1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/optcom.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <sys/sunddi.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <rpc/pmap_prot.h> 126 127 /* 128 * Values for squeue switch: 129 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 130 * IP_SQUEUE_ENTER: squeue_enter 131 * IP_SQUEUE_FILL: squeue_fill 132 */ 133 int ip_squeue_enter = 2; 134 squeue_func_t ip_input_proc; 135 /* 136 * IP statistics. 137 */ 138 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 139 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 typedef struct ip_stat { 143 kstat_named_t ipsec_fanout_proto; 144 kstat_named_t ip_udp_fannorm; 145 kstat_named_t ip_udp_fanmb; 146 kstat_named_t ip_udp_fanothers; 147 kstat_named_t ip_udp_fast_path; 148 kstat_named_t ip_udp_slow_path; 149 kstat_named_t ip_udp_input_err; 150 kstat_named_t ip_tcppullup; 151 kstat_named_t ip_tcpoptions; 152 kstat_named_t ip_multipkttcp; 153 kstat_named_t ip_tcp_fast_path; 154 kstat_named_t ip_tcp_slow_path; 155 kstat_named_t ip_tcp_input_error; 156 kstat_named_t ip_db_ref; 157 kstat_named_t ip_notaligned1; 158 kstat_named_t ip_notaligned2; 159 kstat_named_t ip_multimblk3; 160 kstat_named_t ip_multimblk4; 161 kstat_named_t ip_ipoptions; 162 kstat_named_t ip_classify_fail; 163 kstat_named_t ip_opt; 164 kstat_named_t ip_udp_rput_local; 165 kstat_named_t ipsec_proto_ahesp; 166 kstat_named_t ip_conn_flputbq; 167 kstat_named_t ip_conn_walk_drain; 168 kstat_named_t ip_out_sw_cksum; 169 kstat_named_t ip_in_sw_cksum; 170 kstat_named_t ip_trash_ire_reclaim_calls; 171 kstat_named_t ip_trash_ire_reclaim_success; 172 kstat_named_t ip_ire_arp_timer_expired; 173 kstat_named_t ip_ire_redirect_timer_expired; 174 kstat_named_t ip_ire_pmtu_timer_expired; 175 kstat_named_t ip_input_multi_squeue; 176 kstat_named_t ip_tcp_in_full_hw_cksum_err; 177 kstat_named_t ip_tcp_in_part_hw_cksum_err; 178 kstat_named_t ip_tcp_in_sw_cksum_err; 179 kstat_named_t ip_tcp_out_sw_cksum_bytes; 180 kstat_named_t ip_udp_in_full_hw_cksum_err; 181 kstat_named_t ip_udp_in_part_hw_cksum_err; 182 kstat_named_t ip_udp_in_sw_cksum_err; 183 kstat_named_t ip_udp_out_sw_cksum_bytes; 184 kstat_named_t ip_frag_mdt_pkt_out; 185 kstat_named_t ip_frag_mdt_discarded; 186 kstat_named_t ip_frag_mdt_allocfail; 187 kstat_named_t ip_frag_mdt_addpdescfail; 188 kstat_named_t ip_frag_mdt_allocd; 189 } ip_stat_t; 190 191 static ip_stat_t ip_statistics = { 192 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 194 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 195 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 196 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 197 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 198 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 199 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 200 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 201 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 202 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 203 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 204 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 205 { "ip_db_ref", KSTAT_DATA_UINT64 }, 206 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 207 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 208 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 209 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 210 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 211 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 212 { "ip_opt", KSTAT_DATA_UINT64 }, 213 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 214 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 215 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 216 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 217 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 218 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 219 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 220 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 221 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 222 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 223 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 224 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 230 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 231 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 232 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 235 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 236 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 237 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 238 }; 239 240 static kstat_t *ip_kstat; 241 242 #define TCP6 "tcp6" 243 #define TCP "tcp" 244 #define SCTP "sctp" 245 #define SCTP6 "sctp6" 246 247 major_t TCP6_MAJ; 248 major_t TCP_MAJ; 249 major_t SCTP_MAJ; 250 major_t SCTP6_MAJ; 251 252 int ip_poll_normal_ms = 100; 253 int ip_poll_normal_ticks = 0; 254 255 /* 256 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 257 */ 258 259 struct listptr_s { 260 mblk_t *lp_head; /* pointer to the head of the list */ 261 mblk_t *lp_tail; /* pointer to the tail of the list */ 262 }; 263 264 typedef struct listptr_s listptr_t; 265 266 /* 267 * This is used by ip_snmp_get_mib2_ip_route_media and 268 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 269 */ 270 typedef struct iproutedata_s { 271 uint_t ird_idx; 272 listptr_t ird_route; /* ipRouteEntryTable */ 273 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 274 listptr_t ird_attrs; /* ipRouteAttributeTable */ 275 } iproutedata_t; 276 277 /* 278 * Cluster specific hooks. These should be NULL when booted as a non-cluster 279 */ 280 281 /* 282 * Hook functions to enable cluster networking 283 * On non-clustered systems these vectors must always be NULL. 284 * 285 * Hook function to Check ip specified ip address is a shared ip address 286 * in the cluster 287 * 288 */ 289 int (*cl_inet_isclusterwide)(uint8_t protocol, 290 sa_family_t addr_family, uint8_t *laddrp) = NULL; 291 292 /* 293 * Hook function to generate cluster wide ip fragment identifier 294 */ 295 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 296 uint8_t *laddrp, uint8_t *faddrp) = NULL; 297 298 /* 299 * Synchronization notes: 300 * 301 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 302 * MT level protection given by STREAMS. IP uses a combination of its own 303 * internal serialization mechanism and standard Solaris locking techniques. 304 * The internal serialization is per phyint (no IPMP) or per IPMP group. 305 * This is used to serialize plumbing operations, IPMP operations, certain 306 * multicast operations, most set ioctls, igmp/mld timers etc. 307 * 308 * Plumbing is a long sequence of operations involving message 309 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 310 * involved in plumbing operations. A natural model is to serialize these 311 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 312 * parallel without any interference. But various set ioctls on hme0 are best 313 * serialized. However if the system uses IPMP, the operations are easier if 314 * they are serialized on a per IPMP group basis since IPMP operations 315 * happen across ill's of a group. Thus the lowest common denominator is to 316 * serialize most set ioctls, multicast join/leave operations, IPMP operations 317 * igmp/mld timer operations, and processing of DLPI control messages received 318 * from drivers on a per IPMP group basis. If the system does not employ 319 * IPMP the serialization is on a per phyint basis. This serialization is 320 * provided by the ipsq_t and primitives operating on this. Details can 321 * be found in ip_if.c above the core primitives operating on ipsq_t. 322 * 323 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 324 * Simiarly lookup of an ire by a thread also returns a refheld ire. 325 * In addition ipif's and ill's referenced by the ire are also indirectly 326 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 327 * the ipif's address or netmask change as long as an ipif is refheld 328 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 329 * address of an ipif has to go through the ipsq_t. This ensures that only 330 * 1 such exclusive operation proceeds at any time on the ipif. It then 331 * deletes all ires associated with this ipif, and waits for all refcnts 332 * associated with this ipif to come down to zero. The address is changed 333 * only after the ipif has been quiesced. Then the ipif is brought up again. 334 * More details are described above the comment in ip_sioctl_flags. 335 * 336 * Packet processing is based mostly on IREs and are fully multi-threaded 337 * using standard Solaris MT techniques. 338 * 339 * There are explicit locks in IP to handle: 340 * - The ip_g_head list maintained by mi_open_link() and friends. 341 * 342 * - The reassembly data structures (one lock per hash bucket) 343 * 344 * - conn_lock is meant to protect conn_t fields. The fields actually 345 * protected by conn_lock are documented in the conn_t definition. 346 * 347 * - ire_lock to protect some of the fields of the ire, IRE tables 348 * (one lock per hash bucket). Refer to ip_ire.c for details. 349 * 350 * - ndp_g_lock and nce_lock for protecting NCEs. 351 * 352 * - ill_lock protects fields of the ill and ipif. Details in ip.h 353 * 354 * - ill_g_lock: This is a global reader/writer lock. Protects the following 355 * * The AVL tree based global multi list of all ills. 356 * * The linked list of all ipifs of an ill 357 * * The <ill-ipsq> mapping 358 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 359 * * The illgroup list threaded by ill_group_next. 360 * * <ill-phyint> association 361 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 362 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 363 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 364 * will all have to hold the ill_g_lock as writer for the actual duration 365 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 366 * may be found in the IPMP section. 367 * 368 * - ill_lock: This is a per ill mutex. 369 * It protects some members of the ill and is documented below. 370 * It also protects the <ill-ipsq> mapping 371 * It also protects the illgroup list threaded by ill_group_next. 372 * It also protects the <ill-phyint> assoc. 373 * It also protects the list of ipifs hanging off the ill. 374 * 375 * - ipsq_lock: This is a per ipsq_t mutex lock. 376 * This protects all the other members of the ipsq struct except 377 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 378 * 379 * - illgrp_lock: This is a per ill_group mutex lock. 380 * The only thing it protects is the illgrp_ill_schednext member of ill_group 381 * which dictates which is the next ill in an ill_group that is to be chosen 382 * for sending outgoing packets, through creation of an IRE_CACHE that 383 * references this ill. 384 * 385 * - phyint_lock: This is a per phyint mutex lock. Protects just the 386 * phyint_flags 387 * 388 * - ip_g_nd_lock: This is a global reader/writer lock. 389 * Any call to nd_load to load a new parameter to the ND table must hold the 390 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 391 * as reader. 392 * 393 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 394 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 395 * uniqueness check also done atomically. 396 * 397 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 398 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 399 * as a writer when adding or deleting elements from these lists, and 400 * as a reader when walking these lists to send a SADB update to the 401 * IPsec capable ills. 402 * 403 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 404 * group list linked by ill_usesrc_grp_next. It also protects the 405 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 406 * group is being added or deleted. This lock is taken as a reader when 407 * walking the list/group(eg: to get the number of members in a usesrc group). 408 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 409 * field is changing state i.e from NULL to non-NULL or vice-versa. For 410 * example, it is not necessary to take this lock in the initial portion 411 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 412 * ip_sioctl_flags since the these operations are executed exclusively and 413 * that ensures that the "usesrc group state" cannot change. The "usesrc 414 * group state" change can happen only in the latter part of 415 * ip_sioctl_slifusesrc and in ill_delete. 416 * 417 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 418 * 419 * To change the <ill-phyint> association, the ill_g_lock must be held 420 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 421 * must be held. 422 * 423 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 424 * and the ill_lock of the ill in question must be held. 425 * 426 * To change the <ill-illgroup> association the ill_g_lock must be held as 427 * writer and the ill_lock of the ill in question must be held. 428 * 429 * To add or delete an ipif from the list of ipifs hanging off the ill, 430 * ill_g_lock (writer) and ill_lock must be held and the thread must be 431 * a writer on the associated ipsq,. 432 * 433 * To add or delete an ill to the system, the ill_g_lock must be held as 434 * writer and the thread must be a writer on the associated ipsq. 435 * 436 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 437 * must be a writer on the associated ipsq. 438 * 439 * Lock hierarchy 440 * 441 * Some lock hierarchy scenarios are listed below. 442 * 443 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 444 * ill_g_lock -> illgrp_lock -> ill_lock 445 * ill_g_lock -> ill_lock(s) -> phyint_lock 446 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 447 * ill_g_lock -> ip_addr_avail_lock 448 * conn_lock -> irb_lock -> ill_lock -> ire_lock 449 * ill_g_lock -> ip_g_nd_lock 450 * 451 * When more than 1 ill lock is needed to be held, all ill lock addresses 452 * are sorted on address and locked starting from highest addressed lock 453 * downward. 454 * 455 * Mobile-IP scenarios 456 * 457 * irb_lock -> ill_lock -> ire_mrtun_lock 458 * irb_lock -> ill_lock -> ire_srcif_table_lock 459 * 460 * IPsec scenarios 461 * 462 * ipsa_lock -> ill_g_lock -> ill_lock 463 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 464 * ipsec_capab_ills_lock -> ipsa_lock 465 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 466 * 467 * Trusted Solaris scenarios 468 * 469 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 470 * igsa_lock -> gcdb_lock 471 * gcgrp_rwlock -> ire_lock 472 * gcgrp_rwlock -> gcdb_lock 473 * 474 * 475 * Routing/forwarding table locking notes: 476 * 477 * Lock acquisition order: Radix tree lock, irb_lock. 478 * Requirements: 479 * i. Walker must not hold any locks during the walker callback. 480 * ii Walker must not see a truncated tree during the walk because of any node 481 * deletion. 482 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 483 * in many places in the code to walk the irb list. Thus even if all the 484 * ires in a bucket have been deleted, we still can't free the radix node 485 * until the ires have actually been inactive'd (freed). 486 * 487 * Tree traversal - Need to hold the global tree lock in read mode. 488 * Before dropping the global tree lock, need to either increment the ire_refcnt 489 * to ensure that the radix node can't be deleted. 490 * 491 * Tree add - Need to hold the global tree lock in write mode to add a 492 * radix node. To prevent the node from being deleted, increment the 493 * irb_refcnt, after the node is added to the tree. The ire itself is 494 * added later while holding the irb_lock, but not the tree lock. 495 * 496 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 497 * All associated ires must be inactive (i.e. freed), and irb_refcnt 498 * must be zero. 499 * 500 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 501 * global tree lock (read mode) for traversal. 502 * 503 * IPSEC notes : 504 * 505 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 506 * in front of the actual packet. For outbound datagrams, the M_CTL 507 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 508 * information used by the IPSEC code for applying the right level of 509 * protection. The information initialized by IP in the ipsec_out_t 510 * is determined by the per-socket policy or global policy in the system. 511 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 512 * ipsec_info.h) which starts out with nothing in it. It gets filled 513 * with the right information if it goes through the AH/ESP code, which 514 * happens if the incoming packet is secure. The information initialized 515 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 516 * the policy requirements needed by per-socket policy or global policy 517 * is met or not. 518 * 519 * If there is both per-socket policy (set using setsockopt) and there 520 * is also global policy match for the 5 tuples of the socket, 521 * ipsec_override_policy() makes the decision of which one to use. 522 * 523 * For fully connected sockets i.e dst, src [addr, port] is known, 524 * conn_policy_cached is set indicating that policy has been cached. 525 * conn_in_enforce_policy may or may not be set depending on whether 526 * there is a global policy match or per-socket policy match. 527 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 528 * Once the right policy is set on the conn_t, policy cannot change for 529 * this socket. This makes life simpler for TCP (UDP ?) where 530 * re-transmissions go out with the same policy. For symmetry, policy 531 * is cached for fully connected UDP sockets also. Thus if policy is cached, 532 * it also implies that policy is latched i.e policy cannot change 533 * on these sockets. As we have the right policy on the conn, we don't 534 * have to lookup global policy for every outbound and inbound datagram 535 * and thus serving as an optimization. Note that a global policy change 536 * does not affect fully connected sockets if they have policy. If fully 537 * connected sockets did not have any policy associated with it, global 538 * policy change may affect them. 539 * 540 * IP Flow control notes: 541 * 542 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 543 * cannot be sent down to the driver by IP, because of a canput failure, IP 544 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 545 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 546 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 547 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 548 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 549 * the queued messages, and removes the conn from the drain list, if all 550 * messages were drained. It also qenables the next conn in the drain list to 551 * continue the drain process. 552 * 553 * In reality the drain list is not a single list, but a configurable number 554 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 555 * list. If the ip_wsrv of the next qenabled conn does not run, because the 556 * stream closes, ip_close takes responsibility to qenable the next conn in 557 * the drain list. The directly called ip_wput path always does a putq, if 558 * it cannot putnext. Thus synchronization problems are handled between 559 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 560 * functions that manipulate this drain list. Furthermore conn_drain_insert 561 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 562 * running on a queue at any time. conn_drain_tail can be simultaneously called 563 * from both ip_wsrv and ip_close. 564 * 565 * IPQOS notes: 566 * 567 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 568 * and IPQoS modules. IPPF includes hooks in IP at different control points 569 * (callout positions) which direct packets to IPQoS modules for policy 570 * processing. Policies, if present, are global. 571 * 572 * The callout positions are located in the following paths: 573 * o local_in (packets destined for this host) 574 * o local_out (packets orginating from this host ) 575 * o fwd_in (packets forwarded by this m/c - inbound) 576 * o fwd_out (packets forwarded by this m/c - outbound) 577 * Hooks at these callout points can be enabled/disabled using the ndd variable 578 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 579 * By default all the callout positions are enabled. 580 * 581 * Outbound (local_out) 582 * Hooks are placed in ip_wput_ire and ipsec_out_process. 583 * 584 * Inbound (local_in) 585 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 586 * TCP and UDP fanout routines. 587 * 588 * Forwarding (in and out) 589 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 590 * 591 * IP Policy Framework processing (IPPF processing) 592 * Policy processing for a packet is initiated by ip_process, which ascertains 593 * that the classifier (ipgpc) is loaded and configured, failing which the 594 * packet resumes normal processing in IP. If the clasifier is present, the 595 * packet is acted upon by one or more IPQoS modules (action instances), per 596 * filters configured in ipgpc and resumes normal IP processing thereafter. 597 * An action instance can drop a packet in course of its processing. 598 * 599 * A boolean variable, ip_policy, is used in all the fanout routines that can 600 * invoke ip_process for a packet. This variable indicates if the packet should 601 * to be sent for policy processing. The variable is set to B_TRUE by default, 602 * i.e. when the routines are invoked in the normal ip procesing path for a 603 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 604 * ip_policy is set to B_FALSE for all the routines called in these two 605 * functions because, in the former case, we don't process loopback traffic 606 * currently while in the latter, the packets have already been processed in 607 * icmp_inbound. 608 * 609 * Zones notes: 610 * 611 * The partitioning rules for networking are as follows: 612 * 1) Packets coming from a zone must have a source address belonging to that 613 * zone. 614 * 2) Packets coming from a zone can only be sent on a physical interface on 615 * which the zone has an IP address. 616 * 3) Between two zones on the same machine, packet delivery is only allowed if 617 * there's a matching route for the destination and zone in the forwarding 618 * table. 619 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 620 * different zones can bind to the same port with the wildcard address 621 * (INADDR_ANY). 622 * 623 * The granularity of interface partitioning is at the logical interface level. 624 * Therefore, every zone has its own IP addresses, and incoming packets can be 625 * attributed to a zone unambiguously. A logical interface is placed into a zone 626 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 627 * structure. Rule (1) is implemented by modifying the source address selection 628 * algorithm so that the list of eligible addresses is filtered based on the 629 * sending process zone. 630 * 631 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 632 * across all zones, depending on their type. Here is the break-up: 633 * 634 * IRE type Shared/exclusive 635 * -------- ---------------- 636 * IRE_BROADCAST Exclusive 637 * IRE_DEFAULT (default routes) Shared (*) 638 * IRE_LOCAL Exclusive (x) 639 * IRE_LOOPBACK Exclusive 640 * IRE_PREFIX (net routes) Shared (*) 641 * IRE_CACHE Exclusive 642 * IRE_IF_NORESOLVER (interface routes) Exclusive 643 * IRE_IF_RESOLVER (interface routes) Exclusive 644 * IRE_HOST (host routes) Shared (*) 645 * 646 * (*) A zone can only use a default or off-subnet route if the gateway is 647 * directly reachable from the zone, that is, if the gateway's address matches 648 * one of the zone's logical interfaces. 649 * 650 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 651 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 652 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 653 * address of the zone itself (the destination). Since IRE_LOCAL is used 654 * for communication between zones, ip_wput_ire has special logic to set 655 * the right source address when sending using an IRE_LOCAL. 656 * 657 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 658 * ire_cache_lookup restricts loopback using an IRE_LOCAL 659 * between zone to the case when L2 would have conceptually looped the packet 660 * back, i.e. the loopback which is required since neither Ethernet drivers 661 * nor Ethernet hardware loops them back. This is the case when the normal 662 * routes (ignoring IREs with different zoneids) would send out the packet on 663 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 664 * associated. 665 * 666 * Multiple zones can share a common broadcast address; typically all zones 667 * share the 255.255.255.255 address. Incoming as well as locally originated 668 * broadcast packets must be dispatched to all the zones on the broadcast 669 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 670 * since some zones may not be on the 10.16.72/24 network. To handle this, each 671 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 672 * sent to every zone that has an IRE_BROADCAST entry for the destination 673 * address on the input ill, see conn_wantpacket(). 674 * 675 * Applications in different zones can join the same multicast group address. 676 * For IPv4, group memberships are per-logical interface, so they're already 677 * inherently part of a zone. For IPv6, group memberships are per-physical 678 * interface, so we distinguish IPv6 group memberships based on group address, 679 * interface and zoneid. In both cases, received multicast packets are sent to 680 * every zone for which a group membership entry exists. On IPv6 we need to 681 * check that the target zone still has an address on the receiving physical 682 * interface; it could have been removed since the application issued the 683 * IPV6_JOIN_GROUP. 684 */ 685 686 /* 687 * Squeue Fanout flags: 688 * 0: No fanout. 689 * 1: Fanout across all squeues 690 */ 691 boolean_t ip_squeue_fanout = 0; 692 693 /* 694 * Maximum dups allowed per packet. 695 */ 696 uint_t ip_max_frag_dups = 10; 697 698 #define IS_SIMPLE_IPH(ipha) \ 699 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 700 701 /* RFC1122 Conformance */ 702 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 703 704 #define ILL_MAX_NAMELEN LIFNAMSIZ 705 706 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 707 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 709 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 712 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 713 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 714 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 715 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 716 mblk_t *, int); 717 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 718 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 719 ill_t *, zoneid_t); 720 static void icmp_options_update(ipha_t *); 721 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 722 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 723 zoneid_t zoneid); 724 static mblk_t *icmp_pkt_err_ok(mblk_t *); 725 static void icmp_redirect(mblk_t *); 726 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 727 728 static void ip_arp_news(queue_t *, mblk_t *); 729 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 730 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 731 char *ip_dot_addr(ipaddr_t, char *); 732 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 733 int ip_close(queue_t *, int); 734 static char *ip_dot_saddr(uchar_t *, char *); 735 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 736 boolean_t, boolean_t, ill_t *, zoneid_t); 737 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 738 boolean_t, boolean_t, zoneid_t); 739 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 740 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 741 static void ip_lrput(queue_t *, mblk_t *); 742 ipaddr_t ip_massage_options(ipha_t *); 743 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 744 ipaddr_t ip_net_mask(ipaddr_t); 745 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 746 zoneid_t); 747 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 748 conn_t *, uint32_t, zoneid_t); 749 char *ip_nv_lookup(nv_t *, int); 750 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 751 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 752 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 754 size_t); 755 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 756 void ip_rput(queue_t *, mblk_t *); 757 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 758 void *dummy_arg); 759 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 760 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 761 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 762 ire_t *); 763 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 764 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 765 uint16_t *); 766 int ip_snmp_get(queue_t *, mblk_t *); 767 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 780 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 781 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 782 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 783 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 784 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 785 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 786 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 787 static boolean_t ip_source_routed(ipha_t *); 788 static boolean_t ip_source_route_included(ipha_t *); 789 790 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 791 zoneid_t); 792 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 793 static void ip_wput_local_options(ipha_t *); 794 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 795 zoneid_t); 796 797 static void conn_drain_init(void); 798 static void conn_drain_fini(void); 799 static void conn_drain_tail(conn_t *connp, boolean_t closing); 800 801 static void conn_walk_drain(void); 802 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 803 zoneid_t); 804 805 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 806 zoneid_t); 807 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 808 void *dummy_arg); 809 810 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 811 812 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 813 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 814 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 815 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 816 817 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 818 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 819 caddr_t, cred_t *); 820 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 823 cred_t *); 824 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 825 caddr_t cp, cred_t *cr); 826 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 827 cred_t *); 828 static squeue_func_t ip_squeue_switch(int); 829 830 static void ip_kstat_init(void); 831 static void ip_kstat_fini(void); 832 static int ip_kstat_update(kstat_t *kp, int rw); 833 static void icmp_kstat_init(void); 834 static void icmp_kstat_fini(void); 835 static int icmp_kstat_update(kstat_t *kp, int rw); 836 837 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 838 839 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 840 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 841 842 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 843 ipha_t *, ill_t *, boolean_t); 844 845 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 846 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 847 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 848 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 849 850 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 851 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 852 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 853 854 /* How long, in seconds, we allow frags to hang around. */ 855 #define IP_FRAG_TIMEOUT 60 856 857 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 858 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 859 860 /* 861 * Threshold which determines whether MDT should be used when 862 * generating IP fragments; payload size must be greater than 863 * this threshold for MDT to take place. 864 */ 865 #define IP_WPUT_FRAG_MDT_MIN 32768 866 867 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 868 869 /* Protected by ip_mi_lock */ 870 static void *ip_g_head; /* Instance Data List Head */ 871 kmutex_t ip_mi_lock; /* Lock for list of instances */ 872 873 /* Only modified during _init and _fini thus no locking is needed. */ 874 caddr_t ip_g_nd; /* Named Dispatch List Head */ 875 876 877 static long ip_rput_pullups; 878 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 879 880 vmem_t *ip_minor_arena; 881 882 /* 883 * MIB-2 stuff for SNMP (both IP and ICMP) 884 */ 885 mib2_ip_t ip_mib; 886 mib2_icmp_t icmp_mib; 887 888 #ifdef DEBUG 889 uint32_t ipsechw_debug = 0; 890 #endif 891 892 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 893 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 894 895 uint_t loopback_packets = 0; 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 901 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 902 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 903 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 904 hrtime_t ip_multirt_log_interval = 1000; 905 /* Time since last warning issued. */ 906 static hrtime_t multirt_bad_mtu_last_time = 0; 907 908 kmutex_t ip_trash_timer_lock; 909 krwlock_t ip_g_nd_lock; 910 911 /* 912 * XXX following really should only be in a header. Would need more 913 * header and .c clean up first. 914 */ 915 extern optdb_obj_t ip_opt_obj; 916 917 ulong_t ip_squeue_enter_unbound = 0; 918 919 /* 920 * Named Dispatch Parameter Table. 921 * All of these are alterable, within the min/max values given, at run time. 922 */ 923 static ipparam_t lcl_param_arr[] = { 924 /* min max value name */ 925 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 926 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 927 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 928 { 0, 1, 0, "ip_respond_to_timestamp"}, 929 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 930 { 0, 1, 1, "ip_send_redirects"}, 931 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 932 { 0, 10, 0, "ip_debug"}, 933 { 0, 10, 0, "ip_mrtdebug"}, 934 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 935 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 936 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 937 { 1, 255, 255, "ip_def_ttl" }, 938 { 0, 1, 0, "ip_forward_src_routed"}, 939 { 0, 256, 32, "ip_wroff_extra" }, 940 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 941 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 942 { 0, 1, 1, "ip_path_mtu_discovery" }, 943 { 0, 240, 30, "ip_ignore_delete_time" }, 944 { 0, 1, 0, "ip_ignore_redirect" }, 945 { 0, 1, 1, "ip_output_queue" }, 946 { 1, 254, 1, "ip_broadcast_ttl" }, 947 { 0, 99999, 100, "ip_icmp_err_interval" }, 948 { 1, 99999, 10, "ip_icmp_err_burst" }, 949 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 950 { 0, 1, 0, "ip_strict_dst_multihoming" }, 951 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 952 { 0, 1, 0, "ipsec_override_persocket_policy" }, 953 { 0, 1, 1, "icmp_accept_clear_messages" }, 954 { 0, 1, 1, "igmp_accept_clear_messages" }, 955 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 956 "ip_ndp_delay_first_probe_time"}, 957 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 958 "ip_ndp_max_unicast_solicit"}, 959 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 960 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 961 { 0, 1, 0, "ip6_forward_src_routed"}, 962 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 963 { 0, 1, 1, "ip6_send_redirects"}, 964 { 0, 1, 0, "ip6_ignore_redirect" }, 965 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 966 967 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 968 969 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 970 971 { 0, 1, 1, "pim_accept_clear_messages" }, 972 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 973 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 974 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 975 { 0, 15, 0, "ip_policy_mask" }, 976 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 977 { 0, 255, 1, "ip_multirt_ttl" }, 978 { 0, 1, 1, "ip_multidata_outbound" }, 979 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 980 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 981 { 0, 1000, 1, "ip_max_temp_defend" }, 982 { 0, 1000, 3, "ip_max_defend" }, 983 { 0, 999999, 30, "ip_defend_interval" }, 984 { 0, 3600000, 300000, "ip_dup_recovery" }, 985 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 986 #ifdef DEBUG 987 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 988 #endif 989 }; 990 991 ipparam_t *ip_param_arr = lcl_param_arr; 992 993 /* Extended NDP table */ 994 static ipndp_t lcl_ndp_arr[] = { 995 /* getf setf data name */ 996 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 997 "ip_forwarding" }, 998 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 999 "ip6_forwarding" }, 1000 { ip_ill_report, NULL, NULL, 1001 "ip_ill_status" }, 1002 { ip_ipif_report, NULL, NULL, 1003 "ip_ipif_status" }, 1004 { ip_ire_report, NULL, NULL, 1005 "ipv4_ire_status" }, 1006 { ip_ire_report_mrtun, NULL, NULL, 1007 "ipv4_mrtun_ire_status" }, 1008 { ip_ire_report_srcif, NULL, NULL, 1009 "ipv4_srcif_ire_status" }, 1010 { ip_ire_report_v6, NULL, NULL, 1011 "ipv6_ire_status" }, 1012 { ip_conn_report, NULL, NULL, 1013 "ip_conn_status" }, 1014 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1015 "ip_rput_pullups" }, 1016 { ndp_report, NULL, NULL, 1017 "ip_ndp_cache_report" }, 1018 { ip_srcid_report, NULL, NULL, 1019 "ip_srcid_status" }, 1020 { ip_param_generic_get, ip_squeue_profile_set, 1021 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1022 { ip_param_generic_get, ip_squeue_bind_set, 1023 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1024 { ip_param_generic_get, ip_input_proc_set, 1025 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1026 { ip_param_generic_get, ip_int_set, 1027 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1028 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1029 "ip_cgtp_filter" }, 1030 { ip_param_generic_get, ip_int_set, 1031 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1032 }; 1033 1034 /* 1035 * ip_g_forward controls IP forwarding. It takes two values: 1036 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1037 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1038 * 1039 * RFC1122 says there must be a configuration switch to control forwarding, 1040 * but that the default MUST be to not forward packets ever. Implicit 1041 * control based on configuration of multiple interfaces MUST NOT be 1042 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1043 * and, in fact, it was the default. That capability is now provided in the 1044 * /etc/rc2.d/S69inet script. 1045 */ 1046 int ip_g_forward = IP_FORWARD_DEFAULT; 1047 1048 /* It also has an IPv6 counterpart. */ 1049 1050 int ipv6_forward = IP_FORWARD_DEFAULT; 1051 1052 /* 1053 * Table of IP ioctls encoding the various properties of the ioctl and 1054 * indexed based on the last byte of the ioctl command. Occasionally there 1055 * is a clash, and there is more than 1 ioctl with the same last byte. 1056 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1057 * ioctls are encoded in the misc table. An entry in the ndx table is 1058 * retrieved by indexing on the last byte of the ioctl command and comparing 1059 * the ioctl command with the value in the ndx table. In the event of a 1060 * mismatch the misc table is then searched sequentially for the desired 1061 * ioctl command. 1062 * 1063 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1064 */ 1065 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1066 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 1077 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1078 MISC_CMD, ip_siocaddrt, NULL }, 1079 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1080 MISC_CMD, ip_siocdelrt, NULL }, 1081 1082 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1083 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1084 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_addr, NULL }, 1086 1087 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1088 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1089 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1090 IPI_GET_CMD | IPI_REPL, 1091 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1092 1093 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1094 IPI_PRIV | IPI_WR | IPI_REPL, 1095 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1096 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1097 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1098 IF_CMD, ip_sioctl_get_flags, NULL }, 1099 1100 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 1107 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1108 IF_CMD, ip_sioctl_mtu, NULL }, 1109 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1110 IF_CMD, ip_sioctl_get_mtu, NULL }, 1111 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1112 IPI_GET_CMD | IPI_REPL, 1113 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1114 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1115 IF_CMD, ip_sioctl_brdaddr, NULL }, 1116 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1117 IPI_GET_CMD | IPI_REPL, 1118 IF_CMD, ip_sioctl_get_netmask, NULL }, 1119 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1120 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1121 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1122 IPI_GET_CMD | IPI_REPL, 1123 IF_CMD, ip_sioctl_get_metric, NULL }, 1124 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1125 IF_CMD, ip_sioctl_metric, NULL }, 1126 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 1128 /* See 166-168 below for extended SIOC*XARP ioctls */ 1129 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1130 MISC_CMD, ip_sioctl_arp, NULL }, 1131 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1132 MISC_CMD, ip_sioctl_arp, NULL }, 1133 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1134 MISC_CMD, ip_sioctl_arp, NULL }, 1135 1136 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 1158 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1159 MISC_CMD, if_unitsel, if_unitsel_restart }, 1160 1161 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 1180 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1181 IPI_PRIV | IPI_WR | IPI_MODOK, 1182 IF_CMD, ip_sioctl_sifname, NULL }, 1183 1184 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 1198 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1199 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1200 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1201 IF_CMD, ip_sioctl_get_muxid, NULL }, 1202 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1203 IPI_PRIV | IPI_WR | IPI_REPL, 1204 IF_CMD, ip_sioctl_muxid, NULL }, 1205 1206 /* Both if and lif variants share same func */ 1207 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1208 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1209 /* Both if and lif variants share same func */ 1210 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1211 IPI_PRIV | IPI_WR | IPI_REPL, 1212 IF_CMD, ip_sioctl_slifindex, NULL }, 1213 1214 /* copyin size cannot be coded for SIOCGIFCONF */ 1215 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1216 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1217 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1218 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 1235 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_removeif, 1238 ip_sioctl_removeif_restart }, 1239 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1240 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1241 LIF_CMD, ip_sioctl_addif, NULL }, 1242 #define SIOCLIFADDR_NDX 112 1243 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1244 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1245 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1246 IPI_GET_CMD | IPI_REPL, 1247 LIF_CMD, ip_sioctl_get_addr, NULL }, 1248 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1249 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1250 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1251 IPI_GET_CMD | IPI_REPL, 1252 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1253 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1254 IPI_PRIV | IPI_WR | IPI_REPL, 1255 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1256 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_flags, NULL }, 1259 1260 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1261 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1262 1263 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1266 LIF_CMD, ip_sioctl_mtu, NULL }, 1267 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1269 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1272 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1273 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1274 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1275 IPI_GET_CMD | IPI_REPL, 1276 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1277 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1278 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1279 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1280 IPI_GET_CMD | IPI_REPL, 1281 LIF_CMD, ip_sioctl_get_metric, NULL }, 1282 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_metric, NULL }, 1284 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1285 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1286 LIF_CMD, ip_sioctl_slifname, 1287 ip_sioctl_slifname_restart }, 1288 1289 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1290 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1291 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1292 IPI_GET_CMD | IPI_REPL, 1293 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1294 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_REPL, 1296 LIF_CMD, ip_sioctl_muxid, NULL }, 1297 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1298 IPI_GET_CMD | IPI_REPL, 1299 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1300 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR | IPI_REPL, 1302 LIF_CMD, ip_sioctl_slifindex, 0 }, 1303 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1304 LIF_CMD, ip_sioctl_token, NULL }, 1305 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1306 IPI_GET_CMD | IPI_REPL, 1307 LIF_CMD, ip_sioctl_get_token, NULL }, 1308 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1309 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1310 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1311 IPI_GET_CMD | IPI_REPL, 1312 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1313 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1314 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1315 1316 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1317 IPI_GET_CMD | IPI_REPL, 1318 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1319 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1320 LIF_CMD, ip_siocdelndp_v6, NULL }, 1321 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1322 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1323 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1324 LIF_CMD, ip_siocsetndp_v6, NULL }, 1325 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1326 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1327 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1328 MISC_CMD, ip_sioctl_tonlink, NULL }, 1329 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1330 MISC_CMD, ip_sioctl_tmysite, NULL }, 1331 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1332 TUN_CMD, ip_sioctl_tunparam, NULL }, 1333 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1334 IPI_PRIV | IPI_WR, 1335 TUN_CMD, ip_sioctl_tunparam, NULL }, 1336 1337 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1338 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1339 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1340 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1341 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1342 1343 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1344 IPI_PRIV | IPI_WR | IPI_REPL, 1345 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1346 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1347 IPI_PRIV | IPI_WR | IPI_REPL, 1348 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1349 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1350 IPI_PRIV | IPI_WR, 1351 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1352 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1353 IPI_GET_CMD | IPI_REPL, 1354 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1355 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1356 IPI_GET_CMD | IPI_REPL, 1357 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1358 1359 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1360 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1361 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1362 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1363 1364 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1365 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1366 1367 /* These are handled in ip_sioctl_copyin_setup itself */ 1368 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1369 MISC_CMD, NULL, NULL }, 1370 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1371 MISC_CMD, NULL, NULL }, 1372 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1373 1374 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1375 ip_sioctl_get_lifconf, NULL }, 1376 1377 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1378 MISC_CMD, ip_sioctl_xarp, NULL }, 1379 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1380 MISC_CMD, ip_sioctl_xarp, NULL }, 1381 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1382 MISC_CMD, ip_sioctl_xarp, NULL }, 1383 1384 /* SIOCPOPSOCKFS is not handled by IP */ 1385 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1386 1387 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1388 IPI_GET_CMD | IPI_REPL, 1389 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1390 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1391 IPI_PRIV | IPI_WR | IPI_REPL, 1392 LIF_CMD, ip_sioctl_slifzone, 1393 ip_sioctl_slifzone_restart }, 1394 /* 172-174 are SCTP ioctls and not handled by IP */ 1395 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1396 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1397 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1398 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1399 IPI_GET_CMD, LIF_CMD, 1400 ip_sioctl_get_lifusesrc, 0 }, 1401 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1402 IPI_PRIV | IPI_WR, 1403 LIF_CMD, ip_sioctl_slifusesrc, 1404 NULL }, 1405 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1406 ip_sioctl_get_lifsrcof, NULL }, 1407 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1408 MISC_CMD, ip_sioctl_msfilter, NULL }, 1409 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1410 MISC_CMD, ip_sioctl_msfilter, NULL }, 1411 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1412 MISC_CMD, ip_sioctl_msfilter, NULL }, 1413 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1414 MISC_CMD, ip_sioctl_msfilter, NULL }, 1415 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1416 ip_sioctl_set_ipmpfailback, NULL } 1417 }; 1418 1419 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1420 1421 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1422 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1423 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1424 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1425 TUN_CMD, ip_sioctl_tunparam, NULL }, 1426 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1427 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1428 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1430 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1431 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1432 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1433 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1434 MISC_CMD, mrt_ioctl}, 1435 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1436 MISC_CMD, mrt_ioctl}, 1437 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1438 MISC_CMD, mrt_ioctl} 1439 }; 1440 1441 int ip_misc_ioctl_count = 1442 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1443 1444 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1445 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1446 static int conn_drain_list_index; /* Next drain_list to be used */ 1447 int conn_drain_nthreads; /* Number of drainers reqd. */ 1448 /* Settable in /etc/system */ 1449 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1450 1451 /* Defined in ip_ire.c */ 1452 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1453 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1454 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1455 1456 static nv_t ire_nv_arr[] = { 1457 { IRE_BROADCAST, "BROADCAST" }, 1458 { IRE_LOCAL, "LOCAL" }, 1459 { IRE_LOOPBACK, "LOOPBACK" }, 1460 { IRE_CACHE, "CACHE" }, 1461 { IRE_DEFAULT, "DEFAULT" }, 1462 { IRE_PREFIX, "PREFIX" }, 1463 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1464 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1465 { IRE_HOST, "HOST" }, 1466 { 0 } 1467 }; 1468 1469 nv_t *ire_nv_tbl = ire_nv_arr; 1470 1471 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1472 extern krwlock_t ipsec_capab_ills_lock; 1473 1474 /* Defined in ip_netinfo.c */ 1475 extern ddi_taskq_t *eventq_queue_nic; 1476 1477 /* Packet dropper for IP IPsec processing failures */ 1478 ipdropper_t ip_dropper; 1479 1480 /* Simple ICMP IP Header Template */ 1481 static ipha_t icmp_ipha = { 1482 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1483 }; 1484 1485 struct module_info ip_mod_info = { 1486 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1487 }; 1488 1489 /* 1490 * Duplicate static symbols within a module confuses mdb; so we avoid the 1491 * problem by making the symbols here distinct from those in udp.c. 1492 */ 1493 1494 static struct qinit iprinit = { 1495 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1496 &ip_mod_info 1497 }; 1498 1499 static struct qinit ipwinit = { 1500 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1501 &ip_mod_info 1502 }; 1503 1504 static struct qinit iplrinit = { 1505 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1506 &ip_mod_info 1507 }; 1508 1509 static struct qinit iplwinit = { 1510 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1511 &ip_mod_info 1512 }; 1513 1514 struct streamtab ipinfo = { 1515 &iprinit, &ipwinit, &iplrinit, &iplwinit 1516 }; 1517 1518 #ifdef DEBUG 1519 static boolean_t skip_sctp_cksum = B_FALSE; 1520 #endif 1521 1522 /* 1523 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1524 * ip_rput_v6(), ip_output(), etc. If the message 1525 * block already has a M_CTL at the front of it, then simply set the zoneid 1526 * appropriately. 1527 */ 1528 mblk_t * 1529 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1530 { 1531 mblk_t *first_mp; 1532 ipsec_out_t *io; 1533 1534 ASSERT(zoneid != ALL_ZONES); 1535 if (mp->b_datap->db_type == M_CTL) { 1536 io = (ipsec_out_t *)mp->b_rptr; 1537 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1538 io->ipsec_out_zoneid = zoneid; 1539 return (mp); 1540 } 1541 1542 first_mp = ipsec_alloc_ipsec_out(); 1543 if (first_mp == NULL) 1544 return (NULL); 1545 io = (ipsec_out_t *)first_mp->b_rptr; 1546 /* This is not a secure packet */ 1547 io->ipsec_out_secure = B_FALSE; 1548 io->ipsec_out_zoneid = zoneid; 1549 first_mp->b_cont = mp; 1550 return (first_mp); 1551 } 1552 1553 /* 1554 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1555 */ 1556 mblk_t * 1557 ip_copymsg(mblk_t *mp) 1558 { 1559 mblk_t *nmp; 1560 ipsec_info_t *in; 1561 1562 if (mp->b_datap->db_type != M_CTL) 1563 return (copymsg(mp)); 1564 1565 in = (ipsec_info_t *)mp->b_rptr; 1566 1567 /* 1568 * Note that M_CTL is also used for delivering ICMP error messages 1569 * upstream to transport layers. 1570 */ 1571 if (in->ipsec_info_type != IPSEC_OUT && 1572 in->ipsec_info_type != IPSEC_IN) 1573 return (copymsg(mp)); 1574 1575 nmp = copymsg(mp->b_cont); 1576 1577 if (in->ipsec_info_type == IPSEC_OUT) 1578 return (ipsec_out_tag(mp, nmp)); 1579 else 1580 return (ipsec_in_tag(mp, nmp)); 1581 } 1582 1583 /* Generate an ICMP fragmentation needed message. */ 1584 static void 1585 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1586 { 1587 icmph_t icmph; 1588 mblk_t *first_mp; 1589 boolean_t mctl_present; 1590 1591 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1592 1593 if (!(mp = icmp_pkt_err_ok(mp))) { 1594 if (mctl_present) 1595 freeb(first_mp); 1596 return; 1597 } 1598 1599 bzero(&icmph, sizeof (icmph_t)); 1600 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1601 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1602 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1603 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1604 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1605 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1606 } 1607 1608 /* 1609 * icmp_inbound deals with ICMP messages in the following ways. 1610 * 1611 * 1) It needs to send a reply back and possibly delivering it 1612 * to the "interested" upper clients. 1613 * 2) It needs to send it to the upper clients only. 1614 * 3) It needs to change some values in IP only. 1615 * 4) It needs to change some values in IP and upper layers e.g TCP. 1616 * 1617 * We need to accomodate icmp messages coming in clear until we get 1618 * everything secure from the wire. If icmp_accept_clear_messages 1619 * is zero we check with the global policy and act accordingly. If 1620 * it is non-zero, we accept the message without any checks. But 1621 * *this does not mean* that this will be delivered to the upper 1622 * clients. By accepting we might send replies back, change our MTU 1623 * value etc. but delivery to the ULP/clients depends on their policy 1624 * dispositions. 1625 * 1626 * We handle the above 4 cases in the context of IPSEC in the 1627 * following way : 1628 * 1629 * 1) Send the reply back in the same way as the request came in. 1630 * If it came in encrypted, it goes out encrypted. If it came in 1631 * clear, it goes out in clear. Thus, this will prevent chosen 1632 * plain text attack. 1633 * 2) The client may or may not expect things to come in secure. 1634 * If it comes in secure, the policy constraints are checked 1635 * before delivering it to the upper layers. If it comes in 1636 * clear, ipsec_inbound_accept_clear will decide whether to 1637 * accept this in clear or not. In both the cases, if the returned 1638 * message (IP header + 8 bytes) that caused the icmp message has 1639 * AH/ESP headers, it is sent up to AH/ESP for validation before 1640 * sending up. If there are only 8 bytes of returned message, then 1641 * upper client will not be notified. 1642 * 3) Check with global policy to see whether it matches the constaints. 1643 * But this will be done only if icmp_accept_messages_in_clear is 1644 * zero. 1645 * 4) If we need to change both in IP and ULP, then the decision taken 1646 * while affecting the values in IP and while delivering up to TCP 1647 * should be the same. 1648 * 1649 * There are two cases. 1650 * 1651 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1652 * failed), we will not deliver it to the ULP, even though they 1653 * are *willing* to accept in *clear*. This is fine as our global 1654 * disposition to icmp messages asks us reject the datagram. 1655 * 1656 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1657 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1658 * to deliver it to ULP (policy failed), it can lead to 1659 * consistency problems. The cases known at this time are 1660 * ICMP_DESTINATION_UNREACHABLE messages with following code 1661 * values : 1662 * 1663 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1664 * and Upper layer rejects. Then the communication will 1665 * come to a stop. This is solved by making similar decisions 1666 * at both levels. Currently, when we are unable to deliver 1667 * to the Upper Layer (due to policy failures) while IP has 1668 * adjusted ire_max_frag, the next outbound datagram would 1669 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1670 * will be with the right level of protection. Thus the right 1671 * value will be communicated even if we are not able to 1672 * communicate when we get from the wire initially. But this 1673 * assumes there would be at least one outbound datagram after 1674 * IP has adjusted its ire_max_frag value. To make things 1675 * simpler, we accept in clear after the validation of 1676 * AH/ESP headers. 1677 * 1678 * - Other ICMP ERRORS : We may not be able to deliver it to the 1679 * upper layer depending on the level of protection the upper 1680 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1681 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1682 * should be accepted in clear when the Upper layer expects secure. 1683 * Thus the communication may get aborted by some bad ICMP 1684 * packets. 1685 * 1686 * IPQoS Notes: 1687 * The only instance when a packet is sent for processing is when there 1688 * isn't an ICMP client and if we are interested in it. 1689 * If there is a client, IPPF processing will take place in the 1690 * ip_fanout_proto routine. 1691 * 1692 * Zones notes: 1693 * The packet is only processed in the context of the specified zone: typically 1694 * only this zone will reply to an echo request, and only interested clients in 1695 * this zone will receive a copy of the packet. This means that the caller must 1696 * call icmp_inbound() for each relevant zone. 1697 */ 1698 static void 1699 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1700 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1701 ill_t *recv_ill, zoneid_t zoneid) 1702 { 1703 icmph_t *icmph; 1704 ipha_t *ipha; 1705 int iph_hdr_length; 1706 int hdr_length; 1707 boolean_t interested; 1708 uint32_t ts; 1709 uchar_t *wptr; 1710 ipif_t *ipif; 1711 mblk_t *first_mp; 1712 ipsec_in_t *ii; 1713 ire_t *src_ire; 1714 boolean_t onlink; 1715 timestruc_t now; 1716 uint32_t ill_index; 1717 1718 ASSERT(ill != NULL); 1719 1720 first_mp = mp; 1721 if (mctl_present) { 1722 mp = first_mp->b_cont; 1723 ASSERT(mp != NULL); 1724 } 1725 1726 ipha = (ipha_t *)mp->b_rptr; 1727 if (icmp_accept_clear_messages == 0) { 1728 first_mp = ipsec_check_global_policy(first_mp, NULL, 1729 ipha, NULL, mctl_present); 1730 if (first_mp == NULL) 1731 return; 1732 } 1733 1734 /* 1735 * On a labeled system, we have to check whether the zone itself is 1736 * permitted to receive raw traffic. 1737 */ 1738 if (is_system_labeled()) { 1739 if (zoneid == ALL_ZONES) 1740 zoneid = tsol_packet_to_zoneid(mp); 1741 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1742 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1743 zoneid)); 1744 BUMP_MIB(&icmp_mib, icmpInErrors); 1745 freemsg(first_mp); 1746 return; 1747 } 1748 } 1749 1750 /* 1751 * We have accepted the ICMP message. It means that we will 1752 * respond to the packet if needed. It may not be delivered 1753 * to the upper client depending on the policy constraints 1754 * and the disposition in ipsec_inbound_accept_clear. 1755 */ 1756 1757 ASSERT(ill != NULL); 1758 1759 BUMP_MIB(&icmp_mib, icmpInMsgs); 1760 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1761 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1762 /* Last chance to get real. */ 1763 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1764 BUMP_MIB(&icmp_mib, icmpInErrors); 1765 freemsg(first_mp); 1766 return; 1767 } 1768 /* Refresh iph following the pullup. */ 1769 ipha = (ipha_t *)mp->b_rptr; 1770 } 1771 /* ICMP header checksum, including checksum field, should be zero. */ 1772 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1773 IP_CSUM(mp, iph_hdr_length, 0)) { 1774 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1775 freemsg(first_mp); 1776 return; 1777 } 1778 /* The IP header will always be a multiple of four bytes */ 1779 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1780 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1781 icmph->icmph_code)); 1782 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1783 /* We will set "interested" to "true" if we want a copy */ 1784 interested = B_FALSE; 1785 switch (icmph->icmph_type) { 1786 case ICMP_ECHO_REPLY: 1787 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1788 break; 1789 case ICMP_DEST_UNREACHABLE: 1790 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1791 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1792 interested = B_TRUE; /* Pass up to transport */ 1793 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1794 break; 1795 case ICMP_SOURCE_QUENCH: 1796 interested = B_TRUE; /* Pass up to transport */ 1797 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1798 break; 1799 case ICMP_REDIRECT: 1800 if (!ip_ignore_redirect) 1801 interested = B_TRUE; 1802 BUMP_MIB(&icmp_mib, icmpInRedirects); 1803 break; 1804 case ICMP_ECHO_REQUEST: 1805 /* 1806 * Whether to respond to echo requests that come in as IP 1807 * broadcasts or as IP multicast is subject to debate 1808 * (what isn't?). We aim to please, you pick it. 1809 * Default is do it. 1810 */ 1811 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1812 /* unicast: always respond */ 1813 interested = B_TRUE; 1814 } else if (CLASSD(ipha->ipha_dst)) { 1815 /* multicast: respond based on tunable */ 1816 interested = ip_g_resp_to_echo_mcast; 1817 } else if (broadcast) { 1818 /* broadcast: respond based on tunable */ 1819 interested = ip_g_resp_to_echo_bcast; 1820 } 1821 BUMP_MIB(&icmp_mib, icmpInEchos); 1822 break; 1823 case ICMP_ROUTER_ADVERTISEMENT: 1824 case ICMP_ROUTER_SOLICITATION: 1825 break; 1826 case ICMP_TIME_EXCEEDED: 1827 interested = B_TRUE; /* Pass up to transport */ 1828 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1829 break; 1830 case ICMP_PARAM_PROBLEM: 1831 interested = B_TRUE; /* Pass up to transport */ 1832 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1833 break; 1834 case ICMP_TIME_STAMP_REQUEST: 1835 /* Response to Time Stamp Requests is local policy. */ 1836 if (ip_g_resp_to_timestamp && 1837 /* So is whether to respond if it was an IP broadcast. */ 1838 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1839 int tstamp_len = 3 * sizeof (uint32_t); 1840 1841 if (wptr + tstamp_len > mp->b_wptr) { 1842 if (!pullupmsg(mp, wptr + tstamp_len - 1843 mp->b_rptr)) { 1844 BUMP_MIB(&ip_mib, ipInDiscards); 1845 freemsg(first_mp); 1846 return; 1847 } 1848 /* Refresh ipha following the pullup. */ 1849 ipha = (ipha_t *)mp->b_rptr; 1850 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1851 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1852 } 1853 interested = B_TRUE; 1854 } 1855 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1856 break; 1857 case ICMP_TIME_STAMP_REPLY: 1858 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1859 break; 1860 case ICMP_INFO_REQUEST: 1861 /* Per RFC 1122 3.2.2.7, ignore this. */ 1862 case ICMP_INFO_REPLY: 1863 break; 1864 case ICMP_ADDRESS_MASK_REQUEST: 1865 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1866 /* TODO m_pullup of complete header? */ 1867 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1868 interested = B_TRUE; 1869 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1870 break; 1871 case ICMP_ADDRESS_MASK_REPLY: 1872 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1873 break; 1874 default: 1875 interested = B_TRUE; /* Pass up to transport */ 1876 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1877 break; 1878 } 1879 /* See if there is an ICMP client. */ 1880 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1881 /* If there is an ICMP client and we want one too, copy it. */ 1882 mblk_t *first_mp1; 1883 1884 if (!interested) { 1885 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1886 ip_policy, recv_ill, zoneid); 1887 return; 1888 } 1889 first_mp1 = ip_copymsg(first_mp); 1890 if (first_mp1 != NULL) { 1891 ip_fanout_proto(q, first_mp1, ill, ipha, 1892 0, mctl_present, ip_policy, recv_ill, zoneid); 1893 } 1894 } else if (!interested) { 1895 freemsg(first_mp); 1896 return; 1897 } else { 1898 /* 1899 * Initiate policy processing for this packet if ip_policy 1900 * is true. 1901 */ 1902 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1903 ill_index = ill->ill_phyint->phyint_ifindex; 1904 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1905 if (mp == NULL) { 1906 if (mctl_present) { 1907 freeb(first_mp); 1908 } 1909 BUMP_MIB(&icmp_mib, icmpInErrors); 1910 return; 1911 } 1912 } 1913 } 1914 /* We want to do something with it. */ 1915 /* Check db_ref to make sure we can modify the packet. */ 1916 if (mp->b_datap->db_ref > 1) { 1917 mblk_t *first_mp1; 1918 1919 first_mp1 = ip_copymsg(first_mp); 1920 freemsg(first_mp); 1921 if (!first_mp1) { 1922 BUMP_MIB(&icmp_mib, icmpOutDrops); 1923 return; 1924 } 1925 first_mp = first_mp1; 1926 if (mctl_present) { 1927 mp = first_mp->b_cont; 1928 ASSERT(mp != NULL); 1929 } else { 1930 mp = first_mp; 1931 } 1932 ipha = (ipha_t *)mp->b_rptr; 1933 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1934 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1935 } 1936 switch (icmph->icmph_type) { 1937 case ICMP_ADDRESS_MASK_REQUEST: 1938 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1939 if (ipif == NULL) { 1940 freemsg(first_mp); 1941 return; 1942 } 1943 /* 1944 * outging interface must be IPv4 1945 */ 1946 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1947 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1948 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1949 ipif_refrele(ipif); 1950 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1951 break; 1952 case ICMP_ECHO_REQUEST: 1953 icmph->icmph_type = ICMP_ECHO_REPLY; 1954 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1955 break; 1956 case ICMP_TIME_STAMP_REQUEST: { 1957 uint32_t *tsp; 1958 1959 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1960 tsp = (uint32_t *)wptr; 1961 tsp++; /* Skip past 'originate time' */ 1962 /* Compute # of milliseconds since midnight */ 1963 gethrestime(&now); 1964 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1965 now.tv_nsec / (NANOSEC / MILLISEC); 1966 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1967 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1968 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1969 break; 1970 } 1971 default: 1972 ipha = (ipha_t *)&icmph[1]; 1973 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1974 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1975 BUMP_MIB(&ip_mib, ipInDiscards); 1976 freemsg(first_mp); 1977 return; 1978 } 1979 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1980 ipha = (ipha_t *)&icmph[1]; 1981 } 1982 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1983 BUMP_MIB(&ip_mib, ipInDiscards); 1984 freemsg(first_mp); 1985 return; 1986 } 1987 hdr_length = IPH_HDR_LENGTH(ipha); 1988 if (hdr_length < sizeof (ipha_t)) { 1989 BUMP_MIB(&ip_mib, ipInDiscards); 1990 freemsg(first_mp); 1991 return; 1992 } 1993 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1994 if (!pullupmsg(mp, 1995 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1996 BUMP_MIB(&ip_mib, ipInDiscards); 1997 freemsg(first_mp); 1998 return; 1999 } 2000 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2001 ipha = (ipha_t *)&icmph[1]; 2002 } 2003 switch (icmph->icmph_type) { 2004 case ICMP_REDIRECT: 2005 /* 2006 * As there is no upper client to deliver, we don't 2007 * need the first_mp any more. 2008 */ 2009 if (mctl_present) { 2010 freeb(first_mp); 2011 } 2012 icmp_redirect(mp); 2013 return; 2014 case ICMP_DEST_UNREACHABLE: 2015 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2016 if (!icmp_inbound_too_big(icmph, ipha, ill, 2017 zoneid, mp, iph_hdr_length)) { 2018 freemsg(first_mp); 2019 return; 2020 } 2021 /* 2022 * icmp_inbound_too_big() may alter mp. 2023 * Resynch ipha and icmph accordingly. 