL;
5867 	ip_minor_arena_sa = NULL;
5868 #if defined(_LP64)
5869 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
5870 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
5871 		cmn_err(CE_PANIC,
5872 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
5873 	}
5874 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
5875 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
5876 		cmn_err(CE_PANIC,
5877 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
5878 	}
5879 #else
5880 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
5881 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
5882 		cmn_err(CE_PANIC,
5883 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
5884 	}
5885 #endif
5886 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
5887 
5888 	ipcl_g_init();
5889 	ip_ire_g_init();
5890 	ip_net_g_init();
5891 
5892 #ifdef DEBUG
5893 	tsd_create(&ip_thread_data, ip_thread_exit);
5894 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
5895 	list_create(&ip_thread_list, sizeof (th_hash_t),
5896 	    offsetof(th_hash_t, thh_link));
5897 #endif
5898 
5899 	/*
5900 	 * We want to be informed each time a stack is created or
5901 	 * destroyed in the kernel, so we can maintain the
5902 	 * set of udp_stack_t's.
5903 	 */
5904 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
5905 	    ip_stack_fini);
5906 
5907 	ipsec_policy_g_init();
5908 	tcp_ddi_g_init();
5909 	sctp_ddi_g_init();
5910 
5911 	tnet_init();
5912 
5913 	udp_ddi_init();
5914 	rts_ddi_init();
5915 	icmp_ddi_init();
5916 }
5917 
5918 /*
5919  * Initialize the IP stack instance.
5920  */
5921 static void *
5922 ip_stack_init(netstackid_t stackid, netstack_t *ns)
5923 {
5924 	ip_stack_t	*ipst;
5925 	ipparam_t	*pa;
5926 	ipndp_t		*na;
5927 
5928 #ifdef NS_DEBUG
5929 	printf("ip_stack_init(stack %d)\n", stackid);
5930 #endif
5931 
5932 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
5933 	ipst->ips_netstack = ns;
5934 
5935 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
5936 	    KM_SLEEP);
5937 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
5938 	    KM_SLEEP);
5939 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
5940 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
5941 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
5942 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
5943 
5944 	rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL);
5945 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
5946 	ipst->ips_igmp_deferred_next = INFINITY;
5947 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
5948 	ipst->ips_mld_deferred_next = INFINITY;
5949 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
5950 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
5951 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
5952 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
5953 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
5954 	rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL);
5955 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
5956 
5957 	ipcl_init(ipst);
5958 	ip_ire_init(ipst);
5959 	ip6_asp_init(ipst);
5960 	ipif_init(ipst);
5961 	conn_drain_init(ipst);
5962 	ip_mrouter_stack_init(ipst);
5963 
5964 	ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT;
5965 	ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000;
5966 
5967 	ipst->ips_ip_multirt_log_interval = 1000;
5968 
5969 	ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT;
5970 	ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT;
5971 	ipst->ips_ill_index = 1;
5972 
5973 	ipst->ips_saved_ip_g_forward = -1;
5974 	ipst->ips_reg_vif_num = ALL_VIFS; 	/* Index to Register vif */
5975 
5976 	pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
5977 	ipst->ips_param_arr = pa;
5978 	bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr));
5979 
5980 	na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP);
5981 	ipst->ips_ndp_arr = na;
5982 	bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr));
5983 	ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data =
5984 	    (caddr_t)&ipst->ips_ip_g_forward;
5985 	ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data =
5986 	    (caddr_t)&ipst->ips_ipv6_forward;
5987 	ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name,
5988 	    "ip_cgtp_filter") == 0);
5989 	ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data =
5990 	    (caddr_t)&ipst->ips_ip_cgtp_filter;
5991 	ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name,
5992 	    "ipmp_hook_emulation") == 0);
5993 	ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data =
5994 	    (caddr_t)&ipst->ips_ipmp_hook_emulation;
5995 
5996 	(void) ip_param_register(&ipst->ips_ip_g_nd,
5997 	    ipst->ips_param_arr, A_CNT(lcl_param_arr),
5998 	    ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr));
5999 
6000 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
6001 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
6002 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
6003 	ipst->ips_ip6_kstat =
6004 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
6005 
6006 	ipst->ips_ipmp_enable_failback = B_TRUE;
6007 
6008 	ipst->ips_ip_src_id = 1;
6009 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
6010 
6011 	ip_net_init(ipst, ns);
6012 	ipv4_hook_init(ipst);
6013 	ipv6_hook_init(ipst);
6014 
6015 	return (ipst);
6016 }
6017 
6018 /*
6019  * Allocate and initialize a DLPI template of the specified length.  (May be
6020  * called as writer.)
6021  */
6022 mblk_t *
6023 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
6024 {
6025 	mblk_t	*mp;
6026 
6027 	mp = allocb(len, BPRI_MED);
6028 	if (!mp)
6029 		return (NULL);
6030 
6031 	/*
6032 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
6033 	 * of which we don't seem to use) are sent with M_PCPROTO, and
6034 	 * that other DLPI are M_PROTO.
6035 	 */
6036 	if (prim == DL_INFO_REQ) {
6037 		mp->b_datap->db_type = M_PCPROTO;
6038 	} else {
6039 		mp->b_datap->db_type = M_PROTO;
6040 	}
6041 
6042 	mp->b_wptr = mp->b_rptr + len;
6043 	bzero(mp->b_rptr, len);
6044 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
6045 	return (mp);
6046 }
6047 
6048 /*
6049  * Debug formatting routine.  Returns a character string representation of the
6050  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
6051  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
6052  *
6053  * Once the ndd table-printing interfaces are removed, this can be changed to
6054  * standard dotted-decimal form.
6055  */
6056 char *
6057 ip_dot_addr(ipaddr_t addr, char *buf)
6058 {
6059 	uint8_t *ap = (uint8_t *)&addr;
6060 
6061 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
6062 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
6063 	return (buf);
6064 }
6065 
6066 /*
6067  * Write the given MAC address as a printable string in the usual colon-
6068  * separated format.
6069  */
6070 const char *
6071 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
6072 {
6073 	char *bp;
6074 
6075 	if (alen == 0 || buflen < 4)
6076 		return ("?");
6077 	bp = buf;
6078 	for (;;) {
6079 		/*
6080 		 * If there are more MAC address bytes available, but we won't
6081 		 * have any room to print them, then add "..." to the string
6082 		 * instead.  See below for the 'magic number' explanation.
6083 		 */
6084 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
6085 			(void) strcpy(bp, "...");
6086 			break;
6087 		}
6088 		(void) sprintf(bp, "%02x", *addr++);
6089 		bp += 2;
6090 		if (--alen == 0)
6091 			break;
6092 		*bp++ = ':';
6093 		buflen -= 3;
6094 		/*
6095 		 * At this point, based on the first 'if' statement above,
6096 		 * either alen == 1 and buflen >= 3, or alen > 1 and
6097 		 * buflen >= 4.  The first case leaves room for the final "xx"
6098 		 * number and trailing NUL byte.  The second leaves room for at
6099 		 * least "...".  Thus the apparently 'magic' numbers chosen for
6100 		 * that statement.
6101 		 */
6102 	}
6103 	return (buf);
6104 }
6105 
6106 /*
6107  * Send an ICMP error after patching up the packet appropriately.  Returns
6108  * non-zero if the appropriate MIB should be bumped; zero otherwise.
6109  */
6110 static boolean_t
6111 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags,
6112     uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present,
6113     zoneid_t zoneid, ip_stack_t *ipst)
6114 {
6115 	ipha_t *ipha;
6116 	mblk_t *first_mp;
6117 	boolean_t secure;
6118 	unsigned char db_type;
6119 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6120 
6121 	first_mp = mp;
6122 	if (mctl_present) {
6123 		mp = mp->b_cont;
6124 		secure = ipsec_in_is_secure(first_mp);
6125 		ASSERT(mp != NULL);
6126 	} else {
6127 		/*
6128 		 * If this is an ICMP error being reported - which goes
6129 		 * up as M_CTLs, we need to convert them to M_DATA till
6130 		 * we finish checking with global policy because
6131 		 * ipsec_check_global_policy() assumes M_DATA as clear
6132 		 * and M_CTL as secure.
6133 		 */
6134 		db_type = DB_TYPE(mp);
6135 		DB_TYPE(mp) = M_DATA;
6136 		secure = B_FALSE;
6137 	}
6138 	/*
6139 	 * We are generating an icmp error for some inbound packet.
6140 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
6141 	 * Before we generate an error, check with global policy
6142 	 * to see whether this is allowed to enter the system. As
6143 	 * there is no "conn", we are checking with global policy.
6144 	 */
6145 	ipha = (ipha_t *)mp->b_rptr;
6146 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
6147 		first_mp = ipsec_check_global_policy(first_mp, NULL,
6148 		    ipha, NULL, mctl_present, ipst->ips_netstack);
6149 		if (first_mp == NULL)
6150 			return (B_FALSE);
6151 	}
6152 
6153 	if (!mctl_present)
6154 		DB_TYPE(mp) = db_type;
6155 
6156 	if (flags & IP_FF_SEND_ICMP) {
6157 		if (flags & IP_FF_HDR_COMPLETE) {
6158 			if (ip_hdr_complete(ipha, zoneid, ipst)) {
6159 				freemsg(first_mp);
6160 				return (B_TRUE);
6161 			}
6162 		}
6163 		if (flags & IP_FF_CKSUM) {
6164 			/*
6165 			 * Have to correct checksum since
6166 			 * the packet might have been
6167 			 * fragmented and the reassembly code in ip_rput
6168 			 * does not restore the IP checksum.
6169 			 */
6170 			ipha->ipha_hdr_checksum = 0;
6171 			ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
6172 		}
6173 		switch (icmp_type) {
6174 		case ICMP_DEST_UNREACHABLE:
6175 			icmp_unreachable(WR(q), first_mp, icmp_code, zoneid,
6176 			    ipst);
6177 			break;
6178 		default:
6179 			freemsg(first_mp);
6180 			break;
6181 		}
6182 	} else {
6183 		freemsg(first_mp);
6184 		return (B_FALSE);
6185 	}
6186 
6187 	return (B_TRUE);
6188 }
6189 
6190 /*
6191  * Used to send an ICMP error message when a packet is received for
6192  * a protocol that is not supported. The mblk passed as argument
6193  * is consumed by this function.
6194  */
6195 void
6196 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid,
6197     ip_stack_t *ipst)
6198 {
6199 	mblk_t *mp;
6200 	ipha_t *ipha;
6201 	ill_t *ill;
6202 	ipsec_in_t *ii;
6203 
6204 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
6205 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
6206 
6207 	mp = ipsec_mp->b_cont;
6208 	ipsec_mp->b_cont = NULL;
6209 	ipha = (ipha_t *)mp->b_rptr;
6210 	/* Get ill from index in ipsec_in_t. */
6211 	ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
6212 	    (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL,
6213 	    ipst);
6214 	if (ill != NULL) {
6215 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
6216 			if (ip_fanout_send_icmp(q, mp, flags,
6217 			    ICMP_DEST_UNREACHABLE,
6218 			    ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) {
6219 				BUMP_MIB(ill->ill_ip_mib,
6220 				    ipIfStatsInUnknownProtos);
6221 			}
6222 		} else {
6223 			if (ip_fanout_send_icmp_v6(q, mp, flags,
6224 			    ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER,
6225 			    0, B_FALSE, zoneid, ipst)) {
6226 				BUMP_MIB(ill->ill_ip_mib,
6227 				    ipIfStatsInUnknownProtos);
6228 			}
6229 		}
6230 		ill_refrele(ill);
6231 	} else { /* re-link for the freemsg() below. */
6232 		ipsec_mp->b_cont = mp;
6233 	}
6234 
6235 	/* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */
6236 	freemsg(ipsec_mp);
6237 }
6238 
6239 /*
6240  * See if the inbound datagram has had IPsec processing applied to it.
6241  */
6242 boolean_t
6243 ipsec_in_is_secure(mblk_t *ipsec_mp)
6244 {
6245 	ipsec_in_t *ii;
6246 
6247 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
6248 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
6249 
6250 	if (ii->ipsec_in_loopback) {
6251 		return (ii->ipsec_in_secure);
6252 	} else {
6253 		return (ii->ipsec_in_ah_sa != NULL ||
6254 		    ii->ipsec_in_esp_sa != NULL ||
6255 		    ii->ipsec_in_decaps);
6256 	}
6257 }
6258 
6259 /*
6260  * Handle protocols with which IP is less intimate.  There
6261  * can be more than one stream bound to a particular
6262  * protocol.  When this is the case, normally each one gets a copy
6263  * of any incoming packets.
6264  *
6265  * IPsec NOTE :
6266  *
6267  * Don't allow a secure packet going up a non-secure connection.
6268  * We don't allow this because
6269  *
6270  * 1) Reply might go out in clear which will be dropped at
6271  *    the sending side.
6272  * 2) If the reply goes out in clear it will give the
6273  *    adversary enough information for getting the key in
6274  *    most of the cases.
6275  *
6276  * Moreover getting a secure packet when we expect clear
6277  * implies that SA's were added without checking for
6278  * policy on both ends. This should not happen once ISAKMP
6279  * is used to negotiate SAs as SAs will be added only after
6280  * verifying the policy.
6281  *
6282  * NOTE : If the packet was tunneled and not multicast we only send
6283  * to it the first match. Unlike TCP and UDP fanouts this doesn't fall
6284  * back to delivering packets to AF_INET6 raw sockets.
6285  *
6286  * IPQoS Notes:
6287  * Once we have determined the client, invoke IPPF processing.
6288  * Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
6289  * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
6290  * ip_policy will be false.
6291  *
6292  * Zones notes:
6293  * Currently only applications in the global zone can create raw sockets for
6294  * protocols other than ICMP. So unlike the broadcast / multicast case of
6295  * ip_fanout_udp(), we only send a copy of the packet to streams in the
6296  * specified zone. For ICMP, this is handled by the callers of icmp_inbound().
6297  */
6298 static void
6299 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags,
6300     boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
6301     zoneid_t zoneid)
6302 {
6303 	queue_t	*rq;
6304 	mblk_t	*mp1, *first_mp1;
6305 	uint_t	protocol = ipha->ipha_protocol;
6306 	ipaddr_t dst;
6307 	boolean_t one_only;
6308 	mblk_t *first_mp = mp;
6309 	boolean_t secure;
6310 	uint32_t ill_index;
6311 	conn_t	*connp, *first_connp, *next_connp;
6312 	connf_t	*connfp;
6313 	boolean_t shared_addr;
6314 	mib2_ipIfStatsEntry_t *mibptr;
6315 	ip_stack_t *ipst = recv_ill->ill_ipst;
6316 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6317 
6318 	mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib;
6319 	if (mctl_present) {
6320 		mp = first_mp->b_cont;
6321 		secure = ipsec_in_is_secure(first_mp);
6322 		ASSERT(mp != NULL);
6323 	} else {
6324 		secure = B_FALSE;
6325 	}
6326 	dst = ipha->ipha_dst;
6327 	/*
6328 	 * If the packet was tunneled and not multicast we only send to it
6329 	 * the first match.
6330 	 */
6331 	one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) &&
6332 	    !CLASSD(dst));
6333 
6334 	shared_addr = (zoneid == ALL_ZONES);
6335 	if (shared_addr) {
6336 		/*
6337 		 * We don't allow multilevel ports for raw IP, so no need to
6338 		 * check for that here.
6339 		 */
6340 		zoneid = tsol_packet_to_zoneid(mp);
6341 	}
6342 
6343 	connfp = &ipst->ips_ipcl_proto_fanout[protocol];
6344 	mutex_enter(&connfp->connf_lock);
6345 	connp = connfp->connf_head;
6346 	for (connp = connfp->connf_head; connp != NULL;
6347 	    connp = connp->conn_next) {
6348 		if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags,
6349 		    zoneid) &&
6350 		    (!is_system_labeled() ||
6351 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
6352 		    connp))) {
6353 			break;
6354 		}
6355 	}
6356 
6357 	if (connp == NULL || connp->conn_upq == NULL) {
6358 		/*
6359 		 * No one bound to these addresses.  Is
6360 		 * there a client that wants all
6361 		 * unclaimed datagrams?
6362 		 */
6363 		mutex_exit(&connfp->connf_lock);
6364 		/*
6365 		 * Check for IPPROTO_ENCAP...
6366 		 */
6367 		if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) {
6368 			/*
6369 			 * If an IPsec mblk is here on a multicast
6370 			 * tunnel (using ip_mroute stuff), check policy here,
6371 			 * THEN ship off to ip_mroute_decap().
6372 			 *
6373 			 * BTW,  If I match a configured IP-in-IP
6374 			 * tunnel, this path will not be reached, and
6375 			 * ip_mroute_decap will never be called.
6376 			 */
6377 			first_mp = ipsec_check_global_policy(first_mp, connp,
6378 			    ipha, NULL, mctl_present, ipst->ips_netstack);
6379 			if (first_mp != NULL) {
6380 				if (mctl_present)
6381 					freeb(first_mp);
6382 				ip_mroute_decap(q, mp, ill);
6383 			} /* Else we already freed everything! */
6384 		} else {
6385 			/*
6386 			 * Otherwise send an ICMP protocol unreachable.
6387 			 */
6388 			if (ip_fanout_send_icmp(q, first_mp, flags,
6389 			    ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE,
6390 			    mctl_present, zoneid, ipst)) {
6391 				BUMP_MIB(mibptr, ipIfStatsInUnknownProtos);
6392 			}
6393 		}
6394 		return;
6395 	}
6396 	CONN_INC_REF(connp);
6397 	first_connp = connp;
6398 
6399 	/*
6400 	 * Only send message to one tunnel driver by immediately
6401 	 * terminating the loop.
6402 	 */
6403 	connp = one_only ? NULL : connp->conn_next;
6404 
6405 	for (;;) {
6406 		while (connp != NULL) {
6407 			if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill,
6408 			    flags, zoneid) &&
6409 			    (!is_system_labeled() ||
6410 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
6411 			    shared_addr, connp)))
6412 				break;
6413 			connp = connp->conn_next;
6414 		}
6415 
6416 		/*
6417 		 * Copy the packet.
6418 		 */
6419 		if (connp == NULL || connp->conn_upq == NULL ||
6420 		    (((first_mp1 = dupmsg(first_mp)) == NULL) &&
6421 		    ((first_mp1 = ip_copymsg(first_mp)) == NULL))) {
6422 			/*
6423 			 * No more interested clients or memory
6424 			 * allocation failed
6425 			 */
6426 			connp = first_connp;
6427 			break;
6428 		}
6429 		mp1 = mctl_present ? first_mp1->b_cont : first_mp1;
6430 		CONN_INC_REF(connp);
6431 		mutex_exit(&connfp->connf_lock);
6432 		rq = connp->conn_rq;
6433 		if (!canputnext(rq)) {
6434 			if (flags & IP_FF_RAWIP) {
6435 				BUMP_MIB(mibptr, rawipIfStatsInOverflows);
6436 			} else {
6437 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
6438 			}
6439 
6440 			freemsg(first_mp1);
6441 		} else {
6442 			/*
6443 			 * Don't enforce here if we're an actual tunnel -
6444 			 * let "tun" do it instead.
6445 			 */
6446 			if (!IPCL_IS_IPTUN(connp) &&
6447 			    (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
6448 			    secure)) {
6449 				first_mp1 = ipsec_check_inbound_policy
6450 				    (first_mp1, connp, ipha, NULL,
6451 				    mctl_present);
6452 			}
6453 			if (first_mp1 != NULL) {
6454 				int in_flags = 0;
6455 				/*
6456 				 * ip_fanout_proto also gets called from
6457 				 * icmp_inbound_error_fanout, in which case
6458 				 * the msg type is M_CTL.  Don't add info
6459 				 * in this case for the time being. In future
6460 				 * when there is a need for knowing the
6461 				 * inbound iface index for ICMP error msgs,
6462 				 * then this can be changed.
6463 				 */
6464 				if (connp->conn_recvif)
6465 					in_flags = IPF_RECVIF;
6466 				/*
6467 				 * The ULP may support IP_RECVPKTINFO for both
6468 				 * IP v4 and v6 so pass the appropriate argument
6469 				 * based on conn IP version.
6470 				 */
6471 				if (connp->conn_ip_recvpktinfo) {
6472 					if (connp->conn_af_isv6) {
6473 						/*
6474 						 * V6 only needs index
6475 						 */
6476 						in_flags |= IPF_RECVIF;
6477 					} else {
6478 						/*
6479 						 * V4 needs index +
6480 						 * matching address.
6481 						 */
6482 						in_flags |= IPF_RECVADDR;
6483 					}
6484 				}
6485 				if ((in_flags != 0) &&
6486 				    (mp->b_datap->db_type != M_CTL)) {
6487 					/*
6488 					 * the actual data will be
6489 					 * contained in b_cont upon
6490 					 * successful return of the
6491 					 * following call else
6492 					 * original mblk is returned
6493 					 */
6494 					ASSERT(recv_ill != NULL);
6495 					mp1 = ip_add_info(mp1, recv_ill,
6496 					    in_flags, IPCL_ZONEID(connp), ipst);
6497 				}
6498 				BUMP_MIB(mibptr, ipIfStatsHCInDelivers);
6499 				if (mctl_present)
6500 					freeb(first_mp1);
6501 				(connp->conn_recv)(connp, mp1, NULL);
6502 			}
6503 		}
6504 		mutex_enter(&connfp->connf_lock);
6505 		/* Follow the next pointer before releasing the conn. */
6506 		next_connp = connp->conn_next;
6507 		CONN_DEC_REF(connp);
6508 		connp = next_connp;
6509 	}
6510 
6511 	/* Last one.  Send it upstream. */
6512 	mutex_exit(&connfp->connf_lock);
6513 
6514 	/*
6515 	 * If this packet is coming from icmp_inbound_error_fanout ip_policy
6516 	 * will be set to false.
6517 	 */
6518 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
6519 		ill_index = ill->ill_phyint->phyint_ifindex;
6520 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
6521 		if (mp == NULL) {
6522 			CONN_DEC_REF(connp);
6523 			if (mctl_present) {
6524 				freeb(first_mp);
6525 			}
6526 			return;
6527 		}
6528 	}
6529 
6530 	rq = connp->conn_rq;
6531 	if (!canputnext(rq)) {
6532 		if (flags & IP_FF_RAWIP) {
6533 			BUMP_MIB(mibptr, rawipIfStatsInOverflows);
6534 		} else {
6535 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
6536 		}
6537 
6538 		freemsg(first_mp);
6539 	} else {
6540 		if (IPCL_IS_IPTUN(connp)) {
6541 			/*
6542 			 * Tunneled packet.  We enforce policy in the tunnel
6543 			 * module itself.
6544 			 *
6545 			 * Send the WHOLE packet up (incl. IPSEC_IN) without
6546 			 * a policy check.
6547 			 * FIXME to use conn_recv for tun later.
6548 			 */
6549 			putnext(rq, first_mp);
6550 			CONN_DEC_REF(connp);
6551 			return;
6552 		}
6553 
6554 		if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) {
6555 			first_mp = ipsec_check_inbound_policy(first_mp, connp,
6556 			    ipha, NULL, mctl_present);
6557 		}
6558 
6559 		if (first_mp != NULL) {
6560 			int in_flags = 0;
6561 
6562 			/*
6563 			 * ip_fanout_proto also gets called
6564 			 * from icmp_inbound_error_fanout, in
6565 			 * which case the msg type is M_CTL.
6566 			 * Don't add info in this case for time
6567 			 * being. In future when there is a
6568 			 * need for knowing the inbound iface
6569 			 * index for ICMP error msgs, then this
6570 			 * can be changed
6571 			 */
6572 			if (connp->conn_recvif)
6573 				in_flags = IPF_RECVIF;
6574 			if (connp->conn_ip_recvpktinfo) {
6575 				if (connp->conn_af_isv6) {
6576 					/*
6577 					 * V6 only needs index
6578 					 */
6579 					in_flags |= IPF_RECVIF;
6580 				} else {
6581 					/*
6582 					 * V4 needs index +
6583 					 * matching address.
6584 					 */
6585 					in_flags |= IPF_RECVADDR;
6586 				}
6587 			}
6588 			if ((in_flags != 0) &&
6589 			    (mp->b_datap->db_type != M_CTL)) {
6590 
6591 				/*
6592 				 * the actual data will be contained in
6593 				 * b_cont upon successful return
6594 				 * of the following call else original
6595 				 * mblk is returned
6596 				 */
6597 				ASSERT(recv_ill != NULL);
6598 				mp = ip_add_info(mp, recv_ill,
6599 				    in_flags, IPCL_ZONEID(connp), ipst);
6600 			}
6601 			BUMP_MIB(mibptr, ipIfStatsHCInDelivers);
6602 			(connp->conn_recv)(connp, mp, NULL);
6603 			if (mctl_present)
6604 				freeb(first_mp);
6605 		}
6606 	}
6607 	CONN_DEC_REF(connp);
6608 }
6609 
6610 /*
6611  * Fanout for TCP packets
6612  * The caller puts <fport, lport> in the ports parameter.
6613  *
6614  * IPQoS Notes
6615  * Before sending it to the client, invoke IPPF processing.
6616  * Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
6617  * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
6618  * ip_policy is false.
6619  */
6620 static void
6621 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha,
6622     uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid)
6623 {
6624 	mblk_t  *first_mp;
6625 	boolean_t secure;
6626 	uint32_t ill_index;
6627 	int	ip_hdr_len;
6628 	tcph_t	*tcph;
6629 	boolean_t syn_present = B_FALSE;
6630 	conn_t	*connp;
6631 	ip_stack_t	*ipst = recv_ill->ill_ipst;
6632 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6633 
6634 	ASSERT(recv_ill != NULL);
6635 
6636 	first_mp = mp;
6637 	if (mctl_present) {
6638 		ASSERT(first_mp->b_datap->db_type == M_CTL);
6639 		mp = first_mp->b_cont;
6640 		secure = ipsec_in_is_secure(first_mp);
6641 		ASSERT(mp != NULL);
6642 	} else {
6643 		secure = B_FALSE;
6644 	}
6645 
6646 	ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr);
6647 
6648 	if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len,
6649 	    zoneid, ipst)) == NULL) {
6650 		/*
6651 		 * No connected connection or listener. Send a
6652 		 * TH_RST via tcp_xmit_listeners_reset.
6653 		 */
6654 
6655 		/* Initiate IPPf processing, if needed. */
6656 		if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
6657 			uint32_t ill_index;
6658 			ill_index = recv_ill->ill_phyint->phyint_ifindex;
6659 			ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
6660 			if (first_mp == NULL)
6661 				return;
6662 		}
6663 		BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
6664 		ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n",
6665 		    zoneid));
6666 		tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid,
6667 		    ipst->ips_netstack->netstack_tcp, NULL);
6668 		return;
6669 	}
6670 
6671 	/*
6672 	 * Allocate the SYN for the TCP connection here itself
6673 	 */
6674 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6675 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
6676 		if (IPCL_IS_TCP(connp)) {
6677 			squeue_t *sqp;
6678 
6679 			/*
6680 			 * For fused tcp loopback, assign the eager's
6681 			 * squeue to be that of the active connect's.
6682 			 * Note that we don't check for IP_FF_LOOPBACK
6683 			 * here since this routine gets called only
6684 			 * for loopback (unlike the IPv6 counterpart).
6685 			 */
6686 			ASSERT(Q_TO_CONN(q) != NULL);
6687 			if (do_tcp_fusion &&
6688 			    !CONN_INBOUND_POLICY_PRESENT(connp, ipss) &&
6689 			    !secure &&
6690 			    !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy &&
6691 			    IPCL_IS_TCP(Q_TO_CONN(q))) {
6692 				ASSERT(Q_TO_CONN(q)->conn_sqp != NULL);
6693 				sqp = Q_TO_CONN(q)->conn_sqp;
6694 			} else {
6695 				sqp = IP_SQUEUE_GET(lbolt);
6696 			}
6697 
6698 			mp->b_datap->db_struioflag |= STRUIO_EAGER;
6699 			DB_CKSUMSTART(mp) = (intptr_t)sqp;
6700 			syn_present = B_TRUE;
6701 		}
6702 	}
6703 
6704 	if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
6705 		uint_t	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
6706 		BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
6707 		if ((flags & TH_RST) || (flags & TH_URG)) {
6708 			CONN_DEC_REF(connp);
6709 			freemsg(first_mp);
6710 			return;
6711 		}
6712 		if (flags & TH_ACK) {
6713 			tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid,
6714 			    ipst->ips_netstack->netstack_tcp, connp);
6715 			CONN_DEC_REF(connp);
6716 			return;
6717 		}
6718 
6719 		CONN_DEC_REF(connp);
6720 		freemsg(first_mp);
6721 		return;
6722 	}
6723 
6724 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) {
6725 		first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
6726 		    NULL, mctl_present);
6727 		if (first_mp == NULL) {
6728 			BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards);
6729 			CONN_DEC_REF(connp);
6730 			return;
6731 		}
6732 		if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
6733 			ASSERT(syn_present);
6734 			if (mctl_present) {
6735 				ASSERT(first_mp != mp);
6736 				first_mp->b_datap->db_struioflag |=
6737 				    STRUIO_POLICY;
6738 			} else {
6739 				ASSERT(first_mp == mp);
6740 				mp->b_datap->db_struioflag &=
6741 				    ~STRUIO_EAGER;
6742 				mp->b_datap->db_struioflag |=
6743 				    STRUIO_POLICY;
6744 			}
6745 		} else {
6746 			/*
6747 			 * Discard first_mp early since we're dealing with a
6748 			 * fully-connected conn_t and tcp doesn't do policy in
6749 			 * this case.
6750 			 */
6751 			if (mctl_present) {
6752 				freeb(first_mp);
6753 				mctl_present = B_FALSE;
6754 			}
6755 			first_mp = mp;
6756 		}
6757 	}
6758 
6759 	/*
6760 	 * Initiate policy processing here if needed. If we get here from
6761 	 * icmp_inbound_error_fanout, ip_policy is false.
6762 	 */
6763 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
6764 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
6765 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
6766 		if (mp == NULL) {
6767 			CONN_DEC_REF(connp);
6768 			if (mctl_present)
6769 				freeb(first_mp);
6770 			return;
6771 		} else if (mctl_present) {
6772 			ASSERT(first_mp != mp);
6773 			first_mp->b_cont = mp;
6774 		} else {
6775 			first_mp = mp;
6776 		}
6777 	}
6778 
6779 
6780 
6781 	/* Handle socket options. */
6782 	if (!syn_present &&
6783 	    connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) {
6784 		/* Add header */
6785 		ASSERT(recv_ill != NULL);
6786 		/*
6787 		 * Since tcp does not support IP_RECVPKTINFO for V4, only pass
6788 		 * IPF_RECVIF.
6789 		 */
6790 		mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp),
6791 		    ipst);
6792 		if (mp == NULL) {
6793 			BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards);
6794 			CONN_DEC_REF(connp);
6795 			if (mctl_present)
6796 				freeb(first_mp);
6797 			return;
6798 		} else if (mctl_present) {
6799 			/*
6800 			 * ip_add_info might return a new mp.
6801 			 */
6802 			ASSERT(first_mp != mp);
6803 			first_mp->b_cont = mp;
6804 		} else {
6805 			first_mp = mp;
6806 		}
6807 	}
6808 	BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
6809 	if (IPCL_IS_TCP(connp)) {
6810 		/* do not drain, certain use cases can blow the stack */
6811 		squeue_enter_nodrain(connp->conn_sqp, first_mp,
6812 		    connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP);
6813 	} else {
6814 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
6815 		(connp->conn_recv)(connp, first_mp, NULL);
6816 		CONN_DEC_REF(connp);
6817 	}
6818 }
6819 
6820 /*
6821  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
6822  * pass it along to ESP if the SPI is non-zero.  Returns TRUE if the mblk
6823  * is not consumed.
6824  *
6825  * One of four things can happen, all of which affect the passed-in mblk:
6826  *
6827  * 1.) ICMP messages that go through here just get returned TRUE.
6828  *
6829  * 2.) The packet is stock UDP and gets its zero-SPI stripped.  Return TRUE.
6830  *
6831  * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent
6832  *     ESP packet, and is passed along to ESP for consumption.  Return FALSE.
6833  *
6834  * 4.) The packet is an ESP-in-UDP Keepalive.  Drop it and return FALSE.
6835  */
6836 static boolean_t
6837 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill,
6838     ipsec_stack_t *ipss)
6839 {
6840 	int shift, plen, iph_len;
6841 	ipha_t *ipha;
6842 	udpha_t *udpha;
6843 	uint32_t *spi;
6844 	uint8_t *orptr;
6845 	boolean_t udp_pkt, free_ire;
6846 
6847 	if (DB_TYPE(mp) == M_CTL) {
6848 		/*
6849 		 * ICMP message with UDP inside.  Don't bother stripping, just
6850 		 * send it up.
6851 		 *
6852 		 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going
6853 		 * to ignore errors set by ICMP anyway ('cause they might be
6854 		 * forged), but that's the app's decision, not ours.
6855 		 */
6856 
6857 		/* Bunch of reality checks for DEBUG kernels... */
6858 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
6859 		ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP);
6860 
6861 		return (B_TRUE);
6862 	}
6863 
6864 	ipha = (ipha_t *)mp->b_rptr;
6865 	iph_len = IPH_HDR_LENGTH(ipha);
6866 	plen = ntohs(ipha->ipha_length);
6867 
6868 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
6869 		/*
6870 		 * Most likely a keepalive for the benefit of an intervening
6871 		 * NAT.  These aren't for us, per se, so drop it.
6872 		 *
6873 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
6874 		 * byte packets (keepalives are 1-byte), but we'll drop them
6875 		 * also.
6876 		 */
6877 		ip_drop_packet(mp, B_TRUE, recv_ill, NULL,
6878 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
6879 		return (B_FALSE);
6880 	}
6881 
6882 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
6883 		/* might as well pull it all up - it might be ESP. */
6884 		if (!pullupmsg(mp, -1)) {
6885 			ip_drop_packet(mp, B_TRUE, recv_ill, NULL,
6886 			    DROPPER(ipss, ipds_esp_nomem),
6887 			    &ipss->ipsec_dropper);
6888 			return (B_FALSE);
6889 		}
6890 
6891 		ipha = (ipha_t *)mp->b_rptr;
6892 	}
6893 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
6894 	if (*spi == 0) {
6895 		/* UDP packet - remove 0-spi. */
6896 		shift = sizeof (uint32_t);
6897 	} else {
6898 		/* ESP-in-UDP packet - reduce to ESP. */
6899 		ipha->ipha_protocol = IPPROTO_ESP;
6900 		shift = sizeof (udpha_t);
6901 	}
6902 
6903 	/* Fix IP header */
6904 	ipha->ipha_length = htons(plen - shift);
6905 	ipha->ipha_hdr_checksum = 0;
6906 
6907 	orptr = mp->b_rptr;
6908 	mp->b_rptr += shift;
6909 
6910 	if (*spi == 0) {
6911 		ASSERT((uint8_t *)ipha == orptr);
6912 		udpha = (udpha_t *)(orptr + iph_len);
6913 		udpha->uha_length = htons(plen - shift - iph_len);
6914 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
6915 		udp_pkt = B_TRUE;
6916 	} else {
6917 		udp_pkt = B_FALSE;
6918 	}
6919 	ovbcopy(orptr, orptr + shift, iph_len);
6920 	if (!udp_pkt) /* Punt up for ESP processing. */ {
6921 		ipha = (ipha_t *)(orptr + shift);
6922 
6923 		free_ire = (ire == NULL);
6924 		if (free_ire) {
6925 			/* Re-acquire ire. */
6926 			ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL,
6927 			    ipss->ipsec_netstack->netstack_ip);
6928 			if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) {
6929 				if (ire != NULL)
6930 					ire_refrele(ire);
6931 				/*
6932 				 * Do a regular freemsg(), as this is an IP
6933 				 * error (no local route) not an IPsec one.
6934 				 */
6935 				freemsg(mp);
6936 			}
6937 		}
6938 
6939 		ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE);
6940 		if (free_ire)
6941 			ire_refrele(ire);
6942 	}
6943 
6944 	return (udp_pkt);
6945 }
6946 
6947 /*
6948  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
6949  * We are responsible for disposing of mp, such as by freemsg() or putnext()
6950  * Caller is responsible for dropping references to the conn, and freeing
6951  * first_mp.
6952  *
6953  * IPQoS Notes
6954  * Before sending it to the client, invoke IPPF processing. Policy processing
6955  * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and
6956  * ip_policy is true. If we get here from icmp_inbound_error_fanout or
6957  * ip_wput_local, ip_policy is false.
6958  */
6959 static void
6960 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp,
6961     boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill,
6962     boolean_t ip_policy)
6963 {
6964 	boolean_t	mctl_present = (first_mp != NULL);
6965 	uint32_t	in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */
6966 	uint32_t	ill_index;
6967 	ip_stack_t	*ipst = recv_ill->ill_ipst;
6968 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6969 
6970 	ASSERT(ill != NULL);
6971 
6972 	if (mctl_present)
6973 		first_mp->b_cont = mp;
6974 	else
6975 		first_mp = mp;
6976 
6977 	if (CONN_UDP_FLOWCTLD(connp)) {
6978 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
6979 		freemsg(first_mp);
6980 		return;
6981 	}
6982 
6983 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) {
6984 		first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
6985 		    NULL, mctl_present);
6986 		if (first_mp == NULL) {
6987 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
6988 			return;	/* Freed by ipsec_check_inbound_policy(). */
6989 		}
6990 	}
6991 	if (mctl_present)
6992 		freeb(first_mp);
6993 
6994 	/* Let's hope the compilers utter "branch, predict-not-taken..." ;) */
6995 	if (connp->conn_udp->udp_nat_t_endpoint) {
6996 		if (mctl_present) {
6997 			/* mctl_present *shouldn't* happen. */
6998 			ip_drop_packet(mp, B_TRUE, NULL, NULL,
6999 			    DROPPER(ipss, ipds_esp_nat_t_ipsec),
7000 			    &ipss->ipsec_dropper);
7001 			return;
7002 		}
7003 
7004 		if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss))
7005 			return;
7006 	}
7007 
7008 	/* Handle options. */
7009 	if (connp->conn_recvif)
7010 		in_flags = IPF_RECVIF;
7011 	/*
7012 	 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag
7013 	 * passed to ip_add_info is based on IP version of connp.
7014 	 */
7015 	if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) {
7016 		if (connp->conn_af_isv6) {
7017 			/*
7018 			 * V6 only needs index
7019 			 */
7020 			in_flags |= IPF_RECVIF;
7021 		} else {
7022 			/*
7023 			 * V4 needs index + matching address.
7024 			 */
7025 			in_flags |= IPF_RECVADDR;
7026 		}
7027 	}
7028 
7029 	if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA))
7030 		in_flags |= IPF_RECVSLLA;
7031 
7032 	/*
7033 	 * Initiate IPPF processing here, if needed. Note first_mp won't be
7034 	 * freed if the packet is dropped. The caller will do so.
7035 	 */
7036 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
7037 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
7038 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
7039 		if (mp == NULL) {
7040 			return;
7041 		}
7042 	}
7043 	if ((in_flags != 0) &&
7044 	    (mp->b_datap->db_type != M_CTL)) {
7045 		/*
7046 		 * The actual data will be contained in b_cont
7047 		 * upon successful return of the following call
7048 		 * else original mblk is returned
7049 		 */
7050 		ASSERT(recv_ill != NULL);
7051 		mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp),
7052 		    ipst);
7053 	}
7054 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
7055 	/* Send it upstream */
7056 	(connp->conn_recv)(connp, mp, NULL);
7057 }
7058 
7059 /*
7060  * Fanout for UDP packets.
7061  * The caller puts <fport, lport> in the ports parameter.
7062  *
7063  * If SO_REUSEADDR is set all multicast and broadcast packets
7064  * will be delivered to all streams bound to the same port.
7065  *
7066  * Zones notes:
7067  * Multicast and broadcast packets will be distributed to streams in all zones.
7068  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
7069  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
7070  * packets. To maintain this behavior with multiple zones, the conns are grouped
7071  * by zone and the SO_REUSEADDR flag is checked for the first matching conn in
7072  * each zone. If unset, all the following conns in the same zone are skipped.
7073  */
7074 static void
7075 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
7076     uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present,
7077     boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid)
7078 {
7079 	uint32_t	dstport, srcport;
7080 	ipaddr_t	dst;
7081 	mblk_t		*first_mp;
7082 	boolean_t	secure;
7083 	in6_addr_t	v6src;
7084 	conn_t		*connp;
7085 	connf_t		*connfp;
7086 	conn_t		*first_connp;
7087 	conn_t		*next_connp;
7088 	mblk_t		*mp1, *first_mp1;
7089 	ipaddr_t	src;
7090 	zoneid_t	last_zoneid;
7091 	boolean_t	reuseaddr;
7092 	boolean_t	shared_addr;
7093 	boolean_t	unlabeled;
7094 	ip_stack_t	*ipst;
7095 
7096 	ASSERT(recv_ill != NULL);
7097 	ipst = recv_ill->ill_ipst;
7098 
7099 	first_mp = mp;
7100 	if (mctl_present) {
7101 		mp = first_mp->b_cont;
7102 		first_mp->b_cont = NULL;
7103 		secure = ipsec_in_is_secure(first_mp);
7104 		ASSERT(mp != NULL);
7105 	} else {
7106 		first_mp = NULL;
7107 		secure = B_FALSE;
7108 	}
7109 
7110 	/* Extract ports in net byte order */
7111 	dstport = htons(ntohl(ports) & 0xFFFF);
7112 	srcport = htons(ntohl(ports) >> 16);
7113 	dst = ipha->ipha_dst;
7114 	src = ipha->ipha_src;
7115 
7116 	unlabeled = B_FALSE;
7117 	if (is_system_labeled())
7118 		/* Cred cannot be null on IPv4 */
7119 		unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags &
7120 		    TSLF_UNLABELED) != 0;
7121 	shared_addr = (zoneid == ALL_ZONES);
7122 	if (shared_addr) {
7123 		/*
7124 		 * No need to handle exclusive-stack zones since ALL_ZONES
7125 		 * only applies to the shared stack.
7126 		 */
7127 		zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport);
7128 		/*
7129 		 * If no shared MLP is found, tsol_mlp_findzone returns
7130 		 * ALL_ZONES.  In that case, we assume it's SLP, and
7131 		 * search for the zone based on the packet label.
7132 		 *
7133 		 * If there is such a zone, we prefer to find a
7134 		 * connection in it.  Otherwise, we look for a
7135 		 * MAC-exempt connection in any zone whose label
7136 		 * dominates the default label on the packet.
7137 		 */
7138 		if (zoneid == ALL_ZONES)
7139 			zoneid = tsol_packet_to_zoneid(mp);
7140 		else
7141 			unlabeled = B_FALSE;
7142 	}
7143 
7144 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)];
7145 	mutex_enter(&connfp->connf_lock);
7146 	connp = connfp->connf_head;
7147 	if (!broadcast && !CLASSD(dst)) {
7148 		/*
7149 		 * Not broadcast or multicast. Send to the one (first)
7150 		 * client we find. No need to check conn_wantpacket()
7151 		 * since IP_BOUND_IF/conn_incoming_ill does not apply to
7152 		 * IPv4 unicast packets.
7153 		 */
7154 		while ((connp != NULL) &&
7155 		    (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) ||
7156 		    (!IPCL_ZONE_MATCH(connp, zoneid) &&
7157 		    !(unlabeled && connp->conn_mac_exempt)))) {
7158 			/*
7159 			 * We keep searching since the conn did not match,
7160 			 * or its zone did not match and it is not either
7161 			 * an allzones conn or a mac exempt conn (if the
7162 			 * sender is unlabeled.)
7163 			 */
7164 			connp = connp->conn_next;
7165 		}
7166 
7167 		if (connp == NULL || connp->conn_upq == NULL)
7168 			goto notfound;
7169 
7170 		if (is_system_labeled() &&
7171 		    !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7172 		    connp))
7173 			goto notfound;
7174 
7175 		CONN_INC_REF(connp);
7176 		mutex_exit(&connfp->connf_lock);
7177 		ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha,
7178 		    flags, recv_ill, ip_policy);
7179 		IP_STAT(ipst, ip_udp_fannorm);
7180 		CONN_DEC_REF(connp);
7181 		return;
7182 	}
7183 
7184 	/*
7185 	 * Broadcast and multicast case
7186 	 *
7187 	 * Need to check conn_wantpacket().
7188 	 * If SO_REUSEADDR has been set on the first we send the
7189 	 * packet to all clients that have joined the group and
7190 	 * match the port.
7191 	 */
7192 
7193 	while (connp != NULL) {
7194 		if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) &&
7195 		    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7196 		    (!is_system_labeled() ||
7197 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7198 		    connp)))
7199 			break;
7200 		connp = connp->conn_next;
7201 	}
7202 
7203 	if (connp == NULL || connp->conn_upq == NULL)
7204 		goto notfound;
7205 
7206 	first_connp = connp;
7207 	/*
7208 	 * When SO_REUSEADDR is not set, send the packet only to the first
7209 	 * matching connection in its zone by keeping track of the zoneid.
7210 	 */
7211 	reuseaddr = first_connp->conn_reuseaddr;
7212 	last_zoneid = first_connp->conn_zoneid;
7213 
7214 	CONN_INC_REF(connp);
7215 	connp = connp->conn_next;
7216 	for (;;) {
7217 		while (connp != NULL) {
7218 			if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) &&
7219 			    (reuseaddr || connp->conn_zoneid != last_zoneid) &&
7220 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7221 			    (!is_system_labeled() ||
7222 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
7223 			    shared_addr, connp)))
7224 				break;
7225 			connp = connp->conn_next;
7226 		}
7227 		/*
7228 		 * Just copy the data part alone. The mctl part is
7229 		 * needed just for verifying policy and it is never
7230 		 * sent up.
7231 		 */
7232 		if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
7233 		    ((mp1 = copymsg(mp)) == NULL))) {
7234 			/*
7235 			 * No more interested clients or memory
7236 			 * allocation failed
7237 			 */
7238 			connp = first_connp;
7239 			break;
7240 		}
7241 		if (connp->conn_zoneid != last_zoneid) {
7242 			/*
7243 			 * Update the zoneid so that the packet isn't sent to
7244 			 * any more conns in the same zone unless SO_REUSEADDR
7245 			 * is set.
7246 			 */
7247 			reuseaddr = connp->conn_reuseaddr;
7248 			last_zoneid = connp->conn_zoneid;
7249 		}
7250 		if (first_mp != NULL) {
7251 			ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
7252 			    ipsec_info_type == IPSEC_IN);
7253 			first_mp1 = ipsec_in_tag(first_mp, NULL,
7254 			    ipst->ips_netstack);
7255 			if (first_mp1 == NULL) {
7256 				freemsg(mp1);
7257 				connp = first_connp;
7258 				break;
7259 			}
7260 		} else {
7261 			first_mp1 = NULL;
7262 		}
7263 		CONN_INC_REF(connp);
7264 		mutex_exit(&connfp->connf_lock);
7265 		/*
7266 		 * IPQoS notes: We don't send the packet for policy
7267 		 * processing here, will do it for the last one (below).
7268 		 * i.e. we do it per-packet now, but if we do policy
7269 		 * processing per-conn, then we would need to do it
7270 		 * here too.
7271 		 */
7272 		ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill,
7273 		    ipha, flags, recv_ill, B_FALSE);
7274 		mutex_enter(&connfp->connf_lock);
7275 		/* Follow the next pointer before releasing the conn. */
7276 		next_connp = connp->conn_next;
7277 		IP_STAT(ipst, ip_udp_fanmb);
7278 		CONN_DEC_REF(connp);
7279 		connp = next_connp;
7280 	}
7281 
7282 	/* Last one.  Send it upstream. */
7283 	mutex_exit(&connfp->connf_lock);
7284 	ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags,
7285 	    recv_ill, ip_policy);
7286 	IP_STAT(ipst, ip_udp_fanmb);
7287 	CONN_DEC_REF(connp);
7288 	return;
7289 
7290 notfound:
7291 
7292 	mutex_exit(&connfp->connf_lock);
7293 	IP_STAT(ipst, ip_udp_fanothers);
7294 	/*
7295 	 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses
7296 	 * have already been matched above, since they live in the IPv4
7297 	 * fanout tables. This implies we only need to
7298 	 * check for IPv6 in6addr_any endpoints here.
7299 	 * Thus we compare using ipv6_all_zeros instead of the destination
7300 	 * address, except for the multicast group membership lookup which
7301 	 * uses the IPv4 destination.
7302 	 */
7303 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src);
7304 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)];
7305 	mutex_enter(&connfp->connf_lock);
7306 	connp = connfp->connf_head;
7307 	if (!broadcast && !CLASSD(dst)) {
7308 		while (connp != NULL) {
7309 			if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
7310 			    srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) &&
7311 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7312 			    !connp->conn_ipv6_v6only)
7313 				break;
7314 			connp = connp->conn_next;
7315 		}
7316 
7317 		if (connp != NULL && is_system_labeled() &&
7318 		    !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7319 		    connp))
7320 			connp = NULL;
7321 
7322 		if (connp == NULL || connp->conn_upq == NULL) {
7323 			/*
7324 			 * No one bound to this port.  Is
7325 			 * there a client that wants all
7326 			 * unclaimed datagrams?
7327 			 */
7328 			mutex_exit(&connfp->connf_lock);
7329 
7330 			if (mctl_present)
7331 				first_mp->b_cont = mp;
7332 			else
7333 				first_mp = mp;
7334 			if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].
7335 			    connf_head != NULL) {
7336 				ip_fanout_proto(q, first_mp, ill, ipha,
7337 				    flags | IP_FF_RAWIP, mctl_present,
7338 				    ip_policy, recv_ill, zoneid);
7339 			} else {
7340 				if (ip_fanout_send_icmp(q, first_mp, flags,
7341 				    ICMP_DEST_UNREACHABLE,
7342 				    ICMP_PORT_UNREACHABLE,
7343 				    mctl_present, zoneid, ipst)) {
7344 					BUMP_MIB(ill->ill_ip_mib,
7345 					    udpIfStatsNoPorts);
7346 				}
7347 			}
7348 			return;
7349 		}
7350 
7351 		CONN_INC_REF(connp);
7352 		mutex_exit(&connfp->connf_lock);
7353 		ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha,
7354 		    flags, recv_ill, ip_policy);
7355 		CONN_DEC_REF(connp);
7356 		return;
7357 	}
7358 	/*
7359 	 * IPv4 multicast packet being delivered to an AF_INET6
7360 	 * in6addr_any endpoint.
7361 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
7362 	 * and not conn_wantpacket_v6() since any multicast membership is
7363 	 * for an IPv4-mapped multicast address.
7364 	 * The packet is sent to all clients in all zones that have joined the
7365 	 * group and match the port.
7366 	 */
7367 	while (connp != NULL) {
7368 		if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
7369 		    srcport, v6src) &&
7370 		    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7371 		    (!is_system_labeled() ||
7372 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7373 		    connp)))
7374 			break;
7375 		connp = connp->conn_next;
7376 	}
7377 
7378 	if (connp == NULL || connp->conn_upq == NULL) {
7379 		/*
7380 		 * No one bound to this port.  Is
7381 		 * there a client that wants all
7382 		 * unclaimed datagrams?
7383 		 */
7384 		mutex_exit(&connfp->connf_lock);
7385 
7386 		if (mctl_present)
7387 			first_mp->b_cont = mp;
7388 		else
7389 			first_mp = mp;
7390 		if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head !=
7391 		    NULL) {
7392 			ip_fanout_proto(q, first_mp, ill, ipha,
7393 			    flags | IP_FF_RAWIP, mctl_present, ip_policy,
7394 			    recv_ill, zoneid);
7395 		} else {
7396 			/*
7397 			 * We used to attempt to send an icmp error here, but
7398 			 * since this is known to be a multicast packet
7399 			 * and we don't send icmp errors in response to
7400 			 * multicast, just drop the packet and give up sooner.
7401 			 */
7402 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
7403 			freemsg(first_mp);
7404 		}
7405 		return;
7406 	}
7407 
7408 	first_connp = connp;
7409 
7410 	CONN_INC_REF(connp);
7411 	connp = connp->conn_next;
7412 	for (;;) {
7413 		while (connp != NULL) {
7414 			if (IPCL_UDP_MATCH_V6(connp, dstport,
7415 			    ipv6_all_zeros, srcport, v6src) &&
7416 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7417 			    (!is_system_labeled() ||
7418 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
7419 			    shared_addr, connp)))
7420 				break;
7421 			connp = connp->conn_next;
7422 		}
7423 		/*
7424 		 * Just copy the data part alone. The mctl part is
7425 		 * needed just for verifying policy and it is never
7426 		 * sent up.
7427 		 */
7428 		if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
7429 		    ((mp1 = copymsg(mp)) == NULL))) {
7430 			/*
7431 			 * No more intested clients or memory
7432 			 * allocation failed
7433 			 */
7434 			connp = first_connp;
7435 			break;
7436 		}
7437 		if (first_mp != NULL) {
7438 			ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
7439 			    ipsec_info_type == IPSEC_IN);
7440 			first_mp1 = ipsec_in_tag(first_mp, NULL,
7441 			    ipst->ips_netstack);
7442 			if (first_mp1 == NULL) {
7443 				freemsg(mp1);
7444 				connp = first_connp;
7445 				break;
7446 			}
7447 		} else {
7448 			first_mp1 = NULL;
7449 		}
7450 		CONN_INC_REF(connp);
7451 		mutex_exit(&connfp->connf_lock);
7452 		/*
7453 		 * IPQoS notes: We don't send the packet for policy
7454 		 * processing here, will do it for the last one (below).
7455 		 * i.e. we do it per-packet now, but if we do policy
7456 		 * processing per-conn, then we would need to do it
7457 		 * here too.
7458 		 */
7459 		ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill,
7460 		    ipha, flags, recv_ill, B_FALSE);
7461 		mutex_enter(&connfp->connf_lock);
7462 		/* Follow the next pointer before releasing the conn. */
7463 		next_connp = connp->conn_next;
7464 		CONN_DEC_REF(connp);
7465 		connp = next_connp;
7466 	}
7467 
7468 	/* Last one.  Send it upstream. */
7469 	mutex_exit(&connfp->connf_lock);
7470 	ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags,
7471 	    recv_ill, ip_policy);
7472 	CONN_DEC_REF(connp);
7473 }
7474 
7475 /*
7476  * Complete the ip_wput header so that it
7477  * is possible to generate ICMP
7478  * errors.
7479  */
7480 int
7481 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst)
7482 {
7483 	ire_t *ire;
7484 
7485 	if (ipha->ipha_src == INADDR_ANY) {
7486 		ire = ire_lookup_local(zoneid, ipst);
7487 		if (ire == NULL) {
7488 			ip1dbg(("ip_hdr_complete: no source IRE\n"));
7489 			return (1);
7490 		}
7491 		ipha->ipha_src = ire->ire_addr;
7492 		ire_refrele(ire);
7493 	}
7494 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
7495 	ipha->ipha_hdr_checksum = 0;
7496 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
7497 	return (0);
7498 }
7499 
7500 /*
7501  * Nobody should be sending
7502  * packets up this stream
7503  */
7504 static void
7505 ip_lrput(queue_t *q, mblk_t *mp)
7506 {
7507 	mblk_t *mp1;
7508 
7509 	switch (mp->b_datap->db_type) {
7510 	case M_FLUSH:
7511 		/* Turn around */
7512 		if (*mp->b_rptr & FLUSHW) {
7513 			*mp->b_rptr &= ~FLUSHR;
7514 			qreply(q, mp);
7515 			return;
7516 		}
7517 		break;
7518 	}
7519 	/* Could receive messages that passed through ar_rput */
7520 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
7521 		mp1->b_prev = mp1->b_next = NULL;
7522 	freemsg(mp);
7523 }
7524 
7525 /* Nobody should be sending packets down this stream */
7526 /* ARGSUSED */
7527 void
7528 ip_lwput(queue_t *q, mblk_t *mp)
7529 {
7530 	freemsg(mp);
7531 }
7532 
7533 /*
7534  * Move the first hop in any source route to ipha_dst and remove that part of
7535  * the source route.  Called by other protocols.  Errors in option formatting
7536  * are ignored - will be handled by ip_wput_options Return the final
7537  * destination (either ipha_dst or the last entry in a source route.)
7538  */
7539 ipaddr_t
7540 ip_massage_options(ipha_t *ipha, netstack_t *ns)
7541 {
7542 	ipoptp_t	opts;
7543 	uchar_t		*opt;
7544 	uint8_t		optval;
7545 	uint8_t		optlen;
7546 	ipaddr_t	dst;
7547 	int		i;
7548 	ire_t		*ire;
7549 	ip_stack_t	*ipst = ns->netstack_ip;
7550 
7551 	ip2dbg(("ip_massage_options\n"));
7552 	dst = ipha->ipha_dst;
7553 	for (optval = ipoptp_first(&opts, ipha);
7554 	    optval != IPOPT_EOL;
7555 	    optval = ipoptp_next(&opts)) {
7556 		opt = opts.ipoptp_cur;
7557 		switch (optval) {
7558 			uint8_t off;
7559 		case IPOPT_SSRR:
7560 		case IPOPT_LSRR:
7561 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
7562 				ip1dbg(("ip_massage_options: bad src route\n"));
7563 				break;
7564 			}
7565 			optlen = opts.ipoptp_len;
7566 			off = opt[IPOPT_OFFSET];
7567 			off--;
7568 		redo_srr:
7569 			if (optlen < IP_ADDR_LEN ||
7570 			    off > optlen - IP_ADDR_LEN) {
7571 				/* End of source route */
7572 				ip1dbg(("ip_massage_options: end of SR\n"));
7573 				break;
7574 			}
7575 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
7576 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
7577 			    ntohl(dst)));
7578 			/*
7579 			 * Check if our address is present more than
7580 			 * once as consecutive hops in source route.
7581 			 * XXX verify per-interface ip_forwarding
7582 			 * for source route?
7583 			 */
7584 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
7585 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7586 			if (ire != NULL) {
7587 				ire_refrele(ire);
7588 				off += IP_ADDR_LEN;
7589 				goto redo_srr;
7590 			}
7591 			if (dst == htonl(INADDR_LOOPBACK)) {
7592 				ip1dbg(("ip_massage_options: loopback addr in "
7593 				    "source route!\n"));
7594 				break;
7595 			}
7596 			/*
7597 			 * Update ipha_dst to be the first hop and remove the
7598 			 * first hop from the source route (by overwriting
7599 			 * part of the option with NOP options).
7600 			 */
7601 			ipha->ipha_dst = dst;
7602 			/* Put the last entry in dst */
7603 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
7604 			    3;
7605 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
7606 
7607 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
7608 			    ntohl(dst)));
7609 			/* Move down and overwrite */
7610 			opt[IP_ADDR_LEN] = opt[0];
7611 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
7612 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
7613 			for (i = 0; i < IP_ADDR_LEN; i++)
7614 				opt[i] = IPOPT_NOP;
7615 			break;
7616 		}
7617 	}
7618 	return (dst);
7619 }
7620 
7621 /*
7622  * Return the network mask
7623  * associated with the specified address.
7624  */
7625 ipaddr_t
7626 ip_net_mask(ipaddr_t addr)
7627 {
7628 	uchar_t	*up = (uchar_t *)&addr;
7629 	ipaddr_t mask = 0;
7630 	uchar_t	*maskp = (uchar_t *)&mask;
7631 
7632 #if defined(__i386) || defined(__amd64)
7633 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
7634 #endif
7635 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
7636 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
7637 #endif
7638 	if (CLASSD(addr)) {
7639 		maskp[0] = 0xF0;
7640 		return (mask);
7641 	}
7642 
7643 	/* We assume Class E default netmask to be 32 */
7644 	if (CLASSE(addr))
7645 		return (0xffffffffU);
7646 
7647 	if (addr == 0)
7648 		return (0);
7649 	maskp[0] = 0xFF;
7650 	if ((up[0] & 0x80) == 0)
7651 		return (mask);
7652 
7653 	maskp[1] = 0xFF;
7654 	if ((up[0] & 0xC0) == 0x80)
7655 		return (mask);
7656 
7657 	maskp[2] = 0xFF;
7658 	if ((up[0] & 0xE0) == 0xC0)
7659 		return (mask);
7660 
7661 	/* Otherwise return no mask */
7662 	return ((ipaddr_t)0);
7663 }
7664 
7665 /*
7666  * Select an ill for the packet by considering load spreading across
7667  * a different ill in the group if dst_ill is part of some group.
7668  */
7669 ill_t *
7670 ip_newroute_get_dst_ill(ill_t *dst_ill)
7671 {
7672 	ill_t *ill;
7673 
7674 	/*
7675 	 * We schedule irrespective of whether the source address is
7676 	 * INADDR_ANY or not. illgrp_scheduler returns a held ill.
7677 	 */
7678 	ill = illgrp_scheduler(dst_ill);
7679 	if (ill == NULL)
7680 		return (NULL);
7681 
7682 	/*
7683 	 * For groups with names ip_sioctl_groupname ensures that all
7684 	 * ills are of same type. For groups without names, ifgrp_insert
7685 	 * ensures this.
7686 	 */
7687 	ASSERT(dst_ill->ill_type == ill->ill_type);
7688 
7689 	return (ill);
7690 }
7691 
7692 /*
7693  * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case.
7694  */
7695 ill_t *
7696 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6,
7697     ip_stack_t *ipst)
7698 {
7699 	ill_t *ret_ill;
7700 
7701 	ASSERT(ifindex != 0);
7702 	ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
7703 	    ipst);
7704 	if (ret_ill == NULL ||
7705 	    (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) {
7706 		if (isv6) {
7707 			if (ill != NULL) {
7708 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
7709 			} else {
7710 				BUMP_MIB(&ipst->ips_ip6_mib,
7711 				    ipIfStatsOutDiscards);
7712 			}
7713 			ip1dbg(("ip_grab_attach_ill (IPv6): "
7714 			    "bad ifindex %d.\n", ifindex));
7715 		} else {
7716 			if (ill != NULL) {
7717 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
7718 			} else {
7719 				BUMP_MIB(&ipst->ips_ip_mib,
7720 				    ipIfStatsOutDiscards);
7721 			}
7722 			ip1dbg(("ip_grab_attach_ill (IPv4): "
7723 			    "bad ifindex %d.\n", ifindex));
7724 		}
7725 		if (ret_ill != NULL)
7726 			ill_refrele(ret_ill);
7727 		freemsg(first_mp);
7728 		return (NULL);
7729 	}
7730 
7731 	return (ret_ill);
7732 }
7733 
7734 /*
7735  * IPv4 -
7736  * ip_newroute is called by ip_rput or ip_wput whenever we need to send
7737  * out a packet to a destination address for which we do not have specific
7738  * (or sufficient) routing information.
7739  *
7740  * NOTE : These are the scopes of some of the variables that point at IRE,
7741  *	  which needs to be followed while making any future modifications
7742  *	  to avoid memory leaks.
7743  *
7744  *	- ire and sire are the entries looked up initially by
7745  *	  ire_ftable_lookup.
7746  *	- ipif_ire is used to hold the interface ire associated with
7747  *	  the new cache ire. But it's scope is limited, so we always REFRELE
7748  *	  it before branching out to error paths.
7749  *	- save_ire is initialized before ire_create, so that ire returned
7750  *	  by ire_create will not over-write the ire. We REFRELE save_ire
7751  *	  before breaking out of the switch.
7752  *
7753  *	Thus on failures, we have to REFRELE only ire and sire, if they
7754  *	are not NULL.
7755  */
7756 void
7757 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp,
7758     zoneid_t zoneid, ip_stack_t *ipst)
7759 {
7760 	areq_t	*areq;
7761 	ipaddr_t gw = 0;
7762 	ire_t	*ire = NULL;
7763 	mblk_t	*res_mp;
7764 	ipaddr_t *addrp;
7765 	ipaddr_t nexthop_addr;
7766 	ipif_t  *src_ipif = NULL;
7767 	ill_t	*dst_ill = NULL;
7768 	ipha_t  *ipha;
7769 	ire_t	*sire = NULL;
7770 	mblk_t	*first_mp;
7771 	ire_t	*save_ire;
7772 	ill_t	*attach_ill = NULL;	/* Bind to IPIF_NOFAILOVER address */
7773 	ushort_t ire_marks = 0;
7774 	boolean_t mctl_present;
7775 	ipsec_out_t *io;
7776 	mblk_t	*saved_mp;
7777 	ire_t	*first_sire = NULL;
7778 	mblk_t	*copy_mp = NULL;
7779 	mblk_t	*xmit_mp = NULL;
7780 	ipaddr_t save_dst;
7781 	uint32_t multirt_flags =
7782 	    MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP;
7783 	boolean_t multirt_is_resolvable;
7784 	boolean_t multirt_resolve_next;
7785 	boolean_t unspec_src;
7786 	boolean_t do_attach_ill = B_FALSE;
7787 	boolean_t ip_nexthop = B_FALSE;
7788 	tsol_ire_gw_secattr_t *attrp = NULL;
7789 	tsol_gcgrp_t *gcgrp = NULL;
7790 	tsol_gcgrp_addr_t ga;
7791 
7792 	if (ip_debug > 2) {
7793 		/* ip1dbg */
7794 		pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst);
7795 	}
7796 
7797 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
7798 	if (mctl_present) {
7799 		io = (ipsec_out_t *)first_mp->b_rptr;
7800 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
7801 		ASSERT(zoneid == io->ipsec_out_zoneid);
7802 		ASSERT(zoneid != ALL_ZONES);
7803 	}
7804 
7805 	ipha = (ipha_t *)mp->b_rptr;
7806 
7807 	/* All multicast lookups come through ip_newroute_ipif() */
7808 	if (CLASSD(dst)) {
7809 		ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n",
7810 		    ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next));
7811 		freemsg(first_mp);
7812 		return;
7813 	}
7814 
7815 	if (mctl_present && io->ipsec_out_attach_if) {
7816 		/* ip_grab_attach_ill returns a held ill */
7817 		attach_ill = ip_grab_attach_ill(NULL, first_mp,
7818 		    io->ipsec_out_ill_index, B_FALSE, ipst);
7819 
7820 		/* Failure case frees things for us. */
7821 		if (attach_ill == NULL)
7822 			return;
7823 
7824 		/*
7825 		 * Check if we need an ire that will not be
7826 		 * looked up by anybody else i.e. HIDDEN.
7827 		 */
7828 		if (ill_is_probeonly(attach_ill))
7829 			ire_marks = IRE_MARK_HIDDEN;
7830 	}
7831 	if (mctl_present && io->ipsec_out_ip_nexthop) {
7832 		ip_nexthop = B_TRUE;
7833 		nexthop_addr = io->ipsec_out_nexthop_addr;
7834 	}
7835 	/*
7836 	 * If this IRE is created for forwarding or it is not for
7837 	 * traffic for congestion controlled protocols, mark it as temporary.
7838 	 */
7839 	if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol))
7840 		ire_marks |= IRE_MARK_TEMPORARY;
7841 
7842 	/*
7843 	 * Get what we can from ire_ftable_lookup which will follow an IRE
7844 	 * chain until it gets the most specific information available.
7845 	 * For example, we know that there is no IRE_CACHE for this dest,
7846 	 * but there may be an IRE_OFFSUBNET which specifies a gateway.
7847 	 * ire_ftable_lookup will look up the gateway, etc.
7848 	 * Otherwise, given ire_ftable_lookup algorithm, only one among routes
7849 	 * to the destination, of equal netmask length in the forward table,
7850 	 * will be recursively explored. If no information is available
7851 	 * for the final gateway of that route, we force the returned ire
7852 	 * to be equal to sire using MATCH_IRE_PARENT.
7853 	 * At least, in this case we have a starting point (in the buckets)
7854 	 * to look for other routes to the destination in the forward table.
7855 	 * This is actually used only for multirouting, where a list
7856 	 * of routes has to be processed in sequence.
7857 	 *
7858 	 * In the process of coming up with the most specific information,
7859 	 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry
7860 	 * for the gateway (i.e., one for which the ire_nce->nce_state is
7861 	 * not yet ND_REACHABLE, and is in the middle of arp resolution).
7862 	 * Two caveats when handling incomplete ire's in ip_newroute:
7863 	 * - we should be careful when accessing its ire_nce (specifically
7864 	 *   the nce_res_mp) ast it might change underneath our feet, and,
7865 	 * - not all legacy code path callers are prepared to handle
7866 	 *   incomplete ire's, so we should not create/add incomplete
7867 	 *   ire_cache entries here. (See discussion about temporary solution
7868 	 *   further below).
7869 	 *
7870 	 * In order to minimize packet dropping, and to preserve existing
7871 	 * behavior, we treat this case as if there were no IRE_CACHE for the
7872 	 * gateway, and instead use the IF_RESOLVER ire to send out
7873 	 * another request to ARP (this is achieved by passing the
7874 	 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the
7875 	 * arp response comes back in ip_wput_nondata, we will create
7876 	 * a per-dst ire_cache that has an ND_COMPLETE ire.
7877 	 *
7878 	 * Note that this is a temporary solution; the correct solution is
7879 	 * to create an incomplete  per-dst ire_cache entry, and send the
7880 	 * packet out when the gw's nce is resolved. In order to achieve this,
7881 	 * all packet processing must have been completed prior to calling
7882 	 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need
7883 	 * to be modified to accomodate this solution.
7884 	 */
7885 	if (ip_nexthop) {
7886 		/*
7887 		 * The first time we come here, we look for an IRE_INTERFACE
7888 		 * entry for the specified nexthop, set the dst to be the
7889 		 * nexthop address and create an IRE_CACHE entry for the
7890 		 * nexthop. The next time around, we are able to find an
7891 		 * IRE_CACHE entry for the nexthop, set the gateway to be the
7892 		 * nexthop address and create an IRE_CACHE entry for the
7893 		 * destination address via the specified nexthop.
7894 		 */
7895 		ire = ire_cache_lookup(nexthop_addr, zoneid,
7896 		    MBLK_GETLABEL(mp), ipst);
7897 		if (ire != NULL) {
7898 			gw = nexthop_addr;
7899 			ire_marks |= IRE_MARK_PRIVATE_ADDR;
7900 		} else {
7901 			ire = ire_ftable_lookup(nexthop_addr, 0, 0,
7902 			    IRE_INTERFACE, NULL, NULL, zoneid, 0,
7903 			    MBLK_GETLABEL(mp),
7904 			    MATCH_IRE_TYPE | MATCH_IRE_SECATTR,
7905 			    ipst);
7906 			if (ire != NULL) {
7907 				dst = nexthop_addr;
7908 			}
7909 		}
7910 	} else if (attach_ill == NULL) {
7911 		ire = ire_ftable_lookup(dst, 0, 0, 0,
7912 		    NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp),
7913 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
7914 		    MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT |
7915 		    MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE,
7916 		    ipst);
7917 	} else {
7918 		/*
7919 		 * attach_ill is set only for communicating with
7920 		 * on-link hosts. So, don't look for DEFAULT.
7921 		 */
7922 		ipif_t	*attach_ipif;
7923 
7924 		attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
7925 		if (attach_ipif == NULL) {
7926 			ill_refrele(attach_ill);
7927 			goto icmp_err_ret;
7928 		}
7929 		ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif,
7930 		    &sire, zoneid, 0, MBLK_GETLABEL(mp),
7931 		    MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL |
7932 		    MATCH_IRE_SECATTR, ipst);
7933 		ipif_refrele(attach_ipif);
7934 	}
7935 	ip3dbg(("ip_newroute: ire_ftable_lookup() "
7936 	    "returned ire %p, sire %p\n", (void *)ire, (void *)sire));
7937 
7938 	/*
7939 	 * This loop is run only once in most cases.
7940 	 * We loop to resolve further routes only when the destination
7941 	 * can be reached through multiple RTF_MULTIRT-flagged ires.
7942 	 */
7943 	do {
7944 		/* Clear the previous iteration's values */
7945 		if (src_ipif != NULL) {
7946 			ipif_refrele(src_ipif);
7947 			src_ipif = NULL;
7948 		}
7949 		if (dst_ill != NULL) {
7950 			ill_refrele(dst_ill);
7951 			dst_ill = NULL;
7952 		}
7953 
7954 		multirt_resolve_next = B_FALSE;
7955 		/*
7956 		 * We check if packets have to be multirouted.
7957 		 * In this case, given the current <ire, sire> couple,
7958 		 * we look for the next suitable <ire, sire>.
7959 		 * This check is done in ire_multirt_lookup(),
7960 		 * which applies various criteria to find the next route
7961 		 * to resolve. ire_multirt_lookup() leaves <ire, sire>
7962 		 * unchanged if it detects it has not been tried yet.
7963 		 */
7964 		if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
7965 			ip3dbg(("ip_newroute: starting next_resolution "
7966 			    "with first_mp %p, tag %d\n",
7967 			    (void *)first_mp,
7968 			    MULTIRT_DEBUG_TAGGED(first_mp)));
7969 
7970 			ASSERT(sire != NULL);
7971 			multirt_is_resolvable =
7972 			    ire_multirt_lookup(&ire, &sire, multirt_flags,
7973 			    MBLK_GETLABEL(mp), ipst);
7974 
7975 			ip3dbg(("ip_newroute: multirt_is_resolvable %d, "
7976 			    "ire %p, sire %p\n",
7977 			    multirt_is_resolvable,
7978 			    (void *)ire, (void *)sire));
7979 
7980 			if (!multirt_is_resolvable) {
7981 				/*
7982 				 * No more multirt route to resolve; give up
7983 				 * (all routes resolved or no more
7984 				 * resolvable routes).
7985 				 */
7986 				if (ire != NULL) {
7987 					ire_refrele(ire);
7988 					ire = NULL;
7989 				}
7990 			} else {
7991 				ASSERT(sire != NULL);
7992 				ASSERT(ire != NULL);
7993 				/*
7994 				 * We simply use first_sire as a flag that
7995 				 * indicates if a resolvable multirt route
7996 				 * has already been found.
7997 				 * If it is not the case, we may have to send
7998 				 * an ICMP error to report that the
7999 				 * destination is unreachable.
8000 				 * We do not IRE_REFHOLD first_sire.
8001 				 */
8002 				if (first_sire == NULL) {
8003 					first_sire = sire;
8004 				}
8005 			}
8006 		}
8007 		if (ire == NULL) {
8008 			if (ip_debug > 3) {
8009 				/* ip2dbg */
8010 				pr_addr_dbg("ip_newroute: "
8011 				    "can't resolve %s\n", AF_INET, &dst);
8012 			}
8013 			ip3dbg(("ip_newroute: "
8014 			    "ire %p, sire %p, first_sire %p\n",
8015 			    (void *)ire, (void *)sire, (void *)first_sire));
8016 
8017 			if (sire != NULL) {
8018 				ire_refrele(sire);
8019 				sire = NULL;
8020 			}
8021 
8022 			if (first_sire != NULL) {
8023 				/*
8024 				 * At least one multirt route has been found
8025 				 * in the same call to ip_newroute();
8026 				 * there is no need to report an ICMP error.
8027 				 * first_sire was not IRE_REFHOLDed.
8028 				 */
8029 				MULTIRT_DEBUG_UNTAG(first_mp);
8030 				freemsg(first_mp);
8031 				return;
8032 			}
8033 			ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0,
8034 			    RTA_DST, ipst);
8035 			if (attach_ill != NULL)
8036 				ill_refrele(attach_ill);
8037 			goto icmp_err_ret;
8038 		}
8039 
8040 		/*
8041 		 * Verify that the returned IRE does not have either
8042 		 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
8043 		 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
8044 		 */
8045 		if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
8046 		    (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) {
8047 			if (attach_ill != NULL)
8048 				ill_refrele(attach_ill);
8049 			goto icmp_err_ret;
8050 		}
8051 		/*
8052 		 * Increment the ire_ob_pkt_count field for ire if it is an
8053 		 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
8054 		 * increment the same for the parent IRE, sire, if it is some
8055 		 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST)
8056 		 */
8057 		if ((ire->ire_type & IRE_INTERFACE) != 0) {
8058 			UPDATE_OB_PKT_COUNT(ire);
8059 			ire->ire_last_used_time = lbolt;
8060 		}
8061 
8062 		if (sire != NULL) {
8063 			gw = sire->ire_gateway_addr;
8064 			ASSERT((sire->ire_type & (IRE_CACHETABLE |
8065 			    IRE_INTERFACE)) == 0);
8066 			UPDATE_OB_PKT_COUNT(sire);
8067 			sire->ire_last_used_time = lbolt;
8068 		}
8069 		/*
8070 		 * We have a route to reach the destination.
8071 		 *
8072 		 * 1) If the interface is part of ill group, try to get a new
8073 		 *    ill taking load spreading into account.
8074 		 *
8075 		 * 2) After selecting the ill, get a source address that
8076 		 *    might create good inbound load spreading.
8077 		 *    ipif_select_source does this for us.
8078 		 *
8079 		 * If the application specified the ill (ifindex), we still
8080 		 * load spread. Only if the packets needs to go out
8081 		 * specifically on a given ill e.g. binding to
8082 		 * IPIF_NOFAILOVER address, then we don't try to use a
8083 		 * different ill for load spreading.
8084 		 */
8085 		if (attach_ill == NULL) {
8086 			/*
8087 			 * Don't perform outbound load spreading in the
8088 			 * case of an RTF_MULTIRT route, as we actually
8089 			 * typically want to replicate outgoing packets
8090 			 * through particular interfaces.
8091 			 */
8092 			if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
8093 				dst_ill = ire->ire_ipif->ipif_ill;
8094 				/* for uniformity */
8095 				ill_refhold(dst_ill);
8096 			} else {
8097 				/*
8098 				 * If we are here trying to create an IRE_CACHE
8099 				 * for an offlink destination and have the
8100 				 * IRE_CACHE for the next hop and the latter is
8101 				 * using virtual IP source address selection i.e
8102 				 * it's ire->ire_ipif is pointing to a virtual
8103 				 * network interface (vni) then
8104 				 * ip_newroute_get_dst_ll() will return the vni
8105 				 * interface as the dst_ill. Since the vni is
8106 				 * virtual i.e not associated with any physical
8107 				 * interface, it cannot be the dst_ill, hence
8108 				 * in such a case call ip_newroute_get_dst_ll()
8109 				 * with the stq_ill instead of the ire_ipif ILL.
8110 				 * The function returns a refheld ill.
8111 				 */
8112 				if ((ire->ire_type == IRE_CACHE) &&
8113 				    IS_VNI(ire->ire_ipif->ipif_ill))
8114 					dst_ill = ip_newroute_get_dst_ill(
8115 					    ire->ire_stq->q_ptr);
8116 				else
8117 					dst_ill = ip_newroute_get_dst_ill(
8118 					    ire->ire_ipif->ipif_ill);
8119 			}
8120 			if (dst_ill == NULL) {
8121 				if (ip_debug > 2) {
8122 					pr_addr_dbg("ip_newroute: "
8123 					    "no dst ill for dst"
8124 					    " %s\n", AF_INET, &dst);
8125 				}
8126 				goto icmp_err_ret;
8127 			}
8128 		} else {
8129 			dst_ill = ire->ire_ipif->ipif_ill;
8130 			/* for uniformity */
8131 			ill_refhold(dst_ill);
8132 			/*
8133 			 * We should have found a route matching ill as we
8134 			 * called ire_ftable_lookup with MATCH_IRE_ILL.
8135 			 * Rather than asserting, when there is a mismatch,
8136 			 * we just drop the packet.
8137 			 */
8138 			if (dst_ill != attach_ill) {
8139 				ip0dbg(("ip_newroute: Packet dropped as "
8140 				    "IPIF_NOFAILOVER ill is %s, "
8141 				    "ire->ire_ipif->ipif_ill is %s\n",
8142 				    attach_ill->ill_name,
8143 				    dst_ill->ill_name));
8144 				ill_refrele(attach_ill);
8145 				goto icmp_err_ret;
8146 			}
8147 		}
8148 		/* attach_ill can't go in loop. IPMP and CGTP are disjoint */
8149 		if (attach_ill != NULL) {
8150 			ill_refrele(attach_ill);
8151 			attach_ill = NULL;
8152 			do_attach_ill = B_TRUE;
8153 		}
8154 		ASSERT(dst_ill != NULL);
8155 		ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name));
8156 
8157 		/*
8158 		 * Pick the best source address from dst_ill.
8159 		 *
8160 		 * 1) If it is part of a multipathing group, we would
8161 		 *    like to spread the inbound packets across different
8162 		 *    interfaces. ipif_select_source picks a random source
8163 		 *    across the different ills in the group.
8164 		 *
8165 		 * 2) If it is not part of a multipathing group, we try
8166 		 *    to pick the source address from the destination
8167 		 *    route. Clustering assumes that when we have multiple
8168 		 *    prefixes hosted on an interface, the prefix of the
8169 		 *    source address matches the prefix of the destination
8170 		 *    route. We do this only if the address is not
8171 		 *    DEPRECATED.
8172 		 *
8173 		 * 3) If the conn is in a different zone than the ire, we
8174 		 *    need to pick a source address from the right zone.
8175 		 *
8176 		 * NOTE : If we hit case (1) above, the prefix of the source
8177 		 *	  address picked may not match the prefix of the
8178 		 *	  destination routes prefix as ipif_select_source
8179 		 *	  does not look at "dst" while picking a source
8180 		 *	  address.
8181 		 *	  If we want the same behavior as (2), we will need
8182 		 *	  to change the behavior of ipif_select_source.
8183 		 */
8184 		ASSERT(src_ipif == NULL);
8185 		if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
8186 			/*
8187 			 * The RTF_SETSRC flag is set in the parent ire (sire).
8188 			 * Check that the ipif matching the requested source
8189 			 * address still exists.
8190 			 */
8191 			src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL,
8192 			    zoneid, NULL, NULL, NULL, NULL, ipst);
8193 		}
8194 
8195 		unspec_src = (connp != NULL && connp->conn_unspec_src);
8196 
8197 		if (src_ipif == NULL &&
8198 		    (!unspec_src || ipha->ipha_src != INADDR_ANY)) {
8199 			ire_marks |= IRE_MARK_USESRC_CHECK;
8200 			if ((dst_ill->ill_group != NULL) ||
8201 			    (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
8202 			    (connp != NULL && ire->ire_zoneid != zoneid &&
8203 			    ire->ire_zoneid != ALL_ZONES) ||
8204 			    (dst_ill->ill_usesrc_ifindex != 0)) {
8205 				/*
8206 				 * If the destination is reachable via a
8207 				 * given gateway, the selected source address
8208 				 * should be in the same subnet as the gateway.
8209 				 * Otherwise, the destination is not reachable.
8210 				 *
8211 				 * If there are no interfaces on the same subnet
8212 				 * as the destination, ipif_select_source gives
8213 				 * first non-deprecated interface which might be
8214 				 * on a different subnet than the gateway.
8215 				 * This is not desirable. Hence pass the dst_ire
8216 				 * source address to ipif_select_source.
8217 				 * It is sure that the destination is reachable
8218 				 * with the dst_ire source address subnet.
8219 				 * So passing dst_ire source address to
8220 				 * ipif_select_source will make sure that the
8221 				 * selected source will be on the same subnet
8222 				 * as dst_ire source address.
8223 				 */
8224 				ipaddr_t saddr = ire->ire_ipif->ipif_src_addr;
8225 				src_ipif = ipif_select_source(dst_ill, saddr,
8226 				    zoneid);
8227 				if (src_ipif == NULL) {
8228 					if (ip_debug > 2) {
8229 						pr_addr_dbg("ip_newroute: "
8230 						    "no src for dst %s ",
8231 						    AF_INET, &dst);
8232 						printf("through interface %s\n",
8233 						    dst_ill->ill_name);
8234 					}
8235 					goto icmp_err_ret;
8236 				}
8237 			} else {
8238 				src_ipif = ire->ire_ipif;
8239 				ASSERT(src_ipif != NULL);
8240 				/* hold src_ipif for uniformity */
8241 				ipif_refhold(src_ipif);
8242 			}
8243 		}
8244 
8245 		/*
8246 		 * Assign a source address while we have the conn.
8247 		 * We can't have ip_wput_ire pick a source address when the
8248 		 * packet returns from arp since we need to look at
8249 		 * conn_unspec_src and conn_zoneid, and we lose the conn when
8250 		 * going through arp.
8251 		 *
8252 		 * NOTE : ip_newroute_v6 does not have this piece of code as
8253 		 *	  it uses ip6i to store this information.
8254 		 */
8255 		if (ipha->ipha_src == INADDR_ANY && !unspec_src)
8256 			ipha->ipha_src = src_ipif->ipif_src_addr;
8257 
8258 		if (ip_debug > 3) {
8259 			/* ip2dbg */
8260 			pr_addr_dbg("ip_newroute: first hop %s\n",
8261 			    AF_INET, &gw);
8262 		}
8263 		ip2dbg(("\tire type %s (%d)\n",
8264 		    ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type));
8265 
8266 		/*
8267 		 * The TTL of multirouted packets is bounded by the
8268 		 * ip_multirt_ttl ndd variable.
8269 		 */
8270 		if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
8271 			/* Force TTL of multirouted packets */
8272 			if ((ipst->ips_ip_multirt_ttl > 0) &&
8273 			    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
8274 				ip2dbg(("ip_newroute: forcing multirt TTL "
8275 				    "to %d (was %d), dst 0x%08x\n",
8276 				    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
8277 				    ntohl(sire->ire_addr)));
8278 				ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
8279 			}
8280 		}
8281 		/*
8282 		 * At this point in ip_newroute(), ire is either the
8283 		 * IRE_CACHE of the next-hop gateway for an off-subnet
8284 		 * destination or an IRE_INTERFACE type that should be used
8285 		 * to resolve an on-subnet destination or an on-subnet
8286 		 * next-hop gateway.
8287 		 *
8288 		 * In the IRE_CACHE case, we have the following :
8289 		 *
8290 		 * 1) src_ipif - used for getting a source address.
8291 		 *
8292 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
8293 		 *    means packets using this IRE_CACHE will go out on
8294 		 *    dst_ill.
8295 		 *
8296 		 * 3) The IRE sire will point to the prefix that is the
8297 		 *    longest  matching route for the destination. These
8298 		 *    prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST.
8299 		 *
8300 		 *    The newly created IRE_CACHE entry for the off-subnet
8301 		 *    destination is tied to both the prefix route and the
8302 		 *    interface route used to resolve the next-hop gateway
8303 		 *    via the ire_phandle and ire_ihandle fields,
8304 		 *    respectively.
8305 		 *
8306 		 * In the IRE_INTERFACE case, we have the following :
8307 		 *
8308 		 * 1) src_ipif - used for getting a source address.
8309 		 *
8310 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
8311 		 *    means packets using the IRE_CACHE that we will build
8312 		 *    here will go out on dst_ill.
8313 		 *
8314 		 * 3) sire may or may not be NULL. But, the IRE_CACHE that is
8315 		 *    to be created will only be tied to the IRE_INTERFACE
8316 		 *    that was derived from the ire_ihandle field.
8317 		 *
8318 		 *    If sire is non-NULL, it means the destination is
8319 		 *    off-link and we will first create the IRE_CACHE for the
8320 		 *    gateway. Next time through ip_newroute, we will create
8321 		 *    the IRE_CACHE for the final destination as described
8322 		 *    above.
8323 		 *
8324 		 * In both cases, after the current resolution has been
8325 		 * completed (or possibly initialised, in the IRE_INTERFACE
8326 		 * case), the loop may be re-entered to attempt the resolution
8327 		 * of another RTF_MULTIRT route.
8328 		 *
8329 		 * When an IRE_CACHE entry for the off-subnet destination is
8330 		 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire,
8331 		 * for further processing in emission loops.
8332 		 */
8333 		save_ire = ire;
8334 		switch (ire->ire_type) {
8335 		case IRE_CACHE: {
8336 			ire_t	*ipif_ire;
8337 
8338 			ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE);
8339 			if (gw == 0)
8340 				gw = ire->ire_gateway_addr;
8341 			/*
8342 			 * We need 3 ire's to create a new cache ire for an
8343 			 * off-link destination from the cache ire of the
8344 			 * gateway.
8345 			 *
8346 			 *	1. The prefix ire 'sire' (Note that this does
8347 			 *	   not apply to the conn_nexthop_set case)
8348 			 *	2. The cache ire of the gateway 'ire'
8349 			 *	3. The interface ire 'ipif_ire'
8350 			 *
8351 			 * We have (1) and (2). We lookup (3) below.
8352 			 *
8353 			 * If there is no interface route to the gateway,
8354 			 * it is a race condition, where we found the cache
8355 			 * but the interface route has been deleted.
8356 			 */
8357 			if (ip_nexthop) {
8358 				ipif_ire = ire_ihandle_lookup_onlink(ire);
8359 			} else {
8360 				ipif_ire =
8361 				    ire_ihandle_lookup_offlink(ire, sire);
8362 			}
8363 			if (ipif_ire == NULL) {
8364 				ip1dbg(("ip_newroute: "
8365 				    "ire_ihandle_lookup_offlink failed\n"));
8366 				goto icmp_err_ret;
8367 			}
8368 
8369 			/*
8370 			 * Check cached gateway IRE for any security
8371 			 * attributes; if found, associate the gateway
8372 			 * credentials group to the destination IRE.
8373 			 */
8374 			if ((attrp = save_ire->ire_gw_secattr) != NULL) {
8375 				mutex_enter(&attrp->igsa_lock);
8376 				if ((gcgrp = attrp->igsa_gcgrp) != NULL)
8377 					GCGRP_REFHOLD(gcgrp);
8378 				mutex_exit(&attrp->igsa_lock);
8379 			}
8380 
8381 			/*
8382 			 * XXX For the source of the resolver mp,
8383 			 * we are using the same DL_UNITDATA_REQ
8384 			 * (from save_ire->ire_nce->nce_res_mp)
8385 			 * though the save_ire is not pointing at the same ill.
8386 			 * This is incorrect. We need to send it up to the
8387 			 * resolver to get the right res_mp. For ethernets
8388 			 * this may be okay (ill_type == DL_ETHER).
8389 			 */
8390 
8391 			ire = ire_create(
8392 			    (uchar_t *)&dst,		/* dest address */
8393 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8394 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8395 			    (uchar_t *)&gw,		/* gateway address */
8396 			    &save_ire->ire_max_frag,
8397 			    save_ire->ire_nce,		/* src nce */
8398 			    dst_ill->ill_rq,		/* recv-from queue */
8399 			    dst_ill->ill_wq,		/* send-to queue */
8400 			    IRE_CACHE,			/* IRE type */
8401 			    src_ipif,
8402 			    (sire != NULL) ?
8403 			    sire->ire_mask : 0, 	/* Parent mask */
8404 			    (sire != NULL) ?
8405 			    sire->ire_phandle : 0,	/* Parent handle */
8406 			    ipif_ire->ire_ihandle,	/* Interface handle */
8407 			    (sire != NULL) ? (sire->ire_flags &
8408 			    (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */
8409 			    (sire != NULL) ?
8410 			    &(sire->ire_uinfo) : &(save_ire->ire_uinfo),
8411 			    NULL,
8412 			    gcgrp,
8413 			    ipst);
8414 
8415 			if (ire == NULL) {
8416 				if (gcgrp != NULL) {
8417 					GCGRP_REFRELE(gcgrp);
8418 					gcgrp = NULL;
8419 				}
8420 				ire_refrele(ipif_ire);
8421 				ire_refrele(save_ire);
8422 				break;
8423 			}
8424 
8425 			/* reference now held by IRE */
8426 			gcgrp = NULL;
8427 
8428 			ire->ire_marks |= ire_marks;
8429 
8430 			/*
8431 			 * Prevent sire and ipif_ire from getting deleted.
8432 			 * The newly created ire is tied to both of them via
8433 			 * the phandle and ihandle respectively.
8434 			 */
8435 			if (sire != NULL) {
8436 				IRB_REFHOLD(sire->ire_bucket);
8437 				/* Has it been removed already ? */
8438 				if (sire->ire_marks & IRE_MARK_CONDEMNED) {
8439 					IRB_REFRELE(sire->ire_bucket);
8440 					ire_refrele(ipif_ire);
8441 					ire_refrele(save_ire);
8442 					break;
8443 				}
8444 			}
8445 
8446 			IRB_REFHOLD(ipif_ire->ire_bucket);
8447 			/* Has it been removed already ? */
8448 			if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) {
8449 				IRB_REFRELE(ipif_ire->ire_bucket);
8450 				if (sire != NULL)
8451 					IRB_REFRELE(sire->ire_bucket);
8452 				ire_refrele(ipif_ire);
8453 				ire_refrele(save_ire);
8454 				break;
8455 			}
8456 
8457 			xmit_mp = first_mp;
8458 			/*
8459 			 * In the case of multirouting, a copy
8460 			 * of the packet is done before its sending.
8461 			 * The copy is used to attempt another
8462 			 * route resolution, in a next loop.
8463 			 */
8464 			if (ire->ire_flags & RTF_MULTIRT) {
8465 				copy_mp = copymsg(first_mp);
8466 				if (copy_mp != NULL) {
8467 					xmit_mp = copy_mp;
8468 					MULTIRT_DEBUG_TAG(first_mp);
8469 				}
8470 			}
8471 			ire_add_then_send(q, ire, xmit_mp);
8472 			ire_refrele(save_ire);
8473 
8474 			/* Assert that sire is not deleted yet. */
8475 			if (sire != NULL) {
8476 				ASSERT(sire->ire_ptpn != NULL);
8477 				IRB_REFRELE(sire->ire_bucket);
8478 			}
8479 
8480 			/* Assert that ipif_ire is not deleted yet. */
8481 			ASSERT(ipif_ire->ire_ptpn != NULL);
8482 			IRB_REFRELE(ipif_ire->ire_bucket);
8483 			ire_refrele(ipif_ire);
8484 
8485 			/*
8486 			 * If copy_mp is not NULL, multirouting was
8487 			 * requested. We loop to initiate a next
8488 			 * route resolution attempt, starting from sire.
8489 			 */
8490 			if (copy_mp != NULL) {
8491 				/*
8492 				 * Search for the next unresolved
8493 				 * multirt route.
8494 				 */
8495 				copy_mp = NULL;
8496 				ipif_ire = NULL;
8497 				ire = NULL;
8498 				multirt_resolve_next = B_TRUE;
8499 				continue;
8500 			}
8501 			if (sire != NULL)
8502 				ire_refrele(sire);
8503 			ipif_refrele(src_ipif);
8504 			ill_refrele(dst_ill);
8505 			return;
8506 		}
8507 		case IRE_IF_NORESOLVER: {
8508 
8509 			if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN &&
8510 			    dst_ill->ill_resolver_mp == NULL) {
8511 				ip1dbg(("ip_newroute: dst_ill %p "
8512 				    "for IRE_IF_NORESOLVER ire %p has "
8513 				    "no ill_resolver_mp\n",
8514 				    (void *)dst_ill, (void *)ire));
8515 				break;
8516 			}
8517 
8518 			/*
8519 			 * TSol note: We are creating the ire cache for the
8520 			 * destination 'dst'. If 'dst' is offlink, going
8521 			 * through the first hop 'gw', the security attributes
8522 			 * of 'dst' must be set to point to the gateway
8523 			 * credentials of gateway 'gw'. If 'dst' is onlink, it
8524 			 * is possible that 'dst' is a potential gateway that is
8525 			 * referenced by some route that has some security
8526 			 * attributes. Thus in the former case, we need to do a
8527 			 * gcgrp_lookup of 'gw' while in the latter case we
8528 			 * need to do gcgrp_lookup of 'dst' itself.
8529 			 */
8530 			ga.ga_af = AF_INET;
8531 			IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst,
8532 			    &ga.ga_addr);
8533 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
8534 
8535 			ire = ire_create(
8536 			    (uchar_t *)&dst,		/* dest address */
8537 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8538 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8539 			    (uchar_t *)&gw,		/* gateway address */
8540 			    &save_ire->ire_max_frag,
8541 			    NULL,			/* no src nce */
8542 			    dst_ill->ill_rq,		/* recv-from queue */
8543 			    dst_ill->ill_wq,		/* send-to queue */
8544 			    IRE_CACHE,
8545 			    src_ipif,
8546 			    save_ire->ire_mask,		/* Parent mask */
8547 			    (sire != NULL) ?		/* Parent handle */
8548 			    sire->ire_phandle : 0,
8549 			    save_ire->ire_ihandle,	/* Interface handle */
8550 			    (sire != NULL) ? sire->ire_flags &
8551 			    (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */
8552 			    &(save_ire->ire_uinfo),
8553 			    NULL,
8554 			    gcgrp,
8555 			    ipst);
8556 
8557 			if (ire == NULL) {
8558 				if (gcgrp != NULL) {
8559 					GCGRP_REFRELE(gcgrp);
8560 					gcgrp = NULL;
8561 				}
8562 				ire_refrele(save_ire);
8563 				break;
8564 			}
8565 
8566 			/* reference now held by IRE */
8567 			gcgrp = NULL;
8568 
8569 			ire->ire_marks |= ire_marks;
8570 
8571 			/* Prevent save_ire from getting deleted */
8572 			IRB_REFHOLD(save_ire->ire_bucket);
8573 			/* Has it been removed already ? */
8574 			if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
8575 				IRB_REFRELE(save_ire->ire_bucket);
8576 				ire_refrele(save_ire);
8577 				break;
8578 			}
8579 
8580 			/*
8581 			 * In the case of multirouting, a copy
8582 			 * of the packet is made before it is sent.
8583 			 * The copy is used in the next
8584 			 * loop to attempt another resolution.
8585 			 */
8586 			xmit_mp = first_mp;
8587 			if ((sire != NULL) &&
8588 			    (sire->ire_flags & RTF_MULTIRT)) {
8589 				copy_mp = copymsg(first_mp);
8590 				if (copy_mp != NULL) {
8591 					xmit_mp = copy_mp;
8592 					MULTIRT_DEBUG_TAG(first_mp);
8593 				}
8594 			}
8595 			ire_add_then_send(q, ire, xmit_mp);
8596 
8597 			/* Assert that it is not deleted yet. */
8598 			ASSERT(save_ire->ire_ptpn != NULL);
8599 			IRB_REFRELE(save_ire->ire_bucket);
8600 			ire_refrele(save_ire);
8601 
8602 			if (copy_mp != NULL) {
8603 				/*
8604 				 * If we found a (no)resolver, we ignore any
8605 				 * trailing top priority IRE_CACHE in further
8606 				 * loops. This ensures that we do not omit any
8607 				 * (no)resolver.
8608 				 * This IRE_CACHE, if any, will be processed
8609 				 * by another thread entering ip_newroute().
8610 				 * IRE_CACHE entries, if any, will be processed
8611 				 * by another thread entering ip_newroute(),
8612 				 * (upon resolver response, for instance).
8613 				 * This aims to force parallel multirt
8614 				 * resolutions as soon as a packet must be sent.
8615 				 * In the best case, after the tx of only one
8616 				 * packet, all reachable routes are resolved.
8617 				 * Otherwise, the resolution of all RTF_MULTIRT
8618 				 * routes would require several emissions.
8619 				 */
8620 				multirt_flags &= ~MULTIRT_CACHEGW;
8621 
8622 				/*
8623 				 * Search for the next unresolved multirt
8624 				 * route.
8625 				 */
8626 				copy_mp = NULL;
8627 				save_ire = NULL;
8628 				ire = NULL;
8629 				multirt_resolve_next = B_TRUE;
8630 				continue;
8631 			}
8632 
8633 			/*
8634 			 * Don't need sire anymore
8635 			 */
8636 			if (sire != NULL)
8637 				ire_refrele(sire);
8638 
8639 			ipif_refrele(src_ipif);
8640 			ill_refrele(dst_ill);
8641 			return;
8642 		}
8643 		case IRE_IF_RESOLVER:
8644 			/*
8645 			 * We can't build an IRE_CACHE yet, but at least we
8646 			 * found a resolver that can help.
8647 			 */
8648 			res_mp = dst_ill->ill_resolver_mp;
8649 			if (!OK_RESOLVER_MP(res_mp))
8650 				break;
8651 
8652 			/*
8653 			 * To be at this point in the code with a non-zero gw
8654 			 * means that dst is reachable through a gateway that
8655 			 * we have never resolved.  By changing dst to the gw
8656 			 * addr we resolve the gateway first.
8657 			 * When ire_add_then_send() tries to put the IP dg
8658 			 * to dst, it will reenter ip_newroute() at which
8659 			 * time we will find the IRE_CACHE for the gw and
8660 			 * create another IRE_CACHE in case IRE_CACHE above.
8661 			 */
8662 			if (gw != INADDR_ANY) {
8663 				/*
8664 				 * The source ipif that was determined above was
8665 				 * relative to the destination address, not the
8666 				 * gateway's. If src_ipif was not taken out of
8667 				 * the IRE_IF_RESOLVER entry, we'll need to call
8668 				 * ipif_select_source() again.
8669 				 */
8670 				if (src_ipif != ire->ire_ipif) {
8671 					ipif_refrele(src_ipif);
8672 					src_ipif = ipif_select_source(dst_ill,
8673 					    gw, zoneid);
8674 					if (src_ipif == NULL) {
8675 						if (ip_debug > 2) {
8676 							pr_addr_dbg(
8677 							    "ip_newroute: no "
8678 							    "src for gw %s ",
8679 							    AF_INET, &gw);
8680 							printf("through "
8681 							    "interface %s\n",
8682 							    dst_ill->ill_name);
8683 						}
8684 						goto icmp_err_ret;
8685 					}
8686 				}
8687 				save_dst = dst;
8688 				dst = gw;
8689 				gw = INADDR_ANY;
8690 			}
8691 
8692 			/*
8693 			 * We obtain a partial IRE_CACHE which we will pass
8694 			 * along with the resolver query.  When the response
8695 			 * comes back it will be there ready for us to add.
8696 			 * The ire_max_frag is atomically set under the
8697 			 * irebucket lock in ire_add_v[46].
8698 			 */
8699 
8700 			ire = ire_create_mp(
8701 			    (uchar_t *)&dst,		/* dest address */
8702 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8703 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8704 			    (uchar_t *)&gw,		/* gateway address */
8705 			    NULL,			/* ire_max_frag */
8706 			    NULL,			/* no src nce */
8707 			    dst_ill->ill_rq,		/* recv-from queue */
8708 			    dst_ill->ill_wq,		/* send-to queue */
8709 			    IRE_CACHE,
8710 			    src_ipif,			/* Interface ipif */
8711 			    save_ire->ire_mask,		/* Parent mask */
8712 			    0,
8713 			    save_ire->ire_ihandle,	/* Interface handle */
8714 			    0,				/* flags if any */
8715 			    &(save_ire->ire_uinfo),
8716 			    NULL,
8717 			    NULL,
8718 			    ipst);
8719 
8720 			if (ire == NULL) {
8721 				ire_refrele(save_ire);
8722 				break;
8723 			}
8724 
8725 			if ((sire != NULL) &&
8726 			    (sire->ire_flags & RTF_MULTIRT)) {
8727 				copy_mp = copymsg(first_mp);
8728 				if (copy_mp != NULL)
8729 					MULTIRT_DEBUG_TAG(copy_mp);
8730 			}
8731 
8732 			ire->ire_marks |= ire_marks;
8733 
8734 			/*
8735 			 * Construct message chain for the resolver
8736 			 * of the form:
8737 			 * 	ARP_REQ_MBLK-->IRE_MBLK-->Packet
8738 			 * Packet could contain a IPSEC_OUT mp.
8739 			 *
8740 			 * NOTE : ire will be added later when the response
8741 			 * comes back from ARP. If the response does not
8742 			 * come back, ARP frees the packet. For this reason,
8743 			 * we can't REFHOLD the bucket of save_ire to prevent
8744 			 * deletions. We may not be able to REFRELE the bucket
8745 			 * if the response never comes back. Thus, before
8746 			 * adding the ire, ire_add_v4 will make sure that the
8747 			 * interface route does not get deleted. This is the
8748 			 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
8749 			 * where we can always prevent deletions because of
8750 			 * the synchronous nature of adding IRES i.e
8751 			 * ire_add_then_send is called after creating the IRE.
8752 			 */
8753 			ASSERT(ire->ire_mp != NULL);
8754 			ire->ire_mp->b_cont = first_mp;
8755 			/* Have saved_mp handy, for cleanup if canput fails */
8756 			saved_mp = mp;
8757 			mp = copyb(res_mp);
8758 			if (mp == NULL) {
8759 				/* Prepare for cleanup */
8760 				mp = saved_mp; /* pkt */
8761 				ire_delete(ire); /* ire_mp */
8762 				ire = NULL;
8763 				ire_refrele(save_ire);
8764 				if (copy_mp != NULL) {
8765 					MULTIRT_DEBUG_UNTAG(copy_mp);
8766 					freemsg(copy_mp);
8767 					copy_mp = NULL;
8768 				}
8769 				break;
8770 			}
8771 			linkb(mp, ire->ire_mp);
8772 
8773 			/*
8774 			 * Fill in the source and dest addrs for the resolver.
8775 			 * NOTE: this depends on memory layouts imposed by
8776 			 * ill_init().
8777 			 */
8778 			areq = (areq_t *)mp->b_rptr;
8779 			addrp = (ipaddr_t *)((char *)areq +
8780 			    areq->areq_sender_addr_offset);
8781 			if (do_attach_ill) {
8782 				/*
8783 				 * This is bind to no failover case.
8784 				 * arp packet also must go out on attach_ill.
8785 				 */
8786 				ASSERT(ipha->ipha_src != NULL);
8787 				*addrp = ipha->ipha_src;
8788 			} else {
8789 				*addrp = save_ire->ire_src_addr;
8790 			}
8791 
8792 			ire_refrele(save_ire);
8793 			addrp = (ipaddr_t *)((char *)areq +
8794 			    areq->areq_target_addr_offset);
8795 			*addrp = dst;
8796 			/* Up to the resolver. */
8797 			if (canputnext(dst_ill->ill_rq) &&
8798 			    !(dst_ill->ill_arp_closing)) {
8799 				putnext(dst_ill->ill_rq, mp);
8800 				ire = NULL;
8801 				if (copy_mp != NULL) {
8802 					/*
8803 					 * If we found a resolver, we ignore
8804 					 * any trailing top priority IRE_CACHE
8805 					 * in the further loops. This ensures
8806 					 * that we do not omit any resolver.
8807 					 * IRE_CACHE entries, if any, will be
8808 					 * processed next time we enter
8809 					 * ip_newroute().
8810 					 */
8811 					multirt_flags &= ~MULTIRT_CACHEGW;
8812 					/*
8813 					 * Search for the next unresolved
8814 					 * multirt route.
8815 					 */
8816 					first_mp = copy_mp;
8817 					copy_mp = NULL;
8818 					/* Prepare the next resolution loop. */
8819 					mp = first_mp;
8820 					EXTRACT_PKT_MP(mp, first_mp,
8821 					    mctl_present);
8822 					if (mctl_present)
8823 						io = (ipsec_out_t *)
8824 						    first_mp->b_rptr;
8825 					ipha = (ipha_t *)mp->b_rptr;
8826 
8827 					ASSERT(sire != NULL);
8828 
8829 					dst = save_dst;
8830 					multirt_resolve_next = B_TRUE;
8831 					continue;
8832 				}
8833 
8834 				if (sire != NULL)
8835 					ire_refrele(sire);
8836 
8837 				/*
8838 				 * The response will come back in ip_wput
8839 				 * with db_type IRE_DB_TYPE.
8840 				 */
8841 				ipif_refrele(src_ipif);
8842 				ill_refrele(dst_ill);
8843 				return;
8844 			} else {
8845 				/* Prepare for cleanup */
8846 				DTRACE_PROBE1(ip__newroute__drop, mblk_t *,
8847 				    mp);
8848 				mp->b_cont = NULL;
8849 				freeb(mp); /* areq */
8850 				/*
8851 				 * this is an ire that is not added to the
8852 				 * cache. ire_freemblk will handle the release
8853 				 * of any resources associated with the ire.
8854 				 */
8855 				ire_delete(ire); /* ire_mp */
8856 				mp = saved_mp; /* pkt */
8857 				ire = NULL;
8858 				if (copy_mp != NULL) {
8859 					MULTIRT_DEBUG_UNTAG(copy_mp);
8860 					freemsg(copy_mp);
8861 					copy_mp = NULL;
8862 				}
8863 				break;
8864 			}
8865 		default:
8866 			break;
8867 		}
8868 	} while (multirt_resolve_next);
8869 
8870 	ip1dbg(("ip_newroute: dropped\n"));
8871 	/* Did this packet originate externally? */
8872 	if (mp->b_prev) {
8873 		mp->b_next = NULL;
8874 		mp->b_prev = NULL;
8875 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
8876 	} else {
8877 		if (dst_ill != NULL) {
8878 			BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards);
8879 		} else {
8880 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
8881 		}
8882 	}
8883 	ASSERT(copy_mp == NULL);
8884 	MULTIRT_DEBUG_UNTAG(first_mp);
8885 	freemsg(first_mp);
8886 	if (ire != NULL)
8887 		ire_refrele(ire);
8888 	if (sire != NULL)
8889 		ire_refrele(sire);
8890 	if (src_ipif != NULL)
8891 		ipif_refrele(src_ipif);
8892 	if (dst_ill != NULL)
8893 		ill_refrele(dst_ill);
8894 	return;
8895 
8896 icmp_err_ret:
8897 	ip1dbg(("ip_newroute: no route\n"));
8898 	if (src_ipif != NULL)
8899 		ipif_refrele(src_ipif);
8900 	if (dst_ill != NULL)
8901 		ill_refrele(dst_ill);
8902 	if (sire != NULL)
8903 		ire_refrele(sire);
8904 	/* Did this packet originate externally? */
8905 	if (mp->b_prev) {
8906 		mp->b_next = NULL;
8907 		mp->b_prev = NULL;
8908 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes);
8909 		q = WR(q);
8910 	} else {
8911 		/*
8912 		 * There is no outgoing ill, so just increment the
8913 		 * system MIB.