2024 */ 2025 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2026 ipha = (ipha_t *)&icmph[1]; 2027 } 2028 /* FALLTHRU */ 2029 default : 2030 /* 2031 * IPQoS notes: Since we have already done IPQoS 2032 * processing we don't want to do it again in 2033 * the fanout routines called by 2034 * icmp_inbound_error_fanout, hence the last 2035 * argument, ip_policy, is B_FALSE. 2036 */ 2037 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2038 ipha, iph_hdr_length, hdr_length, mctl_present, 2039 B_FALSE, recv_ill, zoneid); 2040 } 2041 return; 2042 } 2043 /* Send out an ICMP packet */ 2044 icmph->icmph_checksum = 0; 2045 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2046 if (icmph->icmph_checksum == 0) 2047 icmph->icmph_checksum = 0xFFFF; 2048 if (broadcast || CLASSD(ipha->ipha_dst)) { 2049 ipif_t *ipif_chosen; 2050 /* 2051 * Make it look like it was directed to us, so we don't look 2052 * like a fool with a broadcast or multicast source address. 2053 */ 2054 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2055 /* 2056 * Make sure that we haven't grabbed an interface that's DOWN. 2057 */ 2058 if (ipif != NULL) { 2059 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2060 ipha->ipha_src, zoneid); 2061 if (ipif_chosen != NULL) { 2062 ipif_refrele(ipif); 2063 ipif = ipif_chosen; 2064 } 2065 } 2066 if (ipif == NULL) { 2067 ip0dbg(("icmp_inbound: " 2068 "No source for broadcast/multicast:\n" 2069 "\tsrc 0x%x dst 0x%x ill %p " 2070 "ipif_lcl_addr 0x%x\n", 2071 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2072 (void *)ill, 2073 ill->ill_ipif->ipif_lcl_addr)); 2074 freemsg(first_mp); 2075 return; 2076 } 2077 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2078 ipha->ipha_dst = ipif->ipif_src_addr; 2079 ipif_refrele(ipif); 2080 } 2081 /* Reset time to live. */ 2082 ipha->ipha_ttl = ip_def_ttl; 2083 { 2084 /* Swap source and destination addresses */ 2085 ipaddr_t tmp; 2086 2087 tmp = ipha->ipha_src; 2088 ipha->ipha_src = ipha->ipha_dst; 2089 ipha->ipha_dst = tmp; 2090 } 2091 ipha->ipha_ident = 0; 2092 if (!IS_SIMPLE_IPH(ipha)) 2093 icmp_options_update(ipha); 2094 2095 /* 2096 * ICMP echo replies should go out on the same interface 2097 * the request came on as probes used by in.mpathd for detecting 2098 * NIC failures are ECHO packets. We turn-off load spreading 2099 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2100 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2101 * function. This is in turn handled by ip_wput and ip_newroute 2102 * to make sure that the packet goes out on the interface it came 2103 * in on. If we don't turnoff load spreading, the packets might get 2104 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2105 * to go out and in.mpathd would wrongly detect a failure or 2106 * mis-detect a NIC failure for link failure. As load spreading 2107 * can happen only if ill_group is not NULL, we do only for 2108 * that case and this does not affect the normal case. 2109 * 2110 * We turn off load spreading only on echo packets that came from 2111 * on-link hosts. If the interface route has been deleted, this will 2112 * not be enforced as we can't do much. For off-link hosts, as the 2113 * default routes in IPv4 does not typically have an ire_ipif 2114 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2115 * Moreover, expecting a default route through this interface may 2116 * not be correct. We use ipha_dst because of the swap above. 2117 */ 2118 onlink = B_FALSE; 2119 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2120 /* 2121 * First, we need to make sure that it is not one of our 2122 * local addresses. If we set onlink when it is one of 2123 * our local addresses, we will end up creating IRE_CACHES 2124 * for one of our local addresses. Then, we will never 2125 * accept packets for them afterwards. 2126 */ 2127 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2128 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2129 if (src_ire == NULL) { 2130 ipif = ipif_get_next_ipif(NULL, ill); 2131 if (ipif == NULL) { 2132 BUMP_MIB(&ip_mib, ipInDiscards); 2133 freemsg(mp); 2134 return; 2135 } 2136 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2137 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2138 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2139 ipif_refrele(ipif); 2140 if (src_ire != NULL) { 2141 onlink = B_TRUE; 2142 ire_refrele(src_ire); 2143 } 2144 } else { 2145 ire_refrele(src_ire); 2146 } 2147 } 2148 if (!mctl_present) { 2149 /* 2150 * This packet should go out the same way as it 2151 * came in i.e in clear. To make sure that global 2152 * policy will not be applied to this in ip_wput_ire, 2153 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2154 */ 2155 ASSERT(first_mp == mp); 2156 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2157 BUMP_MIB(&ip_mib, ipInDiscards); 2158 freemsg(mp); 2159 return; 2160 } 2161 ii = (ipsec_in_t *)first_mp->b_rptr; 2162 2163 /* This is not a secure packet */ 2164 ii->ipsec_in_secure = B_FALSE; 2165 if (onlink) { 2166 ii->ipsec_in_attach_if = B_TRUE; 2167 ii->ipsec_in_ill_index = 2168 ill->ill_phyint->phyint_ifindex; 2169 ii->ipsec_in_rill_index = 2170 recv_ill->ill_phyint->phyint_ifindex; 2171 } 2172 first_mp->b_cont = mp; 2173 } else if (onlink) { 2174 ii = (ipsec_in_t *)first_mp->b_rptr; 2175 ii->ipsec_in_attach_if = B_TRUE; 2176 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2177 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2178 } else { 2179 ii = (ipsec_in_t *)first_mp->b_rptr; 2180 } 2181 ii->ipsec_in_zoneid = zoneid; 2182 ASSERT(zoneid != ALL_ZONES); 2183 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2184 BUMP_MIB(&ip_mib, ipInDiscards); 2185 return; 2186 } 2187 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2188 put(WR(q), first_mp); 2189 } 2190 2191 static ipaddr_t 2192 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2193 { 2194 conn_t *connp; 2195 connf_t *connfp; 2196 ipaddr_t nexthop_addr = INADDR_ANY; 2197 int hdr_length = IPH_HDR_LENGTH(ipha); 2198 uint16_t *up; 2199 uint32_t ports; 2200 2201 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2202 switch (ipha->ipha_protocol) { 2203 case IPPROTO_TCP: 2204 { 2205 tcph_t *tcph; 2206 2207 /* do a reverse lookup */ 2208 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2209 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2210 TCPS_LISTEN); 2211 break; 2212 } 2213 case IPPROTO_UDP: 2214 { 2215 uint32_t dstport, srcport; 2216 2217 ((uint16_t *)&ports)[0] = up[1]; 2218 ((uint16_t *)&ports)[1] = up[0]; 2219 2220 /* Extract ports in net byte order */ 2221 dstport = htons(ntohl(ports) & 0xFFFF); 2222 srcport = htons(ntohl(ports) >> 16); 2223 2224 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2225 mutex_enter(&connfp->connf_lock); 2226 connp = connfp->connf_head; 2227 2228 /* do a reverse lookup */ 2229 while ((connp != NULL) && 2230 (!IPCL_UDP_MATCH(connp, dstport, 2231 ipha->ipha_src, srcport, ipha->ipha_dst) || 2232 !IPCL_ZONE_MATCH(connp, zoneid))) { 2233 connp = connp->conn_next; 2234 } 2235 if (connp != NULL) 2236 CONN_INC_REF(connp); 2237 mutex_exit(&connfp->connf_lock); 2238 break; 2239 } 2240 case IPPROTO_SCTP: 2241 { 2242 in6_addr_t map_src, map_dst; 2243 2244 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2245 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2246 ((uint16_t *)&ports)[0] = up[1]; 2247 ((uint16_t *)&ports)[1] = up[0]; 2248 2249 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2250 0, zoneid)) == NULL) { 2251 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2252 zoneid, ports, ipha); 2253 } else { 2254 CONN_INC_REF(connp); 2255 SCTP_REFRELE(CONN2SCTP(connp)); 2256 } 2257 break; 2258 } 2259 default: 2260 { 2261 ipha_t ripha; 2262 2263 ripha.ipha_src = ipha->ipha_dst; 2264 ripha.ipha_dst = ipha->ipha_src; 2265 ripha.ipha_protocol = ipha->ipha_protocol; 2266 2267 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2268 mutex_enter(&connfp->connf_lock); 2269 connp = connfp->connf_head; 2270 for (connp = connfp->connf_head; connp != NULL; 2271 connp = connp->conn_next) { 2272 if (IPCL_PROTO_MATCH(connp, 2273 ipha->ipha_protocol, &ripha, ill, 2274 0, zoneid)) { 2275 CONN_INC_REF(connp); 2276 break; 2277 } 2278 } 2279 mutex_exit(&connfp->connf_lock); 2280 } 2281 } 2282 if (connp != NULL) { 2283 if (connp->conn_nexthop_set) 2284 nexthop_addr = connp->conn_nexthop_v4; 2285 CONN_DEC_REF(connp); 2286 } 2287 return (nexthop_addr); 2288 } 2289 2290 /* Table from RFC 1191 */ 2291 static int icmp_frag_size_table[] = 2292 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2293 2294 /* 2295 * Process received ICMP Packet too big. 2296 * After updating any IRE it does the fanout to any matching transport streams. 2297 * Assumes the message has been pulled up till the IP header that caused 2298 * the error. 2299 * 2300 * Returns B_FALSE on failure and B_TRUE on success. 2301 */ 2302 static boolean_t 2303 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2304 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2305 { 2306 ire_t *ire, *first_ire; 2307 int mtu; 2308 int hdr_length; 2309 ipaddr_t nexthop_addr; 2310 2311 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2312 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2313 2314 hdr_length = IPH_HDR_LENGTH(ipha); 2315 2316 /* Drop if the original packet contained a source route */ 2317 if (ip_source_route_included(ipha)) { 2318 return (B_FALSE); 2319 } 2320 /* 2321 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2322 * header. 2323 */ 2324 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2325 mp->b_wptr) { 2326 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2327 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2328 BUMP_MIB(&ip_mib, ipInDiscards); 2329 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2330 return (B_FALSE); 2331 } 2332 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2333 ipha = (ipha_t *)&icmph[1]; 2334 } 2335 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2336 if (nexthop_addr != INADDR_ANY) { 2337 /* nexthop set */ 2338 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2339 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2340 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2341 } else { 2342 /* nexthop not set */ 2343 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2344 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2345 } 2346 2347 if (!first_ire) { 2348 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2349 ntohl(ipha->ipha_dst))); 2350 return (B_FALSE); 2351 } 2352 /* Check for MTU discovery advice as described in RFC 1191 */ 2353 mtu = ntohs(icmph->icmph_du_mtu); 2354 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2355 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2356 ire = ire->ire_next) { 2357 /* 2358 * Look for the connection to which this ICMP message is 2359 * directed. If it has the IP_NEXTHOP option set, then the 2360 * search is limited to IREs with the MATCH_IRE_PRIVATE 2361 * option. Else the search is limited to regular IREs. 2362 */ 2363 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2364 (nexthop_addr != ire->ire_gateway_addr)) || 2365 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2366 (nexthop_addr != INADDR_ANY))) 2367 continue; 2368 2369 mutex_enter(&ire->ire_lock); 2370 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2371 /* Reduce the IRE max frag value as advised. */ 2372 ip1dbg(("Received mtu from router: %d (was %d)\n", 2373 mtu, ire->ire_max_frag)); 2374 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2375 } else { 2376 uint32_t length; 2377 int i; 2378 2379 /* 2380 * Use the table from RFC 1191 to figure out 2381 * the next "plateau" based on the length in 2382 * the original IP packet. 2383 */ 2384 length = ntohs(ipha->ipha_length); 2385 if (ire->ire_max_frag <= length && 2386 ire->ire_max_frag >= length - hdr_length) { 2387 /* 2388 * Handle broken BSD 4.2 systems that 2389 * return the wrong iph_length in ICMP 2390 * errors. 2391 */ 2392 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2393 length, ire->ire_max_frag)); 2394 length -= hdr_length; 2395 } 2396 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2397 if (length > icmp_frag_size_table[i]) 2398 break; 2399 } 2400 if (i == A_CNT(icmp_frag_size_table)) { 2401 /* Smaller than 68! */ 2402 ip1dbg(("Too big for packet size %d\n", 2403 length)); 2404 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2405 ire->ire_frag_flag = 0; 2406 } else { 2407 mtu = icmp_frag_size_table[i]; 2408 ip1dbg(("Calculated mtu %d, packet size %d, " 2409 "before %d", mtu, length, 2410 ire->ire_max_frag)); 2411 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2412 ip1dbg((", after %d\n", ire->ire_max_frag)); 2413 } 2414 /* Record the new max frag size for the ULP. */ 2415 icmph->icmph_du_zero = 0; 2416 icmph->icmph_du_mtu = 2417 htons((uint16_t)ire->ire_max_frag); 2418 } 2419 mutex_exit(&ire->ire_lock); 2420 } 2421 rw_exit(&first_ire->ire_bucket->irb_lock); 2422 ire_refrele(first_ire); 2423 return (B_TRUE); 2424 } 2425 2426 /* 2427 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2428 * calls this function. 2429 */ 2430 static mblk_t * 2431 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2432 { 2433 ipha_t *ipha; 2434 icmph_t *icmph; 2435 ipha_t *in_ipha; 2436 int length; 2437 2438 ASSERT(mp->b_datap->db_type == M_DATA); 2439 2440 /* 2441 * For Self-encapsulated packets, we added an extra IP header 2442 * without the options. Inner IP header is the one from which 2443 * the outer IP header was formed. Thus, we need to remove the 2444 * outer IP header. To do this, we pullup the whole message 2445 * and overlay whatever follows the outer IP header over the 2446 * outer IP header. 2447 */ 2448 2449 if (!pullupmsg(mp, -1)) { 2450 BUMP_MIB(&ip_mib, ipInDiscards); 2451 return (NULL); 2452 } 2453 2454 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2455 ipha = (ipha_t *)&icmph[1]; 2456 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2457 2458 /* 2459 * The length that we want to overlay is following the inner 2460 * IP header. Subtracting the IP header + icmp header + outer 2461 * IP header's length should give us the length that we want to 2462 * overlay. 2463 */ 2464 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2465 hdr_length; 2466 /* 2467 * Overlay whatever follows the inner header over the 2468 * outer header. 2469 */ 2470 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2471 2472 /* Set the wptr to account for the outer header */ 2473 mp->b_wptr -= hdr_length; 2474 return (mp); 2475 } 2476 2477 /* 2478 * Try to pass the ICMP message upstream in case the ULP cares. 2479 * 2480 * If the packet that caused the ICMP error is secure, we send 2481 * it to AH/ESP to make sure that the attached packet has a 2482 * valid association. ipha in the code below points to the 2483 * IP header of the packet that caused the error. 2484 * 2485 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2486 * in the context of IPSEC. Normally we tell the upper layer 2487 * whenever we send the ire (including ip_bind), the IPSEC header 2488 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2489 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2490 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2491 * same thing. As TCP has the IPSEC options size that needs to be 2492 * adjusted, we just pass the MTU unchanged. 2493 * 2494 * IFN could have been generated locally or by some router. 2495 * 2496 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2497 * This happens because IP adjusted its value of MTU on an 2498 * earlier IFN message and could not tell the upper layer, 2499 * the new adjusted value of MTU e.g. Packet was encrypted 2500 * or there was not enough information to fanout to upper 2501 * layers. Thus on the next outbound datagram, ip_wput_ire 2502 * generates the IFN, where IPSEC processing has *not* been 2503 * done. 2504 * 2505 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2506 * could have generated this. This happens because ire_max_frag 2507 * value in IP was set to a new value, while the IPSEC processing 2508 * was being done and after we made the fragmentation check in 2509 * ip_wput_ire. Thus on return from IPSEC processing, 2510 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2511 * and generates the IFN. As IPSEC processing is over, we fanout 2512 * to AH/ESP to remove the header. 2513 * 2514 * In both these cases, ipsec_in_loopback will be set indicating 2515 * that IFN was generated locally. 2516 * 2517 * ROUTER : IFN could be secure or non-secure. 2518 * 2519 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2520 * packet in error has AH/ESP headers to validate the AH/ESP 2521 * headers. AH/ESP will verify whether there is a valid SA or 2522 * not and send it back. We will fanout again if we have more 2523 * data in the packet. 2524 * 2525 * If the packet in error does not have AH/ESP, we handle it 2526 * like any other case. 2527 * 2528 * * NON_SECURE : If the packet in error has AH/ESP headers, 2529 * we attach a dummy ipsec_in and send it up to AH/ESP 2530 * for validation. AH/ESP will verify whether there is a 2531 * valid SA or not and send it back. We will fanout again if 2532 * we have more data in the packet. 2533 * 2534 * If the packet in error does not have AH/ESP, we handle it 2535 * like any other case. 2536 */ 2537 static void 2538 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2539 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2540 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2541 zoneid_t zoneid) 2542 { 2543 uint16_t *up; /* Pointer to ports in ULP header */ 2544 uint32_t ports; /* reversed ports for fanout */ 2545 ipha_t ripha; /* With reversed addresses */ 2546 mblk_t *first_mp; 2547 ipsec_in_t *ii; 2548 tcph_t *tcph; 2549 conn_t *connp; 2550 2551 first_mp = mp; 2552 if (mctl_present) { 2553 mp = first_mp->b_cont; 2554 ASSERT(mp != NULL); 2555 2556 ii = (ipsec_in_t *)first_mp->b_rptr; 2557 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2558 } else { 2559 ii = NULL; 2560 } 2561 2562 switch (ipha->ipha_protocol) { 2563 case IPPROTO_UDP: 2564 /* 2565 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2566 * transport header. 2567 */ 2568 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2569 mp->b_wptr) { 2570 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2571 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2572 BUMP_MIB(&ip_mib, ipInDiscards); 2573 goto drop_pkt; 2574 } 2575 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2576 ipha = (ipha_t *)&icmph[1]; 2577 } 2578 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2579 2580 /* 2581 * Attempt to find a client stream based on port. 2582 * Note that we do a reverse lookup since the header is 2583 * in the form we sent it out. 2584 * The ripha header is only used for the IP_UDP_MATCH and we 2585 * only set the src and dst addresses and protocol. 2586 */ 2587 ripha.ipha_src = ipha->ipha_dst; 2588 ripha.ipha_dst = ipha->ipha_src; 2589 ripha.ipha_protocol = ipha->ipha_protocol; 2590 ((uint16_t *)&ports)[0] = up[1]; 2591 ((uint16_t *)&ports)[1] = up[0]; 2592 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2593 ntohl(ipha->ipha_src), ntohs(up[0]), 2594 ntohl(ipha->ipha_dst), ntohs(up[1]), 2595 icmph->icmph_type, icmph->icmph_code)); 2596 2597 /* Have to change db_type after any pullupmsg */ 2598 DB_TYPE(mp) = M_CTL; 2599 2600 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2601 mctl_present, ip_policy, recv_ill, zoneid); 2602 return; 2603 2604 case IPPROTO_TCP: 2605 /* 2606 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2607 * transport header. 2608 */ 2609 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2610 mp->b_wptr) { 2611 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2612 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2613 BUMP_MIB(&ip_mib, ipInDiscards); 2614 goto drop_pkt; 2615 } 2616 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2617 ipha = (ipha_t *)&icmph[1]; 2618 } 2619 /* 2620 * Find a TCP client stream for this packet. 2621 * Note that we do a reverse lookup since the header is 2622 * in the form we sent it out. 2623 */ 2624 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2625 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2626 if (connp == NULL) { 2627 BUMP_MIB(&ip_mib, ipInDiscards); 2628 goto drop_pkt; 2629 } 2630 2631 /* Have to change db_type after any pullupmsg */ 2632 DB_TYPE(mp) = M_CTL; 2633 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2634 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2635 return; 2636 2637 case IPPROTO_SCTP: 2638 /* 2639 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2640 * transport header. 2641 */ 2642 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2643 mp->b_wptr) { 2644 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2645 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2646 BUMP_MIB(&ip_mib, ipInDiscards); 2647 goto drop_pkt; 2648 } 2649 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2650 ipha = (ipha_t *)&icmph[1]; 2651 } 2652 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2653 /* 2654 * Find a SCTP client stream for this packet. 2655 * Note that we do a reverse lookup since the header is 2656 * in the form we sent it out. 2657 * The ripha header is only used for the matching and we 2658 * only set the src and dst addresses, protocol, and version. 2659 */ 2660 ripha.ipha_src = ipha->ipha_dst; 2661 ripha.ipha_dst = ipha->ipha_src; 2662 ripha.ipha_protocol = ipha->ipha_protocol; 2663 ripha.ipha_version_and_hdr_length = 2664 ipha->ipha_version_and_hdr_length; 2665 ((uint16_t *)&ports)[0] = up[1]; 2666 ((uint16_t *)&ports)[1] = up[0]; 2667 2668 /* Have to change db_type after any pullupmsg */ 2669 DB_TYPE(mp) = M_CTL; 2670 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2671 mctl_present, ip_policy, 0, zoneid); 2672 return; 2673 2674 case IPPROTO_ESP: 2675 case IPPROTO_AH: { 2676 int ipsec_rc; 2677 2678 /* 2679 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2680 * We will re-use the IPSEC_IN if it is already present as 2681 * AH/ESP will not affect any fields in the IPSEC_IN for 2682 * ICMP errors. If there is no IPSEC_IN, allocate a new 2683 * one and attach it in the front. 2684 */ 2685 if (ii != NULL) { 2686 /* 2687 * ip_fanout_proto_again converts the ICMP errors 2688 * that come back from AH/ESP to M_DATA so that 2689 * if it is non-AH/ESP and we do a pullupmsg in 2690 * this function, it would work. Convert it back 2691 * to M_CTL before we send up as this is a ICMP 2692 * error. This could have been generated locally or 2693 * by some router. Validate the inner IPSEC 2694 * headers. 2695 * 2696 * NOTE : ill_index is used by ip_fanout_proto_again 2697 * to locate the ill. 2698 */ 2699 ASSERT(ill != NULL); 2700 ii->ipsec_in_ill_index = 2701 ill->ill_phyint->phyint_ifindex; 2702 ii->ipsec_in_rill_index = 2703 recv_ill->ill_phyint->phyint_ifindex; 2704 DB_TYPE(first_mp->b_cont) = M_CTL; 2705 } else { 2706 /* 2707 * IPSEC_IN is not present. We attach a ipsec_in 2708 * message and send up to IPSEC for validating 2709 * and removing the IPSEC headers. Clear 2710 * ipsec_in_secure so that when we return 2711 * from IPSEC, we don't mistakenly think that this 2712 * is a secure packet came from the network. 2713 * 2714 * NOTE : ill_index is used by ip_fanout_proto_again 2715 * to locate the ill. 2716 */ 2717 ASSERT(first_mp == mp); 2718 first_mp = ipsec_in_alloc(B_TRUE); 2719 if (first_mp == NULL) { 2720 freemsg(mp); 2721 BUMP_MIB(&ip_mib, ipInDiscards); 2722 return; 2723 } 2724 ii = (ipsec_in_t *)first_mp->b_rptr; 2725 2726 /* This is not a secure packet */ 2727 ii->ipsec_in_secure = B_FALSE; 2728 first_mp->b_cont = mp; 2729 DB_TYPE(mp) = M_CTL; 2730 ASSERT(ill != NULL); 2731 ii->ipsec_in_ill_index = 2732 ill->ill_phyint->phyint_ifindex; 2733 ii->ipsec_in_rill_index = 2734 recv_ill->ill_phyint->phyint_ifindex; 2735 } 2736 ip2dbg(("icmp_inbound_error: ipsec\n")); 2737 2738 if (!ipsec_loaded()) { 2739 ip_proto_not_sup(q, first_mp, 0, zoneid); 2740 return; 2741 } 2742 2743 if (ipha->ipha_protocol == IPPROTO_ESP) 2744 ipsec_rc = ipsecesp_icmp_error(first_mp); 2745 else 2746 ipsec_rc = ipsecah_icmp_error(first_mp); 2747 if (ipsec_rc == IPSEC_STATUS_FAILED) 2748 return; 2749 2750 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2751 return; 2752 } 2753 default: 2754 /* 2755 * The ripha header is only used for the lookup and we 2756 * only set the src and dst addresses and protocol. 2757 */ 2758 ripha.ipha_src = ipha->ipha_dst; 2759 ripha.ipha_dst = ipha->ipha_src; 2760 ripha.ipha_protocol = ipha->ipha_protocol; 2761 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2762 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2763 ntohl(ipha->ipha_dst), 2764 icmph->icmph_type, icmph->icmph_code)); 2765 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2766 ipha_t *in_ipha; 2767 2768 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2769 mp->b_wptr) { 2770 if (!pullupmsg(mp, (uchar_t *)ipha + 2771 hdr_length + sizeof (ipha_t) - 2772 mp->b_rptr)) { 2773 2774 BUMP_MIB(&ip_mib, ipInDiscards); 2775 goto drop_pkt; 2776 } 2777 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2778 ipha = (ipha_t *)&icmph[1]; 2779 } 2780 /* 2781 * Caller has verified that length has to be 2782 * at least the size of IP header. 2783 */ 2784 ASSERT(hdr_length >= sizeof (ipha_t)); 2785 /* 2786 * Check the sanity of the inner IP header like 2787 * we did for the outer header. 2788 */ 2789 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2790 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2791 BUMP_MIB(&ip_mib, ipInDiscards); 2792 goto drop_pkt; 2793 } 2794 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2795 BUMP_MIB(&ip_mib, ipInDiscards); 2796 goto drop_pkt; 2797 } 2798 /* Check for Self-encapsulated tunnels */ 2799 if (in_ipha->ipha_src == ipha->ipha_src && 2800 in_ipha->ipha_dst == ipha->ipha_dst) { 2801 2802 mp = icmp_inbound_self_encap_error(mp, 2803 iph_hdr_length, hdr_length); 2804 if (mp == NULL) 2805 goto drop_pkt; 2806 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2807 ipha = (ipha_t *)&icmph[1]; 2808 hdr_length = IPH_HDR_LENGTH(ipha); 2809 /* 2810 * The packet in error is self-encapsualted. 2811 * And we are finding it further encapsulated 2812 * which we could not have possibly generated. 2813 */ 2814 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2815 BUMP_MIB(&ip_mib, ipInDiscards); 2816 goto drop_pkt; 2817 } 2818 icmp_inbound_error_fanout(q, ill, first_mp, 2819 icmph, ipha, iph_hdr_length, hdr_length, 2820 mctl_present, ip_policy, recv_ill, zoneid); 2821 return; 2822 } 2823 } 2824 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2825 ipha->ipha_protocol == IPPROTO_IPV6) && 2826 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2827 ii != NULL && 2828 ii->ipsec_in_loopback && 2829 ii->ipsec_in_secure) { 2830 /* 2831 * For IP tunnels that get a looped-back 2832 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2833 * reported new MTU to take into account the IPsec 2834 * headers protecting this configured tunnel. 2835 * 2836 * This allows the tunnel module (tun.c) to blindly 2837 * accept the MTU reported in an ICMP "too big" 2838 * message. 2839 * 2840 * Non-looped back ICMP messages will just be 2841 * handled by the security protocols (if needed), 2842 * and the first subsequent packet will hit this 2843 * path. 2844 */ 2845 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2846 ipsec_in_extra_length(first_mp)); 2847 } 2848 /* Have to change db_type after any pullupmsg */ 2849 DB_TYPE(mp) = M_CTL; 2850 2851 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2852 ip_policy, recv_ill, zoneid); 2853 return; 2854 } 2855 /* NOTREACHED */ 2856 drop_pkt:; 2857 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2858 freemsg(first_mp); 2859 } 2860 2861 /* 2862 * Common IP options parser. 2863 * 2864 * Setup routine: fill in *optp with options-parsing state, then 2865 * tail-call ipoptp_next to return the first option. 2866 */ 2867 uint8_t 2868 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2869 { 2870 uint32_t totallen; /* total length of all options */ 2871 2872 totallen = ipha->ipha_version_and_hdr_length - 2873 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2874 totallen <<= 2; 2875 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2876 optp->ipoptp_end = optp->ipoptp_next + totallen; 2877 optp->ipoptp_flags = 0; 2878 return (ipoptp_next(optp)); 2879 } 2880 2881 /* 2882 * Common IP options parser: extract next option. 2883 */ 2884 uint8_t 2885 ipoptp_next(ipoptp_t *optp) 2886 { 2887 uint8_t *end = optp->ipoptp_end; 2888 uint8_t *cur = optp->ipoptp_next; 2889 uint8_t opt, len, pointer; 2890 2891 /* 2892 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2893 * has been corrupted. 2894 */ 2895 ASSERT(cur <= end); 2896 2897 if (cur == end) 2898 return (IPOPT_EOL); 2899 2900 opt = cur[IPOPT_OPTVAL]; 2901 2902 /* 2903 * Skip any NOP options. 2904 */ 2905 while (opt == IPOPT_NOP) { 2906 cur++; 2907 if (cur == end) 2908 return (IPOPT_EOL); 2909 opt = cur[IPOPT_OPTVAL]; 2910 } 2911 2912 if (opt == IPOPT_EOL) 2913 return (IPOPT_EOL); 2914 2915 /* 2916 * Option requiring a length. 2917 */ 2918 if ((cur + 1) >= end) { 2919 optp->ipoptp_flags |= IPOPTP_ERROR; 2920 return (IPOPT_EOL); 2921 } 2922 len = cur[IPOPT_OLEN]; 2923 if (len < 2) { 2924 optp->ipoptp_flags |= IPOPTP_ERROR; 2925 return (IPOPT_EOL); 2926 } 2927 optp->ipoptp_cur = cur; 2928 optp->ipoptp_len = len; 2929 optp->ipoptp_next = cur + len; 2930 if (cur + len > end) { 2931 optp->ipoptp_flags |= IPOPTP_ERROR; 2932 return (IPOPT_EOL); 2933 } 2934 2935 /* 2936 * For the options which require a pointer field, make sure 2937 * its there, and make sure it points to either something 2938 * inside this option, or the end of the option. 2939 */ 2940 switch (opt) { 2941 case IPOPT_RR: 2942 case IPOPT_TS: 2943 case IPOPT_LSRR: 2944 case IPOPT_SSRR: 2945 if (len <= IPOPT_OFFSET) { 2946 optp->ipoptp_flags |= IPOPTP_ERROR; 2947 return (opt); 2948 } 2949 pointer = cur[IPOPT_OFFSET]; 2950 if (pointer - 1 > len) { 2951 optp->ipoptp_flags |= IPOPTP_ERROR; 2952 return (opt); 2953 } 2954 break; 2955 } 2956 2957 /* 2958 * Sanity check the pointer field based on the type of the 2959 * option. 2960 */ 2961 switch (opt) { 2962 case IPOPT_RR: 2963 case IPOPT_SSRR: 2964 case IPOPT_LSRR: 2965 if (pointer < IPOPT_MINOFF_SR) 2966 optp->ipoptp_flags |= IPOPTP_ERROR; 2967 break; 2968 case IPOPT_TS: 2969 if (pointer < IPOPT_MINOFF_IT) 2970 optp->ipoptp_flags |= IPOPTP_ERROR; 2971 /* 2972 * Note that the Internet Timestamp option also 2973 * contains two four bit fields (the Overflow field, 2974 * and the Flag field), which follow the pointer 2975 * field. We don't need to check that these fields 2976 * fall within the length of the option because this 2977 * was implicitely done above. We've checked that the 2978 * pointer value is at least IPOPT_MINOFF_IT, and that 2979 * it falls within the option. Since IPOPT_MINOFF_IT > 2980 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2981 */ 2982 ASSERT(len > IPOPT_POS_OV_FLG); 2983 break; 2984 } 2985 2986 return (opt); 2987 } 2988 2989 /* 2990 * Use the outgoing IP header to create an IP_OPTIONS option the way 2991 * it was passed down from the application. 2992 */ 2993 int 2994 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2995 { 2996 ipoptp_t opts; 2997 const uchar_t *opt; 2998 uint8_t optval; 2999 uint8_t optlen; 3000 uint32_t len = 0; 3001 uchar_t *buf1 = buf; 3002 3003 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3004 len += IP_ADDR_LEN; 3005 bzero(buf1, IP_ADDR_LEN); 3006 3007 /* 3008 * OK to cast away const here, as we don't store through the returned 3009 * opts.ipoptp_cur pointer. 3010 */ 3011 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3012 optval != IPOPT_EOL; 3013 optval = ipoptp_next(&opts)) { 3014 int off; 3015 3016 opt = opts.ipoptp_cur; 3017 optlen = opts.ipoptp_len; 3018 switch (optval) { 3019 case IPOPT_SSRR: 3020 case IPOPT_LSRR: 3021 3022 /* 3023 * Insert ipha_dst as the first entry in the source 3024 * route and move down the entries on step. 3025 * The last entry gets placed at buf1. 3026 */ 3027 buf[IPOPT_OPTVAL] = optval; 3028 buf[IPOPT_OLEN] = optlen; 3029 buf[IPOPT_OFFSET] = optlen; 3030 3031 off = optlen - IP_ADDR_LEN; 3032 if (off < 0) { 3033 /* No entries in source route */ 3034 break; 3035 } 3036 /* Last entry in source route */ 3037 bcopy(opt + off, buf1, IP_ADDR_LEN); 3038 off -= IP_ADDR_LEN; 3039 3040 while (off > 0) { 3041 bcopy(opt + off, 3042 buf + off + IP_ADDR_LEN, 3043 IP_ADDR_LEN); 3044 off -= IP_ADDR_LEN; 3045 } 3046 /* ipha_dst into first slot */ 3047 bcopy(&ipha->ipha_dst, 3048 buf + off + IP_ADDR_LEN, 3049 IP_ADDR_LEN); 3050 buf += optlen; 3051 len += optlen; 3052 break; 3053 3054 case IPOPT_COMSEC: 3055 case IPOPT_SECURITY: 3056 /* if passing up a label is not ok, then remove */ 3057 if (is_system_labeled()) 3058 break; 3059 /* FALLTHROUGH */ 3060 default: 3061 bcopy(opt, buf, optlen); 3062 buf += optlen; 3063 len += optlen; 3064 break; 3065 } 3066 } 3067 done: 3068 /* Pad the resulting options */ 3069 while (len & 0x3) { 3070 *buf++ = IPOPT_EOL; 3071 len++; 3072 } 3073 return (len); 3074 } 3075 3076 /* 3077 * Update any record route or timestamp options to include this host. 3078 * Reverse any source route option. 3079 * This routine assumes that the options are well formed i.e. that they 3080 * have already been checked. 3081 */ 3082 static void 3083 icmp_options_update(ipha_t *ipha) 3084 { 3085 ipoptp_t opts; 3086 uchar_t *opt; 3087 uint8_t optval; 3088 ipaddr_t src; /* Our local address */ 3089 ipaddr_t dst; 3090 3091 ip2dbg(("icmp_options_update\n")); 3092 src = ipha->ipha_src; 3093 dst = ipha->ipha_dst; 3094 3095 for (optval = ipoptp_first(&opts, ipha); 3096 optval != IPOPT_EOL; 3097 optval = ipoptp_next(&opts)) { 3098 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3099 opt = opts.ipoptp_cur; 3100 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3101 optval, opts.ipoptp_len)); 3102 switch (optval) { 3103 int off1, off2; 3104 case IPOPT_SSRR: 3105 case IPOPT_LSRR: 3106 /* 3107 * Reverse the source route. The first entry 3108 * should be the next to last one in the current 3109 * source route (the last entry is our address). 3110 * The last entry should be the final destination. 3111 */ 3112 off1 = IPOPT_MINOFF_SR - 1; 3113 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3114 if (off2 < 0) { 3115 /* No entries in source route */ 3116 ip1dbg(( 3117 "icmp_options_update: bad src route\n")); 3118 break; 3119 } 3120 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3121 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3122 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3123 off2 -= IP_ADDR_LEN; 3124 3125 while (off1 < off2) { 3126 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3127 bcopy((char *)opt + off2, (char *)opt + off1, 3128 IP_ADDR_LEN); 3129 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3130 off1 += IP_ADDR_LEN; 3131 off2 -= IP_ADDR_LEN; 3132 } 3133 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3134 break; 3135 } 3136 } 3137 } 3138 3139 /* 3140 * Process received ICMP Redirect messages. 3141 */ 3142 /* ARGSUSED */ 3143 static void 3144 icmp_redirect(mblk_t *mp) 3145 { 3146 ipha_t *ipha; 3147 int iph_hdr_length; 3148 icmph_t *icmph; 3149 ipha_t *ipha_err; 3150 ire_t *ire; 3151 ire_t *prev_ire; 3152 ire_t *save_ire; 3153 ipaddr_t src, dst, gateway; 3154 iulp_t ulp_info = { 0 }; 3155 int error; 3156 3157 ipha = (ipha_t *)mp->b_rptr; 3158 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3159 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3160 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3161 BUMP_MIB(&icmp_mib, icmpInErrors); 3162 freemsg(mp); 3163 return; 3164 } 3165 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3166 ipha_err = (ipha_t *)&icmph[1]; 3167 src = ipha->ipha_src; 3168 dst = ipha_err->ipha_dst; 3169 gateway = icmph->icmph_rd_gateway; 3170 /* Make sure the new gateway is reachable somehow. */ 3171 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3172 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3173 /* 3174 * Make sure we had a route for the dest in question and that 3175 * that route was pointing to the old gateway (the source of the 3176 * redirect packet.) 3177 */ 3178 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3179 NULL, MATCH_IRE_GW); 3180 /* 3181 * Check that 3182 * the redirect was not from ourselves 3183 * the new gateway and the old gateway are directly reachable 3184 */ 3185 if (!prev_ire || 3186 !ire || 3187 ire->ire_type == IRE_LOCAL) { 3188 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3189 freemsg(mp); 3190 if (ire != NULL) 3191 ire_refrele(ire); 3192 if (prev_ire != NULL) 3193 ire_refrele(prev_ire); 3194 return; 3195 } 3196 3197 /* 3198 * Should we use the old ULP info to create the new gateway? From 3199 * a user's perspective, we should inherit the info so that it 3200 * is a "smooth" transition. If we do not do that, then new 3201 * connections going thru the new gateway will have no route metrics, 3202 * which is counter-intuitive to user. From a network point of 3203 * view, this may or may not make sense even though the new gateway 3204 * is still directly connected to us so the route metrics should not 3205 * change much. 3206 * 3207 * But if the old ire_uinfo is not initialized, we do another 3208 * recursive lookup on the dest using the new gateway. There may 3209 * be a route to that. If so, use it to initialize the redirect 3210 * route. 3211 */ 3212 if (prev_ire->ire_uinfo.iulp_set) { 3213 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3214 } else { 3215 ire_t *tmp_ire; 3216 ire_t *sire; 3217 3218 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3219 ALL_ZONES, 0, NULL, 3220 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3221 if (sire != NULL) { 3222 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3223 /* 3224 * If sire != NULL, ire_ftable_lookup() should not 3225 * return a NULL value. 3226 */ 3227 ASSERT(tmp_ire != NULL); 3228 ire_refrele(tmp_ire); 3229 ire_refrele(sire); 3230 } else if (tmp_ire != NULL) { 3231 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3232 sizeof (iulp_t)); 3233 ire_refrele(tmp_ire); 3234 } 3235 } 3236 if (prev_ire->ire_type == IRE_CACHE) 3237 ire_delete(prev_ire); 3238 ire_refrele(prev_ire); 3239 /* 3240 * TODO: more precise handling for cases 0, 2, 3, the latter two 3241 * require TOS routing 3242 */ 3243 switch (icmph->icmph_code) { 3244 case 0: 3245 case 1: 3246 /* TODO: TOS specificity for cases 2 and 3 */ 3247 case 2: 3248 case 3: 3249 break; 3250 default: 3251 freemsg(mp); 3252 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3253 ire_refrele(ire); 3254 return; 3255 } 3256 /* 3257 * Create a Route Association. This will allow us to remember that 3258 * someone we believe told us to use the particular gateway. 3259 */ 3260 save_ire = ire; 3261 ire = ire_create( 3262 (uchar_t *)&dst, /* dest addr */ 3263 (uchar_t *)&ip_g_all_ones, /* mask */ 3264 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3265 (uchar_t *)&gateway, /* gateway addr */ 3266 NULL, /* no in_srcaddr */ 3267 &save_ire->ire_max_frag, /* max frag */ 3268 NULL, /* Fast Path header */ 3269 NULL, /* no rfq */ 3270 NULL, /* no stq */ 3271 IRE_HOST, 3272 NULL, 3273 NULL, 3274 NULL, 3275 0, 3276 0, 3277 0, 3278 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3279 &ulp_info, 3280 NULL, 3281 NULL); 3282 3283 if (ire == NULL) { 3284 freemsg(mp); 3285 ire_refrele(save_ire); 3286 return; 3287 } 3288 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3289 ire_refrele(save_ire); 3290 atomic_inc_32(&ip_redirect_cnt); 3291 3292 if (error == 0) { 3293 ire_refrele(ire); /* Held in ire_add_v4 */ 3294 /* tell routing sockets that we received a redirect */ 3295 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3296 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3297 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3298 } 3299 3300 /* 3301 * Delete any existing IRE_HOST type redirect ires for this destination. 3302 * This together with the added IRE has the effect of 3303 * modifying an existing redirect. 3304 */ 3305 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3306 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3307 if (prev_ire != NULL) { 3308 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3309 ire_delete(prev_ire); 3310 ire_refrele(prev_ire); 3311 } 3312 3313 freemsg(mp); 3314 } 3315 3316 /* 3317 * Generate an ICMP parameter problem message. 3318 */ 3319 static void 3320 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3321 { 3322 icmph_t icmph; 3323 boolean_t mctl_present; 3324 mblk_t *first_mp; 3325 3326 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3327 3328 if (!(mp = icmp_pkt_err_ok(mp))) { 3329 if (mctl_present) 3330 freeb(first_mp); 3331 return; 3332 } 3333 3334 bzero(&icmph, sizeof (icmph_t)); 3335 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3336 icmph.icmph_pp_ptr = ptr; 3337 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3338 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3339 } 3340 3341 /* 3342 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3343 * the ICMP header pointed to by "stuff". (May be called as writer.) 3344 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3345 * an icmp error packet can be sent. 3346 * Assigns an appropriate source address to the packet. If ipha_dst is 3347 * one of our addresses use it for source. Otherwise pick a source based 3348 * on a route lookup back to ipha_src. 3349 * Note that ipha_src must be set here since the 3350 * packet is likely to arrive on an ill queue in ip_wput() which will 3351 * not set a source address. 3352 */ 3353 static void 3354 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3355 boolean_t mctl_present, zoneid_t zoneid) 3356 { 3357 ipaddr_t dst; 3358 icmph_t *icmph; 3359 ipha_t *ipha; 3360 uint_t len_needed; 3361 size_t msg_len; 3362 mblk_t *mp1; 3363 ipaddr_t src; 3364 ire_t *ire; 3365 mblk_t *ipsec_mp; 3366 ipsec_out_t *io = NULL; 3367 boolean_t xmit_if_on = B_FALSE; 3368 3369 if (mctl_present) { 3370 /* 3371 * If it is : 3372 * 3373 * 1) a IPSEC_OUT, then this is caused by outbound 3374 * datagram originating on this host. IPSEC processing 3375 * may or may not have been done. Refer to comments above 3376 * icmp_inbound_error_fanout for details. 3377 * 3378 * 2) a IPSEC_IN if we are generating a icmp_message 3379 * for an incoming datagram destined for us i.e called 3380 * from ip_fanout_send_icmp. 3381 */ 3382 ipsec_info_t *in; 3383 ipsec_mp = mp; 3384 mp = ipsec_mp->b_cont; 3385 3386 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3387 ipha = (ipha_t *)mp->b_rptr; 3388 3389 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3390 in->ipsec_info_type == IPSEC_IN); 3391 3392 if (in->ipsec_info_type == IPSEC_IN) { 3393 /* 3394 * Convert the IPSEC_IN to IPSEC_OUT. 3395 */ 3396 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3397 BUMP_MIB(&ip_mib, ipOutDiscards); 3398 return; 3399 } 3400 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3401 } else { 3402 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3403 io = (ipsec_out_t *)in; 3404 if (io->ipsec_out_xmit_if) 3405 xmit_if_on = B_TRUE; 3406 /* 3407 * Clear out ipsec_out_proc_begin, so we do a fresh 3408 * ire lookup. 3409 */ 3410 io->ipsec_out_proc_begin = B_FALSE; 3411 } 3412 ASSERT(zoneid == io->ipsec_out_zoneid); 3413 ASSERT(zoneid != ALL_ZONES); 3414 } else { 3415 /* 3416 * This is in clear. The icmp message we are building 3417 * here should go out in clear. 3418 * 3419 * Pardon the convolution of it all, but it's easier to 3420 * allocate a "use cleartext" IPSEC_IN message and convert 3421 * it than it is to allocate a new one. 3422 */ 3423 ipsec_in_t *ii; 3424 ASSERT(DB_TYPE(mp) == M_DATA); 3425 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3426 freemsg(mp); 3427 BUMP_MIB(&ip_mib, ipOutDiscards); 3428 return; 3429 } 3430 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3431 3432 /* This is not a secure packet */ 3433 ii->ipsec_in_secure = B_FALSE; 3434 /* 3435 * For trusted extensions using a shared IP address we can 3436 * send using any zoneid. 3437 */ 3438 if (zoneid == ALL_ZONES) 3439 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3440 else 3441 ii->ipsec_in_zoneid = zoneid; 3442 ipsec_mp->b_cont = mp; 3443 ipha = (ipha_t *)mp->b_rptr; 3444 /* 3445 * Convert the IPSEC_IN to IPSEC_OUT. 3446 */ 3447 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3448 BUMP_MIB(&ip_mib, ipOutDiscards); 3449 return; 3450 } 3451 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3452 } 3453 3454 /* Remember our eventual destination */ 3455 dst = ipha->ipha_src; 3456 3457 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3458 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3459 if (ire != NULL && 3460 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3461 src = ipha->ipha_dst; 3462 } else if (!xmit_if_on) { 3463 if (ire != NULL) 3464 ire_refrele(ire); 3465 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3466 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3467 if (ire == NULL) { 3468 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3469 freemsg(ipsec_mp); 3470 return; 3471 } 3472 src = ire->ire_src_addr; 3473 } else { 3474 ipif_t *ipif = NULL; 3475 ill_t *ill; 3476 /* 3477 * This must be an ICMP error coming from 3478 * ip_mrtun_forward(). The src addr should 3479 * be equal to the IP-addr of the outgoing 3480 * interface. 3481 */ 3482 if (io == NULL) { 3483 /* This is not a IPSEC_OUT type control msg */ 3484 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3485 freemsg(ipsec_mp); 3486 return; 3487 } 3488 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3489 NULL, NULL, NULL, NULL); 3490 if (ill != NULL) { 3491 ipif = ipif_get_next_ipif(NULL, ill); 3492 ill_refrele(ill); 3493 } 3494 if (ipif == NULL) { 3495 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3496 freemsg(ipsec_mp); 3497 return; 3498 } 3499 src = ipif->ipif_src_addr; 3500 ipif_refrele(ipif); 3501 } 3502 3503 if (ire != NULL) 3504 ire_refrele(ire); 3505 3506 /* 3507 * Check if we can send back more then 8 bytes in addition 3508 * to the IP header. We will include as much as 64 bytes. 3509 */ 3510 len_needed = IPH_HDR_LENGTH(ipha); 3511 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3512 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3513 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3514 } 3515 len_needed += ip_icmp_return; 3516 msg_len = msgdsize(mp); 3517 if (msg_len > len_needed) { 3518 (void) adjmsg(mp, len_needed - msg_len); 3519 msg_len = len_needed; 3520 } 3521 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3522 if (mp1 == NULL) { 3523 BUMP_MIB(&icmp_mib, icmpOutErrors); 3524 freemsg(ipsec_mp); 3525 return; 3526 } 3527 /* 3528 * On an unlabeled system, dblks don't necessarily have creds. 3529 */ 3530 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3531 if (DB_CRED(mp) != NULL) 3532 mblk_setcred(mp1, DB_CRED(mp)); 3533 mp1->b_cont = mp; 3534 mp = mp1; 3535 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3536 ipsec_mp->b_rptr == (uint8_t *)io && 3537 io->ipsec_out_type == IPSEC_OUT); 3538 ipsec_mp->b_cont = mp; 3539 3540 /* 3541 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3542 * node generates be accepted in peace by all on-host destinations. 3543 * If we do NOT assume that all on-host destinations trust 3544 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3545 * (Look for ipsec_out_icmp_loopback). 3546 */ 3547 io->ipsec_out_icmp_loopback = B_TRUE; 3548 3549 ipha = (ipha_t *)mp->b_rptr; 3550 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3551 *ipha = icmp_ipha; 3552 ipha->ipha_src = src; 3553 ipha->ipha_dst = dst; 3554 ipha->ipha_ttl = ip_def_ttl; 3555 msg_len += sizeof (icmp_ipha) + len; 3556 if (msg_len > IP_MAXPACKET) { 3557 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3558 msg_len = IP_MAXPACKET; 3559 } 3560 ipha->ipha_length = htons((uint16_t)msg_len); 3561 icmph = (icmph_t *)&ipha[1]; 3562 bcopy(stuff, icmph, len); 3563 icmph->icmph_checksum = 0; 3564 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3565 if (icmph->icmph_checksum == 0) 3566 icmph->icmph_checksum = 0xFFFF; 3567 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3568 put(q, ipsec_mp); 3569 } 3570 3571 /* 3572 * Determine if an ICMP error packet can be sent given the rate limit. 3573 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3574 * in milliseconds) and a burst size. Burst size number of packets can 3575 * be sent arbitrarely closely spaced. 3576 * The state is tracked using two variables to implement an approximate 3577 * token bucket filter: 3578 * icmp_pkt_err_last - lbolt value when the last burst started 3579 * icmp_pkt_err_sent - number of packets sent in current burst 3580 */ 3581 boolean_t 3582 icmp_err_rate_limit(void) 3583 { 3584 clock_t now = TICK_TO_MSEC(lbolt); 3585 uint_t refilled; /* Number of packets refilled in tbf since last */ 3586 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3587 3588 if (err_interval == 0) 3589 return (B_FALSE); 3590 3591 if (icmp_pkt_err_last > now) { 3592 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3593 icmp_pkt_err_last = 0; 3594 icmp_pkt_err_sent = 0; 3595 } 3596 /* 3597 * If we are in a burst update the token bucket filter. 3598 * Update the "last" time to be close to "now" but make sure 3599 * we don't loose precision. 3600 */ 3601 if (icmp_pkt_err_sent != 0) { 3602 refilled = (now - icmp_pkt_err_last)/err_interval; 3603 if (refilled > icmp_pkt_err_sent) { 3604 icmp_pkt_err_sent = 0; 3605 } else { 3606 icmp_pkt_err_sent -= refilled; 3607 icmp_pkt_err_last += refilled * err_interval; 3608 } 3609 } 3610 if (icmp_pkt_err_sent == 0) { 3611 /* Start of new burst */ 3612 icmp_pkt_err_last = now; 3613 } 3614 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3615 icmp_pkt_err_sent++; 3616 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3617 icmp_pkt_err_sent)); 3618 return (B_FALSE); 3619 } 3620 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3621 return (B_TRUE); 3622 } 3623 3624 /* 3625 * Check if it is ok to send an IPv4 ICMP error packet in 3626 * response to the IPv4 packet in mp. 3627 * Free the message and return null if no 3628 * ICMP error packet should be sent. 3629 */ 3630 static mblk_t * 3631 icmp_pkt_err_ok(mblk_t *mp) 3632 { 3633 icmph_t *icmph; 3634 ipha_t *ipha; 3635 uint_t len_needed; 3636 ire_t *src_ire; 3637 ire_t *dst_ire; 3638 3639 if (!mp) 3640 return (NULL); 3641 ipha = (ipha_t *)mp->b_rptr; 3642 if (ip_csum_hdr(ipha)) { 3643 BUMP_MIB(&ip_mib, ipInCksumErrs); 3644 freemsg(mp); 3645 return (NULL); 3646 } 3647 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3648 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3649 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3650 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3651 if (src_ire != NULL || dst_ire != NULL || 3652 CLASSD(ipha->ipha_dst) || 3653 CLASSD(ipha->ipha_src) || 3654 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3655 /* Note: only errors to the fragment with offset 0 */ 3656 BUMP_MIB(&icmp_mib, icmpOutDrops); 3657 freemsg(mp); 3658 if (src_ire != NULL) 3659 ire_refrele(src_ire); 3660 if (dst_ire != NULL) 3661 ire_refrele(dst_ire); 3662 return (NULL); 3663 } 3664 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3665 /* 3666 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3667 * errors in response to any ICMP errors. 3668 */ 3669 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3670 if (mp->b_wptr - mp->b_rptr < len_needed) { 3671 if (!pullupmsg(mp, len_needed)) { 3672 BUMP_MIB(&icmp_mib, icmpInErrors); 3673 freemsg(mp); 3674 return (NULL); 3675 } 3676 ipha = (ipha_t *)mp->b_rptr; 3677 } 3678 icmph = (icmph_t *) 3679 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3680 switch (icmph->icmph_type) { 3681 case ICMP_DEST_UNREACHABLE: 3682 case ICMP_SOURCE_QUENCH: 3683 case ICMP_TIME_EXCEEDED: 3684 case ICMP_PARAM_PROBLEM: 3685 case ICMP_REDIRECT: 3686 BUMP_MIB(&icmp_mib, icmpOutDrops); 3687 freemsg(mp); 3688 return (NULL); 3689 default: 3690 break; 3691 } 3692 } 3693 /* 3694 * If this is a labeled system, then check to see if we're allowed to 3695 * send a response to this particular sender. If not, then just drop. 3696 */ 3697 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3698 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3699 BUMP_MIB(&icmp_mib, icmpOutDrops); 3700 freemsg(mp); 3701 return (NULL); 3702 } 3703 if (icmp_err_rate_limit()) { 3704 /* 3705 * Only send ICMP error packets every so often. 3706 * This should be done on a per port/source basis, 3707 * but for now this will suffice. 3708 */ 3709 freemsg(mp); 3710 return (NULL); 3711 } 3712 return (mp); 3713 } 3714 3715 /* 3716 * Generate an ICMP redirect message. 3717 */ 3718 static void 3719 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3720 { 3721 icmph_t icmph; 3722 3723 /* 3724 * We are called from ip_rput where we could 3725 * not have attached an IPSEC_IN. 3726 */ 3727 ASSERT(mp->b_datap->db_type == M_DATA); 3728 3729 if (!(mp = icmp_pkt_err_ok(mp))) { 3730 return; 3731 } 3732 3733 bzero(&icmph, sizeof (icmph_t)); 3734 icmph.icmph_type = ICMP_REDIRECT; 3735 icmph.icmph_code = 1; 3736 icmph.icmph_rd_gateway = gateway; 3737 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3738 /* Redirects sent by router, and router is global zone */ 3739 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3740 } 3741 3742 /* 3743 * Generate an ICMP time exceeded message. 3744 */ 3745 void 3746 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3747 { 3748 icmph_t icmph; 3749 boolean_t mctl_present; 3750 mblk_t *first_mp; 3751 3752 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3753 3754 if (!(mp = icmp_pkt_err_ok(mp))) { 3755 if (mctl_present) 3756 freeb(first_mp); 3757 return; 3758 } 3759 3760 bzero(&icmph, sizeof (icmph_t)); 3761 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3762 icmph.icmph_code = code; 3763 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3764 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3765 } 3766 3767 /* 3768 * Generate an ICMP unreachable message. 3769 */ 3770 void 3771 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3772 { 3773 icmph_t icmph; 3774 mblk_t *first_mp; 3775 boolean_t mctl_present; 3776 3777 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3778 3779 if (!(mp = icmp_pkt_err_ok(mp))) { 3780 if (mctl_present) 3781 freeb(first_mp); 3782 return; 3783 } 3784 3785 bzero(&icmph, sizeof (icmph_t)); 3786 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3787 icmph.icmph_code = code; 3788 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3789 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3790 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3791 zoneid); 3792 } 3793 3794 /* 3795 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3796 * duplicate. As long as someone else holds the address, the interface will 3797 * stay down. When that conflict goes away, the interface is brought back up. 3798 * This is done so that accidental shutdowns of addresses aren't made 3799 * permanent. Your server will recover from a failure. 3800 * 3801 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3802 * user space process (dhcpagent). 3803 * 3804 * Recovery completes if ARP reports that the address is now ours (via 3805 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3806 * 3807 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3808 */ 3809 static void 3810 ipif_dup_recovery(void *arg) 3811 { 3812 ipif_t *ipif = arg; 3813 ill_t *ill = ipif->ipif_ill; 3814 mblk_t *arp_add_mp; 3815 mblk_t *arp_del_mp; 3816 area_t *area; 3817 3818 ipif->ipif_recovery_id = 0; 3819 3820 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3821 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3822 /* No reason to try to bring this address back. */ 3823 return; 3824 } 3825 3826 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3827 goto alloc_fail; 3828 3829 if (ipif->ipif_arp_del_mp == NULL) { 3830 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3831 goto alloc_fail; 3832 ipif->ipif_arp_del_mp = arp_del_mp; 3833 } 3834 3835 /* Setting the 'unverified' flag restarts DAD */ 3836 area = (area_t *)arp_add_mp->b_rptr; 3837 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3838 ACE_F_UNVERIFIED; 3839 putnext(ill->ill_rq, arp_add_mp); 3840 return; 3841 3842 alloc_fail: 3843 /* On allocation failure, just restart the timer */ 3844 freemsg(arp_add_mp); 3845 if (ip_dup_recovery > 0) { 3846 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3847 MSEC_TO_TICK(ip_dup_recovery)); 3848 } 3849 } 3850 3851 /* 3852 * This is for exclusive changes due to ARP. Either tear down an interface due 3853 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3854 */ 3855 /* ARGSUSED */ 3856 static void 3857 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3858 { 3859 ill_t *ill = rq->q_ptr; 3860 arh_t *arh; 3861 ipaddr_t src; 3862 ipif_t *ipif; 3863 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3864 char hbuf[MAC_STR_LEN]; 3865 char sbuf[INET_ADDRSTRLEN]; 3866 const char *failtype; 3867 boolean_t bring_up; 3868 3869 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3870 case AR_CN_READY: 3871 failtype = NULL; 3872 bring_up = B_TRUE; 3873 break; 3874 case AR_CN_FAILED: 3875 failtype = "in use"; 3876 bring_up = B_FALSE; 3877 break; 3878 default: 3879 failtype = "claimed"; 3880 bring_up = B_FALSE; 3881 break; 3882 } 3883 3884 arh = (arh_t *)mp->b_cont->b_rptr; 3885 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3886 3887 /* Handle failures due to probes */ 3888 if (src == 0) { 3889 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3890 IP_ADDR_LEN); 3891 } 3892 3893 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3894 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3895 sizeof (hbuf)); 3896 (void) ip_dot_addr(src, sbuf); 3897 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3898 3899 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3900 ipif->ipif_lcl_addr != src) { 3901 continue; 3902 } 3903 3904 /* 3905 * If we failed on a recovery probe, then restart the timer to 3906 * try again later. 3907 */ 3908 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3909 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3910 ill->ill_net_type == IRE_IF_RESOLVER && 3911 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3912 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3913 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3914 continue; 3915 } 3916 3917 /* 3918 * If what we're trying to do has already been done, then do 3919 * nothing. 3920 */ 3921 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3922 continue; 3923 3924 if (ipif->ipif_id != 0) { 3925 (void) snprintf(ibuf + ill->ill_name_length - 1, 3926 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3927 ipif->ipif_id); 3928 } 3929 if (failtype == NULL) { 3930 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3931 ibuf); 3932 } else { 3933 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3934 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3935 } 3936 3937 if (bring_up) { 3938 ASSERT(ill->ill_dl_up); 3939 /* 3940 * Free up the ARP delete message so we can allocate 3941 * a fresh one through the normal path. 3942 */ 3943 freemsg(ipif->ipif_arp_del_mp); 3944 ipif->ipif_arp_del_mp = NULL; 3945 if (ipif_resolver_up(ipif, Res_act_initial) != 3946 EINPROGRESS) { 3947 ipif->ipif_addr_ready = 1; 3948 (void) ipif_up_done(ipif); 3949 } 3950 continue; 3951 } 3952 3953 mutex_enter(&ill->ill_lock); 3954 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3955 ipif->ipif_flags |= IPIF_DUPLICATE; 3956 ill->ill_ipif_dup_count++; 3957 mutex_exit(&ill->ill_lock); 3958 /* 3959 * Already exclusive on the ill; no need to handle deferred 3960 * processing here. 3961 */ 3962 (void) ipif_down(ipif, NULL, NULL); 3963 ipif_down_tail(ipif); 3964 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3965 ill->ill_net_type == IRE_IF_RESOLVER && 3966 ip_dup_recovery > 0) { 3967 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3968 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3969 } 3970 } 3971 freemsg(mp); 3972 } 3973 3974 /* ARGSUSED */ 3975 static void 3976 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3977 { 3978 ill_t *ill = rq->q_ptr; 3979 arh_t *arh; 3980 ipaddr_t src; 3981 ipif_t *ipif; 3982 3983 arh = (arh_t *)mp->b_cont->b_rptr; 3984 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3985 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3986 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3987 (void) ipif_resolver_up(ipif, Res_act_defend); 3988 } 3989 freemsg(mp); 3990 } 3991 3992 /* 3993 * News from ARP. ARP sends notification of interesting events down 3994 * to its clients using M_CTL messages with the interesting ARP packet 3995 * attached via b_cont. 3996 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3997 * queue as opposed to ARP sending the message to all the clients, i.e. all 3998 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3999 * table if a cache IRE is found to delete all the entries for the address in 4000 * the packet. 4001 */ 4002 static void 4003 ip_arp_news(queue_t *q, mblk_t *mp) 4004 { 4005 arcn_t *arcn; 4006 arh_t *arh; 4007 ire_t *ire = NULL; 4008 char hbuf[MAC_STR_LEN]; 4009 char sbuf[INET_ADDRSTRLEN]; 4010 ipaddr_t src; 4011 in6_addr_t v6src; 4012 boolean_t isv6 = B_FALSE; 4013 ipif_t *ipif; 4014 ill_t *ill; 4015 4016 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4017 if (q->q_next) { 4018 putnext(q, mp); 4019 } else 4020 freemsg(mp); 4021 return; 4022 } 4023 arh = (arh_t *)mp->b_cont->b_rptr; 4024 /* Is it one we are interested in? */ 4025 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4026 isv6 = B_TRUE; 4027 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4028 IPV6_ADDR_LEN); 4029 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4030 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4031 IP_ADDR_LEN); 4032 } else { 4033 freemsg(mp); 4034 return; 4035 } 4036 4037 ill = q->q_ptr; 4038 4039 arcn = (arcn_t *)mp->b_rptr; 4040 switch (arcn->arcn_code) { 4041 case AR_CN_BOGON: 4042 /* 4043 * Someone is sending ARP packets with a source protocol 4044 * address that we have published and for which we believe our 4045 * entry is authoritative and (when ill_arp_extend is set) 4046 * verified to be unique on the network. 4047 * 4048 * The ARP module internally handles the cases where the sender 4049 * is just probing (for DAD) and where the hardware address of 4050 * a non-authoritative entry has changed. Thus, these are the 4051 * real conflicts, and we have to do resolution. 4052 * 4053 * We back away quickly from the address if it's from DHCP or 4054 * otherwise temporary and hasn't been used recently (or at 4055 * all). We'd like to include "deprecated" addresses here as 4056 * well (as there's no real reason to defend something we're 4057 * discarding), but IPMP "reuses" this flag to mean something 4058 * other than the standard meaning. 4059 * 4060 * If the ARP module above is not extended (meaning that it 4061 * doesn't know how to defend the address), then we just log 4062 * the problem as we always did and continue on. It's not 4063 * right, but there's little else we can do, and those old ATM 4064 * users are going away anyway. 4065 */ 4066 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4067 hbuf, sizeof (hbuf)); 4068 (void) ip_dot_addr(src, sbuf); 4069 if (isv6) 4070 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4071 else 4072 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4073 4074 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4075 uint32_t now; 4076 uint32_t maxage; 4077 clock_t lused; 4078 uint_t maxdefense; 4079 uint_t defs; 4080 4081 /* 4082 * First, figure out if this address hasn't been used 4083 * in a while. If it hasn't, then it's a better 4084 * candidate for abandoning. 4085 */ 4086 ipif = ire->ire_ipif; 4087 ASSERT(ipif != NULL); 4088 now = gethrestime_sec(); 4089 maxage = now - ire->ire_create_time; 4090 if (maxage > ip_max_temp_idle) 4091 maxage = ip_max_temp_idle; 4092 lused = drv_hztousec(ddi_get_lbolt() - 4093 ire->ire_last_used_time) / MICROSEC + 1; 4094 if (lused >= maxage && (ipif->ipif_flags & 4095 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4096 maxdefense = ip_max_temp_defend; 4097 else 4098 maxdefense = ip_max_defend; 4099 4100 /* 4101 * Now figure out how many times we've defended 4102 * ourselves. Ignore defenses that happened long in 4103 * the past. 4104 */ 4105 mutex_enter(&ire->ire_lock); 4106 if ((defs = ire->ire_defense_count) > 0 && 4107 now - ire->ire_defense_time > ip_defend_interval) { 4108 ire->ire_defense_count = defs = 0; 4109 } 4110 ire->ire_defense_count++; 4111 ire->ire_defense_time = now; 4112 mutex_exit(&ire->ire_lock); 4113 ill_refhold(ill); 4114 ire_refrele(ire); 4115 4116 /* 4117 * If we've defended ourselves too many times already, 4118 * then give up and tear down the interface(s) using 4119 * this address. Otherwise, defend by sending out a 4120 * gratuitous ARP. 4121 */ 4122 if (defs >= maxdefense && ill->ill_arp_extend) { 4123 (void) qwriter_ip(NULL, ill, q, mp, 4124 ip_arp_excl, CUR_OP, B_FALSE); 4125 } else { 4126 cmn_err(CE_WARN, 4127 "node %s is using our IP address %s on %s", 4128 hbuf, sbuf, ill->ill_name); 4129 /* 4130 * If this is an old (ATM) ARP module, then 4131 * don't try to defend the address. Remain 4132 * compatible with the old behavior. Defend 4133 * only with new ARP. 4134 */ 4135 if (ill->ill_arp_extend) { 4136 (void) qwriter_ip(NULL, ill, q, mp, 4137 ip_arp_defend, CUR_OP, B_FALSE); 4138 } else { 4139 ill_refrele(ill); 4140 } 4141 } 4142 return; 4143 } 4144 cmn_err(CE_WARN, 4145 "proxy ARP problem? Node '%s' is using %s on %s", 4146 hbuf, sbuf, ill->ill_name); 4147 if (ire != NULL) 4148 ire_refrele(ire); 4149 break; 4150 case AR_CN_ANNOUNCE: 4151 if (isv6) { 4152 /* 4153 * For XRESOLV interfaces. 4154 * Delete the IRE cache entry and NCE for this 4155 * v6 address 4156 */ 4157 ip_ire_clookup_and_delete_v6(&v6src); 4158 /* 4159 * If v6src is a non-zero, it's a router address 4160 * as below. Do the same sort of thing to clean 4161 * out off-net IRE_CACHE entries that go through 4162 * the router. 4163 */ 4164 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4165 ire_walk_v6(ire_delete_cache_gw_v6, 4166 (char *)&v6src, ALL_ZONES); 4167 } 4168 } else { 4169 nce_hw_map_t hwm; 4170 4171 /* 4172 * ARP gives us a copy of any packet where it thinks 4173 * the address has changed, so that we can update our 4174 * caches. We're responsible for caching known answers 4175 * in the current design. We check whether the 4176 * hardware address really has changed in all of our 4177 * entries that have cached this mapping, and if so, we 4178 * blow them away. This way we will immediately pick 4179 * up the rare case of a host changing hardware 4180 * address. 4181 */ 4182 if (src == 0) 4183 break; 4184 hwm.hwm_addr = src; 4185 hwm.hwm_hwlen = arh->arh_hlen; 4186 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4187 ndp_walk_common(&ndp4, NULL, 4188 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4189 } 4190 break; 4191 case AR_CN_READY: 4192 /* No external v6 resolver has a contract to use this */ 4193 if (isv6) 4194 break; 4195 /* If the link is down, we'll retry this later */ 4196 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4197 break; 4198 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4199 NULL, NULL); 4200 if (ipif != NULL) { 4201 /* 4202 * If this is a duplicate recovery, then we now need to 4203 * go exclusive to bring this thing back up. 4204 */ 4205 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4206 IPIF_DUPLICATE) { 4207 ipif_refrele(ipif); 4208 ill_refhold(ill); 4209 (void) qwriter_ip(NULL, ill, q, mp, 4210 ip_arp_excl, CUR_OP, B_FALSE); 4211 return; 4212 } 4213 /* 4214 * If this is the first notice that this address is 4215 * ready, then let the user know now. 4216 */ 4217 if ((ipif->ipif_flags & IPIF_UP) && 4218 !ipif->ipif_addr_ready) { 4219 ipif_mask_reply(ipif); 4220 ip_rts_ifmsg(ipif); 4221 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4222 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4223 } 4224 ipif->ipif_addr_ready = 1; 4225 ipif_refrele(ipif); 4226 } 4227 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4228 if (ire != NULL) { 4229 ire->ire_defense_count = 0; 4230 ire_refrele(ire); 4231 } 4232 break; 4233 case AR_CN_FAILED: 4234 /* No external v6 resolver has a contract to use this */ 4235 if (isv6) 4236 break; 4237 ill_refhold(ill); 4238 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4239 B_FALSE); 4240 return; 4241 } 4242 freemsg(mp); 4243 } 4244 4245 /* 4246 * Create a mblk suitable for carrying the interface index and/or source link 4247 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4248 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4249 * application. 4250 */ 4251 mblk_t * 4252 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4253 { 4254 mblk_t *mp; 4255 in_pktinfo_t *pinfo; 4256 ipha_t *ipha; 4257 struct ether_header *pether; 4258 4259 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4260 if (mp == NULL) { 4261 ip1dbg(("ip_add_info: allocation failure.\n")); 4262 return (data_mp); 4263 } 4264 4265 ipha = (ipha_t *)data_mp->b_rptr; 4266 pinfo = (in_pktinfo_t *)mp->b_rptr; 4267 bzero(pinfo, sizeof (in_pktinfo_t)); 4268 pinfo->in_pkt_flags = (uchar_t)flags; 4269 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4270 4271 if (flags & IPF_RECVIF) 4272 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4273 4274 pether = (struct ether_header *)((char *)ipha 4275 - sizeof (struct ether_header)); 4276 /* 4277 * Make sure the interface is an ethernet type, since this option 4278 * is currently supported only on this type of interface. Also make 4279 * sure we are pointing correctly above db_base. 4280 */ 4281 4282 if ((flags & IPF_RECVSLLA) && 4283 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4284 (ill->ill_type == IFT_ETHER) && 4285 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4286 4287 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4288 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4289 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4290 } else { 4291 /* 4292 * Clear the bit. Indicate to upper layer that IP is not 4293 * sending this ancillary info. 4294 */ 4295 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4296 } 4297 4298 mp->b_datap->db_type = M_CTL; 4299 mp->b_wptr += sizeof (in_pktinfo_t); 4300 mp->b_cont = data_mp; 4301 4302 return (mp); 4303 } 4304 4305 /* 4306 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4307 * part of the bind request. 4308 */ 4309 4310 boolean_t 4311 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4312 { 4313 ipsec_in_t *ii; 4314 4315 ASSERT(policy_mp != NULL); 4316 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4317 4318 ii = (ipsec_in_t *)policy_mp->b_rptr; 4319 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4320 4321 connp->conn_policy = ii->ipsec_in_policy; 4322 ii->ipsec_in_policy = NULL; 4323 4324 if (ii->ipsec_in_action != NULL) { 4325 if (connp->conn_latch == NULL) { 4326 connp->conn_latch = iplatch_create(); 4327 if (connp->conn_latch == NULL) 4328 return (B_FALSE); 4329 } 4330 ipsec_latch_inbound(connp->conn_latch, ii); 4331 } 4332 return (B_TRUE); 4333 } 4334 4335 /* 4336 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4337 * and to arrange for power-fanout assist. The ULP is identified by 4338 * adding a single byte at the end of the original bind message. 4339 * A ULP other than UDP or TCP that wishes to be recognized passes 4340 * down a bind with a zero length address. 4341 * 4342 * The binding works as follows: 4343 * - A zero byte address means just bind to the protocol. 4344 * - A four byte address is treated as a request to validate 4345 * that the address is a valid local address, appropriate for 4346 * an application to bind to. This does not affect any fanout 4347 * information in IP. 4348 * - A sizeof sin_t byte address is used to bind to only the local address 4349 * and port. 4350 * - A sizeof ipa_conn_t byte address contains complete fanout information 4351 * consisting of local and remote addresses and ports. In 4352 * this case, the addresses are both validated as appropriate 4353 * for this operation, and, if so, the information is retained 4354 * for use in the inbound fanout. 4355 * 4356 * The ULP (except in the zero-length bind) can append an 4357 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4358 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4359 * a copy of the source or destination IRE (source for local bind; 4360 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4361 * policy information contained should be copied on to the conn. 4362 * 4363 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4364 */ 4365 mblk_t * 4366 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4367 { 4368 ssize_t len; 4369 struct T_bind_req *tbr; 4370 sin_t *sin; 4371 ipa_conn_t *ac; 4372 uchar_t *ucp; 4373 mblk_t *mp1; 4374 boolean_t ire_requested; 4375 boolean_t ipsec_policy_set = B_FALSE; 4376 int error = 0; 4377 int protocol; 4378 ipa_conn_x_t *acx; 4379 4380 ASSERT(!connp->conn_af_isv6); 4381 connp->conn_pkt_isv6 = B_FALSE; 4382 4383 len = MBLKL(mp); 4384 if (len < (sizeof (*tbr) + 1)) { 4385 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4386 "ip_bind: bogus msg, len %ld", len); 4387 /* XXX: Need to return something better */ 4388 goto bad_addr; 4389 } 4390 /* Back up and extract the protocol identifier. */ 4391 mp->b_wptr--; 4392 protocol = *mp->b_wptr & 0xFF; 4393 tbr = (struct T_bind_req *)mp->b_rptr; 4394 /* Reset the message type in preparation for shipping it back. */ 4395 DB_TYPE(mp) = M_PCPROTO; 4396 4397 connp->conn_ulp = (uint8_t)protocol; 4398 4399 /* 4400 * Check for a zero length address. This is from a protocol that 4401 * wants to register to receive all packets of its type. 4402 */ 4403 if (tbr->ADDR_length == 0) { 4404 /* 4405 * These protocols are now intercepted in ip_bind_v6(). 4406 * Reject protocol-level binds here for now. 4407 * 4408 * For SCTP raw socket, ICMP sends down a bind with sin_t 4409 * so that the protocol type cannot be SCTP. 4410 */ 4411 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4412 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4413 goto bad_addr; 4414 } 4415 4416 /* 4417 * 4418 * The udp module never sends down a zero-length address, 4419 * and allowing this on a labeled system will break MLP 4420 * functionality. 4421 */ 4422 if (is_system_labeled() && protocol == IPPROTO_UDP) 4423 goto bad_addr; 4424 4425 if (connp->conn_mac_exempt) 4426 goto bad_addr; 4427 4428 /* No hash here really. The table is big enough. */ 4429 connp->conn_srcv6 = ipv6_all_zeros; 4430 4431 ipcl_proto_insert(connp, protocol); 4432 4433 tbr->PRIM_type = T_BIND_ACK; 4434 return (mp); 4435 } 4436 4437 /* Extract the address pointer from the message. */ 4438 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4439 tbr->ADDR_length); 4440 if (ucp == NULL) { 4441 ip1dbg(("ip_bind: no address\n")); 4442 goto bad_addr; 4443 } 4444 if (!OK_32PTR(ucp)) { 4445 ip1dbg(("ip_bind: unaligned address\n")); 4446 goto bad_addr; 4447 } 4448 /* 4449 * Check for trailing mps. 4450 */ 4451 4452 mp1 = mp->b_cont; 4453 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4454 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4455 4456 switch (tbr->ADDR_length) { 4457 default: 4458 ip1dbg(("ip_bind: bad address length %d\n", 4459 (int)tbr->ADDR_length)); 4460 goto bad_addr; 4461 4462 case IP_ADDR_LEN: 4463 /* Verification of local address only */ 4464 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4465 ire_requested, ipsec_policy_set, B_FALSE); 4466 break; 4467 4468 case sizeof (sin_t): 4469 sin = (sin_t *)ucp; 4470 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4471 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4472 if (protocol == IPPROTO_TCP) 4473 connp->conn_recv = tcp_conn_request; 4474 break; 4475 4476 case sizeof (ipa_conn_t): 4477 ac = (ipa_conn_t *)ucp; 4478 /* For raw socket, the local port is not set. */ 4479 if (ac->ac_lport == 0) 4480 ac->ac_lport = connp->conn_lport; 4481 /* Always verify destination reachability. */ 4482 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4483 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4484 ipsec_policy_set, B_TRUE, B_TRUE); 4485 if (protocol == IPPROTO_TCP) 4486 connp->conn_recv = tcp_input; 4487 break; 4488 4489 case sizeof (ipa_conn_x_t): 4490 acx = (ipa_conn_x_t *)ucp; 4491 /* 4492 * Whether or not to verify destination reachability depends 4493 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4494 */ 4495 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4496 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4497 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4498 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4499 if (protocol == IPPROTO_TCP) 4500 connp->conn_recv = tcp_input; 4501 break; 4502 } 4503 if (error == EINPROGRESS) 4504 return (NULL); 4505 else if (error != 0) 4506 goto bad_addr; 4507 /* 4508 * Pass the IPSEC headers size in ire_ipsec_overhead. 4509 * We can't do this in ip_bind_insert_ire because the policy 4510 * may not have been inherited at that point in time and hence 4511 * conn_out_enforce_policy may not be set. 4512 */ 4513 mp1 = mp->b_cont; 4514 if (ire_requested && connp->conn_out_enforce_policy && 4515 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4516 ire_t *ire = (ire_t *)mp1->b_rptr; 4517 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4518 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4519 } 4520 4521 /* Send it home. */ 4522 mp->b_datap->db_type = M_PCPROTO; 4523 tbr->PRIM_type = T_BIND_ACK; 4524 return (mp); 4525 4526 bad_addr: 4527 /* 4528 * If error = -1 then we generate a TBADADDR - otherwise error is 4529 * a unix errno. 4530 */ 4531 if (error > 0) 4532 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4533 else 4534 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4535 return (mp); 4536 } 4537 4538 /* 4539 * Here address is verified to be a valid local address. 4540 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4541 * address is also considered a valid local address. 4542 * In the case of a broadcast/multicast address, however, the 4543 * upper protocol is expected to reset the src address 4544 * to 0 if it sees a IRE_BROADCAST type returned so that 4545 * no packets are emitted with broadcast/multicast address as 4546 * source address (that violates hosts requirements RFC1122) 4547 * The addresses valid for bind are: 4548 * (1) - INADDR_ANY (0) 4549 * (2) - IP address of an UP interface 4550 * (3) - IP address of a DOWN interface 4551 * (4) - valid local IP broadcast addresses. In this case 4552 * the conn will only receive packets destined to 4553 * the specified broadcast address. 4554 * (5) - a multicast address. In this case 4555 * the conn will only receive packets destined to 4556 * the specified multicast address. Note: the 4557 * application still has to issue an 4558 * IP_ADD_MEMBERSHIP socket option. 4559 * 4560 * On error, return -1 for TBADADDR otherwise pass the 4561 * errno with TSYSERR reply. 4562 * 4563 * In all the above cases, the bound address must be valid in the current zone. 4564 * When the address is loopback, multicast or broadcast, there might be many 4565 * matching IREs so bind has to look up based on the zone. 4566 * 4567 * Note: lport is in network byte order. 4568 */ 4569 int 4570 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4571 boolean_t ire_requested, boolean_t ipsec_policy_set, 4572 boolean_t fanout_insert) 4573 { 4574 int error = 0; 4575 ire_t *src_ire; 4576 mblk_t *policy_mp; 4577 ipif_t *ipif; 4578 zoneid_t zoneid; 4579 4580 if (ipsec_policy_set) { 4581 policy_mp = mp->b_cont; 4582 } 4583 4584 /* 4585 * If it was previously connected, conn_fully_bound would have 4586 * been set. 4587 */ 4588 connp->conn_fully_bound = B_FALSE; 4589 4590 src_ire = NULL; 4591 ipif = NULL; 4592 4593 zoneid = IPCL_ZONEID(connp); 4594 4595 if (src_addr) { 4596 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4597 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4598 /* 4599 * If an address other than 0.0.0.0 is requested, 4600 * we verify that it is a valid address for bind 4601 * Note: Following code is in if-else-if form for 4602 * readability compared to a condition check. 4603 */ 4604 /* LINTED - statement has no consequent */ 4605 if (IRE_IS_LOCAL(src_ire)) { 4606 /* 4607 * (2) Bind to address of local UP interface 4608 */ 4609 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4610 /* 4611 * (4) Bind to broadcast address 4612 * Note: permitted only from transports that 4613 * request IRE 4614 */ 4615 if (!ire_requested) 4616 error = EADDRNOTAVAIL; 4617 } else { 4618 /* 4619 * (3) Bind to address of local DOWN interface 4620 * (ipif_lookup_addr() looks up all interfaces 4621 * but we do not get here for UP interfaces 4622 * - case (2) above) 4623 * We put the protocol byte back into the mblk 4624 * since we may come back via ip_wput_nondata() 4625 * later with this mblk if ipif_lookup_addr chooses 4626 * to defer processing. 4627 */ 4628 *mp->b_wptr++ = (char)connp->conn_ulp; 4629 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4630 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4631 &error)) != NULL) { 4632 ipif_refrele(ipif); 4633 } else if (error == EINPROGRESS) { 4634 if (src_ire != NULL) 4635 ire_refrele(src_ire); 4636 return (EINPROGRESS); 4637 } else if (CLASSD(src_addr)) { 4638 error = 0; 4639 if (src_ire != NULL) 4640 ire_refrele(src_ire); 4641 /* 4642 * (5) bind to multicast address. 4643 * Fake out the IRE returned to upper 4644 * layer to be a broadcast IRE. 4645 */ 4646 src_ire = ire_ctable_lookup( 4647 INADDR_BROADCAST, INADDR_ANY, 4648 IRE_BROADCAST, NULL, zoneid, NULL, 4649 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4650 if (src_ire == NULL || !ire_requested) 4651 error = EADDRNOTAVAIL; 4652 } else { 4653 /* 4654 * Not a valid address for bind 4655 */ 4656 error = EADDRNOTAVAIL; 4657 } 4658 /* 4659 * Just to keep it consistent with the processing in 4660 * ip_bind_v4() 4661 */ 4662 mp->b_wptr--; 4663 } 4664 if (error) { 4665 /* Red Alert! Attempting to be a bogon! */ 4666 ip1dbg(("ip_bind: bad src address 0x%x\n", 4667 ntohl(src_addr))); 4668 goto bad_addr; 4669 } 4670 } 4671 4672 /* 4673 * Allow setting new policies. For example, disconnects come 4674 * down as ipa_t bind. As we would have set conn_policy_cached 4675 * to B_TRUE before, we should set it to B_FALSE, so that policy 4676 * can change after the disconnect. 4677 */ 4678 connp->conn_policy_cached = B_FALSE; 4679 4680 /* 4681 * If not fanout_insert this was just an address verification 4682 */ 4683 if (fanout_insert) { 4684 /* 4685 * The addresses have been verified. Time to insert in 4686 * the correct fanout list. 4687 */ 4688 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4689 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4690 connp->conn_lport = lport; 4691 connp->conn_fport = 0; 4692 /* 4693 * Do we need to add a check to reject Multicast packets 4694 */ 4695 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4696 } 4697 4698 if (error == 0) { 4699 if (ire_requested) { 4700 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4701 error = -1; 4702 /* Falls through to bad_addr */ 4703 } 4704 } else if (ipsec_policy_set) { 4705 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4706 error = -1; 4707 /* Falls through to bad_addr */ 4708 } 4709 } 4710 } 4711 bad_addr: 4712 if (error != 0) { 4713 if (connp->conn_anon_port) { 4714 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4715 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4716 B_FALSE); 4717 } 4718 connp->conn_mlp_type = mlptSingle; 4719 } 4720 if (src_ire != NULL) 4721 IRE_REFRELE(src_ire); 4722 if (ipsec_policy_set) { 4723 ASSERT(policy_mp == mp->b_cont); 4724 ASSERT(policy_mp != NULL); 4725 freeb(policy_mp); 4726 /* 4727 * As of now assume that nothing else accompanies 4728 * IPSEC_POLICY_SET. 4729 */ 4730 mp->b_cont = NULL; 4731 } 4732 return (error); 4733 } 4734 4735 /* 4736 * Verify that both the source and destination addresses 4737 * are valid. If verify_dst is false, then the destination address may be 4738 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4739 * destination reachability, while tunnels do not. 4740 * Note that we allow connect to broadcast and multicast 4741 * addresses when ire_requested is set. Thus the ULP 4742 * has to check for IRE_BROADCAST and multicast. 4743 * 4744 * Returns zero if ok. 4745 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4746 * (for use with TSYSERR reply). 4747 * 4748 * Note: lport and fport are in network byte order. 4749 */ 4750 int 4751 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4752 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4753 boolean_t ire_requested, boolean_t ipsec_policy_set, 4754 boolean_t fanout_insert, boolean_t verify_dst) 4755 { 4756 ire_t *src_ire; 4757 ire_t *dst_ire; 4758 int error = 0; 4759 int protocol; 4760 mblk_t *policy_mp; 4761 ire_t *sire = NULL; 4762 ire_t *md_dst_ire = NULL; 4763 ill_t *md_ill = NULL; 4764 zoneid_t zoneid; 4765 ipaddr_t src_addr = *src_addrp; 4766 4767 src_ire = dst_ire = NULL; 4768 protocol = *mp->b_wptr & 0xFF; 4769 4770 /* 4771 * If we never got a disconnect before, clear it now. 4772 */ 4773 connp->conn_fully_bound = B_FALSE; 4774 4775 if (ipsec_policy_set) { 4776 policy_mp = mp->b_cont; 4777 } 4778 4779 zoneid = IPCL_ZONEID(connp); 4780 4781 if (CLASSD(dst_addr)) { 4782 /* Pick up an IRE_BROADCAST */ 4783 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4784 NULL, zoneid, MBLK_GETLABEL(mp), 4785 (MATCH_IRE_RECURSIVE | 4786 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4787 MATCH_IRE_SECATTR)); 4788 } else { 4789 /* 4790 * If conn_dontroute is set or if conn_nexthop_set is set, 4791 * and onlink ipif is not found set ENETUNREACH error. 4792 */ 4793 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4794 ipif_t *ipif; 4795 4796 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4797 dst_addr : connp->conn_nexthop_v4, 4798 connp->conn_zoneid); 4799 if (ipif == NULL) { 4800 error = ENETUNREACH; 4801 goto bad_addr; 4802 } 4803 ipif_refrele(ipif); 4804 } 4805 4806 if (connp->conn_nexthop_set) { 4807 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4808 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4809 MATCH_IRE_SECATTR); 4810 } else { 4811 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4812 &sire, zoneid, MBLK_GETLABEL(mp), 4813 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4814 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4815 MATCH_IRE_SECATTR)); 4816 } 4817 } 4818 /* 4819 * dst_ire can't be a broadcast when not ire_requested. 4820 * We also prevent ire's with src address INADDR_ANY to 4821 * be used, which are created temporarily for 4822 * sending out packets from endpoints that have 4823 * conn_unspec_src set. If verify_dst is true, the destination must be 4824 * reachable. If verify_dst is false, the destination needn't be 4825 * reachable. 4826 * 4827 * If we match on a reject or black hole, then we've got a 4828 * local failure. May as well fail out the connect() attempt, 4829 * since it's never going to succeed. 4830 */ 4831 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4832 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4833 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4834 /* 4835 * If we're verifying destination reachability, we always want 4836 * to complain here. 4837 * 4838 * If we're not verifying destination reachability but the 4839 * destination has a route, we still want to fail on the 4840 * temporary address and broadcast address tests. 4841 */ 4842 if (verify_dst || (dst_ire != NULL)) { 4843 if (ip_debug > 2) { 4844 pr_addr_dbg("ip_bind_connected: bad connected " 4845 "dst %s\n", AF_INET, &dst_addr); 4846 } 4847 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4848 error = ENETUNREACH; 4849 else 4850 error = EHOSTUNREACH; 4851 goto bad_addr; 4852 } 4853 } 4854 4855 /* 4856 * We now know that routing will allow us to reach the destination. 4857 * Check whether Trusted Solaris policy allows communication with this 4858 * host, and pretend that the destination is unreachable if not. 4859 * 4860 * This is never a problem for TCP, since that transport is known to 4861 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4862 * handling. If the remote is unreachable, it will be detected at that 4863 * point, so there's no reason to check it here. 4864 * 4865 * Note that for sendto (and other datagram-oriented friends), this 4866 * check is done as part of the data path label computation instead. 4867 * The check here is just to make non-TCP connect() report the right 4868 * error. 4869 */ 4870 if (dst_ire != NULL && is_system_labeled() && 4871 !IPCL_IS_TCP(connp) && 4872 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4873 connp->conn_mac_exempt) != 0) { 4874 error = EHOSTUNREACH; 4875 if (ip_debug > 2) { 4876 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4877 AF_INET, &dst_addr); 4878 } 4879 goto bad_addr; 4880 } 4881 4882 /* 4883 * If the app does a connect(), it means that it will most likely 4884 * send more than 1 packet to the destination. It makes sense 4885 * to clear the temporary flag. 4886 */ 4887 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4888 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4889 irb_t *irb = dst_ire->ire_bucket; 4890 4891 rw_enter(&irb->irb_lock, RW_WRITER); 4892 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4893 irb->irb_tmp_ire_cnt--; 4894 rw_exit(&irb->irb_lock); 4895 } 4896 4897 /* 4898 * See if we should notify ULP about MDT; we do this whether or not 4899 * ire_requested is TRUE, in order to handle active connects; MDT 4900 * eligibility tests for passive connects are handled separately 4901 * through tcp_adapt_ire(). We do this before the source address 4902 * selection, because dst_ire may change after a call to 4903 * ipif_select_source(). This is a best-effort check, as the 4904 * packet for this connection may not actually go through 4905 * dst_ire->ire_stq, and the exact IRE can only be known after 4906 * calling ip_newroute(). This is why we further check on the 4907 * IRE during Multidata packet transmission in tcp_multisend(). 4908 */ 4909 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4910 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4911 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4912 ILL_MDT_CAPABLE(md_ill)) { 4913 md_dst_ire = dst_ire; 4914 IRE_REFHOLD(md_dst_ire); 4915 } 4916 4917 if (dst_ire != NULL && 4918 dst_ire->ire_type == IRE_LOCAL && 4919 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4920 /* 4921 * If the IRE belongs to a different zone, look for a matching 4922 * route in the forwarding table and use the source address from 4923 * that route. 4924 */ 4925 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4926 zoneid, 0, NULL, 4927 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4928 MATCH_IRE_RJ_BHOLE); 4929 if (src_ire == NULL) { 4930 error = EHOSTUNREACH; 4931 goto bad_addr; 4932 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4933 if (!(src_ire->ire_type & IRE_HOST)) 4934 error = ENETUNREACH; 4935 else 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } 4939 if (src_addr == INADDR_ANY) 4940 src_addr = src_ire->ire_src_addr; 4941 ire_refrele(src_ire); 4942 src_ire = NULL; 4943 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4944 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4945 src_addr = sire->ire_src_addr; 4946 ire_refrele(dst_ire); 4947 dst_ire = sire; 4948 sire = NULL; 4949 } else { 4950 /* 4951 * Pick a source address so that a proper inbound 4952 * load spreading would happen. 4953 */ 4954 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4955 ipif_t *src_ipif = NULL; 4956 ire_t *ipif_ire; 4957 4958 /* 4959 * Supply a local source address such that inbound 4960 * load spreading happens. 4961 * 4962 * Determine the best source address on this ill for 4963 * the destination. 4964 * 4965 * 1) For broadcast, we should return a broadcast ire 4966 * found above so that upper layers know that the 4967 * destination address is a broadcast address. 4968 * 4969 * 2) If this is part of a group, select a better 4970 * source address so that better inbound load 4971 * balancing happens. Do the same if the ipif 4972 * is DEPRECATED. 4973 * 4974 * 3) If the outgoing interface is part of a usesrc 4975 * group, then try selecting a source address from 4976 * the usesrc ILL. 4977 */ 4978 if ((dst_ire->ire_zoneid != zoneid && 4979 dst_ire->ire_zoneid != ALL_ZONES) || 4980 (!(dst_ire->ire_type & IRE_BROADCAST) && 4981 ((dst_ill->ill_group != NULL) || 4982 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4983 (dst_ill->ill_usesrc_ifindex != 0)))) { 4984 /* 4985 * If the destination is reachable via a 4986 * given gateway, the selected source address 4987 * should be in the same subnet as the gateway. 4988 * Otherwise, the destination is not reachable. 4989 * 4990 * If there are no interfaces on the same subnet 4991 * as the destination, ipif_select_source gives 4992 * first non-deprecated interface which might be 4993 * on a different subnet than the gateway. 4994 * This is not desirable. Hence pass the dst_ire 4995 * source address to ipif_select_source. 4996 * It is sure that the destination is reachable 4997 * with the dst_ire source address subnet. 4998 * So passing dst_ire source address to 4999 * ipif_select_source will make sure that the 5000 * selected source will be on the same subnet 5001 * as dst_ire source address. 5002 */ 5003 ipaddr_t saddr = 5004 dst_ire->ire_ipif->ipif_src_addr; 5005 src_ipif = ipif_select_source(dst_ill, 5006 saddr, zoneid); 5007 if (src_ipif != NULL) { 5008 if (IS_VNI(src_ipif->ipif_ill)) { 5009 /* 5010 * For VNI there is no 5011 * interface route 5012 */ 5013 src_addr = 5014 src_ipif->ipif_src_addr; 5015 } else { 5016 ipif_ire = 5017 ipif_to_ire(src_ipif); 5018 if (ipif_ire != NULL) { 5019 IRE_REFRELE(dst_ire); 5020 dst_ire = ipif_ire; 5021 } 5022 src_addr = 5023 dst_ire->ire_src_addr; 5024 } 5025 ipif_refrele(src_ipif); 5026 } else { 5027 src_addr = dst_ire->ire_src_addr; 5028 } 5029 } else { 5030 src_addr = dst_ire->ire_src_addr; 5031 } 5032 } 5033 } 5034 5035 /* 5036 * We do ire_route_lookup() here (and not 5037 * interface lookup as we assert that 5038 * src_addr should only come from an 5039 * UP interface for hard binding. 5040 */ 5041 ASSERT(src_ire == NULL); 5042 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5043 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5044 /* src_ire must be a local|loopback */ 5045 if (!IRE_IS_LOCAL(src_ire)) { 5046 if (ip_debug > 2) { 5047 pr_addr_dbg("ip_bind_connected: bad connected " 5048 "src %s\n", AF_INET, &src_addr); 5049 } 5050 error = EADDRNOTAVAIL; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * If the source address is a loopback address, the 5056 * destination had best be local or multicast. 5057 * The transports that can't handle multicast will reject 5058 * those addresses. 5059 */ 5060 if (src_ire->ire_type == IRE_LOOPBACK && 5061 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5062 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5063 error = -1; 5064 goto bad_addr; 5065 } 5066 5067 /* 5068 * Allow setting new policies. For example, disconnects come 5069 * down as ipa_t bind. As we would have set conn_policy_cached 5070 * to B_TRUE before, we should set it to B_FALSE, so that policy 5071 * can change after the disconnect. 5072 */ 5073 connp->conn_policy_cached = B_FALSE; 5074 5075 /* 5076 * Set the conn addresses/ports immediately, so the IPsec policy calls 5077 * can handle their passed-in conn's. 5078 */ 5079 5080 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5081 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5082 connp->conn_lport = lport; 5083 connp->conn_fport = fport; 5084 *src_addrp = src_addr; 5085 5086 ASSERT(!(ipsec_policy_set && ire_requested)); 5087 if (ire_requested) { 5088 iulp_t *ulp_info = NULL; 5089 5090 /* 5091 * Note that sire will not be NULL if this is an off-link 5092 * connection and there is not cache for that dest yet. 5093 * 5094 * XXX Because of an existing bug, if there are multiple 5095 * default routes, the IRE returned now may not be the actual 5096 * default route used (default routes are chosen in a 5097 * round robin fashion). So if the metrics for different 5098 * default routes are different, we may return the wrong 5099 * metrics. This will not be a problem if the existing 5100 * bug is fixed. 5101 */ 5102 if (sire != NULL) { 5103 ulp_info = &(sire->ire_uinfo); 5104 } 5105 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5106 error = -1; 5107 goto bad_addr; 5108 } 5109 } else if (ipsec_policy_set) { 5110 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5111 error = -1; 5112 goto bad_addr; 5113 } 5114 } 5115 5116 /* 5117 * Cache IPsec policy in this conn. If we have per-socket policy, 5118 * we'll cache that. If we don't, we'll inherit global policy. 5119 * 5120 * We can't insert until the conn reflects the policy. Note that 5121 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5122 * connections where we don't have a policy. This is to prevent 5123 * global policy lookups in the inbound path. 5124 * 5125 * If we insert before we set conn_policy_cached, 5126 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5127 * because global policy cound be non-empty. We normally call 5128 * ipsec_check_policy() for conn_policy_cached connections only if 5129 * ipc_in_enforce_policy is set. But in this case, 5130 * conn_policy_cached can get set anytime since we made the 5131 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5132 * called, which will make the above assumption false. Thus, we 5133 * need to insert after we set conn_policy_cached. 5134 */ 5135 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5136 goto bad_addr; 5137 5138 if (fanout_insert) { 5139 /* 5140 * The addresses have been verified. Time to insert in 5141 * the correct fanout list. 5142 */ 5143 error = ipcl_conn_insert(connp, protocol, src_addr, 5144 dst_addr, connp->conn_ports); 5145 } 5146 5147 if (error == 0) { 5148 connp->conn_fully_bound = B_TRUE; 5149 /* 5150 * Our initial checks for MDT have passed; the IRE is not 5151 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5152 * be supporting MDT. Pass the IRE, IPC and ILL into 5153 * ip_mdinfo_return(), which performs further checks 5154 * against them and upon success, returns the MDT info 5155 * mblk which we will attach to the bind acknowledgment. 5156 */ 5157 if (md_dst_ire != NULL) { 5158 mblk_t *mdinfo_mp; 5159 5160 ASSERT(md_ill != NULL); 5161 ASSERT(md_ill->ill_mdt_capab != NULL); 5162 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5163 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 5164 linkb(mp, mdinfo_mp); 5165 } 5166 } 5167 bad_addr: 5168 if (ipsec_policy_set) { 5169 ASSERT(policy_mp == mp->b_cont); 5170 ASSERT(policy_mp != NULL); 5171 freeb(policy_mp); 5172 /* 5173 * As of now assume that nothing else accompanies 5174 * IPSEC_POLICY_SET. 5175 */ 5176 mp->b_cont = NULL; 5177 } 5178 if (src_ire != NULL) 5179 IRE_REFRELE(src_ire); 5180 if (dst_ire != NULL) 5181 IRE_REFRELE(dst_ire); 5182 if (sire != NULL) 5183 IRE_REFRELE(sire); 5184 if (md_dst_ire != NULL) 5185 IRE_REFRELE(md_dst_ire); 5186 return (error); 5187 } 5188 5189 /* 5190 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5191 * Prefers dst_ire over src_ire. 5192 */ 5193 static boolean_t 5194 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5195 { 5196 mblk_t *mp1; 5197 ire_t *ret_ire = NULL; 5198 5199 mp1 = mp->b_cont; 5200 ASSERT(mp1 != NULL); 5201 5202 if (ire != NULL) { 5203 /* 5204 * mp1 initialized above to IRE_DB_REQ_TYPE 5205 * appended mblk. Its <upper protocol>'s 5206 * job to make sure there is room. 5207 */ 5208 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5209 return (0); 5210 5211 mp1->b_datap->db_type = IRE_DB_TYPE; 5212 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5213 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5214 ret_ire = (ire_t *)mp1->b_rptr; 5215 /* 5216 * Pass the latest setting of the ip_path_mtu_discovery and 5217 * copy the ulp info if any. 5218 */ 5219 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5220 IPH_DF : 0; 5221 if (ulp_info != NULL) { 5222 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5223 sizeof (iulp_t)); 5224 } 5225 ret_ire->ire_mp = mp1; 5226 } else { 5227 /* 5228 * No IRE was found. Remove IRE mblk. 5229 */ 5230 mp->b_cont = mp1->b_cont; 5231 freeb(mp1); 5232 } 5233 5234 return (1); 5235 } 5236 5237 /* 5238 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5239 * the final piece where we don't. Return a pointer to the first mblk in the 5240 * result, and update the pointer to the next mblk to chew on. If anything 5241 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5242 * NULL pointer. 5243 */ 5244 mblk_t * 5245 ip_carve_mp(mblk_t **mpp, ssize_t len) 5246 { 5247 mblk_t *mp0; 5248 mblk_t *mp1; 5249 mblk_t *mp2; 5250 5251 if (!len || !mpp || !(mp0 = *mpp)) 5252 return (NULL); 5253 /* If we aren't going to consume the first mblk, we need a dup. */ 5254 if (mp0->b_wptr - mp0->b_rptr > len) { 5255 mp1 = dupb(mp0); 5256 if (mp1) { 5257 /* Partition the data between the two mblks. */ 5258 mp1->b_wptr = mp1->b_rptr + len; 5259 mp0->b_rptr = mp1->b_wptr; 5260 /* 5261 * after adjustments if mblk not consumed is now 5262 * unaligned, try to align it. If this fails free 5263 * all messages and let upper layer recover. 5264 */ 5265 if (!OK_32PTR(mp0->b_rptr)) { 5266 if (!pullupmsg(mp0, -1)) { 5267 freemsg(mp0); 5268 freemsg(mp1); 5269 *mpp = NULL; 5270 return (NULL); 5271 } 5272 } 5273 } 5274 return (mp1); 5275 } 5276 /* Eat through as many mblks as we need to get len bytes. */ 5277 len -= mp0->b_wptr - mp0->b_rptr; 5278 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5279 if (mp2->b_wptr - mp2->b_rptr > len) { 5280 /* 5281 * We won't consume the entire last mblk. Like 5282 * above, dup and partition it. 5283 */ 5284 mp1->b_cont = dupb(mp2); 5285 mp1 = mp1->b_cont; 5286 if (!mp1) { 5287 /* 5288 * Trouble. Rather than go to a lot of 5289 * trouble to clean up, we free the messages. 5290 * This won't be any worse than losing it on 5291 * the wire. 5292 */ 5293 freemsg(mp0); 5294 freemsg(mp2); 5295 *mpp = NULL; 5296 return (NULL); 5297 } 5298 mp1->b_wptr = mp1->b_rptr + len; 5299 mp2->b_rptr = mp1->b_wptr; 5300 /* 5301 * after adjustments if mblk not consumed is now 5302 * unaligned, try to align it. If this fails free 5303 * all messages and let upper layer recover. 5304 */ 5305 if (!OK_32PTR(mp2->b_rptr)) { 5306 if (!pullupmsg(mp2, -1)) { 5307 freemsg(mp0); 5308 freemsg(mp2); 5309 *mpp = NULL; 5310 return (NULL); 5311 } 5312 } 5313 *mpp = mp2; 5314 return (mp0); 5315 } 5316 /* Decrement len by the amount we just got. */ 5317 len -= mp2->b_wptr - mp2->b_rptr; 5318 } 5319 /* 5320 * len should be reduced to zero now. If not our caller has 5321 * screwed up. 5322 */ 5323 if (len) { 5324 /* Shouldn't happen! */ 5325 freemsg(mp0); 5326 *mpp = NULL; 5327 return (NULL); 5328 } 5329 /* 5330 * We consumed up to exactly the end of an mblk. Detach the part 5331 * we are returning from the rest of the chain. 5332 */ 5333 mp1->b_cont = NULL; 5334 *mpp = mp2; 5335 return (mp0); 5336 } 5337 5338 /* The ill stream is being unplumbed. Called from ip_close */ 5339 int 5340 ip_modclose(ill_t *ill) 5341 { 5342 5343 boolean_t success; 5344 ipsq_t *ipsq; 5345 ipif_t *ipif; 5346 queue_t *q = ill->ill_rq; 5347 hook_nic_event_t *info; 5348 5349 /* 5350 * Forcibly enter the ipsq after some delay. This is to take 5351 * care of the case when some ioctl does not complete because 5352 * we sent a control message to the driver and it did not 5353 * send us a reply. We want to be able to at least unplumb 5354 * and replumb rather than force the user to reboot the system. 5355 */ 5356 success = ipsq_enter(ill, B_FALSE); 5357 5358 /* 5359 * Open/close/push/pop is guaranteed to be single threaded 5360 * per stream by STREAMS. FS guarantees that all references 5361 * from top are gone before close is called. So there can't 5362 * be another close thread that has set CONDEMNED on this ill. 5363 * and cause ipsq_enter to return failure. 5364 */ 5365 ASSERT(success); 5366 ipsq = ill->ill_phyint->phyint_ipsq; 5367 5368 /* 5369 * Mark it condemned. No new reference will be made to this ill. 5370 * Lookup functions will return an error. Threads that try to 5371 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5372 * that the refcnt will drop down to zero. 5373 */ 5374 mutex_enter(&ill->ill_lock); 5375 ill->ill_state_flags |= ILL_CONDEMNED; 5376 for (ipif = ill->ill_ipif; ipif != NULL; 5377 ipif = ipif->ipif_next) { 5378 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5379 } 5380 /* 5381 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5382 * returns error if ILL_CONDEMNED is set 5383 */ 5384 cv_broadcast(&ill->ill_cv); 5385 mutex_exit(&ill->ill_lock); 5386 5387 /* 5388 * Shut down fragmentation reassembly. 5389 * ill_frag_timer won't start a timer again. 5390 * Now cancel any existing timer 5391 */ 5392 (void) untimeout(ill->ill_frag_timer_id); 5393 (void) ill_frag_timeout(ill, 0); 5394 5395 /* 5396 * If MOVE was in progress, clear the 5397 * move_in_progress fields also. 5398 */ 5399 if (ill->ill_move_in_progress) { 5400 ILL_CLEAR_MOVE(ill); 5401 } 5402 5403 /* 5404 * Call ill_delete to bring down the ipifs, ilms and ill on 5405 * this ill. Then wait for the refcnts to drop to zero. 5406 * ill_is_quiescent checks whether the ill is really quiescent. 5407 * Then make sure that threads that are waiting to enter the 5408 * ipsq have seen the error returned by ipsq_enter and have 5409 * gone away. Then we call ill_delete_tail which does the 5410 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5411 */ 5412 ill_delete(ill); 5413 mutex_enter(&ill->ill_lock); 5414 while (!ill_is_quiescent(ill)) 5415 cv_wait(&ill->ill_cv, &ill->ill_lock); 5416 while (ill->ill_waiters) 5417 cv_wait(&ill->ill_cv, &ill->ill_lock); 5418 5419 mutex_exit(&ill->ill_lock); 5420 5421 /* qprocsoff is called in ill_delete_tail */ 5422 ill_delete_tail(ill); 5423 5424 /* 5425 * Walk through all upper (conn) streams and qenable 5426 * those that have queued data. 5427 * close synchronization needs this to 5428 * be done to ensure that all upper layers blocked 5429 * due to flow control to the closing device 5430 * get unblocked. 5431 */ 5432 ip1dbg(("ip_wsrv: walking\n")); 5433 conn_walk_drain(); 5434 5435 mutex_enter(&ip_mi_lock); 5436 mi_close_unlink(&ip_g_head, (IDP)ill); 5437 mutex_exit(&ip_mi_lock); 5438 5439 /* 5440 * credp could be null if the open didn't succeed and ip_modopen 5441 * itself calls ip_close. 5442 */ 5443 if (ill->ill_credp != NULL) 5444 crfree(ill->ill_credp); 5445 5446 /* 5447 * Unhook the nic event message from the ill and enqueue it into the nic 5448 * event taskq. 5449 */ 5450 if ((info = ill->ill_nic_event_info) != NULL) { 5451 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, 5452 (void *)info, DDI_SLEEP) == DDI_FAILURE) { 5453 ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n")); 5454 if (info->hne_data != NULL) 5455 kmem_free(info->hne_data, info->hne_datalen); 5456 kmem_free(info, sizeof (hook_nic_event_t)); 5457 } 5458 ill->ill_nic_event_info = NULL; 5459 } 5460 5461 mi_close_free((IDP)ill); 5462 q->q_ptr = WR(q)->q_ptr = NULL; 5463 5464 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5465 5466 return (0); 5467 } 5468 5469 /* 5470 * This is called as part of close() for both IP and UDP 5471 * in order to quiesce the conn. 5472 */ 5473 void 5474 ip_quiesce_conn(conn_t *connp) 5475 { 5476 boolean_t drain_cleanup_reqd = B_FALSE; 5477 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5478 boolean_t ilg_cleanup_reqd = B_FALSE; 5479 5480 ASSERT(!IPCL_IS_TCP(connp)); 5481 5482 /* 5483 * Mark the conn as closing, and this conn must not be 5484 * inserted in future into any list. Eg. conn_drain_insert(), 5485 * won't insert this conn into the conn_drain_list. 5486 * Similarly ill_pending_mp_add() will not add any mp to 5487 * the pending mp list, after this conn has started closing. 5488 * 5489 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5490 * cannot get set henceforth. 5491 */ 5492 mutex_enter(&connp->conn_lock); 5493 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5494 connp->conn_state_flags |= CONN_CLOSING; 5495 if (connp->conn_idl != NULL) 5496 drain_cleanup_reqd = B_TRUE; 5497 if (connp->conn_oper_pending_ill != NULL) 5498 conn_ioctl_cleanup_reqd = B_TRUE; 5499 if (connp->conn_ilg_inuse != 0) 5500 ilg_cleanup_reqd = B_TRUE; 5501 mutex_exit(&connp->conn_lock); 5502 5503 if (IPCL_IS_UDP(connp)) 5504 udp_quiesce_conn(connp); 5505 5506 if (conn_ioctl_cleanup_reqd) 5507 conn_ioctl_cleanup(connp); 5508 5509 if (is_system_labeled() && connp->conn_anon_port) { 5510 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5511 connp->conn_mlp_type, connp->conn_ulp, 5512 ntohs(connp->conn_lport), B_FALSE); 5513 connp->conn_anon_port = 0; 5514 } 5515 connp->conn_mlp_type = mlptSingle; 5516 5517 /* 5518 * Remove this conn from any fanout list it is on. 5519 * and then wait for any threads currently operating 5520 * on this endpoint to finish 5521 */ 5522 ipcl_hash_remove(connp); 5523 5524 /* 5525 * Remove this conn from the drain list, and do 5526 * any other cleanup that may be required. 5527 * (Only non-tcp streams may have a non-null conn_idl. 5528 * TCP streams are never flow controlled, and 5529 * conn_idl will be null) 5530 */ 5531 if (drain_cleanup_reqd) 5532 conn_drain_tail(connp, B_TRUE); 5533 5534 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5535 (void) ip_mrouter_done(NULL); 5536 5537 if (ilg_cleanup_reqd) 5538 ilg_delete_all(connp); 5539 5540 conn_delete_ire(connp, NULL); 5541 5542 /* 5543 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5544 * callers from write side can't be there now because close 5545 * is in progress. The only other caller is ipcl_walk 5546 * which checks for the condemned flag. 5547 */ 5548 mutex_enter(&connp->conn_lock); 5549 connp->conn_state_flags |= CONN_CONDEMNED; 5550 while (connp->conn_ref != 1) 5551 cv_wait(&connp->conn_cv, &connp->conn_lock); 5552 connp->conn_state_flags |= CONN_QUIESCED; 5553 mutex_exit(&connp->conn_lock); 5554 } 5555 5556 /* ARGSUSED */ 5557 int 5558 ip_close(queue_t *q, int flags) 5559 { 5560 conn_t *connp; 5561 5562 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5563 5564 /* 5565 * Call the appropriate delete routine depending on whether this is 5566 * a module or device. 5567 */ 5568 if (WR(q)->q_next != NULL) { 5569 /* This is a module close */ 5570 return (ip_modclose((ill_t *)q->q_ptr)); 5571 } 5572 5573 connp = q->q_ptr; 5574 ip_quiesce_conn(connp); 5575 5576 qprocsoff(q); 5577 5578 /* 5579 * Now we are truly single threaded on this stream, and can 5580 * delete the things hanging off the connp, and finally the connp. 5581 * We removed this connp from the fanout list, it cannot be 5582 * accessed thru the fanouts, and we already waited for the 5583 * conn_ref to drop to 0. We are already in close, so 5584 * there cannot be any other thread from the top. qprocsoff 5585 * has completed, and service has completed or won't run in 5586 * future. 5587 */ 5588 ASSERT(connp->conn_ref == 1); 5589 5590 /* 5591 * A conn which was previously marked as IPCL_UDP cannot 5592 * retain the flag because it would have been cleared by 5593 * udp_close(). 5594 */ 5595 ASSERT(!IPCL_IS_UDP(connp)); 5596 5597 if (connp->conn_latch != NULL) { 5598 IPLATCH_REFRELE(connp->conn_latch); 5599 connp->conn_latch = NULL; 5600 } 5601 if (connp->conn_policy != NULL) { 5602 IPPH_REFRELE(connp->conn_policy); 5603 connp->conn_policy = NULL; 5604 } 5605 if (connp->conn_ipsec_opt_mp != NULL) { 5606 freemsg(connp->conn_ipsec_opt_mp); 5607 connp->conn_ipsec_opt_mp = NULL; 5608 } 5609 5610 inet_minor_free(ip_minor_arena, connp->conn_dev); 5611 5612 connp->conn_ref--; 5613 ipcl_conn_destroy(connp); 5614 5615 q->q_ptr = WR(q)->q_ptr = NULL; 5616 return (0); 5617 } 5618 5619 int 5620 ip_snmpmod_close(queue_t *q) 5621 { 5622 conn_t *connp = Q_TO_CONN(q); 5623 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5624 5625 qprocsoff(q); 5626 5627 if (connp->conn_flags & IPCL_UDPMOD) 5628 udp_close_free(connp); 5629 5630 if (connp->conn_cred != NULL) { 5631 crfree(connp->conn_cred); 5632 connp->conn_cred = NULL; 5633 } 5634 CONN_DEC_REF(connp); 5635 q->q_ptr = WR(q)->q_ptr = NULL; 5636 return (0); 5637 } 5638 5639 /* 5640 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5641 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5642 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5643 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5644 * queues as we never enqueue messages there and we don't handle any ioctls. 5645 * Everything else is freed. 5646 */ 5647 void 5648 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5649 { 5650 conn_t *connp = q->q_ptr; 5651 pfi_t setfn; 5652 pfi_t getfn; 5653 5654 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5655 5656 switch (DB_TYPE(mp)) { 5657 case M_PROTO: 5658 case M_PCPROTO: 5659 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5660 ((((union T_primitives *)mp->b_rptr)->type == 5661 T_SVR4_OPTMGMT_REQ) || 5662 (((union T_primitives *)mp->b_rptr)->type == 5663 T_OPTMGMT_REQ))) { 5664 /* 5665 * This is the only TPI primitive supported. Its 5666 * handling does not require tcp_t, but it does require 5667 * conn_t to check permissions. 5668 */ 5669 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5670 5671 if (connp->conn_flags & IPCL_TCPMOD) { 5672 setfn = tcp_snmp_set; 5673 getfn = tcp_snmp_get; 5674 } else { 5675 setfn = udp_snmp_set; 5676 getfn = udp_snmp_get; 5677 } 5678 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5679 freemsg(mp); 5680 return; 5681 } 5682 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5683 != NULL) 5684 qreply(q, mp); 5685 break; 5686 case M_FLUSH: 5687 case M_IOCTL: 5688 putnext(q, mp); 5689 break; 5690 default: 5691 freemsg(mp); 5692 break; 5693 } 5694 } 5695 5696 /* Return the IP checksum for the IP header at "iph". */ 5697 uint16_t 5698 ip_csum_hdr(ipha_t *ipha) 5699 { 5700 uint16_t *uph; 5701 uint32_t sum; 5702 int opt_len; 5703 5704 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5705 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5706 uph = (uint16_t *)ipha; 5707 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5708 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5709 if (opt_len > 0) { 5710 do { 5711 sum += uph[10]; 5712 sum += uph[11]; 5713 uph += 2; 5714 } while (--opt_len); 5715 } 5716 sum = (sum & 0xFFFF) + (sum >> 16); 5717 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5718 if (sum == 0xffff) 5719 sum = 0; 5720 return ((uint16_t)sum); 5721 } 5722 5723 void 5724 ip_ddi_destroy(void) 5725 { 5726 ipv4_hook_destroy(); 5727 ipv6_hook_destroy(); 5728 ip_net_destroy(); 5729 5730 tnet_fini(); 5731 tcp_ddi_destroy(); 5732 sctp_ddi_destroy(); 5733 ipsec_loader_destroy(); 5734 ipsec_policy_destroy(); 5735 ipsec_kstat_destroy(); 5736 nd_free(&ip_g_nd); 5737 mutex_destroy(&igmp_timer_lock); 5738 mutex_destroy(&mld_timer_lock); 5739 mutex_destroy(&igmp_slowtimeout_lock); 5740 mutex_destroy(&mld_slowtimeout_lock); 5741 mutex_destroy(&ip_mi_lock); 5742 mutex_destroy(&rts_clients.connf_lock); 5743 ip_ire_fini(); 5744 ip6_asp_free(); 5745 conn_drain_fini(); 5746 ipcl_destroy(); 5747 inet_minor_destroy(ip_minor_arena); 5748 icmp_kstat_fini(); 5749 ip_kstat_fini(); 5750 rw_destroy(&ipsec_capab_ills_lock); 5751 rw_destroy(&ill_g_usesrc_lock); 5752 ip_drop_unregister(&ip_dropper); 5753 } 5754 5755 5756 void 5757 ip_ddi_init(void) 5758 { 5759 TCP6_MAJ = ddi_name_to_major(TCP6); 5760 TCP_MAJ = ddi_name_to_major(TCP); 5761 SCTP_MAJ = ddi_name_to_major(SCTP); 5762 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5763 5764 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5765 5766 /* IP's IPsec code calls the packet dropper */ 5767 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5768 5769 if (!ip_g_nd) { 5770 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5771 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5772 nd_free(&ip_g_nd); 5773 } 5774 } 5775 5776 ipsec_loader_init(); 5777 ipsec_policy_init(); 5778 ipsec_kstat_init(); 5779 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5780 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5781 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5782 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5783 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5784 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5785 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5786 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5787 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5788 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5789 5790 /* 5791 * For IP and TCP the minor numbers should start from 2 since we have 4 5792 * initial devices: ip, ip6, tcp, tcp6. 5793 */ 5794 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5795 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5796 cmn_err(CE_PANIC, 5797 "ip_ddi_init: ip_minor_arena creation failed\n"); 5798 } 5799 5800 ipcl_init(); 5801 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5802 ip_ire_init(); 5803 ip6_asp_init(); 5804 ipif_init(); 5805 conn_drain_init(); 5806 tcp_ddi_init(); 5807 sctp_ddi_init(); 5808 5809 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5810 5811 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5812 "net", KSTAT_TYPE_NAMED, 5813 sizeof (ip_statistics) / sizeof (kstat_named_t), 5814 KSTAT_FLAG_VIRTUAL)) != NULL) { 5815 ip_kstat->ks_data = &ip_statistics; 5816 kstat_install(ip_kstat); 5817 } 5818 ip_kstat_init(); 5819 ip6_kstat_init(); 5820 icmp_kstat_init(); 5821 ipsec_loader_start(); 5822 tnet_init(); 5823 5824 ip_net_init(); 5825 ipv4_hook_init(); 5826 ipv6_hook_init(); 5827 } 5828 5829 /* 5830 * Allocate and initialize a DLPI template of the specified length. (May be 5831 * called as writer.) 5832 */ 5833 mblk_t * 5834 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5835 { 5836 mblk_t *mp; 5837 5838 mp = allocb(len, BPRI_MED); 5839 if (!mp) 5840 return (NULL); 5841 5842 /* 5843 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5844 * of which we don't seem to use) are sent with M_PCPROTO, and 5845 * that other DLPI are M_PROTO. 5846 */ 5847 if (prim == DL_INFO_REQ) { 5848 mp->b_datap->db_type = M_PCPROTO; 5849 } else { 5850 mp->b_datap->db_type = M_PROTO; 5851 } 5852 5853 mp->b_wptr = mp->b_rptr + len; 5854 bzero(mp->b_rptr, len); 5855 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5856 return (mp); 5857 } 5858 5859 const char * 5860 dlpi_prim_str(int prim) 5861 { 5862 switch (prim) { 5863 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5864 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5865 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5866 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5867 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5868 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5869 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5870 case DL_OK_ACK: return ("DL_OK_ACK"); 5871 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5872 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5873 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5874 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5875 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5876 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5877 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5878 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5879 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5880 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5881 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5882 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5883 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5884 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5885 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5886 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5887 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5888 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5889 default: return ("<unknown primitive>"); 5890 } 5891 } 5892 5893 const char * 5894 dlpi_err_str(int err) 5895 { 5896 switch (err) { 5897 case DL_ACCESS: return ("DL_ACCESS"); 5898 case DL_BADADDR: return ("DL_BADADDR"); 5899 case DL_BADCORR: return ("DL_BADCORR"); 5900 case DL_BADDATA: return ("DL_BADDATA"); 5901 case DL_BADPPA: return ("DL_BADPPA"); 5902 case DL_BADPRIM: return ("DL_BADPRIM"); 5903 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5904 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5905 case DL_BADSAP: return ("DL_BADSAP"); 5906 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5907 case DL_BOUND: return ("DL_BOUND"); 5908 case DL_INITFAILED: return ("DL_INITFAILED"); 5909 case DL_NOADDR: return ("DL_NOADDR"); 5910 case DL_NOTINIT: return ("DL_NOTINIT"); 5911 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5912 case DL_SYSERR: return ("DL_SYSERR"); 5913 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5914 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5915 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5916 case DL_TOOMANY: return ("DL_TOOMANY"); 5917 case DL_NOTENAB: return ("DL_NOTENAB"); 5918 case DL_BUSY: return ("DL_BUSY"); 5919 case DL_NOAUTO: return ("DL_NOAUTO"); 5920 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5921 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5922 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5923 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5924 case DL_PENDING: return ("DL_PENDING"); 5925 default: return ("<unknown error>"); 5926 } 5927 } 5928 5929 /* 5930 * Debug formatting routine. Returns a character string representation of the 5931 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5932 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5933 * 5934 * Once the ndd table-printing interfaces are removed, this can be changed to 5935 * standard dotted-decimal form. 5936 */ 5937 char * 5938 ip_dot_addr(ipaddr_t addr, char *buf) 5939 { 5940 uint8_t *ap = (uint8_t *)&addr; 5941 5942 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5943 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5944 return (buf); 5945 } 5946 5947 /* 5948 * Write the given MAC address as a printable string in the usual colon- 5949 * separated format. 5950 */ 5951 const char * 5952 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5953 { 5954 char *bp; 5955 5956 if (alen == 0 || buflen < 4) 5957 return ("?"); 5958 bp = buf; 5959 for (;;) { 5960 /* 5961 * If there are more MAC address bytes available, but we won't 5962 * have any room to print them, then add "..." to the string 5963 * instead. See below for the 'magic number' explanation. 5964 */ 5965 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5966 (void) strcpy(bp, "..."); 5967 break; 5968 } 5969 (void) sprintf(bp, "%02x", *addr++); 5970 bp += 2; 5971 if (--alen == 0) 5972 break; 5973 *bp++ = ':'; 5974 buflen -= 3; 5975 /* 5976 * At this point, based on the first 'if' statement above, 5977 * either alen == 1 and buflen >= 3, or alen > 1 and 5978 * buflen >= 4. The first case leaves room for the final "xx" 5979 * number and trailing NUL byte. The second leaves room for at 5980 * least "...". Thus the apparently 'magic' numbers chosen for 5981 * that statement. 5982 */ 5983 } 5984 return (buf); 5985 } 5986 5987 /* 5988 * Send an ICMP error after patching up the packet appropriately. Returns 5989 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5990 */ 5991 static boolean_t 5992 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5993 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5994 { 5995 ipha_t *ipha; 5996 mblk_t *first_mp; 5997 boolean_t secure; 5998 unsigned char db_type; 5999 6000 first_mp = mp; 6001 if (mctl_present) { 6002 mp = mp->b_cont; 6003 secure = ipsec_in_is_secure(first_mp); 6004 ASSERT(mp != NULL); 6005 } else { 6006 /* 6007 * If this is an ICMP error being reported - which goes 6008 * up as M_CTLs, we need to convert them to M_DATA till 6009 * we finish checking with global policy because 6010 * ipsec_check_global_policy() assumes M_DATA as clear 6011 * and M_CTL as secure. 6012 */ 6013 db_type = DB_TYPE(mp); 6014 DB_TYPE(mp) = M_DATA; 6015 secure = B_FALSE; 6016 } 6017 /* 6018 * We are generating an icmp error for some inbound packet. 6019 * Called from all ip_fanout_(udp, tcp, proto) functions. 6020 * Before we generate an error, check with global policy 6021 * to see whether this is allowed to enter the system. As 6022 * there is no "conn", we are checking with global policy. 6023 */ 6024 ipha = (ipha_t *)mp->b_rptr; 6025 if (secure || ipsec_inbound_v4_policy_present) { 6026 first_mp = ipsec_check_global_policy(first_mp, NULL, 6027 ipha, NULL, mctl_present); 6028 if (first_mp == NULL) 6029 return (B_FALSE); 6030 } 6031 6032 if (!mctl_present) 6033 DB_TYPE(mp) = db_type; 6034 6035 if (flags & IP_FF_SEND_ICMP) { 6036 if (flags & IP_FF_HDR_COMPLETE) { 6037 if (ip_hdr_complete(ipha, zoneid)) { 6038 freemsg(first_mp); 6039 return (B_TRUE); 6040 } 6041 } 6042 if (flags & IP_FF_CKSUM) { 6043 /* 6044 * Have to correct checksum since 6045 * the packet might have been 6046 * fragmented and the reassembly code in ip_rput 6047 * does not restore the IP checksum. 6048 */ 6049 ipha->ipha_hdr_checksum = 0; 6050 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6051 } 6052 switch (icmp_type) { 6053 case ICMP_DEST_UNREACHABLE: 6054 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6055 break; 6056 default: 6057 freemsg(first_mp); 6058 break; 6059 } 6060 } else { 6061 freemsg(first_mp); 6062 return (B_FALSE); 6063 } 6064 6065 return (B_TRUE); 6066 } 6067 6068 /* 6069 * Used to send an ICMP error message when a packet is received for 6070 * a protocol that is not supported. The mblk passed as argument 6071 * is consumed by this function. 6072 */ 6073 void 6074 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6075 { 6076 mblk_t *mp; 6077 ipha_t *ipha; 6078 ill_t *ill; 6079 ipsec_in_t *ii; 6080 6081 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6082 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6083 6084 mp = ipsec_mp->b_cont; 6085 ipsec_mp->b_cont = NULL; 6086 ipha = (ipha_t *)mp->b_rptr; 6087 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6088 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6089 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6090 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6091 } 6092 } else { 6093 /* Get ill from index in ipsec_in_t. */ 6094 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6095 B_TRUE, NULL, NULL, NULL, NULL); 6096 if (ill != NULL) { 6097 if (ip_fanout_send_icmp_v6(q, mp, flags, 6098 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6099 0, B_FALSE, zoneid)) { 6100 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6101 } 6102 6103 ill_refrele(ill); 6104 } else { /* re-link for the freemsg() below. */ 6105 ipsec_mp->b_cont = mp; 6106 } 6107 } 6108 6109 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6110 freemsg(ipsec_mp); 6111 } 6112 6113 /* 6114 * See if the inbound datagram has had IPsec processing applied to it. 6115 */ 6116 boolean_t 6117 ipsec_in_is_secure(mblk_t *ipsec_mp) 6118 { 6119 ipsec_in_t *ii; 6120 6121 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6122 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6123 6124 if (ii->ipsec_in_loopback) { 6125 return (ii->ipsec_in_secure); 6126 } else { 6127 return (ii->ipsec_in_ah_sa != NULL || 6128 ii->ipsec_in_esp_sa != NULL || 6129 ii->ipsec_in_decaps); 6130 } 6131 } 6132 6133 /* 6134 * Handle protocols with which IP is less intimate. There 6135 * can be more than one stream bound to a particular 6136 * protocol. When this is the case, normally each one gets a copy 6137 * of any incoming packets. 6138 * 6139 * IPSEC NOTE : 6140 * 6141 * Don't allow a secure packet going up a non-secure connection. 6142 * We don't allow this because 6143 * 6144 * 1) Reply might go out in clear which will be dropped at 6145 * the sending side. 6146 * 2) If the reply goes out in clear it will give the 6147 * adversary enough information for getting the key in 6148 * most of the cases. 6149 * 6150 * Moreover getting a secure packet when we expect clear 6151 * implies that SA's were added without checking for 6152 * policy on both ends. This should not happen once ISAKMP 6153 * is used to negotiate SAs as SAs will be added only after 6154 * verifying the policy. 6155 * 6156 * NOTE : If the packet was tunneled and not multicast we only send 6157 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6158 * back to delivering packets to AF_INET6 raw sockets. 6159 * 6160 * IPQoS Notes: 6161 * Once we have determined the client, invoke IPPF processing. 6162 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6163 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6164 * ip_policy will be false. 6165 * 6166 * Zones notes: 6167 * Currently only applications in the global zone can create raw sockets for 6168 * protocols other than ICMP. So unlike the broadcast / multicast case of 6169 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6170 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6171 */ 6172 static void 6173 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6174 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6175 zoneid_t zoneid) 6176 { 6177 queue_t *rq; 6178 mblk_t *mp1, *first_mp1; 6179 uint_t protocol = ipha->ipha_protocol; 6180 ipaddr_t dst; 6181 boolean_t one_only; 6182 mblk_t *first_mp = mp; 6183 boolean_t secure; 6184 uint32_t ill_index; 6185 conn_t *connp, *first_connp, *next_connp; 6186 connf_t *connfp; 6187 boolean_t shared_addr; 6188 6189 if (mctl_present) { 6190 mp = first_mp->b_cont; 6191 secure = ipsec_in_is_secure(first_mp); 6192 ASSERT(mp != NULL); 6193 } else { 6194 secure = B_FALSE; 6195 } 6196 dst = ipha->ipha_dst; 6197 /* 6198 * If the packet was tunneled and not multicast we only send to it 6199 * the first match. 6200 */ 6201 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6202 !CLASSD(dst)); 6203 6204 shared_addr = (zoneid == ALL_ZONES); 6205 if (shared_addr) { 6206 /* 6207 * We don't allow multilevel ports for raw IP, so no need to 6208 * check for that here. 6209 */ 6210 zoneid = tsol_packet_to_zoneid(mp); 6211 } 6212 6213 connfp = &ipcl_proto_fanout[protocol]; 6214 mutex_enter(&connfp->connf_lock); 6215 connp = connfp->connf_head; 6216 for (connp = connfp->connf_head; connp != NULL; 6217 connp = connp->conn_next) { 6218 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6219 zoneid) && 6220 (!is_system_labeled() || 6221 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6222 connp))) 6223 break; 6224 } 6225 6226 if (connp == NULL || connp->conn_upq == NULL) { 6227 /* 6228 * No one bound to these addresses. Is 6229 * there a client that wants all 6230 * unclaimed datagrams? 6231 */ 6232 mutex_exit(&connfp->connf_lock); 6233 /* 6234 * Check for IPPROTO_ENCAP... 6235 */ 6236 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6237 /* 6238 * If an IPsec mblk is here on a multicast 6239 * tunnel (using ip_mroute stuff), check policy here, 6240 * THEN ship off to ip_mroute_decap(). 6241 * 6242 * BTW, If I match a configured IP-in-IP 6243 * tunnel, this path will not be reached, and 6244 * ip_mroute_decap will never be called. 6245 */ 6246 first_mp = ipsec_check_global_policy(first_mp, connp, 6247 ipha, NULL, mctl_present); 6248 if (first_mp != NULL) { 6249 if (mctl_present) 6250 freeb(first_mp); 6251 ip_mroute_decap(q, mp); 6252 } /* Else we already freed everything! */ 6253 } else { 6254 /* 6255 * Otherwise send an ICMP protocol unreachable. 