8914 		 */
8915 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
8916 		/*
8917 		 * Since ip_wput() isn't close to finished, we fill
8918 		 * in enough of the header for credible error reporting.
8919 		 */
8920 		if (ip_hdr_complete(ipha, zoneid, ipst)) {
8921 			/* Failed */
8922 			MULTIRT_DEBUG_UNTAG(first_mp);
8923 			freemsg(first_mp);
8924 			if (ire != NULL)
8925 				ire_refrele(ire);
8926 			return;
8927 		}
8928 	}
8929 
8930 	/*
8931 	 * At this point we will have ire only if RTF_BLACKHOLE
8932 	 * or RTF_REJECT flags are set on the IRE. It will not
8933 	 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
8934 	 */
8935 	if (ire != NULL) {
8936 		if (ire->ire_flags & RTF_BLACKHOLE) {
8937 			ire_refrele(ire);
8938 			MULTIRT_DEBUG_UNTAG(first_mp);
8939 			freemsg(first_mp);
8940 			return;
8941 		}
8942 		ire_refrele(ire);
8943 	}
8944 	if (ip_source_routed(ipha, ipst)) {
8945 		icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED,
8946 		    zoneid, ipst);
8947 		return;
8948 	}
8949 	icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst);
8950 }
8951 
8952 ip_opt_info_t zero_info;
8953 
8954 /*
8955  * IPv4 -
8956  * ip_newroute_ipif is called by ip_wput_multicast and
8957  * ip_rput_forward_multicast whenever we need to send
8958  * out a packet to a destination address for which we do not have specific
8959  * routing information. It is used when the packet will be sent out
8960  * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF
8961  * socket option is set or icmp error message wants to go out on a particular
8962  * interface for a unicast packet.
8963  *
8964  * In most cases, the destination address is resolved thanks to the ipif
8965  * intrinsic resolver. However, there are some cases where the call to
8966  * ip_newroute_ipif must take into account the potential presence of
8967  * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire
8968  * that uses the interface. This is specified through flags,
8969  * which can be a combination of:
8970  * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC
8971  *   flag, the resulting ire will inherit the IRE_OFFSUBNET source address
8972  *   and flags. Additionally, the packet source address has to be set to
8973  *   the specified address. The caller is thus expected to set this flag
8974  *   if the packet has no specific source address yet.
8975  * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT
8976  *   flag, the resulting ire will inherit the flag. All unresolved routes
8977  *   to the destination must be explored in the same call to
8978  *   ip_newroute_ipif().
8979  */
8980 static void
8981 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst,
8982     conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop)
8983 {
8984 	areq_t	*areq;
8985 	ire_t	*ire = NULL;
8986 	mblk_t	*res_mp;
8987 	ipaddr_t *addrp;
8988 	mblk_t *first_mp;
8989 	ire_t	*save_ire = NULL;
8990 	ill_t	*attach_ill = NULL;		/* Bind to IPIF_NOFAILOVER */
8991 	ipif_t	*src_ipif = NULL;
8992 	ushort_t ire_marks = 0;
8993 	ill_t	*dst_ill = NULL;
8994 	boolean_t mctl_present;
8995 	ipsec_out_t *io;
8996 	ipha_t *ipha;
8997 	int	ihandle = 0;
8998 	mblk_t	*saved_mp;
8999 	ire_t   *fire = NULL;
9000 	mblk_t  *copy_mp = NULL;
9001 	boolean_t multirt_resolve_next;
9002 	boolean_t unspec_src;
9003 	ipaddr_t ipha_dst;
9004 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
9005 
9006 	/*
9007 	 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold
9008 	 * here for uniformity
9009 	 */
9010 	ipif_refhold(ipif);
9011 
9012 	/*
9013 	 * This loop is run only once in most cases.
9014 	 * We loop to resolve further routes only when the destination
9015 	 * can be reached through multiple RTF_MULTIRT-flagged ires.
9016 	 */
9017 	do {
9018 		if (dst_ill != NULL) {
9019 			ill_refrele(dst_ill);
9020 			dst_ill = NULL;
9021 		}
9022 		if (src_ipif != NULL) {
9023 			ipif_refrele(src_ipif);
9024 			src_ipif = NULL;
9025 		}
9026 		multirt_resolve_next = B_FALSE;
9027 
9028 		ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst),
9029 		    ipif->ipif_ill->ill_name));
9030 
9031 		EXTRACT_PKT_MP(mp, first_mp, mctl_present);
9032 		if (mctl_present)
9033 			io = (ipsec_out_t *)first_mp->b_rptr;
9034 
9035 		ipha = (ipha_t *)mp->b_rptr;
9036 
9037 		/*
9038 		 * Save the packet destination address, we may need it after
9039 		 * the packet has been consumed.
9040 		 */
9041 		ipha_dst = ipha->ipha_dst;
9042 
9043 		/*
9044 		 * If the interface is a pt-pt interface we look for an
9045 		 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the
9046 		 * local_address and the pt-pt destination address. Otherwise
9047 		 * we just match the local address.
9048 		 * NOTE: dst could be different than ipha->ipha_dst in case
9049 		 * of sending igmp multicast packets over a point-to-point
9050 		 * connection.
9051 		 * Thus we must be careful enough to check ipha_dst to be a
9052 		 * multicast address, otherwise it will take xmit_if path for
9053 		 * multicast packets resulting into kernel stack overflow by
9054 		 * repeated calls to ip_newroute_ipif from ire_send().
9055 		 */
9056 		if (CLASSD(ipha_dst) &&
9057 		    !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) {
9058 			goto err_ret;
9059 		}
9060 
9061 		/*
9062 		 * We check if an IRE_OFFSUBNET for the addr that goes through
9063 		 * ipif exists. We need it to determine if the RTF_SETSRC and/or
9064 		 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may
9065 		 * propagate its flags to the new ire.
9066 		 */
9067 		if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) {
9068 			fire = ipif_lookup_multi_ire(ipif, ipha_dst);
9069 			ip2dbg(("ip_newroute_ipif: "
9070 			    "ipif_lookup_multi_ire("
9071 			    "ipif %p, dst %08x) = fire %p\n",
9072 			    (void *)ipif, ntohl(dst), (void *)fire));
9073 		}
9074 
9075 		if (mctl_present && io->ipsec_out_attach_if) {
9076 			attach_ill = ip_grab_attach_ill(NULL, first_mp,
9077 			    io->ipsec_out_ill_index, B_FALSE, ipst);
9078 
9079 			/* Failure case frees things for us. */
9080 			if (attach_ill == NULL) {
9081 				ipif_refrele(ipif);
9082 				if (fire != NULL)
9083 					ire_refrele(fire);
9084 				return;
9085 			}
9086 
9087 			/*
9088 			 * Check if we need an ire that will not be
9089 			 * looked up by anybody else i.e. HIDDEN.
9090 			 */
9091 			if (ill_is_probeonly(attach_ill)) {
9092 				ire_marks = IRE_MARK_HIDDEN;
9093 			}
9094 			/*
9095 			 * ip_wput passes the right ipif for IPIF_NOFAILOVER
9096 			 * case.
9097 			 */
9098 			dst_ill = ipif->ipif_ill;
9099 			/* attach_ill has been refheld by ip_grab_attach_ill */
9100 			ASSERT(dst_ill == attach_ill);
9101 		} else {
9102 			/*
9103 			 * If the interface belongs to an interface group,
9104 			 * make sure the next possible interface in the group
9105 			 * is used.  This encourages load spreading among
9106 			 * peers in an interface group.
9107 			 * Note: load spreading is disabled for RTF_MULTIRT
9108 			 * routes.
9109 			 */
9110 			if ((flags & RTF_MULTIRT) && (fire != NULL) &&
9111 			    (fire->ire_flags & RTF_MULTIRT)) {
9112 				/*
9113 				 * Don't perform outbound load spreading
9114 				 * in the case of an RTF_MULTIRT issued route,
9115 				 * we actually typically want to replicate
9116 				 * outgoing packets through particular
9117 				 * interfaces.
9118 				 */
9119 				dst_ill = ipif->ipif_ill;
9120 				ill_refhold(dst_ill);
9121 			} else {
9122 				dst_ill = ip_newroute_get_dst_ill(
9123 				    ipif->ipif_ill);
9124 			}
9125 			if (dst_ill == NULL) {
9126 				if (ip_debug > 2) {
9127 					pr_addr_dbg("ip_newroute_ipif: "
9128 					    "no dst ill for dst %s\n",
9129 					    AF_INET, &dst);
9130 				}
9131 				goto err_ret;
9132 			}
9133 		}
9134 
9135 		/*
9136 		 * Pick a source address preferring non-deprecated ones.
9137 		 * Unlike ip_newroute, we don't do any source address
9138 		 * selection here since for multicast it really does not help
9139 		 * in inbound load spreading as in the unicast case.
9140 		 */
9141 		if ((flags & RTF_SETSRC) && (fire != NULL) &&
9142 		    (fire->ire_flags & RTF_SETSRC)) {
9143 			/*
9144 			 * As requested by flags, an IRE_OFFSUBNET was looked up
9145 			 * on that interface. This ire has RTF_SETSRC flag, so
9146 			 * the source address of the packet must be changed.
9147 			 * Check that the ipif matching the requested source
9148 			 * address still exists.
9149 			 */
9150 			src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL,
9151 			    zoneid, NULL, NULL, NULL, NULL, ipst);
9152 		}
9153 
9154 		unspec_src = (connp != NULL && connp->conn_unspec_src);
9155 
9156 		if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) ||
9157 		    (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP ||
9158 		    (connp != NULL && ipif->ipif_zoneid != zoneid &&
9159 		    ipif->ipif_zoneid != ALL_ZONES)) &&
9160 		    (src_ipif == NULL) &&
9161 		    (!unspec_src || ipha->ipha_src != INADDR_ANY)) {
9162 			src_ipif = ipif_select_source(dst_ill, dst, zoneid);
9163 			if (src_ipif == NULL) {
9164 				if (ip_debug > 2) {
9165 					/* ip1dbg */
9166 					pr_addr_dbg("ip_newroute_ipif: "
9167 					    "no src for dst %s",
9168 					    AF_INET, &dst);
9169 				}
9170 				ip1dbg((" through interface %s\n",
9171 				    dst_ill->ill_name));
9172 				goto err_ret;
9173 			}
9174 			ipif_refrele(ipif);
9175 			ipif = src_ipif;
9176 			ipif_refhold(ipif);
9177 		}
9178 		if (src_ipif == NULL) {
9179 			src_ipif = ipif;
9180 			ipif_refhold(src_ipif);
9181 		}
9182 
9183 		/*
9184 		 * Assign a source address while we have the conn.
9185 		 * We can't have ip_wput_ire pick a source address when the
9186 		 * packet returns from arp since conn_unspec_src might be set
9187 		 * and we lose the conn when going through arp.
9188 		 */
9189 		if (ipha->ipha_src == INADDR_ANY && !unspec_src)
9190 			ipha->ipha_src = src_ipif->ipif_src_addr;
9191 
9192 		/*
9193 		 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible
9194 		 * that the outgoing interface does not have an interface ire.
9195 		 */
9196 		if (CLASSD(ipha_dst) && (connp == NULL ||
9197 		    connp->conn_outgoing_ill == NULL) &&
9198 		    infop->ip_opt_ill_index == 0) {
9199 			/* ipif_to_ire returns an held ire */
9200 			ire = ipif_to_ire(ipif);
9201 			if (ire == NULL)
9202 				goto err_ret;
9203 			if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
9204 				goto err_ret;
9205 			/*
9206 			 * ihandle is needed when the ire is added to
9207 			 * cache table.
9208 			 */
9209 			save_ire = ire;
9210 			ihandle = save_ire->ire_ihandle;
9211 
9212 			ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, "
9213 			    "flags %04x\n",
9214 			    (void *)ire, (void *)ipif, flags));
9215 			if ((flags & RTF_MULTIRT) && (fire != NULL) &&
9216 			    (fire->ire_flags & RTF_MULTIRT)) {
9217 				/*
9218 				 * As requested by flags, an IRE_OFFSUBNET was
9219 				 * looked up on that interface. This ire has
9220 				 * RTF_MULTIRT flag, so the resolution loop will
9221 				 * be re-entered to resolve additional routes on
9222 				 * other interfaces. For that purpose, a copy of
9223 				 * the packet is performed at this point.
9224 				 */
9225 				fire->ire_last_used_time = lbolt;
9226 				copy_mp = copymsg(first_mp);
9227 				if (copy_mp) {
9228 					MULTIRT_DEBUG_TAG(copy_mp);
9229 				}
9230 			}
9231 			if ((flags & RTF_SETSRC) && (fire != NULL) &&
9232 			    (fire->ire_flags & RTF_SETSRC)) {
9233 				/*
9234 				 * As requested by flags, an IRE_OFFSUBET was
9235 				 * looked up on that interface. This ire has
9236 				 * RTF_SETSRC flag, so the source address of the
9237 				 * packet must be changed.
9238 				 */
9239 				ipha->ipha_src = fire->ire_src_addr;
9240 			}
9241 		} else {
9242 			ASSERT((connp == NULL) ||
9243 			    (connp->conn_outgoing_ill != NULL) ||
9244 			    (connp->conn_dontroute) ||
9245 			    infop->ip_opt_ill_index != 0);
9246 			/*
9247 			 * The only ways we can come here are:
9248 			 * 1) IP_BOUND_IF socket option is set
9249 			 * 2) SO_DONTROUTE socket option is set
9250 			 * 3) IP_PKTINFO option is passed in as ancillary data.
9251 			 * In all cases, the new ire will not be added
9252 			 * into cache table.
9253 			 */
9254 			ire_marks |= IRE_MARK_NOADD;
9255 		}
9256 
9257 		switch (ipif->ipif_net_type) {
9258 		case IRE_IF_NORESOLVER: {
9259 			/* We have what we need to build an IRE_CACHE. */
9260 
9261 			if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) &&
9262 			    (dst_ill->ill_resolver_mp == NULL)) {
9263 				ip1dbg(("ip_newroute_ipif: dst_ill %p "
9264 				    "for IRE_IF_NORESOLVER ire %p has "
9265 				    "no ill_resolver_mp\n",
9266 				    (void *)dst_ill, (void *)ire));
9267 				break;
9268 			}
9269 
9270 			/*
9271 			 * The new ire inherits the IRE_OFFSUBNET flags
9272 			 * and source address, if this was requested.
9273 			 */
9274 			ire = ire_create(
9275 			    (uchar_t *)&dst,		/* dest address */
9276 			    (uchar_t *)&ip_g_all_ones,	/* mask */
9277 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
9278 			    NULL,			/* gateway address */
9279 			    &ipif->ipif_mtu,
9280 			    NULL,			/* no src nce */
9281 			    dst_ill->ill_rq,		/* recv-from queue */
9282 			    dst_ill->ill_wq,		/* send-to queue */
9283 			    IRE_CACHE,
9284 			    src_ipif,
9285 			    (save_ire != NULL ? save_ire->ire_mask : 0),
9286 			    (fire != NULL) ?		/* Parent handle */
9287 			    fire->ire_phandle : 0,
9288 			    ihandle,			/* Interface handle */
9289 			    (fire != NULL) ?
9290 			    (fire->ire_flags &
9291 			    (RTF_SETSRC | RTF_MULTIRT)) : 0,
9292 			    (save_ire == NULL ? &ire_uinfo_null :
9293 			    &save_ire->ire_uinfo),
9294 			    NULL,
9295 			    NULL,
9296 			    ipst);
9297 
9298 			if (ire == NULL) {
9299 				if (save_ire != NULL)
9300 					ire_refrele(save_ire);
9301 				break;
9302 			}
9303 
9304 			ire->ire_marks |= ire_marks;
9305 
9306 			/*
9307 			 * If IRE_MARK_NOADD is set then we need to convert
9308 			 * the max_fragp to a useable value now. This is
9309 			 * normally done in ire_add_v[46]. We also need to
9310 			 * associate the ire with an nce (normally would be
9311 			 * done in ip_wput_nondata()).
9312 			 *
9313 			 * Note that IRE_MARK_NOADD packets created here
9314 			 * do not have a non-null ire_mp pointer. The null
9315 			 * value of ire_bucket indicates that they were
9316 			 * never added.
9317 			 */
9318 			if (ire->ire_marks & IRE_MARK_NOADD) {
9319 				uint_t  max_frag;
9320 
9321 				max_frag = *ire->ire_max_fragp;
9322 				ire->ire_max_fragp = NULL;
9323 				ire->ire_max_frag = max_frag;
9324 
9325 				if ((ire->ire_nce = ndp_lookup_v4(
9326 				    ire_to_ill(ire),
9327 				    (ire->ire_gateway_addr != INADDR_ANY ?
9328 				    &ire->ire_gateway_addr : &ire->ire_addr),
9329 				    B_FALSE)) == NULL) {
9330 					if (save_ire != NULL)
9331 						ire_refrele(save_ire);
9332 					break;
9333 				}
9334 				ASSERT(ire->ire_nce->nce_state ==
9335 				    ND_REACHABLE);
9336 				NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
9337 			}
9338 
9339 			/* Prevent save_ire from getting deleted */
9340 			if (save_ire != NULL) {
9341 				IRB_REFHOLD(save_ire->ire_bucket);
9342 				/* Has it been removed already ? */
9343 				if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
9344 					IRB_REFRELE(save_ire->ire_bucket);
9345 					ire_refrele(save_ire);
9346 					break;
9347 				}
9348 			}
9349 
9350 			ire_add_then_send(q, ire, first_mp);
9351 
9352 			/* Assert that save_ire is not deleted yet. */
9353 			if (save_ire != NULL) {
9354 				ASSERT(save_ire->ire_ptpn != NULL);
9355 				IRB_REFRELE(save_ire->ire_bucket);
9356 				ire_refrele(save_ire);
9357 				save_ire = NULL;
9358 			}
9359 			if (fire != NULL) {
9360 				ire_refrele(fire);
9361 				fire = NULL;
9362 			}
9363 
9364 			/*
9365 			 * the resolution loop is re-entered if this
9366 			 * was requested through flags and if we
9367 			 * actually are in a multirouting case.
9368 			 */
9369 			if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
9370 				boolean_t need_resolve =
9371 				    ire_multirt_need_resolve(ipha_dst,
9372 				    MBLK_GETLABEL(copy_mp), ipst);
9373 				if (!need_resolve) {
9374 					MULTIRT_DEBUG_UNTAG(copy_mp);
9375 					freemsg(copy_mp);
9376 					copy_mp = NULL;
9377 				} else {
9378 					/*
9379 					 * ipif_lookup_group() calls
9380 					 * ire_lookup_multi() that uses
9381 					 * ire_ftable_lookup() to find
9382 					 * an IRE_INTERFACE for the group.
9383 					 * In the multirt case,
9384 					 * ire_lookup_multi() then invokes
9385 					 * ire_multirt_lookup() to find
9386 					 * the next resolvable ire.
9387 					 * As a result, we obtain an new
9388 					 * interface, derived from the
9389 					 * next ire.
9390 					 */
9391 					ipif_refrele(ipif);
9392 					ipif = ipif_lookup_group(ipha_dst,
9393 					    zoneid, ipst);
9394 					ip2dbg(("ip_newroute_ipif: "
9395 					    "multirt dst %08x, ipif %p\n",
9396 					    htonl(dst), (void *)ipif));
9397 					if (ipif != NULL) {
9398 						mp = copy_mp;
9399 						copy_mp = NULL;
9400 						multirt_resolve_next = B_TRUE;
9401 						continue;
9402 					} else {
9403 						freemsg(copy_mp);
9404 					}
9405 				}
9406 			}
9407 			if (ipif != NULL)
9408 				ipif_refrele(ipif);
9409 			ill_refrele(dst_ill);
9410 			ipif_refrele(src_ipif);
9411 			return;
9412 		}
9413 		case IRE_IF_RESOLVER:
9414 			/*
9415 			 * We can't build an IRE_CACHE yet, but at least
9416 			 * we found a resolver that can help.
9417 			 */
9418 			res_mp = dst_ill->ill_resolver_mp;
9419 			if (!OK_RESOLVER_MP(res_mp))
9420 				break;
9421 
9422 			/*
9423 			 * We obtain a partial IRE_CACHE which we will pass
9424 			 * along with the resolver query.  When the response
9425 			 * comes back it will be there ready for us to add.
9426 			 * The new ire inherits the IRE_OFFSUBNET flags
9427 			 * and source address, if this was requested.
9428 			 * The ire_max_frag is atomically set under the
9429 			 * irebucket lock in ire_add_v[46]. Only in the
9430 			 * case of IRE_MARK_NOADD, we set it here itself.
9431 			 */
9432 			ire = ire_create_mp(
9433 			    (uchar_t *)&dst,		/* dest address */
9434 			    (uchar_t *)&ip_g_all_ones,	/* mask */
9435 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
9436 			    NULL,			/* gateway address */
9437 			    (ire_marks & IRE_MARK_NOADD) ?
9438 			    ipif->ipif_mtu : 0,		/* max_frag */
9439 			    NULL,			/* no src nce */
9440 			    dst_ill->ill_rq,		/* recv-from queue */
9441 			    dst_ill->ill_wq,		/* send-to queue */
9442 			    IRE_CACHE,
9443 			    src_ipif,
9444 			    (save_ire != NULL ? save_ire->ire_mask : 0),
9445 			    (fire != NULL) ?		/* Parent handle */
9446 			    fire->ire_phandle : 0,
9447 			    ihandle,			/* Interface handle */
9448 			    (fire != NULL) ?		/* flags if any */
9449 			    (fire->ire_flags &
9450 			    (RTF_SETSRC | RTF_MULTIRT)) : 0,
9451 			    (save_ire == NULL ? &ire_uinfo_null :
9452 			    &save_ire->ire_uinfo),
9453 			    NULL,
9454 			    NULL,
9455 			    ipst);
9456 
9457 			if (save_ire != NULL) {
9458 				ire_refrele(save_ire);
9459 				save_ire = NULL;
9460 			}
9461 			if (ire == NULL)
9462 				break;
9463 
9464 			ire->ire_marks |= ire_marks;
9465 			/*
9466 			 * Construct message chain for the resolver of the
9467 			 * form:
9468 			 *	ARP_REQ_MBLK-->IRE_MBLK-->Packet
9469 			 *
9470 			 * NOTE : ire will be added later when the response
9471 			 * comes back from ARP. If the response does not
9472 			 * come back, ARP frees the packet. For this reason,
9473 			 * we can't REFHOLD the bucket of save_ire to prevent
9474 			 * deletions. We may not be able to REFRELE the
9475 			 * bucket if the response never comes back.
9476 			 * Thus, before adding the ire, ire_add_v4 will make
9477 			 * sure that the interface route does not get deleted.
9478 			 * This is the only case unlike ip_newroute_v6,
9479 			 * ip_newroute_ipif_v6 where we can always prevent
9480 			 * deletions because ire_add_then_send is called after
9481 			 * creating the IRE.
9482 			 * If IRE_MARK_NOADD is set, then ire_add_then_send
9483 			 * does not add this IRE into the IRE CACHE.
9484 			 */
9485 			ASSERT(ire->ire_mp != NULL);
9486 			ire->ire_mp->b_cont = first_mp;
9487 			/* Have saved_mp handy, for cleanup if canput fails */
9488 			saved_mp = mp;
9489 			mp = copyb(res_mp);
9490 			if (mp == NULL) {
9491 				/* Prepare for cleanup */
9492 				mp = saved_mp; /* pkt */
9493 				ire_delete(ire); /* ire_mp */
9494 				ire = NULL;
9495 				if (copy_mp != NULL) {
9496 					MULTIRT_DEBUG_UNTAG(copy_mp);
9497 					freemsg(copy_mp);
9498 					copy_mp = NULL;
9499 				}
9500 				break;
9501 			}
9502 			linkb(mp, ire->ire_mp);
9503 
9504 			/*
9505 			 * Fill in the source and dest addrs for the resolver.
9506 			 * NOTE: this depends on memory layouts imposed by
9507 			 * ill_init().
9508 			 */
9509 			areq = (areq_t *)mp->b_rptr;
9510 			addrp = (ipaddr_t *)((char *)areq +
9511 			    areq->areq_sender_addr_offset);
9512 			*addrp = ire->ire_src_addr;
9513 			addrp = (ipaddr_t *)((char *)areq +
9514 			    areq->areq_target_addr_offset);
9515 			*addrp = dst;
9516 			/* Up to the resolver. */
9517 			if (canputnext(dst_ill->ill_rq) &&
9518 			    !(dst_ill->ill_arp_closing)) {
9519 				putnext(dst_ill->ill_rq, mp);
9520 				/*
9521 				 * The response will come back in ip_wput
9522 				 * with db_type IRE_DB_TYPE.
9523 				 */
9524 			} else {
9525 				mp->b_cont = NULL;
9526 				freeb(mp); /* areq */
9527 				ire_delete(ire); /* ire_mp */
9528 				saved_mp->b_next = NULL;
9529 				saved_mp->b_prev = NULL;
9530 				freemsg(first_mp); /* pkt */
9531 				ip2dbg(("ip_newroute_ipif: dropped\n"));
9532 			}
9533 
9534 			if (fire != NULL) {
9535 				ire_refrele(fire);
9536 				fire = NULL;
9537 			}
9538 
9539 
9540 			/*
9541 			 * The resolution loop is re-entered if this was
9542 			 * requested through flags and we actually are
9543 			 * in a multirouting case.
9544 			 */
9545 			if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
9546 				boolean_t need_resolve =
9547 				    ire_multirt_need_resolve(ipha_dst,
9548 				    MBLK_GETLABEL(copy_mp), ipst);
9549 				if (!need_resolve) {
9550 					MULTIRT_DEBUG_UNTAG(copy_mp);
9551 					freemsg(copy_mp);
9552 					copy_mp = NULL;
9553 				} else {
9554 					/*
9555 					 * ipif_lookup_group() calls
9556 					 * ire_lookup_multi() that uses
9557 					 * ire_ftable_lookup() to find
9558 					 * an IRE_INTERFACE for the group.
9559 					 * In the multirt case,
9560 					 * ire_lookup_multi() then invokes
9561 					 * ire_multirt_lookup() to find
9562 					 * the next resolvable ire.
9563 					 * As a result, we obtain an new
9564 					 * interface, derived from the
9565 					 * next ire.
9566 					 */
9567 					ipif_refrele(ipif);
9568 					ipif = ipif_lookup_group(ipha_dst,
9569 					    zoneid, ipst);
9570 					if (ipif != NULL) {
9571 						mp = copy_mp;
9572 						copy_mp = NULL;
9573 						multirt_resolve_next = B_TRUE;
9574 						continue;
9575 					} else {
9576 						freemsg(copy_mp);
9577 					}
9578 				}
9579 			}
9580 			if (ipif != NULL)
9581 				ipif_refrele(ipif);
9582 			ill_refrele(dst_ill);
9583 			ipif_refrele(src_ipif);
9584 			return;
9585 		default:
9586 			break;
9587 		}
9588 	} while (multirt_resolve_next);
9589 
9590 err_ret:
9591 	ip2dbg(("ip_newroute_ipif: dropped\n"));
9592 	if (fire != NULL)
9593 		ire_refrele(fire);
9594 	ipif_refrele(ipif);
9595 	/* Did this packet originate externally? */
9596 	if (dst_ill != NULL)
9597 		ill_refrele(dst_ill);
9598 	if (src_ipif != NULL)
9599 		ipif_refrele(src_ipif);
9600 	if (mp->b_prev || mp->b_next) {
9601 		mp->b_next = NULL;
9602 		mp->b_prev = NULL;
9603 	} else {
9604 		/*
9605 		 * Since ip_wput() isn't close to finished, we fill
9606 		 * in enough of the header for credible error reporting.
9607 		 */
9608 		if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) {
9609 			/* Failed */
9610 			freemsg(first_mp);
9611 			if (ire != NULL)
9612 				ire_refrele(ire);
9613 			return;
9614 		}
9615 	}
9616 	/*
9617 	 * At this point we will have ire only if RTF_BLACKHOLE
9618 	 * or RTF_REJECT flags are set on the IRE. It will not
9619 	 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
9620 	 */
9621 	if (ire != NULL) {
9622 		if (ire->ire_flags & RTF_BLACKHOLE) {
9623 			ire_refrele(ire);
9624 			freemsg(first_mp);
9625 			return;
9626 		}
9627 		ire_refrele(ire);
9628 	}
9629 	icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst);
9630 }
9631 
9632 /* Name/Value Table Lookup Routine */
9633 char *
9634 ip_nv_lookup(nv_t *nv, int value)
9635 {
9636 	if (!nv)
9637 		return (NULL);
9638 	for (; nv->nv_name; nv++) {
9639 		if (nv->nv_value == value)
9640 			return (nv->nv_name);
9641 	}
9642 	return ("unknown");
9643 }
9644 
9645 /*
9646  * This is a module open, i.e. this is a control stream for access
9647  * to a DLPI device.  We allocate an ill_t as the instance data in
9648  * this case.
9649  */
9650 int
9651 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9652 {
9653 	ill_t	*ill;
9654 	int	err;
9655 	zoneid_t zoneid;
9656 	netstack_t *ns;
9657 	ip_stack_t *ipst;
9658 
9659 	/*
9660 	 * Prevent unprivileged processes from pushing IP so that
9661 	 * they can't send raw IP.
9662 	 */
9663 	if (secpolicy_net_rawaccess(credp) != 0)
9664 		return (EPERM);
9665 
9666 	ns = netstack_find_by_cred(credp);
9667 	ASSERT(ns != NULL);
9668 	ipst = ns->netstack_ip;
9669 	ASSERT(ipst != NULL);
9670 
9671 	/*
9672 	 * For exclusive stacks we set the zoneid to zero
9673 	 * to make IP operate as if in the global zone.
9674 	 */
9675 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
9676 		zoneid = GLOBAL_ZONEID;
9677 	else
9678 		zoneid = crgetzoneid(credp);
9679 
9680 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
9681 	q->q_ptr = WR(q)->q_ptr = ill;
9682 	ill->ill_ipst = ipst;
9683 	ill->ill_zoneid = zoneid;
9684 
9685 	/*
9686 	 * ill_init initializes the ill fields and then sends down
9687 	 * down a DL_INFO_REQ after calling qprocson.
9688 	 */
9689 	err = ill_init(q, ill);
9690 	if (err != 0) {
9691 		mi_free(ill);
9692 		netstack_rele(ipst->ips_netstack);
9693 		q->q_ptr = NULL;
9694 		WR(q)->q_ptr = NULL;
9695 		return (err);
9696 	}
9697 
9698 	/* ill_init initializes the ipsq marking this thread as writer */
9699 	ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE);
9700 	/* Wait for the DL_INFO_ACK */
9701 	mutex_enter(&ill->ill_lock);
9702 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
9703 		/*
9704 		 * Return value of 0 indicates a pending signal.
9705 		 */
9706 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
9707 		if (err == 0) {
9708 			mutex_exit(&ill->ill_lock);
9709 			(void) ip_close(q, 0);
9710 			return (EINTR);
9711 		}
9712 	}
9713 	mutex_exit(&ill->ill_lock);
9714 
9715 	/*
9716 	 * ip_rput_other could have set an error  in ill_error on
9717 	 * receipt of M_ERROR.
9718 	 */
9719 
9720 	err = ill->ill_error;
9721 	if (err != 0) {
9722 		(void) ip_close(q, 0);
9723 		return (err);
9724 	}
9725 
9726 	ill->ill_credp = credp;
9727 	crhold(credp);
9728 
9729 	mutex_enter(&ipst->ips_ip_mi_lock);
9730 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag,
9731 	    credp);
9732 	mutex_exit(&ipst->ips_ip_mi_lock);
9733 	if (err) {
9734 		(void) ip_close(q, 0);
9735 		return (err);
9736 	}
9737 	return (0);
9738 }
9739 
9740 /* For /dev/ip aka AF_INET open */
9741 int
9742 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9743 {
9744 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
9745 }
9746 
9747 /* For /dev/ip6 aka AF_INET6 open */
9748 int
9749 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9750 {
9751 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
9752 }
9753 
9754 /* IP open routine. */
9755 int
9756 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9757     boolean_t isv6)
9758 {
9759 	conn_t 		*connp;
9760 	major_t		maj;
9761 	zoneid_t	zoneid;
9762 	netstack_t	*ns;
9763 	ip_stack_t	*ipst;
9764 
9765 	TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q);
9766 
9767 	/* Allow reopen. */
9768 	if (q->q_ptr != NULL)
9769 		return (0);
9770 
9771 	if (sflag & MODOPEN) {
9772 		/* This is a module open */
9773 		return (ip_modopen(q, devp, flag, sflag, credp));
9774 	}
9775 
9776 	ns = netstack_find_by_cred(credp);
9777 	ASSERT(ns != NULL);
9778 	ipst = ns->netstack_ip;
9779 	ASSERT(ipst != NULL);
9780 
9781 	/*
9782 	 * For exclusive stacks we set the zoneid to zero
9783 	 * to make IP operate as if in the global zone.
9784 	 */
9785 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
9786 		zoneid = GLOBAL_ZONEID;
9787 	else
9788 		zoneid = crgetzoneid(credp);
9789 
9790 	/*
9791 	 * We are opening as a device. This is an IP client stream, and we
9792 	 * allocate an conn_t as the instance data.
9793 	 */
9794 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
9795 
9796 	/*
9797 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
9798 	 * done by netstack_find_by_cred()
9799 	 */
9800 	netstack_rele(ipst->ips_netstack);
9801 
9802 	connp->conn_zoneid = zoneid;
9803 
9804 	connp->conn_upq = q;
9805 	q->q_ptr = WR(q)->q_ptr = connp;
9806 
9807 	if (flag & SO_SOCKSTR)
9808 		connp->conn_flags |= IPCL_SOCKET;
9809 
9810 	/* Minor tells us which /dev entry was opened */
9811 	if (isv6) {
9812 		connp->conn_flags |= IPCL_ISV6;
9813 		connp->conn_af_isv6 = B_TRUE;
9814 		ip_setpktversion(connp, isv6, B_FALSE, ipst);
9815 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9816 	} else {
9817 		connp->conn_af_isv6 = B_FALSE;
9818 		connp->conn_pkt_isv6 = B_FALSE;
9819 	}
9820 
9821 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9822 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9823 		connp->conn_minor_arena = ip_minor_arena_la;
9824 	} else {
9825 		/*
9826 		 * Either minor numbers in the large arena were exhausted
9827 		 * or a non socket application is doing the open.
9828 		 * Try to allocate from the small arena.
9829 		 */
9830 		if ((connp->conn_dev =
9831 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9832 			/* CONN_DEC_REF takes care of netstack_rele() */
9833 			q->q_ptr = WR(q)->q_ptr = NULL;
9834 			CONN_DEC_REF(connp);
9835 			return (EBUSY);
9836 		}
9837 		connp->conn_minor_arena = ip_minor_arena_sa;
9838 	}
9839 
9840 	maj = getemajor(*devp);
9841 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
9842 
9843 	/*
9844 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
9845 	 */
9846 	connp->conn_cred = credp;
9847 
9848 	/*
9849 	 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv
9850 	 */
9851 	connp->conn_recv = ip_conn_input;
9852 
9853 	crhold(connp->conn_cred);
9854 
9855 	/*
9856 	 * If the caller has the process-wide flag set, then default to MAC
9857 	 * exempt mode.  This allows read-down to unlabeled hosts.
9858 	 */
9859 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9860 		connp->conn_mac_exempt = B_TRUE;
9861 
9862 	connp->conn_rq = q;
9863 	connp->conn_wq = WR(q);
9864 
9865 	/* Non-zero default values */
9866 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9867 
9868 	/*
9869 	 * Make the conn globally visible to walkers
9870 	 */
9871 	ASSERT(connp->conn_ref == 1);
9872 	mutex_enter(&connp->conn_lock);
9873 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9874 	mutex_exit(&connp->conn_lock);
9875 
9876 	qprocson(q);
9877 
9878 	return (0);
9879 }
9880 
9881 /*
9882  * Change the output format (IPv4 vs. IPv6) for a conn_t.
9883  * Note that there is no race since either ip_output function works - it
9884  * is just an optimization to enter the best ip_output routine directly.
9885  */
9886 void
9887 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib,
9888     ip_stack_t *ipst)
9889 {
9890 	if (isv6)  {
9891 		if (bump_mib) {
9892 			BUMP_MIB(&ipst->ips_ip6_mib,
9893 			    ipIfStatsOutSwitchIPVersion);
9894 		}
9895 		connp->conn_send = ip_output_v6;
9896 		connp->conn_pkt_isv6 = B_TRUE;
9897 	} else {
9898 		if (bump_mib) {
9899 			BUMP_MIB(&ipst->ips_ip_mib,
9900 			    ipIfStatsOutSwitchIPVersion);
9901 		}
9902 		connp->conn_send = ip_output;
9903 		connp->conn_pkt_isv6 = B_FALSE;
9904 	}
9905 
9906 }
9907 
9908 /*
9909  * See if IPsec needs loading because of the options in mp.
9910  */
9911 static boolean_t
9912 ipsec_opt_present(mblk_t *mp)
9913 {
9914 	uint8_t *optcp, *next_optcp, *opt_endcp;
9915 	struct opthdr *opt;
9916 	struct T_opthdr *topt;
9917 	int opthdr_len;
9918 	t_uscalar_t optname, optlevel;
9919 	struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr;
9920 	ipsec_req_t *ipsr;
9921 
9922 	/*
9923 	 * Walk through the mess, and find IP_SEC_OPT.  If it's there,
9924 	 * return TRUE.
9925 	 */
9926 
9927 	optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length);
9928 	opt_endcp = optcp + tor->OPT_length;
9929 	if (tor->PRIM_type == T_OPTMGMT_REQ) {
9930 		opthdr_len = sizeof (struct T_opthdr);
9931 	} else {		/* O_OPTMGMT_REQ */
9932 		ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ);
9933 		opthdr_len = sizeof (struct opthdr);
9934 	}
9935 	for (; optcp < opt_endcp; optcp = next_optcp) {
9936 		if (optcp + opthdr_len > opt_endcp)
9937 			return (B_FALSE);	/* Not enough option header. */
9938 		if (tor->PRIM_type == T_OPTMGMT_REQ) {
9939 			topt = (struct T_opthdr *)optcp;
9940 			optlevel = topt->level;
9941 			optname = topt->name;
9942 			next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len);
9943 		} else {
9944 			opt = (struct opthdr *)optcp;
9945 			optlevel = opt->level;
9946 			optname = opt->name;
9947 			next_optcp = optcp + opthdr_len +
9948 			    _TPI_ALIGN_OPT(opt->len);
9949 		}
9950 		if ((next_optcp < optcp) || /* wraparound pointer space */
9951 		    ((next_optcp >= opt_endcp) && /* last option bad len */
9952 		    ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE)))
9953 			return (B_FALSE); /* bad option buffer */
9954 		if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) ||
9955 		    (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) {
9956 			/*
9957 			 * Check to see if it's an all-bypass or all-zeroes
9958 			 * IPsec request.  Don't bother loading IPsec if
9959 			 * the socket doesn't want to use it.  (A good example
9960 			 * is a bypass request.)
9961 			 *
9962 			 * Basically, if any of the non-NEVER bits are set,
9963 			 * load IPsec.
9964 			 */
9965 			ipsr = (ipsec_req_t *)(optcp + opthdr_len);
9966 			if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 ||
9967 			    (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 ||
9968 			    (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER)
9969 			    != 0)
9970 				return (B_TRUE);
9971 		}
9972 	}
9973 	return (B_FALSE);
9974 }
9975 
9976 /*
9977  * If conn is is waiting for ipsec to finish loading, kick it.
9978  */
9979 /* ARGSUSED */
9980 static void
9981 conn_restart_ipsec_waiter(conn_t *connp, void *arg)
9982 {
9983 	t_scalar_t	optreq_prim;
9984 	mblk_t		*mp;
9985 	cred_t		*cr;
9986 	int		err = 0;
9987 
9988 	/*
9989 	 * This function is called, after ipsec loading is complete.
9990 	 * Since IP checks exclusively and atomically (i.e it prevents
9991 	 * ipsec load from completing until ip_optcom_req completes)
9992 	 * whether ipsec load is complete, there cannot be a race with IP
9993 	 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now.
9994 	 */
9995 	mutex_enter(&connp->conn_lock);
9996 	if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) {
9997 		ASSERT(connp->conn_ipsec_opt_mp != NULL);
9998 		mp = connp->conn_ipsec_opt_mp;
9999 		connp->conn_ipsec_opt_mp = NULL;
10000 		connp->conn_state_flags  &= ~CONN_IPSEC_LOAD_WAIT;
10001 		cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp)));
10002 		mutex_exit(&connp->conn_lock);
10003 
10004 		ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
10005 
10006 		optreq_prim = ((union T_primitives *)mp->b_rptr)->type;
10007 		if (optreq_prim == T_OPTMGMT_REQ) {
10008 			err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr,
10009 			    &ip_opt_obj, B_FALSE);
10010 		} else {
10011 			ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ);
10012 			err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr,
10013 			    &ip_opt_obj, B_FALSE);
10014 		}
10015 		if (err != EINPROGRESS)
10016 			CONN_OPER_PENDING_DONE(connp);
10017 		return;
10018 	}
10019 	mutex_exit(&connp->conn_lock);
10020 }
10021 
10022 /*
10023  * Called from the ipsec_loader thread, outside any perimeter, to tell
10024  * ip qenable any of the queues waiting for the ipsec loader to
10025  * complete.
10026  */
10027 void
10028 ip_ipsec_load_complete(ipsec_stack_t *ipss)
10029 {
10030 	netstack_t *ns = ipss->ipsec_netstack;
10031 
10032 	ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip);
10033 }
10034 
10035 /*
10036  * Can't be used. Need to call svr4* -> optset directly. the leaf routine
10037  * determines the grp on which it has to become exclusive, queues the mp
10038  * and sq draining restarts the optmgmt
10039  */
10040 static boolean_t
10041 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp)
10042 {
10043 	conn_t *connp = Q_TO_CONN(q);
10044 	ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec;
10045 
10046 	/*
10047 	 * Take IPsec requests and treat them special.
10048 	 */
10049 	if (ipsec_opt_present(mp)) {
10050 		/* First check if IPsec is loaded. */
10051 		mutex_enter(&ipss->ipsec_loader_lock);
10052 		if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) {
10053 			mutex_exit(&ipss->ipsec_loader_lock);
10054 			return (B_FALSE);
10055 		}
10056 		mutex_enter(&connp->conn_lock);
10057 		connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT;
10058 
10059 		ASSERT(connp->conn_ipsec_opt_mp == NULL);
10060 		connp->conn_ipsec_opt_mp = mp;
10061 		mutex_exit(&connp->conn_lock);
10062 		mutex_exit(&ipss->ipsec_loader_lock);
10063 
10064 		ipsec_loader_loadnow(ipss);
10065 		return (B_TRUE);
10066 	}
10067 	return (B_FALSE);
10068 }
10069 
10070 /*
10071  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
10072  * all of them are copied to the conn_t. If the req is "zero", the policy is
10073  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
10074  * fields.
10075  * We keep only the latest setting of the policy and thus policy setting
10076  * is not incremental/cumulative.
10077  *
10078  * Requests to set policies with multiple alternative actions will
10079  * go through a different API.
10080  */
10081 int
10082 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
10083 {
10084 	uint_t ah_req = 0;
10085 	uint_t esp_req = 0;
10086 	uint_t se_req = 0;
10087 	ipsec_selkey_t sel;
10088 	ipsec_act_t *actp = NULL;
10089 	uint_t nact;
10090 	ipsec_policy_t *pin4 = NULL, *pout4 = NULL;
10091 	ipsec_policy_t *pin6 = NULL, *pout6 = NULL;
10092 	ipsec_policy_root_t *pr;
10093 	ipsec_policy_head_t *ph;
10094 	int fam;
10095 	boolean_t is_pol_reset;
10096 	int error = 0;
10097 	netstack_t	*ns = connp->conn_netstack;
10098 	ip_stack_t	*ipst = ns->netstack_ip;
10099 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
10100 
10101 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
10102 
10103 	/*
10104 	 * The IP_SEC_OPT option does not allow variable length parameters,
10105 	 * hence a request cannot be NULL.
10106 	 */
10107 	if (req == NULL)
10108 		return (EINVAL);
10109 
10110 	ah_req = req->ipsr_ah_req;
10111 	esp_req = req->ipsr_esp_req;
10112 	se_req = req->ipsr_self_encap_req;
10113 
10114 	/* Don't allow setting self-encap without one or more of AH/ESP. */
10115 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
10116 		return (EINVAL);
10117 
10118 	/*
10119 	 * Are we dealing with a request to reset the policy (i.e.
10120 	 * zero requests).
10121 	 */
10122 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
10123 	    (esp_req & REQ_MASK) == 0 &&
10124 	    (se_req & REQ_MASK) == 0);
10125 
10126 	if (!is_pol_reset) {
10127 		/*
10128 		 * If we couldn't load IPsec, fail with "protocol
10129 		 * not supported".
10130 		 * IPsec may not have been loaded for a request with zero
10131 		 * policies, so we don't fail in this case.
10132 		 */
10133 		mutex_enter(&ipss->ipsec_loader_lock);
10134 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
10135 			mutex_exit(&ipss->ipsec_loader_lock);
10136 			return (EPROTONOSUPPORT);
10137 		}
10138 		mutex_exit(&ipss->ipsec_loader_lock);
10139 
10140 		/*
10141 		 * Test for valid requests. Invalid algorithms
10142 		 * need to be tested by IPsec code because new
10143 		 * algorithms can be added dynamically.
10144 		 */
10145 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
10146 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
10147 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
10148 			return (EINVAL);
10149 		}
10150 
10151 		/*
10152 		 * Only privileged users can issue these
10153 		 * requests.
10154 		 */
10155 		if (((ah_req & IPSEC_PREF_NEVER) ||
10156 		    (esp_req & IPSEC_PREF_NEVER) ||
10157 		    (se_req & IPSEC_PREF_NEVER)) &&
10158 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
10159 			return (EPERM);
10160 		}
10161 
10162 		/*
10163 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
10164 		 * are mutually exclusive.
10165 		 */
10166 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
10167 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
10168 		    ((se_req & REQ_MASK) == REQ_MASK)) {
10169 			/* Both of them are set */
10170 			return (EINVAL);
10171 		}
10172 	}
10173 
10174 	mutex_enter(&connp->conn_lock);
10175 
10176 	/*
10177 	 * If we have already cached policies in ip_bind_connected*(), don't
10178 	 * let them change now. We cache policies for connections
10179 	 * whose src,dst [addr, port] is known.
10180 	 */
10181 	if (connp->conn_policy_cached) {
10182 		mutex_exit(&connp->conn_lock);
10183 		return (EINVAL);
10184 	}
10185 
10186 	/*
10187 	 * We have a zero policies, reset the connection policy if already
10188 	 * set. This will cause the connection to inherit the
10189 	 * global policy, if any.
10190 	 */
10191 	if (is_pol_reset) {
10192 		if (connp->conn_policy != NULL) {
10193 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
10194 			connp->conn_policy = NULL;
10195 		}
10196 		connp->conn_flags &= ~IPCL_CHECK_POLICY;
10197 		connp->conn_in_enforce_policy = B_FALSE;
10198 		connp->conn_out_enforce_policy = B_FALSE;
10199 		mutex_exit(&connp->conn_lock);
10200 		return (0);
10201 	}
10202 
10203 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
10204 	    ipst->ips_netstack);
10205 	if (ph == NULL)
10206 		goto enomem;
10207 
10208 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
10209 	if (actp == NULL)
10210 		goto enomem;
10211 
10212 	/*
10213 	 * Always allocate IPv4 policy entries, since they can also
10214 	 * apply to ipv6 sockets being used in ipv4-compat mode.
10215 	 */
10216 	bzero(&sel, sizeof (sel));
10217 	sel.ipsl_valid = IPSL_IPV4;
10218 
10219 	pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL,
10220 	    ipst->ips_netstack);
10221 	if (pin4 == NULL)
10222 		goto enomem;
10223 
10224 	pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL,
10225 	    ipst->ips_netstack);
10226 	if (pout4 == NULL)
10227 		goto enomem;
10228 
10229 	if (connp->conn_af_isv6) {
10230 		/*
10231 		 * We're looking at a v6 socket, also allocate the
10232 		 * v6-specific entries...
10233 		 */
10234 		sel.ipsl_valid = IPSL_IPV6;
10235 		pin6 = ipsec_policy_create(&sel, actp, nact,
10236 		    IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack);
10237 		if (pin6 == NULL)
10238 			goto enomem;
10239 
10240 		pout6 = ipsec_policy_create(&sel, actp, nact,
10241 		    IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack);
10242 		if (pout6 == NULL)
10243 			goto enomem;
10244 
10245 		/*
10246 		 * .. and file them away in the right place.
10247 		 */
10248 		fam = IPSEC_AF_V6;
10249 		pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
10250 		HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]);
10251 		ipsec_insert_always(&ph->iph_rulebyid, pin6);
10252 		pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
10253 		HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]);
10254 		ipsec_insert_always(&ph->iph_rulebyid, pout6);
10255 	}
10256 
10257 	ipsec_actvec_free(actp, nact);
10258 
10259 	/*
10260 	 * File the v4 policies.
10261 	 */
10262 	fam = IPSEC_AF_V4;
10263 	pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
10264 	HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]);
10265 	ipsec_insert_always(&ph->iph_rulebyid, pin4);
10266 
10267 	pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
10268 	HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]);
10269 	ipsec_insert_always(&ph->iph_rulebyid, pout4);
10270 
10271 	/*
10272 	 * If the requests need security, set enforce_policy.
10273 	 * If the requests are IPSEC_PREF_NEVER, one should
10274 	 * still set conn_out_enforce_policy so that an ipsec_out
10275 	 * gets attached in ip_wput. This is needed so that
10276 	 * for connections that we don't cache policy in ip_bind,
10277 	 * if global policy matches in ip_wput_attach_policy, we
10278 	 * don't wrongly inherit global policy. Similarly, we need
10279 	 * to set conn_in_enforce_policy also so that we don't verify
10280 	 * policy wrongly.
10281 	 */
10282 	if ((ah_req & REQ_MASK) != 0 ||
10283 	    (esp_req & REQ_MASK) != 0 ||
10284 	    (se_req & REQ_MASK) != 0) {
10285 		connp->conn_in_enforce_policy = B_TRUE;
10286 		connp->conn_out_enforce_policy = B_TRUE;
10287 		connp->conn_flags |= IPCL_CHECK_POLICY;
10288 	}
10289 
10290 	mutex_exit(&connp->conn_lock);
10291 	return (error);
10292 #undef REQ_MASK
10293 
10294 	/*
10295 	 * Common memory-allocation-failure exit path.
10296 	 */
10297 enomem:
10298 	mutex_exit(&connp->conn_lock);
10299 	if (actp != NULL)
10300 		ipsec_actvec_free(actp, nact);
10301 	if (pin4 != NULL)
10302 		IPPOL_REFRELE(pin4, ipst->ips_netstack);
10303 	if (pout4 != NULL)
10304 		IPPOL_REFRELE(pout4, ipst->ips_netstack);
10305 	if (pin6 != NULL)
10306 		IPPOL_REFRELE(pin6, ipst->ips_netstack);
10307 	if (pout6 != NULL)
10308 		IPPOL_REFRELE(pout6, ipst->ips_netstack);
10309 	return (ENOMEM);
10310 }
10311 
10312 /*
10313  * Only for options that pass in an IP addr. Currently only V4 options
10314  * pass in an ipif. V6 options always pass an ifindex specifying the ill.
10315  * So this function assumes level is IPPROTO_IP
10316  */
10317 int
10318 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option,
10319     mblk_t *first_mp)
10320 {
10321 	ipif_t *ipif = NULL;
10322 	int error;
10323 	ill_t *ill;
10324 	int zoneid;
10325 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
10326 
10327 	ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr));
10328 
10329 	if (addr != INADDR_ANY || checkonly) {
10330 		ASSERT(connp != NULL);
10331 		zoneid = IPCL_ZONEID(connp);
10332 		if (option == IP_NEXTHOP) {
10333 			ipif = ipif_lookup_onlink_addr(addr,
10334 			    connp->conn_zoneid, ipst);
10335 		} else {
10336 			ipif = ipif_lookup_addr(addr, NULL, zoneid,
10337 			    CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt,
10338 			    &error, ipst);
10339 		}
10340 		if (ipif == NULL) {
10341 			if (error == EINPROGRESS)
10342 				return (error);
10343 			else if ((option == IP_MULTICAST_IF) ||
10344 			    (option == IP_NEXTHOP))
10345 				return (EHOSTUNREACH);
10346 			else
10347 				return (EINVAL);
10348 		} else if (checkonly) {
10349 			if (option == IP_MULTICAST_IF) {
10350 				ill = ipif->ipif_ill;
10351 				/* not supported by the virtual network iface */
10352 				if (IS_VNI(ill)) {
10353 					ipif_refrele(ipif);
10354 					return (EINVAL);
10355 				}
10356 			}
10357 			ipif_refrele(ipif);
10358 			return (0);
10359 		}
10360 		ill = ipif->ipif_ill;
10361 		mutex_enter(&connp->conn_lock);
10362 		mutex_enter(&ill->ill_lock);
10363 		if ((ill->ill_state_flags & ILL_CONDEMNED) ||
10364 		    (ipif->ipif_state_flags & IPIF_CONDEMNED)) {
10365 			mutex_exit(&ill->ill_lock);
10366 			mutex_exit(&connp->conn_lock);
10367 			ipif_refrele(ipif);
10368 			return (option == IP_MULTICAST_IF ?
10369 			    EHOSTUNREACH : EINVAL);
10370 		}
10371 	} else {
10372 		mutex_enter(&connp->conn_lock);
10373 	}
10374 
10375 	/* None of the options below are supported on the VNI */
10376 	if (ipif != NULL && IS_VNI(ipif->ipif_ill)) {
10377 		mutex_exit(&ill->ill_lock);
10378 		mutex_exit(&connp->conn_lock);
10379 		ipif_refrele(ipif);
10380 		return (EINVAL);
10381 	}
10382 
10383 	switch (option) {
10384 	case IP_DONTFAILOVER_IF:
10385 		/*
10386 		 * This option is used by in.mpathd to ensure
10387 		 * that IPMP probe packets only go out on the
10388 		 * test interfaces. in.mpathd sets this option
10389 		 * on the non-failover interfaces.
10390 		 * For backward compatibility, this option
10391 		 * implicitly sets IP_MULTICAST_IF, as used
10392 		 * be done in bind(), so that ip_wput gets
10393 		 * this ipif to send mcast packets.
10394 		 */
10395 		if (ipif != NULL) {
10396 			ASSERT(addr != INADDR_ANY);
10397 			connp->conn_nofailover_ill = ipif->ipif_ill;
10398 			connp->conn_multicast_ipif = ipif;
10399 		} else {
10400 			ASSERT(addr == INADDR_ANY);
10401 			connp->conn_nofailover_ill = NULL;
10402 			connp->conn_multicast_ipif = NULL;
10403 		}
10404 		break;
10405 
10406 	case IP_MULTICAST_IF:
10407 		connp->conn_multicast_ipif = ipif;
10408 		break;
10409 	case IP_NEXTHOP:
10410 		connp->conn_nexthop_v4 = addr;
10411 		connp->conn_nexthop_set = B_TRUE;
10412 		break;
10413 	}
10414 
10415 	if (ipif != NULL) {
10416 		mutex_exit(&ill->ill_lock);
10417 		mutex_exit(&connp->conn_lock);
10418 		ipif_refrele(ipif);
10419 		return (0);
10420 	}
10421 	mutex_exit(&connp->conn_lock);
10422 	/* We succeded in cleared the option */
10423 	return (0);
10424 }
10425 
10426 /*
10427  * For options that pass in an ifindex specifying the ill. V6 options always
10428  * pass in an ill. Some v4 options also pass in ifindex specifying the ill.
10429  */
10430 int
10431 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly,
10432     int level, int option, mblk_t *first_mp)
10433 {
10434 	ill_t *ill = NULL;
10435 	int error = 0;
10436 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
10437 
10438 	ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex));
10439 	if (ifindex != 0) {
10440 		ASSERT(connp != NULL);
10441 		ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp),
10442 		    first_mp, ip_restart_optmgmt, &error, ipst);
10443 		if (ill != NULL) {
10444 			if (checkonly) {
10445 				/* not supported by the virtual network iface */
10446 				if (IS_VNI(ill)) {
10447 					ill_refrele(ill);
10448 					return (EINVAL);
10449 				}
10450 				ill_refrele(ill);
10451 				return (0);
10452 			}
10453 			if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid,
10454 			    0, NULL)) {
10455 				ill_refrele(ill);
10456 				ill = NULL;
10457 				mutex_enter(&connp->conn_lock);
10458 				goto setit;
10459 			}
10460 			mutex_enter(&connp->conn_lock);
10461 			mutex_enter(&ill->ill_lock);
10462 			if (ill->ill_state_flags & ILL_CONDEMNED) {
10463 				mutex_exit(&ill->ill_lock);
10464 				mutex_exit(&connp->conn_lock);
10465 				ill_refrele(ill);
10466 				ill = NULL;
10467 				mutex_enter(&connp->conn_lock);
10468 			}
10469 			goto setit;
10470 		} else if (error == EINPROGRESS) {
10471 			return (error);
10472 		} else {
10473 			error = 0;
10474 		}
10475 	}
10476 	mutex_enter(&connp->conn_lock);
10477 setit:
10478 	ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6));
10479 
10480 	/*
10481 	 * The options below assume that the ILL (if any) transmits and/or
10482 	 * receives traffic. Neither of which is true for the virtual network
10483 	 * interface, so fail setting these on a VNI.
10484 	 */
10485 	if (IS_VNI(ill)) {
10486 		ASSERT(ill != NULL);
10487 		mutex_exit(&ill->ill_lock);
10488 		mutex_exit(&connp->conn_lock);
10489 		ill_refrele(ill);
10490 		return (EINVAL);
10491 	}
10492 
10493 	if (level == IPPROTO_IP) {
10494 		switch (option) {
10495 		case IP_BOUND_IF:
10496 			connp->conn_incoming_ill = ill;
10497 			connp->conn_outgoing_ill = ill;
10498 			connp->conn_orig_bound_ifindex = (ill == NULL) ?
10499 			    0 : ifindex;
10500 			break;
10501 
10502 		case IP_MULTICAST_IF:
10503 			/*
10504 			 * This option is an internal special. The socket
10505 			 * level IP_MULTICAST_IF specifies an 'ipaddr' and
10506 			 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF
10507 			 * specifies an ifindex and we try first on V6 ill's.
10508 			 * If we don't find one, we they try using on v4 ill's
10509 			 * intenally and we come here.
10510 			 */
10511 			if (!checkonly && ill != NULL) {
10512 				ipif_t	*ipif;
10513 				ipif = ill->ill_ipif;
10514 
10515 				if (ipif->ipif_state_flags & IPIF_CONDEMNED) {
10516 					mutex_exit(&ill->ill_lock);
10517 					mutex_exit(&connp->conn_lock);
10518 					ill_refrele(ill);
10519 					ill = NULL;
10520 					mutex_enter(&connp->conn_lock);
10521 				} else {
10522 					connp->conn_multicast_ipif = ipif;
10523 				}
10524 			}
10525 			break;
10526 
10527 		case IP_DHCPINIT_IF:
10528 			if (connp->conn_dhcpinit_ill != NULL) {
10529 				/*
10530 				 * We've locked the conn so conn_cleanup_ill()
10531 				 * cannot clear conn_dhcpinit_ill -- so it's
10532 				 * safe to access the ill.
10533 				 */
10534 				ill_t *oill = connp->conn_dhcpinit_ill;
10535 
10536 				ASSERT(oill->ill_dhcpinit != 0);
10537 				atomic_dec_32(&oill->ill_dhcpinit);
10538 				connp->conn_dhcpinit_ill = NULL;
10539 			}
10540 
10541 			if (ill != NULL) {
10542 				connp->conn_dhcpinit_ill = ill;
10543 				atomic_inc_32(&ill->ill_dhcpinit);
10544 			}
10545 			break;
10546 		}
10547 	} else {
10548 		switch (option) {
10549 		case IPV6_BOUND_IF:
10550 			connp->conn_incoming_ill = ill;
10551 			connp->conn_outgoing_ill = ill;
10552 			connp->conn_orig_bound_ifindex = (ill == NULL) ?
10553 			    0 : ifindex;
10554 			break;
10555 
10556 		case IPV6_BOUND_PIF:
10557 			/*
10558 			 * Limit all transmit to this ill.
10559 			 * Unlike IPV6_BOUND_IF, using this option
10560 			 * prevents load spreading and failover from
10561 			 * happening when the interface is part of the
10562 			 * group. That's why we don't need to remember
10563 			 * the ifindex in orig_bound_ifindex as in
10564 			 * IPV6_BOUND_IF.
10565 			 */
10566 			connp->conn_outgoing_pill = ill;
10567 			break;
10568 
10569 		case IPV6_DONTFAILOVER_IF:
10570 			/*
10571 			 * This option is used by in.mpathd to ensure
10572 			 * that IPMP probe packets only go out on the
10573 			 * test interfaces. in.mpathd sets this option
10574 			 * on the non-failover interfaces.
10575 			 */
10576 			connp->conn_nofailover_ill = ill;
10577 			/*
10578 			 * For backward compatibility, this option
10579 			 * implicitly sets ip_multicast_ill as used in
10580 			 * IPV6_MULTICAST_IF so that ip_wput gets
10581 			 * this ill to send mcast packets.
10582 			 */
10583 			connp->conn_multicast_ill = ill;
10584 			connp->conn_orig_multicast_ifindex = (ill == NULL) ?
10585 			    0 : ifindex;
10586 			break;
10587 
10588 		case IPV6_MULTICAST_IF:
10589 			/*
10590 			 * Set conn_multicast_ill to be the IPv6 ill.
10591 			 * Set conn_multicast_ipif to be an IPv4 ipif
10592 			 * for ifindex to make IPv4 mapped addresses
10593 			 * on PF_INET6 sockets honor IPV6_MULTICAST_IF.
10594 			 * Even if no IPv6 ill exists for the ifindex
10595 			 * we need to check for an IPv4 ifindex in order
10596 			 * for this to work with mapped addresses. In that
10597 			 * case only set conn_multicast_ipif.
10598 			 */
10599 			if (!checkonly) {
10600 				if (ifindex == 0) {
10601 					connp->conn_multicast_ill = NULL;
10602 					connp->conn_orig_multicast_ifindex = 0;
10603 					connp->conn_multicast_ipif = NULL;
10604 				} else if (ill != NULL) {
10605 					connp->conn_multicast_ill = ill;
10606 					connp->conn_orig_multicast_ifindex =
10607 					    ifindex;
10608 				}
10609 			}
10610 			break;
10611 		}
10612 	}
10613 
10614 	if (ill != NULL) {
10615 		mutex_exit(&ill->ill_lock);
10616 		mutex_exit(&connp->conn_lock);
10617 		ill_refrele(ill);
10618 		return (0);
10619 	}
10620 	mutex_exit(&connp->conn_lock);
10621 	/*
10622 	 * We succeeded in clearing the option (ifindex == 0) or failed to
10623 	 * locate the ill and could not set the option (ifindex != 0)
10624 	 */
10625 	return (ifindex == 0 ? 0 : EINVAL);
10626 }
10627 
10628 /* This routine sets socket options. */
10629 /* ARGSUSED */
10630 int
10631 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10632     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10633     void *dummy, cred_t *cr, mblk_t *first_mp)
10634 {
10635 	int		*i1 = (int *)invalp;
10636 	conn_t		*connp = Q_TO_CONN(q);
10637 	int		error = 0;
10638 	boolean_t	checkonly;
10639 	ire_t		*ire;
10640 	boolean_t	found;
10641 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
10642 
10643 	switch (optset_context) {
10644 
10645 	case SETFN_OPTCOM_CHECKONLY:
10646 		checkonly = B_TRUE;
10647 		/*
10648 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10649 		 * inlen != 0 implies value supplied and
10650 		 * 	we have to "pretend" to set it.
10651 		 * inlen == 0 implies that there is no
10652 		 * 	value part in T_CHECK request and just validation
10653 		 * done elsewhere should be enough, we just return here.
10654 		 */
10655 		if (inlen == 0) {
10656 			*outlenp = 0;
10657 			return (0);
10658 		}
10659 		break;
10660 	case SETFN_OPTCOM_NEGOTIATE:
10661 	case SETFN_UD_NEGOTIATE:
10662 	case SETFN_CONN_NEGOTIATE:
10663 		checkonly = B_FALSE;
10664 		break;
10665 	default:
10666 		/*
10667 		 * We should never get here
10668 		 */
10669 		*outlenp = 0;
10670 		return (EINVAL);
10671 	}
10672 
10673 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10674 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10675 
10676 	/*
10677 	 * For fixed length options, no sanity check
10678 	 * of passed in length is done. It is assumed *_optcom_req()
10679 	 * routines do the right thing.
10680 	 */
10681 
10682 	switch (level) {
10683 	case SOL_SOCKET:
10684 		/*
10685 		 * conn_lock protects the bitfields, and is used to
10686 		 * set the fields atomically.
10687 		 */
10688 		switch (name) {
10689 		case SO_BROADCAST:
10690 			if (!checkonly) {
10691 				/* TODO: use value someplace? */
10692 				mutex_enter(&connp->conn_lock);
10693 				connp->conn_broadcast = *i1 ? 1 : 0;
10694 				mutex_exit(&connp->conn_lock);
10695 			}
10696 			break;	/* goto sizeof (int) option return */
10697 		case SO_USELOOPBACK:
10698 			if (!checkonly) {
10699 				/* TODO: use value someplace? */
10700 				mutex_enter(&connp->conn_lock);
10701 				connp->conn_loopback = *i1 ? 1 : 0;
10702 				mutex_exit(&connp->conn_lock);
10703 			}
10704 			break;	/* goto sizeof (int) option return */
10705 		case SO_DONTROUTE:
10706 			if (!checkonly) {
10707 				mutex_enter(&connp->conn_lock);
10708 				connp->conn_dontroute = *i1 ? 1 : 0;
10709 				mutex_exit(&connp->conn_lock);
10710 			}
10711 			break;	/* goto sizeof (int) option return */
10712 		case SO_REUSEADDR:
10713 			if (!checkonly) {
10714 				mutex_enter(&connp->conn_lock);
10715 				connp->conn_reuseaddr = *i1 ? 1 : 0;
10716 				mutex_exit(&connp->conn_lock);
10717 			}
10718 			break;	/* goto sizeof (int) option return */
10719 		case SO_PROTOTYPE:
10720 			if (!checkonly) {
10721 				mutex_enter(&connp->conn_lock);
10722 				connp->conn_proto = *i1;
10723 				mutex_exit(&connp->conn_lock);
10724 			}
10725 			break;	/* goto sizeof (int) option return */
10726 		case SO_ALLZONES:
10727 			if (!checkonly) {
10728 				mutex_enter(&connp->conn_lock);
10729 				if (IPCL_IS_BOUND(connp)) {
10730 					mutex_exit(&connp->conn_lock);
10731 					return (EINVAL);
10732 				}
10733 				connp->conn_allzones = *i1 != 0 ? 1 : 0;
10734 				mutex_exit(&connp->conn_lock);
10735 			}
10736 			break;	/* goto sizeof (int) option return */
10737 		case SO_ANON_MLP:
10738 			if (!checkonly) {
10739 				mutex_enter(&connp->conn_lock);
10740 				connp->conn_anon_mlp = *i1 != 0 ? 1 : 0;
10741 				mutex_exit(&connp->conn_lock);
10742 			}
10743 			break;	/* goto sizeof (int) option return */
10744 		case SO_MAC_EXEMPT:
10745 			if (secpolicy_net_mac_aware(cr) != 0 ||
10746 			    IPCL_IS_BOUND(connp))
10747 				return (EACCES);
10748 			if (!checkonly) {
10749 				mutex_enter(&connp->conn_lock);
10750 				connp->conn_mac_exempt = *i1 != 0 ? 1 : 0;
10751 				mutex_exit(&connp->conn_lock);
10752 			}
10753 			break;	/* goto sizeof (int) option return */
10754 		default:
10755 			/*
10756 			 * "soft" error (negative)
10757 			 * option not handled at this level
10758 			 * Note: Do not modify *outlenp
10759 			 */
10760 			return (-EINVAL);
10761 		}
10762 		break;
10763 	case IPPROTO_IP:
10764 		switch (name) {
10765 		case IP_NEXTHOP:
10766 			if (secpolicy_ip_config(cr, B_FALSE) != 0)
10767 				return (EPERM);
10768 			/* FALLTHRU */
10769 		case IP_MULTICAST_IF:
10770 		case IP_DONTFAILOVER_IF: {
10771 			ipaddr_t addr = *i1;
10772 
10773 			error = ip_opt_set_ipif(connp, addr, checkonly, name,
10774 			    first_mp);
10775 			if (error != 0)
10776 				return (error);
10777 			break;	/* goto sizeof (int) option return */
10778 		}
10779 
10780 		case IP_MULTICAST_TTL:
10781 			/* Recorded in transport above IP */
10782 			*outvalp = *invalp;
10783 			*outlenp = sizeof (uchar_t);
10784 			return (0);
10785 		case IP_MULTICAST_LOOP:
10786 			if (!checkonly) {
10787 				mutex_enter(&connp->conn_lock);
10788 				connp->conn_multicast_loop = *invalp ? 1 : 0;
10789 				mutex_exit(&connp->conn_lock);
10790 			}
10791 			*outvalp = *invalp;
10792 			*outlenp = sizeof (uchar_t);
10793 			return (0);
10794 		case IP_ADD_MEMBERSHIP:
10795 		case MCAST_JOIN_GROUP:
10796 		case IP_DROP_MEMBERSHIP:
10797 		case MCAST_LEAVE_GROUP: {
10798 			struct ip_mreq *mreqp;
10799 			struct group_req *greqp;
10800 			ire_t *ire;
10801 			boolean_t done = B_FALSE;
10802 			ipaddr_t group, ifaddr;
10803 			struct sockaddr_in *sin;
10804 			uint32_t *ifindexp;
10805 			boolean_t mcast_opt = B_TRUE;
10806 			mcast_record_t fmode;
10807 			int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
10808 			    uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
10809 
10810 			switch (name) {
10811 			case IP_ADD_MEMBERSHIP:
10812 				mcast_opt = B_FALSE;
10813 				/* FALLTHRU */
10814 			case MCAST_JOIN_GROUP:
10815 				fmode = MODE_IS_EXCLUDE;
10816 				optfn = ip_opt_add_group;
10817 				break;
10818 
10819 			case IP_DROP_MEMBERSHIP:
10820 				mcast_opt = B_FALSE;
10821 				/* FALLTHRU */
10822 			case MCAST_LEAVE_GROUP:
10823 				fmode = MODE_IS_INCLUDE;
10824 				optfn = ip_opt_delete_group;
10825 				break;
10826 			}
10827 
10828 			if (mcast_opt) {
10829 				greqp = (struct group_req *)i1;
10830 				sin = (struct sockaddr_in *)&greqp->gr_group;
10831 				if (sin->sin_family != AF_INET) {
10832 					*outlenp = 0;
10833 					return (ENOPROTOOPT);
10834 				}
10835 				group = (ipaddr_t)sin->sin_addr.s_addr;
10836 				ifaddr = INADDR_ANY;
10837 				ifindexp = &greqp->gr_interface;
10838 			} else {
10839 				mreqp = (struct ip_mreq *)i1;
10840 				group = (ipaddr_t)mreqp->imr_multiaddr.s_addr;
10841 				ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr;
10842 				ifindexp = NULL;
10843 			}
10844 
10845 			/*
10846 			 * In the multirouting case, we need to replicate
10847 			 * the request on all interfaces that will take part
10848 			 * in replication.  We do so because multirouting is
10849 			 * reflective, thus we will probably receive multi-
10850 			 * casts on those interfaces.
10851 			 * The ip_multirt_apply_membership() succeeds if the
10852 			 * operation succeeds on at least one interface.
10853 			 */
10854 			ire = ire_ftable_lookup(group, IP_HOST_MASK, 0,
10855 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
10856 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
10857 			if (ire != NULL) {
10858 				if (ire->ire_flags & RTF_MULTIRT) {
10859 					error = ip_multirt_apply_membership(
10860 					    optfn, ire, connp, checkonly, group,
10861 					    fmode, INADDR_ANY, first_mp);
10862 					done = B_TRUE;
10863 				}
10864 				ire_refrele(ire);
10865 			}
10866 			if (!done) {
10867 				error = optfn(connp, checkonly, group, ifaddr,
10868 				    ifindexp, fmode, INADDR_ANY, first_mp);
10869 			}
10870 			if (error) {
10871 				/*
10872 				 * EINPROGRESS is a soft error, needs retry
10873 				 * so don't make *outlenp zero.
10874 				 */
10875 				if (error != EINPROGRESS)
10876 					*outlenp = 0;
10877 				return (error);
10878 			}
10879 			/* OK return - copy input buffer into output buffer */
10880 			if (invalp != outvalp) {
10881 				/* don't trust bcopy for identical src/dst */
10882 				bcopy(invalp, outvalp, inlen);
10883 			}
10884 			*outlenp = inlen;
10885 			return (0);
10886 		}
10887 		case IP_BLOCK_SOURCE:
10888 		case IP_UNBLOCK_SOURCE:
10889 		case IP_ADD_SOURCE_MEMBERSHIP:
10890 		case IP_DROP_SOURCE_MEMBERSHIP:
10891 		case MCAST_BLOCK_SOURCE:
10892 		case MCAST_UNBLOCK_SOURCE:
10893 		case MCAST_JOIN_SOURCE_GROUP:
10894 		case MCAST_LEAVE_SOURCE_GROUP: {
10895 			struct ip_mreq_source *imreqp;
10896 			struct group_source_req *gsreqp;
10897 			in_addr_t grp, src, ifaddr = INADDR_ANY;
10898 			uint32_t ifindex = 0;
10899 			mcast_record_t fmode;
10900 			struct sockaddr_in *sin;
10901 			ire_t *ire;
10902 			boolean_t mcast_opt = B_TRUE, done = B_FALSE;
10903 			int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
10904 			    uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
10905 
10906 			switch (name) {
10907 			case IP_BLOCK_SOURCE:
10908 				mcast_opt = B_FALSE;
10909 				/* FALLTHRU */
10910 			case MCAST_BLOCK_SOURCE:
10911 				fmode = MODE_IS_EXCLUDE;
10912 				optfn = ip_opt_add_group;
10913 				break;
10914 
10915 			case IP_UNBLOCK_SOURCE:
10916 				mcast_opt = B_FALSE;
10917 				/* FALLTHRU */
10918 			case MCAST_UNBLOCK_SOURCE:
10919 				fmode = MODE_IS_EXCLUDE;
10920 				optfn = ip_opt_delete_group;
10921 				break;
10922 
10923 			case IP_ADD_SOURCE_MEMBERSHIP:
10924 				mcast_opt = B_FALSE;
10925 				/* FALLTHRU */
10926 			case MCAST_JOIN_SOURCE_GROUP:
10927 				fmode = MODE_IS_INCLUDE;
10928 				optfn = ip_opt_add_group;
10929 				break;
10930 
10931 			case IP_DROP_SOURCE_MEMBERSHIP:
10932 				mcast_opt = B_FALSE;
10933 				/* FALLTHRU */
10934 			case MCAST_LEAVE_SOURCE_GROUP:
10935 				fmode = MODE_IS_INCLUDE;
10936 				optfn = ip_opt_delete_group;
10937 				break;
10938 			}
10939 
10940 			if (mcast_opt) {
10941 				gsreqp = (struct group_source_req *)i1;
10942 				if (gsreqp->gsr_group.ss_family != AF_INET) {
10943 					*outlenp = 0;
10944 					return (ENOPROTOOPT);
10945 				}
10946 				sin = (struct sockaddr_in *)&gsreqp->gsr_group;
10947 				grp = (ipaddr_t)sin->sin_addr.s_addr;
10948 				sin = (struct sockaddr_in *)&gsreqp->gsr_source;
10949 				src = (ipaddr_t)sin->sin_addr.s_addr;
10950 				ifindex = gsreqp->gsr_interface;
10951 			} else {
10952 				imreqp = (struct ip_mreq_source *)i1;
10953 				grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr;
10954 				src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr;
10955 				ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
10956 			}
10957 
10958 			/*
10959 			 * In the multirouting case, we need to replicate
10960 			 * the request as noted in the mcast cases above.
10961 			 */
10962 			ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0,
10963 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
10964 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
10965 			if (ire != NULL) {
10966 				if (ire->ire_flags & RTF_MULTIRT) {
10967 					error = ip_multirt_apply_membership(
10968 					    optfn, ire, connp, checkonly, grp,
10969 					    fmode, src, first_mp);
10970 					done = B_TRUE;
10971 				}
10972 				ire_refrele(ire);
10973 			}
10974 			if (!done) {
10975 				error = optfn(connp, checkonly, grp, ifaddr,
10976 				    &ifindex, fmode, src, first_mp);
10977 			}
10978 			if (error != 0) {
10979 				/*
10980 				 * EINPROGRESS is a soft error, needs retry
10981 				 * so don't make *outlenp zero.
10982 				 */
10983 				if (error != EINPROGRESS)
10984 					*outlenp = 0;
10985 				return (error);
10986 			}
10987 			/* OK return - copy input buffer into output buffer */
10988 			if (invalp != outvalp) {
10989 				bcopy(invalp, outvalp, inlen);
10990 			}
10991 			*outlenp = inlen;
10992 			return (0);
10993 		}
10994 		case IP_SEC_OPT:
10995 			error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
10996 			if (error != 0) {
10997 				*outlenp = 0;
10998 				return (error);
10999 			}
11000 			break;
11001 		case IP_HDRINCL:
11002 		case IP_OPTIONS:
11003 		case T_IP_OPTIONS:
11004 		case IP_TOS:
11005 		case T_IP_TOS:
11006 		case IP_TTL:
11007 		case IP_RECVDSTADDR:
11008 		case IP_RECVOPTS:
11009 			/* OK return - copy input buffer into output buffer */
11010 			if (invalp != outvalp) {
11011 				/* don't trust bcopy for identical src/dst */
11012 				bcopy(invalp, outvalp, inlen);
11013 			}
11014 			*outlenp = inlen;
11015 			return (0);
11016 		case IP_RECVIF:
11017 			/* Retrieve the inbound interface index */
11018 			if (!checkonly) {
11019 				mutex_enter(&connp->conn_lock);
11020 				connp->conn_recvif = *i1 ? 1 : 0;
11021 				mutex_exit(&connp->conn_lock);
11022 			}
11023 			break;	/* goto sizeof (int) option return */
11024 		case IP_RECVPKTINFO:
11025 			if (!checkonly) {
11026 				mutex_enter(&connp->conn_lock);
11027 				connp->conn_ip_recvpktinfo = *i1 ? 1 : 0;
11028 				mutex_exit(&connp->conn_lock);
11029 			}
11030 			break;	/* goto sizeof (int) option return */
11031 		case IP_RECVSLLA:
11032 			/* Retrieve the source link layer address */
11033 			if (!checkonly) {
11034 				mutex_enter(&connp->conn_lock);
11035 				connp->conn_recvslla = *i1 ? 1 : 0;
11036 				mutex_exit(&connp->conn_lock);
11037 			}
11038 			break;	/* goto sizeof (int) option return */
11039 		case MRT_INIT:
11040 		case MRT_DONE:
11041 		case MRT_ADD_VIF:
11042 		case MRT_DEL_VIF:
11043 		case MRT_ADD_MFC:
11044 		case MRT_DEL_MFC:
11045 		case MRT_ASSERT:
11046 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
11047 				*outlenp = 0;
11048 				return (error);
11049 			}
11050 			error = ip_mrouter_set((int)name, q, checkonly,
11051 			    (uchar_t *)invalp, inlen, first_mp);
11052 			if (error) {
11053 				*outlenp = 0;
11054 				return (error);
11055 			}
11056 			/* OK return - copy input buffer into output buffer */
11057 			if (invalp != outvalp) {
11058 				/* don't trust bcopy for identical src/dst */
11059 				bcopy(invalp, outvalp, inlen);
11060 			}
11061 			*outlenp = inlen;
11062 			return (0);
11063 		case IP_BOUND_IF:
11064 		case IP_DHCPINIT_IF:
11065 			error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
11066 			    level, name, first_mp);
11067 			if (error != 0)
11068 				return (error);
11069 			break; 		/* goto sizeof (int) option return */
11070 
11071 		case IP_UNSPEC_SRC:
11072 			/* Allow sending with a zero source address */
11073 			if (!checkonly) {
11074 				mutex_enter(&connp->conn_lock);
11075 				connp->conn_unspec_src = *i1 ? 1 : 0;
11076 				mutex_exit(&connp->conn_lock);
11077 			}
11078 			break;	/* goto sizeof (int) option return */
11079 		default:
11080 			/*
11081 			 * "soft" error (negative)
11082 			 * option not handled at this level
11083 			 * Note: Do not modify *outlenp
11084 			 */
11085 			return (-EINVAL);
11086 		}
11087 		break;
11088 	case IPPROTO_IPV6:
11089 		switch (name) {
11090 		case IPV6_BOUND_IF:
11091 		case IPV6_BOUND_PIF:
11092 		case IPV6_DONTFAILOVER_IF:
11093 			error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
11094 			    level, name, first_mp);
11095 			if (error != 0)
11096 				return (error);
11097 			break; 		/* goto sizeof (int) option return */
11098 
11099 		case IPV6_MULTICAST_IF:
11100 			/*
11101 			 * The only possible errors are EINPROGRESS and
11102 			 * EINVAL. EINPROGRESS will be restarted and is not
11103 			 * a hard error. We call this option on both V4 and V6
11104 			 * If both return EINVAL, then this call returns
11105 			 * EINVAL. If at least one of them succeeds we
11106 			 * return success.
11107 			 */
11108 			found = B_FALSE;
11109 			error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
11110 			    level, name, first_mp);
11111 			if (error == EINPROGRESS)
11112 				return (error);
11113 			if (error == 0)
11114 				found = B_TRUE;
11115 			error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
11116 			    IPPROTO_IP, IP_MULTICAST_IF, first_mp);
11117 			if (error == 0)
11118 				found = B_TRUE;
11119 			if (!found)
11120 				return (error);
11121 			break; 		/* goto sizeof (int) option return */
11122 
11123 		case IPV6_MULTICAST_HOPS:
11124 			/* Recorded in transport above IP */
11125 			break;	/* goto sizeof (int) option return */
11126 		case IPV6_MULTICAST_LOOP:
11127 			if (!checkonly) {
11128 				mutex_enter(&connp->conn_lock);
11129 				connp->conn_multicast_loop = *i1;
11130 				mutex_exit(&connp->conn_lock);
11131 			}
11132 			break;	/* goto sizeof (int) option return */
11133 		case IPV6_JOIN_GROUP:
11134 		case MCAST_JOIN_GROUP:
11135 		case IPV6_LEAVE_GROUP:
11136 		case MCAST_LEAVE_GROUP: {
11137 			struct ipv6_mreq *ip_mreqp;
11138 			struct group_req *greqp;
11139 			ire_t *ire;
11140 			boolean_t done = B_FALSE;
11141 			in6_addr_t groupv6;
11142 			uint32_t ifindex;
11143 			boolean_t mcast_opt = B_TRUE;
11144 			mcast_record_t fmode;
11145 			int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
11146 			    int, mcast_record_t, const in6_addr_t *, mblk_t *);
11147 
11148 			switch (name) {
11149 			case IPV6_JOIN_GROUP:
11150 				mcast_opt = B_FALSE;
11151 				/* FALLTHRU */
11152 			case MCAST_JOIN_GROUP:
11153 				fmode = MODE_IS_EXCLUDE;
11154 				optfn = ip_opt_add_group_v6;
11155 				break;
11156 
11157 			case IPV6_LEAVE_GROUP:
11158 				mcast_opt = B_FALSE;
11159 				/* FALLTHRU */
11160 			case MCAST_LEAVE_GROUP:
11161 				fmode = MODE_IS_INCLUDE;
11162 				optfn = ip_opt_delete_group_v6;
11163 				break;
11164 			}
11165 
11166 			if (mcast_opt) {
11167 				struct sockaddr_in *sin;
11168 				struct sockaddr_in6 *sin6;
11169 				greqp = (struct group_req *)i1;
11170 				if (greqp->gr_group.ss_family == AF_INET) {
11171 					sin = (struct sockaddr_in *)
11172 					    &(greqp->gr_group);
11173 					IN6_INADDR_TO_V4MAPPED(&sin->sin_addr,
11174 					    &groupv6);
11175 				} else {
11176 					sin6 = (struct sockaddr_in6 *)
11177 					    &(greqp->gr_group);
11178 					groupv6 = sin6->sin6_addr;
11179 				}
11180 				ifindex = greqp->gr_interface;
11181 			} else {
11182 				ip_mreqp = (struct ipv6_mreq *)i1;
11183 				groupv6 = ip_mreqp->ipv6mr_multiaddr;
11184 				ifindex = ip_mreqp->ipv6mr_interface;
11185 			}
11186 			/*
11187 			 * In the multirouting case, we need to replicate
11188 			 * the request on all interfaces that will take part
11189 			 * in replication.  We do so because multirouting is
11190 			 * reflective, thus we will probably receive multi-
11191 			 * casts on those interfaces.
11192 			 * The ip_multirt_apply_membership_v6() succeeds if
11193 			 * the operation succeeds on at least one interface.
11194 			 */
11195 			ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0,
11196 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
11197 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
11198 			if (ire != NULL) {
11199 				if (ire->ire_flags & RTF_MULTIRT) {
11200 					error = ip_multirt_apply_membership_v6(
11201 					    optfn, ire, connp, checkonly,
11202 					    &groupv6, fmode, &ipv6_all_zeros,
11203 					    first_mp);
11204 					done = B_TRUE;
11205 				}
11206 				ire_refrele(ire);
11207 			}
11208 			if (!done) {
11209 				error = optfn(connp, checkonly, &groupv6,
11210 				    ifindex, fmode, &ipv6_all_zeros, first_mp);
11211 			}
11212 			if (error) {
11213 				/*
11214 				 * EINPROGRESS is a soft error, needs retry
11215 				 * so don't make *outlenp zero.
11216 				 */
11217 				if (error != EINPROGRESS)
11218 					*outlenp = 0;
11219 				return (error);
11220 			}
11221 			/* OK return - copy input buffer into output buffer */
11222 			if (invalp != outvalp) {
11223 				/* don't trust bcopy for identical src/dst */
11224 				bcopy(invalp, outvalp, inlen);
11225 			}
11226 			*outlenp = inlen;
11227 			return (0);
11228 		}
11229 		case MCAST_BLOCK_SOURCE:
11230 		case MCAST_UNBLOCK_SOURCE:
11231 		case MCAST_JOIN_SOURCE_GROUP:
11232 		case MCAST_LEAVE_SOURCE_GROUP: {
11233 			struct group_source_req *gsreqp;
11234 			in6_addr_t v6grp, v6src;
11235 			uint32_t ifindex;
11236 			mcast_record_t fmode;
11237 			ire_t *ire;
11238 			boolean_t done = B_FALSE;
11239 			int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
11240 			    int, mcast_record_t, const in6_addr_t *, mblk_t *);
11241 
11242 			switch (name) {
11243 			case MCAST_BLOCK_SOURCE:
11244 				fmode = MODE_IS_EXCLUDE;
11245 				optfn = ip_opt_add_group_v6;
11246 				break;
11247 			case MCAST_UNBLOCK_SOURCE:
11248 				fmode = MODE_IS_EXCLUDE;
11249 				optfn = ip_opt_delete_group_v6;
11250 				break;
11251 			case MCAST_JOIN_SOURCE_GROUP:
11252 				fmode = MODE_IS_INCLUDE;
11253 				optfn = ip_opt_add_group_v6;
11254 				break;
11255 			case MCAST_LEAVE_SOURCE_GROUP:
11256 				fmode = MODE_IS_INCLUDE;
11257 				optfn = ip_opt_delete_group_v6;
11258 				break;
11259 			}
11260 
11261 			gsreqp = (struct group_source_req *)i1;
11262 			ifindex = gsreqp->gsr_interface;
11263 			if (gsreqp->gsr_group.ss_family == AF_INET) {
11264 				struct sockaddr_in *s;
11265 				s = (struct sockaddr_in *)&gsreqp->gsr_group;
11266 				IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp);
11267 				s = (struct sockaddr_in *)&gsreqp->gsr_source;
11268 				IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
11269 			} else {
11270 				struct sockaddr_in6 *s6;
11271 				s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
11272 				v6grp = s6->sin6_addr;
11273 				s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
11274 				v6src = s6->sin6_addr;
11275 			}
11276 
11277 			/*
11278 			 * In the multirouting case, we need to replicate
11279 			 * the request as noted in the mcast cases above.
11280 			 */
11281 			ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0,
11282 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
11283 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
11284 			if (ire != NULL) {
11285 				if (ire->ire_flags & RTF_MULTIRT) {
11286 					error = ip_multirt_apply_membership_v6(
11287 					    optfn, ire, connp, checkonly,
11288 					    &v6grp, fmode, &v6src, first_mp);
11289 					done = B_TRUE;
11290 				}
11291 				ire_refrele(ire);
11292 			}
11293 			if (!done) {
11294 				error = optfn(connp, checkonly, &v6grp,
11295 				    ifindex, fmode, &v6src, first_mp);
11296 			}
11297 			if (error != 0) {
11298 				/*
11299 				 * EINPROGRESS is a soft error, needs retry
11300 				 * so don't make *outlenp zero.
11301 				 */
11302 				if (error != EINPROGRESS)
11303 					*outlenp = 0;
11304 				return (error);
11305 			}
11306 			/* OK return - copy input buffer into output buffer */
11307 			if (invalp != outvalp) {
11308 				bcopy(invalp, outvalp, inlen);
11309 			}
11310 			*outlenp = inlen;
11311 			return (0);
11312 		}
11313 		case IPV6_UNICAST_HOPS:
11314 			/* Recorded in transport above IP */
11315 			break;	/* goto sizeof (int) option return */
11316 		case IPV6_UNSPEC_SRC:
11317 			/* Allow sending with a zero source address */
11318 			if (!checkonly) {
11319 				mutex_enter(&connp->conn_lock);
11320 				connp->conn_unspec_src = *i1 ? 1 : 0;
11321 				mutex_exit(&connp->conn_lock);
11322 			}
11323 			break;	/* goto sizeof (int) option return */
11324 		case IPV6_RECVPKTINFO:
11325 			if (!checkonly) {
11326 				mutex_enter(&connp->conn_lock);
11327 				connp->conn_ip_recvpktinfo = *i1 ? 1 : 0;
11328 				mutex_exit(&connp->conn_lock);
11329 			}
11330 			break;	/* goto sizeof (int) option return */
11331 		case IPV6_RECVTCLASS:
11332 			if (!checkonly) {
11333 				if (*i1 < 0 || *i1 > 1) {
11334 					return (EINVAL);
11335 				}
11336 				mutex_enter(&connp->conn_lock);
11337 				connp->conn_ipv6_recvtclass = *i1;
11338 				mutex_exit(&connp->conn_lock);
11339 			}
11340 			break;
11341 		case IPV6_RECVPATHMTU:
11342 			if (!checkonly) {
11343 				if (*i1 < 0 || *i1 > 1) {
11344 					return (EINVAL);
11345 				}
11346 				mutex_enter(&connp->conn_lock);
11347 				connp->conn_ipv6_recvpathmtu = *i1;
11348 				mutex_exit(&connp->conn_lock);
11349 			}
11350 			break;
11351 		case IPV6_RECVHOPLIMIT:
11352 			if (!checkonly) {
11353 				mutex_enter(&connp->conn_lock);
11354 				connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0;
11355 				mutex_exit(&connp->conn_lock);
11356 			}
11357 			break;	/* goto sizeof (int) option return */
11358 		case IPV6_RECVHOPOPTS:
11359 			if (!checkonly) {
11360 				mutex_enter(&connp->conn_lock);
11361 				connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0;
11362 				mutex_exit(&connp->conn_lock);
11363 			}
11364 			break;	/* goto sizeof (int) option return */
11365 		case IPV6_RECVDSTOPTS:
11366 			if (!checkonly) {
11367 				mutex_enter(&connp->conn_lock);
11368 				connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0;
11369 				mutex_exit(&connp->conn_lock);
11370 			}
11371 			break;	/* goto sizeof (int) option return */
11372 		case IPV6_RECVRTHDR:
11373 			if (!checkonly) {
11374 				mutex_enter(&connp->conn_lock);
11375 				connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0;
11376 				mutex_exit(&connp->conn_lock);
11377 			}
11378 			break;	/* goto sizeof (int) option return */
11379 		case IPV6_RECVRTHDRDSTOPTS:
11380 			if (!checkonly) {
11381 				mutex_enter(&connp->conn_lock);
11382 				connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0;
11383 				mutex_exit(&connp->conn_lock);
11384 			}
11385 			break;	/* goto sizeof (int) option return */
11386 		case IPV6_PKTINFO:
11387 			if (inlen == 0)
11388 				return (-EINVAL);	/* clearing option */
11389 			error = ip6_set_pktinfo(cr, connp,
11390 			    (struct in6_pktinfo *)invalp, first_mp);
11391 			if (error != 0)
11392 				*outlenp = 0;
11393 			else
11394 				*outlenp = inlen;
11395 			return (error);
11396 		case IPV6_NEXTHOP: {
11397 			struct sockaddr_in6 *sin6;
11398 
11399 			/* Verify that the nexthop is reachable */
11400 			if (inlen == 0)
11401 				return (-EINVAL);	/* clearing option */
11402 
11403 			sin6 = (struct sockaddr_in6 *)invalp;
11404 			ire = ire_route_lookup_v6(&sin6->sin6_addr,
11405 			    0, 0, 0, NULL, NULL, connp->conn_zoneid,
11406 			    NULL, MATCH_IRE_DEFAULT, ipst);
11407 
11408 			if (ire == NULL) {
11409 				*outlenp = 0;
11410 				return (EHOSTUNREACH);
11411 			}
11412 			ire_refrele(ire);
11413 			return (-EINVAL);
11414 		}
11415 		case IPV6_SEC_OPT:
11416 			error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
11417 			if (error != 0) {
11418 				*outlenp = 0;
11419 				return (error);
11420 			}
11421 			break;
11422 		case IPV6_SRC_PREFERENCES: {
11423 			/*
11424 			 * This is implemented strictly in the ip module
11425 			 * (here and in tcp_opt_*() to accomodate tcp
11426 			 * sockets).  Modules above ip pass this option
11427 			 * down here since ip is the only one that needs to
11428 			 * be aware of source address preferences.
11429 			 *
11430 			 * This socket option only affects connected
11431 			 * sockets that haven't already bound to a specific
11432 			 * IPv6 address.  In other words, sockets that
11433 			 * don't call bind() with an address other than the
11434 			 * unspecified address and that call connect().
11435 			 * ip_bind_connected_v6() passes these preferences
11436 			 * to the ipif_select_source_v6() function.
11437 			 */
11438 			if (inlen != sizeof (uint32_t))
11439 				return (EINVAL);
11440 			error = ip6_set_src_preferences(connp,
11441 			    *(uint32_t *)invalp);
11442 			if (error != 0) {
11443 				*outlenp = 0;
11444 				return (error);
11445 			} else {
11446 				*outlenp = sizeof (uint32_t);
11447 			}
11448 			break;
11449 		}
11450 		case IPV6_V6ONLY:
11451 			if (*i1 < 0 || *i1 > 1) {
11452 				return (EINVAL);
11453 			}
11454 			mutex_enter(&connp->conn_lock);
11455 			connp->conn_ipv6_v6only = *i1;
11456 			mutex_exit(&connp->conn_lock);
11457 			break;
11458 		default:
11459 			return (-EINVAL);
11460 		}
11461 		break;
11462 	default:
11463 		/*
11464 		 * "soft" error (negative)
11465 		 * option not handled at this level
11466 		 * Note: Do not modify *outlenp
11467 		 */
11468 		return (-EINVAL);
11469 	}
11470 	/*
11471 	 * Common case of return from an option that is sizeof (int)
11472 	 */
11473 	*(int *)outvalp = *i1;
11474 	*outlenp = sizeof (int);
11475 	return (0);
11476 }
11477 
11478 /*
11479  * This routine gets default values of certain options whose default
11480  * values are maintained by protocol specific code
11481  */
11482 /* ARGSUSED */
11483 int
11484 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
11485 {
11486 	int *i1 = (int *)ptr;
11487 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
11488 
11489 	switch (level) {
11490 	case IPPROTO_IP:
11491 		switch (name) {
11492 		case IP_MULTICAST_TTL:
11493 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
11494 			return (sizeof (uchar_t));
11495 		case IP_MULTICAST_LOOP:
11496 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
11497 			return (sizeof (uchar_t));
11498 		default:
11499 			return (-1);
11500 		}
11501 	case IPPROTO_IPV6:
11502 		switch (name) {
11503 		case IPV6_UNICAST_HOPS:
11504 			*i1 = ipst->ips_ipv6_def_hops;
11505 			return (sizeof (int));
11506 		case IPV6_MULTICAST_HOPS:
11507 			*i1 = IP_DEFAULT_MULTICAST_TTL;
11508 			return (sizeof (int));
11509 		case IPV6_MULTICAST_LOOP:
11510 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
11511 			return (sizeof (int));
11512 		case IPV6_V6ONLY:
11513 			*i1 = 1;
11514 			return (sizeof (int));
11515 		default:
11516 			return (-1);
11517 		}
11518 	default:
11519 		return (-1);
11520 	}
11521 	/* NOTREACHED */
11522 }
11523 
11524 /*
11525  * Given a destination address and a pointer to where to put the information
11526  * this routine fills in the mtuinfo.
11527  */
11528 int
11529 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port,
11530     struct ip6_mtuinfo *mtuinfo, netstack_t *ns)
11531 {
11532 	ire_t *ire;
11533 	ip_stack_t	*ipst = ns->netstack_ip;
11534 
11535 	if (IN6_IS_ADDR_UNSPECIFIED(in6))
11536 		return (-1);
11537 
11538 	bzero(mtuinfo, sizeof (*mtuinfo));
11539 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
11540 	mtuinfo->ip6m_addr.sin6_port = port;
11541 	mtuinfo->ip6m_addr.sin6_addr = *in6;
11542 
11543 	ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst);
11544 	if (ire != NULL) {
11545 		mtuinfo->ip6m_mtu = ire->ire_max_frag;
11546 		ire_refrele(ire);
11547 	} else {
11548 		mtuinfo->ip6m_mtu = IPV6_MIN_MTU;
11549 	}
11550 	return (sizeof (struct ip6_mtuinfo));
11551 }
11552 
11553 /*
11554  * This routine gets socket options.  For MRT_VERSION and MRT_ASSERT, error
11555  * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and
11556  * isn't.  This doesn't matter as the error checking is done properly for the
11557  * other MRT options coming in through ip_opt_set.
11558  */
11559 int
11560 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
11561 {
11562 	conn_t		*connp = Q_TO_CONN(q);
11563 	ipsec_req_t	*req = (ipsec_req_t *)ptr;
11564 
11565 	switch (level) {
11566 	case IPPROTO_IP:
11567 		switch (name) {
11568 		case MRT_VERSION:
11569 		case MRT_ASSERT:
11570 			(void) ip_mrouter_get(name, q, ptr);
11571 			return (sizeof (int));
11572 		case IP_SEC_OPT:
11573 			return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4));
11574 		case IP_NEXTHOP:
11575 			if (connp->conn_nexthop_set) {
11576 				*(ipaddr_t *)ptr = connp->conn_nexthop_v4;
11577 				return (sizeof (ipaddr_t));
11578 			} else
11579 				return (0);
11580 		case IP_RECVPKTINFO:
11581 			*(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0;
11582 			return (sizeof (int));
11583 		default:
11584 			break;
11585 		}
11586 		break;
11587 	case IPPROTO_IPV6:
11588 		switch (name) {
11589 		case IPV6_SEC_OPT:
11590 			return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6));
11591 		case IPV6_SRC_PREFERENCES: {
11592 			return (ip6_get_src_preferences(connp,
11593 			    (uint32_t *)ptr));
11594 		}
11595 		case IPV6_V6ONLY:
11596 			*(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0;
11597 			return (sizeof (int));
11598 		case IPV6_PATHMTU:
11599 			return (ip_fill_mtuinfo(&connp->conn_remv6, 0,
11600 			    (struct ip6_mtuinfo *)ptr, connp->conn_netstack));
11601 		default:
11602 			break;
11603 		}
11604 		break;
11605 	default:
11606 		break;
11607 	}
11608 	return (-1);
11609 }
11610 
11611 /* Named Dispatch routine to get a current value out of our parameter table. */
11612 /* ARGSUSED */
11613 static int
11614 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
11615 {
11616 	ipparam_t *ippa = (ipparam_t *)cp;
11617 
11618 	(void) mi_mpprintf(mp, "%d", ippa->ip_param_value);
11619 	return (0);
11620 }
11621 
11622 /* ARGSUSED */
11623 static int
11624 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
11625 {
11626 
11627 	(void) mi_mpprintf(mp, "%d", *(int *)cp);
11628 	return (0);
11629 }
11630 
11631 /*
11632  * Set ip{,6}_forwarding values.  This means walking through all of the
11633  * ill's and toggling their forwarding values.
11634  */
11635 /* ARGSUSED */
11636 static int
11637 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
11638 {
11639 	long new_value;
11640 	int *forwarding_value = (int *)cp;
11641 	ill_t *ill;
11642 	boolean_t isv6;
11643 	ill_walk_context_t ctx;
11644 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
11645 
11646 	isv6 = (forwarding_value == &ipst->ips_ipv6_forward);
11647 
11648 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11649 	    new_value < 0 || new_value > 1) {
11650 		return (EINVAL);
11651 	}
11652 
11653 	*forwarding_value = new_value;
11654 
11655 	/*
11656 	 * Regardless of the current value of ip_forwarding, set all per-ill
11657 	 * values of ip_forwarding to the value being set.
11658 	 *
11659 	 * Bring all the ill's up to date with the new global value.
11660 	 */
11661 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11662 
11663 	if (isv6)
11664 		ill = ILL_START_WALK_V6(&ctx, ipst);
11665 	else
11666 		ill = ILL_START_WALK_V4(&ctx, ipst);
11667 
11668 	for (; ill != NULL; ill = ill_next(&ctx, ill))
11669 		(void) ill_forward_set(ill, new_value != 0);
11670 
11671 	rw_exit(&ipst->ips_ill_g_lock);
11672 	return (0);
11673 }
11674 
11675 /*
11676  * Walk through the param array specified registering each element with the
11677  * Named Dispatch handler. This is called only during init. So it is ok
11678  * not to acquire any locks
11679  */
11680 static boolean_t
11681 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt,
11682     ipndp_t *ipnd, size_t ipnd_cnt)
11683 {
11684 	for (; ippa_cnt-- > 0; ippa++) {
11685 		if (ippa->ip_param_name && ippa->ip_param_name[0]) {
11686 			if (!nd_load(ndp, ippa->ip_param_name,
11687 			    ip_param_get, ip_param_set, (caddr_t)ippa)) {
11688 				nd_free(ndp);
11689 				return (B_FALSE);
11690 			}
11691 		}
11692 	}
11693 
11694 	for (; ipnd_cnt-- > 0; ipnd++) {
11695 		if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) {
11696 			if (!nd_load(ndp, ipnd->ip_ndp_name,
11697 			    ipnd->ip_ndp_getf, ipnd->ip_ndp_setf,
11698 			    ipnd->ip_ndp_data)) {
11699 				nd_free(ndp);
11700 				return (B_FALSE);
11701 			}
11702 		}
11703 	}
11704 
11705 	return (B_TRUE);
11706 }
11707 
11708 /* Named Dispatch routine to negotiate a new value for one of our parameters. */
11709 /* ARGSUSED */
11710 static int
11711 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
11712 {
11713 	long		new_value;
11714 	ipparam_t	*ippa = (ipparam_t *)cp;
11715 
11716 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11717 	    new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) {
11718 		return (EINVAL);
11719 	}
11720 	ippa->ip_param_value = new_value;
11721 	return (0);
11722 }
11723 
11724 /*
11725  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
11726  * When an ipf is passed here for the first time, if
11727  * we already have in-order fragments on the queue, we convert from the fast-
11728  * path reassembly scheme to the hard-case scheme.  From then on, additional
11729  * fragments are reassembled here.  We keep track of the start and end offsets
11730  * of each piece, and the number of holes in the chain.  When the hole count
11731  * goes to zero, we are done!
11732  *
11733  * The ipf_count will be updated to account for any mblk(s) added (pointed to
11734  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
11735  * ipfb_count and ill_frag_count by the difference of ipf_count before and
11736  * after the call to ip_reassemble().
11737  */
11738 int
11739 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
11740     size_t msg_len)
11741 {
11742 	uint_t	end;
11743 	mblk_t	*next_mp;
11744 	mblk_t	*mp1;
11745 	uint_t	offset;
11746 	boolean_t incr_dups = B_TRUE;
11747 	boolean_t offset_zero_seen = B_FALSE;
11748 	boolean_t pkt_boundary_checked = B_FALSE;
11749 
11750 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
11751 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
11752 
11753 	/* Add in byte count */
11754 	ipf->ipf_count += msg_len;
11755 	if (ipf->ipf_end) {
11756 		/*
11757 		 * We were part way through in-order reassembly, but now there
11758 		 * is a hole.  We walk through messages already queued, and
11759 		 * mark them for hard case reassembly.  We know that up till
11760 		 * now they were in order starting from offset zero.
11761 		 */
11762 		offset = 0;
11763 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
11764 			IP_REASS_SET_START(mp1, offset);
11765 			if (offset == 0) {
11766 				ASSERT(ipf->ipf_nf_hdr_len != 0);
11767 				offset = -ipf->ipf_nf_hdr_len;
11768 			}
11769 			offset += mp1->b_wptr - mp1->b_rptr;
11770 			IP_REASS_SET_END(mp1, offset);
11771 		}
11772 		/* One hole at the end. */
11773 		ipf->ipf_hole_cnt = 1;
11774 		/* Brand it as a hard case, forever. */
11775 		ipf->ipf_end = 0;
11776 	}
11777 	/* Walk through all the new pieces. */
11778 	do {
11779 		end = start + (mp->b_wptr - mp->b_rptr);
11780 		/*
11781 		 * If start is 0, decrease 'end' only for the first mblk of
11782 		 * the fragment. Otherwise 'end' can get wrong value in the
11783 		 * second pass of the loop if first mblk is exactly the
11784 		 * size of ipf_nf_hdr_len.
11785 		 */
11786 		if (start == 0 && !offset_zero_seen) {
11787 			/* First segment */
11788 			ASSERT(ipf->ipf_nf_hdr_len != 0);
11789 			end -= ipf->ipf_nf_hdr_len;
11790 			offset_zero_seen = B_TRUE;
11791 		}
11792 		next_mp = mp->b_cont;
11793 		/*
11794 		 * We are checking to see if there is any interesing data
11795 		 * to process.  If there isn't and the mblk isn't the
11796 		 * one which carries the unfragmentable header then we
11797 		 * drop it.  It's possible to have just the unfragmentable
11798 		 * header come through without any data.  That needs to be
11799 		 * saved.
11800 		 *
11801 		 * If the assert at the top of this function holds then the
11802 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
11803 		 * is infrequently traveled enough that the test is left in
11804 		 * to protect against future code changes which break that
11805 		 * invariant.
11806 		 */
11807 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
11808 			/* Empty.  Blast it. */
11809 			IP_REASS_SET_START(mp, 0);
11810 			IP_REASS_SET_END(mp, 0);
11811 			/*
11812 			 * If the ipf points to the mblk we are about to free,
11813 			 * update ipf to point to the next mblk (or NULL
11814 			 * if none).
11815 			 */
11816 			if (ipf->ipf_mp->b_cont == mp)
11817 				ipf->ipf_mp->b_cont = next_mp;
11818 			freeb(mp);
11819 			continue;
11820 		}
11821 		mp->b_cont = NULL;
11822 		IP_REASS_SET_START(mp, start);
11823 		IP_REASS_SET_END(mp, end);
11824 		if (!ipf->ipf_tail_mp) {
11825 			ipf->ipf_tail_mp = mp;
11826 			ipf->ipf_mp->b_cont = mp;
11827 			if (start == 0 || !more) {
11828 				ipf->ipf_hole_cnt = 1;
11829 				/*
11830 				 * if the first fragment comes in more than one
11831 				 * mblk, this loop will be executed for each
11832 				 * mblk. Need to adjust hole count so exiting
11833 				 * this routine will leave hole count at 1.
11834 				 */
11835 				if (next_mp)
11836 					ipf->ipf_hole_cnt++;
11837 			} else
11838 				ipf->ipf_hole_cnt = 2;
11839 			continue;
11840 		} else if (ipf->ipf_last_frag_seen && !more &&
11841 		    !pkt_boundary_checked) {
11842 			/*
11843 			 * We check datagram boundary only if this fragment
11844 			 * claims to be the last fragment and we have seen a
11845 			 * last fragment in the past too. We do this only
11846 			 * once for a given fragment.
11847 			 *
11848 			 * start cannot be 0 here as fragments with start=0
11849 			 * and MF=0 gets handled as a complete packet. These
11850 			 * fragments should not reach here.
11851 			 */
11852 
11853 			if (start + msgdsize(mp) !=
11854 			    IP_REASS_END(ipf->ipf_tail_mp)) {
11855 				/*
11856 				 * We have two fragments both of which claim
11857 				 * to be the last fragment but gives conflicting
11858 				 * information about the whole datagram size.