6256 */ 6257 if (ip_fanout_send_icmp(q, first_mp, flags, 6258 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6259 mctl_present, zoneid)) { 6260 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6261 } 6262 } 6263 return; 6264 } 6265 CONN_INC_REF(connp); 6266 first_connp = connp; 6267 6268 /* 6269 * Only send message to one tunnel driver by immediately 6270 * terminating the loop. 6271 */ 6272 connp = one_only ? NULL : connp->conn_next; 6273 6274 for (;;) { 6275 while (connp != NULL) { 6276 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6277 flags, zoneid) && 6278 (!is_system_labeled() || 6279 tsol_receive_local(mp, &dst, IPV4_VERSION, 6280 shared_addr, connp))) 6281 break; 6282 connp = connp->conn_next; 6283 } 6284 6285 /* 6286 * Copy the packet. 6287 */ 6288 if (connp == NULL || connp->conn_upq == NULL || 6289 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6290 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6291 /* 6292 * No more interested clients or memory 6293 * allocation failed 6294 */ 6295 connp = first_connp; 6296 break; 6297 } 6298 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6299 CONN_INC_REF(connp); 6300 mutex_exit(&connfp->connf_lock); 6301 rq = connp->conn_rq; 6302 if (!canputnext(rq)) { 6303 if (flags & IP_FF_RAWIP) { 6304 BUMP_MIB(&ip_mib, rawipInOverflows); 6305 } else { 6306 BUMP_MIB(&icmp_mib, icmpInOverflows); 6307 } 6308 6309 freemsg(first_mp1); 6310 } else { 6311 /* 6312 * Don't enforce here if we're an actual tunnel - 6313 * let "tun" do it instead. 6314 */ 6315 if (!IPCL_IS_IPTUN(connp) && 6316 (CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6317 first_mp1 = ipsec_check_inbound_policy 6318 (first_mp1, connp, ipha, NULL, 6319 mctl_present); 6320 } 6321 if (first_mp1 != NULL) { 6322 /* 6323 * ip_fanout_proto also gets called from 6324 * icmp_inbound_error_fanout, in which case 6325 * the msg type is M_CTL. Don't add info 6326 * in this case for the time being. In future 6327 * when there is a need for knowing the 6328 * inbound iface index for ICMP error msgs, 6329 * then this can be changed. 6330 */ 6331 if ((connp->conn_recvif != 0) && 6332 (mp->b_datap->db_type != M_CTL)) { 6333 /* 6334 * the actual data will be 6335 * contained in b_cont upon 6336 * successful return of the 6337 * following call else 6338 * original mblk is returned 6339 */ 6340 ASSERT(recv_ill != NULL); 6341 mp1 = ip_add_info(mp1, recv_ill, 6342 IPF_RECVIF); 6343 } 6344 BUMP_MIB(&ip_mib, ipInDelivers); 6345 if (mctl_present) 6346 freeb(first_mp1); 6347 putnext(rq, mp1); 6348 } 6349 } 6350 mutex_enter(&connfp->connf_lock); 6351 /* Follow the next pointer before releasing the conn. */ 6352 next_connp = connp->conn_next; 6353 CONN_DEC_REF(connp); 6354 connp = next_connp; 6355 } 6356 6357 /* Last one. Send it upstream. */ 6358 mutex_exit(&connfp->connf_lock); 6359 6360 /* 6361 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6362 * will be set to false. 6363 */ 6364 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6365 ill_index = ill->ill_phyint->phyint_ifindex; 6366 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6367 if (mp == NULL) { 6368 CONN_DEC_REF(connp); 6369 if (mctl_present) { 6370 freeb(first_mp); 6371 } 6372 return; 6373 } 6374 } 6375 6376 rq = connp->conn_rq; 6377 if (!canputnext(rq)) { 6378 if (flags & IP_FF_RAWIP) { 6379 BUMP_MIB(&ip_mib, rawipInOverflows); 6380 } else { 6381 BUMP_MIB(&icmp_mib, icmpInOverflows); 6382 } 6383 6384 freemsg(first_mp); 6385 } else { 6386 if (IPCL_IS_IPTUN(connp)) { 6387 /* 6388 * Tunneled packet. We enforce policy in the tunnel 6389 * module itself. 6390 * 6391 * Send the WHOLE packet up (incl. IPSEC_IN) without 6392 * a policy check. 6393 */ 6394 putnext(rq, first_mp); 6395 CONN_DEC_REF(connp); 6396 return; 6397 } 6398 6399 if ((CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6400 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6401 ipha, NULL, mctl_present); 6402 } 6403 6404 if (first_mp != NULL) { 6405 /* 6406 * ip_fanout_proto also gets called 6407 * from icmp_inbound_error_fanout, in 6408 * which case the msg type is M_CTL. 6409 * Don't add info in this case for time 6410 * being. In future when there is a 6411 * need for knowing the inbound iface 6412 * index for ICMP error msgs, then this 6413 * can be changed 6414 */ 6415 if ((connp->conn_recvif != 0) && 6416 (mp->b_datap->db_type != M_CTL)) { 6417 /* 6418 * the actual data will be contained in 6419 * b_cont upon successful return 6420 * of the following call else original 6421 * mblk is returned 6422 */ 6423 ASSERT(recv_ill != NULL); 6424 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6425 } 6426 BUMP_MIB(&ip_mib, ipInDelivers); 6427 putnext(rq, mp); 6428 if (mctl_present) 6429 freeb(first_mp); 6430 } 6431 } 6432 CONN_DEC_REF(connp); 6433 } 6434 6435 /* 6436 * Fanout for TCP packets 6437 * The caller puts <fport, lport> in the ports parameter. 6438 * 6439 * IPQoS Notes 6440 * Before sending it to the client, invoke IPPF processing. 6441 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6442 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6443 * ip_policy is false. 6444 */ 6445 static void 6446 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6447 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6448 { 6449 mblk_t *first_mp; 6450 boolean_t secure; 6451 uint32_t ill_index; 6452 int ip_hdr_len; 6453 tcph_t *tcph; 6454 boolean_t syn_present = B_FALSE; 6455 conn_t *connp; 6456 6457 first_mp = mp; 6458 if (mctl_present) { 6459 ASSERT(first_mp->b_datap->db_type == M_CTL); 6460 mp = first_mp->b_cont; 6461 secure = ipsec_in_is_secure(first_mp); 6462 ASSERT(mp != NULL); 6463 } else { 6464 secure = B_FALSE; 6465 } 6466 6467 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6468 6469 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6470 NULL) { 6471 /* 6472 * No connected connection or listener. Send a 6473 * TH_RST via tcp_xmit_listeners_reset. 6474 */ 6475 6476 /* Initiate IPPf processing, if needed. */ 6477 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6478 uint32_t ill_index; 6479 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6480 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6481 if (first_mp == NULL) 6482 return; 6483 } 6484 BUMP_MIB(&ip_mib, ipInDelivers); 6485 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6486 zoneid)); 6487 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6488 return; 6489 } 6490 6491 /* 6492 * Allocate the SYN for the TCP connection here itself 6493 */ 6494 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6495 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6496 if (IPCL_IS_TCP(connp)) { 6497 squeue_t *sqp; 6498 6499 /* 6500 * For fused tcp loopback, assign the eager's 6501 * squeue to be that of the active connect's. 6502 * Note that we don't check for IP_FF_LOOPBACK 6503 * here since this routine gets called only 6504 * for loopback (unlike the IPv6 counterpart). 6505 */ 6506 ASSERT(Q_TO_CONN(q) != NULL); 6507 if (do_tcp_fusion && 6508 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6509 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6510 IPCL_IS_TCP(Q_TO_CONN(q))) { 6511 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6512 sqp = Q_TO_CONN(q)->conn_sqp; 6513 } else { 6514 sqp = IP_SQUEUE_GET(lbolt); 6515 } 6516 6517 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6518 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6519 syn_present = B_TRUE; 6520 } 6521 } 6522 6523 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6524 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6525 if ((flags & TH_RST) || (flags & TH_URG)) { 6526 CONN_DEC_REF(connp); 6527 freemsg(first_mp); 6528 return; 6529 } 6530 if (flags & TH_ACK) { 6531 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6532 CONN_DEC_REF(connp); 6533 return; 6534 } 6535 6536 CONN_DEC_REF(connp); 6537 freemsg(first_mp); 6538 return; 6539 } 6540 6541 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6542 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6543 NULL, mctl_present); 6544 if (first_mp == NULL) { 6545 CONN_DEC_REF(connp); 6546 return; 6547 } 6548 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6549 ASSERT(syn_present); 6550 if (mctl_present) { 6551 ASSERT(first_mp != mp); 6552 first_mp->b_datap->db_struioflag |= 6553 STRUIO_POLICY; 6554 } else { 6555 ASSERT(first_mp == mp); 6556 mp->b_datap->db_struioflag &= 6557 ~STRUIO_EAGER; 6558 mp->b_datap->db_struioflag |= 6559 STRUIO_POLICY; 6560 } 6561 } else { 6562 /* 6563 * Discard first_mp early since we're dealing with a 6564 * fully-connected conn_t and tcp doesn't do policy in 6565 * this case. 6566 */ 6567 if (mctl_present) { 6568 freeb(first_mp); 6569 mctl_present = B_FALSE; 6570 } 6571 first_mp = mp; 6572 } 6573 } 6574 6575 /* 6576 * Initiate policy processing here if needed. If we get here from 6577 * icmp_inbound_error_fanout, ip_policy is false. 6578 */ 6579 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6580 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6581 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6582 if (mp == NULL) { 6583 CONN_DEC_REF(connp); 6584 if (mctl_present) 6585 freeb(first_mp); 6586 return; 6587 } else if (mctl_present) { 6588 ASSERT(first_mp != mp); 6589 first_mp->b_cont = mp; 6590 } else { 6591 first_mp = mp; 6592 } 6593 } 6594 6595 6596 6597 /* Handle IPv6 socket options. */ 6598 if (!syn_present && 6599 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6600 /* Add header */ 6601 ASSERT(recv_ill != NULL); 6602 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6603 if (mp == NULL) { 6604 CONN_DEC_REF(connp); 6605 if (mctl_present) 6606 freeb(first_mp); 6607 return; 6608 } else if (mctl_present) { 6609 /* 6610 * ip_add_info might return a new mp. 6611 */ 6612 ASSERT(first_mp != mp); 6613 first_mp->b_cont = mp; 6614 } else { 6615 first_mp = mp; 6616 } 6617 } 6618 6619 BUMP_MIB(&ip_mib, ipInDelivers); 6620 if (IPCL_IS_TCP(connp)) { 6621 (*ip_input_proc)(connp->conn_sqp, first_mp, 6622 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6623 } else { 6624 putnext(connp->conn_rq, first_mp); 6625 CONN_DEC_REF(connp); 6626 } 6627 } 6628 6629 /* 6630 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6631 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6632 * Caller is responsible for dropping references to the conn, and freeing 6633 * first_mp. 6634 * 6635 * IPQoS Notes 6636 * Before sending it to the client, invoke IPPF processing. Policy processing 6637 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6638 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6639 * ip_wput_local, ip_policy is false. 6640 */ 6641 static void 6642 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6643 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6644 boolean_t ip_policy) 6645 { 6646 boolean_t mctl_present = (first_mp != NULL); 6647 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6648 uint32_t ill_index; 6649 6650 if (mctl_present) 6651 first_mp->b_cont = mp; 6652 else 6653 first_mp = mp; 6654 6655 if (CONN_UDP_FLOWCTLD(connp)) { 6656 BUMP_MIB(&ip_mib, udpInOverflows); 6657 freemsg(first_mp); 6658 return; 6659 } 6660 6661 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6662 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6663 NULL, mctl_present); 6664 if (first_mp == NULL) 6665 return; /* Freed by ipsec_check_inbound_policy(). */ 6666 } 6667 if (mctl_present) 6668 freeb(first_mp); 6669 6670 if (connp->conn_recvif) 6671 in_flags = IPF_RECVIF; 6672 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6673 in_flags |= IPF_RECVSLLA; 6674 6675 /* Handle IPv6 options. */ 6676 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6677 in_flags |= IPF_RECVIF; 6678 6679 /* 6680 * Initiate IPPF processing here, if needed. Note first_mp won't be 6681 * freed if the packet is dropped. The caller will do so. 6682 */ 6683 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6684 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6685 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6686 if (mp == NULL) { 6687 return; 6688 } 6689 } 6690 if ((in_flags != 0) && 6691 (mp->b_datap->db_type != M_CTL)) { 6692 /* 6693 * The actual data will be contained in b_cont 6694 * upon successful return of the following call 6695 * else original mblk is returned 6696 */ 6697 ASSERT(recv_ill != NULL); 6698 mp = ip_add_info(mp, recv_ill, in_flags); 6699 } 6700 BUMP_MIB(&ip_mib, ipInDelivers); 6701 6702 /* Send it upstream */ 6703 CONN_UDP_RECV(connp, mp); 6704 } 6705 6706 /* 6707 * Fanout for UDP packets. 6708 * The caller puts <fport, lport> in the ports parameter. 6709 * 6710 * If SO_REUSEADDR is set all multicast and broadcast packets 6711 * will be delivered to all streams bound to the same port. 6712 * 6713 * Zones notes: 6714 * Multicast and broadcast packets will be distributed to streams in all zones. 6715 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6716 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6717 * packets. To maintain this behavior with multiple zones, the conns are grouped 6718 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6719 * each zone. If unset, all the following conns in the same zone are skipped. 6720 */ 6721 static void 6722 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6723 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6724 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6725 { 6726 uint32_t dstport, srcport; 6727 ipaddr_t dst; 6728 mblk_t *first_mp; 6729 boolean_t secure; 6730 in6_addr_t v6src; 6731 conn_t *connp; 6732 connf_t *connfp; 6733 conn_t *first_connp; 6734 conn_t *next_connp; 6735 mblk_t *mp1, *first_mp1; 6736 ipaddr_t src; 6737 zoneid_t last_zoneid; 6738 boolean_t reuseaddr; 6739 boolean_t shared_addr; 6740 6741 first_mp = mp; 6742 if (mctl_present) { 6743 mp = first_mp->b_cont; 6744 first_mp->b_cont = NULL; 6745 secure = ipsec_in_is_secure(first_mp); 6746 ASSERT(mp != NULL); 6747 } else { 6748 first_mp = NULL; 6749 secure = B_FALSE; 6750 } 6751 6752 /* Extract ports in net byte order */ 6753 dstport = htons(ntohl(ports) & 0xFFFF); 6754 srcport = htons(ntohl(ports) >> 16); 6755 dst = ipha->ipha_dst; 6756 src = ipha->ipha_src; 6757 6758 shared_addr = (zoneid == ALL_ZONES); 6759 if (shared_addr) { 6760 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6761 if (zoneid == ALL_ZONES) 6762 zoneid = tsol_packet_to_zoneid(mp); 6763 } 6764 6765 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6766 mutex_enter(&connfp->connf_lock); 6767 connp = connfp->connf_head; 6768 if (!broadcast && !CLASSD(dst)) { 6769 /* 6770 * Not broadcast or multicast. Send to the one (first) 6771 * client we find. No need to check conn_wantpacket() 6772 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6773 * IPv4 unicast packets. 6774 */ 6775 while ((connp != NULL) && 6776 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6777 !IPCL_ZONE_MATCH(connp, zoneid))) { 6778 connp = connp->conn_next; 6779 } 6780 6781 if (connp == NULL || connp->conn_upq == NULL) 6782 goto notfound; 6783 6784 if (is_system_labeled() && 6785 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6786 connp)) 6787 goto notfound; 6788 6789 CONN_INC_REF(connp); 6790 mutex_exit(&connfp->connf_lock); 6791 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6792 recv_ill, ip_policy); 6793 IP_STAT(ip_udp_fannorm); 6794 CONN_DEC_REF(connp); 6795 return; 6796 } 6797 6798 /* 6799 * Broadcast and multicast case 6800 * 6801 * Need to check conn_wantpacket(). 6802 * If SO_REUSEADDR has been set on the first we send the 6803 * packet to all clients that have joined the group and 6804 * match the port. 6805 */ 6806 6807 while (connp != NULL) { 6808 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6809 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6810 (!is_system_labeled() || 6811 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6812 connp))) 6813 break; 6814 connp = connp->conn_next; 6815 } 6816 6817 if (connp == NULL || connp->conn_upq == NULL) 6818 goto notfound; 6819 6820 first_connp = connp; 6821 /* 6822 * When SO_REUSEADDR is not set, send the packet only to the first 6823 * matching connection in its zone by keeping track of the zoneid. 6824 */ 6825 reuseaddr = first_connp->conn_reuseaddr; 6826 last_zoneid = first_connp->conn_zoneid; 6827 6828 CONN_INC_REF(connp); 6829 connp = connp->conn_next; 6830 for (;;) { 6831 while (connp != NULL) { 6832 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6833 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6834 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6835 (!is_system_labeled() || 6836 tsol_receive_local(mp, &dst, IPV4_VERSION, 6837 shared_addr, connp))) 6838 break; 6839 connp = connp->conn_next; 6840 } 6841 /* 6842 * Just copy the data part alone. The mctl part is 6843 * needed just for verifying policy and it is never 6844 * sent up. 6845 */ 6846 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6847 ((mp1 = copymsg(mp)) == NULL))) { 6848 /* 6849 * No more interested clients or memory 6850 * allocation failed 6851 */ 6852 connp = first_connp; 6853 break; 6854 } 6855 if (connp->conn_zoneid != last_zoneid) { 6856 /* 6857 * Update the zoneid so that the packet isn't sent to 6858 * any more conns in the same zone unless SO_REUSEADDR 6859 * is set. 6860 */ 6861 reuseaddr = connp->conn_reuseaddr; 6862 last_zoneid = connp->conn_zoneid; 6863 } 6864 if (first_mp != NULL) { 6865 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6866 ipsec_info_type == IPSEC_IN); 6867 first_mp1 = ipsec_in_tag(first_mp, NULL); 6868 if (first_mp1 == NULL) { 6869 freemsg(mp1); 6870 connp = first_connp; 6871 break; 6872 } 6873 } else { 6874 first_mp1 = NULL; 6875 } 6876 CONN_INC_REF(connp); 6877 mutex_exit(&connfp->connf_lock); 6878 /* 6879 * IPQoS notes: We don't send the packet for policy 6880 * processing here, will do it for the last one (below). 6881 * i.e. we do it per-packet now, but if we do policy 6882 * processing per-conn, then we would need to do it 6883 * here too. 6884 */ 6885 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6886 ipha, flags, recv_ill, B_FALSE); 6887 mutex_enter(&connfp->connf_lock); 6888 /* Follow the next pointer before releasing the conn. */ 6889 next_connp = connp->conn_next; 6890 IP_STAT(ip_udp_fanmb); 6891 CONN_DEC_REF(connp); 6892 connp = next_connp; 6893 } 6894 6895 /* Last one. Send it upstream. */ 6896 mutex_exit(&connfp->connf_lock); 6897 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6898 ip_policy); 6899 IP_STAT(ip_udp_fanmb); 6900 CONN_DEC_REF(connp); 6901 return; 6902 6903 notfound: 6904 6905 mutex_exit(&connfp->connf_lock); 6906 IP_STAT(ip_udp_fanothers); 6907 /* 6908 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6909 * have already been matched above, since they live in the IPv4 6910 * fanout tables. This implies we only need to 6911 * check for IPv6 in6addr_any endpoints here. 6912 * Thus we compare using ipv6_all_zeros instead of the destination 6913 * address, except for the multicast group membership lookup which 6914 * uses the IPv4 destination. 6915 */ 6916 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6917 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6918 mutex_enter(&connfp->connf_lock); 6919 connp = connfp->connf_head; 6920 if (!broadcast && !CLASSD(dst)) { 6921 while (connp != NULL) { 6922 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6923 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6924 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6925 !connp->conn_ipv6_v6only) 6926 break; 6927 connp = connp->conn_next; 6928 } 6929 6930 if (connp != NULL && is_system_labeled() && 6931 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6932 connp)) 6933 connp = NULL; 6934 6935 if (connp == NULL || connp->conn_upq == NULL) { 6936 /* 6937 * No one bound to this port. Is 6938 * there a client that wants all 6939 * unclaimed datagrams? 6940 */ 6941 mutex_exit(&connfp->connf_lock); 6942 6943 if (mctl_present) 6944 first_mp->b_cont = mp; 6945 else 6946 first_mp = mp; 6947 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6948 ip_fanout_proto(q, first_mp, ill, ipha, 6949 flags | IP_FF_RAWIP, mctl_present, 6950 ip_policy, recv_ill, zoneid); 6951 } else { 6952 if (ip_fanout_send_icmp(q, first_mp, flags, 6953 ICMP_DEST_UNREACHABLE, 6954 ICMP_PORT_UNREACHABLE, 6955 mctl_present, zoneid)) { 6956 BUMP_MIB(&ip_mib, udpNoPorts); 6957 } 6958 } 6959 return; 6960 } 6961 6962 CONN_INC_REF(connp); 6963 mutex_exit(&connfp->connf_lock); 6964 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6965 recv_ill, ip_policy); 6966 CONN_DEC_REF(connp); 6967 return; 6968 } 6969 /* 6970 * IPv4 multicast packet being delivered to an AF_INET6 6971 * in6addr_any endpoint. 6972 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6973 * and not conn_wantpacket_v6() since any multicast membership is 6974 * for an IPv4-mapped multicast address. 6975 * The packet is sent to all clients in all zones that have joined the 6976 * group and match the port. 6977 */ 6978 while (connp != NULL) { 6979 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6980 srcport, v6src) && 6981 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6982 (!is_system_labeled() || 6983 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6984 connp))) 6985 break; 6986 connp = connp->conn_next; 6987 } 6988 6989 if (connp == NULL || connp->conn_upq == NULL) { 6990 /* 6991 * No one bound to this port. Is 6992 * there a client that wants all 6993 * unclaimed datagrams? 6994 */ 6995 mutex_exit(&connfp->connf_lock); 6996 6997 if (mctl_present) 6998 first_mp->b_cont = mp; 6999 else 7000 first_mp = mp; 7001 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7002 ip_fanout_proto(q, first_mp, ill, ipha, 7003 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7004 recv_ill, zoneid); 7005 } else { 7006 /* 7007 * We used to attempt to send an icmp error here, but 7008 * since this is known to be a multicast packet 7009 * and we don't send icmp errors in response to 7010 * multicast, just drop the packet and give up sooner. 7011 */ 7012 BUMP_MIB(&ip_mib, udpNoPorts); 7013 freemsg(first_mp); 7014 } 7015 return; 7016 } 7017 7018 first_connp = connp; 7019 7020 CONN_INC_REF(connp); 7021 connp = connp->conn_next; 7022 for (;;) { 7023 while (connp != NULL) { 7024 if (IPCL_UDP_MATCH_V6(connp, dstport, 7025 ipv6_all_zeros, srcport, v6src) && 7026 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7027 (!is_system_labeled() || 7028 tsol_receive_local(mp, &dst, IPV4_VERSION, 7029 shared_addr, connp))) 7030 break; 7031 connp = connp->conn_next; 7032 } 7033 /* 7034 * Just copy the data part alone. The mctl part is 7035 * needed just for verifying policy and it is never 7036 * sent up. 7037 */ 7038 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7039 ((mp1 = copymsg(mp)) == NULL))) { 7040 /* 7041 * No more intested clients or memory 7042 * allocation failed 7043 */ 7044 connp = first_connp; 7045 break; 7046 } 7047 if (first_mp != NULL) { 7048 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7049 ipsec_info_type == IPSEC_IN); 7050 first_mp1 = ipsec_in_tag(first_mp, NULL); 7051 if (first_mp1 == NULL) { 7052 freemsg(mp1); 7053 connp = first_connp; 7054 break; 7055 } 7056 } else { 7057 first_mp1 = NULL; 7058 } 7059 CONN_INC_REF(connp); 7060 mutex_exit(&connfp->connf_lock); 7061 /* 7062 * IPQoS notes: We don't send the packet for policy 7063 * processing here, will do it for the last one (below). 7064 * i.e. we do it per-packet now, but if we do policy 7065 * processing per-conn, then we would need to do it 7066 * here too. 7067 */ 7068 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7069 ipha, flags, recv_ill, B_FALSE); 7070 mutex_enter(&connfp->connf_lock); 7071 /* Follow the next pointer before releasing the conn. */ 7072 next_connp = connp->conn_next; 7073 CONN_DEC_REF(connp); 7074 connp = next_connp; 7075 } 7076 7077 /* Last one. Send it upstream. */ 7078 mutex_exit(&connfp->connf_lock); 7079 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7080 ip_policy); 7081 CONN_DEC_REF(connp); 7082 } 7083 7084 /* 7085 * Complete the ip_wput header so that it 7086 * is possible to generate ICMP 7087 * errors. 7088 */ 7089 int 7090 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7091 { 7092 ire_t *ire; 7093 7094 if (ipha->ipha_src == INADDR_ANY) { 7095 ire = ire_lookup_local(zoneid); 7096 if (ire == NULL) { 7097 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7098 return (1); 7099 } 7100 ipha->ipha_src = ire->ire_addr; 7101 ire_refrele(ire); 7102 } 7103 ipha->ipha_ttl = ip_def_ttl; 7104 ipha->ipha_hdr_checksum = 0; 7105 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7106 return (0); 7107 } 7108 7109 /* 7110 * Nobody should be sending 7111 * packets up this stream 7112 */ 7113 static void 7114 ip_lrput(queue_t *q, mblk_t *mp) 7115 { 7116 mblk_t *mp1; 7117 7118 switch (mp->b_datap->db_type) { 7119 case M_FLUSH: 7120 /* Turn around */ 7121 if (*mp->b_rptr & FLUSHW) { 7122 *mp->b_rptr &= ~FLUSHR; 7123 qreply(q, mp); 7124 return; 7125 } 7126 break; 7127 } 7128 /* Could receive messages that passed through ar_rput */ 7129 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7130 mp1->b_prev = mp1->b_next = NULL; 7131 freemsg(mp); 7132 } 7133 7134 /* Nobody should be sending packets down this stream */ 7135 /* ARGSUSED */ 7136 void 7137 ip_lwput(queue_t *q, mblk_t *mp) 7138 { 7139 freemsg(mp); 7140 } 7141 7142 /* 7143 * Move the first hop in any source route to ipha_dst and remove that part of 7144 * the source route. Called by other protocols. Errors in option formatting 7145 * are ignored - will be handled by ip_wput_options Return the final 7146 * destination (either ipha_dst or the last entry in a source route.) 7147 */ 7148 ipaddr_t 7149 ip_massage_options(ipha_t *ipha) 7150 { 7151 ipoptp_t opts; 7152 uchar_t *opt; 7153 uint8_t optval; 7154 uint8_t optlen; 7155 ipaddr_t dst; 7156 int i; 7157 ire_t *ire; 7158 7159 ip2dbg(("ip_massage_options\n")); 7160 dst = ipha->ipha_dst; 7161 for (optval = ipoptp_first(&opts, ipha); 7162 optval != IPOPT_EOL; 7163 optval = ipoptp_next(&opts)) { 7164 opt = opts.ipoptp_cur; 7165 switch (optval) { 7166 uint8_t off; 7167 case IPOPT_SSRR: 7168 case IPOPT_LSRR: 7169 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7170 ip1dbg(("ip_massage_options: bad src route\n")); 7171 break; 7172 } 7173 optlen = opts.ipoptp_len; 7174 off = opt[IPOPT_OFFSET]; 7175 off--; 7176 redo_srr: 7177 if (optlen < IP_ADDR_LEN || 7178 off > optlen - IP_ADDR_LEN) { 7179 /* End of source route */ 7180 ip1dbg(("ip_massage_options: end of SR\n")); 7181 break; 7182 } 7183 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7184 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7185 ntohl(dst))); 7186 /* 7187 * Check if our address is present more than 7188 * once as consecutive hops in source route. 7189 * XXX verify per-interface ip_forwarding 7190 * for source route? 7191 */ 7192 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7193 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7194 if (ire != NULL) { 7195 ire_refrele(ire); 7196 off += IP_ADDR_LEN; 7197 goto redo_srr; 7198 } 7199 if (dst == htonl(INADDR_LOOPBACK)) { 7200 ip1dbg(("ip_massage_options: loopback addr in " 7201 "source route!\n")); 7202 break; 7203 } 7204 /* 7205 * Update ipha_dst to be the first hop and remove the 7206 * first hop from the source route (by overwriting 7207 * part of the option with NOP options). 7208 */ 7209 ipha->ipha_dst = dst; 7210 /* Put the last entry in dst */ 7211 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7212 3; 7213 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7214 7215 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7216 ntohl(dst))); 7217 /* Move down and overwrite */ 7218 opt[IP_ADDR_LEN] = opt[0]; 7219 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7220 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7221 for (i = 0; i < IP_ADDR_LEN; i++) 7222 opt[i] = IPOPT_NOP; 7223 break; 7224 } 7225 } 7226 return (dst); 7227 } 7228 7229 /* 7230 * This function's job is to forward data to the reverse tunnel (FA->HA) 7231 * after doing a few checks. It is assumed that the incoming interface 7232 * of the packet is always different than the outgoing interface and the 7233 * ire_type of the found ire has to be a non-resolver type. 7234 * 7235 * IPQoS notes 7236 * IP policy is invoked twice for a forwarded packet, once on the read side 7237 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7238 * enabled. 7239 */ 7240 static void 7241 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7242 { 7243 ipha_t *ipha; 7244 queue_t *q; 7245 uint32_t pkt_len; 7246 #define rptr ((uchar_t *)ipha) 7247 uint32_t sum; 7248 uint32_t max_frag; 7249 mblk_t *first_mp; 7250 uint32_t ill_index; 7251 ipxmit_state_t pktxmit_state; 7252 ill_t *out_ill; 7253 7254 ASSERT(ire != NULL); 7255 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7256 ASSERT(ire->ire_stq != NULL); 7257 7258 /* Initiate read side IPPF processing */ 7259 if (IPP_ENABLED(IPP_FWD_IN)) { 7260 ill_index = in_ill->ill_phyint->phyint_ifindex; 7261 ip_process(IPP_FWD_IN, &mp, ill_index); 7262 if (mp == NULL) { 7263 ip2dbg(("ip_mrtun_forward: inbound pkt " 7264 "dropped during IPPF processing\n")); 7265 return; 7266 } 7267 } 7268 7269 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7270 ILLF_ROUTER) == 0) || 7271 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7272 BUMP_MIB(&ip_mib, ipForwProhibits); 7273 ip0dbg(("ip_mrtun_forward: Can't forward :" 7274 "forwarding is not turned on\n")); 7275 goto drop_pkt; 7276 } 7277 7278 /* 7279 * Don't forward if the interface is down 7280 */ 7281 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7282 BUMP_MIB(&ip_mib, ipInDiscards); 7283 goto drop_pkt; 7284 } 7285 7286 ipha = (ipha_t *)mp->b_rptr; 7287 pkt_len = ntohs(ipha->ipha_length); 7288 /* Adjust the checksum to reflect the ttl decrement. */ 7289 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7290 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7291 if (ipha->ipha_ttl-- <= 1) { 7292 if (ip_csum_hdr(ipha)) { 7293 BUMP_MIB(&ip_mib, ipInCksumErrs); 7294 goto drop_pkt; 7295 } 7296 q = ire->ire_stq; 7297 if ((first_mp = allocb(sizeof (ipsec_info_t), 7298 BPRI_HI)) == NULL) { 7299 goto drop_pkt; 7300 } 7301 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7302 /* Sent by forwarding path, and router is global zone */ 7303 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7304 GLOBAL_ZONEID); 7305 return; 7306 } 7307 7308 /* Get the ill_index of the ILL */ 7309 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7310 7311 /* 7312 * This location is chosen for the placement of the forwarding hook 7313 * because at this point we know that we have a path out for the 7314 * packet but haven't yet applied any logic (such as fragmenting) 7315 * that happen as part of transmitting the packet out. 7316 */ 7317 out_ill = ire->ire_ipif->ipif_ill; 7318 7319 DTRACE_PROBE4(ip4__forwarding__start, 7320 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7321 7322 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 7323 in_ill, out_ill, ipha, mp, mp); 7324 7325 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7326 7327 if (mp == NULL) 7328 return; 7329 pkt_len = ntohs(ipha->ipha_length); 7330 7331 /* 7332 * ip_mrtun_forward is only used by foreign agent to reverse 7333 * tunnel the incoming packet. So it does not do any option 7334 * processing for source routing. 7335 */ 7336 max_frag = ire->ire_max_frag; 7337 if (pkt_len > max_frag) { 7338 /* 7339 * It needs fragging on its way out. We haven't 7340 * verified the header checksum yet. Since we 7341 * are going to put a surely good checksum in the 7342 * outgoing header, we have to make sure that it 7343 * was good coming in. 7344 */ 7345 if (ip_csum_hdr(ipha)) { 7346 BUMP_MIB(&ip_mib, ipInCksumErrs); 7347 goto drop_pkt; 7348 } 7349 7350 /* Initiate write side IPPF processing */ 7351 if (IPP_ENABLED(IPP_FWD_OUT)) { 7352 ip_process(IPP_FWD_OUT, &mp, ill_index); 7353 if (mp == NULL) { 7354 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7355 "dropped/deferred during ip policy "\ 7356 "processing\n")); 7357 return; 7358 } 7359 } 7360 if ((first_mp = allocb(sizeof (ipsec_info_t), 7361 BPRI_HI)) == NULL) { 7362 goto drop_pkt; 7363 } 7364 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7365 mp = first_mp; 7366 7367 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7368 return; 7369 } 7370 7371 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7372 7373 ASSERT(ire->ire_ipif != NULL); 7374 7375 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7376 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7377 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 7378 NULL, out_ill, ipha, mp, mp); 7379 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7380 if (mp == NULL) 7381 return; 7382 7383 /* Now send the packet to the tunnel interface */ 7384 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7385 q = ire->ire_stq; 7386 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7387 if ((pktxmit_state == SEND_FAILED) || 7388 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7389 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7390 q->q_ptr)); 7391 } 7392 7393 return; 7394 7395 drop_pkt:; 7396 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7397 freemsg(mp); 7398 #undef rptr 7399 } 7400 7401 /* 7402 * Fills the ipsec_out_t data structure with appropriate fields and 7403 * prepends it to mp which contains the IP hdr + data that was meant 7404 * to be forwarded. Please note that ipsec_out_info data structure 7405 * is used here to communicate the outgoing ill path at ip_wput() 7406 * for the ICMP error packet. This has nothing to do with ipsec IP 7407 * security. ipsec_out_t is really used to pass the info to the module 7408 * IP where this information cannot be extracted from conn. 7409 * This functions is called by ip_mrtun_forward(). 7410 */ 7411 void 7412 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7413 { 7414 ipsec_out_t *io; 7415 7416 ASSERT(xmit_ill != NULL); 7417 first_mp->b_datap->db_type = M_CTL; 7418 first_mp->b_wptr += sizeof (ipsec_info_t); 7419 /* 7420 * This is to pass info to ip_wput in absence of conn. 7421 * ipsec_out_secure will be B_FALSE because of this. 7422 * Thus ipsec_out_secure being B_FALSE indicates that 7423 * this is not IPSEC security related information. 7424 */ 7425 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7426 io = (ipsec_out_t *)first_mp->b_rptr; 7427 io->ipsec_out_type = IPSEC_OUT; 7428 io->ipsec_out_len = sizeof (ipsec_out_t); 7429 first_mp->b_cont = mp; 7430 io->ipsec_out_ill_index = 7431 xmit_ill->ill_phyint->phyint_ifindex; 7432 io->ipsec_out_xmit_if = B_TRUE; 7433 } 7434 7435 /* 7436 * Return the network mask 7437 * associated with the specified address. 7438 */ 7439 ipaddr_t 7440 ip_net_mask(ipaddr_t addr) 7441 { 7442 uchar_t *up = (uchar_t *)&addr; 7443 ipaddr_t mask = 0; 7444 uchar_t *maskp = (uchar_t *)&mask; 7445 7446 #if defined(__i386) || defined(__amd64) 7447 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7448 #endif 7449 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7450 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7451 #endif 7452 if (CLASSD(addr)) { 7453 maskp[0] = 0xF0; 7454 return (mask); 7455 } 7456 if (addr == 0) 7457 return (0); 7458 maskp[0] = 0xFF; 7459 if ((up[0] & 0x80) == 0) 7460 return (mask); 7461 7462 maskp[1] = 0xFF; 7463 if ((up[0] & 0xC0) == 0x80) 7464 return (mask); 7465 7466 maskp[2] = 0xFF; 7467 if ((up[0] & 0xE0) == 0xC0) 7468 return (mask); 7469 7470 /* Must be experimental or multicast, indicate as much */ 7471 return ((ipaddr_t)0); 7472 } 7473 7474 /* 7475 * Select an ill for the packet by considering load spreading across 7476 * a different ill in the group if dst_ill is part of some group. 7477 */ 7478 ill_t * 7479 ip_newroute_get_dst_ill(ill_t *dst_ill) 7480 { 7481 ill_t *ill; 7482 7483 /* 7484 * We schedule irrespective of whether the source address is 7485 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7486 */ 7487 ill = illgrp_scheduler(dst_ill); 7488 if (ill == NULL) 7489 return (NULL); 7490 7491 /* 7492 * For groups with names ip_sioctl_groupname ensures that all 7493 * ills are of same type. For groups without names, ifgrp_insert 7494 * ensures this. 7495 */ 7496 ASSERT(dst_ill->ill_type == ill->ill_type); 7497 7498 return (ill); 7499 } 7500 7501 /* 7502 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7503 */ 7504 ill_t * 7505 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7506 { 7507 ill_t *ret_ill; 7508 7509 ASSERT(ifindex != 0); 7510 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7511 if (ret_ill == NULL || 7512 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7513 if (isv6) { 7514 if (ill != NULL) { 7515 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7516 } else { 7517 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7518 } 7519 ip1dbg(("ip_grab_attach_ill (IPv6): " 7520 "bad ifindex %d.\n", ifindex)); 7521 } else { 7522 BUMP_MIB(&ip_mib, ipOutDiscards); 7523 ip1dbg(("ip_grab_attach_ill (IPv4): " 7524 "bad ifindex %d.\n", ifindex)); 7525 } 7526 if (ret_ill != NULL) 7527 ill_refrele(ret_ill); 7528 freemsg(first_mp); 7529 return (NULL); 7530 } 7531 7532 return (ret_ill); 7533 } 7534 7535 /* 7536 * IPv4 - 7537 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7538 * out a packet to a destination address for which we do not have specific 7539 * (or sufficient) routing information. 7540 * 7541 * NOTE : These are the scopes of some of the variables that point at IRE, 7542 * which needs to be followed while making any future modifications 7543 * to avoid memory leaks. 7544 * 7545 * - ire and sire are the entries looked up initially by 7546 * ire_ftable_lookup. 7547 * - ipif_ire is used to hold the interface ire associated with 7548 * the new cache ire. But it's scope is limited, so we always REFRELE 7549 * it before branching out to error paths. 7550 * - save_ire is initialized before ire_create, so that ire returned 7551 * by ire_create will not over-write the ire. We REFRELE save_ire 7552 * before breaking out of the switch. 7553 * 7554 * Thus on failures, we have to REFRELE only ire and sire, if they 7555 * are not NULL. 7556 */ 7557 void 7558 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7559 zoneid_t zoneid) 7560 { 7561 areq_t *areq; 7562 ipaddr_t gw = 0; 7563 ire_t *ire = NULL; 7564 mblk_t *res_mp; 7565 ipaddr_t *addrp; 7566 ipaddr_t nexthop_addr; 7567 ipif_t *src_ipif = NULL; 7568 ill_t *dst_ill = NULL; 7569 ipha_t *ipha; 7570 ire_t *sire = NULL; 7571 mblk_t *first_mp; 7572 ire_t *save_ire; 7573 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7574 ushort_t ire_marks = 0; 7575 boolean_t mctl_present; 7576 ipsec_out_t *io; 7577 mblk_t *saved_mp; 7578 ire_t *first_sire = NULL; 7579 mblk_t *copy_mp = NULL; 7580 mblk_t *xmit_mp = NULL; 7581 ipaddr_t save_dst; 7582 uint32_t multirt_flags = 7583 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7584 boolean_t multirt_is_resolvable; 7585 boolean_t multirt_resolve_next; 7586 boolean_t do_attach_ill = B_FALSE; 7587 boolean_t ip_nexthop = B_FALSE; 7588 tsol_ire_gw_secattr_t *attrp = NULL; 7589 tsol_gcgrp_t *gcgrp = NULL; 7590 tsol_gcgrp_addr_t ga; 7591 7592 if (ip_debug > 2) { 7593 /* ip1dbg */ 7594 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7595 } 7596 7597 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7598 if (mctl_present) { 7599 io = (ipsec_out_t *)first_mp->b_rptr; 7600 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7601 ASSERT(zoneid == io->ipsec_out_zoneid); 7602 ASSERT(zoneid != ALL_ZONES); 7603 } 7604 7605 ipha = (ipha_t *)mp->b_rptr; 7606 7607 /* All multicast lookups come through ip_newroute_ipif() */ 7608 if (CLASSD(dst)) { 7609 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7610 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7611 freemsg(first_mp); 7612 return; 7613 } 7614 7615 if (mctl_present && io->ipsec_out_attach_if) { 7616 /* ip_grab_attach_ill returns a held ill */ 7617 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7618 io->ipsec_out_ill_index, B_FALSE); 7619 7620 /* Failure case frees things for us. */ 7621 if (attach_ill == NULL) 7622 return; 7623 7624 /* 7625 * Check if we need an ire that will not be 7626 * looked up by anybody else i.e. HIDDEN. 7627 */ 7628 if (ill_is_probeonly(attach_ill)) 7629 ire_marks = IRE_MARK_HIDDEN; 7630 } 7631 if (mctl_present && io->ipsec_out_ip_nexthop) { 7632 ip_nexthop = B_TRUE; 7633 nexthop_addr = io->ipsec_out_nexthop_addr; 7634 } 7635 /* 7636 * If this IRE is created for forwarding or it is not for 7637 * traffic for congestion controlled protocols, mark it as temporary. 7638 */ 7639 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7640 ire_marks |= IRE_MARK_TEMPORARY; 7641 7642 /* 7643 * Get what we can from ire_ftable_lookup which will follow an IRE 7644 * chain until it gets the most specific information available. 7645 * For example, we know that there is no IRE_CACHE for this dest, 7646 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7647 * ire_ftable_lookup will look up the gateway, etc. 7648 * Check if in_ill != NULL. If it is true, the packet must be 7649 * from an incoming interface where RTA_SRCIFP is set. 7650 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7651 * to the destination, of equal netmask length in the forward table, 7652 * will be recursively explored. If no information is available 7653 * for the final gateway of that route, we force the returned ire 7654 * to be equal to sire using MATCH_IRE_PARENT. 7655 * At least, in this case we have a starting point (in the buckets) 7656 * to look for other routes to the destination in the forward table. 7657 * This is actually used only for multirouting, where a list 7658 * of routes has to be processed in sequence. 7659 * 7660 * In the process of coming up with the most specific information, 7661 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7662 * for the gateway (i.e., one for which the ire_nce->nce_state is 7663 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7664 * Two caveats when handling incomplete ire's in ip_newroute: 7665 * - we should be careful when accessing its ire_nce (specifically 7666 * the nce_res_mp) ast it might change underneath our feet, and, 7667 * - not all legacy code path callers are prepared to handle 7668 * incomplete ire's, so we should not create/add incomplete 7669 * ire_cache entries here. (See discussion about temporary solution 7670 * further below). 7671 * 7672 * In order to minimize packet dropping, and to preserve existing 7673 * behavior, we treat this case as if there were no IRE_CACHE for the 7674 * gateway, and instead use the IF_RESOLVER ire to send out 7675 * another request to ARP (this is achieved by passing the 7676 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7677 * arp response comes back in ip_wput_nondata, we will create 7678 * a per-dst ire_cache that has an ND_COMPLETE ire. 7679 * 7680 * Note that this is a temporary solution; the correct solution is 7681 * to create an incomplete per-dst ire_cache entry, and send the 7682 * packet out when the gw's nce is resolved. In order to achieve this, 7683 * all packet processing must have been completed prior to calling 7684 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7685 * to be modified to accomodate this solution. 7686 */ 7687 if (in_ill != NULL) { 7688 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7689 in_ill, MATCH_IRE_TYPE); 7690 } else if (ip_nexthop) { 7691 /* 7692 * The first time we come here, we look for an IRE_INTERFACE 7693 * entry for the specified nexthop, set the dst to be the 7694 * nexthop address and create an IRE_CACHE entry for the 7695 * nexthop. The next time around, we are able to find an 7696 * IRE_CACHE entry for the nexthop, set the gateway to be the 7697 * nexthop address and create an IRE_CACHE entry for the 7698 * destination address via the specified nexthop. 7699 */ 7700 ire = ire_cache_lookup(nexthop_addr, zoneid, 7701 MBLK_GETLABEL(mp)); 7702 if (ire != NULL) { 7703 gw = nexthop_addr; 7704 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7705 } else { 7706 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7707 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7708 MBLK_GETLABEL(mp), 7709 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7710 if (ire != NULL) { 7711 dst = nexthop_addr; 7712 } 7713 } 7714 } else if (attach_ill == NULL) { 7715 ire = ire_ftable_lookup(dst, 0, 0, 0, 7716 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7717 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7718 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7719 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7720 } else { 7721 /* 7722 * attach_ill is set only for communicating with 7723 * on-link hosts. So, don't look for DEFAULT. 7724 */ 7725 ipif_t *attach_ipif; 7726 7727 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7728 if (attach_ipif == NULL) { 7729 ill_refrele(attach_ill); 7730 goto icmp_err_ret; 7731 } 7732 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7733 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7734 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7735 MATCH_IRE_SECATTR); 7736 ipif_refrele(attach_ipif); 7737 } 7738 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7739 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7740 7741 /* 7742 * This loop is run only once in most cases. 7743 * We loop to resolve further routes only when the destination 7744 * can be reached through multiple RTF_MULTIRT-flagged ires. 7745 */ 7746 do { 7747 /* Clear the previous iteration's values */ 7748 if (src_ipif != NULL) { 7749 ipif_refrele(src_ipif); 7750 src_ipif = NULL; 7751 } 7752 if (dst_ill != NULL) { 7753 ill_refrele(dst_ill); 7754 dst_ill = NULL; 7755 } 7756 7757 multirt_resolve_next = B_FALSE; 7758 /* 7759 * We check if packets have to be multirouted. 7760 * In this case, given the current <ire, sire> couple, 7761 * we look for the next suitable <ire, sire>. 7762 * This check is done in ire_multirt_lookup(), 7763 * which applies various criteria to find the next route 7764 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7765 * unchanged if it detects it has not been tried yet. 7766 */ 7767 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7768 ip3dbg(("ip_newroute: starting next_resolution " 7769 "with first_mp %p, tag %d\n", 7770 (void *)first_mp, 7771 MULTIRT_DEBUG_TAGGED(first_mp))); 7772 7773 ASSERT(sire != NULL); 7774 multirt_is_resolvable = 7775 ire_multirt_lookup(&ire, &sire, multirt_flags, 7776 MBLK_GETLABEL(mp)); 7777 7778 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7779 "ire %p, sire %p\n", 7780 multirt_is_resolvable, 7781 (void *)ire, (void *)sire)); 7782 7783 if (!multirt_is_resolvable) { 7784 /* 7785 * No more multirt route to resolve; give up 7786 * (all routes resolved or no more 7787 * resolvable routes). 7788 */ 7789 if (ire != NULL) { 7790 ire_refrele(ire); 7791 ire = NULL; 7792 } 7793 } else { 7794 ASSERT(sire != NULL); 7795 ASSERT(ire != NULL); 7796 /* 7797 * We simply use first_sire as a flag that 7798 * indicates if a resolvable multirt route 7799 * has already been found. 7800 * If it is not the case, we may have to send 7801 * an ICMP error to report that the 7802 * destination is unreachable. 7803 * We do not IRE_REFHOLD first_sire. 7804 */ 7805 if (first_sire == NULL) { 7806 first_sire = sire; 7807 } 7808 } 7809 } 7810 if (ire == NULL) { 7811 if (ip_debug > 3) { 7812 /* ip2dbg */ 7813 pr_addr_dbg("ip_newroute: " 7814 "can't resolve %s\n", AF_INET, &dst); 7815 } 7816 ip3dbg(("ip_newroute: " 7817 "ire %p, sire %p, first_sire %p\n", 7818 (void *)ire, (void *)sire, (void *)first_sire)); 7819 7820 if (sire != NULL) { 7821 ire_refrele(sire); 7822 sire = NULL; 7823 } 7824 7825 if (first_sire != NULL) { 7826 /* 7827 * At least one multirt route has been found 7828 * in the same call to ip_newroute(); 7829 * there is no need to report an ICMP error. 7830 * first_sire was not IRE_REFHOLDed. 7831 */ 7832 MULTIRT_DEBUG_UNTAG(first_mp); 7833 freemsg(first_mp); 7834 return; 7835 } 7836 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7837 RTA_DST); 7838 if (attach_ill != NULL) 7839 ill_refrele(attach_ill); 7840 goto icmp_err_ret; 7841 } 7842 7843 /* 7844 * When RTA_SRCIFP is used to add a route, then an interface 7845 * route is added in the source interface's routing table. 7846 * If the outgoing interface of this route is of type 7847 * IRE_IF_RESOLVER, then upon creation of the ire, 7848 * ire_nce->nce_res_mp is set to NULL. 7849 * Later, when this route is first used for forwarding 7850 * a packet, ip_newroute() is called 7851 * to resolve the hardware address of the outgoing ipif. 7852 * We do not come here for IRE_IF_NORESOLVER entries in the 7853 * source interface based table. We only come here if the 7854 * outgoing interface is a resolver interface and we don't 7855 * have the ire_nce->nce_res_mp information yet. 7856 * If in_ill is not null that means it is called from 7857 * ip_rput. 7858 */ 7859 7860 ASSERT(ire->ire_in_ill == NULL || 7861 (ire->ire_type == IRE_IF_RESOLVER && 7862 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7863 7864 /* 7865 * Verify that the returned IRE does not have either 7866 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7867 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7868 */ 7869 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7870 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7871 if (attach_ill != NULL) 7872 ill_refrele(attach_ill); 7873 goto icmp_err_ret; 7874 } 7875 /* 7876 * Increment the ire_ob_pkt_count field for ire if it is an 7877 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7878 * increment the same for the parent IRE, sire, if it is some 7879 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7880 * and HOST_REDIRECT). 7881 */ 7882 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7883 UPDATE_OB_PKT_COUNT(ire); 7884 ire->ire_last_used_time = lbolt; 7885 } 7886 7887 if (sire != NULL) { 7888 gw = sire->ire_gateway_addr; 7889 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7890 IRE_INTERFACE)) == 0); 7891 UPDATE_OB_PKT_COUNT(sire); 7892 sire->ire_last_used_time = lbolt; 7893 } 7894 /* 7895 * We have a route to reach the destination. 7896 * 7897 * 1) If the interface is part of ill group, try to get a new 7898 * ill taking load spreading into account. 7899 * 7900 * 2) After selecting the ill, get a source address that 7901 * might create good inbound load spreading. 7902 * ipif_select_source does this for us. 7903 * 7904 * If the application specified the ill (ifindex), we still 7905 * load spread. Only if the packets needs to go out 7906 * specifically on a given ill e.g. binding to 7907 * IPIF_NOFAILOVER address, then we don't try to use a 7908 * different ill for load spreading. 7909 */ 7910 if (attach_ill == NULL) { 7911 /* 7912 * Don't perform outbound load spreading in the 7913 * case of an RTF_MULTIRT route, as we actually 7914 * typically want to replicate outgoing packets 7915 * through particular interfaces. 7916 */ 7917 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7918 dst_ill = ire->ire_ipif->ipif_ill; 7919 /* for uniformity */ 7920 ill_refhold(dst_ill); 7921 } else { 7922 /* 7923 * If we are here trying to create an IRE_CACHE 7924 * for an offlink destination and have the 7925 * IRE_CACHE for the next hop and the latter is 7926 * using virtual IP source address selection i.e 7927 * it's ire->ire_ipif is pointing to a virtual 7928 * network interface (vni) then 7929 * ip_newroute_get_dst_ll() will return the vni 7930 * interface as the dst_ill. Since the vni is 7931 * virtual i.e not associated with any physical 7932 * interface, it cannot be the dst_ill, hence 7933 * in such a case call ip_newroute_get_dst_ll() 7934 * with the stq_ill instead of the ire_ipif ILL. 7935 * The function returns a refheld ill. 7936 */ 7937 if ((ire->ire_type == IRE_CACHE) && 7938 IS_VNI(ire->ire_ipif->ipif_ill)) 7939 dst_ill = ip_newroute_get_dst_ill( 7940 ire->ire_stq->q_ptr); 7941 else 7942 dst_ill = ip_newroute_get_dst_ill( 7943 ire->ire_ipif->ipif_ill); 7944 } 7945 if (dst_ill == NULL) { 7946 if (ip_debug > 2) { 7947 pr_addr_dbg("ip_newroute: " 7948 "no dst ill for dst" 7949 " %s\n", AF_INET, &dst); 7950 } 7951 goto icmp_err_ret; 7952 } 7953 } else { 7954 dst_ill = ire->ire_ipif->ipif_ill; 7955 /* for uniformity */ 7956 ill_refhold(dst_ill); 7957 /* 7958 * We should have found a route matching ill as we 7959 * called ire_ftable_lookup with MATCH_IRE_ILL. 7960 * Rather than asserting, when there is a mismatch, 7961 * we just drop the packet. 7962 */ 7963 if (dst_ill != attach_ill) { 7964 ip0dbg(("ip_newroute: Packet dropped as " 7965 "IPIF_NOFAILOVER ill is %s, " 7966 "ire->ire_ipif->ipif_ill is %s\n", 7967 attach_ill->ill_name, 7968 dst_ill->ill_name)); 7969 ill_refrele(attach_ill); 7970 goto icmp_err_ret; 7971 } 7972 } 7973 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7974 if (attach_ill != NULL) { 7975 ill_refrele(attach_ill); 7976 attach_ill = NULL; 7977 do_attach_ill = B_TRUE; 7978 } 7979 ASSERT(dst_ill != NULL); 7980 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7981 7982 /* 7983 * Pick the best source address from dst_ill. 7984 * 7985 * 1) If it is part of a multipathing group, we would 7986 * like to spread the inbound packets across different 7987 * interfaces. ipif_select_source picks a random source 7988 * across the different ills in the group. 7989 * 7990 * 2) If it is not part of a multipathing group, we try 7991 * to pick the source address from the destination 7992 * route. Clustering assumes that when we have multiple 7993 * prefixes hosted on an interface, the prefix of the 7994 * source address matches the prefix of the destination 7995 * route. We do this only if the address is not 7996 * DEPRECATED. 7997 * 7998 * 3) If the conn is in a different zone than the ire, we 7999 * need to pick a source address from the right zone. 8000 * 8001 * NOTE : If we hit case (1) above, the prefix of the source 8002 * address picked may not match the prefix of the 8003 * destination routes prefix as ipif_select_source 8004 * does not look at "dst" while picking a source 8005 * address. 8006 * If we want the same behavior as (2), we will need 8007 * to change the behavior of ipif_select_source. 8008 */ 8009 ASSERT(src_ipif == NULL); 8010 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8011 /* 8012 * The RTF_SETSRC flag is set in the parent ire (sire). 8013 * Check that the ipif matching the requested source 8014 * address still exists. 8015 */ 8016 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8017 zoneid, NULL, NULL, NULL, NULL); 8018 } 8019 if (src_ipif == NULL) { 8020 ire_marks |= IRE_MARK_USESRC_CHECK; 8021 if ((dst_ill->ill_group != NULL) || 8022 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8023 (connp != NULL && ire->ire_zoneid != zoneid && 8024 ire->ire_zoneid != ALL_ZONES) || 8025 (dst_ill->ill_usesrc_ifindex != 0)) { 8026 /* 8027 * If the destination is reachable via a 8028 * given gateway, the selected source address 8029 * should be in the same subnet as the gateway. 8030 * Otherwise, the destination is not reachable. 8031 * 8032 * If there are no interfaces on the same subnet 8033 * as the destination, ipif_select_source gives 8034 * first non-deprecated interface which might be 8035 * on a different subnet than the gateway. 8036 * This is not desirable. Hence pass the dst_ire 8037 * source address to ipif_select_source. 8038 * It is sure that the destination is reachable 8039 * with the dst_ire source address subnet. 8040 * So passing dst_ire source address to 8041 * ipif_select_source will make sure that the 8042 * selected source will be on the same subnet 8043 * as dst_ire source address. 8044 */ 8045 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8046 src_ipif = ipif_select_source(dst_ill, saddr, 8047 zoneid); 8048 if (src_ipif == NULL) { 8049 if (ip_debug > 2) { 8050 pr_addr_dbg("ip_newroute: " 8051 "no src for dst %s ", 8052 AF_INET, &dst); 8053 printf("through interface %s\n", 8054 dst_ill->ill_name); 8055 } 8056 goto icmp_err_ret; 8057 } 8058 } else { 8059 src_ipif = ire->ire_ipif; 8060 ASSERT(src_ipif != NULL); 8061 /* hold src_ipif for uniformity */ 8062 ipif_refhold(src_ipif); 8063 } 8064 } 8065 8066 /* 8067 * Assign a source address while we have the conn. 8068 * We can't have ip_wput_ire pick a source address when the 8069 * packet returns from arp since we need to look at 8070 * conn_unspec_src and conn_zoneid, and we lose the conn when 8071 * going through arp. 8072 * 8073 * NOTE : ip_newroute_v6 does not have this piece of code as 8074 * it uses ip6i to store this information. 8075 */ 8076 if (ipha->ipha_src == INADDR_ANY && 8077 (connp == NULL || !connp->conn_unspec_src)) { 8078 ipha->ipha_src = src_ipif->ipif_src_addr; 8079 } 8080 if (ip_debug > 3) { 8081 /* ip2dbg */ 8082 pr_addr_dbg("ip_newroute: first hop %s\n", 8083 AF_INET, &gw); 8084 } 8085 ip2dbg(("\tire type %s (%d)\n", 8086 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8087 8088 /* 8089 * The TTL of multirouted packets is bounded by the 8090 * ip_multirt_ttl ndd variable. 8091 */ 8092 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8093 /* Force TTL of multirouted packets */ 8094 if ((ip_multirt_ttl > 0) && 8095 (ipha->ipha_ttl > ip_multirt_ttl)) { 8096 ip2dbg(("ip_newroute: forcing multirt TTL " 8097 "to %d (was %d), dst 0x%08x\n", 8098 ip_multirt_ttl, ipha->ipha_ttl, 8099 ntohl(sire->ire_addr))); 8100 ipha->ipha_ttl = ip_multirt_ttl; 8101 } 8102 } 8103 /* 8104 * At this point in ip_newroute(), ire is either the 8105 * IRE_CACHE of the next-hop gateway for an off-subnet 8106 * destination or an IRE_INTERFACE type that should be used 8107 * to resolve an on-subnet destination or an on-subnet 8108 * next-hop gateway. 8109 * 8110 * In the IRE_CACHE case, we have the following : 8111 * 8112 * 1) src_ipif - used for getting a source address. 8113 * 8114 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8115 * means packets using this IRE_CACHE will go out on 8116 * dst_ill. 8117 * 8118 * 3) The IRE sire will point to the prefix that is the 8119 * longest matching route for the destination. These 8120 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8121 * 8122 * The newly created IRE_CACHE entry for the off-subnet 8123 * destination is tied to both the prefix route and the 8124 * interface route used to resolve the next-hop gateway 8125 * via the ire_phandle and ire_ihandle fields, 8126 * respectively. 8127 * 8128 * In the IRE_INTERFACE case, we have the following : 8129 * 8130 * 1) src_ipif - used for getting a source address. 8131 * 8132 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8133 * means packets using the IRE_CACHE that we will build 8134 * here will go out on dst_ill. 8135 * 8136 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8137 * to be created will only be tied to the IRE_INTERFACE 8138 * that was derived from the ire_ihandle field. 8139 * 8140 * If sire is non-NULL, it means the destination is 8141 * off-link and we will first create the IRE_CACHE for the 8142 * gateway. Next time through ip_newroute, we will create 8143 * the IRE_CACHE for the final destination as described 8144 * above. 8145 * 8146 * In both cases, after the current resolution has been 8147 * completed (or possibly initialised, in the IRE_INTERFACE 8148 * case), the loop may be re-entered to attempt the resolution 8149 * of another RTF_MULTIRT route. 8150 * 8151 * When an IRE_CACHE entry for the off-subnet destination is 8152 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8153 * for further processing in emission loops. 8154 */ 8155 save_ire = ire; 8156 switch (ire->ire_type) { 8157 case IRE_CACHE: { 8158 ire_t *ipif_ire; 8159 mblk_t *ire_fp_mp; 8160 8161 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8162 if (gw == 0) 8163 gw = ire->ire_gateway_addr; 8164 /* 8165 * We need 3 ire's to create a new cache ire for an 8166 * off-link destination from the cache ire of the 8167 * gateway. 8168 * 8169 * 1. The prefix ire 'sire' (Note that this does 8170 * not apply to the conn_nexthop_set case) 8171 * 2. The cache ire of the gateway 'ire' 8172 * 3. The interface ire 'ipif_ire' 8173 * 8174 * We have (1) and (2). We lookup (3) below. 8175 * 8176 * If there is no interface route to the gateway, 8177 * it is a race condition, where we found the cache 8178 * but the interface route has been deleted. 8179 */ 8180 if (ip_nexthop) { 8181 ipif_ire = ire_ihandle_lookup_onlink(ire); 8182 } else { 8183 ipif_ire = 8184 ire_ihandle_lookup_offlink(ire, sire); 8185 } 8186 if (ipif_ire == NULL) { 8187 ip1dbg(("ip_newroute: " 8188 "ire_ihandle_lookup_offlink failed\n")); 8189 goto icmp_err_ret; 8190 } 8191 /* 8192 * XXX We are using the same res_mp 8193 * (DL_UNITDATA_REQ) though the save_ire is not 8194 * pointing at the same ill. 8195 * This is incorrect. We need to send it up to the 8196 * resolver to get the right res_mp. For ethernets 8197 * this may be okay (ill_type == DL_ETHER). 8198 */ 8199 res_mp = save_ire->ire_nce->nce_res_mp; 8200 ire_fp_mp = NULL; 8201 /* 8202 * save_ire's nce_fp_mp can't change since it is 8203 * not an IRE_MIPRTUN or IRE_BROADCAST 8204 * LOCK_IRE_FP_MP does not do any useful work in 8205 * the case of IRE_CACHE. So we don't use it below. 8206 */ 8207 if (save_ire->ire_stq == dst_ill->ill_wq) 8208 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8209 8210 /* 8211 * Check cached gateway IRE for any security 8212 * attributes; if found, associate the gateway 8213 * credentials group to the destination IRE. 8214 */ 8215 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8216 mutex_enter(&attrp->igsa_lock); 8217 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8218 GCGRP_REFHOLD(gcgrp); 8219 mutex_exit(&attrp->igsa_lock); 8220 } 8221 8222 ire = ire_create( 8223 (uchar_t *)&dst, /* dest address */ 8224 (uchar_t *)&ip_g_all_ones, /* mask */ 8225 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8226 (uchar_t *)&gw, /* gateway address */ 8227 NULL, 8228 &save_ire->ire_max_frag, 8229 ire_fp_mp, /* Fast Path header */ 8230 dst_ill->ill_rq, /* recv-from queue */ 8231 dst_ill->ill_wq, /* send-to queue */ 8232 IRE_CACHE, /* IRE type */ 8233 res_mp, 8234 src_ipif, 8235 in_ill, /* incoming ill */ 8236 (sire != NULL) ? 8237 sire->ire_mask : 0, /* Parent mask */ 8238 (sire != NULL) ? 8239 sire->ire_phandle : 0, /* Parent handle */ 8240 ipif_ire->ire_ihandle, /* Interface handle */ 8241 (sire != NULL) ? (sire->ire_flags & 8242 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8243 (sire != NULL) ? 8244 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8245 NULL, 8246 gcgrp); 8247 8248 if (ire == NULL) { 8249 if (gcgrp != NULL) { 8250 GCGRP_REFRELE(gcgrp); 8251 gcgrp = NULL; 8252 } 8253 ire_refrele(ipif_ire); 8254 ire_refrele(save_ire); 8255 break; 8256 } 8257 8258 /* reference now held by IRE */ 8259 gcgrp = NULL; 8260 8261 ire->ire_marks |= ire_marks; 8262 8263 /* 8264 * Prevent sire and ipif_ire from getting deleted. 8265 * The newly created ire is tied to both of them via 8266 * the phandle and ihandle respectively. 8267 */ 8268 if (sire != NULL) { 8269 IRB_REFHOLD(sire->ire_bucket); 8270 /* Has it been removed already ? */ 8271 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8272 IRB_REFRELE(sire->ire_bucket); 8273 ire_refrele(ipif_ire); 8274 ire_refrele(save_ire); 8275 break; 8276 } 8277 } 8278 8279 IRB_REFHOLD(ipif_ire->ire_bucket); 8280 /* Has it been removed already ? */ 8281 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8282 IRB_REFRELE(ipif_ire->ire_bucket); 8283 if (sire != NULL) 8284 IRB_REFRELE(sire->ire_bucket); 8285 ire_refrele(ipif_ire); 8286 ire_refrele(save_ire); 8287 break; 8288 } 8289 8290 xmit_mp = first_mp; 8291 /* 8292 * In the case of multirouting, a copy 8293 * of the packet is done before its sending. 8294 * The copy is used to attempt another 8295 * route resolution, in a next loop. 8296 */ 8297 if (ire->ire_flags & RTF_MULTIRT) { 8298 copy_mp = copymsg(first_mp); 8299 if (copy_mp != NULL) { 8300 xmit_mp = copy_mp; 8301 MULTIRT_DEBUG_TAG(first_mp); 8302 } 8303 } 8304 ire_add_then_send(q, ire, xmit_mp); 8305 ire_refrele(save_ire); 8306 8307 /* Assert that sire is not deleted yet. */ 8308 if (sire != NULL) { 8309 ASSERT(sire->ire_ptpn != NULL); 8310 IRB_REFRELE(sire->ire_bucket); 8311 } 8312 8313 /* Assert that ipif_ire is not deleted yet. */ 8314 ASSERT(ipif_ire->ire_ptpn != NULL); 8315 IRB_REFRELE(ipif_ire->ire_bucket); 8316 ire_refrele(ipif_ire); 8317 8318 /* 8319 * If copy_mp is not NULL, multirouting was 8320 * requested. We loop to initiate a next 8321 * route resolution attempt, starting from sire. 8322 */ 8323 if (copy_mp != NULL) { 8324 /* 8325 * Search for the next unresolved 8326 * multirt route. 8327 */ 8328 copy_mp = NULL; 8329 ipif_ire = NULL; 8330 ire = NULL; 8331 multirt_resolve_next = B_TRUE; 8332 continue; 8333 } 8334 if (sire != NULL) 8335 ire_refrele(sire); 8336 ipif_refrele(src_ipif); 8337 ill_refrele(dst_ill); 8338 return; 8339 } 8340 case IRE_IF_NORESOLVER: { 8341 /* 8342 * We have what we need to build an IRE_CACHE. 8343 * 8344 * Create a new res_mp with the IP gateway address 8345 * in destination address in the DLPI hdr if the 8346 * physical length is exactly 4 bytes. 8347 */ 8348 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8349 uchar_t *addr; 8350 8351 if (gw) 8352 addr = (uchar_t *)&gw; 8353 else 8354 addr = (uchar_t *)&dst; 8355 8356 res_mp = ill_dlur_gen(addr, 8357 dst_ill->ill_phys_addr_length, 8358 dst_ill->ill_sap, 8359 dst_ill->ill_sap_length); 8360 8361 if (res_mp == NULL) { 8362 ip1dbg(("ip_newroute: res_mp NULL\n")); 8363 break; 8364 } 8365 } else { 8366 res_mp = NULL; 8367 } 8368 8369 /* 8370 * TSol note: We are creating the ire cache for the 8371 * destination 'dst'. If 'dst' is offlink, going 8372 * through the first hop 'gw', the security attributes 8373 * of 'dst' must be set to point to the gateway 8374 * credentials of gateway 'gw'. If 'dst' is onlink, it 8375 * is possible that 'dst' is a potential gateway that is 8376 * referenced by some route that has some security 8377 * attributes. Thus in the former case, we need to do a 8378 * gcgrp_lookup of 'gw' while in the latter case we 8379 * need to do gcgrp_lookup of 'dst' itself. 8380 */ 8381 ga.ga_af = AF_INET; 8382 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8383 &ga.ga_addr); 8384 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8385 8386 ire = ire_create( 8387 (uchar_t *)&dst, /* dest address */ 8388 (uchar_t *)&ip_g_all_ones, /* mask */ 8389 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8390 (uchar_t *)&gw, /* gateway address */ 8391 NULL, 8392 &save_ire->ire_max_frag, 8393 NULL, /* Fast Path header */ 8394 dst_ill->ill_rq, /* recv-from queue */ 8395 dst_ill->ill_wq, /* send-to queue */ 8396 IRE_CACHE, 8397 res_mp, 8398 src_ipif, 8399 in_ill, /* Incoming ill */ 8400 save_ire->ire_mask, /* Parent mask */ 8401 (sire != NULL) ? /* Parent handle */ 8402 sire->ire_phandle : 0, 8403 save_ire->ire_ihandle, /* Interface handle */ 8404 (sire != NULL) ? sire->ire_flags & 8405 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8406 &(save_ire->ire_uinfo), 8407 NULL, 8408 gcgrp); 8409 8410 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8411 freeb(res_mp); 8412 8413 if (ire == NULL) { 8414 if (gcgrp != NULL) { 8415 GCGRP_REFRELE(gcgrp); 8416 gcgrp = NULL; 8417 } 8418 ire_refrele(save_ire); 8419 break; 8420 } 8421 8422 /* reference now held by IRE */ 8423 gcgrp = NULL; 8424 8425 ire->ire_marks |= ire_marks; 8426 8427 /* Prevent save_ire from getting deleted */ 8428 IRB_REFHOLD(save_ire->ire_bucket); 8429 /* Has it been removed already ? */ 8430 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8431 IRB_REFRELE(save_ire->ire_bucket); 8432 ire_refrele(save_ire); 8433 break; 8434 } 8435 8436 /* 8437 * In the case of multirouting, a copy 8438 * of the packet is made before it is sent. 8439 * The copy is used in the next 8440 * loop to attempt another resolution. 8441 */ 8442 xmit_mp = first_mp; 8443 if ((sire != NULL) && 8444 (sire->ire_flags & RTF_MULTIRT)) { 8445 copy_mp = copymsg(first_mp); 8446 if (copy_mp != NULL) { 8447 xmit_mp = copy_mp; 8448 MULTIRT_DEBUG_TAG(first_mp); 8449 } 8450 } 8451 ire_add_then_send(q, ire, xmit_mp); 8452 8453 /* Assert that it is not deleted yet. */ 8454 ASSERT(save_ire->ire_ptpn != NULL); 8455 IRB_REFRELE(save_ire->ire_bucket); 8456 ire_refrele(save_ire); 8457 8458 if (copy_mp != NULL) { 8459 /* 8460 * If we found a (no)resolver, we ignore any 8461 * trailing top priority IRE_CACHE in further 8462 * loops. This ensures that we do not omit any 8463 * (no)resolver. 8464 * This IRE_CACHE, if any, will be processed 8465 * by another thread entering ip_newroute(). 8466 * IRE_CACHE entries, if any, will be processed 8467 * by another thread entering ip_newroute(), 8468 * (upon resolver response, for instance). 8469 * This aims to force parallel multirt 8470 * resolutions as soon as a packet must be sent. 8471 * In the best case, after the tx of only one 8472 * packet, all reachable routes are resolved. 8473 * Otherwise, the resolution of all RTF_MULTIRT 8474 * routes would require several emissions. 8475 */ 8476 multirt_flags &= ~MULTIRT_CACHEGW; 8477 8478 /* 8479 * Search for the next unresolved multirt 8480 * route. 8481 */ 8482 copy_mp = NULL; 8483 save_ire = NULL; 8484 ire = NULL; 8485 multirt_resolve_next = B_TRUE; 8486 continue; 8487 } 8488 8489 /* 8490 * Don't need sire anymore 8491 */ 8492 if (sire != NULL) 8493 ire_refrele(sire); 8494 8495 ipif_refrele(src_ipif); 8496 ill_refrele(dst_ill); 8497 return; 8498 } 8499 case IRE_IF_RESOLVER: 8500 /* 8501 * We can't build an IRE_CACHE yet, but at least we 8502 * found a resolver that can help. 8503 */ 8504 res_mp = dst_ill->ill_resolver_mp; 8505 if (!OK_RESOLVER_MP(res_mp)) 8506 break; 8507 8508 /* 8509 * To be at this point in the code with a non-zero gw 8510 * means that dst is reachable through a gateway that 8511 * we have never resolved. By changing dst to the gw 8512 * addr we resolve the gateway first. 8513 * When ire_add_then_send() tries to put the IP dg 8514 * to dst, it will reenter ip_newroute() at which 8515 * time we will find the IRE_CACHE for the gw and 8516 * create another IRE_CACHE in case IRE_CACHE above. 8517 */ 8518 if (gw != INADDR_ANY) { 8519 /* 8520 * The source ipif that was determined above was 8521 * relative to the destination address, not the 8522 * gateway's. If src_ipif was not taken out of 8523 * the IRE_IF_RESOLVER entry, we'll need to call 8524 * ipif_select_source() again. 8525 */ 8526 if (src_ipif != ire->ire_ipif) { 8527 ipif_refrele(src_ipif); 8528 src_ipif = ipif_select_source(dst_ill, 8529 gw, zoneid); 8530 if (src_ipif == NULL) { 8531 if (ip_debug > 2) { 8532 pr_addr_dbg( 8533 "ip_newroute: no " 8534 "src for gw %s ", 8535 AF_INET, &gw); 8536 printf("through " 8537 "interface %s\n", 8538 dst_ill->ill_name); 8539 } 8540 goto icmp_err_ret; 8541 } 8542 } 8543 save_dst = dst; 8544 dst = gw; 8545 gw = INADDR_ANY; 8546 } 8547 8548 /* 8549 * We obtain a partial IRE_CACHE which we will pass 8550 * along with the resolver query. When the response 8551 * comes back it will be there ready for us to add. 8552 * The ire_max_frag is atomically set under the 8553 * irebucket lock in ire_add_v[46]. 8554 */ 8555 8556 ire = ire_create_mp( 8557 (uchar_t *)&dst, /* dest address */ 8558 (uchar_t *)&ip_g_all_ones, /* mask */ 8559 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8560 (uchar_t *)&gw, /* gateway address */ 8561 NULL, /* no in_src_addr */ 8562 NULL, /* ire_max_frag */ 8563 NULL, /* Fast Path header */ 8564 dst_ill->ill_rq, /* recv-from queue */ 8565 dst_ill->ill_wq, /* send-to queue */ 8566 IRE_CACHE, 8567 NULL, 8568 src_ipif, /* Interface ipif */ 8569 in_ill, /* Incoming ILL */ 8570 save_ire->ire_mask, /* Parent mask */ 8571 0, 8572 save_ire->ire_ihandle, /* Interface handle */ 8573 0, /* flags if any */ 8574 &(save_ire->ire_uinfo), 8575 NULL, 8576 NULL); 8577 8578 if (ire == NULL) { 8579 ire_refrele(save_ire); 8580 break; 8581 } 8582 8583 if ((sire != NULL) && 8584 (sire->ire_flags & RTF_MULTIRT)) { 8585 copy_mp = copymsg(first_mp); 8586 if (copy_mp != NULL) 8587 MULTIRT_DEBUG_TAG(copy_mp); 8588 } 8589 8590 ire->ire_marks |= ire_marks; 8591 8592 /* 8593 * Construct message chain for the resolver 8594 * of the form: 8595 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8596 * Packet could contain a IPSEC_OUT mp. 8597 * 8598 * NOTE : ire will be added later when the response 8599 * comes back from ARP. If the response does not 8600 * come back, ARP frees the packet. For this reason, 8601 * we can't REFHOLD the bucket of save_ire to prevent 8602 * deletions. We may not be able to REFRELE the bucket 8603 * if the response never comes back. Thus, before 8604 * adding the ire, ire_add_v4 will make sure that the 8605 * interface route does not get deleted. This is the 8606 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8607 * where we can always prevent deletions because of 8608 * the synchronous nature of adding IRES i.e 8609 * ire_add_then_send is called after creating the IRE. 8610 */ 8611 ASSERT(ire->ire_mp != NULL); 8612 ire->ire_mp->b_cont = first_mp; 8613 /* Have saved_mp handy, for cleanup if canput fails */ 8614 saved_mp = mp; 8615 mp = copyb(res_mp); 8616 if (mp == NULL) { 8617 /* Prepare for cleanup */ 8618 mp = saved_mp; /* pkt */ 8619 ire_delete(ire); /* ire_mp */ 8620 ire = NULL; 8621 ire_refrele(save_ire); 8622 if (copy_mp != NULL) { 8623 MULTIRT_DEBUG_UNTAG(copy_mp); 8624 freemsg(copy_mp); 8625 copy_mp = NULL; 8626 } 8627 break; 8628 } 8629 linkb(mp, ire->ire_mp); 8630 8631 /* 8632 * Fill in the source and dest addrs for the resolver. 8633 * NOTE: this depends on memory layouts imposed by 8634 * ill_init(). 8635 */ 8636 areq = (areq_t *)mp->b_rptr; 8637 addrp = (ipaddr_t *)((char *)areq + 8638 areq->areq_sender_addr_offset); 8639 if (do_attach_ill) { 8640 /* 8641 * This is bind to no failover case. 8642 * arp packet also must go out on attach_ill. 8643 */ 8644 ASSERT(ipha->ipha_src != NULL); 8645 *addrp = ipha->ipha_src; 8646 } else { 8647 *addrp = save_ire->ire_src_addr; 8648 } 8649 8650 ire_refrele(save_ire); 8651 addrp = (ipaddr_t *)((char *)areq + 8652 areq->areq_target_addr_offset); 8653 *addrp = dst; 8654 /* Up to the resolver. */ 8655 if (canputnext(dst_ill->ill_rq) && 8656 !(dst_ill->ill_arp_closing)) { 8657 putnext(dst_ill->ill_rq, mp); 8658 ire = NULL; 8659 if (copy_mp != NULL) { 8660 /* 8661 * If we found a resolver, we ignore 8662 * any trailing top priority IRE_CACHE 8663 * in the further loops. This ensures 8664 * that we do not omit any resolver. 8665 * IRE_CACHE entries, if any, will be 8666 * processed next time we enter 8667 * ip_newroute(). 8668 */ 8669 multirt_flags &= ~MULTIRT_CACHEGW; 8670 /* 8671 * Search for the next unresolved 8672 * multirt route. 8673 */ 8674 first_mp = copy_mp; 8675 copy_mp = NULL; 8676 /* Prepare the next resolution loop. */ 8677 mp = first_mp; 8678 EXTRACT_PKT_MP(mp, first_mp, 8679 mctl_present); 8680 if (mctl_present) 8681 io = (ipsec_out_t *) 8682 first_mp->b_rptr; 8683 ipha = (ipha_t *)mp->b_rptr; 8684 8685 ASSERT(sire != NULL); 8686 8687 dst = save_dst; 8688 multirt_resolve_next = B_TRUE; 8689 continue; 8690 } 8691 8692 if (sire != NULL) 8693 ire_refrele(sire); 8694 8695 /* 8696 * The response will come back in ip_wput 8697 * with db_type IRE_DB_TYPE. 8698 */ 8699 ipif_refrele(src_ipif); 8700 ill_refrele(dst_ill); 8701 return; 8702 } else { 8703 /* Prepare for cleanup */ 8704 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8705 mp); 8706 mp->b_cont = NULL; 8707 freeb(mp); /* areq */ 8708 /* 8709 * this is an ire that is not added to the 8710 * cache. ire_freemblk will handle the release 8711 * of any resources associated with the ire. 8712 */ 8713 ire_delete(ire); /* ire_mp */ 8714 mp = saved_mp; /* pkt */ 8715 ire = NULL; 8716 if (copy_mp != NULL) { 8717 MULTIRT_DEBUG_UNTAG(copy_mp); 8718 freemsg(copy_mp); 8719 copy_mp = NULL; 8720 } 8721 break; 8722 } 8723 default: 8724 break; 8725 } 8726 } while (multirt_resolve_next); 8727 8728 ip1dbg(("ip_newroute: dropped\n")); 8729 /* Did this packet originate externally? */ 8730 if (mp->b_prev) { 8731 mp->b_next = NULL; 8732 mp->b_prev = NULL; 8733 BUMP_MIB(&ip_mib, ipInDiscards); 8734 } else { 8735 BUMP_MIB(&ip_mib, ipOutDiscards); 8736 } 8737 ASSERT(copy_mp == NULL); 8738 MULTIRT_DEBUG_UNTAG(first_mp); 8739 freemsg(first_mp); 8740 if (ire != NULL) 8741 ire_refrele(ire); 8742 if (sire != NULL) 8743 ire_refrele(sire); 8744 if (src_ipif != NULL) 8745 ipif_refrele(src_ipif); 8746 if (dst_ill != NULL) 8747 ill_refrele(dst_ill); 8748 return; 8749 8750 icmp_err_ret: 8751 ip1dbg(("ip_newroute: no route\n")); 8752 if (src_ipif != NULL) 8753 ipif_refrele(src_ipif); 8754 if (dst_ill != NULL) 8755 ill_refrele(dst_ill); 8756 if (sire != NULL) 8757 ire_refrele(sire); 8758 /* Did this packet originate externally? */ 8759 if (mp->b_prev) { 8760 mp->b_next = NULL; 8761 mp->b_prev = NULL; 8762 /* XXX ipInNoRoutes */ 8763 q = WR(q); 8764 } else { 8765 /* 8766 * Since ip_wput() isn't close to finished, we fill 8767 * in enough of the header for credible error reporting. 8768 */ 8769 if (ip_hdr_complete(ipha, zoneid)) { 8770 /* Failed */ 8771 MULTIRT_DEBUG_UNTAG(first_mp); 8772 freemsg(first_mp); 8773 if (ire != NULL) 8774 ire_refrele(ire); 8775 return; 8776 } 8777 } 8778 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8779 8780 /* 8781 * At this point we will have ire only if RTF_BLACKHOLE 8782 * or RTF_REJECT flags are set on the IRE. It will not 8783 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8784 */ 8785 if (ire != NULL) { 8786 if (ire->ire_flags & RTF_BLACKHOLE) { 8787 ire_refrele(ire); 8788 MULTIRT_DEBUG_UNTAG(first_mp); 8789 freemsg(first_mp); 8790 return; 8791 } 8792 ire_refrele(ire); 8793 } 8794 if (ip_source_routed(ipha)) { 8795 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8796 zoneid); 8797 return; 8798 } 8799 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8800 } 8801 8802 /* 8803 * IPv4 - 8804 * ip_newroute_ipif is called by ip_wput_multicast and 8805 * ip_rput_forward_multicast whenever we need to send 8806 * out a packet to a destination address for which we do not have specific 8807 * routing information. It is used when the packet will be sent out 8808 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8809 * socket option is set or icmp error message wants to go out on a particular 8810 * interface for a unicast packet. 8811 * 8812 * In most cases, the destination address is resolved thanks to the ipif 8813 * intrinsic resolver. However, there are some cases where the call to 8814 * ip_newroute_ipif must take into account the potential presence of 8815 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8816 * that uses the interface. This is specified through flags, 8817 * which can be a combination of: 8818 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8819 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8820 * and flags. Additionally, the packet source address has to be set to 8821 * the specified address. The caller is thus expected to set this flag 8822 * if the packet has no specific source address yet. 8823 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8824 * flag, the resulting ire will inherit the flag. All unresolved routes 8825 * to the destination must be explored in the same call to 8826 * ip_newroute_ipif(). 8827 */ 8828 static void 8829 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8830 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8831 { 8832 areq_t *areq; 8833 ire_t *ire = NULL; 8834 mblk_t *res_mp; 8835 ipaddr_t *addrp; 8836 mblk_t *first_mp; 8837 ire_t *save_ire = NULL; 8838 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8839 ipif_t *src_ipif = NULL; 8840 ushort_t ire_marks = 0; 8841 ill_t *dst_ill = NULL; 8842 boolean_t mctl_present; 8843 ipsec_out_t *io; 8844 ipha_t *ipha; 8845 int ihandle = 0; 8846 mblk_t *saved_mp; 8847 ire_t *fire = NULL; 8848 mblk_t *copy_mp = NULL; 8849 boolean_t multirt_resolve_next; 8850 ipaddr_t ipha_dst; 8851 8852 /* 8853 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8854 * here for uniformity 8855 */ 8856 ipif_refhold(ipif); 8857 8858 /* 8859 * This loop is run only once in most cases. 8860 * We loop to resolve further routes only when the destination 8861 * can be reached through multiple RTF_MULTIRT-flagged ires. 8862 */ 8863 do { 8864 if (dst_ill != NULL) { 8865 ill_refrele(dst_ill); 8866 dst_ill = NULL; 8867 } 8868 if (src_ipif != NULL) { 8869 ipif_refrele(src_ipif); 8870 src_ipif = NULL; 8871 } 8872 multirt_resolve_next = B_FALSE; 8873 8874 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8875 ipif->ipif_ill->ill_name)); 8876 8877 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8878 if (mctl_present) 8879 io = (ipsec_out_t *)first_mp->b_rptr; 8880 8881 ipha = (ipha_t *)mp->b_rptr; 8882 8883 /* 8884 * Save the packet destination address, we may need it after 8885 * the packet has been consumed. 8886 */ 8887 ipha_dst = ipha->ipha_dst; 8888 8889 /* 8890 * If the interface is a pt-pt interface we look for an 8891 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8892 * local_address and the pt-pt destination address. Otherwise 8893 * we just match the local address. 8894 * NOTE: dst could be different than ipha->ipha_dst in case 8895 * of sending igmp multicast packets over a point-to-point 8896 * connection. 8897 * Thus we must be careful enough to check ipha_dst to be a 8898 * multicast address, otherwise it will take xmit_if path for 8899 * multicast packets resulting into kernel stack overflow by 8900 * repeated calls to ip_newroute_ipif from ire_send(). 8901 */ 8902 if (CLASSD(ipha_dst) && 8903 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8904 goto err_ret; 8905 } 8906 8907 /* 8908 * We check if an IRE_OFFSUBNET for the addr that goes through 8909 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8910 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8911 * propagate its flags to the new ire. 8912 */ 8913 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8914 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8915 ip2dbg(("ip_newroute_ipif: " 8916 "ipif_lookup_multi_ire(" 8917 "ipif %p, dst %08x) = fire %p\n", 8918 (void *)ipif, ntohl(dst), (void *)fire)); 8919 } 8920 8921 if (mctl_present && io->ipsec_out_attach_if) { 8922 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8923 io->ipsec_out_ill_index, B_FALSE); 8924 8925 /* Failure case frees things for us. */ 8926 if (attach_ill == NULL) { 8927 ipif_refrele(ipif); 8928 if (fire != NULL) 8929 ire_refrele(fire); 8930 return; 8931 } 8932 8933 /* 8934 * Check if we need an ire that will not be 8935 * looked up by anybody else i.e. HIDDEN. 8936 */ 8937 if (ill_is_probeonly(attach_ill)) { 8938 ire_marks = IRE_MARK_HIDDEN; 8939 } 8940 /* 8941 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8942 * case. 8943 */ 8944 dst_ill = ipif->ipif_ill; 8945 /* attach_ill has been refheld by ip_grab_attach_ill */ 8946 ASSERT(dst_ill == attach_ill); 8947 } else { 8948 /* 8949 * If this is set by IP_XMIT_IF, then make sure that 8950 * ipif is pointing to the same ill as the IP_XMIT_IF 8951 * specified ill. 8952 */ 8953 ASSERT((connp == NULL) || 8954 (connp->conn_xmit_if_ill == NULL) || 8955 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8956 /* 8957 * If the interface belongs to an interface group, 8958 * make sure the next possible interface in the group 8959 * is used. This encourages load spreading among 8960 * peers in an interface group. 8961 * Note: load spreading is disabled for RTF_MULTIRT 8962 * routes. 8963 */ 8964 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8965 (fire->ire_flags & RTF_MULTIRT)) { 8966 /* 8967 * Don't perform outbound load spreading 8968 * in the case of an RTF_MULTIRT issued route, 8969 * we actually typically want to replicate 8970 * outgoing packets through particular 8971 * interfaces. 8972 */ 8973 dst_ill = ipif->ipif_ill; 8974 ill_refhold(dst_ill); 8975 } else { 8976 dst_ill = ip_newroute_get_dst_ill( 8977 ipif->ipif_ill); 8978 } 8979 if (dst_ill == NULL) { 8980 if (ip_debug > 2) { 8981 pr_addr_dbg("ip_newroute_ipif: " 8982 "no dst ill for dst %s\n", 8983 AF_INET, &dst); 8984 } 8985 goto err_ret; 8986 } 8987 } 8988 8989 /* 8990 * Pick a source address preferring non-deprecated ones. 8991 * Unlike ip_newroute, we don't do any source address 8992 * selection here since for multicast it really does not help 8993 * in inbound load spreading as in the unicast case. 8994 */ 8995 if ((flags & RTF_SETSRC) && (fire != NULL) && 8996 (fire->ire_flags & RTF_SETSRC)) { 8997 /* 8998 * As requested by flags, an IRE_OFFSUBNET was looked up 8999 * on that interface. This ire has RTF_SETSRC flag, so 9000 * the source address of the packet must be changed. 9001 * Check that the ipif matching the requested source 9002 * address still exists. 9003 */ 9004 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9005 zoneid, NULL, NULL, NULL, NULL); 9006 } 9007 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9008 (connp != NULL && ipif->ipif_zoneid != zoneid && 9009 ipif->ipif_zoneid != ALL_ZONES)) && 9010 (src_ipif == NULL)) { 9011 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9012 if (src_ipif == NULL) { 9013 if (ip_debug > 2) { 9014 /* ip1dbg */ 9015 pr_addr_dbg("ip_newroute_ipif: " 9016 "no src for dst %s", 9017 AF_INET, &dst); 9018 } 9019 ip1dbg((" through interface %s\n", 9020 dst_ill->ill_name)); 9021 goto err_ret; 9022 } 9023 ipif_refrele(ipif); 9024 ipif = src_ipif; 9025 ipif_refhold(ipif); 9026 } 9027 if (src_ipif == NULL) { 9028 src_ipif = ipif; 9029 ipif_refhold(src_ipif); 9030 } 9031 9032 /* 9033 * Assign a source address while we have the conn. 9034 * We can't have ip_wput_ire pick a source address when the 9035 * packet returns from arp since conn_unspec_src might be set 9036 * and we loose the conn when going through arp. 9037 */ 9038 if (ipha->ipha_src == INADDR_ANY && 9039 (connp == NULL || !connp->conn_unspec_src)) { 9040 ipha->ipha_src = src_ipif->ipif_src_addr; 9041 } 9042 9043 /* 9044 * In case of IP_XMIT_IF, it is possible that the outgoing 9045 * interface does not have an interface ire. 9046 * Example: Thousands of mobileip PPP interfaces to mobile 9047 * nodes. We don't want to create interface ires because 9048 * packets from other mobile nodes must not take the route 9049 * via interface ires to the visiting mobile node without 9050 * going through the home agent, in absence of mobileip 9051 * route optimization. 9052 */ 9053 if (CLASSD(ipha_dst) && (connp == NULL || 9054 connp->conn_xmit_if_ill == NULL)) { 9055 /* ipif_to_ire returns an held ire */ 9056 ire = ipif_to_ire(ipif); 9057 if (ire == NULL) 9058 goto err_ret; 9059 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9060 goto err_ret; 9061 /* 9062 * ihandle is needed when the ire is added to 9063 * cache table. 9064 */ 9065 save_ire = ire; 9066 ihandle = save_ire->ire_ihandle; 9067 9068 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9069 "flags %04x\n", 9070 (void *)ire, (void *)ipif, flags)); 9071 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9072 (fire->ire_flags & RTF_MULTIRT)) { 9073 /* 9074 * As requested by flags, an IRE_OFFSUBNET was 9075 * looked up on that interface. This ire has 9076 * RTF_MULTIRT flag, so the resolution loop will 9077 * be re-entered to resolve additional routes on 9078 * other interfaces. For that purpose, a copy of 9079 * the packet is performed at this point. 9080 */ 9081 fire->ire_last_used_time = lbolt; 9082 copy_mp = copymsg(first_mp); 9083 if (copy_mp) { 9084 MULTIRT_DEBUG_TAG(copy_mp); 9085 } 9086 } 9087 if ((flags & RTF_SETSRC) && (fire != NULL) && 9088 (fire->ire_flags & RTF_SETSRC)) { 9089 /* 9090 * As requested by flags, an IRE_OFFSUBET was 9091 * looked up on that interface. This ire has 9092 * RTF_SETSRC flag, so the source address of the 9093 * packet must be changed. 9094 */ 9095 ipha->ipha_src = fire->ire_src_addr; 9096 } 9097 } else { 9098 ASSERT((connp == NULL) || 9099 (connp->conn_xmit_if_ill != NULL) || 9100 (connp->conn_dontroute)); 9101 /* 9102 * The only ways we can come here are: 9103 * 1) IP_XMIT_IF socket option is set 9104 * 2) ICMP error message generated from 9105 * ip_mrtun_forward() routine and it needs 9106 * to go through the specified ill. 9107 * 3) SO_DONTROUTE socket option is set 9108 * In all cases, the new ire will not be added 9109 * into cache table. 9110 */ 9111 ire_marks |= IRE_MARK_NOADD; 9112 } 9113 9114 switch (ipif->ipif_net_type) { 9115 case IRE_IF_NORESOLVER: { 9116 /* We have what we need to build an IRE_CACHE. */ 9117 mblk_t *res_mp; 9118 9119 /* 9120 * Create a new res_mp with the 9121 * IP gateway address as destination address in the 9122 * DLPI hdr if the physical length is exactly 4 bytes. 9123 */ 9124 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9125 res_mp = ill_dlur_gen((uchar_t *)&dst, 9126 dst_ill->ill_phys_addr_length, 9127 dst_ill->ill_sap, 9128 dst_ill->ill_sap_length); 9129 } else { 9130 /* use the value set in ip_ll_subnet_defaults */ 9131 res_mp = ill_dlur_gen(NULL, 9132 dst_ill->ill_phys_addr_length, 9133 dst_ill->ill_sap, 9134 dst_ill->ill_sap_length); 9135 } 9136 9137 if (res_mp == NULL) 9138 break; 9139 /* 9140 * The new ire inherits the IRE_OFFSUBNET flags 9141 * and source address, if this was requested. 9142 */ 9143 ire = ire_create( 9144 (uchar_t *)&dst, /* dest address */ 9145 (uchar_t *)&ip_g_all_ones, /* mask */ 9146 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9147 NULL, /* gateway address */ 9148 NULL, 9149 &ipif->ipif_mtu, 9150 NULL, /* Fast Path header */ 9151 dst_ill->ill_rq, /* recv-from queue */ 9152 dst_ill->ill_wq, /* send-to queue */ 9153 IRE_CACHE, 9154 res_mp, 9155 src_ipif, 9156 NULL, 9157 (save_ire != NULL ? save_ire->ire_mask : 0), 9158 (fire != NULL) ? /* Parent handle */ 9159 fire->ire_phandle : 0, 9160 ihandle, /* Interface handle */ 9161 (fire != NULL) ? 9162 (fire->ire_flags & 9163 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9164 (save_ire == NULL ? &ire_uinfo_null : 9165 &save_ire->ire_uinfo), 9166 NULL, 9167 NULL); 9168 9169 freeb(res_mp); 9170 9171 if (ire == NULL) { 9172 if (save_ire != NULL) 9173 ire_refrele(save_ire); 9174 break; 9175 } 9176 9177 ire->ire_marks |= ire_marks; 9178 9179 /* 9180 * If IRE_MARK_NOADD is set then we need to convert 9181 * the max_fragp to a useable value now. This is 9182 * normally done in ire_add_v[46]. We also need to 9183 * associate the ire with an nce (normally would be 9184 * done in ip_wput_nondata()). 9185 * 9186 * Note that IRE_MARK_NOADD packets created here 9187 * do not have a non-null ire_mp pointer. The null 9188 * value of ire_bucket indicates that they were 9189 * never added. 9190 */ 9191 if (ire->ire_marks & IRE_MARK_NOADD) { 9192 uint_t max_frag; 9193 9194 max_frag = *ire->ire_max_fragp; 9195 ire->ire_max_fragp = NULL; 9196 ire->ire_max_frag = max_frag; 9197 9198 if ((ire->ire_nce = ndp_lookup_v4( 9199 ire_to_ill(ire), 9200 (ire->ire_gateway_addr != INADDR_ANY ? 9201 &ire->ire_gateway_addr : &ire->ire_addr), 9202 B_FALSE)) == NULL) { 9203 if (save_ire != NULL) 9204 ire_refrele(save_ire); 9205 break; 9206 } 9207 ASSERT(ire->ire_nce->nce_state == 9208 ND_REACHABLE); 9209 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9210 } 9211 9212 /* Prevent save_ire from getting deleted */ 9213 if (save_ire != NULL) { 9214 IRB_REFHOLD(save_ire->ire_bucket); 9215 /* Has it been removed already ? */ 9216 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9217 IRB_REFRELE(save_ire->ire_bucket); 9218 ire_refrele(save_ire); 9219 break; 9220 } 9221 } 9222 9223 ire_add_then_send(q, ire, first_mp); 9224 9225 /* Assert that save_ire is not deleted yet. */ 9226 if (save_ire != NULL) { 9227 ASSERT(save_ire->ire_ptpn != NULL); 9228 IRB_REFRELE(save_ire->ire_bucket); 9229 ire_refrele(save_ire); 9230 save_ire = NULL; 9231 } 9232 if (fire != NULL) { 9233 ire_refrele(fire); 9234 fire = NULL; 9235 } 9236 9237 /* 9238 * the resolution loop is re-entered if this 9239 * was requested through flags and if we 9240 * actually are in a multirouting case. 9241 */ 9242 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9243 boolean_t need_resolve = 9244 ire_multirt_need_resolve(ipha_dst, 9245 MBLK_GETLABEL(copy_mp)); 9246 if (!need_resolve) { 9247 MULTIRT_DEBUG_UNTAG(copy_mp); 9248 freemsg(copy_mp); 9249 copy_mp = NULL; 9250 } else { 9251 /* 9252 * ipif_lookup_group() calls 9253 * ire_lookup_multi() that uses 9254 * ire_ftable_lookup() to find 9255 * an IRE_INTERFACE for the group. 9256 * In the multirt case, 9257 * ire_lookup_multi() then invokes 9258 * ire_multirt_lookup() to find 9259 * the next resolvable ire. 9260 * As a result, we obtain an new 9261 * interface, derived from the 9262 * next ire. 9263 */ 9264 ipif_refrele(ipif); 9265 ipif = ipif_lookup_group(ipha_dst, 9266 zoneid); 9267 ip2dbg(("ip_newroute_ipif: " 9268 "multirt dst %08x, ipif %p\n", 9269 htonl(dst), (void *)ipif)); 9270 if (ipif != NULL) { 9271 mp = copy_mp; 9272 copy_mp = NULL; 9273 multirt_resolve_next = B_TRUE; 9274 continue; 9275 } else { 9276 freemsg(copy_mp); 9277 } 9278 } 9279 } 9280 if (ipif != NULL) 9281 ipif_refrele(ipif); 9282 ill_refrele(dst_ill); 9283 ipif_refrele(src_ipif); 9284 return; 9285 } 9286 case IRE_IF_RESOLVER: 9287 /* 9288 * We can't build an IRE_CACHE yet, but at least 9289 * we found a resolver that can help. 9290 */ 9291 res_mp = dst_ill->ill_resolver_mp; 9292 if (!OK_RESOLVER_MP(res_mp)) 9293 break; 9294 9295 /* 9296 * We obtain a partial IRE_CACHE which we will pass 9297 * along with the resolver query. When the response 9298 * comes back it will be there ready for us to add. 9299 * The new ire inherits the IRE_OFFSUBNET flags 9300 * and source address, if this was requested. 9301 * The ire_max_frag is atomically set under the 9302 * irebucket lock in ire_add_v[46]. Only in the 9303 * case of IRE_MARK_NOADD, we set it here itself. 9304 */ 9305 ire = ire_create_mp( 9306 (uchar_t *)&dst, /* dest address */ 9307 (uchar_t *)&ip_g_all_ones, /* mask */ 9308 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9309 NULL, /* gateway address */ 9310 NULL, /* no in_src_addr */ 9311 (ire_marks & IRE_MARK_NOADD) ? 9312 ipif->ipif_mtu : 0, /* max_frag */ 9313 NULL, /* Fast path header */ 9314 dst_ill->ill_rq, /* recv-from queue */ 9315 dst_ill->ill_wq, /* send-to queue */ 9316 IRE_CACHE, 9317 NULL, /* let ire_nce_init figure res_mp out */ 9318 src_ipif, 9319 NULL, 9320 (save_ire != NULL ? save_ire->ire_mask : 0), 9321 (fire != NULL) ? /* Parent handle */ 9322 fire->ire_phandle : 0, 9323 ihandle, /* Interface handle */ 9324 (fire != NULL) ? /* flags if any */ 9325 (fire->ire_flags & 9326 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9327 (save_ire == NULL ? &ire_uinfo_null : 9328 &save_ire->ire_uinfo), 9329 NULL, 9330 NULL); 9331 9332 if (save_ire != NULL) { 9333 ire_refrele(save_ire); 9334 save_ire = NULL; 9335 } 9336 if (ire == NULL) 9337 break; 9338 9339 ire->ire_marks |= ire_marks; 9340 /* 9341 * Construct message chain for the resolver of the 9342 * form: 9343 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9344 * 9345 * NOTE : ire will be added later when the response 9346 * comes back from ARP. If the response does not 9347 * come back, ARP frees the packet. For this reason, 9348 * we can't REFHOLD the bucket of save_ire to prevent 9349 * deletions. We may not be able to REFRELE the 9350 * bucket if the response never comes back. 9351 * Thus, before adding the ire, ire_add_v4 will make 9352 * sure that the interface route does not get deleted. 9353 * This is the only case unlike ip_newroute_v6, 9354 * ip_newroute_ipif_v6 where we can always prevent 9355 * deletions because ire_add_then_send is called after 9356 * creating the IRE. 9357 * If IRE_MARK_NOADD is set, then ire_add_then_send 9358 * does not add this IRE into the IRE CACHE. 9359 */ 9360 ASSERT(ire->ire_mp != NULL); 9361 ire->ire_mp->b_cont = first_mp; 9362 /* Have saved_mp handy, for cleanup if canput fails */ 9363 saved_mp = mp; 9364 mp = copyb(res_mp); 9365 if (mp == NULL) { 9366 /* Prepare for cleanup */ 9367 mp = saved_mp; /* pkt */ 9368 ire_delete(ire); /* ire_mp */ 9369 ire = NULL; 9370 if (copy_mp != NULL) { 9371 MULTIRT_DEBUG_UNTAG(copy_mp); 9372 freemsg(copy_mp); 9373 copy_mp = NULL; 9374 } 9375 break; 9376 } 9377 linkb(mp, ire->ire_mp); 9378 9379 /* 9380 * Fill in the source and dest addrs for the resolver. 9381 * NOTE: this depends on memory layouts imposed by 9382 * ill_init(). 9383 */ 9384 areq = (areq_t *)mp->b_rptr; 9385 addrp = (ipaddr_t *)((char *)areq + 9386 areq->areq_sender_addr_offset); 9387 *addrp = ire->ire_src_addr; 9388 addrp = (ipaddr_t *)((char *)areq + 9389 areq->areq_target_addr_offset); 9390 *addrp = dst; 9391 /* Up to the resolver. */ 9392 if (canputnext(dst_ill->ill_rq) && 9393 !(dst_ill->ill_arp_closing)) { 9394 putnext(dst_ill->ill_rq, mp); 9395 /* 9396 * The response will come back in ip_wput 9397 * with db_type IRE_DB_TYPE. 9398 */ 9399 } else { 9400 mp->b_cont = NULL; 9401 freeb(mp); /* areq */ 9402 ire_delete(ire); /* ire_mp */ 9403 saved_mp->b_next = NULL; 9404 saved_mp->b_prev = NULL; 9405 freemsg(first_mp); /* pkt */ 9406 ip2dbg(("ip_newroute_ipif: dropped\n")); 9407 } 9408 9409 if (fire != NULL) { 9410 ire_refrele(fire); 9411 fire = NULL; 9412 } 9413 9414 9415 /* 9416 * The resolution loop is re-entered if this was 9417 * requested through flags and we actually are 9418 * in a multirouting case. 9419 */ 9420 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9421 boolean_t need_resolve = 9422 ire_multirt_need_resolve(ipha_dst, 9423 MBLK_GETLABEL(copy_mp)); 9424 if (!need_resolve) { 9425 MULTIRT_DEBUG_UNTAG(copy_mp); 9426 freemsg(copy_mp); 9427 copy_mp = NULL; 9428 } else { 9429 /* 9430 * ipif_lookup_group() calls 9431 * ire_lookup_multi() that uses 9432 * ire_ftable_lookup() to find 9433 * an IRE_INTERFACE for the group. 9434 * In the multirt case, 9435 * ire_lookup_multi() then invokes 9436 * ire_multirt_lookup() to find 9437 * the next resolvable ire. 9438 * As a result, we obtain an new 9439 * interface, derived from the 9440 * next ire. 9441 */ 9442 ipif_refrele(ipif); 9443 ipif = ipif_lookup_group(ipha_dst, 9444 zoneid); 9445 if (ipif != NULL) { 9446 mp = copy_mp; 9447 copy_mp = NULL; 9448 multirt_resolve_next = B_TRUE; 9449 continue; 9450 } else { 9451 freemsg(copy_mp); 9452 } 9453 } 9454 } 9455 if (ipif != NULL) 9456 ipif_refrele(ipif); 9457 ill_refrele(dst_ill); 9458 ipif_refrele(src_ipif); 9459 return; 9460 default: 9461 break; 9462 } 9463 } while (multirt_resolve_next); 9464 9465 err_ret: 9466 ip2dbg(("ip_newroute_ipif: dropped\n")); 9467 if (fire != NULL) 9468 ire_refrele(fire); 9469 ipif_refrele(ipif); 9470 /* Did this packet originate externally? */ 9471 if (dst_ill != NULL) 9472 ill_refrele(dst_ill); 9473 if (src_ipif != NULL) 9474 ipif_refrele(src_ipif); 9475 if (mp->b_prev || mp->b_next) { 9476 mp->b_next = NULL; 9477 mp->b_prev = NULL; 9478 } else { 9479 /* 9480 * Since ip_wput() isn't close to finished, we fill 9481 * in enough of the header for credible error reporting. 9482 */ 9483 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9484 /* Failed */ 9485 freemsg(first_mp); 9486 if (ire != NULL) 9487 ire_refrele(ire); 9488 return; 9489 } 9490 } 9491 /* 9492 * At this point we will have ire only if RTF_BLACKHOLE 9493 * or RTF_REJECT flags are set on the IRE. It will not 9494 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9495 */ 9496 if (ire != NULL) { 9497 if (ire->ire_flags & RTF_BLACKHOLE) { 9498 ire_refrele(ire); 9499 freemsg(first_mp); 9500 return; 9501 } 9502 ire_refrele(ire); 9503 } 9504 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9505 } 9506 9507 /* Name/Value Table Lookup Routine */ 9508 char * 9509 ip_nv_lookup(nv_t *nv, int value) 9510 { 9511 if (!nv) 9512 return (NULL); 9513 for (; nv->nv_name; nv++) { 9514 if (nv->nv_value == value) 9515 return (nv->nv_name); 9516 } 9517 return ("unknown"); 9518 } 9519 9520 /* 9521 * one day it can be patched to 1 from /etc/system for machines that have few 9522 * fast network interfaces feeding multiple cpus. 9523 */ 9524 int ill_stream_putlocks = 0; 9525 9526 /* 9527 * This is a module open, i.e. this is a control stream for access 9528 * to a DLPI device. We allocate an ill_t as the instance data in 9529 * this case. 9530 */ 9531 int 9532 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9533 { 9534 uint32_t mem_cnt; 9535 uint32_t cpu_cnt; 9536 uint32_t min_cnt; 9537 pgcnt_t mem_avail; 9538 ill_t *ill; 9539 int err; 9540 9541 /* 9542 * Prevent unprivileged processes from pushing IP so that 9543 * they can't send raw IP. 9544 */ 9545 if (secpolicy_net_rawaccess(credp) != 0) 9546 return (EPERM); 9547 9548 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9549 q->q_ptr = WR(q)->q_ptr = ill; 9550 9551 /* 9552 * ill_init initializes the ill fields and then sends down 9553 * down a DL_INFO_REQ after calling qprocson. 9554 */ 9555 err = ill_init(q, ill); 9556 if (err != 0) { 9557 mi_free(ill); 9558 q->q_ptr = NULL; 9559 WR(q)->q_ptr = NULL; 9560 return (err); 9561 } 9562 9563 /* ill_init initializes the ipsq marking this thread as writer */ 9564 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9565 /* Wait for the DL_INFO_ACK */ 9566 mutex_enter(&ill->ill_lock); 9567 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9568 /* 9569 * Return value of 0 indicates a pending signal. 9570 */ 9571 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9572 if (err == 0) { 9573 mutex_exit(&ill->ill_lock); 9574 (void) ip_close(q, 0); 9575 return (EINTR); 9576 } 9577 } 9578 mutex_exit(&ill->ill_lock); 9579 9580 /* 9581 * ip_rput_other could have set an error in ill_error on 9582 * receipt of M_ERROR. 9583 */ 9584 9585 err = ill->ill_error; 9586 if (err != 0) { 9587 (void) ip_close(q, 0); 9588 return (err); 9589 } 9590 9591 /* 9592 * ip_ire_max_bucket_cnt is sized below based on the memory 9593 * size and the cpu speed of the machine. This is upper 9594 * bounded by the compile time value of ip_ire_max_bucket_cnt 9595 * and is lower bounded by the compile time value of 9596 * ip_ire_min_bucket_cnt. Similar logic applies to 9597 * ip6_ire_max_bucket_cnt. 9598 */ 9599 mem_avail = kmem_avail(); 9600 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9601 ip_cache_table_size / sizeof (ire_t); 9602 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9603 9604 min_cnt = MIN(cpu_cnt, mem_cnt); 9605 if (min_cnt < ip_ire_min_bucket_cnt) 9606 min_cnt = ip_ire_min_bucket_cnt; 9607 if (ip_ire_max_bucket_cnt > min_cnt) { 9608 ip_ire_max_bucket_cnt = min_cnt; 9609 } 9610 9611 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9612 ip6_cache_table_size / sizeof (ire_t); 9613 min_cnt = MIN(cpu_cnt, mem_cnt); 9614 if (min_cnt < ip6_ire_min_bucket_cnt) 9615 min_cnt = ip6_ire_min_bucket_cnt; 9616 if (ip6_ire_max_bucket_cnt > min_cnt) { 9617 ip6_ire_max_bucket_cnt = min_cnt; 9618 } 9619 9620 ill->ill_credp = credp; 9621 crhold(credp); 9622 9623 mutex_enter(&ip_mi_lock); 9624 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9625 mutex_exit(&ip_mi_lock); 9626 if (err) { 9627 (void) ip_close(q, 0); 9628 return (err); 9629 } 9630 return (0); 9631 } 9632 9633 /* IP open routine. */ 9634 int 9635 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9636 { 9637 conn_t *connp; 9638 major_t maj; 9639 9640 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9641 9642 /* Allow reopen. */ 9643 if (q->q_ptr != NULL) 9644 return (0); 9645 9646 if (sflag & MODOPEN) { 9647 /* This is a module open */ 9648 return (ip_modopen(q, devp, flag, sflag, credp)); 9649 } 9650 9651 /* 9652 * We are opening as a device. This is an IP client stream, and we 9653 * allocate an conn_t as the instance data. 9654 */ 9655 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9656 connp->conn_upq = q; 9657 q->q_ptr = WR(q)->q_ptr = connp; 9658 9659 if (flag & SO_SOCKSTR) 9660 connp->conn_flags |= IPCL_SOCKET; 9661 9662 /* Minor tells us which /dev entry was opened */ 9663 if (geteminor(*devp) == IPV6_MINOR) { 9664 connp->conn_flags |= IPCL_ISV6; 9665 connp->conn_af_isv6 = B_TRUE; 9666 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9667 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9668 } else { 9669 connp->conn_af_isv6 = B_FALSE; 9670 connp->conn_pkt_isv6 = B_FALSE; 9671 } 9672 9673 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9674 q->q_ptr = WR(q)->q_ptr = NULL; 9675 CONN_DEC_REF(connp); 9676 return (EBUSY); 9677 } 9678 9679 maj = getemajor(*devp); 9680 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9681 9682 /* 9683 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9684 */ 9685 connp->conn_cred = credp; 9686 crhold(connp->conn_cred); 9687 9688 /* 9689 * If the caller has the process-wide flag set, then default to MAC 9690 * exempt mode. This allows read-down to unlabeled hosts. 9691 */ 9692 if (getpflags(NET_MAC_AWARE, credp) != 0) 9693 connp->conn_mac_exempt = B_TRUE; 9694 9695 connp->conn_zoneid = getzoneid(); 9696 9697 /* 9698 * This should only happen for ndd, netstat, raw socket or other SCTP 9699 * administrative ops. In these cases, we just need a normal conn_t 9700 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9701 * an error will be returned. 9702 */ 9703 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9704 connp->conn_rq = q; 9705 connp->conn_wq = WR(q); 9706 } else { 9707 connp->conn_ulp = IPPROTO_SCTP; 9708 connp->conn_rq = connp->conn_wq = NULL; 9709 } 9710 /* Non-zero default values */ 9711 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9712 9713 /* 9714 * Make the conn globally visible to walkers 9715 */ 9716 mutex_enter(&connp->conn_lock); 9717 connp->conn_state_flags &= ~CONN_INCIPIENT; 9718 mutex_exit(&connp->conn_lock); 9719 ASSERT(connp->conn_ref == 1); 9720 9721 qprocson(q); 9722 9723 return (0); 9724 } 9725 9726 /* 9727 * Change q_qinfo based on the value of isv6. 9728 * This can not called on an ill queue. 9729 * Note that there is no race since either q_qinfo works for conn queues - it 9730 * is just an optimization to enter the best wput routine directly. 9731 */ 9732 void 9733 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9734 { 9735 ASSERT(q->q_flag & QREADR); 9736 ASSERT(WR(q)->q_next == NULL); 9737 ASSERT(q->q_ptr != NULL); 9738 9739 if (minor == IPV6_MINOR) { 9740 if (bump_mib) 9741 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9742 q->q_qinfo = &rinit_ipv6; 9743 WR(q)->q_qinfo = &winit_ipv6; 9744 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9745 } else { 9746 if (bump_mib) 9747 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9748 q->q_qinfo = &iprinit; 9749 WR(q)->q_qinfo = &ipwinit; 9750 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9751 } 9752 9753 } 9754 9755 /* 9756 * See if IPsec needs loading because of the options in mp. 9757 */ 9758 static boolean_t 9759 ipsec_opt_present(mblk_t *mp) 9760 { 9761 uint8_t *optcp, *next_optcp, *opt_endcp; 9762 struct opthdr *opt; 9763 struct T_opthdr *topt; 9764 int opthdr_len; 9765 t_uscalar_t optname, optlevel; 9766 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9767 ipsec_req_t *ipsr; 9768 9769 /* 9770 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9771 * return TRUE. 9772 */ 9773 9774 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9775 opt_endcp = optcp + tor->OPT_length; 9776 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9777 opthdr_len = sizeof (struct T_opthdr); 9778 } else { /* O_OPTMGMT_REQ */ 9779 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9780 opthdr_len = sizeof (struct opthdr); 9781 } 9782 for (; optcp < opt_endcp; optcp = next_optcp) { 9783 if (optcp + opthdr_len > opt_endcp) 9784 return (B_FALSE); /* Not enough option header. */ 9785 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9786 topt = (struct T_opthdr *)optcp; 9787 optlevel = topt->level; 9788 optname = topt->name; 9789 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9790 } else { 9791 opt = (struct opthdr *)optcp; 9792 optlevel = opt->level; 9793 optname = opt->name; 9794 next_optcp = optcp + opthdr_len + 9795 _TPI_ALIGN_OPT(opt->len); 9796 } 9797 if ((next_optcp < optcp) || /* wraparound pointer space */ 9798 ((next_optcp >= opt_endcp) && /* last option bad len */ 9799 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9800 return (B_FALSE); /* bad option buffer */ 9801 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9802 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9803 /* 9804 * Check to see if it's an all-bypass or all-zeroes 9805 * IPsec request. Don't bother loading IPsec if 9806 * the socket doesn't want to use it. (A good example 9807 * is a bypass request.) 9808 * 9809 * Basically, if any of the non-NEVER bits are set, 9810 * load IPsec. 9811 */ 9812 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9813 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9814 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9815 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9816 != 0) 9817 return (B_TRUE); 9818 } 9819 } 9820 return (B_FALSE); 9821 } 9822 9823 /* 9824 * If conn is is waiting for ipsec to finish loading, kick it. 9825 */ 9826 /* ARGSUSED */ 9827 static void 9828 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9829 { 9830 t_scalar_t optreq_prim; 9831 mblk_t *mp; 9832 cred_t *cr; 9833 int err = 0; 9834 9835 /* 9836 * This function is called, after ipsec loading is complete. 9837 * Since IP checks exclusively and atomically (i.e it prevents 9838 * ipsec load from completing until ip_optcom_req completes) 9839 * whether ipsec load is complete, there cannot be a race with IP 9840 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9841 */ 9842 mutex_enter(&connp->conn_lock); 9843 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9844 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9845 mp = connp->conn_ipsec_opt_mp; 9846 connp->conn_ipsec_opt_mp = NULL; 9847 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9848 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9849 mutex_exit(&connp->conn_lock); 9850 9851 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9852 9853 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9854 if (optreq_prim == T_OPTMGMT_REQ) { 9855 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9856 &ip_opt_obj); 9857 } else { 9858 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9859 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9860 &ip_opt_obj); 9861 } 9862 if (err != EINPROGRESS) 9863 CONN_OPER_PENDING_DONE(connp); 9864 return; 9865 } 9866 mutex_exit(&connp->conn_lock); 9867 } 9868 9869 /* 9870 * Called from the ipsec_loader thread, outside any perimeter, to tell 9871 * ip qenable any of the queues waiting for the ipsec loader to 9872 * complete. 9873 * 9874 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9875 * are done with this lock held, so it's guaranteed that none of the 9876 * links will change along the way. 9877 */ 9878 void 9879 ip_ipsec_load_complete() 9880 { 9881 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9882 } 9883 9884 /* 9885 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9886 * determines the grp on which it has to become exclusive, queues the mp 9887 * and sq draining restarts the optmgmt 9888 */ 9889 static boolean_t 9890 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9891 { 9892 conn_t *connp; 9893 9894 /* 9895 * Take IPsec requests and treat them special. 9896 */ 9897 if (ipsec_opt_present(mp)) { 9898 /* First check if IPsec is loaded. */ 9899 mutex_enter(&ipsec_loader_lock); 9900 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9901 mutex_exit(&ipsec_loader_lock); 9902 return (B_FALSE); 9903 } 9904 connp = Q_TO_CONN(q); 9905 mutex_enter(&connp->conn_lock); 9906 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9907 9908 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9909 connp->conn_ipsec_opt_mp = mp; 9910 mutex_exit(&connp->conn_lock); 9911 mutex_exit(&ipsec_loader_lock); 9912 9913 ipsec_loader_loadnow(); 9914 return (B_TRUE); 9915 } 9916 return (B_FALSE); 9917 } 9918 9919 /* 9920 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9921 * all of them are copied to the conn_t. If the req is "zero", the policy is 9922 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9923 * fields. 9924 * We keep only the latest setting of the policy and thus policy setting 9925 * is not incremental/cumulative. 9926 * 9927 * Requests to set policies with multiple alternative actions will 9928 * go through a different API. 9929 */ 9930 int 9931 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9932 { 9933 uint_t ah_req = 0; 9934 uint_t esp_req = 0; 9935 uint_t se_req = 0; 9936 ipsec_selkey_t sel; 9937 ipsec_act_t *actp = NULL; 9938 uint_t nact; 9939 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9940 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9941 ipsec_policy_root_t *pr; 9942 ipsec_policy_head_t *ph; 9943 int fam; 9944 boolean_t is_pol_reset; 9945 int error = 0; 9946 9947 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9948 9949 /* 9950 * The IP_SEC_OPT option does not allow variable length parameters, 9951 * hence a request cannot be NULL. 9952 */ 9953 if (req == NULL) 9954 return (EINVAL); 9955 9956 ah_req = req->ipsr_ah_req; 9957 esp_req = req->ipsr_esp_req; 9958 se_req = req->ipsr_self_encap_req; 9959 9960 /* 9961 * Are we dealing with a request to reset the policy (i.e. 9962 * zero requests). 9963 */ 9964 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9965 (esp_req & REQ_MASK) == 0 && 9966 (se_req & REQ_MASK) == 0); 9967 9968 if (!is_pol_reset) { 9969 /* 9970 * If we couldn't load IPsec, fail with "protocol 9971 * not supported". 9972 * IPsec may not have been loaded for a request with zero 9973 * policies, so we don't fail in this case. 9974 */ 9975 mutex_enter(&ipsec_loader_lock); 9976 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9977 mutex_exit(&ipsec_loader_lock); 9978 return (EPROTONOSUPPORT); 9979 } 9980 mutex_exit(&ipsec_loader_lock); 9981 9982 /* 9983 * Test for valid requests. Invalid algorithms 9984 * need to be tested by IPSEC code because new 9985 * algorithms can be added dynamically. 9986 */ 9987 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9988 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9989 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9990 return (EINVAL); 9991 } 9992 9993 /* 9994 * Only privileged users can issue these 9995 * requests. 9996 */ 9997 if (((ah_req & IPSEC_PREF_NEVER) || 9998 (esp_req & IPSEC_PREF_NEVER) || 9999 (se_req & IPSEC_PREF_NEVER)) && 10000 secpolicy_net_config(cr, B_FALSE) != 0) { 10001 return (EPERM); 10002 } 10003 10004 /* 10005 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10006 * are mutually exclusive. 10007 */ 10008 if (((ah_req & REQ_MASK) == REQ_MASK) || 10009 ((esp_req & REQ_MASK) == REQ_MASK) || 10010 ((se_req & REQ_MASK) == REQ_MASK)) { 10011 /* Both of them are set */ 10012 return (EINVAL); 10013 } 10014 } 10015 10016 mutex_enter(&connp->conn_lock); 10017 10018 /* 10019 * If we have already cached policies in ip_bind_connected*(), don't 10020 * let them change now. We cache policies for connections 10021 * whose src,dst [addr, port] is known. 10022 */ 10023 if (connp->conn_policy_cached) { 10024 mutex_exit(&connp->conn_lock); 10025 return (EINVAL); 10026 } 10027 10028 /* 10029 * We have a zero policies, reset the connection policy if already 10030 * set. This will cause the connection to inherit the 10031 * global policy, if any. 10032 */ 10033 if (is_pol_reset) { 10034 if (connp->conn_policy != NULL) { 10035 IPPH_REFRELE(connp->conn_policy); 10036 connp->conn_policy = NULL; 10037 } 10038 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10039 connp->conn_in_enforce_policy = B_FALSE; 10040 connp->conn_out_enforce_policy = B_FALSE; 10041 mutex_exit(&connp->conn_lock); 10042 return (0); 10043 } 10044 10045 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 10046 if (ph == NULL) 10047 goto enomem; 10048 10049 ipsec_actvec_from_req(req, &actp, &nact); 10050 if (actp == NULL) 10051 goto enomem; 10052 10053 /* 10054 * Always allocate IPv4 policy entries, since they can also 10055 * apply to ipv6 sockets being used in ipv4-compat mode. 10056 */ 10057 bzero(&sel, sizeof (sel)); 10058 sel.ipsl_valid = IPSL_IPV4; 10059 10060 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10061 if (pin4 == NULL) 10062 goto enomem; 10063 10064 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10065 if (pout4 == NULL) 10066 goto enomem; 10067 10068 if (connp->conn_pkt_isv6) { 10069 /* 10070 * We're looking at a v6 socket, also allocate the 10071 * v6-specific entries... 10072 */ 10073 sel.ipsl_valid = IPSL_IPV6; 10074 pin6 = ipsec_policy_create(&sel, actp, nact, 10075 IPSEC_PRIO_SOCKET, NULL); 10076 if (pin6 == NULL) 10077 goto enomem; 10078 10079 pout6 = ipsec_policy_create(&sel, actp, nact, 10080 IPSEC_PRIO_SOCKET, NULL); 10081 if (pout6 == NULL) 10082 goto enomem; 10083 10084 /* 10085 * .. and file them away in the right place. 10086 */ 10087 fam = IPSEC_AF_V6; 10088 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10089 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10090 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10091 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10092 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10093 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10094 } 10095 10096 ipsec_actvec_free(actp, nact); 10097 10098 /* 10099 * File the v4 policies. 10100 */ 10101 fam = IPSEC_AF_V4; 10102 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10103 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10104 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10105 10106 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10107 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10108 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10109 10110 /* 10111 * If the requests need security, set enforce_policy. 10112 * If the requests are IPSEC_PREF_NEVER, one should 10113 * still set conn_out_enforce_policy so that an ipsec_out 10114 * gets attached in ip_wput. This is needed so that 10115 * for connections that we don't cache policy in ip_bind, 10116 * if global policy matches in ip_wput_attach_policy, we 10117 * don't wrongly inherit global policy. Similarly, we need 10118 * to set conn_in_enforce_policy also so that we don't verify 10119 * policy wrongly. 10120 */ 10121 if ((ah_req & REQ_MASK) != 0 || 10122 (esp_req & REQ_MASK) != 0 || 10123 (se_req & REQ_MASK) != 0) { 10124 connp->conn_in_enforce_policy = B_TRUE; 10125 connp->conn_out_enforce_policy = B_TRUE; 10126 connp->conn_flags |= IPCL_CHECK_POLICY; 10127 } 10128 10129 mutex_exit(&connp->conn_lock); 10130 return (error); 10131 #undef REQ_MASK 10132 10133 /* 10134 * Common memory-allocation-failure exit path. 10135 */ 10136 enomem: 10137 mutex_exit(&connp->conn_lock); 10138 if (actp != NULL) 10139 ipsec_actvec_free(actp, nact); 10140 if (pin4 != NULL) 10141 IPPOL_REFRELE(pin4); 10142 if (pout4 != NULL) 10143 IPPOL_REFRELE(pout4); 10144 if (pin6 != NULL) 10145 IPPOL_REFRELE(pin6); 10146 if (pout6 != NULL) 10147 IPPOL_REFRELE(pout6); 10148 return (ENOMEM); 10149 } 10150 10151 /* 10152 * Only for options that pass in an IP addr. Currently only V4 options 10153 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10154 * So this function assumes level is IPPROTO_IP 10155 */ 10156 int 10157 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10158 mblk_t *first_mp) 10159 { 10160 ipif_t *ipif = NULL; 10161 int error; 10162 ill_t *ill; 10163 int zoneid; 10164 10165 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10166 10167 if (addr != INADDR_ANY || checkonly) { 10168 ASSERT(connp != NULL); 10169 zoneid = IPCL_ZONEID(connp); 10170 if (option == IP_NEXTHOP) { 10171 ipif = ipif_lookup_onlink_addr(addr, 10172 connp->conn_zoneid); 10173 } else { 10174 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10175 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10176 &error); 10177 } 10178 if (ipif == NULL) { 10179 if (error == EINPROGRESS) 10180 return (error); 10181 else if ((option == IP_MULTICAST_IF) || 10182 (option == IP_NEXTHOP)) 10183 return (EHOSTUNREACH); 10184 else 10185 return (EINVAL); 10186 } else if (checkonly) { 10187 if (option == IP_MULTICAST_IF) { 10188 ill = ipif->ipif_ill; 10189 /* not supported by the virtual network iface */ 10190 if (IS_VNI(ill)) { 10191 ipif_refrele(ipif); 10192 return (EINVAL); 10193 } 10194 } 10195 ipif_refrele(ipif); 10196 return (0); 10197 } 10198 ill = ipif->ipif_ill; 10199 mutex_enter(&connp->conn_lock); 10200 mutex_enter(&ill->ill_lock); 10201 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10202 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10203 mutex_exit(&ill->ill_lock); 10204 mutex_exit(&connp->conn_lock); 10205 ipif_refrele(ipif); 10206 return (option == IP_MULTICAST_IF ? 10207 EHOSTUNREACH : EINVAL); 10208 } 10209 } else { 10210 mutex_enter(&connp->conn_lock); 10211 } 10212 10213 /* None of the options below are supported on the VNI */ 10214 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10215 mutex_exit(&ill->ill_lock); 10216 mutex_exit(&connp->conn_lock); 10217 ipif_refrele(ipif); 10218 return (EINVAL); 10219 } 10220 10221 switch (option) { 10222 case IP_DONTFAILOVER_IF: 10223 /* 10224 * This option is used by in.mpathd to ensure 10225 * that IPMP probe packets only go out on the 10226 * test interfaces. in.mpathd sets this option 10227 * on the non-failover interfaces. 10228 * For backward compatibility, this option 10229 * implicitly sets IP_MULTICAST_IF, as used 10230 * be done in bind(), so that ip_wput gets 10231 * this ipif to send mcast packets. 10232 */ 10233 if (ipif != NULL) { 10234 ASSERT(addr != INADDR_ANY); 10235 connp->conn_nofailover_ill = ipif->ipif_ill; 10236 connp->conn_multicast_ipif = ipif; 10237 } else { 10238 ASSERT(addr == INADDR_ANY); 10239 connp->conn_nofailover_ill = NULL; 10240 connp->conn_multicast_ipif = NULL; 10241 } 10242 break; 10243 10244 case IP_MULTICAST_IF: 10245 connp->conn_multicast_ipif = ipif; 10246 break; 10247 case IP_NEXTHOP: 10248 connp->conn_nexthop_v4 = addr; 10249 connp->conn_nexthop_set = B_TRUE; 10250 break; 10251 } 10252 10253 if (ipif != NULL) { 10254 mutex_exit(&ill->ill_lock); 10255 mutex_exit(&connp->conn_lock); 10256 ipif_refrele(ipif); 10257 return (0); 10258 } 10259 mutex_exit(&connp->conn_lock); 10260 /* We succeded in cleared the option */ 10261 return (0); 10262 } 10263 10264 /* 10265 * For options that pass in an ifindex specifying the ill. V6 options always 10266 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10267 */ 10268 int 10269 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10270 int level, int option, mblk_t *first_mp) 10271 { 10272 ill_t *ill = NULL; 10273 int error = 0; 10274 10275 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10276 if (ifindex != 0) { 10277 ASSERT(connp != NULL); 10278 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10279 first_mp, ip_restart_optmgmt, &error); 10280 if (ill != NULL) { 10281 if (checkonly) { 10282 /* not supported by the virtual network iface */ 10283 if (IS_VNI(ill)) { 10284 ill_refrele(ill); 10285 return (EINVAL); 10286 } 10287 ill_refrele(ill); 10288 return (0); 10289 } 10290 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10291 0, NULL)) { 10292 ill_refrele(ill); 10293 ill = NULL; 10294 mutex_enter(&connp->conn_lock); 10295 goto setit; 10296 } 10297 mutex_enter(&connp->conn_lock); 10298 mutex_enter(&ill->ill_lock); 10299 if (ill->ill_state_flags & ILL_CONDEMNED) { 10300 mutex_exit(&ill->ill_lock); 10301 mutex_exit(&connp->conn_lock); 10302 ill_refrele(ill); 10303 ill = NULL; 10304 mutex_enter(&connp->conn_lock); 10305 } 10306 goto setit; 10307 } else if (error == EINPROGRESS) { 10308 return (error); 10309 } else { 10310 error = 0; 10311 } 10312 } 10313 mutex_enter(&connp->conn_lock); 10314 setit: 10315 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10316 10317 /* 10318 * The options below assume that the ILL (if any) transmits and/or 10319 * receives traffic. Neither of which is true for the virtual network 10320 * interface, so fail setting these on a VNI. 10321 */ 10322 if (IS_VNI(ill)) { 10323 ASSERT(ill != NULL); 10324 mutex_exit(&ill->ill_lock); 10325 mutex_exit(&connp->conn_lock); 10326 ill_refrele(ill); 10327 return (EINVAL); 10328 } 10329 10330 if (level == IPPROTO_IP) { 10331 switch (option) { 10332 case IP_BOUND_IF: 10333 connp->conn_incoming_ill = ill; 10334 connp->conn_outgoing_ill = ill; 10335 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10336 0 : ifindex; 10337 break; 10338 10339 case IP_XMIT_IF: 10340 /* 10341 * Similar to IP_BOUND_IF, but this only 10342 * determines the outgoing interface for 10343 * unicast packets. Also no IRE_CACHE entry 10344 * is added for the destination of the 10345 * outgoing packets. This feature is needed 10346 * for mobile IP. 10347 */ 10348 connp->conn_xmit_if_ill = ill; 10349 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10350 0 : ifindex; 10351 break; 10352 10353 case IP_MULTICAST_IF: 10354 /* 10355 * This option is an internal special. The socket 10356 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10357 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10358 * specifies an ifindex and we try first on V6 ill's. 10359 * If we don't find one, we they try using on v4 ill's 10360 * intenally and we come here. 10361 */ 10362 if (!checkonly && ill != NULL) { 10363 ipif_t *ipif; 10364 ipif = ill->ill_ipif; 10365 10366 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10367 mutex_exit(&ill->ill_lock); 10368 mutex_exit(&connp->conn_lock); 10369 ill_refrele(ill); 10370 ill = NULL; 10371 mutex_enter(&connp->conn_lock); 10372 } else { 10373 connp->conn_multicast_ipif = ipif; 10374 } 10375 } 10376 break; 10377 } 10378 } else { 10379 switch (option) { 10380 case IPV6_BOUND_IF: 10381 connp->conn_incoming_ill = ill; 10382 connp->conn_outgoing_ill = ill; 10383 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10384 0 : ifindex; 10385 break; 10386 10387 case IPV6_BOUND_PIF: 10388 /* 10389 * Limit all transmit to this ill. 10390 * Unlike IPV6_BOUND_IF, using this option 10391 * prevents load spreading and failover from 10392 * happening when the interface is part of the 10393 * group. That's why we don't need to remember 10394 * the ifindex in orig_bound_ifindex as in 10395 * IPV6_BOUND_IF. 10396 */ 10397 connp->conn_outgoing_pill = ill; 10398 break; 10399 10400 case IPV6_DONTFAILOVER_IF: 10401 /* 10402 * This option is used by in.mpathd to ensure 10403 * that IPMP probe packets only go out on the 10404 * test interfaces. in.mpathd sets this option 10405 * on the non-failover interfaces. 10406 */ 10407 connp->conn_nofailover_ill = ill; 10408 /* 10409 * For backward compatibility, this option 10410 * implicitly sets ip_multicast_ill as used in 10411 * IP_MULTICAST_IF so that ip_wput gets 10412 * this ipif to send mcast packets. 10413 */ 10414 connp->conn_multicast_ill = ill; 10415 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10416 0 : ifindex; 10417 break; 10418 10419 case IPV6_MULTICAST_IF: 10420 /* 10421 * Set conn_multicast_ill to be the IPv6 ill. 10422 * Set conn_multicast_ipif to be an IPv4 ipif 10423 * for ifindex to make IPv4 mapped addresses 10424 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10425 * Even if no IPv6 ill exists for the ifindex 10426 * we need to check for an IPv4 ifindex in order 10427 * for this to work with mapped addresses. In that 10428 * case only set conn_multicast_ipif. 10429 */ 10430 if (!checkonly) { 10431 if (ifindex == 0) { 10432 connp->conn_multicast_ill = NULL; 10433 connp->conn_orig_multicast_ifindex = 0; 10434 connp->conn_multicast_ipif = NULL; 10435 } else if (ill != NULL) { 10436 connp->conn_multicast_ill = ill; 10437 connp->conn_orig_multicast_ifindex = 10438 ifindex; 10439 } 10440 } 10441 break; 10442 } 10443 } 10444 10445 if (ill != NULL) { 10446 mutex_exit(&ill->ill_lock); 10447 mutex_exit(&connp->conn_lock); 10448 ill_refrele(ill); 10449 return (0); 10450 } 10451 mutex_exit(&connp->conn_lock); 10452 /* 10453 * We succeeded in clearing the option (ifindex == 0) or failed to 10454 * locate the ill and could not set the option (ifindex != 0) 10455 */ 10456 return (ifindex == 0 ? 0 : EINVAL); 10457 } 10458 10459 /* This routine sets socket options. */ 10460 /* ARGSUSED */ 10461 int 10462 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10463 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10464 void *dummy, cred_t *cr, mblk_t *first_mp) 10465 { 10466 int *i1 = (int *)invalp; 10467 conn_t *connp = Q_TO_CONN(q); 10468 int error = 0; 10469 boolean_t checkonly; 10470 ire_t *ire; 10471 boolean_t found; 10472 10473 switch (optset_context) { 10474 10475 case SETFN_OPTCOM_CHECKONLY: 10476 checkonly = B_TRUE; 10477 /* 10478 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10479 * inlen != 0 implies value supplied and 10480 * we have to "pretend" to set it. 10481 * inlen == 0 implies that there is no 10482 * value part in T_CHECK request and just validation 10483 * done elsewhere should be enough, we just return here. 10484 */ 10485 if (inlen == 0) { 10486 *outlenp = 0; 10487 return (0); 10488 } 10489 break; 10490 case SETFN_OPTCOM_NEGOTIATE: 10491 case SETFN_UD_NEGOTIATE: 10492 case SETFN_CONN_NEGOTIATE: 10493 checkonly = B_FALSE; 10494 break; 10495 default: 10496 /* 10497 * We should never get here 10498 */ 10499 *outlenp = 0; 10500 return (EINVAL); 10501 } 10502 10503 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10504 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10505 10506 /* 10507 * For fixed length options, no sanity check 10508 * of passed in length is done. It is assumed *_optcom_req() 10509 * routines do the right thing. 10510 */ 10511 10512 switch (level) { 10513 case SOL_SOCKET: 10514 /* 10515 * conn_lock protects the bitfields, and is used to 10516 * set the fields atomically. 10517 */ 10518 switch (name) { 10519 case SO_BROADCAST: 10520 if (!checkonly) { 10521 /* TODO: use value someplace? */ 10522 mutex_enter(&connp->conn_lock); 10523 connp->conn_broadcast = *i1 ? 1 : 0; 10524 mutex_exit(&connp->conn_lock); 10525 } 10526 break; /* goto sizeof (int) option return */ 10527 case SO_USELOOPBACK: 10528 if (!checkonly) { 10529 /* TODO: use value someplace? */ 10530 mutex_enter(&connp->conn_lock); 10531 connp->conn_loopback = *i1 ? 1 : 0; 10532 mutex_exit(&connp->conn_lock); 10533 } 10534 break; /* goto sizeof (int) option return */ 10535 case SO_DONTROUTE: 10536 if (!checkonly) { 10537 mutex_enter(&connp->conn_lock); 10538 connp->conn_dontroute = *i1 ? 1 : 0; 10539 mutex_exit(&connp->conn_lock); 10540 } 10541 break; /* goto sizeof (int) option return */ 10542 case SO_REUSEADDR: 10543 if (!checkonly) { 10544 mutex_enter(&connp->conn_lock); 10545 connp->conn_reuseaddr = *i1 ? 1 : 0; 10546 mutex_exit(&connp->conn_lock); 10547 } 10548 break; /* goto sizeof (int) option return */ 10549 case SO_PROTOTYPE: 10550 if (!checkonly) { 10551 mutex_enter(&connp->conn_lock); 10552 connp->conn_proto = *i1; 10553 mutex_exit(&connp->conn_lock); 10554 } 10555 break; /* goto sizeof (int) option return */ 10556 case SO_ALLZONES: 10557 if (!checkonly) { 10558 mutex_enter(&connp->conn_lock); 10559 if (IPCL_IS_BOUND(connp)) { 10560 mutex_exit(&connp->conn_lock); 10561 return (EINVAL); 10562 } 10563 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10564 mutex_exit(&connp->conn_lock); 10565 } 10566 break; /* goto sizeof (int) option return */ 10567 case SO_ANON_MLP: 10568 if (!checkonly) { 10569 mutex_enter(&connp->conn_lock); 10570 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10571 mutex_exit(&connp->conn_lock); 10572 } 10573 break; /* goto sizeof (int) option return */ 10574 case SO_MAC_EXEMPT: 10575 if (secpolicy_net_mac_aware(cr) != 0 || 10576 IPCL_IS_BOUND(connp)) 10577 return (EACCES); 10578 if (!checkonly) { 10579 mutex_enter(&connp->conn_lock); 10580 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10581 mutex_exit(&connp->conn_lock); 10582 } 10583 break; /* goto sizeof (int) option return */ 10584 default: 10585 /* 10586 * "soft" error (negative) 10587 * option not handled at this level 10588 * Note: Do not modify *outlenp 10589 */ 10590 return (-EINVAL); 10591 } 10592 break; 10593 case IPPROTO_IP: 10594 switch (name) { 10595 case IP_NEXTHOP: 10596 if (secpolicy_net_config(cr, B_FALSE) != 0) 10597 return (EPERM); 10598 /* FALLTHRU */ 10599 case IP_MULTICAST_IF: 10600 case IP_DONTFAILOVER_IF: { 10601 ipaddr_t addr = *i1; 10602 10603 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10604 first_mp); 10605 if (error != 0) 10606 return (error); 10607 break; /* goto sizeof (int) option return */ 10608 } 10609 10610 case IP_MULTICAST_TTL: 10611 /* Recorded in transport above IP */ 10612 *outvalp = *invalp; 10613 *outlenp = sizeof (uchar_t); 10614 return (0); 10615 case IP_MULTICAST_LOOP: 10616 if (!checkonly) { 10617 mutex_enter(&connp->conn_lock); 10618 connp->conn_multicast_loop = *invalp ? 1 : 0; 10619 mutex_exit(&connp->conn_lock); 10620 } 10621 *outvalp = *invalp; 10622 *outlenp = sizeof (uchar_t); 10623 return (0); 10624 case IP_ADD_MEMBERSHIP: 10625 case MCAST_JOIN_GROUP: 10626 case IP_DROP_MEMBERSHIP: 10627 case MCAST_LEAVE_GROUP: { 10628 struct ip_mreq *mreqp; 10629 struct group_req *greqp; 10630 ire_t *ire; 10631 boolean_t done = B_FALSE; 10632 ipaddr_t group, ifaddr; 10633 struct sockaddr_in *sin; 10634 uint32_t *ifindexp; 10635 boolean_t mcast_opt = B_TRUE; 10636 mcast_record_t fmode; 10637 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10638 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10639 10640 switch (name) { 10641 case IP_ADD_MEMBERSHIP: 10642 mcast_opt = B_FALSE; 10643 /* FALLTHRU */ 10644 case MCAST_JOIN_GROUP: 10645 fmode = MODE_IS_EXCLUDE; 10646 optfn = ip_opt_add_group; 10647 break; 10648 10649 case IP_DROP_MEMBERSHIP: 10650 mcast_opt = B_FALSE; 10651 /* FALLTHRU */ 10652 case MCAST_LEAVE_GROUP: 10653 fmode = MODE_IS_INCLUDE; 10654 optfn = ip_opt_delete_group; 10655 break; 10656 } 10657 10658 if (mcast_opt) { 10659 greqp = (struct group_req *)i1; 10660 sin = (struct sockaddr_in *)&greqp->gr_group; 10661 if (sin->sin_family != AF_INET) { 10662 *outlenp = 0; 10663 return (ENOPROTOOPT); 10664 } 10665 group = (ipaddr_t)sin->sin_addr.s_addr; 10666 ifaddr = INADDR_ANY; 10667 ifindexp = &greqp->gr_interface; 10668 } else { 10669 mreqp = (struct ip_mreq *)i1; 10670 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10671 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10672 ifindexp = NULL; 10673 } 10674 10675 /* 10676 * In the multirouting case, we need to replicate 10677 * the request on all interfaces that will take part 10678 * in replication. We do so because multirouting is 10679 * reflective, thus we will probably receive multi- 10680 * casts on those interfaces. 10681 * The ip_multirt_apply_membership() succeeds if the 10682 * operation succeeds on at least one interface. 10683 */ 10684 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10685 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10686 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10687 if (ire != NULL) { 10688 if (ire->ire_flags & RTF_MULTIRT) { 10689 error = ip_multirt_apply_membership( 10690 optfn, ire, connp, checkonly, group, 10691 fmode, INADDR_ANY, first_mp); 10692 done = B_TRUE; 10693 } 10694 ire_refrele(ire); 10695 } 10696 if (!done) { 10697 error = optfn(connp, checkonly, group, ifaddr, 10698 ifindexp, fmode, INADDR_ANY, first_mp); 10699 } 10700 if (error) { 10701 /* 10702 * EINPROGRESS is a soft error, needs retry 10703 * so don't make *outlenp zero. 10704 */ 10705 if (error != EINPROGRESS) 10706 *outlenp = 0; 10707 return (error); 10708 } 10709 /* OK return - copy input buffer into output buffer */ 10710 if (invalp != outvalp) { 10711 /* don't trust bcopy for identical src/dst */ 10712 bcopy(invalp, outvalp, inlen); 10713 } 10714 *outlenp = inlen; 10715 return (0); 10716 } 10717 case IP_BLOCK_SOURCE: 10718 case IP_UNBLOCK_SOURCE: 10719 case IP_ADD_SOURCE_MEMBERSHIP: 10720 case IP_DROP_SOURCE_MEMBERSHIP: 10721 case MCAST_BLOCK_SOURCE: 10722 case MCAST_UNBLOCK_SOURCE: 10723 case MCAST_JOIN_SOURCE_GROUP: 10724 case MCAST_LEAVE_SOURCE_GROUP: { 10725 struct ip_mreq_source *imreqp; 10726 struct group_source_req *gsreqp; 10727 in_addr_t grp, src, ifaddr = INADDR_ANY; 10728 uint32_t ifindex = 0; 10729 mcast_record_t fmode; 10730 struct sockaddr_in *sin; 10731 ire_t *ire; 10732 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10733 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10734 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10735 10736 switch (name) { 10737 case IP_BLOCK_SOURCE: 10738 mcast_opt = B_FALSE; 10739 /* FALLTHRU */ 10740 case MCAST_BLOCK_SOURCE: 10741 fmode = MODE_IS_EXCLUDE; 10742 optfn = ip_opt_add_group; 10743 break; 10744 10745 case IP_UNBLOCK_SOURCE: 10746 mcast_opt = B_FALSE; 10747 /* FALLTHRU */ 10748 case MCAST_UNBLOCK_SOURCE: 10749 fmode = MODE_IS_EXCLUDE; 10750 optfn = ip_opt_delete_group; 10751 break; 10752 10753 case IP_ADD_SOURCE_MEMBERSHIP: 10754 mcast_opt = B_FALSE; 10755 /* FALLTHRU */ 10756 case MCAST_JOIN_SOURCE_GROUP: 10757 fmode = MODE_IS_INCLUDE; 10758 optfn = ip_opt_add_group; 10759 break; 10760 10761 case IP_DROP_SOURCE_MEMBERSHIP: 10762 mcast_opt = B_FALSE; 10763 /* FALLTHRU */ 10764 case MCAST_LEAVE_SOURCE_GROUP: 10765 fmode = MODE_IS_INCLUDE; 10766 optfn = ip_opt_delete_group; 10767 break; 10768 } 10769 10770 if (mcast_opt) { 10771 gsreqp = (struct group_source_req *)i1; 10772 if (gsreqp->gsr_group.ss_family != AF_INET) { 10773 *outlenp = 0; 10774 return (ENOPROTOOPT); 10775 } 10776 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10777 grp = (ipaddr_t)sin->sin_addr.s_addr; 10778 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10779 src = (ipaddr_t)sin->sin_addr.s_addr; 10780 ifindex = gsreqp->gsr_interface; 10781 } else { 10782 imreqp = (struct ip_mreq_source *)i1; 10783 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10784 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10785 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10786 } 10787 10788 /* 10789 * In the multirouting case, we need to replicate 10790 * the request as noted in the mcast cases above. 