11859 				 * Something fishy is going on. Drop the
11860 				 * fragment and free up the reassembly list.
11861 				 */
11862 				return (IP_REASS_FAILED);
11863 			}
11864 
11865 			/*
11866 			 * We shouldn't come to this code block again for this
11867 			 * particular fragment.
11868 			 */
11869 			pkt_boundary_checked = B_TRUE;
11870 		}
11871 
11872 		/* New stuff at or beyond tail? */
11873 		offset = IP_REASS_END(ipf->ipf_tail_mp);
11874 		if (start >= offset) {
11875 			if (ipf->ipf_last_frag_seen) {
11876 				/* current fragment is beyond last fragment */
11877 				return (IP_REASS_FAILED);
11878 			}
11879 			/* Link it on end. */
11880 			ipf->ipf_tail_mp->b_cont = mp;
11881 			ipf->ipf_tail_mp = mp;
11882 			if (more) {
11883 				if (start != offset)
11884 					ipf->ipf_hole_cnt++;
11885 			} else if (start == offset && next_mp == NULL)
11886 					ipf->ipf_hole_cnt--;
11887 			continue;
11888 		}
11889 		mp1 = ipf->ipf_mp->b_cont;
11890 		offset = IP_REASS_START(mp1);
11891 		/* New stuff at the front? */
11892 		if (start < offset) {
11893 			if (start == 0) {
11894 				if (end >= offset) {
11895 					/* Nailed the hole at the begining. */
11896 					ipf->ipf_hole_cnt--;
11897 				}
11898 			} else if (end < offset) {
11899 				/*
11900 				 * A hole, stuff, and a hole where there used
11901 				 * to be just a hole.
11902 				 */
11903 				ipf->ipf_hole_cnt++;
11904 			}
11905 			mp->b_cont = mp1;
11906 			/* Check for overlap. */
11907 			while (end > offset) {
11908 				if (end < IP_REASS_END(mp1)) {
11909 					mp->b_wptr -= end - offset;
11910 					IP_REASS_SET_END(mp, offset);
11911 					BUMP_MIB(ill->ill_ip_mib,
11912 					    ipIfStatsReasmPartDups);
11913 					break;
11914 				}
11915 				/* Did we cover another hole? */
11916 				if ((mp1->b_cont &&
11917 				    IP_REASS_END(mp1) !=
11918 				    IP_REASS_START(mp1->b_cont) &&
11919 				    end >= IP_REASS_START(mp1->b_cont)) ||
11920 				    (!ipf->ipf_last_frag_seen && !more)) {
11921 					ipf->ipf_hole_cnt--;
11922 				}
11923 				/* Clip out mp1. */
11924 				if ((mp->b_cont = mp1->b_cont) == NULL) {
11925 					/*
11926 					 * After clipping out mp1, this guy
11927 					 * is now hanging off the end.
11928 					 */
11929 					ipf->ipf_tail_mp = mp;
11930 				}
11931 				IP_REASS_SET_START(mp1, 0);
11932 				IP_REASS_SET_END(mp1, 0);
11933 				/* Subtract byte count */
11934 				ipf->ipf_count -= mp1->b_datap->db_lim -
11935 				    mp1->b_datap->db_base;
11936 				freeb(mp1);
11937 				BUMP_MIB(ill->ill_ip_mib,
11938 				    ipIfStatsReasmPartDups);
11939 				mp1 = mp->b_cont;
11940 				if (!mp1)
11941 					break;
11942 				offset = IP_REASS_START(mp1);
11943 			}
11944 			ipf->ipf_mp->b_cont = mp;
11945 			continue;
11946 		}
11947 		/*
11948 		 * The new piece starts somewhere between the start of the head
11949 		 * and before the end of the tail.
11950 		 */
11951 		for (; mp1; mp1 = mp1->b_cont) {
11952 			offset = IP_REASS_END(mp1);
11953 			if (start < offset) {
11954 				if (end <= offset) {
11955 					/* Nothing new. */
11956 					IP_REASS_SET_START(mp, 0);
11957 					IP_REASS_SET_END(mp, 0);
11958 					/* Subtract byte count */
11959 					ipf->ipf_count -= mp->b_datap->db_lim -
11960 					    mp->b_datap->db_base;
11961 					if (incr_dups) {
11962 						ipf->ipf_num_dups++;
11963 						incr_dups = B_FALSE;
11964 					}
11965 					freeb(mp);
11966 					BUMP_MIB(ill->ill_ip_mib,
11967 					    ipIfStatsReasmDuplicates);
11968 					break;
11969 				}
11970 				/*
11971 				 * Trim redundant stuff off beginning of new
11972 				 * piece.
11973 				 */
11974 				IP_REASS_SET_START(mp, offset);
11975 				mp->b_rptr += offset - start;
11976 				BUMP_MIB(ill->ill_ip_mib,
11977 				    ipIfStatsReasmPartDups);
11978 				start = offset;
11979 				if (!mp1->b_cont) {
11980 					/*
11981 					 * After trimming, this guy is now
11982 					 * hanging off the end.
11983 					 */
11984 					mp1->b_cont = mp;
11985 					ipf->ipf_tail_mp = mp;
11986 					if (!more) {
11987 						ipf->ipf_hole_cnt--;
11988 					}
11989 					break;
11990 				}
11991 			}
11992 			if (start >= IP_REASS_START(mp1->b_cont))
11993 				continue;
11994 			/* Fill a hole */
11995 			if (start > offset)
11996 				ipf->ipf_hole_cnt++;
11997 			mp->b_cont = mp1->b_cont;
11998 			mp1->b_cont = mp;
11999 			mp1 = mp->b_cont;
12000 			offset = IP_REASS_START(mp1);
12001 			if (end >= offset) {
12002 				ipf->ipf_hole_cnt--;
12003 				/* Check for overlap. */
12004 				while (end > offset) {
12005 					if (end < IP_REASS_END(mp1)) {
12006 						mp->b_wptr -= end - offset;
12007 						IP_REASS_SET_END(mp, offset);
12008 						/*
12009 						 * TODO we might bump
12010 						 * this up twice if there is
12011 						 * overlap at both ends.
12012 						 */
12013 						BUMP_MIB(ill->ill_ip_mib,
12014 						    ipIfStatsReasmPartDups);
12015 						break;
12016 					}
12017 					/* Did we cover another hole? */
12018 					if ((mp1->b_cont &&
12019 					    IP_REASS_END(mp1)
12020 					    != IP_REASS_START(mp1->b_cont) &&
12021 					    end >=
12022 					    IP_REASS_START(mp1->b_cont)) ||
12023 					    (!ipf->ipf_last_frag_seen &&
12024 					    !more)) {
12025 						ipf->ipf_hole_cnt--;
12026 					}
12027 					/* Clip out mp1. */
12028 					if ((mp->b_cont = mp1->b_cont) ==
12029 					    NULL) {
12030 						/*
12031 						 * After clipping out mp1,
12032 						 * this guy is now hanging
12033 						 * off the end.
12034 						 */
12035 						ipf->ipf_tail_mp = mp;
12036 					}
12037 					IP_REASS_SET_START(mp1, 0);
12038 					IP_REASS_SET_END(mp1, 0);
12039 					/* Subtract byte count */
12040 					ipf->ipf_count -=
12041 					    mp1->b_datap->db_lim -
12042 					    mp1->b_datap->db_base;
12043 					freeb(mp1);
12044 					BUMP_MIB(ill->ill_ip_mib,
12045 					    ipIfStatsReasmPartDups);
12046 					mp1 = mp->b_cont;
12047 					if (!mp1)
12048 						break;
12049 					offset = IP_REASS_START(mp1);
12050 				}
12051 			}
12052 			break;
12053 		}
12054 	} while (start = end, mp = next_mp);
12055 
12056 	/* Fragment just processed could be the last one. Remember this fact */
12057 	if (!more)
12058 		ipf->ipf_last_frag_seen = B_TRUE;
12059 
12060 	/* Still got holes? */
12061 	if (ipf->ipf_hole_cnt)
12062 		return (IP_REASS_PARTIAL);
12063 	/* Clean up overloaded fields to avoid upstream disasters. */
12064 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
12065 		IP_REASS_SET_START(mp1, 0);
12066 		IP_REASS_SET_END(mp1, 0);
12067 	}
12068 	return (IP_REASS_COMPLETE);
12069 }
12070 
12071 /*
12072  * ipsec processing for the fast path, used for input UDP Packets
12073  * Returns true if ready for passup to UDP.
12074  * Return false if packet is not passable to UDP (e.g. it failed IPsec policy,
12075  * was an ESP-in-UDP packet, etc.).
12076  */
12077 static boolean_t
12078 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha,
12079     mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire)
12080 {
12081 	uint32_t	ill_index;
12082 	uint_t		in_flags;	/* IPF_RECVSLLA and/or IPF_RECVIF */
12083 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
12084 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
12085 	udp_t		*udp = connp->conn_udp;
12086 
12087 	ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
12088 	/* The ill_index of the incoming ILL */
12089 	ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex;
12090 
12091 	/* pass packet up to the transport */
12092 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) {
12093 		*first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha,
12094 		    NULL, mctl_present);
12095 		if (*first_mpp == NULL) {
12096 			return (B_FALSE);
12097 		}
12098 	}
12099 
12100 	/* Initiate IPPF processing for fastpath UDP */
12101 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
12102 		ip_process(IPP_LOCAL_IN, mpp, ill_index);
12103 		if (*mpp == NULL) {
12104 			ip2dbg(("ip_input_ipsec_process: UDP pkt "
12105 			    "deferred/dropped during IPPF processing\n"));
12106 			return (B_FALSE);
12107 		}
12108 	}
12109 	/*
12110 	 * Remove 0-spi if it's 0, or move everything behind
12111 	 * the UDP header over it and forward to ESP via
12112 	 * ip_proto_input().
12113 	 */
12114 	if (udp->udp_nat_t_endpoint) {
12115 		if (mctl_present) {
12116 			/* mctl_present *shouldn't* happen. */
12117 			ip_drop_packet(*first_mpp, B_TRUE, NULL,
12118 			    NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec),
12119 			    &ipss->ipsec_dropper);
12120 			*first_mpp = NULL;
12121 			return (B_FALSE);
12122 		}
12123 
12124 		/* "ill" is "recv_ill" in actuality. */
12125 		if (!zero_spi_check(q, *mpp, ire, ill, ipss))
12126 			return (B_FALSE);
12127 
12128 		/* Else continue like a normal UDP packet. */
12129 	}
12130 
12131 	/*
12132 	 * We make the checks as below since we are in the fast path
12133 	 * and want to minimize the number of checks if the IP_RECVIF and/or
12134 	 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set
12135 	 */
12136 	if (connp->conn_recvif || connp->conn_recvslla ||
12137 	    connp->conn_ip_recvpktinfo) {
12138 		if (connp->conn_recvif) {
12139 			in_flags = IPF_RECVIF;
12140 		}
12141 		/*
12142 		 * UDP supports IP_RECVPKTINFO option for both v4 and v6
12143 		 * so the flag passed to ip_add_info is based on IP version
12144 		 * of connp.
12145 		 */
12146 		if (connp->conn_ip_recvpktinfo) {
12147 			if (connp->conn_af_isv6) {
12148 				/*
12149 				 * V6 only needs index
12150 				 */
12151 				in_flags |= IPF_RECVIF;
12152 			} else {
12153 				/*
12154 				 * V4 needs index + matching address.
12155 				 */
12156 				in_flags |= IPF_RECVADDR;
12157 			}
12158 		}
12159 		if (connp->conn_recvslla) {
12160 			in_flags |= IPF_RECVSLLA;
12161 		}
12162 		/*
12163 		 * since in_flags are being set ill will be
12164 		 * referenced in ip_add_info, so it better not
12165 		 * be NULL.
12166 		 */
12167 		/*
12168 		 * the actual data will be contained in b_cont
12169 		 * upon successful return of the following call.
12170 		 * If the call fails then the original mblk is
12171 		 * returned.
12172 		 */
12173 		*mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp),
12174 		    ipst);
12175 	}
12176 
12177 	return (B_TRUE);
12178 }
12179 
12180 /*
12181  * Fragmentation reassembly.  Each ILL has a hash table for
12182  * queuing packets undergoing reassembly for all IPIFs
12183  * associated with the ILL.  The hash is based on the packet
12184  * IP ident field.  The ILL frag hash table was allocated
12185  * as a timer block at the time the ILL was created.  Whenever
12186  * there is anything on the reassembly queue, the timer will
12187  * be running.  Returns B_TRUE if successful else B_FALSE;
12188  * frees mp on failure.
12189  */
12190 static boolean_t
12191 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha,
12192     uint32_t *cksum_val, uint16_t *cksum_flags)
12193 {
12194 	uint32_t	frag_offset_flags;
12195 	ill_t		*ill = (ill_t *)q->q_ptr;
12196 	mblk_t		*mp = *mpp;
12197 	mblk_t		*t_mp;
12198 	ipaddr_t	dst;
12199 	uint8_t		proto = ipha->ipha_protocol;
12200 	uint32_t	sum_val;
12201 	uint16_t	sum_flags;
12202 	ipf_t		*ipf;
12203 	ipf_t		**ipfp;
12204 	ipfb_t		*ipfb;
12205 	uint16_t	ident;
12206 	uint32_t	offset;
12207 	ipaddr_t	src;
12208 	uint_t		hdr_length;
12209 	uint32_t	end;
12210 	mblk_t		*mp1;
12211 	mblk_t		*tail_mp;
12212 	size_t		count;
12213 	size_t		msg_len;
12214 	uint8_t		ecn_info = 0;
12215 	uint32_t	packet_size;
12216 	boolean_t	pruned = B_FALSE;
12217 	ip_stack_t *ipst = ill->ill_ipst;
12218 
12219 	if (cksum_val != NULL)
12220 		*cksum_val = 0;
12221 	if (cksum_flags != NULL)
12222 		*cksum_flags = 0;
12223 
12224 	/*
12225 	 * Drop the fragmented as early as possible, if
12226 	 * we don't have resource(s) to re-assemble.
12227 	 */
12228 	if (ipst->ips_ip_reass_queue_bytes == 0) {
12229 		freemsg(mp);
12230 		return (B_FALSE);
12231 	}
12232 
12233 	/* Check for fragmentation offset; return if there's none */
12234 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
12235 	    (IPH_MF | IPH_OFFSET)) == 0)
12236 		return (B_TRUE);
12237 
12238 	/*
12239 	 * We utilize hardware computed checksum info only for UDP since
12240 	 * IP fragmentation is a normal occurence for the protocol.  In
12241 	 * addition, checksum offload support for IP fragments carrying
12242 	 * UDP payload is commonly implemented across network adapters.
12243 	 */
12244 	ASSERT(ill != NULL);
12245 	if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) &&
12246 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
12247 		mblk_t *mp1 = mp->b_cont;
12248 		int32_t len;
12249 
12250 		/* Record checksum information from the packet */
12251 		sum_val = (uint32_t)DB_CKSUM16(mp);
12252 		sum_flags = DB_CKSUMFLAGS(mp);
12253 
12254 		/* IP payload offset from beginning of mblk */
12255 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
12256 
12257 		if ((sum_flags & HCK_PARTIALCKSUM) &&
12258 		    (mp1 == NULL || mp1->b_cont == NULL) &&
12259 		    offset >= DB_CKSUMSTART(mp) &&
12260 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
12261 			uint32_t adj;
12262 			/*
12263 			 * Partial checksum has been calculated by hardware
12264 			 * and attached to the packet; in addition, any
12265 			 * prepended extraneous data is even byte aligned.
12266 			 * If any such data exists, we adjust the checksum;
12267 			 * this would also handle any postpended data.
12268 			 */
12269 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
12270 			    mp, mp1, len, adj);
12271 
12272 			/* One's complement subtract extraneous checksum */
12273 			if (adj >= sum_val)
12274 				sum_val = ~(adj - sum_val) & 0xFFFF;
12275 			else
12276 				sum_val -= adj;
12277 		}
12278 	} else {
12279 		sum_val = 0;
12280 		sum_flags = 0;
12281 	}
12282 
12283 	/* Clear hardware checksumming flag */
12284 	DB_CKSUMFLAGS(mp) = 0;
12285 
12286 	ident = ipha->ipha_ident;
12287 	offset = (frag_offset_flags << 3) & 0xFFFF;
12288 	src = ipha->ipha_src;
12289 	dst = ipha->ipha_dst;
12290 	hdr_length = IPH_HDR_LENGTH(ipha);
12291 	end = ntohs(ipha->ipha_length) - hdr_length;
12292 
12293 	/* If end == 0 then we have a packet with no data, so just free it */
12294 	if (end == 0) {
12295 		freemsg(mp);
12296 		return (B_FALSE);
12297 	}
12298 
12299 	/* Record the ECN field info. */
12300 	ecn_info = (ipha->ipha_type_of_service & 0x3);
12301 	if (offset != 0) {
12302 		/*
12303 		 * If this isn't the first piece, strip the header, and
12304 		 * add the offset to the end value.
12305 		 */
12306 		mp->b_rptr += hdr_length;
12307 		end += offset;
12308 	}
12309 
12310 	msg_len = MBLKSIZE(mp);
12311 	tail_mp = mp;
12312 	while (tail_mp->b_cont != NULL) {
12313 		tail_mp = tail_mp->b_cont;
12314 		msg_len += MBLKSIZE(tail_mp);
12315 	}
12316 
12317 	/* If the reassembly list for this ILL will get too big, prune it */
12318 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
12319 	    ipst->ips_ip_reass_queue_bytes) {
12320 		ill_frag_prune(ill,
12321 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
12322 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
12323 		pruned = B_TRUE;
12324 	}
12325 
12326 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
12327 	mutex_enter(&ipfb->ipfb_lock);
12328 
12329 	ipfp = &ipfb->ipfb_ipf;
12330 	/* Try to find an existing fragment queue for this packet. */
12331 	for (;;) {
12332 		ipf = ipfp[0];
12333 		if (ipf != NULL) {
12334 			/*
12335 			 * It has to match on ident and src/dst address.
12336 			 */
12337 			if (ipf->ipf_ident == ident &&
12338 			    ipf->ipf_src == src &&
12339 			    ipf->ipf_dst == dst &&
12340 			    ipf->ipf_protocol == proto) {
12341 				/*
12342 				 * If we have received too many
12343 				 * duplicate fragments for this packet
12344 				 * free it.
12345 				 */
12346 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
12347 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
12348 					freemsg(mp);
12349 					mutex_exit(&ipfb->ipfb_lock);
12350 					return (B_FALSE);
12351 				}
12352 				/* Found it. */
12353 				break;
12354 			}
12355 			ipfp = &ipf->ipf_hash_next;
12356 			continue;
12357 		}
12358 
12359 		/*
12360 		 * If we pruned the list, do we want to store this new
12361 		 * fragment?. We apply an optimization here based on the
12362 		 * fact that most fragments will be received in order.
12363 		 * So if the offset of this incoming fragment is zero,
12364 		 * it is the first fragment of a new packet. We will
12365 		 * keep it.  Otherwise drop the fragment, as we have
12366 		 * probably pruned the packet already (since the
12367 		 * packet cannot be found).
12368 		 */
12369 		if (pruned && offset != 0) {
12370 			mutex_exit(&ipfb->ipfb_lock);
12371 			freemsg(mp);
12372 			return (B_FALSE);
12373 		}
12374 
12375 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
12376 			/*
12377 			 * Too many fragmented packets in this hash
12378 			 * bucket. Free the oldest.
12379 			 */
12380 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
12381 		}
12382 
12383 		/* New guy.  Allocate a frag message. */
12384 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
12385 		if (mp1 == NULL) {
12386 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
12387 			freemsg(mp);
12388 reass_done:
12389 			mutex_exit(&ipfb->ipfb_lock);
12390 			return (B_FALSE);
12391 		}
12392 
12393 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
12394 		mp1->b_cont = mp;
12395 
12396 		/* Initialize the fragment header. */
12397 		ipf = (ipf_t *)mp1->b_rptr;
12398 		ipf->ipf_mp = mp1;
12399 		ipf->ipf_ptphn = ipfp;
12400 		ipfp[0] = ipf;
12401 		ipf->ipf_hash_next = NULL;
12402 		ipf->ipf_ident = ident;
12403 		ipf->ipf_protocol = proto;
12404 		ipf->ipf_src = src;
12405 		ipf->ipf_dst = dst;
12406 		ipf->ipf_nf_hdr_len = 0;
12407 		/* Record reassembly start time. */
12408 		ipf->ipf_timestamp = gethrestime_sec();
12409 		/* Record ipf generation and account for frag header */
12410 		ipf->ipf_gen = ill->ill_ipf_gen++;
12411 		ipf->ipf_count = MBLKSIZE(mp1);
12412 		ipf->ipf_last_frag_seen = B_FALSE;
12413 		ipf->ipf_ecn = ecn_info;
12414 		ipf->ipf_num_dups = 0;
12415 		ipfb->ipfb_frag_pkts++;
12416 		ipf->ipf_checksum = 0;
12417 		ipf->ipf_checksum_flags = 0;
12418 
12419 		/* Store checksum value in fragment header */
12420 		if (sum_flags != 0) {
12421 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12422 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12423 			ipf->ipf_checksum = sum_val;
12424 			ipf->ipf_checksum_flags = sum_flags;
12425 		}
12426 
12427 		/*
12428 		 * We handle reassembly two ways.  In the easy case,
12429 		 * where all the fragments show up in order, we do
12430 		 * minimal bookkeeping, and just clip new pieces on
12431 		 * the end.  If we ever see a hole, then we go off
12432 		 * to ip_reassemble which has to mark the pieces and
12433 		 * keep track of the number of holes, etc.  Obviously,
12434 		 * the point of having both mechanisms is so we can
12435 		 * handle the easy case as efficiently as possible.
12436 		 */
12437 		if (offset == 0) {
12438 			/* Easy case, in-order reassembly so far. */
12439 			ipf->ipf_count += msg_len;
12440 			ipf->ipf_tail_mp = tail_mp;
12441 			/*
12442 			 * Keep track of next expected offset in
12443 			 * ipf_end.
12444 			 */
12445 			ipf->ipf_end = end;
12446 			ipf->ipf_nf_hdr_len = hdr_length;
12447 		} else {
12448 			/* Hard case, hole at the beginning. */
12449 			ipf->ipf_tail_mp = NULL;
12450 			/*
12451 			 * ipf_end == 0 means that we have given up
12452 			 * on easy reassembly.
12453 			 */
12454 			ipf->ipf_end = 0;
12455 
12456 			/* Forget checksum offload from now on */
12457 			ipf->ipf_checksum_flags = 0;
12458 
12459 			/*
12460 			 * ipf_hole_cnt is set by ip_reassemble.
12461 			 * ipf_count is updated by ip_reassemble.
12462 			 * No need to check for return value here
12463 			 * as we don't expect reassembly to complete
12464 			 * or fail for the first fragment itself.
12465 			 */
12466 			(void) ip_reassemble(mp, ipf,
12467 			    (frag_offset_flags & IPH_OFFSET) << 3,
12468 			    (frag_offset_flags & IPH_MF), ill, msg_len);
12469 		}
12470 		/* Update per ipfb and ill byte counts */
12471 		ipfb->ipfb_count += ipf->ipf_count;
12472 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
12473 		ill->ill_frag_count += ipf->ipf_count;
12474 		/* If the frag timer wasn't already going, start it. */
12475 		mutex_enter(&ill->ill_lock);
12476 		ill_frag_timer_start(ill);
12477 		mutex_exit(&ill->ill_lock);
12478 		goto reass_done;
12479 	}
12480 
12481 	/*
12482 	 * If the packet's flag has changed (it could be coming up
12483 	 * from an interface different than the previous, therefore
12484 	 * possibly different checksum capability), then forget about
12485 	 * any stored checksum states.  Otherwise add the value to
12486 	 * the existing one stored in the fragment header.
12487 	 */
12488 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
12489 		sum_val += ipf->ipf_checksum;
12490 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12491 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12492 		ipf->ipf_checksum = sum_val;
12493 	} else if (ipf->ipf_checksum_flags != 0) {
12494 		/* Forget checksum offload from now on */
12495 		ipf->ipf_checksum_flags = 0;
12496 	}
12497 
12498 	/*
12499 	 * We have a new piece of a datagram which is already being
12500 	 * reassembled.  Update the ECN info if all IP fragments
12501 	 * are ECN capable.  If there is one which is not, clear
12502 	 * all the info.  If there is at least one which has CE
12503 	 * code point, IP needs to report that up to transport.
12504 	 */
12505 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
12506 		if (ecn_info == IPH_ECN_CE)
12507 			ipf->ipf_ecn = IPH_ECN_CE;
12508 	} else {
12509 		ipf->ipf_ecn = IPH_ECN_NECT;
12510 	}
12511 	if (offset && ipf->ipf_end == offset) {
12512 		/* The new fragment fits at the end */
12513 		ipf->ipf_tail_mp->b_cont = mp;
12514 		/* Update the byte count */
12515 		ipf->ipf_count += msg_len;
12516 		/* Update per ipfb and ill byte counts */
12517 		ipfb->ipfb_count += msg_len;
12518 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
12519 		ill->ill_frag_count += msg_len;
12520 		if (frag_offset_flags & IPH_MF) {
12521 			/* More to come. */
12522 			ipf->ipf_end = end;
12523 			ipf->ipf_tail_mp = tail_mp;
12524 			goto reass_done;
12525 		}
12526 	} else {
12527 		/* Go do the hard cases. */
12528 		int ret;
12529 
12530 		if (offset == 0)
12531 			ipf->ipf_nf_hdr_len = hdr_length;
12532 
12533 		/* Save current byte count */
12534 		count = ipf->ipf_count;
12535 		ret = ip_reassemble(mp, ipf,
12536 		    (frag_offset_flags & IPH_OFFSET) << 3,
12537 		    (frag_offset_flags & IPH_MF), ill, msg_len);
12538 		/* Count of bytes added and subtracted (freeb()ed) */
12539 		count = ipf->ipf_count - count;
12540 		if (count) {
12541 			/* Update per ipfb and ill byte counts */
12542 			ipfb->ipfb_count += count;
12543 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
12544 			ill->ill_frag_count += count;
12545 		}
12546 		if (ret == IP_REASS_PARTIAL) {
12547 			goto reass_done;
12548 		} else if (ret == IP_REASS_FAILED) {
12549 			/* Reassembly failed. Free up all resources */
12550 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
12551 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
12552 				IP_REASS_SET_START(t_mp, 0);
12553 				IP_REASS_SET_END(t_mp, 0);
12554 			}
12555 			freemsg(mp);
12556 			goto reass_done;
12557 		}
12558 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
12559 	}
12560 	/*
12561 	 * We have completed reassembly.  Unhook the frag header from
12562 	 * the reassembly list.
12563 	 *
12564 	 * Before we free the frag header, record the ECN info
12565 	 * to report back to the transport.
12566 	 */
12567 	ecn_info = ipf->ipf_ecn;
12568 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
12569 	ipfp = ipf->ipf_ptphn;
12570 
12571 	/* We need to supply these to caller */
12572 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
12573 		sum_val = ipf->ipf_checksum;
12574 	else
12575 		sum_val = 0;
12576 
12577 	mp1 = ipf->ipf_mp;
12578 	count = ipf->ipf_count;
12579 	ipf = ipf->ipf_hash_next;
12580 	if (ipf != NULL)
12581 		ipf->ipf_ptphn = ipfp;
12582 	ipfp[0] = ipf;
12583 	ill->ill_frag_count -= count;
12584 	ASSERT(ipfb->ipfb_count >= count);
12585 	ipfb->ipfb_count -= count;
12586 	ipfb->ipfb_frag_pkts--;
12587 	mutex_exit(&ipfb->ipfb_lock);
12588 	/* Ditch the frag header. */
12589 	mp = mp1->b_cont;
12590 
12591 	freeb(mp1);
12592 
12593 	/* Restore original IP length in header. */
12594 	packet_size = (uint32_t)msgdsize(mp);
12595 	if (packet_size > IP_MAXPACKET) {
12596 		freemsg(mp);
12597 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
12598 		return (B_FALSE);
12599 	}
12600 
12601 	if (DB_REF(mp) > 1) {
12602 		mblk_t *mp2 = copymsg(mp);
12603 
12604 		freemsg(mp);
12605 		if (mp2 == NULL) {
12606 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
12607 			return (B_FALSE);
12608 		}
12609 		mp = mp2;
12610 	}
12611 	ipha = (ipha_t *)mp->b_rptr;
12612 
12613 	ipha->ipha_length = htons((uint16_t)packet_size);
12614 	/* We're now complete, zip the frag state */
12615 	ipha->ipha_fragment_offset_and_flags = 0;
12616 	/* Record the ECN info. */
12617 	ipha->ipha_type_of_service &= 0xFC;
12618 	ipha->ipha_type_of_service |= ecn_info;
12619 	*mpp = mp;
12620 
12621 	/* Reassembly is successful; return checksum information if needed */
12622 	if (cksum_val != NULL)
12623 		*cksum_val = sum_val;
12624 	if (cksum_flags != NULL)
12625 		*cksum_flags = sum_flags;
12626 
12627 	return (B_TRUE);
12628 }
12629 
12630 /*
12631  * Perform ip header check sum update local options.
12632  * return B_TRUE if all is well, else return B_FALSE and release
12633  * the mp. caller is responsible for decrementing ire ref cnt.
12634  */
12635 static boolean_t
12636 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire,
12637     ip_stack_t *ipst)
12638 {
12639 	mblk_t		*first_mp;
12640 	boolean_t	mctl_present;
12641 	uint16_t	sum;
12642 
12643 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
12644 	/*
12645 	 * Don't do the checksum if it has gone through AH/ESP
12646 	 * processing.
12647 	 */
12648 	if (!mctl_present) {
12649 		sum = ip_csum_hdr(ipha);
12650 		if (sum != 0) {
12651 			if (ill != NULL) {
12652 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
12653 			} else {
12654 				BUMP_MIB(&ipst->ips_ip_mib,
12655 				    ipIfStatsInCksumErrs);
12656 			}
12657 			freemsg(first_mp);
12658 			return (B_FALSE);
12659 		}
12660 	}
12661 
12662 	if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) {
12663 		if (mctl_present)
12664 			freeb(first_mp);
12665 		return (B_FALSE);
12666 	}
12667 
12668 	return (B_TRUE);
12669 }
12670 
12671 /*
12672  * All udp packet are delivered to the local host via this routine.
12673  */
12674 void
12675 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
12676     ill_t *recv_ill)
12677 {
12678 	uint32_t	sum;
12679 	uint32_t	u1;
12680 	boolean_t	mctl_present;
12681 	conn_t		*connp;
12682 	mblk_t		*first_mp;
12683 	uint16_t	*up;
12684 	ill_t		*ill = (ill_t *)q->q_ptr;
12685 	uint16_t	reass_hck_flags = 0;
12686 	ip_stack_t	*ipst;
12687 
12688 	ASSERT(recv_ill != NULL);
12689 	ipst = recv_ill->ill_ipst;
12690 
12691 #define	rptr    ((uchar_t *)ipha)
12692 
12693 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
12694 	ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
12695 	ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
12696 	ASSERT(ill != NULL);
12697 
12698 	/*
12699 	 * FAST PATH for udp packets
12700 	 */
12701 
12702 	/* u1 is # words of IP options */
12703 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) +
12704 	    IP_SIMPLE_HDR_LENGTH_IN_WORDS);
12705 
12706 	/* IP options present */
12707 	if (u1 != 0)
12708 		goto ipoptions;
12709 
12710 	/* Check the IP header checksum.  */
12711 	if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
12712 		/* Clear the IP header h/w cksum flag */
12713 		DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
12714 	} else if (!mctl_present) {
12715 		/*
12716 		 * Don't verify header checksum if this packet is coming
12717 		 * back from AH/ESP as we already did it.
12718 		 */
12719 #define	uph	((uint16_t *)ipha)
12720 		sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] +
12721 		    uph[6] + uph[7] + uph[8] + uph[9];
12722 #undef	uph
12723 		/* finish doing IP checksum */
12724 		sum = (sum & 0xFFFF) + (sum >> 16);
12725 		sum = ~(sum + (sum >> 16)) & 0xFFFF;
12726 		if (sum != 0 && sum != 0xFFFF) {
12727 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
12728 			freemsg(first_mp);
12729 			return;
12730 		}
12731 	}
12732 
12733 	/*
12734 	 * Count for SNMP of inbound packets for ire.
12735 	 * if mctl is present this might be a secure packet and
12736 	 * has already been counted for in ip_proto_input().
12737 	 */
12738 	if (!mctl_present) {
12739 		UPDATE_IB_PKT_COUNT(ire);
12740 		ire->ire_last_used_time = lbolt;
12741 	}
12742 
12743 	/* packet part of fragmented IP packet? */
12744 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
12745 	if (u1 & (IPH_MF | IPH_OFFSET)) {
12746 		goto fragmented;
12747 	}
12748 
12749 	/* u1 = IP header length (20 bytes) */
12750 	u1 = IP_SIMPLE_HDR_LENGTH;
12751 
12752 	/* packet does not contain complete IP & UDP headers */
12753 	if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE))
12754 		goto udppullup;
12755 
12756 	/* up points to UDP header */
12757 	up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH);
12758 #define	iphs    ((uint16_t *)ipha)
12759 
12760 	/* if udp hdr cksum != 0, then need to checksum udp packet */
12761 	if (up[3] != 0) {
12762 		mblk_t *mp1 = mp->b_cont;
12763 		boolean_t cksum_err;
12764 		uint16_t hck_flags = 0;
12765 
12766 		/* Pseudo-header checksum */
12767 		u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
12768 		    iphs[9] + up[2];
12769 
12770 		/*
12771 		 * Revert to software checksum calculation if the interface
12772 		 * isn't capable of checksum offload or if IPsec is present.
12773 		 */
12774 		if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
12775 			hck_flags = DB_CKSUMFLAGS(mp);
12776 
12777 		if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
12778 			IP_STAT(ipst, ip_in_sw_cksum);
12779 
12780 		IP_CKSUM_RECV(hck_flags, u1,
12781 		    (uchar_t *)(rptr + DB_CKSUMSTART(mp)),
12782 		    (int32_t)((uchar_t *)up - rptr),
12783 		    mp, mp1, cksum_err);
12784 
12785 		if (cksum_err) {
12786 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs);
12787 			if (hck_flags & HCK_FULLCKSUM)
12788 				IP_STAT(ipst, ip_udp_in_full_hw_cksum_err);
12789 			else if (hck_flags & HCK_PARTIALCKSUM)
12790 				IP_STAT(ipst, ip_udp_in_part_hw_cksum_err);
12791 			else
12792 				IP_STAT(ipst, ip_udp_in_sw_cksum_err);
12793 
12794 			freemsg(first_mp);
12795 			return;
12796 		}
12797 	}
12798 
12799 	/* Non-fragmented broadcast or multicast packet? */
12800 	if (ire->ire_type == IRE_BROADCAST)
12801 		goto udpslowpath;
12802 
12803 	if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
12804 	    ire->ire_zoneid, ipst)) != NULL) {
12805 		ASSERT(connp->conn_upq != NULL);
12806 		IP_STAT(ipst, ip_udp_fast_path);
12807 
12808 		if (CONN_UDP_FLOWCTLD(connp)) {
12809 			freemsg(mp);
12810 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
12811 		} else {
12812 			if (!mctl_present) {
12813 				BUMP_MIB(ill->ill_ip_mib,
12814 				    ipIfStatsHCInDelivers);
12815 			}
12816 			/*
12817 			 * mp and first_mp can change.
12818 			 */
12819 			if (ip_udp_check(q, connp, recv_ill,
12820 			    ipha, &mp, &first_mp, mctl_present, ire)) {
12821 				/* Send it upstream */
12822 				(connp->conn_recv)(connp, mp, NULL);
12823 			}
12824 		}
12825 		/*
12826 		 * freeb() cannot deal with null mblk being passed
12827 		 * in and first_mp can be set to null in the call
12828 		 * ipsec_input_fast_proc()->ipsec_check_inbound_policy.
12829 		 */
12830 		if (mctl_present && first_mp != NULL) {
12831 			freeb(first_mp);
12832 		}
12833 		CONN_DEC_REF(connp);
12834 		return;
12835 	}
12836 
12837 	/*
12838 	 * if we got here we know the packet is not fragmented and
12839 	 * has no options. The classifier could not find a conn_t and
12840 	 * most likely its an icmp packet so send it through slow path.
12841 	 */
12842 
12843 	goto udpslowpath;
12844 
12845 ipoptions:
12846 	if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) {
12847 		goto slow_done;
12848 	}
12849 
12850 	UPDATE_IB_PKT_COUNT(ire);
12851 	ire->ire_last_used_time = lbolt;
12852 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
12853 	if (u1 & (IPH_MF | IPH_OFFSET)) {
12854 fragmented:
12855 		/*
12856 		 * "sum" and "reass_hck_flags" are non-zero if the
12857 		 * reassembled packet has a valid hardware computed
12858 		 * checksum information associated with it.
12859 		 */
12860 		if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags))
12861 			goto slow_done;
12862 		/*
12863 		 * Make sure that first_mp points back to mp as
12864 		 * the mp we came in with could have changed in
12865 		 * ip_rput_fragment().
12866 		 */
12867 		ASSERT(!mctl_present);
12868 		ipha = (ipha_t *)mp->b_rptr;
12869 		first_mp = mp;
12870 	}
12871 
12872 	/* Now we have a complete datagram, destined for this machine. */
12873 	u1 = IPH_HDR_LENGTH(ipha);
12874 	/* Pull up the UDP header, if necessary. */
12875 	if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) {
12876 udppullup:
12877 		if (!pullupmsg(mp, u1 + UDPH_SIZE)) {
12878 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
12879 			freemsg(first_mp);
12880 			goto slow_done;
12881 		}
12882 		ipha = (ipha_t *)mp->b_rptr;
12883 	}
12884 
12885 	/*
12886 	 * Validate the checksum for the reassembled packet; for the
12887 	 * pullup case we calculate the payload checksum in software.
12888 	 */
12889 	up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET);
12890 	if (up[3] != 0) {
12891 		boolean_t cksum_err;
12892 
12893 		if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
12894 			IP_STAT(ipst, ip_in_sw_cksum);
12895 
12896 		IP_CKSUM_RECV_REASS(reass_hck_flags,
12897 		    (int32_t)((uchar_t *)up - (uchar_t *)ipha),
12898 		    IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
12899 		    iphs[9] + up[2], sum, cksum_err);
12900 
12901 		if (cksum_err) {
12902 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs);
12903 
12904 			if (reass_hck_flags & HCK_FULLCKSUM)
12905 				IP_STAT(ipst, ip_udp_in_full_hw_cksum_err);
12906 			else if (reass_hck_flags & HCK_PARTIALCKSUM)
12907 				IP_STAT(ipst, ip_udp_in_part_hw_cksum_err);
12908 			else
12909 				IP_STAT(ipst, ip_udp_in_sw_cksum_err);
12910 
12911 			freemsg(first_mp);
12912 			goto slow_done;
12913 		}
12914 	}
12915 udpslowpath:
12916 
12917 	/* Clear hardware checksum flag to be safe */
12918 	DB_CKSUMFLAGS(mp) = 0;
12919 
12920 	ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up,
12921 	    (ire->ire_type == IRE_BROADCAST),
12922 	    IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO,
12923 	    mctl_present, B_TRUE, recv_ill, ire->ire_zoneid);
12924 
12925 slow_done:
12926 	IP_STAT(ipst, ip_udp_slow_path);
12927 	return;
12928 
12929 #undef  iphs
12930 #undef  rptr
12931 }
12932 
12933 /* ARGSUSED */
12934 static mblk_t *
12935 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
12936     ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q,
12937     ill_rx_ring_t *ill_ring)
12938 {
12939 	conn_t		*connp;
12940 	uint32_t	sum;
12941 	uint32_t	u1;
12942 	uint16_t	*up;
12943 	int		offset;
12944 	ssize_t		len;
12945 	mblk_t		*mp1;
12946 	boolean_t	syn_present = B_FALSE;
12947 	tcph_t		*tcph;
12948 	uint_t		ip_hdr_len;
12949 	ill_t		*ill = (ill_t *)q->q_ptr;
12950 	zoneid_t	zoneid = ire->ire_zoneid;
12951 	boolean_t	cksum_err;
12952 	uint16_t	hck_flags = 0;
12953 	ip_stack_t	*ipst = recv_ill->ill_ipst;
12954 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
12955 
12956 #define	rptr	((uchar_t *)ipha)
12957 
12958 	ASSERT(ipha->ipha_protocol == IPPROTO_TCP);
12959 	ASSERT(ill != NULL);
12960 
12961 	/*
12962 	 * FAST PATH for tcp packets
12963 	 */
12964 
12965 	/* u1 is # words of IP options */
12966 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
12967 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
12968 
12969 	/* IP options present */
12970 	if (u1) {
12971 		goto ipoptions;
12972 	} else if (!mctl_present) {
12973 		/* Check the IP header checksum.  */
12974 		if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
12975 			/* Clear the IP header h/w cksum flag */
12976 			DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
12977 		} else if (!mctl_present) {
12978 			/*
12979 			 * Don't verify header checksum if this packet
12980 			 * is coming back from AH/ESP as we already did it.
12981 			 */
12982 #define	uph	((uint16_t *)ipha)
12983 			sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
12984 			    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
12985 #undef	uph
12986 			/* finish doing IP checksum */
12987 			sum = (sum & 0xFFFF) + (sum >> 16);
12988 			sum = ~(sum + (sum >> 16)) & 0xFFFF;
12989 			if (sum != 0 && sum != 0xFFFF) {
12990 				BUMP_MIB(ill->ill_ip_mib,
12991 				    ipIfStatsInCksumErrs);
12992 				goto error;
12993 			}
12994 		}
12995 	}
12996 
12997 	if (!mctl_present) {
12998 		UPDATE_IB_PKT_COUNT(ire);
12999 		ire->ire_last_used_time = lbolt;
13000 	}
13001 
13002 	/* packet part of fragmented IP packet? */
13003 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13004 	if (u1 & (IPH_MF | IPH_OFFSET)) {
13005 		goto fragmented;
13006 	}
13007 
13008 	/* u1 = IP header length (20 bytes) */
13009 	u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH;
13010 
13011 	/* does packet contain IP+TCP headers? */
13012 	len = mp->b_wptr - rptr;
13013 	if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) {
13014 		IP_STAT(ipst, ip_tcppullup);
13015 		goto tcppullup;
13016 	}
13017 
13018 	/* TCP options present? */
13019 	offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4;
13020 
13021 	/*
13022 	 * If options need to be pulled up, then goto tcpoptions.
13023 	 * otherwise we are still in the fast path
13024 	 */
13025 	if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) {
13026 		IP_STAT(ipst, ip_tcpoptions);
13027 		goto tcpoptions;
13028 	}
13029 
13030 	/* multiple mblks of tcp data? */
13031 	if ((mp1 = mp->b_cont) != NULL) {
13032 		/* more then two? */
13033 		if (mp1->b_cont != NULL) {
13034 			IP_STAT(ipst, ip_multipkttcp);
13035 			goto multipkttcp;
13036 		}
13037 		len += mp1->b_wptr - mp1->b_rptr;
13038 	}
13039 
13040 	up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET);
13041 
13042 	/* part of pseudo checksum */
13043 
13044 	/* TCP datagram length */
13045 	u1 = len - IP_SIMPLE_HDR_LENGTH;
13046 
13047 #define	iphs    ((uint16_t *)ipha)
13048 
13049 #ifdef	_BIG_ENDIAN
13050 	u1 += IPPROTO_TCP;
13051 #else
13052 	u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
13053 #endif
13054 	u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
13055 
13056 	/*
13057 	 * Revert to software checksum calculation if the interface
13058 	 * isn't capable of checksum offload or if IPsec is present.
13059 	 */
13060 	if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
13061 		hck_flags = DB_CKSUMFLAGS(mp);
13062 
13063 	if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
13064 		IP_STAT(ipst, ip_in_sw_cksum);
13065 
13066 	IP_CKSUM_RECV(hck_flags, u1,
13067 	    (uchar_t *)(rptr + DB_CKSUMSTART(mp)),
13068 	    (int32_t)((uchar_t *)up - rptr),
13069 	    mp, mp1, cksum_err);
13070 
13071 	if (cksum_err) {
13072 		BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs);
13073 
13074 		if (hck_flags & HCK_FULLCKSUM)
13075 			IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err);
13076 		else if (hck_flags & HCK_PARTIALCKSUM)
13077 			IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err);
13078 		else
13079 			IP_STAT(ipst, ip_tcp_in_sw_cksum_err);
13080 
13081 		goto error;
13082 	}
13083 
13084 try_again:
13085 
13086 	if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len,
13087 	    zoneid, ipst)) == NULL) {
13088 		/* Send the TH_RST */
13089 		goto no_conn;
13090 	}
13091 
13092 	/*
13093 	 * TCP FAST PATH for AF_INET socket.
13094 	 *
13095 	 * TCP fast path to avoid extra work. An AF_INET socket type
13096 	 * does not have facility to receive extra information via
13097 	 * ip_process or ip_add_info. Also, when the connection was
13098 	 * established, we made a check if this connection is impacted
13099 	 * by any global IPsec policy or per connection policy (a
13100 	 * policy that comes in effect later will not apply to this
13101 	 * connection). Since all this can be determined at the
13102 	 * connection establishment time, a quick check of flags
13103 	 * can avoid extra work.
13104 	 */
13105 	if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present &&
13106 	    !IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
13107 		ASSERT(first_mp == mp);
13108 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13109 		SET_SQUEUE(mp, tcp_rput_data, connp);
13110 		return (mp);
13111 	}
13112 
13113 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
13114 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
13115 		if (IPCL_IS_TCP(connp)) {
13116 			mp->b_datap->db_struioflag |= STRUIO_EAGER;
13117 			DB_CKSUMSTART(mp) =
13118 			    (intptr_t)ip_squeue_get(ill_ring);
13119 			if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present &&
13120 			    !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) {
13121 				BUMP_MIB(ill->ill_ip_mib,
13122 				    ipIfStatsHCInDelivers);
13123 				SET_SQUEUE(mp, connp->conn_recv, connp);
13124 				return (mp);
13125 			} else if (IPCL_IS_BOUND(connp) && !mctl_present &&
13126 			    !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) {
13127 				BUMP_MIB(ill->ill_ip_mib,
13128 				    ipIfStatsHCInDelivers);
13129 				ip_squeue_enter_unbound++;
13130 				SET_SQUEUE(mp, tcp_conn_request_unbound,
13131 				    connp);
13132 				return (mp);
13133 			}
13134 			syn_present = B_TRUE;
13135 		}
13136 
13137 	}
13138 
13139 	if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
13140 		uint_t	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13141 
13142 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13143 		/* No need to send this packet to TCP */
13144 		if ((flags & TH_RST) || (flags & TH_URG)) {
13145 			CONN_DEC_REF(connp);
13146 			freemsg(first_mp);
13147 			return (NULL);
13148 		}
13149 		if (flags & TH_ACK) {
13150 			tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid,
13151 			    ipst->ips_netstack->netstack_tcp, connp);
13152 			CONN_DEC_REF(connp);
13153 			return (NULL);
13154 		}
13155 
13156 		CONN_DEC_REF(connp);
13157 		freemsg(first_mp);
13158 		return (NULL);
13159 	}
13160 
13161 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) {
13162 		first_mp = ipsec_check_inbound_policy(first_mp, connp,
13163 		    ipha, NULL, mctl_present);
13164 		if (first_mp == NULL) {
13165 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13166 			CONN_DEC_REF(connp);
13167 			return (NULL);
13168 		}
13169 		if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
13170 			ASSERT(syn_present);
13171 			if (mctl_present) {
13172 				ASSERT(first_mp != mp);
13173 				first_mp->b_datap->db_struioflag |=
13174 				    STRUIO_POLICY;
13175 			} else {
13176 				ASSERT(first_mp == mp);
13177 				mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
13178 				mp->b_datap->db_struioflag |= STRUIO_POLICY;
13179 			}
13180 		} else {
13181 			/*
13182 			 * Discard first_mp early since we're dealing with a
13183 			 * fully-connected conn_t and tcp doesn't do policy in
13184 			 * this case.
13185 			 */
13186 			if (mctl_present) {
13187 				freeb(first_mp);
13188 				mctl_present = B_FALSE;
13189 			}
13190 			first_mp = mp;
13191 		}
13192 	}
13193 
13194 	/* Initiate IPPF processing for fastpath */
13195 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
13196 		uint32_t	ill_index;
13197 
13198 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
13199 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
13200 		if (mp == NULL) {
13201 			ip2dbg(("ip_input_ipsec_process: TCP pkt "
13202 			    "deferred/dropped during IPPF processing\n"));
13203 			CONN_DEC_REF(connp);
13204 			if (mctl_present)
13205 				freeb(first_mp);
13206 			return (NULL);
13207 		} else if (mctl_present) {
13208 			/*
13209 			 * ip_process might return a new mp.
13210 			 */
13211 			ASSERT(first_mp != mp);
13212 			first_mp->b_cont = mp;
13213 		} else {
13214 			first_mp = mp;
13215 		}
13216 
13217 	}
13218 
13219 	if (!syn_present && connp->conn_ip_recvpktinfo) {
13220 		/*
13221 		 * TCP does not support IP_RECVPKTINFO for v4 so lets
13222 		 * make sure IPF_RECVIF is passed to ip_add_info.
13223 		 */
13224 		mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF,
13225 		    IPCL_ZONEID(connp), ipst);
13226 		if (mp == NULL) {
13227 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13228 			CONN_DEC_REF(connp);
13229 			if (mctl_present)
13230 				freeb(first_mp);
13231 			return (NULL);
13232 		} else if (mctl_present) {
13233 			/*
13234 			 * ip_add_info might return a new mp.
13235 			 */
13236 			ASSERT(first_mp != mp);
13237 			first_mp->b_cont = mp;
13238 		} else {
13239 			first_mp = mp;
13240 		}
13241 	}
13242 
13243 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13244 	if (IPCL_IS_TCP(connp)) {
13245 		SET_SQUEUE(first_mp, connp->conn_recv, connp);
13246 		return (first_mp);
13247 	} else {
13248 		/* SOCK_RAW, IPPROTO_TCP case */
13249 		(connp->conn_recv)(connp, first_mp, NULL);
13250 		CONN_DEC_REF(connp);
13251 		return (NULL);
13252 	}
13253 
13254 no_conn:
13255 	/* Initiate IPPf processing, if needed. */
13256 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
13257 		uint32_t ill_index;
13258 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
13259 		ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
13260 		if (first_mp == NULL) {
13261 			return (NULL);
13262 		}
13263 	}
13264 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13265 
13266 	tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid,
13267 	    ipst->ips_netstack->netstack_tcp, NULL);
13268 	return (NULL);
13269 ipoptions:
13270 	if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) {
13271 		goto slow_done;
13272 	}
13273 
13274 	UPDATE_IB_PKT_COUNT(ire);
13275 	ire->ire_last_used_time = lbolt;
13276 
13277 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13278 	if (u1 & (IPH_MF | IPH_OFFSET)) {
13279 fragmented:
13280 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
13281 			if (mctl_present)
13282 				freeb(first_mp);
13283 			goto slow_done;
13284 		}
13285 		/*
13286 		 * Make sure that first_mp points back to mp as
13287 		 * the mp we came in with could have changed in
13288 		 * ip_rput_fragment().
13289 		 */
13290 		ASSERT(!mctl_present);
13291 		ipha = (ipha_t *)mp->b_rptr;
13292 		first_mp = mp;
13293 	}
13294 
13295 	/* Now we have a complete datagram, destined for this machine. */
13296 	u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha);
13297 
13298 	len = mp->b_wptr - mp->b_rptr;
13299 	/* Pull up a minimal TCP header, if necessary. */
13300 	if (len < (u1 + 20)) {
13301 tcppullup:
13302 		if (!pullupmsg(mp, u1 + 20)) {
13303 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13304 			goto error;
13305 		}
13306 		ipha = (ipha_t *)mp->b_rptr;
13307 		len = mp->b_wptr - mp->b_rptr;
13308 	}
13309 
13310 	/*
13311 	 * Extract the offset field from the TCP header.  As usual, we
13312 	 * try to help the compiler more than the reader.
13313 	 */
13314 	offset = ((uchar_t *)ipha)[u1 + 12] >> 4;
13315 	if (offset != 5) {
13316 tcpoptions:
13317 		if (offset < 5) {
13318 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13319 			goto error;
13320 		}
13321 		/*
13322 		 * There must be TCP options.
13323 		 * Make sure we can grab them.
13324 		 */
13325 		offset <<= 2;
13326 		offset += u1;
13327 		if (len < offset) {
13328 			if (!pullupmsg(mp, offset)) {
13329 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13330 				goto error;
13331 			}
13332 			ipha = (ipha_t *)mp->b_rptr;
13333 			len = mp->b_wptr - rptr;
13334 		}
13335 	}
13336 
13337 	/* Get the total packet length in len, including headers. */
13338 	if (mp->b_cont) {
13339 multipkttcp:
13340 		len = msgdsize(mp);
13341 	}
13342 
13343 	/*
13344 	 * Check the TCP checksum by pulling together the pseudo-
13345 	 * header checksum, and passing it to ip_csum to be added in
13346 	 * with the TCP datagram.
13347 	 *
13348 	 * Since we are not using the hwcksum if available we must
13349 	 * clear the flag. We may come here via tcppullup or tcpoptions.
13350 	 * If either of these fails along the way the mblk is freed.
13351 	 * If this logic ever changes and mblk is reused to say send
13352 	 * ICMP's back, then this flag may need to be cleared in
13353 	 * other places as well.
13354 	 */
13355 	DB_CKSUMFLAGS(mp) = 0;
13356 
13357 	up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET);
13358 
13359 	u1 = (uint32_t)(len - u1);	/* TCP datagram length. */
13360 #ifdef	_BIG_ENDIAN
13361 	u1 += IPPROTO_TCP;
13362 #else
13363 	u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
13364 #endif
13365 	u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
13366 	/*
13367 	 * Not M_DATA mblk or its a dup, so do the checksum now.
13368 	 */
13369 	IP_STAT(ipst, ip_in_sw_cksum);
13370 	if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) {
13371 		BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs);
13372 		goto error;
13373 	}
13374 
13375 	IP_STAT(ipst, ip_tcp_slow_path);
13376 	goto try_again;
13377 #undef  iphs
13378 #undef  rptr
13379 
13380 error:
13381 	freemsg(first_mp);
13382 slow_done:
13383 	return (NULL);
13384 }
13385 
13386 /* ARGSUSED */
13387 static void
13388 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
13389     ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst)
13390 {
13391 	conn_t		*connp;
13392 	uint32_t	sum;
13393 	uint32_t	u1;
13394 	ssize_t		len;
13395 	sctp_hdr_t	*sctph;
13396 	zoneid_t	zoneid = ire->ire_zoneid;
13397 	uint32_t	pktsum;
13398 	uint32_t	calcsum;
13399 	uint32_t	ports;
13400 	in6_addr_t	map_src, map_dst;
13401 	ill_t		*ill = (ill_t *)q->q_ptr;
13402 	ip_stack_t	*ipst;
13403 	sctp_stack_t	*sctps;
13404 	boolean_t	sctp_csum_err = B_FALSE;
13405 
13406 	ASSERT(recv_ill != NULL);
13407 	ipst = recv_ill->ill_ipst;
13408 	sctps = ipst->ips_netstack->netstack_sctp;
13409 
13410 #define	rptr	((uchar_t *)ipha)
13411 
13412 	ASSERT(ipha->ipha_protocol == IPPROTO_SCTP);
13413 	ASSERT(ill != NULL);
13414 
13415 	/* u1 is # words of IP options */
13416 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
13417 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
13418 
13419 	/* IP options present */
13420 	if (u1 > 0) {
13421 		goto ipoptions;
13422 	} else {
13423 		/* Check the IP header checksum.  */
13424 		if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) &&
13425 		    !mctl_present) {
13426 #define	uph	((uint16_t *)ipha)
13427 			sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
13428 			    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
13429 #undef	uph
13430 			/* finish doing IP checksum */
13431 			sum = (sum & 0xFFFF) + (sum >> 16);
13432 			sum = ~(sum + (sum >> 16)) & 0xFFFF;
13433 			/*
13434 			 * Don't verify header checksum if this packet
13435 			 * is coming back from AH/ESP as we already did it.
13436 			 */
13437 			if (sum != 0 && sum != 0xFFFF) {
13438 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
13439 				goto error;
13440 			}
13441 		}
13442 		/*
13443 		 * Since there is no SCTP h/w cksum support yet, just
13444 		 * clear the flag.
13445 		 */
13446 		DB_CKSUMFLAGS(mp) = 0;
13447 	}
13448 
13449 	/*
13450 	 * Don't verify header checksum if this packet is coming
13451 	 * back from AH/ESP as we already did it.
13452 	 */
13453 	if (!mctl_present) {
13454 		UPDATE_IB_PKT_COUNT(ire);
13455 		ire->ire_last_used_time = lbolt;
13456 	}
13457 
13458 	/* packet part of fragmented IP packet? */
13459 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13460 	if (u1 & (IPH_MF | IPH_OFFSET))
13461 		goto fragmented;
13462 
13463 	/* u1 = IP header length (20 bytes) */
13464 	u1 = IP_SIMPLE_HDR_LENGTH;
13465 
13466 find_sctp_client:
13467 	/* Pullup if we don't have the sctp common header. */
13468 	len = MBLKL(mp);
13469 	if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) {
13470 		if (mp->b_cont == NULL ||
13471 		    !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) {
13472 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13473 			goto error;
13474 		}
13475 		ipha = (ipha_t *)mp->b_rptr;
13476 		len = MBLKL(mp);
13477 	}
13478 
13479 	sctph = (sctp_hdr_t *)(rptr + u1);
13480 #ifdef	DEBUG
13481 	if (!skip_sctp_cksum) {
13482 #endif
13483 		pktsum = sctph->sh_chksum;
13484 		sctph->sh_chksum = 0;
13485 		calcsum = sctp_cksum(mp, u1);
13486 		sctph->sh_chksum = pktsum;
13487 		if (calcsum != pktsum)
13488 			sctp_csum_err = B_TRUE;
13489 #ifdef	DEBUG	/* skip_sctp_cksum */
13490 	}
13491 #endif
13492 	/* get the ports */
13493 	ports = *(uint32_t *)&sctph->sh_sport;
13494 
13495 	IRE_REFRELE(ire);
13496 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst);
13497 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src);
13498 	if (sctp_csum_err) {
13499 		/*
13500 		 * No potential sctp checksum errors go to the Sun
13501 		 * sctp stack however they might be Adler-32 summed
13502 		 * packets a userland stack bound to a raw IP socket
13503 		 * could reasonably use. Note though that Adler-32 is
13504 		 * a long deprecated algorithm and customer sctp
13505 		 * networks should eventually migrate to CRC-32 at
13506 		 * which time this facility should be removed.
13507 		 */
13508 		flags |= IP_FF_SCTP_CSUM_ERR;
13509 		goto no_conn;
13510 	}
13511 	if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp,
13512 	    sctps)) == NULL) {
13513 		/* Check for raw socket or OOTB handling */
13514 		goto no_conn;
13515 	}
13516 
13517 	/* Found a client; up it goes */
13518 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13519 	sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present);
13520 	return;
13521 
13522 no_conn:
13523 	ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE,
13524 	    ports, mctl_present, flags, B_TRUE, zoneid);
13525 	return;
13526 
13527 ipoptions:
13528 	DB_CKSUMFLAGS(mp) = 0;
13529 	if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst))
13530 		goto slow_done;
13531 
13532 	UPDATE_IB_PKT_COUNT(ire);
13533 	ire->ire_last_used_time = lbolt;
13534 
13535 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13536 	if (u1 & (IPH_MF | IPH_OFFSET)) {
13537 fragmented:
13538 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL))
13539 			goto slow_done;
13540 		/*
13541 		 * Make sure that first_mp points back to mp as
13542 		 * the mp we came in with could have changed in
13543 		 * ip_rput_fragment().
13544 		 */
13545 		ASSERT(!mctl_present);
13546 		ipha = (ipha_t *)mp->b_rptr;
13547 		first_mp = mp;
13548 	}
13549 
13550 	/* Now we have a complete datagram, destined for this machine. */
13551 	u1 = IPH_HDR_LENGTH(ipha);
13552 	goto find_sctp_client;
13553 #undef  iphs
13554 #undef  rptr
13555 
13556 error:
13557 	freemsg(first_mp);
13558 slow_done:
13559 	IRE_REFRELE(ire);
13560 }
13561 
13562 #define	VER_BITS	0xF0
13563 #define	VERSION_6	0x60
13564 
13565 static boolean_t
13566 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp,
13567     ipaddr_t *dstp, ip_stack_t *ipst)
13568 {
13569 	uint_t	opt_len;
13570 	ipha_t *ipha;
13571 	ssize_t len;
13572 	uint_t	pkt_len;
13573 
13574 	ASSERT(ill != NULL);
13575 	IP_STAT(ipst, ip_ipoptions);
13576 	ipha = *iphapp;
13577 
13578 #define	rptr    ((uchar_t *)ipha)
13579 	/* Assume no IPv6 packets arrive over the IPv4 queue */
13580 	if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) {
13581 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
13582 		freemsg(mp);
13583 		return (B_FALSE);
13584 	}
13585 
13586 	/* multiple mblk or too short */
13587 	pkt_len = ntohs(ipha->ipha_length);
13588 
13589 	/* Get the number of words of IP options in the IP header. */
13590 	opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION;
13591 	if (opt_len) {
13592 		/* IP Options present!  Validate and process. */
13593 		if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
13594 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
13595 			goto done;
13596 		}
13597 		/*
13598 		 * Recompute complete header length and make sure we
13599 		 * have access to all of it.
13600 		 */
13601 		len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
13602 		if (len > (mp->b_wptr - rptr)) {
13603 			if (len > pkt_len) {
13604 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
13605 				goto done;
13606 			}
13607 			if (!pullupmsg(mp, len)) {
13608 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13609 				goto done;
13610 			}
13611 			ipha = (ipha_t *)mp->b_rptr;
13612 		}
13613 		/*
13614 		 * Go off to ip_rput_options which returns the next hop
13615 		 * destination address, which may have been affected
13616 		 * by source routing.
13617 		 */
13618 		IP_STAT(ipst, ip_opt);
13619 		if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) {
13620 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13621 			return (B_FALSE);
13622 		}
13623 	}
13624 	*iphapp = ipha;
13625 	return (B_TRUE);
13626 done:
13627 	/* clear b_prev - used by ip_mroute_decap */
13628 	mp->b_prev = NULL;
13629 	freemsg(mp);
13630 	return (B_FALSE);
13631 #undef  rptr
13632 }
13633 
13634 /*
13635  * Deal with the fact that there is no ire for the destination.
13636  */
13637 static ire_t *
13638 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst)
13639 {
13640 	ipha_t	*ipha;
13641 	ill_t	*ill;
13642 	ire_t	*ire;
13643 	ip_stack_t *ipst;
13644 	enum	ire_forward_action ret_action;
13645 
13646 	ipha = (ipha_t *)mp->b_rptr;
13647 	ill = (ill_t *)q->q_ptr;
13648 
13649 	ASSERT(ill != NULL);
13650 	ipst = ill->ill_ipst;
13651 
13652 	/*
13653 	 * No IRE for this destination, so it can't be for us.
13654 	 * Unless we are forwarding, drop the packet.
13655 	 * We have to let source routed packets through
13656 	 * since we don't yet know if they are 'ping -l'
13657 	 * packets i.e. if they will go out over the
13658 	 * same interface as they came in on.
13659 	 */
13660 	if (ll_multicast) {
13661 		freemsg(mp);
13662 		return (NULL);
13663 	}
13664 	if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) {
13665 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
13666 		freemsg(mp);
13667 		return (NULL);
13668 	}
13669 
13670 	/*
13671 	 * Mark this packet as having originated externally.
13672 	 *
13673 	 * For non-forwarding code path, ire_send later double
13674 	 * checks this interface to see if it is still exists
13675 	 * post-ARP resolution.
13676 	 *
13677 	 * Also, IPQOS uses this to differentiate between
13678 	 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP
13679 	 * QOS packet processing in ip_wput_attach_llhdr().
13680 	 * The QoS module can mark the b_band for a fastpath message
13681 	 * or the dl_priority field in a unitdata_req header for
13682 	 * CoS marking. This info can only be found in
13683 	 * ip_wput_attach_llhdr().
13684 	 */
13685 	mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex;
13686 	/*
13687 	 * Clear the indication that this may have a hardware checksum
13688 	 * as we are not using it
13689 	 */
13690 	DB_CKSUMFLAGS(mp) = 0;
13691 
13692 	ire = ire_forward(dst, &ret_action, NULL, NULL,
13693 	    MBLK_GETLABEL(mp), ipst);
13694 
13695 	if (ire == NULL && ret_action == Forward_check_multirt) {
13696 		/* Let ip_newroute handle CGTP  */
13697 		ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst);
13698 		return (NULL);
13699 	}
13700 
13701 	if (ire != NULL)
13702 		return (ire);
13703 
13704 	mp->b_prev = mp->b_next = 0;
13705 
13706 	if (ret_action == Forward_blackhole) {
13707 		freemsg(mp);
13708 		return (NULL);
13709 	}
13710 	/* send icmp unreachable */
13711 	q = WR(q);
13712 	/* Sent by forwarding path, and router is global zone */
13713 	if (ip_source_routed(ipha, ipst)) {
13714 		icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED,
13715 		    GLOBAL_ZONEID, ipst);
13716 	} else {
13717 		icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID,
13718 		    ipst);
13719 	}
13720 
13721 	return (NULL);
13722 
13723 }
13724 
13725 /*
13726  * check ip header length and align it.
13727  */
13728 static boolean_t
13729 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst)
13730 {
13731 	ssize_t len;
13732 	ill_t *ill;
13733 	ipha_t	*ipha;
13734 
13735 	len = MBLKL(mp);
13736 
13737 	if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) {
13738 		ill = (ill_t *)q->q_ptr;
13739 
13740 		if (!OK_32PTR(mp->b_rptr))
13741 			IP_STAT(ipst, ip_notaligned1);
13742 		else
13743 			IP_STAT(ipst, ip_notaligned2);
13744 		/* Guard against bogus device drivers */
13745 		if (len < 0) {
13746 			/* clear b_prev - used by ip_mroute_decap */
13747 			mp->b_prev = NULL;
13748 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
13749 			freemsg(mp);
13750 			return (B_FALSE);
13751 		}
13752 
13753 		if (ip_rput_pullups++ == 0) {
13754 			ipha = (ipha_t *)mp->b_rptr;
13755 			(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
13756 			    "ip_check_and_align_header: %s forced us to "
13757 			    " pullup pkt, hdr len %ld, hdr addr %p",
13758 			    ill->ill_name, len, ipha);
13759 		}
13760 		if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
13761 			/* clear b_prev - used by ip_mroute_decap */
13762 			mp->b_prev = NULL;
13763 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13764 			freemsg(mp);
13765 			return (B_FALSE);
13766 		}
13767 	}
13768 	return (B_TRUE);
13769 }
13770 
13771 ire_t *
13772 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
13773 {
13774 	ire_t		*new_ire;
13775 	ill_t		*ire_ill;
13776 	uint_t		ifindex;
13777 	ip_stack_t	*ipst = ill->ill_ipst;
13778 	boolean_t	strict_check = B_FALSE;
13779 
13780 	/*
13781 	 * This packet came in on an interface other than the one associated
13782 	 * with the first ire we found for the destination address. We do
13783 	 * another ire lookup here, using the ingress ill, to see if the
13784 	 * interface is in an interface group.
13785 	 * As long as the ills belong to the same group, we don't consider
13786 	 * them to be arriving on the wrong interface. Thus, if the switch
13787 	 * is doing inbound load spreading, we won't drop packets when the
13788 	 * ip*_strict_dst_multihoming switch is on. Note, the same holds true
13789 	 * for 'usesrc groups' where the destination address may belong to
13790 	 * another interface to allow multipathing to happen.
13791 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
13792 	 * where the local address may not be unique. In this case we were
13793 	 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it
13794 	 * actually returned. The new lookup, which is more specific, should
13795 	 * only find the IRE_LOCAL associated with the ingress ill if one
13796 	 * exists.
13797 	 */
13798 
13799 	if (ire->ire_ipversion == IPV4_VERSION) {
13800 		if (ipst->ips_ip_strict_dst_multihoming)
13801 			strict_check = B_TRUE;
13802 		new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL,
13803 		    ill->ill_ipif, ALL_ZONES, NULL,
13804 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst);
13805 	} else {
13806 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
13807 		if (ipst->ips_ipv6_strict_dst_multihoming)
13808 			strict_check = B_TRUE;
13809 		new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL,
13810 		    IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL,
13811 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst);
13812 	}
13813 	/*
13814 	 * If the same ire that was returned in ip_input() is found then this
13815 	 * is an indication that interface groups are in use. The packet
13816 	 * arrived on a different ill in the group than the one associated with
13817 	 * the destination address.  If a different ire was found then the same
13818 	 * IP address must be hosted on multiple ills. This is possible with
13819 	 * unnumbered point2point interfaces. We switch to use this new ire in
13820 	 * order to have accurate interface statistics.
13821 	 */
13822 	if (new_ire != NULL) {
13823 		if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) {
13824 			ire_refrele(ire);
13825 			ire = new_ire;
13826 		} else {
13827 			ire_refrele(new_ire);
13828 		}
13829 		return (ire);
13830 	} else if ((ire->ire_rfq == NULL) &&
13831 	    (ire->ire_ipversion == IPV4_VERSION)) {
13832 		/*
13833 		 * The best match could have been the original ire which
13834 		 * was created against an IRE_LOCAL on lo0. In the IPv4 case
13835 		 * the strict multihoming checks are irrelevant as we consider
13836 		 * local addresses hosted on lo0 to be interface agnostic. We
13837 		 * only expect a null ire_rfq on IREs which are associated with
13838 		 * lo0 hence we can return now.
13839 		 */
13840 		return (ire);
13841 	}
13842 
13843 	/*
13844 	 * Chase pointers once and store locally.
13845 	 */
13846 	ire_ill = (ire->ire_rfq == NULL) ? NULL :
13847 	    (ill_t *)(ire->ire_rfq->q_ptr);
13848 	ifindex = ill->ill_usesrc_ifindex;
13849 
13850 	/*
13851 	 * Check if it's a legal address on the 'usesrc' interface.
13852 	 */
13853 	if ((ifindex != 0) && (ire_ill != NULL) &&
13854 	    (ifindex == ire_ill->ill_phyint->phyint_ifindex)) {
13855 		return (ire);
13856 	}
13857 
13858 	/*
13859 	 * If the ip*_strict_dst_multihoming switch is on then we can
13860 	 * only accept this packet if the interface is marked as routing.
13861 	 */
13862 	if (!(strict_check))
13863 		return (ire);
13864 
13865 	if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags &
13866 	    ILLF_ROUTER) != 0) {
13867 		return (ire);
13868 	}
13869 
13870 	ire_refrele(ire);
13871 	return (NULL);
13872 }
13873 
13874 ire_t *
13875 ip_fast_forward(ire_t *ire, ipaddr_t dst,  ill_t *ill, mblk_t *mp)
13876 {
13877 	ipha_t	*ipha;
13878 	ire_t	*src_ire;
13879 	ill_t	*stq_ill;
13880 	uint_t	hlen;
13881 	uint_t	pkt_len;
13882 	uint32_t sum;
13883 	queue_t	*dev_q;
13884 	ip_stack_t *ipst = ill->ill_ipst;
13885 	mblk_t *fpmp;
13886 	enum	ire_forward_action ret_action;
13887 
13888 	ipha = (ipha_t *)mp->b_rptr;
13889 
13890 	if (ire != NULL &&
13891 	    ire->ire_zoneid != GLOBAL_ZONEID &&
13892 	    ire->ire_zoneid != ALL_ZONES) {
13893 		/*
13894 		 * Should only use IREs that are visible to the global
13895 		 * zone for forwarding.
13896 		 */
13897 		ire_refrele(ire);
13898 		ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst);
13899 	}
13900 
13901 	/*
13902 	 * Martian Address Filtering [RFC 1812, Section 5.3.7]
13903 	 * The loopback address check for both src and dst has already
13904 	 * been checked in ip_input
13905 	 */
13906 
13907 	if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) {
13908 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
13909 		goto drop;
13910 	}
13911 	src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL,
13912 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
13913 
13914 	if (src_ire != NULL) {
13915 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
13916 		ire_refrele(src_ire);
13917 		goto drop;
13918 	}
13919 
13920 	/* No ire cache of nexthop. So first create one  */
13921 	if (ire == NULL) {
13922 
13923 		ire = ire_forward(dst, &ret_action, NULL, NULL,
13924 		    NULL, ipst);
13925 		/*
13926 		 * We only come to ip_fast_forward if ip_cgtp_filter
13927 		 * is not set. So ire_forward() should not return with
13928 		 * Forward_check_multirt as the next action.
13929 		 */
13930 		ASSERT(ret_action != Forward_check_multirt);
13931 		if (ire == NULL) {
13932 			/* An attempt was made to forward the packet */
13933 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);
13934 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13935 			mp->b_prev = mp->b_next = 0;
13936 			/* send icmp unreachable */
13937 			/* Sent by forwarding path, and router is global zone */
13938 			if (ret_action == Forward_ret_icmp_err) {
13939 				if (ip_source_routed(ipha, ipst)) {
13940 					icmp_unreachable(ill->ill_wq, mp,
13941 					    ICMP_SOURCE_ROUTE_FAILED,
13942 					    GLOBAL_ZONEID, ipst);
13943 				} else {
13944 					icmp_unreachable(ill->ill_wq, mp,
13945 					    ICMP_HOST_UNREACHABLE,
13946 					    GLOBAL_ZONEID, ipst);
13947 				}
13948 			} else {
13949 				freemsg(mp);
13950 			}
13951 			return (NULL);
13952 		}
13953 	}
13954 
13955 	/*
13956 	 * Forwarding fastpath exception case:
13957 	 * If either of the follwoing case is true, we take
13958 	 * the slowpath
13959 	 *	o forwarding is not enabled
13960 	 *	o incoming and outgoing interface are the same, or the same
13961 	 *	  IPMP group
13962 	 *	o corresponding ire is in incomplete state
13963 	 *	o packet needs fragmentation
13964 	 *	o ARP cache is not resolved
13965 	 *
13966 	 * The codeflow from here on is thus:
13967 	 *	ip_rput_process_forward->ip_rput_forward->ip_xmit_v4
13968 	 */
13969 	pkt_len = ntohs(ipha->ipha_length);
13970 	stq_ill = (ill_t *)ire->ire_stq->q_ptr;
13971 	if (!(stq_ill->ill_flags & ILLF_ROUTER) ||
13972 	    !(ill->ill_flags & ILLF_ROUTER) ||
13973 	    (ill == stq_ill) ||
13974 	    (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) ||
13975 	    (ire->ire_nce == NULL) ||
13976 	    (pkt_len > ire->ire_max_frag) ||
13977 	    ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) ||
13978 	    ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) ||
13979 	    ipha->ipha_ttl <= 1) {
13980 		ip_rput_process_forward(ill->ill_rq, mp, ire,
13981 		    ipha, ill, B_FALSE);
13982 		return (ire);
13983 	}
13984 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);
13985 
13986 	DTRACE_PROBE4(ip4__forwarding__start,
13987 	    ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp);
13988 
13989 	FW_HOOKS(ipst->ips_ip4_forwarding_event,
13990 	    ipst->ips_ipv4firewall_forwarding,
13991 	    ill, stq_ill, ipha, mp, mp, 0, ipst);
13992 
13993 	DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
13994 
13995 	if (mp == NULL)
13996 		goto drop;
13997 
13998 	mp->b_datap->db_struioun.cksum.flags = 0;
13999 	/* Adjust the checksum to reflect the ttl decrement. */
14000 	sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
14001 	ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
14002 	ipha->ipha_ttl--;
14003 
14004 	/*
14005 	 * Write the link layer header.  We can do this safely here,
14006 	 * because we have already tested to make sure that the IP
14007 	 * policy is not set, and that we have a fast path destination
14008 	 * header.
14009 	 */
14010 	mp->b_rptr -= hlen;
14011 	bcopy(fpmp->b_rptr, mp->b_rptr, hlen);
14012 
14013 	UPDATE_IB_PKT_COUNT(ire);
14014 	ire->ire_last_used_time = lbolt;
14015 	BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams);
14016 	BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14017 	UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len);
14018 
14019 	dev_q = ire->ire_stq->q_next;
14020 	if ((dev_q->q_next != NULL || dev_q->q_first != NULL) &&
14021 	    !canputnext(ire->ire_stq)) {
14022 		goto indiscard;
14023 	}
14024 	if (ILL_DLS_CAPABLE(stq_ill)) {
14025 		/*
14026 		 * Send the packet directly to DLD, where it
14027 		 * may be queued depending on the availability
14028 		 * of transmit resources at the media layer.
14029 		 */
14030 		IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst);
14031 	} else {
14032 		DTRACE_PROBE4(ip4__physical__out__start,
14033 		    ill_t *, NULL, ill_t *, stq_ill,
14034 		    ipha_t *, ipha, mblk_t *, mp);
14035 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
14036 		    ipst->ips_ipv4firewall_physical_out,
14037 		    NULL, stq_ill, ipha, mp, mp, 0, ipst);
14038 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
14039 		if (mp == NULL)
14040 			goto drop;
14041 		putnext(ire->ire_stq, mp);
14042 	}
14043 	return (ire);
14044 
14045 indiscard:
14046 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14047 drop:
14048 	if (mp != NULL)
14049 		freemsg(mp);
14050 	return (ire);
14051 
14052 }
14053 
14054 /*
14055  * This function is called in the forwarding slowpath, when
14056  * either the ire lacks the link-layer address, or the packet needs
14057  * further processing(eg. fragmentation), before transmission.
14058  */
14059 
14060 static void
14061 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha,
14062     ill_t *ill, boolean_t ll_multicast)
14063 {
14064 	ill_group_t	*ill_group;
14065 	ill_group_t	*ire_group;
14066 	queue_t		*dev_q;
14067 	ire_t		*src_ire;
14068 	ip_stack_t	*ipst = ill->ill_ipst;
14069 
14070 	ASSERT(ire->ire_stq != NULL);
14071 
14072 	mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */
14073 	mp->b_next = NULL; /* ip_rput_noire sets dst here */
14074 
14075 	if (ll_multicast != 0) {
14076 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14077 		goto drop_pkt;
14078 	}
14079 
14080 	/*
14081 	 * check if ipha_src is a broadcast address. Note that this
14082 	 * check is redundant when we get here from ip_fast_forward()
14083 	 * which has already done this check. However, since we can
14084 	 * also get here from ip_rput_process_broadcast() or, for
14085 	 * for the slow path through ip_fast_forward(), we perform
14086 	 * the check again for code-reusability
14087 	 */
14088 	src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL,
14089 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
14090 	if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) {
14091 		if (src_ire != NULL)
14092 			ire_refrele(src_ire);
14093 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
14094 		ip2dbg(("ip_rput_process_forward: Received packet with"
14095 		    " bad src/dst address on %s\n", ill->ill_name));
14096 		goto drop_pkt;
14097 	}
14098 
14099 	ill_group = ill->ill_group;
14100 	ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group;
14101 	/*
14102 	 * Check if we want to forward this one at this time.
14103 	 * We allow source routed packets on a host provided that
14104 	 * they go out the same interface or same interface group
14105 	 * as they came in on.
14106 	 *
14107 	 * XXX To be quicker, we may wish to not chase pointers to
14108 	 * get the ILLF_ROUTER flag and instead store the
14109 	 * forwarding policy in the ire.  An unfortunate
14110 	 * side-effect of that would be requiring an ire flush
14111 	 * whenever the ILLF_ROUTER flag changes.
14112 	 */
14113 	if (((ill->ill_flags &
14114 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_flags &
14115 	    ILLF_ROUTER) == 0) &&
14116 	    !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q ||
14117 	    (ill_group != NULL && ill_group == ire_group)))) {
14118 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
14119 		if (ip_source_routed(ipha, ipst)) {
14120 			q = WR(q);
14121 			/*
14122 			 * Clear the indication that this may have
14123 			 * hardware checksum as we are not using it.
14124 			 */
14125 			DB_CKSUMFLAGS(mp) = 0;
14126 			/* Sent by forwarding path, and router is global zone */
14127 			icmp_unreachable(q, mp,
14128 			    ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst);
14129 			return;
14130 		}
14131 		goto drop_pkt;
14132 	}
14133 
14134 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);
14135 
14136 	/* Packet is being forwarded. Turning off hwcksum flag. */
14137 	DB_CKSUMFLAGS(mp) = 0;
14138 	if (ipst->ips_ip_g_send_redirects) {
14139 		/*
14140 		 * Check whether the incoming interface and outgoing
14141 		 * interface is part of the same group. If so,
14142 		 * send redirects.
14143 		 *
14144 		 * Check the source address to see if it originated
14145 		 * on the same logical subnet it is going back out on.
14146 		 * If so, we should be able to send it a redirect.
14147 		 * Avoid sending a redirect if the destination
14148 		 * is directly connected (i.e., ipha_dst is the same
14149 		 * as ire_gateway_addr or the ire_addr of the
14150 		 * nexthop IRE_CACHE ), or if the packet was source
14151 		 * routed out this interface.
14152 		 */
14153 		ipaddr_t src, nhop;
14154 		mblk_t	*mp1;
14155 		ire_t	*nhop_ire = NULL;
14156 
14157 		/*
14158 		 * Check whether ire_rfq and q are from the same ill
14159 		 * or if they are not same, they at least belong
14160 		 * to the same group. If so, send redirects.
14161 		 */
14162 		if ((ire->ire_rfq == q ||
14163 		    (ill_group != NULL && ill_group == ire_group)) &&
14164 		    !ip_source_routed(ipha, ipst)) {
14165 
14166 			nhop = (ire->ire_gateway_addr != 0 ?
14167 			    ire->ire_gateway_addr : ire->ire_addr);
14168 
14169 			if (ipha->ipha_dst == nhop) {
14170 				/*
14171 				 * We avoid sending a redirect if the
14172 				 * destination is directly connected
14173 				 * because it is possible that multiple
14174 				 * IP subnets may have been configured on
14175 				 * the link, and the source may not
14176 				 * be on the same subnet as ip destination,
14177 				 * even though they are on the same
14178 				 * physical link.
14179 				 */
14180 				goto sendit;
14181 			}
14182 
14183 			src = ipha->ipha_src;
14184 
14185 			/*
14186 			 * We look up the interface ire for the nexthop,
14187 			 * to see if ipha_src is in the same subnet
14188 			 * as the nexthop.
14189 			 *
14190 			 * Note that, if, in the future, IRE_CACHE entries
14191 			 * are obsoleted,  this lookup will not be needed,
14192 			 * as the ire passed to this function will be the
14193 			 * same as the nhop_ire computed below.
14194 			 */
14195 			nhop_ire = ire_ftable_lookup(nhop, 0, 0,
14196 			    IRE_INTERFACE, NULL, NULL, ALL_ZONES,
14197 			    0, NULL, MATCH_IRE_TYPE, ipst);
14198 
14199 			if (nhop_ire != NULL) {
14200 				if ((src & nhop_ire->ire_mask) ==
14201 				    (nhop & nhop_ire->ire_mask)) {
14202 					/*
14203 					 * The source is directly connected.
14204 					 * Just copy the ip header (which is
14205 					 * in the first mblk)
14206 					 */
14207 					mp1 = copyb(mp);
14208 					if (mp1 != NULL) {
14209 						icmp_send_redirect(WR(q), mp1,
14210 						    nhop, ipst);
14211 					}
14212 				}
14213 				ire_refrele(nhop_ire);
14214 			}
14215 		}
14216 	}
14217 sendit:
14218 	dev_q = ire->ire_stq->q_next;
14219 	if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) {
14220 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14221 		freemsg(mp);
14222 		return;
14223 	}
14224 
14225 	ip_rput_forward(ire, ipha, mp, ill);
14226 	return;
14227 
14228 drop_pkt:
14229 	ip2dbg(("ip_rput_process_forward: drop pkt\n"));
14230 	freemsg(mp);
14231 }
14232 
14233 ire_t *
14234 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha,
14235     ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast)
14236 {
14237 	queue_t		*q;
14238 	uint16_t	hcksumflags;
14239 	ip_stack_t	*ipst = ill->ill_ipst;
14240 
14241 	q = *qp;
14242 
14243 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts);
14244 
14245 	/*
14246 	 * Clear the indication that this may have hardware
14247 	 * checksum as we are not using it for forwarding.
14248 	 */
14249 	hcksumflags = DB_CKSUMFLAGS(mp);
14250 	DB_CKSUMFLAGS(mp) = 0;
14251 
14252 	/*
14253 	 * Directed broadcast forwarding: if the packet came in over a
14254 	 * different interface then it is routed out over we can forward it.
14255 	 */
14256 	if (ipha->ipha_protocol == IPPROTO_TCP) {
14257 		ire_refrele(ire);
14258 		freemsg(mp);
14259 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14260 		return (NULL);
14261 	}
14262 	/*
14263 	 * For multicast we have set dst to be INADDR_BROADCAST
14264 	 * for delivering to all STREAMS. IRE_MARK_NORECV is really
14265 	 * only for broadcast packets.
14266 	 */
14267 	if (!CLASSD(ipha->ipha_dst)) {
14268 		ire_t *new_ire;
14269 		ipif_t *ipif;
14270 		/*
14271 		 * For ill groups, as the switch duplicates broadcasts
14272 		 * across all the ports, we need to filter out and
14273 		 * send up only one copy. There is one copy for every
14274 		 * broadcast address on each ill. Thus, we look for a
14275 		 * specific IRE on this ill and look at IRE_MARK_NORECV
14276 		 * later to see whether this ill is eligible to receive
14277 		 * them or not. ill_nominate_bcast_rcv() nominates only
14278 		 * one set of IREs for receiving.
14279 		 */
14280 
14281 		ipif = ipif_get_next_ipif(NULL, ill);
14282 		if (ipif == NULL) {
14283 			ire_refrele(ire);
14284 			freemsg(mp);
14285 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14286 			return (NULL);
14287 		}
14288 		new_ire = ire_ctable_lookup(dst, 0, 0,
14289 		    ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst);
14290 		ipif_refrele(ipif);
14291 
14292 		if (new_ire != NULL) {
14293 			if (new_ire->ire_marks & IRE_MARK_NORECV) {
14294 				ire_refrele(ire);
14295 				ire_refrele(new_ire);
14296 				freemsg(mp);
14297 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14298 				return (NULL);
14299 			}
14300 			/*
14301 			 * In the special case of multirouted broadcast
14302 			 * packets, we unconditionally need to "gateway"
14303 			 * them to the appropriate interface here.
14304 			 * In the normal case, this cannot happen, because
14305 			 * there is no broadcast IRE tagged with the
14306 			 * RTF_MULTIRT flag.
14307 			 */
14308 			if (new_ire->ire_flags & RTF_MULTIRT) {
14309 				ire_refrele(new_ire);
14310 				if (ire->ire_rfq != NULL) {
14311 					q = ire->ire_rfq;
14312 					*qp = q;
14313 				}
14314 			} else {
14315 				ire_refrele(ire);
14316 				ire = new_ire;
14317 			}
14318 		} else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) {
14319 			if (!ipst->ips_ip_g_forward_directed_bcast) {
14320 				/*
14321 				 * Free the message if
14322 				 * ip_g_forward_directed_bcast is turned
14323 				 * off for non-local broadcast.
14324 				 */
14325 				ire_refrele(ire);
14326 				freemsg(mp);
14327 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14328 				return (NULL);
14329 			}
14330 		} else {
14331 			/*
14332 			 * This CGTP packet successfully passed the
14333 			 * CGTP filter, but the related CGTP
14334 			 * broadcast IRE has not been found,
14335 			 * meaning that the redundant ipif is
14336 			 * probably down. However, if we discarded
14337 			 * this packet, its duplicate would be
14338 			 * filtered out by the CGTP filter so none
14339 			 * of them would get through. So we keep
14340 			 * going with this one.
14341 			 */
14342 			ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM);
14343 			if (ire->ire_rfq != NULL) {
14344 				q = ire->ire_rfq;
14345 				*qp = q;
14346 			}
14347 		}
14348 	}
14349 	if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) {
14350 		/*
14351 		 * Verify that there are not more then one
14352 		 * IRE_BROADCAST with this broadcast address which
14353 		 * has ire_stq set.
14354 		 * TODO: simplify, loop over all IRE's
14355 		 */
14356 		ire_t	*ire1;
14357 		int	num_stq = 0;
14358 		mblk_t	*mp1;
14359 
14360 		/* Find the first one with ire_stq set */
14361 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
14362 		for (ire1 = ire; ire1 &&
14363 		    !ire1->ire_stq && ire1->ire_addr == ire->ire_addr;
14364 		    ire1 = ire1->ire_next)
14365 			;
14366 		if (ire1) {
14367 			ire_refrele(ire);
14368 			ire = ire1;
14369 			IRE_REFHOLD(ire);
14370 		}
14371 
14372 		/* Check if there are additional ones with stq set */
14373 		for (ire1 = ire; ire1; ire1 = ire1->ire_next) {
14374 			if (ire->ire_addr != ire1->ire_addr)
14375 				break;
14376 			if (ire1->ire_stq) {
14377 				num_stq++;
14378 				break;
14379 			}
14380 		}
14381 		rw_exit(&ire->ire_bucket->irb_lock);
14382 		if (num_stq == 1 && ire->ire_stq != NULL) {
14383 			ip1dbg(("ip_rput_process_broadcast: directed "
14384 			    "broadcast to 0x%x\n",
14385 			    ntohl(ire->ire_addr)));
14386 			mp1 = copymsg(mp);
14387 			if (mp1) {
14388 				switch (ipha->ipha_protocol) {
14389 				case IPPROTO_UDP:
14390 					ip_udp_input(q, mp1, ipha, ire, ill);
14391 					break;
14392 				default:
14393 					ip_proto_input(q, mp1, ipha, ire, ill,
14394 					    B_FALSE);
14395 					break;
14396 				}
14397 			}
14398 			/*
14399 			 * Adjust ttl to 2 (1+1 - the forward engine
14400 			 * will decrement it by one.
14401 			 */
14402 			if (ip_csum_hdr(ipha)) {
14403 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
14404 				ip2dbg(("ip_rput_broadcast:drop pkt\n"));
14405 				freemsg(mp);
14406 				ire_refrele(ire);
14407 				return (NULL);
14408 			}
14409 			ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1;
14410 			ipha->ipha_hdr_checksum = 0;
14411 			ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
14412 			ip_rput_process_forward(q, mp, ire, ipha,
14413 			    ill, ll_multicast);
14414 			ire_refrele(ire);
14415 			return (NULL);
14416 		}
14417 		ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n",
14418 		    ntohl(ire->ire_addr)));
14419 	}
14420 
14421 
14422 	/* Restore any hardware checksum flags */
14423 	DB_CKSUMFLAGS(mp) = hcksumflags;
14424 	return (ire);
14425 }
14426 
14427 /* ARGSUSED */
14428 static boolean_t
14429 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
14430     int *ll_multicast, ipaddr_t *dstp)
14431 {
14432 	ip_stack_t	*ipst = ill->ill_ipst;
14433 
14434 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts);
14435 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets,
14436 	    ntohs(ipha->ipha_length));
14437 
14438 	/*
14439 	 * Forward packets only if we have joined the allmulti
14440 	 * group on this interface.
14441 	 */
14442 	if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) {
14443 		int retval;
14444 
14445 		/*
14446 		 * Clear the indication that this may have hardware
14447 		 * checksum as we are not using it.
14448 		 */
14449 		DB_CKSUMFLAGS(mp) = 0;
14450 		retval = ip_mforward(ill, ipha, mp);
14451 		/* ip_mforward updates mib variables if needed */
14452 		/* clear b_prev - used by ip_mroute_decap */
14453 		mp->b_prev = NULL;
14454 
14455 		switch (retval) {
14456 		case 0:
14457 			/*
14458 			 * pkt is okay and arrived on phyint.
14459 			 *
14460 			 * If we are running as a multicast router
14461 			 * we need to see all IGMP and/or PIM packets.
14462 			 */
14463 			if ((ipha->ipha_protocol == IPPROTO_IGMP) ||
14464 			    (ipha->ipha_protocol == IPPROTO_PIM)) {
14465 				goto done;
14466 			}
14467 			break;
14468 		case -1:
14469 			/* pkt is mal-formed, toss it */
14470 			goto drop_pkt;
14471 		case 1:
14472 			/* pkt is okay and arrived on a tunnel */
14473 			/*
14474 			 * If we are running a multicast router
14475 			 *  we need to see all igmp packets.
14476 			 */
14477 			if (ipha->ipha_protocol == IPPROTO_IGMP) {
14478 				*dstp = INADDR_BROADCAST;
14479 				*ll_multicast = 1;
14480 				return (B_FALSE);
14481 			}
14482 
14483 			goto drop_pkt;
14484 		}
14485 	}
14486 
14487 	ILM_WALKER_HOLD(ill);
14488 	if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) {
14489 		/*
14490 		 * This might just be caused by the fact that
14491 		 * multiple IP Multicast addresses map to the same
14492 		 * link layer multicast - no need to increment counter!
14493 		 */
14494 		ILM_WALKER_RELE(ill);
14495 		freemsg(mp);
14496 		return (B_TRUE);
14497 	}
14498 	ILM_WALKER_RELE(ill);
14499 done:
14500 	ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp)));
14501 	/*
14502 	 * This assumes the we deliver to all streams for multicast
14503 	 * and broadcast packets.
14504 	 */
14505 	*dstp = INADDR_BROADCAST;
14506 	*ll_multicast = 1;
14507 	return (B_FALSE);
14508 drop_pkt:
14509 	ip2dbg(("ip_rput: drop pkt\n"));
14510 	freemsg(mp);
14511 	return (B_TRUE);
14512 }
14513 
14514 /*
14515  * This function is used to both return an indication of whether or not
14516  * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND)
14517  * and in doing so, determine whether or not it is broadcast vs multicast.
14518  * For it to be a broadcast packet, we must have the appropriate mblk_t
14519  * hanging off the ill_t.  If this is either not present or doesn't match
14520  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
14521  * to be multicast.  Thus NICs that have no broadcast address (or no
14522  * capability for one, such as point to point links) cannot return as
14523  * the packet being broadcast.  The use of HPE_BROADCAST/HPE_MULTICAST as
14524  * the return values simplifies the current use of the return value of this
14525  * function, which is to pass through the multicast/broadcast characteristic
14526  * to consumers of the netinfo/pfhooks API.  While this is not cast in stone,
14527  * changing the return value to some other symbol demands the appropriate
14528  * "translation" when hpe_flags is set prior to calling hook_run() for
14529  * packet events.
14530  */
14531 int
14532 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb)
14533 {
14534 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
14535 	mblk_t *bmp;
14536 
14537 	if (ind->dl_group_address) {
14538 		if (ind->dl_dest_addr_offset > sizeof (*ind) &&
14539 		    ind->dl_dest_addr_offset + ind->dl_dest_addr_length <
14540 		    MBLKL(mb) &&
14541 		    (bmp = ill->ill_bcast_mp) != NULL) {
14542 			dl_unitdata_req_t *dlur;
14543 			uint8_t *bphys_addr;
14544 
14545 			dlur = (dl_unitdata_req_t *)bmp->b_rptr;
14546 			if (ill->ill_sap_length < 0)
14547 				bphys_addr = (uchar_t *)dlur +
14548 				    dlur->dl_dest_addr_offset;
14549 			else
14550 				bphys_addr = (uchar_t *)dlur +
14551 				    dlur->dl_dest_addr_offset +
14552 				    ill->ill_sap_length;
14553 
14554 			if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset,
14555 			    bphys_addr, ind->dl_dest_addr_length) == 0) {
14556 				return (HPE_BROADCAST);
14557 			}
14558 			return (HPE_MULTICAST);
14559 		}
14560 		return (HPE_MULTICAST);
14561 	}
14562 	return (0);
14563 }
14564 
14565 static boolean_t
14566 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill,
14567     int *ll_multicast, mblk_t **mpp)
14568 {
14569 	mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp;
14570 	boolean_t must_copy = B_FALSE;
14571 	struct iocblk   *iocp;
14572 	ipha_t		*ipha;
14573 	ip_stack_t	*ipst = ill->ill_ipst;
14574 
14575 #define	rptr    ((uchar_t *)ipha)
14576 
14577 	first_mp = *first_mpp;
14578 	mp = *mpp;
14579 
14580 	ASSERT(first_mp == mp);
14581 
14582 	/*
14583 	 * if db_ref > 1 then copymsg and free original. Packet may be
14584 	 * changed and do not want other entity who has a reference to this
14585 	 * message to trip over the changes. This is a blind change because
14586 	 * trying to catch all places that might change packet is too
14587 	 * difficult (since it may be a module above this one)
14588 	 *
14589 	 * This corresponds to the non-fast path case. We walk down the full
14590 	 * chain in this case, and check the db_ref count of all the dblks,
14591 	 * and do a copymsg if required. It is possible that the db_ref counts
14592 	 * of the data blocks in the mblk chain can be different.
14593 	 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref
14594 	 * count of 1, followed by a M_DATA block with a ref count of 2, if
14595 	 * 'snoop' is running.
14596 	 */
14597 	for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
14598 		if (mp1->b_datap->db_ref > 1) {
14599 			must_copy = B_TRUE;
14600 			break;
14601 		}
14602 	}
14603 
14604 	if (must_copy) {
14605 		mp1 = copymsg(mp);
14606 		if (mp1 == NULL) {
14607 			for (mp1 = mp; mp1 != NULL;
14608 			    mp1 = mp1->b_cont) {
14609 				mp1->b_next = NULL;
14610 				mp1->b_prev = NULL;
14611 			}
14612 			freemsg(mp);
14613 			if (ill != NULL) {
14614 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14615 			} else {
14616 				BUMP_MIB(&ipst->ips_ip_mib,
14617 				    ipIfStatsInDiscards);
14618 			}
14619 			return (B_TRUE);
14620 		}
14621 		for (from_mp = mp, to_mp = mp1; from_mp != NULL;
14622 		    from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) {
14623 			/* Copy b_prev - used by ip_mroute_decap */
14624 			to_mp->b_prev = from_mp->b_prev;
14625 			from_mp->b_prev = NULL;
14626 		}
14627 		*first_mpp = first_mp = mp1;
14628 		freemsg(mp);
14629 		mp = mp1;
14630 		*mpp = mp1;
14631 	}
14632 
14633 	ipha = (ipha_t *)mp->b_rptr;
14634 
14635 	/*
14636 	 * previous code has a case for M_DATA.
14637 	 * We want to check how that happens.
14638 	 */
14639 	ASSERT(first_mp->b_datap->db_type != M_DATA);
14640 	switch (first_mp->b_datap->db_type) {
14641 	case M_PROTO:
14642 	case M_PCPROTO:
14643 		if (((dl_unitdata_ind_t *)rptr)->dl_primitive !=
14644 		    DL_UNITDATA_IND) {
14645 			/* Go handle anything other than data elsewhere. */
14646 			ip_rput_dlpi(q, mp);
14647 			return (B_TRUE);
14648 		}
14649 
14650 		*ll_multicast = ip_get_dlpi_mbcast(ill, mp);
14651 		/* Ditch the DLPI header. */
14652 		mp1 = mp->b_cont;
14653 		ASSERT(first_mp == mp);
14654 		*first_mpp = mp1;
14655 		freeb(mp);
14656 		*mpp = mp1;
14657 		return (B_FALSE);
14658 	case M_IOCACK:
14659 		ip1dbg(("got iocack "));
14660 		iocp = (struct iocblk *)mp->b_rptr;
14661 		switch (iocp->ioc_cmd) {
14662 		case DL_IOC_HDR_INFO:
14663 			ill = (ill_t *)q->q_ptr;
14664 			ill_fastpath_ack(ill, mp);
14665 			return (B_TRUE);
14666 		case SIOCSTUNPARAM:
14667 		case OSIOCSTUNPARAM:
14668 			/* Go through qwriter_ip */
14669 			break;
14670 		case SIOCGTUNPARAM:
14671 		case OSIOCGTUNPARAM:
14672 			ip_rput_other(NULL, q, mp, NULL);
14673 			return (B_TRUE);
14674 		default:
14675 			putnext(q, mp);
14676 			return (B_TRUE);
14677 		}
14678 		/* FALLTHRU */
14679 	case M_ERROR:
14680 	case M_HANGUP:
14681 		/*
14682 		 * Since this is on the ill stream we unconditionally
14683 		 * bump up the refcount
14684 		 */
14685 		ill_refhold(ill);
14686 		qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE);
14687 		return (B_TRUE);
14688 	case M_CTL:
14689 		if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) &&
14690 		    (((da_ipsec_t *)first_mp->b_rptr)->da_type ==
14691 		    IPHADA_M_CTL)) {
14692 			/*
14693 			 * It's an IPsec accelerated packet.
14694 			 * Make sure that the ill from which we received the
14695 			 * packet has enabled IPsec hardware acceleration.
14696 			 */
14697 			if (!(ill->ill_capabilities &
14698 			    (ILL_CAPAB_AH|ILL_CAPAB_ESP))) {
14699 				/* IPsec kstats: bean counter */
14700 				freemsg(mp);
14701 				return (B_TRUE);
14702 			}
14703 
14704 			/*
14705 			 * Make mp point to the mblk following the M_CTL,
14706 			 * then process according to type of mp.
14707 			 * After this processing, first_mp will point to
14708 			 * the data-attributes and mp to the pkt following
14709 			 * the M_CTL.
14710 			 */
14711 			mp = first_mp->b_cont;
14712 			if (mp == NULL) {
14713 				freemsg(first_mp);
14714 				return (B_TRUE);
14715 			}
14716 			/*
14717 			 * A Hardware Accelerated packet can only be M_DATA
14718 			 * ESP or AH packet.
14719 			 */
14720 			if (mp->b_datap->db_type != M_DATA) {
14721 				/* non-M_DATA IPsec accelerated packet */
14722 				IPSECHW_DEBUG(IPSECHW_PKT,
14723 				    ("non-M_DATA IPsec accelerated pkt\n"));
14724 				freemsg(first_mp);
14725 				return (B_TRUE);
14726 			}
14727 			ipha = (ipha_t *)mp->b_rptr;
14728 			if (ipha->ipha_protocol != IPPROTO_AH &&
14729 			    ipha->ipha_protocol != IPPROTO_ESP) {
14730 				IPSECHW_DEBUG(IPSECHW_PKT,
14731 				    ("non-M_DATA IPsec accelerated pkt\n"));
14732 				freemsg(first_mp);
14733 				return (B_TRUE);
14734 			}
14735 			*mpp = mp;
14736 			return (B_FALSE);
14737 		}
14738 		putnext(q, mp);
14739 		return (B_TRUE);
14740 	case M_IOCNAK:
14741 		ip1dbg(("got iocnak "));
14742 		iocp = (struct iocblk *)mp->b_rptr;
14743 		switch (iocp->ioc_cmd) {
14744 		case SIOCSTUNPARAM:
14745 		case OSIOCSTUNPARAM:
14746 			/*
14747 			 * Since this is on the ill stream we unconditionally
14748 			 * bump up the refcount
14749 			 */
14750 			ill_refhold(ill);
14751 			qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE);
14752 			return (B_TRUE);
14753 		case DL_IOC_HDR_INFO:
14754 		case SIOCGTUNPARAM:
14755 		case OSIOCGTUNPARAM:
14756 			ip_rput_other(NULL, q, mp, NULL);
14757 			return (B_TRUE);
14758 		default:
14759 			break;
14760 		}
14761 		/* FALLTHRU */
14762 	default:
14763 		putnext(q, mp);
14764 		return (B_TRUE);
14765 	}
14766 }
14767 
14768 /* Read side put procedure.  Packets coming from the wire arrive here. */
14769 void
14770 ip_rput(queue_t *q, mblk_t *mp)
14771 {
14772 	ill_t	*ill;
14773 	union DL_primitives *dl;
14774 
14775 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q);
14776 
14777 	ill = (ill_t *)q->q_ptr;
14778 
14779 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
14780 		/*
14781 		 * If things are opening or closing, only accept high-priority
14782 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
14783 		 * created; on close, things hanging off the ill may have been
14784 		 * freed already.)
14785 		 */
14786 		dl = (union DL_primitives *)mp->b_rptr;
14787 		if (DB_TYPE(mp) != M_PCPROTO ||
14788 		    dl->dl_primitive == DL_UNITDATA_IND) {
14789 			/*
14790 			 * SIOC[GS]TUNPARAM ioctls can come here.
14791 			 */
14792 			inet_freemsg(mp);
14793 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
14794 			    "ip_rput_end: q %p (%S)", q, "uninit");
14795 			return;
14796 		}
14797 	}
14798 
14799 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
14800 	    "ip_rput_end: q %p (%S)", q, "end");
14801 
14802 	ip_input(ill, NULL, mp, NULL);
14803 }
14804 
14805 static mblk_t *
14806 ip_fix_dbref(ill_t *ill, mblk_t *mp)
14807 {
14808 	mblk_t *mp1;
14809 	boolean_t adjusted = B_FALSE;
14810 	ip_stack_t *ipst = ill->ill_ipst;
14811 
14812 	IP_STAT(ipst, ip_db_ref);
14813 	/*
14814 	 * The IP_RECVSLLA option depends on having the
14815 	 * link layer header. First check that:
14816 	 * a> the underlying device is of type ether,
14817 	 * since this option is currently supported only
14818 	 * over ethernet.
14819 	 * b> there is enough room to copy over the link
14820 	 * layer header.
14821 	 *
14822 	 * Once the checks are done, adjust rptr so that
14823 	 * the link layer header will be copied via
14824 	 * copymsg. Note that, IFT_ETHER may be returned
14825 	 * by some non-ethernet drivers but in this case
14826 	 * the second check will fail.
14827 	 */
14828 	if (ill->ill_type == IFT_ETHER &&
14829 	    (mp->b_rptr - mp->b_datap->db_base) >=
14830 	    sizeof (struct ether_header)) {
14831 		mp->b_rptr -= sizeof (struct ether_header);
14832 		adjusted = B_TRUE;
14833 	}
14834 	mp1 = copymsg(mp);
14835 
14836 	if (mp1 == NULL) {
14837 		mp->b_next = NULL;
14838 		/* clear b_prev - used by ip_mroute_decap */
14839 		mp->b_prev = NULL;
14840 		freemsg(mp);
14841 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14842 		return (NULL);
14843 	}
14844 
14845 	if (adjusted) {
14846 		/*
14847 		 * Copy is done. Restore the pointer in
14848 		 * the _new_ mblk
14849 		 */
14850 		mp1->b_rptr += sizeof (struct ether_header);
14851 	}
14852 
14853 	/* Copy b_prev - used by ip_mroute_decap */
14854 	mp1->b_prev = mp->b_prev;
14855 	mp->b_prev = NULL;
14856 
14857 	/* preserve the hardware checksum flags and data, if present */
14858 	if (DB_CKSUMFLAGS(mp) != 0) {
14859 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
14860 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
14861 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
14862 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
14863 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
14864 	}
14865 
14866 	freemsg(mp);
14867 	return (mp1);
14868 }
14869 
14870 /*
14871  * Direct read side procedure capable of dealing with chains. GLDv3 based
14872  * drivers call this function directly with mblk chains while STREAMS
14873  * read side procedure ip_rput() calls this for single packet with ip_ring
14874  * set to NULL to process one packet at a time.
14875  *
14876  * The ill will always be valid if this function is called directly from
14877  * the driver.
14878  *
14879  * If ip_input() is called from GLDv3:
14880  *
14881  *   - This must be a non-VLAN IP stream.
14882  *   - 'mp' is either an untagged or a special priority-tagged packet.
14883  *   - Any VLAN tag that was in the MAC header has been stripped.
14884  *
14885  * If the IP header in packet is not 32-bit aligned, every message in the
14886  * chain will be aligned before further operations. This is required on SPARC
14887  * platform.
14888  */
14889 /* ARGSUSED */
14890 void
14891 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain,
14892     struct mac_header_info_s *mhip)
14893 {
14894 	ipaddr_t		dst = NULL;
14895 	ipaddr_t		prev_dst;
14896 	ire_t			*ire = NULL;
14897 	ipha_t			*ipha;
14898 	uint_t			pkt_len;
14899 	ssize_t			len;
14900 	uint_t			opt_len;
14901 	int			ll_multicast;
14902 	int			cgtp_flt_pkt;
14903 	queue_t			*q = ill->ill_rq;
14904 	squeue_t		*curr_sqp = NULL;
14905 	mblk_t 			*head = NULL;
14906 	mblk_t			*tail = NULL;
14907 	mblk_t			*first_mp;
14908 	mblk_t 			*mp;
14909 	mblk_t			*dmp;
14910 	int			cnt = 0;
14911 	ip_stack_t		*ipst = ill->ill_ipst;
14912 
14913 	ASSERT(mp_chain != NULL);
14914 	ASSERT(ill != NULL);
14915 
14916 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q);
14917 
14918 #define	rptr	((uchar_t *)ipha)
14919 
14920 	while (mp_chain != NULL) {
14921 		first_mp = mp = mp_chain;
14922 		mp_chain = mp_chain->b_next;
14923 		mp->b_next = NULL;
14924 		ll_multicast = 0;
14925 
14926 		/*
14927 		 * We do ire caching from one iteration to
14928 		 * another. In the event the packet chain contains
14929 		 * all packets from the same dst, this caching saves
14930 		 * an ire_cache_lookup for each of the succeeding
14931 		 * packets in a packet chain.
14932 		 */
14933 		prev_dst = dst;
14934 
14935 		/*
14936 		 * if db_ref > 1 then copymsg and free original. Packet
14937 		 * may be changed and we do not want the other entity
14938 		 * who has a reference to this message to trip over the
14939 		 * changes. This is a blind change because trying to
14940 		 * catch all places that might change the packet is too
14941 		 * difficult.
14942 		 *
14943 		 * This corresponds to the fast path case, where we have
14944 		 * a chain of M_DATA mblks.  We check the db_ref count
14945 		 * of only the 1st data block in the mblk chain. There
14946 		 * doesn't seem to be a reason why a device driver would
14947 		 * send up data with varying db_ref counts in the mblk
14948 		 * chain. In any case the Fast path is a private
14949 		 * interface, and our drivers don't do such a thing.
14950 		 * Given the above assumption, there is no need to walk
14951 		 * down the entire mblk chain (which could have a
14952 		 * potential performance problem)
14953 		 */
14954 
14955 		if (DB_REF(mp) > 1) {
14956 			if ((mp = ip_fix_dbref(ill, mp)) == NULL)
14957 				continue;
14958 		}
14959 
14960 		/*
14961 		 * Check and align the IP header.
14962 		 */
14963 		first_mp = mp;
14964 		if (DB_TYPE(mp) == M_DATA) {
14965 			dmp = mp;
14966 		} else if (DB_TYPE(mp) == M_PROTO &&
14967 		    *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) {
14968 			dmp = mp->b_cont;
14969 		} else {
14970 			dmp = NULL;
14971 		}
14972 		if (dmp != NULL) {
14973 			/*
14974 			 * IP header ptr not aligned?
14975 			 * OR IP header not complete in first mblk
14976 			 */
14977 			if (!OK_32PTR(dmp->b_rptr) ||
14978 			    MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) {
14979 				if (!ip_check_and_align_header(q, dmp, ipst))
14980 					continue;
14981 			}
14982 		}
14983 
14984 		/*
14985 		 * ip_input fast path
14986 		 */
14987 
14988 		/* mblk type is not M_DATA */
14989 		if (DB_TYPE(mp) != M_DATA) {
14990 			if (ip_rput_process_notdata(q, &first_mp, ill,
14991 			    &ll_multicast, &mp))
14992 				continue;
14993 
14994 			/*
14995 			 * The only way we can get here is if we had a
14996 			 * packet that was either a DL_UNITDATA_IND or
14997 			 * an M_CTL for an IPsec accelerated packet.
14998 			 *
14999 			 * In either case, the first_mp will point to
15000 			 * the leading M_PROTO or M_CTL.
15001 			 */
15002 			ASSERT(first_mp != NULL);
15003 		} else if (mhip != NULL) {
15004 			/*
15005 			 * ll_multicast is set here so that it is ready
15006 			 * for easy use with FW_HOOKS().  ip_get_dlpi_mbcast
15007 			 * manipulates ll_multicast in the same fashion when
15008 			 * called from ip_rput_process_notdata.
15009 			 */
15010 			switch (mhip->mhi_dsttype) {
15011 			case MAC_ADDRTYPE_MULTICAST :
15012 				ll_multicast = HPE_MULTICAST;
15013 				break;
15014 			case MAC_ADDRTYPE_BROADCAST :
15015 				ll_multicast = HPE_BROADCAST;
15016 				break;
15017 			default :
15018 				break;
15019 			}
15020 		}
15021 
15022 		/* Make sure its an M_DATA and that its aligned */
15023 		ASSERT(DB_TYPE(mp) == M_DATA);
15024 		ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr));
15025 
15026 		ipha = (ipha_t *)mp->b_rptr;
15027 		len = mp->b_wptr - rptr;
15028 		pkt_len = ntohs(ipha->ipha_length);
15029 
15030 		/*
15031 		 * We must count all incoming packets, even if they end
15032 		 * up being dropped later on.
15033 		 */
15034 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives);
15035 		UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len);
15036 
15037 		/* multiple mblk or too short */
15038 		len -= pkt_len;
15039 		if (len != 0) {
15040 			/*
15041 			 * Make sure we have data length consistent
15042 			 * with the IP header.
15043 			 */
15044 			if (mp->b_cont == NULL) {
15045 				if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
15046 					BUMP_MIB(ill->ill_ip_mib,
15047 					    ipIfStatsInHdrErrors);
15048 					ip2dbg(("ip_input: drop pkt\n"));
15049 					freemsg(mp);
15050 					continue;
15051 				}
15052 				mp->b_wptr = rptr + pkt_len;
15053 			} else if ((len += msgdsize(mp->b_cont)) != 0) {
15054 				if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
15055 					BUMP_MIB(ill->ill_ip_mib,
15056 					    ipIfStatsInHdrErrors);
15057 					ip2dbg(("ip_input: drop pkt\n"));
15058 					freemsg(mp);
15059 					continue;
15060 				}
15061 				(void) adjmsg(mp, -len);
15062 				IP_STAT(ipst, ip_multimblk3);
15063 			}
15064 		}
15065 
15066 		/* Obtain the dst of the current packet */
15067 		dst = ipha->ipha_dst;
15068 
15069 		/*
15070 		 * The following test for loopback is faster than
15071 		 * IP_LOOPBACK_ADDR(), because it avoids any bitwise
15072 		 * operations.
15073 		 * Note that these addresses are always in network byte order
15074 		 */
15075 		if (((*(uchar_t *)&ipha->ipha_dst) == 127) ||
15076 		    ((*(uchar_t *)&ipha->ipha_src) == 127)) {
15077 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
15078 			freemsg(mp);
15079 			continue;
15080 		}
15081 
15082 		/*
15083 		 * The event for packets being received from a 'physical'
15084 		 * interface is placed after validation of the source and/or
15085 		 * destination address as being local so that packets can be
15086 		 * redirected to loopback addresses using ipnat.
15087 		 */
15088 		DTRACE_PROBE4(ip4__physical__in__start,
15089 		    ill_t *, ill, ill_t *, NULL,
15090 		    ipha_t *, ipha, mblk_t *, first_mp);
15091 
15092 		FW_HOOKS(ipst->ips_ip4_physical_in_event,
15093 		    ipst->ips_ipv4firewall_physical_in,
15094 		    ill, NULL, ipha, first_mp, mp, ll_multicast, ipst);
15095 
15096 		DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp);
15097 
15098 		if (first_mp == NULL) {
15099 			continue;
15100 		}
15101 		dst = ipha->ipha_dst;
15102 
15103 		/*
15104 		 * Attach any necessary label information to
15105 		 * this packet
15106 		 */
15107 		if (is_system_labeled() &&
15108 		    !tsol_get_pkt_label(mp, IPV4_VERSION)) {
15109 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
15110 			freemsg(mp);
15111 			continue;
15112 		}
15113 
15114 		/*
15115 		 * Reuse the cached ire only if the ipha_dst of the previous
15116 		 * packet is the same as the current packet AND it is not
15117 		 * INADDR_ANY.
15118 		 */
15119 		if (!(dst == prev_dst && dst != INADDR_ANY) &&
15120 		    (ire != NULL)) {
15121 			ire_refrele(ire);
15122 			ire = NULL;
15123 		}
15124 		opt_len = ipha->ipha_version_and_hdr_length -
15125 		    IP_SIMPLE_HDR_VERSION;
15126 
15127 		/*
15128 		 * Check to see if we can take the fastpath.
15129 		 * That is possible if the following conditions are met
15130 		 *	o Tsol disabled
15131 		 *	o CGTP disabled
15132 		 *	o ipp_action_count is 0
15133 		 *	o no options in the packet
15134 		 *	o not a RSVP packet
15135 		 * 	o not a multicast packet
15136 		 *	o ill not in IP_DHCPINIT_IF mode
15137 		 */
15138 		if (!is_system_labeled() &&
15139 		    !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 &&
15140 		    opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP &&
15141 		    !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) {
15142 			if (ire == NULL)
15143 				ire = ire_cache_lookup(dst, ALL_ZONES, NULL,
15144 				    ipst);
15145 
15146 			/* incoming packet is for forwarding */
15147 			if (ire == NULL || (ire->ire_type & IRE_CACHE)) {
15148 				ire = ip_fast_forward(ire, dst, ill, mp);
15149 				continue;
15150 			}
15151 			/* incoming packet is for local consumption */
15152 			if (ire->ire_type & IRE_LOCAL)
15153 				goto local;
15154 		}
15155 
15156 		/*
15157 		 * Disable ire caching for anything more complex
15158 		 * than the simple fast path case we checked for above.
15159 		 */
15160 		if (ire != NULL) {
15161 			ire_refrele(ire);
15162 			ire = NULL;
15163 		}
15164 
15165 		/*
15166 		 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP
15167 		 * server to unicast DHCP packets to a DHCP client using the
15168 		 * IP address it is offering to the client.  This can be
15169 		 * disabled through the "broadcast bit", but not all DHCP
15170 		 * servers honor that bit.  Therefore, to interoperate with as
15171 		 * many DHCP servers as possible, the DHCP client allows the
15172 		 * server to unicast, but we treat those packets as broadcast
15173 		 * here.  Note that we don't rewrite the packet itself since
15174 		 * (a) that would mess up the checksums and (b) the DHCP
15175 		 * client conn is bound to INADDR_ANY so ip_fanout_udp() will
15176 		 * hand it the packet regardless.
15177 		 */
15178 		if (ill->ill_dhcpinit != 0 &&
15179 		    IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP &&
15180 		    pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) {
15181 			udpha_t *udpha;
15182 
15183 			/*
15184 			 * Reload ipha since pullupmsg() can change b_rptr.
15185 			 */
15186 			ipha = (ipha_t *)mp->b_rptr;
15187 			udpha = (udpha_t *)&ipha[1];
15188 
15189 			if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) {
15190 				DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill,
15191 				    mblk_t *, mp);
15192 				dst = INADDR_BROADCAST;
15193 			}
15194 		}
15195 
15196 		/* Full-blown slow path */
15197 		if (opt_len != 0) {
15198 			if (len != 0)
15199 				IP_STAT(ipst, ip_multimblk4);
15200 			else
15201 				IP_STAT(ipst, ip_ipoptions);
15202 			if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha,
15203 			    &dst, ipst))
15204 				continue;
15205 		}
15206 
15207 		/*
15208 		 * Invoke the CGTP (multirouting) filtering module to process
15209 		 * the incoming packet. Packets identified as duplicates
15210 		 * must be discarded. Filtering is active only if the
15211 		 * the ip_cgtp_filter ndd variable is non-zero.
15212 		 */
15213 		cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP;
15214 		if (ipst->ips_ip_cgtp_filter &&
15215 		    ipst->ips_ip_cgtp_filter_ops != NULL) {
15216 			netstackid_t stackid;
15217 
15218 			stackid = ipst->ips_netstack->netstack_stackid;
15219 			cgtp_flt_pkt =
15220 			    ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid,
15221 			    ill->ill_phyint->phyint_ifindex, mp);
15222 			if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) {
15223 				freemsg(first_mp);
15224 				continue;
15225 			}
15226 		}
15227 
15228 		/*
15229 		 * If rsvpd is running, let RSVP daemon handle its processing
15230 		 * and forwarding of RSVP multicast/unicast packets.
15231 		 * If rsvpd is not running but mrouted is running, RSVP
15232 		 * multicast packets are forwarded as multicast traffic
15233 		 * and RSVP unicast packets are forwarded by unicast router.
15234 		 * If neither rsvpd nor mrouted is running, RSVP multicast
15235 		 * packets are not forwarded, but the unicast packets are
15236 		 * forwarded like unicast traffic.
15237 		 */
15238 		if (ipha->ipha_protocol == IPPROTO_RSVP &&
15239 		    ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head !=
15240 		    NULL) {
15241 			/* RSVP packet and rsvpd running. Treat as ours */
15242 			ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst)));
15243 			/*
15244 			 * This assumes that we deliver to all streams for
15245 			 * multicast and broadcast packets.
15246 			 * We have to force ll_multicast to 1 to handle the
15247 			 * M_DATA messages passed in from ip_mroute_decap.
15248 			 */
15249 			dst = INADDR_BROADCAST;
15250 			ll_multicast = 1;
15251 		} else if (CLASSD(dst)) {
15252 			/* packet is multicast */
15253 			mp->b_next = NULL;
15254 			if (ip_rput_process_multicast(q, mp, ill, ipha,
15255 			    &ll_multicast, &dst))
15256 				continue;
15257 		}
15258 
15259 		if (ire == NULL) {
15260 			ire = ire_cache_lookup(dst, ALL_ZONES,
15261 			    MBLK_GETLABEL(mp), ipst);
15262 		}
15263 
15264 		if (ire != NULL && ire->ire_stq != NULL &&
15265 		    ire->ire_zoneid != GLOBAL_ZONEID &&
15266 		    ire->ire_zoneid != ALL_ZONES) {
15267 			/*
15268 			 * Should only use IREs that are visible from the
15269 			 * global zone for forwarding.
15270 			 */
15271 			ire_refrele(ire);
15272 			ire = ire_cache_lookup(dst, GLOBAL_ZONEID,
15273 			    MBLK_GETLABEL(mp), ipst);
15274 		}
15275 
15276 		if (ire == NULL) {
15277 			/*
15278 			 * No IRE for this destination, so it can't be for us.
15279 			 * Unless we are forwarding, drop the packet.
15280 			 * We have to let source routed packets through
15281 			 * since we don't yet know if they are 'ping -l'
15282 			 * packets i.e. if they will go out over the
15283 			 * same interface as they came in on.
15284 			 */
15285 			ire = ip_rput_noire(q, mp, ll_multicast, dst);
15286 			if (ire == NULL)
15287 				continue;
15288 		}
15289 
15290 		/*
15291 		 * Broadcast IRE may indicate either broadcast or
15292 		 * multicast packet
15293 		 */
15294 		if (ire->ire_type == IRE_BROADCAST) {
15295 			/*
15296 			 * Skip broadcast checks if packet is UDP multicast;
15297 			 * we'd rather not enter ip_rput_process_broadcast()
15298 			 * unless the packet is broadcast for real, since
15299 			 * that routine is a no-op for multicast.
15300 			 */
15301 			if (ipha->ipha_protocol != IPPROTO_UDP ||
15302 			    !CLASSD(ipha->ipha_dst)) {
15303 				ire = ip_rput_process_broadcast(&q, mp,
15304 				    ire, ipha, ill, dst, cgtp_flt_pkt,
15305 				    ll_multicast);
15306 				if (ire == NULL)
15307 					continue;
15308 			}
15309 		} else if (ire->ire_stq != NULL) {
15310 			/* fowarding? */
15311 			ip_rput_process_forward(q, mp, ire, ipha, ill,
15312 			    ll_multicast);
15313 			/* ip_rput_process_forward consumed the packet */
15314 			continue;
15315 		}
15316 
15317 local:
15318 		/*
15319 		 * If the queue in the ire is different to the ingress queue
15320 		 * then we need to check to see if we can accept the packet.
15321 		 * Note that for multicast packets and broadcast packets sent
15322 		 * to a broadcast address which is shared between multiple
15323 		 * interfaces we should not do this since we just got a random
15324 		 * broadcast ire.
15325 		 */
15326 		if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) {
15327 			if ((ire = ip_check_multihome(&ipha->ipha_dst, ire,
15328 			    ill)) == NULL) {
15329 				/* Drop packet */
15330 				BUMP_MIB(ill->ill_ip_mib,
15331 				    ipIfStatsForwProhibits);
15332 				freemsg(mp);
15333 				continue;
15334 			}
15335 			if (ire->ire_rfq != NULL)
15336 				q = ire->ire_rfq;
15337 		}
15338 
15339 		switch (ipha->ipha_protocol) {
15340 		case IPPROTO_TCP:
15341 			ASSERT(first_mp == mp);
15342 			if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire,
15343 			    mp, 0, q, ip_ring)) != NULL) {
15344 				if (curr_sqp == NULL) {
15345 					curr_sqp = GET_SQUEUE(mp);
15346 					ASSERT(cnt == 0);
15347 					cnt++;
15348 					head = tail = mp;
15349 				} else if (curr_sqp == GET_SQUEUE(mp)) {
15350 					ASSERT(tail != NULL);
15351 					cnt++;
15352 					tail->b_next = mp;
15353 					tail = mp;
15354 				} else {
15355 					/*
15356 					 * A different squeue. Send the
15357 					 * chain for the previous squeue on
15358 					 * its way. This shouldn't happen
15359 					 * often unless interrupt binding
15360 					 * changes.
15361 					 */
15362 					IP_STAT(ipst, ip_input_multi_squeue);
15363 					squeue_enter_chain(curr_sqp, head,
15364 					    tail, cnt, SQTAG_IP_INPUT);
15365 					curr_sqp = GET_SQUEUE(mp);
15366 					head = mp;
15367 					tail = mp;
15368 					cnt = 1;
15369 				}
15370 			}
15371 			continue;
15372 		case IPPROTO_UDP:
15373 			ASSERT(first_mp == mp);
15374 			ip_udp_input(q, mp, ipha, ire, ill);
15375 			continue;
15376 		case IPPROTO_SCTP:
15377 			ASSERT(first_mp == mp);
15378 			ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0,
15379 			    q, dst);
15380 			/* ire has been released by ip_sctp_input */
15381 			ire = NULL;
15382 			continue;
15383 		default:
15384 			ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE);
15385 			continue;
15386 		}
15387 	}
15388 
15389 	if (ire != NULL)
15390 		ire_refrele(ire);
15391 
15392 	if (head != NULL)
15393 		squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT);
15394 
15395 	/*
15396 	 * This code is there just to make netperf/ttcp look good.
15397 	 *
15398 	 * Its possible that after being in polling mode (and having cleared
15399 	 * the backlog), squeues have turned the interrupt frequency higher
15400 	 * to improve latency at the expense of more CPU utilization (less
15401 	 * packets per interrupts or more number of interrupts). Workloads
15402 	 * like ttcp/netperf do manage to tickle polling once in a while
15403 	 * but for the remaining time, stay in higher interrupt mode since
15404 	 * their packet arrival rate is pretty uniform and this shows up
15405 	 * as higher CPU utilization. Since people care about CPU utilization
15406 	 * while running netperf/ttcp, turn the interrupt frequency back to
15407 	 * normal/default if polling has not been used in ip_poll_normal_ticks.
15408 	 */
15409 	if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) {
15410 		if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) {
15411 			ip_ring->rr_poll_state &= ~ILL_POLLING;
15412 			ip_ring->rr_blank(ip_ring->rr_handle,
15413 			    ip_ring->rr_normal_blank_time,
15414 			    ip_ring->rr_normal_pkt_cnt);
15415 		}
15416 		}
15417 
15418 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
15419 	    "ip_input_end: q %p (%S)", q, "end");
15420 #undef  rptr
15421 }
15422 
15423 static void
15424 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
15425     t_uscalar_t err)
15426 {
15427 	if (dl_err == DL_SYSERR) {
15428 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
15429 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
15430 		    ill->ill_name, dl_primstr(prim), err);
15431 		return;
15432 	}
15433 
15434 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
15435 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
15436 	    dl_errstr(dl_err));
15437 }
15438 
15439 /*
15440  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
15441  * than DL_UNITDATA_IND messages. If we need to process this message
15442  * exclusively, we call qwriter_ip, in which case we also need to call
15443  * ill_refhold before that, since qwriter_ip does an ill_refrele.
15444  */
15445 void
15446 ip_rput_dlpi(queue_t *q, mblk_t *mp)
15447 {
15448 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
15449 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
15450 	ill_t		*ill = (ill_t *)q->q_ptr;
15451 	boolean_t	pending;
15452 
15453 	ip1dbg(("ip_rput_dlpi"));
15454 	if (dloa->dl_primitive == DL_ERROR_ACK) {
15455 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): "
15456 		    "%s (0x%x), unix %u\n", ill->ill_name,
15457 		    dl_primstr(dlea->dl_error_primitive),
15458 		    dlea->dl_error_primitive,
15459 		    dl_errstr(dlea->dl_errno),
15460 		    dlea->dl_errno,
15461 		    dlea->dl_unix_errno));
15462 	}
15463 
15464 	/*
15465 	 * If we received an ACK but didn't send a request for it, then it
15466 	 * can't be part of any pending operation; discard up-front.
15467 	 */
15468 	switch (dloa->dl_primitive) {
15469 	case DL_NOTIFY_IND:
15470 		pending = B_TRUE;
15471 		break;
15472 	case DL_ERROR_ACK:
15473 		pending = ill_dlpi_pending(ill, dlea->dl_error_primitive);
15474 		break;
15475 	case DL_OK_ACK:
15476 		pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive);
15477 		break;
15478 	case DL_INFO_ACK:
15479 		pending = ill_dlpi_pending(ill, DL_INFO_REQ);
15480 		break;
15481 	case DL_BIND_ACK:
15482 		pending = ill_dlpi_pending(ill, DL_BIND_REQ);
15483 		break;
15484 	case DL_PHYS_ADDR_ACK:
15485 		pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ);
15486 		break;
15487 	case DL_NOTIFY_ACK:
15488 		pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ);
15489 		break;
15490 	case DL_CONTROL_ACK:
15491 		pending = ill_dlpi_pending(ill, DL_CONTROL_REQ);
15492 		break;
15493 	case DL_CAPABILITY_ACK:
15494 		pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ);
15495 		break;
15496 	default:
15497 		/* Not a DLPI message we support or were expecting */
15498 		freemsg(mp);
15499 		return;
15500 	}
15501 
15502 	if (!pending) {
15503 		freemsg(mp);
15504 		return;
15505 	}
15506 
15507 	switch (dloa->dl_primitive) {
15508 	case DL_ERROR_ACK:
15509 		if (dlea->dl_error_primitive == DL_UNBIND_REQ) {
15510 			mutex_enter(&ill->ill_lock);
15511 			ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
15512 			cv_signal(&ill->ill_cv);
15513 			mutex_exit(&ill->ill_lock);
15514 		}
15515 		break;
15516 
15517 	case DL_OK_ACK:
15518 		ip1dbg(("ip_rput: DL_OK_ACK for %s\n",
15519 		    dl_primstr((int)dloa->dl_correct_primitive)));
15520 		switch (dloa->dl_correct_primitive) {
15521 		case DL_UNBIND_REQ:
15522 			mutex_enter(&ill->ill_lock);
15523 			ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
15524 			cv_signal(&ill->ill_cv);
15525 			mutex_exit(&ill->ill_lock);
15526 			break;
15527 
15528 		case DL_ENABMULTI_REQ:
15529 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
15530 				ill->ill_dlpi_multicast_state = IDS_OK;
15531 			break;
15532 		}
15533 		break;
15534 	default:
15535 		break;
15536 	}
15537 
15538 	/*
15539 	 * We know the message is one we're waiting for (or DL_NOTIFY_IND),
15540 	 * and we need to become writer to continue to process it. If it's not
15541 	 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive
15542 	 * operation and pass CUR_OP.  If this isn't true, we'll end up doing
15543 	 * some work as part of the current exclusive operation that actually
15544 	 * is not part of it -- which is wrong, but better than the
15545 	 * alternative of deadlock (if NEW_OP is always used).  Someday, we
15546 	 * should track which DLPI requests have ACKs that we wait on
15547 	 * synchronously so we can know whether to use CUR_OP or NEW_OP.
15548 	 *
15549 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
15550 	 * Since this is on the ill stream we unconditionally bump up the
15551 	 * refcount without doing ILL_CAN_LOOKUP().
15552 	 */
15553 	ill_refhold(ill);
15554 	if (dloa->dl_primitive == DL_NOTIFY_IND)
15555 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
15556 	else
15557 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
15558 }
15559 
15560 /*
15561  * Handling of DLPI messages that require exclusive access to the ipsq.
15562  *
15563  * Need to do ill_pending_mp_release on ioctl completion, which could
15564  * happen here. (along with mi_copy_done)
15565  */
15566 /* ARGSUSED */
15567 static void
15568 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
15569 {
15570 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
15571 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
15572 	int		err = 0;
15573 	ill_t		*ill;
15574 	ipif_t		*ipif = NULL;
15575 	mblk_t		*mp1 = NULL;
15576 	conn_t		*connp = NULL;
15577 	t_uscalar_t	paddrreq;
15578 	mblk_t		*mp_hw;
15579 	boolean_t	success;
15580 	boolean_t	ioctl_aborted = B_FALSE;
15581 	boolean_t	log = B_TRUE;
15582 	ip_stack_t		*ipst;
15583 
15584 	ip1dbg(("ip_rput_dlpi_writer .."));
15585 	ill = (ill_t *)q->q_ptr;
15586 	ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
15587 
15588 	ASSERT(IAM_WRITER_ILL(ill));
15589 
15590 	ipst = ill->ill_ipst;
15591 
15592 	/*
15593 	 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e.
15594 	 * both are null or non-null. However we can assert that only
15595 	 * after grabbing the ipsq_lock. So we don't make any assertion
15596 	 * here and in other places in the code.
15597 	 */
15598 	ipif = ipsq->ipsq_pending_ipif;
15599 	/*
15600 	 * The current ioctl could have been aborted by the user and a new
15601 	 * ioctl to bring up another ill could have started. We could still
15602 	 * get a response from the driver later.
15603 	 */
15604 	if (ipif != NULL && ipif->ipif_ill != ill)
15605 		ioctl_aborted = B_TRUE;
15606 
15607 	switch (dloa->dl_primitive) {
15608 	case DL_ERROR_ACK:
15609 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
15610 		    dl_primstr(dlea->dl_error_primitive)));
15611 
15612 		switch (dlea->dl_error_primitive) {
15613 		case DL_PROMISCON_REQ:
15614 		case DL_PROMISCOFF_REQ:
15615 		case DL_DISABMULTI_REQ:
15616 		case DL_UNBIND_REQ:
15617 		case DL_ATTACH_REQ:
15618 		case DL_INFO_REQ:
15619 			ill_dlpi_done(ill, dlea->dl_error_primitive);
15620 			break;
15621 		case DL_NOTIFY_REQ:
15622 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
15623 			log = B_FALSE;
15624 			break;
15625 		case DL_PHYS_ADDR_REQ:
15626 			/*
15627 			 * For IPv6 only, there are two additional
15628 			 * phys_addr_req's sent to the driver to get the
15629 			 * IPv6 token and lla. This allows IP to acquire
15630 			 * the hardware address format for a given interface
15631 			 * without having built in knowledge of the hardware
15632 			 * address. ill_phys_addr_pend keeps track of the last
15633 			 * DL_PAR sent so we know which response we are
15634 			 * dealing with. ill_dlpi_done will update
15635 			 * ill_phys_addr_pend when it sends the next req.
15636 			 * We don't complete the IOCTL until all three DL_PARs
15637 			 * have been attempted, so set *_len to 0 and break.
15638 			 */
15639 			paddrreq = ill->ill_phys_addr_pend;
15640 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
15641 			if (paddrreq == DL_IPV6_TOKEN) {
15642 				ill->ill_token_length = 0;
15643 				log = B_FALSE;
15644 				break;
15645 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
15646 				ill->ill_nd_lla_len = 0;
15647 				log = B_FALSE;
15648 				break;
15649 			}
15650 			/*
15651 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
15652 			 * We presumably have an IOCTL hanging out waiting
15653 			 * for completion. Find it and complete the IOCTL
15654 			 * with the error noted.
15655 			 * However, ill_dl_phys was called on an ill queue
15656 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
15657 			 * set. But the ioctl is known to be pending on ill_wq.
15658 			 */
15659 			if (!ill->ill_ifname_pending)
15660 				break;
15661 			ill->ill_ifname_pending = 0;
15662 			if (!ioctl_aborted)
15663 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
15664 			if (mp1 != NULL) {
15665 				/*
15666 				 * This operation (SIOCSLIFNAME) must have
15667 				 * happened on the ill. Assert there is no conn
15668 				 */
15669 				ASSERT(connp == NULL);
15670 				q = ill->ill_wq;
15671 			}
15672 			break;
15673 		case DL_BIND_REQ:
15674 			ill_dlpi_done(ill, DL_BIND_REQ);
15675 			if (ill->ill_ifname_pending)
15676 				break;
15677 			/*
15678 			 * Something went wrong with the bind.  We presumably
15679 			 * have an IOCTL hanging out waiting for completion.
15680 			 * Find it, take down the interface that was coming
15681 			 * up, and complete the IOCTL with the error noted.
15682 			 */
15683 			if (!ioctl_aborted)
15684 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
15685 			if (mp1 != NULL) {
15686 				/*
15687 				 * This operation (SIOCSLIFFLAGS) must have
15688 				 * happened from a conn.
15689 				 */
15690 				ASSERT(connp != NULL);
15691 				q = CONNP_TO_WQ(connp);
15692 				if (ill->ill_move_in_progress) {
15693 					ILL_CLEAR_MOVE(ill);
15694 				}
15695 				(void) ipif_down(ipif, NULL, NULL);
15696 				/* error is set below the switch */
15697 			}
15698 			break;
15699 		case DL_ENABMULTI_REQ:
15700 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
15701 
15702 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
15703 				ill->ill_dlpi_multicast_state = IDS_FAILED;
15704 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
15705 				ipif_t *ipif;
15706 
15707 				printf("ip: joining multicasts failed (%d)"
15708 				    " on %s - will use link layer "
15709 				    "broadcasts for multicast\n",
15710 				    dlea->dl_errno, ill->ill_name);
15711 
15712 				/*
15713 				 * Set up the multicast mapping alone.
15714 				 * writer, so ok to access ill->ill_ipif
15715 				 * without any lock.
15716 				 */
15717 				ipif = ill->ill_ipif;
15718 				mutex_enter(&ill->ill_phyint->phyint_lock);
15719 				ill->ill_phyint->phyint_flags |=
15720 				    PHYI_MULTI_BCAST;
15721 				mutex_exit(&ill->ill_phyint->phyint_lock);
15722 
15723 				if (!ill->ill_isv6) {
15724 					(void) ipif_arp_setup_multicast(ipif,
15725 					    NULL);
15726 				} else {
15727 					(void) ipif_ndp_setup_multicast(ipif,
15728 					    NULL);
15729 				}
15730 			}
15731 			freemsg(mp);	/* Don't want to pass this up */
15732 			return;
15733 
15734 		case DL_CAPABILITY_REQ:
15735 		case DL_CONTROL_REQ:
15736 			ill_dlpi_done(ill, dlea->dl_error_primitive);
15737 			ill->ill_dlpi_capab_state = IDS_FAILED;
15738 			freemsg(mp);
15739 			return;
15740 		}
15741 		/*
15742 		 * Note the error for IOCTL completion (mp1 is set when
15743 		 * ready to complete ioctl). If ill_ifname_pending_err is
15744 		 * set, an error occured during plumbing (ill_ifname_pending),
15745 		 * so we want to report that error.
15746 		 *
15747 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
15748 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
15749 		 * expected to get errack'd if the driver doesn't support
15750 		 * these flags (e.g. ethernet). log will be set to B_FALSE
15751 		 * if these error conditions are encountered.
15752 		 */
15753 		if (mp1 != NULL) {
15754 			if (ill->ill_ifname_pending_err != 0)  {
15755 				err = ill->ill_ifname_pending_err;
15756 				ill->ill_ifname_pending_err = 0;
15757 			} else {
15758 				err = dlea->dl_unix_errno ?
15759 				    dlea->dl_unix_errno : ENXIO;
15760 			}
15761 		/*
15762 		 * If we're plumbing an interface and an error hasn't already
15763 		 * been saved, set ill_ifname_pending_err to the error passed
15764 		 * up. Ignore the error if log is B_FALSE (see comment above).
15765 		 */
15766 		} else if (log && ill->ill_ifname_pending &&
15767 		    ill->ill_ifname_pending_err == 0) {
15768 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
15769 			    dlea->dl_unix_errno : ENXIO;
15770 		}
15771 
15772 		if (log)
15773 			ip_dlpi_error(ill, dlea->dl_error_primitive,
15774 			    dlea->dl_errno, dlea->dl_unix_errno);
15775 		break;
15776 	case DL_CAPABILITY_ACK:
15777 		/* Call a routine to handle this one. */
15778 		ill_dlpi_done(ill, DL_CAPABILITY_REQ);
15779 		ill_capability_ack(ill, mp);
15780 
15781 		/*
15782 		 * If the ack is due to renegotiation, we will need to send
15783 		 * a new CAPABILITY_REQ to start the renegotiation.
15784 		 */
15785 		if (ill->ill_capab_reneg) {
15786 			ill->ill_capab_reneg = B_FALSE;
15787 			ill_capability_probe(ill);
15788 		}
15789 		break;
15790 	case DL_CONTROL_ACK:
15791 		/* We treat all of these as "fire and forget" */
15792 		ill_dlpi_done(ill, DL_CONTROL_REQ);
15793 		break;
15794 	case DL_INFO_ACK:
15795 		/* Call a routine to handle this one. */
15796 		ill_dlpi_done(ill, DL_INFO_REQ);
15797 		ip_ll_subnet_defaults(ill, mp);
15798 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
15799 		return;
15800 	case DL_BIND_ACK:
15801 		/*
15802 		 * We should have an IOCTL waiting on this unless
15803 		 * sent by ill_dl_phys, in which case just return
15804 		 */
15805 		ill_dlpi_done(ill, DL_BIND_REQ);
15806 		if (ill->ill_ifname_pending)
15807 			break;
15808 
15809 		if (!ioctl_aborted)
15810 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
15811 		if (mp1 == NULL)
15812 			break;
15813 		/*
15814 		 * Because mp1 was added by ill_dl_up(), and it always
15815 		 * passes a valid connp, connp must be valid here.
15816 		 */
15817 		ASSERT(connp != NULL);
15818 		q = CONNP_TO_WQ(connp);
15819 
15820 		/*
15821 		 * We are exclusive. So nothing can change even after
15822 		 * we get the pending mp. If need be we can put it back
15823 		 * and restart, as in calling ipif_arp_up()  below.
15824 		 */
15825 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
15826 
15827 		mutex_enter(&ill->ill_lock);
15828 		ill->ill_dl_up = 1;
15829 		(void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0);
15830 		mutex_exit(&ill->ill_lock);
15831 
15832 		/*
15833 		 * Now bring up the resolver; when that is complete, we'll
15834 		 * create IREs.  Note that we intentionally mirror what
15835 		 * ipif_up() would have done, because we got here by way of
15836 		 * ill_dl_up(), which stopped ipif_up()'s processing.
15837 		 */
15838 		if (ill->ill_isv6) {
15839 			/*
15840 			 * v6 interfaces.
15841 			 * Unlike ARP which has to do another bind
15842 			 * and attach, once we get here we are
15843 			 * done with NDP. Except in the case of
15844 			 * ILLF_XRESOLV, in which case we send an
15845 			 * AR_INTERFACE_UP to the external resolver.
15846 			 * If all goes well, the ioctl will complete
15847 			 * in ip_rput(). If there's an error, we
15848 			 * complete it here.
15849 			 */
15850 			if ((err = ipif_ndp_up(ipif)) == 0) {
15851 				if (ill->ill_flags & ILLF_XRESOLV) {
15852 					mutex_enter(&connp->conn_lock);
15853 					mutex_enter(&ill->ill_lock);
15854 					success = ipsq_pending_mp_add(
15855 					    connp, ipif, q, mp1, 0);
15856 					mutex_exit(&ill->ill_lock);
15857 					mutex_exit(&connp->conn_lock);
15858 					if (success) {
15859 						err = ipif_resolver_up(ipif,
15860 						    Res_act_initial);
15861 						if (err == EINPROGRESS) {
15862 							freemsg(mp);
15863 							return;
15864 						}
15865 						ASSERT(err != 0);
15866 						mp1 = ipsq_pending_mp_get(ipsq,
15867 						    &connp);
15868 						ASSERT(mp1 != NULL);
15869 					} else {
15870 						/* conn has started closing */
15871 						err = EINTR;
15872 					}
15873 				} else { /* Non XRESOLV interface */
15874 					(void) ipif_resolver_up(ipif,
15875 					    Res_act_initial);
15876 					err = ipif_up_done_v6(ipif);
15877 				}
15878 			}
15879 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
15880 			/*
15881 			 * ARP and other v4 external resolvers.
15882 			 * Leave the pending mblk intact so that
15883 			 * the ioctl completes in ip_rput().
15884 			 */
15885 			mutex_enter(&connp->conn_lock);
15886 			mutex_enter(&ill->ill_lock);
15887 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
15888 			mutex_exit(&ill->ill_lock);
15889 			mutex_exit(&connp->conn_lock);
15890 			if (success) {
15891 				err = ipif_resolver_up(ipif, Res_act_initial);
15892 				if (err == EINPROGRESS) {
15893 					freemsg(mp);
15894 					return;
15895 				}
15896 				ASSERT(err != 0);
15897 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
15898 			} else {
15899 				/* The conn has started closing */
15900 				err = EINTR;
15901 			}
15902 		} else {
15903 			/*
15904 			 * This one is complete. Reply to pending ioctl.
15905 			 */
15906 			(void) ipif_resolver_up(ipif, Res_act_initial);
15907 			err = ipif_up_done(ipif);
15908 		}
15909 
15910 		if ((err == 0) && (ill->ill_up_ipifs)) {
15911 			err = ill_up_ipifs(ill, q, mp1);
15912 			if (err == EINPROGRESS) {
15913 				freemsg(mp);
15914 				return;
15915 			}
15916 		}
15917 
15918 		if (ill->ill_up_ipifs) {
15919 			ill_group_cleanup(ill);
15920 		}
15921 
15922 		break;
15923 	case DL_NOTIFY_IND: {
15924 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
15925 		ire_t *ire;
15926 		boolean_t need_ire_walk_v4 = B_FALSE;
15927 		boolean_t need_ire_walk_v6 = B_FALSE;
15928 
15929 		switch (notify->dl_notification) {
15930 		case DL_NOTE_PHYS_ADDR:
15931 			err = ill_set_phys_addr(ill, mp);
15932 			break;
15933 
15934 		case DL_NOTE_FASTPATH_FLUSH:
15935 			ill_fastpath_flush(ill);
15936 			break;
15937 
15938 		case DL_NOTE_SDU_SIZE:
15939 			/*
15940 			 * Change the MTU size of the interface, of all
15941 			 * attached ipif's, and of all relevant ire's.  The
15942 			 * new value's a uint32_t at notify->dl_data.
15943 			 * Mtu change Vs. new ire creation - protocol below.
15944 			 *
15945 			 * a Mark the ipif as IPIF_CHANGING.
15946 			 * b Set the new mtu in the ipif.
15947 			 * c Change the ire_max_frag on all affected ires
15948 			 * d Unmark the IPIF_CHANGING
15949 			 *
15950 			 * To see how the protocol works, assume an interface
15951 			 * route is also being added simultaneously by
15952 			 * ip_rt_add and let 'ipif' be the ipif referenced by
15953 			 * the ire. If the ire is created before step a,
15954 			 * it will be cleaned up by step c. If the ire is
15955 			 * created after step d, it will see the new value of
15956 			 * ipif_mtu. Any attempt to create the ire between
15957 			 * steps a to d will fail because of the IPIF_CHANGING
15958 			 * flag. Note that ire_create() is passed a pointer to
15959 			 * the ipif_mtu, and not the value. During ire_add
15960 			 * under the bucket lock, the ire_max_frag of the
15961 			 * new ire being created is set from the ipif/ire from
15962 			 * which it is being derived.
15963 			 */
15964 			mutex_enter(&ill->ill_lock);
15965 			ill->ill_max_frag = (uint_t)notify->dl_data;
15966 
15967 			/*
15968 			 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu
15969 			 * leave it alone
15970 			 */
15971 			if (ill->ill_mtu_userspecified) {
15972 				mutex_exit(&ill->ill_lock);
15973 				break;
15974 			}
15975 			ill->ill_max_mtu = ill->ill_max_frag;
15976 			if (ill->ill_isv6) {
15977 				if (ill->ill_max_mtu < IPV6_MIN_MTU)
15978 					ill->ill_max_mtu = IPV6_MIN_MTU;
15979 			} else {
15980 				if (ill->ill_max_mtu < IP_MIN_MTU)
15981 					ill->ill_max_mtu = IP_MIN_MTU;
15982 			}
15983 			for (ipif = ill->ill_ipif; ipif != NULL;
15984 			    ipif = ipif->ipif_next) {
15985 				/*
15986 				 * Don't override the mtu if the user
15987 				 * has explicitly set it.
15988 				 */
15989 				if (ipif->ipif_flags & IPIF_FIXEDMTU)
15990 					continue;
15991 				ipif->ipif_mtu = (uint_t)notify->dl_data;
15992 				if (ipif->ipif_isv6)
15993 					ire = ipif_to_ire_v6(ipif);
15994 				else
15995 					ire = ipif_to_ire(ipif);
15996 				if (ire != NULL) {
15997 					ire->ire_max_frag = ipif->ipif_mtu;
15998 					ire_refrele(ire);
15999 				}
16000 				if (ipif->ipif_flags & IPIF_UP) {
16001 					if (ill->ill_isv6)
16002 						need_ire_walk_v6 = B_TRUE;
16003 					else
16004 						need_ire_walk_v4 = B_TRUE;
16005 				}
16006 			}
16007 			mutex_exit(&ill->ill_lock);
16008 			if (need_ire_walk_v4)
16009 				ire_walk_v4(ill_mtu_change, (char *)ill,
16010 				    ALL_ZONES, ipst);
16011 			if (need_ire_walk_v6)
16012 				ire_walk_v6(ill_mtu_change, (char *)ill,
16013 				    ALL_ZONES, ipst);
16014 			break;
16015 		case DL_NOTE_LINK_UP:
16016 		case DL_NOTE_LINK_DOWN: {
16017 			/*
16018 			 * We are writer. ill / phyint / ipsq assocs stable.
16019 			 * The RUNNING flag reflects the state of the link.
16020 			 */
16021 			phyint_t *phyint = ill->ill_phyint;
16022 			uint64_t new_phyint_flags;
16023 			boolean_t changed = B_FALSE;
16024 			boolean_t went_up;
16025 
16026 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
16027 			mutex_enter(&phyint->phyint_lock);
16028 			new_phyint_flags = went_up ?
16029 			    phyint->phyint_flags | PHYI_RUNNING :
16030 			    phyint->phyint_flags & ~PHYI_RUNNING;
16031 			if (new_phyint_flags != phyint->phyint_flags) {
16032 				phyint->phyint_flags = new_phyint_flags;
16033 				changed = B_TRUE;
16034 			}
16035 			mutex_exit(&phyint->phyint_lock);
16036 			/*
16037 			 * ill_restart_dad handles the DAD restart and routing
16038 			 * socket notification logic.
16039 			 */
16040 			if (changed) {
16041 				ill_restart_dad(phyint->phyint_illv4, went_up);
16042 				ill_restart_dad(phyint->phyint_illv6, went_up);
16043 			}
16044 			break;
16045 		}
16046 		case DL_NOTE_PROMISC_ON_PHYS:
16047 			IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
16048 			    "got a DL_NOTE_PROMISC_ON_PHYS\n"));
16049 			mutex_enter(&ill->ill_lock);
16050 			ill->ill_promisc_on_phys = B_TRUE;
16051 			mutex_exit(&ill->ill_lock);
16052 			break;
16053 		case DL_NOTE_PROMISC_OFF_PHYS:
16054 			IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
16055 			    "got a DL_NOTE_PROMISC_OFF_PHYS\n"));
16056 			mutex_enter(&ill->ill_lock);
16057 			ill->ill_promisc_on_phys = B_FALSE;
16058 			mutex_exit(&ill->ill_lock);
16059 			break;
16060 		case DL_NOTE_CAPAB_RENEG:
16061 			/*
16062 			 * Something changed on the driver side.
16063 			 * It wants us to renegotiate the capabilities
16064 			 * on this ill. One possible cause is the aggregation
16065 			 * interface under us where a port got added or
16066 			 * went away.
16067 			 *
16068 			 * If the capability negotiation is already done
16069 			 * or is in progress, reset the capabilities and
16070 			 * mark the ill's ill_capab_reneg to be B_TRUE,
16071 			 * so that when the ack comes back, we can start
16072 			 * the renegotiation process.
16073 			 *
16074 			 * Note that if ill_capab_reneg is already B_TRUE
16075 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
16076 			 * the capability resetting request has been sent
16077 			 * and the renegotiation has not been started yet;
16078 			 * nothing needs to be done in this case.
16079 			 */
16080 			if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) {
16081 				ill_capability_reset(ill);
16082 				ill->ill_capab_reneg = B_TRUE;
16083 			}
16084 			break;
16085 		default:
16086 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
16087 			    "type 0x%x for DL_NOTIFY_IND\n",
16088 			    notify->dl_notification));
16089 			break;
16090 		}
16091 
16092 		/*
16093 		 * As this is an asynchronous operation, we
16094 		 * should not call ill_dlpi_done
16095 		 */
16096 		break;
16097 	}
16098 	case DL_NOTIFY_ACK: {
16099 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
16100 
16101 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
16102 			ill->ill_note_link = 1;
16103 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
16104 		break;
16105 	}
16106 	case DL_PHYS_ADDR_ACK: {
16107 		/*
16108 		 * As part of plumbing the interface via SIOCSLIFNAME,
16109 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
16110 		 * whose answers we receive here.  As each answer is received,
16111 		 * we call ill_dlpi_done() to dispatch the next request as
16112 		 * we're processing the current one.  Once all answers have
16113 		 * been received, we use ipsq_pending_mp_get() to dequeue the
16114 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
16115 		 * is invoked from an ill queue, conn_oper_pending_ill is not
16116 		 * available, but we know the ioctl is pending on ill_wq.)
16117 		 */
16118 		uint_t paddrlen, paddroff;
16119 
16120 		paddrreq = ill->ill_phys_addr_pend;
16121 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
16122 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
16123 
16124 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
16125 		if (paddrreq == DL_IPV6_TOKEN) {
16126 			/*
16127 			 * bcopy to low-order bits of ill_token
16128 			 *
16129 			 * XXX Temporary hack - currently, all known tokens
16130 			 * are 64 bits, so I'll cheat for the moment.
16131 			 */
16132 			bcopy(mp->b_rptr + paddroff,
16133 			    &ill->ill_token.s6_addr32[2], paddrlen);
16134 			ill->ill_token_length = paddrlen;
16135 			break;
16136 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
16137 			ASSERT(ill->ill_nd_lla_mp == NULL);
16138 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
16139 			mp = NULL;
16140 			break;
16141 		}
16142 
16143 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
16144 		ASSERT(ill->ill_phys_addr_mp == NULL);
16145 		if (!ill->ill_ifname_pending)
16146 			break;
16147 		ill->ill_ifname_pending = 0;
16148 		if (!ioctl_aborted)
16149 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
16150 		if (mp1 != NULL) {
16151 			ASSERT(connp == NULL);
16152 			q = ill->ill_wq;
16153 		}
16154 		/*
16155 		 * If any error acks received during the plumbing sequence,
16156 		 * ill_ifname_pending_err will be set. Break out and send up
16157 		 * the error to the pending ioctl.
16158 		 */
16159 		if (ill->ill_ifname_pending_err != 0) {
16160 			err = ill->ill_ifname_pending_err;
16161 			ill->ill_ifname_pending_err = 0;
16162 			break;
16163 		}
16164 
16165 		ill->ill_phys_addr_mp = mp;
16166 		ill->ill_phys_addr = mp->b_rptr + paddroff;
16167 		mp = NULL;
16168 
16169 		/*
16170 		 * If paddrlen is zero, the DLPI provider doesn't support
16171 		 * physical addresses.  The other two tests were historical
16172 		 * workarounds for bugs in our former PPP implementation, but
16173 		 * now other things have grown dependencies on them -- e.g.,
16174 		 * the tun module specifies a dl_addr_length of zero in its
16175 		 * DL_BIND_ACK, but then specifies an incorrect value in its
16176 		 * DL_PHYS_ADDR_ACK.  These bogus checks need to be removed,
16177 		 * but only after careful testing ensures that all dependent
16178 		 * broken DLPI providers have been fixed.
16179 		 */
16180 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0 ||
16181 		    ill->ill_phys_addr_length == IP_ADDR_LEN) {
16182 			ill->ill_phys_addr = NULL;
16183 		} else if (paddrlen != ill->ill_phys_addr_length) {
16184 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
16185 			    paddrlen, ill->ill_phys_addr_length));
16186 			err = EINVAL;
16187 			break;
16188 		}
16189 
16190 		if (ill->ill_nd_lla_mp == NULL) {
16191 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
16192 				err = ENOMEM;
16193 				break;
16194 			}
16195 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
16196 		}
16197 
16198 		/*
16199 		 * Set the interface token.  If the zeroth interface address
16200 		 * is unspecified, then set it to the link local address.
16201 		 */
16202 		if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
16203 			(void) ill_setdefaulttoken(ill);
16204 
16205 		ASSERT(ill->ill_ipif->ipif_id == 0);
16206 		if (ipif != NULL &&
16207 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
16208 			(void) ipif_setlinklocal(ipif);
16209 		}
16210 		break;
16211 	}
16212 	case DL_OK_ACK:
16213 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
16214 		    dl_primstr((int)dloa->dl_correct_primitive),
16215 		    dloa->dl_correct_primitive));
16216 		switch (dloa->dl_correct_primitive) {
16217 		case DL_PROMISCON_REQ:
16218 		case DL_PROMISCOFF_REQ:
16219 		case DL_ENABMULTI_REQ:
16220 		case DL_DISABMULTI_REQ:
16221 		case DL_UNBIND_REQ:
16222 		case DL_ATTACH_REQ:
16223 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
16224 			break;
16225 		}
16226 		break;
16227 	default:
16228 		break;
16229 	}
16230 
16231 	freemsg(mp);
16232 	if (mp1 != NULL) {
16233 		/*
16234 		 * The operation must complete without EINPROGRESS
16235 		 * since ipsq_pending_mp_get() has removed the mblk
16236 		 * from ipsq_pending_mp.  Otherwise, the operation
16237 		 * will be stuck forever in the ipsq.
16238 		 */
16239 		ASSERT(err != EINPROGRESS);
16240 
16241 		switch (ipsq->ipsq_current_ioctl) {
16242 		case 0:
16243 			ipsq_current_finish(ipsq);
16244 			break;
16245 
16246 		case SIOCLIFADDIF:
16247 		case SIOCSLIFNAME:
16248 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
16249 			break;
16250 
16251 		default:
16252 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
16253 			break;
16254 		}
16255 	}
16256 }
16257 
16258 /*
16259  * ip_rput_other is called by ip_rput to handle messages modifying the global
16260  * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared)
16261  */
16262 /* ARGSUSED */
16263 void
16264 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
16265 {
16266 	ill_t		*ill;
16267 	struct iocblk	*iocp;
16268 	mblk_t		*mp1;
16269 	conn_t		*connp = NULL;
16270 
16271 	ip1dbg(("ip_rput_other "));
16272 	ill = (ill_t *)q->q_ptr;
16273 	/*
16274 	 * This routine is not a writer in the case of SIOCGTUNPARAM
16275 	 * in which case ipsq is NULL.
16276 	 */
16277 	if (ipsq != NULL) {
16278 		ASSERT(IAM_WRITER_IPSQ(ipsq));
16279 		ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
16280 	}
16281 
16282 	switch (mp->b_datap->db_type) {
16283 	case M_ERROR:
16284 	case M_HANGUP:
16285 		/*
16286 		 * The device has a problem.  We force the ILL down.  It can
16287 		 * be brought up again manually using SIOCSIFFLAGS (via
16288 		 * ifconfig or equivalent).
16289 		 */
16290 		ASSERT(ipsq != NULL);
16291 		if (mp->b_rptr < mp->b_wptr)
16292 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
16293 		if (ill->ill_error == 0)
16294 			ill->ill_error = ENXIO;
16295 		if (!ill_down_start(q, mp))
16296 			return;
16297 		ipif_all_down_tail(ipsq, q, mp, NULL);
16298 		break;
16299 	case M_IOCACK:
16300 		iocp = (struct iocblk *)mp->b_rptr;
16301 		ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO);
16302 		switch (iocp->ioc_cmd) {
16303 		case SIOCSTUNPARAM:
16304 		case OSIOCSTUNPARAM:
16305 			ASSERT(ipsq != NULL);
16306 			/*
16307 			 * Finish socket ioctl passed through to tun.
16308 			 * We should have an IOCTL waiting on this.
16309 			 */
16310 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
16311 			if (ill->ill_isv6) {
16312 				struct iftun_req *ta;
16313 
16314 				/*
16315 				 * if a source or destination is
16316 				 * being set, try and set the link
16317 				 * local address for the tunnel
16318 				 */
16319 				ta = (struct iftun_req *)mp->b_cont->
16320 				    b_cont->b_rptr;
16321 				if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) {
16322 					ipif_set_tun_llink(ill, ta);
16323 				}
16324 
16325 			}
16326 			if (mp1 != NULL) {
16327 				/*
16328 				 * Now copy back the b_next/b_prev used by
16329 				 * mi code for the mi_copy* functions.
16330 				 * See ip_sioctl_tunparam() for the reason.
16331 				 * Also protect against missing b_cont.
16332 				 */
16333 				if (mp->b_cont != NULL) {
16334 					mp->b_cont->b_next =
16335 					    mp1->b_cont->b_next;
16336 					mp->b_cont->b_prev =
16337 					    mp1->b_cont->b_prev;
16338 				}
16339 				inet_freemsg(mp1);
16340 				ASSERT(connp != NULL);
16341 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
16342 				    iocp->ioc_error, NO_COPYOUT, ipsq);
16343 			} else {
16344 				ASSERT(connp == NULL);
16345 				putnext(q, mp);
16346 			}
16347 			break;
16348 		case SIOCGTUNPARAM:
16349 		case OSIOCGTUNPARAM:
16350 			/*
16351 			 * This is really M_IOCDATA from the tunnel driver.
16352 			 * convert back and complete the ioctl.
16353 			 * We should have an IOCTL waiting on this.
16354 			 */
16355 			mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id);
16356 			if (mp1) {
16357 				/*
16358 				 * Now copy back the b_next/b_prev used by
16359 				 * mi code for the mi_copy* functions.
16360 				 * See ip_sioctl_tunparam() for the reason.
16361 				 * Also protect against missing b_cont.
16362 				 */
16363 				if (mp->b_cont != NULL) {
16364 					mp->b_cont->b_next =
16365 					    mp1->b_cont->b_next;
16366 					mp->b_cont->b_prev =
16367 					    mp1->b_cont->b_prev;
16368 				}
16369 				inet_freemsg(mp1);
16370 				if (iocp->ioc_error == 0)
16371 					mp->b_datap->db_type = M_IOCDATA;
16372 				ASSERT(connp != NULL);
16373 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
16374 				    iocp->ioc_error, COPYOUT, NULL);
16375 			} else {
16376 				ASSERT(connp == NULL);
16377 				putnext(q, mp);
16378 			}
16379 			break;
16380 		default:
16381 			break;
16382 		}
16383 		break;
16384 	case M_IOCNAK:
16385 		iocp = (struct iocblk *)mp->b_rptr;
16386 
16387 		switch (iocp->ioc_cmd) {
16388 		int mode;
16389 
16390 		case DL_IOC_HDR_INFO:
16391 			/*
16392 			 * If this was the first attempt turn of the
16393 			 * fastpath probing.
16394 			 */
16395 			mutex_enter(&ill->ill_lock);
16396 			if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
16397 				ill->ill_dlpi_fastpath_state = IDS_FAILED;
16398 				mutex_exit(&ill->ill_lock);
16399 				ill_fastpath_nack(ill);
16400 				ip1dbg(("ip_rput: DLPI fastpath off on "
16401 				    "interface %s\n",
16402 				    ill->ill_name));
16403 			} else {
16404 				mutex_exit(&ill->ill_lock);
16405 			}
16406 			freemsg(mp);
16407 			break;
16408 		case SIOCSTUNPARAM:
16409 		case OSIOCSTUNPARAM:
16410 			ASSERT(ipsq != NULL);
16411 			/*
16412 			 * Finish socket ioctl passed through to tun
16413 			 * We should have an IOCTL waiting on this.
16414 			 */
16415 			/* FALLTHRU */
16416 		case SIOCGTUNPARAM:
16417 		case OSIOCGTUNPARAM:
16418 			/*
16419 			 * This is really M_IOCDATA from the tunnel driver.
16420 			 * convert back and complete the ioctl.
16421 			 * We should have an IOCTL waiting on this.
16422 			 */
16423 			if (iocp->ioc_cmd == SIOCGTUNPARAM ||
16424 			    iocp->ioc_cmd == OSIOCGTUNPARAM) {
16425 				mp1 = ill_pending_mp_get(ill, &connp,
16426 				    iocp->ioc_id);
16427 				mode = COPYOUT;
16428 				ipsq = NULL;
16429 			} else {
16430 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
16431 				mode = NO_COPYOUT;
16432 			}
16433 			if (mp1 != NULL) {
16434 				/*
16435 				 * Now copy back the b_next/b_prev used by
16436 				 * mi code for the mi_copy* functions.
16437 				 * See ip_sioctl_tunparam() for the reason.
16438 				 * Also protect against missing b_cont.
16439 				 */
16440 				if (mp->b_cont != NULL) {
16441 					mp->b_cont->b_next =
16442 					    mp1->b_cont->b_next;
16443 					mp->b_cont->b_prev =
16444 					    mp1->b_cont->b_prev;
16445 				}
16446 				inet_freemsg(mp1);
16447 				if (iocp->ioc_error == 0)
16448 					iocp->ioc_error = EINVAL;
16449 				ASSERT(connp != NULL);
16450 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
16451 				    iocp->ioc_error, mode, ipsq);
16452 			} else {
16453 				ASSERT(connp == NULL);
16454 				putnext(q, mp);
16455 			}
16456 			break;
16457 		default:
16458 			break;
16459 		}
16460 	default:
16461 		break;
16462 	}
16463 }
16464 
16465 /*
16466  * NOTE : This function does not ire_refrele the ire argument passed in.
16467  *
16468  * IPQoS notes
16469  * IP policy is invoked twice for a forwarded packet, once on the read side
16470  * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are
16471  * enabled. An additional parameter, in_ill, has been added for this purpose.
16472  * Note that in_ill could be NULL when called from ip_rput_forward_multicast
16473  * because ip_mroute drops this information.
16474  *
16475  */
16476 void
16477 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill)
16478 {
16479 	uint32_t	old_pkt_len;
16480 	uint32_t	pkt_len;
16481 	queue_t	*q;
16482 	uint32_t	sum;
16483 #define	rptr	((uchar_t *)ipha)
16484 	uint32_t	max_frag;
16485 	uint32_t	ill_index;
16486 	ill_t		*out_ill;
16487 	mib2_ipIfStatsEntry_t *mibptr;
16488 	ip_stack_t	*ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst;
16489 
16490 	/* Get the ill_index of the incoming ILL */
16491 	ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0;
16492 	mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib;
16493 
16494 	/* Initiate Read side IPPF processing */
16495 	if (IPP_ENABLED(IPP_FWD_IN, ipst)) {
16496 		ip_process(IPP_FWD_IN, &mp, ill_index);
16497 		if (mp == NULL) {
16498 			ip2dbg(("ip_rput_forward: pkt dropped/deferred "\
16499 			    "during IPPF processing\n"));
16500 			return;
16501 		}
16502 	}
16503 
16504 	/* Adjust the checksum to reflect the ttl decrement. */
16505 	sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
16506 	ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
16507 
16508 	if (ipha->ipha_ttl-- <= 1) {
16509 		if (ip_csum_hdr(ipha)) {
16510 			BUMP_MIB(mibptr, ipIfStatsInCksumErrs);
16511 			goto drop_pkt;
16512 		}
16513 		/*
16514 		 * Note: ire_stq this will be NULL for multicast
16515 		 * datagrams using the long path through arp (the IRE
16516 		 * is not an IRE_CACHE). This should not cause
16517 		 * problems since we don't generate ICMP errors for
16518 		 * multicast packets.
16519 		 */
16520 		BUMP_MIB(mibptr, ipIfStatsForwProhibits);
16521 		q = ire->ire_stq;
16522 		if (q != NULL) {
16523 			/* Sent by forwarding path, and router is global zone */
16524 			icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED,
16525 			    GLOBAL_ZONEID, ipst);
16526 		} else
16527 			freemsg(mp);
16528 		return;
16529 	}
16530 
16531 	/*
16532 	 * Don't forward if the interface is down
16533 	 */
16534 	if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) {
16535 		BUMP_MIB(mibptr, ipIfStatsInDiscards);
16536 		ip2dbg(("ip_rput_forward:interface is down\n"));
16537 		goto drop_pkt;
16538 	}
16539 
16540 	/* Get the ill_index of the outgoing ILL */
16541 	out_ill = ire_to_ill(ire);
16542 	ill_index = out_ill->ill_phyint->phyint_ifindex;
16543 
16544 	DTRACE_PROBE4(ip4__forwarding__start,
16545 	    ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
16546 
16547 	FW_HOOKS(ipst->ips_ip4_forwarding_event,
16548 	    ipst->ips_ipv4firewall_forwarding,
16549 	    in_ill, out_ill, ipha, mp, mp, 0, ipst);
16550 
16551 	DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
16552 
16553 	if (mp == NULL)
16554 		return;
16555 	old_pkt_len = pkt_len = ntohs(ipha->ipha_length);
16556 
16557 	if (is_system_labeled()) {
16558 		mblk_t *mp1;
16559 
16560 		if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) {
16561 			BUMP_MIB(mibptr, ipIfStatsForwProhibits);
16562 			goto drop_pkt;
16563 		}
16564 		/* Size may have changed */
16565 		mp = mp1;
16566 		ipha = (ipha_t *)mp->b_rptr;
16567 		pkt_len = ntohs(ipha->ipha_length);
16568 	}
16569 
16570 	/* Check if there are options to update */
16571 	if (!IS_SIMPLE_IPH(ipha)) {
16572 		if (ip_csum_hdr(ipha)) {
16573 			BUMP_MIB(mibptr, ipIfStatsInCksumErrs);
16574 			goto drop_pkt;
16575 		}
16576 		if (ip_rput_forward_options(mp, ipha, ire, ipst)) {
16577 			BUMP_MIB(mibptr, ipIfStatsForwProhibits);
16578 			return;
16579 		}
16580 
16581 		ipha->ipha_hdr_checksum = 0;
16582 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
16583 	}
16584 	max_frag = ire->ire_max_frag;
16585 	if (pkt_len > max_frag) {
16586 		/*
16587 		 * It needs fragging on its way out.  We haven't
16588 		 * verified the header checksum yet.  Since we
16589 		 * are going to put a surely good checksum in the
16590 		 * outgoing header, we have to make sure that it
16591 		 * was good coming in.
16592 		 */
16593 		if (ip_csum_hdr(ipha)) {
16594 			BUMP_MIB(mibptr, ipIfStatsInCksumErrs);
16595 			goto drop_pkt;
16596 		}
16597 		/* Initiate Write side IPPF processing */
16598 		if (IPP_ENABLED(IPP_FWD_OUT, ipst)) {
16599 			ip_process(IPP_FWD_OUT, &mp, ill_index);
16600 			if (mp == NULL) {
16601 				ip2dbg(("ip_rput_forward: pkt dropped/deferred"\
16602 				    " during IPPF processing\n"));
16603 				return;
16604 			}
16605 		}
16606 		/*
16607 		 * Handle labeled packet resizing.
16608 		 *
16609 		 * If we have added a label, inform ip_wput_frag() of its
16610 		 * effect on the MTU for ICMP messages.
16611 		 */
16612 		if (pkt_len > old_pkt_len) {
16613 			uint32_t secopt_size;
16614 
16615 			secopt_size = pkt_len - old_pkt_len;
16616 			if (secopt_size < max_frag)
16617 				max_frag -= secopt_size;
16618 		}
16619 
16620 		ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst);
16621 		ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n"));
16622 		return;
16623 	}
16624 
16625 	DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
16626 	    ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
16627 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
16628 	    ipst->ips_ipv4firewall_physical_out,
16629 	    NULL, out_ill, ipha, mp, mp, 0, ipst);
16630 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
16631 	if (mp == NULL)
16632 		return;
16633 
16634 	mp->b_prev = (mblk_t *)IPP_FWD_OUT;
16635 	ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n"));
16636 	(void) ip_xmit_v4(mp, ire, NULL, B_FALSE);
16637 	/* ip_xmit_v4 always consumes the packet */
16638 	return;
16639 
16640 drop_pkt:;
16641 	ip1dbg(("ip_rput_forward: drop pkt\n"));
16642 	freemsg(mp);
16643 #undef	rptr
16644 }
16645 
16646 void
16647 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif)
16648 {
16649 	ire_t	*ire;
16650 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
16651 
16652 	ASSERT(!ipif->ipif_isv6);
16653 	/*
16654 	 * Find an IRE which matches the destination and the outgoing
16655 	 * queue in the cache table. All we need is an IRE_CACHE which
16656 	 * is pointing at ipif->ipif_ill. If it is part of some ill group,
16657 	 * then it is enough to have some IRE_CACHE in the group.
16658 	 */
16659 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
16660 		dst = ipif->ipif_pp_dst_addr;
16661 
16662 	ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp),
16663 	    MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst);
16664 	if (ire == NULL) {
16665 		/*
16666 		 * Mark this packet to make it be delivered to
16667 		 * ip_rput_forward after the new ire has been
16668 		 * created.
16669 		 */
16670 		mp->b_prev = NULL;
16671 		mp->b_next = mp;
16672 		ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst,
16673 		    NULL, 0, GLOBAL_ZONEID, &zero_info);
16674 	} else {
16675 		ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL);
16676 		IRE_REFRELE(ire);
16677 	}
16678 }
16679 
16680 /* Update any source route, record route or timestamp options */
16681 static int
16682 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst)
16683 {
16684 	ipoptp_t	opts;
16685 	uchar_t		*opt;
16686 	uint8_t		optval;
16687 	uint8_t		optlen;
16688 	ipaddr_t	dst;
16689 	uint32_t	ts;
16690 	ire_t		*dst_ire = NULL;
16691 	ire_t		*tmp_ire = NULL;
16692 	timestruc_t	now;
16693 
16694 	ip2dbg(("ip_rput_forward_options\n"));
16695 	dst = ipha->ipha_dst;
16696 	for (optval = ipoptp_first(&opts, ipha);
16697 	    optval != IPOPT_EOL;
16698 	    optval = ipoptp_next(&opts)) {
16699 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
16700 		opt = opts.ipoptp_cur;
16701 		optlen = opts.ipoptp_len;
16702 		ip2dbg(("ip_rput_forward_options: opt %d, len %d\n",
16703 		    optval, opts.ipoptp_len));
16704 		switch (optval) {
16705 			uint32_t off;
16706 		case IPOPT_SSRR:
16707 		case IPOPT_LSRR:
16708 			/* Check if adminstratively disabled */
16709 			if (!ipst->ips_ip_forward_src_routed) {
16710 				if (ire->ire_stq != NULL) {
16711 					/*
16712 					 * Sent by forwarding path, and router
16713 					 * is global zone
16714 					 */
16715 					icmp_unreachable(ire->ire_stq, mp,
16716 					    ICMP_SOURCE_ROUTE_FAILED,
16717 					    GLOBAL_ZONEID, ipst);
16718 				} else {
16719 					ip0dbg(("ip_rput_forward_options: "
16720 					    "unable to send unreach\n"));
16721 					freemsg(mp);
16722 				}
16723 				return (-1);
16724 			}
16725 
16726 			dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
16727 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
16728 			if (dst_ire == NULL) {
16729 				/*
16730 				 * Must be partial since ip_rput_options
16731 				 * checked for strict.
16732 				 */
16733 				break;
16734 			}
16735 			off = opt[IPOPT_OFFSET];
16736 			off--;
16737 		redo_srr:
16738 			if (optlen < IP_ADDR_LEN ||
16739 			    off > optlen - IP_ADDR_LEN) {
16740 				/* End of source route */
16741 				ip1dbg((
16742 				    "ip_rput_forward_options: end of SR\n"));
16743 				ire_refrele(dst_ire);
16744 				break;
16745 			}
16746 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
16747 			bcopy(&ire->ire_src_addr, (char *)opt + off,
16748 			    IP_ADDR_LEN);
16749 			ip1dbg(("ip_rput_forward_options: next hop 0x%x\n",
16750 			    ntohl(dst)));
16751 
16752 			/*
16753 			 * Check if our address is present more than
16754 			 * once as consecutive hops in source route.
16755 			 */
16756 			tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
16757 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
16758 			if (tmp_ire != NULL) {
16759 				ire_refrele(tmp_ire);
16760 				off += IP_ADDR_LEN;
16761 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16762 				goto redo_srr;
16763 			}
16764 			ipha->ipha_dst = dst;
16765 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16766 			ire_refrele(dst_ire);
16767 			break;
16768 		case IPOPT_RR:
16769 			off = opt[IPOPT_OFFSET];
16770 			off--;
16771 			if (optlen < IP_ADDR_LEN ||
16772 			    off > optlen - IP_ADDR_LEN) {
16773 				/* No more room - ignore */
16774 				ip1dbg((
16775 				    "ip_rput_forward_options: end of RR\n"));
16776 				break;
16777 			}
16778 			bcopy(&ire->ire_src_addr, (char *)opt + off,
16779 			    IP_ADDR_LEN);
16780 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16781 			break;
16782 		case IPOPT_TS:
16783 			/* Insert timestamp if there is room */
16784 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
16785 			case IPOPT_TS_TSONLY:
16786 				off = IPOPT_TS_TIMELEN;
16787 				break;
16788 			case IPOPT_TS_PRESPEC:
16789 			case IPOPT_TS_PRESPEC_RFC791:
16790 				/* Verify that the address matched */
16791 				off = opt[IPOPT_OFFSET] - 1;
16792 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
16793 				dst_ire = ire_ctable_lookup(dst, 0,
16794 				    IRE_LOCAL, NULL, ALL_ZONES, NULL,
16795 				    MATCH_IRE_TYPE, ipst);
16796 				if (dst_ire == NULL) {
16797 					/* Not for us */
16798 					break;
16799 				}
16800 				ire_refrele(dst_ire);
16801 				/* FALLTHRU */
16802 			case IPOPT_TS_TSANDADDR:
16803 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
16804 				break;
16805 			default:
16806 				/*
16807 				 * ip_*put_options should have already
16808 				 * dropped this packet.
16809 				 */
16810 				cmn_err(CE_PANIC, "ip_rput_forward_options: "
16811 				    "unknown IT - bug in ip_rput_options?\n");
16812 				return (0);	/* Keep "lint" happy */
16813 			}
16814 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
16815 				/* Increase overflow counter */
16816 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
16817 				opt[IPOPT_POS_OV_FLG] =
16818 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
16819 				    (off << 4));
16820 				break;
16821 			}
16822 			off = opt[IPOPT_OFFSET] - 1;
16823 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
16824 			case IPOPT_TS_PRESPEC:
16825 			case IPOPT_TS_PRESPEC_RFC791:
16826 			case IPOPT_TS_TSANDADDR:
16827 				bcopy(&ire->ire_src_addr,
16828 				    (char *)opt + off, IP_ADDR_LEN);
16829 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16830 				/* FALLTHRU */
16831 			case IPOPT_TS_TSONLY:
16832 				off = opt[IPOPT_OFFSET] - 1;
16833 				/* Compute # of milliseconds since midnight */
16834 				gethrestime(&now);
16835 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
16836 				    now.tv_nsec / (NANOSEC / MILLISEC);
16837 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
16838 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
16839 				break;
16840 			}
16841 			break;
16842 		}
16843 	}
16844 	return (0);
16845 }
16846 
16847 /*
16848  * This is called after processing at least one of AH/ESP headers.
16849  *
16850  * NOTE: the ill corresponding to ipsec_in_ill_index may not be
16851  * the actual, physical interface on which the packet was received,
16852  * but, when ip_strict_dst_multihoming is set to 1, could be the
16853  * interface which had the ipha_dst configured when the packet went
16854  * through ip_rput. The ill_index corresponding to the recv_ill
16855  * is saved in ipsec_in_rill_index
16856  *
16857  * NOTE2: The "ire" argument is only used in IPv4 cases.  This function
16858  * cannot assume "ire" points to valid data for any IPv6 cases.
16859  */
16860 void
16861 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire)
16862 {
16863 	mblk_t *mp;
16864 	ipaddr_t dst;
16865 	in6_addr_t *v6dstp;
16866 	ipha_t *ipha;
16867 	ip6_t *ip6h;
16868 	ipsec_in_t *ii;
16869 	boolean_t ill_need_rele = B_FALSE;
16870 	boolean_t rill_need_rele = B_FALSE;
16871 	boolean_t ire_need_rele = B_FALSE;
16872 	netstack_t	*ns;
16873 	ip_stack_t	*ipst;
16874 
16875 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
16876 	ASSERT(ii->ipsec_in_ill_index != 0);
16877 	ns = ii->ipsec_in_ns;
16878 	ASSERT(ii->ipsec_in_ns != NULL);
16879 	ipst = ns->netstack_ip;
16880 
16881 	mp = ipsec_mp->b_cont;
16882 	ASSERT(mp != NULL);
16883 
16884 
16885 	if (ill == NULL) {
16886 		ASSERT(recv_ill == NULL);
16887 		/*
16888 		 * We need to get the original queue on which ip_rput_local
16889 		 * or ip_rput_data_v6 was called.
16890 		 */
16891 		ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
16892 		    !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst);
16893 		ill_need_rele = B_TRUE;
16894 
16895 		if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) {
16896 			recv_ill = ill_lookup_on_ifindex(
16897 			    ii->ipsec_in_rill_index, !ii->ipsec_in_v4,
16898 			    NULL, NULL, NULL, NULL, ipst);
16899 			rill_need_rele = B_TRUE;
16900 		} else {
16901 			recv_ill = ill;
16902 		}
16903 
16904 		if ((ill == NULL) || (recv_ill == NULL)) {
16905 			ip0dbg(("ip_fanout_proto_again: interface "
16906 			    "disappeared\n"));
16907 			if (ill != NULL)
16908 				ill_refrele(ill);
16909 			if (recv_ill != NULL)
16910 				ill_refrele(recv_ill);
16911 			freemsg(ipsec_mp);
16912 			return;
16913 		}
16914 	}
16915 
16916 	ASSERT(ill != NULL && recv_ill != NULL);
16917 
16918 	if (mp->b_datap->db_type == M_CTL) {
16919 		/*
16920 		 * AH/ESP is returning the ICMP message after
16921 		 * removing their headers. Fanout again till
16922 		 * it gets to the right protocol.
16923 		 */
16924 		if (ii->ipsec_in_v4) {
16925 			icmph_t *icmph;
16926 			int iph_hdr_length;
16927 			int hdr_length;
16928 
16929 			ipha = (ipha_t *)mp->b_rptr;
16930 			iph_hdr_length = IPH_HDR_LENGTH(ipha);
16931 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
16932 			ipha = (ipha_t *)&icmph[1];
16933 			hdr_length = IPH_HDR_LENGTH(ipha);
16934 			/*
16935 			 * icmp_inbound_error_fanout may need to do pullupmsg.
16936 			 * Reset the type to M_DATA.
16937 			 */
16938 			mp->b_datap->db_type = M_DATA;
16939 			icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp,
16940 			    icmph, ipha, iph_hdr_length, hdr_length, B_TRUE,
16941 			    B_FALSE, ill, ii->ipsec_in_zoneid);
16942 		} else {
16943 			icmp6_t *icmp6;
16944 			int hdr_length;
16945 
16946 			ip6h = (ip6_t *)mp->b_rptr;
16947 			/* Don't call hdr_length_v6() unless you have to. */
16948 			if (ip6h->ip6_nxt != IPPROTO_ICMPV6)
16949 				hdr_length = ip_hdr_length_v6(mp, ip6h);
16950 			else
16951 				hdr_length = IPV6_HDR_LEN;
16952 
16953 			icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]);
16954 			/*
16955 			 * icmp_inbound_error_fanout_v6 may need to do
16956 			 * pullupmsg.  Reset the type to M_DATA.
16957 			 */
16958 			mp->b_datap->db_type = M_DATA;
16959 			icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp,
16960 			    ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid);
16961 		}
16962 		if (ill_need_rele)
16963 			ill_refrele(ill);
16964 		if (rill_need_rele)
16965 			ill_refrele(recv_ill);
16966 		return;
16967 	}
16968 
16969 	if (ii->ipsec_in_v4) {
16970 		ipha = (ipha_t *)mp->b_rptr;
16971 		dst = ipha->ipha_dst;
16972 		if (CLASSD(dst)) {
16973 			/*
16974 			 * Multicast has to be delivered to all streams.
16975 			 */
16976 			dst = INADDR_BROADCAST;
16977 		}
16978 
16979 		if (ire == NULL) {
16980 			ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid,
16981 			    MBLK_GETLABEL(mp), ipst);
16982 			if (ire == NULL) {
16983 				if (ill_need_rele)
16984 					ill_refrele(ill);
16985 				if (rill_need_rele)
16986 					ill_refrele(recv_ill);
16987 				ip1dbg(("ip_fanout_proto_again: "
16988 				    "IRE not found"));
16989 				freemsg(ipsec_mp);
16990 				return;
16991 			}
16992 			ire_need_rele = B_TRUE;
16993 		}
16994 
16995 		switch (ipha->ipha_protocol) {
16996 			case IPPROTO_UDP:
16997 				ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire,
16998 				    recv_ill);
16999 				if (ire_need_rele)
17000 					ire_refrele(ire);
17001 				break;
17002 			case IPPROTO_TCP:
17003 				if (!ire_need_rele)
17004 					IRE_REFHOLD(ire);
17005 				mp = ip_tcp_input(mp, ipha, ill, B_TRUE,
17006 				    ire, ipsec_mp, 0, ill->ill_rq, NULL);
17007 				IRE_REFRELE(ire);
17008 				if (mp != NULL)
17009 					squeue_enter_chain(GET_SQUEUE(mp), mp,
17010 					    mp, 1, SQTAG_IP_PROTO_AGAIN);
17011 				break;
17012 			case IPPROTO_SCTP:
17013 				if (!ire_need_rele)
17014 					IRE_REFHOLD(ire);
17015 				ip_sctp_input(mp, ipha, ill, B_TRUE, ire,
17016 				    ipsec_mp, 0, ill->ill_rq, dst);
17017 				break;
17018 			default:
17019 				ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire,
17020 				    recv_ill, B_FALSE);
17021 				if (ire_need_rele)
17022 					ire_refrele(ire);
17023 				break;
17024 		}
17025 	} else {
17026 		uint32_t rput_flags = 0;
17027 
17028 		ip6h = (ip6_t *)mp->b_rptr;
17029 		v6dstp = &ip6h->ip6_dst;
17030 		/*
17031 		 * XXX Assumes ip_rput_v6 sets ll_multicast  only for multicast
17032 		 * address.
17033 		 *
17034 		 * Currently, we don't store that state in the IPSEC_IN
17035 		 * message, and we may need to.
17036 		 */
17037 		rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ?
17038 		    IP6_IN_LLMCAST : 0);
17039 		ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags,
17040 		    NULL, NULL);
17041 	}
17042 	if (ill_need_rele)
17043 		ill_refrele(ill);
17044 	if (rill_need_rele)
17045 		ill_refrele(recv_ill);
17046 }
17047 
17048 /*
17049  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
17050  * returns 'true' if there are still fragments left on the queue, in
17051  * which case we restart the timer.
17052  */
17053 void
17054 ill_frag_timer(void *arg)
17055 {
17056 	ill_t	*ill = (ill_t *)arg;
17057 	boolean_t frag_pending;
17058 	ip_stack_t	*ipst = ill->ill_ipst;
17059 
17060 	mutex_enter(&ill->ill_lock);
17061 	ASSERT(!ill->ill_fragtimer_executing);
17062 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17063 		ill->ill_frag_timer_id = 0;
17064 		mutex_exit(&ill->ill_lock);
17065 		return;
17066 	}
17067 	ill->ill_fragtimer_executing = 1;
17068 	mutex_exit(&ill->ill_lock);
17069 
17070 	frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout);
17071 
17072 	/*
17073 	 * Restart the timer, if we have fragments pending or if someone
17074 	 * wanted us to be scheduled again.
17075 	 */
17076 	mutex_enter(&ill->ill_lock);
17077 	ill->ill_fragtimer_executing = 0;
17078 	ill->ill_frag_timer_id = 0;
17079 	if (frag_pending || ill->ill_fragtimer_needrestart)
17080 		ill_frag_timer_start(ill);
17081 	mutex_exit(&ill->ill_lock);
17082 }
17083 
17084 void
17085 ill_frag_timer_start(ill_t *ill)
17086 {
17087 	ip_stack_t	*ipst = ill->ill_ipst;
17088 
17089 	ASSERT(MUTEX_HELD(&ill->ill_lock));
17090 
17091 	/* If the ill is closing or opening don't proceed */
17092 	if (ill->ill_state_flags & ILL_CONDEMNED)
17093 		return;
17094 
17095 	if (ill->ill_fragtimer_executing) {
17096 		/*
17097 		 * ill_frag_timer is currently executing. Just record the
17098 		 * the fact that we want the timer to be restarted.
17099 		 * ill_frag_timer will post a timeout before it returns,
17100 		 * ensuring it will be called again.
17101 		 */
17102 		ill->ill_fragtimer_needrestart = 1;
17103 		return;
17104 	}
17105 
17106 	if (ill->ill_frag_timer_id == 0) {
17107 		/*
17108 		 * The timer is neither running nor is the timeout handler
17109 		 * executing. Post a timeout so that ill_frag_timer will be
17110 		 * called
17111 		 */
17112 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
17113 		    MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1));
17114 		ill->ill_fragtimer_needrestart = 0;
17115 	}
17116 }
17117 
17118 /*
17119  * This routine is needed for loopback when forwarding multicasts.
17120  *
17121  * IPQoS Notes:
17122  * IPPF processing is done in fanout routines.
17123  * Policy processing is done only if IPP_lOCAL_IN is enabled. Further,
17124  * processing for IPsec packets is done when it comes back in clear.
17125  * NOTE : The callers of this function need to do the ire_refrele for the
17126  *	  ire that is being passed in.
17127  */
17128 void
17129 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
17130     ill_t *recv_ill, boolean_t esp_in_udp_packet)
17131 {
17132 	ill_t	*ill = (ill_t *)q->q_ptr;
17133 	uint32_t	sum;
17134 	uint32_t	u1;
17135 	uint32_t	u2;
17136 	int		hdr_length;
17137 	boolean_t	mctl_present;
17138 	mblk_t		*first_mp = mp;
17139 	mblk_t		*hada_mp = NULL;
17140 	ipha_t		*inner_ipha;
17141 	ip_stack_t	*ipst;
17142 
17143 	ASSERT(recv_ill != NULL);
17144 	ipst = recv_ill->ill_ipst;
17145 
17146 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START,
17147 	    "ip_rput_locl_start: q %p", q);
17148 
17149 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
17150 	ASSERT(ill != NULL);
17151 
17152 
17153 #define	rptr	((uchar_t *)ipha)
17154 #define	iphs	((uint16_t *)ipha)
17155 
17156 	/*
17157 	 * no UDP or TCP packet should come here anymore.
17158 	 */
17159 	ASSERT(ipha->ipha_protocol != IPPROTO_TCP &&
17160 	    ipha->ipha_protocol != IPPROTO_UDP);
17161 
17162 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
17163 	if (mctl_present &&
17164 	    ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) {
17165 		ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t));
17166 
17167 		/*
17168 		 * It's an IPsec accelerated packet.
17169 		 * Keep a pointer to the data attributes around until
17170 		 * we allocate the ipsec_info_t.
17171 		 */
17172 		IPSECHW_DEBUG(IPSECHW_PKT,
17173 		    ("ip_rput_local: inbound HW accelerated IPsec pkt\n"));
17174 		hada_mp = first_mp;
17175 		hada_mp->b_cont = NULL;
17176 		/*
17177 		 * Since it is accelerated, it comes directly from
17178 		 * the ill and the data attributes is followed by
17179 		 * the packet data.
17180 		 */
17181 		ASSERT(mp->b_datap->db_type != M_CTL);
17182 		first_mp = mp;
17183 		mctl_present = B_FALSE;
17184 	}
17185 
17186 	/*
17187 	 * IF M_CTL is not present, then ipsec_in_is_secure
17188 	 * should return B_TRUE. There is a case where loopback
17189 	 * packets has an M_CTL in the front with all the
17190 	 * IPsec options set to IPSEC_PREF_NEVER - which means
17191 	 * ipsec_in_is_secure will return B_FALSE. As loopback
17192 	 * packets never comes here, it is safe to ASSERT the
17193 	 * following.
17194 	 */
17195 	ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
17196 
17197 	/*
17198 	 * Also, we should never have an mctl_present if this is an
17199 	 * ESP-in-UDP packet.
17200 	 */
17201 	ASSERT(!mctl_present || !esp_in_udp_packet);
17202 
17203 
17204 	/* u1 is # words of IP options */
17205 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) +
17206 	    IP_SIMPLE_HDR_LENGTH_IN_WORDS);
17207 
17208 	/*
17209 	 * Don't verify header checksum if we just removed UDP header or
17210 	 * packet is coming back from AH/ESP.
17211 	 */
17212 	if (!esp_in_udp_packet && !mctl_present) {
17213 		if (u1) {
17214 			if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) {
17215 				if (hada_mp != NULL)
17216 					freemsg(hada_mp);
17217 				return;
17218 			}
17219 		} else {
17220 			/* Check the IP header checksum.  */
17221 #define	uph	((uint16_t *)ipha)
17222 			sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
17223 			    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
17224 #undef  uph
17225 			/* finish doing IP checksum */
17226 			sum = (sum & 0xFFFF) + (sum >> 16);
17227 			sum = ~(sum + (sum >> 16)) & 0xFFFF;
17228 			if (sum && sum != 0xFFFF) {
17229 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
17230 				goto drop_pkt;
17231 			}
17232 		}
17233 	}
17234 
17235 	/*
17236 	 * Count for SNMP of inbound packets for ire. As ip_proto_input
17237 	 * might be called more than once for secure packets, count only
17238 	 * the first time.
17239 	 */
17240 	if (!mctl_present) {
17241 		UPDATE_IB_PKT_COUNT(ire);
17242 		ire->ire_last_used_time = lbolt;
17243 	}
17244 
17245 	/* Check for fragmentation offset. */
17246 	u2 = ntohs(ipha->ipha_fragment_offset_and_flags);
17247 	u1 = u2 & (IPH_MF | IPH_OFFSET);
17248 	if (u1) {
17249 		/*
17250 		 * We re-assemble fragments before we do the AH/ESP
17251 		 * processing. Thus, M_CTL should not be present
17252 		 * while we are re-assembling.
17253 		 */
17254 		ASSERT(!mctl_present);
17255 		ASSERT(first_mp == mp);
17256 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
17257 			return;
17258 		}
17259 		/*
17260 		 * Make sure that first_mp points back to mp as
17261 		 * the mp we came in with could have changed in
17262 		 * ip_rput_fragment().
17263 		 */
17264 		ipha = (ipha_t *)mp->b_rptr;
17265 		first_mp = mp;
17266 	}
17267 
17268 	/*
17269 	 * Clear hardware checksumming flag as it is currently only
17270 	 * used by TCP and UDP.
17271 	 */
17272 	DB_CKSUMFLAGS(mp) = 0;
17273 
17274 	/* Now we have a complete datagram, destined for this machine. */
17275 	u1 = IPH_HDR_LENGTH(ipha);
17276 	switch (ipha->ipha_protocol) {
17277 	case IPPROTO_ICMP: {
17278 		ire_t		*ire_zone;
17279 		ilm_t		*ilm;
17280 		mblk_t		*mp1;
17281 		zoneid_t	last_zoneid;
17282 
17283 		if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) {
17284 			ASSERT(ire->ire_type == IRE_BROADCAST);
17285 			/*
17286 			 * In the multicast case, applications may have joined
17287 			 * the group from different zones, so we need to deliver
17288 			 * the packet to each of them. Loop through the
17289 			 * multicast memberships structures (ilm) on the receive
17290 			 * ill and send a copy of the packet up each matching
17291 			 * one. However, we don't do this for multicasts sent on
17292 			 * the loopback interface (PHYI_LOOPBACK flag set) as
17293 			 * they must stay in the sender's zone.
17294 			 *
17295 			 * ilm_add_v6() ensures that ilms in the same zone are
17296 			 * contiguous in the ill_ilm list. We use this property
17297 			 * to avoid sending duplicates needed when two
17298 			 * applications in the same zone join the same group on
17299 			 * different logical interfaces: we ignore the ilm if
17300 			 * its zoneid is the same as the last matching one.
17301 			 * In addition, the sending of the packet for
17302 			 * ire_zoneid is delayed until all of the other ilms
17303 			 * have been exhausted.
17304 			 */
17305 			last_zoneid = -1;
17306 			ILM_WALKER_HOLD(recv_ill);
17307 			for (ilm = recv_ill->ill_ilm; ilm != NULL;
17308 			    ilm = ilm->ilm_next) {
17309 				if ((ilm->ilm_flags & ILM_DELETED) ||
17310 				    ipha->ipha_dst != ilm->ilm_addr ||
17311 				    ilm->ilm_zoneid == last_zoneid ||
17312 				    ilm->ilm_zoneid == ire->ire_zoneid ||
17313 				    ilm->ilm_zoneid == ALL_ZONES ||
17314 				    !(ilm->ilm_ipif->ipif_flags & IPIF_UP))
17315 					continue;
17316 				mp1 = ip_copymsg(first_mp);
17317 				if (mp1 == NULL)
17318 					continue;
17319 				icmp_inbound(q, mp1, B_TRUE, ill,
17320 				    0, sum, mctl_present, B_TRUE,
17321 				    recv_ill, ilm->ilm_zoneid);
17322 				last_zoneid = ilm->ilm_zoneid;
17323 			}
17324 			ILM_WALKER_RELE(recv_ill);
17325 		} else if (ire->ire_type == IRE_BROADCAST) {
17326 			/*
17327 			 * In the broadcast case, there may be many zones
17328 			 * which need a copy of the packet delivered to them.
17329 			 * There is one IRE_BROADCAST per broadcast address
17330 			 * and per zone; we walk those using a helper function.
17331 			 * In addition, the sending of the packet for ire is
17332 			 * delayed until all of the other ires have been
17333 			 * processed.
17334 			 */
17335 			IRB_REFHOLD(ire->ire_bucket);
17336 			ire_zone = NULL;
17337 			while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
17338 			    ire)) != NULL) {
17339 				mp1 = ip_copymsg(first_mp);
17340 				if (mp1 == NULL)
17341 					continue;
17342 
17343 				UPDATE_IB_PKT_COUNT(ire_zone);
17344 				ire_zone->ire_last_used_time = lbolt;
17345 				icmp_inbound(q, mp1, B_TRUE, ill,
17346 				    0, sum, mctl_present, B_TRUE,
17347 				    recv_ill, ire_zone->ire_zoneid);
17348 			}
17349 			IRB_REFRELE(ire->ire_bucket);
17350 		}
17351 		icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST),
17352 		    ill, 0, sum, mctl_present, B_TRUE, recv_ill,
17353 		    ire->ire_zoneid);
17354 		TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17355 		    "ip_rput_locl_end: q %p (%S)", q, "icmp");
17356 		return;
17357 	}
17358 	case IPPROTO_IGMP:
17359 		/*
17360 		 * If we are not willing to accept IGMP packets in clear,
17361 		 * then check with global policy.
17362 		 */
17363 		if (ipst->ips_igmp_accept_clear_messages == 0) {
17364 			first_mp = ipsec_check_global_policy(first_mp, NULL,
17365 			    ipha, NULL, mctl_present, ipst->ips_netstack);
17366 			if (first_mp == NULL)
17367 				return;
17368 		}
17369 		if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
17370 			freemsg(first_mp);
17371 			ip1dbg(("ip_proto_input: zone all cannot accept raw"));
17372 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17373 			return;
17374 		}
17375 		if ((mp = igmp_input(q, mp, ill)) == NULL) {
17376 			/* Bad packet - discarded by igmp_input */
17377 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17378 			    "ip_rput_locl_end: q %p (%S)", q, "igmp");
17379 			if (mctl_present)
17380 				freeb(first_mp);
17381 			return;
17382 		}
17383 		/*
17384 		 * igmp_input() may have returned the pulled up message.
17385 		 * So first_mp and ipha need to be reinitialized.
17386 		 */
17387 		ipha = (ipha_t *)mp->b_rptr;
17388 		if (mctl_present)
17389 			first_mp->b_cont = mp;
17390 		else
17391 			first_mp = mp;
17392 		if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol].
17393 		    connf_head != NULL) {
17394 			/* No user-level listener for IGMP packets */
17395 			goto drop_pkt;
17396 		}
17397 		/* deliver to local raw users */
17398 		break;
17399 	case IPPROTO_PIM:
17400 		/*
17401 		 * If we are not willing to accept PIM packets in clear,
17402 		 * then check with global policy.
17403 		 */
17404 		if (ipst->ips_pim_accept_clear_messages == 0) {
17405 			first_mp = ipsec_check_global_policy(first_mp, NULL,
17406 			    ipha, NULL, mctl_present, ipst->ips_netstack);
17407 			if (first_mp == NULL)
17408 				return;
17409 		}
17410 		if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
17411 			freemsg(first_mp);
17412 			ip1dbg(("ip_proto_input: zone all cannot accept PIM"));
17413 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17414 			return;
17415 		}
17416 		if (pim_input(q, mp, ill) != 0) {
17417 			/* Bad packet - discarded by pim_input */
17418 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17419 			    "ip_rput_locl_end: q %p (%S)", q, "pim");
17420 			if (mctl_present)
17421 				freeb(first_mp);
17422 			return;
17423 		}
17424 
17425 		/*
17426 		 * pim_input() may have pulled up the message so ipha needs to
17427 		 * be reinitialized.
17428 		 */
17429 		ipha = (ipha_t *)mp->b_rptr;
17430 		if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol].
17431 		    connf_head != NULL) {
17432 			/* No user-level listener for PIM packets */
17433 			goto drop_pkt;
17434 		}
17435 		/* deliver to local raw users */
17436 		break;
17437 	case IPPROTO_ENCAP:
17438 		/*
17439 		 * Handle self-encapsulated packets (IP-in-IP where
17440 		 * the inner addresses == the outer addresses).
17441 		 */
17442 		hdr_length = IPH_HDR_LENGTH(ipha);
17443 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
17444 		    mp->b_wptr) {
17445 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
17446 			    sizeof (ipha_t) - mp->b_rptr)) {
17447 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17448 				freemsg(first_mp);
17449 				return;
17450 			}
17451 			ipha = (ipha_t *)mp->b_rptr;
17452 		}
17453 		inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
17454 		/*
17455 		 * Check the sanity of the inner IP header.
17456 		 */
17457 		if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) {
17458 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17459 			freemsg(first_mp);
17460 			return;
17461 		}
17462 		if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) {
17463 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17464 			freemsg(first_mp);
17465 			return;
17466 		}
17467 		if (inner_ipha->ipha_src == ipha->ipha_src &&
17468 		    inner_ipha->ipha_dst == ipha->ipha_dst) {
17469 			ipsec_in_t *ii;
17470 
17471 			/*
17472 			 * Self-encapsulated tunnel packet. Remove
17473 			 * the outer IP header and fanout again.
17474 			 * We also need to make sure that the inner
17475 			 * header is pulled up until options.
17476 			 */
17477 			mp->b_rptr = (uchar_t *)inner_ipha;
17478 			ipha = inner_ipha;
17479 			hdr_length = IPH_HDR_LENGTH(ipha);
17480 			if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
17481 				if (!pullupmsg(mp, (uchar_t *)ipha +
17482 				    + hdr_length - mp->b_rptr)) {
17483 					freemsg(first_mp);
17484 					return;
17485 				}
17486 				ipha = (ipha_t *)mp->b_rptr;
17487 			}
17488 			if (hdr_length > sizeof (ipha_t)) {
17489 				/* We got options on the inner packet. */
17490 				ipaddr_t dst = ipha->ipha_dst;
17491 
17492 				if (ip_rput_options(q, mp, ipha, &dst, ipst) ==
17493 				    -1) {
17494 					/* Bad options! */
17495 					return;
17496 				}
17497 				if (dst != ipha->ipha_dst) {
17498 					/*
17499 					 * Someone put a source-route in
17500 					 * the inside header of a self-
17501 					 * encapsulated packet.  Drop it
17502 					 * with extreme prejudice and let
17503 					 * the sender know.
17504 					 */
17505 					icmp_unreachable(q, first_mp,
17506 					    ICMP_SOURCE_ROUTE_FAILED,
17507 					    recv_ill->ill_zoneid, ipst);
17508 					return;
17509 				}
17510 			}
17511 			if (!mctl_present) {
17512 				ASSERT(first_mp == mp);
17513 				/*
17514 				 * This means that somebody is sending
17515 				 * Self-encapsualted packets without AH/ESP.
17516 				 * If AH/ESP was present, we would have already
17517 				 * allocated the first_mp.
17518 				 *
17519 				 * Send this packet to find a tunnel endpoint.
17520 				 * if I can't find one, an ICMP
17521 				 * PROTOCOL_UNREACHABLE will get sent.
17522 				 */
17523 				goto fanout;
17524 			}
17525 			/*
17526 			 * We generally store the ill_index if we need to
17527 			 * do IPsec processing as we lose the ill queue when
17528 			 * we come back. But in this case, we never should
17529 			 * have to store the ill_index here as it should have
17530 			 * been stored previously when we processed the
17531 			 * AH/ESP header in this routine or for non-ipsec
17532 			 * cases, we still have the queue. But for some bad
17533 			 * packets from the wire, we can get to IPsec after
17534 			 * this and we better store the index for that case.
17535 			 */
17536 			ill = (ill_t *)q->q_ptr;
17537 			ii = (ipsec_in_t *)first_mp->b_rptr;
17538 			ii->ipsec_in_ill_index =
17539 			    ill->ill_phyint->phyint_ifindex;
17540 			ii->ipsec_in_rill_index =
17541 			    recv_ill->ill_phyint->phyint_ifindex;
17542 			if (ii->ipsec_in_decaps) {
17543 				/*
17544 				 * This packet is self-encapsulated multiple
17545 				 * times. We don't want to recurse infinitely.
17546 				 * To keep it simple, drop the packet.
17547 				 */
17548 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17549 				freemsg(first_mp);
17550 				return;
17551 			}
17552 			ii->ipsec_in_decaps = B_TRUE;
17553 			ip_fanout_proto_again(first_mp, recv_ill, recv_ill,
17554 			    ire);
17555 			return;
17556 		}
17557 		break;
17558 	case IPPROTO_AH:
17559 	case IPPROTO_ESP: {
17560 		ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
17561 
17562 		/*
17563 		 * Fast path for AH/ESP. If this is the first time
17564 		 * we are sending a datagram to AH/ESP, allocate
17565 		 * a IPSEC_IN message and prepend it. Otherwise,
17566 		 * just fanout.
17567 		 */
17568 
17569 		int ipsec_rc;
17570 		ipsec_in_t *ii;
17571 		netstack_t *ns = ipst->ips_netstack;
17572 
17573 		IP_STAT(ipst, ipsec_proto_ahesp);
17574 		if (!mctl_present) {
17575 			ASSERT(first_mp == mp);
17576 			first_mp = ipsec_in_alloc(B_TRUE, ns);
17577 			if (first_mp == NULL) {
17578 				ip1dbg(("ip_proto_input: IPSEC_IN "
17579 				    "allocation failure.\n"));
17580 				freemsg(hada_mp); /* okay ifnull */
17581 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17582 				freemsg(mp);
17583 				return;
17584 			}
17585 			/*
17586 			 * Store the ill_index so that when we come back
17587 			 * from IPsec we ride on the same queue.
17588 			 */
17589 			ill = (ill_t *)q->q_ptr;
17590 			ii = (ipsec_in_t *)first_mp->b_rptr;
17591 			ii->ipsec_in_ill_index =
17592 			    ill->ill_phyint->phyint_ifindex;
17593 			ii->ipsec_in_rill_index =
17594 			    recv_ill->ill_phyint->phyint_ifindex;
17595 			first_mp->b_cont = mp;
17596 			/*
17597 			 * Cache hardware acceleration info.
17598 			 */
17599 			if (hada_mp != NULL) {
17600 				IPSECHW_DEBUG(IPSECHW_PKT,
17601 				    ("ip_rput_local: caching data attr.\n"));
17602 				ii->ipsec_in_accelerated = B_TRUE;
17603 				ii->ipsec_in_da = hada_mp;
17604 				hada_mp = NULL;
17605 			}
17606 		} else {
17607 			ii = (ipsec_in_t *)first_mp->b_rptr;
17608 		}
17609 
17610 		if (!ipsec_loaded(ipss)) {
17611 			ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP,
17612 			    ire->ire_zoneid, ipst);
17613 			return;
17614 		}
17615 
17616 		ns = ipst->ips_netstack;
17617 		/* select inbound SA and have IPsec process the pkt */
17618 		if (ipha->ipha_protocol == IPPROTO_ESP) {
17619 			esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns);
17620 			boolean_t esp_in_udp_sa;
17621 			if (esph == NULL)
17622 				return;
17623 			ASSERT(ii->ipsec_in_esp_sa != NULL);
17624 			ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL);
17625 			esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags &
17626 			    IPSA_F_NATT) != 0);
17627 			/*
17628 			 * The following is a fancy, but quick, way of saying:
17629 			 * ESP-in-UDP SA and Raw ESP packet --> drop
17630 			 *    OR
17631 			 * ESP SA and ESP-in-UDP packet --> drop
17632 			 */
17633 			if (esp_in_udp_sa != esp_in_udp_packet) {
17634 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17635 				ip_drop_packet(first_mp, B_TRUE, ill, NULL,
17636 				    DROPPER(ns->netstack_ipsec, ipds_esp_no_sa),
17637 				    &ns->netstack_ipsec->ipsec_dropper);
17638 				return;
17639 			}
17640 			ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(
17641 			    first_mp, esph);
17642 		} else {
17643 			ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns);
17644 			if (ah == NULL)
17645 				return;
17646 			ASSERT(ii->ipsec_in_ah_sa != NULL);
17647 			ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL);
17648 			ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(
17649 			    first_mp, ah);
17650 		}
17651 
17652 		switch (ipsec_rc) {
17653 		case IPSEC_STATUS_SUCCESS:
17654 			break;
17655 		case IPSEC_STATUS_FAILED:
17656 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17657 			/* FALLTHRU */
17658 		case IPSEC_STATUS_PENDING:
17659 			return;
17660 		}
17661 		/* we're done with IPsec processing, send it up */
17662 		ip_fanout_proto_again(first_mp, ill, recv_ill, ire);
17663 		return;
17664 	}
17665 	default:
17666 		break;
17667 	}
17668 	if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) {
17669 		ip1dbg(("ip_proto_input: zone %d cannot accept raw IP",
17670 		    ire->ire_zoneid));
17671 		goto drop_pkt;
17672 	}
17673 	/*
17674 	 * Handle protocols with which IP is less intimate.  There
17675 	 * can be more than one stream bound to a particular
17676 	 * protocol.  When this is the case, each one gets a copy
17677 	 * of any incoming packets.
17678 	 */
17679 fanout:
17680 	ip_fanout_proto(q, first_mp, ill, ipha,
17681 	    IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present,
17682 	    B_TRUE, recv_ill, ire->ire_zoneid);
17683 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17684 	    "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto");
17685 	return;
17686 
17687 drop_pkt:
17688 	freemsg(first_mp);
17689 	if (hada_mp != NULL)
17690 		freeb(hada_mp);
17691 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17692 	    "ip_rput_locl_end: q %p (%S)", q, "droppkt");
17693 #undef	rptr
17694 #undef  iphs
17695 
17696 }
17697 
17698 /*
17699  * Update any source route, record route or timestamp options.
17700  * Check that we are at end of strict source route.
17701  * The options have already been checked for sanity in ip_rput_options().
17702  */
17703 static boolean_t
17704 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
17705     ip_stack_t *ipst)
17706 {
17707 	ipoptp_t	opts;
17708 	uchar_t		*opt;
17709 	uint8_t		optval;
17710 	uint8_t		optlen;
17711 	ipaddr_t	dst;
17712 	uint32_t	ts;
17713 	ire_t		*dst_ire;
17714 	timestruc_t	now;
17715 	zoneid_t	zoneid;
17716 	ill_t		*ill;
17717 
17718 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
17719 
17720 	ip2dbg(("ip_rput_local_options\n"));
17721 
17722 	for (optval = ipoptp_first(&opts, ipha);
17723 	    optval != IPOPT_EOL;
17724 	    optval = ipoptp_next(&opts)) {
17725 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
17726 		opt = opts.ipoptp_cur;
17727 		optlen = opts.ipoptp_len;
17728 		ip2dbg(("ip_rput_local_options: opt %d, len %d\n",
17729 		    optval, optlen));
17730 		switch (optval) {
17731 			uint32_t off;
17732 		case IPOPT_SSRR:
17733 		case IPOPT_LSRR:
17734 			off = opt[IPOPT_OFFSET];
17735 			off--;
17736 			if (optlen < IP_ADDR_LEN ||
17737 			    off > optlen - IP_ADDR_LEN) {
17738 				/* End of source route */
17739 				ip1dbg(("ip_rput_local_options: end of SR\n"));
17740 				break;
17741 			}
17742 			/*
17743 			 * This will only happen if two consecutive entries
17744 			 * in the source route contains our address or if
17745 			 * it is a packet with a loose source route which
17746 			 * reaches us before consuming the whole source route
17747 			 */
17748 			ip1dbg(("ip_rput_local_options: not end of SR\n"));
17749 			if (optval == IPOPT_SSRR) {
17750 				goto bad_src_route;
17751 			}
17752 			/*
17753 			 * Hack: instead of dropping the packet truncate the
17754 			 * source route to what has been used by filling the
17755 			 * rest with IPOPT_NOP.
17756 			 */
17757 			opt[IPOPT_OLEN] = (uint8_t)off;
17758 			while (off < optlen) {
17759 				opt[off++] = IPOPT_NOP;
17760 			}
17761 			break;
17762 		case IPOPT_RR:
17763 			off = opt[IPOPT_OFFSET];
17764 			off--;
17765 			if (optlen < IP_ADDR_LEN ||
17766 			    off > optlen - IP_ADDR_LEN) {
17767 				/* No more room - ignore */
17768 				ip1dbg((
17769 				    "ip_rput_local_options: end of RR\n"));
17770 				break;
17771 			}
17772 			bcopy(&ire->ire_src_addr, (char *)opt + off,
17773 			    IP_ADDR_LEN);
17774 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
17775 			break;
17776 		case IPOPT_TS:
17777 			/* Insert timestamp if there is romm */
17778 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
17779 			case IPOPT_TS_TSONLY:
17780 				off = IPOPT_TS_TIMELEN;
17781 				break;
17782 			case IPOPT_TS_PRESPEC:
17783 			case IPOPT_TS_PRESPEC_RFC791:
17784 				/* Verify that the address matched */
17785 				off = opt[IPOPT_OFFSET] - 1;
17786 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
17787 				dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
17788 				    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE,
17789 				    ipst);
17790 				if (dst_ire == NULL) {
17791 					/* Not for us */
17792 					break;
17793 				}
17794 				ire_refrele(dst_ire);
17795 				/* FALLTHRU */
17796 			case IPOPT_TS_TSANDADDR:
17797 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
17798 				break;
17799 			default:
17800 				/*
17801 				 * ip_*put_options should have already
17802 				 * dropped this packet.
17803 				 */
17804 				cmn_err(CE_PANIC, "ip_rput_local_options: "
17805 				    "unknown IT - bug in ip_rput_options?\n");
17806 				return (B_TRUE);	/* Keep "lint" happy */
17807 			}
17808 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
17809 				/* Increase overflow counter */
17810 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
17811 				opt[IPOPT_POS_OV_FLG] =
17812 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
17813 				    (off << 4));
17814 				break;
17815 			}
17816 			off = opt[IPOPT_OFFSET] - 1;
17817 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
17818 			case IPOPT_TS_PRESPEC:
17819 			case IPOPT_TS_PRESPEC_RFC791:
17820 			case IPOPT_TS_TSANDADDR:
17821 				bcopy(&ire->ire_src_addr, (char *)opt + off,
17822 				    IP_ADDR_LEN);
17823 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
17824 				/* FALLTHRU */
17825 			case IPOPT_TS_TSONLY:
17826 				off = opt[IPOPT_OFFSET] - 1;
17827 				/* Compute # of milliseconds since midnight */
17828 				gethrestime(&now);
17829 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
17830 				    now.tv_nsec / (NANOSEC / MILLISEC);
17831 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
17832 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
17833 				break;
17834 			}
17835 			break;
17836 		}
17837 	}
17838 	return (B_TRUE);
17839 
17840 bad_src_route:
17841 	q = WR(q);
17842 	if (q->q_next != NULL)
17843 		ill = q->q_ptr;
17844 	else
17845 		ill = NULL;
17846 
17847 	/* make sure we clear any indication of a hardware checksum */
17848 	DB_CKSUMFLAGS(mp) = 0;
17849 	zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst);
17850 	if (zoneid == ALL_ZONES)
17851 		freemsg(mp);
17852 	else
17853 		icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst);
17854 	return (B_FALSE);
17855 
17856 }
17857 
17858 /*
17859  * Process IP options in an inbound packet.  If an option affects the
17860  * effective destination address, return the next hop address via dstp.
17861  * Returns -1 if something fails in which case an ICMP error has been sent
17862  * and mp freed.