10791 */ 10792 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10793 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10794 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10795 if (ire != NULL) { 10796 if (ire->ire_flags & RTF_MULTIRT) { 10797 error = ip_multirt_apply_membership( 10798 optfn, ire, connp, checkonly, grp, 10799 fmode, src, first_mp); 10800 done = B_TRUE; 10801 } 10802 ire_refrele(ire); 10803 } 10804 if (!done) { 10805 error = optfn(connp, checkonly, grp, ifaddr, 10806 &ifindex, fmode, src, first_mp); 10807 } 10808 if (error != 0) { 10809 /* 10810 * EINPROGRESS is a soft error, needs retry 10811 * so don't make *outlenp zero. 10812 */ 10813 if (error != EINPROGRESS) 10814 *outlenp = 0; 10815 return (error); 10816 } 10817 /* OK return - copy input buffer into output buffer */ 10818 if (invalp != outvalp) { 10819 bcopy(invalp, outvalp, inlen); 10820 } 10821 *outlenp = inlen; 10822 return (0); 10823 } 10824 case IP_SEC_OPT: 10825 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10826 if (error != 0) { 10827 *outlenp = 0; 10828 return (error); 10829 } 10830 break; 10831 case IP_HDRINCL: 10832 case IP_OPTIONS: 10833 case T_IP_OPTIONS: 10834 case IP_TOS: 10835 case T_IP_TOS: 10836 case IP_TTL: 10837 case IP_RECVDSTADDR: 10838 case IP_RECVOPTS: 10839 /* OK return - copy input buffer into output buffer */ 10840 if (invalp != outvalp) { 10841 /* don't trust bcopy for identical src/dst */ 10842 bcopy(invalp, outvalp, inlen); 10843 } 10844 *outlenp = inlen; 10845 return (0); 10846 case IP_RECVIF: 10847 /* Retrieve the inbound interface index */ 10848 if (!checkonly) { 10849 mutex_enter(&connp->conn_lock); 10850 connp->conn_recvif = *i1 ? 1 : 0; 10851 mutex_exit(&connp->conn_lock); 10852 } 10853 break; /* goto sizeof (int) option return */ 10854 case IP_RECVSLLA: 10855 /* Retrieve the source link layer address */ 10856 if (!checkonly) { 10857 mutex_enter(&connp->conn_lock); 10858 connp->conn_recvslla = *i1 ? 1 : 0; 10859 mutex_exit(&connp->conn_lock); 10860 } 10861 break; /* goto sizeof (int) option return */ 10862 case MRT_INIT: 10863 case MRT_DONE: 10864 case MRT_ADD_VIF: 10865 case MRT_DEL_VIF: 10866 case MRT_ADD_MFC: 10867 case MRT_DEL_MFC: 10868 case MRT_ASSERT: 10869 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10870 *outlenp = 0; 10871 return (error); 10872 } 10873 error = ip_mrouter_set((int)name, q, checkonly, 10874 (uchar_t *)invalp, inlen, first_mp); 10875 if (error) { 10876 *outlenp = 0; 10877 return (error); 10878 } 10879 /* OK return - copy input buffer into output buffer */ 10880 if (invalp != outvalp) { 10881 /* don't trust bcopy for identical src/dst */ 10882 bcopy(invalp, outvalp, inlen); 10883 } 10884 *outlenp = inlen; 10885 return (0); 10886 case IP_BOUND_IF: 10887 case IP_XMIT_IF: 10888 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10889 level, name, first_mp); 10890 if (error != 0) 10891 return (error); 10892 break; /* goto sizeof (int) option return */ 10893 10894 case IP_UNSPEC_SRC: 10895 /* Allow sending with a zero source address */ 10896 if (!checkonly) { 10897 mutex_enter(&connp->conn_lock); 10898 connp->conn_unspec_src = *i1 ? 1 : 0; 10899 mutex_exit(&connp->conn_lock); 10900 } 10901 break; /* goto sizeof (int) option return */ 10902 default: 10903 /* 10904 * "soft" error (negative) 10905 * option not handled at this level 10906 * Note: Do not modify *outlenp 10907 */ 10908 return (-EINVAL); 10909 } 10910 break; 10911 case IPPROTO_IPV6: 10912 switch (name) { 10913 case IPV6_BOUND_IF: 10914 case IPV6_BOUND_PIF: 10915 case IPV6_DONTFAILOVER_IF: 10916 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10917 level, name, first_mp); 10918 if (error != 0) 10919 return (error); 10920 break; /* goto sizeof (int) option return */ 10921 10922 case IPV6_MULTICAST_IF: 10923 /* 10924 * The only possible errors are EINPROGRESS and 10925 * EINVAL. EINPROGRESS will be restarted and is not 10926 * a hard error. We call this option on both V4 and V6 10927 * If both return EINVAL, then this call returns 10928 * EINVAL. If at least one of them succeeds we 10929 * return success. 10930 */ 10931 found = B_FALSE; 10932 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10933 level, name, first_mp); 10934 if (error == EINPROGRESS) 10935 return (error); 10936 if (error == 0) 10937 found = B_TRUE; 10938 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10939 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10940 if (error == 0) 10941 found = B_TRUE; 10942 if (!found) 10943 return (error); 10944 break; /* goto sizeof (int) option return */ 10945 10946 case IPV6_MULTICAST_HOPS: 10947 /* Recorded in transport above IP */ 10948 break; /* goto sizeof (int) option return */ 10949 case IPV6_MULTICAST_LOOP: 10950 if (!checkonly) { 10951 mutex_enter(&connp->conn_lock); 10952 connp->conn_multicast_loop = *i1; 10953 mutex_exit(&connp->conn_lock); 10954 } 10955 break; /* goto sizeof (int) option return */ 10956 case IPV6_JOIN_GROUP: 10957 case MCAST_JOIN_GROUP: 10958 case IPV6_LEAVE_GROUP: 10959 case MCAST_LEAVE_GROUP: { 10960 struct ipv6_mreq *ip_mreqp; 10961 struct group_req *greqp; 10962 ire_t *ire; 10963 boolean_t done = B_FALSE; 10964 in6_addr_t groupv6; 10965 uint32_t ifindex; 10966 boolean_t mcast_opt = B_TRUE; 10967 mcast_record_t fmode; 10968 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10969 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10970 10971 switch (name) { 10972 case IPV6_JOIN_GROUP: 10973 mcast_opt = B_FALSE; 10974 /* FALLTHRU */ 10975 case MCAST_JOIN_GROUP: 10976 fmode = MODE_IS_EXCLUDE; 10977 optfn = ip_opt_add_group_v6; 10978 break; 10979 10980 case IPV6_LEAVE_GROUP: 10981 mcast_opt = B_FALSE; 10982 /* FALLTHRU */ 10983 case MCAST_LEAVE_GROUP: 10984 fmode = MODE_IS_INCLUDE; 10985 optfn = ip_opt_delete_group_v6; 10986 break; 10987 } 10988 10989 if (mcast_opt) { 10990 struct sockaddr_in *sin; 10991 struct sockaddr_in6 *sin6; 10992 greqp = (struct group_req *)i1; 10993 if (greqp->gr_group.ss_family == AF_INET) { 10994 sin = (struct sockaddr_in *) 10995 &(greqp->gr_group); 10996 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10997 &groupv6); 10998 } else { 10999 sin6 = (struct sockaddr_in6 *) 11000 &(greqp->gr_group); 11001 groupv6 = sin6->sin6_addr; 11002 } 11003 ifindex = greqp->gr_interface; 11004 } else { 11005 ip_mreqp = (struct ipv6_mreq *)i1; 11006 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11007 ifindex = ip_mreqp->ipv6mr_interface; 11008 } 11009 /* 11010 * In the multirouting case, we need to replicate 11011 * the request on all interfaces that will take part 11012 * in replication. We do so because multirouting is 11013 * reflective, thus we will probably receive multi- 11014 * casts on those interfaces. 11015 * The ip_multirt_apply_membership_v6() succeeds if 11016 * the operation succeeds on at least one interface. 11017 */ 11018 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11019 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11020 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11021 if (ire != NULL) { 11022 if (ire->ire_flags & RTF_MULTIRT) { 11023 error = ip_multirt_apply_membership_v6( 11024 optfn, ire, connp, checkonly, 11025 &groupv6, fmode, &ipv6_all_zeros, 11026 first_mp); 11027 done = B_TRUE; 11028 } 11029 ire_refrele(ire); 11030 } 11031 if (!done) { 11032 error = optfn(connp, checkonly, &groupv6, 11033 ifindex, fmode, &ipv6_all_zeros, first_mp); 11034 } 11035 if (error) { 11036 /* 11037 * EINPROGRESS is a soft error, needs retry 11038 * so don't make *outlenp zero. 11039 */ 11040 if (error != EINPROGRESS) 11041 *outlenp = 0; 11042 return (error); 11043 } 11044 /* OK return - copy input buffer into output buffer */ 11045 if (invalp != outvalp) { 11046 /* don't trust bcopy for identical src/dst */ 11047 bcopy(invalp, outvalp, inlen); 11048 } 11049 *outlenp = inlen; 11050 return (0); 11051 } 11052 case MCAST_BLOCK_SOURCE: 11053 case MCAST_UNBLOCK_SOURCE: 11054 case MCAST_JOIN_SOURCE_GROUP: 11055 case MCAST_LEAVE_SOURCE_GROUP: { 11056 struct group_source_req *gsreqp; 11057 in6_addr_t v6grp, v6src; 11058 uint32_t ifindex; 11059 mcast_record_t fmode; 11060 ire_t *ire; 11061 boolean_t done = B_FALSE; 11062 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11063 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11064 11065 switch (name) { 11066 case MCAST_BLOCK_SOURCE: 11067 fmode = MODE_IS_EXCLUDE; 11068 optfn = ip_opt_add_group_v6; 11069 break; 11070 case MCAST_UNBLOCK_SOURCE: 11071 fmode = MODE_IS_EXCLUDE; 11072 optfn = ip_opt_delete_group_v6; 11073 break; 11074 case MCAST_JOIN_SOURCE_GROUP: 11075 fmode = MODE_IS_INCLUDE; 11076 optfn = ip_opt_add_group_v6; 11077 break; 11078 case MCAST_LEAVE_SOURCE_GROUP: 11079 fmode = MODE_IS_INCLUDE; 11080 optfn = ip_opt_delete_group_v6; 11081 break; 11082 } 11083 11084 gsreqp = (struct group_source_req *)i1; 11085 ifindex = gsreqp->gsr_interface; 11086 if (gsreqp->gsr_group.ss_family == AF_INET) { 11087 struct sockaddr_in *s; 11088 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11089 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11090 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11091 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11092 } else { 11093 struct sockaddr_in6 *s6; 11094 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11095 v6grp = s6->sin6_addr; 11096 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11097 v6src = s6->sin6_addr; 11098 } 11099 11100 /* 11101 * In the multirouting case, we need to replicate 11102 * the request as noted in the mcast cases above. 11103 */ 11104 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11105 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11106 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11107 if (ire != NULL) { 11108 if (ire->ire_flags & RTF_MULTIRT) { 11109 error = ip_multirt_apply_membership_v6( 11110 optfn, ire, connp, checkonly, 11111 &v6grp, fmode, &v6src, first_mp); 11112 done = B_TRUE; 11113 } 11114 ire_refrele(ire); 11115 } 11116 if (!done) { 11117 error = optfn(connp, checkonly, &v6grp, 11118 ifindex, fmode, &v6src, first_mp); 11119 } 11120 if (error != 0) { 11121 /* 11122 * EINPROGRESS is a soft error, needs retry 11123 * so don't make *outlenp zero. 11124 */ 11125 if (error != EINPROGRESS) 11126 *outlenp = 0; 11127 return (error); 11128 } 11129 /* OK return - copy input buffer into output buffer */ 11130 if (invalp != outvalp) { 11131 bcopy(invalp, outvalp, inlen); 11132 } 11133 *outlenp = inlen; 11134 return (0); 11135 } 11136 case IPV6_UNICAST_HOPS: 11137 /* Recorded in transport above IP */ 11138 break; /* goto sizeof (int) option return */ 11139 case IPV6_UNSPEC_SRC: 11140 /* Allow sending with a zero source address */ 11141 if (!checkonly) { 11142 mutex_enter(&connp->conn_lock); 11143 connp->conn_unspec_src = *i1 ? 1 : 0; 11144 mutex_exit(&connp->conn_lock); 11145 } 11146 break; /* goto sizeof (int) option return */ 11147 case IPV6_RECVPKTINFO: 11148 if (!checkonly) { 11149 mutex_enter(&connp->conn_lock); 11150 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11151 mutex_exit(&connp->conn_lock); 11152 } 11153 break; /* goto sizeof (int) option return */ 11154 case IPV6_RECVTCLASS: 11155 if (!checkonly) { 11156 if (*i1 < 0 || *i1 > 1) { 11157 return (EINVAL); 11158 } 11159 mutex_enter(&connp->conn_lock); 11160 connp->conn_ipv6_recvtclass = *i1; 11161 mutex_exit(&connp->conn_lock); 11162 } 11163 break; 11164 case IPV6_RECVPATHMTU: 11165 if (!checkonly) { 11166 if (*i1 < 0 || *i1 > 1) { 11167 return (EINVAL); 11168 } 11169 mutex_enter(&connp->conn_lock); 11170 connp->conn_ipv6_recvpathmtu = *i1; 11171 mutex_exit(&connp->conn_lock); 11172 } 11173 break; 11174 case IPV6_RECVHOPLIMIT: 11175 if (!checkonly) { 11176 mutex_enter(&connp->conn_lock); 11177 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11178 mutex_exit(&connp->conn_lock); 11179 } 11180 break; /* goto sizeof (int) option return */ 11181 case IPV6_RECVHOPOPTS: 11182 if (!checkonly) { 11183 mutex_enter(&connp->conn_lock); 11184 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11185 mutex_exit(&connp->conn_lock); 11186 } 11187 break; /* goto sizeof (int) option return */ 11188 case IPV6_RECVDSTOPTS: 11189 if (!checkonly) { 11190 mutex_enter(&connp->conn_lock); 11191 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11192 mutex_exit(&connp->conn_lock); 11193 } 11194 break; /* goto sizeof (int) option return */ 11195 case IPV6_RECVRTHDR: 11196 if (!checkonly) { 11197 mutex_enter(&connp->conn_lock); 11198 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11199 mutex_exit(&connp->conn_lock); 11200 } 11201 break; /* goto sizeof (int) option return */ 11202 case IPV6_RECVRTHDRDSTOPTS: 11203 if (!checkonly) { 11204 mutex_enter(&connp->conn_lock); 11205 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11206 mutex_exit(&connp->conn_lock); 11207 } 11208 break; /* goto sizeof (int) option return */ 11209 case IPV6_PKTINFO: 11210 if (inlen == 0) 11211 return (-EINVAL); /* clearing option */ 11212 error = ip6_set_pktinfo(cr, connp, 11213 (struct in6_pktinfo *)invalp, first_mp); 11214 if (error != 0) 11215 *outlenp = 0; 11216 else 11217 *outlenp = inlen; 11218 return (error); 11219 case IPV6_NEXTHOP: { 11220 struct sockaddr_in6 *sin6; 11221 11222 /* Verify that the nexthop is reachable */ 11223 if (inlen == 0) 11224 return (-EINVAL); /* clearing option */ 11225 11226 sin6 = (struct sockaddr_in6 *)invalp; 11227 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11228 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11229 NULL, MATCH_IRE_DEFAULT); 11230 11231 if (ire == NULL) { 11232 *outlenp = 0; 11233 return (EHOSTUNREACH); 11234 } 11235 ire_refrele(ire); 11236 return (-EINVAL); 11237 } 11238 case IPV6_SEC_OPT: 11239 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11240 if (error != 0) { 11241 *outlenp = 0; 11242 return (error); 11243 } 11244 break; 11245 case IPV6_SRC_PREFERENCES: { 11246 /* 11247 * This is implemented strictly in the ip module 11248 * (here and in tcp_opt_*() to accomodate tcp 11249 * sockets). Modules above ip pass this option 11250 * down here since ip is the only one that needs to 11251 * be aware of source address preferences. 11252 * 11253 * This socket option only affects connected 11254 * sockets that haven't already bound to a specific 11255 * IPv6 address. In other words, sockets that 11256 * don't call bind() with an address other than the 11257 * unspecified address and that call connect(). 11258 * ip_bind_connected_v6() passes these preferences 11259 * to the ipif_select_source_v6() function. 11260 */ 11261 if (inlen != sizeof (uint32_t)) 11262 return (EINVAL); 11263 error = ip6_set_src_preferences(connp, 11264 *(uint32_t *)invalp); 11265 if (error != 0) { 11266 *outlenp = 0; 11267 return (error); 11268 } else { 11269 *outlenp = sizeof (uint32_t); 11270 } 11271 break; 11272 } 11273 case IPV6_V6ONLY: 11274 if (*i1 < 0 || *i1 > 1) { 11275 return (EINVAL); 11276 } 11277 mutex_enter(&connp->conn_lock); 11278 connp->conn_ipv6_v6only = *i1; 11279 mutex_exit(&connp->conn_lock); 11280 break; 11281 default: 11282 return (-EINVAL); 11283 } 11284 break; 11285 default: 11286 /* 11287 * "soft" error (negative) 11288 * option not handled at this level 11289 * Note: Do not modify *outlenp 11290 */ 11291 return (-EINVAL); 11292 } 11293 /* 11294 * Common case of return from an option that is sizeof (int) 11295 */ 11296 *(int *)outvalp = *i1; 11297 *outlenp = sizeof (int); 11298 return (0); 11299 } 11300 11301 /* 11302 * This routine gets default values of certain options whose default 11303 * values are maintained by protocol specific code 11304 */ 11305 /* ARGSUSED */ 11306 int 11307 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11308 { 11309 int *i1 = (int *)ptr; 11310 11311 switch (level) { 11312 case IPPROTO_IP: 11313 switch (name) { 11314 case IP_MULTICAST_TTL: 11315 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11316 return (sizeof (uchar_t)); 11317 case IP_MULTICAST_LOOP: 11318 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11319 return (sizeof (uchar_t)); 11320 default: 11321 return (-1); 11322 } 11323 case IPPROTO_IPV6: 11324 switch (name) { 11325 case IPV6_UNICAST_HOPS: 11326 *i1 = ipv6_def_hops; 11327 return (sizeof (int)); 11328 case IPV6_MULTICAST_HOPS: 11329 *i1 = IP_DEFAULT_MULTICAST_TTL; 11330 return (sizeof (int)); 11331 case IPV6_MULTICAST_LOOP: 11332 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11333 return (sizeof (int)); 11334 case IPV6_V6ONLY: 11335 *i1 = 1; 11336 return (sizeof (int)); 11337 default: 11338 return (-1); 11339 } 11340 default: 11341 return (-1); 11342 } 11343 /* NOTREACHED */ 11344 } 11345 11346 /* 11347 * Given a destination address and a pointer to where to put the information 11348 * this routine fills in the mtuinfo. 11349 */ 11350 int 11351 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11352 struct ip6_mtuinfo *mtuinfo) 11353 { 11354 ire_t *ire; 11355 11356 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11357 return (-1); 11358 11359 bzero(mtuinfo, sizeof (*mtuinfo)); 11360 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11361 mtuinfo->ip6m_addr.sin6_port = port; 11362 mtuinfo->ip6m_addr.sin6_addr = *in6; 11363 11364 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11365 if (ire != NULL) { 11366 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11367 ire_refrele(ire); 11368 } else { 11369 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11370 } 11371 return (sizeof (struct ip6_mtuinfo)); 11372 } 11373 11374 /* 11375 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11376 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11377 * isn't. This doesn't matter as the error checking is done properly for the 11378 * other MRT options coming in through ip_opt_set. 11379 */ 11380 int 11381 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11382 { 11383 conn_t *connp = Q_TO_CONN(q); 11384 ipsec_req_t *req = (ipsec_req_t *)ptr; 11385 11386 switch (level) { 11387 case IPPROTO_IP: 11388 switch (name) { 11389 case MRT_VERSION: 11390 case MRT_ASSERT: 11391 (void) ip_mrouter_get(name, q, ptr); 11392 return (sizeof (int)); 11393 case IP_SEC_OPT: 11394 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11395 case IP_NEXTHOP: 11396 if (connp->conn_nexthop_set) { 11397 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11398 return (sizeof (ipaddr_t)); 11399 } else 11400 return (0); 11401 default: 11402 break; 11403 } 11404 break; 11405 case IPPROTO_IPV6: 11406 switch (name) { 11407 case IPV6_SEC_OPT: 11408 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11409 case IPV6_SRC_PREFERENCES: { 11410 return (ip6_get_src_preferences(connp, 11411 (uint32_t *)ptr)); 11412 } 11413 case IPV6_V6ONLY: 11414 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11415 return (sizeof (int)); 11416 case IPV6_PATHMTU: 11417 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11418 (struct ip6_mtuinfo *)ptr)); 11419 default: 11420 break; 11421 } 11422 break; 11423 default: 11424 break; 11425 } 11426 return (-1); 11427 } 11428 11429 /* Named Dispatch routine to get a current value out of our parameter table. */ 11430 /* ARGSUSED */ 11431 static int 11432 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11433 { 11434 ipparam_t *ippa = (ipparam_t *)cp; 11435 11436 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11437 return (0); 11438 } 11439 11440 /* ARGSUSED */ 11441 static int 11442 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11443 { 11444 11445 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11446 return (0); 11447 } 11448 11449 /* 11450 * Set ip{,6}_forwarding values. This means walking through all of the 11451 * ill's and toggling their forwarding values. 11452 */ 11453 /* ARGSUSED */ 11454 static int 11455 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11456 { 11457 long new_value; 11458 int *forwarding_value = (int *)cp; 11459 ill_t *walker; 11460 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11461 ill_walk_context_t ctx; 11462 11463 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11464 new_value < 0 || new_value > 1) { 11465 return (EINVAL); 11466 } 11467 11468 *forwarding_value = new_value; 11469 11470 /* 11471 * Regardless of the current value of ip_forwarding, set all per-ill 11472 * values of ip_forwarding to the value being set. 11473 * 11474 * Bring all the ill's up to date with the new global value. 11475 */ 11476 rw_enter(&ill_g_lock, RW_READER); 11477 11478 if (isv6) 11479 walker = ILL_START_WALK_V6(&ctx); 11480 else 11481 walker = ILL_START_WALK_V4(&ctx); 11482 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11483 (void) ill_forward_set(q, mp, (new_value != 0), 11484 (caddr_t)walker); 11485 } 11486 rw_exit(&ill_g_lock); 11487 11488 return (0); 11489 } 11490 11491 /* 11492 * Walk through the param array specified registering each element with the 11493 * Named Dispatch handler. This is called only during init. So it is ok 11494 * not to acquire any locks 11495 */ 11496 static boolean_t 11497 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11498 ipndp_t *ipnd, size_t ipnd_cnt) 11499 { 11500 for (; ippa_cnt-- > 0; ippa++) { 11501 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11502 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11503 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11504 nd_free(&ip_g_nd); 11505 return (B_FALSE); 11506 } 11507 } 11508 } 11509 11510 for (; ipnd_cnt-- > 0; ipnd++) { 11511 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11512 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11513 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11514 ipnd->ip_ndp_data)) { 11515 nd_free(&ip_g_nd); 11516 return (B_FALSE); 11517 } 11518 } 11519 } 11520 11521 return (B_TRUE); 11522 } 11523 11524 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11525 /* ARGSUSED */ 11526 static int 11527 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11528 { 11529 long new_value; 11530 ipparam_t *ippa = (ipparam_t *)cp; 11531 11532 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11533 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11534 return (EINVAL); 11535 } 11536 ippa->ip_param_value = new_value; 11537 return (0); 11538 } 11539 11540 /* 11541 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11542 * When an ipf is passed here for the first time, if 11543 * we already have in-order fragments on the queue, we convert from the fast- 11544 * path reassembly scheme to the hard-case scheme. From then on, additional 11545 * fragments are reassembled here. We keep track of the start and end offsets 11546 * of each piece, and the number of holes in the chain. When the hole count 11547 * goes to zero, we are done! 11548 * 11549 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11550 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11551 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11552 * after the call to ip_reassemble(). 11553 */ 11554 int 11555 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11556 size_t msg_len) 11557 { 11558 uint_t end; 11559 mblk_t *next_mp; 11560 mblk_t *mp1; 11561 uint_t offset; 11562 boolean_t incr_dups = B_TRUE; 11563 boolean_t offset_zero_seen = B_FALSE; 11564 boolean_t pkt_boundary_checked = B_FALSE; 11565 11566 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11567 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11568 11569 /* Add in byte count */ 11570 ipf->ipf_count += msg_len; 11571 if (ipf->ipf_end) { 11572 /* 11573 * We were part way through in-order reassembly, but now there 11574 * is a hole. We walk through messages already queued, and 11575 * mark them for hard case reassembly. We know that up till 11576 * now they were in order starting from offset zero. 11577 */ 11578 offset = 0; 11579 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11580 IP_REASS_SET_START(mp1, offset); 11581 if (offset == 0) { 11582 ASSERT(ipf->ipf_nf_hdr_len != 0); 11583 offset = -ipf->ipf_nf_hdr_len; 11584 } 11585 offset += mp1->b_wptr - mp1->b_rptr; 11586 IP_REASS_SET_END(mp1, offset); 11587 } 11588 /* One hole at the end. */ 11589 ipf->ipf_hole_cnt = 1; 11590 /* Brand it as a hard case, forever. */ 11591 ipf->ipf_end = 0; 11592 } 11593 /* Walk through all the new pieces. */ 11594 do { 11595 end = start + (mp->b_wptr - mp->b_rptr); 11596 /* 11597 * If start is 0, decrease 'end' only for the first mblk of 11598 * the fragment. Otherwise 'end' can get wrong value in the 11599 * second pass of the loop if first mblk is exactly the 11600 * size of ipf_nf_hdr_len. 11601 */ 11602 if (start == 0 && !offset_zero_seen) { 11603 /* First segment */ 11604 ASSERT(ipf->ipf_nf_hdr_len != 0); 11605 end -= ipf->ipf_nf_hdr_len; 11606 offset_zero_seen = B_TRUE; 11607 } 11608 next_mp = mp->b_cont; 11609 /* 11610 * We are checking to see if there is any interesing data 11611 * to process. If there isn't and the mblk isn't the 11612 * one which carries the unfragmentable header then we 11613 * drop it. It's possible to have just the unfragmentable 11614 * header come through without any data. That needs to be 11615 * saved. 11616 * 11617 * If the assert at the top of this function holds then the 11618 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11619 * is infrequently traveled enough that the test is left in 11620 * to protect against future code changes which break that 11621 * invariant. 11622 */ 11623 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11624 /* Empty. Blast it. */ 11625 IP_REASS_SET_START(mp, 0); 11626 IP_REASS_SET_END(mp, 0); 11627 /* 11628 * If the ipf points to the mblk we are about to free, 11629 * update ipf to point to the next mblk (or NULL 11630 * if none). 11631 */ 11632 if (ipf->ipf_mp->b_cont == mp) 11633 ipf->ipf_mp->b_cont = next_mp; 11634 freeb(mp); 11635 continue; 11636 } 11637 mp->b_cont = NULL; 11638 IP_REASS_SET_START(mp, start); 11639 IP_REASS_SET_END(mp, end); 11640 if (!ipf->ipf_tail_mp) { 11641 ipf->ipf_tail_mp = mp; 11642 ipf->ipf_mp->b_cont = mp; 11643 if (start == 0 || !more) { 11644 ipf->ipf_hole_cnt = 1; 11645 /* 11646 * if the first fragment comes in more than one 11647 * mblk, this loop will be executed for each 11648 * mblk. Need to adjust hole count so exiting 11649 * this routine will leave hole count at 1. 11650 */ 11651 if (next_mp) 11652 ipf->ipf_hole_cnt++; 11653 } else 11654 ipf->ipf_hole_cnt = 2; 11655 continue; 11656 } else if (ipf->ipf_last_frag_seen && !more && 11657 !pkt_boundary_checked) { 11658 /* 11659 * We check datagram boundary only if this fragment 11660 * claims to be the last fragment and we have seen a 11661 * last fragment in the past too. We do this only 11662 * once for a given fragment. 11663 * 11664 * start cannot be 0 here as fragments with start=0 11665 * and MF=0 gets handled as a complete packet. These 11666 * fragments should not reach here. 11667 */ 11668 11669 if (start + msgdsize(mp) != 11670 IP_REASS_END(ipf->ipf_tail_mp)) { 11671 /* 11672 * We have two fragments both of which claim 11673 * to be the last fragment but gives conflicting 11674 * information about the whole datagram size. 11675 * Something fishy is going on. Drop the 11676 * fragment and free up the reassembly list. 11677 */ 11678 return (IP_REASS_FAILED); 11679 } 11680 11681 /* 11682 * We shouldn't come to this code block again for this 11683 * particular fragment. 11684 */ 11685 pkt_boundary_checked = B_TRUE; 11686 } 11687 11688 /* New stuff at or beyond tail? */ 11689 offset = IP_REASS_END(ipf->ipf_tail_mp); 11690 if (start >= offset) { 11691 if (ipf->ipf_last_frag_seen) { 11692 /* current fragment is beyond last fragment */ 11693 return (IP_REASS_FAILED); 11694 } 11695 /* Link it on end. */ 11696 ipf->ipf_tail_mp->b_cont = mp; 11697 ipf->ipf_tail_mp = mp; 11698 if (more) { 11699 if (start != offset) 11700 ipf->ipf_hole_cnt++; 11701 } else if (start == offset && next_mp == NULL) 11702 ipf->ipf_hole_cnt--; 11703 continue; 11704 } 11705 mp1 = ipf->ipf_mp->b_cont; 11706 offset = IP_REASS_START(mp1); 11707 /* New stuff at the front? */ 11708 if (start < offset) { 11709 if (start == 0) { 11710 if (end >= offset) { 11711 /* Nailed the hole at the begining. */ 11712 ipf->ipf_hole_cnt--; 11713 } 11714 } else if (end < offset) { 11715 /* 11716 * A hole, stuff, and a hole where there used 11717 * to be just a hole. 11718 */ 11719 ipf->ipf_hole_cnt++; 11720 } 11721 mp->b_cont = mp1; 11722 /* Check for overlap. */ 11723 while (end > offset) { 11724 if (end < IP_REASS_END(mp1)) { 11725 mp->b_wptr -= end - offset; 11726 IP_REASS_SET_END(mp, offset); 11727 if (ill->ill_isv6) { 11728 BUMP_MIB(ill->ill_ip6_mib, 11729 ipv6ReasmPartDups); 11730 } else { 11731 BUMP_MIB(&ip_mib, 11732 ipReasmPartDups); 11733 } 11734 break; 11735 } 11736 /* Did we cover another hole? */ 11737 if ((mp1->b_cont && 11738 IP_REASS_END(mp1) != 11739 IP_REASS_START(mp1->b_cont) && 11740 end >= IP_REASS_START(mp1->b_cont)) || 11741 (!ipf->ipf_last_frag_seen && !more)) { 11742 ipf->ipf_hole_cnt--; 11743 } 11744 /* Clip out mp1. */ 11745 if ((mp->b_cont = mp1->b_cont) == NULL) { 11746 /* 11747 * After clipping out mp1, this guy 11748 * is now hanging off the end. 11749 */ 11750 ipf->ipf_tail_mp = mp; 11751 } 11752 IP_REASS_SET_START(mp1, 0); 11753 IP_REASS_SET_END(mp1, 0); 11754 /* Subtract byte count */ 11755 ipf->ipf_count -= mp1->b_datap->db_lim - 11756 mp1->b_datap->db_base; 11757 freeb(mp1); 11758 if (ill->ill_isv6) { 11759 BUMP_MIB(ill->ill_ip6_mib, 11760 ipv6ReasmPartDups); 11761 } else { 11762 BUMP_MIB(&ip_mib, ipReasmPartDups); 11763 } 11764 mp1 = mp->b_cont; 11765 if (!mp1) 11766 break; 11767 offset = IP_REASS_START(mp1); 11768 } 11769 ipf->ipf_mp->b_cont = mp; 11770 continue; 11771 } 11772 /* 11773 * The new piece starts somewhere between the start of the head 11774 * and before the end of the tail. 11775 */ 11776 for (; mp1; mp1 = mp1->b_cont) { 11777 offset = IP_REASS_END(mp1); 11778 if (start < offset) { 11779 if (end <= offset) { 11780 /* Nothing new. */ 11781 IP_REASS_SET_START(mp, 0); 11782 IP_REASS_SET_END(mp, 0); 11783 /* Subtract byte count */ 11784 ipf->ipf_count -= mp->b_datap->db_lim - 11785 mp->b_datap->db_base; 11786 if (incr_dups) { 11787 ipf->ipf_num_dups++; 11788 incr_dups = B_FALSE; 11789 } 11790 freeb(mp); 11791 if (ill->ill_isv6) { 11792 BUMP_MIB(ill->ill_ip6_mib, 11793 ipv6ReasmDuplicates); 11794 } else { 11795 BUMP_MIB(&ip_mib, 11796 ipReasmDuplicates); 11797 } 11798 break; 11799 } 11800 /* 11801 * Trim redundant stuff off beginning of new 11802 * piece. 11803 */ 11804 IP_REASS_SET_START(mp, offset); 11805 mp->b_rptr += offset - start; 11806 if (ill->ill_isv6) { 11807 BUMP_MIB(ill->ill_ip6_mib, 11808 ipv6ReasmPartDups); 11809 } else { 11810 BUMP_MIB(&ip_mib, ipReasmPartDups); 11811 } 11812 start = offset; 11813 if (!mp1->b_cont) { 11814 /* 11815 * After trimming, this guy is now 11816 * hanging off the end. 11817 */ 11818 mp1->b_cont = mp; 11819 ipf->ipf_tail_mp = mp; 11820 if (!more) { 11821 ipf->ipf_hole_cnt--; 11822 } 11823 break; 11824 } 11825 } 11826 if (start >= IP_REASS_START(mp1->b_cont)) 11827 continue; 11828 /* Fill a hole */ 11829 if (start > offset) 11830 ipf->ipf_hole_cnt++; 11831 mp->b_cont = mp1->b_cont; 11832 mp1->b_cont = mp; 11833 mp1 = mp->b_cont; 11834 offset = IP_REASS_START(mp1); 11835 if (end >= offset) { 11836 ipf->ipf_hole_cnt--; 11837 /* Check for overlap. */ 11838 while (end > offset) { 11839 if (end < IP_REASS_END(mp1)) { 11840 mp->b_wptr -= end - offset; 11841 IP_REASS_SET_END(mp, offset); 11842 /* 11843 * TODO we might bump 11844 * this up twice if there is 11845 * overlap at both ends. 11846 */ 11847 if (ill->ill_isv6) { 11848 BUMP_MIB( 11849 ill->ill_ip6_mib, 11850 ipv6ReasmPartDups); 11851 } else { 11852 BUMP_MIB(&ip_mib, 11853 ipReasmPartDups); 11854 } 11855 break; 11856 } 11857 /* Did we cover another hole? */ 11858 if ((mp1->b_cont && 11859 IP_REASS_END(mp1) 11860 != IP_REASS_START(mp1->b_cont) && 11861 end >= 11862 IP_REASS_START(mp1->b_cont)) || 11863 (!ipf->ipf_last_frag_seen && 11864 !more)) { 11865 ipf->ipf_hole_cnt--; 11866 } 11867 /* Clip out mp1. */ 11868 if ((mp->b_cont = mp1->b_cont) == 11869 NULL) { 11870 /* 11871 * After clipping out mp1, 11872 * this guy is now hanging 11873 * off the end. 11874 */ 11875 ipf->ipf_tail_mp = mp; 11876 } 11877 IP_REASS_SET_START(mp1, 0); 11878 IP_REASS_SET_END(mp1, 0); 11879 /* Subtract byte count */ 11880 ipf->ipf_count -= 11881 mp1->b_datap->db_lim - 11882 mp1->b_datap->db_base; 11883 freeb(mp1); 11884 if (ill->ill_isv6) { 11885 BUMP_MIB(ill->ill_ip6_mib, 11886 ipv6ReasmPartDups); 11887 } else { 11888 BUMP_MIB(&ip_mib, 11889 ipReasmPartDups); 11890 } 11891 mp1 = mp->b_cont; 11892 if (!mp1) 11893 break; 11894 offset = IP_REASS_START(mp1); 11895 } 11896 } 11897 break; 11898 } 11899 } while (start = end, mp = next_mp); 11900 11901 /* Fragment just processed could be the last one. Remember this fact */ 11902 if (!more) 11903 ipf->ipf_last_frag_seen = B_TRUE; 11904 11905 /* Still got holes? */ 11906 if (ipf->ipf_hole_cnt) 11907 return (IP_REASS_PARTIAL); 11908 /* Clean up overloaded fields to avoid upstream disasters. */ 11909 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11910 IP_REASS_SET_START(mp1, 0); 11911 IP_REASS_SET_END(mp1, 0); 11912 } 11913 return (IP_REASS_COMPLETE); 11914 } 11915 11916 /* 11917 * ipsec processing for the fast path, used for input UDP Packets 11918 */ 11919 static boolean_t 11920 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11921 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11922 { 11923 uint32_t ill_index; 11924 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11925 11926 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11927 /* The ill_index of the incoming ILL */ 11928 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11929 11930 /* pass packet up to the transport */ 11931 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11932 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11933 NULL, mctl_present); 11934 if (*first_mpp == NULL) { 11935 return (B_FALSE); 11936 } 11937 } 11938 11939 /* Initiate IPPF processing for fastpath UDP */ 11940 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11941 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11942 if (*mpp == NULL) { 11943 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11944 "deferred/dropped during IPPF processing\n")); 11945 return (B_FALSE); 11946 } 11947 } 11948 /* 11949 * We make the checks as below since we are in the fast path 11950 * and want to minimize the number of checks if the IP_RECVIF and/or 11951 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11952 */ 11953 if (connp->conn_recvif || connp->conn_recvslla || 11954 connp->conn_ipv6_recvpktinfo) { 11955 if (connp->conn_recvif || 11956 connp->conn_ipv6_recvpktinfo) { 11957 in_flags = IPF_RECVIF; 11958 } 11959 if (connp->conn_recvslla) { 11960 in_flags |= IPF_RECVSLLA; 11961 } 11962 /* 11963 * since in_flags are being set ill will be 11964 * referenced in ip_add_info, so it better not 11965 * be NULL. 11966 */ 11967 /* 11968 * the actual data will be contained in b_cont 11969 * upon successful return of the following call. 11970 * If the call fails then the original mblk is 11971 * returned. 11972 */ 11973 *mpp = ip_add_info(*mpp, ill, in_flags); 11974 } 11975 11976 return (B_TRUE); 11977 } 11978 11979 /* 11980 * Fragmentation reassembly. Each ILL has a hash table for 11981 * queuing packets undergoing reassembly for all IPIFs 11982 * associated with the ILL. The hash is based on the packet 11983 * IP ident field. The ILL frag hash table was allocated 11984 * as a timer block at the time the ILL was created. Whenever 11985 * there is anything on the reassembly queue, the timer will 11986 * be running. Returns B_TRUE if successful else B_FALSE; 11987 * frees mp on failure. 11988 */ 11989 static boolean_t 11990 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11991 uint32_t *cksum_val, uint16_t *cksum_flags) 11992 { 11993 uint32_t frag_offset_flags; 11994 ill_t *ill = (ill_t *)q->q_ptr; 11995 mblk_t *mp = *mpp; 11996 mblk_t *t_mp; 11997 ipaddr_t dst; 11998 uint8_t proto = ipha->ipha_protocol; 11999 uint32_t sum_val; 12000 uint16_t sum_flags; 12001 ipf_t *ipf; 12002 ipf_t **ipfp; 12003 ipfb_t *ipfb; 12004 uint16_t ident; 12005 uint32_t offset; 12006 ipaddr_t src; 12007 uint_t hdr_length; 12008 uint32_t end; 12009 mblk_t *mp1; 12010 mblk_t *tail_mp; 12011 size_t count; 12012 size_t msg_len; 12013 uint8_t ecn_info = 0; 12014 uint32_t packet_size; 12015 boolean_t pruned = B_FALSE; 12016 12017 if (cksum_val != NULL) 12018 *cksum_val = 0; 12019 if (cksum_flags != NULL) 12020 *cksum_flags = 0; 12021 12022 /* 12023 * Drop the fragmented as early as possible, if 12024 * we don't have resource(s) to re-assemble. 12025 */ 12026 if (ip_reass_queue_bytes == 0) { 12027 freemsg(mp); 12028 return (B_FALSE); 12029 } 12030 12031 /* Check for fragmentation offset; return if there's none */ 12032 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12033 (IPH_MF | IPH_OFFSET)) == 0) 12034 return (B_TRUE); 12035 12036 /* 12037 * We utilize hardware computed checksum info only for UDP since 12038 * IP fragmentation is a normal occurence for the protocol. In 12039 * addition, checksum offload support for IP fragments carrying 12040 * UDP payload is commonly implemented across network adapters. 12041 */ 12042 ASSERT(ill != NULL); 12043 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12044 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12045 mblk_t *mp1 = mp->b_cont; 12046 int32_t len; 12047 12048 /* Record checksum information from the packet */ 12049 sum_val = (uint32_t)DB_CKSUM16(mp); 12050 sum_flags = DB_CKSUMFLAGS(mp); 12051 12052 /* IP payload offset from beginning of mblk */ 12053 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12054 12055 if ((sum_flags & HCK_PARTIALCKSUM) && 12056 (mp1 == NULL || mp1->b_cont == NULL) && 12057 offset >= DB_CKSUMSTART(mp) && 12058 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12059 uint32_t adj; 12060 /* 12061 * Partial checksum has been calculated by hardware 12062 * and attached to the packet; in addition, any 12063 * prepended extraneous data is even byte aligned. 12064 * If any such data exists, we adjust the checksum; 12065 * this would also handle any postpended data. 12066 */ 12067 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12068 mp, mp1, len, adj); 12069 12070 /* One's complement subtract extraneous checksum */ 12071 if (adj >= sum_val) 12072 sum_val = ~(adj - sum_val) & 0xFFFF; 12073 else 12074 sum_val -= adj; 12075 } 12076 } else { 12077 sum_val = 0; 12078 sum_flags = 0; 12079 } 12080 12081 /* Clear hardware checksumming flag */ 12082 DB_CKSUMFLAGS(mp) = 0; 12083 12084 ident = ipha->ipha_ident; 12085 offset = (frag_offset_flags << 3) & 0xFFFF; 12086 src = ipha->ipha_src; 12087 dst = ipha->ipha_dst; 12088 hdr_length = IPH_HDR_LENGTH(ipha); 12089 end = ntohs(ipha->ipha_length) - hdr_length; 12090 12091 /* If end == 0 then we have a packet with no data, so just free it */ 12092 if (end == 0) { 12093 freemsg(mp); 12094 return (B_FALSE); 12095 } 12096 12097 /* Record the ECN field info. */ 12098 ecn_info = (ipha->ipha_type_of_service & 0x3); 12099 if (offset != 0) { 12100 /* 12101 * If this isn't the first piece, strip the header, and 12102 * add the offset to the end value. 12103 */ 12104 mp->b_rptr += hdr_length; 12105 end += offset; 12106 } 12107 12108 msg_len = MBLKSIZE(mp); 12109 tail_mp = mp; 12110 while (tail_mp->b_cont != NULL) { 12111 tail_mp = tail_mp->b_cont; 12112 msg_len += MBLKSIZE(tail_mp); 12113 } 12114 12115 /* If the reassembly list for this ILL will get too big, prune it */ 12116 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12117 ip_reass_queue_bytes) { 12118 ill_frag_prune(ill, 12119 (ip_reass_queue_bytes < msg_len) ? 0 : 12120 (ip_reass_queue_bytes - msg_len)); 12121 pruned = B_TRUE; 12122 } 12123 12124 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12125 mutex_enter(&ipfb->ipfb_lock); 12126 12127 ipfp = &ipfb->ipfb_ipf; 12128 /* Try to find an existing fragment queue for this packet. */ 12129 for (;;) { 12130 ipf = ipfp[0]; 12131 if (ipf != NULL) { 12132 /* 12133 * It has to match on ident and src/dst address. 12134 */ 12135 if (ipf->ipf_ident == ident && 12136 ipf->ipf_src == src && 12137 ipf->ipf_dst == dst && 12138 ipf->ipf_protocol == proto) { 12139 /* 12140 * If we have received too many 12141 * duplicate fragments for this packet 12142 * free it. 12143 */ 12144 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12145 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12146 freemsg(mp); 12147 mutex_exit(&ipfb->ipfb_lock); 12148 return (B_FALSE); 12149 } 12150 /* Found it. */ 12151 break; 12152 } 12153 ipfp = &ipf->ipf_hash_next; 12154 continue; 12155 } 12156 12157 /* 12158 * If we pruned the list, do we want to store this new 12159 * fragment?. We apply an optimization here based on the 12160 * fact that most fragments will be received in order. 12161 * So if the offset of this incoming fragment is zero, 12162 * it is the first fragment of a new packet. We will 12163 * keep it. Otherwise drop the fragment, as we have 12164 * probably pruned the packet already (since the 12165 * packet cannot be found). 12166 */ 12167 if (pruned && offset != 0) { 12168 mutex_exit(&ipfb->ipfb_lock); 12169 freemsg(mp); 12170 return (B_FALSE); 12171 } 12172 12173 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12174 /* 12175 * Too many fragmented packets in this hash 12176 * bucket. Free the oldest. 12177 */ 12178 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12179 } 12180 12181 /* New guy. Allocate a frag message. */ 12182 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12183 if (mp1 == NULL) { 12184 BUMP_MIB(&ip_mib, ipInDiscards); 12185 freemsg(mp); 12186 reass_done: 12187 mutex_exit(&ipfb->ipfb_lock); 12188 return (B_FALSE); 12189 } 12190 12191 12192 BUMP_MIB(&ip_mib, ipReasmReqds); 12193 mp1->b_cont = mp; 12194 12195 /* Initialize the fragment header. */ 12196 ipf = (ipf_t *)mp1->b_rptr; 12197 ipf->ipf_mp = mp1; 12198 ipf->ipf_ptphn = ipfp; 12199 ipfp[0] = ipf; 12200 ipf->ipf_hash_next = NULL; 12201 ipf->ipf_ident = ident; 12202 ipf->ipf_protocol = proto; 12203 ipf->ipf_src = src; 12204 ipf->ipf_dst = dst; 12205 ipf->ipf_nf_hdr_len = 0; 12206 /* Record reassembly start time. */ 12207 ipf->ipf_timestamp = gethrestime_sec(); 12208 /* Record ipf generation and account for frag header */ 12209 ipf->ipf_gen = ill->ill_ipf_gen++; 12210 ipf->ipf_count = MBLKSIZE(mp1); 12211 ipf->ipf_last_frag_seen = B_FALSE; 12212 ipf->ipf_ecn = ecn_info; 12213 ipf->ipf_num_dups = 0; 12214 ipfb->ipfb_frag_pkts++; 12215 ipf->ipf_checksum = 0; 12216 ipf->ipf_checksum_flags = 0; 12217 12218 /* Store checksum value in fragment header */ 12219 if (sum_flags != 0) { 12220 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12221 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12222 ipf->ipf_checksum = sum_val; 12223 ipf->ipf_checksum_flags = sum_flags; 12224 } 12225 12226 /* 12227 * We handle reassembly two ways. In the easy case, 12228 * where all the fragments show up in order, we do 12229 * minimal bookkeeping, and just clip new pieces on 12230 * the end. If we ever see a hole, then we go off 12231 * to ip_reassemble which has to mark the pieces and 12232 * keep track of the number of holes, etc. Obviously, 12233 * the point of having both mechanisms is so we can 12234 * handle the easy case as efficiently as possible. 12235 */ 12236 if (offset == 0) { 12237 /* Easy case, in-order reassembly so far. */ 12238 ipf->ipf_count += msg_len; 12239 ipf->ipf_tail_mp = tail_mp; 12240 /* 12241 * Keep track of next expected offset in 12242 * ipf_end. 12243 */ 12244 ipf->ipf_end = end; 12245 ipf->ipf_nf_hdr_len = hdr_length; 12246 } else { 12247 /* Hard case, hole at the beginning. */ 12248 ipf->ipf_tail_mp = NULL; 12249 /* 12250 * ipf_end == 0 means that we have given up 12251 * on easy reassembly. 12252 */ 12253 ipf->ipf_end = 0; 12254 12255 /* Forget checksum offload from now on */ 12256 ipf->ipf_checksum_flags = 0; 12257 12258 /* 12259 * ipf_hole_cnt is set by ip_reassemble. 12260 * ipf_count is updated by ip_reassemble. 12261 * No need to check for return value here 12262 * as we don't expect reassembly to complete 12263 * or fail for the first fragment itself. 12264 */ 12265 (void) ip_reassemble(mp, ipf, 12266 (frag_offset_flags & IPH_OFFSET) << 3, 12267 (frag_offset_flags & IPH_MF), ill, msg_len); 12268 } 12269 /* Update per ipfb and ill byte counts */ 12270 ipfb->ipfb_count += ipf->ipf_count; 12271 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12272 ill->ill_frag_count += ipf->ipf_count; 12273 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12274 /* If the frag timer wasn't already going, start it. */ 12275 mutex_enter(&ill->ill_lock); 12276 ill_frag_timer_start(ill); 12277 mutex_exit(&ill->ill_lock); 12278 goto reass_done; 12279 } 12280 12281 /* 12282 * If the packet's flag has changed (it could be coming up 12283 * from an interface different than the previous, therefore 12284 * possibly different checksum capability), then forget about 12285 * any stored checksum states. Otherwise add the value to 12286 * the existing one stored in the fragment header. 12287 */ 12288 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12289 sum_val += ipf->ipf_checksum; 12290 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12291 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12292 ipf->ipf_checksum = sum_val; 12293 } else if (ipf->ipf_checksum_flags != 0) { 12294 /* Forget checksum offload from now on */ 12295 ipf->ipf_checksum_flags = 0; 12296 } 12297 12298 /* 12299 * We have a new piece of a datagram which is already being 12300 * reassembled. Update the ECN info if all IP fragments 12301 * are ECN capable. If there is one which is not, clear 12302 * all the info. If there is at least one which has CE 12303 * code point, IP needs to report that up to transport. 12304 */ 12305 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12306 if (ecn_info == IPH_ECN_CE) 12307 ipf->ipf_ecn = IPH_ECN_CE; 12308 } else { 12309 ipf->ipf_ecn = IPH_ECN_NECT; 12310 } 12311 if (offset && ipf->ipf_end == offset) { 12312 /* The new fragment fits at the end */ 12313 ipf->ipf_tail_mp->b_cont = mp; 12314 /* Update the byte count */ 12315 ipf->ipf_count += msg_len; 12316 /* Update per ipfb and ill byte counts */ 12317 ipfb->ipfb_count += msg_len; 12318 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12319 ill->ill_frag_count += msg_len; 12320 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12321 if (frag_offset_flags & IPH_MF) { 12322 /* More to come. */ 12323 ipf->ipf_end = end; 12324 ipf->ipf_tail_mp = tail_mp; 12325 goto reass_done; 12326 } 12327 } else { 12328 /* Go do the hard cases. */ 12329 int ret; 12330 12331 if (offset == 0) 12332 ipf->ipf_nf_hdr_len = hdr_length; 12333 12334 /* Save current byte count */ 12335 count = ipf->ipf_count; 12336 ret = ip_reassemble(mp, ipf, 12337 (frag_offset_flags & IPH_OFFSET) << 3, 12338 (frag_offset_flags & IPH_MF), ill, msg_len); 12339 /* Count of bytes added and subtracted (freeb()ed) */ 12340 count = ipf->ipf_count - count; 12341 if (count) { 12342 /* Update per ipfb and ill byte counts */ 12343 ipfb->ipfb_count += count; 12344 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12345 ill->ill_frag_count += count; 12346 ASSERT(ill->ill_frag_count > 0); 12347 } 12348 if (ret == IP_REASS_PARTIAL) { 12349 goto reass_done; 12350 } else if (ret == IP_REASS_FAILED) { 12351 /* Reassembly failed. Free up all resources */ 12352 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12353 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12354 IP_REASS_SET_START(t_mp, 0); 12355 IP_REASS_SET_END(t_mp, 0); 12356 } 12357 freemsg(mp); 12358 goto reass_done; 12359 } 12360 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12361 } 12362 /* 12363 * We have completed reassembly. Unhook the frag header from 12364 * the reassembly list. 12365 * 12366 * Before we free the frag header, record the ECN info 12367 * to report back to the transport. 12368 */ 12369 ecn_info = ipf->ipf_ecn; 12370 BUMP_MIB(&ip_mib, ipReasmOKs); 12371 ipfp = ipf->ipf_ptphn; 12372 12373 /* We need to supply these to caller */ 12374 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12375 sum_val = ipf->ipf_checksum; 12376 else 12377 sum_val = 0; 12378 12379 mp1 = ipf->ipf_mp; 12380 count = ipf->ipf_count; 12381 ipf = ipf->ipf_hash_next; 12382 if (ipf != NULL) 12383 ipf->ipf_ptphn = ipfp; 12384 ipfp[0] = ipf; 12385 ill->ill_frag_count -= count; 12386 ASSERT(ipfb->ipfb_count >= count); 12387 ipfb->ipfb_count -= count; 12388 ipfb->ipfb_frag_pkts--; 12389 mutex_exit(&ipfb->ipfb_lock); 12390 /* Ditch the frag header. */ 12391 mp = mp1->b_cont; 12392 12393 freeb(mp1); 12394 12395 /* Restore original IP length in header. */ 12396 packet_size = (uint32_t)msgdsize(mp); 12397 if (packet_size > IP_MAXPACKET) { 12398 freemsg(mp); 12399 BUMP_MIB(&ip_mib, ipInHdrErrors); 12400 return (B_FALSE); 12401 } 12402 12403 if (DB_REF(mp) > 1) { 12404 mblk_t *mp2 = copymsg(mp); 12405 12406 freemsg(mp); 12407 if (mp2 == NULL) { 12408 BUMP_MIB(&ip_mib, ipInDiscards); 12409 return (B_FALSE); 12410 } 12411 mp = mp2; 12412 } 12413 ipha = (ipha_t *)mp->b_rptr; 12414 12415 ipha->ipha_length = htons((uint16_t)packet_size); 12416 /* We're now complete, zip the frag state */ 12417 ipha->ipha_fragment_offset_and_flags = 0; 12418 /* Record the ECN info. */ 12419 ipha->ipha_type_of_service &= 0xFC; 12420 ipha->ipha_type_of_service |= ecn_info; 12421 *mpp = mp; 12422 12423 /* Reassembly is successful; return checksum information if needed */ 12424 if (cksum_val != NULL) 12425 *cksum_val = sum_val; 12426 if (cksum_flags != NULL) 12427 *cksum_flags = sum_flags; 12428 12429 return (B_TRUE); 12430 } 12431 12432 /* 12433 * Perform ip header check sum update local options. 12434 * return B_TRUE if all is well, else return B_FALSE and release 12435 * the mp. caller is responsible for decrementing ire ref cnt. 12436 */ 12437 static boolean_t 12438 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12439 { 12440 mblk_t *first_mp; 12441 boolean_t mctl_present; 12442 uint16_t sum; 12443 12444 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12445 /* 12446 * Don't do the checksum if it has gone through AH/ESP 12447 * processing. 12448 */ 12449 if (!mctl_present) { 12450 sum = ip_csum_hdr(ipha); 12451 if (sum != 0) { 12452 BUMP_MIB(&ip_mib, ipInCksumErrs); 12453 freemsg(first_mp); 12454 return (B_FALSE); 12455 } 12456 } 12457 12458 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12459 if (mctl_present) 12460 freeb(first_mp); 12461 return (B_FALSE); 12462 } 12463 12464 return (B_TRUE); 12465 } 12466 12467 /* 12468 * All udp packet are delivered to the local host via this routine. 12469 */ 12470 void 12471 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12472 ill_t *recv_ill) 12473 { 12474 uint32_t sum; 12475 uint32_t u1; 12476 boolean_t mctl_present; 12477 conn_t *connp; 12478 mblk_t *first_mp; 12479 uint16_t *up; 12480 ill_t *ill = (ill_t *)q->q_ptr; 12481 uint16_t reass_hck_flags = 0; 12482 12483 #define rptr ((uchar_t *)ipha) 12484 12485 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12486 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12487 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12488 12489 /* 12490 * FAST PATH for udp packets 12491 */ 12492 12493 /* u1 is # words of IP options */ 12494 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12495 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12496 12497 /* IP options present */ 12498 if (u1 != 0) 12499 goto ipoptions; 12500 12501 /* Check the IP header checksum. */ 12502 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12503 /* Clear the IP header h/w cksum flag */ 12504 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12505 } else { 12506 #define uph ((uint16_t *)ipha) 12507 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12508 uph[6] + uph[7] + uph[8] + uph[9]; 12509 #undef uph 12510 /* finish doing IP checksum */ 12511 sum = (sum & 0xFFFF) + (sum >> 16); 12512 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12513 /* 12514 * Don't verify header checksum if this packet is coming 12515 * back from AH/ESP as we already did it. 12516 */ 12517 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12518 BUMP_MIB(&ip_mib, ipInCksumErrs); 12519 freemsg(first_mp); 12520 return; 12521 } 12522 } 12523 12524 /* 12525 * Count for SNMP of inbound packets for ire. 12526 * if mctl is present this might be a secure packet and 12527 * has already been counted for in ip_proto_input(). 12528 */ 12529 if (!mctl_present) { 12530 UPDATE_IB_PKT_COUNT(ire); 12531 ire->ire_last_used_time = lbolt; 12532 } 12533 12534 /* packet part of fragmented IP packet? */ 12535 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12536 if (u1 & (IPH_MF | IPH_OFFSET)) { 12537 goto fragmented; 12538 } 12539 12540 /* u1 = IP header length (20 bytes) */ 12541 u1 = IP_SIMPLE_HDR_LENGTH; 12542 12543 /* packet does not contain complete IP & UDP headers */ 12544 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12545 goto udppullup; 12546 12547 /* up points to UDP header */ 12548 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12549 #define iphs ((uint16_t *)ipha) 12550 12551 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12552 if (up[3] != 0) { 12553 mblk_t *mp1 = mp->b_cont; 12554 boolean_t cksum_err; 12555 uint16_t hck_flags = 0; 12556 12557 /* Pseudo-header checksum */ 12558 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12559 iphs[9] + up[2]; 12560 12561 /* 12562 * Revert to software checksum calculation if the interface 12563 * isn't capable of checksum offload or if IPsec is present. 12564 */ 12565 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12566 hck_flags = DB_CKSUMFLAGS(mp); 12567 12568 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12569 IP_STAT(ip_in_sw_cksum); 12570 12571 IP_CKSUM_RECV(hck_flags, u1, 12572 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12573 (int32_t)((uchar_t *)up - rptr), 12574 mp, mp1, cksum_err); 12575 12576 if (cksum_err) { 12577 BUMP_MIB(&ip_mib, udpInCksumErrs); 12578 12579 if (hck_flags & HCK_FULLCKSUM) 12580 IP_STAT(ip_udp_in_full_hw_cksum_err); 12581 else if (hck_flags & HCK_PARTIALCKSUM) 12582 IP_STAT(ip_udp_in_part_hw_cksum_err); 12583 else 12584 IP_STAT(ip_udp_in_sw_cksum_err); 12585 12586 freemsg(first_mp); 12587 return; 12588 } 12589 } 12590 12591 /* Non-fragmented broadcast or multicast packet? */ 12592 if (ire->ire_type == IRE_BROADCAST) 12593 goto udpslowpath; 12594 12595 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12596 ire->ire_zoneid)) != NULL) { 12597 ASSERT(connp->conn_upq != NULL); 12598 IP_STAT(ip_udp_fast_path); 12599 12600 if (CONN_UDP_FLOWCTLD(connp)) { 12601 freemsg(mp); 12602 BUMP_MIB(&ip_mib, udpInOverflows); 12603 } else { 12604 if (!mctl_present) { 12605 BUMP_MIB(&ip_mib, ipInDelivers); 12606 } 12607 /* 12608 * mp and first_mp can change. 12609 */ 12610 if (ip_udp_check(q, connp, recv_ill, 12611 ipha, &mp, &first_mp, mctl_present)) { 12612 /* Send it upstream */ 12613 CONN_UDP_RECV(connp, mp); 12614 } 12615 } 12616 /* 12617 * freeb() cannot deal with null mblk being passed 12618 * in and first_mp can be set to null in the call 12619 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12620 */ 12621 if (mctl_present && first_mp != NULL) { 12622 freeb(first_mp); 12623 } 12624 CONN_DEC_REF(connp); 12625 return; 12626 } 12627 12628 /* 12629 * if we got here we know the packet is not fragmented and 12630 * has no options. The classifier could not find a conn_t and 12631 * most likely its an icmp packet so send it through slow path. 12632 */ 12633 12634 goto udpslowpath; 12635 12636 ipoptions: 12637 if (!ip_options_cksum(q, mp, ipha, ire)) { 12638 goto slow_done; 12639 } 12640 12641 UPDATE_IB_PKT_COUNT(ire); 12642 ire->ire_last_used_time = lbolt; 12643 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12644 if (u1 & (IPH_MF | IPH_OFFSET)) { 12645 fragmented: 12646 /* 12647 * "sum" and "reass_hck_flags" are non-zero if the 12648 * reassembled packet has a valid hardware computed 12649 * checksum information associated with it. 12650 */ 12651 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12652 goto slow_done; 12653 /* 12654 * Make sure that first_mp points back to mp as 12655 * the mp we came in with could have changed in 12656 * ip_rput_fragment(). 12657 */ 12658 ASSERT(!mctl_present); 12659 ipha = (ipha_t *)mp->b_rptr; 12660 first_mp = mp; 12661 } 12662 12663 /* Now we have a complete datagram, destined for this machine. */ 12664 u1 = IPH_HDR_LENGTH(ipha); 12665 /* Pull up the UDP header, if necessary. */ 12666 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12667 udppullup: 12668 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12669 BUMP_MIB(&ip_mib, ipInDiscards); 12670 freemsg(first_mp); 12671 goto slow_done; 12672 } 12673 ipha = (ipha_t *)mp->b_rptr; 12674 } 12675 12676 /* 12677 * Validate the checksum for the reassembled packet; for the 12678 * pullup case we calculate the payload checksum in software. 12679 */ 12680 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12681 if (up[3] != 0) { 12682 boolean_t cksum_err; 12683 12684 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12685 IP_STAT(ip_in_sw_cksum); 12686 12687 IP_CKSUM_RECV_REASS(reass_hck_flags, 12688 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12689 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12690 iphs[9] + up[2], sum, cksum_err); 12691 12692 if (cksum_err) { 12693 BUMP_MIB(&ip_mib, udpInCksumErrs); 12694 12695 if (reass_hck_flags & HCK_FULLCKSUM) 12696 IP_STAT(ip_udp_in_full_hw_cksum_err); 12697 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12698 IP_STAT(ip_udp_in_part_hw_cksum_err); 12699 else 12700 IP_STAT(ip_udp_in_sw_cksum_err); 12701 12702 freemsg(first_mp); 12703 goto slow_done; 12704 } 12705 } 12706 udpslowpath: 12707 12708 /* Clear hardware checksum flag to be safe */ 12709 DB_CKSUMFLAGS(mp) = 0; 12710 12711 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12712 (ire->ire_type == IRE_BROADCAST), 12713 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12714 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12715 12716 slow_done: 12717 IP_STAT(ip_udp_slow_path); 12718 return; 12719 12720 #undef iphs 12721 #undef rptr 12722 } 12723 12724 /* ARGSUSED */ 12725 static mblk_t * 12726 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12727 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12728 ill_rx_ring_t *ill_ring) 12729 { 12730 conn_t *connp; 12731 uint32_t sum; 12732 uint32_t u1; 12733 uint16_t *up; 12734 int offset; 12735 ssize_t len; 12736 mblk_t *mp1; 12737 boolean_t syn_present = B_FALSE; 12738 tcph_t *tcph; 12739 uint_t ip_hdr_len; 12740 ill_t *ill = (ill_t *)q->q_ptr; 12741 zoneid_t zoneid = ire->ire_zoneid; 12742 boolean_t cksum_err; 12743 uint16_t hck_flags = 0; 12744 12745 #define rptr ((uchar_t *)ipha) 12746 12747 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12748 12749 /* 12750 * FAST PATH for tcp packets 12751 */ 12752 12753 /* u1 is # words of IP options */ 12754 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12755 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12756 12757 /* IP options present */ 12758 if (u1) { 12759 goto ipoptions; 12760 } else { 12761 /* Check the IP header checksum. */ 12762 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12763 /* Clear the IP header h/w cksum flag */ 12764 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12765 } else { 12766 #define uph ((uint16_t *)ipha) 12767 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12768 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12769 #undef uph 12770 /* finish doing IP checksum */ 12771 sum = (sum & 0xFFFF) + (sum >> 16); 12772 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12773 /* 12774 * Don't verify header checksum if this packet 12775 * is coming back from AH/ESP as we already did it. 12776 */ 12777 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12778 BUMP_MIB(&ip_mib, ipInCksumErrs); 12779 goto error; 12780 } 12781 } 12782 } 12783 12784 if (!mctl_present) { 12785 UPDATE_IB_PKT_COUNT(ire); 12786 ire->ire_last_used_time = lbolt; 12787 } 12788 12789 /* packet part of fragmented IP packet? */ 12790 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12791 if (u1 & (IPH_MF | IPH_OFFSET)) { 12792 goto fragmented; 12793 } 12794 12795 /* u1 = IP header length (20 bytes) */ 12796 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12797 12798 /* does packet contain IP+TCP headers? */ 12799 len = mp->b_wptr - rptr; 12800 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12801 IP_STAT(ip_tcppullup); 12802 goto tcppullup; 12803 } 12804 12805 /* TCP options present? */ 12806 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12807 12808 /* 12809 * If options need to be pulled up, then goto tcpoptions. 12810 * otherwise we are still in the fast path 12811 */ 12812 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12813 IP_STAT(ip_tcpoptions); 12814 goto tcpoptions; 12815 } 12816 12817 /* multiple mblks of tcp data? */ 12818 if ((mp1 = mp->b_cont) != NULL) { 12819 /* more then two? */ 12820 if (mp1->b_cont != NULL) { 12821 IP_STAT(ip_multipkttcp); 12822 goto multipkttcp; 12823 } 12824 len += mp1->b_wptr - mp1->b_rptr; 12825 } 12826 12827 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12828 12829 /* part of pseudo checksum */ 12830 12831 /* TCP datagram length */ 12832 u1 = len - IP_SIMPLE_HDR_LENGTH; 12833 12834 #define iphs ((uint16_t *)ipha) 12835 12836 #ifdef _BIG_ENDIAN 12837 u1 += IPPROTO_TCP; 12838 #else 12839 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12840 #endif 12841 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12842 12843 /* 12844 * Revert to software checksum calculation if the interface 12845 * isn't capable of checksum offload or if IPsec is present. 12846 */ 12847 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12848 hck_flags = DB_CKSUMFLAGS(mp); 12849 12850 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12851 IP_STAT(ip_in_sw_cksum); 12852 12853 IP_CKSUM_RECV(hck_flags, u1, 12854 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12855 (int32_t)((uchar_t *)up - rptr), 12856 mp, mp1, cksum_err); 12857 12858 if (cksum_err) { 12859 BUMP_MIB(&ip_mib, tcpInErrs); 12860 12861 if (hck_flags & HCK_FULLCKSUM) 12862 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12863 else if (hck_flags & HCK_PARTIALCKSUM) 12864 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12865 else 12866 IP_STAT(ip_tcp_in_sw_cksum_err); 12867 12868 goto error; 12869 } 12870 12871 try_again: 12872 12873 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12874 NULL) { 12875 /* Send the TH_RST */ 12876 goto no_conn; 12877 } 12878 12879 /* 12880 * TCP FAST PATH for AF_INET socket. 12881 * 12882 * TCP fast path to avoid extra work. An AF_INET socket type 12883 * does not have facility to receive extra information via 12884 * ip_process or ip_add_info. Also, when the connection was 12885 * established, we made a check if this connection is impacted 12886 * by any global IPSec policy or per connection policy (a 12887 * policy that comes in effect later will not apply to this 12888 * connection). Since all this can be determined at the 12889 * connection establishment time, a quick check of flags 12890 * can avoid extra work. 12891 */ 12892 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12893 !IPP_ENABLED(IPP_LOCAL_IN)) { 12894 ASSERT(first_mp == mp); 12895 SET_SQUEUE(mp, tcp_rput_data, connp); 12896 return (mp); 12897 } 12898 12899 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12900 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12901 if (IPCL_IS_TCP(connp)) { 12902 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12903 DB_CKSUMSTART(mp) = 12904 (intptr_t)ip_squeue_get(ill_ring); 12905 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12906 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12907 SET_SQUEUE(mp, connp->conn_recv, connp); 12908 return (mp); 12909 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12910 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12911 ip_squeue_enter_unbound++; 12912 SET_SQUEUE(mp, tcp_conn_request_unbound, 12913 connp); 12914 return (mp); 12915 } 12916 syn_present = B_TRUE; 12917 } 12918 12919 } 12920 12921 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12922 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12923 12924 /* No need to send this packet to TCP */ 12925 if ((flags & TH_RST) || (flags & TH_URG)) { 12926 CONN_DEC_REF(connp); 12927 freemsg(first_mp); 12928 return (NULL); 12929 } 12930 if (flags & TH_ACK) { 12931 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12932 CONN_DEC_REF(connp); 12933 return (NULL); 12934 } 12935 12936 CONN_DEC_REF(connp); 12937 freemsg(first_mp); 12938 return (NULL); 12939 } 12940 12941 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12942 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12943 ipha, NULL, mctl_present); 12944 if (first_mp == NULL) { 12945 CONN_DEC_REF(connp); 12946 return (NULL); 12947 } 12948 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12949 ASSERT(syn_present); 12950 if (mctl_present) { 12951 ASSERT(first_mp != mp); 12952 first_mp->b_datap->db_struioflag |= 12953 STRUIO_POLICY; 12954 } else { 12955 ASSERT(first_mp == mp); 12956 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12957 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12958 } 12959 } else { 12960 /* 12961 * Discard first_mp early since we're dealing with a 12962 * fully-connected conn_t and tcp doesn't do policy in 12963 * this case. 12964 */ 12965 if (mctl_present) { 12966 freeb(first_mp); 12967 mctl_present = B_FALSE; 12968 } 12969 first_mp = mp; 12970 } 12971 } 12972 12973 /* Initiate IPPF processing for fastpath */ 12974 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12975 uint32_t ill_index; 12976 12977 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12978 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12979 if (mp == NULL) { 12980 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12981 "deferred/dropped during IPPF processing\n")); 12982 CONN_DEC_REF(connp); 12983 if (mctl_present) 12984 freeb(first_mp); 12985 return (NULL); 12986 } else if (mctl_present) { 12987 /* 12988 * ip_process might return a new mp. 12989 */ 12990 ASSERT(first_mp != mp); 12991 first_mp->b_cont = mp; 12992 } else { 12993 first_mp = mp; 12994 } 12995 12996 } 12997 12998 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12999 mp = ip_add_info(mp, recv_ill, flags); 13000 if (mp == NULL) { 13001 CONN_DEC_REF(connp); 13002 if (mctl_present) 13003 freeb(first_mp); 13004 return (NULL); 13005 } else if (mctl_present) { 13006 /* 13007 * ip_add_info might return a new mp. 13008 */ 13009 ASSERT(first_mp != mp); 13010 first_mp->b_cont = mp; 13011 } else { 13012 first_mp = mp; 13013 } 13014 } 13015 13016 if (IPCL_IS_TCP(connp)) { 13017 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13018 return (first_mp); 13019 } else { 13020 putnext(connp->conn_rq, first_mp); 13021 CONN_DEC_REF(connp); 13022 return (NULL); 13023 } 13024 13025 no_conn: 13026 /* Initiate IPPf processing, if needed. */ 13027 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13028 uint32_t ill_index; 13029 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13030 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13031 if (first_mp == NULL) { 13032 return (NULL); 13033 } 13034 } 13035 BUMP_MIB(&ip_mib, ipInDelivers); 13036 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 13037 return (NULL); 13038 ipoptions: 13039 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 13040 goto slow_done; 13041 } 13042 13043 UPDATE_IB_PKT_COUNT(ire); 13044 ire->ire_last_used_time = lbolt; 13045 13046 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13047 if (u1 & (IPH_MF | IPH_OFFSET)) { 13048 fragmented: 13049 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13050 if (mctl_present) 13051 freeb(first_mp); 13052 goto slow_done; 13053 } 13054 /* 13055 * Make sure that first_mp points back to mp as 13056 * the mp we came in with could have changed in 13057 * ip_rput_fragment(). 