17863  */
17864 static int
17865 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp,
17866     ip_stack_t *ipst)
17867 {
17868 	ipoptp_t	opts;
17869 	uchar_t		*opt;
17870 	uint8_t		optval;
17871 	uint8_t		optlen;
17872 	ipaddr_t	dst;
17873 	intptr_t	code = 0;
17874 	ire_t		*ire = NULL;
17875 	zoneid_t	zoneid;
17876 	ill_t		*ill;
17877 
17878 	ip2dbg(("ip_rput_options\n"));
17879 	dst = ipha->ipha_dst;
17880 	for (optval = ipoptp_first(&opts, ipha);
17881 	    optval != IPOPT_EOL;
17882 	    optval = ipoptp_next(&opts)) {
17883 		opt = opts.ipoptp_cur;
17884 		optlen = opts.ipoptp_len;
17885 		ip2dbg(("ip_rput_options: opt %d, len %d\n",
17886 		    optval, optlen));
17887 		/*
17888 		 * Note: we need to verify the checksum before we
17889 		 * modify anything thus this routine only extracts the next
17890 		 * hop dst from any source route.
17891 		 */
17892 		switch (optval) {
17893 			uint32_t off;
17894 		case IPOPT_SSRR:
17895 		case IPOPT_LSRR:
17896 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
17897 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
17898 			if (ire == NULL) {
17899 				if (optval == IPOPT_SSRR) {
17900 					ip1dbg(("ip_rput_options: not next"
17901 					    " strict source route 0x%x\n",
17902 					    ntohl(dst)));
17903 					code = (char *)&ipha->ipha_dst -
17904 					    (char *)ipha;
17905 					goto param_prob; /* RouterReq's */
17906 				}
17907 				ip2dbg(("ip_rput_options: "
17908 				    "not next source route 0x%x\n",
17909 				    ntohl(dst)));
17910 				break;
17911 			}
17912 			ire_refrele(ire);
17913 
17914 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
17915 				ip1dbg((
17916 				    "ip_rput_options: bad option offset\n"));
17917 				code = (char *)&opt[IPOPT_OLEN] -
17918 				    (char *)ipha;
17919 				goto param_prob;
17920 			}
17921 			off = opt[IPOPT_OFFSET];
17922 			off--;
17923 		redo_srr:
17924 			if (optlen < IP_ADDR_LEN ||
17925 			    off > optlen - IP_ADDR_LEN) {
17926 				/* End of source route */
17927 				ip1dbg(("ip_rput_options: end of SR\n"));
17928 				break;
17929 			}
17930 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
17931 			ip1dbg(("ip_rput_options: next hop 0x%x\n",
17932 			    ntohl(dst)));
17933 
17934 			/*
17935 			 * Check if our address is present more than
17936 			 * once as consecutive hops in source route.
17937 			 * XXX verify per-interface ip_forwarding
17938 			 * for source route?
17939 			 */
17940 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
17941 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
17942 
17943 			if (ire != NULL) {
17944 				ire_refrele(ire);
17945 				off += IP_ADDR_LEN;
17946 				goto redo_srr;
17947 			}
17948 
17949 			if (dst == htonl(INADDR_LOOPBACK)) {
17950 				ip1dbg(("ip_rput_options: loopback addr in "
17951 				    "source route!\n"));
17952 				goto bad_src_route;
17953 			}
17954 			/*
17955 			 * For strict: verify that dst is directly
17956 			 * reachable.
17957 			 */
17958 			if (optval == IPOPT_SSRR) {
17959 				ire = ire_ftable_lookup(dst, 0, 0,
17960 				    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
17961 				    MBLK_GETLABEL(mp),
17962 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
17963 				if (ire == NULL) {
17964 					ip1dbg(("ip_rput_options: SSRR not "
17965 					    "directly reachable: 0x%x\n",
17966 					    ntohl(dst)));
17967 					goto bad_src_route;
17968 				}
17969 				ire_refrele(ire);
17970 			}
17971 			/*
17972 			 * Defer update of the offset and the record route
17973 			 * until the packet is forwarded.
17974 			 */
17975 			break;
17976 		case IPOPT_RR:
17977 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
17978 				ip1dbg((
17979 				    "ip_rput_options: bad option offset\n"));
17980 				code = (char *)&opt[IPOPT_OLEN] -
17981 				    (char *)ipha;
17982 				goto param_prob;
17983 			}
17984 			break;
17985 		case IPOPT_TS:
17986 			/*
17987 			 * Verify that length >= 5 and that there is either
17988 			 * room for another timestamp or that the overflow
17989 			 * counter is not maxed out.
17990 			 */
17991 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
17992 			if (optlen < IPOPT_MINLEN_IT) {
17993 				goto param_prob;
17994 			}
17995 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
17996 				ip1dbg((
17997 				    "ip_rput_options: bad option offset\n"));
17998 				code = (char *)&opt[IPOPT_OFFSET] -
17999 				    (char *)ipha;
18000 				goto param_prob;
18001 			}
18002 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
18003 			case IPOPT_TS_TSONLY:
18004 				off = IPOPT_TS_TIMELEN;
18005 				break;
18006 			case IPOPT_TS_TSANDADDR:
18007 			case IPOPT_TS_PRESPEC:
18008 			case IPOPT_TS_PRESPEC_RFC791:
18009 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
18010 				break;
18011 			default:
18012 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
18013 				    (char *)ipha;
18014 				goto param_prob;
18015 			}
18016 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
18017 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
18018 				/*
18019 				 * No room and the overflow counter is 15
18020 				 * already.
18021 				 */
18022 				goto param_prob;
18023 			}
18024 			break;
18025 		}
18026 	}
18027 
18028 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
18029 		*dstp = dst;
18030 		return (0);
18031 	}
18032 
18033 	ip1dbg(("ip_rput_options: error processing IP options."));
18034 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
18035 
18036 param_prob:
18037 	q = WR(q);
18038 	if (q->q_next != NULL)
18039 		ill = q->q_ptr;
18040 	else
18041 		ill = NULL;
18042 
18043 	/* make sure we clear any indication of a hardware checksum */
18044 	DB_CKSUMFLAGS(mp) = 0;
18045 	/* Don't know whether this is for non-global or global/forwarding */
18046 	zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
18047 	if (zoneid == ALL_ZONES)
18048 		freemsg(mp);
18049 	else
18050 		icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst);
18051 	return (-1);
18052 
18053 bad_src_route:
18054 	q = WR(q);
18055 	if (q->q_next != NULL)
18056 		ill = q->q_ptr;
18057 	else
18058 		ill = NULL;
18059 
18060 	/* make sure we clear any indication of a hardware checksum */
18061 	DB_CKSUMFLAGS(mp) = 0;
18062 	zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
18063 	if (zoneid == ALL_ZONES)
18064 		freemsg(mp);
18065 	else
18066 		icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst);
18067 	return (-1);
18068 }
18069 
18070 /*
18071  * IP & ICMP info in >=14 msg's ...
18072  *  - ip fixed part (mib2_ip_t)
18073  *  - icmp fixed part (mib2_icmp_t)
18074  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
18075  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
18076  *  - ipNetToMediaEntryTable (ip 22)	[filled in by the arp module]
18077  *  - ipRouteAttributeTable (ip 102)	labeled routes
18078  *  - ip multicast membership (ip_member_t)
18079  *  - ip multicast source filtering (ip_grpsrc_t)
18080  *  - igmp fixed part (struct igmpstat)
18081  *  - multicast routing stats (struct mrtstat)
18082  *  - multicast routing vifs (array of struct vifctl)
18083  *  - multicast routing routes (array of struct mfcctl)
18084  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
18085  *					One per ill plus one generic
18086  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
18087  *					One per ill plus one generic
18088  *  - ipv6RouteEntry			all IPv6 IREs
18089  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
18090  *  - ipv6NetToMediaEntry		all Neighbor Cache entries
18091  *  - ipv6AddrEntry			all IPv6 ipifs
18092  *  - ipv6 multicast membership (ipv6_member_t)
18093  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
18094  *
18095  * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries.
18096  *
18097  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
18098  * already filled in by the caller.
18099  * Return value of 0 indicates that no messages were sent and caller
18100  * should free mpctl.
18101  */
18102 int
18103 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level)
18104 {
18105 	ip_stack_t *ipst;
18106 	sctp_stack_t *sctps;
18107 
18108 	if (q->q_next != NULL) {
18109 		ipst = ILLQ_TO_IPST(q);
18110 	} else {
18111 		ipst = CONNQ_TO_IPST(q);
18112 	}
18113 	ASSERT(ipst != NULL);
18114 	sctps = ipst->ips_netstack->netstack_sctp;
18115 
18116 	if (mpctl == NULL || mpctl->b_cont == NULL) {
18117 		return (0);
18118 	}
18119 
18120 	/*
18121 	 * For the purposes of the (broken) packet shell use
18122 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
18123 	 * to make TCP and UDP appear first in the list of mib items.
18124 	 * TBD: We could expand this and use it in netstat so that
18125 	 * the kernel doesn't have to produce large tables (connections,
18126 	 * routes, etc) when netstat only wants the statistics or a particular
18127 	 * table.
18128 	 */
18129 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
18130 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
18131 			return (1);
18132 		}
18133 	}
18134 
18135 	if (level != MIB2_TCP) {
18136 		if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) {
18137 			return (1);
18138 		}
18139 	}
18140 
18141 	if (level != MIB2_UDP) {
18142 		if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) {
18143 			return (1);
18144 		}
18145 	}
18146 
18147 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
18148 	    ipst)) == NULL) {
18149 		return (1);
18150 	}
18151 
18152 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) {
18153 		return (1);
18154 	}
18155 
18156 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
18157 		return (1);
18158 	}
18159 
18160 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
18161 		return (1);
18162 	}
18163 
18164 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
18165 		return (1);
18166 	}
18167 
18168 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
18169 		return (1);
18170 	}
18171 
18172 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) {
18173 		return (1);
18174 	}
18175 
18176 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) {
18177 		return (1);
18178 	}
18179 
18180 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
18181 		return (1);
18182 	}
18183 
18184 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
18185 		return (1);
18186 	}
18187 
18188 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
18189 		return (1);
18190 	}
18191 
18192 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
18193 		return (1);
18194 	}
18195 
18196 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
18197 		return (1);
18198 	}
18199 
18200 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
18201 		return (1);
18202 	}
18203 
18204 	if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) {
18205 		return (1);
18206 	}
18207 
18208 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst);
18209 	if (mpctl == NULL) {
18210 		return (1);
18211 	}
18212 
18213 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
18214 		return (1);
18215 	}
18216 	freemsg(mpctl);
18217 	return (1);
18218 }
18219 
18220 
18221 /* Get global (legacy) IPv4 statistics */
18222 static mblk_t *
18223 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
18224     ip_stack_t *ipst)
18225 {
18226 	mib2_ip_t		old_ip_mib;
18227 	struct opthdr		*optp;
18228 	mblk_t			*mp2ctl;
18229 
18230 	/*
18231 	 * make a copy of the original message
18232 	 */
18233 	mp2ctl = copymsg(mpctl);
18234 
18235 	/* fixed length IP structure... */
18236 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18237 	optp->level = MIB2_IP;
18238 	optp->name = 0;
18239 	SET_MIB(old_ip_mib.ipForwarding,
18240 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
18241 	SET_MIB(old_ip_mib.ipDefaultTTL,
18242 	    (uint32_t)ipst->ips_ip_def_ttl);
18243 	SET_MIB(old_ip_mib.ipReasmTimeout,
18244 	    ipst->ips_ip_g_frag_timeout);
18245 	SET_MIB(old_ip_mib.ipAddrEntrySize,
18246 	    sizeof (mib2_ipAddrEntry_t));
18247 	SET_MIB(old_ip_mib.ipRouteEntrySize,
18248 	    sizeof (mib2_ipRouteEntry_t));
18249 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
18250 	    sizeof (mib2_ipNetToMediaEntry_t));
18251 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
18252 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
18253 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
18254 	    sizeof (mib2_ipAttributeEntry_t));
18255 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
18256 
18257 	/*
18258 	 * Grab the statistics from the new IP MIB
18259 	 */
18260 	SET_MIB(old_ip_mib.ipInReceives,
18261 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
18262 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
18263 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
18264 	SET_MIB(old_ip_mib.ipForwDatagrams,
18265 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
18266 	SET_MIB(old_ip_mib.ipInUnknownProtos,
18267 	    ipmib->ipIfStatsInUnknownProtos);
18268 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
18269 	SET_MIB(old_ip_mib.ipInDelivers,
18270 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
18271 	SET_MIB(old_ip_mib.ipOutRequests,
18272 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
18273 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
18274 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
18275 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
18276 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
18277 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
18278 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
18279 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
18280 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
18281 
18282 	/* ipRoutingDiscards is not being used */
18283 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
18284 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
18285 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
18286 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
18287 	SET_MIB(old_ip_mib.ipReasmDuplicates,
18288 	    ipmib->ipIfStatsReasmDuplicates);
18289 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
18290 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
18291 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
18292 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
18293 	SET_MIB(old_ip_mib.rawipInOverflows,
18294 	    ipmib->rawipIfStatsInOverflows);
18295 
18296 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
18297 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
18298 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
18299 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
18300 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
18301 	    ipmib->ipIfStatsOutSwitchIPVersion);
18302 
18303 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
18304 	    (int)sizeof (old_ip_mib))) {
18305 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
18306 		    (uint_t)sizeof (old_ip_mib)));
18307 	}
18308 
18309 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18310 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
18311 	    (int)optp->level, (int)optp->name, (int)optp->len));
18312 	qreply(q, mpctl);
18313 	return (mp2ctl);
18314 }
18315 
18316 /* Per interface IPv4 statistics */
18317 static mblk_t *
18318 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18319 {
18320 	struct opthdr		*optp;
18321 	mblk_t			*mp2ctl;
18322 	ill_t			*ill;
18323 	ill_walk_context_t	ctx;
18324 	mblk_t			*mp_tail = NULL;
18325 	mib2_ipIfStatsEntry_t	global_ip_mib;
18326 
18327 	/*
18328 	 * Make a copy of the original message
18329 	 */
18330 	mp2ctl = copymsg(mpctl);
18331 
18332 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18333 	optp->level = MIB2_IP;
18334 	optp->name = MIB2_IP_TRAFFIC_STATS;
18335 	/* Include "unknown interface" ip_mib */
18336 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
18337 	ipst->ips_ip_mib.ipIfStatsIfIndex =
18338 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
18339 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
18340 	    (ipst->ips_ip_g_forward ? 1 : 2));
18341 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
18342 	    (uint32_t)ipst->ips_ip_def_ttl);
18343 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
18344 	    sizeof (mib2_ipIfStatsEntry_t));
18345 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
18346 	    sizeof (mib2_ipAddrEntry_t));
18347 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
18348 	    sizeof (mib2_ipRouteEntry_t));
18349 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
18350 	    sizeof (mib2_ipNetToMediaEntry_t));
18351 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
18352 	    sizeof (ip_member_t));
18353 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
18354 	    sizeof (ip_grpsrc_t));
18355 
18356 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18357 	    (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) {
18358 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
18359 		    "failed to allocate %u bytes\n",
18360 		    (uint_t)sizeof (ipst->ips_ip_mib)));
18361 	}
18362 
18363 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
18364 
18365 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18366 	ill = ILL_START_WALK_V4(&ctx, ipst);
18367 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18368 		ill->ill_ip_mib->ipIfStatsIfIndex =
18369 		    ill->ill_phyint->phyint_ifindex;
18370 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
18371 		    (ipst->ips_ip_g_forward ? 1 : 2));
18372 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
18373 		    (uint32_t)ipst->ips_ip_def_ttl);
18374 
18375 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
18376 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18377 		    (char *)ill->ill_ip_mib,
18378 		    (int)sizeof (*ill->ill_ip_mib))) {
18379 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
18380 			    "failed to allocate %u bytes\n",
18381 			    (uint_t)sizeof (*ill->ill_ip_mib)));
18382 		}
18383 	}
18384 	rw_exit(&ipst->ips_ill_g_lock);
18385 
18386 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18387 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
18388 	    "level %d, name %d, len %d\n",
18389 	    (int)optp->level, (int)optp->name, (int)optp->len));
18390 	qreply(q, mpctl);
18391 
18392 	if (mp2ctl == NULL)
18393 		return (NULL);
18394 
18395 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst));
18396 }
18397 
18398 /* Global IPv4 ICMP statistics */
18399 static mblk_t *
18400 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18401 {
18402 	struct opthdr		*optp;
18403 	mblk_t			*mp2ctl;
18404 
18405 	/*
18406 	 * Make a copy of the original message
18407 	 */
18408 	mp2ctl = copymsg(mpctl);
18409 
18410 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18411 	optp->level = MIB2_ICMP;
18412 	optp->name = 0;
18413 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
18414 	    (int)sizeof (ipst->ips_icmp_mib))) {
18415 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
18416 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
18417 	}
18418 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18419 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
18420 	    (int)optp->level, (int)optp->name, (int)optp->len));
18421 	qreply(q, mpctl);
18422 	return (mp2ctl);
18423 }
18424 
18425 /* Global IPv4 IGMP statistics */
18426 static mblk_t *
18427 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18428 {
18429 	struct opthdr		*optp;
18430 	mblk_t			*mp2ctl;
18431 
18432 	/*
18433 	 * make a copy of the original message
18434 	 */
18435 	mp2ctl = copymsg(mpctl);
18436 
18437 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18438 	optp->level = EXPER_IGMP;
18439 	optp->name = 0;
18440 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
18441 	    (int)sizeof (ipst->ips_igmpstat))) {
18442 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
18443 		    (uint_t)sizeof (ipst->ips_igmpstat)));
18444 	}
18445 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18446 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
18447 	    (int)optp->level, (int)optp->name, (int)optp->len));
18448 	qreply(q, mpctl);
18449 	return (mp2ctl);
18450 }
18451 
18452 /* Global IPv4 Multicast Routing statistics */
18453 static mblk_t *
18454 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18455 {
18456 	struct opthdr		*optp;
18457 	mblk_t			*mp2ctl;
18458 
18459 	/*
18460 	 * make a copy of the original message
18461 	 */
18462 	mp2ctl = copymsg(mpctl);
18463 
18464 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18465 	optp->level = EXPER_DVMRP;
18466 	optp->name = 0;
18467 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
18468 		ip0dbg(("ip_mroute_stats: failed\n"));
18469 	}
18470 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18471 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
18472 	    (int)optp->level, (int)optp->name, (int)optp->len));
18473 	qreply(q, mpctl);
18474 	return (mp2ctl);
18475 }
18476 
18477 /* IPv4 address information */
18478 static mblk_t *
18479 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18480 {
18481 	struct opthdr		*optp;
18482 	mblk_t			*mp2ctl;
18483 	mblk_t			*mp_tail = NULL;
18484 	ill_t			*ill;
18485 	ipif_t			*ipif;
18486 	uint_t			bitval;
18487 	mib2_ipAddrEntry_t	mae;
18488 	zoneid_t		zoneid;
18489 	ill_walk_context_t ctx;
18490 
18491 	/*
18492 	 * make a copy of the original message
18493 	 */
18494 	mp2ctl = copymsg(mpctl);
18495 
18496 	/* ipAddrEntryTable */
18497 
18498 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18499 	optp->level = MIB2_IP;
18500 	optp->name = MIB2_IP_ADDR;
18501 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18502 
18503 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18504 	ill = ILL_START_WALK_V4(&ctx, ipst);
18505 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18506 		for (ipif = ill->ill_ipif; ipif != NULL;
18507 		    ipif = ipif->ipif_next) {
18508 			if (ipif->ipif_zoneid != zoneid &&
18509 			    ipif->ipif_zoneid != ALL_ZONES)
18510 				continue;
18511 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
18512 			mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
18513 			mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count;
18514 
18515 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
18516 			    OCTET_LENGTH);
18517 			mae.ipAdEntIfIndex.o_length =
18518 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
18519 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
18520 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
18521 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
18522 			mae.ipAdEntInfo.ae_subnet_len =
18523 			    ip_mask_to_plen(ipif->ipif_net_mask);
18524 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr;
18525 			for (bitval = 1;
18526 			    bitval &&
18527 			    !(bitval & ipif->ipif_brd_addr);
18528 			    bitval <<= 1)
18529 				noop;
18530 			mae.ipAdEntBcastAddr = bitval;
18531 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
18532 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu;
18533 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_metric;
18534 			mae.ipAdEntInfo.ae_broadcast_addr =
18535 			    ipif->ipif_brd_addr;
18536 			mae.ipAdEntInfo.ae_pp_dst_addr =
18537 			    ipif->ipif_pp_dst_addr;
18538 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
18539 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
18540 			mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL;
18541 
18542 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18543 			    (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) {
18544 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
18545 				    "allocate %u bytes\n",
18546 				    (uint_t)sizeof (mib2_ipAddrEntry_t)));
18547 			}
18548 		}
18549 	}
18550 	rw_exit(&ipst->ips_ill_g_lock);
18551 
18552 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18553 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
18554 	    (int)optp->level, (int)optp->name, (int)optp->len));
18555 	qreply(q, mpctl);
18556 	return (mp2ctl);
18557 }
18558 
18559 /* IPv6 address information */
18560 static mblk_t *
18561 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18562 {
18563 	struct opthdr		*optp;
18564 	mblk_t			*mp2ctl;
18565 	mblk_t			*mp_tail = NULL;
18566 	ill_t			*ill;
18567 	ipif_t			*ipif;
18568 	mib2_ipv6AddrEntry_t	mae6;
18569 	zoneid_t		zoneid;
18570 	ill_walk_context_t	ctx;
18571 
18572 	/*
18573 	 * make a copy of the original message
18574 	 */
18575 	mp2ctl = copymsg(mpctl);
18576 
18577 	/* ipv6AddrEntryTable */
18578 
18579 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18580 	optp->level = MIB2_IP6;
18581 	optp->name = MIB2_IP6_ADDR;
18582 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18583 
18584 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18585 	ill = ILL_START_WALK_V6(&ctx, ipst);
18586 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18587 		for (ipif = ill->ill_ipif; ipif != NULL;
18588 		    ipif = ipif->ipif_next) {
18589 			if (ipif->ipif_zoneid != zoneid &&
18590 			    ipif->ipif_zoneid != ALL_ZONES)
18591 				continue;
18592 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
18593 			mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
18594 			mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count;
18595 
18596 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
18597 			    OCTET_LENGTH);
18598 			mae6.ipv6AddrIfIndex.o_length =
18599 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
18600 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
18601 			mae6.ipv6AddrPfxLength =
18602 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
18603 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
18604 			mae6.ipv6AddrInfo.ae_subnet_len =
18605 			    mae6.ipv6AddrPfxLength;
18606 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr;
18607 
18608 			/* Type: stateless(1), stateful(2), unknown(3) */
18609 			if (ipif->ipif_flags & IPIF_ADDRCONF)
18610 				mae6.ipv6AddrType = 1;
18611 			else
18612 				mae6.ipv6AddrType = 2;
18613 			/* Anycast: true(1), false(2) */
18614 			if (ipif->ipif_flags & IPIF_ANYCAST)
18615 				mae6.ipv6AddrAnycastFlag = 1;
18616 			else
18617 				mae6.ipv6AddrAnycastFlag = 2;
18618 
18619 			/*
18620 			 * Address status: preferred(1), deprecated(2),
18621 			 * invalid(3), inaccessible(4), unknown(5)
18622 			 */
18623 			if (ipif->ipif_flags & IPIF_NOLOCAL)
18624 				mae6.ipv6AddrStatus = 3;
18625 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
18626 				mae6.ipv6AddrStatus = 2;
18627 			else
18628 				mae6.ipv6AddrStatus = 1;
18629 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu;
18630 			mae6.ipv6AddrInfo.ae_metric  = ipif->ipif_metric;
18631 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
18632 			    ipif->ipif_v6pp_dst_addr;
18633 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
18634 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
18635 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
18636 			mae6.ipv6AddrIdentifier = ill->ill_token;
18637 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
18638 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
18639 			mae6.ipv6AddrRetransmitTime =
18640 			    ill->ill_reachable_retrans_time;
18641 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18642 			    (char *)&mae6,
18643 			    (int)sizeof (mib2_ipv6AddrEntry_t))) {
18644 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
18645 				    "allocate %u bytes\n",
18646 				    (uint_t)sizeof (mib2_ipv6AddrEntry_t)));
18647 			}
18648 		}
18649 	}
18650 	rw_exit(&ipst->ips_ill_g_lock);
18651 
18652 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18653 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
18654 	    (int)optp->level, (int)optp->name, (int)optp->len));
18655 	qreply(q, mpctl);
18656 	return (mp2ctl);
18657 }
18658 
18659 /* IPv4 multicast group membership. */
18660 static mblk_t *
18661 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18662 {
18663 	struct opthdr		*optp;
18664 	mblk_t			*mp2ctl;
18665 	ill_t			*ill;
18666 	ipif_t			*ipif;
18667 	ilm_t			*ilm;
18668 	ip_member_t		ipm;
18669 	mblk_t			*mp_tail = NULL;
18670 	ill_walk_context_t	ctx;
18671 	zoneid_t		zoneid;
18672 
18673 	/*
18674 	 * make a copy of the original message
18675 	 */
18676 	mp2ctl = copymsg(mpctl);
18677 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18678 
18679 	/* ipGroupMember table */
18680 	optp = (struct opthdr *)&mpctl->b_rptr[
18681 	    sizeof (struct T_optmgmt_ack)];
18682 	optp->level = MIB2_IP;
18683 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
18684 
18685 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18686 	ill = ILL_START_WALK_V4(&ctx, ipst);
18687 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18688 		ILM_WALKER_HOLD(ill);
18689 		for (ipif = ill->ill_ipif; ipif != NULL;
18690 		    ipif = ipif->ipif_next) {
18691 			if (ipif->ipif_zoneid != zoneid &&
18692 			    ipif->ipif_zoneid != ALL_ZONES)
18693 				continue;	/* not this zone */
18694 			ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes,
18695 			    OCTET_LENGTH);
18696 			ipm.ipGroupMemberIfIndex.o_length =
18697 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
18698 			for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18699 				ASSERT(ilm->ilm_ipif != NULL);
18700 				ASSERT(ilm->ilm_ill == NULL);
18701 				if (ilm->ilm_ipif != ipif)
18702 					continue;
18703 				ipm.ipGroupMemberAddress = ilm->ilm_addr;
18704 				ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
18705 				ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
18706 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18707 				    (char *)&ipm, (int)sizeof (ipm))) {
18708 					ip1dbg(("ip_snmp_get_mib2_ip_group: "
18709 					    "failed to allocate %u bytes\n",
18710 					    (uint_t)sizeof (ipm)));
18711 				}
18712 			}
18713 		}
18714 		ILM_WALKER_RELE(ill);
18715 	}
18716 	rw_exit(&ipst->ips_ill_g_lock);
18717 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18718 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18719 	    (int)optp->level, (int)optp->name, (int)optp->len));
18720 	qreply(q, mpctl);
18721 	return (mp2ctl);
18722 }
18723 
18724 /* IPv6 multicast group membership. */
18725 static mblk_t *
18726 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18727 {
18728 	struct opthdr		*optp;
18729 	mblk_t			*mp2ctl;
18730 	ill_t			*ill;
18731 	ilm_t			*ilm;
18732 	ipv6_member_t		ipm6;
18733 	mblk_t			*mp_tail = NULL;
18734 	ill_walk_context_t	ctx;
18735 	zoneid_t		zoneid;
18736 
18737 	/*
18738 	 * make a copy of the original message
18739 	 */
18740 	mp2ctl = copymsg(mpctl);
18741 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18742 
18743 	/* ip6GroupMember table */
18744 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18745 	optp->level = MIB2_IP6;
18746 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
18747 
18748 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18749 	ill = ILL_START_WALK_V6(&ctx, ipst);
18750 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18751 		ILM_WALKER_HOLD(ill);
18752 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
18753 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18754 			ASSERT(ilm->ilm_ipif == NULL);
18755 			ASSERT(ilm->ilm_ill != NULL);
18756 			if (ilm->ilm_zoneid != zoneid)
18757 				continue;	/* not this zone */
18758 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
18759 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
18760 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
18761 			if (!snmp_append_data2(mpctl->b_cont,
18762 			    &mp_tail,
18763 			    (char *)&ipm6, (int)sizeof (ipm6))) {
18764 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
18765 				    "failed to allocate %u bytes\n",
18766 				    (uint_t)sizeof (ipm6)));
18767 			}
18768 		}
18769 		ILM_WALKER_RELE(ill);
18770 	}
18771 	rw_exit(&ipst->ips_ill_g_lock);
18772 
18773 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18774 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18775 	    (int)optp->level, (int)optp->name, (int)optp->len));
18776 	qreply(q, mpctl);
18777 	return (mp2ctl);
18778 }
18779 
18780 /* IP multicast filtered sources */
18781 static mblk_t *
18782 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18783 {
18784 	struct opthdr		*optp;
18785 	mblk_t			*mp2ctl;
18786 	ill_t			*ill;
18787 	ipif_t			*ipif;
18788 	ilm_t			*ilm;
18789 	ip_grpsrc_t		ips;
18790 	mblk_t			*mp_tail = NULL;
18791 	ill_walk_context_t	ctx;
18792 	zoneid_t		zoneid;
18793 	int			i;
18794 	slist_t			*sl;
18795 
18796 	/*
18797 	 * make a copy of the original message
18798 	 */
18799 	mp2ctl = copymsg(mpctl);
18800 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18801 
18802 	/* ipGroupSource table */
18803 	optp = (struct opthdr *)&mpctl->b_rptr[
18804 	    sizeof (struct T_optmgmt_ack)];
18805 	optp->level = MIB2_IP;
18806 	optp->name = EXPER_IP_GROUP_SOURCES;
18807 
18808 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18809 	ill = ILL_START_WALK_V4(&ctx, ipst);
18810 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18811 		ILM_WALKER_HOLD(ill);
18812 		for (ipif = ill->ill_ipif; ipif != NULL;
18813 		    ipif = ipif->ipif_next) {
18814 			if (ipif->ipif_zoneid != zoneid)
18815 				continue;	/* not this zone */
18816 			ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes,
18817 			    OCTET_LENGTH);
18818 			ips.ipGroupSourceIfIndex.o_length =
18819 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
18820 			for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18821 				ASSERT(ilm->ilm_ipif != NULL);
18822 				ASSERT(ilm->ilm_ill == NULL);
18823 				sl = ilm->ilm_filter;
18824 				if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl))
18825 					continue;
18826 				ips.ipGroupSourceGroup = ilm->ilm_addr;
18827 				for (i = 0; i < sl->sl_numsrc; i++) {
18828 					if (!IN6_IS_ADDR_V4MAPPED(
18829 					    &sl->sl_addr[i]))
18830 						continue;
18831 					IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
18832 					    ips.ipGroupSourceAddress);
18833 					if (snmp_append_data2(mpctl->b_cont,
18834 					    &mp_tail, (char *)&ips,
18835 					    (int)sizeof (ips)) == 0) {
18836 						ip1dbg(("ip_snmp_get_mib2_"
18837 						    "ip_group_src: failed to "
18838 						    "allocate %u bytes\n",
18839 						    (uint_t)sizeof (ips)));
18840 					}
18841 				}
18842 			}
18843 		}
18844 		ILM_WALKER_RELE(ill);
18845 	}
18846 	rw_exit(&ipst->ips_ill_g_lock);
18847 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18848 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18849 	    (int)optp->level, (int)optp->name, (int)optp->len));
18850 	qreply(q, mpctl);
18851 	return (mp2ctl);
18852 }
18853 
18854 /* IPv6 multicast filtered sources. */
18855 static mblk_t *
18856 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18857 {
18858 	struct opthdr		*optp;
18859 	mblk_t			*mp2ctl;
18860 	ill_t			*ill;
18861 	ilm_t			*ilm;
18862 	ipv6_grpsrc_t		ips6;
18863 	mblk_t			*mp_tail = NULL;
18864 	ill_walk_context_t	ctx;
18865 	zoneid_t		zoneid;
18866 	int			i;
18867 	slist_t			*sl;
18868 
18869 	/*
18870 	 * make a copy of the original message
18871 	 */
18872 	mp2ctl = copymsg(mpctl);
18873 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18874 
18875 	/* ip6GroupMember table */
18876 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18877 	optp->level = MIB2_IP6;
18878 	optp->name = EXPER_IP6_GROUP_SOURCES;
18879 
18880 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18881 	ill = ILL_START_WALK_V6(&ctx, ipst);
18882 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18883 		ILM_WALKER_HOLD(ill);
18884 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
18885 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18886 			ASSERT(ilm->ilm_ipif == NULL);
18887 			ASSERT(ilm->ilm_ill != NULL);
18888 			sl = ilm->ilm_filter;
18889 			if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl))
18890 				continue;
18891 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
18892 			for (i = 0; i < sl->sl_numsrc; i++) {
18893 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
18894 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18895 				    (char *)&ips6, (int)sizeof (ips6))) {
18896 					ip1dbg(("ip_snmp_get_mib2_ip6_"
18897 					    "group_src: failed to allocate "
18898 					    "%u bytes\n",
18899 					    (uint_t)sizeof (ips6)));
18900 				}
18901 			}
18902 		}
18903 		ILM_WALKER_RELE(ill);
18904 	}
18905 	rw_exit(&ipst->ips_ill_g_lock);
18906 
18907 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18908 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18909 	    (int)optp->level, (int)optp->name, (int)optp->len));
18910 	qreply(q, mpctl);
18911 	return (mp2ctl);
18912 }
18913 
18914 /* Multicast routing virtual interface table. */
18915 static mblk_t *
18916 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18917 {
18918 	struct opthdr		*optp;
18919 	mblk_t			*mp2ctl;
18920 
18921 	/*
18922 	 * make a copy of the original message
18923 	 */
18924 	mp2ctl = copymsg(mpctl);
18925 
18926 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18927 	optp->level = EXPER_DVMRP;
18928 	optp->name = EXPER_DVMRP_VIF;
18929 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
18930 		ip0dbg(("ip_mroute_vif: failed\n"));
18931 	}
18932 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18933 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
18934 	    (int)optp->level, (int)optp->name, (int)optp->len));
18935 	qreply(q, mpctl);
18936 	return (mp2ctl);
18937 }
18938 
18939 /* Multicast routing table. */
18940 static mblk_t *
18941 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18942 {
18943 	struct opthdr		*optp;
18944 	mblk_t			*mp2ctl;
18945 
18946 	/*
18947 	 * make a copy of the original message
18948 	 */
18949 	mp2ctl = copymsg(mpctl);
18950 
18951 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18952 	optp->level = EXPER_DVMRP;
18953 	optp->name = EXPER_DVMRP_MRT;
18954 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
18955 		ip0dbg(("ip_mroute_mrt: failed\n"));
18956 	}
18957 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18958 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
18959 	    (int)optp->level, (int)optp->name, (int)optp->len));
18960 	qreply(q, mpctl);
18961 	return (mp2ctl);
18962 }
18963 
18964 /*
18965  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
18966  * in one IRE walk.
18967  */
18968 static mblk_t *
18969 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18970 {
18971 	struct opthdr	*optp;
18972 	mblk_t		*mp2ctl;	/* Returned */
18973 	mblk_t		*mp3ctl;	/* nettomedia */
18974 	mblk_t		*mp4ctl;	/* routeattrs */
18975 	iproutedata_t	ird;
18976 	zoneid_t	zoneid;
18977 
18978 	/*
18979 	 * make copies of the original message
18980 	 *	- mp2ctl is returned unchanged to the caller for his use
18981 	 *	- mpctl is sent upstream as ipRouteEntryTable
18982 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
18983 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
18984 	 */
18985 	mp2ctl = copymsg(mpctl);
18986 	mp3ctl = copymsg(mpctl);
18987 	mp4ctl = copymsg(mpctl);
18988 	if (mp3ctl == NULL || mp4ctl == NULL) {
18989 		freemsg(mp4ctl);
18990 		freemsg(mp3ctl);
18991 		freemsg(mp2ctl);
18992 		freemsg(mpctl);
18993 		return (NULL);
18994 	}
18995 
18996 	bzero(&ird, sizeof (ird));
18997 
18998 	ird.ird_route.lp_head = mpctl->b_cont;
18999 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
19000 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
19001 
19002 	zoneid = Q_TO_CONN(q)->conn_zoneid;
19003 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
19004 
19005 	/* ipRouteEntryTable in mpctl */
19006 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19007 	optp->level = MIB2_IP;
19008 	optp->name = MIB2_IP_ROUTE;
19009 	optp->len = msgdsize(ird.ird_route.lp_head);
19010 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
19011 	    (int)optp->level, (int)optp->name, (int)optp->len));
19012 	qreply(q, mpctl);
19013 
19014 	/* ipNetToMediaEntryTable in mp3ctl */
19015 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19016 	optp->level = MIB2_IP;
19017 	optp->name = MIB2_IP_MEDIA;
19018 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
19019 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
19020 	    (int)optp->level, (int)optp->name, (int)optp->len));
19021 	qreply(q, mp3ctl);
19022 
19023 	/* ipRouteAttributeTable in mp4ctl */
19024 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19025 	optp->level = MIB2_IP;
19026 	optp->name = EXPER_IP_RTATTR;
19027 	optp->len = msgdsize(ird.ird_attrs.lp_head);
19028 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
19029 	    (int)optp->level, (int)optp->name, (int)optp->len));
19030 	if (optp->len == 0)
19031 		freemsg(mp4ctl);
19032 	else
19033 		qreply(q, mp4ctl);
19034 
19035 	return (mp2ctl);
19036 }
19037 
19038 /*
19039  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
19040  * ipv6NetToMediaEntryTable in an NDP walk.
19041  */
19042 static mblk_t *
19043 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
19044 {
19045 	struct opthdr	*optp;
19046 	mblk_t		*mp2ctl;	/* Returned */
19047 	mblk_t		*mp3ctl;	/* nettomedia */
19048 	mblk_t		*mp4ctl;	/* routeattrs */
19049 	iproutedata_t	ird;
19050 	zoneid_t	zoneid;
19051 
19052 	/*
19053 	 * make copies of the original message
19054 	 *	- mp2ctl is returned unchanged to the caller for his use
19055 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
19056 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
19057 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
19058 	 */
19059 	mp2ctl = copymsg(mpctl);
19060 	mp3ctl = copymsg(mpctl);
19061 	mp4ctl = copymsg(mpctl);
19062 	if (mp3ctl == NULL || mp4ctl == NULL) {
19063 		freemsg(mp4ctl);
19064 		freemsg(mp3ctl);
19065 		freemsg(mp2ctl);
19066 		freemsg(mpctl);
19067 		return (NULL);
19068 	}
19069 
19070 	bzero(&ird, sizeof (ird));
19071 
19072 	ird.ird_route.lp_head = mpctl->b_cont;
19073 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
19074 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
19075 
19076 	zoneid = Q_TO_CONN(q)->conn_zoneid;
19077 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
19078 
19079 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19080 	optp->level = MIB2_IP6;
19081 	optp->name = MIB2_IP6_ROUTE;
19082 	optp->len = msgdsize(ird.ird_route.lp_head);
19083 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
19084 	    (int)optp->level, (int)optp->name, (int)optp->len));
19085 	qreply(q, mpctl);
19086 
19087 	/* ipv6NetToMediaEntryTable in mp3ctl */
19088 	ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
19089 
19090 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19091 	optp->level = MIB2_IP6;
19092 	optp->name = MIB2_IP6_MEDIA;
19093 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
19094 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
19095 	    (int)optp->level, (int)optp->name, (int)optp->len));
19096 	qreply(q, mp3ctl);
19097 
19098 	/* ipv6RouteAttributeTable in mp4ctl */
19099 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19100 	optp->level = MIB2_IP6;
19101 	optp->name = EXPER_IP_RTATTR;
19102 	optp->len = msgdsize(ird.ird_attrs.lp_head);
19103 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
19104 	    (int)optp->level, (int)optp->name, (int)optp->len));
19105 	if (optp->len == 0)
19106 		freemsg(mp4ctl);
19107 	else
19108 		qreply(q, mp4ctl);
19109 
19110 	return (mp2ctl);
19111 }
19112 
19113 /*
19114  * IPv6 mib: One per ill
19115  */
19116 static mblk_t *
19117 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
19118 {
19119 	struct opthdr		*optp;
19120 	mblk_t			*mp2ctl;
19121 	ill_t			*ill;
19122 	ill_walk_context_t	ctx;
19123 	mblk_t			*mp_tail = NULL;
19124 
19125 	/*
19126 	 * Make a copy of the original message
19127 	 */
19128 	mp2ctl = copymsg(mpctl);
19129 
19130 	/* fixed length IPv6 structure ... */
19131 
19132 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19133 	optp->level = MIB2_IP6;
19134 	optp->name = 0;
19135 	/* Include "unknown interface" ip6_mib */
19136 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
19137 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
19138 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
19139 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
19140 	    ipst->ips_ipv6_forward ? 1 : 2);
19141 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
19142 	    ipst->ips_ipv6_def_hops);
19143 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
19144 	    sizeof (mib2_ipIfStatsEntry_t));
19145 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
19146 	    sizeof (mib2_ipv6AddrEntry_t));
19147 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
19148 	    sizeof (mib2_ipv6RouteEntry_t));
19149 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
19150 	    sizeof (mib2_ipv6NetToMediaEntry_t));
19151 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
19152 	    sizeof (ipv6_member_t));
19153 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
19154 	    sizeof (ipv6_grpsrc_t));
19155 
19156 	/*
19157 	 * Synchronize 64- and 32-bit counters
19158 	 */
19159 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
19160 	    ipIfStatsHCInReceives);
19161 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
19162 	    ipIfStatsHCInDelivers);
19163 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
19164 	    ipIfStatsHCOutRequests);
19165 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
19166 	    ipIfStatsHCOutForwDatagrams);
19167 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
19168 	    ipIfStatsHCOutMcastPkts);
19169 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
19170 	    ipIfStatsHCInMcastPkts);
19171 
19172 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19173 	    (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) {
19174 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
19175 		    (uint_t)sizeof (ipst->ips_ip6_mib)));
19176 	}
19177 
19178 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19179 	ill = ILL_START_WALK_V6(&ctx, ipst);
19180 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19181 		ill->ill_ip_mib->ipIfStatsIfIndex =
19182 		    ill->ill_phyint->phyint_ifindex;
19183 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
19184 		    ipst->ips_ipv6_forward ? 1 : 2);
19185 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
19186 		    ill->ill_max_hops);
19187 
19188 		/*
19189 		 * Synchronize 64- and 32-bit counters
19190 		 */
19191 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
19192 		    ipIfStatsHCInReceives);
19193 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
19194 		    ipIfStatsHCInDelivers);
19195 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
19196 		    ipIfStatsHCOutRequests);
19197 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
19198 		    ipIfStatsHCOutForwDatagrams);
19199 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
19200 		    ipIfStatsHCOutMcastPkts);
19201 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
19202 		    ipIfStatsHCInMcastPkts);
19203 
19204 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19205 		    (char *)ill->ill_ip_mib,
19206 		    (int)sizeof (*ill->ill_ip_mib))) {
19207 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
19208 			"%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib)));
19209 		}
19210 	}
19211 	rw_exit(&ipst->ips_ill_g_lock);
19212 
19213 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
19214 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
19215 	    (int)optp->level, (int)optp->name, (int)optp->len));
19216 	qreply(q, mpctl);
19217 	return (mp2ctl);
19218 }
19219 
19220 /*
19221  * ICMPv6 mib: One per ill
19222  */
19223 static mblk_t *
19224 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
19225 {
19226 	struct opthdr		*optp;
19227 	mblk_t			*mp2ctl;
19228 	ill_t			*ill;
19229 	ill_walk_context_t	ctx;
19230 	mblk_t			*mp_tail = NULL;
19231 	/*
19232 	 * Make a copy of the original message
19233 	 */
19234 	mp2ctl = copymsg(mpctl);
19235 
19236 	/* fixed length ICMPv6 structure ... */
19237 
19238 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19239 	optp->level = MIB2_ICMP6;
19240 	optp->name = 0;
19241 	/* Include "unknown interface" icmp6_mib */
19242 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
19243 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
19244 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
19245 	    sizeof (mib2_ipv6IfIcmpEntry_t);
19246 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19247 	    (char *)&ipst->ips_icmp6_mib,
19248 	    (int)sizeof (ipst->ips_icmp6_mib))) {
19249 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
19250 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
19251 	}
19252 
19253 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19254 	ill = ILL_START_WALK_V6(&ctx, ipst);
19255 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19256 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
19257 		    ill->ill_phyint->phyint_ifindex;
19258 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19259 		    (char *)ill->ill_icmp6_mib,
19260 		    (int)sizeof (*ill->ill_icmp6_mib))) {
19261 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
19262 			    "%u bytes\n",
19263 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
19264 		}
19265 	}
19266 	rw_exit(&ipst->ips_ill_g_lock);
19267 
19268 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
19269 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
19270 	    (int)optp->level, (int)optp->name, (int)optp->len));
19271 	qreply(q, mpctl);
19272 	return (mp2ctl);
19273 }
19274 
19275 /*
19276  * ire_walk routine to create both ipRouteEntryTable and
19277  * ipRouteAttributeTable in one IRE walk
19278  */
19279 static void
19280 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
19281 {
19282 	ill_t				*ill;
19283 	ipif_t				*ipif;
19284 	mib2_ipRouteEntry_t		*re;
19285 	mib2_ipAttributeEntry_t		*iae, *iaeptr;
19286 	ipaddr_t			gw_addr;
19287 	tsol_ire_gw_secattr_t		*attrp;
19288 	tsol_gc_t			*gc = NULL;
19289 	tsol_gcgrp_t			*gcgrp = NULL;
19290 	uint_t				sacnt = 0;
19291 	int				i;
19292 
19293 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
19294 
19295 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
19296 		return;
19297 
19298 	if ((attrp = ire->ire_gw_secattr) != NULL) {
19299 		mutex_enter(&attrp->igsa_lock);
19300 		if ((gc = attrp->igsa_gc) != NULL) {
19301 			gcgrp = gc->gc_grp;
19302 			ASSERT(gcgrp != NULL);
19303 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19304 			sacnt = 1;
19305 		} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
19306 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19307 			gc = gcgrp->gcgrp_head;
19308 			sacnt = gcgrp->gcgrp_count;
19309 		}
19310 		mutex_exit(&attrp->igsa_lock);
19311 
19312 		/* do nothing if there's no gc to report */
19313 		if (gc == NULL) {
19314 			ASSERT(sacnt == 0);
19315 			if (gcgrp != NULL) {
19316 				/* we might as well drop the lock now */
19317 				rw_exit(&gcgrp->gcgrp_rwlock);
19318 				gcgrp = NULL;
19319 			}
19320 			attrp = NULL;
19321 		}
19322 
19323 		ASSERT(gc == NULL || (gcgrp != NULL &&
19324 		    RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
19325 	}
19326 	ASSERT(sacnt == 0 || gc != NULL);
19327 
19328 	if (sacnt != 0 &&
19329 	    (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
19330 		kmem_free(re, sizeof (*re));
19331 		rw_exit(&gcgrp->gcgrp_rwlock);
19332 		return;
19333 	}
19334 
19335 	/*
19336 	 * Return all IRE types for route table... let caller pick and choose
19337 	 */
19338 	re->ipRouteDest = ire->ire_addr;
19339 	ipif = ire->ire_ipif;
19340 	re->ipRouteIfIndex.o_length = 0;
19341 	if (ire->ire_type == IRE_CACHE) {
19342 		ill = (ill_t *)ire->ire_stq->q_ptr;
19343 		re->ipRouteIfIndex.o_length =
19344 		    ill->ill_name_length == 0 ? 0 :
19345 		    MIN(OCTET_LENGTH, ill->ill_name_length - 1);
19346 		bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes,
19347 		    re->ipRouteIfIndex.o_length);
19348 	} else if (ipif != NULL) {
19349 		ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
19350 		re->ipRouteIfIndex.o_length =
19351 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
19352 	}
19353 	re->ipRouteMetric1 = -1;
19354 	re->ipRouteMetric2 = -1;
19355 	re->ipRouteMetric3 = -1;
19356 	re->ipRouteMetric4 = -1;
19357 
19358 	gw_addr = ire->ire_gateway_addr;
19359 
19360 	if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST))
19361 		re->ipRouteNextHop = ire->ire_src_addr;
19362 	else
19363 		re->ipRouteNextHop = gw_addr;
19364 	/* indirect(4), direct(3), or invalid(2) */
19365 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
19366 		re->ipRouteType = 2;
19367 	else
19368 		re->ipRouteType = (gw_addr != 0) ? 4 : 3;
19369 	re->ipRouteProto = -1;
19370 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
19371 	re->ipRouteMask = ire->ire_mask;
19372 	re->ipRouteMetric5 = -1;
19373 	re->ipRouteInfo.re_max_frag	= ire->ire_max_frag;
19374 	re->ipRouteInfo.re_frag_flag	= ire->ire_frag_flag;
19375 	re->ipRouteInfo.re_rtt		= ire->ire_uinfo.iulp_rtt;
19376 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
19377 	re->ipRouteInfo.re_src_addr	= ire->ire_src_addr;
19378 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
19379 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
19380 	re->ipRouteInfo.re_flags	= ire->ire_flags;
19381 
19382 	if (ire->ire_flags & RTF_DYNAMIC) {
19383 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
19384 	} else {
19385 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
19386 	}
19387 
19388 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
19389 	    (char *)re, (int)sizeof (*re))) {
19390 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
19391 		    (uint_t)sizeof (*re)));
19392 	}
19393 
19394 	for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
19395 		iaeptr->iae_routeidx = ird->ird_idx;
19396 		iaeptr->iae_doi = gc->gc_db->gcdb_doi;
19397 		iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
19398 	}
19399 
19400 	if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
19401 	    (char *)iae, sacnt * sizeof (*iae))) {
19402 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
19403 		    (unsigned)(sacnt * sizeof (*iae))));
19404 	}
19405 
19406 	/* bump route index for next pass */
19407 	ird->ird_idx++;
19408 
19409 	kmem_free(re, sizeof (*re));
19410 	if (sacnt != 0)
19411 		kmem_free(iae, sacnt * sizeof (*iae));
19412 
19413 	if (gcgrp != NULL)
19414 		rw_exit(&gcgrp->gcgrp_rwlock);
19415 }
19416 
19417 /*
19418  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
19419  */
19420 static void
19421 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
19422 {
19423 	ill_t				*ill;
19424 	ipif_t				*ipif;
19425 	mib2_ipv6RouteEntry_t		*re;
19426 	mib2_ipAttributeEntry_t		*iae, *iaeptr;
19427 	in6_addr_t			gw_addr_v6;
19428 	tsol_ire_gw_secattr_t		*attrp;
19429 	tsol_gc_t			*gc = NULL;
19430 	tsol_gcgrp_t			*gcgrp = NULL;
19431 	uint_t				sacnt = 0;
19432 	int				i;
19433 
19434 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
19435 
19436 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
19437 		return;
19438 
19439 	if ((attrp = ire->ire_gw_secattr) != NULL) {
19440 		mutex_enter(&attrp->igsa_lock);
19441 		if ((gc = attrp->igsa_gc) != NULL) {
19442 			gcgrp = gc->gc_grp;
19443 			ASSERT(gcgrp != NULL);
19444 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19445 			sacnt = 1;
19446 		} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
19447 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19448 			gc = gcgrp->gcgrp_head;
19449 			sacnt = gcgrp->gcgrp_count;
19450 		}
19451 		mutex_exit(&attrp->igsa_lock);
19452 
19453 		/* do nothing if there's no gc to report */
19454 		if (gc == NULL) {
19455 			ASSERT(sacnt == 0);
19456 			if (gcgrp != NULL) {
19457 				/* we might as well drop the lock now */
19458 				rw_exit(&gcgrp->gcgrp_rwlock);
19459 				gcgrp = NULL;
19460 			}
19461 			attrp = NULL;
19462 		}
19463 
19464 		ASSERT(gc == NULL || (gcgrp != NULL &&
19465 		    RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
19466 	}
19467 	ASSERT(sacnt == 0 || gc != NULL);
19468 
19469 	if (sacnt != 0 &&
19470 	    (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
19471 		kmem_free(re, sizeof (*re));
19472 		rw_exit(&gcgrp->gcgrp_rwlock);
19473 		return;
19474 	}
19475 
19476 	/*
19477 	 * Return all IRE types for route table... let caller pick and choose
19478 	 */
19479 	re->ipv6RouteDest = ire->ire_addr_v6;
19480 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
19481 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
19482 	re->ipv6RouteIfIndex.o_length = 0;
19483 	ipif = ire->ire_ipif;
19484 	if (ire->ire_type == IRE_CACHE) {
19485 		ill = (ill_t *)ire->ire_stq->q_ptr;
19486 		re->ipv6RouteIfIndex.o_length =
19487 		    ill->ill_name_length == 0 ? 0 :
19488 		    MIN(OCTET_LENGTH, ill->ill_name_length - 1);
19489 		bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes,
19490 		    re->ipv6RouteIfIndex.o_length);
19491 	} else if (ipif != NULL) {
19492 		ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
19493 		re->ipv6RouteIfIndex.o_length =
19494 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
19495 	}
19496 
19497 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19498 
19499 	mutex_enter(&ire->ire_lock);
19500 	gw_addr_v6 = ire->ire_gateway_addr_v6;
19501 	mutex_exit(&ire->ire_lock);
19502 
19503 	if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK))
19504 		re->ipv6RouteNextHop = ire->ire_src_addr_v6;
19505 	else
19506 		re->ipv6RouteNextHop = gw_addr_v6;
19507 
19508 	/* remote(4), local(3), or discard(2) */
19509 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
19510 		re->ipv6RouteType = 2;
19511 	else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6))
19512 		re->ipv6RouteType = 3;
19513 	else
19514 		re->ipv6RouteType = 4;
19515 
19516 	re->ipv6RouteProtocol	= -1;
19517 	re->ipv6RoutePolicy	= 0;
19518 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
19519 	re->ipv6RouteNextHopRDI	= 0;
19520 	re->ipv6RouteWeight	= 0;
19521 	re->ipv6RouteMetric	= 0;
19522 	re->ipv6RouteInfo.re_max_frag	= ire->ire_max_frag;
19523 	re->ipv6RouteInfo.re_frag_flag	= ire->ire_frag_flag;
19524 	re->ipv6RouteInfo.re_rtt	= ire->ire_uinfo.iulp_rtt;
19525 	re->ipv6RouteInfo.re_src_addr	= ire->ire_src_addr_v6;
19526 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
19527 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
19528 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
19529 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
19530 
19531 	if (ire->ire_flags & RTF_DYNAMIC) {
19532 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
19533 	} else {
19534 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
19535 	}
19536 
19537 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
19538 	    (char *)re, (int)sizeof (*re))) {
19539 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
19540 		    (uint_t)sizeof (*re)));
19541 	}
19542 
19543 	for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
19544 		iaeptr->iae_routeidx = ird->ird_idx;
19545 		iaeptr->iae_doi = gc->gc_db->gcdb_doi;
19546 		iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
19547 	}
19548 
19549 	if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
19550 	    (char *)iae, sacnt * sizeof (*iae))) {
19551 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
19552 		    (unsigned)(sacnt * sizeof (*iae))));
19553 	}
19554 
19555 	/* bump route index for next pass */
19556 	ird->ird_idx++;
19557 
19558 	kmem_free(re, sizeof (*re));
19559 	if (sacnt != 0)
19560 		kmem_free(iae, sacnt * sizeof (*iae));
19561 
19562 	if (gcgrp != NULL)
19563 		rw_exit(&gcgrp->gcgrp_rwlock);
19564 }
19565 
19566 /*
19567  * ndp_walk routine to create ipv6NetToMediaEntryTable
19568  */
19569 static int
19570 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird)
19571 {
19572 	ill_t				*ill;
19573 	mib2_ipv6NetToMediaEntry_t	ntme;
19574 	dl_unitdata_req_t		*dl;
19575 
19576 	ill = nce->nce_ill;
19577 	if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */
19578 		return (0);
19579 
19580 	/*
19581 	 * Neighbor cache entry attached to IRE with on-link
19582 	 * destination.
19583 	 */
19584 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
19585 	ntme.ipv6NetToMediaNetAddress = nce->nce_addr;
19586 	if ((ill->ill_flags & ILLF_XRESOLV) &&
19587 	    (nce->nce_res_mp != NULL)) {
19588 		dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr);
19589 		ntme.ipv6NetToMediaPhysAddress.o_length =
19590 		    dl->dl_dest_addr_length;
19591 	} else {
19592 		ntme.ipv6NetToMediaPhysAddress.o_length =
19593 		    ill->ill_phys_addr_length;
19594 	}
19595 	if (nce->nce_res_mp != NULL) {
19596 		bcopy((char *)nce->nce_res_mp->b_rptr +
19597 		    NCE_LL_ADDR_OFFSET(ill),
19598 		    ntme.ipv6NetToMediaPhysAddress.o_bytes,
19599 		    ntme.ipv6NetToMediaPhysAddress.o_length);
19600 	} else {
19601 		bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes,
19602 		    ill->ill_phys_addr_length);
19603 	}
19604 	/*
19605 	 * Note: Returns ND_* states. Should be:
19606 	 * reachable(1), stale(2), delay(3), probe(4),
19607 	 * invalid(5), unknown(6)
19608 	 */
19609 	ntme.ipv6NetToMediaState = nce->nce_state;
19610 	ntme.ipv6NetToMediaLastUpdated = 0;
19611 
19612 	/* other(1), dynamic(2), static(3), local(4) */
19613 	if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) {
19614 		ntme.ipv6NetToMediaType = 4;
19615 	} else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) {
19616 		ntme.ipv6NetToMediaType = 1;
19617 	} else {
19618 		ntme.ipv6NetToMediaType = 2;
19619 	}
19620 
19621 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
19622 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
19623 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
19624 		    (uint_t)sizeof (ntme)));
19625 	}
19626 	return (0);
19627 }
19628 
19629 /*
19630  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
19631  */
19632 /* ARGSUSED */
19633 int
19634 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
19635 {
19636 	switch (level) {
19637 	case MIB2_IP:
19638 	case MIB2_ICMP:
19639 		switch (name) {
19640 		default:
19641 			break;
19642 		}
19643 		return (1);
19644 	default:
19645 		return (1);
19646 	}
19647 }
19648 
19649 /*
19650  * When there exists both a 64- and 32-bit counter of a particular type
19651  * (i.e., InReceives), only the 64-bit counters are added.
19652  */
19653 void
19654 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
19655 {
19656 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
19657 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
19658 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
19659 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
19660 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
19661 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
19662 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
19663 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
19664 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
19665 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
19666 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
19667 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
19668 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
19669 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
19670 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
19671 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
19672 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
19673 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
19674 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
19675 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
19676 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
19677 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
19678 	    o2->ipIfStatsInWrongIPVersion);
19679 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
19680 	    o2->ipIfStatsInWrongIPVersion);
19681 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
19682 	    o2->ipIfStatsOutSwitchIPVersion);
19683 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
19684 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
19685 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
19686 	    o2->ipIfStatsHCInForwDatagrams);
19687 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
19688 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
19689 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
19690 	    o2->ipIfStatsHCOutForwDatagrams);
19691 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
19692 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
19693 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
19694 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
19695 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
19696 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
19697 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
19698 	    o2->ipIfStatsHCOutMcastOctets);
19699 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
19700 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
19701 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
19702 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
19703 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
19704 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
19705 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
19706 }
19707 
19708 void
19709 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
19710 {
19711 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
19712 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
19713 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
19714 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
19715 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
19716 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
19717 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
19718 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
19719 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
19720 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
19721 	    o2->ipv6IfIcmpInRouterSolicits);
19722 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
19723 	    o2->ipv6IfIcmpInRouterAdvertisements);
19724 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
19725 	    o2->ipv6IfIcmpInNeighborSolicits);
19726 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
19727 	    o2->ipv6IfIcmpInNeighborAdvertisements);
19728 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
19729 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
19730 	    o2->ipv6IfIcmpInGroupMembQueries);
19731 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
19732 	    o2->ipv6IfIcmpInGroupMembResponses);
19733 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
19734 	    o2->ipv6IfIcmpInGroupMembReductions);
19735 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
19736 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
19737 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
19738 	    o2->ipv6IfIcmpOutDestUnreachs);
19739 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
19740 	    o2->ipv6IfIcmpOutAdminProhibs);
19741 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
19742 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
19743 	    o2->ipv6IfIcmpOutParmProblems);
19744 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
19745 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
19746 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
19747 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
19748 	    o2->ipv6IfIcmpOutRouterSolicits);
19749 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
19750 	    o2->ipv6IfIcmpOutRouterAdvertisements);
19751 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
19752 	    o2->ipv6IfIcmpOutNeighborSolicits);
19753 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
19754 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
19755 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
19756 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
19757 	    o2->ipv6IfIcmpOutGroupMembQueries);
19758 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
19759 	    o2->ipv6IfIcmpOutGroupMembResponses);
19760 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
19761 	    o2->ipv6IfIcmpOutGroupMembReductions);
19762 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
19763 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
19764 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
19765 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
19766 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
19767 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
19768 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
19769 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
19770 	    o2->ipv6IfIcmpInGroupMembTotal);
19771 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
19772 	    o2->ipv6IfIcmpInGroupMembBadQueries);
19773 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
19774 	    o2->ipv6IfIcmpInGroupMembBadReports);
19775 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
19776 	    o2->ipv6IfIcmpInGroupMembOurReports);
19777 }
19778 
19779 /*
19780  * Called before the options are updated to check if this packet will
19781  * be source routed from here.
19782  * This routine assumes that the options are well formed i.e. that they
19783  * have already been checked.
19784  */
19785 static boolean_t
19786 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
19787 {
19788 	ipoptp_t	opts;
19789 	uchar_t		*opt;
19790 	uint8_t		optval;
19791 	uint8_t		optlen;
19792 	ipaddr_t	dst;
19793 	ire_t		*ire;
19794 
19795 	if (IS_SIMPLE_IPH(ipha)) {
19796 		ip2dbg(("not source routed\n"));
19797 		return (B_FALSE);
19798 	}
19799 	dst = ipha->ipha_dst;
19800 	for (optval = ipoptp_first(&opts, ipha);
19801 	    optval != IPOPT_EOL;
19802 	    optval = ipoptp_next(&opts)) {
19803 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
19804 		opt = opts.ipoptp_cur;
19805 		optlen = opts.ipoptp_len;
19806 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
19807 		    optval, optlen));
19808 		switch (optval) {
19809 			uint32_t off;
19810 		case IPOPT_SSRR:
19811 		case IPOPT_LSRR:
19812 			/*
19813 			 * If dst is one of our addresses and there are some
19814 			 * entries left in the source route return (true).
19815 			 */
19816 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
19817 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19818 			if (ire == NULL) {
19819 				ip2dbg(("ip_source_routed: not next"
19820 				    " source route 0x%x\n",
19821 				    ntohl(dst)));
19822 				return (B_FALSE);
19823 			}
19824 			ire_refrele(ire);
19825 			off = opt[IPOPT_OFFSET];
19826 			off--;
19827 			if (optlen < IP_ADDR_LEN ||
19828 			    off > optlen - IP_ADDR_LEN) {
19829 				/* End of source route */
19830 				ip1dbg(("ip_source_routed: end of SR\n"));
19831 				return (B_FALSE);
19832 			}
19833 			return (B_TRUE);
19834 		}
19835 	}
19836 	ip2dbg(("not source routed\n"));
19837 	return (B_FALSE);
19838 }
19839 
19840 /*
19841  * Check if the packet contains any source route.
19842  */
19843 static boolean_t
19844 ip_source_route_included(ipha_t *ipha)
19845 {
19846 	ipoptp_t	opts;
19847 	uint8_t		optval;
19848 
19849 	if (IS_SIMPLE_IPH(ipha))
19850 		return (B_FALSE);
19851 	for (optval = ipoptp_first(&opts, ipha);
19852 	    optval != IPOPT_EOL;
19853 	    optval = ipoptp_next(&opts)) {
19854 		switch (optval) {
19855 		case IPOPT_SSRR:
19856 		case IPOPT_LSRR:
19857 			return (B_TRUE);
19858 		}
19859 	}
19860 	return (B_FALSE);
19861 }
19862 
19863 /*
19864  * Called when the IRE expiration timer fires.
19865  */
19866 void
19867 ip_trash_timer_expire(void *args)
19868 {
19869 	int			flush_flag = 0;
19870 	ire_expire_arg_t	iea;
19871 	ip_stack_t		*ipst = (ip_stack_t *)args;
19872 
19873 	iea.iea_ipst = ipst;	/* No netstack_hold */
19874 
19875 	/*
19876 	 * ip_ire_expire_id is protected by ip_trash_timer_lock.
19877 	 * This lock makes sure that a new invocation of this function
19878 	 * that occurs due to an almost immediate timer firing will not
19879 	 * progress beyond this point until the current invocation is done
19880 	 */
19881 	mutex_enter(&ipst->ips_ip_trash_timer_lock);
19882 	ipst->ips_ip_ire_expire_id = 0;
19883 	mutex_exit(&ipst->ips_ip_trash_timer_lock);
19884 
19885 	/* Periodic timer */
19886 	if (ipst->ips_ip_ire_arp_time_elapsed >=
19887 	    ipst->ips_ip_ire_arp_interval) {
19888 		/*
19889 		 * Remove all IRE_CACHE entries since they might
19890 		 * contain arp information.
19891 		 */
19892 		flush_flag |= FLUSH_ARP_TIME;
19893 		ipst->ips_ip_ire_arp_time_elapsed = 0;
19894 		IP_STAT(ipst, ip_ire_arp_timer_expired);
19895 	}
19896 	if (ipst->ips_ip_ire_rd_time_elapsed >=
19897 	    ipst->ips_ip_ire_redir_interval) {
19898 		/* Remove all redirects */
19899 		flush_flag |= FLUSH_REDIRECT_TIME;
19900 		ipst->ips_ip_ire_rd_time_elapsed = 0;
19901 		IP_STAT(ipst, ip_ire_redirect_timer_expired);
19902 	}
19903 	if (ipst->ips_ip_ire_pmtu_time_elapsed >=
19904 	    ipst->ips_ip_ire_pathmtu_interval) {
19905 		/* Increase path mtu */
19906 		flush_flag |= FLUSH_MTU_TIME;
19907 		ipst->ips_ip_ire_pmtu_time_elapsed = 0;
19908 		IP_STAT(ipst, ip_ire_pmtu_timer_expired);
19909 	}
19910 
19911 	/*
19912 	 * Optimize for the case when there are no redirects in the
19913 	 * ftable, that is, no need to walk the ftable in that case.
19914 	 */
19915 	if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) {
19916 		iea.iea_flush_flag = flush_flag;
19917 		ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire,
19918 		    (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL,
19919 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
19920 		    NULL, ALL_ZONES, ipst);
19921 	}
19922 	if ((flush_flag & FLUSH_REDIRECT_TIME) &&
19923 	    ipst->ips_ip_redirect_cnt > 0) {
19924 		iea.iea_flush_flag = flush_flag;
19925 		ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE,
19926 		    ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE,
19927 		    0, NULL, 0, NULL, NULL, ALL_ZONES, ipst);
19928 	}
19929 	if (flush_flag & FLUSH_MTU_TIME) {
19930 		/*
19931 		 * Walk all IPv6 IRE's and update them
19932 		 * Note that ARP and redirect timers are not
19933 		 * needed since NUD handles stale entries.
19934 		 */
19935 		flush_flag = FLUSH_MTU_TIME;
19936 		iea.iea_flush_flag = flush_flag;
19937 		ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea,
19938 		    ALL_ZONES, ipst);
19939 	}
19940 
19941 	ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval;
19942 	ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval;
19943 	ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval;
19944 
19945 	/*
19946 	 * Hold the lock to serialize timeout calls and prevent
19947 	 * stale values in ip_ire_expire_id. Otherwise it is possible
19948 	 * for the timer to fire and a new invocation of this function
19949 	 * to start before the return value of timeout has been stored
19950 	 * in ip_ire_expire_id by the current invocation.
19951 	 */
19952 	mutex_enter(&ipst->ips_ip_trash_timer_lock);
19953 	ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire,
19954 	    (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval));
19955 	mutex_exit(&ipst->ips_ip_trash_timer_lock);
19956 }
19957 
19958 /*
19959  * Called by the memory allocator subsystem directly, when the system
19960  * is running low on memory.
19961  */
19962 /* ARGSUSED */
19963 void
19964 ip_trash_ire_reclaim(void *args)
19965 {
19966 	netstack_handle_t nh;
19967 	netstack_t *ns;
19968 
19969 	netstack_next_init(&nh);
19970 	while ((ns = netstack_next(&nh)) != NULL) {
19971 		ip_trash_ire_reclaim_stack(ns->netstack_ip);
19972 		netstack_rele(ns);
19973 	}
19974 	netstack_next_fini(&nh);
19975 }
19976 
19977 static void
19978 ip_trash_ire_reclaim_stack(ip_stack_t *ipst)
19979 {
19980 	ire_cache_count_t icc;
19981 	ire_cache_reclaim_t icr;
19982 	ncc_cache_count_t ncc;
19983 	nce_cache_reclaim_t ncr;
19984 	uint_t delete_cnt;
19985 	/*
19986 	 * Memory reclaim call back.
19987 	 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries.
19988 	 * Then, with a target of freeing 1/Nth of IRE_CACHE
19989 	 * entries, determine what fraction to free for
19990 	 * each category of IRE_CACHE entries giving absolute priority
19991 	 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu
19992 	 * entry will be freed unless all offlink entries are freed).
19993 	 */
19994 	icc.icc_total = 0;
19995 	icc.icc_unused = 0;
19996 	icc.icc_offlink = 0;
19997 	icc.icc_pmtu = 0;
19998 	icc.icc_onlink = 0;
19999 	ire_walk(ire_cache_count, (char *)&icc, ipst);
20000 
20001 	/*
20002 	 * Free NCEs for IPv6 like the onlink ires.
20003 	 */
20004 	ncc.ncc_total = 0;
20005 	ncc.ncc_host = 0;
20006 	ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst);
20007 
20008 	ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink +
20009 	    icc.icc_pmtu + icc.icc_onlink);
20010 	delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction;
20011 	IP_STAT(ipst, ip_trash_ire_reclaim_calls);
20012 	if (delete_cnt == 0)
20013 		return;
20014 	IP_STAT(ipst, ip_trash_ire_reclaim_success);
20015 	/* Always delete all unused offlink entries */
20016 	icr.icr_ipst = ipst;
20017 	icr.icr_unused = 1;
20018 	if (delete_cnt <= icc.icc_unused) {
20019 		/*
20020 		 * Only need to free unused entries.  In other words,
20021 		 * there are enough unused entries to free to meet our
20022 		 * target number of freed ire cache entries.
20023 		 */
20024 		icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0;
20025 		ncr.ncr_host = 0;
20026 	} else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) {
20027 		/*
20028 		 * Only need to free unused entries, plus a fraction of offlink
20029 		 * entries.  It follows from the first if statement that
20030 		 * icc_offlink is non-zero, and that delete_cnt != icc_unused.
20031 		 */
20032 		delete_cnt -= icc.icc_unused;
20033 		/* Round up # deleted by truncating fraction */
20034 		icr.icr_offlink = icc.icc_offlink / delete_cnt;
20035 		icr.icr_pmtu = icr.icr_onlink = 0;
20036 		ncr.ncr_host = 0;
20037 	} else if (delete_cnt <=
20038 	    icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) {
20039 		/*
20040 		 * Free all unused and offlink entries, plus a fraction of
20041 		 * pmtu entries.  It follows from the previous if statement
20042 		 * that icc_pmtu is non-zero, and that
20043 		 * delete_cnt != icc_unused + icc_offlink.
20044 		 */
20045 		icr.icr_offlink = 1;
20046 		delete_cnt -= icc.icc_unused + icc.icc_offlink;
20047 		/* Round up # deleted by truncating fraction */
20048 		icr.icr_pmtu = icc.icc_pmtu / delete_cnt;
20049 		icr.icr_onlink = 0;
20050 		ncr.ncr_host = 0;
20051 	} else {
20052 		/*
20053 		 * Free all unused, offlink, and pmtu entries, plus a fraction
20054 		 * of onlink entries.  If we're here, then we know that
20055 		 * icc_onlink is non-zero, and that
20056 		 * delete_cnt != icc_unused + icc_offlink + icc_pmtu.
20057 		 */
20058 		icr.icr_offlink = icr.icr_pmtu = 1;
20059 		delete_cnt -= icc.icc_unused + icc.icc_offlink +
20060 		    icc.icc_pmtu;
20061 		/* Round up # deleted by truncating fraction */
20062 		icr.icr_onlink = icc.icc_onlink / delete_cnt;
20063 		/* Using the same delete fraction as for onlink IREs */
20064 		ncr.ncr_host = ncc.ncc_host / delete_cnt;
20065 	}
20066 #ifdef DEBUG
20067 	ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d "
20068 	    "fractions %d/%d/%d/%d\n",
20069 	    icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total,
20070 	    icc.icc_unused, icc.icc_offlink,
20071 	    icc.icc_pmtu, icc.icc_onlink,
20072 	    icr.icr_unused, icr.icr_offlink,
20073 	    icr.icr_pmtu, icr.icr_onlink));
20074 #endif
20075 	ire_walk(ire_cache_reclaim, (char *)&icr, ipst);
20076 	if (ncr.ncr_host != 0)
20077 		ndp_walk(NULL, (pfi_t)ndp_cache_reclaim,
20078 		    (uchar_t *)&ncr, ipst);
20079 #ifdef DEBUG
20080 	icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0;
20081 	icc.icc_pmtu = 0; icc.icc_onlink = 0;
20082 	ire_walk(ire_cache_count, (char *)&icc, ipst);
20083 	ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n",
20084 	    icc.icc_total, icc.icc_unused, icc.icc_offlink,
20085 	    icc.icc_pmtu, icc.icc_onlink));
20086 #endif
20087 }
20088 
20089 /*
20090  * ip_unbind is called when a copy of an unbind request is received from the
20091  * upper level protocol.  We remove this conn from any fanout hash list it is
20092  * on, and zero out the bind information.  No reply is expected up above.
20093  */
20094 mblk_t *
20095 ip_unbind(queue_t *q, mblk_t *mp)
20096 {
20097 	conn_t	*connp = Q_TO_CONN(q);
20098 
20099 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
20100 
20101 	if (is_system_labeled() && connp->conn_anon_port) {
20102 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
20103 		    connp->conn_mlp_type, connp->conn_ulp,
20104 		    ntohs(connp->conn_lport), B_FALSE);
20105 		connp->conn_anon_port = 0;
20106 	}
20107 	connp->conn_mlp_type = mlptSingle;
20108 
20109 	ipcl_hash_remove(connp);
20110 
20111 	ASSERT(mp->b_cont == NULL);
20112 	/*
20113 	 * Convert mp into a T_OK_ACK
20114 	 */
20115 	mp = mi_tpi_ok_ack_alloc(mp);
20116 
20117 	/*
20118 	 * should not happen in practice... T_OK_ACK is smaller than the
20119 	 * original message.
20120 	 */
20121 	if (mp == NULL)
20122 		return (NULL);
20123 
20124 	return (mp);
20125 }
20126 
20127 /*
20128  * Write side put procedure.  Outbound data, IOCTLs, responses from
20129  * resolvers, etc, come down through here.
20130  *
20131  * arg2 is always a queue_t *.
20132  * When that queue is an ill_t (i.e. q_next != NULL), then arg must be
20133  * the zoneid.
20134  * When that queue is not an ill_t, then arg must be a conn_t pointer.
20135  */
20136 void
20137 ip_output(void *arg, mblk_t *mp, void *arg2, int caller)
20138 {
20139 	ip_output_options(arg, mp, arg2, caller, &zero_info);
20140 }
20141 
20142 void
20143 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller,
20144     ip_opt_info_t *infop)
20145 {
20146 	conn_t		*connp = NULL;
20147 	queue_t		*q = (queue_t *)arg2;
20148 	ipha_t		*ipha;
20149 #define	rptr	((uchar_t *)ipha)
20150 	ire_t		*ire = NULL;
20151 	ire_t		*sctp_ire = NULL;
20152 	uint32_t	v_hlen_tos_len;
20153 	ipaddr_t	dst;
20154 	mblk_t		*first_mp = NULL;
20155 	boolean_t	mctl_present;
20156 	ipsec_out_t	*io;
20157 	int		match_flags;
20158 	ill_t		*attach_ill = NULL;
20159 					/* Bind to IPIF_NOFAILOVER ill etc. */
20160 	ill_t		*xmit_ill = NULL;	/* IP_PKTINFO etc. */
20161 	ipif_t		*dst_ipif;
20162 	boolean_t	multirt_need_resolve = B_FALSE;
20163 	mblk_t		*copy_mp = NULL;
20164 	int		err;
20165 	zoneid_t	zoneid;
20166 	boolean_t	need_decref = B_FALSE;
20167 	boolean_t	ignore_dontroute = B_FALSE;
20168 	boolean_t	ignore_nexthop = B_FALSE;
20169 	boolean_t	ip_nexthop = B_FALSE;
20170 	ipaddr_t	nexthop_addr;
20171 	ip_stack_t	*ipst;
20172 
20173 #ifdef	_BIG_ENDIAN
20174 #define	V_HLEN	(v_hlen_tos_len >> 24)
20175 #else
20176 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
20177 #endif
20178 
20179 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_START,
20180 	    "ip_wput_start: q %p", q);
20181 
20182 	/*
20183 	 * ip_wput fast path
20184 	 */
20185 
20186 	/* is packet from ARP ? */
20187 	if (q->q_next != NULL) {
20188 		zoneid = (zoneid_t)(uintptr_t)arg;
20189 		goto qnext;
20190 	}
20191 
20192 	connp = (conn_t *)arg;
20193 	ASSERT(connp != NULL);
20194 	zoneid = connp->conn_zoneid;
20195 	ipst = connp->conn_netstack->netstack_ip;
20196 
20197 	/* is queue flow controlled? */
20198 	if ((q->q_first != NULL || connp->conn_draining) &&
20199 	    (caller == IP_WPUT)) {
20200 		ASSERT(!need_decref);
20201 		(void) putq(q, mp);
20202 		return;
20203 	}
20204 
20205 	/* Multidata transmit? */
20206 	if (DB_TYPE(mp) == M_MULTIDATA) {
20207 		/*
20208 		 * We should never get here, since all Multidata messages
20209 		 * originating from tcp should have been directed over to
20210 		 * tcp_multisend() in the first place.
20211 		 */
20212 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
20213 		freemsg(mp);
20214 		return;
20215 	} else if (DB_TYPE(mp) != M_DATA)
20216 		goto notdata;
20217 
20218 	if (mp->b_flag & MSGHASREF) {
20219 		ASSERT(connp->conn_ulp == IPPROTO_SCTP);
20220 		mp->b_flag &= ~MSGHASREF;
20221 		SCTP_EXTRACT_IPINFO(mp, sctp_ire);
20222 		need_decref = B_TRUE;
20223 	}
20224 	ipha = (ipha_t *)mp->b_rptr;
20225 
20226 	/* is IP header non-aligned or mblk smaller than basic IP header */
20227 #ifndef SAFETY_BEFORE_SPEED
20228 	if (!OK_32PTR(rptr) ||
20229 	    (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH)
20230 		goto hdrtoosmall;
20231 #endif
20232 
20233 	ASSERT(OK_32PTR(ipha));
20234 
20235 	/*
20236 	 * This function assumes that mp points to an IPv4 packet.  If it's the
20237 	 * wrong version, we'll catch it again in ip_output_v6.
20238 	 *
20239 	 * Note that this is *only* locally-generated output here, and never
20240 	 * forwarded data, and that we need to deal only with transports that
20241 	 * don't know how to label.  (TCP, UDP, and ICMP/raw-IP all know how to
20242 	 * label.)
20243 	 */
20244 	if (is_system_labeled() &&
20245 	    (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) &&
20246 	    !connp->conn_ulp_labeled) {
20247 		err = tsol_check_label(BEST_CRED(mp, connp), &mp,
20248 		    connp->conn_mac_exempt, ipst);
20249 		ipha = (ipha_t *)mp->b_rptr;
20250 		if (err != 0) {
20251 			first_mp = mp;
20252 			if (err == EINVAL)
20253 				goto icmp_parameter_problem;
20254 			ip2dbg(("ip_wput: label check failed (%d)\n", err));
20255 			goto discard_pkt;
20256 		}
20257 	}
20258 
20259 	ASSERT(infop != NULL);
20260 
20261 	if (infop->ip_opt_flags & IP_VERIFY_SRC) {
20262 		/*
20263 		 * IP_PKTINFO ancillary option is present.
20264 		 * IPCL_ZONEID is used to honor IP_ALLZONES option which
20265 		 * allows using address of any zone as the source address.
20266 		 */
20267 		ire = ire_ctable_lookup(ipha->ipha_src, 0,
20268 		    (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp),
20269 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
20270 		if (ire == NULL)
20271 			goto drop_pkt;
20272 		ire_refrele(ire);
20273 		ire = NULL;
20274 	}
20275 
20276 	/*
20277 	 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index
20278 	 * passed in IP_PKTINFO.
20279 	 */
20280 	if (infop->ip_opt_ill_index != 0 &&
20281 	    connp->conn_outgoing_ill == NULL &&
20282 	    connp->conn_nofailover_ill == NULL) {
20283 
20284 		xmit_ill = ill_lookup_on_ifindex(
20285 		    infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL,
20286 		    ipst);
20287 
20288 		if (xmit_ill == NULL || IS_VNI(xmit_ill))
20289 			goto drop_pkt;
20290 		/*
20291 		 * check that there is an ipif belonging
20292 		 * to our zone. IPCL_ZONEID is not used because
20293 		 * IP_ALLZONES option is valid only when the ill is
20294 		 * accessible from all zones i.e has a valid ipif in
20295 		 * all zones.
20296 		 */
20297 		if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) {
20298 			goto drop_pkt;
20299 		}
20300 	}
20301 
20302 	/*
20303 	 * If there is a policy, try to attach an ipsec_out in
20304 	 * the front. At the end, first_mp either points to a
20305 	 * M_DATA message or IPSEC_OUT message linked to a
20306 	 * M_DATA message. We have to do it now as we might
20307 	 * lose the "conn" if we go through ip_newroute.
20308 	 */
20309 	if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) {
20310 		if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL,
20311 		    ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) {
20312 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
20313 			if (need_decref)
20314 				CONN_DEC_REF(connp);
20315 			return;
20316 		} else {
20317 			ASSERT(mp->b_datap->db_type == M_CTL);
20318 			first_mp = mp;
20319 			mp = mp->b_cont;
20320 			mctl_present = B_TRUE;
20321 		}
20322 	} else {
20323 		first_mp = mp;
20324 		mctl_present = B_FALSE;
20325 	}
20326 
20327 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
20328 
20329 	/* is wrong version or IP options present */
20330 	if (V_HLEN != IP_SIMPLE_HDR_VERSION)
20331 		goto version_hdrlen_check;
20332 	dst = ipha->ipha_dst;
20333 
20334 	if (connp->conn_nofailover_ill != NULL) {
20335 		attach_ill = conn_get_held_ill(connp,
20336 		    &connp->conn_nofailover_ill, &err);
20337 		if (err == ILL_LOOKUP_FAILED) {
20338 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
20339 			if (need_decref)
20340 				CONN_DEC_REF(connp);
20341 			freemsg(first_mp);
20342 			return;
20343 		}
20344 	}
20345 
20346 	/* If IP_BOUND_IF has been set, use that ill. */
20347 	if (connp->conn_outgoing_ill != NULL) {
20348 		xmit_ill = conn_get_held_ill(connp,
20349 		    &connp->conn_outgoing_ill, &err);
20350 		if (err == ILL_LOOKUP_FAILED)
20351 			goto drop_pkt;
20352 
20353 		goto send_from_ill;
20354 	}
20355 
20356 	/* is packet multicast? */
20357 	if (CLASSD(dst))
20358 		goto multicast;
20359 
20360 	/*
20361 	 * If xmit_ill is set above due to index passed in ip_pkt_info. It
20362 	 * takes precedence over conn_dontroute and conn_nexthop_set
20363 	 */
20364 	if (xmit_ill != NULL)
20365 		goto send_from_ill;
20366 
20367 	if (connp->conn_dontroute || connp->conn_nexthop_set) {
20368 		/*
20369 		 * If the destination is a broadcast, local, or loopback
20370 		 * address, SO_DONTROUTE and IP_NEXTHOP go through the
20371 		 * standard path.
20372 		 */
20373 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
20374 		if ((ire == NULL) || (ire->ire_type &
20375 		    (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) {
20376 			if (ire != NULL) {
20377 				ire_refrele(ire);
20378 				/* No more access to ire */
20379 				ire = NULL;
20380 			}
20381 			/*
20382 			 * bypass routing checks and go directly to interface.
20383 			 */
20384 			if (connp->conn_dontroute)
20385 				goto dontroute;
20386 
20387 			ASSERT(connp->conn_nexthop_set);
20388 			ip_nexthop = B_TRUE;
20389 			nexthop_addr = connp->conn_nexthop_v4;
20390 			goto send_from_ill;
20391 		}
20392 
20393 		/* Must be a broadcast, a loopback or a local ire */
20394 		ire_refrele(ire);
20395 		/* No more access to ire */
20396 		ire = NULL;
20397 	}
20398 
20399 	if (attach_ill != NULL)
20400 		goto send_from_ill;
20401 
20402 	/*
20403 	 * We cache IRE_CACHEs to avoid lookups. We don't do
20404 	 * this for the tcp global queue and listen end point
20405 	 * as it does not really have a real destination to
20406 	 * talk to.  This is also true for SCTP.
20407 	 */
20408 	if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) &&
20409 	    !connp->conn_fully_bound) {
20410 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
20411 		if (ire == NULL)
20412 			goto noirefound;
20413 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20414 		    "ip_wput_end: q %p (%S)", q, "end");
20415 
20416 		/*
20417 		 * Check if the ire has the RTF_MULTIRT flag, inherited
20418 		 * from an IRE_OFFSUBNET ire entry in ip_newroute().
20419 		 */
20420 		if (ire->ire_flags & RTF_MULTIRT) {
20421 
20422 			/*
20423 			 * Force the TTL of multirouted packets if required.
20424 			 * The TTL of such packets is bounded by the
20425 			 * ip_multirt_ttl ndd variable.
20426 			 */
20427 			if ((ipst->ips_ip_multirt_ttl > 0) &&
20428 			    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
20429 				ip2dbg(("ip_wput: forcing multirt TTL to %d "
20430 				    "(was %d), dst 0x%08x\n",
20431 				    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
20432 				    ntohl(ire->ire_addr)));
20433 				ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
20434 			}
20435 			/*
20436 			 * We look at this point if there are pending
20437 			 * unresolved routes. ire_multirt_resolvable()
20438 			 * checks in O(n) that all IRE_OFFSUBNET ire
20439 			 * entries for the packet's destination and
20440 			 * flagged RTF_MULTIRT are currently resolved.
20441 			 * If some remain unresolved, we make a copy
20442 			 * of the current message. It will be used
20443 			 * to initiate additional route resolutions.
20444 			 */
20445 			multirt_need_resolve =
20446 			    ire_multirt_need_resolve(ire->ire_addr,
20447 			    MBLK_GETLABEL(first_mp), ipst);
20448 			ip2dbg(("ip_wput[TCP]: ire %p, "
20449 			    "multirt_need_resolve %d, first_mp %p\n",
20450 			    (void *)ire, multirt_need_resolve,
20451 			    (void *)first_mp));
20452 			if (multirt_need_resolve) {
20453 				copy_mp = copymsg(first_mp);
20454 				if (copy_mp != NULL) {
20455 					MULTIRT_DEBUG_TAG(copy_mp);
20456 				}
20457 			}
20458 		}
20459 
20460 		ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
20461 
20462 		/*
20463 		 * Try to resolve another multiroute if
20464 		 * ire_multirt_need_resolve() deemed it necessary.
20465 		 */
20466 		if (copy_mp != NULL)
20467 			ip_newroute(q, copy_mp, dst, connp, zoneid, ipst);
20468 		if (need_decref)
20469 			CONN_DEC_REF(connp);
20470 		return;
20471 	}
20472 
20473 	/*
20474 	 * Access to conn_ire_cache. (protected by conn_lock)
20475 	 *
20476 	 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab
20477 	 * the ire bucket lock here to check for CONDEMNED as it is okay to
20478 	 * send a packet or two with the IRE_CACHE that is going away.
20479 	 * Access to the ire requires an ire refhold on the ire prior to
20480 	 * its use since an interface unplumb thread may delete the cached
20481 	 * ire and release the refhold at any time.
20482 	 *
20483 	 * Caching an ire in the conn_ire_cache
20484 	 *
20485 	 * o Caching an ire pointer in the conn requires a strict check for
20486 	 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant
20487 	 * ires  before cleaning up the conns. So the caching of an ire pointer
20488 	 * in the conn is done after making sure under the bucket lock that the
20489 	 * ire has not yet been marked CONDEMNED. Otherwise we will end up
20490 	 * caching an ire after the unplumb thread has cleaned up the conn.
20491 	 * If the conn does not send a packet subsequently the unplumb thread
20492 	 * will be hanging waiting for the ire count to drop to zero.
20493 	 *
20494 	 * o We also need to atomically test for a null conn_ire_cache and
20495 	 * set the conn_ire_cache under the the protection of the conn_lock
20496 	 * to avoid races among concurrent threads trying to simultaneously
20497 	 * cache an ire in the conn_ire_cache.
20498 	 */
20499 	mutex_enter(&connp->conn_lock);
20500 	ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache;
20501 
20502 	if (ire != NULL && ire->ire_addr == dst &&
20503 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
20504 
20505 		IRE_REFHOLD(ire);
20506 		mutex_exit(&connp->conn_lock);
20507 
20508 	} else {
20509 		boolean_t cached = B_FALSE;
20510 		connp->conn_ire_cache = NULL;
20511 		mutex_exit(&connp->conn_lock);
20512 		/* Release the old ire */
20513 		if (ire != NULL && sctp_ire == NULL)
20514 			IRE_REFRELE_NOTR(ire);
20515 
20516 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
20517 		if (ire == NULL)
20518 			goto noirefound;
20519 		IRE_REFHOLD_NOTR(ire);
20520 
20521 		mutex_enter(&connp->conn_lock);
20522 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) {
20523 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
20524 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
20525 				if (connp->conn_ulp == IPPROTO_TCP)
20526 					TCP_CHECK_IREINFO(connp->conn_tcp, ire);
20527 				connp->conn_ire_cache = ire;
20528 				cached = B_TRUE;
20529 			}
20530 			rw_exit(&ire->ire_bucket->irb_lock);
20531 		}
20532 		mutex_exit(&connp->conn_lock);
20533 
20534 		/*
20535 		 * We can continue to use the ire but since it was
20536 		 * not cached, we should drop the extra reference.
20537 		 */
20538 		if (!cached)
20539 			IRE_REFRELE_NOTR(ire);
20540 	}
20541 
20542 
20543 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20544 	    "ip_wput_end: q %p (%S)", q, "end");
20545 
20546 	/*
20547 	 * Check if the ire has the RTF_MULTIRT flag, inherited
20548 	 * from an IRE_OFFSUBNET ire entry in ip_newroute().
20549 	 */
20550 	if (ire->ire_flags & RTF_MULTIRT) {
20551 
20552 		/*
20553 		 * Force the TTL of multirouted packets if required.
20554 		 * The TTL of such packets is bounded by the
20555 		 * ip_multirt_ttl ndd variable.
20556 		 */
20557 		if ((ipst->ips_ip_multirt_ttl > 0) &&
20558 		    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
20559 			ip2dbg(("ip_wput: forcing multirt TTL to %d "
20560 			    "(was %d), dst 0x%08x\n",
20561 			    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
20562 			    ntohl(ire->ire_addr)));
20563 			ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
20564 		}
20565 
20566 		/*
20567 		 * At this point, we check to see if there are any pending
20568 		 * unresolved routes. ire_multirt_resolvable()
20569 		 * checks in O(n) that all IRE_OFFSUBNET ire
20570 		 * entries for the packet's destination and
20571 		 * flagged RTF_MULTIRT are currently resolved.
20572 		 * If some remain unresolved, we make a copy
20573 		 * of the current message. It will be used
20574 		 * to initiate additional route resolutions.
20575 		 */
20576 		multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
20577 		    MBLK_GETLABEL(first_mp), ipst);
20578 		ip2dbg(("ip_wput[not TCP]: ire %p, "
20579 		    "multirt_need_resolve %d, first_mp %p\n",
20580 		    (void *)ire, multirt_need_resolve, (void *)first_mp));
20581 		if (multirt_need_resolve) {
20582 			copy_mp = copymsg(first_mp);
20583 			if (copy_mp != NULL) {
20584 				MULTIRT_DEBUG_TAG(copy_mp);
20585 			}
20586 		}
20587 	}
20588 
20589 	ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
20590 
20591 	/*
20592 	 * Try to resolve another multiroute if
20593 	 * ire_multirt_resolvable() deemed it necessary
20594 	 */
20595 	if (copy_mp != NULL)
20596 		ip_newroute(q, copy_mp, dst, connp, zoneid, ipst);
20597 	if (need_decref)
20598 		CONN_DEC_REF(connp);
20599 	return;
20600 
20601 qnext:
20602 	/*
20603 	 * Upper Level Protocols pass down complete IP datagrams
20604 	 * as M_DATA messages.	Everything else is a sideshow.
20605 	 *
20606 	 * 1) We could be re-entering ip_wput because of ip_neworute
20607 	 *    in which case we could have a IPSEC_OUT message. We
20608 	 *    need to pass through ip_wput like other datagrams and
20609 	 *    hence cannot branch to ip_wput_nondata.
20610 	 *
20611 	 * 2) ARP, AH, ESP, and other clients who are on the module
20612 	 *    instance of IP stream, give us something to deal with.
20613 	 *    We will handle AH and ESP here and rest in ip_wput_nondata.
20614 	 *
20615 	 * 3) ICMP replies also could come here.
20616 	 */
20617 	ipst = ILLQ_TO_IPST(q);
20618 
20619 	if (DB_TYPE(mp) != M_DATA) {
20620 notdata:
20621 		if (DB_TYPE(mp) == M_CTL) {
20622 			/*
20623 			 * M_CTL messages are used by ARP, AH and ESP to
20624 			 * communicate with IP. We deal with IPSEC_IN and
20625 			 * IPSEC_OUT here. ip_wput_nondata handles other
20626 			 * cases.
20627 			 */
20628 			ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr;
20629 			if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) {
20630 				first_mp = mp->b_cont;
20631 				first_mp->b_flag &= ~MSGHASREF;
20632 				ASSERT(connp->conn_ulp == IPPROTO_SCTP);
20633 				SCTP_EXTRACT_IPINFO(first_mp, sctp_ire);
20634 				CONN_DEC_REF(connp);
20635 				connp = NULL;
20636 			}
20637 			if (ii->ipsec_info_type == IPSEC_IN) {
20638 				/*
20639 				 * Either this message goes back to
20640 				 * IPsec for further processing or to
20641 				 * ULP after policy checks.
20642 				 */
20643 				ip_fanout_proto_again(mp, NULL, NULL, NULL);
20644 				return;
20645 			} else if (ii->ipsec_info_type == IPSEC_OUT) {
20646 				io = (ipsec_out_t *)ii;
20647 				if (io->ipsec_out_proc_begin) {
20648 					/*
20649 					 * IPsec processing has already started.
20650 					 * Complete it.
20651 					 * IPQoS notes: We don't care what is
20652 					 * in ipsec_out_ill_index since this
20653 					 * won't be processed for IPQoS policies
20654 					 * in ipsec_out_process.
20655 					 */
20656 					ipsec_out_process(q, mp, NULL,
20657 					    io->ipsec_out_ill_index);
20658 					return;
20659 				} else {
20660 					connp = (q->q_next != NULL) ?
20661 					    NULL : Q_TO_CONN(q);
20662 					first_mp = mp;
20663 					mp = mp->b_cont;
20664 					mctl_present = B_TRUE;
20665 				}
20666 				zoneid = io->ipsec_out_zoneid;
20667 				ASSERT(zoneid != ALL_ZONES);
20668 			} else if (ii->ipsec_info_type == IPSEC_CTL) {
20669 				/*
20670 				 * It's an IPsec control message requesting
20671 				 * an SADB update to be sent to the IPsec
20672 				 * hardware acceleration capable ills.
20673 				 */
20674 				ipsec_ctl_t *ipsec_ctl =
20675 				    (ipsec_ctl_t *)mp->b_rptr;
20676 				ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa;
20677 				uint_t satype = ipsec_ctl->ipsec_ctl_sa_type;
20678 				mblk_t *cmp = mp->b_cont;
20679 
20680 				ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t));
20681 				ASSERT(cmp != NULL);
20682 
20683 				freeb(mp);
20684 				ill_ipsec_capab_send_all(satype, cmp, sa,
20685 				    ipst->ips_netstack);
20686 				return;
20687 			} else {
20688 				/*
20689 				 * This must be ARP or special TSOL signaling.
20690 				 */
20691 				ip_wput_nondata(NULL, q, mp, NULL);
20692 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20693 				    "ip_wput_end: q %p (%S)", q, "nondata");
20694 				return;
20695 			}
20696 		} else {
20697 			/*
20698 			 * This must be non-(ARP/AH/ESP) messages.
20699 			 */
20700 			ASSERT(!need_decref);
20701 			ip_wput_nondata(NULL, q, mp, NULL);
20702 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20703 			    "ip_wput_end: q %p (%S)", q, "nondata");
20704 			return;
20705 		}
20706 	} else {
20707 		first_mp = mp;
20708 		mctl_present = B_FALSE;
20709 	}
20710 
20711 	ASSERT(first_mp != NULL);
20712 	/*
20713 	 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if
20714 	 * to make sure that this packet goes out on the same interface it
20715 	 * came in. We handle that here.
20716 	 */
20717 	if (mctl_present) {
20718 		uint_t ifindex;
20719 
20720 		io = (ipsec_out_t *)first_mp->b_rptr;
20721 		if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) {
20722 			/*
20723 			 * We may have lost the conn context if we are
20724 			 * coming here from ip_newroute(). Copy the
20725 			 * nexthop information.
20726 			 */
20727 			if (io->ipsec_out_ip_nexthop) {
20728 				ip_nexthop = B_TRUE;
20729 				nexthop_addr = io->ipsec_out_nexthop_addr;
20730 
20731 				ipha = (ipha_t *)mp->b_rptr;
20732 				dst = ipha->ipha_dst;
20733 				goto send_from_ill;
20734 			} else {
20735 				ASSERT(io->ipsec_out_ill_index != 0);
20736 				ifindex = io->ipsec_out_ill_index;
20737 				attach_ill = ill_lookup_on_ifindex(ifindex,
20738 				    B_FALSE, NULL, NULL, NULL, NULL, ipst);
20739 				if (attach_ill == NULL) {
20740 					ASSERT(xmit_ill == NULL);
20741 					ip1dbg(("ip_output: bad ifindex for "
20742 					    "(BIND TO IPIF_NOFAILOVER) %d\n",
20743 					    ifindex));
20744 					freemsg(first_mp);
20745 					BUMP_MIB(&ipst->ips_ip_mib,
20746 					    ipIfStatsOutDiscards);
20747 					ASSERT(!need_decref);
20748 					return;
20749 				}
20750 			}
20751 		}
20752 	}
20753 
20754 	ASSERT(xmit_ill == NULL);
20755 
20756 	/* We have a complete IP datagram heading outbound. */
20757 	ipha = (ipha_t *)mp->b_rptr;
20758 
20759 #ifndef SPEED_BEFORE_SAFETY
20760 	/*
20761 	 * Make sure we have a full-word aligned message and that at least
20762 	 * a simple IP header is accessible in the first message.  If not,
20763 	 * try a pullup.  For labeled systems we need to always take this
20764 	 * path as M_CTLs are "notdata" but have trailing data to process.
20765 	 */
20766 	if (!OK_32PTR(rptr) ||
20767 	    (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) {
20768 hdrtoosmall:
20769 		if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
20770 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20771 			    "ip_wput_end: q %p (%S)", q, "pullupfailed");
20772 			if (first_mp == NULL)
20773 				first_mp = mp;
20774 			goto discard_pkt;
20775 		}
20776 
20777 		/* This function assumes that mp points to an IPv4 packet. */
20778 		if (is_system_labeled() && q->q_next == NULL &&
20779 		    (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) &&
20780 		    !connp->conn_ulp_labeled) {
20781 			err = tsol_check_label(BEST_CRED(mp, connp), &mp,
20782 			    connp->conn_mac_exempt, ipst);
20783 			ipha = (ipha_t *)mp->b_rptr;
20784 			if (first_mp != NULL)
20785 				first_mp->b_cont = mp;
20786 			if (err != 0) {
20787 				if (first_mp == NULL)
20788 					first_mp = mp;
20789 				if (err == EINVAL)
20790 					goto icmp_parameter_problem;
20791 				ip2dbg(("ip_wput: label check failed (%d)\n",
20792 				    err));
20793 				goto discard_pkt;
20794 			}
20795 		}
20796 
20797 		ipha = (ipha_t *)mp->b_rptr;
20798 		if (first_mp == NULL) {
20799 			ASSERT(attach_ill == NULL && xmit_ill == NULL);
20800 			/*
20801 			 * If we got here because of "goto hdrtoosmall"
20802 			 * We need to attach a IPSEC_OUT.
20803 			 */
20804 			if (connp->conn_out_enforce_policy) {
20805 				if (((mp = ipsec_attach_ipsec_out(&mp, connp,
20806 				    NULL, ipha->ipha_protocol,
20807 				    ipst->ips_netstack)) == NULL)) {
20808 					BUMP_MIB(&ipst->ips_ip_mib,
20809 					    ipIfStatsOutDiscards);
20810 					if (need_decref)
20811 						CONN_DEC_REF(connp);
20812 					return;
20813 				} else {
20814 					ASSERT(mp->b_datap->db_type == M_CTL);
20815 					first_mp = mp;
20816 					mp = mp->b_cont;
20817 					mctl_present = B_TRUE;
20818 				}
20819 			} else {
20820 				first_mp = mp;
20821 				mctl_present = B_FALSE;
20822 			}
20823 		}
20824 	}
20825 #endif
20826 
20827 	/* Most of the code below is written for speed, not readability */
20828 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
20829 
20830 	/*
20831 	 * If ip_newroute() fails, we're going to need a full
20832 	 * header for the icmp wraparound.
20833 	 */
20834 	if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
20835 		uint_t	v_hlen;
20836 version_hdrlen_check:
20837 		ASSERT(first_mp != NULL);
20838 		v_hlen = V_HLEN;
20839 		/*
20840 		 * siphon off IPv6 packets coming down from transport
20841 		 * layer modules here.
20842 		 * Note: high-order bit carries NUD reachability confirmation
20843 		 */
20844 		if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) {
20845 			/*
20846 			 * FIXME: assume that callers of ip_output* call
20847 			 * the right version?
20848 			 */
20849 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion);
20850 			ASSERT(xmit_ill == NULL);
20851 			if (attach_ill != NULL)
20852 				ill_refrele(attach_ill);
20853 			if (need_decref)
20854 				mp->b_flag |= MSGHASREF;
20855 			(void) ip_output_v6(arg, first_mp, arg2, caller);
20856 			return;
20857 		}
20858 
20859 		if ((v_hlen >> 4) != IP_VERSION) {
20860 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20861 			    "ip_wput_end: q %p (%S)", q, "badvers");
20862 			goto discard_pkt;
20863 		}
20864 		/*
20865 		 * Is the header length at least 20 bytes?
20866 		 *
20867 		 * Are there enough bytes accessible in the header?  If
20868 		 * not, try a pullup.
20869 		 */
20870 		v_hlen &= 0xF;
20871 		v_hlen <<= 2;
20872 		if (v_hlen < IP_SIMPLE_HDR_LENGTH) {
20873 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20874 			    "ip_wput_end: q %p (%S)", q, "badlen");
20875 			goto discard_pkt;
20876 		}
20877 		if (v_hlen > (mp->b_wptr - rptr)) {
20878 			if (!pullupmsg(mp, v_hlen)) {
20879 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20880 				    "ip_wput_end: q %p (%S)", q, "badpullup2");
20881 				goto discard_pkt;
20882 			}
20883 			ipha = (ipha_t *)mp->b_rptr;
20884 		}
20885 		/*
20886 		 * Move first entry from any source route into ipha_dst and
20887 		 * verify the options
20888 		 */
20889 		if (ip_wput_options(q, first_mp, ipha, mctl_present,
20890 		    zoneid, ipst)) {
20891 			ASSERT(xmit_ill == NULL);
20892 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
20893 			if (attach_ill != NULL)
20894 				ill_refrele(attach_ill);
20895 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20896 			    "ip_wput_end: q %p (%S)", q, "badopts");
20897 			if (need_decref)
20898 				CONN_DEC_REF(connp);
20899 			return;
20900 		}
20901 	}
20902 	dst = ipha->ipha_dst;
20903 
20904 	/*
20905 	 * Try to get an IRE_CACHE for the destination address.	 If we can't,
20906 	 * we have to run the packet through ip_newroute which will take
20907 	 * the appropriate action to arrange for an IRE_CACHE, such as querying
20908 	 * a resolver, or assigning a default gateway, etc.
20909 	 */
20910 	if (CLASSD(dst)) {
20911 		ipif_t	*ipif;
20912 		uint32_t setsrc = 0;
20913 
20914 multicast:
20915 		ASSERT(first_mp != NULL);
20916 		ip2dbg(("ip_wput: CLASSD\n"));
20917 		if (connp == NULL) {
20918 			/*
20919 			 * Use the first good ipif on the ill.
20920 			 * XXX Should this ever happen? (Appears
20921 			 * to show up with just ppp and no ethernet due
20922 			 * to in.rdisc.)
20923 			 * However, ire_send should be able to
20924 			 * call ip_wput_ire directly.
20925 			 *
20926 			 * XXX Also, this can happen for ICMP and other packets
20927 			 * with multicast source addresses.  Perhaps we should
20928 			 * fix things so that we drop the packet in question,
20929 			 * but for now, just run with it.
20930 			 */
20931 			ill_t *ill = (ill_t *)q->q_ptr;
20932 
20933 			/*
20934 			 * Don't honor attach_if for this case. If ill
20935 			 * is part of the group, ipif could belong to
20936 			 * any ill and we cannot maintain attach_ill
20937 			 * and ipif_ill same anymore and the assert
20938 			 * below would fail.
20939 			 */
20940 			if (mctl_present && io->ipsec_out_attach_if) {
20941 				io->ipsec_out_ill_index = 0;
20942 				io->ipsec_out_attach_if = B_FALSE;
20943 				ASSERT(attach_ill != NULL);
20944 				ill_refrele(attach_ill);
20945 				attach_ill = NULL;
20946 			}
20947 
20948 			ASSERT(attach_ill == NULL);
20949 			ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID);
20950 			if (ipif == NULL) {
20951 				if (need_decref)
20952 					CONN_DEC_REF(connp);
20953 				freemsg(first_mp);
20954 				return;
20955 			}
20956 			ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n",
20957 			    ntohl(dst), ill->ill_name));
20958 		} else {
20959 			/*
20960 			 * The order of precedence is IP_BOUND_IF, IP_PKTINFO
20961 			 * and IP_MULTICAST_IF.  The block comment above this
20962 			 * function explains the locking mechanism used here.
20963 			 */
20964 			if (xmit_ill == NULL) {
20965 				xmit_ill = conn_get_held_ill(connp,
20966 				    &connp->conn_outgoing_ill, &err);
20967 				if (err == ILL_LOOKUP_FAILED) {
20968 					ip1dbg(("ip_wput: No ill for "
20969 					    "IP_BOUND_IF\n"));
20970 					BUMP_MIB(&ipst->ips_ip_mib,
20971 					    ipIfStatsOutNoRoutes);
20972 					goto drop_pkt;
20973 				}
20974 			}
20975 
20976 			if (xmit_ill == NULL) {
20977 				ipif = conn_get_held_ipif(connp,
20978 				    &connp->conn_multicast_ipif, &err);
20979 				if (err == IPIF_LOOKUP_FAILED) {
20980 					ip1dbg(("ip_wput: No ipif for "
20981 					    "multicast\n"));
20982 					BUMP_MIB(&ipst->ips_ip_mib,
20983 					    ipIfStatsOutNoRoutes);
20984 					goto drop_pkt;
20985 				}
20986 			}
20987 			if (xmit_ill != NULL) {
20988 				ipif = ipif_get_next_ipif(NULL, xmit_ill);
20989 				if (ipif == NULL) {
20990 					ip1dbg(("ip_wput: No ipif for "
20991 					    "xmit_ill\n"));
20992 					BUMP_MIB(&ipst->ips_ip_mib,
20993 					    ipIfStatsOutNoRoutes);
20994 					goto drop_pkt;
20995 				}
20996 			} else if (ipif == NULL || ipif->ipif_isv6) {
20997 				/*
20998 				 * We must do this ipif determination here
20999 				 * else we could pass through ip_newroute
21000 				 * and come back here without the conn context.
21001 				 *
21002 				 * Note: we do late binding i.e. we bind to
21003 				 * the interface when the first packet is sent.
21004 				 * For performance reasons we do not rebind on
21005 				 * each packet but keep the binding until the
21006 				 * next IP_MULTICAST_IF option.
21007 				 *
21008 				 * conn_multicast_{ipif,ill} are shared between
21009 				 * IPv4 and IPv6 and AF_INET6 sockets can
21010 				 * send both IPv4 and IPv6 packets. Hence
21011 				 * we have to check that "isv6" matches above.
21012 				 */
21013 				if (ipif != NULL)
21014 					ipif_refrele(ipif);
21015 				ipif = ipif_lookup_group(dst, zoneid, ipst);
21016 				if (ipif == NULL) {
21017 					ip1dbg(("ip_wput: No ipif for "
21018 					    "multicast\n"));
21019 					BUMP_MIB(&ipst->ips_ip_mib,
21020 					    ipIfStatsOutNoRoutes);
21021 					goto drop_pkt;
21022 				}
21023 				err = conn_set_held_ipif(connp,
21024 				    &connp->conn_multicast_ipif, ipif);
21025 				if (err == IPIF_LOOKUP_FAILED) {
21026 					ipif_refrele(ipif);
21027 					ip1dbg(("ip_wput: No ipif for "
21028 					    "multicast\n"));
21029 					BUMP_MIB(&ipst->ips_ip_mib,
21030 					    ipIfStatsOutNoRoutes);
21031 					goto drop_pkt;
21032 				}
21033 			}
21034 		}
21035 		ASSERT(!ipif->ipif_isv6);
21036 		/*
21037 		 * As we may lose the conn by the time we reach ip_wput_ire,
21038 		 * we copy conn_multicast_loop and conn_dontroute on to an
21039 		 * ipsec_out. In case if this datagram goes out secure,
21040 		 * we need the ill_index also. Copy that also into the
21041 		 * ipsec_out.
21042 		 */
21043 		if (mctl_present) {
21044 			io = (ipsec_out_t *)first_mp->b_rptr;
21045 			ASSERT(first_mp->b_datap->db_type == M_CTL);
21046 			ASSERT(io->ipsec_out_type == IPSEC_OUT);
21047 		} else {
21048 			ASSERT(mp == first_mp);
21049 			if ((first_mp = allocb(sizeof (ipsec_info_t),
21050 			    BPRI_HI)) == NULL) {
21051 				ipif_refrele(ipif);
21052 				first_mp = mp;
21053 				goto discard_pkt;
21054 			}
21055 			first_mp->b_datap->db_type = M_CTL;
21056 			first_mp->b_wptr += sizeof (ipsec_info_t);
21057 			/* ipsec_out_secure is B_FALSE now */
21058 			bzero(first_mp->b_rptr, sizeof (ipsec_info_t));
21059 			io = (ipsec_out_t *)first_mp->b_rptr;
21060 			io->ipsec_out_type = IPSEC_OUT;
21061 			io->ipsec_out_len = sizeof (ipsec_out_t);
21062 			io->ipsec_out_use_global_policy = B_TRUE;
21063 			io->ipsec_out_ns = ipst->ips_netstack;
21064 			first_mp->b_cont = mp;
21065 			mctl_present = B_TRUE;
21066 		}
21067 		if (attach_ill != NULL) {
21068 			ASSERT(attach_ill == ipif->ipif_ill);
21069 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
21070 
21071 			/*
21072 			 * Check if we need an ire that will not be
21073 			 * looked up by anybody else i.e. HIDDEN.
21074 			 */
21075 			if (ill_is_probeonly(attach_ill)) {
21076 				match_flags |= MATCH_IRE_MARK_HIDDEN;
21077 			}
21078 			io->ipsec_out_ill_index =
21079 			    attach_ill->ill_phyint->phyint_ifindex;
21080 			io->ipsec_out_attach_if = B_TRUE;
21081 		} else {
21082 			match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
21083 			io->ipsec_out_ill_index =
21084 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
21085 		}
21086 		if (connp != NULL) {
21087 			io->ipsec_out_multicast_loop =
21088 			    connp->conn_multicast_loop;
21089 			io->ipsec_out_dontroute = connp->conn_dontroute;
21090 			io->ipsec_out_zoneid = connp->conn_zoneid;
21091 		}
21092 		/*
21093 		 * If the application uses IP_MULTICAST_IF with
21094 		 * different logical addresses of the same ILL, we
21095 		 * need to make sure that the soruce address of
21096 		 * the packet matches the logical IP address used
21097 		 * in the option. We do it by initializing ipha_src
21098 		 * here. This should keep IPsec also happy as
21099 		 * when we return from IPsec processing, we don't
21100 		 * have to worry about getting the right address on
21101 		 * the packet. Thus it is sufficient to look for
21102 		 * IRE_CACHE using MATCH_IRE_ILL rathen than
21103 		 * MATCH_IRE_IPIF.
21104 		 *
21105 		 * NOTE : We need to do it for non-secure case also as
21106 		 * this might go out secure if there is a global policy
21107 		 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER
21108 		 * address, the source should be initialized already and
21109 		 * hence we won't be initializing here.
21110 		 *
21111 		 * As we do not have the ire yet, it is possible that
21112 		 * we set the source address here and then later discover
21113 		 * that the ire implies the source address to be assigned
21114 		 * through the RTF_SETSRC flag.
21115 		 * In that case, the setsrc variable will remind us
21116 		 * that overwritting the source address by the one
21117 		 * of the RTF_SETSRC-flagged ire is allowed.
21118 		 */
21119 		if (ipha->ipha_src == INADDR_ANY &&
21120 		    (connp == NULL || !connp->conn_unspec_src)) {
21121 			ipha->ipha_src = ipif->ipif_src_addr;
21122 			setsrc = RTF_SETSRC;
21123 		}
21124 		/*
21125 		 * Find an IRE which matches the destination and the outgoing
21126 		 * queue (i.e. the outgoing interface.)
21127 		 * For loopback use a unicast IP address for
21128 		 * the ire lookup.
21129 		 */
21130 		if (IS_LOOPBACK(ipif->ipif_ill))
21131 			dst = ipif->ipif_lcl_addr;
21132 
21133 		/*
21134 		 * If xmit_ill is set, we branch out to ip_newroute_ipif.
21135 		 * We don't need to lookup ire in ctable as the packet
21136 		 * needs to be sent to the destination through the specified
21137 		 * ill irrespective of ires in the cache table.
21138 		 */
21139 		ire = NULL;
21140 		if (xmit_ill == NULL) {
21141 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
21142 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
21143 		}
21144 
21145 		/*
21146 		 * refrele attach_ill as its not needed anymore.
21147 		 */
21148 		if (attach_ill != NULL) {
21149 			ill_refrele(attach_ill);
21150 			attach_ill = NULL;
21151 		}
21152 
21153 		if (ire == NULL) {
21154 			/*
21155 			 * Multicast loopback and multicast forwarding is
21156 			 * done in ip_wput_ire.
21157 			 *
21158 			 * Mark this packet to make it be delivered to
21159 			 * ip_wput_ire after the new ire has been
21160 			 * created.
21161 			 *
21162 			 * The call to ip_newroute_ipif takes into account
21163 			 * the setsrc reminder. In any case, we take care
21164 			 * of the RTF_MULTIRT flag.
21165 			 */
21166 			mp->b_prev = mp->b_next = NULL;
21167 			if (xmit_ill == NULL ||
21168 			    xmit_ill->ill_ipif_up_count > 0) {
21169 				ip_newroute_ipif(q, first_mp, ipif, dst, connp,
21170 				    setsrc | RTF_MULTIRT, zoneid, infop);
21171 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21172 				    "ip_wput_end: q %p (%S)", q, "noire");
21173 			} else {
21174 				freemsg(first_mp);
21175 			}
21176 			ipif_refrele(ipif);
21177 			if (xmit_ill != NULL)
21178 				ill_refrele(xmit_ill);
21179 			if (need_decref)
21180 				CONN_DEC_REF(connp);
21181 			return;
21182 		}
21183 
21184 		ipif_refrele(ipif);
21185 		ipif = NULL;
21186 		ASSERT(xmit_ill == NULL);
21187 
21188 		/*
21189 		 * Honor the RTF_SETSRC flag for multicast packets,
21190 		 * if allowed by the setsrc reminder.
21191 		 */
21192 		if ((ire->ire_flags & RTF_SETSRC) && setsrc) {
21193 			ipha->ipha_src = ire->ire_src_addr;
21194 		}
21195 
21196 		/*
21197 		 * Unconditionally force the TTL to 1 for
21198 		 * multirouted multicast packets:
21199 		 * multirouted multicast should not cross
21200 		 * multicast routers.
21201 		 */
21202 		if (ire->ire_flags & RTF_MULTIRT) {
21203 			if (ipha->ipha_ttl > 1) {
21204 				ip2dbg(("ip_wput: forcing multicast "
21205 				    "multirt TTL to 1 (was %d), dst 0x%08x\n",
21206 				    ipha->ipha_ttl, ntohl(ire->ire_addr)));
21207 				ipha->ipha_ttl = 1;
21208 			}
21209 		}
21210 	} else {
21211 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
21212 		if ((ire != NULL) && (ire->ire_type &
21213 		    (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) {
21214 			ignore_dontroute = B_TRUE;
21215 			ignore_nexthop = B_TRUE;
21216 		}
21217 		if (ire != NULL) {
21218 			ire_refrele(ire);
21219 			ire = NULL;
21220 		}
21221 		/*
21222 		 * Guard against coming in from arp in which case conn is NULL.
21223 		 * Also guard against non M_DATA with dontroute set but
21224 		 * destined to local, loopback or broadcast addresses.
21225 		 */
21226 		if (connp != NULL && connp->conn_dontroute &&
21227 		    !ignore_dontroute) {
21228 dontroute:
21229 			/*
21230 			 * Set TTL to 1 if SO_DONTROUTE is set to prevent
21231 			 * routing protocols from seeing false direct
21232 			 * connectivity.
21233 			 */
21234 			ipha->ipha_ttl = 1;
21235 
21236 			/* If suitable ipif not found, drop packet */
21237 			dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst);
21238 			if (dst_ipif == NULL) {
21239 noroute:
21240 				ip1dbg(("ip_wput: no route for dst using"
21241 				    " SO_DONTROUTE\n"));
21242 				BUMP_MIB(&ipst->ips_ip_mib,
21243 				    ipIfStatsOutNoRoutes);
21244 				mp->b_prev = mp->b_next = NULL;
21245 				if (first_mp == NULL)
21246 					first_mp = mp;
21247 				goto drop_pkt;
21248 			} else {
21249 				/*
21250 				 * If suitable ipif has been found, set
21251 				 * xmit_ill to the corresponding
21252 				 * ipif_ill because we'll be using the
21253 				 * send_from_ill logic below.
21254 				 */
21255 				ASSERT(xmit_ill == NULL);
21256 				xmit_ill = dst_ipif->ipif_ill;
21257 				mutex_enter(&xmit_ill->ill_lock);
21258 				if (!ILL_CAN_LOOKUP(xmit_ill)) {
21259 					mutex_exit(&xmit_ill->ill_lock);
21260 					xmit_ill = NULL;
21261 					ipif_refrele(dst_ipif);
21262 					goto noroute;
21263 				}
21264 				ill_refhold_locked(xmit_ill);
21265 				mutex_exit(&xmit_ill->ill_lock);
21266 				ipif_refrele(dst_ipif);
21267 			}
21268 		}
21269 		/*
21270 		 * If we are bound to IPIF_NOFAILOVER address, look for
21271 		 * an IRE_CACHE matching the ill.
21272 		 */
21273 send_from_ill:
21274 		if (attach_ill != NULL) {
21275 			ipif_t	*attach_ipif;
21276 
21277 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
21278 
21279 			/*
21280 			 * Check if we need an ire that will not be
21281 			 * looked up by anybody else i.e. HIDDEN.
21282 			 */
21283 			if (ill_is_probeonly(attach_ill)) {
21284 				match_flags |= MATCH_IRE_MARK_HIDDEN;
21285 			}
21286 
21287 			attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
21288 			if (attach_ipif == NULL) {
21289 				ip1dbg(("ip_wput: No ipif for attach_ill\n"));
21290 				goto discard_pkt;
21291 			}
21292 			ire = ire_ctable_lookup(dst, 0, 0, attach_ipif,
21293 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
21294 			ipif_refrele(attach_ipif);
21295 		} else if (xmit_ill != NULL) {
21296 			ipif_t *ipif;
21297 
21298 			/*
21299 			 * Mark this packet as originated locally
21300 			 */
21301 			mp->b_prev = mp->b_next = NULL;
21302 
21303 			/*
21304 			 * Could be SO_DONTROUTE case also.
21305 			 * Verify that at least one ipif is up on the ill.
21306 			 */
21307 			if (xmit_ill->ill_ipif_up_count == 0) {
21308 				ip1dbg(("ip_output: xmit_ill %s is down\n",
21309 				    xmit_ill->ill_name));
21310 				goto drop_pkt;
21311 			}
21312 
21313 			ipif = ipif_get_next_ipif(NULL, xmit_ill);
21314 			if (ipif == NULL) {
21315 				ip1dbg(("ip_output: xmit_ill %s NULL ipif\n",
21316 				    xmit_ill->ill_name));
21317 				goto drop_pkt;
21318 			}
21319 
21320 			/*
21321 			 * Look for a ire that is part of the group,
21322 			 * if found use it else call ip_newroute_ipif.
21323 			 * IPCL_ZONEID is not used for matching because
21324 			 * IP_ALLZONES option is valid only when the
21325 			 * ill is accessible from all zones i.e has a
21326 			 * valid ipif in all zones.
21327 			 */
21328 			match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
21329 			ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid,
21330 			    MBLK_GETLABEL(mp), match_flags, ipst);
21331 			/*
21332 			 * If an ire exists use it or else create
21333 			 * an ire but don't add it to the cache.
21334 			 * Adding an ire may cause issues with
21335 			 * asymmetric routing.
21336 			 * In case of multiroute always act as if
21337 			 * ire does not exist.
21338 			 */
21339 			if (ire == NULL || ire->ire_flags & RTF_MULTIRT) {
21340 				if (ire != NULL)
21341 					ire_refrele(ire);
21342 				ip_newroute_ipif(q, first_mp, ipif,
21343 				    dst, connp, 0, zoneid, infop);
21344 				ipif_refrele(ipif);
21345 				ip1dbg(("ip_output: xmit_ill via %s\n",
21346 				    xmit_ill->ill_name));
21347 				ill_refrele(xmit_ill);
21348 				if (need_decref)
21349 					CONN_DEC_REF(connp);
21350 				return;
21351 			}
21352 			ipif_refrele(ipif);
21353 		} else if (ip_nexthop || (connp != NULL &&
21354 		    (connp->conn_nexthop_set)) && !ignore_nexthop) {
21355 			if (!ip_nexthop) {
21356 				ip_nexthop = B_TRUE;
21357 				nexthop_addr = connp->conn_nexthop_v4;
21358 			}
21359 			match_flags = MATCH_IRE_MARK_PRIVATE_ADDR |
21360 			    MATCH_IRE_GW;
21361 			ire = ire_ctable_lookup(dst, nexthop_addr, 0,
21362 			    NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
21363 		} else {
21364 			ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp),
21365 			    ipst);
21366 		}
21367 		if (!ire) {
21368 			/*
21369 			 * Make sure we don't load spread if this
21370 			 * is IPIF_NOFAILOVER case.
21371 			 */
21372 			if ((attach_ill != NULL) ||
21373 			    (ip_nexthop && !ignore_nexthop)) {
21374 				if (mctl_present) {
21375 					io = (ipsec_out_t *)first_mp->b_rptr;
21376 					ASSERT(first_mp->b_datap->db_type ==
21377 					    M_CTL);
21378 					ASSERT(io->ipsec_out_type == IPSEC_OUT);
21379 				} else {
21380 					ASSERT(mp == first_mp);
21381 					first_mp = allocb(
21382 					    sizeof (ipsec_info_t), BPRI_HI);
21383 					if (first_mp == NULL) {
21384 						first_mp = mp;
21385 						goto discard_pkt;
21386 					}
21387 					first_mp->b_datap->db_type = M_CTL;
21388 					first_mp->b_wptr +=
21389 					    sizeof (ipsec_info_t);
21390 					/* ipsec_out_secure is B_FALSE now */
21391 					bzero(first_mp->b_rptr,
21392 					    sizeof (ipsec_info_t));
21393 					io = (ipsec_out_t *)first_mp->b_rptr;
21394 					io->ipsec_out_type = IPSEC_OUT;
21395 					io->ipsec_out_len =
21396 					    sizeof (ipsec_out_t);
21397 					io->ipsec_out_use_global_policy =
21398 					    B_TRUE;
21399 					io->ipsec_out_ns = ipst->ips_netstack;
21400 					first_mp->b_cont = mp;
21401 					mctl_present = B_TRUE;
21402 				}
21403 				if (attach_ill != NULL) {
21404 					io->ipsec_out_ill_index = attach_ill->
21405 					    ill_phyint->phyint_ifindex;
21406 					io->ipsec_out_attach_if = B_TRUE;
21407 				} else {
21408 					io->ipsec_out_ip_nexthop = ip_nexthop;
21409 					io->ipsec_out_nexthop_addr =
21410 					    nexthop_addr;
21411 				}
21412 			}
21413 noirefound:
21414 			/*
21415 			 * Mark this packet as having originated on
21416 			 * this machine.  This will be noted in
21417 			 * ire_add_then_send, which needs to know
21418 			 * whether to run it back through ip_wput or
21419 			 * ip_rput following successful resolution.
21420 			 */
21421 			mp->b_prev = NULL;
21422 			mp->b_next = NULL;
21423 			ip_newroute(q, first_mp, dst, connp, zoneid, ipst);
21424 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21425 			    "ip_wput_end: q %p (%S)", q, "newroute");
21426 			if (attach_ill != NULL)
21427 				ill_refrele(attach_ill);
21428 			if (xmit_ill != NULL)
21429 				ill_refrele(xmit_ill);
21430 			if (need_decref)
21431 				CONN_DEC_REF(connp);
21432 			return;
21433 		}
21434 	}
21435 
21436 	/* We now know where we are going with it. */
21437 
21438 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21439 	    "ip_wput_end: q %p (%S)", q, "end");
21440 
21441 	/*
21442 	 * Check if the ire has the RTF_MULTIRT flag, inherited
21443 	 * from an IRE_OFFSUBNET ire entry in ip_newroute.
21444 	 */
21445 	if (ire->ire_flags & RTF_MULTIRT) {
21446 		/*
21447 		 * Force the TTL of multirouted packets if required.
21448 		 * The TTL of such packets is bounded by the
21449 		 * ip_multirt_ttl ndd variable.
21450 		 */
21451 		if ((ipst->ips_ip_multirt_ttl > 0) &&
21452 		    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
21453 			ip2dbg(("ip_wput: forcing multirt TTL to %d "
21454 			    "(was %d), dst 0x%08x\n",
21455 			    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
21456 			    ntohl(ire->ire_addr)));
21457 			ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
21458 		}
21459 		/*
21460 		 * At this point, we check to see if there are any pending
21461 		 * unresolved routes. ire_multirt_resolvable()
21462 		 * checks in O(n) that all IRE_OFFSUBNET ire
21463 		 * entries for the packet's destination and
21464 		 * flagged RTF_MULTIRT are currently resolved.
21465 		 * If some remain unresolved, we make a copy
21466 		 * of the current message. It will be used
21467 		 * to initiate additional route resolutions.
21468 		 */
21469 		multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
21470 		    MBLK_GETLABEL(first_mp), ipst);
21471 		ip2dbg(("ip_wput[noirefound]: ire %p, "
21472 		    "multirt_need_resolve %d, first_mp %p\n",
21473 		    (void *)ire, multirt_need_resolve, (void *)first_mp));
21474 		if (multirt_need_resolve) {
21475 			copy_mp = copymsg(first_mp);
21476 			if (copy_mp != NULL) {
21477 				MULTIRT_DEBUG_TAG(copy_mp);
21478 			}
21479 		}
21480 	}
21481 
21482 	ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
21483 	/*
21484 	 * Try to resolve another multiroute if
21485 	 * ire_multirt_resolvable() deemed it necessary.
21486 	 * At this point, we need to distinguish
21487 	 * multicasts from other packets. For multicasts,
21488 	 * we call ip_newroute_ipif() and request that both
21489 	 * multirouting and setsrc flags are checked.
21490 	 */
21491 	if (copy_mp != NULL) {
21492 		if (CLASSD(dst)) {
21493 			ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst);
21494 			if (ipif) {
21495 				ASSERT(infop->ip_opt_ill_index == 0);
21496 				ip_newroute_ipif(q, copy_mp, ipif, dst, connp,
21497 				    RTF_SETSRC | RTF_MULTIRT, zoneid, infop);
21498 				ipif_refrele(ipif);
21499 			} else {
21500 				MULTIRT_DEBUG_UNTAG(copy_mp);
21501 				freemsg(copy_mp);
21502 				copy_mp = NULL;
21503 			}
21504 		} else {
21505 			ip_newroute(q, copy_mp, dst, connp, zoneid, ipst);
21506 		}
21507 	}
21508 	if (attach_ill != NULL)
21509 		ill_refrele(attach_ill);
21510 	if (xmit_ill != NULL)
21511 		ill_refrele(xmit_ill);
21512 	if (need_decref)
21513 		CONN_DEC_REF(connp);
21514 	return;
21515 
21516 icmp_parameter_problem:
21517 	/* could not have originated externally */
21518 	ASSERT(mp->b_prev == NULL);
21519 	if (ip_hdr_complete(ipha, zoneid, ipst) == 0) {
21520 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
21521 		/* it's the IP header length that's in trouble */
21522 		icmp_param_problem(q, first_mp, 0, zoneid, ipst);
21523 		first_mp = NULL;
21524 	}
21525 
21526 discard_pkt:
21527 	BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
21528 drop_pkt:
21529 	ip1dbg(("ip_wput: dropped packet\n"));
21530 	if (ire != NULL)
21531 		ire_refrele(ire);
21532 	if (need_decref)
21533 		CONN_DEC_REF(connp);
21534 	freemsg(first_mp);
21535 	if (attach_ill != NULL)
21536 		ill_refrele(attach_ill);
21537 	if (xmit_ill != NULL)
21538 		ill_refrele(xmit_ill);
21539 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21540 	    "ip_wput_end: q %p (%S)", q, "droppkt");
21541 }
21542 
21543 /*
21544  * If this is a conn_t queue, then we pass in the conn. This includes the
21545  * zoneid.
21546  * Otherwise, this is a message coming back from ARP or for an ill_t queue,
21547  * in which case we use the global zoneid since those are all part of
21548  * the global zone.
21549  */
21550 void
21551 ip_wput(queue_t *q, mblk_t *mp)
21552 {
21553 	if (CONN_Q(q))
21554 		ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
21555 	else
21556 		ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT);
21557 }
21558 
21559 /*
21560  *
21561  * The following rules must be observed when accessing any ipif or ill
21562  * that has been cached in the conn. Typically conn_nofailover_ill,
21563  * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill.
21564  *
21565  * Access: The ipif or ill pointed to from the conn can be accessed under
21566  * the protection of the conn_lock or after it has been refheld under the
21567  * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or
21568  * ILL_CAN_LOOKUP macros must be used before actually doing the refhold.
21569  * The reason for this is that a concurrent unplumb could actually be
21570  * cleaning up these cached pointers by walking the conns and might have
21571  * finished cleaning up the conn in question. The macros check that an
21572  * unplumb has not yet started on the ipif or ill.
21573  *
21574  * Caching: An ipif or ill pointer may be cached in the conn only after
21575  * making sure that an unplumb has not started. So the caching is done
21576  * while holding both the conn_lock and the ill_lock and after using the
21577  * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED
21578  * flag before starting the cleanup of conns.
21579  *
21580  * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock
21581  * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock
21582  * or a reference to the ipif or a reference to an ire that references the
21583  * ipif. An ipif does not change its ill except for failover/failback. Since
21584  * failover/failback happens only after bringing down the ipif and making sure
21585  * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock
21586  * the above holds.
21587  */
21588 ipif_t *
21589 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err)
21590 {
21591 	ipif_t	*ipif;
21592 	ill_t	*ill;
21593 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
21594 
21595 	*err = 0;
21596 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21597 	mutex_enter(&connp->conn_lock);
21598 	ipif = *ipifp;
21599 	if (ipif != NULL) {
21600 		ill = ipif->ipif_ill;
21601 		mutex_enter(&ill->ill_lock);
21602 		if (IPIF_CAN_LOOKUP(ipif)) {
21603 			ipif_refhold_locked(ipif);
21604 			mutex_exit(&ill->ill_lock);
21605 			mutex_exit(&connp->conn_lock);
21606 			rw_exit(&ipst->ips_ill_g_lock);
21607 			return (ipif);
21608 		} else {
21609 			*err = IPIF_LOOKUP_FAILED;
21610 		}
21611 		mutex_exit(&ill->ill_lock);
21612 	}
21613 	mutex_exit(&connp->conn_lock);
21614 	rw_exit(&ipst->ips_ill_g_lock);
21615 	return (NULL);
21616 }
21617 
21618 ill_t *
21619 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err)
21620 {
21621 	ill_t	*ill;
21622 
21623 	*err = 0;
21624 	mutex_enter(&connp->conn_lock);
21625 	ill = *illp;
21626 	if (ill != NULL) {
21627 		mutex_enter(&ill->ill_lock);
21628 		if (ILL_CAN_LOOKUP(ill)) {
21629 			ill_refhold_locked(ill);
21630 			mutex_exit(&ill->ill_lock);
21631 			mutex_exit(&connp->conn_lock);
21632 			return (ill);
21633 		} else {
21634 			*err = ILL_LOOKUP_FAILED;
21635 		}
21636 		mutex_exit(&ill->ill_lock);
21637 	}
21638 	mutex_exit(&connp->conn_lock);
21639 	return (NULL);
21640 }
21641 
21642 static int
21643 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif)
21644 {
21645 	ill_t	*ill;
21646 
21647 	ill = ipif->ipif_ill;
21648 	mutex_enter(&connp->conn_lock);
21649 	mutex_enter(&ill->ill_lock);
21650 	if (IPIF_CAN_LOOKUP(ipif)) {
21651 		*ipifp = ipif;
21652 		mutex_exit(&ill->ill_lock);
21653 		mutex_exit(&connp->conn_lock);
21654 		return (0);
21655 	}
21656 	mutex_exit(&ill->ill_lock);
21657 	mutex_exit(&connp->conn_lock);
21658 	return (IPIF_LOOKUP_FAILED);
21659 }
21660 
21661 /*
21662  * This is called if the outbound datagram needs fragmentation.
21663  *
21664  * NOTE : This function does not ire_refrele the ire argument passed in.
21665  */
21666 static void
21667 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid,
21668     ip_stack_t *ipst)
21669 {
21670 	ipha_t		*ipha;
21671 	mblk_t		*mp;
21672 	uint32_t	v_hlen_tos_len;
21673 	uint32_t	max_frag;
21674 	uint32_t	frag_flag;
21675 	boolean_t	dont_use;
21676 
21677 	if (ipsec_mp->b_datap->db_type == M_CTL) {
21678 		mp = ipsec_mp->b_cont;
21679 	} else {
21680 		mp = ipsec_mp;
21681 	}
21682 
21683 	ipha = (ipha_t *)mp->b_rptr;
21684 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
21685 
21686 #ifdef	_BIG_ENDIAN
21687 #define	V_HLEN	(v_hlen_tos_len >> 24)
21688 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
21689 #else
21690 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
21691 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
21692 #endif
21693 
21694 #ifndef SPEED_BEFORE_SAFETY
21695 	/*
21696 	 * Check that ipha_length is consistent with
21697 	 * the mblk length
21698 	 */
21699 	if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) {
21700 		ip0dbg(("Packet length mismatch: %d, %ld\n",
21701 		    LENGTH, msgdsize(mp)));
21702 		freemsg(ipsec_mp);
21703 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21704 		    "ip_wput_ire_fragmentit: mp %p (%S)", mp,
21705 		    "packet length mismatch");
21706 		return;
21707 	}
21708 #endif
21709 	/*
21710 	 * Don't use frag_flag if pre-built packet or source
21711 	 * routed or if multicast (since multicast packets do not solicit
21712 	 * ICMP "packet too big" messages). Get the values of
21713 	 * max_frag and frag_flag atomically by acquiring the
21714 	 * ire_lock.
21715 	 */
21716 	mutex_enter(&ire->ire_lock);
21717 	max_frag = ire->ire_max_frag;
21718 	frag_flag = ire->ire_frag_flag;
21719 	mutex_exit(&ire->ire_lock);
21720 
21721 	dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) ||
21722 	    (V_HLEN != IP_SIMPLE_HDR_VERSION &&
21723 	    ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst));
21724 
21725 	ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag,
21726 	    (dont_use ? 0 : frag_flag), zoneid, ipst);
21727 }
21728 
21729 /*
21730  * Used for deciding the MSS size for the upper layer. Thus
21731  * we need to check the outbound policy values in the conn.
21732  */
21733 int
21734 conn_ipsec_length(conn_t *connp)
21735 {
21736 	ipsec_latch_t *ipl;
21737 
21738 	ipl = connp->conn_latch;
21739 	if (ipl == NULL)
21740 		return (0);
21741 
21742 	if (ipl->ipl_out_policy == NULL)
21743 		return (0);
21744 
21745 	return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd);
21746 }
21747 
21748 /*
21749  * Returns an estimate of the IPsec headers size. This is used if
21750  * we don't want to call into IPsec to get the exact size.
21751  */
21752 int
21753 ipsec_out_extra_length(mblk_t *ipsec_mp)
21754 {
21755 	ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
21756 	ipsec_action_t *a;
21757 
21758 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
21759 	if (!io->ipsec_out_secure)
21760 		return (0);
21761 
21762 	a = io->ipsec_out_act;
21763 
21764 	if (a == NULL) {
21765 		ASSERT(io->ipsec_out_policy != NULL);
21766 		a = io->ipsec_out_policy->ipsp_act;
21767 	}
21768 	ASSERT(a != NULL);
21769 
21770 	return (a->ipa_ovhd);
21771 }
21772 
21773 /*
21774  * Returns an estimate of the IPsec headers size. This is used if
21775  * we don't want to call into IPsec to get the exact size.
21776  */
21777 int
21778 ipsec_in_extra_length(mblk_t *ipsec_mp)
21779 {
21780 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21781 	ipsec_action_t *a;
21782 
21783 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
21784 
21785 	a = ii->ipsec_in_action;
21786 	return (a == NULL ? 0 : a->ipa_ovhd);
21787 }
21788 
21789 /*
21790  * If there are any source route options, return the true final
21791  * destination. Otherwise, return the destination.
21792  */
21793 ipaddr_t
21794 ip_get_dst(ipha_t *ipha)
21795 {
21796 	ipoptp_t	opts;
21797 	uchar_t		*opt;
21798 	uint8_t		optval;
21799 	uint8_t		optlen;
21800 	ipaddr_t	dst;
21801 	uint32_t off;
21802 
21803 	dst = ipha->ipha_dst;
21804 
21805 	if (IS_SIMPLE_IPH(ipha))
21806 		return (dst);
21807 
21808 	for (optval = ipoptp_first(&opts, ipha);
21809 	    optval != IPOPT_EOL;
21810 	    optval = ipoptp_next(&opts)) {
21811 		opt = opts.ipoptp_cur;
21812 		optlen = opts.ipoptp_len;
21813 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
21814 		switch (optval) {
21815 		case IPOPT_SSRR:
21816 		case IPOPT_LSRR:
21817 			off = opt[IPOPT_OFFSET];
21818 			/*
21819 			 * If one of the conditions is true, it means
21820 			 * end of options and dst already has the right
21821 			 * value.
21822 			 */
21823 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
21824 				off = optlen - IP_ADDR_LEN;
21825 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
21826 			}
21827 			return (dst);
21828 		default:
21829 			break;
21830 		}
21831 	}
21832 
21833 	return (dst);
21834 }
21835 
21836 mblk_t *
21837 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
21838     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
21839 {
21840 	ipsec_out_t	*io;
21841 	mblk_t		*first_mp;
21842 	boolean_t policy_present;
21843 	ip_stack_t	*ipst;
21844 	ipsec_stack_t	*ipss;
21845 
21846 	ASSERT(ire != NULL);
21847 	ipst = ire->ire_ipst;
21848 	ipss = ipst->ips_netstack->netstack_ipsec;
21849 
21850 	first_mp = mp;
21851 	if (mp->b_datap->db_type == M_CTL) {
21852 		io = (ipsec_out_t *)first_mp->b_rptr;
21853 		/*
21854 		 * ip_wput[_v6] attaches an IPSEC_OUT in two cases.
21855 		 *
21856 		 * 1) There is per-socket policy (including cached global
21857 		 *    policy) or a policy on the IP-in-IP tunnel.
21858 		 * 2) There is no per-socket policy, but it is
21859 		 *    a multicast packet that needs to go out
21860 		 *    on a specific interface. This is the case
21861 		 *    where (ip_wput and ip_wput_multicast) attaches
21862 		 *    an IPSEC_OUT and sets ipsec_out_secure B_FALSE.
21863 		 *
21864 		 * In case (2) we check with global policy to
21865 		 * see if there is a match and set the ill_index
21866 		 * appropriately so that we can lookup the ire
21867 		 * properly in ip_wput_ipsec_out.
21868 		 */
21869 
21870 		/*
21871 		 * ipsec_out_use_global_policy is set to B_FALSE
21872 		 * in ipsec_in_to_out(). Refer to that function for
21873 		 * details.
21874 		 */
21875 		if ((io->ipsec_out_latch == NULL) &&
21876 		    (io->ipsec_out_use_global_policy)) {
21877 			return (ip_wput_attach_policy(first_mp, ipha, ip6h,
21878 			    ire, connp, unspec_src, zoneid));
21879 		}
21880 		if (!io->ipsec_out_secure) {
21881 			/*
21882 			 * If this is not a secure packet, drop
21883 			 * the IPSEC_OUT mp and treat it as a clear
21884 			 * packet. This happens when we are sending
21885 			 * a ICMP reply back to a clear packet. See
21886 			 * ipsec_in_to_out() for details.
21887 			 */
21888 			mp = first_mp->b_cont;
21889 			freeb(first_mp);
21890 		}
21891 		return (mp);
21892 	}
21893 	/*
21894 	 * See whether we need to attach a global policy here. We
21895 	 * don't depend on the conn (as it could be null) for deciding
21896 	 * what policy this datagram should go through because it
21897 	 * should have happened in ip_wput if there was some
21898 	 * policy. This normally happens for connections which are not
21899 	 * fully bound preventing us from caching policies in
21900 	 * ip_bind. Packets coming from the TCP listener/global queue
21901 	 * - which are non-hard_bound - could also be affected by
21902 	 * applying policy here.
21903 	 *
21904 	 * If this packet is coming from tcp global queue or listener,
21905 	 * we will be applying policy here.  This may not be *right*
21906 	 * if these packets are coming from the detached connection as
21907 	 * it could have gone in clear before. This happens only if a
21908 	 * TCP connection started when there is no policy and somebody
21909 	 * added policy before it became detached. Thus packets of the
21910 	 * detached connection could go out secure and the other end
21911 	 * would drop it because it will be expecting in clear. The
21912 	 * converse is not true i.e if somebody starts a TCP
21913 	 * connection and deletes the policy, all the packets will
21914 	 * still go out with the policy that existed before deleting
21915 	 * because ip_unbind sends up policy information which is used
21916 	 * by TCP on subsequent ip_wputs. The right solution is to fix
21917 	 * TCP to attach a dummy IPSEC_OUT and set
21918 	 * ipsec_out_use_global_policy to B_FALSE. As this might
21919 	 * affect performance for normal cases, we are not doing it.
21920 	 * Thus, set policy before starting any TCP connections.
21921 	 *
21922 	 * NOTE - We might apply policy even for a hard bound connection
21923 	 * - for which we cached policy in ip_bind - if somebody added
21924 	 * global policy after we inherited the policy in ip_bind.
21925 	 * This means that the packets that were going out in clear
21926 	 * previously would start going secure and hence get dropped
21927 	 * on the other side. To fix this, TCP attaches a dummy
21928 	 * ipsec_out and make sure that we don't apply global policy.
21929 	 */
21930 	if (ipha != NULL)
21931 		policy_present = ipss->ipsec_outbound_v4_policy_present;
21932 	else
21933 		policy_present = ipss->ipsec_outbound_v6_policy_present;
21934 	if (!policy_present)
21935 		return (mp);
21936 
21937 	return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src,
21938 	    zoneid));
21939 }
21940 
21941 ire_t *
21942 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill)
21943 {
21944 	ipaddr_t addr;
21945 	ire_t *save_ire;
21946 	irb_t *irb;
21947 	ill_group_t *illgrp;
21948 	int	err;
21949 
21950 	save_ire = ire;
21951 	addr = ire->ire_addr;
21952 
21953 	ASSERT(ire->ire_type == IRE_BROADCAST);
21954 
21955 	illgrp = connp->conn_outgoing_ill->ill_group;
21956 	if (illgrp == NULL) {
21957 		*conn_outgoing_ill = conn_get_held_ill(connp,
21958 		    &connp->conn_outgoing_ill, &err);
21959 		if (err == ILL_LOOKUP_FAILED) {
21960 			ire_refrele(save_ire);
21961 			return (NULL);
21962 		}
21963 		return (save_ire);
21964 	}
21965 	/*
21966 	 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set.
21967 	 * If it is part of the group, we need to send on the ire
21968 	 * that has been cleared of IRE_MARK_NORECV and that belongs
21969 	 * to this group. This is okay as IP_BOUND_IF really means
21970 	 * any ill in the group. We depend on the fact that the
21971 	 * first ire in the group is always cleared of IRE_MARK_NORECV
21972 	 * if such an ire exists. This is possible only if you have
21973 	 * at least one ill in the group that has not failed.
21974 	 *
21975 	 * First get to the ire that matches the address and group.
21976 	 *
21977 	 * We don't look for an ire with a matching zoneid because a given zone
21978 	 * won't always have broadcast ires on all ills in the group.
21979 	 */
21980 	irb = ire->ire_bucket;
21981 	rw_enter(&irb->irb_lock, RW_READER);
21982 	if (ire->ire_marks & IRE_MARK_NORECV) {
21983 		/*
21984 		 * If the current zone only has an ire broadcast for this
21985 		 * address marked NORECV, the ire we want is ahead in the
21986 		 * bucket, so we look it up deliberately ignoring the zoneid.
21987 		 */
21988 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
21989 			if (ire->ire_addr != addr)
21990 				continue;
21991 			/* skip over deleted ires */
21992 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
21993 				continue;
21994 		}
21995 	}
21996 	while (ire != NULL) {
21997 		/*
21998 		 * If a new interface is coming up, we could end up
21999 		 * seeing the loopback ire and the non-loopback ire
22000 		 * may not have been added yet. So check for ire_stq
22001 		 */
22002 		if (ire->ire_stq != NULL && (ire->ire_addr != addr ||
22003 		    ire->ire_ipif->ipif_ill->ill_group == illgrp)) {
22004 			break;
22005 		}
22006 		ire = ire->ire_next;
22007 	}
22008 	if (ire != NULL && ire->ire_addr == addr &&
22009 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
22010 		IRE_REFHOLD(ire);
22011 		rw_exit(&irb->irb_lock);
22012 		ire_refrele(save_ire);
22013 		*conn_outgoing_ill = ire_to_ill(ire);
22014 		/*
22015 		 * Refhold the ill to make the conn_outgoing_ill
22016 		 * independent of the ire. ip_wput_ire goes in a loop
22017 		 * and may refrele the ire. Since we have an ire at this
22018 		 * point we don't need to use ILL_CAN_LOOKUP on the ill.
22019 		 */
22020 		ill_refhold(*conn_outgoing_ill);
22021 		return (ire);
22022 	}
22023 	rw_exit(&irb->irb_lock);
22024 	ip1dbg(("conn_set_outgoing_ill: No matching ire\n"));
22025 	/*
22026 	 * If we can't find a suitable ire, return the original ire.
22027 	 */
22028 	return (save_ire);
22029 }
22030 
22031 /*
22032  * This function does the ire_refrele of the ire passed in as the
22033  * argument. As this function looks up more ires i.e broadcast ires,
22034  * it needs to REFRELE them. Currently, for simplicity we don't
22035  * differentiate the one passed in and looked up here. We always
22036  * REFRELE.
22037  * IPQoS Notes:
22038  * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for
22039  * IPsec packets are done in ipsec_out_process.
22040  *
22041  */
22042 void
22043 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller,
22044     zoneid_t zoneid)
22045 {
22046 	ipha_t		*ipha;
22047 #define	rptr	((uchar_t *)ipha)
22048 	queue_t		*stq;
22049 #define	Q_TO_INDEX(stq)	(((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex)
22050 	uint32_t	v_hlen_tos_len;
22051 	uint32_t	ttl_protocol;
22052 	ipaddr_t	src;
22053 	ipaddr_t	dst;
22054 	uint32_t	cksum;
22055 	ipaddr_t	orig_src;
22056 	ire_t		*ire1;
22057 	mblk_t		*next_mp;
22058 	uint_t		hlen;
22059 	uint16_t	*up;
22060 	uint32_t	max_frag = ire->ire_max_frag;
22061 	ill_t		*ill = ire_to_ill(ire);
22062 	int		clusterwide;
22063 	uint16_t	ip_hdr_included; /* IP header included by ULP? */
22064 	int		ipsec_len;
22065 	mblk_t		*first_mp;
22066 	ipsec_out_t	*io;
22067 	boolean_t	conn_dontroute;		/* conn value for multicast */
22068 	boolean_t	conn_multicast_loop;	/* conn value for multicast */
22069 	boolean_t	multicast_forward;	/* Should we forward ? */
22070 	boolean_t	unspec_src;
22071 	ill_t		*conn_outgoing_ill = NULL;
22072 	ill_t		*ire_ill;
22073 	ill_t		*ire1_ill;
22074 	ill_t		*out_ill;
22075 	uint32_t 	ill_index = 0;
22076 	boolean_t	multirt_send = B_FALSE;
22077 	int		err;
22078 	ipxmit_state_t	pktxmit_state;
22079 	ip_stack_t	*ipst = ire->ire_ipst;
22080 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
22081 
22082 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START,
22083 	    "ip_wput_ire_start: q %p", q);
22084 
22085 	multicast_forward = B_FALSE;
22086 	unspec_src = (connp != NULL && connp->conn_unspec_src);
22087 
22088 	if (ire->ire_flags & RTF_MULTIRT) {
22089 		/*
22090 		 * Multirouting case. The bucket where ire is stored
22091 		 * probably holds other RTF_MULTIRT flagged ire
22092 		 * to the destination. In this call to ip_wput_ire,
22093 		 * we attempt to send the packet through all
22094 		 * those ires. Thus, we first ensure that ire is the
22095 		 * first RTF_MULTIRT ire in the bucket,
22096 		 * before walking the ire list.
22097 		 */
22098 		ire_t *first_ire;
22099 		irb_t *irb = ire->ire_bucket;
22100 		ASSERT(irb != NULL);
22101 
22102 		/* Make sure we do not omit any multiroute ire. */
22103 		IRB_REFHOLD(irb);
22104 		for (first_ire = irb->irb_ire;
22105 		    first_ire != NULL;
22106 		    first_ire = first_ire->ire_next) {
22107 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
22108 			    (first_ire->ire_addr == ire->ire_addr) &&
22109 			    !(first_ire->ire_marks &
22110 			    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) {
22111 				break;
22112 			}
22113 		}
22114 
22115 		if ((first_ire != NULL) && (first_ire != ire)) {
22116 			IRE_REFHOLD(first_ire);
22117 			ire_refrele(ire);
22118 			ire = first_ire;
22119 			ill = ire_to_ill(ire);
22120 		}
22121 		IRB_REFRELE(irb);
22122 	}
22123 
22124 	/*
22125 	 * conn_outgoing_ill variable is used only in the broadcast loop.
22126 	 * for performance we don't grab the mutexs in the fastpath
22127 	 */
22128 	if ((connp != NULL) &&
22129 	    (ire->ire_type == IRE_BROADCAST) &&
22130 	    ((connp->conn_nofailover_ill != NULL) ||
22131 	    (connp->conn_outgoing_ill != NULL))) {
22132 		/*
22133 		 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF
22134 		 * option. So, see if this endpoint is bound to a
22135 		 * IPIF_NOFAILOVER address. If so, honor it. This implies
22136 		 * that if the interface is failed, we will still send
22137 		 * the packet on the same ill which is what we want.
22138 		 */
22139 		conn_outgoing_ill = conn_get_held_ill(connp,
22140 		    &connp->conn_nofailover_ill, &err);
22141 		if (err == ILL_LOOKUP_FAILED) {
22142 			ire_refrele(ire);
22143 			freemsg(mp);
22144 			return;
22145 		}
22146 		if (conn_outgoing_ill == NULL) {
22147 			/*
22148 			 * Choose a good ill in the group to send the
22149 			 * packets on.
22150 			 */
22151 			ire = conn_set_outgoing_ill(connp, ire,
22152 			    &conn_outgoing_ill);
22153 			if (ire == NULL) {
22154 				freemsg(mp);
22155 				return;
22156 			}
22157 		}
22158 	}
22159 
22160 	if (mp->b_datap->db_type != M_CTL) {
22161 		ipha = (ipha_t *)mp->b_rptr;
22162 	} else {
22163 		io = (ipsec_out_t *)mp->b_rptr;
22164 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
22165 		ASSERT(zoneid == io->ipsec_out_zoneid);
22166 		ASSERT(zoneid != ALL_ZONES);
22167 		ipha = (ipha_t *)mp->b_cont->b_rptr;
22168 		dst = ipha->ipha_dst;
22169 		/*
22170 		 * For the multicast case, ipsec_out carries conn_dontroute and
22171 		 * conn_multicast_loop as conn may not be available here. We
22172 		 * need this for multicast loopback and forwarding which is done
22173 		 * later in the code.
22174 		 */
22175 		if (CLASSD(dst)) {
22176 			conn_dontroute = io->ipsec_out_dontroute;
22177 			conn_multicast_loop = io->ipsec_out_multicast_loop;
22178 			/*
22179 			 * If conn_dontroute is not set or conn_multicast_loop
22180 			 * is set, we need to do forwarding/loopback. For
22181 			 * datagrams from ip_wput_multicast, conn_dontroute is
22182 			 * set to B_TRUE and conn_multicast_loop is set to
22183 			 * B_FALSE so that we neither do forwarding nor
22184 			 * loopback.
22185 			 */
22186 			if (!conn_dontroute || conn_multicast_loop)
22187 				multicast_forward = B_TRUE;
22188 		}
22189 	}
22190 
22191 	if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid &&
22192 	    ire->ire_zoneid != ALL_ZONES) {
22193 		/*
22194 		 * When a zone sends a packet to another zone, we try to deliver
22195 		 * the packet under the same conditions as if the destination
22196 		 * was a real node on the network. To do so, we look for a
22197 		 * matching route in the forwarding table.
22198 		 * RTF_REJECT and RTF_BLACKHOLE are handled just like
22199 		 * ip_newroute() does.
22200 		 * Note that IRE_LOCAL are special, since they are used
22201 		 * when the zoneid doesn't match in some cases. This means that
22202 		 * we need to handle ipha_src differently since ire_src_addr
22203 		 * belongs to the receiving zone instead of the sending zone.
22204 		 * When ip_restrict_interzone_loopback is set, then
22205 		 * ire_cache_lookup() ensures that IRE_LOCAL are only used
22206 		 * for loopback between zones when the logical "Ethernet" would
22207 		 * have looped them back.
22208 		 */
22209 		ire_t *src_ire;
22210 
22211 		src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0,
22212 		    NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE |
22213 		    MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst);
22214 		if (src_ire != NULL &&
22215 		    !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) &&
22216 		    (!ipst->ips_ip_restrict_interzone_loopback ||
22217 		    ire_local_same_ill_group(ire, src_ire))) {
22218 			if (ipha->ipha_src == INADDR_ANY && !unspec_src)
22219 				ipha->ipha_src = src_ire->ire_src_addr;
22220 			ire_refrele(src_ire);
22221 		} else {
22222 			ire_refrele(ire);
22223 			if (conn_outgoing_ill != NULL)
22224 				ill_refrele(conn_outgoing_ill);
22225 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
22226 			if (src_ire != NULL) {
22227 				if (src_ire->ire_flags & RTF_BLACKHOLE) {
22228 					ire_refrele(src_ire);
22229 					freemsg(mp);
22230 					return;
22231 				}
22232 				ire_refrele(src_ire);
22233 			}
22234 			if (ip_hdr_complete(ipha, zoneid, ipst)) {
22235 				/* Failed */
22236 				freemsg(mp);
22237 				return;
22238 			}
22239 			icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid,
22240 			    ipst);
22241 			return;
22242 		}
22243 	}
22244 
22245 	if (mp->b_datap->db_type == M_CTL ||
22246 	    ipss->ipsec_outbound_v4_policy_present) {
22247 		mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp,
22248 		    unspec_src, zoneid);
22249 		if (mp == NULL) {
22250 			ire_refrele(ire);
22251 			if (conn_outgoing_ill != NULL)
22252 				ill_refrele(conn_outgoing_ill);
22253 			return;
22254 		}
22255 		/*
22256 		 * Trusted Extensions supports all-zones interfaces, so
22257 		 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to
22258 		 * the global zone.
22259 		 */
22260 		if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) {
22261 			io = (ipsec_out_t *)mp->b_rptr;
22262 			ASSERT(io->ipsec_out_type == IPSEC_OUT);
22263 			zoneid = io->ipsec_out_zoneid;
22264 		}
22265 	}
22266 
22267 	first_mp = mp;
22268 	ipsec_len = 0;
22269 
22270 	if (first_mp->b_datap->db_type == M_CTL) {
22271 		io = (ipsec_out_t *)first_mp->b_rptr;
22272 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
22273 		mp = first_mp->b_cont;
22274 		ipsec_len = ipsec_out_extra_length(first_mp);
22275 		ASSERT(ipsec_len >= 0);
22276 		/* We already picked up the zoneid from the M_CTL above */
22277 		ASSERT(zoneid == io->ipsec_out_zoneid);
22278 		ASSERT(zoneid != ALL_ZONES);
22279 
22280 		/*
22281 		 * Drop M_CTL here if IPsec processing is not needed.
22282 		 * (Non-IPsec use of M_CTL extracted any information it
22283 		 * needed above).
22284 		 */
22285 		if (ipsec_len == 0) {
22286 			freeb(first_mp);
22287 			first_mp = mp;
22288 		}
22289 	}
22290 
22291 	/*
22292 	 * Fast path for ip_wput_ire
22293 	 */
22294 
22295 	ipha = (ipha_t *)mp->b_rptr;
22296 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
22297 	dst = ipha->ipha_dst;
22298 
22299 	/*
22300 	 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED
22301 	 * if the socket is a SOCK_RAW type. The transport checksum should
22302 	 * be provided in the pre-built packet, so we don't need to compute it.
22303 	 * Also, other application set flags, like DF, should not be altered.
22304 	 * Other transport MUST pass down zero.
22305 	 */
22306 	ip_hdr_included = ipha->ipha_ident;
22307 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
22308 
22309 	if (CLASSD(dst)) {
22310 		ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n",
22311 		    ntohl(dst),
22312 		    ip_nv_lookup(ire_nv_tbl, ire->ire_type),
22313 		    ntohl(ire->ire_addr)));
22314 	}
22315 
22316 /* Macros to extract header fields from data already in registers */
22317 #ifdef	_BIG_ENDIAN
22318 #define	V_HLEN	(v_hlen_tos_len >> 24)
22319 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
22320 #define	PROTO	(ttl_protocol & 0xFF)
22321 #else
22322 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
22323 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
22324 #define	PROTO	(ttl_protocol >> 8)
22325 #endif
22326 
22327 
22328 	orig_src = src = ipha->ipha_src;
22329 	/* (The loop back to "another" is explained down below.) */
22330 another:;
22331 	/*
22332 	 * Assign an ident value for this packet.  We assign idents on
22333 	 * a per destination basis out of the IRE.  There could be
22334 	 * other threads targeting the same destination, so we have to
22335 	 * arrange for a atomic increment.  Note that we use a 32-bit
22336 	 * atomic add because it has better performance than its
22337 	 * 16-bit sibling.
22338 	 *
22339 	 * If running in cluster mode and if the source address
22340 	 * belongs to a replicated service then vector through
22341 	 * cl_inet_ipident vector to allocate ip identifier
22342 	 * NOTE: This is a contract private interface with the
22343 	 * clustering group.
22344 	 */
22345 	clusterwide = 0;
22346 	if (cl_inet_ipident) {
22347 		ASSERT(cl_inet_isclusterwide);
22348 		if ((*cl_inet_isclusterwide)(IPPROTO_IP,
22349 		    AF_INET, (uint8_t *)(uintptr_t)src)) {
22350 			ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP,
22351 			    AF_INET, (uint8_t *)(uintptr_t)src,
22352 			    (uint8_t *)(uintptr_t)dst);
22353 			clusterwide = 1;
22354 		}
22355 	}
22356 	if (!clusterwide) {
22357 		ipha->ipha_ident =
22358 		    (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
22359 	}
22360 
22361 #ifndef _BIG_ENDIAN
22362 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
22363 #endif
22364 
22365 	/*
22366 	 * Set source address unless sent on an ill or conn_unspec_src is set.
22367 	 * This is needed to obey conn_unspec_src when packets go through
22368 	 * ip_newroute + arp.
22369 	 * Assumes ip_newroute{,_multi} sets the source address as well.
22370 	 */
22371 	if (src == INADDR_ANY && !unspec_src) {
22372 		/*
22373 		 * Assign the appropriate source address from the IRE if none
22374 		 * was specified.
22375 		 */
22376 		ASSERT(ire->ire_ipversion == IPV4_VERSION);
22377 
22378 		/*
22379 		 * With IP multipathing, broadcast packets are sent on the ire
22380 		 * that has been cleared of IRE_MARK_NORECV and that belongs to
22381 		 * the group. However, this ire might not be in the same zone so
22382 		 * we can't always use its source address. We look for a
22383 		 * broadcast ire in the same group and in the right zone.
22384 		 */
22385 		if (ire->ire_type == IRE_BROADCAST &&
22386 		    ire->ire_zoneid != zoneid) {
22387 			ire_t *src_ire = ire_ctable_lookup(dst, 0,
22388 			    IRE_BROADCAST, ire->ire_ipif, zoneid, NULL,
22389 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst);
22390 			if (src_ire != NULL) {
22391 				src = src_ire->ire_src_addr;
22392 				ire_refrele(src_ire);
22393 			} else {
22394 				ire_refrele(ire);
22395 				if (conn_outgoing_ill != NULL)
22396 					ill_refrele(conn_outgoing_ill);
22397 				freemsg(first_mp);
22398 				if (ill != NULL) {
22399 					BUMP_MIB(ill->ill_ip_mib,
22400 					    ipIfStatsOutDiscards);
22401 				} else {
22402 					BUMP_MIB(&ipst->ips_ip_mib,
22403 					    ipIfStatsOutDiscards);
22404 				}
22405 				return;
22406 			}
22407 		} else {
22408 			src = ire->ire_src_addr;
22409 		}
22410 
22411 		if (connp == NULL) {
22412 			ip1dbg(("ip_wput_ire: no connp and no src "
22413 			    "address for dst 0x%x, using src 0x%x\n",
22414 			    ntohl(dst),
22415 			    ntohl(src)));
22416 		}
22417 		ipha->ipha_src = src;
22418 	}
22419 	stq = ire->ire_stq;
22420 
22421 	/*
22422 	 * We only allow ire chains for broadcasts since there will
22423 	 * be multiple IRE_CACHE entries for the same multicast
22424 	 * address (one per ipif).
22425 	 */
22426 	next_mp = NULL;
22427 
22428 	/* broadcast packet */
22429 	if (ire->ire_type == IRE_BROADCAST)
22430 		goto broadcast;
22431 
22432 	/* loopback ? */
22433 	if (stq == NULL)
22434 		goto nullstq;
22435 
22436 	/* The ill_index for outbound ILL */
22437 	ill_index = Q_TO_INDEX(stq);
22438 
22439 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
22440 	ttl_protocol = ((uint16_t *)ipha)[4];
22441 
22442 	/* pseudo checksum (do it in parts for IP header checksum) */
22443 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
22444 
22445 	if (!IP_FLOW_CONTROLLED_ULP(PROTO)) {
22446 		queue_t *dev_q = stq->q_next;
22447 
22448 		/* flow controlled */
22449 		if ((dev_q->q_next || dev_q->q_first) &&
22450 		    !canput(dev_q))
22451 			goto blocked;
22452 		if ((PROTO == IPPROTO_UDP) &&
22453 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
22454 			hlen = (V_HLEN & 0xF) << 2;
22455 			up = IPH_UDPH_CHECKSUMP(ipha, hlen);
22456 			if (*up != 0) {
22457 				IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO,
22458 				    hlen, LENGTH, max_frag, ipsec_len, cksum);
22459 				/* Software checksum? */
22460 				if (DB_CKSUMFLAGS(mp) == 0) {
22461 					IP_STAT(ipst, ip_out_sw_cksum);
22462 					IP_STAT_UPDATE(ipst,
22463 					    ip_udp_out_sw_cksum_bytes,
22464 					    LENGTH - hlen);
22465 				}
22466 			}
22467 		}
22468 	} else if (ip_hdr_included != IP_HDR_INCLUDED) {
22469 		hlen = (V_HLEN & 0xF) << 2;
22470 		if (PROTO == IPPROTO_TCP) {
22471 			up = IPH_TCPH_CHECKSUMP(ipha, hlen);
22472 			/*
22473 			 * The packet header is processed once and for all, even
22474 			 * in the multirouting case. We disable hardware
22475 			 * checksum if the packet is multirouted, as it will be
22476 			 * replicated via several interfaces, and not all of
22477 			 * them may have this capability.
22478 			 */
22479 			IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen,
22480 			    LENGTH, max_frag, ipsec_len, cksum);
22481 			/* Software checksum? */
22482 			if (DB_CKSUMFLAGS(mp) == 0) {
22483 				IP_STAT(ipst, ip_out_sw_cksum);
22484 				IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes,
22485 				    LENGTH - hlen);
22486 			}
22487 		} else {
22488 			sctp_hdr_t	*sctph;
22489 
22490 			ASSERT(PROTO == IPPROTO_SCTP);
22491 			ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
22492 			sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
22493 			/*
22494 			 * Zero out the checksum field to ensure proper
22495 			 * checksum calculation.
22496 			 */
22497 			sctph->sh_chksum = 0;
22498 #ifdef	DEBUG
22499 			if (!skip_sctp_cksum)
22500 #endif
22501 				sctph->sh_chksum = sctp_cksum(mp, hlen);
22502 		}
22503 	}
22504 
22505 	/*
22506 	 * If this is a multicast packet and originated from ip_wput
22507 	 * we need to do loopback and forwarding checks. If it comes
22508 	 * from ip_wput_multicast, we SHOULD not do this.
22509 	 */
22510 	if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback;
22511 
22512 	/* checksum */
22513 	cksum += ttl_protocol;
22514 
22515 	/* fragment the packet */
22516 	if (max_frag < (uint_t)(LENGTH + ipsec_len))
22517 		goto fragmentit;
22518 	/*
22519 	 * Don't use frag_flag if packet is pre-built or source
22520 	 * routed or if multicast (since multicast packets do
22521 	 * not solicit ICMP "packet too big" messages).
22522 	 */
22523 	if ((ip_hdr_included != IP_HDR_INCLUDED) &&
22524 	    (V_HLEN == IP_SIMPLE_HDR_VERSION ||
22525 	    !ip_source_route_included(ipha)) &&
22526 	    !CLASSD(ipha->ipha_dst))
22527 		ipha->ipha_fragment_offset_and_flags |=
22528 		    htons(ire->ire_frag_flag);
22529 
22530 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
22531 		/* calculate IP header checksum */
22532 		cksum += ipha->ipha_ident;
22533 		cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF);
22534 		cksum += ipha->ipha_fragment_offset_and_flags;
22535 
22536 		/* IP options present */
22537 		hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS;
22538 		if (hlen)
22539 			goto checksumoptions;
22540 
22541 		/* calculate hdr checksum */
22542 		cksum = ((cksum & 0xFFFF) + (cksum >> 16));
22543 		cksum = ~(cksum + (cksum >> 16));
22544 		ipha->ipha_hdr_checksum = (uint16_t)cksum;
22545 	}
22546 	if (ipsec_len != 0) {
22547 		/*
22548 		 * We will do the rest of the processing after
22549 		 * we come back from IPsec in ip_wput_ipsec_out().
22550 		 */
22551 		ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t));
22552 
22553 		io = (ipsec_out_t *)first_mp->b_rptr;
22554 		io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)->
22555 		    ill_phyint->phyint_ifindex;
22556 
22557 		ipsec_out_process(q, first_mp, ire, ill_index);
22558 		ire_refrele(ire);
22559 		if (conn_outgoing_ill != NULL)
22560 			ill_refrele(conn_outgoing_ill);
22561 		return;
22562 	}
22563 
22564 	/*
22565 	 * In most cases, the emission loop below is entered only
22566 	 * once. Only in the case where the ire holds the
22567 	 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT
22568 	 * flagged ires in the bucket, and send the packet
22569 	 * through all crossed RTF_MULTIRT routes.
22570 	 */
22571 	if (ire->ire_flags & RTF_MULTIRT) {
22572 		multirt_send = B_TRUE;
22573 	}
22574 	do {
22575 		if (multirt_send) {
22576 			irb_t *irb;
22577 			/*
22578 			 * We are in a multiple send case, need to get
22579 			 * the next ire and make a duplicate of the packet.
22580 			 * ire1 holds here the next ire to process in the
22581 			 * bucket. If multirouting is expected,
22582 			 * any non-RTF_MULTIRT ire that has the
22583 			 * right destination address is ignored.
22584 			 */
22585 			irb = ire->ire_bucket;
22586 			ASSERT(irb != NULL);
22587 
22588 			IRB_REFHOLD(irb);
22589 			for (ire1 = ire->ire_next;
22590 			    ire1 != NULL;
22591 			    ire1 = ire1->ire_next) {
22592 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
22593 					continue;
22594 				if (ire1->ire_addr != ire->ire_addr)
22595 					continue;
22596 				if (ire1->ire_marks &
22597 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
22598 					continue;
22599 
22600 				/* Got one */
22601 				IRE_REFHOLD(ire1);
22602 				break;
22603 			}
22604 			IRB_REFRELE(irb);
22605 
22606 			if (ire1 != NULL) {
22607 				next_mp = copyb(mp);
22608 				if ((next_mp == NULL) ||
22609 				    ((mp->b_cont != NULL) &&
22610 				    ((next_mp->b_cont =
22611 				    dupmsg(mp->b_cont)) == NULL))) {
22612 					freemsg(next_mp);
22613 					next_mp = NULL;
22614 					ire_refrele(ire1);
22615 					ire1 = NULL;
22616 				}
22617 			}
22618 
22619 			/* Last multiroute ire; don't loop anymore. */
22620 			if (ire1 == NULL) {
22621 				multirt_send = B_FALSE;
22622 			}
22623 		}
22624 
22625 		DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
22626 		    ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha,
22627 		    mblk_t *, mp);
22628 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
22629 		    ipst->ips_ipv4firewall_physical_out,
22630 		    NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst);
22631 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
22632 		if (mp == NULL)
22633 			goto release_ire_and_ill;
22634 
22635 		mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT);
22636 		DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire);
22637 		pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE);
22638 		if ((pktxmit_state == SEND_FAILED) ||
22639 		    (pktxmit_state == LLHDR_RESLV_FAILED)) {
22640 			ip2dbg(("ip_wput_ire: ip_xmit_v4 failed"
22641 			    "- packet dropped\n"));
22642 release_ire_and_ill:
22643 			ire_refrele(ire);
22644 			if (next_mp != NULL) {
22645 				freemsg(next_mp);
22646 				ire_refrele(ire1);
22647 			}
22648 			if (conn_outgoing_ill != NULL)
22649 				ill_refrele(conn_outgoing_ill);
22650 			return;
22651 		}
22652 
22653 		if (CLASSD(dst)) {
22654 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts);
22655 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets,
22656 			    LENGTH);
22657 		}
22658 
22659 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
22660 		    "ip_wput_ire_end: q %p (%S)",
22661 		    q, "last copy out");
22662 		IRE_REFRELE(ire);
22663 
22664 		if (multirt_send) {
22665 			ASSERT(ire1);
22666 			/*
22667 			 * Proceed with the next RTF_MULTIRT ire,
22668 			 * Also set up the send-to queue accordingly.
22669 			 */
22670 			ire = ire1;
22671 			ire1 = NULL;
22672 			stq = ire->ire_stq;
22673 			mp = next_mp;
22674 			next_mp = NULL;
22675 			ipha = (ipha_t *)mp->b_rptr;
22676 			ill_index = Q_TO_INDEX(stq);
22677 			ill = (ill_t *)stq->q_ptr;
22678 		}
22679 	} while (multirt_send);
22680 	if (conn_outgoing_ill != NULL)
22681 		ill_refrele(conn_outgoing_ill);
22682 	return;
22683 
22684 	/*
22685 	 * ire->ire_type == IRE_BROADCAST (minimize diffs)
22686 	 */
22687 broadcast:
22688 	{
22689 		/*
22690 		 * To avoid broadcast storms, we usually set the TTL to 1 for
22691 		 * broadcasts.  However, if SO_DONTROUTE isn't set, this value
22692 		 * can be overridden stack-wide through the ip_broadcast_ttl
22693 		 * ndd tunable, or on a per-connection basis through the
22694 		 * IP_BROADCAST_TTL socket option.
22695 		 *
22696 		 * In the event that we are replying to incoming ICMP packets,
22697 		 * connp could be NULL.
22698 		 */
22699 		ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
22700 		if (connp != NULL) {
22701 			if (connp->conn_dontroute)
22702 				ipha->ipha_ttl = 1;
22703 			else if (connp->conn_broadcast_ttl != 0)
22704 				ipha->ipha_ttl = connp->conn_broadcast_ttl;
22705 		}
22706 
22707 		/*
22708 		 * Note that we are not doing a IRB_REFHOLD here.
22709 		 * Actually we don't care if the list changes i.e
22710 		 * if somebody deletes an IRE from the list while
22711 		 * we drop the lock, the next time we come around
22712 		 * ire_next will be NULL and hence we won't send
22713 		 * out multiple copies which is fine.
22714 		 */
22715 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
22716 		ire1 = ire->ire_next;
22717 		if (conn_outgoing_ill != NULL) {
22718 			while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) {
22719 				ASSERT(ire1 == ire->ire_next);
22720 				if (ire1 != NULL && ire1->ire_addr == dst) {
22721 					ire_refrele(ire);
22722 					ire = ire1;
22723 					IRE_REFHOLD(ire);
22724 					ire1 = ire->ire_next;
22725 					continue;
22726 				}
22727 				rw_exit(&ire->ire_bucket->irb_lock);
22728 				/* Did not find a matching ill */
22729 				ip1dbg(("ip_wput_ire: broadcast with no "
22730 				    "matching IP_BOUND_IF ill %s dst %x\n",
22731 				    conn_outgoing_ill->ill_name, dst));
22732 				freemsg(first_mp);
22733 				if (ire != NULL)
22734 					ire_refrele(ire);
22735 				ill_refrele(conn_outgoing_ill);
22736 				return;
22737 			}
22738 		} else if (ire1 != NULL && ire1->ire_addr == dst) {
22739 			/*
22740 			 * If the next IRE has the same address and is not one
22741 			 * of the two copies that we need to send, try to see
22742 			 * whether this copy should be sent at all. This
22743 			 * assumes that we insert loopbacks first and then
22744 			 * non-loopbacks. This is acheived by inserting the
22745 			 * loopback always before non-loopback.
22746 			 * This is used to send a single copy of a broadcast
22747 			 * packet out all physical interfaces that have an
22748 			 * matching IRE_BROADCAST while also looping
22749 			 * back one copy (to ip_wput_local) for each
22750 			 * matching physical interface. However, we avoid
22751 			 * sending packets out different logical that match by
22752 			 * having ipif_up/ipif_down supress duplicate
22753 			 * IRE_BROADCASTS.
22754 			 *
22755 			 * This feature is currently used to get broadcasts
22756 			 * sent to multiple interfaces, when the broadcast
22757 			 * address being used applies to multiple interfaces.
22758 			 * For example, a whole net broadcast will be
22759 			 * replicated on every connected subnet of
22760 			 * the target net.
22761 			 *
22762 			 * Each zone has its own set of IRE_BROADCASTs, so that
22763 			 * we're able to distribute inbound packets to multiple
22764 			 * zones who share a broadcast address. We avoid looping
22765 			 * back outbound packets in different zones but on the
22766 			 * same ill, as the application would see duplicates.
22767 			 *
22768 			 * If the interfaces are part of the same group,
22769 			 * we would want to send only one copy out for
22770 			 * whole group.
22771 			 *
22772 			 * This logic assumes that ire_add_v4() groups the
22773 			 * IRE_BROADCAST entries so that those with the same
22774 			 * ire_addr and ill_group are kept together.
22775 			 */
22776 			ire_ill = ire->ire_ipif->ipif_ill;
22777 			if (ire->ire_stq == NULL && ire1->ire_stq != NULL) {
22778 				if (ire_ill->ill_group != NULL &&
22779 				    (ire->ire_marks & IRE_MARK_NORECV)) {
22780 					/*
22781 					 * If the current zone only has an ire
22782 					 * broadcast for this address marked
22783 					 * NORECV, the ire we want is ahead in
22784 					 * the bucket, so we look it up
22785 					 * deliberately ignoring the zoneid.
22786 					 */
22787 					for (ire1 = ire->ire_bucket->irb_ire;
22788 					    ire1 != NULL;
22789 					    ire1 = ire1->ire_next) {
22790 						ire1_ill =
22791 						    ire1->ire_ipif->ipif_ill;
22792 						if (ire1->ire_addr != dst)
22793 							continue;
22794 						/* skip over the current ire */
22795 						if (ire1 == ire)
22796 							continue;
22797 						/* skip over deleted ires */
22798 						if (ire1->ire_marks &
22799 						    IRE_MARK_CONDEMNED)
22800 							continue;
22801 						/*
22802 						 * non-loopback ire in our
22803 						 * group: use it for the next
22804 						 * pass in the loop
22805 						 */
22806 						if (ire1->ire_stq != NULL &&
22807 						    ire1_ill->ill_group ==
22808 						    ire_ill->ill_group)
22809 							break;
22810 					}
22811 				}
22812 			} else {
22813 				while (ire1 != NULL && ire1->ire_addr == dst) {
22814 					ire1_ill = ire1->ire_ipif->ipif_ill;
22815 					/*
22816 					 * We can have two broadcast ires on the
22817 					 * same ill in different zones; here
22818 					 * we'll send a copy of the packet on
22819 					 * each ill and the fanout code will
22820 					 * call conn_wantpacket() to check that
22821 					 * the zone has the broadcast address
22822 					 * configured on the ill. If the two
22823 					 * ires are in the same group we only
22824 					 * send one copy up.
22825 					 */
22826 					if (ire1_ill != ire_ill &&
22827 					    (ire1_ill->ill_group == NULL ||
22828 					    ire_ill->ill_group == NULL ||
22829 					    ire1_ill->ill_group !=
22830 					    ire_ill->ill_group)) {
22831 						break;
22832 					}
22833 					ire1 = ire1->ire_next;
22834 				}
22835 			}
22836 		}
22837 		ASSERT(multirt_send == B_FALSE);
22838 		if (ire1 != NULL && ire1->ire_addr == dst) {
22839 			if ((ire->ire_flags & RTF_MULTIRT) &&
22840 			    (ire1->ire_flags & RTF_MULTIRT)) {
22841 				/*
22842 				 * We are in the multirouting case.
22843 				 * The message must be sent at least
22844 				 * on both ires. These ires have been
22845 				 * inserted AFTER the standard ones
22846 				 * in ip_rt_add(). There are thus no
22847 				 * other ire entries for the destination
22848 				 * address in the rest of the bucket
22849 				 * that do not have the RTF_MULTIRT
22850 				 * flag. We don't process a copy
22851 				 * of the message here. This will be
22852 				 * done in the final sending loop.
22853 				 */
22854 				multirt_send = B_TRUE;
22855 			} else {
22856 				next_mp = ip_copymsg(first_mp);
22857 				if (next_mp != NULL)
22858 					IRE_REFHOLD(ire1);
22859 			}
22860 		}
22861 		rw_exit(&ire->ire_bucket->irb_lock);
22862 	}
22863 
22864 	if (stq) {
22865 		/*
22866 		 * A non-NULL send-to queue means this packet is going
22867 		 * out of this machine.
22868 		 */
22869 		out_ill = (ill_t *)stq->q_ptr;
22870 
22871 		BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests);
22872 		ttl_protocol = ((uint16_t *)ipha)[4];
22873 		/*
22874 		 * We accumulate the pseudo header checksum in cksum.
22875 		 * This is pretty hairy code, so watch close.  One
22876 		 * thing to keep in mind is that UDP and TCP have
22877 		 * stored their respective datagram lengths in their
22878 		 * checksum fields.  This lines things up real nice.
22879 		 */
22880 		cksum = (dst >> 16) + (dst & 0xFFFF) +
22881 		    (src >> 16) + (src & 0xFFFF);
22882 		/*
22883 		 * We assume the udp checksum field contains the
22884 		 * length, so to compute the pseudo header checksum,
22885 		 * all we need is the protocol number and src/dst.
22886 		 */
22887 		/* Provide the checksums for UDP and TCP. */
22888 		if ((PROTO == IPPROTO_TCP) &&
22889 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
22890 			/* hlen gets the number of uchar_ts in the IP header */
22891 			hlen = (V_HLEN & 0xF) << 2;
22892 			up = IPH_TCPH_CHECKSUMP(ipha, hlen);
22893 			IP_STAT(ipst, ip_out_sw_cksum);
22894 			IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes,
22895 			    LENGTH - hlen);
22896 			*up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP);
22897 		} else if (PROTO == IPPROTO_SCTP &&
22898 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
22899 			sctp_hdr_t	*sctph;
22900 
22901 			hlen = (V_HLEN & 0xF) << 2;
22902 			ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
22903 			sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
22904 			sctph->sh_chksum = 0;
22905 #ifdef	DEBUG
22906 			if (!skip_sctp_cksum)
22907 #endif
22908 				sctph->sh_chksum = sctp_cksum(mp, hlen);
22909 		} else {
22910 			queue_t *dev_q = stq->q_next;
22911 
22912 			if ((dev_q->q_next || dev_q->q_first) &&
22913 			    !canput(dev_q)) {
22914 blocked:
22915 				ipha->ipha_ident = ip_hdr_included;
22916 				/*
22917 				 * If we don't have a conn to apply
22918 				 * backpressure, free the message.
22919 				 * In the ire_send path, we don't know
22920 				 * the position to requeue the packet. Rather
22921 				 * than reorder packets, we just drop this
22922 				 * packet.
22923 				 */
22924 				if (ipst->ips_ip_output_queue &&
22925 				    connp != NULL &&
22926 				    caller != IRE_SEND) {
22927 					if (caller == IP_WSRV) {
22928 						connp->conn_did_putbq = 1;
22929 						(void) putbq(connp->conn_wq,
22930 						    first_mp);
22931 						conn_drain_insert(connp);
22932 						/*
22933 						 * This is the service thread,
22934 						 * and the queue is already
22935 						 * noenabled. The check for
22936 						 * canput and the putbq is not
22937 						 * atomic. So we need to check
22938 						 * again.
22939 						 */
22940 						if (canput(stq->q_next))
22941 							connp->conn_did_putbq
22942 							    = 0;
22943 						IP_STAT(ipst, ip_conn_flputbq);
22944 					} else {
22945 						/*
22946 						 * We are not the service proc.
22947 						 * ip_wsrv will be scheduled or
22948 						 * is already running.
22949 						 */
22950 						(void) putq(connp->conn_wq,
22951 						    first_mp);
22952 					}
22953 				} else {
22954 					out_ill = (ill_t *)stq->q_ptr;
22955 					BUMP_MIB(out_ill->ill_ip_mib,
22956 					    ipIfStatsOutDiscards);
22957 					freemsg(first_mp);
22958 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
22959 					    "ip_wput_ire_end: q %p (%S)",
22960 					    q, "discard");
22961 				}
22962 				ire_refrele(ire);
22963 				if (next_mp) {
22964 					ire_refrele(ire1);
22965 					freemsg(next_mp);
22966 				}
22967 				if (conn_outgoing_ill != NULL)
22968 					ill_refrele(conn_outgoing_ill);
22969 				return;
22970 			}
22971 			if ((PROTO == IPPROTO_UDP) &&
22972 			    (ip_hdr_included != IP_HDR_INCLUDED)) {
22973 				/*
22974 				 * hlen gets the number of uchar_ts in the
22975 				 * IP header
22976 				 */
22977 				hlen = (V_HLEN & 0xF) << 2;
22978 				up = IPH_UDPH_CHECKSUMP(ipha, hlen);
22979 				max_frag = ire->ire_max_frag;
22980 				if (*up != 0) {
22981 					IP_CKSUM_XMIT(out_ill, ire, mp, ipha,
22982 					    up, PROTO, hlen, LENGTH, max_frag,
22983 					    ipsec_len, cksum);
22984 					/* Software checksum? */
22985 					if (DB_CKSUMFLAGS(mp) == 0) {
22986 						IP_STAT(ipst, ip_out_sw_cksum);
22987 						IP_STAT_UPDATE(ipst,
22988 						    ip_udp_out_sw_cksum_bytes,
22989 						    LENGTH - hlen);
22990 					}
22991 				}
22992 			}
22993 		}
22994 		/*
22995 		 * Need to do this even when fragmenting. The local
22996 		 * loopback can be done without computing checksums
22997 		 * but forwarding out other interface must be done
22998 		 * after the IP checksum (and ULP checksums) have been
22999 		 * computed.
23000 		 *
23001 		 * NOTE : multicast_forward is set only if this packet
23002 		 * originated from ip_wput. For packets originating from
23003 		 * ip_wput_multicast, it is not set.
23004 		 */
23005 		if (CLASSD(ipha->ipha_dst) && multicast_forward) {
23006 multi_loopback:
23007 			ip2dbg(("ip_wput: multicast, loop %d\n",
23008 			    conn_multicast_loop));
23009 
23010 			/*  Forget header checksum offload */
23011 			DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
23012 
23013 			/*
23014 			 * Local loopback of multicasts?  Check the
23015 			 * ill.
23016 			 *
23017 			 * Note that the loopback function will not come
23018 			 * in through ip_rput - it will only do the
23019 			 * client fanout thus we need to do an mforward
23020 			 * as well.  The is different from the BSD
23021 			 * logic.
23022 			 */
23023 			if (ill != NULL) {
23024 				ilm_t	*ilm;
23025 
23026 				ILM_WALKER_HOLD(ill);
23027 				ilm = ilm_lookup_ill(ill, ipha->ipha_dst,
23028 				    ALL_ZONES);
23029 				ILM_WALKER_RELE(ill);
23030 				if (ilm != NULL) {
23031 					/*
23032 					 * Pass along the virtual output q.
23033 					 * ip_wput_local() will distribute the
23034 					 * packet to all the matching zones,
23035 					 * except the sending zone when
23036 					 * IP_MULTICAST_LOOP is false.
23037 					 */
23038 					ip_multicast_loopback(q, ill, first_mp,
23039 					    conn_multicast_loop ? 0 :
23040 					    IP_FF_NO_MCAST_LOOP, zoneid);
23041 				}
23042 			}
23043 			if (ipha->ipha_ttl == 0) {
23044 				/*
23045 				 * 0 => only to this host i.e. we are
23046 				 * done. We are also done if this was the
23047 				 * loopback interface since it is sufficient
23048 				 * to loopback one copy of a multicast packet.
23049 				 */
23050 				freemsg(first_mp);
23051 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23052 				    "ip_wput_ire_end: q %p (%S)",
23053 				    q, "loopback");
23054 				ire_refrele(ire);
23055 				if (conn_outgoing_ill != NULL)
23056 					ill_refrele(conn_outgoing_ill);
23057 				return;
23058 			}
23059 			/*
23060 			 * ILLF_MULTICAST is checked in ip_newroute
23061 			 * i.e. we don't need to check it here since
23062 			 * all IRE_CACHEs come from ip_newroute.
23063 			 * For multicast traffic, SO_DONTROUTE is interpreted
23064 			 * to mean only send the packet out the interface
23065 			 * (optionally specified with IP_MULTICAST_IF)
23066 			 * and do not forward it out additional interfaces.
23067 			 * RSVP and the rsvp daemon is an example of a
23068 			 * protocol and user level process that
23069 			 * handles it's own routing. Hence, it uses the
23070 			 * SO_DONTROUTE option to accomplish this.
23071 			 */
23072 
23073 			if (ipst->ips_ip_g_mrouter && !conn_dontroute &&
23074 			    ill != NULL) {
23075 				/* Unconditionally redo the checksum */
23076 				ipha->ipha_hdr_checksum = 0;
23077 				ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
23078 
23079 				/*
23080 				 * If this needs to go out secure, we need
23081 				 * to wait till we finish the IPsec
23082 				 * processing.
23083 				 */
23084 				if (ipsec_len == 0 &&
23085 				    ip_mforward(ill, ipha, mp)) {
23086 					freemsg(first_mp);
23087 					ip1dbg(("ip_wput: mforward failed\n"));
23088 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23089 					    "ip_wput_ire_end: q %p (%S)",
23090 					    q, "mforward failed");
23091 					ire_refrele(ire);
23092 					if (conn_outgoing_ill != NULL)
23093 						ill_refrele(conn_outgoing_ill);
23094 					return;
23095 				}
23096 			}
23097 		}
23098 		max_frag = ire->ire_max_frag;
23099 		cksum += ttl_protocol;
23100 		if (max_frag >= (uint_t)(LENGTH + ipsec_len)) {
23101 			/* No fragmentation required for this one. */
23102 			/*
23103 			 * Don't use frag_flag if packet is pre-built or source
23104 			 * routed or if multicast (since multicast packets do
23105 			 * not solicit ICMP "packet too big" messages).
23106 			 */
23107 			if ((ip_hdr_included != IP_HDR_INCLUDED) &&
23108 			    (V_HLEN == IP_SIMPLE_HDR_VERSION ||
23109 			    !ip_source_route_included(ipha)) &&
23110 			    !CLASSD(ipha->ipha_dst))
23111 				ipha->ipha_fragment_offset_and_flags |=
23112 				    htons(ire->ire_frag_flag);
23113 
23114 			if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
23115 				/* Complete the IP header checksum. */
23116 				cksum += ipha->ipha_ident;
23117 				cksum += (v_hlen_tos_len >> 16)+
23118 				    (v_hlen_tos_len & 0xFFFF);
23119 				cksum += ipha->ipha_fragment_offset_and_flags;
23120 				hlen = (V_HLEN & 0xF) -
23121 				    IP_SIMPLE_HDR_LENGTH_IN_WORDS;
23122 				if (hlen) {
23123 checksumoptions:
23124 					/*
23125 					 * Account for the IP Options in the IP
23126 					 * header checksum.
23127 					 */
23128 					up = (uint16_t *)(rptr+
23129 					    IP_SIMPLE_HDR_LENGTH);
23130 					do {
23131 						cksum += up[0];
23132 						cksum += up[1];
23133 						up += 2;
23134 					} while (--hlen);
23135 				}
23136 				cksum = ((cksum & 0xFFFF) + (cksum >> 16));
23137 				cksum = ~(cksum + (cksum >> 16));
23138 				ipha->ipha_hdr_checksum = (uint16_t)cksum;
23139 			}
23140 			if (ipsec_len != 0) {
23141 				ipsec_out_process(q, first_mp, ire, ill_index);
23142 				if (!next_mp) {
23143 					ire_refrele(ire);
23144 					if (conn_outgoing_ill != NULL)
23145 						ill_refrele(conn_outgoing_ill);
23146 					return;
23147 				}
23148 				goto next;
23149 			}
23150 
23151 			/*
23152 			 * multirt_send has already been handled
23153 			 * for broadcast, but not yet for multicast
23154 			 * or IP options.
23155 			 */
23156 			if (next_mp == NULL) {
23157 				if (ire->ire_flags & RTF_MULTIRT) {
23158 					multirt_send = B_TRUE;
23159 				}
23160 			}
23161 
23162 			/*
23163 			 * In most cases, the emission loop below is
23164 			 * entered only once. Only in the case where
23165 			 * the ire holds the RTF_MULTIRT flag, do we loop
23166 			 * to process all RTF_MULTIRT ires in the bucket,
23167 			 * and send the packet through all crossed
23168 			 * RTF_MULTIRT routes.
23169 			 */
23170 			do {
23171 				if (multirt_send) {
23172 					irb_t *irb;
23173 
23174 					irb = ire->ire_bucket;
23175 					ASSERT(irb != NULL);
23176 					/*
23177 					 * We are in a multiple send case,
23178 					 * need to get the next IRE and make
23179 					 * a duplicate of the packet.
23180 					 */
23181 					IRB_REFHOLD(irb);
23182 					for (ire1 = ire->ire_next;
23183 					    ire1 != NULL;
23184 					    ire1 = ire1->ire_next) {
23185 						if (!(ire1->ire_flags &
23186 						    RTF_MULTIRT)) {
23187 							continue;
23188 						}
23189 						if (ire1->ire_addr !=
23190 						    ire->ire_addr) {
23191 							continue;
23192 						}
23193 						if (ire1->ire_marks &
23194 						    (IRE_MARK_CONDEMNED|
23195 						    IRE_MARK_HIDDEN)) {
23196 							continue;
23197 						}
23198 
23199 						/* Got one */
23200 						IRE_REFHOLD(ire1);
23201 						break;
23202 					}
23203 					IRB_REFRELE(irb);
23204 
23205 					if (ire1 != NULL) {
23206 						next_mp = copyb(mp);
23207 						if ((next_mp == NULL) ||
23208 						    ((mp->b_cont != NULL) &&
23209 						    ((next_mp->b_cont =
23210 						    dupmsg(mp->b_cont))
23211 						    == NULL))) {
23212 							freemsg(next_mp);
23213 							next_mp = NULL;
23214 							ire_refrele(ire1);
23215 							ire1 = NULL;
23216 						}
23217 					}
23218 
23219 					/*
23220 					 * Last multiroute ire; don't loop
23221 					 * anymore. The emission is over
23222 					 * and next_mp is NULL.
23223 					 */
23224 					if (ire1 == NULL) {
23225 						multirt_send = B_FALSE;
23226 					}
23227 				}
23228 
23229 				out_ill = ire_to_ill(ire);
23230 				DTRACE_PROBE4(ip4__physical__out__start,
23231 				    ill_t *, NULL,
23232 				    ill_t *, out_ill,
23233 				    ipha_t *, ipha, mblk_t *, mp);
23234 				FW_HOOKS(ipst->ips_ip4_physical_out_event,
23235 				    ipst->ips_ipv4firewall_physical_out,
23236 				    NULL, out_ill, ipha, mp, mp, 0, ipst);
23237 				DTRACE_PROBE1(ip4__physical__out__end,
23238 				    mblk_t *, mp);
23239 				if (mp == NULL)
23240 					goto release_ire_and_ill_2;
23241 
23242 				ASSERT(ipsec_len == 0);
23243 				mp->b_prev =
23244 				    SET_BPREV_FLAG(IPP_LOCAL_OUT);
23245 				DTRACE_PROBE2(ip__xmit__2,
23246 				    mblk_t *, mp, ire_t *, ire);
23247 				pktxmit_state = ip_xmit_v4(mp, ire,
23248 				    NULL, B_TRUE);
23249 				if ((pktxmit_state == SEND_FAILED) ||
23250 				    (pktxmit_state == LLHDR_RESLV_FAILED)) {
23251 release_ire_and_ill_2:
23252 					if (next_mp) {
23253 						freemsg(next_mp);
23254 						ire_refrele(ire1);
23255 					}
23256 					ire_refrele(ire);
23257 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23258 					    "ip_wput_ire_end: q %p (%S)",
23259 					    q, "discard MDATA");
23260 					if (conn_outgoing_ill != NULL)
23261 						ill_refrele(conn_outgoing_ill);
23262 					return;
23263 				}
23264 
23265 				if (CLASSD(dst)) {
23266 					BUMP_MIB(out_ill->ill_ip_mib,
23267 					    ipIfStatsHCOutMcastPkts);
23268 					UPDATE_MIB(out_ill->ill_ip_mib,
23269 					    ipIfStatsHCOutMcastOctets,
23270 					    LENGTH);
23271 				} else if (ire->ire_type == IRE_BROADCAST) {
23272 					BUMP_MIB(out_ill->ill_ip_mib,
23273 					    ipIfStatsHCOutBcastPkts);
23274 				}
23275 
23276 				if (multirt_send) {
23277 					/*
23278 					 * We are in a multiple send case,
23279 					 * need to re-enter the sending loop
23280 					 * using the next ire.
23281 					 */
23282 					ire_refrele(ire);
23283 					ire = ire1;
23284 					stq = ire->ire_stq;
23285 					mp = next_mp;
23286 					next_mp = NULL;
23287 					ipha = (ipha_t *)mp->b_rptr;
23288 					ill_index = Q_TO_INDEX(stq);
23289 				}
23290 			} while (multirt_send);
23291 
23292 			if (!next_mp) {
23293 				/*
23294 				 * Last copy going out (the ultra-common
23295 				 * case).  Note that we intentionally replicate
23296 				 * the putnext rather than calling it before
23297 				 * the next_mp check in hopes of a little
23298 				 * tail-call action out of the compiler.
23299 				 */
23300 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23301 				    "ip_wput_ire_end: q %p (%S)",
23302 				    q, "last copy out(1)");
23303 				ire_refrele(ire);
23304 				if (conn_outgoing_ill != NULL)
23305 					ill_refrele(conn_outgoing_ill);
23306 				return;
23307 			}
23308 			/* More copies going out below. */
23309 		} else {
23310 			int offset;
23311 fragmentit:
23312 			offset = ntohs(ipha->ipha_fragment_offset_and_flags);
23313 			/*
23314 			 * If this would generate a icmp_frag_needed message,
23315 			 * we need to handle it before we do the IPsec
23316 			 * processing. Otherwise, we need to strip the IPsec
23317 			 * headers before we send up the message to the ULPs
23318 			 * which becomes messy and difficult.
23319 			 */
23320 			if (ipsec_len != 0) {
23321 				if ((max_frag < (unsigned int)(LENGTH +
23322 				    ipsec_len)) && (offset & IPH_DF)) {
23323 					out_ill = (ill_t *)stq->q_ptr;
23324 					BUMP_MIB(out_ill->ill_ip_mib,
23325 					    ipIfStatsOutFragFails);
23326 					BUMP_MIB(out_ill->ill_ip_mib,
23327 					    ipIfStatsOutFragReqds);
23328 					ipha->ipha_hdr_checksum = 0;
23329 					ipha->ipha_hdr_checksum =
23330 					    (uint16_t)ip_csum_hdr(ipha);
23331 					icmp_frag_needed(ire->ire_stq, first_mp,
23332 					    max_frag, zoneid, ipst);
23333 					if (!next_mp) {
23334 						ire_refrele(ire);
23335 						if (conn_outgoing_ill != NULL) {
23336 							ill_refrele(
23337 							    conn_outgoing_ill);
23338 						}
23339 						return;
23340 					}
23341 				} else {
23342 					/*
23343 					 * This won't cause a icmp_frag_needed
23344 					 * message. to be generated. Send it on
23345 					 * the wire. Note that this could still
23346 					 * cause fragmentation and all we
23347 					 * do is the generation of the message
23348 					 * to the ULP if needed before IPsec.
23349 					 */
23350 					if (!next_mp) {
23351 						ipsec_out_process(q, first_mp,
23352 						    ire, ill_index);
23353 						TRACE_2(TR_FAC_IP,
23354 						    TR_IP_WPUT_IRE_END,
23355 						    "ip_wput_ire_end: q %p "
23356 						    "(%S)", q,
23357 						    "last ipsec_out_process");
23358 						ire_refrele(ire);
23359 						if (conn_outgoing_ill != NULL) {
23360 							ill_refrele(
23361 							    conn_outgoing_ill);
23362 						}
23363 						return;
23364 					}
23365 					ipsec_out_process(q, first_mp,
23366 					    ire, ill_index);
23367 				}
23368 			} else {
23369 				/*
23370 				 * Initiate IPPF processing. For
23371 				 * fragmentable packets we finish
23372 				 * all QOS packet processing before
23373 				 * calling:
23374 				 * ip_wput_ire_fragmentit->ip_wput_frag
23375 				 */
23376 
23377 				if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
23378 					ip_process(IPP_LOCAL_OUT, &mp,
23379 					    ill_index);
23380 					if (mp == NULL) {
23381 						out_ill = (ill_t *)stq->q_ptr;
23382 						BUMP_MIB(out_ill->ill_ip_mib,
23383 						    ipIfStatsOutDiscards);
23384 						if (next_mp != NULL) {
23385 							freemsg(next_mp);
23386 							ire_refrele(ire1);
23387 						}
23388 						ire_refrele(ire);
23389 						TRACE_2(TR_FAC_IP,
23390 						    TR_IP_WPUT_IRE_END,
23391 						    "ip_wput_ire: q %p (%S)",
23392 						    q, "discard MDATA");
23393 						if (conn_outgoing_ill != NULL) {
23394 							ill_refrele(
23395 							    conn_outgoing_ill);
23396 						}
23397 						return;
23398 					}
23399 				}
23400 				if (!next_mp) {
23401 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23402 					    "ip_wput_ire_end: q %p (%S)",
23403 					    q, "last fragmentation");
23404 					ip_wput_ire_fragmentit(mp, ire,
23405 					    zoneid, ipst);
23406 					ire_refrele(ire);
23407 					if (conn_outgoing_ill != NULL)
23408 						ill_refrele(conn_outgoing_ill);
23409 					return;
23410 				}
23411 				ip_wput_ire_fragmentit(mp, ire, zoneid, ipst);
23412 			}
23413 		}
23414 	} else {
23415 nullstq:
23416 		/* A NULL stq means the destination address is local. */
23417 		UPDATE_OB_PKT_COUNT(ire);
23418 		ire->ire_last_used_time = lbolt;
23419 		ASSERT(ire->ire_ipif != NULL);
23420 		if (!next_mp) {
23421 			/*
23422 			 * Is there an "in" and "out" for traffic local
23423 			 * to a host (loopback)?  The code in Solaris doesn't
23424 			 * explicitly draw a line in its code for in vs out,
23425 			 * so we've had to draw a line in the sand: ip_wput_ire
23426 			 * is considered to be the "output" side and
23427 			 * ip_wput_local to be the "input" side.
23428 			 */
23429 			out_ill = ire_to_ill(ire);
23430 
23431 			DTRACE_PROBE4(ip4__loopback__out__start,
23432 			    ill_t *, NULL, ill_t *, out_ill,
23433 			    ipha_t *, ipha, mblk_t *, first_mp);
23434 
23435 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
23436 			    ipst->ips_ipv4firewall_loopback_out,
23437 			    NULL, out_ill, ipha, first_mp, mp, 0, ipst);
23438 
23439 			DTRACE_PROBE1(ip4__loopback__out_end,
23440 			    mblk_t *, first_mp);
23441 
23442 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23443 			    "ip_wput_ire_end: q %p (%S)",
23444 			    q, "local address");
23445 
23446 			if (first_mp != NULL)
23447 				ip_wput_local(q, out_ill, ipha,
23448 				    first_mp, ire, 0, ire->ire_zoneid);
23449 			ire_refrele(ire);
23450 			if (conn_outgoing_ill != NULL)
23451 				ill_refrele(conn_outgoing_ill);
23452 			return;
23453 		}
23454 
23455 		out_ill = ire_to_ill(ire);
23456 
23457 		DTRACE_PROBE4(ip4__loopback__out__start,
23458 		    ill_t *, NULL, ill_t *, out_ill,
23459 		    ipha_t *, ipha, mblk_t *, first_mp);
23460 
23461 		FW_HOOKS(ipst->ips_ip4_loopback_out_event,
23462 		    ipst->ips_ipv4firewall_loopback_out,
23463 		    NULL, out_ill, ipha, first_mp, mp, 0, ipst);
23464 
23465 		DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp);
23466 
23467 		if (first_mp != NULL)
23468 			ip_wput_local(q, out_ill, ipha,
23469 			    first_mp, ire, 0, ire->ire_zoneid);
23470 	}
23471 next:
23472 	/*
23473 	 * More copies going out to additional interfaces.
23474 	 * ire1 has already been held. We don't need the
23475 	 * "ire" anymore.
23476 	 */
23477 	ire_refrele(ire);
23478 	ire = ire1;
23479 	ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL);
23480 	mp = next_mp;
23481 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
23482 	ill = ire_to_ill(ire);
23483 	first_mp = mp;
23484 	if (ipsec_len != 0) {
23485 		ASSERT(first_mp->b_datap->db_type == M_CTL);
23486 		mp = mp->b_cont;
23487 	}
23488 	dst = ire->ire_addr;
23489 	ipha = (ipha_t *)mp->b_rptr;
23490 	/*
23491 	 * Restore src so that we will pick up ire->ire_src_addr if src was 0.
23492 	 * Restore ipha_ident "no checksum" flag.
23493 	 */
23494 	src = orig_src;
23495 	ipha->ipha_ident = ip_hdr_included;
23496 	goto another;
23497 
23498 #undef	rptr
23499 #undef	Q_TO_INDEX
23500 }
23501 
23502 /*
23503  * Routine to allocate a message that is used to notify the ULP about MDT.
23504  * The caller may provide a pointer to the link-layer MDT capabilities,
23505  * or NULL if MDT is to be disabled on the stream.
23506  */
23507 mblk_t *
23508 ip_mdinfo_alloc(ill_mdt_capab_t *isrc)
23509 {
23510 	mblk_t *mp;
23511 	ip_mdt_info_t *mdti;
23512 	ill_mdt_capab_t *idst;
23513 
23514 	if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) {
23515 		DB_TYPE(mp) = M_CTL;
23516 		mp->b_wptr = mp->b_rptr + sizeof (*mdti);
23517 		mdti = (ip_mdt_info_t *)mp->b_rptr;
23518 		mdti->mdt_info_id = MDT_IOC_INFO_UPDATE;
23519 		idst = &(mdti->mdt_capab);
23520 
23521 		/*
23522 		 * If the caller provides us with the capability, copy
23523 		 * it over into our notification message; otherwise
23524 		 * we zero out the capability portion.
23525 		 */
23526 		if (isrc != NULL)
23527 			bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst));
23528 		else
23529 			bzero((caddr_t)idst, sizeof (*idst));
23530 	}
23531 	return (mp);
23532 }
23533 
23534 /*
23535  * Routine which determines whether MDT can be enabled on the destination
23536  * IRE and IPC combination, and if so, allocates and returns the MDT
23537  * notification mblk that may be used by ULP.  We also check if we need to
23538  * turn MDT back to 'on' when certain restrictions prohibiting us to allow
23539  * MDT usage in the past have been lifted.  This gets called during IP
23540  * and ULP binding.
23541  */
23542 mblk_t *
23543 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name,
23544     ill_mdt_capab_t *mdt_cap)
23545 {
23546 	mblk_t *mp;
23547 	boolean_t rc = B_FALSE;
23548 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
23549 
23550 	ASSERT(dst_ire != NULL);
23551 	ASSERT(connp != NULL);
23552 	ASSERT(mdt_cap != NULL);
23553 
23554 	/*
23555 	 * Currently, we only support simple TCP/{IPv4,IPv6} with
23556 	 * Multidata, which is handled in tcp_multisend().  This
23557 	 * is the reason why we do all these checks here, to ensure
23558 	 * that we don't enable Multidata for the cases which we
23559 	 * can't handle at the moment.
23560 	 */
23561 	do {
23562 		/* Only do TCP at the moment */
23563 		if (connp->conn_ulp != IPPROTO_TCP)
23564 			break;
23565 
23566 		/*
23567 		 * IPsec outbound policy present?  Note that we get here
23568 		 * after calling ipsec_conn_cache_policy() where the global
23569 		 * policy checking is performed.  conn_latch will be
23570 		 * non-NULL as long as there's a policy defined,
23571 		 * i.e. conn_out_enforce_policy may be NULL in such case
23572 		 * when the connection is non-secure, and hence we check
23573 		 * further if the latch refers to an outbound policy.
23574 		 */
23575 		if (CONN_IPSEC_OUT_ENCAPSULATED(connp))
23576 			break;
23577 
23578 		/* CGTP (multiroute) is enabled? */
23579 		if (dst_ire->ire_flags & RTF_MULTIRT)
23580 			break;
23581 
23582 		/* Outbound IPQoS enabled? */
23583 		if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
23584 			/*
23585 			 * In this case, we disable MDT for this and all
23586 			 * future connections going over the interface.
23587 			 */
23588 			mdt_cap->ill_mdt_on = 0;
23589 			break;
23590 		}
23591 
23592 		/* socket option(s) present? */
23593 		if (!CONN_IS_LSO_MD_FASTPATH(connp))
23594 			break;
23595 
23596 		rc = B_TRUE;
23597 	/* CONSTCOND */
23598 	} while (0);
23599 
23600 	/* Remember the result */
23601 	connp->conn_mdt_ok = rc;
23602 
23603 	if (!rc)
23604 		return (NULL);
23605 	else if (!mdt_cap->ill_mdt_on) {
23606 		/*
23607 		 * If MDT has been previously turned off in the past, and we
23608 		 * currently can do MDT (due to IPQoS policy removal, etc.)
23609 		 * then enable it for this interface.
23610 		 */
23611 		mdt_cap->ill_mdt_on = 1;
23612 		ip1dbg(("ip_mdinfo_return: reenabling MDT for "
23613 		    "interface %s\n", ill_name));
23614 	}
23615 
23616 	/* Allocate the MDT info mblk */
23617 	if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) {
23618 		ip0dbg(("ip_mdinfo_return: can't enable Multidata for "
23619 		    "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name));
23620 		return (NULL);
23621 	}
23622 	return (mp);
23623 }
23624 
23625 /*
23626  * Routine to allocate a message that is used to notify the ULP about LSO.
23627  * The caller may provide a pointer to the link-layer LSO capabilities,
23628  * or NULL if LSO is to be disabled on the stream.
23629  */
23630 mblk_t *
23631 ip_lsoinfo_alloc(ill_lso_capab_t *isrc)
23632 {
23633 	mblk_t *mp;
23634 	ip_lso_info_t *lsoi;
23635 	ill_lso_capab_t *idst;
23636 
23637 	if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) {
23638 		DB_TYPE(mp) = M_CTL;
23639 		mp->b_wptr = mp->b_rptr + sizeof (*lsoi);
23640 		lsoi = (ip_lso_info_t *)mp->b_rptr;
23641 		lsoi->lso_info_id = LSO_IOC_INFO_UPDATE;
23642 		idst = &(lsoi->lso_capab);
23643 
23644 		/*
23645 		 * If the caller provides us with the capability, copy
23646 		 * it over into our notification message; otherwise
23647 		 * we zero out the capability portion.
23648 		 */
23649 		if (isrc != NULL)
23650 			bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst));
23651 		else
23652 			bzero((caddr_t)idst, sizeof (*idst));
23653 	}
23654 	return (mp);
23655 }
23656 
23657 /*
23658  * Routine which determines whether LSO can be enabled on the destination
23659  * IRE and IPC combination, and if so, allocates and returns the LSO
23660  * notification mblk that may be used by ULP.  We also check if we need to
23661  * turn LSO back to 'on' when certain restrictions prohibiting us to allow
23662  * LSO usage in the past have been lifted.  This gets called during IP
23663  * and ULP binding.
23664  */
23665 mblk_t *
23666 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name,
23667     ill_lso_capab_t *lso_cap)
23668 {
23669 	mblk_t *mp;
23670 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
23671 
23672 	ASSERT(dst_ire != NULL);
23673 	ASSERT(connp != NULL);
23674 	ASSERT(lso_cap != NULL);
23675 
23676 	connp->conn_lso_ok = B_TRUE;
23677 
23678 	if ((connp->conn_ulp != IPPROTO_TCP) ||
23679 	    CONN_IPSEC_OUT_ENCAPSULATED(connp) ||
23680 	    (dst_ire->ire_flags & RTF_MULTIRT) ||
23681 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
23682 	    (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
23683 		connp->conn_lso_ok = B_FALSE;
23684 		if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
23685 			/*
23686 			 * Disable LSO for this and all future connections going
23687 			 * over the interface.
23688 			 */
23689 			lso_cap->ill_lso_on = 0;
23690 		}
23691 	}
23692 
23693 	if (!connp->conn_lso_ok)
23694 		return (NULL);
23695 	else if (!lso_cap->ill_lso_on) {
23696 		/*
23697 		 * If LSO has been previously turned off in the past, and we
23698 		 * currently can do LSO (due to IPQoS policy removal, etc.)
23699 		 * then enable it for this interface.
23700 		 */
23701 		lso_cap->ill_lso_on = 1;
23702 		ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n",
23703 		    ill_name));
23704 	}
23705 
23706 	/* Allocate the LSO info mblk */
23707 	if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL)
23708 		ip0dbg(("ip_lsoinfo_return: can't enable LSO for "
23709 		    "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name));
23710 
23711 	return (mp);
23712 }
23713 
23714 /*
23715  * Create destination address attribute, and fill it with the physical
23716  * destination address and SAP taken from the template DL_UNITDATA_REQ
23717  * message block.
23718  */
23719 boolean_t
23720 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp)
23721 {
23722 	dl_unitdata_req_t *dlurp;
23723 	pattr_t *pa;
23724 	pattrinfo_t pa_info;
23725 	pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf;
23726 	uint_t das_len, das_off;
23727 
23728 	ASSERT(dlmp != NULL);
23729 
23730 	dlurp = (dl_unitdata_req_t *)dlmp->b_rptr;
23731 	das_len = dlurp->dl_dest_addr_length;
23732 	das_off = dlurp->dl_dest_addr_offset;
23733 
23734 	pa_info.type = PATTR_DSTADDRSAP;
23735 	pa_info.len = sizeof (**das) + das_len - 1;
23736 
23737 	/* create and associate the attribute */
23738 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
23739 	if (pa != NULL) {
23740 		ASSERT(*das != NULL);
23741 		(*das)->addr_is_group = 0;
23742 		(*das)->addr_len = (uint8_t)das_len;
23743 		bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len);
23744 	}
23745 
23746 	return (pa != NULL);
23747 }
23748 
23749 /*
23750  * Create hardware checksum attribute and fill it with the values passed.
23751  */
23752 boolean_t
23753 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset,
23754     uint32_t stuff_offset, uint32_t end_offset, uint32_t flags)
23755 {
23756 	pattr_t *pa;
23757 	pattrinfo_t pa_info;
23758 
23759 	ASSERT(mmd != NULL);
23760 
23761 	pa_info.type = PATTR_HCKSUM;
23762 	pa_info.len = sizeof (pattr_hcksum_t);
23763 
23764 	/* create and associate the attribute */
23765 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
23766 	if (pa != NULL) {
23767 		pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
23768 
23769 		hck->hcksum_start_offset = start_offset;
23770 		hck->hcksum_stuff_offset = stuff_offset;
23771 		hck->hcksum_end_offset = end_offset;
23772 		hck->hcksum_flags = flags;
23773 	}
23774 	return (pa != NULL);
23775 }
23776 
23777 /*
23778  * Create zerocopy attribute and fill it with the specified flags
23779  */
23780 boolean_t
23781 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags)
23782 {
23783 	pattr_t *pa;
23784 	pattrinfo_t pa_info;
23785 
23786 	ASSERT(mmd != NULL);
23787 	pa_info.type = PATTR_ZCOPY;
23788 	pa_info.len = sizeof (pattr_zcopy_t);
23789 
23790 	/* create and associate the attribute */
23791 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
23792 	if (pa != NULL) {
23793 		pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf;
23794 
23795 		zcopy->zcopy_flags = flags;
23796 	}
23797 	return (pa != NULL);
23798 }
23799 
23800 /*
23801  * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message
23802  * block chain. We could rewrite to handle arbitrary message block chains but
23803  * that would make the code complicated and slow. Right now there three
23804  * restrictions:
23805  *
23806  *   1. The first message block must contain the complete IP header and
23807  *	at least 1 byte of payload data.
23808  *   2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed
23809  *	so that we can use a single Multidata message.
23810  *   3. No frag must be distributed over two or more message blocks so
23811  *	that we don't need more than two packet descriptors per frag.
23812  *
23813  * The above restrictions allow us to support userland applications (which
23814  * will send down a single message block) and NFS over UDP (which will
23815  * send down a chain of at most three message blocks).
23816  *
23817  * We also don't use MDT for payloads with less than or equal to
23818  * ip_wput_frag_mdt_min bytes because it would cause too much overhead.
23819  */
23820 boolean_t
23821 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len)
23822 {
23823 	int	blocks;
23824 	ssize_t	total, missing, size;
23825 
23826 	ASSERT(mp != NULL);
23827 	ASSERT(hdr_len > 0);
23828 
23829 	size = MBLKL(mp) - hdr_len;
23830 	if (size <= 0)
23831 		return (B_FALSE);
23832 
23833 	/* The first mblk contains the header and some payload. */
23834 	blocks = 1;
23835 	total = size;
23836 	size %= len;
23837 	missing = (size == 0) ? 0 : (len - size);
23838 	mp = mp->b_cont;
23839 
23840 	while (mp != NULL) {
23841 		/*
23842 		 * Give up if we encounter a zero length message block.
23843 		 * In practice, this should rarely happen and therefore
23844 		 * not worth the trouble of freeing and re-linking the
23845 		 * mblk from the chain to handle such case.
23846 		 */
23847 		if ((size = MBLKL(mp)) == 0)
23848 			return (B_FALSE);
23849 
23850 		/* Too many payload buffers for a single Multidata message? */
23851 		if (++blocks > MULTIDATA_MAX_PBUFS)
23852 			return (B_FALSE);
23853 
23854 		total += size;
23855 		/* Is a frag distributed over two or more message blocks? */
23856 		if (missing > size)
23857 			return (B_FALSE);
23858 		size -= missing;
23859 
23860 		size %= len;
23861 		missing = (size == 0) ? 0 : (len - size);
23862 
23863 		mp = mp->b_cont;
23864 	}
23865 
23866 	return (total > ip_wput_frag_mdt_min);
23867 }
23868 
23869 /*
23870  * Outbound IPv4 fragmentation routine using MDT.