13058 */ 13059 ASSERT(!mctl_present); 13060 ipha = (ipha_t *)mp->b_rptr; 13061 first_mp = mp; 13062 } 13063 13064 /* Now we have a complete datagram, destined for this machine. */ 13065 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13066 13067 len = mp->b_wptr - mp->b_rptr; 13068 /* Pull up a minimal TCP header, if necessary. */ 13069 if (len < (u1 + 20)) { 13070 tcppullup: 13071 if (!pullupmsg(mp, u1 + 20)) { 13072 BUMP_MIB(&ip_mib, ipInDiscards); 13073 goto error; 13074 } 13075 ipha = (ipha_t *)mp->b_rptr; 13076 len = mp->b_wptr - mp->b_rptr; 13077 } 13078 13079 /* 13080 * Extract the offset field from the TCP header. As usual, we 13081 * try to help the compiler more than the reader. 13082 */ 13083 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13084 if (offset != 5) { 13085 tcpoptions: 13086 if (offset < 5) { 13087 BUMP_MIB(&ip_mib, ipInDiscards); 13088 goto error; 13089 } 13090 /* 13091 * There must be TCP options. 13092 * Make sure we can grab them. 13093 */ 13094 offset <<= 2; 13095 offset += u1; 13096 if (len < offset) { 13097 if (!pullupmsg(mp, offset)) { 13098 BUMP_MIB(&ip_mib, ipInDiscards); 13099 goto error; 13100 } 13101 ipha = (ipha_t *)mp->b_rptr; 13102 len = mp->b_wptr - rptr; 13103 } 13104 } 13105 13106 /* Get the total packet length in len, including headers. */ 13107 if (mp->b_cont) { 13108 multipkttcp: 13109 len = msgdsize(mp); 13110 } 13111 13112 /* 13113 * Check the TCP checksum by pulling together the pseudo- 13114 * header checksum, and passing it to ip_csum to be added in 13115 * with the TCP datagram. 13116 * 13117 * Since we are not using the hwcksum if available we must 13118 * clear the flag. We may come here via tcppullup or tcpoptions. 13119 * If either of these fails along the way the mblk is freed. 13120 * If this logic ever changes and mblk is reused to say send 13121 * ICMP's back, then this flag may need to be cleared in 13122 * other places as well. 13123 */ 13124 DB_CKSUMFLAGS(mp) = 0; 13125 13126 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13127 13128 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13129 #ifdef _BIG_ENDIAN 13130 u1 += IPPROTO_TCP; 13131 #else 13132 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13133 #endif 13134 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13135 /* 13136 * Not M_DATA mblk or its a dup, so do the checksum now. 13137 */ 13138 IP_STAT(ip_in_sw_cksum); 13139 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13140 BUMP_MIB(&ip_mib, tcpInErrs); 13141 goto error; 13142 } 13143 13144 IP_STAT(ip_tcp_slow_path); 13145 goto try_again; 13146 #undef iphs 13147 #undef rptr 13148 13149 error: 13150 freemsg(first_mp); 13151 slow_done: 13152 return (NULL); 13153 } 13154 13155 /* ARGSUSED */ 13156 static void 13157 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13158 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13159 { 13160 conn_t *connp; 13161 uint32_t sum; 13162 uint32_t u1; 13163 ssize_t len; 13164 sctp_hdr_t *sctph; 13165 zoneid_t zoneid = ire->ire_zoneid; 13166 uint32_t pktsum; 13167 uint32_t calcsum; 13168 uint32_t ports; 13169 uint_t ipif_seqid; 13170 in6_addr_t map_src, map_dst; 13171 ill_t *ill = (ill_t *)q->q_ptr; 13172 13173 #define rptr ((uchar_t *)ipha) 13174 13175 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13176 13177 /* u1 is # words of IP options */ 13178 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13179 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13180 13181 /* IP options present */ 13182 if (u1 > 0) { 13183 goto ipoptions; 13184 } else { 13185 /* Check the IP header checksum. */ 13186 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13187 #define uph ((uint16_t *)ipha) 13188 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13189 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13190 #undef uph 13191 /* finish doing IP checksum */ 13192 sum = (sum & 0xFFFF) + (sum >> 16); 13193 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13194 /* 13195 * Don't verify header checksum if this packet 13196 * is coming back from AH/ESP as we already did it. 13197 */ 13198 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13199 BUMP_MIB(&ip_mib, ipInCksumErrs); 13200 goto error; 13201 } 13202 } 13203 /* 13204 * Since there is no SCTP h/w cksum support yet, just 13205 * clear the flag. 13206 */ 13207 DB_CKSUMFLAGS(mp) = 0; 13208 } 13209 13210 /* 13211 * Don't verify header checksum if this packet is coming 13212 * back from AH/ESP as we already did it. 13213 */ 13214 if (!mctl_present) { 13215 UPDATE_IB_PKT_COUNT(ire); 13216 ire->ire_last_used_time = lbolt; 13217 } 13218 13219 /* packet part of fragmented IP packet? */ 13220 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13221 if (u1 & (IPH_MF | IPH_OFFSET)) 13222 goto fragmented; 13223 13224 /* u1 = IP header length (20 bytes) */ 13225 u1 = IP_SIMPLE_HDR_LENGTH; 13226 13227 find_sctp_client: 13228 /* Pullup if we don't have the sctp common header. */ 13229 len = MBLKL(mp); 13230 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13231 if (mp->b_cont == NULL || 13232 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13233 BUMP_MIB(&ip_mib, ipInDiscards); 13234 goto error; 13235 } 13236 ipha = (ipha_t *)mp->b_rptr; 13237 len = MBLKL(mp); 13238 } 13239 13240 sctph = (sctp_hdr_t *)(rptr + u1); 13241 #ifdef DEBUG 13242 if (!skip_sctp_cksum) { 13243 #endif 13244 pktsum = sctph->sh_chksum; 13245 sctph->sh_chksum = 0; 13246 calcsum = sctp_cksum(mp, u1); 13247 if (calcsum != pktsum) { 13248 BUMP_MIB(&sctp_mib, sctpChecksumError); 13249 goto error; 13250 } 13251 sctph->sh_chksum = pktsum; 13252 #ifdef DEBUG /* skip_sctp_cksum */ 13253 } 13254 #endif 13255 /* get the ports */ 13256 ports = *(uint32_t *)&sctph->sh_sport; 13257 13258 ipif_seqid = ire->ire_ipif->ipif_seqid; 13259 IRE_REFRELE(ire); 13260 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13261 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13262 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13263 mp)) == NULL) { 13264 /* Check for raw socket or OOTB handling */ 13265 goto no_conn; 13266 } 13267 13268 /* Found a client; up it goes */ 13269 BUMP_MIB(&ip_mib, ipInDelivers); 13270 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13271 return; 13272 13273 no_conn: 13274 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13275 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13276 return; 13277 13278 ipoptions: 13279 DB_CKSUMFLAGS(mp) = 0; 13280 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13281 goto slow_done; 13282 13283 UPDATE_IB_PKT_COUNT(ire); 13284 ire->ire_last_used_time = lbolt; 13285 13286 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13287 if (u1 & (IPH_MF | IPH_OFFSET)) { 13288 fragmented: 13289 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13290 goto slow_done; 13291 /* 13292 * Make sure that first_mp points back to mp as 13293 * the mp we came in with could have changed in 13294 * ip_rput_fragment(). 13295 */ 13296 ASSERT(!mctl_present); 13297 ipha = (ipha_t *)mp->b_rptr; 13298 first_mp = mp; 13299 } 13300 13301 /* Now we have a complete datagram, destined for this machine. */ 13302 u1 = IPH_HDR_LENGTH(ipha); 13303 goto find_sctp_client; 13304 #undef iphs 13305 #undef rptr 13306 13307 error: 13308 freemsg(first_mp); 13309 slow_done: 13310 IRE_REFRELE(ire); 13311 } 13312 13313 #define VER_BITS 0xF0 13314 #define VERSION_6 0x60 13315 13316 static boolean_t 13317 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13318 ipaddr_t *dstp) 13319 { 13320 uint_t opt_len; 13321 ipha_t *ipha; 13322 ssize_t len; 13323 uint_t pkt_len; 13324 13325 IP_STAT(ip_ipoptions); 13326 ipha = *iphapp; 13327 13328 #define rptr ((uchar_t *)ipha) 13329 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13330 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13331 BUMP_MIB(&ip_mib, ipInIPv6); 13332 freemsg(mp); 13333 return (B_FALSE); 13334 } 13335 13336 /* multiple mblk or too short */ 13337 pkt_len = ntohs(ipha->ipha_length); 13338 13339 /* Get the number of words of IP options in the IP header. */ 13340 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13341 if (opt_len) { 13342 /* IP Options present! Validate and process. */ 13343 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13344 BUMP_MIB(&ip_mib, ipInHdrErrors); 13345 goto done; 13346 } 13347 /* 13348 * Recompute complete header length and make sure we 13349 * have access to all of it. 13350 */ 13351 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13352 if (len > (mp->b_wptr - rptr)) { 13353 if (len > pkt_len) { 13354 BUMP_MIB(&ip_mib, ipInHdrErrors); 13355 goto done; 13356 } 13357 if (!pullupmsg(mp, len)) { 13358 BUMP_MIB(&ip_mib, ipInDiscards); 13359 goto done; 13360 } 13361 ipha = (ipha_t *)mp->b_rptr; 13362 } 13363 /* 13364 * Go off to ip_rput_options which returns the next hop 13365 * destination address, which may have been affected 13366 * by source routing. 13367 */ 13368 IP_STAT(ip_opt); 13369 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13370 return (B_FALSE); 13371 } 13372 } 13373 *iphapp = ipha; 13374 return (B_TRUE); 13375 done: 13376 /* clear b_prev - used by ip_mroute_decap */ 13377 mp->b_prev = NULL; 13378 freemsg(mp); 13379 return (B_FALSE); 13380 #undef rptr 13381 } 13382 13383 /* 13384 * Deal with the fact that there is no ire for the destination. 13385 * The incoming ill (in_ill) is passed in to ip_newroute only 13386 * in the case of packets coming from mobile ip forward tunnel. 13387 * It must be null otherwise. 13388 */ 13389 static ire_t * 13390 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13391 ipaddr_t dst) 13392 { 13393 ipha_t *ipha; 13394 ill_t *ill; 13395 ire_t *ire; 13396 boolean_t check_multirt = B_FALSE; 13397 13398 ipha = (ipha_t *)mp->b_rptr; 13399 ill = (ill_t *)q->q_ptr; 13400 13401 ASSERT(ill != NULL); 13402 /* 13403 * No IRE for this destination, so it can't be for us. 13404 * Unless we are forwarding, drop the packet. 13405 * We have to let source routed packets through 13406 * since we don't yet know if they are 'ping -l' 13407 * packets i.e. if they will go out over the 13408 * same interface as they came in on. 13409 */ 13410 if (ll_multicast) { 13411 freemsg(mp); 13412 return (NULL); 13413 } 13414 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13415 BUMP_MIB(&ip_mib, ipForwProhibits); 13416 freemsg(mp); 13417 return (NULL); 13418 } 13419 13420 /* 13421 * Mark this packet as having originated externally. 13422 * 13423 * For non-forwarding code path, ire_send later double 13424 * checks this interface to see if it is still exists 13425 * post-ARP resolution. 13426 * 13427 * Also, IPQOS uses this to differentiate between 13428 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13429 * QOS packet processing in ip_wput_attach_llhdr(). 13430 * The QoS module can mark the b_band for a fastpath message 13431 * or the dl_priority field in a unitdata_req header for 13432 * CoS marking. This info can only be found in 13433 * ip_wput_attach_llhdr(). 13434 */ 13435 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13436 /* 13437 * Clear the indication that this may have a hardware checksum 13438 * as we are not using it 13439 */ 13440 DB_CKSUMFLAGS(mp) = 0; 13441 13442 if (in_ill != NULL) { 13443 /* 13444 * Now hand the packet to ip_newroute. 13445 */ 13446 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13447 return (NULL); 13448 } 13449 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13450 MBLK_GETLABEL(mp)); 13451 13452 if (ire == NULL && check_multirt) { 13453 /* Let ip_newroute handle CGTP */ 13454 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13455 return (NULL); 13456 } 13457 13458 if (ire != NULL) 13459 return (ire); 13460 13461 mp->b_prev = mp->b_next = 0; 13462 /* send icmp unreachable */ 13463 q = WR(q); 13464 /* Sent by forwarding path, and router is global zone */ 13465 if (ip_source_routed(ipha)) { 13466 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13467 GLOBAL_ZONEID); 13468 } else { 13469 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13470 } 13471 13472 return (NULL); 13473 13474 } 13475 13476 /* 13477 * check ip header length and align it. 13478 */ 13479 static boolean_t 13480 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13481 { 13482 ssize_t len; 13483 ill_t *ill; 13484 ipha_t *ipha; 13485 13486 len = MBLKL(mp); 13487 13488 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13489 if (!OK_32PTR(mp->b_rptr)) 13490 IP_STAT(ip_notaligned1); 13491 else 13492 IP_STAT(ip_notaligned2); 13493 /* Guard against bogus device drivers */ 13494 if (len < 0) { 13495 /* clear b_prev - used by ip_mroute_decap */ 13496 mp->b_prev = NULL; 13497 BUMP_MIB(&ip_mib, ipInHdrErrors); 13498 freemsg(mp); 13499 return (B_FALSE); 13500 } 13501 13502 if (ip_rput_pullups++ == 0) { 13503 ill = (ill_t *)q->q_ptr; 13504 ipha = (ipha_t *)mp->b_rptr; 13505 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13506 "ip_check_and_align_header: %s forced us to " 13507 " pullup pkt, hdr len %ld, hdr addr %p", 13508 ill->ill_name, len, ipha); 13509 } 13510 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13511 /* clear b_prev - used by ip_mroute_decap */ 13512 mp->b_prev = NULL; 13513 BUMP_MIB(&ip_mib, ipInDiscards); 13514 freemsg(mp); 13515 return (B_FALSE); 13516 } 13517 } 13518 return (B_TRUE); 13519 } 13520 13521 static boolean_t 13522 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13523 { 13524 ill_group_t *ill_group; 13525 ill_group_t *ire_group; 13526 queue_t *q; 13527 ill_t *ire_ill; 13528 uint_t ill_ifindex; 13529 13530 q = *qp; 13531 /* 13532 * We need to check to make sure the packet came in 13533 * on the queue associated with the destination IRE. 13534 * Note that for multicast packets and broadcast packets sent to 13535 * a broadcast address which is shared between multiple interfaces 13536 * we should not do this since we just got a random broadcast ire. 13537 */ 13538 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13539 boolean_t check_multi = B_TRUE; 13540 13541 /* 13542 * This packet came in on an interface other than the 13543 * one associated with the destination address. 13544 * "Gateway" it to the appropriate interface here. 13545 * As long as the ills belong to the same group, 13546 * we don't consider them to arriving on the wrong 13547 * interface. Thus, when the switch is doing inbound 13548 * load spreading, we won't drop packets when we 13549 * are doing strict multihoming checks. Note, the 13550 * same holds true for 'usesrc groups' where the 13551 * destination address may belong to another interface 13552 * to allow multipathing to happen 13553 */ 13554 ill_group = ill->ill_group; 13555 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13556 ill_ifindex = ill->ill_usesrc_ifindex; 13557 ire_group = ire_ill->ill_group; 13558 13559 /* 13560 * If it's part of the same IPMP group, or if it's a legal 13561 * address on the 'usesrc' interface, then bypass strict 13562 * checks. 13563 */ 13564 if (ill_group != NULL && ill_group == ire_group) { 13565 check_multi = B_FALSE; 13566 } else if (ill_ifindex != 0 && 13567 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13568 check_multi = B_FALSE; 13569 } 13570 13571 if (check_multi && 13572 ip_strict_dst_multihoming && 13573 ((ill->ill_flags & 13574 ire->ire_ipif->ipif_ill->ill_flags & 13575 ILLF_ROUTER) == 0)) { 13576 /* Drop packet */ 13577 BUMP_MIB(&ip_mib, ipForwProhibits); 13578 freemsg(mp); 13579 return (B_TRUE); 13580 } 13581 13582 /* 13583 * Change the queue (for non-virtual destination network 13584 * interfaces) and ip_rput_local will be called with the right 13585 * queue 13586 */ 13587 q = ire->ire_rfq; 13588 } 13589 /* Must be broadcast. We'll take it. */ 13590 *qp = q; 13591 return (B_FALSE); 13592 } 13593 13594 ire_t * 13595 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13596 { 13597 ipha_t *ipha; 13598 ipaddr_t ip_dst, ip_src; 13599 ire_t *src_ire = NULL; 13600 ill_t *stq_ill; 13601 uint_t hlen; 13602 uint32_t sum; 13603 queue_t *dev_q; 13604 boolean_t check_multirt = B_FALSE; 13605 13606 13607 ipha = (ipha_t *)mp->b_rptr; 13608 13609 /* 13610 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13611 * The loopback address check for both src and dst has already 13612 * been checked in ip_input 13613 */ 13614 ip_dst = ntohl(dst); 13615 ip_src = ntohl(ipha->ipha_src); 13616 13617 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13618 IN_CLASSD(ip_src)) { 13619 BUMP_MIB(&ip_mib, ipForwProhibits); 13620 goto drop; 13621 } 13622 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13623 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13624 13625 if (src_ire != NULL) { 13626 BUMP_MIB(&ip_mib, ipForwProhibits); 13627 goto drop; 13628 } 13629 13630 /* No ire cache of nexthop. So first create one */ 13631 if (ire == NULL) { 13632 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13633 /* 13634 * We only come to ip_fast_forward if ip_cgtp_filter is 13635 * is not set. So upon return from ire_forward 13636 * check_multirt should remain as false. 13637 */ 13638 ASSERT(!check_multirt); 13639 if (ire == NULL) { 13640 BUMP_MIB(&ip_mib, ipInDiscards); 13641 mp->b_prev = mp->b_next = 0; 13642 /* send icmp unreachable */ 13643 /* Sent by forwarding path, and router is global zone */ 13644 if (ip_source_routed(ipha)) { 13645 icmp_unreachable(ill->ill_wq, mp, 13646 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13647 } else { 13648 icmp_unreachable(ill->ill_wq, mp, 13649 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13650 } 13651 return (ire); 13652 } 13653 } 13654 13655 /* 13656 * Forwarding fastpath exception case: 13657 * If either of the follwoing case is true, we take 13658 * the slowpath 13659 * o forwarding is not enabled 13660 * o incoming and outgoing interface are the same, or the same 13661 * IPMP group 13662 * o corresponding ire is in incomplete state 13663 * o packet needs fragmentation 13664 * 13665 * The codeflow from here on is thus: 13666 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13667 */ 13668 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13669 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13670 !(ill->ill_flags & ILLF_ROUTER) || 13671 (ill == stq_ill) || 13672 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13673 (ire->ire_nce == NULL) || 13674 (ire->ire_nce->nce_state != ND_REACHABLE) || 13675 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13676 ipha->ipha_ttl <= 1) { 13677 ip_rput_process_forward(ill->ill_rq, mp, ire, 13678 ipha, ill, B_FALSE); 13679 return (ire); 13680 } 13681 13682 DTRACE_PROBE4(ip4__forwarding__start, 13683 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13684 13685 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 13686 ill, stq_ill, ipha, mp, mp); 13687 13688 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13689 13690 if (mp == NULL) 13691 goto drop; 13692 13693 mp->b_datap->db_struioun.cksum.flags = 0; 13694 /* Adjust the checksum to reflect the ttl decrement. */ 13695 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13696 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13697 ipha->ipha_ttl--; 13698 13699 dev_q = ire->ire_stq->q_next; 13700 if ((dev_q->q_next != NULL || 13701 dev_q->q_first != NULL) && !canput(dev_q)) { 13702 goto indiscard; 13703 } 13704 13705 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13706 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13707 13708 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13709 mblk_t *mpip = mp; 13710 13711 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13712 if (mp != NULL) { 13713 DTRACE_PROBE4(ip4__physical__out__start, 13714 ill_t *, NULL, ill_t *, stq_ill, 13715 ipha_t *, ipha, mblk_t *, mp); 13716 FW_HOOKS(ip4_physical_out_event, 13717 ipv4firewall_physical_out, 13718 NULL, stq_ill, ipha, mp, mpip); 13719 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13720 mp); 13721 if (mp == NULL) 13722 goto drop; 13723 13724 UPDATE_IB_PKT_COUNT(ire); 13725 ire->ire_last_used_time = lbolt; 13726 BUMP_MIB(&ip_mib, ipForwDatagrams); 13727 putnext(ire->ire_stq, mp); 13728 return (ire); 13729 } 13730 } 13731 13732 indiscard: 13733 BUMP_MIB(&ip_mib, ipInDiscards); 13734 drop: 13735 if (mp != NULL) 13736 freemsg(mp); 13737 if (src_ire != NULL) 13738 ire_refrele(src_ire); 13739 return (ire); 13740 13741 } 13742 13743 /* 13744 * This function is called in the forwarding slowpath, when 13745 * either the ire lacks the link-layer address, or the packet needs 13746 * further processing(eg. fragmentation), before transmission. 13747 */ 13748 13749 static void 13750 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13751 ill_t *ill, boolean_t ll_multicast) 13752 { 13753 ill_group_t *ill_group; 13754 ill_group_t *ire_group; 13755 queue_t *dev_q; 13756 ire_t *src_ire; 13757 13758 ASSERT(ire->ire_stq != NULL); 13759 13760 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13761 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13762 13763 if (ll_multicast != 0) 13764 goto drop_pkt; 13765 13766 /* 13767 * check if ipha_src is a broadcast address. Note that this 13768 * check is redundant when we get here from ip_fast_forward() 13769 * which has already done this check. However, since we can 13770 * also get here from ip_rput_process_broadcast() or, for 13771 * for the slow path through ip_fast_forward(), we perform 13772 * the check again for code-reusability 13773 */ 13774 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13775 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13776 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13777 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13778 if (src_ire != NULL) 13779 ire_refrele(src_ire); 13780 BUMP_MIB(&ip_mib, ipForwProhibits); 13781 ip2dbg(("ip_rput_process_forward: Received packet with" 13782 " bad src/dst address on %s\n", ill->ill_name)); 13783 goto drop_pkt; 13784 } 13785 13786 ill_group = ill->ill_group; 13787 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13788 /* 13789 * Check if we want to forward this one at this time. 13790 * We allow source routed packets on a host provided that 13791 * they go out the same interface or same interface group 13792 * as they came in on. 13793 * 13794 * XXX To be quicker, we may wish to not chase pointers to 13795 * get the ILLF_ROUTER flag and instead store the 13796 * forwarding policy in the ire. An unfortunate 13797 * side-effect of that would be requiring an ire flush 13798 * whenever the ILLF_ROUTER flag changes. 13799 */ 13800 if (((ill->ill_flags & 13801 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13802 ILLF_ROUTER) == 0) && 13803 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13804 (ill_group != NULL && ill_group == ire_group)))) { 13805 BUMP_MIB(&ip_mib, ipForwProhibits); 13806 if (ip_source_routed(ipha)) { 13807 q = WR(q); 13808 /* 13809 * Clear the indication that this may have 13810 * hardware checksum as we are not using it. 13811 */ 13812 DB_CKSUMFLAGS(mp) = 0; 13813 /* Sent by forwarding path, and router is global zone */ 13814 icmp_unreachable(q, mp, 13815 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13816 return; 13817 } 13818 goto drop_pkt; 13819 } 13820 13821 /* Packet is being forwarded. Turning off hwcksum flag. */ 13822 DB_CKSUMFLAGS(mp) = 0; 13823 if (ip_g_send_redirects) { 13824 /* 13825 * Check whether the incoming interface and outgoing 13826 * interface is part of the same group. If so, 13827 * send redirects. 13828 * 13829 * Check the source address to see if it originated 13830 * on the same logical subnet it is going back out on. 13831 * If so, we should be able to send it a redirect. 13832 * Avoid sending a redirect if the destination 13833 * is directly connected (i.e., ipha_dst is the same 13834 * as ire_gateway_addr or the ire_addr of the 13835 * nexthop IRE_CACHE ), or if the packet was source 13836 * routed out this interface. 13837 */ 13838 ipaddr_t src, nhop; 13839 mblk_t *mp1; 13840 ire_t *nhop_ire = NULL; 13841 13842 /* 13843 * Check whether ire_rfq and q are from the same ill 13844 * or if they are not same, they at least belong 13845 * to the same group. If so, send redirects. 13846 */ 13847 if ((ire->ire_rfq == q || 13848 (ill_group != NULL && ill_group == ire_group)) && 13849 !ip_source_routed(ipha)) { 13850 13851 nhop = (ire->ire_gateway_addr != 0 ? 13852 ire->ire_gateway_addr : ire->ire_addr); 13853 13854 if (ipha->ipha_dst == nhop) { 13855 /* 13856 * We avoid sending a redirect if the 13857 * destination is directly connected 13858 * because it is possible that multiple 13859 * IP subnets may have been configured on 13860 * the link, and the source may not 13861 * be on the same subnet as ip destination, 13862 * even though they are on the same 13863 * physical link. 13864 */ 13865 goto sendit; 13866 } 13867 13868 src = ipha->ipha_src; 13869 13870 /* 13871 * We look up the interface ire for the nexthop, 13872 * to see if ipha_src is in the same subnet 13873 * as the nexthop. 13874 * 13875 * Note that, if, in the future, IRE_CACHE entries 13876 * are obsoleted, this lookup will not be needed, 13877 * as the ire passed to this function will be the 13878 * same as the nhop_ire computed below. 13879 */ 13880 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 13881 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 13882 0, NULL, MATCH_IRE_TYPE); 13883 13884 if (nhop_ire != NULL) { 13885 if ((src & nhop_ire->ire_mask) == 13886 (nhop & nhop_ire->ire_mask)) { 13887 /* 13888 * The source is directly connected. 13889 * Just copy the ip header (which is 13890 * in the first mblk) 13891 */ 13892 mp1 = copyb(mp); 13893 if (mp1 != NULL) { 13894 icmp_send_redirect(WR(q), mp1, 13895 nhop); 13896 } 13897 } 13898 ire_refrele(nhop_ire); 13899 } 13900 } 13901 } 13902 sendit: 13903 dev_q = ire->ire_stq->q_next; 13904 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13905 BUMP_MIB(&ip_mib, ipInDiscards); 13906 freemsg(mp); 13907 return; 13908 } 13909 13910 ip_rput_forward(ire, ipha, mp, ill); 13911 return; 13912 13913 drop_pkt: 13914 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 13915 freemsg(mp); 13916 } 13917 13918 ire_t * 13919 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13920 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13921 { 13922 queue_t *q; 13923 uint16_t hcksumflags; 13924 13925 q = *qp; 13926 13927 /* 13928 * Clear the indication that this may have hardware 13929 * checksum as we are not using it for forwarding. 13930 */ 13931 hcksumflags = DB_CKSUMFLAGS(mp); 13932 DB_CKSUMFLAGS(mp) = 0; 13933 13934 /* 13935 * Directed broadcast forwarding: if the packet came in over a 13936 * different interface then it is routed out over we can forward it. 13937 */ 13938 if (ipha->ipha_protocol == IPPROTO_TCP) { 13939 ire_refrele(ire); 13940 freemsg(mp); 13941 BUMP_MIB(&ip_mib, ipInDiscards); 13942 return (NULL); 13943 } 13944 /* 13945 * For multicast we have set dst to be INADDR_BROADCAST 13946 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13947 * only for broadcast packets. 13948 */ 13949 if (!CLASSD(ipha->ipha_dst)) { 13950 ire_t *new_ire; 13951 ipif_t *ipif; 13952 /* 13953 * For ill groups, as the switch duplicates broadcasts 13954 * across all the ports, we need to filter out and 13955 * send up only one copy. There is one copy for every 13956 * broadcast address on each ill. Thus, we look for a 13957 * specific IRE on this ill and look at IRE_MARK_NORECV 13958 * later to see whether this ill is eligible to receive 13959 * them or not. ill_nominate_bcast_rcv() nominates only 13960 * one set of IREs for receiving. 13961 */ 13962 13963 ipif = ipif_get_next_ipif(NULL, ill); 13964 if (ipif == NULL) { 13965 ire_refrele(ire); 13966 freemsg(mp); 13967 BUMP_MIB(&ip_mib, ipInDiscards); 13968 return (NULL); 13969 } 13970 new_ire = ire_ctable_lookup(dst, 0, 0, 13971 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13972 ipif_refrele(ipif); 13973 13974 if (new_ire != NULL) { 13975 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13976 ire_refrele(ire); 13977 ire_refrele(new_ire); 13978 freemsg(mp); 13979 BUMP_MIB(&ip_mib, ipInDiscards); 13980 return (NULL); 13981 } 13982 /* 13983 * In the special case of multirouted broadcast 13984 * packets, we unconditionally need to "gateway" 13985 * them to the appropriate interface here. 13986 * In the normal case, this cannot happen, because 13987 * there is no broadcast IRE tagged with the 13988 * RTF_MULTIRT flag. 13989 */ 13990 if (new_ire->ire_flags & RTF_MULTIRT) { 13991 ire_refrele(new_ire); 13992 if (ire->ire_rfq != NULL) { 13993 q = ire->ire_rfq; 13994 *qp = q; 13995 } 13996 } else { 13997 ire_refrele(ire); 13998 ire = new_ire; 13999 } 14000 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14001 if (!ip_g_forward_directed_bcast) { 14002 /* 14003 * Free the message if 14004 * ip_g_forward_directed_bcast is turned 14005 * off for non-local broadcast. 14006 */ 14007 ire_refrele(ire); 14008 freemsg(mp); 14009 BUMP_MIB(&ip_mib, ipInDiscards); 14010 return (NULL); 14011 } 14012 } else { 14013 /* 14014 * This CGTP packet successfully passed the 14015 * CGTP filter, but the related CGTP 14016 * broadcast IRE has not been found, 14017 * meaning that the redundant ipif is 14018 * probably down. However, if we discarded 14019 * this packet, its duplicate would be 14020 * filtered out by the CGTP filter so none 14021 * of them would get through. So we keep 14022 * going with this one. 14023 */ 14024 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14025 if (ire->ire_rfq != NULL) { 14026 q = ire->ire_rfq; 14027 *qp = q; 14028 } 14029 } 14030 } 14031 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 14032 /* 14033 * Verify that there are not more then one 14034 * IRE_BROADCAST with this broadcast address which 14035 * has ire_stq set. 14036 * TODO: simplify, loop over all IRE's 14037 */ 14038 ire_t *ire1; 14039 int num_stq = 0; 14040 mblk_t *mp1; 14041 14042 /* Find the first one with ire_stq set */ 14043 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14044 for (ire1 = ire; ire1 && 14045 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14046 ire1 = ire1->ire_next) 14047 ; 14048 if (ire1) { 14049 ire_refrele(ire); 14050 ire = ire1; 14051 IRE_REFHOLD(ire); 14052 } 14053 14054 /* Check if there are additional ones with stq set */ 14055 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14056 if (ire->ire_addr != ire1->ire_addr) 14057 break; 14058 if (ire1->ire_stq) { 14059 num_stq++; 14060 break; 14061 } 14062 } 14063 rw_exit(&ire->ire_bucket->irb_lock); 14064 if (num_stq == 1 && ire->ire_stq != NULL) { 14065 ip1dbg(("ip_rput_process_broadcast: directed " 14066 "broadcast to 0x%x\n", 14067 ntohl(ire->ire_addr))); 14068 mp1 = copymsg(mp); 14069 if (mp1) { 14070 switch (ipha->ipha_protocol) { 14071 case IPPROTO_UDP: 14072 ip_udp_input(q, mp1, ipha, ire, ill); 14073 break; 14074 default: 14075 ip_proto_input(q, mp1, ipha, ire, ill); 14076 break; 14077 } 14078 } 14079 /* 14080 * Adjust ttl to 2 (1+1 - the forward engine 14081 * will decrement it by one. 14082 */ 14083 if (ip_csum_hdr(ipha)) { 14084 BUMP_MIB(&ip_mib, ipInCksumErrs); 14085 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14086 freemsg(mp); 14087 ire_refrele(ire); 14088 return (NULL); 14089 } 14090 ipha->ipha_ttl = ip_broadcast_ttl + 1; 14091 ipha->ipha_hdr_checksum = 0; 14092 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14093 ip_rput_process_forward(q, mp, ire, ipha, 14094 ill, ll_multicast); 14095 ire_refrele(ire); 14096 return (NULL); 14097 } 14098 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14099 ntohl(ire->ire_addr))); 14100 } 14101 14102 14103 /* Restore any hardware checksum flags */ 14104 DB_CKSUMFLAGS(mp) = hcksumflags; 14105 return (ire); 14106 } 14107 14108 /* ARGSUSED */ 14109 static boolean_t 14110 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14111 int *ll_multicast, ipaddr_t *dstp) 14112 { 14113 /* 14114 * Forward packets only if we have joined the allmulti 14115 * group on this interface. 14116 */ 14117 if (ip_g_mrouter && ill->ill_join_allmulti) { 14118 int retval; 14119 14120 /* 14121 * Clear the indication that this may have hardware 14122 * checksum as we are not using it. 14123 */ 14124 DB_CKSUMFLAGS(mp) = 0; 14125 retval = ip_mforward(ill, ipha, mp); 14126 /* ip_mforward updates mib variables if needed */ 14127 /* clear b_prev - used by ip_mroute_decap */ 14128 mp->b_prev = NULL; 14129 14130 switch (retval) { 14131 case 0: 14132 /* 14133 * pkt is okay and arrived on phyint. 14134 * 14135 * If we are running as a multicast router 14136 * we need to see all IGMP and/or PIM packets. 14137 */ 14138 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14139 (ipha->ipha_protocol == IPPROTO_PIM)) { 14140 goto done; 14141 } 14142 break; 14143 case -1: 14144 /* pkt is mal-formed, toss it */ 14145 goto drop_pkt; 14146 case 1: 14147 /* pkt is okay and arrived on a tunnel */ 14148 /* 14149 * If we are running a multicast router 14150 * we need to see all igmp packets. 14151 */ 14152 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14153 *dstp = INADDR_BROADCAST; 14154 *ll_multicast = 1; 14155 return (B_FALSE); 14156 } 14157 14158 goto drop_pkt; 14159 } 14160 } 14161 14162 ILM_WALKER_HOLD(ill); 14163 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14164 /* 14165 * This might just be caused by the fact that 14166 * multiple IP Multicast addresses map to the same 14167 * link layer multicast - no need to increment counter! 14168 */ 14169 ILM_WALKER_RELE(ill); 14170 freemsg(mp); 14171 return (B_TRUE); 14172 } 14173 ILM_WALKER_RELE(ill); 14174 done: 14175 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14176 /* 14177 * This assumes the we deliver to all streams for multicast 14178 * and broadcast packets. 14179 */ 14180 *dstp = INADDR_BROADCAST; 14181 *ll_multicast = 1; 14182 return (B_FALSE); 14183 drop_pkt: 14184 ip2dbg(("ip_rput: drop pkt\n")); 14185 freemsg(mp); 14186 return (B_TRUE); 14187 } 14188 14189 static boolean_t 14190 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14191 int *ll_multicast, mblk_t **mpp) 14192 { 14193 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14194 boolean_t must_copy = B_FALSE; 14195 struct iocblk *iocp; 14196 ipha_t *ipha; 14197 14198 #define rptr ((uchar_t *)ipha) 14199 14200 first_mp = *first_mpp; 14201 mp = *mpp; 14202 14203 ASSERT(first_mp == mp); 14204 14205 /* 14206 * if db_ref > 1 then copymsg and free original. Packet may be 14207 * changed and do not want other entity who has a reference to this 14208 * message to trip over the changes. This is a blind change because 14209 * trying to catch all places that might change packet is too 14210 * difficult (since it may be a module above this one) 14211 * 14212 * This corresponds to the non-fast path case. We walk down the full 14213 * chain in this case, and check the db_ref count of all the dblks, 14214 * and do a copymsg if required. It is possible that the db_ref counts 14215 * of the data blocks in the mblk chain can be different. 14216 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14217 * count of 1, followed by a M_DATA block with a ref count of 2, if 14218 * 'snoop' is running. 14219 */ 14220 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14221 if (mp1->b_datap->db_ref > 1) { 14222 must_copy = B_TRUE; 14223 break; 14224 } 14225 } 14226 14227 if (must_copy) { 14228 mp1 = copymsg(mp); 14229 if (mp1 == NULL) { 14230 for (mp1 = mp; mp1 != NULL; 14231 mp1 = mp1->b_cont) { 14232 mp1->b_next = NULL; 14233 mp1->b_prev = NULL; 14234 } 14235 freemsg(mp); 14236 BUMP_MIB(&ip_mib, ipInDiscards); 14237 return (B_TRUE); 14238 } 14239 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14240 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14241 /* Copy b_prev - used by ip_mroute_decap */ 14242 to_mp->b_prev = from_mp->b_prev; 14243 from_mp->b_prev = NULL; 14244 } 14245 *first_mpp = first_mp = mp1; 14246 freemsg(mp); 14247 mp = mp1; 14248 *mpp = mp1; 14249 } 14250 14251 ipha = (ipha_t *)mp->b_rptr; 14252 14253 /* 14254 * previous code has a case for M_DATA. 14255 * We want to check how that happens. 14256 */ 14257 ASSERT(first_mp->b_datap->db_type != M_DATA); 14258 switch (first_mp->b_datap->db_type) { 14259 case M_PROTO: 14260 case M_PCPROTO: 14261 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14262 DL_UNITDATA_IND) { 14263 /* Go handle anything other than data elsewhere. */ 14264 ip_rput_dlpi(q, mp); 14265 return (B_TRUE); 14266 } 14267 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14268 /* Ditch the DLPI header. */ 14269 mp1 = mp->b_cont; 14270 ASSERT(first_mp == mp); 14271 *first_mpp = mp1; 14272 freeb(mp); 14273 *mpp = mp1; 14274 return (B_FALSE); 14275 case M_IOCACK: 14276 ip1dbg(("got iocack ")); 14277 iocp = (struct iocblk *)mp->b_rptr; 14278 switch (iocp->ioc_cmd) { 14279 case DL_IOC_HDR_INFO: 14280 ill = (ill_t *)q->q_ptr; 14281 ill_fastpath_ack(ill, mp); 14282 return (B_TRUE); 14283 case SIOCSTUNPARAM: 14284 case OSIOCSTUNPARAM: 14285 /* Go through qwriter_ip */ 14286 break; 14287 case SIOCGTUNPARAM: 14288 case OSIOCGTUNPARAM: 14289 ip_rput_other(NULL, q, mp, NULL); 14290 return (B_TRUE); 14291 default: 14292 putnext(q, mp); 14293 return (B_TRUE); 14294 } 14295 /* FALLTHRU */ 14296 case M_ERROR: 14297 case M_HANGUP: 14298 /* 14299 * Since this is on the ill stream we unconditionally 14300 * bump up the refcount 14301 */ 14302 ill_refhold(ill); 14303 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14304 B_FALSE); 14305 return (B_TRUE); 14306 case M_CTL: 14307 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14308 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14309 IPHADA_M_CTL)) { 14310 /* 14311 * It's an IPsec accelerated packet. 14312 * Make sure that the ill from which we received the 14313 * packet has enabled IPsec hardware acceleration. 14314 */ 14315 if (!(ill->ill_capabilities & 14316 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14317 /* IPsec kstats: bean counter */ 14318 freemsg(mp); 14319 return (B_TRUE); 14320 } 14321 14322 /* 14323 * Make mp point to the mblk following the M_CTL, 14324 * then process according to type of mp. 14325 * After this processing, first_mp will point to 14326 * the data-attributes and mp to the pkt following 14327 * the M_CTL. 14328 */ 14329 mp = first_mp->b_cont; 14330 if (mp == NULL) { 14331 freemsg(first_mp); 14332 return (B_TRUE); 14333 } 14334 /* 14335 * A Hardware Accelerated packet can only be M_DATA 14336 * ESP or AH packet. 14337 */ 14338 if (mp->b_datap->db_type != M_DATA) { 14339 /* non-M_DATA IPsec accelerated packet */ 14340 IPSECHW_DEBUG(IPSECHW_PKT, 14341 ("non-M_DATA IPsec accelerated pkt\n")); 14342 freemsg(first_mp); 14343 return (B_TRUE); 14344 } 14345 ipha = (ipha_t *)mp->b_rptr; 14346 if (ipha->ipha_protocol != IPPROTO_AH && 14347 ipha->ipha_protocol != IPPROTO_ESP) { 14348 IPSECHW_DEBUG(IPSECHW_PKT, 14349 ("non-M_DATA IPsec accelerated pkt\n")); 14350 freemsg(first_mp); 14351 return (B_TRUE); 14352 } 14353 *mpp = mp; 14354 return (B_FALSE); 14355 } 14356 putnext(q, mp); 14357 return (B_TRUE); 14358 case M_FLUSH: 14359 if (*mp->b_rptr & FLUSHW) { 14360 *mp->b_rptr &= ~FLUSHR; 14361 qreply(q, mp); 14362 return (B_TRUE); 14363 } 14364 freemsg(mp); 14365 return (B_TRUE); 14366 case M_IOCNAK: 14367 ip1dbg(("got iocnak ")); 14368 iocp = (struct iocblk *)mp->b_rptr; 14369 switch (iocp->ioc_cmd) { 14370 case DL_IOC_HDR_INFO: 14371 case SIOCSTUNPARAM: 14372 case OSIOCSTUNPARAM: 14373 /* 14374 * Since this is on the ill stream we unconditionally 14375 * bump up the refcount 14376 */ 14377 ill_refhold(ill); 14378 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14379 CUR_OP, B_FALSE); 14380 return (B_TRUE); 14381 case SIOCGTUNPARAM: 14382 case OSIOCGTUNPARAM: 14383 ip_rput_other(NULL, q, mp, NULL); 14384 return (B_TRUE); 14385 default: 14386 break; 14387 } 14388 /* FALLTHRU */ 14389 default: 14390 putnext(q, mp); 14391 return (B_TRUE); 14392 } 14393 } 14394 14395 /* Read side put procedure. Packets coming from the wire arrive here. */ 14396 void 14397 ip_rput(queue_t *q, mblk_t *mp) 14398 { 14399 ill_t *ill; 14400 mblk_t *dmp = NULL; 14401 14402 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14403 14404 ill = (ill_t *)q->q_ptr; 14405 14406 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14407 union DL_primitives *dl; 14408 14409 /* 14410 * Things are opening or closing. Only accept DLPI control 14411 * messages. In the open case, the ill->ill_ipif has not yet 14412 * been created. In the close case, things hanging off the 14413 * ill could have been freed already. In either case it 14414 * may not be safe to proceed further. 14415 */ 14416 14417 dl = (union DL_primitives *)mp->b_rptr; 14418 if ((mp->b_datap->db_type != M_PCPROTO) || 14419 (dl->dl_primitive == DL_UNITDATA_IND)) { 14420 /* 14421 * Also SIOC[GS]TUN* ioctls can come here. 14422 */ 14423 inet_freemsg(mp); 14424 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14425 "ip_input_end: q %p (%S)", q, "uninit"); 14426 return; 14427 } 14428 } 14429 14430 /* 14431 * if db_ref > 1 then copymsg and free original. Packet may be 14432 * changed and we do not want the other entity who has a reference to 14433 * this message to trip over the changes. This is a blind change because 14434 * trying to catch all places that might change the packet is too 14435 * difficult. 14436 * 14437 * This corresponds to the fast path case, where we have a chain of 14438 * M_DATA mblks. We check the db_ref count of only the 1st data block 14439 * in the mblk chain. There doesn't seem to be a reason why a device 14440 * driver would send up data with varying db_ref counts in the mblk 14441 * chain. In any case the Fast path is a private interface, and our 14442 * drivers don't do such a thing. Given the above assumption, there is 14443 * no need to walk down the entire mblk chain (which could have a 14444 * potential performance problem) 14445 */ 14446 if (mp->b_datap->db_ref > 1) { 14447 mblk_t *mp1; 14448 boolean_t adjusted = B_FALSE; 14449 IP_STAT(ip_db_ref); 14450 14451 /* 14452 * The IP_RECVSLLA option depends on having the link layer 14453 * header. First check that: 14454 * a> the underlying device is of type ether, since this 14455 * option is currently supported only over ethernet. 14456 * b> there is enough room to copy over the link layer header. 14457 * 14458 * Once the checks are done, adjust rptr so that the link layer 14459 * header will be copied via copymsg. Note that, IFT_ETHER may 14460 * be returned by some non-ethernet drivers but in this case the 14461 * second check will fail. 14462 */ 14463 if (ill->ill_type == IFT_ETHER && 14464 (mp->b_rptr - mp->b_datap->db_base) >= 14465 sizeof (struct ether_header)) { 14466 mp->b_rptr -= sizeof (struct ether_header); 14467 adjusted = B_TRUE; 14468 } 14469 mp1 = copymsg(mp); 14470 if (mp1 == NULL) { 14471 mp->b_next = NULL; 14472 /* clear b_prev - used by ip_mroute_decap */ 14473 mp->b_prev = NULL; 14474 freemsg(mp); 14475 BUMP_MIB(&ip_mib, ipInDiscards); 14476 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14477 "ip_rput_end: q %p (%S)", q, "copymsg"); 14478 return; 14479 } 14480 if (adjusted) { 14481 /* 14482 * Copy is done. Restore the pointer in the _new_ mblk 14483 */ 14484 mp1->b_rptr += sizeof (struct ether_header); 14485 } 14486 /* Copy b_prev - used by ip_mroute_decap */ 14487 mp1->b_prev = mp->b_prev; 14488 mp->b_prev = NULL; 14489 freemsg(mp); 14490 mp = mp1; 14491 } 14492 if (DB_TYPE(mp) == M_DATA) { 14493 dmp = mp; 14494 } else if (DB_TYPE(mp) == M_PROTO && 14495 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14496 dmp = mp->b_cont; 14497 } 14498 if (dmp != NULL) { 14499 /* 14500 * IP header ptr not aligned? 14501 * OR IP header not complete in first mblk 14502 */ 14503 if (!OK_32PTR(dmp->b_rptr) || 14504 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14505 if (!ip_check_and_align_header(q, dmp)) 14506 return; 14507 } 14508 } 14509 14510 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14511 "ip_rput_end: q %p (%S)", q, "end"); 14512 14513 ip_input(ill, NULL, mp, NULL); 14514 } 14515 14516 /* 14517 * Direct read side procedure capable of dealing with chains. GLDv3 based 14518 * drivers call this function directly with mblk chains while STREAMS 14519 * read side procedure ip_rput() calls this for single packet with ip_ring 14520 * set to NULL to process one packet at a time. 14521 * 14522 * The ill will always be valid if this function is called directly from 14523 * the driver. 14524 * 14525 * If ip_input() is called from GLDv3: 14526 * 14527 * - This must be a non-VLAN IP stream. 14528 * - 'mp' is either an untagged or a special priority-tagged packet. 14529 * - Any VLAN tag that was in the MAC header has been stripped. 14530 * 14531 * Thus, there is no need to adjust b_rptr in this function. 14532 */ 14533 /* ARGSUSED */ 14534 void 14535 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14536 struct mac_header_info_s *mhip) 14537 { 14538 ipaddr_t dst = NULL; 14539 ipaddr_t prev_dst; 14540 ire_t *ire = NULL; 14541 ipha_t *ipha; 14542 uint_t pkt_len; 14543 ssize_t len; 14544 uint_t opt_len; 14545 int ll_multicast; 14546 int cgtp_flt_pkt; 14547 queue_t *q = ill->ill_rq; 14548 squeue_t *curr_sqp = NULL; 14549 mblk_t *head = NULL; 14550 mblk_t *tail = NULL; 14551 mblk_t *first_mp; 14552 mblk_t *mp; 14553 int cnt = 0; 14554 14555 ASSERT(mp_chain != NULL); 14556 ASSERT(ill != NULL); 14557 14558 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14559 14560 #define rptr ((uchar_t *)ipha) 14561 14562 while (mp_chain != NULL) { 14563 first_mp = mp = mp_chain; 14564 mp_chain = mp_chain->b_next; 14565 mp->b_next = NULL; 14566 ll_multicast = 0; 14567 14568 /* 14569 * We do ire caching from one iteration to 14570 * another. In the event the packet chain contains 14571 * all packets from the same dst, this caching saves 14572 * an ire_cache_lookup for each of the succeeding 14573 * packets in a packet chain. 14574 */ 14575 prev_dst = dst; 14576 14577 /* 14578 * ip_input fast path 14579 */ 14580 14581 /* mblk type is not M_DATA */ 14582 if (mp->b_datap->db_type != M_DATA) { 14583 if (ip_rput_process_notdata(q, &first_mp, ill, 14584 &ll_multicast, &mp)) 14585 continue; 14586 } 14587 14588 /* Make sure its an M_DATA and that its aligned */ 14589 ASSERT(mp->b_datap->db_type == M_DATA); 14590 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14591 14592 ipha = (ipha_t *)mp->b_rptr; 14593 len = mp->b_wptr - rptr; 14594 14595 BUMP_MIB(&ip_mib, ipInReceives); 14596 14597 14598 /* multiple mblk or too short */ 14599 pkt_len = ntohs(ipha->ipha_length); 14600 len -= pkt_len; 14601 if (len != 0) { 14602 /* 14603 * Make sure we have data length consistent 14604 * with the IP header. 14605 */ 14606 if (mp->b_cont == NULL) { 14607 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14608 BUMP_MIB(&ip_mib, ipInHdrErrors); 14609 ip2dbg(("ip_input: drop pkt\n")); 14610 freemsg(mp); 14611 continue; 14612 } 14613 mp->b_wptr = rptr + pkt_len; 14614 } else if (len += msgdsize(mp->b_cont)) { 14615 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14616 BUMP_MIB(&ip_mib, ipInHdrErrors); 14617 ip2dbg(("ip_input: drop pkt\n")); 14618 freemsg(mp); 14619 continue; 14620 } 14621 (void) adjmsg(mp, -len); 14622 IP_STAT(ip_multimblk3); 14623 } 14624 } 14625 14626 /* Obtain the dst of the current packet */ 14627 dst = ipha->ipha_dst; 14628 14629 if (IP_LOOPBACK_ADDR(dst) || 14630 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14631 BUMP_MIB(&ip_mib, ipInAddrErrors); 14632 cmn_err(CE_CONT, "dst %X src %X\n", 14633 dst, ipha->ipha_src); 14634 freemsg(mp); 14635 continue; 14636 } 14637 14638 /* 14639 * The event for packets being received from a 'physical' 14640 * interface is placed after validation of the source and/or 14641 * destination address as being local so that packets can be 14642 * redirected to loopback addresses using ipnat. 14643 */ 14644 DTRACE_PROBE4(ip4__physical__in__start, 14645 ill_t *, ill, ill_t *, NULL, 14646 ipha_t *, ipha, mblk_t *, first_mp); 14647 14648 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14649 ill, NULL, ipha, first_mp, mp); 14650 14651 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14652 14653 if (first_mp == NULL) { 14654 continue; 14655 } 14656 dst = ipha->ipha_dst; 14657 14658 /* 14659 * Attach any necessary label information to 14660 * this packet 14661 */ 14662 if (is_system_labeled() && 14663 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14664 BUMP_MIB(&ip_mib, ipInDiscards); 14665 freemsg(mp); 14666 continue; 14667 } 14668 14669 /* 14670 * Reuse the cached ire only if the ipha_dst of the previous 14671 * packet is the same as the current packet AND it is not 14672 * INADDR_ANY. 14673 */ 14674 if (!(dst == prev_dst && dst != INADDR_ANY) && 14675 (ire != NULL)) { 14676 ire_refrele(ire); 14677 ire = NULL; 14678 } 14679 opt_len = ipha->ipha_version_and_hdr_length - 14680 IP_SIMPLE_HDR_VERSION; 14681 14682 /* 14683 * Check to see if we can take the fastpath. 14684 * That is possible if the following conditions are met 14685 * o Tsol disabled 14686 * o CGTP disabled 14687 * o ipp_action_count is 0 14688 * o Mobile IP not running 14689 * o no options in the packet 14690 * o not a RSVP packet 14691 * o not a multicast packet 14692 */ 14693 if (!is_system_labeled() && 14694 !ip_cgtp_filter && ipp_action_count == 0 && 14695 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14696 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14697 !ll_multicast && !CLASSD(dst)) { 14698 if (ire == NULL) 14699 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14700 14701 /* incoming packet is for forwarding */ 14702 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14703 ire = ip_fast_forward(ire, dst, ill, mp); 14704 continue; 14705 } 14706 /* incoming packet is for local consumption */ 14707 if (ire->ire_type & IRE_LOCAL) 14708 goto local; 14709 } 14710 14711 /* 14712 * Disable ire caching for anything more complex 14713 * than the simple fast path case we checked for above. 14714 */ 14715 if (ire != NULL) { 14716 ire_refrele(ire); 14717 ire = NULL; 14718 } 14719 14720 /* Full-blown slow path */ 14721 if (opt_len != 0) { 14722 if (len != 0) 14723 IP_STAT(ip_multimblk4); 14724 else 14725 IP_STAT(ip_ipoptions); 14726 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14727 continue; 14728 } 14729 14730 /* 14731 * Invoke the CGTP (multirouting) filtering module to process 14732 * the incoming packet. Packets identified as duplicates 14733 * must be discarded. Filtering is active only if the 14734 * the ip_cgtp_filter ndd variable is non-zero. 14735 */ 14736 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14737 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14738 cgtp_flt_pkt = 14739 ip_cgtp_filter_ops->cfo_filter(q, mp); 14740 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14741 freemsg(first_mp); 14742 continue; 14743 } 14744 } 14745 14746 /* 14747 * If rsvpd is running, let RSVP daemon handle its processing 14748 * and forwarding of RSVP multicast/unicast packets. 14749 * If rsvpd is not running but mrouted is running, RSVP 14750 * multicast packets are forwarded as multicast traffic 14751 * and RSVP unicast packets are forwarded by unicast router. 14752 * If neither rsvpd nor mrouted is running, RSVP multicast 14753 * packets are not forwarded, but the unicast packets are 14754 * forwarded like unicast traffic. 14755 */ 14756 if (ipha->ipha_protocol == IPPROTO_RSVP && 14757 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14758 /* RSVP packet and rsvpd running. Treat as ours */ 14759 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14760 /* 14761 * This assumes that we deliver to all streams for 14762 * multicast and broadcast packets. 14763 * We have to force ll_multicast to 1 to handle the 14764 * M_DATA messages passed in from ip_mroute_decap. 14765 */ 14766 dst = INADDR_BROADCAST; 14767 ll_multicast = 1; 14768 } else if (CLASSD(dst)) { 14769 /* packet is multicast */ 14770 mp->b_next = NULL; 14771 if (ip_rput_process_multicast(q, mp, ill, ipha, 14772 &ll_multicast, &dst)) 14773 continue; 14774 } 14775 14776 14777 /* 14778 * Check if the packet is coming from the Mobile IP 14779 * forward tunnel interface 14780 */ 14781 if (ill->ill_srcif_refcnt > 0) { 14782 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14783 NULL, ill, MATCH_IRE_TYPE); 14784 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14785 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14786 14787 /* We need to resolve the link layer info */ 14788 ire_refrele(ire); 14789 ire = NULL; 14790 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14791 ll_multicast, dst); 14792 continue; 14793 } 14794 } 14795 14796 if (ire == NULL) { 14797 ire = ire_cache_lookup(dst, ALL_ZONES, 14798 MBLK_GETLABEL(mp)); 14799 } 14800 14801 /* 14802 * If mipagent is running and reverse tunnel is created as per 14803 * mobile node request, then any packet coming through the 14804 * incoming interface from the mobile-node, should be reverse 14805 * tunneled to it's home agent except those that are destined 14806 * to foreign agent only. 14807 * This needs source address based ire lookup. The routing 14808 * entries for source address based lookup are only created by 14809 * mipagent program only when a reverse tunnel is created. 14810 * Reference : RFC2002, RFC2344 14811 */ 14812 if (ill->ill_mrtun_refcnt > 0) { 14813 ipaddr_t srcaddr; 14814 ire_t *tmp_ire; 14815 14816 tmp_ire = ire; /* Save, we might need it later */ 14817 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14818 ire->ire_type != IRE_BROADCAST)) { 14819 srcaddr = ipha->ipha_src; 14820 ire = ire_mrtun_lookup(srcaddr, ill); 14821 if (ire != NULL) { 14822 /* 14823 * Should not be getting iphada packet 14824 * here. we should only get those for 14825 * IRE_LOCAL traffic, excluded above. 14826 * Fail-safe (drop packet) in the event 14827 * hardware is misbehaving. 14828 */ 14829 if (first_mp != mp) { 14830 /* IPsec KSTATS: beancount me */ 14831 freemsg(first_mp); 14832 } else { 14833 /* 14834 * This packet must be forwarded 14835 * to Reverse Tunnel 14836 */ 14837 ip_mrtun_forward(ire, ill, mp); 14838 } 14839 ire_refrele(ire); 14840 ire = NULL; 14841 if (tmp_ire != NULL) { 14842 ire_refrele(tmp_ire); 14843 tmp_ire = NULL; 14844 } 14845 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14846 "ip_input_end: q %p (%S)", 14847 q, "uninit"); 14848 continue; 14849 } 14850 } 14851 /* 14852 * If this packet is from a non-mobilenode or a 14853 * mobile-node which does not request reverse 14854 * tunnel service 14855 */ 14856 ire = tmp_ire; 14857 } 14858 14859 14860 /* 14861 * If we reach here that means the incoming packet satisfies 14862 * one of the following conditions: 14863 * - packet is from a mobile node which does not request 14864 * reverse tunnel 14865 * - packet is from a non-mobile node, which is the most 14866 * common case 14867 * - packet is from a reverse tunnel enabled mobile node 14868 * and destined to foreign agent only 14869 */ 14870 14871 if (ire == NULL) { 14872 /* 14873 * No IRE for this destination, so it can't be for us. 14874 * Unless we are forwarding, drop the packet. 14875 * We have to let source routed packets through 14876 * since we don't yet know if they are 'ping -l' 14877 * packets i.e. if they will go out over the 14878 * same interface as they came in on. 14879 */ 14880 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14881 if (ire == NULL) 14882 continue; 14883 } 14884 14885 /* 14886 * Broadcast IRE may indicate either broadcast or 14887 * multicast packet 14888 */ 14889 if (ire->ire_type == IRE_BROADCAST) { 14890 /* 14891 * Skip broadcast checks if packet is UDP multicast; 14892 * we'd rather not enter ip_rput_process_broadcast() 14893 * unless the packet is broadcast for real, since 14894 * that routine is a no-op for multicast. 14895 */ 14896 if (ipha->ipha_protocol != IPPROTO_UDP || 14897 !CLASSD(ipha->ipha_dst)) { 14898 ire = ip_rput_process_broadcast(&q, mp, 14899 ire, ipha, ill, dst, cgtp_flt_pkt, 14900 ll_multicast); 14901 if (ire == NULL) 14902 continue; 14903 } 14904 } else if (ire->ire_stq != NULL) { 14905 /* fowarding? */ 14906 ip_rput_process_forward(q, mp, ire, ipha, ill, 14907 ll_multicast); 14908 /* ip_rput_process_forward consumed the packet */ 14909 continue; 14910 } 14911 14912 local: 14913 /* packet not for us */ 14914 if (ire->ire_rfq != q) { 14915 if (ip_rput_notforus(&q, mp, ire, ill)) 14916 continue; 14917 } 14918 14919 switch (ipha->ipha_protocol) { 14920 case IPPROTO_TCP: 14921 ASSERT(first_mp == mp); 14922 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14923 mp, 0, q, ip_ring)) != NULL) { 14924 if (curr_sqp == NULL) { 14925 curr_sqp = GET_SQUEUE(mp); 14926 ASSERT(cnt == 0); 14927 cnt++; 14928 head = tail = mp; 14929 } else if (curr_sqp == GET_SQUEUE(mp)) { 14930 ASSERT(tail != NULL); 14931 cnt++; 14932 tail->b_next = mp; 14933 tail = mp; 14934 } else { 14935 /* 14936 * A different squeue. Send the 14937 * chain for the previous squeue on 14938 * its way. This shouldn't happen 14939 * often unless interrupt binding 14940 * changes. 14941 */ 14942 IP_STAT(ip_input_multi_squeue); 14943 squeue_enter_chain(curr_sqp, head, 14944 tail, cnt, SQTAG_IP_INPUT); 14945 curr_sqp = GET_SQUEUE(mp); 14946 head = mp; 14947 tail = mp; 14948 cnt = 1; 14949 } 14950 } 14951 continue; 14952 case IPPROTO_UDP: 14953 ASSERT(first_mp == mp); 14954 ip_udp_input(q, mp, ipha, ire, ill); 14955 continue; 14956 case IPPROTO_SCTP: 14957 ASSERT(first_mp == mp); 14958 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14959 q, dst); 14960 /* ire has been released by ip_sctp_input */ 14961 ire = NULL; 14962 continue; 14963 default: 14964 ip_proto_input(q, first_mp, ipha, ire, ill); 14965 continue; 14966 } 14967 } 14968 14969 if (ire != NULL) 14970 ire_refrele(ire); 14971 14972 if (head != NULL) 14973 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14974 14975 /* 14976 * This code is there just to make netperf/ttcp look good. 14977 * 14978 * Its possible that after being in polling mode (and having cleared 14979 * the backlog), squeues have turned the interrupt frequency higher 14980 * to improve latency at the expense of more CPU utilization (less 14981 * packets per interrupts or more number of interrupts). Workloads 14982 * like ttcp/netperf do manage to tickle polling once in a while 14983 * but for the remaining time, stay in higher interrupt mode since 14984 * their packet arrival rate is pretty uniform and this shows up 14985 * as higher CPU utilization. Since people care about CPU utilization 14986 * while running netperf/ttcp, turn the interrupt frequency back to 14987 * normal/default if polling has not been used in ip_poll_normal_ticks. 14988 */ 14989 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14990 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14991 ip_ring->rr_poll_state &= ~ILL_POLLING; 14992 ip_ring->rr_blank(ip_ring->rr_handle, 14993 ip_ring->rr_normal_blank_time, 14994 ip_ring->rr_normal_pkt_cnt); 14995 } 14996 } 14997 14998 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14999 "ip_input_end: q %p (%S)", q, "end"); 15000 #undef rptr 15001 } 15002 15003 static void 15004 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15005 t_uscalar_t err) 15006 { 15007 if (dl_err == DL_SYSERR) { 15008 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15009 "%s: %s failed: DL_SYSERR (errno %u)\n", 15010 ill->ill_name, dlpi_prim_str(prim), err); 15011 return; 15012 } 15013 15014 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15015 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15016 dlpi_err_str(dl_err)); 15017 } 15018 15019 /* 15020 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15021 * than DL_UNITDATA_IND messages. If we need to process this message 15022 * exclusively, we call qwriter_ip, in which case we also need to call 15023 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15024 */ 15025 void 15026 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15027 { 15028 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15029 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15030 ill_t *ill; 15031 15032 ip1dbg(("ip_rput_dlpi")); 15033 ill = (ill_t *)q->q_ptr; 15034 switch (dloa->dl_primitive) { 15035 case DL_ERROR_ACK: 15036 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15037 "%s (0x%x), unix %u\n", ill->ill_name, 15038 dlpi_prim_str(dlea->dl_error_primitive), 15039 dlea->dl_error_primitive, 15040 dlpi_err_str(dlea->dl_errno), 15041 dlea->dl_errno, 15042 dlea->dl_unix_errno)); 15043 switch (dlea->dl_error_primitive) { 15044 case DL_UNBIND_REQ: 15045 mutex_enter(&ill->ill_lock); 15046 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15047 cv_signal(&ill->ill_cv); 15048 mutex_exit(&ill->ill_lock); 15049 /* FALLTHRU */ 15050 case DL_NOTIFY_REQ: 15051 case DL_ATTACH_REQ: 15052 case DL_DETACH_REQ: 15053 case DL_INFO_REQ: 15054 case DL_BIND_REQ: 15055 case DL_ENABMULTI_REQ: 15056 case DL_PHYS_ADDR_REQ: 15057 case DL_CAPABILITY_REQ: 15058 case DL_CONTROL_REQ: 15059 /* 15060 * Refhold the ill to match qwriter_ip which does a 15061 * refrele. Since this is on the ill stream we 15062 * unconditionally bump up the refcount without 15063 * checking for ILL_CAN_LOOKUP 15064 */ 15065 ill_refhold(ill); 15066 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15067 CUR_OP, B_FALSE); 15068 return; 15069 case DL_DISABMULTI_REQ: 15070 freemsg(mp); /* Don't want to pass this up */ 15071 return; 15072 default: 15073 break; 15074 } 15075 ip_dlpi_error(ill, dlea->dl_error_primitive, 15076 dlea->dl_errno, dlea->dl_unix_errno); 15077 freemsg(mp); 15078 return; 15079 case DL_INFO_ACK: 15080 case DL_BIND_ACK: 15081 case DL_PHYS_ADDR_ACK: 15082 case DL_NOTIFY_ACK: 15083 case DL_CAPABILITY_ACK: 15084 case DL_CONTROL_ACK: 15085 /* 15086 * Refhold the ill to match qwriter_ip which does a refrele 15087 * Since this is on the ill stream we unconditionally 15088 * bump up the refcount without doing ILL_CAN_LOOKUP. 15089 */ 15090 ill_refhold(ill); 15091 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15092 CUR_OP, B_FALSE); 15093 return; 15094 case DL_NOTIFY_IND: 15095 ill_refhold(ill); 15096 /* 15097 * The DL_NOTIFY_IND is an asynchronous message that has no 15098 * relation to the current ioctl in progress (if any). Hence we 15099 * pass in NEW_OP in this case. 15100 */ 15101 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15102 NEW_OP, B_FALSE); 15103 return; 15104 case DL_OK_ACK: 15105 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15106 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15107 switch (dloa->dl_correct_primitive) { 15108 case DL_UNBIND_REQ: 15109 mutex_enter(&ill->ill_lock); 15110 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15111 cv_signal(&ill->ill_cv); 15112 mutex_exit(&ill->ill_lock); 15113 /* FALLTHRU */ 15114 case DL_ATTACH_REQ: 15115 case DL_DETACH_REQ: 15116 /* 15117 * Refhold the ill to match qwriter_ip which does a 15118 * refrele. Since this is on the ill stream we 15119 * unconditionally bump up the refcount 15120 */ 15121 ill_refhold(ill); 15122 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15123 CUR_OP, B_FALSE); 15124 return; 15125 case DL_ENABMULTI_REQ: 15126 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15127 ill->ill_dlpi_multicast_state = IDS_OK; 15128 break; 15129 15130 } 15131 break; 15132 default: 15133 break; 15134 } 15135 freemsg(mp); 15136 } 15137 15138 /* 15139 * Handling of DLPI messages that require exclusive access to the ipsq. 15140 * 15141 * Need to do ill_pending_mp_release on ioctl completion, which could 15142 * happen here. (along with mi_copy_done) 15143 */ 15144 /* ARGSUSED */ 15145 static void 15146 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15147 { 15148 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15149 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15150 int err = 0; 15151 ill_t *ill; 15152 ipif_t *ipif = NULL; 15153 mblk_t *mp1 = NULL; 15154 conn_t *connp = NULL; 15155 t_uscalar_t physaddr_req; 15156 mblk_t *mp_hw; 15157 union DL_primitives *dlp; 15158 boolean_t success; 15159 boolean_t ioctl_aborted = B_FALSE; 15160 boolean_t log = B_TRUE; 15161 hook_nic_event_t *info; 15162 15163 ip1dbg(("ip_rput_dlpi_writer ..")); 15164 ill = (ill_t *)q->q_ptr; 15165 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15166 15167 ASSERT(IAM_WRITER_ILL(ill)); 15168 15169 /* 15170 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15171 * both are null or non-null. However we can assert that only 15172 * after grabbing the ipsq_lock. So we don't make any assertion 15173 * here and in other places in the code. 15174 */ 15175 ipif = ipsq->ipsq_pending_ipif; 15176 /* 15177 * The current ioctl could have been aborted by the user and a new 15178 * ioctl to bring up another ill could have started. We could still 15179 * get a response from the driver later. 15180 */ 15181 if (ipif != NULL && ipif->ipif_ill != ill) 15182 ioctl_aborted = B_TRUE; 15183 15184 switch (dloa->dl_primitive) { 15185 case DL_ERROR_ACK: 15186 switch (dlea->dl_error_primitive) { 15187 case DL_UNBIND_REQ: 15188 case DL_ATTACH_REQ: 15189 case DL_DETACH_REQ: 15190 case DL_INFO_REQ: 15191 ill_dlpi_done(ill, dlea->dl_error_primitive); 15192 break; 15193 case DL_NOTIFY_REQ: 15194 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15195 log = B_FALSE; 15196 break; 15197 case DL_PHYS_ADDR_REQ: 15198 /* 15199 * For IPv6 only, there are two additional 15200 * phys_addr_req's sent to the driver to get the 15201 * IPv6 token and lla. This allows IP to acquire 15202 * the hardware address format for a given interface 15203 * without having built in knowledge of the hardware 15204 * address. ill_phys_addr_pend keeps track of the last 15205 * DL_PAR sent so we know which response we are 15206 * dealing with. ill_dlpi_done will update 15207 * ill_phys_addr_pend when it sends the next req. 15208 * We don't complete the IOCTL until all three DL_PARs 15209 * have been attempted, so set *_len to 0 and break. 15210 */ 15211 physaddr_req = ill->ill_phys_addr_pend; 15212 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15213 if (physaddr_req == DL_IPV6_TOKEN) { 15214 ill->ill_token_length = 0; 15215 log = B_FALSE; 15216 break; 15217 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15218 ill->ill_nd_lla_len = 0; 15219 log = B_FALSE; 15220 break; 15221 } 15222 /* 15223 * Something went wrong with the DL_PHYS_ADDR_REQ. 15224 * We presumably have an IOCTL hanging out waiting 15225 * for completion. Find it and complete the IOCTL 15226 * with the error noted. 15227 * However, ill_dl_phys was called on an ill queue 15228 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15229 * set. But the ioctl is known to be pending on ill_wq. 15230 */ 15231 if (!ill->ill_ifname_pending) 15232 break; 15233 ill->ill_ifname_pending = 0; 15234 if (!ioctl_aborted) 15235 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15236 if (mp1 != NULL) { 15237 /* 15238 * This operation (SIOCSLIFNAME) must have 15239 * happened on the ill. Assert there is no conn 15240 */ 15241 ASSERT(connp == NULL); 15242 q = ill->ill_wq; 15243 } 15244 break; 15245 case DL_BIND_REQ: 15246 ill_dlpi_done(ill, DL_BIND_REQ); 15247 if (ill->ill_ifname_pending) 15248 break; 15249 /* 15250 * Something went wrong with the bind. We presumably 15251 * have an IOCTL hanging out waiting for completion. 15252 * Find it, take down the interface that was coming 15253 * up, and complete the IOCTL with the error noted. 