23871  */
23872 static void
23873 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len,
23874     uint32_t frag_flag, int offset)
23875 {
23876 	ipha_t		*ipha_orig;
23877 	int		i1, ip_data_end;
23878 	uint_t		pkts, wroff, hdr_chunk_len, pbuf_idx;
23879 	mblk_t		*hdr_mp, *md_mp = NULL;
23880 	unsigned char	*hdr_ptr, *pld_ptr;
23881 	multidata_t	*mmd;
23882 	ip_pdescinfo_t	pdi;
23883 	ill_t		*ill;
23884 	ip_stack_t	*ipst = ire->ire_ipst;
23885 
23886 	ASSERT(DB_TYPE(mp) == M_DATA);
23887 	ASSERT(MBLKL(mp) > sizeof (ipha_t));
23888 
23889 	ill = ire_to_ill(ire);
23890 	ASSERT(ill != NULL);
23891 
23892 	ipha_orig = (ipha_t *)mp->b_rptr;
23893 	mp->b_rptr += sizeof (ipha_t);
23894 
23895 	/* Calculate how many packets we will send out */
23896 	i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp);
23897 	pkts = (i1 + len - 1) / len;
23898 	ASSERT(pkts > 1);
23899 
23900 	/* Allocate a message block which will hold all the IP Headers. */
23901 	wroff = ipst->ips_ip_wroff_extra;
23902 	hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH;
23903 
23904 	i1 = pkts * hdr_chunk_len;
23905 	/*
23906 	 * Create the header buffer, Multidata and destination address
23907 	 * and SAP attribute that should be associated with it.
23908 	 */
23909 	if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL ||
23910 	    ((hdr_mp->b_wptr += i1),
23911 	    (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) ||
23912 	    !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) {
23913 		freemsg(mp);
23914 		if (md_mp == NULL) {
23915 			freemsg(hdr_mp);
23916 		} else {
23917 free_mmd:		IP_STAT(ipst, ip_frag_mdt_discarded);
23918 			freemsg(md_mp);
23919 		}
23920 		IP_STAT(ipst, ip_frag_mdt_allocfail);
23921 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
23922 		return;
23923 	}
23924 	IP_STAT(ipst, ip_frag_mdt_allocd);
23925 
23926 	/*
23927 	 * Add a payload buffer to the Multidata; this operation must not
23928 	 * fail, or otherwise our logic in this routine is broken.  There
23929 	 * is no memory allocation done by the routine, so any returned
23930 	 * failure simply tells us that we've done something wrong.
23931 	 *
23932 	 * A failure tells us that either we're adding the same payload
23933 	 * buffer more than once, or we're trying to add more buffers than
23934 	 * allowed.  None of the above cases should happen, and we panic
23935 	 * because either there's horrible heap corruption, and/or
23936 	 * programming mistake.
23937 	 */
23938 	if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
23939 		goto pbuf_panic;
23940 
23941 	hdr_ptr = hdr_mp->b_rptr;
23942 	pld_ptr = mp->b_rptr;
23943 
23944 	/* Establish the ending byte offset, based on the starting offset. */
23945 	offset <<= 3;
23946 	ip_data_end = offset + ntohs(ipha_orig->ipha_length) -
23947 	    IP_SIMPLE_HDR_LENGTH;
23948 
23949 	pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF;
23950 
23951 	while (pld_ptr < mp->b_wptr) {
23952 		ipha_t		*ipha;
23953 		uint16_t	offset_and_flags;
23954 		uint16_t	ip_len;
23955 		int		error;
23956 
23957 		ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr);
23958 		ipha = (ipha_t *)(hdr_ptr + wroff);
23959 		ASSERT(OK_32PTR(ipha));
23960 		*ipha = *ipha_orig;
23961 
23962 		if (ip_data_end - offset > len) {
23963 			offset_and_flags = IPH_MF;
23964 		} else {
23965 			/*
23966 			 * Last frag. Set len to the length of this last piece.
23967 			 */
23968 			len = ip_data_end - offset;
23969 			/* A frag of a frag might have IPH_MF non-zero */
23970 			offset_and_flags =
23971 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
23972 			    IPH_MF;
23973 		}
23974 		offset_and_flags |= (uint16_t)(offset >> 3);
23975 		offset_and_flags |= (uint16_t)frag_flag;
23976 		/* Store the offset and flags in the IP header. */
23977 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
23978 
23979 		/* Store the length in the IP header. */
23980 		ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH);
23981 		ipha->ipha_length = htons(ip_len);
23982 
23983 		/*
23984 		 * Set the IP header checksum.  Note that mp is just
23985 		 * the header, so this is easy to pass to ip_csum.
23986 		 */
23987 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
23988 
23989 		/*
23990 		 * Record offset and size of header and data of the next packet
23991 		 * in the multidata message.
23992 		 */
23993 		PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0);
23994 		PDESC_PLD_INIT(&pdi);
23995 		i1 = MIN(mp->b_wptr - pld_ptr, len);
23996 		ASSERT(i1 > 0);
23997 		PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1);
23998 		if (i1 == len) {
23999 			pld_ptr += len;
24000 		} else {
24001 			i1 = len - i1;
24002 			mp = mp->b_cont;
24003 			ASSERT(mp != NULL);
24004 			ASSERT(MBLKL(mp) >= i1);
24005 			/*
24006 			 * Attach the next payload message block to the
24007 			 * multidata message.
24008 			 */
24009 			if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
24010 				goto pbuf_panic;
24011 			PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1);
24012 			pld_ptr = mp->b_rptr + i1;
24013 		}
24014 
24015 		if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error,
24016 		    KM_NOSLEEP)) == NULL) {
24017 			/*
24018 			 * Any failure other than ENOMEM indicates that we
24019 			 * have passed in invalid pdesc info or parameters
24020 			 * to mmd_addpdesc, which must not happen.
24021 			 *
24022 			 * EINVAL is a result of failure on boundary checks
24023 			 * against the pdesc info contents.  It should not
24024 			 * happen, and we panic because either there's
24025 			 * horrible heap corruption, and/or programming
24026 			 * mistake.
24027 			 */
24028 			if (error != ENOMEM) {
24029 				cmn_err(CE_PANIC, "ip_wput_frag_mdt: "
24030 				    "pdesc logic error detected for "
24031 				    "mmd %p pinfo %p (%d)\n",
24032 				    (void *)mmd, (void *)&pdi, error);
24033 				/* NOTREACHED */
24034 			}
24035 			IP_STAT(ipst, ip_frag_mdt_addpdescfail);
24036 			/* Free unattached payload message blocks as well */
24037 			md_mp->b_cont = mp->b_cont;
24038 			goto free_mmd;
24039 		}
24040 
24041 		/* Advance fragment offset. */
24042 		offset += len;
24043 
24044 		/* Advance to location for next header in the buffer. */
24045 		hdr_ptr += hdr_chunk_len;
24046 
24047 		/* Did we reach the next payload message block? */
24048 		if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) {
24049 			mp = mp->b_cont;
24050 			/*
24051 			 * Attach the next message block with payload
24052 			 * data to the multidata message.
24053 			 */
24054 			if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
24055 				goto pbuf_panic;
24056 			pld_ptr = mp->b_rptr;
24057 		}
24058 	}
24059 
24060 	ASSERT(hdr_mp->b_wptr == hdr_ptr);
24061 	ASSERT(mp->b_wptr == pld_ptr);
24062 
24063 	/* Update IP statistics */
24064 	IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts);
24065 
24066 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts);
24067 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
24068 
24069 	len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH;
24070 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts);
24071 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len);
24072 
24073 	if (pkt_type == OB_PKT) {
24074 		ire->ire_ob_pkt_count += pkts;
24075 		if (ire->ire_ipif != NULL)
24076 			atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts);
24077 	} else {
24078 		/* The type is IB_PKT in the forwarding path. */
24079 		ire->ire_ib_pkt_count += pkts;
24080 		ASSERT(!IRE_IS_LOCAL(ire));
24081 		if (ire->ire_type & IRE_BROADCAST) {
24082 			atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts);
24083 		} else {
24084 			UPDATE_MIB(ill->ill_ip_mib,
24085 			    ipIfStatsHCOutForwDatagrams, pkts);
24086 			atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts);
24087 		}
24088 	}
24089 	ire->ire_last_used_time = lbolt;
24090 	/* Send it down */
24091 	putnext(ire->ire_stq, md_mp);
24092 	return;
24093 
24094 pbuf_panic:
24095 	cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic "
24096 	    "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp,
24097 	    pbuf_idx);
24098 	/* NOTREACHED */
24099 }
24100 
24101 /*
24102  * Outbound IP fragmentation routine.
24103  *
24104  * NOTE : This routine does not ire_refrele the ire that is passed in
24105  * as the argument.
24106  */
24107 static void
24108 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag,
24109     uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst)
24110 {
24111 	int		i1;
24112 	mblk_t		*ll_hdr_mp;
24113 	int 		ll_hdr_len;
24114 	int		hdr_len;
24115 	mblk_t		*hdr_mp;
24116 	ipha_t		*ipha;
24117 	int		ip_data_end;
24118 	int		len;
24119 	mblk_t		*mp = mp_orig, *mp1;
24120 	int		offset;
24121 	queue_t		*q;
24122 	uint32_t	v_hlen_tos_len;
24123 	mblk_t		*first_mp;
24124 	boolean_t	mctl_present;
24125 	ill_t		*ill;
24126 	ill_t		*out_ill;
24127 	mblk_t		*xmit_mp;
24128 	mblk_t		*carve_mp;
24129 	ire_t		*ire1 = NULL;
24130 	ire_t		*save_ire = NULL;
24131 	mblk_t  	*next_mp = NULL;
24132 	boolean_t	last_frag = B_FALSE;
24133 	boolean_t	multirt_send = B_FALSE;
24134 	ire_t		*first_ire = NULL;
24135 	irb_t		*irb = NULL;
24136 	mib2_ipIfStatsEntry_t *mibptr = NULL;
24137 
24138 	ill = ire_to_ill(ire);
24139 	mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib;
24140 
24141 	BUMP_MIB(mibptr, ipIfStatsOutFragReqds);
24142 
24143 	if (max_frag == 0) {
24144 		ip1dbg(("ip_wput_frag: ire frag size is 0"
24145 		    " -  dropping packet\n"));
24146 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24147 		freemsg(mp);
24148 		return;
24149 	}
24150 
24151 	/*
24152 	 * IPsec does not allow hw accelerated packets to be fragmented
24153 	 * This check is made in ip_wput_ipsec_out prior to coming here
24154 	 * via ip_wput_ire_fragmentit.
24155 	 *
24156 	 * If at this point we have an ire whose ARP request has not
24157 	 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger
24158 	 * sending of ARP query and change ire's state to ND_INCOMPLETE.
24159 	 * This packet and all fragmentable packets for this ire will
24160 	 * continue to get dropped while ire_nce->nce_state remains in
24161 	 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to
24162 	 * ND_REACHABLE, all subsquent large packets for this ire will
24163 	 * get fragemented and sent out by this function.
24164 	 */
24165 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
24166 		/* If nce_state is ND_INITIAL, trigger ARP query */
24167 		(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
24168 		ip1dbg(("ip_wput_frag: mac address for ire is unresolved"
24169 		    " -  dropping packet\n"));
24170 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24171 		freemsg(mp);
24172 		return;
24173 	}
24174 
24175 	TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START,
24176 	    "ip_wput_frag_start:");
24177 
24178 	if (mp->b_datap->db_type == M_CTL) {
24179 		first_mp = mp;
24180 		mp_orig = mp = mp->b_cont;
24181 		mctl_present = B_TRUE;
24182 	} else {
24183 		first_mp = mp;
24184 		mctl_present = B_FALSE;
24185 	}
24186 
24187 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
24188 	ipha = (ipha_t *)mp->b_rptr;
24189 
24190 	/*
24191 	 * If the Don't Fragment flag is on, generate an ICMP destination
24192 	 * unreachable, fragmentation needed.
24193 	 */
24194 	offset = ntohs(ipha->ipha_fragment_offset_and_flags);
24195 	if (offset & IPH_DF) {
24196 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24197 		if (is_system_labeled()) {
24198 			max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag,
24199 			    ire->ire_max_frag - max_frag, AF_INET);
24200 		}
24201 		/*
24202 		 * Need to compute hdr checksum if called from ip_wput_ire.
24203 		 * Note that ip_rput_forward verifies the checksum before
24204 		 * calling this routine so in that case this is a noop.
24205 		 */
24206 		ipha->ipha_hdr_checksum = 0;
24207 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
24208 		icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid,
24209 		    ipst);
24210 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24211 		    "ip_wput_frag_end:(%S)",
24212 		    "don't fragment");
24213 		return;
24214 	}
24215 	/*
24216 	 * Labeled systems adjust max_frag if they add a label
24217 	 * to send the correct path mtu.  We need the real mtu since we
24218 	 * are fragmenting the packet after label adjustment.
24219 	 */
24220 	if (is_system_labeled())
24221 		max_frag = ire->ire_max_frag;
24222 	if (mctl_present)
24223 		freeb(first_mp);
24224 	/*
24225 	 * Establish the starting offset.  May not be zero if we are fragging
24226 	 * a fragment that is being forwarded.
24227 	 */
24228 	offset = offset & IPH_OFFSET;
24229 
24230 	/* TODO why is this test needed? */
24231 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
24232 	if (((max_frag - LENGTH) & ~7) < 8) {
24233 		/* TODO: notify ulp somehow */
24234 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24235 		freemsg(mp);
24236 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24237 		    "ip_wput_frag_end:(%S)",
24238 		    "len < 8");
24239 		return;
24240 	}
24241 
24242 	hdr_len = (V_HLEN & 0xF) << 2;
24243 
24244 	ipha->ipha_hdr_checksum = 0;
24245 
24246 	/*
24247 	 * Establish the number of bytes maximum per frag, after putting
24248 	 * in the header.
24249 	 */
24250 	len = (max_frag - hdr_len) & ~7;
24251 
24252 	/* Check if we can use MDT to send out the frags. */
24253 	ASSERT(!IRE_IS_LOCAL(ire));
24254 	if (hdr_len == IP_SIMPLE_HDR_LENGTH &&
24255 	    ipst->ips_ip_multidata_outbound &&
24256 	    !(ire->ire_flags & RTF_MULTIRT) &&
24257 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
24258 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
24259 	    IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) {
24260 		ASSERT(ill->ill_mdt_capab != NULL);
24261 		if (!ill->ill_mdt_capab->ill_mdt_on) {
24262 			/*
24263 			 * If MDT has been previously turned off in the past,
24264 			 * and we currently can do MDT (due to IPQoS policy
24265 			 * removal, etc.) then enable it for this interface.
24266 			 */
24267 			ill->ill_mdt_capab->ill_mdt_on = 1;
24268 			ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n",
24269 			    ill->ill_name));
24270 		}
24271 		ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag,
24272 		    offset);
24273 		return;
24274 	}
24275 
24276 	/* Get a copy of the header for the trailing frags */
24277 	hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst);
24278 	if (!hdr_mp) {
24279 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24280 		freemsg(mp);
24281 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24282 		    "ip_wput_frag_end:(%S)",
24283 		    "couldn't copy hdr");
24284 		return;
24285 	}
24286 	if (DB_CRED(mp) != NULL)
24287 		mblk_setcred(hdr_mp, DB_CRED(mp));
24288 
24289 	/* Store the starting offset, with the MoreFrags flag. */
24290 	i1 = offset | IPH_MF | frag_flag;
24291 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
24292 
24293 	/* Establish the ending byte offset, based on the starting offset. */
24294 	offset <<= 3;
24295 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
24296 
24297 	/* Store the length of the first fragment in the IP header. */
24298 	i1 = len + hdr_len;
24299 	ASSERT(i1 <= IP_MAXPACKET);
24300 	ipha->ipha_length = htons((uint16_t)i1);
24301 
24302 	/*
24303 	 * Compute the IP header checksum for the first frag.  We have to
24304 	 * watch out that we stop at the end of the header.
24305 	 */
24306 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
24307 
24308 	/*
24309 	 * Now carve off the first frag.  Note that this will include the
24310 	 * original IP header.
24311 	 */
24312 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
24313 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24314 		freeb(hdr_mp);
24315 		freemsg(mp_orig);
24316 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24317 		    "ip_wput_frag_end:(%S)",
24318 		    "couldn't carve first");
24319 		return;
24320 	}
24321 
24322 	/*
24323 	 * Multirouting case. Each fragment is replicated
24324 	 * via all non-condemned RTF_MULTIRT routes
24325 	 * currently resolved.
24326 	 * We ensure that first_ire is the first RTF_MULTIRT
24327 	 * ire in the bucket.
24328 	 */
24329 	if (ire->ire_flags & RTF_MULTIRT) {
24330 		irb = ire->ire_bucket;
24331 		ASSERT(irb != NULL);
24332 
24333 		multirt_send = B_TRUE;
24334 
24335 		/* Make sure we do not omit any multiroute ire. */
24336 		IRB_REFHOLD(irb);
24337 		for (first_ire = irb->irb_ire;
24338 		    first_ire != NULL;
24339 		    first_ire = first_ire->ire_next) {
24340 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
24341 			    (first_ire->ire_addr == ire->ire_addr) &&
24342 			    !(first_ire->ire_marks &
24343 			    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) {
24344 				break;
24345 			}
24346 		}
24347 
24348 		if (first_ire != NULL) {
24349 			if (first_ire != ire) {
24350 				IRE_REFHOLD(first_ire);
24351 				/*
24352 				 * Do not release the ire passed in
24353 				 * as the argument.
24354 				 */
24355 				ire = first_ire;
24356 			} else {
24357 				first_ire = NULL;
24358 			}
24359 		}
24360 		IRB_REFRELE(irb);
24361 
24362 		/*
24363 		 * Save the first ire; we will need to restore it
24364 		 * for the trailing frags.
24365 		 * We REFHOLD save_ire, as each iterated ire will be
24366 		 * REFRELEd.
24367 		 */
24368 		save_ire = ire;
24369 		IRE_REFHOLD(save_ire);
24370 	}
24371 
24372 	/*
24373 	 * First fragment emission loop.
24374 	 * In most cases, the emission loop below is entered only
24375 	 * once. Only in the case where the ire holds the RTF_MULTIRT
24376 	 * flag, do we loop to process all RTF_MULTIRT ires in the
24377 	 * bucket, and send the fragment through all crossed
24378 	 * RTF_MULTIRT routes.
24379 	 */
24380 	do {
24381 		if (ire->ire_flags & RTF_MULTIRT) {
24382 			/*
24383 			 * We are in a multiple send case, need to get
24384 			 * the next ire and make a copy of the packet.
24385 			 * ire1 holds here the next ire to process in the
24386 			 * bucket. If multirouting is expected,
24387 			 * any non-RTF_MULTIRT ire that has the
24388 			 * right destination address is ignored.
24389 			 *
24390 			 * We have to take into account the MTU of
24391 			 * each walked ire. max_frag is set by the
24392 			 * the caller and generally refers to
24393 			 * the primary ire entry. Here we ensure that
24394 			 * no route with a lower MTU will be used, as
24395 			 * fragments are carved once for all ires,
24396 			 * then replicated.
24397 			 */
24398 			ASSERT(irb != NULL);
24399 			IRB_REFHOLD(irb);
24400 			for (ire1 = ire->ire_next;
24401 			    ire1 != NULL;
24402 			    ire1 = ire1->ire_next) {
24403 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
24404 					continue;
24405 				if (ire1->ire_addr != ire->ire_addr)
24406 					continue;
24407 				if (ire1->ire_marks &
24408 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
24409 					continue;
24410 				/*
24411 				 * Ensure we do not exceed the MTU
24412 				 * of the next route.
24413 				 */
24414 				if (ire1->ire_max_frag < max_frag) {
24415 					ip_multirt_bad_mtu(ire1, max_frag);
24416 					continue;
24417 				}
24418 
24419 				/* Got one. */
24420 				IRE_REFHOLD(ire1);
24421 				break;
24422 			}
24423 			IRB_REFRELE(irb);
24424 
24425 			if (ire1 != NULL) {
24426 				next_mp = copyb(mp);
24427 				if ((next_mp == NULL) ||
24428 				    ((mp->b_cont != NULL) &&
24429 				    ((next_mp->b_cont =
24430 				    dupmsg(mp->b_cont)) == NULL))) {
24431 					freemsg(next_mp);
24432 					next_mp = NULL;
24433 					ire_refrele(ire1);
24434 					ire1 = NULL;
24435 				}
24436 			}
24437 
24438 			/* Last multiroute ire; don't loop anymore. */
24439 			if (ire1 == NULL) {
24440 				multirt_send = B_FALSE;
24441 			}
24442 		}
24443 
24444 		ll_hdr_len = 0;
24445 		LOCK_IRE_FP_MP(ire);
24446 		ll_hdr_mp = ire->ire_nce->nce_fp_mp;
24447 		if (ll_hdr_mp != NULL) {
24448 			ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
24449 			ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr;
24450 		} else {
24451 			ll_hdr_mp = ire->ire_nce->nce_res_mp;
24452 		}
24453 
24454 		/* If there is a transmit header, get a copy for this frag. */
24455 		/*
24456 		 * TODO: should check db_ref before calling ip_carve_mp since
24457 		 * it might give us a dup.
24458 		 */
24459 		if (!ll_hdr_mp) {
24460 			/* No xmit header. */
24461 			xmit_mp = mp;
24462 
24463 		/* We have a link-layer header that can fit in our mblk. */
24464 		} else if (mp->b_datap->db_ref == 1 &&
24465 		    ll_hdr_len != 0 &&
24466 		    ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
24467 			/* M_DATA fastpath */
24468 			mp->b_rptr -= ll_hdr_len;
24469 			bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len);
24470 			xmit_mp = mp;
24471 
24472 		/* Corner case if copyb has failed */
24473 		} else if (!(xmit_mp = copyb(ll_hdr_mp))) {
24474 			UNLOCK_IRE_FP_MP(ire);
24475 			BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24476 			freeb(hdr_mp);
24477 			freemsg(mp);
24478 			freemsg(mp_orig);
24479 			TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24480 			    "ip_wput_frag_end:(%S)",
24481 			    "discard");
24482 
24483 			if (multirt_send) {
24484 				ASSERT(ire1);
24485 				ASSERT(next_mp);
24486 
24487 				freemsg(next_mp);
24488 				ire_refrele(ire1);
24489 			}
24490 			if (save_ire != NULL)
24491 				IRE_REFRELE(save_ire);
24492 
24493 			if (first_ire != NULL)
24494 				ire_refrele(first_ire);
24495 			return;
24496 
24497 		/*
24498 		 * Case of res_mp OR the fastpath mp can't fit
24499 		 * in the mblk
24500 		 */
24501 		} else {
24502 			xmit_mp->b_cont = mp;
24503 			if (DB_CRED(mp) != NULL)
24504 				mblk_setcred(xmit_mp, DB_CRED(mp));
24505 			/*
24506 			 * Get priority marking, if any.
24507 			 * We propagate the CoS marking from the
24508 			 * original packet that went to QoS processing
24509 			 * in ip_wput_ire to the newly carved mp.
24510 			 */
24511 			if (DB_TYPE(xmit_mp) == M_DATA)
24512 				xmit_mp->b_band = mp->b_band;
24513 		}
24514 		UNLOCK_IRE_FP_MP(ire);
24515 
24516 		q = ire->ire_stq;
24517 		out_ill = (ill_t *)q->q_ptr;
24518 
24519 		BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates);
24520 
24521 		DTRACE_PROBE4(ip4__physical__out__start,
24522 		    ill_t *, NULL, ill_t *, out_ill,
24523 		    ipha_t *, ipha, mblk_t *, xmit_mp);
24524 
24525 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
24526 		    ipst->ips_ipv4firewall_physical_out,
24527 		    NULL, out_ill, ipha, xmit_mp, mp, 0, ipst);
24528 
24529 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp);
24530 
24531 		if (xmit_mp != NULL) {
24532 			putnext(q, xmit_mp);
24533 
24534 			BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits);
24535 			UPDATE_MIB(out_ill->ill_ip_mib,
24536 			    ipIfStatsHCOutOctets, i1);
24537 
24538 			if (pkt_type != OB_PKT) {
24539 				/*
24540 				 * Update the packet count and MIB stats
24541 				 * of trailing RTF_MULTIRT ires.
24542 				 */
24543 				UPDATE_OB_PKT_COUNT(ire);
24544 				BUMP_MIB(out_ill->ill_ip_mib,
24545 				    ipIfStatsOutFragReqds);
24546 			}
24547 		}
24548 
24549 		if (multirt_send) {
24550 			/*
24551 			 * We are in a multiple send case; look for
24552 			 * the next ire and re-enter the loop.
24553 			 */
24554 			ASSERT(ire1);
24555 			ASSERT(next_mp);
24556 			/* REFRELE the current ire before looping */
24557 			ire_refrele(ire);
24558 			ire = ire1;
24559 			ire1 = NULL;
24560 			mp = next_mp;
24561 			next_mp = NULL;
24562 		}
24563 	} while (multirt_send);
24564 
24565 	ASSERT(ire1 == NULL);
24566 
24567 	/* Restore the original ire; we need it for the trailing frags */
24568 	if (save_ire != NULL) {
24569 		/* REFRELE the last iterated ire */
24570 		ire_refrele(ire);
24571 		/* save_ire has been REFHOLDed */
24572 		ire = save_ire;
24573 		save_ire = NULL;
24574 		q = ire->ire_stq;
24575 	}
24576 
24577 	if (pkt_type == OB_PKT) {
24578 		UPDATE_OB_PKT_COUNT(ire);
24579 	} else {
24580 		out_ill = (ill_t *)q->q_ptr;
24581 		BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams);
24582 		UPDATE_IB_PKT_COUNT(ire);
24583 	}
24584 
24585 	/* Advance the offset to the second frag starting point. */
24586 	offset += len;
24587 	/*
24588 	 * Update hdr_len from the copied header - there might be less options
24589 	 * in the later fragments.
24590 	 */
24591 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
24592 	/* Loop until done. */
24593 	for (;;) {
24594 		uint16_t	offset_and_flags;
24595 		uint16_t	ip_len;
24596 
24597 		if (ip_data_end - offset > len) {
24598 			/*
24599 			 * Carve off the appropriate amount from the original
24600 			 * datagram.
24601 			 */
24602 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
24603 				mp = NULL;
24604 				break;
24605 			}
24606 			/*
24607 			 * More frags after this one.  Get another copy
24608 			 * of the header.
24609 			 */
24610 			if (carve_mp->b_datap->db_ref == 1 &&
24611 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
24612 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
24613 				/* Inline IP header */
24614 				carve_mp->b_rptr -= hdr_mp->b_wptr -
24615 				    hdr_mp->b_rptr;
24616 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
24617 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
24618 				mp = carve_mp;
24619 			} else {
24620 				if (!(mp = copyb(hdr_mp))) {
24621 					freemsg(carve_mp);
24622 					break;
24623 				}
24624 				/* Get priority marking, if any. */
24625 				mp->b_band = carve_mp->b_band;
24626 				mp->b_cont = carve_mp;
24627 			}
24628 			ipha = (ipha_t *)mp->b_rptr;
24629 			offset_and_flags = IPH_MF;
24630 		} else {
24631 			/*
24632 			 * Last frag.  Consume the header. Set len to
24633 			 * the length of this last piece.
24634 			 */
24635 			len = ip_data_end - offset;
24636 
24637 			/*
24638 			 * Carve off the appropriate amount from the original
24639 			 * datagram.
24640 			 */
24641 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
24642 				mp = NULL;
24643 				break;
24644 			}
24645 			if (carve_mp->b_datap->db_ref == 1 &&
24646 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
24647 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
24648 				/* Inline IP header */
24649 				carve_mp->b_rptr -= hdr_mp->b_wptr -
24650 				    hdr_mp->b_rptr;
24651 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
24652 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
24653 				mp = carve_mp;
24654 				freeb(hdr_mp);
24655 				hdr_mp = mp;
24656 			} else {
24657 				mp = hdr_mp;
24658 				/* Get priority marking, if any. */
24659 				mp->b_band = carve_mp->b_band;
24660 				mp->b_cont = carve_mp;
24661 			}
24662 			ipha = (ipha_t *)mp->b_rptr;
24663 			/* A frag of a frag might have IPH_MF non-zero */
24664 			offset_and_flags =
24665 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
24666 			    IPH_MF;
24667 		}
24668 		offset_and_flags |= (uint16_t)(offset >> 3);
24669 		offset_and_flags |= (uint16_t)frag_flag;
24670 		/* Store the offset and flags in the IP header. */
24671 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
24672 
24673 		/* Store the length in the IP header. */
24674 		ip_len = (uint16_t)(len + hdr_len);
24675 		ipha->ipha_length = htons(ip_len);
24676 
24677 		/*
24678 		 * Set the IP header checksum.	Note that mp is just
24679 		 * the header, so this is easy to pass to ip_csum.
24680 		 */
24681 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
24682 
24683 		/* Attach a transmit header, if any, and ship it. */
24684 		if (pkt_type == OB_PKT) {
24685 			UPDATE_OB_PKT_COUNT(ire);
24686 		} else {
24687 			out_ill = (ill_t *)q->q_ptr;
24688 			BUMP_MIB(out_ill->ill_ip_mib,
24689 			    ipIfStatsHCOutForwDatagrams);
24690 			UPDATE_IB_PKT_COUNT(ire);
24691 		}
24692 
24693 		if (ire->ire_flags & RTF_MULTIRT) {
24694 			irb = ire->ire_bucket;
24695 			ASSERT(irb != NULL);
24696 
24697 			multirt_send = B_TRUE;
24698 
24699 			/*
24700 			 * Save the original ire; we will need to restore it
24701 			 * for the tailing frags.
24702 			 */
24703 			save_ire = ire;
24704 			IRE_REFHOLD(save_ire);
24705 		}
24706 		/*
24707 		 * Emission loop for this fragment, similar
24708 		 * to what is done for the first fragment.
24709 		 */
24710 		do {
24711 			if (multirt_send) {
24712 				/*
24713 				 * We are in a multiple send case, need to get
24714 				 * the next ire and make a copy of the packet.
24715 				 */
24716 				ASSERT(irb != NULL);
24717 				IRB_REFHOLD(irb);
24718 				for (ire1 = ire->ire_next;
24719 				    ire1 != NULL;
24720 				    ire1 = ire1->ire_next) {
24721 					if (!(ire1->ire_flags & RTF_MULTIRT))
24722 						continue;
24723 					if (ire1->ire_addr != ire->ire_addr)
24724 						continue;
24725 					if (ire1->ire_marks &
24726 					    (IRE_MARK_CONDEMNED|
24727 					    IRE_MARK_HIDDEN)) {
24728 						continue;
24729 					}
24730 					/*
24731 					 * Ensure we do not exceed the MTU
24732 					 * of the next route.
24733 					 */
24734 					if (ire1->ire_max_frag < max_frag) {
24735 						ip_multirt_bad_mtu(ire1,
24736 						    max_frag);
24737 						continue;
24738 					}
24739 
24740 					/* Got one. */
24741 					IRE_REFHOLD(ire1);
24742 					break;
24743 				}
24744 				IRB_REFRELE(irb);
24745 
24746 				if (ire1 != NULL) {
24747 					next_mp = copyb(mp);
24748 					if ((next_mp == NULL) ||
24749 					    ((mp->b_cont != NULL) &&
24750 					    ((next_mp->b_cont =
24751 					    dupmsg(mp->b_cont)) == NULL))) {
24752 						freemsg(next_mp);
24753 						next_mp = NULL;
24754 						ire_refrele(ire1);
24755 						ire1 = NULL;
24756 					}
24757 				}
24758 
24759 				/* Last multiroute ire; don't loop anymore. */
24760 				if (ire1 == NULL) {
24761 					multirt_send = B_FALSE;
24762 				}
24763 			}
24764 
24765 			/* Update transmit header */
24766 			ll_hdr_len = 0;
24767 			LOCK_IRE_FP_MP(ire);
24768 			ll_hdr_mp = ire->ire_nce->nce_fp_mp;
24769 			if (ll_hdr_mp != NULL) {
24770 				ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
24771 				ll_hdr_len = MBLKL(ll_hdr_mp);
24772 			} else {
24773 				ll_hdr_mp = ire->ire_nce->nce_res_mp;
24774 			}
24775 
24776 			if (!ll_hdr_mp) {
24777 				xmit_mp = mp;
24778 
24779 			/*
24780 			 * We have link-layer header that can fit in
24781 			 * our mblk.
24782 			 */
24783 			} else if (mp->b_datap->db_ref == 1 &&
24784 			    ll_hdr_len != 0 &&
24785 			    ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
24786 				/* M_DATA fastpath */
24787 				mp->b_rptr -= ll_hdr_len;
24788 				bcopy(ll_hdr_mp->b_rptr, mp->b_rptr,
24789 				    ll_hdr_len);
24790 				xmit_mp = mp;
24791 
24792 			/*
24793 			 * Case of res_mp OR the fastpath mp can't fit
24794 			 * in the mblk
24795 			 */
24796 			} else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) {
24797 				xmit_mp->b_cont = mp;
24798 				if (DB_CRED(mp) != NULL)
24799 					mblk_setcred(xmit_mp, DB_CRED(mp));
24800 				/* Get priority marking, if any. */
24801 				if (DB_TYPE(xmit_mp) == M_DATA)
24802 					xmit_mp->b_band = mp->b_band;
24803 
24804 			/* Corner case if copyb failed */
24805 			} else {
24806 				/*
24807 				 * Exit both the replication and
24808 				 * fragmentation loops.
24809 				 */
24810 				UNLOCK_IRE_FP_MP(ire);
24811 				goto drop_pkt;
24812 			}
24813 			UNLOCK_IRE_FP_MP(ire);
24814 
24815 			mp1 = mp;
24816 			out_ill = (ill_t *)q->q_ptr;
24817 
24818 			BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates);
24819 
24820 			DTRACE_PROBE4(ip4__physical__out__start,
24821 			    ill_t *, NULL, ill_t *, out_ill,
24822 			    ipha_t *, ipha, mblk_t *, xmit_mp);
24823 
24824 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
24825 			    ipst->ips_ipv4firewall_physical_out,
24826 			    NULL, out_ill, ipha, xmit_mp, mp, 0, ipst);
24827 
24828 			DTRACE_PROBE1(ip4__physical__out__end,
24829 			    mblk_t *, xmit_mp);
24830 
24831 			if (mp != mp1 && hdr_mp == mp1)
24832 				hdr_mp = mp;
24833 			if (mp != mp1 && mp_orig == mp1)
24834 				mp_orig = mp;
24835 
24836 			if (xmit_mp != NULL) {
24837 				putnext(q, xmit_mp);
24838 
24839 				BUMP_MIB(out_ill->ill_ip_mib,
24840 				    ipIfStatsHCOutTransmits);
24841 				UPDATE_MIB(out_ill->ill_ip_mib,
24842 				    ipIfStatsHCOutOctets, ip_len);
24843 
24844 				if (pkt_type != OB_PKT) {
24845 					/*
24846 					 * Update the packet count of trailing
24847 					 * RTF_MULTIRT ires.
24848 					 */
24849 					UPDATE_OB_PKT_COUNT(ire);
24850 				}
24851 			}
24852 
24853 			/* All done if we just consumed the hdr_mp. */
24854 			if (mp == hdr_mp) {
24855 				last_frag = B_TRUE;
24856 				BUMP_MIB(out_ill->ill_ip_mib,
24857 				    ipIfStatsOutFragOKs);
24858 			}
24859 
24860 			if (multirt_send) {
24861 				/*
24862 				 * We are in a multiple send case; look for
24863 				 * the next ire and re-enter the loop.
24864 				 */
24865 				ASSERT(ire1);
24866 				ASSERT(next_mp);
24867 				/* REFRELE the current ire before looping */
24868 				ire_refrele(ire);
24869 				ire = ire1;
24870 				ire1 = NULL;
24871 				q = ire->ire_stq;
24872 				mp = next_mp;
24873 				next_mp = NULL;
24874 			}
24875 		} while (multirt_send);
24876 		/*
24877 		 * Restore the original ire; we need it for the
24878 		 * trailing frags
24879 		 */
24880 		if (save_ire != NULL) {
24881 			ASSERT(ire1 == NULL);
24882 			/* REFRELE the last iterated ire */
24883 			ire_refrele(ire);
24884 			/* save_ire has been REFHOLDed */
24885 			ire = save_ire;
24886 			q = ire->ire_stq;
24887 			save_ire = NULL;
24888 		}
24889 
24890 		if (last_frag) {
24891 			TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24892 			    "ip_wput_frag_end:(%S)",
24893 			    "consumed hdr_mp");
24894 
24895 			if (first_ire != NULL)
24896 				ire_refrele(first_ire);
24897 			return;
24898 		}
24899 		/* Otherwise, advance and loop. */
24900 		offset += len;
24901 	}
24902 
24903 drop_pkt:
24904 	/* Clean up following allocation failure. */
24905 	BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24906 	freemsg(mp);
24907 	if (mp != hdr_mp)
24908 		freeb(hdr_mp);
24909 	if (mp != mp_orig)
24910 		freemsg(mp_orig);
24911 
24912 	if (save_ire != NULL)
24913 		IRE_REFRELE(save_ire);
24914 	if (first_ire != NULL)
24915 		ire_refrele(first_ire);
24916 
24917 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24918 	    "ip_wput_frag_end:(%S)",
24919 	    "end--alloc failure");
24920 }
24921 
24922 /*
24923  * Copy the header plus those options which have the copy bit set
24924  */
24925 static mblk_t *
24926 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst)
24927 {
24928 	mblk_t	*mp;
24929 	uchar_t	*up;
24930 
24931 	/*
24932 	 * Quick check if we need to look for options without the copy bit
24933 	 * set
24934 	 */
24935 	mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI);
24936 	if (!mp)
24937 		return (mp);
24938 	mp->b_rptr += ipst->ips_ip_wroff_extra;
24939 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
24940 		bcopy(rptr, mp->b_rptr, hdr_len);
24941 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
24942 		return (mp);
24943 	}
24944 	up  = mp->b_rptr;
24945 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
24946 	up += IP_SIMPLE_HDR_LENGTH;
24947 	rptr += IP_SIMPLE_HDR_LENGTH;
24948 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
24949 	while (hdr_len > 0) {
24950 		uint32_t optval;
24951 		uint32_t optlen;
24952 
24953 		optval = *rptr;
24954 		if (optval == IPOPT_EOL)
24955 			break;
24956 		if (optval == IPOPT_NOP)
24957 			optlen = 1;
24958 		else
24959 			optlen = rptr[1];
24960 		if (optval & IPOPT_COPY) {
24961 			bcopy(rptr, up, optlen);
24962 			up += optlen;
24963 		}
24964 		rptr += optlen;
24965 		hdr_len -= optlen;
24966 	}
24967 	/*
24968 	 * Make sure that we drop an even number of words by filling
24969 	 * with EOL to the next word boundary.
24970 	 */
24971 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
24972 	    hdr_len & 0x3; hdr_len++)
24973 		*up++ = IPOPT_EOL;
24974 	mp->b_wptr = up;
24975 	/* Update header length */
24976 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
24977 	return (mp);
24978 }
24979 
24980 /*
24981  * Delivery to local recipients including fanout to multiple recipients.
24982  * Does not do checksumming of UDP/TCP.
24983  * Note: q should be the read side queue for either the ill or conn.
24984  * Note: rq should be the read side q for the lower (ill) stream.
24985  * We don't send packets to IPPF processing, thus the last argument
24986  * to all the fanout calls are B_FALSE.
24987  */
24988 void
24989 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire,
24990     int fanout_flags, zoneid_t zoneid)
24991 {
24992 	uint32_t	protocol;
24993 	mblk_t		*first_mp;
24994 	boolean_t	mctl_present;
24995 	int		ire_type;
24996 #define	rptr	((uchar_t *)ipha)
24997 	ip_stack_t	*ipst = ill->ill_ipst;
24998 
24999 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START,
25000 	    "ip_wput_local_start: q %p", q);
25001 
25002 	if (ire != NULL) {
25003 		ire_type = ire->ire_type;
25004 	} else {
25005 		/*
25006 		 * Only ip_multicast_loopback() calls us with a NULL ire. If the
25007 		 * packet is not multicast, we can't tell the ire type.
25008 		 */
25009 		ASSERT(CLASSD(ipha->ipha_dst));
25010 		ire_type = IRE_BROADCAST;
25011 	}
25012 
25013 	first_mp = mp;
25014 	if (first_mp->b_datap->db_type == M_CTL) {
25015 		ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr;
25016 		if (!io->ipsec_out_secure) {
25017 			/*
25018 			 * This ipsec_out_t was allocated in ip_wput
25019 			 * for multicast packets to store the ill_index.
25020 			 * As this is being delivered locally, we don't
25021 			 * need this anymore.
25022 			 */
25023 			mp = first_mp->b_cont;
25024 			freeb(first_mp);
25025 			first_mp = mp;
25026 			mctl_present = B_FALSE;
25027 		} else {
25028 			/*
25029 			 * Convert IPSEC_OUT to IPSEC_IN, preserving all
25030 			 * security properties for the looped-back packet.
25031 			 */
25032 			mctl_present = B_TRUE;
25033 			mp = first_mp->b_cont;
25034 			ASSERT(mp != NULL);
25035 			ipsec_out_to_in(first_mp);
25036 		}
25037 	} else {
25038 		mctl_present = B_FALSE;
25039 	}
25040 
25041 	DTRACE_PROBE4(ip4__loopback__in__start,
25042 	    ill_t *, ill, ill_t *, NULL,
25043 	    ipha_t *, ipha, mblk_t *, first_mp);
25044 
25045 	FW_HOOKS(ipst->ips_ip4_loopback_in_event,
25046 	    ipst->ips_ipv4firewall_loopback_in,
25047 	    ill, NULL, ipha, first_mp, mp, 0, ipst);
25048 
25049 	DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp);
25050 
25051 	if (first_mp == NULL)
25052 		return;
25053 
25054 	ipst->ips_loopback_packets++;
25055 
25056 	ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n",
25057 	    ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid));
25058 	if (!IS_SIMPLE_IPH(ipha)) {
25059 		ip_wput_local_options(ipha, ipst);
25060 	}
25061 
25062 	protocol = ipha->ipha_protocol;
25063 	switch (protocol) {
25064 	case IPPROTO_ICMP: {
25065 		ire_t		*ire_zone;
25066 		ilm_t		*ilm;
25067 		mblk_t		*mp1;
25068 		zoneid_t	last_zoneid;
25069 
25070 		if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) {
25071 			ASSERT(ire_type == IRE_BROADCAST);
25072 			/*
25073 			 * In the multicast case, applications may have joined
25074 			 * the group from different zones, so we need to deliver
25075 			 * the packet to each of them. Loop through the
25076 			 * multicast memberships structures (ilm) on the receive
25077 			 * ill and send a copy of the packet up each matching
25078 			 * one. However, we don't do this for multicasts sent on
25079 			 * the loopback interface (PHYI_LOOPBACK flag set) as
25080 			 * they must stay in the sender's zone.
25081 			 *
25082 			 * ilm_add_v6() ensures that ilms in the same zone are
25083 			 * contiguous in the ill_ilm list. We use this property
25084 			 * to avoid sending duplicates needed when two
25085 			 * applications in the same zone join the same group on
25086 			 * different logical interfaces: we ignore the ilm if
25087 			 * it's zoneid is the same as the last matching one.
25088 			 * In addition, the sending of the packet for
25089 			 * ire_zoneid is delayed until all of the other ilms
25090 			 * have been exhausted.
25091 			 */
25092 			last_zoneid = -1;
25093 			ILM_WALKER_HOLD(ill);
25094 			for (ilm = ill->ill_ilm; ilm != NULL;
25095 			    ilm = ilm->ilm_next) {
25096 				if ((ilm->ilm_flags & ILM_DELETED) ||
25097 				    ipha->ipha_dst != ilm->ilm_addr ||
25098 				    ilm->ilm_zoneid == last_zoneid ||
25099 				    ilm->ilm_zoneid == zoneid ||
25100 				    !(ilm->ilm_ipif->ipif_flags & IPIF_UP))
25101 					continue;
25102 				mp1 = ip_copymsg(first_mp);
25103 				if (mp1 == NULL)
25104 					continue;
25105 				icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
25106 				    mctl_present, B_FALSE, ill,
25107 				    ilm->ilm_zoneid);
25108 				last_zoneid = ilm->ilm_zoneid;
25109 			}
25110 			ILM_WALKER_RELE(ill);
25111 			/*
25112 			 * Loopback case: the sending endpoint has
25113 			 * IP_MULTICAST_LOOP disabled, therefore we don't
25114 			 * dispatch the multicast packet to the sending zone.
25115 			 */
25116 			if (fanout_flags & IP_FF_NO_MCAST_LOOP) {
25117 				freemsg(first_mp);
25118 				return;
25119 			}
25120 		} else if (ire_type == IRE_BROADCAST) {
25121 			/*
25122 			 * In the broadcast case, there may be many zones
25123 			 * which need a copy of the packet delivered to them.
25124 			 * There is one IRE_BROADCAST per broadcast address
25125 			 * and per zone; we walk those using a helper function.
25126 			 * In addition, the sending of the packet for zoneid is
25127 			 * delayed until all of the other ires have been
25128 			 * processed.
25129 			 */
25130 			IRB_REFHOLD(ire->ire_bucket);
25131 			ire_zone = NULL;
25132 			while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
25133 			    ire)) != NULL) {
25134 				mp1 = ip_copymsg(first_mp);
25135 				if (mp1 == NULL)
25136 					continue;
25137 
25138 				UPDATE_IB_PKT_COUNT(ire_zone);
25139 				ire_zone->ire_last_used_time = lbolt;
25140 				icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
25141 				    mctl_present, B_FALSE, ill,
25142 				    ire_zone->ire_zoneid);
25143 			}
25144 			IRB_REFRELE(ire->ire_bucket);
25145 		}
25146 		icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0,
25147 		    0, mctl_present, B_FALSE, ill, zoneid);
25148 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25149 		    "ip_wput_local_end: q %p (%S)",
25150 		    q, "icmp");
25151 		return;
25152 	}
25153 	case IPPROTO_IGMP:
25154 		if ((mp = igmp_input(q, mp, ill)) == NULL) {
25155 			/* Bad packet - discarded by igmp_input */
25156 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25157 			    "ip_wput_local_end: q %p (%S)",
25158 			    q, "igmp_input--bad packet");
25159 			if (mctl_present)
25160 				freeb(first_mp);
25161 			return;
25162 		}
25163 		/*
25164 		 * igmp_input() may have returned the pulled up message.
25165 		 * So first_mp and ipha need to be reinitialized.
25166 		 */
25167 		ipha = (ipha_t *)mp->b_rptr;
25168 		if (mctl_present)
25169 			first_mp->b_cont = mp;
25170 		else
25171 			first_mp = mp;
25172 		/* deliver to local raw users */
25173 		break;
25174 	case IPPROTO_ENCAP:
25175 		/*
25176 		 * This case is covered by either ip_fanout_proto, or by
25177 		 * the above security processing for self-tunneled packets.
25178 		 */
25179 		break;
25180 	case IPPROTO_UDP: {
25181 		uint16_t	*up;
25182 		uint32_t	ports;
25183 
25184 		up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) +
25185 		    UDP_PORTS_OFFSET);
25186 		/* Force a 'valid' checksum. */
25187 		up[3] = 0;
25188 
25189 		ports = *(uint32_t *)up;
25190 		ip_fanout_udp(q, first_mp, ill, ipha, ports,
25191 		    (ire_type == IRE_BROADCAST),
25192 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
25193 		    IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE,
25194 		    ill, zoneid);
25195 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25196 		    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp");
25197 		return;
25198 	}
25199 	case IPPROTO_TCP: {
25200 
25201 		/*
25202 		 * For TCP, discard broadcast packets.
25203 		 */
25204 		if ((ushort_t)ire_type == IRE_BROADCAST) {
25205 			freemsg(first_mp);
25206 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
25207 			ip2dbg(("ip_wput_local: discard broadcast\n"));
25208 			return;
25209 		}
25210 
25211 		if (mp->b_datap->db_type == M_DATA) {
25212 			/*
25213 			 * M_DATA mblk, so init mblk (chain) for no struio().
25214 			 */
25215 			mblk_t	*mp1 = mp;
25216 
25217 			do {
25218 				mp1->b_datap->db_struioflag = 0;
25219 			} while ((mp1 = mp1->b_cont) != NULL);
25220 		}
25221 		ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4)
25222 		    <= mp->b_wptr);
25223 		ip_fanout_tcp(q, first_mp, ill, ipha,
25224 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
25225 		    IP_FF_SYN_ADDIRE | IP_FF_IPINFO,
25226 		    mctl_present, B_FALSE, zoneid);
25227 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25228 		    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp");
25229 		return;
25230 	}
25231 	case IPPROTO_SCTP:
25232 	{
25233 		uint32_t	ports;
25234 
25235 		bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports));
25236 		ip_fanout_sctp(first_mp, ill, ipha, ports,
25237 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
25238 		    IP_FF_IPINFO, mctl_present, B_FALSE, zoneid);
25239 		return;
25240 	}
25241 
25242 	default:
25243 		break;
25244 	}
25245 	/*
25246 	 * Find a client for some other protocol.  We give
25247 	 * copies to multiple clients, if more than one is
25248 	 * bound.
25249 	 */
25250 	ip_fanout_proto(q, first_mp, ill, ipha,
25251 	    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP,
25252 	    mctl_present, B_FALSE, ill, zoneid);
25253 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25254 	    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto");
25255 #undef	rptr
25256 }
25257 
25258 /*
25259  * Update any source route, record route, or timestamp options.
25260  * Check that we are at end of strict source route.
25261  * The options have been sanity checked by ip_wput_options().
25262  */
25263 static void
25264 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst)
25265 {
25266 	ipoptp_t	opts;
25267 	uchar_t		*opt;
25268 	uint8_t		optval;
25269 	uint8_t		optlen;
25270 	ipaddr_t	dst;
25271 	uint32_t	ts;
25272 	ire_t		*ire;
25273 	timestruc_t	now;
25274 
25275 	ip2dbg(("ip_wput_local_options\n"));
25276 	for (optval = ipoptp_first(&opts, ipha);
25277 	    optval != IPOPT_EOL;
25278 	    optval = ipoptp_next(&opts)) {
25279 		opt = opts.ipoptp_cur;
25280 		optlen = opts.ipoptp_len;
25281 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
25282 		switch (optval) {
25283 			uint32_t off;
25284 		case IPOPT_SSRR:
25285 		case IPOPT_LSRR:
25286 			off = opt[IPOPT_OFFSET];
25287 			off--;
25288 			if (optlen < IP_ADDR_LEN ||
25289 			    off > optlen - IP_ADDR_LEN) {
25290 				/* End of source route */
25291 				break;
25292 			}
25293 			/*
25294 			 * This will only happen if two consecutive entries
25295 			 * in the source route contains our address or if
25296 			 * it is a packet with a loose source route which
25297 			 * reaches us before consuming the whole source route
25298 			 */
25299 			ip1dbg(("ip_wput_local_options: not end of SR\n"));
25300 			if (optval == IPOPT_SSRR) {
25301 				return;
25302 			}
25303 			/*
25304 			 * Hack: instead of dropping the packet truncate the
25305 			 * source route to what has been used by filling the
25306 			 * rest with IPOPT_NOP.
25307 			 */
25308 			opt[IPOPT_OLEN] = (uint8_t)off;
25309 			while (off < optlen) {
25310 				opt[off++] = IPOPT_NOP;
25311 			}
25312 			break;
25313 		case IPOPT_RR:
25314 			off = opt[IPOPT_OFFSET];
25315 			off--;
25316 			if (optlen < IP_ADDR_LEN ||
25317 			    off > optlen - IP_ADDR_LEN) {
25318 				/* No more room - ignore */
25319 				ip1dbg((
25320 				    "ip_wput_forward_options: end of RR\n"));
25321 				break;
25322 			}
25323 			dst = htonl(INADDR_LOOPBACK);
25324 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
25325 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
25326 			break;
25327 		case IPOPT_TS:
25328 			/* Insert timestamp if there is romm */
25329 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
25330 			case IPOPT_TS_TSONLY:
25331 				off = IPOPT_TS_TIMELEN;
25332 				break;
25333 			case IPOPT_TS_PRESPEC:
25334 			case IPOPT_TS_PRESPEC_RFC791:
25335 				/* Verify that the address matched */
25336 				off = opt[IPOPT_OFFSET] - 1;
25337 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
25338 				ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
25339 				    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE,
25340 				    ipst);
25341 				if (ire == NULL) {
25342 					/* Not for us */
25343 					break;
25344 				}
25345 				ire_refrele(ire);
25346 				/* FALLTHRU */
25347 			case IPOPT_TS_TSANDADDR:
25348 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
25349 				break;
25350 			default:
25351 				/*
25352 				 * ip_*put_options should have already
25353 				 * dropped this packet.
25354 				 */
25355 				cmn_err(CE_PANIC, "ip_wput_local_options: "
25356 				    "unknown IT - bug in ip_wput_options?\n");
25357 				return;	/* Keep "lint" happy */
25358 			}
25359 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
25360 				/* Increase overflow counter */
25361 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
25362 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
25363 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
25364 				    (off << 4);
25365 				break;
25366 			}
25367 			off = opt[IPOPT_OFFSET] - 1;
25368 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
25369 			case IPOPT_TS_PRESPEC:
25370 			case IPOPT_TS_PRESPEC_RFC791:
25371 			case IPOPT_TS_TSANDADDR:
25372 				dst = htonl(INADDR_LOOPBACK);
25373 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
25374 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
25375 				/* FALLTHRU */
25376 			case IPOPT_TS_TSONLY:
25377 				off = opt[IPOPT_OFFSET] - 1;
25378 				/* Compute # of milliseconds since midnight */
25379 				gethrestime(&now);
25380 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
25381 				    now.tv_nsec / (NANOSEC / MILLISEC);
25382 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
25383 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
25384 				break;
25385 			}
25386 			break;
25387 		}
25388 	}
25389 }
25390 
25391 /*
25392  * Send out a multicast packet on interface ipif.
25393  * The sender does not have an conn.
25394  * Caller verifies that this isn't a PHYI_LOOPBACK.
25395  */
25396 void
25397 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid)
25398 {
25399 	ipha_t	*ipha;
25400 	ire_t	*ire;
25401 	ipaddr_t	dst;
25402 	mblk_t		*first_mp;
25403 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
25404 
25405 	/* igmp_sendpkt always allocates a ipsec_out_t */
25406 	ASSERT(mp->b_datap->db_type == M_CTL);
25407 	ASSERT(!ipif->ipif_isv6);
25408 	ASSERT(!IS_LOOPBACK(ipif->ipif_ill));
25409 
25410 	first_mp = mp;
25411 	mp = first_mp->b_cont;
25412 	ASSERT(mp->b_datap->db_type == M_DATA);
25413 	ipha = (ipha_t *)mp->b_rptr;
25414 
25415 	/*
25416 	 * Find an IRE which matches the destination and the outgoing
25417 	 * queue (i.e. the outgoing interface.)
25418 	 */
25419 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
25420 		dst = ipif->ipif_pp_dst_addr;
25421 	else
25422 		dst = ipha->ipha_dst;
25423 	/*
25424 	 * The source address has already been initialized by the
25425 	 * caller and hence matching on ILL (MATCH_IRE_ILL) would
25426 	 * be sufficient rather than MATCH_IRE_IPIF.
25427 	 *
25428 	 * This function is used for sending IGMP packets. We need
25429 	 * to make sure that we send the packet out of the interface
25430 	 * (ipif->ipif_ill) where we joined the group. This is to
25431 	 * prevent from switches doing IGMP snooping to send us multicast
25432 	 * packets for a given group on the interface we have joined.
25433 	 * If we can't find an ire, igmp_sendpkt has already initialized
25434 	 * ipsec_out_attach_if so that this will not be load spread in
25435 	 * ip_newroute_ipif.
25436 	 */
25437 	ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL,
25438 	    MATCH_IRE_ILL, ipst);
25439 	if (!ire) {
25440 		/*
25441 		 * Mark this packet to make it be delivered to
25442 		 * ip_wput_ire after the new ire has been
25443 		 * created.
25444 		 */
25445 		mp->b_prev = NULL;
25446 		mp->b_next = NULL;
25447 		ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC,
25448 		    zoneid, &zero_info);
25449 		return;
25450 	}
25451 
25452 	/*
25453 	 * Honor the RTF_SETSRC flag; this is the only case
25454 	 * where we force this addr whatever the current src addr is,
25455 	 * because this address is set by igmp_sendpkt(), and
25456 	 * cannot be specified by any user.
25457 	 */
25458 	if (ire->ire_flags & RTF_SETSRC) {
25459 		ipha->ipha_src = ire->ire_src_addr;
25460 	}
25461 
25462 	ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid);
25463 }
25464 
25465 /*
25466  * NOTE : This function does not ire_refrele the ire argument passed in.
25467  *
25468  * Copy the link layer header and do IPQoS if needed. Frees the mblk on
25469  * failure. The nce_fp_mp can vanish any time in the case of
25470  * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold
25471  * the ire_lock to access the nce_fp_mp in this case.
25472  * IPQoS assumes that the first M_DATA contains the IP header. So, if we are
25473  * prepending a fastpath message IPQoS processing must precede it, we also set
25474  * the b_band of the fastpath message to that of the  mblk returned by IPQoS
25475  * (IPQoS might have set the b_band for CoS marking).
25476  * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing
25477  * must follow it so that IPQoS can mark the dl_priority field for CoS
25478  * marking, if needed.
25479  */
25480 static mblk_t *
25481 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index)
25482 {
25483 	uint_t	hlen;
25484 	ipha_t *ipha;
25485 	mblk_t *mp1;
25486 	boolean_t qos_done = B_FALSE;
25487 	uchar_t	*ll_hdr;
25488 	ip_stack_t	*ipst = ire->ire_ipst;
25489 
25490 #define	rptr	((uchar_t *)ipha)
25491 
25492 	ipha = (ipha_t *)mp->b_rptr;
25493 	hlen = 0;
25494 	LOCK_IRE_FP_MP(ire);
25495 	if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) {
25496 		ASSERT(DB_TYPE(mp1) == M_DATA);
25497 		/* Initiate IPPF processing */
25498 		if ((proc != 0) && IPP_ENABLED(proc, ipst)) {
25499 			UNLOCK_IRE_FP_MP(ire);
25500 			ip_process(proc, &mp, ill_index);
25501 			if (mp == NULL)
25502 				return (NULL);
25503 
25504 			ipha = (ipha_t *)mp->b_rptr;
25505 			LOCK_IRE_FP_MP(ire);
25506 			if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) {
25507 				qos_done = B_TRUE;
25508 				goto no_fp_mp;
25509 			}
25510 			ASSERT(DB_TYPE(mp1) == M_DATA);
25511 		}
25512 		hlen = MBLKL(mp1);
25513 		/*
25514 		 * Check if we have enough room to prepend fastpath
25515 		 * header
25516 		 */
25517 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
25518 			ll_hdr = rptr - hlen;
25519 			bcopy(mp1->b_rptr, ll_hdr, hlen);
25520 			/*
25521 			 * Set the b_rptr to the start of the link layer
25522 			 * header
25523 			 */
25524 			mp->b_rptr = ll_hdr;
25525 			mp1 = mp;
25526 		} else {
25527 			mp1 = copyb(mp1);
25528 			if (mp1 == NULL)
25529 				goto unlock_err;
25530 			mp1->b_band = mp->b_band;
25531 			mp1->b_cont = mp;
25532 			/*
25533 			 * certain system generated traffic may not
25534 			 * have cred/label in ip header block. This
25535 			 * is true even for a labeled system. But for
25536 			 * labeled traffic, inherit the label in the
25537 			 * new header.
25538 			 */
25539 			if (DB_CRED(mp) != NULL)
25540 				mblk_setcred(mp1, DB_CRED(mp));
25541 			/*
25542 			 * XXX disable ICK_VALID and compute checksum
25543 			 * here; can happen if nce_fp_mp changes and
25544 			 * it can't be copied now due to insufficient
25545 			 * space. (unlikely, fp mp can change, but it
25546 			 * does not increase in length)
25547 			 */
25548 		}
25549 		UNLOCK_IRE_FP_MP(ire);
25550 	} else {
25551 no_fp_mp:
25552 		mp1 = copyb(ire->ire_nce->nce_res_mp);
25553 		if (mp1 == NULL) {
25554 unlock_err:
25555 			UNLOCK_IRE_FP_MP(ire);
25556 			freemsg(mp);
25557 			return (NULL);
25558 		}
25559 		UNLOCK_IRE_FP_MP(ire);
25560 		mp1->b_cont = mp;
25561 		/*
25562 		 * certain system generated traffic may not
25563 		 * have cred/label in ip header block. This
25564 		 * is true even for a labeled system. But for
25565 		 * labeled traffic, inherit the label in the
25566 		 * new header.
25567 		 */
25568 		if (DB_CRED(mp) != NULL)
25569 			mblk_setcred(mp1, DB_CRED(mp));
25570 		if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) {
25571 			ip_process(proc, &mp1, ill_index);
25572 			if (mp1 == NULL)
25573 				return (NULL);
25574 		}
25575 	}
25576 	return (mp1);
25577 #undef rptr
25578 }
25579 
25580 /*
25581  * Finish the outbound IPsec processing for an IPv6 packet. This function
25582  * is called from ipsec_out_process() if the IPsec packet was processed
25583  * synchronously, or from {ah,esp}_kcf_callback() if it was processed
25584  * asynchronously.
25585  */
25586 void
25587 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill,
25588     ire_t *ire_arg)
25589 {
25590 	in6_addr_t *v6dstp;
25591 	ire_t *ire;
25592 	mblk_t *mp;
25593 	ip6_t *ip6h1;
25594 	uint_t	ill_index;
25595 	ipsec_out_t *io;
25596 	boolean_t attach_if, hwaccel;
25597 	uint32_t flags = IP6_NO_IPPOLICY;
25598 	int match_flags;
25599 	zoneid_t zoneid;
25600 	boolean_t ill_need_rele = B_FALSE;
25601 	boolean_t ire_need_rele = B_FALSE;
25602 	ip_stack_t	*ipst;
25603 
25604 	mp = ipsec_mp->b_cont;
25605 	ip6h1 = (ip6_t *)mp->b_rptr;
25606 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
25607 	ASSERT(io->ipsec_out_ns != NULL);
25608 	ipst = io->ipsec_out_ns->netstack_ip;
25609 	ill_index = io->ipsec_out_ill_index;
25610 	if (io->ipsec_out_reachable) {
25611 		flags |= IPV6_REACHABILITY_CONFIRMATION;
25612 	}
25613 	attach_if = io->ipsec_out_attach_if;
25614 	hwaccel = io->ipsec_out_accelerated;
25615 	zoneid = io->ipsec_out_zoneid;
25616 	ASSERT(zoneid != ALL_ZONES);
25617 	match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
25618 	/* Multicast addresses should have non-zero ill_index. */
25619 	v6dstp = &ip6h->ip6_dst;
25620 	ASSERT(ip6h->ip6_nxt != IPPROTO_RAW);
25621 	ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0);
25622 	ASSERT(!attach_if || ill_index != 0);
25623 	if (ill_index != 0) {
25624 		if (ill == NULL) {
25625 			ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index,
25626 			    B_TRUE, ipst);
25627 
25628 			/* Failure case frees things for us. */
25629 			if (ill == NULL)
25630 				return;
25631 
25632 			ill_need_rele = B_TRUE;
25633 		}
25634 		/*
25635 		 * If this packet needs to go out on a particular interface
25636 		 * honor it.
25637 		 */
25638 		if (attach_if) {
25639 			match_flags = MATCH_IRE_ILL;
25640 
25641 			/*
25642 			 * Check if we need an ire that will not be
25643 			 * looked up by anybody else i.e. HIDDEN.
25644 			 */
25645 			if (ill_is_probeonly(ill)) {
25646 				match_flags |= MATCH_IRE_MARK_HIDDEN;
25647 			}
25648 		}
25649 	}
25650 	ASSERT(mp != NULL);
25651 
25652 	if (IN6_IS_ADDR_MULTICAST(v6dstp)) {
25653 		boolean_t unspec_src;
25654 		ipif_t	*ipif;
25655 
25656 		/*
25657 		 * Use the ill_index to get the right ill.
25658 		 */
25659 		unspec_src = io->ipsec_out_unspec_src;
25660 		(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
25661 		if (ipif == NULL) {
25662 			if (ill_need_rele)
25663 				ill_refrele(ill);
25664 			freemsg(ipsec_mp);
25665 			return;
25666 		}
25667 
25668 		if (ire_arg != NULL) {
25669 			ire = ire_arg;
25670 		} else {
25671 			ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
25672 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
25673 			ire_need_rele = B_TRUE;
25674 		}
25675 		if (ire != NULL) {
25676 			ipif_refrele(ipif);
25677 			/*
25678 			 * XXX Do the multicast forwarding now, as the IPsec
25679 			 * processing has been done.
25680 			 */
25681 			goto send;
25682 		}
25683 
25684 		ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n"));
25685 		mp->b_prev = NULL;
25686 		mp->b_next = NULL;
25687 
25688 		/*
25689 		 * If the IPsec packet was processed asynchronously,
25690 		 * drop it now.
25691 		 */
25692 		if (q == NULL) {
25693 			if (ill_need_rele)
25694 				ill_refrele(ill);
25695 			freemsg(ipsec_mp);
25696 			return;
25697 		}
25698 
25699 		ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp,
25700 		    unspec_src, zoneid);
25701 		ipif_refrele(ipif);
25702 	} else {
25703 		if (attach_if) {
25704 			ipif_t	*ipif;
25705 
25706 			ipif = ipif_get_next_ipif(NULL, ill);
25707 			if (ipif == NULL) {
25708 				if (ill_need_rele)
25709 					ill_refrele(ill);
25710 				freemsg(ipsec_mp);
25711 				return;
25712 			}
25713 			ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
25714 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
25715 			ire_need_rele = B_TRUE;
25716 			ipif_refrele(ipif);
25717 		} else {
25718 			if (ire_arg != NULL) {
25719 				ire = ire_arg;
25720 			} else {
25721 				ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL,
25722 				    ipst);
25723 				ire_need_rele = B_TRUE;
25724 			}
25725 		}
25726 		if (ire != NULL)
25727 			goto send;
25728 		/*
25729 		 * ire disappeared underneath.
25730 		 *
25731 		 * What we need to do here is the ip_newroute
25732 		 * logic to get the ire without doing the IPsec
25733 		 * processing. Follow the same old path. But this
25734 		 * time, ip_wput or ire_add_then_send will call us
25735 		 * directly as all the IPsec operations are done.
25736 		 */
25737 		ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n"));
25738 		mp->b_prev = NULL;
25739 		mp->b_next = NULL;
25740 
25741 		/*
25742 		 * If the IPsec packet was processed asynchronously,
25743 		 * drop it now.
25744 		 */
25745 		if (q == NULL) {
25746 			if (ill_need_rele)
25747 				ill_refrele(ill);
25748 			freemsg(ipsec_mp);
25749 			return;
25750 		}
25751 
25752 		ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill,
25753 		    zoneid, ipst);
25754 	}
25755 	if (ill != NULL && ill_need_rele)
25756 		ill_refrele(ill);
25757 	return;
25758 send:
25759 	if (ill != NULL && ill_need_rele)
25760 		ill_refrele(ill);
25761 
25762 	/* Local delivery */
25763 	if (ire->ire_stq == NULL) {
25764 		ill_t	*out_ill;
25765 		ASSERT(q != NULL);
25766 
25767 		/* PFHooks: LOOPBACK_OUT */
25768 		out_ill = ire_to_ill(ire);
25769 
25770 		DTRACE_PROBE4(ip6__loopback__out__start,
25771 		    ill_t *, NULL, ill_t *, out_ill,
25772 		    ip6_t *, ip6h1, mblk_t *, ipsec_mp);
25773 
25774 		FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
25775 		    ipst->ips_ipv6firewall_loopback_out,
25776 		    NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst);
25777 
25778 		DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp);
25779 
25780 		if (ipsec_mp != NULL)
25781 			ip_wput_local_v6(RD(q), out_ill,
25782 			    ip6h, ipsec_mp, ire, 0);
25783 		if (ire_need_rele)
25784 			ire_refrele(ire);
25785 		return;
25786 	}
25787 	/*
25788 	 * Everything is done. Send it out on the wire.
25789 	 * We force the insertion of a fragment header using the
25790 	 * IPH_FRAG_HDR flag in two cases:
25791 	 * - after reception of an ICMPv6 "packet too big" message
25792 	 *   with a MTU < 1280 (cf. RFC 2460 section 5)
25793 	 * - for multirouted IPv6 packets, so that the receiver can
25794 	 *   discard duplicates according to their fragment identifier
25795 	 */
25796 	/* XXX fix flow control problems. */
25797 	if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag ||
25798 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
25799 		if (hwaccel) {
25800 			/*
25801 			 * hardware acceleration does not handle these
25802 			 * "slow path" cases.
25803 			 */
25804 			/* IPsec KSTATS: should bump bean counter here. */
25805 			if (ire_need_rele)
25806 				ire_refrele(ire);
25807 			freemsg(ipsec_mp);
25808 			return;
25809 		}
25810 		if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN !=
25811 		    (mp->b_cont ? msgdsize(mp) :
25812 		    mp->b_wptr - (uchar_t *)ip6h)) {
25813 			/* IPsec KSTATS: should bump bean counter here. */
25814 			ip0dbg(("Packet length mismatch: %d, %ld\n",
25815 			    ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN,
25816 			    msgdsize(mp)));
25817 			if (ire_need_rele)
25818 				ire_refrele(ire);
25819 			freemsg(ipsec_mp);
25820 			return;
25821 		}
25822 		ASSERT(mp->b_prev == NULL);
25823 		ip2dbg(("Fragmenting Size = %d, mtu = %d\n",
25824 		    ntohs(ip6h->ip6_plen) +
25825 		    IPV6_HDR_LEN, ire->ire_max_frag));
25826 		ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE,
25827 		    ire->ire_max_frag);
25828 	} else {
25829 		UPDATE_OB_PKT_COUNT(ire);
25830 		ire->ire_last_used_time = lbolt;
25831 		ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL);
25832 	}
25833 	if (ire_need_rele)
25834 		ire_refrele(ire);
25835 	freeb(ipsec_mp);
25836 }
25837 
25838 void
25839 ipsec_hw_putnext(queue_t *q, mblk_t *mp)
25840 {
25841 	mblk_t *hada_mp;	/* attributes M_CTL mblk */
25842 	da_ipsec_t *hada;	/* data attributes */
25843 	ill_t *ill = (ill_t *)q->q_ptr;
25844 
25845 	IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n"));
25846 
25847 	if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) {
25848 		/* IPsec KSTATS: Bump lose counter here! */
25849 		freemsg(mp);
25850 		return;
25851 	}
25852 
25853 	/*
25854 	 * It's an IPsec packet that must be
25855 	 * accelerated by the Provider, and the
25856 	 * outbound ill is IPsec acceleration capable.
25857 	 * Prepends the mblk with an IPHADA_M_CTL, and ship it
25858 	 * to the ill.
25859 	 * IPsec KSTATS: should bump packet counter here.
25860 	 */
25861 
25862 	hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI);
25863 	if (hada_mp == NULL) {
25864 		/* IPsec KSTATS: should bump packet counter here. */
25865 		freemsg(mp);
25866 		return;
25867 	}
25868 
25869 	hada_mp->b_datap->db_type = M_CTL;
25870 	hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada);
25871 	hada_mp->b_cont = mp;
25872 
25873 	hada = (da_ipsec_t *)hada_mp->b_rptr;
25874 	bzero(hada, sizeof (da_ipsec_t));
25875 	hada->da_type = IPHADA_M_CTL;
25876 
25877 	putnext(q, hada_mp);
25878 }
25879 
25880 /*
25881  * Finish the outbound IPsec processing. This function is called from
25882  * ipsec_out_process() if the IPsec packet was processed
25883  * synchronously, or from {ah,esp}_kcf_callback() if it was processed
25884  * asynchronously.
25885  */
25886 void
25887 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill,
25888     ire_t *ire_arg)
25889 {
25890 	uint32_t v_hlen_tos_len;
25891 	ipaddr_t	dst;
25892 	ipif_t	*ipif = NULL;
25893 	ire_t *ire;
25894 	ire_t *ire1 = NULL;
25895 	mblk_t *next_mp = NULL;
25896 	uint32_t max_frag;
25897 	boolean_t multirt_send = B_FALSE;
25898 	mblk_t *mp;
25899 	ipha_t *ipha1;
25900 	uint_t	ill_index;
25901 	ipsec_out_t *io;
25902 	boolean_t attach_if;
25903 	int match_flags;
25904 	irb_t *irb = NULL;
25905 	boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE;
25906 	zoneid_t zoneid;
25907 	ipxmit_state_t	pktxmit_state;
25908 	ip_stack_t	*ipst;
25909 
25910 #ifdef	_BIG_ENDIAN
25911 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
25912 #else
25913 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
25914 #endif
25915 
25916 	mp = ipsec_mp->b_cont;
25917 	ipha1 = (ipha_t *)mp->b_rptr;
25918 	ASSERT(mp != NULL);
25919 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
25920 	dst = ipha->ipha_dst;
25921 
25922 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
25923 	ill_index = io->ipsec_out_ill_index;
25924 	attach_if = io->ipsec_out_attach_if;
25925 	zoneid = io->ipsec_out_zoneid;
25926 	ASSERT(zoneid != ALL_ZONES);
25927 	ipst = io->ipsec_out_ns->netstack_ip;
25928 	ASSERT(io->ipsec_out_ns != NULL);
25929 
25930 	match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
25931 	if (ill_index != 0) {
25932 		if (ill == NULL) {
25933 			ill = ip_grab_attach_ill(NULL, ipsec_mp,
25934 			    ill_index, B_FALSE, ipst);
25935 
25936 			/* Failure case frees things for us. */
25937 			if (ill == NULL)
25938 				return;
25939 
25940 			ill_need_rele = B_TRUE;
25941 		}
25942 		/*
25943 		 * If this packet needs to go out on a particular interface
25944 		 * honor it.
25945 		 */
25946 		if (attach_if) {
25947 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
25948 
25949 			/*
25950 			 * Check if we need an ire that will not be
25951 			 * looked up by anybody else i.e. HIDDEN.
25952 			 */
25953 			if (ill_is_probeonly(ill)) {
25954 				match_flags |= MATCH_IRE_MARK_HIDDEN;
25955 			}
25956 		}
25957 	}
25958 
25959 	if (CLASSD(dst)) {
25960 		boolean_t conn_dontroute;
25961 		/*
25962 		 * Use the ill_index to get the right ipif.
25963 		 */
25964 		conn_dontroute = io->ipsec_out_dontroute;
25965 		if (ill_index == 0)
25966 			ipif = ipif_lookup_group(dst, zoneid, ipst);
25967 		else
25968 			(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
25969 		if (ipif == NULL) {
25970 			ip1dbg(("ip_wput_ipsec_out: No ipif for"
25971 			    " multicast\n"));
25972 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
25973 			freemsg(ipsec_mp);
25974 			goto done;
25975 		}
25976 		/*
25977 		 * ipha_src has already been intialized with the
25978 		 * value of the ipif in ip_wput. All we need now is
25979 		 * an ire to send this downstream.
25980 		 */
25981 		ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid,
25982 		    MBLK_GETLABEL(mp), match_flags, ipst);
25983 		if (ire != NULL) {
25984 			ill_t *ill1;
25985 			/*
25986 			 * Do the multicast forwarding now, as the IPsec
25987 			 * processing has been done.
25988 			 */
25989 			if (ipst->ips_ip_g_mrouter && !conn_dontroute &&
25990 			    (ill1 = ire_to_ill(ire))) {
25991 				if (ip_mforward(ill1, ipha, mp)) {
25992 					freemsg(ipsec_mp);
25993 					ip1dbg(("ip_wput_ipsec_out: mforward "
25994 					    "failed\n"));
25995 					ire_refrele(ire);
25996 					goto done;
25997 				}
25998 			}
25999 			goto send;
26000 		}
26001 
26002 		ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n"));
26003 		mp->b_prev = NULL;
26004 		mp->b_next = NULL;
26005 
26006 		/*
26007 		 * If the IPsec packet was processed asynchronously,
26008 		 * drop it now.
26009 		 */
26010 		if (q == NULL) {
26011 			freemsg(ipsec_mp);
26012 			goto done;
26013 		}
26014 
26015 		/*
26016 		 * We may be using a wrong ipif to create the ire.
26017 		 * But it is okay as the source address is assigned
26018 		 * for the packet already. Next outbound packet would
26019 		 * create the IRE with the right IPIF in ip_wput.
26020 		 *
26021 		 * Also handle RTF_MULTIRT routes.
26022 		 */
26023 		ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT,
26024 		    zoneid, &zero_info);
26025 	} else {
26026 		if (attach_if) {
26027 			ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif,
26028 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
26029 		} else {
26030 			if (ire_arg != NULL) {
26031 				ire = ire_arg;
26032 				ire_need_rele = B_FALSE;
26033 			} else {
26034 				ire = ire_cache_lookup(dst, zoneid,
26035 				    MBLK_GETLABEL(mp), ipst);
26036 			}
26037 		}
26038 		if (ire != NULL) {
26039 			goto send;
26040 		}
26041 
26042 		/*
26043 		 * ire disappeared underneath.
26044 		 *
26045 		 * What we need to do here is the ip_newroute
26046 		 * logic to get the ire without doing the IPsec
26047 		 * processing. Follow the same old path. But this
26048 		 * time, ip_wput or ire_add_then_put will call us
26049 		 * directly as all the IPsec operations are done.
26050 		 */
26051 		ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n"));
26052 		mp->b_prev = NULL;
26053 		mp->b_next = NULL;
26054 
26055 		/*
26056 		 * If the IPsec packet was processed asynchronously,
26057 		 * drop it now.
26058 		 */
26059 		if (q == NULL) {
26060 			freemsg(ipsec_mp);
26061 			goto done;
26062 		}
26063 
26064 		/*
26065 		 * Since we're going through ip_newroute() again, we
26066 		 * need to make sure we don't:
26067 		 *
26068 		 *	1.) Trigger the ASSERT() with the ipha_ident
26069 		 *	    overloading.
26070 		 *	2.) Redo transport-layer checksumming, since we've
26071 		 *	    already done all that to get this far.
26072 		 *
26073 		 * The easiest way not do either of the above is to set
26074 		 * the ipha_ident field to IP_HDR_INCLUDED.
26075 		 */
26076 		ipha->ipha_ident = IP_HDR_INCLUDED;
26077 		ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
26078 		    zoneid, ipst);
26079 	}
26080 	goto done;
26081 send:
26082 	if (ire->ire_stq == NULL) {
26083 		ill_t	*out_ill;
26084 		/*
26085 		 * Loopbacks go through ip_wput_local except for one case.
26086 		 * We come here if we generate a icmp_frag_needed message
26087 		 * after IPsec processing is over. When this function calls
26088 		 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling
26089 		 * icmp_frag_needed. The message generated comes back here
26090 		 * through icmp_frag_needed -> icmp_pkt -> ip_wput ->
26091 		 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the
26092 		 * source address as it is usually set in ip_wput_ire. As
26093 		 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process
26094 		 * and we end up here. We can't enter ip_wput_ire once the
26095 		 * IPsec processing is over and hence we need to do it here.
26096 		 */
26097 		ASSERT(q != NULL);
26098 		UPDATE_OB_PKT_COUNT(ire);
26099 		ire->ire_last_used_time = lbolt;
26100 		if (ipha->ipha_src == 0)
26101 			ipha->ipha_src = ire->ire_src_addr;
26102 
26103 		/* PFHooks: LOOPBACK_OUT */
26104 		out_ill = ire_to_ill(ire);
26105 
26106 		DTRACE_PROBE4(ip4__loopback__out__start,
26107 		    ill_t *, NULL, ill_t *, out_ill,
26108 		    ipha_t *, ipha1, mblk_t *, ipsec_mp);
26109 
26110 		FW_HOOKS(ipst->ips_ip4_loopback_out_event,
26111 		    ipst->ips_ipv4firewall_loopback_out,
26112 		    NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst);
26113 
26114 		DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp);
26115 
26116 		if (ipsec_mp != NULL)
26117 			ip_wput_local(RD(q), out_ill,
26118 			    ipha, ipsec_mp, ire, 0, zoneid);
26119 		if (ire_need_rele)
26120 			ire_refrele(ire);
26121 		goto done;
26122 	}
26123 
26124 	if (ire->ire_max_frag < (unsigned int)LENGTH) {
26125 		/*
26126 		 * We are through with IPsec processing.
26127 		 * Fragment this and send it on the wire.
26128 		 */
26129 		if (io->ipsec_out_accelerated) {
26130 			/*
26131 			 * The packet has been accelerated but must
26132 			 * be fragmented. This should not happen
26133 			 * since AH and ESP must not accelerate
26134 			 * packets that need fragmentation, however
26135 			 * the configuration could have changed
26136 			 * since the AH or ESP processing.
26137 			 * Drop packet.
26138 			 * IPsec KSTATS: bump bean counter here.
26139 			 */
26140 			IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: "
26141 			    "fragmented accelerated packet!\n"));
26142 			freemsg(ipsec_mp);
26143 		} else {
26144 			ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst);
26145 		}
26146 		if (ire_need_rele)
26147 			ire_refrele(ire);
26148 		goto done;
26149 	}
26150 
26151 	ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, "
26152 	    "ipif %p\n", (void *)ipsec_mp, (void *)ire,
26153 	    (void *)ire->ire_ipif, (void *)ipif));
26154 
26155 	/*
26156 	 * Multiroute the secured packet, unless IPsec really
26157 	 * requires the packet to go out only through a particular
26158 	 * interface.
26159 	 */
26160 	if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) {
26161 		ire_t *first_ire;
26162 		irb = ire->ire_bucket;
26163 		ASSERT(irb != NULL);
26164 		/*
26165 		 * This ire has been looked up as the one that
26166 		 * goes through the given ipif;
26167 		 * make sure we do not omit any other multiroute ire
26168 		 * that may be present in the bucket before this one.
26169 		 */
26170 		IRB_REFHOLD(irb);
26171 		for (first_ire = irb->irb_ire;
26172 		    first_ire != NULL;
26173 		    first_ire = first_ire->ire_next) {
26174 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
26175 			    (first_ire->ire_addr == ire->ire_addr) &&
26176 			    !(first_ire->ire_marks &
26177 			    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) {
26178 				break;
26179 			}
26180 		}
26181 
26182 		if ((first_ire != NULL) && (first_ire != ire)) {
26183 			/*
26184 			 * Don't change the ire if the packet must
26185 			 * be fragmented if sent via this new one.
26186 			 */
26187 			if (first_ire->ire_max_frag >= (unsigned int)LENGTH) {
26188 				IRE_REFHOLD(first_ire);
26189 				if (ire_need_rele)
26190 					ire_refrele(ire);
26191 				else
26192 					ire_need_rele = B_TRUE;
26193 				ire = first_ire;
26194 			}
26195 		}
26196 		IRB_REFRELE(irb);
26197 
26198 		multirt_send = B_TRUE;
26199 		max_frag = ire->ire_max_frag;
26200 	} else {
26201 		if ((ire->ire_flags & RTF_MULTIRT) && attach_if) {
26202 			ip1dbg(("ip_wput_ipsec_out: ignoring multirouting "
26203 			    "flag, attach_if %d\n", attach_if));
26204 		}
26205 	}
26206 
26207 	/*
26208 	 * In most cases, the emission loop below is entered only once.
26209 	 * Only in the case where the ire holds the RTF_MULTIRT
26210 	 * flag, we loop to process all RTF_MULTIRT ires in the
26211 	 * bucket, and send the packet through all crossed
26212 	 * RTF_MULTIRT routes.
26213 	 */
26214 	do {
26215 		if (multirt_send) {
26216 			/*
26217 			 * ire1 holds here the next ire to process in the
26218 			 * bucket. If multirouting is expected,
26219 			 * any non-RTF_MULTIRT ire that has the
26220 			 * right destination address is ignored.
26221 			 */
26222 			ASSERT(irb != NULL);
26223 			IRB_REFHOLD(irb);
26224 			for (ire1 = ire->ire_next;
26225 			    ire1 != NULL;
26226 			    ire1 = ire1->ire_next) {
26227 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
26228 					continue;
26229 				if (ire1->ire_addr != ire->ire_addr)
26230 					continue;
26231 				if (ire1->ire_marks &
26232 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
26233 					continue;
26234 				/* No loopback here */
26235 				if (ire1->ire_stq == NULL)
26236 					continue;
26237 				/*
26238 				 * Ensure we do not exceed the MTU
26239 				 * of the next route.
26240 				 */
26241 				if (ire1->ire_max_frag < (unsigned int)LENGTH) {
26242 					ip_multirt_bad_mtu(ire1, max_frag);
26243 					continue;
26244 				}
26245 
26246 				IRE_REFHOLD(ire1);
26247 				break;
26248 			}
26249 			IRB_REFRELE(irb);
26250 			if (ire1 != NULL) {
26251 				/*
26252 				 * We are in a multiple send case, need to
26253 				 * make a copy of the packet.
26254 				 */
26255 				next_mp = copymsg(ipsec_mp);
26256 				if (next_mp == NULL) {
26257 					ire_refrele(ire1);
26258 					ire1 = NULL;
26259 				}
26260 			}
26261 		}
26262 		/*
26263 		 * Everything is done. Send it out on the wire
26264 		 *
26265 		 * ip_xmit_v4 will call ip_wput_attach_llhdr and then
26266 		 * either send it on the wire or, in the case of
26267 		 * HW acceleration, call ipsec_hw_putnext.
26268 		 */
26269 		if (ire->ire_nce &&
26270 		    ire->ire_nce->nce_state != ND_REACHABLE) {
26271 			DTRACE_PROBE2(ip__wput__ipsec__bail,
26272 			    (ire_t *), ire,  (mblk_t *), ipsec_mp);
26273 			/*
26274 			 * If ire's link-layer is unresolved (this
26275 			 * would only happen if the incomplete ire
26276 			 * was added to cachetable via forwarding path)
26277 			 * don't bother going to ip_xmit_v4. Just drop the
26278 			 * packet.
26279 			 * There is a slight risk here, in that, if we
26280 			 * have the forwarding path create an incomplete
26281 			 * IRE, then until the IRE is completed, any
26282 			 * transmitted IPsec packets will be dropped
26283 			 * instead of being queued waiting for resolution.
26284 			 *
26285 			 * But the likelihood of a forwarding packet and a wput
26286 			 * packet sending to the same dst at the same time
26287 			 * and there not yet be an ARP entry for it is small.
26288 			 * Furthermore, if this actually happens, it might
26289 			 * be likely that wput would generate multiple
26290 			 * packets (and forwarding would also have a train
26291 			 * of packets) for that destination. If this is
26292 			 * the case, some of them would have been dropped
26293 			 * anyway, since ARP only queues a few packets while
26294 			 * waiting for resolution
26295 			 *
26296 			 * NOTE: We should really call ip_xmit_v4,
26297 			 * and let it queue the packet and send the
26298 			 * ARP query and have ARP come back thus:
26299 			 * <ARP> ip_wput->ip_output->ip-wput_nondata->
26300 			 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec
26301 			 * hw accel work. But it's too complex to get
26302 			 * the IPsec hw  acceleration approach to fit
26303 			 * well with ip_xmit_v4 doing ARP without
26304 			 * doing IPsec simplification. For now, we just
26305 			 * poke ip_xmit_v4 to trigger the arp resolve, so
26306 			 * that we can continue with the send on the next
26307 			 * attempt.
26308 			 *
26309 			 * XXX THis should be revisited, when
26310 			 * the IPsec/IP interaction is cleaned up
26311 			 */
26312 			ip1dbg(("ip_wput_ipsec_out: ire is incomplete"
26313 			    " - dropping packet\n"));
26314 			freemsg(ipsec_mp);
26315 			/*
26316 			 * Call ip_xmit_v4() to trigger ARP query
26317 			 * in case the nce_state is ND_INITIAL
26318 			 */
26319 			(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
26320 			goto drop_pkt;
26321 		}
26322 
26323 		DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
26324 		    ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1,
26325 		    mblk_t *, ipsec_mp);
26326 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
26327 		    ipst->ips_ipv4firewall_physical_out, NULL,
26328 		    ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst);
26329 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp);
26330 		if (ipsec_mp == NULL)
26331 			goto drop_pkt;
26332 
26333 		ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n"));
26334 		pktxmit_state = ip_xmit_v4(mp, ire,
26335 		    (io->ipsec_out_accelerated ? io : NULL), B_FALSE);
26336 
26337 		if ((pktxmit_state ==  SEND_FAILED) ||
26338 		    (pktxmit_state == LLHDR_RESLV_FAILED)) {
26339 
26340 			freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */
26341 drop_pkt:
26342 			BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib,
26343 			    ipIfStatsOutDiscards);
26344 			if (ire_need_rele)
26345 				ire_refrele(ire);
26346 			if (ire1 != NULL) {
26347 				ire_refrele(ire1);
26348 				freemsg(next_mp);
26349 			}
26350 			goto done;
26351 		}
26352 
26353 		freeb(ipsec_mp);
26354 		if (ire_need_rele)
26355 			ire_refrele(ire);
26356 
26357 		if (ire1 != NULL) {
26358 			ire = ire1;
26359 			ire_need_rele = B_TRUE;
26360 			ASSERT(next_mp);
26361 			ipsec_mp = next_mp;
26362 			mp = ipsec_mp->b_cont;
26363 			ire1 = NULL;
26364 			next_mp = NULL;
26365 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
26366 		} else {
26367 			multirt_send = B_FALSE;
26368 		}
26369 	} while (multirt_send);
26370 done:
26371 	if (ill != NULL && ill_need_rele)
26372 		ill_refrele(ill);
26373 	if (ipif != NULL)
26374 		ipif_refrele(ipif);
26375 }
26376 
26377 /*
26378  * Get the ill corresponding to the specified ire, and compare its
26379  * capabilities with the protocol and algorithms specified by the
26380  * the SA obtained from ipsec_out. If they match, annotate the
26381  * ipsec_out structure to indicate that the packet needs acceleration.
26382  *
26383  *
26384  * A packet is eligible for outbound hardware acceleration if the
26385  * following conditions are satisfied:
26386  *
26387  * 1. the packet will not be fragmented
26388  * 2. the provider supports the algorithm
26389  * 3. there is no pending control message being exchanged
26390  * 4. snoop is not attached
26391  * 5. the destination address is not a broadcast or multicast address.
26392  *
26393  * Rationale:
26394  *	- Hardware drivers do not support fragmentation with
26395  *	  the current interface.
26396  *	- snoop, multicast, and broadcast may result in exposure of
26397  *	  a cleartext datagram.
26398  * We check all five of these conditions here.
26399  *
26400  * XXX would like to nuke "ire_t *" parameter here; problem is that
26401  * IRE is only way to figure out if a v4 address is a broadcast and
26402  * thus ineligible for acceleration...
26403  */
26404 static void
26405 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire)
26406 {
26407 	ipsec_out_t *io;
26408 	mblk_t *data_mp;
26409 	uint_t plen, overhead;
26410 	ip_stack_t	*ipst;
26411 
26412 	if ((sa->ipsa_flags & IPSA_F_HW) == 0)
26413 		return;
26414 
26415 	if (ill == NULL)
26416 		return;
26417 	ipst = ill->ill_ipst;
26418 	/*
26419 	 * Destination address is a broadcast or multicast.  Punt.
26420 	 */
26421 	if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK|
26422 	    IRE_LOCAL)))
26423 		return;
26424 
26425 	data_mp = ipsec_mp->b_cont;
26426 
26427 	if (ill->ill_isv6) {
26428 		ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
26429 
26430 		if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst))
26431 			return;
26432 
26433 		plen = ip6h->ip6_plen;
26434 	} else {
26435 		ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
26436 
26437 		if (CLASSD(ipha->ipha_dst))
26438 			return;
26439 
26440 		plen = ipha->ipha_length;
26441 	}
26442 	/*
26443 	 * Is there a pending DLPI control message being exchanged
26444 	 * between IP/IPsec and the DLS Provider? If there is, it
26445 	 * could be a SADB update, and the state of the DLS Provider
26446 	 * SADB might not be in sync with the SADB maintained by
26447 	 * IPsec. To avoid dropping packets or using the wrong keying
26448 	 * material, we do not accelerate this packet.
26449 	 */
26450 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
26451 		IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
26452 		    "ill_dlpi_pending! don't accelerate packet\n"));
26453 		return;
26454 	}
26455 
26456 	/*
26457 	 * Is the Provider in promiscous mode? If it does, we don't
26458 	 * accelerate the packet since it will bounce back up to the
26459 	 * listeners in the clear.
26460 	 */
26461 	if (ill->ill_promisc_on_phys) {
26462 		IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
26463 		    "ill in promiscous mode, don't accelerate packet\n"));
26464 		return;
26465 	}
26466 
26467 	/*
26468 	 * Will the packet require fragmentation?
26469 	 */
26470 
26471 	/*
26472 	 * IPsec ESP note: this is a pessimistic estimate, but the same
26473 	 * as is used elsewhere.
26474 	 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1)
26475 	 *	+ 2-byte trailer
26476 	 */
26477 	overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE :
26478 	    IPSEC_BASE_ESP_HDR_SIZE(sa);
26479 
26480 	if ((plen + overhead) > ill->ill_max_mtu)
26481 		return;
26482 
26483 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
26484 
26485 	/*
26486 	 * Can the ill accelerate this IPsec protocol and algorithm
26487 	 * specified by the SA?
26488 	 */
26489 	if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index,
26490 	    ill->ill_isv6, sa, ipst->ips_netstack)) {
26491 		return;
26492 	}
26493 
26494 	/*
26495 	 * Tell AH or ESP that the outbound ill is capable of
26496 	 * accelerating this packet.
26497 	 */
26498 	io->ipsec_out_is_capab_ill = B_TRUE;
26499 }
26500 
26501 /*
26502  * Select which AH & ESP SA's to use (if any) for the outbound packet.
26503  *
26504  * If this function returns B_TRUE, the requested SA's have been filled
26505  * into the ipsec_out_*_sa pointers.
26506  *
26507  * If the function returns B_FALSE, the packet has been "consumed", most
26508  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
26509  *
26510  * The SA references created by the protocol-specific "select"
26511  * function will be released when the ipsec_mp is freed, thanks to the
26512  * ipsec_out_free destructor -- see spd.c.
26513  */
26514 static boolean_t
26515 ipsec_out_select_sa(mblk_t *ipsec_mp)
26516 {
26517 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
26518 	ipsec_out_t *io;
26519 	ipsec_policy_t *pp;
26520 	ipsec_action_t *ap;
26521 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
26522 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
26523 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
26524 
26525 	if (!io->ipsec_out_secure) {
26526 		/*
26527 		 * We came here by mistake.
26528 		 * Don't bother with ipsec processing
26529 		 * We should "discourage" this path in the future.
26530 		 */
26531 		ASSERT(io->ipsec_out_proc_begin == B_FALSE);
26532 		return (B_FALSE);
26533 	}
26534 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
26535 	ASSERT((io->ipsec_out_policy != NULL) ||
26536 	    (io->ipsec_out_act != NULL));
26537 
26538 	ASSERT(io->ipsec_out_failed == B_FALSE);
26539 
26540 	/*
26541 	 * IPsec processing has started.
26542 	 */
26543 	io->ipsec_out_proc_begin = B_TRUE;
26544 	ap = io->ipsec_out_act;
26545 	if (ap == NULL) {
26546 		pp = io->ipsec_out_policy;
26547 		ASSERT(pp != NULL);
26548 		ap = pp->ipsp_act;
26549 		ASSERT(ap != NULL);
26550 	}
26551 
26552 	/*
26553 	 * We have an action.  now, let's select SA's.
26554 	 * (In the future, we can cache this in the conn_t..)
26555 	 */
26556 	if (ap->ipa_want_esp) {
26557 		if (io->ipsec_out_esp_sa == NULL) {
26558 			need_esp_acquire = !ipsec_outbound_sa(ipsec_mp,
26559 			    IPPROTO_ESP);
26560 		}
26561 		ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL);
26562 	}
26563 
26564 	if (ap->ipa_want_ah) {
26565 		if (io->ipsec_out_ah_sa == NULL) {
26566 			need_ah_acquire = !ipsec_outbound_sa(ipsec_mp,
26567 			    IPPROTO_AH);
26568 		}
26569 		ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL);
26570 		/*
26571 		 * The ESP and AH processing order needs to be preserved
26572 		 * when both protocols are required (ESP should be applied
26573 		 * before AH for an outbound packet). Force an ESP ACQUIRE
26574 		 * when both ESP and AH are required, and an AH ACQUIRE
26575 		 * is needed.
26576 		 */
26577 		if (ap->ipa_want_esp && need_ah_acquire)
26578 			need_esp_acquire = B_TRUE;
26579 	}
26580 
26581 	/*
26582 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
26583 	 * Release SAs that got referenced, but will not be used until we
26584 	 * acquire _all_ of the SAs we need.
26585 	 */
26586 	if (need_ah_acquire || need_esp_acquire) {
26587 		if (io->ipsec_out_ah_sa != NULL) {
26588 			IPSA_REFRELE(io->ipsec_out_ah_sa);
26589 			io->ipsec_out_ah_sa = NULL;
26590 		}
26591 		if (io->ipsec_out_esp_sa != NULL) {
26592 			IPSA_REFRELE(io->ipsec_out_esp_sa);
26593 			io->ipsec_out_esp_sa = NULL;
26594 		}
26595 
26596 		sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire);
26597 		return (B_FALSE);
26598 	}
26599 
26600 	return (B_TRUE);
26601 }
26602 
26603 /*
26604  * Process an IPSEC_OUT message and see what you can
26605  * do with it.
26606  * IPQoS Notes:
26607  * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for
26608  * IPsec.
26609  * XXX would like to nuke ire_t.
26610  * XXX ill_index better be "real"
26611  */
26612 void
26613 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index)
26614 {
26615 	ipsec_out_t *io;
26616 	ipsec_policy_t *pp;
26617 	ipsec_action_t *ap;
26618 	ipha_t *ipha;
26619 	ip6_t *ip6h;
26620 	mblk_t *mp;
26621 	ill_t *ill;
26622 	zoneid_t zoneid;
26623 	ipsec_status_t ipsec_rc;
26624 	boolean_t ill_need_rele = B_FALSE;
26625 	ip_stack_t	*ipst;
26626 	ipsec_stack_t	*ipss;
26627 
26628 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
26629 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
26630 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
26631 	ipst = io->ipsec_out_ns->netstack_ip;
26632 	mp = ipsec_mp->b_cont;
26633 
26634 	/*
26635 	 * Initiate IPPF processing. We do it here to account for packets
26636 	 * coming here that don't have any policy (i.e. !io->ipsec_out_secure).
26637 	 * We can check for ipsec_out_proc_begin even for such packets, as
26638 	 * they will always be false (asserted below).
26639 	 */
26640 	if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) {
26641 		ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ?
26642 		    io->ipsec_out_ill_index : ill_index);
26643 		if (mp == NULL) {
26644 			ip2dbg(("ipsec_out_process: packet dropped "\
26645 			    "during IPPF processing\n"));
26646 			freeb(ipsec_mp);
26647 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
26648 			return;
26649 		}
26650 	}
26651 
26652 	if (!io->ipsec_out_secure) {
26653 		/*
26654 		 * We came here by mistake.
26655 		 * Don't bother with ipsec processing
26656 		 * Should "discourage" this path in the future.
26657 		 */
26658 		ASSERT(io->ipsec_out_proc_begin == B_FALSE);
26659 		goto done;
26660 	}
26661 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
26662 	ASSERT((io->ipsec_out_policy != NULL) ||
26663 	    (io->ipsec_out_act != NULL));
26664 	ASSERT(io->ipsec_out_failed == B_FALSE);
26665 
26666 	ipss = ipst->ips_netstack->netstack_ipsec;
26667 	if (!ipsec_loaded(ipss)) {
26668 		ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
26669 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
26670 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
26671 		} else {
26672 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
26673 		}
26674 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire,
26675 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
26676 		    &ipss->ipsec_dropper);
26677 		return;
26678 	}
26679 
26680 	/*
26681 	 * IPsec processing has started.
26682 	 */
26683 	io->ipsec_out_proc_begin = B_TRUE;
26684 	ap = io->ipsec_out_act;
26685 	if (ap == NULL) {
26686 		pp = io->ipsec_out_policy;
26687 		ASSERT(pp != NULL);
26688 		ap = pp->ipsp_act;
26689 		ASSERT(ap != NULL);
26690 	}
26691 
26692 	/*
26693 	 * Save the outbound ill index. When the packet comes back
26694 	 * from IPsec, we make sure the ill hasn't changed or disappeared
26695 	 * before sending it the accelerated packet.
26696 	 */
26697 	if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) {
26698 		int ifindex;
26699 		ill = ire_to_ill(ire);
26700 		ifindex = ill->ill_phyint->phyint_ifindex;
26701 		io->ipsec_out_capab_ill_index = ifindex;
26702 	}
26703 
26704 	/*
26705 	 * The order of processing is first insert a IP header if needed.
26706 	 * Then insert the ESP header and then the AH header.
26707 	 */
26708 	if ((io->ipsec_out_se_done == B_FALSE) &&
26709 	    (ap->ipa_want_se)) {
26710 		/*
26711 		 * First get the outer IP header before sending
26712 		 * it to ESP.
26713 		 */
26714 		ipha_t *oipha, *iipha;
26715 		mblk_t *outer_mp, *inner_mp;
26716 
26717 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
26718 			(void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE,
26719 			    "ipsec_out_process: "
26720 			    "Self-Encapsulation failed: Out of memory\n");
26721 			freemsg(ipsec_mp);
26722 			if (ill != NULL) {
26723 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
26724 			} else {
26725 				BUMP_MIB(&ipst->ips_ip_mib,
26726 				    ipIfStatsOutDiscards);
26727 			}
26728 			return;
26729 		}
26730 		inner_mp = ipsec_mp->b_cont;
26731 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
26732 		oipha = (ipha_t *)outer_mp->b_rptr;
26733 		iipha = (ipha_t *)inner_mp->b_rptr;
26734 		*oipha = *iipha;
26735 		outer_mp->b_wptr += sizeof (ipha_t);
26736 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
26737 		    sizeof (ipha_t));
26738 		oipha->ipha_protocol = IPPROTO_ENCAP;
26739 		oipha->ipha_version_and_hdr_length =
26740 		    IP_SIMPLE_HDR_VERSION;
26741 		oipha->ipha_hdr_checksum = 0;
26742 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
26743 		outer_mp->b_cont = inner_mp;
26744 		ipsec_mp->b_cont = outer_mp;
26745 
26746 		io->ipsec_out_se_done = B_TRUE;
26747 		io->ipsec_out_tunnel = B_TRUE;
26748 	}
26749 
26750 	if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) ||
26751 	    (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) &&
26752 	    !ipsec_out_select_sa(ipsec_mp))
26753 		return;
26754 
26755 	/*
26756 	 * By now, we know what SA's to use.  Toss over to ESP & AH
26757 	 * to do the heavy lifting.
26758 	 */
26759 	zoneid = io->ipsec_out_zoneid;
26760 	ASSERT(zoneid != ALL_ZONES);
26761 	if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) {
26762 		ASSERT(io->ipsec_out_esp_sa != NULL);
26763 		io->ipsec_out_esp_done = B_TRUE;
26764 		/*
26765 		 * Note that since hw accel can only apply one transform,
26766 		 * not two, we skip hw accel for ESP if we also have AH
26767 		 * This is an design limitation of the interface
26768 		 * which should be revisited.
26769 		 */
26770 		ASSERT(ire != NULL);
26771 		if (io->ipsec_out_ah_sa == NULL) {
26772 			ill = (ill_t *)ire->ire_stq->q_ptr;
26773 			ipsec_out_is_accelerated(ipsec_mp,
26774 			    io->ipsec_out_esp_sa, ill, ire);
26775 		}
26776 
26777 		ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp);
26778 		switch (ipsec_rc) {
26779 		case IPSEC_STATUS_SUCCESS:
26780 			break;
26781 		case IPSEC_STATUS_FAILED:
26782 			if (ill != NULL) {
26783 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
26784 			} else {
26785 				BUMP_MIB(&ipst->ips_ip_mib,
26786 				    ipIfStatsOutDiscards);
26787 			}
26788 			/* FALLTHRU */
26789 		case IPSEC_STATUS_PENDING:
26790 			return;
26791 		}
26792 	}
26793 
26794 	if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) {
26795 		ASSERT(io->ipsec_out_ah_sa != NULL);
26796 		io->ipsec_out_ah_done = B_TRUE;
26797 		if (ire == NULL) {
26798 			int idx = io->ipsec_out_capab_ill_index;
26799 			ill = ill_lookup_on_ifindex(idx, B_FALSE,
26800 			    NULL, NULL, NULL, NULL, ipst);
26801 			ill_need_rele = B_TRUE;
26802 		} else {
26803 			ill = (ill_t *)ire->ire_stq->q_ptr;
26804 		}
26805 		ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill,
26806 		    ire);
26807 
26808 		ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp);
26809 		switch (ipsec_rc) {
26810 		case IPSEC_STATUS_SUCCESS:
26811 			break;
26812 		case IPSEC_STATUS_FAILED:
26813 			if (ill != NULL) {
26814 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
26815 			} else {
26816 				BUMP_MIB(&ipst->ips_ip_mib,
26817 				    ipIfStatsOutDiscards);
26818 			}
26819 			/* FALLTHRU */
26820 		case IPSEC_STATUS_PENDING:
26821 			if (ill != NULL && ill_need_rele)
26822 				ill_refrele(ill);
26823 			return;
26824 		}
26825 	}
26826 	/*
26827 	 * We are done with IPsec processing. Send it over
26828 	 * the wire.
26829 	 */
26830 done:
26831 	mp = ipsec_mp->b_cont;
26832 	ipha = (ipha_t *)mp->b_rptr;
26833 	if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
26834 		ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire);
26835 	} else {
26836 		ip6h = (ip6_t *)ipha;
26837 		ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire);
26838 	}
26839 	if (ill != NULL && ill_need_rele)
26840 		ill_refrele(ill);
26841 }
26842 
26843 /* ARGSUSED */
26844 void
26845 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy)
26846 {
26847 	opt_restart_t	*or;
26848 	int	err;
26849 	conn_t	*connp;
26850 
26851 	ASSERT(CONN_Q(q));
26852 	connp = Q_TO_CONN(q);
26853 
26854 	ASSERT(first_mp->b_datap->db_type == M_CTL);
26855 	or = (opt_restart_t *)first_mp->b_rptr;
26856 	/*
26857 	 * We don't need to pass any credentials here since this is just
26858 	 * a restart. The credentials are passed in when svr4_optcom_req
26859 	 * is called the first time (from ip_wput_nondata).
26860 	 */
26861 	if (or->or_type == T_SVR4_OPTMGMT_REQ) {
26862 		err = svr4_optcom_req(q, first_mp, NULL,
26863 		    &ip_opt_obj, B_FALSE);
26864 	} else {
26865 		ASSERT(or->or_type == T_OPTMGMT_REQ);
26866 		err = tpi_optcom_req(q, first_mp, NULL,
26867 		    &ip_opt_obj, B_FALSE);
26868 	}
26869 	if (err != EINPROGRESS) {
26870 		/* operation is done */
26871 		CONN_OPER_PENDING_DONE(connp);
26872 	}
26873 }
26874 
26875 /*
26876  * ioctls that go through a down/up sequence may need to wait for the down
26877  * to complete. This involves waiting for the ire and ipif refcnts to go down
26878  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
26879  */
26880 /* ARGSUSED */
26881 void
26882 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
26883 {
26884 	struct iocblk *iocp;
26885 	mblk_t *mp1;
26886 	ip_ioctl_cmd_t *ipip;
26887 	int err;
26888 	sin_t	*sin;
26889 	struct lifreq *lifr;
26890 	struct ifreq *ifr;
26891 
26892 	iocp = (struct iocblk *)mp->b_rptr;
26893 	ASSERT(ipsq != NULL);
26894 	/* Existence of mp1 verified in ip_wput_nondata */
26895 	mp1 = mp->b_cont->b_cont;
26896 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
26897 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
26898 		/*
26899 		 * Special case where ipsq_current_ipif is not set:
26900 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
26901 		 * ill could also have become part of a ipmp group in the
26902 		 * process, we are here as were not able to complete the
26903 		 * operation in ipif_set_values because we could not become
26904 		 * exclusive on the new ipsq, In such a case ipsq_current_ipif
26905 		 * will not be set so we need to set it.
26906 		 */
26907 		ill_t *ill = q->q_ptr;
26908 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
26909 	}
26910 	ASSERT(ipsq->ipsq_current_ipif != NULL);
26911 
26912 	if (ipip->ipi_cmd_type == IF_CMD) {
26913 		/* This a old style SIOC[GS]IF* command */
26914 		ifr = (struct ifreq *)mp1->b_rptr;
26915 		sin = (sin_t *)&ifr->ifr_addr;
26916 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
26917 		/* This a new style SIOC[GS]LIF* command */
26918 		lifr = (struct lifreq *)mp1->b_rptr;
26919 		sin = (sin_t *)&lifr->lifr_addr;
26920 	} else {
26921 		sin = NULL;
26922 	}
26923 
26924 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp,
26925 	    ipip, mp1->b_rptr);
26926 
26927 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
26928 }
26929 
26930 /*
26931  * ioctl processing
26932  *
26933  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
26934  * the ioctl command in the ioctl tables, determines the copyin data size
26935  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
26936  *
26937  * ioctl processing then continues when the M_IOCDATA makes its way down to
26938  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
26939  * associated 'conn' is refheld till the end of the ioctl and the general
26940  * ioctl processing function ip_process_ioctl() is called to extract the
26941  * arguments and process the ioctl.  To simplify extraction, ioctl commands
26942  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
26943  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
26944  * is used to extract the ioctl's arguments.
26945  *
26946  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
26947  * so goes thru the serialization primitive ipsq_try_enter. Then the
26948  * appropriate function to handle the ioctl is called based on the entry in
26949  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
26950  * which also refreleases the 'conn' that was refheld at the start of the
26951  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
26952  *
26953  * Many exclusive ioctls go thru an internal down up sequence as part of
26954  * the operation. For example an attempt to change the IP address of an
26955  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
26956  * does all the cleanup such as deleting all ires that use this address.
26957  * Then we need to wait till all references to the interface go away.
26958  */
26959 void
26960 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
26961 {
26962 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
26963 	ip_ioctl_cmd_t *ipip = arg;
26964 	ip_extract_func_t *extract_funcp;
26965 	cmd_info_t ci;
26966 	int err;
26967 	boolean_t entered_ipsq = B_FALSE;
26968 
26969 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
26970 
26971 	if (ipip == NULL)
26972 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
26973 
26974 	/*
26975 	 * SIOCLIFADDIF needs to go thru a special path since the
26976 	 * ill may not exist yet. This happens in the case of lo0
26977 	 * which is created using this ioctl.
26978 	 */
26979 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
26980 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
26981 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
26982 		return;
26983 	}
26984 
26985 	ci.ci_ipif = NULL;
26986 	if (ipip->ipi_cmd_type == MISC_CMD) {
26987 		/*
26988 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
26989 		 */
26990 		if (ipip->ipi_cmd == IF_UNITSEL) {
26991 			/* ioctl comes down the ill */
26992 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
26993 			ipif_refhold(ci.ci_ipif);
26994 		}
26995 		err = 0;
26996 		ci.ci_sin = NULL;
26997 		ci.ci_sin6 = NULL;
26998 		ci.ci_lifr = NULL;
26999 	} else {
27000 		switch (ipip->ipi_cmd_type) {
27001 		case IF_CMD:
27002 		case LIF_CMD:
27003 			extract_funcp = ip_extract_lifreq;
27004 			break;
27005 
27006 		case ARP_CMD:
27007 		case XARP_CMD:
27008 			extract_funcp = ip_extract_arpreq;
27009 			break;
27010 
27011 		case TUN_CMD:
27012 			extract_funcp = ip_extract_tunreq;
27013 			break;
27014 
27015 		case MSFILT_CMD:
27016 			extract_funcp = ip_extract_msfilter;
27017 			break;
27018 
27019 		default:
27020 			ASSERT(0);
27021 		}
27022 
27023 		err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl);
27024 		if (err != 0) {
27025 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
27026 			return;
27027 		}
27028 
27029 		/*
27030 		 * All of the extraction functions return a refheld ipif.
27031 		 */
27032 		ASSERT(ci.ci_ipif != NULL);
27033 	}
27034 
27035 	/*
27036 	 * If ipsq is non-null, we are already being called exclusively
27037 	 */
27038 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
27039 	if (!(ipip->ipi_flags & IPI_WR)) {
27040 		/*
27041 		 * A return value of EINPROGRESS means the ioctl is
27042 		 * either queued and waiting for some reason or has
27043 		 * already completed.
27044 		 */
27045 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
27046 		    ci.ci_lifr);
27047 		if (ci.ci_ipif != NULL)
27048 			ipif_refrele(ci.ci_ipif);
27049 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
27050 		return;
27051 	}
27052 
27053 	ASSERT(ci.ci_ipif != NULL);
27054 
27055 	if (ipsq == NULL) {
27056 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp,
27057 		    ip_process_ioctl, NEW_OP, B_TRUE);
27058 		entered_ipsq = B_TRUE;
27059 	}
27060 	/*
27061 	 * Release the ipif so that ipif_down and friends that wait for
27062 	 * references to go away are not misled about the current ipif_refcnt
27063 	 * values. We are writer so we can access the ipif even after releasing
27064 	 * the ipif.
27065 	 */
27066 	ipif_refrele(ci.ci_ipif);
27067 	if (ipsq == NULL)
27068 		return;
27069 
27070 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
27071 
27072 	/*
27073 	 * For most set ioctls that come here, this serves as a single point
27074 	 * where we set the IPIF_CHANGING flag. This ensures that there won't
27075 	 * be any new references to the ipif. This helps functions that go
27076 	 * through this path and end up trying to wait for the refcnts
27077 	 * associated with the ipif to go down to zero. Some exceptions are
27078 	 * Failover, Failback, and Groupname commands that operate on more than
27079 	 * just the ci.ci_ipif. These commands internally determine the
27080 	 * set of ipif's they operate on and set and clear the IPIF_CHANGING
27081 	 * flags on that set. Another exception is the Removeif command that
27082 	 * sets the IPIF_CONDEMNED flag internally after identifying the right
27083 	 * ipif to operate on.
27084 	 */
27085 	mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock);
27086 	if (ipip->ipi_cmd != SIOCLIFREMOVEIF &&
27087 	    ipip->ipi_cmd != SIOCLIFFAILOVER &&
27088 	    ipip->ipi_cmd != SIOCLIFFAILBACK &&
27089 	    ipip->ipi_cmd != SIOCSLIFGROUPNAME)
27090 		(ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING;
27091 	mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock);
27092 
27093 	/*
27094 	 * A return value of EINPROGRESS means the ioctl is
27095 	 * either queued and waiting for some reason or has
27096 	 * already completed.
27097 	 */
27098 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
27099 
27100 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
27101 
27102 	if (entered_ipsq)
27103 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
27104 }
27105 
27106 /*
27107  * Complete the ioctl. Typically ioctls use the mi package and need to
27108  * do mi_copyout/mi_copy_done.
27109  */
27110 void
27111 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
27112 {
27113 	conn_t	*connp = NULL;
27114 
27115 	if (err == EINPROGRESS)
27116 		return;
27117 
27118 	if (CONN_Q(q)) {
27119 		connp = Q_TO_CONN(q);
27120 		ASSERT(connp->conn_ref >= 2);
27121 	}
27122 
27123 	switch (mode) {
27124 	case COPYOUT:
27125 		if (err == 0)
27126 			mi_copyout(q, mp);
27127 		else
27128 			mi_copy_done(q, mp, err);
27129 		break;
27130 
27131 	case NO_COPYOUT:
27132 		mi_copy_done(q, mp, err);
27133 		break;
27134 
27135 	default:
27136 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
27137 		break;
27138 	}
27139 
27140 	/*
27141 	 * The refhold placed at the start of the ioctl is released here.
27142 	 */
27143 	if (connp != NULL)
27144 		CONN_OPER_PENDING_DONE(connp);
27145 
27146 	if (ipsq != NULL)
27147 		ipsq_current_finish(ipsq);
27148 }
27149 
27150 /*
27151  * This is called from ip_wput_nondata to resume a deferred TCP bind.
27152  */
27153 /* ARGSUSED */
27154 void
27155 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2)
27156 {
27157 	conn_t *connp = arg;
27158 	tcp_t	*tcp;
27159 
27160 	ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL);
27161 	tcp = connp->conn_tcp;
27162 
27163 	if (connp->conn_tcp->tcp_state == TCPS_CLOSED)
27164 		freemsg(mp);
27165 	else
27166 		tcp_rput_other(tcp, mp);
27167 	CONN_OPER_PENDING_DONE(connp);
27168 }
27169 
27170 /* Called from ip_wput for all non data messages */
27171 /* ARGSUSED */
27172 void
27173 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
27174 {
27175 	mblk_t		*mp1;
27176 	ire_t		*ire, *fake_ire;
27177 	ill_t		*ill;
27178 	struct iocblk	*iocp;
27179 	ip_ioctl_cmd_t	*ipip;
27180 	cred_t		*cr;
27181 	conn_t		*connp;
27182 	int		err;
27183 	nce_t		*nce;
27184 	ipif_t		*ipif;
27185 	ip_stack_t	*ipst;
27186 	char		*proto_str;
27187 
27188 	if (CONN_Q(q)) {
27189 		connp = Q_TO_CONN(q);
27190 		ipst = connp->conn_netstack->netstack_ip;
27191 	} else {
27192 		connp = NULL;
27193 		ipst = ILLQ_TO_IPST(q);
27194 	}
27195 
27196 	cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q));
27197 
27198 	switch (DB_TYPE(mp)) {
27199 	case M_IOCTL:
27200 		/*
27201 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
27202 		 * will arrange to copy in associated control structures.
27203 		 */
27204 		ip_sioctl_copyin_setup(q, mp);
27205 		return;
27206 	case M_IOCDATA:
27207 		/*
27208 		 * Ensure that this is associated with one of our trans-
27209 		 * parent ioctls.  If it's not ours, discard it if we're
27210 		 * running as a driver, or pass it on if we're a module.
27211 		 */
27212 		iocp = (struct iocblk *)mp->b_rptr;
27213 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
27214 		if (ipip == NULL) {
27215 			if (q->q_next == NULL) {
27216 				goto nak;
27217 			} else {
27218 				putnext(q, mp);
27219 			}
27220 			return;
27221 		}
27222 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
27223 			/*
27224 			 * the ioctl is one we recognise, but is not
27225 			 * consumed by IP as a module, pass M_IOCDATA
27226 			 * for processing downstream, but only for
27227 			 * common Streams ioctls.
27228 			 */
27229 			if (ipip->ipi_flags & IPI_PASS_DOWN) {
27230 				putnext(q, mp);
27231 				return;
27232 			} else {
27233 				goto nak;
27234 			}
27235 		}
27236 
27237 		/* IOCTL continuation following copyin or copyout. */
27238 		if (mi_copy_state(q, mp, NULL) == -1) {
27239 			/*
27240 			 * The copy operation failed.  mi_copy_state already
27241 			 * cleaned up, so we're out of here.
27242 			 */
27243 			return;
27244 		}
27245 		/*
27246 		 * If we just completed a copy in, we become writer and
27247 		 * continue processing in ip_sioctl_copyin_done.  If it
27248 		 * was a copy out, we call mi_copyout again.  If there is
27249 		 * nothing more to copy out, it will complete the IOCTL.
27250 		 */
27251 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
27252 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
27253 				mi_copy_done(q, mp, EPROTO);
27254 				return;
27255 			}
27256 			/*
27257 			 * Check for cases that need more copying.  A return
27258 			 * value of 0 means a second copyin has been started,
27259 			 * so we return; a return value of 1 means no more
27260 			 * copying is needed, so we continue.
27261 			 */
27262 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
27263 			    MI_COPY_COUNT(mp) == 1) {
27264 				if (ip_copyin_msfilter(q, mp) == 0)
27265 					return;
27266 			}
27267 			/*
27268 			 * Refhold the conn, till the ioctl completes. This is
27269 			 * needed in case the ioctl ends up in the pending mp
27270 			 * list. Every mp in the ill_pending_mp list and
27271 			 * the ipsq_pending_mp must have a refhold on the conn
27272 			 * to resume processing. The refhold is released when
27273 			 * the ioctl completes. (normally or abnormally)
27274 			 * In all cases ip_ioctl_finish is called to finish
27275 			 * the ioctl.
27276 			 */
27277 			if (connp != NULL) {
27278 				/* This is not a reentry */
27279 				ASSERT(ipsq == NULL);
27280 				CONN_INC_REF(connp);
27281 			} else {
27282 				if (!(ipip->ipi_flags & IPI_MODOK)) {
27283 					mi_copy_done(q, mp, EINVAL);
27284 					return;
27285 				}
27286 			}
27287 
27288 			ip_process_ioctl(ipsq, q, mp, ipip);
27289 
27290 		} else {
27291 			mi_copyout(q, mp);
27292 		}
27293 		return;
27294 nak:
27295 		iocp->ioc_error = EINVAL;
27296 		mp->b_datap->db_type = M_IOCNAK;
27297 		iocp->ioc_count = 0;
27298 		qreply(q, mp);
27299 		return;
27300 
27301 	case M_IOCNAK:
27302 		/*
27303 		 * The only way we could get here is if a resolver didn't like
27304 		 * an IOCTL we sent it.	 This shouldn't happen.
27305 		 */
27306 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
27307 		    "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x",
27308 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
27309 		freemsg(mp);
27310 		return;
27311 	case M_IOCACK:
27312 		/* /dev/ip shouldn't see this */
27313 		if (CONN_Q(q))
27314 			goto nak;
27315 
27316 		/* Finish socket ioctls passed through to ARP. */
27317 		ip_sioctl_iocack(q, mp);
27318 		return;
27319 	case M_FLUSH:
27320 		if (*mp->b_rptr & FLUSHW)
27321 			flushq(q, FLUSHALL);
27322 		if (q->q_next) {
27323 			putnext(q, mp);
27324 			return;
27325 		}
27326 		if (*mp->b_rptr & FLUSHR) {
27327 			*mp->b_rptr &= ~FLUSHW;
27328 			qreply(q, mp);
27329 			return;
27330 		}
27331 		freemsg(mp);
27332 		return;
27333 	case IRE_DB_REQ_TYPE:
27334 		if (connp == NULL) {
27335 			proto_str = "IRE_DB_REQ_TYPE";
27336 			goto protonak;
27337 		}
27338 		/* An Upper Level Protocol wants a copy of an IRE. */
27339 		ip_ire_req(q, mp);
27340 		return;
27341 	case M_CTL:
27342 		if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t))
27343 			break;
27344 
27345 		if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type ==
27346 		    TUN_HELLO) {
27347 			ASSERT(connp != NULL);
27348 			connp->conn_flags |= IPCL_IPTUN;
27349 			freeb(mp);
27350 			return;
27351 		}
27352 
27353 		/* M_CTL messages are used by ARP to tell us things. */
27354 		if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t))
27355 			break;
27356 		switch (((arc_t *)mp->b_rptr)->arc_cmd) {
27357 		case AR_ENTRY_SQUERY:
27358 			ip_wput_ctl(q, mp);
27359 			return;
27360 		case AR_CLIENT_NOTIFY:
27361 			ip_arp_news(q, mp);
27362 			return;
27363 		case AR_DLPIOP_DONE:
27364 			ASSERT(q->q_next != NULL);
27365 			ill = (ill_t *)q->q_ptr;
27366 			/* qwriter_ip releases the refhold */
27367 			/* refhold on ill stream is ok without ILL_CAN_LOOKUP */
27368 			ill_refhold(ill);
27369 			qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE);
27370 			return;
27371 		case AR_ARP_CLOSING:
27372 			/*
27373 			 * ARP (above us) is closing. If no ARP bringup is
27374 			 * currently pending, ack the message so that ARP
27375 			 * can complete its close. Also mark ill_arp_closing
27376 			 * so that new ARP bringups will fail. If any
27377 			 * ARP bringup is currently in progress, we will
27378 			 * ack this when the current ARP bringup completes.
27379 			 */
27380 			ASSERT(q->q_next != NULL);
27381 			ill = (ill_t *)q->q_ptr;
27382 			mutex_enter(&ill->ill_lock);
27383 			ill->ill_arp_closing = 1;
27384 			if (!ill->ill_arp_bringup_pending) {
27385 				mutex_exit(&ill->ill_lock);
27386 				qreply(q, mp);
27387 			} else {
27388 				mutex_exit(&ill->ill_lock);
27389 				freemsg(mp);
27390 			}
27391 			return;
27392 		case AR_ARP_EXTEND:
27393 			/*
27394 			 * The ARP module above us is capable of duplicate
27395 			 * address detection.  Old ATM drivers will not send
27396 			 * this message.
27397 			 */
27398 			ASSERT(q->q_next != NULL);
27399 			ill = (ill_t *)q->q_ptr;
27400 			ill->ill_arp_extend = B_TRUE;
27401 			freemsg(mp);
27402 			return;
27403 		default:
27404 			break;
27405 		}
27406 		break;
27407 	case M_PROTO:
27408 	case M_PCPROTO:
27409 		/*
27410 		 * The only PROTO messages we expect are ULP binds and
27411 		 * copies of option negotiation acknowledgements.
27412 		 */
27413 		switch (((union T_primitives *)mp->b_rptr)->type) {
27414 		case O_T_BIND_REQ:
27415 		case T_BIND_REQ: {
27416 			/* Request can get queued in bind */
27417 			if (connp == NULL) {
27418 				proto_str = "O_T_BIND_REQ/T_BIND_REQ";
27419 				goto protonak;
27420 			}
27421 			/*
27422 			 * The transports except SCTP call ip_bind_{v4,v6}()
27423 			 * directly instead of a a putnext. SCTP doesn't
27424 			 * generate any T_BIND_REQ since it has its own
27425 			 * fanout data structures. However, ESP and AH
27426 			 * come in for regular binds; all other cases are
27427 			 * bind retries.
27428 			 */
27429 			ASSERT(!IPCL_IS_SCTP(connp));
27430 
27431 			/* Don't increment refcnt if this is a re-entry */
27432 			if (ipsq == NULL)
27433 				CONN_INC_REF(connp);
27434 
27435 			mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp,
27436 			    connp, NULL) : ip_bind_v4(q, mp, connp);
27437 			if (mp == NULL)
27438 				return;
27439 			if (IPCL_IS_TCP(connp)) {
27440 				/*
27441 				 * In the case of TCP endpoint we
27442 				 * come here only for bind retries
27443 				 */
27444 				ASSERT(ipsq != NULL);
27445 				CONN_INC_REF(connp);
27446 				squeue_fill(connp->conn_sqp, mp,
27447 				    ip_resume_tcp_bind, connp,
27448 				    SQTAG_BIND_RETRY);
27449 			} else if (IPCL_IS_UDP(connp)) {
27450 				/*
27451 				 * In the case of UDP endpoint we
27452 				 * come here only for bind retries
27453 				 */
27454 				ASSERT(ipsq != NULL);
27455 				udp_resume_bind(connp, mp);
27456 			} else if (IPCL_IS_RAWIP(connp)) {
27457 				/*
27458 				 * In the case of RAWIP endpoint we
27459 				 * come here only for bind retries
27460 				 */
27461 				ASSERT(ipsq != NULL);
27462 				rawip_resume_bind(connp, mp);
27463 			} else {
27464 				/* The case of AH and ESP */
27465 				qreply(q, mp);
27466 				CONN_OPER_PENDING_DONE(connp);
27467 			}
27468 			return;
27469 		}
27470 		case T_SVR4_OPTMGMT_REQ:
27471 			ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n",
27472 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
27473 
27474 			if (connp == NULL) {
27475 				proto_str = "T_SVR4_OPTMGMT_REQ";
27476 				goto protonak;
27477 			}
27478 
27479 			if (!snmpcom_req(q, mp, ip_snmp_set,
27480 			    ip_snmp_get, cr)) {
27481 				/*
27482 				 * Call svr4_optcom_req so that it can
27483 				 * generate the ack. We don't come here
27484 				 * if this operation is being restarted.
27485 				 * ip_restart_optmgmt will drop the conn ref.
27486 				 * In the case of ipsec option after the ipsec
27487 				 * load is complete conn_restart_ipsec_waiter
27488 				 * drops the conn ref.
27489 				 */
27490 				ASSERT(ipsq == NULL);
27491 				CONN_INC_REF(connp);
27492 				if (ip_check_for_ipsec_opt(q, mp))
27493 					return;
27494 				err = svr4_optcom_req(q, mp, cr, &ip_opt_obj,
27495 				    B_FALSE);
27496 				if (err != EINPROGRESS) {
27497 					/* Operation is done */
27498 					CONN_OPER_PENDING_DONE(connp);
27499 				}
27500 			}
27501 			return;
27502 		case T_OPTMGMT_REQ:
27503 			ip2dbg(("ip_wput: T_OPTMGMT_REQ\n"));
27504 			/*
27505 			 * Note: No snmpcom_req support through new
27506 			 * T_OPTMGMT_REQ.
27507 			 * Call tpi_optcom_req so that it can
27508 			 * generate the ack.
27509 			 */
27510 			if (connp == NULL) {
27511 				proto_str = "T_OPTMGMT_REQ";
27512 				goto protonak;
27513 			}
27514 
27515 			ASSERT(ipsq == NULL);
27516 			/*
27517 			 * We don't come here for restart. ip_restart_optmgmt
27518 			 * will drop the conn ref. In the case of ipsec option
27519 			 * after the ipsec load is complete
27520 			 * conn_restart_ipsec_waiter drops the conn ref.
27521 			 */
27522 			CONN_INC_REF(connp);
27523 			if (ip_check_for_ipsec_opt(q, mp))
27524 				return;
27525 			err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE);
27526 			if (err != EINPROGRESS) {
27527 				/* Operation is done */
27528 				CONN_OPER_PENDING_DONE(connp);
27529 			}
27530 			return;
27531 		case T_UNBIND_REQ:
27532 			if (connp == NULL) {
27533 				proto_str = "T_UNBIND_REQ";
27534 				goto protonak;
27535 			}
27536 			mp = ip_unbind(q, mp);
27537 			qreply(q, mp);
27538 			return;
27539 		default:
27540 			/*
27541 			 * Have to drop any DLPI messages coming down from
27542 			 * arp (such as an info_req which would cause ip
27543 			 * to receive an extra info_ack if it was passed
27544 			 * through.
27545 			 */
27546 			ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n",
27547 			    (int)*(uint_t *)mp->b_rptr));
27548 			freemsg(mp);
27549 			return;
27550 		}
27551 		/* NOTREACHED */
27552 	case IRE_DB_TYPE: {
27553 		nce_t		*nce;
27554 		ill_t		*ill;
27555 		in6_addr_t	gw_addr_v6;
27556 
27557 
27558 		/*
27559 		 * This is a response back from a resolver.  It
27560 		 * consists of a message chain containing:
27561 		 *	IRE_MBLK-->LL_HDR_MBLK->pkt
27562 		 * The IRE_MBLK is the one we allocated in ip_newroute.
27563 		 * The LL_HDR_MBLK is the DLPI header to use to get
27564 		 * the attached packet, and subsequent ones for the
27565 		 * same destination, transmitted.
27566 		 */
27567 		if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t))    /* ire */
27568 			break;
27569 		/*
27570 		 * First, check to make sure the resolution succeeded.
27571 		 * If it failed, the second mblk will be empty.
27572 		 * If it is, free the chain, dropping the packet.
27573 		 * (We must ire_delete the ire; that frees the ire mblk)
27574 		 * We're doing this now to support PVCs for ATM; it's
27575 		 * a partial xresolv implementation. When we fully implement
27576 		 * xresolv interfaces, instead of freeing everything here
27577 		 * we'll initiate neighbor discovery.
27578 		 *
27579 		 * For v4 (ARP and other external resolvers) the resolver
27580 		 * frees the message, so no check is needed. This check
27581 		 * is required, though, for a full xresolve implementation.
27582 		 * Including this code here now both shows how external
27583 		 * resolvers can NACK a resolution request using an
27584 		 * existing design that has no specific provisions for NACKs,
27585 		 * and also takes into account that the current non-ARP
27586 		 * external resolver has been coded to use this method of
27587 		 * NACKing for all IPv6 (xresolv) cases,
27588 		 * whether our xresolv implementation is complete or not.
27589 		 *
27590 		 */
27591 		ire = (ire_t *)mp->b_rptr;
27592 		ill = ire_to_ill(ire);
27593 		mp1 = mp->b_cont;		/* dl_unitdata_req */
27594 		if (mp1->b_rptr == mp1->b_wptr) {
27595 			if (ire->ire_ipversion == IPV6_VERSION) {
27596 				/*
27597 				 * XRESOLV interface.
27598 				 */
27599 				ASSERT(ill->ill_flags & ILLF_XRESOLV);
27600 				mutex_enter(&ire->ire_lock);
27601 				gw_addr_v6 = ire->ire_gateway_addr_v6;
27602 				mutex_exit(&ire->ire_lock);
27603 				if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
27604 					nce = ndp_lookup_v6(ill,
27605 					    &ire->ire_addr_v6, B_FALSE);
27606 				} else {
27607 					nce = ndp_lookup_v6(ill, &gw_addr_v6,
27608 					    B_FALSE);
27609 				}
27610 				if (nce != NULL) {
27611 					nce_resolv_failed(nce);
27612 					ndp_delete(nce);
27613 					NCE_REFRELE(nce);
27614 				}
27615 			}
27616 			mp->b_cont = NULL;
27617 			freemsg(mp1);		/* frees the pkt as well */
27618 			ASSERT(ire->ire_nce == NULL);
27619 			ire_delete((ire_t *)mp->b_rptr);
27620 			return;
27621 		}
27622 
27623 		/*
27624 		 * Split them into IRE_MBLK and pkt and feed it into
27625 		 * ire_add_then_send. Then in ire_add_then_send
27626 		 * the IRE will be added, and then the packet will be
27627 		 * run back through ip_wput. This time it will make
27628 		 * it to the wire.
27629 		 */
27630 		mp->b_cont = NULL;
27631 		mp = mp1->b_cont;		/* now, mp points to pkt */
27632 		mp1->b_cont = NULL;
27633 		ip1dbg(("ip_wput_nondata: reply from external resolver \n"));
27634 		if (ire->ire_ipversion == IPV6_VERSION) {
27635 			/*
27636 			 * XRESOLV interface. Find the nce and put a copy
27637 			 * of the dl_unitdata_req in nce_res_mp
27638 			 */
27639 			ASSERT(ill->ill_flags & ILLF_XRESOLV);
27640 			mutex_enter(&ire->ire_lock);
27641 			gw_addr_v6 = ire->ire_gateway_addr_v6;
27642 			mutex_exit(&ire->ire_lock);
27643 			if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
27644 				nce = ndp_lookup_v6(ill, &ire->ire_addr_v6,
27645 				    B_FALSE);
27646 			} else {
27647 				nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE);
27648 			}
27649 			if (nce != NULL) {
27650 				/*
27651 				 * We have to protect nce_res_mp here
27652 				 * from being accessed by other threads
27653 				 * while we change the mblk pointer.
27654 				 * Other functions will also lock the nce when
27655 				 * accessing nce_res_mp.
27656 				 *
27657 				 * The reason we change the mblk pointer
27658 				 * here rather than copying the resolved address
27659 				 * into the template is that, unlike with
27660 				 * ethernet, we have no guarantee that the
27661 				 * resolved address length will be
27662 				 * smaller than or equal to the lla length
27663 				 * with which the template was allocated,
27664 				 * (for ethernet, they're equal)
27665 				 * so we have to use the actual resolved
27666 				 * address mblk - which holds the real
27667 				 * dl_unitdata_req with the resolved address.
27668 				 *
27669 				 * Doing this is the same behavior as was
27670 				 * previously used in the v4 ARP case.
27671 				 */
27672 				mutex_enter(&nce->nce_lock);
27673 				if (nce->nce_res_mp != NULL)
27674 					freemsg(nce->nce_res_mp);
27675 				nce->nce_res_mp = mp1;
27676 				mutex_exit(&nce->nce_lock);
27677 				/*
27678 				 * We do a fastpath probe here because
27679 				 * we have resolved the address without
27680 				 * using Neighbor Discovery.
27681 				 * In the non-XRESOLV v6 case, the fastpath
27682 				 * probe is done right after neighbor
27683 				 * discovery completes.
27684 				 */
27685 				if (nce->nce_res_mp != NULL) {
27686 					int res;
27687 					nce_fastpath_list_add(nce);
27688 					res = ill_fastpath_probe(ill,
27689 					    nce->nce_res_mp);
27690 					if (res != 0 && res != EAGAIN)
27691 						nce_fastpath_list_delete(nce);
27692 				}
27693 
27694 				ire_add_then_send(q, ire, mp);
27695 				/*
27696 				 * Now we have to clean out any packets
27697 				 * that may have been queued on the nce
27698 				 * while it was waiting for address resolution
27699 				 * to complete.
27700 				 */
27701 				mutex_enter(&nce->nce_lock);
27702 				mp1 = nce->nce_qd_mp;
27703 				nce->nce_qd_mp = NULL;
27704 				mutex_exit(&nce->nce_lock);
27705 				while (mp1 != NULL) {
27706 					mblk_t *nxt_mp;
27707 					queue_t *fwdq = NULL;
27708 					ill_t   *inbound_ill;
27709 					uint_t ifindex;
27710 
27711 					nxt_mp = mp1->b_next;
27712 					mp1->b_next = NULL;
27713 					/*
27714 					 * Retrieve ifindex stored in
27715 					 * ip_rput_data_v6()
27716 					 */
27717 					ifindex =
27718 					    (uint_t)(uintptr_t)mp1->b_prev;
27719 					inbound_ill =
27720 					    ill_lookup_on_ifindex(ifindex,
27721 					    B_TRUE, NULL, NULL, NULL,
27722 					    NULL, ipst);
27723 					mp1->b_prev = NULL;
27724 					if (inbound_ill != NULL)
27725 						fwdq = inbound_ill->ill_rq;
27726 
27727 					if (fwdq != NULL) {
27728 						put(fwdq, mp1);
27729 						ill_refrele(inbound_ill);
27730 					} else
27731 						put(WR(ill->ill_rq), mp1);
27732 					mp1 = nxt_mp;
27733 				}
27734 				NCE_REFRELE(nce);
27735 			} else {	/* nce is NULL; clean up */
27736 				ire_delete(ire);
27737 				freemsg(mp);
27738 				freemsg(mp1);
27739 				return;
27740 			}
27741 		} else {
27742 			nce_t *arpce;
27743 			/*
27744 			 * Link layer resolution succeeded. Recompute the
27745 			 * ire_nce.
27746 			 */
27747 			ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST));
27748 			if ((arpce = ndp_lookup_v4(ill,
27749 			    (ire->ire_gateway_addr != INADDR_ANY ?
27750 			    &ire->ire_gateway_addr : &ire->ire_addr),
27751 			    B_FALSE)) == NULL) {
27752 				freeb(ire->ire_mp);
27753 				freeb(mp1);
27754 				freemsg(mp);
27755 				return;
27756 			}
27757 			mutex_enter(&arpce->nce_lock);
27758 			arpce->nce_last = TICK_TO_MSEC(lbolt64);
27759 			if (arpce->nce_state == ND_REACHABLE) {
27760 				/*
27761 				 * Someone resolved this before us;
27762 				 * cleanup the res_mp. Since ire has
27763 				 * not been added yet, the call to ire_add_v4
27764 				 * from ire_add_then_send (when a dup is
27765 				 * detected) will clean up the ire.
27766 				 */
27767 				freeb(mp1);
27768 			} else {
27769 				ASSERT(arpce->nce_res_mp == NULL);
27770 				arpce->nce_res_mp = mp1;
27771 				arpce->nce_state = ND_REACHABLE;
27772 			}
27773 			mutex_exit(&arpce->nce_lock);
27774 			if (ire->ire_marks & IRE_MARK_NOADD) {
27775 				/*
27776 				 * this ire will not be added to the ire
27777 				 * cache table, so we can set the ire_nce
27778 				 * here, as there are no atomicity constraints.
27779 				 */
27780 				ire->ire_nce = arpce;
27781 				/*
27782 				 * We are associating this nce with the ire
27783 				 * so change the nce ref taken in
27784 				 * ndp_lookup_v4() from
27785 				 * NCE_REFHOLD to NCE_REFHOLD_NOTR
27786 				 */
27787 				NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
27788 			} else {
27789 				NCE_REFRELE(arpce);
27790 			}
27791 			ire_add_then_send(q, ire, mp);
27792 		}
27793 		return;	/* All is well, the packet has been sent. */
27794 	}
27795 	case IRE_ARPRESOLVE_TYPE: {
27796 
27797 		if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */
27798 			break;
27799 		mp1 = mp->b_cont;		/* dl_unitdata_req */
27800 		mp->b_cont = NULL;
27801 		/*
27802 		 * First, check to make sure the resolution succeeded.
27803 		 * If it failed, the second mblk will be empty.
27804 		 */
27805 		if (mp1->b_rptr == mp1->b_wptr) {
27806 			/* cleanup  the incomplete ire, free queued packets */
27807 			freemsg(mp); /* fake ire */
27808 			freeb(mp1);  /* dl_unitdata response */
27809 			return;
27810 		}
27811 
27812 		/*
27813 		 * update any incomplete nce_t found. we lookup the ctable
27814 		 * and find the nce from the ire->ire_nce because we need
27815 		 * to pass the ire to ip_xmit_v4 later, and can find both
27816 		 * ire and nce in one lookup from the ctable.
27817 		 */
27818 		fake_ire = (ire_t *)mp->b_rptr;
27819 		/*
27820 		 * By the time we come back here from ARP
27821 		 * the logical outgoing interface  of the incomplete ire
27822 		 * we added in ire_forward could have disappeared,
27823 		 * causing the incomplete ire to also have
27824 		 * dissapeared. So we need to retreive the
27825 		 * proper ipif for the ire  before looking
27826 		 * in ctable;  do the ctablelookup based on ire_ipif_seqid
27827 		 */
27828 		ill = q->q_ptr;
27829 
27830 		/* Get the outgoing ipif */
27831 		mutex_enter(&ill->ill_lock);
27832 		if (ill->ill_state_flags & ILL_CONDEMNED) {
27833 			mutex_exit(&ill->ill_lock);
27834 			freemsg(mp); /* fake ire */
27835 			freeb(mp1);  /* dl_unitdata response */
27836 			return;
27837 		}
27838 		ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid);
27839 
27840 		if (ipif == NULL) {
27841 			mutex_exit(&ill->ill_lock);
27842 			ip1dbg(("logical intrf to incomplete ire vanished\n"));
27843 			freemsg(mp);
27844 			freeb(mp1);
27845 			return;
27846 		}
27847 		ipif_refhold_locked(ipif);
27848 		mutex_exit(&ill->ill_lock);
27849 		ire = ire_ctable_lookup(fake_ire->ire_addr,
27850 		    fake_ire->ire_gateway_addr, IRE_CACHE,
27851 		    ipif, fake_ire->ire_zoneid, NULL,
27852 		    (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY|
27853 		    MATCH_IRE_TYPE), ipst);
27854 		ipif_refrele(ipif);
27855 		if (ire == NULL) {
27856 			/*
27857 			 * no ire was found; check if there is an nce
27858 			 * for this lookup; if it has no ire's pointing at it
27859 			 * cleanup.
27860 			 */
27861 			if ((nce = ndp_lookup_v4(ill,
27862 			    (fake_ire->ire_gateway_addr != INADDR_ANY ?
27863 			    &fake_ire->ire_gateway_addr : &fake_ire->ire_addr),
27864 			    B_FALSE)) != NULL) {
27865 				/*
27866 				 * cleanup:
27867 				 * We check for refcnt 2 (one for the nce
27868 				 * hash list + 1 for the ref taken by
27869 				 * ndp_lookup_v4) to check that there are
27870 				 * no ire's pointing at the nce.
27871 				 */
27872 				if (nce->nce_refcnt == 2)
27873 					ndp_delete(nce);
27874 				NCE_REFRELE(nce);
27875 			}
27876 			freeb(mp1);  /* dl_unitdata response */
27877 			freemsg(mp); /* fake ire */
27878 			return;
27879 		}
27880 		nce = ire->ire_nce;
27881 		DTRACE_PROBE2(ire__arpresolve__type,
27882 		    ire_t *, ire, nce_t *, nce);
27883 		ASSERT(nce->nce_state != ND_INITIAL);
27884 		mutex_enter(&nce->nce_lock);
27885 		nce->nce_last = TICK_TO_MSEC(lbolt64);
27886 		if (nce->nce_state == ND_REACHABLE) {
27887 			/*
27888 			 * Someone resolved this before us;
27889 			 * our response is not needed any more.
27890 			 */
27891 			mutex_exit(&nce->nce_lock);
27892 			freeb(mp1);  /* dl_unitdata response */
27893 		} else {
27894 			ASSERT(nce->nce_res_mp == NULL);
27895 			nce->nce_res_mp = mp1;
27896 			nce->nce_state = ND_REACHABLE;
27897 			mutex_exit(&nce->nce_lock);
27898 			nce_fastpath(nce);
27899 		}
27900 		/*
27901 		 * The cached nce_t has been updated to be reachable;
27902 		 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire.
27903 		 */
27904 		fake_ire->ire_marks &= ~IRE_MARK_UNCACHED;
27905 		freemsg(mp);
27906 		/*
27907 		 * send out queued packets.
27908 		 */
27909 		(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
27910 
27911 		IRE_REFRELE(ire);
27912 		return;
27913 	}
27914 	default:
27915 		break;
27916 	}
27917 	if (q->q_next) {
27918 		putnext(q, mp);
27919 	} else
27920 		freemsg(mp);
27921 	return;
27922 
27923 protonak:
27924 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
27925 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
27926 		qreply(q, mp);
27927 }
27928 
27929 /*
27930  * Process IP options in an outbound packet.  Modify the destination if there
27931  * is a source route option.
27932  * Returns non-zero if something fails in which case an ICMP error has been
27933  * sent and mp freed.
27934  */
27935 static int
27936 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha,
27937     boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst)
27938 {
27939 	ipoptp_t	opts;
27940 	uchar_t		*opt;
27941 	uint8_t		optval;
27942 	uint8_t		optlen;
27943 	ipaddr_t	dst;
27944 	intptr_t	code = 0;
27945 	mblk_t		*mp;
27946 	ire_t		*ire = NULL;
27947 
27948 	ip2dbg(("ip_wput_options\n"));
27949 	mp = ipsec_mp;
27950 	if (mctl_present) {
27951 		mp = ipsec_mp->b_cont;
27952 	}
27953 
27954 	dst = ipha->ipha_dst;
27955 	for (optval = ipoptp_first(&opts, ipha);
27956 	    optval != IPOPT_EOL;
27957 	    optval = ipoptp_next(&opts)) {
27958 		opt = opts.ipoptp_cur;
27959 		optlen = opts.ipoptp_len;
27960 		ip2dbg(("ip_wput_options: opt %d, len %d\n",
27961 		    optval, optlen));
27962 		switch (optval) {
27963 			uint32_t off;
27964 		case IPOPT_SSRR:
27965 		case IPOPT_LSRR:
27966 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
27967 				ip1dbg((
27968 				    "ip_wput_options: bad option offset\n"));
27969 				code = (char *)&opt[IPOPT_OLEN] -
27970 				    (char *)ipha;
27971 				goto param_prob;
27972 			}
27973 			off = opt[IPOPT_OFFSET];
27974 			ip1dbg(("ip_wput_options: next hop 0x%x\n",
27975 			    ntohl(dst)));
27976 			/*
27977 			 * For strict: verify that dst is directly
27978 			 * reachable.
27979 			 */
27980 			if (optval == IPOPT_SSRR) {
27981 				ire = ire_ftable_lookup(dst, 0, 0,
27982 				    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
27983 				    MBLK_GETLABEL(mp),
27984 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
27985 				if (ire == NULL) {
27986 					ip1dbg(("ip_wput_options: SSRR not"
27987 					    " directly reachable: 0x%x\n",
27988 					    ntohl(dst)));
27989 					goto bad_src_route;
27990 				}
27991 				ire_refrele(ire);
27992 			}
27993 			break;
27994 		case IPOPT_RR:
27995 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
27996 				ip1dbg((
27997 				    "ip_wput_options: bad option offset\n"));
27998 				code = (char *)&opt[IPOPT_OLEN] -
27999 				    (char *)ipha;
28000 				goto param_prob;
28001 			}
28002 			break;
28003 		case IPOPT_TS:
28004 			/*
28005 			 * Verify that length >=5 and that there is either
28006 			 * room for another timestamp or that the overflow
28007 			 * counter is not maxed out.
28008 			 */
28009 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
28010 			if (optlen < IPOPT_MINLEN_IT) {
28011 				goto param_prob;
28012 			}
28013 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
28014 				ip1dbg((
28015 				    "ip_wput_options: bad option offset\n"));
28016 				code = (char *)&opt[IPOPT_OFFSET] -
28017 				    (char *)ipha;
28018 				goto param_prob;
28019 			}
28020 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
28021 			case IPOPT_TS_TSONLY:
28022 				off = IPOPT_TS_TIMELEN;
28023 				break;
28024 			case IPOPT_TS_TSANDADDR:
28025 			case IPOPT_TS_PRESPEC:
28026 			case IPOPT_TS_PRESPEC_RFC791:
28027 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
28028 				break;
28029 			default:
28030 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
28031 				    (char *)ipha;
28032 				goto param_prob;
28033 			}
28034 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
28035 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
28036 				/*
28037 				 * No room and the overflow counter is 15
28038 				 * already.
28039 				 */
28040 				goto param_prob;
28041 			}
28042 			break;
28043 		}
28044 	}
28045 
28046 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
28047 		return (0);
28048 
28049 	ip1dbg(("ip_wput_options: error processing IP options."));
28050 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
28051 
28052 param_prob:
28053 	/*
28054 	 * Since ip_wput() isn't close to finished, we fill
28055 	 * in enough of the header for credible error reporting.
28056 	 */
28057 	if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) {
28058 		/* Failed */
28059 		freemsg(ipsec_mp);
28060 		return (-1);
28061 	}
28062 	icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst);
28063 	return (-1);
28064 
28065 bad_src_route:
28066 	/*
28067 	 * Since ip_wput() isn't close to finished, we fill
28068 	 * in enough of the header for credible error reporting.
28069 	 */
28070 	if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) {
28071 		/* Failed */
28072 		freemsg(ipsec_mp);
28073 		return (-1);
28074 	}
28075 	icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst);
28076 	return (-1);
28077 }
28078 
28079 /*
28080  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
28081  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
28082  * thru /etc/system.
28083  */
28084 #define	CONN_MAXDRAINCNT	64
28085 
28086 static void
28087 conn_drain_init(ip_stack_t *ipst)
28088 {
28089 	int i;
28090 
28091 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
28092 
28093 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
28094 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
28095 		/*
28096 		 * Default value of the number of drainers is the
28097 		 * number of cpus, subject to maximum of 8 drainers.
28098 		 */
28099 		if (boot_max_ncpus != -1)
28100 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
28101 		else
28102 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
28103 	}
28104 
28105 	ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt *
28106 	    sizeof (idl_t), KM_SLEEP);
28107 
28108 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
28109 		mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL,
28110 		    MUTEX_DEFAULT, NULL);
28111 	}
28112 }
28113 
28114 static void
28115 conn_drain_fini(ip_stack_t *ipst)
28116 {
28117 	int i;
28118 
28119 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++)
28120 		mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock);
28121 	kmem_free(ipst->ips_conn_drain_list,
28122 	    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
28123 	ipst->ips_conn_drain_list = NULL;
28124 }
28125 
28126 /*
28127  * Note: For an overview of how flowcontrol is handled in IP please see the
28128  * IP Flowcontrol notes at the top of this file.
28129  *
28130  * Flow control has blocked us from proceeding. Insert the given conn in one
28131  * of the conn drain lists. These conn wq's will be qenabled later on when
28132  * STREAMS flow control does a backenable. conn_walk_drain will enable
28133  * the first conn in each of these drain lists. Each of these qenabled conns
28134  * in turn enables the next in the list, after it runs, or when it closes,
28135  * thus sustaining the drain process.
28136  *
28137  * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput ->
28138  * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert
28139  * running at any time, on a given conn, since there can be only 1 service proc
28140  * running on a queue at any time.
28141  */
28142 void
28143 conn_drain_insert(conn_t *connp)
28144 {
28145 	idl_t	*idl;
28146 	uint_t	index;
28147 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
28148 
28149 	mutex_enter(&connp->conn_lock);
28150 	if (connp->conn_state_flags & CONN_CLOSING) {
28151 		/*
28152 		 * The conn is closing as a result of which CONN_CLOSING
28153 		 * is set. Return.
28154 		 */
28155 		mutex_exit(&connp->conn_lock);
28156 		return;
28157 	} else if (connp->conn_idl == NULL) {
28158 		/*
28159 		 * Assign the next drain list round robin. We dont' use
28160 		 * a lock, and thus it may not be strictly round robin.
28161 		 * Atomicity of load/stores is enough to make sure that
28162 		 * conn_drain_list_index is always within bounds.
28163 		 */
28164 		index = ipst->ips_conn_drain_list_index;
28165 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
28166 		connp->conn_idl = &ipst->ips_conn_drain_list[index];
28167 		index++;
28168 		if (index == ipst->ips_conn_drain_list_cnt)
28169 			index = 0;
28170 		ipst->ips_conn_drain_list_index = index;
28171 	}
28172 	mutex_exit(&connp->conn_lock);
28173 
28174 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
28175 	if ((connp->conn_drain_prev != NULL) ||
28176 	    (connp->conn_state_flags & CONN_CLOSING)) {
28177 		/*
28178 		 * The conn is already in the drain list, OR
28179 		 * the conn is closing. We need to check again for
28180 		 * the closing case again since close can happen
28181 		 * after we drop the conn_lock, and before we
28182 		 * acquire the CONN_DRAIN_LIST_LOCK.
28183 		 */
28184 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28185 		return;
28186 	} else {
28187 		idl = connp->conn_idl;
28188 	}
28189 
28190 	/*
28191 	 * The conn is not in the drain list. Insert it at the
28192 	 * tail of the drain list. The drain list is circular
28193 	 * and doubly linked. idl_conn points to the 1st element
28194 	 * in the list.
28195 	 */
28196 	if (idl->idl_conn == NULL) {
28197 		idl->idl_conn = connp;
28198 		connp->conn_drain_next = connp;
28199 		connp->conn_drain_prev = connp;
28200 	} else {
28201 		conn_t *head = idl->idl_conn;
28202 
28203 		connp->conn_drain_next = head;
28204 		connp->conn_drain_prev = head->conn_drain_prev;
28205 		head->conn_drain_prev->conn_drain_next = connp;
28206 		head->conn_drain_prev = connp;
28207 	}
28208 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28209 }
28210 
28211 /*
28212  * This conn is closing, and we are called from ip_close. OR
28213  * This conn has been serviced by ip_wsrv, and we need to do the tail
28214  * processing.
28215  * If this conn is part of the drain list, we may need to sustain the drain
28216  * process by qenabling the next conn in the drain list. We may also need to
28217  * remove this conn from the list, if it is done.
28218  */
28219 static void
28220 conn_drain_tail(conn_t *connp, boolean_t closing)
28221 {
28222 	idl_t *idl;
28223 
28224 	/*
28225 	 * connp->conn_idl is stable at this point, and no lock is needed
28226 	 * to check it. If we are called from ip_close, close has already
28227 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
28228 	 * called us only because conn_idl is non-null. If we are called thru
28229 	 * service, conn_idl could be null, but it cannot change because
28230 	 * service is single-threaded per queue, and there cannot be another
28231 	 * instance of service trying to call conn_drain_insert on this conn
28232 	 * now.
28233 	 */
28234 	ASSERT(!closing || (connp->conn_idl != NULL));
28235 
28236 	/*
28237 	 * If connp->conn_idl is null, the conn has not been inserted into any
28238 	 * drain list even once since creation of the conn. Just return.
28239 	 */
28240 	if (connp->conn_idl == NULL)
28241 		return;
28242 
28243 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
28244 
28245 	if (connp->conn_drain_prev == NULL) {
28246 		/* This conn is currently not in the drain list.  */
28247 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28248 		return;
28249 	}
28250 	idl = connp->conn_idl;
28251 	if (idl->idl_conn_draining == connp) {
28252 		/*
28253 		 * This conn is the current drainer. If this is the last conn
28254 		 * in the drain list, we need to do more checks, in the 'if'
28255 		 * below. Otherwwise we need to just qenable the next conn,
28256 		 * to sustain the draining, and is handled in the 'else'
28257 		 * below.
28258 		 */
28259 		if (connp->conn_drain_next == idl->idl_conn) {
28260 			/*
28261 			 * This conn is the last in this list. This round
28262 			 * of draining is complete. If idl_repeat is set,
28263 			 * it means another flow enabling has happened from
28264 			 * the driver/streams and we need to another round
28265 			 * of draining.
28266 			 * If there are more than 2 conns in the drain list,
28267 			 * do a left rotate by 1, so that all conns except the
28268 			 * conn at the head move towards the head by 1, and the
28269 			 * the conn at the head goes to the tail. This attempts
28270 			 * a more even share for all queues that are being
28271 			 * drained.
28272 			 */
28273 			if ((connp->conn_drain_next != connp) &&
28274 			    (idl->idl_conn->conn_drain_next != connp)) {
28275 				idl->idl_conn = idl->idl_conn->conn_drain_next;
28276 			}
28277 			if (idl->idl_repeat) {
28278 				qenable(idl->idl_conn->conn_wq);
28279 				idl->idl_conn_draining = idl->idl_conn;
28280 				idl->idl_repeat = 0;
28281 			} else {
28282 				idl->idl_conn_draining = NULL;
28283 			}
28284 		} else {
28285 			/*
28286 			 * If the next queue that we are now qenable'ing,
28287 			 * is closing, it will remove itself from this list
28288 			 * and qenable the subsequent queue in ip_close().
28289 			 * Serialization is acheived thru idl_lock.
28290 			 */
28291 			qenable(connp->conn_drain_next->conn_wq);
28292 			idl->idl_conn_draining = connp->conn_drain_next;
28293 		}
28294 	}
28295 	if (!connp->conn_did_putbq || closing) {
28296 		/*
28297 		 * Remove ourself from the drain list, if we did not do
28298 		 * a putbq, or if the conn is closing.
28299 		 * Note: It is possible that q->q_first is non-null. It means
28300 		 * that these messages landed after we did a enableok() in
28301 		 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to
28302 		 * service them.
28303 		 */
28304 		if (connp->conn_drain_next == connp) {
28305 			/* Singleton in the list */
28306 			ASSERT(connp->conn_drain_prev == connp);
28307 			idl->idl_conn = NULL;
28308 			idl->idl_conn_draining = NULL;
28309 		} else {
28310 			connp->conn_drain_prev->conn_drain_next =
28311 			    connp->conn_drain_next;
28312 			connp->conn_drain_next->conn_drain_prev =
28313 			    connp->conn_drain_prev;
28314 			if (idl->idl_conn == connp)
28315 				idl->idl_conn = connp->conn_drain_next;
28316 			ASSERT(idl->idl_conn_draining != connp);
28317 
28318 		}
28319 		connp->conn_drain_next = NULL;
28320 		connp->conn_drain_prev = NULL;
28321 	}
28322 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28323 }
28324 
28325 /*
28326  * Write service routine. Shared perimeter entry point.
28327  * ip_wsrv can be called in any of the following ways.
28328  * 1. The device queue's messages has fallen below the low water mark
28329  *    and STREAMS has backenabled the ill_wq. We walk thru all the
28330  *    the drain lists and backenable the first conn in each list.
28331  * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the
28332  *    qenabled non-tcp upper layers. We start dequeing messages and call
28333  *    ip_wput for each message.
28334  */
28335 
28336 void
28337 ip_wsrv(queue_t *q)
28338 {
28339 	conn_t	*connp;
28340 	ill_t	*ill;
28341 	mblk_t	*mp;
28342 
28343 	if (q->q_next) {
28344 		ill = (ill_t *)q->q_ptr;
28345 		if (ill->ill_state_flags == 0) {
28346 			/*
28347 			 * The device flow control has opened up.
28348 			 * Walk through conn drain lists and qenable the
28349 			 * first conn in each list. This makes sense only
28350 			 * if the stream is fully plumbed and setup.
28351 			 * Hence the if check above.
28352 			 */
28353 			ip1dbg(("ip_wsrv: walking\n"));
28354 			conn_walk_drain(ill->ill_ipst);
28355 		}
28356 		return;
28357 	}
28358 
28359 	connp = Q_TO_CONN(q);
28360 	ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp));
28361 
28362 	/*
28363 	 * 1. Set conn_draining flag to signal that service is active.
28364 	 *
28365 	 * 2. ip_output determines whether it has been called from service,
28366 	 *    based on the last parameter. If it is IP_WSRV it concludes it
28367 	 *    has been called from service.
28368 	 *
28369 	 * 3. Message ordering is preserved by the following logic.
28370 	 *    i. A directly called ip_output (i.e. not thru service) will queue
28371 	 *    the message at the tail, if conn_draining is set (i.e. service
28372 	 *    is running) or if q->q_first is non-null.
28373 	 *
28374 	 *    ii. If ip_output is called from service, and if ip_output cannot
28375 	 *    putnext due to flow control, it does a putbq.
28376 	 *
28377 	 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable
28378 	 *    (causing an infinite loop).
28379 	 */
28380 	ASSERT(!connp->conn_did_putbq);
28381 	while ((q->q_first != NULL) && !connp->conn_did_putbq) {
28382 		connp->conn_draining = 1;
28383 		noenable(q);
28384 		while ((mp = getq(q)) != NULL) {
28385 			ASSERT(CONN_Q(q));
28386 
28387 			ip_output(Q_TO_CONN(q), mp, q, IP_WSRV);
28388 			if (connp->conn_did_putbq) {
28389 				/* ip_wput did a putbq */
28390 				break;
28391 			}
28392 		}
28393 		/*
28394 		 * At this point, a thread coming down from top, calling
28395 		 * ip_wput, may end up queueing the message. We have not yet
28396 		 * enabled the queue, so ip_wsrv won't be called again.
28397 		 * To avoid this race, check q->q_first again (in the loop)
28398 		 * If the other thread queued the message before we call
28399 		 * enableok(), we will catch it in the q->q_first check.
28400 		 * If the other thread queues the message after we call
28401 		 * enableok(), ip_wsrv will be called again by STREAMS.
28402 		 */
28403 		connp->conn_draining = 0;
28404 		enableok(q);
28405 	}
28406 
28407 	/* Enable the next conn for draining */
28408 	conn_drain_tail(connp, B_FALSE);
28409 
28410 	connp->conn_did_putbq = 0;
28411 }
28412 
28413 /*
28414  * Walk the list of all conn's calling the function provided with the
28415  * specified argument for each.	 Note that this only walks conn's that
28416  * have been bound.
28417  * Applies to both IPv4 and IPv6.
28418  */
28419 static void
28420 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
28421 {
28422 	conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout,
28423 	    ipst->ips_ipcl_udp_fanout_size,
28424 	    func, arg, zoneid);
28425 	conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout,
28426 	    ipst->ips_ipcl_conn_fanout_size,
28427 	    func, arg, zoneid);
28428 	conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout,
28429 	    ipst->ips_ipcl_bind_fanout_size,
28430 	    func, arg, zoneid);
28431 	conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout,
28432 	    IPPROTO_MAX, func, arg, zoneid);
28433 	conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6,
28434 	    IPPROTO_MAX, func, arg, zoneid);
28435 }
28436 
28437 /*
28438  * Flowcontrol has relieved, and STREAMS has backenabled us. For each list
28439  * of conns that need to be drained, check if drain is already in progress.
28440  * If so set the idl_repeat bit, indicating that the last conn in the list
28441  * needs to reinitiate the drain once again, for the list. If drain is not
28442  * in progress for the list, initiate the draining, by qenabling the 1st
28443  * conn in the list. The drain is self-sustaining, each qenabled conn will
28444  * in turn qenable the next conn, when it is done/blocked/closing.
28445  */
28446 static void
28447 conn_walk_drain(ip_stack_t *ipst)
28448 {
28449 	int i;
28450 	idl_t *idl;
28451 
28452 	IP_STAT(ipst, ip_conn_walk_drain);
28453 
28454 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
28455 		idl = &ipst->ips_conn_drain_list[i];
28456 		mutex_enter(&idl->idl_lock);
28457 		if (idl->idl_conn == NULL) {
28458 			mutex_exit(&idl->idl_lock);
28459 			continue;
28460 		}
28461 		/*
28462 		 * If this list is not being drained currently by
28463 		 * an ip_wsrv thread, start the process.
28464 		 */
28465 		if (idl->idl_conn_draining == NULL) {
28466 			ASSERT(idl->idl_repeat == 0);
28467 			qenable(idl->idl_conn->conn_wq);
28468 			idl->idl_conn_draining = idl->idl_conn;
28469 		} else {
28470 			idl->idl_repeat = 1;
28471 		}
28472 		mutex_exit(&idl->idl_lock);
28473 	}
28474 }
28475 
28476 /*
28477  * Walk an conn hash table of `count' buckets, calling func for each entry.
28478  */
28479 static void
28480 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg,
28481     zoneid_t zoneid)
28482 {
28483 	conn_t	*connp;
28484 
28485 	while (count-- > 0) {
28486 		mutex_enter(&connfp->connf_lock);
28487 		for (connp = connfp->connf_head; connp != NULL;
28488 		    connp = connp->conn_next) {
28489 			if (zoneid == GLOBAL_ZONEID ||
28490 			    zoneid == connp->conn_zoneid) {
28491 				CONN_INC_REF(connp);
28492 				mutex_exit(&connfp->connf_lock);
28493 				(*func)(connp, arg);
28494 				mutex_enter(&connfp->connf_lock);
28495 				CONN_DEC_REF(connp);
28496 			}
28497 		}
28498 		mutex_exit(&connfp->connf_lock);
28499 		connfp++;
28500 	}
28501 }
28502 
28503 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */
28504 static void
28505 conn_report1(conn_t *connp, void *mp)
28506 {
28507 	char	buf1[INET6_ADDRSTRLEN];
28508 	char	buf2[INET6_ADDRSTRLEN];
28509 	uint_t	print_len, buf_len;
28510 
28511 	ASSERT(connp != NULL);
28512 
28513 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
28514 	if (buf_len <= 0)
28515 		return;
28516 	(void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1));
28517 	(void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2));
28518 	print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
28519 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
28520 	    "%5d %s/%05d %s/%05d\n",
28521 	    (void *)connp, (void *)CONNP_TO_RQ(connp),
28522 	    (void *)CONNP_TO_WQ(connp), connp->conn_zoneid,
28523 	    buf1, connp->conn_lport,
28524 	    buf2, connp->conn_fport);
28525 	if (print_len < buf_len) {
28526 		((mblk_t *)mp)->b_wptr += print_len;
28527 	} else {
28528 		((mblk_t *)mp)->b_wptr += buf_len;
28529 	}
28530 }
28531 
28532 /*
28533  * Named Dispatch routine to produce a formatted report on all conns
28534  * that are listed in one of the fanout tables.
28535  * This report is accessed by using the ndd utility to "get" ND variable
28536  * "ip_conn_status".
28537  */
28538 /* ARGSUSED */
28539 static int
28540 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
28541 {
28542 	conn_t *connp = Q_TO_CONN(q);
28543 
28544 	(void) mi_mpprintf(mp,
28545 	    "CONN      " MI_COL_HDRPAD_STR
28546 	    "rfq      " MI_COL_HDRPAD_STR
28547 	    "stq      " MI_COL_HDRPAD_STR
28548 	    " zone local                 remote");
28549 
28550 	/*
28551 	 * Because of the ndd constraint, at most we can have 64K buffer
28552 	 * to put in all conn info.  So to be more efficient, just
28553 	 * allocate a 64K buffer here, assuming we need that large buffer.
28554 	 * This should be OK as only privileged processes can do ndd /dev/ip.
28555 	 */
28556 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
28557 		/* The following may work even if we cannot get a large buf. */
28558 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
28559 		return (0);
28560 	}
28561 
28562 	conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid,
28563 	    connp->conn_netstack->netstack_ip);
28564 	return (0);
28565 }
28566 
28567 /*
28568  * Determine if the ill and multicast aspects of that packets
28569  * "matches" the conn.
28570  */
28571 boolean_t
28572 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags,
28573     zoneid_t zoneid)
28574 {
28575 	ill_t *in_ill;
28576 	boolean_t found;
28577 	ipif_t *ipif;
28578 	ire_t *ire;
28579 	ipaddr_t dst, src;
28580 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
28581 
28582 	dst = ipha->ipha_dst;
28583 	src = ipha->ipha_src;
28584 
28585 	/*
28586 	 * conn_incoming_ill is set by IP_BOUND_IF which limits
28587 	 * unicast, broadcast and multicast reception to
28588 	 * conn_incoming_ill. conn_wantpacket itself is called
28589 	 * only for BROADCAST and multicast.
28590 	 *
28591 	 * 1) ip_rput supresses duplicate broadcasts if the ill
28592 	 *    is part of a group. Hence, we should be receiving
28593 	 *    just one copy of broadcast for the whole group.
28594 	 *    Thus, if it is part of the group the packet could
28595 	 *    come on any ill of the group and hence we need a
28596 	 *    match on the group. Otherwise, match on ill should
28597 	 *    be sufficient.
28598 	 *
28599 	 * 2) ip_rput does not suppress duplicate multicast packets.
28600 	 *    If there are two interfaces in a ill group and we have
28601 	 *    2 applications (conns) joined a multicast group G on
28602 	 *    both the interfaces, ilm_lookup_ill filter in ip_rput
28603 	 *    will give us two packets because we join G on both the
28604 	 *    interfaces rather than nominating just one interface
28605 	 *    for receiving multicast like broadcast above. So,
28606 	 *    we have to call ilg_lookup_ill to filter out duplicate
28607 	 *    copies, if ill is part of a group.
28608 	 */
28609 	in_ill = connp->conn_incoming_ill;
28610 	if (in_ill != NULL) {
28611 		if (in_ill->ill_group == NULL) {
28612 			if (in_ill != ill)
28613 				return (B_FALSE);
28614 		} else if (in_ill->ill_group != ill->ill_group) {
28615 			return (B_FALSE);
28616 		}
28617 	}
28618 
28619 	if (!CLASSD(dst)) {
28620 		if (IPCL_ZONE_MATCH(connp, zoneid))
28621 			return (B_TRUE);
28622 		/*
28623 		 * The conn is in a different zone; we need to check that this
28624 		 * broadcast address is configured in the application's zone and
28625 		 * on one ill in the group.
28626 		 */
28627 		ipif = ipif_get_next_ipif(NULL, ill);
28628 		if (ipif == NULL)
28629 			return (B_FALSE);
28630 		ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif,
28631 		    connp->conn_zoneid, NULL,
28632 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst);
28633 		ipif_refrele(ipif);
28634 		if (ire != NULL) {
28635 			ire_refrele(ire);
28636 			return (B_TRUE);
28637 		} else {
28638 			return (B_FALSE);
28639 		}
28640 	}
28641 
28642 	if ((fanout_flags & IP_FF_NO_MCAST_LOOP) &&
28643 	    connp->conn_zoneid == zoneid) {
28644 		/*
28645 		 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP
28646 		 * disabled, therefore we don't dispatch the multicast packet to
28647 		 * the sending zone.
28648 		 */
28649 		return (B_FALSE);
28650 	}
28651 
28652 	if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) {
28653 		/*
28654 		 * Multicast packet on the loopback interface: we only match
28655 		 * conns who joined the group in the specified zone.
28656 		 */
28657 		return (B_FALSE);
28658 	}
28659 
28660 	if (connp->conn_multi_router) {
28661 		/* multicast packet and multicast router socket: send up */
28662 		return (B_TRUE);
28663 	}
28664 
28665 	mutex_enter(&connp->conn_lock);
28666 	found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL);
28667 	mutex_exit(&connp->conn_lock);
28668 	return (found);
28669 }
28670 
28671 /*
28672  * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp.
28673  */
28674 /* ARGSUSED */
28675 static void
28676 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg)
28677 {
28678 	ill_t *ill = (ill_t *)q->q_ptr;
28679 	mblk_t	*mp1, *mp2;
28680 	ipif_t  *ipif;
28681 	int err = 0;
28682 	conn_t *connp = NULL;
28683 	ipsq_t	*ipsq;
28684 	arc_t	*arc;
28685 
28686 	ip1dbg(("ip_arp_done(%s)\n", ill->ill_name));
28687 
28688 	ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t));
28689 	ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE);
28690 
28691 	ASSERT(IAM_WRITER_ILL(ill));
28692 	mp2 = mp->b_cont;
28693 	mp->b_cont = NULL;
28694 
28695 	/*
28696 	 * We have now received the arp bringup completion message
28697 	 * from ARP. Mark the arp bringup as done. Also if the arp
28698 	 * stream has already started closing, send up the AR_ARP_CLOSING
28699 	 * ack now since ARP is waiting in close for this ack.
28700 	 */
28701 	mutex_enter(&ill->ill_lock);
28702 	ill->ill_arp_bringup_pending = 0;
28703 	if (ill->ill_arp_closing) {
28704 		mutex_exit(&ill->ill_lock);
28705 		/* Let's reuse the mp for sending the ack */
28706 		arc = (arc_t *)mp->b_rptr;
28707 		mp->b_wptr = mp->b_rptr + sizeof (arc_t);
28708 		arc->arc_cmd = AR_ARP_CLOSING;
28709 		qreply(q, mp);
28710 	} else {
28711 		mutex_exit(&ill->ill_lock);
28712 		freeb(mp);
28713 	}
28714 
28715 	ipsq = ill->ill_phyint->phyint_ipsq;
28716 	ipif = ipsq->ipsq_pending_ipif;
28717 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
28718 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
28719 	if (mp1 == NULL) {
28720 		/* bringup was aborted by the user */
28721 		freemsg(mp2);
28722 		return;
28723 	}
28724 
28725 	/*
28726 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
28727 	 * must have an associated conn_t.  Otherwise, we're bringing this
28728 	 * interface back up as part of handling an asynchronous event (e.g.,
28729 	 * physical address change).
28730 	 */
28731 	if (ipsq->ipsq_current_ioctl != 0) {
28732 		ASSERT(connp != NULL);
28733 		q = CONNP_TO_WQ(connp);
28734 	} else {
28735 		ASSERT(connp == NULL);
28736 		q = ill->ill_rq;
28737 	}
28738 
28739 	/*
28740 	 * If the DL_BIND_REQ fails, it is noted
28741 	 * in arc_name_offset.
28742 	 */
28743 	err = *((int *)mp2->b_rptr);
28744 	if (err == 0) {
28745 		if (ipif->ipif_isv6) {
28746 			if ((err = ipif_up_done_v6(ipif)) != 0)
28747 				ip0dbg(("ip_arp_done: init failed\n"));
28748 		} else {
28749 			if ((err = ipif_up_done(ipif)) != 0)
28750 				ip0dbg(("ip_arp_done: init failed\n"));
28751 		}
28752 	} else {
28753 		ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n"));
28754 	}
28755 
28756 	freemsg(mp2);
28757 
28758 	if ((err == 0) && (ill->ill_up_ipifs)) {
28759 		err = ill_up_ipifs(ill, q, mp1);
28760 		if (err == EINPROGRESS)
28761 			return;
28762 	}
28763 
28764 	if (ill->ill_up_ipifs)
28765 		ill_group_cleanup(ill);
28766 
28767 	/*
28768 	 * The operation must complete without EINPROGRESS since
28769 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
28770 	 * Otherwise, the operation will be stuck forever in the ipsq.
28771 	 */
28772 	ASSERT(err != EINPROGRESS);
28773 	if (ipsq->ipsq_current_ioctl != 0)
28774 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
28775 	else
28776 		ipsq_current_finish(ipsq);
28777 }
28778 
28779 /* Allocate the private structure */
28780 static int
28781 ip_priv_alloc(void **bufp)
28782 {
28783 	void	*buf;
28784 
28785 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
28786 		return (ENOMEM);
28787 
28788 	*bufp = buf;
28789 	return (0);
28790 }
28791 
28792 /* Function to delete the private structure */
28793 void
28794 ip_priv_free(void *buf)
28795 {
28796 	ASSERT(buf != NULL);
28797 	kmem_free(buf, sizeof (ip_priv_t));
28798 }
28799 
28800 /*
28801  * The entry point for IPPF processing.
28802  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
28803  * routine just returns.
28804  *
28805  * When called, ip_process generates an ipp_packet_t structure
28806  * which holds the state information for this packet and invokes the
28807  * the classifier (via ipp_packet_process). The classification, depending on
28808  * configured filters, results in a list of actions for this packet. Invoking
28809  * an action may cause the packet to be dropped, in which case the resulting
28810  * mblk (*mpp) is NULL. proc indicates the callout position for
28811  * this packet and ill_index is the interface this packet on or will leave
28812  * on (inbound and outbound resp.).
28813  */
28814 void
28815 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index)
28816 {
28817 	mblk_t		*mp;
28818 	ip_priv_t	*priv;
28819 	ipp_action_id_t	aid;
28820 	int		rc = 0;
28821 	ipp_packet_t	*pp;
28822 #define	IP_CLASS	"ip"
28823 
28824 	/* If the classifier is not loaded, return  */
28825 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
28826 		return;
28827 	}
28828 
28829 	mp = *mpp;
28830 	ASSERT(mp != NULL);
28831 
28832 	/* Allocate the packet structure */
28833 	rc = ipp_packet_alloc(&pp, IP_CLASS, aid);
28834 	if (rc != 0) {
28835 		*mpp = NULL;
28836 		freemsg(mp);
28837 		return;
28838 	}
28839 
28840 	/* Allocate the private structure */
28841 	rc = ip_priv_alloc((void **)&priv);
28842 	if (rc != 0) {
28843 		*mpp = NULL;
28844 		freemsg(mp);
28845 		ipp_packet_free(pp);
28846 		return;
28847 	}
28848 	priv->proc = proc;
28849 	priv->ill_index = ill_index;
28850 	ipp_packet_set_private(pp, priv, ip_priv_free);
28851 	ipp_packet_set_data(pp, mp);
28852 
28853 	/* Invoke the classifier */
28854 	rc = ipp_packet_process(&pp);
28855 	if (pp != NULL) {
28856 		mp = ipp_packet_get_data(pp);
28857 		ipp_packet_free(pp);
28858 		if (rc != 0) {
28859 			freemsg(mp);
28860 			*mpp = NULL;
28861 		}
28862 	} else {
28863 		*mpp = NULL;
28864 	}
28865 #undef	IP_CLASS
28866 }
28867 
28868 /*
28869  * Propagate a multicast group membership operation (add/drop) on
28870  * all the interfaces crossed by the related multirt routes.
28871  * The call is considered successful if the operation succeeds
28872  * on at least one interface.
28873  */
28874 static int
28875 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
28876     uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp,
28877     boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src,
28878     mblk_t *first_mp)
28879 {
28880 	ire_t		*ire_gw;
28881 	irb_t		*irb;
28882 	int		error = 0;
28883 	opt_restart_t	*or;
28884 	ip_stack_t	*ipst = ire->ire_ipst;
28885 
28886 	irb = ire->ire_bucket;
28887 	ASSERT(irb != NULL);
28888 
28889 	ASSERT(DB_TYPE(first_mp) == M_CTL);
28890 
28891 	or = (opt_restart_t *)first_mp->b_rptr;
28892 	IRB_REFHOLD(irb);
28893 	for (; ire != NULL; ire = ire->ire_next) {
28894 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
28895 			continue;
28896 		if (ire->ire_addr != group)
28897 			continue;
28898 
28899 		ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0,
28900 		    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL,
28901 		    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst);
28902 		/* No resolver exists for the gateway; skip this ire. */
28903 		if (ire_gw == NULL)
28904 			continue;
28905 
28906 		/*
28907 		 * This function can return EINPROGRESS. If so the operation
28908 		 * will be restarted from ip_restart_optmgmt which will
28909 		 * call ip_opt_set and option processing will restart for
28910 		 * this option. So we may end up calling 'fn' more than once.
28911 		 * This requires that 'fn' is idempotent except for the
28912 		 * return value. The operation is considered a success if
28913 		 * it succeeds at least once on any one interface.
28914 		 */
28915 		error = fn(connp, checkonly, group, ire_gw->ire_src_addr,
28916 		    NULL, fmode, src, first_mp);
28917 		if (error == 0)
28918 			or->or_private = CGTP_MCAST_SUCCESS;
28919 
28920 		if (ip_debug > 0) {
28921 			ulong_t	off;
28922 			char	*ksym;
28923 			ksym = kobj_getsymname((uintptr_t)fn, &off);
28924 			ip2dbg(("ip_multirt_apply_membership: "
28925 			    "called %s, multirt group 0x%08x via itf 0x%08x, "
28926 			    "error %d [success %u]\n",
28927 			    ksym ? ksym : "?",
28928 			    ntohl(group), ntohl(ire_gw->ire_src_addr),
28929 			    error, or->or_private));
28930 		}
28931 
28932 		ire_refrele(ire_gw);
28933 		if (error == EINPROGRESS) {
28934 			IRB_REFRELE(irb);
28935 			return (error);
28936 		}
28937 	}
28938 	IRB_REFRELE(irb);
28939 	/*
28940 	 * Consider the call as successful if we succeeded on at least
28941 	 * one interface. Otherwise, return the last encountered error.
28942 	 */
28943 	return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error);
28944 }
28945 
28946 
28947 /*
28948  * Issue a warning regarding a route crossing an interface with an
28949  * incorrect MTU. Only one message every 'ip_multirt_log_interval'
28950  * amount of time is logged.
28951  */
28952 static void
28953 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag)
28954 {
28955 	hrtime_t	current = gethrtime();
28956 	char		buf[INET_ADDRSTRLEN];
28957 	ip_stack_t	*ipst = ire->ire_ipst;
28958 
28959 	/* Convert interval in ms to hrtime in ns */
28960 	if (ipst->ips_multirt_bad_mtu_last_time +
28961 	    ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <=
28962 	    current) {
28963 		cmn_err(CE_WARN, "ip: ignoring multiroute "
28964 		    "to %s, incorrect MTU %u (expected %u)\n",
28965 		    ip_dot_addr(ire->ire_addr, buf),
28966 		    ire->ire_max_frag, max_frag);
28967 
28968 		ipst->ips_multirt_bad_mtu_last_time = current;
28969 	}
28970 }
28971 
28972 
28973 /*
28974  * Get the CGTP (multirouting) filtering status.
28975  * If 0, the CGTP hooks are transparent.
28976  */
28977 /* ARGSUSED */
28978 static int
28979 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
28980 {
28981 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
28982 
28983 	(void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value);
28984 	return (0);
28985 }
28986 
28987 
28988 /*
28989  * Set the CGTP (multirouting) filtering status.
28990  * If the status is changed from active to transparent
28991  * or from transparent to active, forward the new status
28992  * to the filtering module (if loaded).
28993  */
28994 /* ARGSUSED */
28995 static int
28996 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
28997     cred_t *ioc_cr)
28998 {
28999 	long		new_value;
29000 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
29001 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
29002 
29003 	if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
29004 		return (EPERM);
29005 
29006 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
29007 	    new_value < 0 || new_value > 1) {
29008 		return (EINVAL);
29009 	}
29010 
29011 	if ((!*ip_cgtp_filter_value) && new_value) {
29012 		cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s",
29013 		    ipst->ips_ip_cgtp_filter_ops == NULL ?
29014 		    " (module not loaded)" : "");
29015 	}
29016 	if (*ip_cgtp_filter_value && (!new_value)) {
29017 		cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s",
29018 		    ipst->ips_ip_cgtp_filter_ops == NULL ?
29019 		    " (module not loaded)" : "");
29020 	}
29021 
29022 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
29023 		int	res;
29024 		netstackid_t stackid;
29025 
29026 		stackid = ipst->ips_netstack->netstack_stackid;
29027 		res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid,
29028 		    new_value);
29029 		if (res)
29030 			return (res);
29031 	}
29032 
29033 	*ip_cgtp_filter_value = (boolean_t)new_value;
29034 
29035 	return (0);
29036 }
29037 
29038 
29039 /*
29040  * Return the expected CGTP hooks version number.
29041  */
29042 int
29043 ip_cgtp_filter_supported(void)
29044 {
29045 	return (ip_cgtp_filter_rev);
29046 }
29047 
29048 
29049 /*
29050  * CGTP hooks can be registered by invoking this function.
29051  * Checks that the version number matches.
29052  */
29053 int
29054 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
29055 {
29056 	netstack_t *ns;
29057 	ip_stack_t *ipst;
29058 
29059 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
29060 		return (ENOTSUP);
29061 
29062 	ns = netstack_find_by_stackid(stackid);
29063 	if (ns == NULL)
29064 		return (EINVAL);
29065 	ipst = ns->netstack_ip;
29066 	ASSERT(ipst != NULL);
29067 
29068 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
29069 		netstack_rele(ns);
29070 		return (EALREADY);
29071 	}
29072 
29073 	ipst->ips_ip_cgtp_filter_ops = ops;
29074 	netstack_rele(ns);
29075 	return (0);
29076 }
29077 
29078 /*
29079  * CGTP hooks can be unregistered by invoking this function.
29080  * Returns ENXIO if there was no registration.
29081  * Returns EBUSY if the ndd variable has not been turned off.
29082  */
29083 int
29084 ip_cgtp_filter_unregister(netstackid_t stackid)
29085 {
29086 	netstack_t *ns;
29087 	ip_stack_t *ipst;
29088 
29089 	ns = netstack_find_by_stackid(stackid);
29090 	if (ns == NULL)
29091 		return (EINVAL);
29092 	ipst = ns->netstack_ip;
29093 	ASSERT(ipst != NULL);
29094 
29095 	if (ipst->ips_ip_cgtp_filter) {
29096 		netstack_rele(ns);
29097 		return (EBUSY);
29098 	}
29099 
29100 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
29101 		netstack_rele(ns);
29102 		return (ENXIO);
29103 	}
29104 	ipst->ips_ip_cgtp_filter_ops = NULL;
29105 	netstack_rele(ns);
29106 	return (0);
29107 }
29108 
29109 /*
29110  * Check whether there is a CGTP filter registration.
29111  * Returns non-zero if there is a registration, otherwise returns zero.
29112  * Note: returns zero if bad stackid.
29113  */
29114 int
29115 ip_cgtp_filter_is_registered(netstackid_t stackid)
29116 {
29117 	netstack_t *ns;
29118 	ip_stack_t *ipst;
29119 	int ret;
29120 
29121 	ns = netstack_find_by_stackid(stackid);
29122 	if (ns == NULL)
29123 		return (0);
29124 	ipst = ns->netstack_ip;
29125 	ASSERT(ipst != NULL);
29126 
29127 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
29128 		ret = 1;
29129 	else
29130 		ret = 0;
29131 
29132 	netstack_rele(ns);
29133 	return (ret);
29134 }
29135 
29136 static squeue_func_t
29137 ip_squeue_switch(int val)
29138 {
29139 	squeue_func_t rval = squeue_fill;
29140 
29141 	switch (val) {
29142 	case IP_SQUEUE_ENTER_NODRAIN:
29143 		rval = squeue_enter_nodrain;
29144 		break;
29145 	case IP_SQUEUE_ENTER:
29146 		rval = squeue_enter;
29147 		break;
29148 	default:
29149 		break;
29150 	}
29151 	return (rval);
29152 }
29153 
29154 /* ARGSUSED */
29155 static int
29156 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
29157     caddr_t addr, cred_t *cr)
29158 {
29159 	int *v = (int *)addr;
29160 	long new_value;
29161 
29162 	if (secpolicy_net_config(cr, B_FALSE) != 0)
29163 		return (EPERM);
29164 
29165 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
29166 		return (EINVAL);
29167 
29168 	ip_input_proc = ip_squeue_switch(new_value);
29169 	*v = new_value;
29170 	return (0);
29171 }
29172 
29173 /*
29174  * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as
29175  * ip_debug.
29176  */
29177 /* ARGSUSED */
29178 static int
29179 ip_int_set(queue_t *q, mblk_t *mp, char *value,
29180     caddr_t addr, cred_t *cr)
29181 {
29182 	int *v = (int *)addr;
29183 	long new_value;
29184 
29185 	if (secpolicy_net_config(cr, B_FALSE) != 0)
29186 		return (EPERM);
29187 
29188 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
29189 		return (EINVAL);
29190 
29191 	*v = new_value;
29192 	return (0);
29193 }
29194 
29195 /*
29196  * Handle changes to ipmp_hook_emulation ndd variable.
29197  * Need to update phyint_hook_ifindex.
29198  * Also generate a nic plumb event should a new ifidex be assigned to a group.
29199  */
29200 static void
29201 ipmp_hook_emulation_changed(ip_stack_t *ipst)
29202 {
29203 	phyint_t *phyi;
29204 	phyint_t *phyi_tmp;
29205 	char *groupname;
29206 	int namelen;
29207 	ill_t	*ill;
29208 	boolean_t new_group;
29209 
29210 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
29211 	/*
29212 	 * Group indicies are stored in the phyint - a common structure
29213 	 * to both IPv4 and IPv6.
29214 	 */
29215 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
29216 	for (; phyi != NULL;
29217 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
29218 	    phyi, AVL_AFTER)) {
29219 		/* Ignore the ones that do not have a group */
29220 		if (phyi->phyint_groupname_len == 0)
29221 			continue;
29222 
29223 		/*
29224 		 * Look for other phyint in group.
29225 		 * Clear name/namelen so the lookup doesn't find ourselves.
29226 		 */
29227 		namelen = phyi->phyint_groupname_len;
29228 		groupname = phyi->phyint_groupname;
29229 		phyi->phyint_groupname_len = 0;
29230 		phyi->phyint_groupname = NULL;
29231 
29232 		phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
29233 		/* Restore */
29234 		phyi->phyint_groupname_len = namelen;
29235 		phyi->phyint_groupname = groupname;
29236 
29237 		new_group = B_FALSE;
29238 		if (ipst->ips_ipmp_hook_emulation) {
29239 			/*
29240 			 * If the group already exists and has already
29241 			 * been assigned a group ifindex, we use the existing
29242 			 * group_ifindex, otherwise we pick a new group_ifindex
29243 			 * here.
29244 			 */
29245 			if (phyi_tmp != NULL &&
29246 			    phyi_tmp->phyint_group_ifindex != 0) {
29247 				phyi->phyint_group_ifindex =
29248 				    phyi_tmp->phyint_group_ifindex;
29249 			} else {
29250 				/* XXX We need a recovery strategy here. */
29251 				if (!ip_assign_ifindex(
29252 				    &phyi->phyint_group_ifindex, ipst))
29253 					cmn_err(CE_PANIC,
29254 					    "ip_assign_ifindex() failed");
29255 				new_group = B_TRUE;
29256 			}
29257 		} else {
29258 			phyi->phyint_group_ifindex = 0;
29259 		}
29260 		if (ipst->ips_ipmp_hook_emulation)
29261 			phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
29262 		else
29263 			phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
29264 
29265 		/*
29266 		 * For IP Filter to find out the relationship between
29267 		 * names and interface indicies, we need to generate
29268 		 * a NE_PLUMB event when a new group can appear.
29269 		 * We always generate events when a new interface appears
29270 		 * (even when ipmp_hook_emulation is set) so there
29271 		 * is no need to generate NE_PLUMB events when
29272 		 * ipmp_hook_emulation is turned off.
29273 		 * And since it isn't critical for IP Filter to get
29274 		 * the NE_UNPLUMB events we skip those here.
29275 		 */
29276 		if (new_group) {
29277 			/*
29278 			 * First phyint in group - generate group PLUMB event.
29279 			 * Since we are not running inside the ipsq we do
29280 			 * the dispatch immediately.
29281 			 */
29282 			if (phyi->phyint_illv4 != NULL)
29283 				ill = phyi->phyint_illv4;
29284 			else
29285 				ill = phyi->phyint_illv6;
29286 
29287 			if (ill != NULL) {
29288 				mutex_enter(&ill->ill_lock);
29289 				ill_nic_info_plumb(ill, B_TRUE);
29290 				ill_nic_info_dispatch(ill);
29291 				mutex_exit(&ill->ill_lock);
29292 			}
29293 		}
29294 	}
29295 	rw_exit(&ipst->ips_ill_g_lock);
29296 }
29297 
29298 /* ARGSUSED */
29299 static int
29300 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value,
29301     caddr_t addr, cred_t *cr)
29302 {
29303 	int *v = (int *)addr;
29304 	long new_value;
29305 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
29306 
29307 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
29308 		return (EINVAL);
29309 
29310 	if (*v != new_value) {
29311 		*v = new_value;
29312 		ipmp_hook_emulation_changed(ipst);
29313 	}
29314 	return (0);
29315 }
29316 
29317 static void *
29318 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
29319 {
29320 	kstat_t *ksp;
29321 
29322 	ip_stat_t template = {
29323 		{ "ipsec_fanout_proto", 	KSTAT_DATA_UINT64 },
29324 		{ "ip_udp_fannorm", 		KSTAT_DATA_UINT64 },
29325 		{ "ip_udp_fanmb", 		KSTAT_DATA_UINT64 },
29326 		{ "ip_udp_fanothers", 		KSTAT_DATA_UINT64 },
29327 		{ "ip_udp_fast_path", 		KSTAT_DATA_UINT64 },
29328 		{ "ip_udp_slow_path", 		KSTAT_DATA_UINT64 },
29329 		{ "ip_udp_input_err", 		KSTAT_DATA_UINT64 },
29330 		{ "ip_tcppullup", 		KSTAT_DATA_UINT64 },
29331 		{ "ip_tcpoptions", 		KSTAT_DATA_UINT64 },
29332 		{ "ip_multipkttcp", 		KSTAT_DATA_UINT64 },
29333 		{ "ip_tcp_fast_path",		KSTAT_DATA_UINT64 },
29334 		{ "ip_tcp_slow_path",		KSTAT_DATA_UINT64 },
29335 		{ "ip_tcp_input_error",		KSTAT_DATA_UINT64 },
29336 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
29337 		{ "ip_notaligned1",		KSTAT_DATA_UINT64 },
29338 		{ "ip_notaligned2",		KSTAT_DATA_UINT64 },
29339 		{ "ip_multimblk3",		KSTAT_DATA_UINT64 },
29340 		{ "ip_multimblk4",		KSTAT_DATA_UINT64 },
29341 		{ "ip_ipoptions",		KSTAT_DATA_UINT64 },
29342 		{ "ip_classify_fail",		KSTAT_DATA_UINT64 },
29343 		{ "ip_opt",			KSTAT_DATA_UINT64 },
29344 		{ "ip_udp_rput_local",		KSTAT_DATA_UINT64 },
29345 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
29346 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
29347 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
29348 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
29349 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
29350 		{ "ip_trash_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
29351 		{ "ip_trash_ire_reclaim_success",	KSTAT_DATA_UINT64 },
29352 		{ "ip_ire_arp_timer_expired",	KSTAT_DATA_UINT64 },
29353 		{ "ip_ire_redirect_timer_expired",	KSTAT_DATA_UINT64 },
29354 		{ "ip_ire_pmtu_timer_expired",	KSTAT_DATA_UINT64 },
29355 		{ "ip_input_multi_squeue",	KSTAT_DATA_UINT64 },
29356 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
29357 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
29358 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
29359 		{ "ip_tcp_out_sw_cksum_bytes",		KSTAT_DATA_UINT64 },
29360 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
29361 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
29362 		{ "ip_udp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
29363 		{ "ip_udp_out_sw_cksum_bytes",		KSTAT_DATA_UINT64 },
29364 		{ "ip_frag_mdt_pkt_out",		KSTAT_DATA_UINT64 },
29365 		{ "ip_frag_mdt_discarded",		KSTAT_DATA_UINT64 },
29366 		{ "ip_frag_mdt_allocfail",		KSTAT_DATA_UINT64 },
29367 		{ "ip_frag_mdt_addpdescfail",		KSTAT_DATA_UINT64 },
29368 		{ "ip_frag_mdt_allocd",			KSTAT_DATA_UINT64 },
29369 	};
29370 
29371 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
29372 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
29373 	    KSTAT_FLAG_VIRTUAL, stackid);
29374 
29375 	if (ksp == NULL)
29376 		return (NULL);
29377 
29378 	bcopy(&template, ip_statisticsp, sizeof (template));
29379 	ksp->ks_data = (void *)ip_statisticsp;
29380 	ksp->ks_private = (void *)(uintptr_t)stackid;
29381 
29382 	kstat_install(ksp);
29383 	return (ksp);
29384 }
29385 
29386 static void
29387 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
29388 {
29389 	if (ksp != NULL) {
29390 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
29391 		kstat_delete_netstack(ksp, stackid);
29392 	}
29393 }
29394 
29395 static void *
29396 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
29397 {
29398 	kstat_t	*ksp;
29399 
29400 	ip_named_kstat_t template = {
29401 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
29402 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
29403 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
29404 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
29405 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
29406 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
29407 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
29408 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
29409 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
29410 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
29411 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
29412 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
29413 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
29414 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
29415 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
29416 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
29417 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
29418 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
29419 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
29420 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
29421 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
29422 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
29423 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
29424 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
29425 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
29426 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
29427 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
29428 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
29429 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
29430 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
29431 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
29432 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
29433 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
29434 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
29435 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
29436 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
29437 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
29438 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
29439 	};
29440 
29441 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
29442 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
29443 	if (ksp == NULL || ksp->ks_data == NULL)
29444 		return (NULL);
29445 
29446 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
29447 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
29448 	template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout;
29449 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
29450 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
29451 
29452 	template.netToMediaEntrySize.value.i32 =
29453 	    sizeof (mib2_ipNetToMediaEntry_t);
29454 
29455 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
29456 
29457 	bcopy(&template, ksp->ks_data, sizeof (template));
29458 	ksp->ks_update = ip_kstat_update;
29459 	ksp->ks_private = (void *)(uintptr_t)stackid;
29460 
29461 	kstat_install(ksp);
29462 	return (ksp);
29463 }
29464 
29465 static void
29466 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
29467 {
29468 	if (ksp != NULL) {
29469 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
29470 		kstat_delete_netstack(ksp, stackid);
29471 	}
29472 }
29473 
29474 static int
29475 ip_kstat_update(kstat_t *kp, int rw)
29476 {
29477 	ip_named_kstat_t *ipkp;
29478 	mib2_ipIfStatsEntry_t ipmib;
29479 	ill_walk_context_t ctx;
29480 	ill_t *ill;
29481 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
29482 	netstack_t	*ns;
29483 	ip_stack_t	*ipst;
29484 
29485 	if (kp == NULL || kp->ks_data == NULL)
29486 		return (EIO);
29487 
29488 	if (rw == KSTAT_WRITE)
29489 		return (EACCES);
29490 
29491 	ns = netstack_find_by_stackid(stackid);
29492 	if (ns == NULL)
29493 		return (-1);
29494 	ipst = ns->netstack_ip;
29495 	if (ipst == NULL) {
29496 		netstack_rele(ns);
29497 		return (-1);
29498 	}
29499 	ipkp = (ip_named_kstat_t *)kp->ks_data;
29500 
29501 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
29502 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
29503 	ill = ILL_START_WALK_V4(&ctx, ipst);
29504 	for (; ill != NULL; ill = ill_next(&ctx, ill))
29505 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
29506 	rw_exit(&ipst->ips_ill_g_lock);
29507 
29508 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
29509 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
29510 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
29511 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
29512 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
29513 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
29514 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
29515 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
29516 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
29517 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
29518 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
29519 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
29520 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_g_frag_timeout;
29521 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
29522 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
29523 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
29524 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
29525 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
29526 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
29527 
29528 	ipkp->routingDiscards.value.ui32 =	0;
29529 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
29530 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
29531 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
29532 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
29533 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
29534 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
29535 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
29536 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
29537 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
29538 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
29539 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
29540 
29541 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
29542 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
29543 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
29544 
29545 	netstack_rele(ns);
29546 
29547 	return (0);
29548 }
29549 
29550 static void *
29551 icmp_kstat_init(netstackid_t stackid)
29552 {
29553 	kstat_t	*ksp;
29554 
29555 	icmp_named_kstat_t template = {
29556 		{ "inMsgs",		KSTAT_DATA_UINT32 },
29557 		{ "inErrors",		KSTAT_DATA_UINT32 },
29558 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
29559 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
29560 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
29561 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
29562 		{ "inRedirects",	KSTAT_DATA_UINT32 },
29563 		{ "inEchos",		KSTAT_DATA_UINT32 },
29564 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
29565 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
29566 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
29567 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
29568 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
29569 		{ "outMsgs",		KSTAT_DATA_UINT32 },
29570 		{ "outErrors",		KSTAT_DATA_UINT32 },
29571 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
29572 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
29573 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
29574 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
29575 		{ "outRedirects",	KSTAT_DATA_UINT32 },
29576 		{ "outEchos",		KSTAT_DATA_UINT32 },
29577 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
29578 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
29579 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
29580 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
29581 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
29582 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
29583 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
29584 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
29585 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
29586 		{ "outDrops",		KSTAT_DATA_UINT32 },
29587 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
29588 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
29589 	};
29590 
29591 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
29592 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
29593 	if (ksp == NULL || ksp->ks_data == NULL)
29594 		return (NULL);
29595 
29596 	bcopy(&template, ksp->ks_data, sizeof (template));
29597 
29598 	ksp->ks_update = icmp_kstat_update;
29599 	ksp->ks_private = (void *)(uintptr_t)stackid;
29600 
29601 	kstat_install(ksp);
29602 	return (ksp);
29603 }
29604 
29605 static void
29606 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
29607 {
29608 	if (ksp != NULL) {
29609 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
29610 		kstat_delete_netstack(ksp, stackid);
29611 	}
29612 }
29613 
29614 static int
29615 icmp_kstat_update(kstat_t *kp, int rw)
29616 {
29617 	icmp_named_kstat_t *icmpkp;
29618 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
29619 	netstack_t	*ns;
29620 	ip_stack_t	*ipst;
29621 
29622 	if ((kp == NULL) || (kp->ks_data == NULL))
29623 		return (EIO);
29624 
29625 	if (rw == KSTAT_WRITE)
29626 		return (EACCES);
29627 
29628 	ns = netstack_find_by_stackid(stackid);
29629 	if (ns == NULL)
29630 		return (-1);
29631 	ipst = ns->netstack_ip;
29632 	if (ipst == NULL) {
29633 		netstack_rele(ns);
29634 		return (-1);
29635 	}
29636 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
29637 
29638 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
29639 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
29640 	icmpkp->inDestUnreachs.value.ui32 =
29641 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
29642 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
29643 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
29644 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
29645 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
29646 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
29647 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
29648 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
29649 	icmpkp->inTimestampReps.value.ui32 =
29650 	    ipst->ips_icmp_mib.icmpInTimestampReps;
29651 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
29652 	icmpkp->inAddrMaskReps.value.ui32 =
29653 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
29654 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
29655 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
29656 	icmpkp->outDestUnreachs.value.ui32 =
29657 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
29658 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
29659 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
29660 	icmpkp->outSrcQuenchs.value.ui32 =
29661 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
29662 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
29663 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
29664 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
29665 	icmpkp->outTimestamps.value.ui32 =
29666 	    ipst->ips_icmp_mib.icmpOutTimestamps;
29667 	icmpkp->outTimestampReps.value.ui32 =
29668 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
29669 	icmpkp->outAddrMasks.value.ui32 =
29670 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
29671 	icmpkp->outAddrMaskReps.value.ui32 =
29672 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
29673 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
29674 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
29675 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
29676 	icmpkp->outFragNeeded.value.ui32 =
29677 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
29678 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
29679 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
29680 	icmpkp->inBadRedirects.value.ui32 =
29681 	    ipst->ips_icmp_mib.icmpInBadRedirects;
29682 
29683 	netstack_rele(ns);
29684 	return (0);
29685 }
29686 
29687 /*
29688  * This is the fanout function for raw socket opened for SCTP.  Note
29689  * that it is called after SCTP checks that there is no socket which
29690  * wants a packet.  Then before SCTP handles this out of the blue packet,
29691  * this function is called to see if there is any raw socket for SCTP.
29692  * If there is and it is bound to the correct address, the packet will
29693  * be sent to that socket.  Note that only one raw socket can be bound to
29694  * a port.  This is assured in ipcl_sctp_hash_insert();
29695  */
29696 void
29697 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4,
29698     uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy,
29699     zoneid_t zoneid)
29700 {
29701 	conn_t		*connp;
29702 	queue_t		*rq;
29703 	mblk_t		*first_mp;
29704 	boolean_t	secure;
29705 	ip6_t		*ip6h;
29706 	ip_stack_t	*ipst = recv_ill->ill_ipst;
29707 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
29708 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
29709 	boolean_t	sctp_csum_err = B_FALSE;
29710 
29711 	if (flags & IP_FF_SCTP_CSUM_ERR) {
29712 		sctp_csum_err = B_TRUE;
29713 		flags &= ~IP_FF_SCTP_CSUM_ERR;
29714 	}
29715 
29716 	first_mp = mp;
29717 	if (mctl_present) {
29718 		mp = first_mp->b_cont;
29719 		secure = ipsec_in_is_secure(first_mp);
29720 		ASSERT(mp != NULL);
29721 	} else {
29722 		secure = B_FALSE;
29723 	}
29724 	ip6h = (isv4) ? NULL : (ip6_t *)ipha;
29725 
29726 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst);
29727 	if (connp == NULL) {
29728 		/*
29729 		 * Although raw sctp is not summed, OOB chunks must be.
29730 		 * Drop the packet here if the sctp checksum failed.
29731 		 */
29732 		if (sctp_csum_err) {
29733 			BUMP_MIB(&sctps->sctps_mib, sctpChecksumError);
29734 			freemsg(first_mp);
29735 			return;
29736 		}
29737 		sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present);
29738 		return;
29739 	}
29740 	rq = connp->conn_rq;
29741 	if (!canputnext(rq)) {
29742 		CONN_DEC_REF(connp);
29743 		BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows);
29744 		freemsg(first_mp);
29745 		return;
29746 	}
29747 	if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
29748 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) {
29749 		first_mp = ipsec_check_inbound_policy(first_mp, connp,
29750 		    (isv4 ? ipha : NULL), ip6h, mctl_present);
29751 		if (first_mp == NULL) {
29752 			BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards);
29753 			CONN_DEC_REF(connp);
29754 			return;
29755 		}
29756 	}
29757 	/*
29758 	 * We probably should not send M_CTL message up to
29759 	 * raw socket.
29760 	 */
29761 	if (mctl_present)
29762 		freeb(first_mp);
29763 
29764 	/* Initiate IPPF processing here if needed. */
29765 	if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) ||
29766 	    (!isv4 && IP6_IN_IPP(flags, ipst))) {
29767 		ip_process(IPP_LOCAL_IN, &mp,
29768 		    recv_ill->ill_phyint->phyint_ifindex);
29769 		if (mp == NULL) {
29770 			CONN_DEC_REF(connp);
29771 			return;
29772 		}
29773 	}
29774 
29775 	if (connp->conn_recvif || connp->conn_recvslla ||
29776 	    ((connp->conn_ip_recvpktinfo ||
29777 	    (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) &&
29778 	    (flags & IP_FF_IPINFO))) {
29779 		int in_flags = 0;
29780 
29781 		/*
29782 		 * Since sctp does not support IP_RECVPKTINFO for v4, only pass
29783 		 * IPF_RECVIF.
29784 		 */
29785 		if (connp->conn_recvif || connp->conn_ip_recvpktinfo) {
29786 			in_flags = IPF_RECVIF;
29787 		}
29788 		if (connp->conn_recvslla) {
29789 			in_flags |= IPF_RECVSLLA;
29790 		}
29791 		if (isv4) {
29792 			mp = ip_add_info(mp, recv_ill, in_flags,
29793 			    IPCL_ZONEID(connp), ipst);
29794 		} else {
29795 			mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst);
29796 			if (mp == NULL) {
29797 				BUMP_MIB(recv_ill->ill_ip_mib,
29798 				    ipIfStatsInDiscards);
29799 				CONN_DEC_REF(connp);
29800 				return;
29801 			}
29802 		}
29803 	}
29804 
29805 	BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
29806 	/*
29807 	 * We are sending the IPSEC_IN message also up. Refer
29808 	 * to comments above this function.
29809 	 * This is the SOCK_RAW, IPPROTO_SCTP case.
29810 	 */
29811 	(connp->conn_recv)(connp, mp, NULL);
29812 	CONN_DEC_REF(connp);
29813 }
29814 
29815 #define	UPDATE_IP_MIB_OB_COUNTERS(ill, len)				\
29816 {									\
29817 	BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits);		\
29818 	UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len));	\
29819 }
29820 /*
29821  * This function should be called only if all packet processing
29822  * including fragmentation is complete. Callers of this function
29823  * must set mp->b_prev to one of these values:
29824  *	{0, IPP_FWD_OUT, IPP_LOCAL_OUT}
29825  * prior to handing over the mp as first argument to this function.
29826  *
29827  * If the ire passed by caller is incomplete, this function
29828  * queues the packet and if necessary, sends ARP request and bails.
29829  * If the ire passed is fully resolved, we simply prepend
29830  * the link-layer header to the packet, do ipsec hw acceleration
29831  * work if necessary, and send the packet out on the wire.
29832  *
29833  * NOTE: IPsec will only call this function with fully resolved
29834  * ires if hw acceleration is involved.
29835  * TODO list :
29836  * 	a Handle M_MULTIDATA so that
29837  *	  tcp_multisend->tcp_multisend_data can
29838  *	  call ip_xmit_v4 directly
29839  *	b Handle post-ARP work for fragments so that
29840  *	  ip_wput_frag can call this function.
29841  */
29842 ipxmit_state_t
29843 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled)
29844 {
29845 	nce_t		*arpce;
29846 	queue_t		*q;
29847 	int		ill_index;
29848 	mblk_t		*nxt_mp, *first_mp;
29849 	boolean_t	xmit_drop = B_FALSE;
29850 	ip_proc_t	proc;
29851 	ill_t		*out_ill;
29852 	int		pkt_len;
29853 
29854 	arpce = ire->ire_nce;
29855 	ASSERT(arpce != NULL);
29856 
29857 	DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire,  nce_t *, arpce);
29858 
29859 	mutex_enter(&arpce->nce_lock);
29860 	switch (arpce->nce_state) {
29861 	case ND_REACHABLE:
29862 		/* If there are other queued packets, queue this packet */
29863 		if (arpce->nce_qd_mp != NULL) {
29864 			if (mp != NULL)
29865 				nce_queue_mp_common(arpce, mp, B_FALSE);
29866 			mp = arpce->nce_qd_mp;
29867 		}
29868 		arpce->nce_qd_mp = NULL;
29869 		mutex_exit(&arpce->nce_lock);
29870 
29871 		/*
29872 		 * Flush the queue.  In the common case, where the
29873 		 * ARP is already resolved,  it will go through the
29874 		 * while loop only once.
29875 		 */
29876 		while (mp != NULL) {
29877 
29878 			nxt_mp = mp->b_next;
29879 			mp->b_next = NULL;
29880 			ASSERT(mp->b_datap->db_type != M_CTL);
29881 			pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length);
29882 			/*
29883 			 * This info is needed for IPQOS to do COS marking
29884 			 * in ip_wput_attach_llhdr->ip_process.
29885 			 */
29886 			proc = (ip_proc_t)(uintptr_t)mp->b_prev;
29887 			mp->b_prev = NULL;
29888 
29889 			/* set up ill index for outbound qos processing */
29890 			out_ill = ire_to_ill(ire);
29891 			ill_index = out_ill->ill_phyint->phyint_ifindex;
29892 			first_mp = ip_wput_attach_llhdr(mp, ire, proc,
29893 			    ill_index);
29894 			if (first_mp == NULL) {
29895 				xmit_drop = B_TRUE;
29896 				BUMP_MIB(out_ill->ill_ip_mib,
29897 				    ipIfStatsOutDiscards);
29898 				goto next_mp;
29899 			}
29900 			/* non-ipsec hw accel case */
29901 			if (io == NULL || !io->ipsec_out_accelerated) {
29902 				/* send it */
29903 				q = ire->ire_stq;
29904 				if (proc == IPP_FWD_OUT) {
29905 					UPDATE_IB_PKT_COUNT(ire);
29906 				} else {
29907 					UPDATE_OB_PKT_COUNT(ire);
29908 				}
29909 				ire->ire_last_used_time = lbolt;
29910 
29911 				if (flow_ctl_enabled || canputnext(q)) {
29912 					if (proc == IPP_FWD_OUT) {
29913 
29914 					BUMP_MIB(out_ill->ill_ip_mib,
29915 					    ipIfStatsHCOutForwDatagrams);
29916 
29917 					}
29918 					UPDATE_IP_MIB_OB_COUNTERS(out_ill,
29919 					    pkt_len);
29920 
29921 					putnext(q, first_mp);
29922 				} else {
29923 					BUMP_MIB(out_ill->ill_ip_mib,
29924 					    ipIfStatsOutDiscards);
29925 					xmit_drop = B_TRUE;
29926 					freemsg(first_mp);
29927 				}
29928 			} else {
29929 				/*
29930 				 * Safety Pup says: make sure this
29931 				 *  is going to the right interface!
29932 				 */
29933 				ill_t *ill1 =
29934 				    (ill_t *)ire->ire_stq->q_ptr;
29935 				int ifindex =
29936 				    ill1->ill_phyint->phyint_ifindex;
29937 				if (ifindex !=
29938 				    io->ipsec_out_capab_ill_index) {
29939 					xmit_drop = B_TRUE;
29940 					freemsg(mp);
29941 				} else {
29942 					UPDATE_IP_MIB_OB_COUNTERS(ill1,
29943 					    pkt_len);
29944 					ipsec_hw_putnext(ire->ire_stq, mp);
29945 				}
29946 			}
29947 next_mp:
29948 			mp = nxt_mp;
29949 		} /* while (mp != NULL) */
29950 		if (xmit_drop)
29951 			return (SEND_FAILED);
29952 		else
29953 			return (SEND_PASSED);
29954 
29955 	case ND_INITIAL:
29956 	case ND_INCOMPLETE:
29957 
29958 		/*
29959 		 * While we do send off packets to dests that
29960 		 * use fully-resolved CGTP routes, we do not
29961 		 * handle unresolved CGTP routes.
29962 		 */
29963 		ASSERT(!(ire->ire_flags & RTF_MULTIRT));
29964 		ASSERT(io == NULL || !io->ipsec_out_accelerated);
29965 
29966 		if (mp != NULL) {
29967 			/* queue the packet */
29968 			nce_queue_mp_common(arpce, mp, B_FALSE);
29969 		}
29970 
29971 		if (arpce->nce_state == ND_INCOMPLETE) {
29972 			mutex_exit(&arpce->nce_lock);
29973 			DTRACE_PROBE3(ip__xmit__incomplete,
29974 			    (ire_t *), ire, (mblk_t *), mp,
29975 			    (ipsec_out_t *), io);
29976 			return (LOOKUP_IN_PROGRESS);
29977 		}
29978 
29979 		arpce->nce_state = ND_INCOMPLETE;
29980 		mutex_exit(&arpce->nce_lock);
29981 		/*
29982 		 * Note that ire_add() (called from ire_forward())
29983 		 * holds a ref on the ire until ARP is completed.
29984 		 */
29985 
29986 		ire_arpresolve(ire, ire_to_ill(ire));
29987 		return (LOOKUP_IN_PROGRESS);
29988 	default:
29989 		ASSERT(0);
29990 		mutex_exit(&arpce->nce_lock);
29991 		return (LLHDR_RESLV_FAILED);
29992 	}
29993 }
29994 
29995 #undef	UPDATE_IP_MIB_OB_COUNTERS
29996 
29997 /*
29998  * Return B_TRUE if the buffers differ in length or content.
29999  * This is used for comparing extension header buffers.
30000  * Note that an extension header would be declared different
30001  * even if all that changed was the next header value in that header i.e.
30002  * what really changed is the next extension header.
30003  */
30004 boolean_t
30005 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
30006     uint_t blen)
30007 {
30008 	if (!b_valid)
30009 		blen = 0;
30010 
30011 	if (alen != blen)
30012 		return (B_TRUE);
30013 	if (alen == 0)
30014 		return (B_FALSE);	/* Both zero length */
30015 	return (bcmp(abuf, bbuf, alen));
30016 }
30017 
30018 /*
30019  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
30020  * Return B_FALSE if memory allocation fails - don't change any state!
30021  */
30022 boolean_t
30023 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
30024     const void *src, uint_t srclen)
30025 {
30026 	void *dst;
30027 
30028 	if (!src_valid)
30029 		srclen = 0;
30030 
30031 	ASSERT(*dstlenp == 0);
30032 	if (src != NULL && srclen != 0) {
30033 		dst = mi_alloc(srclen, BPRI_MED);
30034 		if (dst == NULL)
30035 			return (B_FALSE);
30036 	} else {
30037 		dst = NULL;
30038 	}
30039 	if (*dstp != NULL)
30040 		mi_free(*dstp);
30041 	*dstp = dst;
30042 	*dstlenp = dst == NULL ? 0 : srclen;
30043 	return (B_TRUE);
30044 }
30045 
30046 /*
30047  * Replace what is in *dst, *dstlen with the source.
30048  * Assumes ip_allocbuf has already been called.
30049  */
30050 void
30051 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
30052     const void *src, uint_t srclen)
30053 {
30054 	if (!src_valid)
30055 		srclen = 0;
30056 
30057 	ASSERT(*dstlenp == srclen);
30058 	if (src != NULL && srclen != 0)
30059 		bcopy(src, *dstp, srclen);
30060 }
30061 
30062 /*
30063  * Free the storage pointed to by the members of an ip6_pkt_t.
30064  */
30065 void
30066 ip6_pkt_free(ip6_pkt_t *ipp)
30067 {
30068 	ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU));
30069 
30070 	if (ipp->ipp_fields & IPPF_HOPOPTS) {
30071 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
30072 		ipp->ipp_hopopts = NULL;
30073 		ipp->ipp_hopoptslen = 0;
30074 	}
30075 	if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
30076 		kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
30077 		ipp->ipp_rtdstopts = NULL;
30078 		ipp->ipp_rtdstoptslen = 0;
30079 	}
30080 	if (ipp->ipp_fields & IPPF_DSTOPTS) {
30081 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
30082 		ipp->ipp_dstopts = NULL;
30083 		ipp->ipp_dstoptslen = 0;
30084 	}
30085 	if (ipp->ipp_fields & IPPF_RTHDR) {
30086 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
30087 		ipp->ipp_rthdr = NULL;
30088 		ipp->ipp_rthdrlen = 0;
30089 	}
30090 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
30091 	    IPPF_RTHDR);
30092 }
30093