15254 */ 15255 if (!ioctl_aborted) 15256 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15257 if (mp1 != NULL) { 15258 /* 15259 * This operation (SIOCSLIFFLAGS) must have 15260 * happened from a conn. 15261 */ 15262 ASSERT(connp != NULL); 15263 q = CONNP_TO_WQ(connp); 15264 if (ill->ill_move_in_progress) { 15265 ILL_CLEAR_MOVE(ill); 15266 } 15267 (void) ipif_down(ipif, NULL, NULL); 15268 /* error is set below the switch */ 15269 } 15270 break; 15271 case DL_ENABMULTI_REQ: 15272 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15273 15274 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15275 ill->ill_dlpi_multicast_state = IDS_FAILED; 15276 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15277 ipif_t *ipif; 15278 15279 log = B_FALSE; 15280 printf("ip: joining multicasts failed (%d)" 15281 " on %s - will use link layer " 15282 "broadcasts for multicast\n", 15283 dlea->dl_errno, ill->ill_name); 15284 15285 /* 15286 * Set up the multicast mapping alone. 15287 * writer, so ok to access ill->ill_ipif 15288 * without any lock. 15289 */ 15290 ipif = ill->ill_ipif; 15291 mutex_enter(&ill->ill_phyint->phyint_lock); 15292 ill->ill_phyint->phyint_flags |= 15293 PHYI_MULTI_BCAST; 15294 mutex_exit(&ill->ill_phyint->phyint_lock); 15295 15296 if (!ill->ill_isv6) { 15297 (void) ipif_arp_setup_multicast(ipif, 15298 NULL); 15299 } else { 15300 (void) ipif_ndp_setup_multicast(ipif, 15301 NULL); 15302 } 15303 } 15304 freemsg(mp); /* Don't want to pass this up */ 15305 return; 15306 case DL_CAPABILITY_REQ: 15307 case DL_CONTROL_REQ: 15308 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15309 "DL_CAPABILITY/CONTROL REQ\n")); 15310 ill_dlpi_done(ill, dlea->dl_error_primitive); 15311 ill->ill_dlpi_capab_state = IDS_FAILED; 15312 freemsg(mp); 15313 return; 15314 } 15315 /* 15316 * Note the error for IOCTL completion (mp1 is set when 15317 * ready to complete ioctl). If ill_ifname_pending_err is 15318 * set, an error occured during plumbing (ill_ifname_pending), 15319 * so we want to report that error. 15320 * 15321 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15322 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15323 * expected to get errack'd if the driver doesn't support 15324 * these flags (e.g. ethernet). log will be set to B_FALSE 15325 * if these error conditions are encountered. 15326 */ 15327 if (mp1 != NULL) { 15328 if (ill->ill_ifname_pending_err != 0) { 15329 err = ill->ill_ifname_pending_err; 15330 ill->ill_ifname_pending_err = 0; 15331 } else { 15332 err = dlea->dl_unix_errno ? 15333 dlea->dl_unix_errno : ENXIO; 15334 } 15335 /* 15336 * If we're plumbing an interface and an error hasn't already 15337 * been saved, set ill_ifname_pending_err to the error passed 15338 * up. Ignore the error if log is B_FALSE (see comment above). 15339 */ 15340 } else if (log && ill->ill_ifname_pending && 15341 ill->ill_ifname_pending_err == 0) { 15342 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15343 dlea->dl_unix_errno : ENXIO; 15344 } 15345 15346 if (log) 15347 ip_dlpi_error(ill, dlea->dl_error_primitive, 15348 dlea->dl_errno, dlea->dl_unix_errno); 15349 break; 15350 case DL_CAPABILITY_ACK: { 15351 boolean_t reneg_flag = B_FALSE; 15352 /* Call a routine to handle this one. */ 15353 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15354 /* 15355 * Check if the ACK is due to renegotiation case since we 15356 * will need to send a new CAPABILITY_REQ later. 15357 */ 15358 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15359 /* This is the ack for a renogiation case */ 15360 reneg_flag = B_TRUE; 15361 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15362 } 15363 ill_capability_ack(ill, mp); 15364 if (reneg_flag) 15365 ill_capability_probe(ill); 15366 break; 15367 } 15368 case DL_CONTROL_ACK: 15369 /* We treat all of these as "fire and forget" */ 15370 ill_dlpi_done(ill, DL_CONTROL_REQ); 15371 break; 15372 case DL_INFO_ACK: 15373 /* Call a routine to handle this one. */ 15374 ill_dlpi_done(ill, DL_INFO_REQ); 15375 ip_ll_subnet_defaults(ill, mp); 15376 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15377 return; 15378 case DL_BIND_ACK: 15379 /* 15380 * We should have an IOCTL waiting on this unless 15381 * sent by ill_dl_phys, in which case just return 15382 */ 15383 ill_dlpi_done(ill, DL_BIND_REQ); 15384 if (ill->ill_ifname_pending) 15385 break; 15386 15387 if (!ioctl_aborted) 15388 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15389 if (mp1 == NULL) 15390 break; 15391 ASSERT(connp != NULL); 15392 q = CONNP_TO_WQ(connp); 15393 15394 /* 15395 * We are exclusive. So nothing can change even after 15396 * we get the pending mp. If need be we can put it back 15397 * and restart, as in calling ipif_arp_up() below. 15398 */ 15399 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15400 15401 mutex_enter(&ill->ill_lock); 15402 15403 ill->ill_dl_up = 1; 15404 15405 if ((info = ill->ill_nic_event_info) != NULL) { 15406 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15407 "attached for %s\n", info->hne_event, 15408 ill->ill_name)); 15409 if (info->hne_data != NULL) 15410 kmem_free(info->hne_data, info->hne_datalen); 15411 kmem_free(info, sizeof (hook_nic_event_t)); 15412 } 15413 15414 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15415 if (info != NULL) { 15416 info->hne_nic = ill->ill_phyint->phyint_ifindex; 15417 info->hne_lif = 0; 15418 info->hne_event = NE_UP; 15419 info->hne_data = NULL; 15420 info->hne_datalen = 0; 15421 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 15422 } else 15423 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15424 "event information for %s (ENOMEM)\n", 15425 ill->ill_name)); 15426 15427 ill->ill_nic_event_info = info; 15428 15429 mutex_exit(&ill->ill_lock); 15430 15431 /* 15432 * Now bring up the resolver; when that is complete, we'll 15433 * create IREs. Note that we intentionally mirror what 15434 * ipif_up() would have done, because we got here by way of 15435 * ill_dl_up(), which stopped ipif_up()'s processing. 15436 */ 15437 if (ill->ill_isv6) { 15438 /* 15439 * v6 interfaces. 15440 * Unlike ARP which has to do another bind 15441 * and attach, once we get here we are 15442 * done with NDP. Except in the case of 15443 * ILLF_XRESOLV, in which case we send an 15444 * AR_INTERFACE_UP to the external resolver. 15445 * If all goes well, the ioctl will complete 15446 * in ip_rput(). If there's an error, we 15447 * complete it here. 15448 */ 15449 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15450 B_FALSE); 15451 if (err == 0) { 15452 if (ill->ill_flags & ILLF_XRESOLV) { 15453 mutex_enter(&connp->conn_lock); 15454 mutex_enter(&ill->ill_lock); 15455 success = ipsq_pending_mp_add( 15456 connp, ipif, q, mp1, 0); 15457 mutex_exit(&ill->ill_lock); 15458 mutex_exit(&connp->conn_lock); 15459 if (success) { 15460 err = ipif_resolver_up(ipif, 15461 Res_act_initial); 15462 if (err == EINPROGRESS) { 15463 freemsg(mp); 15464 return; 15465 } 15466 ASSERT(err != 0); 15467 mp1 = ipsq_pending_mp_get(ipsq, 15468 &connp); 15469 ASSERT(mp1 != NULL); 15470 } else { 15471 /* conn has started closing */ 15472 err = EINTR; 15473 } 15474 } else { /* Non XRESOLV interface */ 15475 (void) ipif_resolver_up(ipif, 15476 Res_act_initial); 15477 err = ipif_up_done_v6(ipif); 15478 } 15479 } 15480 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15481 /* 15482 * ARP and other v4 external resolvers. 15483 * Leave the pending mblk intact so that 15484 * the ioctl completes in ip_rput(). 15485 */ 15486 mutex_enter(&connp->conn_lock); 15487 mutex_enter(&ill->ill_lock); 15488 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15489 mutex_exit(&ill->ill_lock); 15490 mutex_exit(&connp->conn_lock); 15491 if (success) { 15492 err = ipif_resolver_up(ipif, Res_act_initial); 15493 if (err == EINPROGRESS) { 15494 freemsg(mp); 15495 return; 15496 } 15497 ASSERT(err != 0); 15498 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15499 } else { 15500 /* The conn has started closing */ 15501 err = EINTR; 15502 } 15503 } else { 15504 /* 15505 * This one is complete. Reply to pending ioctl. 15506 */ 15507 (void) ipif_resolver_up(ipif, Res_act_initial); 15508 err = ipif_up_done(ipif); 15509 } 15510 15511 if ((err == 0) && (ill->ill_up_ipifs)) { 15512 err = ill_up_ipifs(ill, q, mp1); 15513 if (err == EINPROGRESS) { 15514 freemsg(mp); 15515 return; 15516 } 15517 } 15518 15519 if (ill->ill_up_ipifs) { 15520 ill_group_cleanup(ill); 15521 } 15522 15523 break; 15524 case DL_NOTIFY_IND: { 15525 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15526 ire_t *ire; 15527 boolean_t need_ire_walk_v4 = B_FALSE; 15528 boolean_t need_ire_walk_v6 = B_FALSE; 15529 15530 /* 15531 * Change the address everywhere we need to. 15532 * What we're getting here is a link-level addr or phys addr. 15533 * The new addr is at notify + notify->dl_addr_offset 15534 * The address length is notify->dl_addr_length; 15535 */ 15536 switch (notify->dl_notification) { 15537 case DL_NOTE_PHYS_ADDR: 15538 mp_hw = copyb(mp); 15539 if (mp_hw == NULL) { 15540 err = ENOMEM; 15541 break; 15542 } 15543 dlp = (union DL_primitives *)mp_hw->b_rptr; 15544 /* 15545 * We currently don't support changing 15546 * the token via DL_NOTIFY_IND. 15547 * When we do support it, we have to consider 15548 * what the implications are with respect to 15549 * the token and the link local address. 15550 */ 15551 mutex_enter(&ill->ill_lock); 15552 if (dlp->notify_ind.dl_data == 15553 DL_IPV6_LINK_LAYER_ADDR) { 15554 if (ill->ill_nd_lla_mp != NULL) 15555 freemsg(ill->ill_nd_lla_mp); 15556 ill->ill_nd_lla_mp = mp_hw; 15557 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15558 dlp->notify_ind.dl_addr_offset; 15559 ill->ill_nd_lla_len = 15560 dlp->notify_ind.dl_addr_length - 15561 ABS(ill->ill_sap_length); 15562 mutex_exit(&ill->ill_lock); 15563 break; 15564 } else if (dlp->notify_ind.dl_data == 15565 DL_CURR_PHYS_ADDR) { 15566 if (ill->ill_phys_addr_mp != NULL) 15567 freemsg(ill->ill_phys_addr_mp); 15568 ill->ill_phys_addr_mp = mp_hw; 15569 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15570 dlp->notify_ind.dl_addr_offset; 15571 ill->ill_phys_addr_length = 15572 dlp->notify_ind.dl_addr_length - 15573 ABS(ill->ill_sap_length); 15574 if (ill->ill_isv6 && 15575 !(ill->ill_flags & ILLF_XRESOLV)) { 15576 if (ill->ill_nd_lla_mp != NULL) 15577 freemsg(ill->ill_nd_lla_mp); 15578 ill->ill_nd_lla_mp = copyb(mp_hw); 15579 ill->ill_nd_lla = (uchar_t *) 15580 ill->ill_nd_lla_mp->b_rptr + 15581 dlp->notify_ind.dl_addr_offset; 15582 ill->ill_nd_lla_len = 15583 ill->ill_phys_addr_length; 15584 } 15585 } 15586 mutex_exit(&ill->ill_lock); 15587 /* 15588 * Send out gratuitous arp request for our new 15589 * hardware address. 15590 */ 15591 for (ipif = ill->ill_ipif; ipif != NULL; 15592 ipif = ipif->ipif_next) { 15593 if (!(ipif->ipif_flags & IPIF_UP)) 15594 continue; 15595 if (ill->ill_isv6) { 15596 ipif_ndp_down(ipif); 15597 /* 15598 * Set B_TRUE to enable 15599 * ipif_ndp_up() to send out 15600 * unsolicited advertisements. 15601 */ 15602 err = ipif_ndp_up(ipif, 15603 &ipif->ipif_v6lcl_addr, 15604 B_TRUE); 15605 if (err) { 15606 ip1dbg(( 15607 "ip_rput_dlpi_writer: " 15608 "Failed to update ndp " 15609 "err %d\n", err)); 15610 } 15611 } else { 15612 /* 15613 * IPv4 ARP case 15614 * 15615 * Set Res_act_move, as we only want 15616 * ipif_resolver_up to send an 15617 * AR_ENTRY_ADD request up to 15618 * ARP. 15619 */ 15620 err = ipif_resolver_up(ipif, 15621 Res_act_move); 15622 if (err) { 15623 ip1dbg(( 15624 "ip_rput_dlpi_writer: " 15625 "Failed to update arp " 15626 "err %d\n", err)); 15627 } 15628 } 15629 } 15630 /* 15631 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15632 * case so that all old fastpath information can be 15633 * purged from IRE caches. 15634 */ 15635 /* FALLTHRU */ 15636 case DL_NOTE_FASTPATH_FLUSH: 15637 /* 15638 * Any fastpath probe sent henceforth will get the 15639 * new fp mp. So we first delete any ires that are 15640 * waiting for the fastpath. Then walk all ires and 15641 * delete the ire or delete the fp mp. In the case of 15642 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15643 * recreate the ire's without going through a complex 15644 * ipif up/down dance. So we don't delete the ire 15645 * itself, but just the nce_fp_mp for these 2 ire's 15646 * In the case of the other ire's we delete the ire's 15647 * themselves. Access to nce_fp_mp is completely 15648 * protected by ire_lock for IRE_MIPRTUN and 15649 * IRE_BROADCAST. Deleting the ire is preferable in the 15650 * other cases for performance. 15651 */ 15652 if (ill->ill_isv6) { 15653 nce_fastpath_list_dispatch(ill, NULL, NULL); 15654 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15655 NULL); 15656 } else { 15657 ire_fastpath_list_dispatch(ill, NULL, NULL); 15658 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15659 IRE_CACHE | IRE_BROADCAST, 15660 ire_fastpath_flush, NULL, ill); 15661 mutex_enter(&ire_mrtun_lock); 15662 if (ire_mrtun_count != 0) { 15663 mutex_exit(&ire_mrtun_lock); 15664 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15665 IRE_MIPRTUN, ire_fastpath_flush, 15666 NULL, ill); 15667 } else { 15668 mutex_exit(&ire_mrtun_lock); 15669 } 15670 } 15671 break; 15672 case DL_NOTE_SDU_SIZE: 15673 /* 15674 * Change the MTU size of the interface, of all 15675 * attached ipif's, and of all relevant ire's. The 15676 * new value's a uint32_t at notify->dl_data. 15677 * Mtu change Vs. new ire creation - protocol below. 15678 * 15679 * a Mark the ipif as IPIF_CHANGING. 15680 * b Set the new mtu in the ipif. 15681 * c Change the ire_max_frag on all affected ires 15682 * d Unmark the IPIF_CHANGING 15683 * 15684 * To see how the protocol works, assume an interface 15685 * route is also being added simultaneously by 15686 * ip_rt_add and let 'ipif' be the ipif referenced by 15687 * the ire. If the ire is created before step a, 15688 * it will be cleaned up by step c. If the ire is 15689 * created after step d, it will see the new value of 15690 * ipif_mtu. Any attempt to create the ire between 15691 * steps a to d will fail because of the IPIF_CHANGING 15692 * flag. Note that ire_create() is passed a pointer to 15693 * the ipif_mtu, and not the value. During ire_add 15694 * under the bucket lock, the ire_max_frag of the 15695 * new ire being created is set from the ipif/ire from 15696 * which it is being derived. 15697 */ 15698 mutex_enter(&ill->ill_lock); 15699 ill->ill_max_frag = (uint_t)notify->dl_data; 15700 15701 /* 15702 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15703 * leave it alone 15704 */ 15705 if (ill->ill_mtu_userspecified) { 15706 mutex_exit(&ill->ill_lock); 15707 break; 15708 } 15709 ill->ill_max_mtu = ill->ill_max_frag; 15710 if (ill->ill_isv6) { 15711 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15712 ill->ill_max_mtu = IPV6_MIN_MTU; 15713 } else { 15714 if (ill->ill_max_mtu < IP_MIN_MTU) 15715 ill->ill_max_mtu = IP_MIN_MTU; 15716 } 15717 for (ipif = ill->ill_ipif; ipif != NULL; 15718 ipif = ipif->ipif_next) { 15719 /* 15720 * Don't override the mtu if the user 15721 * has explicitly set it. 15722 */ 15723 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15724 continue; 15725 ipif->ipif_mtu = (uint_t)notify->dl_data; 15726 if (ipif->ipif_isv6) 15727 ire = ipif_to_ire_v6(ipif); 15728 else 15729 ire = ipif_to_ire(ipif); 15730 if (ire != NULL) { 15731 ire->ire_max_frag = ipif->ipif_mtu; 15732 ire_refrele(ire); 15733 } 15734 if (ipif->ipif_flags & IPIF_UP) { 15735 if (ill->ill_isv6) 15736 need_ire_walk_v6 = B_TRUE; 15737 else 15738 need_ire_walk_v4 = B_TRUE; 15739 } 15740 } 15741 mutex_exit(&ill->ill_lock); 15742 if (need_ire_walk_v4) 15743 ire_walk_v4(ill_mtu_change, (char *)ill, 15744 ALL_ZONES); 15745 if (need_ire_walk_v6) 15746 ire_walk_v6(ill_mtu_change, (char *)ill, 15747 ALL_ZONES); 15748 break; 15749 case DL_NOTE_LINK_UP: 15750 case DL_NOTE_LINK_DOWN: { 15751 /* 15752 * We are writer. ill / phyint / ipsq assocs stable. 15753 * The RUNNING flag reflects the state of the link. 15754 */ 15755 phyint_t *phyint = ill->ill_phyint; 15756 uint64_t new_phyint_flags; 15757 boolean_t changed = B_FALSE; 15758 boolean_t went_up; 15759 15760 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15761 mutex_enter(&phyint->phyint_lock); 15762 new_phyint_flags = went_up ? 15763 phyint->phyint_flags | PHYI_RUNNING : 15764 phyint->phyint_flags & ~PHYI_RUNNING; 15765 if (new_phyint_flags != phyint->phyint_flags) { 15766 phyint->phyint_flags = new_phyint_flags; 15767 changed = B_TRUE; 15768 } 15769 mutex_exit(&phyint->phyint_lock); 15770 /* 15771 * ill_restart_dad handles the DAD restart and routing 15772 * socket notification logic. 15773 */ 15774 if (changed) { 15775 ill_restart_dad(phyint->phyint_illv4, went_up); 15776 ill_restart_dad(phyint->phyint_illv6, went_up); 15777 } 15778 break; 15779 } 15780 case DL_NOTE_PROMISC_ON_PHYS: 15781 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15782 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15783 mutex_enter(&ill->ill_lock); 15784 ill->ill_promisc_on_phys = B_TRUE; 15785 mutex_exit(&ill->ill_lock); 15786 break; 15787 case DL_NOTE_PROMISC_OFF_PHYS: 15788 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15789 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15790 mutex_enter(&ill->ill_lock); 15791 ill->ill_promisc_on_phys = B_FALSE; 15792 mutex_exit(&ill->ill_lock); 15793 break; 15794 case DL_NOTE_CAPAB_RENEG: 15795 /* 15796 * Something changed on the driver side. 15797 * It wants us to renegotiate the capabilities 15798 * on this ill. The most likely cause is the 15799 * aggregation interface under us where a 15800 * port got added or went away. 15801 * 15802 * We reset the capabilities and set the 15803 * state to IDS_RENG so that when the ack 15804 * comes back, we can start the 15805 * renegotiation process. 15806 */ 15807 ill_capability_reset(ill); 15808 ill->ill_dlpi_capab_state = IDS_RENEG; 15809 break; 15810 default: 15811 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15812 "type 0x%x for DL_NOTIFY_IND\n", 15813 notify->dl_notification)); 15814 break; 15815 } 15816 15817 /* 15818 * As this is an asynchronous operation, we 15819 * should not call ill_dlpi_done 15820 */ 15821 break; 15822 } 15823 case DL_NOTIFY_ACK: { 15824 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15825 15826 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15827 ill->ill_note_link = 1; 15828 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15829 break; 15830 } 15831 case DL_PHYS_ADDR_ACK: { 15832 /* 15833 * We should have an IOCTL waiting on this when request 15834 * sent by ill_dl_phys. 15835 * However, ill_dl_phys was called on an ill queue (from 15836 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15837 * ioctl is known to be pending on ill_wq. 15838 * There are two additional phys_addr_req's sent to the 15839 * driver to get the token and lla. ill_phys_addr_pend 15840 * keeps track of the last one sent so we know which 15841 * response we are dealing with. ill_dlpi_done will 15842 * update ill_phys_addr_pend when it sends the next req. 15843 * We don't complete the IOCTL until all three DL_PARs 15844 * have been attempted. 15845 * 15846 * We don't need any lock to update ill_nd_lla* fields, 15847 * since the ill is not yet up, We grab the lock just 15848 * for uniformity with other code that accesses ill_nd_lla. 15849 */ 15850 physaddr_req = ill->ill_phys_addr_pend; 15851 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15852 if (physaddr_req == DL_IPV6_TOKEN || 15853 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15854 if (physaddr_req == DL_IPV6_TOKEN) { 15855 /* 15856 * bcopy to low-order bits of ill_token 15857 * 15858 * XXX Temporary hack - currently, 15859 * all known tokens are 64 bits, 15860 * so I'll cheat for the moment. 15861 */ 15862 dlp = (union DL_primitives *)mp->b_rptr; 15863 15864 mutex_enter(&ill->ill_lock); 15865 bcopy((uchar_t *)(mp->b_rptr + 15866 dlp->physaddr_ack.dl_addr_offset), 15867 (void *)&ill->ill_token.s6_addr32[2], 15868 dlp->physaddr_ack.dl_addr_length); 15869 ill->ill_token_length = 15870 dlp->physaddr_ack.dl_addr_length; 15871 mutex_exit(&ill->ill_lock); 15872 } else { 15873 ASSERT(ill->ill_nd_lla_mp == NULL); 15874 mp_hw = copyb(mp); 15875 if (mp_hw == NULL) { 15876 err = ENOMEM; 15877 break; 15878 } 15879 dlp = (union DL_primitives *)mp_hw->b_rptr; 15880 mutex_enter(&ill->ill_lock); 15881 ill->ill_nd_lla_mp = mp_hw; 15882 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15883 dlp->physaddr_ack.dl_addr_offset; 15884 ill->ill_nd_lla_len = 15885 dlp->physaddr_ack.dl_addr_length; 15886 mutex_exit(&ill->ill_lock); 15887 } 15888 break; 15889 } 15890 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15891 ASSERT(ill->ill_phys_addr_mp == NULL); 15892 if (!ill->ill_ifname_pending) 15893 break; 15894 ill->ill_ifname_pending = 0; 15895 if (!ioctl_aborted) 15896 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15897 if (mp1 != NULL) { 15898 ASSERT(connp == NULL); 15899 q = ill->ill_wq; 15900 } 15901 /* 15902 * If any error acks received during the plumbing sequence, 15903 * ill_ifname_pending_err will be set. Break out and send up 15904 * the error to the pending ioctl. 15905 */ 15906 if (ill->ill_ifname_pending_err != 0) { 15907 err = ill->ill_ifname_pending_err; 15908 ill->ill_ifname_pending_err = 0; 15909 break; 15910 } 15911 /* 15912 * Get the interface token. If the zeroth interface 15913 * address is zero then set the address to the link local 15914 * address 15915 */ 15916 mp_hw = copyb(mp); 15917 if (mp_hw == NULL) { 15918 err = ENOMEM; 15919 break; 15920 } 15921 dlp = (union DL_primitives *)mp_hw->b_rptr; 15922 ill->ill_phys_addr_mp = mp_hw; 15923 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15924 dlp->physaddr_ack.dl_addr_offset; 15925 if (dlp->physaddr_ack.dl_addr_length == 0 || 15926 ill->ill_phys_addr_length == 0 || 15927 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15928 /* 15929 * Compatibility: atun driver returns a length of 0. 15930 * ipdptp has an ill_phys_addr_length of zero(from 15931 * DL_BIND_ACK) but a non-zero length here. 15932 * ipd has an ill_phys_addr_length of 4(from 15933 * DL_BIND_ACK) but a non-zero length here. 15934 */ 15935 ill->ill_phys_addr = NULL; 15936 } else if (dlp->physaddr_ack.dl_addr_length != 15937 ill->ill_phys_addr_length) { 15938 ip0dbg(("DL_PHYS_ADDR_ACK: " 15939 "Address length mismatch %d %d\n", 15940 dlp->physaddr_ack.dl_addr_length, 15941 ill->ill_phys_addr_length)); 15942 err = EINVAL; 15943 break; 15944 } 15945 mutex_enter(&ill->ill_lock); 15946 if (ill->ill_nd_lla_mp == NULL) { 15947 ill->ill_nd_lla_mp = copyb(mp_hw); 15948 if (ill->ill_nd_lla_mp == NULL) { 15949 err = ENOMEM; 15950 mutex_exit(&ill->ill_lock); 15951 break; 15952 } 15953 ill->ill_nd_lla = 15954 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15955 dlp->physaddr_ack.dl_addr_offset; 15956 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15957 } 15958 mutex_exit(&ill->ill_lock); 15959 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15960 (void) ill_setdefaulttoken(ill); 15961 15962 /* 15963 * If the ill zero interface has a zero address assign 15964 * it the proper link local address. 15965 */ 15966 ASSERT(ill->ill_ipif->ipif_id == 0); 15967 if (ipif != NULL && 15968 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15969 (void) ipif_setlinklocal(ipif); 15970 break; 15971 } 15972 case DL_OK_ACK: 15973 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15974 dlpi_prim_str((int)dloa->dl_correct_primitive), 15975 dloa->dl_correct_primitive)); 15976 switch (dloa->dl_correct_primitive) { 15977 case DL_UNBIND_REQ: 15978 case DL_ATTACH_REQ: 15979 case DL_DETACH_REQ: 15980 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15981 break; 15982 } 15983 break; 15984 default: 15985 break; 15986 } 15987 15988 freemsg(mp); 15989 if (mp1) { 15990 struct iocblk *iocp; 15991 int mode; 15992 15993 /* 15994 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15995 * SIOCSLIFNAME do a copyout. 15996 */ 15997 iocp = (struct iocblk *)mp1->b_rptr; 15998 15999 if (iocp->ioc_cmd == SIOCLIFADDIF || 16000 iocp->ioc_cmd == SIOCSLIFNAME) 16001 mode = COPYOUT; 16002 else 16003 mode = NO_COPYOUT; 16004 /* 16005 * The ioctl must complete now without EINPROGRESS 16006 * since ipsq_pending_mp_get has removed the ioctl mblk 16007 * from ipsq_pending_mp. Otherwise the ioctl will be 16008 * stuck for ever in the ipsq. 16009 */ 16010 ASSERT(err != EINPROGRESS); 16011 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 16012 16013 } 16014 } 16015 16016 /* 16017 * ip_rput_other is called by ip_rput to handle messages modifying the global 16018 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16019 */ 16020 /* ARGSUSED */ 16021 void 16022 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16023 { 16024 ill_t *ill; 16025 struct iocblk *iocp; 16026 mblk_t *mp1; 16027 conn_t *connp = NULL; 16028 16029 ip1dbg(("ip_rput_other ")); 16030 ill = (ill_t *)q->q_ptr; 16031 /* 16032 * This routine is not a writer in the case of SIOCGTUNPARAM 16033 * in which case ipsq is NULL. 16034 */ 16035 if (ipsq != NULL) { 16036 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16037 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16038 } 16039 16040 switch (mp->b_datap->db_type) { 16041 case M_ERROR: 16042 case M_HANGUP: 16043 /* 16044 * The device has a problem. We force the ILL down. It can 16045 * be brought up again manually using SIOCSIFFLAGS (via 16046 * ifconfig or equivalent). 16047 */ 16048 ASSERT(ipsq != NULL); 16049 if (mp->b_rptr < mp->b_wptr) 16050 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16051 if (ill->ill_error == 0) 16052 ill->ill_error = ENXIO; 16053 if (!ill_down_start(q, mp)) 16054 return; 16055 ipif_all_down_tail(ipsq, q, mp, NULL); 16056 break; 16057 case M_IOCACK: 16058 iocp = (struct iocblk *)mp->b_rptr; 16059 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16060 switch (iocp->ioc_cmd) { 16061 case SIOCSTUNPARAM: 16062 case OSIOCSTUNPARAM: 16063 ASSERT(ipsq != NULL); 16064 /* 16065 * Finish socket ioctl passed through to tun. 16066 * We should have an IOCTL waiting on this. 16067 */ 16068 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16069 if (ill->ill_isv6) { 16070 struct iftun_req *ta; 16071 16072 /* 16073 * if a source or destination is 16074 * being set, try and set the link 16075 * local address for the tunnel 16076 */ 16077 ta = (struct iftun_req *)mp->b_cont-> 16078 b_cont->b_rptr; 16079 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16080 ipif_set_tun_llink(ill, ta); 16081 } 16082 16083 } 16084 if (mp1 != NULL) { 16085 /* 16086 * Now copy back the b_next/b_prev used by 16087 * mi code for the mi_copy* functions. 16088 * See ip_sioctl_tunparam() for the reason. 16089 * Also protect against missing b_cont. 16090 */ 16091 if (mp->b_cont != NULL) { 16092 mp->b_cont->b_next = 16093 mp1->b_cont->b_next; 16094 mp->b_cont->b_prev = 16095 mp1->b_cont->b_prev; 16096 } 16097 inet_freemsg(mp1); 16098 ASSERT(ipsq->ipsq_current_ipif != NULL); 16099 ASSERT(connp != NULL); 16100 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16101 iocp->ioc_error, NO_COPYOUT, 16102 ipsq->ipsq_current_ipif, ipsq); 16103 } else { 16104 ASSERT(connp == NULL); 16105 putnext(q, mp); 16106 } 16107 break; 16108 case SIOCGTUNPARAM: 16109 case OSIOCGTUNPARAM: 16110 /* 16111 * This is really M_IOCDATA from the tunnel driver. 16112 * convert back and complete the ioctl. 16113 * We should have an IOCTL waiting on this. 16114 */ 16115 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16116 if (mp1) { 16117 /* 16118 * Now copy back the b_next/b_prev used by 16119 * mi code for the mi_copy* functions. 16120 * See ip_sioctl_tunparam() for the reason. 16121 * Also protect against missing b_cont. 16122 */ 16123 if (mp->b_cont != NULL) { 16124 mp->b_cont->b_next = 16125 mp1->b_cont->b_next; 16126 mp->b_cont->b_prev = 16127 mp1->b_cont->b_prev; 16128 } 16129 inet_freemsg(mp1); 16130 if (iocp->ioc_error == 0) 16131 mp->b_datap->db_type = M_IOCDATA; 16132 ASSERT(connp != NULL); 16133 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16134 iocp->ioc_error, COPYOUT, NULL, NULL); 16135 } else { 16136 ASSERT(connp == NULL); 16137 putnext(q, mp); 16138 } 16139 break; 16140 default: 16141 break; 16142 } 16143 break; 16144 case M_IOCNAK: 16145 iocp = (struct iocblk *)mp->b_rptr; 16146 16147 switch (iocp->ioc_cmd) { 16148 int mode; 16149 ipif_t *ipif; 16150 16151 case DL_IOC_HDR_INFO: 16152 /* 16153 * If this was the first attempt turn of the 16154 * fastpath probing. 16155 */ 16156 mutex_enter(&ill->ill_lock); 16157 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16158 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16159 mutex_exit(&ill->ill_lock); 16160 ill_fastpath_nack(ill); 16161 ip1dbg(("ip_rput: DLPI fastpath off on " 16162 "interface %s\n", 16163 ill->ill_name)); 16164 } else { 16165 mutex_exit(&ill->ill_lock); 16166 } 16167 freemsg(mp); 16168 break; 16169 case SIOCSTUNPARAM: 16170 case OSIOCSTUNPARAM: 16171 ASSERT(ipsq != NULL); 16172 /* 16173 * Finish socket ioctl passed through to tun 16174 * We should have an IOCTL waiting on this. 16175 */ 16176 /* FALLTHRU */ 16177 case SIOCGTUNPARAM: 16178 case OSIOCGTUNPARAM: 16179 /* 16180 * This is really M_IOCDATA from the tunnel driver. 16181 * convert back and complete the ioctl. 16182 * We should have an IOCTL waiting on this. 16183 */ 16184 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16185 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16186 mp1 = ill_pending_mp_get(ill, &connp, 16187 iocp->ioc_id); 16188 mode = COPYOUT; 16189 ipsq = NULL; 16190 ipif = NULL; 16191 } else { 16192 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16193 mode = NO_COPYOUT; 16194 ASSERT(ipsq->ipsq_current_ipif != NULL); 16195 ipif = ipsq->ipsq_current_ipif; 16196 } 16197 if (mp1 != NULL) { 16198 /* 16199 * Now copy back the b_next/b_prev used by 16200 * mi code for the mi_copy* functions. 16201 * See ip_sioctl_tunparam() for the reason. 16202 * Also protect against missing b_cont. 16203 */ 16204 if (mp->b_cont != NULL) { 16205 mp->b_cont->b_next = 16206 mp1->b_cont->b_next; 16207 mp->b_cont->b_prev = 16208 mp1->b_cont->b_prev; 16209 } 16210 inet_freemsg(mp1); 16211 if (iocp->ioc_error == 0) 16212 iocp->ioc_error = EINVAL; 16213 ASSERT(connp != NULL); 16214 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16215 iocp->ioc_error, mode, ipif, ipsq); 16216 } else { 16217 ASSERT(connp == NULL); 16218 putnext(q, mp); 16219 } 16220 break; 16221 default: 16222 break; 16223 } 16224 default: 16225 break; 16226 } 16227 } 16228 16229 /* 16230 * NOTE : This function does not ire_refrele the ire argument passed in. 16231 * 16232 * IPQoS notes 16233 * IP policy is invoked twice for a forwarded packet, once on the read side 16234 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16235 * enabled. An additional parameter, in_ill, has been added for this purpose. 16236 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16237 * because ip_mroute drops this information. 16238 * 16239 */ 16240 void 16241 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16242 { 16243 uint32_t pkt_len; 16244 queue_t *q; 16245 uint32_t sum; 16246 #define rptr ((uchar_t *)ipha) 16247 uint32_t max_frag; 16248 uint32_t ill_index; 16249 ill_t *out_ill; 16250 16251 /* Get the ill_index of the incoming ILL */ 16252 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16253 16254 /* Initiate Read side IPPF processing */ 16255 if (IPP_ENABLED(IPP_FWD_IN)) { 16256 ip_process(IPP_FWD_IN, &mp, ill_index); 16257 if (mp == NULL) { 16258 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16259 "during IPPF processing\n")); 16260 return; 16261 } 16262 } 16263 16264 pkt_len = ntohs(ipha->ipha_length); 16265 16266 /* Adjust the checksum to reflect the ttl decrement. */ 16267 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16268 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16269 16270 if (ipha->ipha_ttl-- <= 1) { 16271 if (ip_csum_hdr(ipha)) { 16272 BUMP_MIB(&ip_mib, ipInCksumErrs); 16273 goto drop_pkt; 16274 } 16275 /* 16276 * Note: ire_stq this will be NULL for multicast 16277 * datagrams using the long path through arp (the IRE 16278 * is not an IRE_CACHE). This should not cause 16279 * problems since we don't generate ICMP errors for 16280 * multicast packets. 16281 */ 16282 q = ire->ire_stq; 16283 if (q != NULL) { 16284 /* Sent by forwarding path, and router is global zone */ 16285 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16286 GLOBAL_ZONEID); 16287 } else 16288 freemsg(mp); 16289 return; 16290 } 16291 16292 /* 16293 * Don't forward if the interface is down 16294 */ 16295 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16296 BUMP_MIB(&ip_mib, ipInDiscards); 16297 ip2dbg(("ip_rput_forward:interface is down\n")); 16298 goto drop_pkt; 16299 } 16300 16301 /* Get the ill_index of the outgoing ILL */ 16302 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16303 16304 out_ill = ire->ire_ipif->ipif_ill; 16305 16306 DTRACE_PROBE4(ip4__forwarding__start, 16307 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16308 16309 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 16310 in_ill, out_ill, ipha, mp, mp); 16311 16312 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16313 16314 if (mp == NULL) 16315 return; 16316 pkt_len = ntohs(ipha->ipha_length); 16317 16318 if (is_system_labeled()) { 16319 mblk_t *mp1; 16320 16321 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16322 BUMP_MIB(&ip_mib, ipForwProhibits); 16323 goto drop_pkt; 16324 } 16325 /* Size may have changed */ 16326 mp = mp1; 16327 ipha = (ipha_t *)mp->b_rptr; 16328 pkt_len = ntohs(ipha->ipha_length); 16329 } 16330 16331 /* Check if there are options to update */ 16332 if (!IS_SIMPLE_IPH(ipha)) { 16333 if (ip_csum_hdr(ipha)) { 16334 BUMP_MIB(&ip_mib, ipInCksumErrs); 16335 goto drop_pkt; 16336 } 16337 if (ip_rput_forward_options(mp, ipha, ire)) { 16338 return; 16339 } 16340 16341 ipha->ipha_hdr_checksum = 0; 16342 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16343 } 16344 max_frag = ire->ire_max_frag; 16345 if (pkt_len > max_frag) { 16346 /* 16347 * It needs fragging on its way out. We haven't 16348 * verified the header checksum yet. Since we 16349 * are going to put a surely good checksum in the 16350 * outgoing header, we have to make sure that it 16351 * was good coming in. 16352 */ 16353 if (ip_csum_hdr(ipha)) { 16354 BUMP_MIB(&ip_mib, ipInCksumErrs); 16355 goto drop_pkt; 16356 } 16357 /* Initiate Write side IPPF processing */ 16358 if (IPP_ENABLED(IPP_FWD_OUT)) { 16359 ip_process(IPP_FWD_OUT, &mp, ill_index); 16360 if (mp == NULL) { 16361 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16362 " during IPPF processing\n")); 16363 return; 16364 } 16365 } 16366 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16367 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16368 return; 16369 } 16370 16371 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16372 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16373 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 16374 NULL, out_ill, ipha, mp, mp); 16375 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16376 if (mp == NULL) 16377 return; 16378 16379 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16380 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16381 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16382 /* ip_xmit_v4 always consumes the packet */ 16383 return; 16384 16385 drop_pkt:; 16386 ip1dbg(("ip_rput_forward: drop pkt\n")); 16387 freemsg(mp); 16388 #undef rptr 16389 } 16390 16391 void 16392 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16393 { 16394 ire_t *ire; 16395 16396 ASSERT(!ipif->ipif_isv6); 16397 /* 16398 * Find an IRE which matches the destination and the outgoing 16399 * queue in the cache table. All we need is an IRE_CACHE which 16400 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16401 * then it is enough to have some IRE_CACHE in the group. 16402 */ 16403 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16404 dst = ipif->ipif_pp_dst_addr; 16405 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16406 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16407 if (ire == NULL) { 16408 /* 16409 * Mark this packet to make it be delivered to 16410 * ip_rput_forward after the new ire has been 16411 * created. 16412 */ 16413 mp->b_prev = NULL; 16414 mp->b_next = mp; 16415 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16416 NULL, 0, GLOBAL_ZONEID); 16417 } else { 16418 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16419 IRE_REFRELE(ire); 16420 } 16421 } 16422 16423 /* Update any source route, record route or timestamp options */ 16424 static int 16425 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16426 { 16427 ipoptp_t opts; 16428 uchar_t *opt; 16429 uint8_t optval; 16430 uint8_t optlen; 16431 ipaddr_t dst; 16432 uint32_t ts; 16433 ire_t *dst_ire = NULL; 16434 ire_t *tmp_ire = NULL; 16435 timestruc_t now; 16436 16437 ip2dbg(("ip_rput_forward_options\n")); 16438 dst = ipha->ipha_dst; 16439 for (optval = ipoptp_first(&opts, ipha); 16440 optval != IPOPT_EOL; 16441 optval = ipoptp_next(&opts)) { 16442 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16443 opt = opts.ipoptp_cur; 16444 optlen = opts.ipoptp_len; 16445 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16446 optval, opts.ipoptp_len)); 16447 switch (optval) { 16448 uint32_t off; 16449 case IPOPT_SSRR: 16450 case IPOPT_LSRR: 16451 /* Check if adminstratively disabled */ 16452 if (!ip_forward_src_routed) { 16453 BUMP_MIB(&ip_mib, ipForwProhibits); 16454 if (ire->ire_stq != NULL) { 16455 /* 16456 * Sent by forwarding path, and router 16457 * is global zone 16458 */ 16459 icmp_unreachable(ire->ire_stq, mp, 16460 ICMP_SOURCE_ROUTE_FAILED, 16461 GLOBAL_ZONEID); 16462 } else { 16463 ip0dbg(("ip_rput_forward_options: " 16464 "unable to send unreach\n")); 16465 freemsg(mp); 16466 } 16467 return (-1); 16468 } 16469 16470 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16471 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16472 if (dst_ire == NULL) { 16473 /* 16474 * Must be partial since ip_rput_options 16475 * checked for strict. 16476 */ 16477 break; 16478 } 16479 off = opt[IPOPT_OFFSET]; 16480 off--; 16481 redo_srr: 16482 if (optlen < IP_ADDR_LEN || 16483 off > optlen - IP_ADDR_LEN) { 16484 /* End of source route */ 16485 ip1dbg(( 16486 "ip_rput_forward_options: end of SR\n")); 16487 ire_refrele(dst_ire); 16488 break; 16489 } 16490 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16491 bcopy(&ire->ire_src_addr, (char *)opt + off, 16492 IP_ADDR_LEN); 16493 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16494 ntohl(dst))); 16495 16496 /* 16497 * Check if our address is present more than 16498 * once as consecutive hops in source route. 16499 */ 16500 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16501 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16502 if (tmp_ire != NULL) { 16503 ire_refrele(tmp_ire); 16504 off += IP_ADDR_LEN; 16505 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16506 goto redo_srr; 16507 } 16508 ipha->ipha_dst = dst; 16509 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16510 ire_refrele(dst_ire); 16511 break; 16512 case IPOPT_RR: 16513 off = opt[IPOPT_OFFSET]; 16514 off--; 16515 if (optlen < IP_ADDR_LEN || 16516 off > optlen - IP_ADDR_LEN) { 16517 /* No more room - ignore */ 16518 ip1dbg(( 16519 "ip_rput_forward_options: end of RR\n")); 16520 break; 16521 } 16522 bcopy(&ire->ire_src_addr, (char *)opt + off, 16523 IP_ADDR_LEN); 16524 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16525 break; 16526 case IPOPT_TS: 16527 /* Insert timestamp if there is room */ 16528 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16529 case IPOPT_TS_TSONLY: 16530 off = IPOPT_TS_TIMELEN; 16531 break; 16532 case IPOPT_TS_PRESPEC: 16533 case IPOPT_TS_PRESPEC_RFC791: 16534 /* Verify that the address matched */ 16535 off = opt[IPOPT_OFFSET] - 1; 16536 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16537 dst_ire = ire_ctable_lookup(dst, 0, 16538 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16539 MATCH_IRE_TYPE); 16540 16541 if (dst_ire == NULL) { 16542 /* Not for us */ 16543 break; 16544 } 16545 ire_refrele(dst_ire); 16546 /* FALLTHRU */ 16547 case IPOPT_TS_TSANDADDR: 16548 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16549 break; 16550 default: 16551 /* 16552 * ip_*put_options should have already 16553 * dropped this packet. 16554 */ 16555 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16556 "unknown IT - bug in ip_rput_options?\n"); 16557 return (0); /* Keep "lint" happy */ 16558 } 16559 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16560 /* Increase overflow counter */ 16561 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16562 opt[IPOPT_POS_OV_FLG] = 16563 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16564 (off << 4)); 16565 break; 16566 } 16567 off = opt[IPOPT_OFFSET] - 1; 16568 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16569 case IPOPT_TS_PRESPEC: 16570 case IPOPT_TS_PRESPEC_RFC791: 16571 case IPOPT_TS_TSANDADDR: 16572 bcopy(&ire->ire_src_addr, 16573 (char *)opt + off, IP_ADDR_LEN); 16574 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16575 /* FALLTHRU */ 16576 case IPOPT_TS_TSONLY: 16577 off = opt[IPOPT_OFFSET] - 1; 16578 /* Compute # of milliseconds since midnight */ 16579 gethrestime(&now); 16580 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16581 now.tv_nsec / (NANOSEC / MILLISEC); 16582 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16583 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16584 break; 16585 } 16586 break; 16587 } 16588 } 16589 return (0); 16590 } 16591 16592 /* 16593 * This is called after processing at least one of AH/ESP headers. 16594 * 16595 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16596 * the actual, physical interface on which the packet was received, 16597 * but, when ip_strict_dst_multihoming is set to 1, could be the 16598 * interface which had the ipha_dst configured when the packet went 16599 * through ip_rput. The ill_index corresponding to the recv_ill 16600 * is saved in ipsec_in_rill_index 16601 */ 16602 void 16603 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16604 { 16605 mblk_t *mp; 16606 ipaddr_t dst; 16607 in6_addr_t *v6dstp; 16608 ipha_t *ipha; 16609 ip6_t *ip6h; 16610 ipsec_in_t *ii; 16611 boolean_t ill_need_rele = B_FALSE; 16612 boolean_t rill_need_rele = B_FALSE; 16613 boolean_t ire_need_rele = B_FALSE; 16614 16615 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16616 ASSERT(ii->ipsec_in_ill_index != 0); 16617 16618 mp = ipsec_mp->b_cont; 16619 ASSERT(mp != NULL); 16620 16621 16622 if (ill == NULL) { 16623 ASSERT(recv_ill == NULL); 16624 /* 16625 * We need to get the original queue on which ip_rput_local 16626 * or ip_rput_data_v6 was called. 16627 */ 16628 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16629 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16630 ill_need_rele = B_TRUE; 16631 16632 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16633 recv_ill = ill_lookup_on_ifindex( 16634 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16635 NULL, NULL, NULL, NULL); 16636 rill_need_rele = B_TRUE; 16637 } else { 16638 recv_ill = ill; 16639 } 16640 16641 if ((ill == NULL) || (recv_ill == NULL)) { 16642 ip0dbg(("ip_fanout_proto_again: interface " 16643 "disappeared\n")); 16644 if (ill != NULL) 16645 ill_refrele(ill); 16646 if (recv_ill != NULL) 16647 ill_refrele(recv_ill); 16648 freemsg(ipsec_mp); 16649 return; 16650 } 16651 } 16652 16653 ASSERT(ill != NULL && recv_ill != NULL); 16654 16655 if (mp->b_datap->db_type == M_CTL) { 16656 /* 16657 * AH/ESP is returning the ICMP message after 16658 * removing their headers. Fanout again till 16659 * it gets to the right protocol. 16660 */ 16661 if (ii->ipsec_in_v4) { 16662 icmph_t *icmph; 16663 int iph_hdr_length; 16664 int hdr_length; 16665 16666 ipha = (ipha_t *)mp->b_rptr; 16667 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16668 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16669 ipha = (ipha_t *)&icmph[1]; 16670 hdr_length = IPH_HDR_LENGTH(ipha); 16671 /* 16672 * icmp_inbound_error_fanout may need to do pullupmsg. 16673 * Reset the type to M_DATA. 16674 */ 16675 mp->b_datap->db_type = M_DATA; 16676 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16677 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16678 B_FALSE, ill, ii->ipsec_in_zoneid); 16679 } else { 16680 icmp6_t *icmp6; 16681 int hdr_length; 16682 16683 ip6h = (ip6_t *)mp->b_rptr; 16684 /* Don't call hdr_length_v6() unless you have to. */ 16685 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16686 hdr_length = ip_hdr_length_v6(mp, ip6h); 16687 else 16688 hdr_length = IPV6_HDR_LEN; 16689 16690 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16691 /* 16692 * icmp_inbound_error_fanout_v6 may need to do 16693 * pullupmsg. Reset the type to M_DATA. 16694 */ 16695 mp->b_datap->db_type = M_DATA; 16696 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16697 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16698 } 16699 if (ill_need_rele) 16700 ill_refrele(ill); 16701 if (rill_need_rele) 16702 ill_refrele(recv_ill); 16703 return; 16704 } 16705 16706 if (ii->ipsec_in_v4) { 16707 ipha = (ipha_t *)mp->b_rptr; 16708 dst = ipha->ipha_dst; 16709 if (CLASSD(dst)) { 16710 /* 16711 * Multicast has to be delivered to all streams. 16712 */ 16713 dst = INADDR_BROADCAST; 16714 } 16715 16716 if (ire == NULL) { 16717 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16718 MBLK_GETLABEL(mp)); 16719 if (ire == NULL) { 16720 if (ill_need_rele) 16721 ill_refrele(ill); 16722 if (rill_need_rele) 16723 ill_refrele(recv_ill); 16724 ip1dbg(("ip_fanout_proto_again: " 16725 "IRE not found")); 16726 freemsg(ipsec_mp); 16727 return; 16728 } 16729 ire_need_rele = B_TRUE; 16730 } 16731 16732 switch (ipha->ipha_protocol) { 16733 case IPPROTO_UDP: 16734 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16735 recv_ill); 16736 if (ire_need_rele) 16737 ire_refrele(ire); 16738 break; 16739 case IPPROTO_TCP: 16740 if (!ire_need_rele) 16741 IRE_REFHOLD(ire); 16742 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16743 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16744 IRE_REFRELE(ire); 16745 if (mp != NULL) 16746 squeue_enter_chain(GET_SQUEUE(mp), mp, 16747 mp, 1, SQTAG_IP_PROTO_AGAIN); 16748 break; 16749 case IPPROTO_SCTP: 16750 if (!ire_need_rele) 16751 IRE_REFHOLD(ire); 16752 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16753 ipsec_mp, 0, ill->ill_rq, dst); 16754 break; 16755 default: 16756 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16757 recv_ill); 16758 if (ire_need_rele) 16759 ire_refrele(ire); 16760 break; 16761 } 16762 } else { 16763 uint32_t rput_flags = 0; 16764 16765 ip6h = (ip6_t *)mp->b_rptr; 16766 v6dstp = &ip6h->ip6_dst; 16767 /* 16768 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16769 * address. 16770 * 16771 * Currently, we don't store that state in the IPSEC_IN 16772 * message, and we may need to. 16773 */ 16774 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16775 IP6_IN_LLMCAST : 0); 16776 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16777 NULL, NULL); 16778 } 16779 if (ill_need_rele) 16780 ill_refrele(ill); 16781 if (rill_need_rele) 16782 ill_refrele(recv_ill); 16783 } 16784 16785 /* 16786 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16787 * returns 'true' if there are still fragments left on the queue, in 16788 * which case we restart the timer. 16789 */ 16790 void 16791 ill_frag_timer(void *arg) 16792 { 16793 ill_t *ill = (ill_t *)arg; 16794 boolean_t frag_pending; 16795 16796 mutex_enter(&ill->ill_lock); 16797 ASSERT(!ill->ill_fragtimer_executing); 16798 if (ill->ill_state_flags & ILL_CONDEMNED) { 16799 ill->ill_frag_timer_id = 0; 16800 mutex_exit(&ill->ill_lock); 16801 return; 16802 } 16803 ill->ill_fragtimer_executing = 1; 16804 mutex_exit(&ill->ill_lock); 16805 16806 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16807 16808 /* 16809 * Restart the timer, if we have fragments pending or if someone 16810 * wanted us to be scheduled again. 16811 */ 16812 mutex_enter(&ill->ill_lock); 16813 ill->ill_fragtimer_executing = 0; 16814 ill->ill_frag_timer_id = 0; 16815 if (frag_pending || ill->ill_fragtimer_needrestart) 16816 ill_frag_timer_start(ill); 16817 mutex_exit(&ill->ill_lock); 16818 } 16819 16820 void 16821 ill_frag_timer_start(ill_t *ill) 16822 { 16823 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16824 16825 /* If the ill is closing or opening don't proceed */ 16826 if (ill->ill_state_flags & ILL_CONDEMNED) 16827 return; 16828 16829 if (ill->ill_fragtimer_executing) { 16830 /* 16831 * ill_frag_timer is currently executing. Just record the 16832 * the fact that we want the timer to be restarted. 16833 * ill_frag_timer will post a timeout before it returns, 16834 * ensuring it will be called again. 16835 */ 16836 ill->ill_fragtimer_needrestart = 1; 16837 return; 16838 } 16839 16840 if (ill->ill_frag_timer_id == 0) { 16841 /* 16842 * The timer is neither running nor is the timeout handler 16843 * executing. Post a timeout so that ill_frag_timer will be 16844 * called 16845 */ 16846 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16847 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16848 ill->ill_fragtimer_needrestart = 0; 16849 } 16850 } 16851 16852 /* 16853 * This routine is needed for loopback when forwarding multicasts. 16854 * 16855 * IPQoS Notes: 16856 * IPPF processing is done in fanout routines. 16857 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16858 * processing for IPSec packets is done when it comes back in clear. 16859 * NOTE : The callers of this function need to do the ire_refrele for the 16860 * ire that is being passed in. 16861 */ 16862 void 16863 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16864 ill_t *recv_ill) 16865 { 16866 ill_t *ill = (ill_t *)q->q_ptr; 16867 uint32_t sum; 16868 uint32_t u1; 16869 uint32_t u2; 16870 int hdr_length; 16871 boolean_t mctl_present; 16872 mblk_t *first_mp = mp; 16873 mblk_t *hada_mp = NULL; 16874 ipha_t *inner_ipha; 16875 16876 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16877 "ip_rput_locl_start: q %p", q); 16878 16879 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16880 16881 16882 #define rptr ((uchar_t *)ipha) 16883 #define iphs ((uint16_t *)ipha) 16884 16885 /* 16886 * no UDP or TCP packet should come here anymore. 16887 */ 16888 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16889 (ipha->ipha_protocol != IPPROTO_UDP)); 16890 16891 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16892 if (mctl_present && 16893 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16894 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16895 16896 /* 16897 * It's an IPsec accelerated packet. 16898 * Keep a pointer to the data attributes around until 16899 * we allocate the ipsec_info_t. 16900 */ 16901 IPSECHW_DEBUG(IPSECHW_PKT, 16902 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16903 hada_mp = first_mp; 16904 hada_mp->b_cont = NULL; 16905 /* 16906 * Since it is accelerated, it comes directly from 16907 * the ill and the data attributes is followed by 16908 * the packet data. 16909 */ 16910 ASSERT(mp->b_datap->db_type != M_CTL); 16911 first_mp = mp; 16912 mctl_present = B_FALSE; 16913 } 16914 16915 /* 16916 * IF M_CTL is not present, then ipsec_in_is_secure 16917 * should return B_TRUE. There is a case where loopback 16918 * packets has an M_CTL in the front with all the 16919 * IPSEC options set to IPSEC_PREF_NEVER - which means 16920 * ipsec_in_is_secure will return B_FALSE. As loopback 16921 * packets never comes here, it is safe to ASSERT the 16922 * following. 16923 */ 16924 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16925 16926 16927 /* u1 is # words of IP options */ 16928 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16929 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16930 16931 if (u1) { 16932 if (!ip_options_cksum(q, mp, ipha, ire)) { 16933 if (hada_mp != NULL) 16934 freemsg(hada_mp); 16935 return; 16936 } 16937 } else { 16938 /* Check the IP header checksum. */ 16939 #define uph ((uint16_t *)ipha) 16940 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16941 uph[6] + uph[7] + uph[8] + uph[9]; 16942 #undef uph 16943 /* finish doing IP checksum */ 16944 sum = (sum & 0xFFFF) + (sum >> 16); 16945 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16946 /* 16947 * Don't verify header checksum if this packet is coming 16948 * back from AH/ESP as we already did it. 16949 */ 16950 if (!mctl_present && (sum && sum != 0xFFFF)) { 16951 BUMP_MIB(&ip_mib, ipInCksumErrs); 16952 goto drop_pkt; 16953 } 16954 } 16955 16956 /* 16957 * Count for SNMP of inbound packets for ire. As ip_proto_input 16958 * might be called more than once for secure packets, count only 16959 * the first time. 16960 */ 16961 if (!mctl_present) { 16962 UPDATE_IB_PKT_COUNT(ire); 16963 ire->ire_last_used_time = lbolt; 16964 } 16965 16966 /* Check for fragmentation offset. */ 16967 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16968 u1 = u2 & (IPH_MF | IPH_OFFSET); 16969 if (u1) { 16970 /* 16971 * We re-assemble fragments before we do the AH/ESP 16972 * processing. Thus, M_CTL should not be present 16973 * while we are re-assembling. 16974 */ 16975 ASSERT(!mctl_present); 16976 ASSERT(first_mp == mp); 16977 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16978 return; 16979 } 16980 /* 16981 * Make sure that first_mp points back to mp as 16982 * the mp we came in with could have changed in 16983 * ip_rput_fragment(). 16984 */ 16985 ipha = (ipha_t *)mp->b_rptr; 16986 first_mp = mp; 16987 } 16988 16989 /* 16990 * Clear hardware checksumming flag as it is currently only 16991 * used by TCP and UDP. 16992 */ 16993 DB_CKSUMFLAGS(mp) = 0; 16994 16995 /* Now we have a complete datagram, destined for this machine. */ 16996 u1 = IPH_HDR_LENGTH(ipha); 16997 switch (ipha->ipha_protocol) { 16998 case IPPROTO_ICMP: { 16999 ire_t *ire_zone; 17000 ilm_t *ilm; 17001 mblk_t *mp1; 17002 zoneid_t last_zoneid; 17003 17004 if (CLASSD(ipha->ipha_dst) && 17005 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17006 ASSERT(ire->ire_type == IRE_BROADCAST); 17007 /* 17008 * In the multicast case, applications may have joined 17009 * the group from different zones, so we need to deliver 17010 * the packet to each of them. Loop through the 17011 * multicast memberships structures (ilm) on the receive 17012 * ill and send a copy of the packet up each matching 17013 * one. However, we don't do this for multicasts sent on 17014 * the loopback interface (PHYI_LOOPBACK flag set) as 17015 * they must stay in the sender's zone. 17016 * 17017 * ilm_add_v6() ensures that ilms in the same zone are 17018 * contiguous in the ill_ilm list. We use this property 17019 * to avoid sending duplicates needed when two 17020 * applications in the same zone join the same group on 17021 * different logical interfaces: we ignore the ilm if 17022 * its zoneid is the same as the last matching one. 17023 * In addition, the sending of the packet for 17024 * ire_zoneid is delayed until all of the other ilms 17025 * have been exhausted. 17026 */ 17027 last_zoneid = -1; 17028 ILM_WALKER_HOLD(recv_ill); 17029 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17030 ilm = ilm->ilm_next) { 17031 if ((ilm->ilm_flags & ILM_DELETED) || 17032 ipha->ipha_dst != ilm->ilm_addr || 17033 ilm->ilm_zoneid == last_zoneid || 17034 ilm->ilm_zoneid == ire->ire_zoneid || 17035 ilm->ilm_zoneid == ALL_ZONES || 17036 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17037 continue; 17038 mp1 = ip_copymsg(first_mp); 17039 if (mp1 == NULL) 17040 continue; 17041 icmp_inbound(q, mp1, B_TRUE, ill, 17042 0, sum, mctl_present, B_TRUE, 17043 recv_ill, ilm->ilm_zoneid); 17044 last_zoneid = ilm->ilm_zoneid; 17045 } 17046 ILM_WALKER_RELE(recv_ill); 17047 } else if (ire->ire_type == IRE_BROADCAST) { 17048 /* 17049 * In the broadcast case, there may be many zones 17050 * which need a copy of the packet delivered to them. 17051 * There is one IRE_BROADCAST per broadcast address 17052 * and per zone; we walk those using a helper function. 17053 * In addition, the sending of the packet for ire is 17054 * delayed until all of the other ires have been 17055 * processed. 17056 */ 17057 IRB_REFHOLD(ire->ire_bucket); 17058 ire_zone = NULL; 17059 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17060 ire)) != NULL) { 17061 mp1 = ip_copymsg(first_mp); 17062 if (mp1 == NULL) 17063 continue; 17064 17065 UPDATE_IB_PKT_COUNT(ire_zone); 17066 ire_zone->ire_last_used_time = lbolt; 17067 icmp_inbound(q, mp1, B_TRUE, ill, 17068 0, sum, mctl_present, B_TRUE, 17069 recv_ill, ire_zone->ire_zoneid); 17070 } 17071 IRB_REFRELE(ire->ire_bucket); 17072 } 17073 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17074 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17075 ire->ire_zoneid); 17076 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17077 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17078 return; 17079 } 17080 case IPPROTO_IGMP: 17081 /* 17082 * If we are not willing to accept IGMP packets in clear, 17083 * then check with global policy. 17084 */ 17085 if (igmp_accept_clear_messages == 0) { 17086 first_mp = ipsec_check_global_policy(first_mp, NULL, 17087 ipha, NULL, mctl_present); 17088 if (first_mp == NULL) 17089 return; 17090 } 17091 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17092 freemsg(first_mp); 17093 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17094 BUMP_MIB(&ip_mib, ipInDiscards); 17095 return; 17096 } 17097 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17098 /* Bad packet - discarded by igmp_input */ 17099 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17100 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17101 if (mctl_present) 17102 freeb(first_mp); 17103 return; 17104 } 17105 /* 17106 * igmp_input() may have returned the pulled up message. 17107 * So first_mp and ipha need to be reinitialized. 17108 */ 17109 ipha = (ipha_t *)mp->b_rptr; 17110 if (mctl_present) 17111 first_mp->b_cont = mp; 17112 else 17113 first_mp = mp; 17114 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17115 /* No user-level listener for IGMP packets */ 17116 goto drop_pkt; 17117 } 17118 /* deliver to local raw users */ 17119 break; 17120 case IPPROTO_PIM: 17121 /* 17122 * If we are not willing to accept PIM packets in clear, 17123 * then check with global policy. 17124 */ 17125 if (pim_accept_clear_messages == 0) { 17126 first_mp = ipsec_check_global_policy(first_mp, NULL, 17127 ipha, NULL, mctl_present); 17128 if (first_mp == NULL) 17129 return; 17130 } 17131 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17132 freemsg(first_mp); 17133 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17134 BUMP_MIB(&ip_mib, ipInDiscards); 17135 return; 17136 } 17137 if (pim_input(q, mp) != 0) { 17138 /* Bad packet - discarded by pim_input */ 17139 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17140 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17141 if (mctl_present) 17142 freeb(first_mp); 17143 return; 17144 } 17145 17146 /* 17147 * pim_input() may have pulled up the message so ipha needs to 17148 * be reinitialized. 17149 */ 17150 ipha = (ipha_t *)mp->b_rptr; 17151 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17152 /* No user-level listener for PIM packets */ 17153 goto drop_pkt; 17154 } 17155 /* deliver to local raw users */ 17156 break; 17157 case IPPROTO_ENCAP: 17158 /* 17159 * Handle self-encapsulated packets (IP-in-IP where 17160 * the inner addresses == the outer addresses). 17161 */ 17162 hdr_length = IPH_HDR_LENGTH(ipha); 17163 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17164 mp->b_wptr) { 17165 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17166 sizeof (ipha_t) - mp->b_rptr)) { 17167 BUMP_MIB(&ip_mib, ipInDiscards); 17168 freemsg(first_mp); 17169 return; 17170 } 17171 ipha = (ipha_t *)mp->b_rptr; 17172 } 17173 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17174 /* 17175 * Check the sanity of the inner IP header. 17176 */ 17177 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17178 BUMP_MIB(&ip_mib, ipInDiscards); 17179 freemsg(first_mp); 17180 return; 17181 } 17182 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17183 BUMP_MIB(&ip_mib, ipInDiscards); 17184 freemsg(first_mp); 17185 return; 17186 } 17187 if (inner_ipha->ipha_src == ipha->ipha_src && 17188 inner_ipha->ipha_dst == ipha->ipha_dst) { 17189 ipsec_in_t *ii; 17190 17191 /* 17192 * Self-encapsulated tunnel packet. Remove 17193 * the outer IP header and fanout again. 17194 * We also need to make sure that the inner 17195 * header is pulled up until options. 17196 */ 17197 mp->b_rptr = (uchar_t *)inner_ipha; 17198 ipha = inner_ipha; 17199 hdr_length = IPH_HDR_LENGTH(ipha); 17200 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17201 if (!pullupmsg(mp, (uchar_t *)ipha + 17202 + hdr_length - mp->b_rptr)) { 17203 freemsg(first_mp); 17204 return; 17205 } 17206 ipha = (ipha_t *)mp->b_rptr; 17207 } 17208 if (!mctl_present) { 17209 ASSERT(first_mp == mp); 17210 /* 17211 * This means that somebody is sending 17212 * Self-encapsualted packets without AH/ESP. 17213 * If AH/ESP was present, we would have already 17214 * allocated the first_mp. 17215 */ 17216 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17217 NULL) { 17218 ip1dbg(("ip_proto_input: IPSEC_IN " 17219 "allocation failure.\n")); 17220 BUMP_MIB(&ip_mib, ipInDiscards); 17221 freemsg(mp); 17222 return; 17223 } 17224 first_mp->b_cont = mp; 17225 } 17226 /* 17227 * We generally store the ill_index if we need to 17228 * do IPSEC processing as we lose the ill queue when 17229 * we come back. But in this case, we never should 17230 * have to store the ill_index here as it should have 17231 * been stored previously when we processed the 17232 * AH/ESP header in this routine or for non-ipsec 17233 * cases, we still have the queue. But for some bad 17234 * packets from the wire, we can get to IPSEC after 17235 * this and we better store the index for that case. 17236 */ 17237 ill = (ill_t *)q->q_ptr; 17238 ii = (ipsec_in_t *)first_mp->b_rptr; 17239 ii->ipsec_in_ill_index = 17240 ill->ill_phyint->phyint_ifindex; 17241 ii->ipsec_in_rill_index = 17242 recv_ill->ill_phyint->phyint_ifindex; 17243 if (ii->ipsec_in_decaps) { 17244 /* 17245 * This packet is self-encapsulated multiple 17246 * times. We don't want to recurse infinitely. 17247 * To keep it simple, drop the packet. 17248 */ 17249 BUMP_MIB(&ip_mib, ipInDiscards); 17250 freemsg(first_mp); 17251 return; 17252 } 17253 ii->ipsec_in_decaps = B_TRUE; 17254 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17255 ire); 17256 return; 17257 } 17258 break; 17259 case IPPROTO_AH: 17260 case IPPROTO_ESP: { 17261 /* 17262 * Fast path for AH/ESP. If this is the first time 17263 * we are sending a datagram to AH/ESP, allocate 17264 * a IPSEC_IN message and prepend it. Otherwise, 17265 * just fanout. 17266 */ 17267 17268 int ipsec_rc; 17269 ipsec_in_t *ii; 17270 17271 IP_STAT(ipsec_proto_ahesp); 17272 if (!mctl_present) { 17273 ASSERT(first_mp == mp); 17274 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17275 ip1dbg(("ip_proto_input: IPSEC_IN " 17276 "allocation failure.\n")); 17277 freemsg(hada_mp); /* okay ifnull */ 17278 BUMP_MIB(&ip_mib, ipInDiscards); 17279 freemsg(mp); 17280 return; 17281 } 17282 /* 17283 * Store the ill_index so that when we come back 17284 * from IPSEC we ride on the same queue. 17285 */ 17286 ill = (ill_t *)q->q_ptr; 17287 ii = (ipsec_in_t *)first_mp->b_rptr; 17288 ii->ipsec_in_ill_index = 17289 ill->ill_phyint->phyint_ifindex; 17290 ii->ipsec_in_rill_index = 17291 recv_ill->ill_phyint->phyint_ifindex; 17292 first_mp->b_cont = mp; 17293 /* 17294 * Cache hardware acceleration info. 17295 */ 17296 if (hada_mp != NULL) { 17297 IPSECHW_DEBUG(IPSECHW_PKT, 17298 ("ip_rput_local: caching data attr.\n")); 17299 ii->ipsec_in_accelerated = B_TRUE; 17300 ii->ipsec_in_da = hada_mp; 17301 hada_mp = NULL; 17302 } 17303 } else { 17304 ii = (ipsec_in_t *)first_mp->b_rptr; 17305 } 17306 17307 if (!ipsec_loaded()) { 17308 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17309 ire->ire_zoneid); 17310 return; 17311 } 17312 17313 /* select inbound SA and have IPsec process the pkt */ 17314 if (ipha->ipha_protocol == IPPROTO_ESP) { 17315 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17316 if (esph == NULL) 17317 return; 17318 ASSERT(ii->ipsec_in_esp_sa != NULL); 17319 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17320 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17321 first_mp, esph); 17322 } else { 17323 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17324 if (ah == NULL) 17325 return; 17326 ASSERT(ii->ipsec_in_ah_sa != NULL); 17327 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17328 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17329 first_mp, ah); 17330 } 17331 17332 switch (ipsec_rc) { 17333 case IPSEC_STATUS_SUCCESS: 17334 break; 17335 case IPSEC_STATUS_FAILED: 17336 BUMP_MIB(&ip_mib, ipInDiscards); 17337 /* FALLTHRU */ 17338 case IPSEC_STATUS_PENDING: 17339 return; 17340 } 17341 /* we're done with IPsec processing, send it up */ 17342 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17343 return; 17344 } 17345 default: 17346 break; 17347 } 17348 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17349 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17350 ire->ire_zoneid)); 17351 goto drop_pkt; 17352 } 17353 /* 17354 * Handle protocols with which IP is less intimate. There 17355 * can be more than one stream bound to a particular 17356 * protocol. When this is the case, each one gets a copy 17357 * of any incoming packets. 17358 */ 17359 ip_fanout_proto(q, first_mp, ill, ipha, 17360 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17361 B_TRUE, recv_ill, ire->ire_zoneid); 17362 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17363 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17364 return; 17365 17366 drop_pkt: 17367 freemsg(first_mp); 17368 if (hada_mp != NULL) 17369 freeb(hada_mp); 17370 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17371 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17372 #undef rptr 17373 #undef iphs 17374 17375 } 17376 17377 /* 17378 * Update any source route, record route or timestamp options. 17379 * Check that we are at end of strict source route. 17380 * The options have already been checked for sanity in ip_rput_options(). 17381 */ 17382 static boolean_t 17383 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17384 { 17385 ipoptp_t opts; 17386 uchar_t *opt; 17387 uint8_t optval; 17388 uint8_t optlen; 17389 ipaddr_t dst; 17390 uint32_t ts; 17391 ire_t *dst_ire; 17392 timestruc_t now; 17393 zoneid_t zoneid; 17394 ill_t *ill; 17395 17396 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17397 17398 ip2dbg(("ip_rput_local_options\n")); 17399 17400 for (optval = ipoptp_first(&opts, ipha); 17401 optval != IPOPT_EOL; 17402 optval = ipoptp_next(&opts)) { 17403 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17404 opt = opts.ipoptp_cur; 17405 optlen = opts.ipoptp_len; 17406 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17407 optval, optlen)); 17408 switch (optval) { 17409 uint32_t off; 17410 case IPOPT_SSRR: 17411 case IPOPT_LSRR: 17412 off = opt[IPOPT_OFFSET]; 17413 off--; 17414 if (optlen < IP_ADDR_LEN || 17415 off > optlen - IP_ADDR_LEN) { 17416 /* End of source route */ 17417 ip1dbg(("ip_rput_local_options: end of SR\n")); 17418 break; 17419 } 17420 /* 17421 * This will only happen if two consecutive entries 17422 * in the source route contains our address or if 17423 * it is a packet with a loose source route which 17424 * reaches us before consuming the whole source route 17425 */ 17426 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17427 if (optval == IPOPT_SSRR) { 17428 goto bad_src_route; 17429 } 17430 /* 17431 * Hack: instead of dropping the packet truncate the 17432 * source route to what has been used by filling the 17433 * rest with IPOPT_NOP. 17434 */ 17435 opt[IPOPT_OLEN] = (uint8_t)off; 17436 while (off < optlen) { 17437 opt[off++] = IPOPT_NOP; 17438 } 17439 break; 17440 case IPOPT_RR: 17441 off = opt[IPOPT_OFFSET]; 17442 off--; 17443 if (optlen < IP_ADDR_LEN || 17444 off > optlen - IP_ADDR_LEN) { 17445 /* No more room - ignore */ 17446 ip1dbg(( 17447 "ip_rput_local_options: end of RR\n")); 17448 break; 17449 } 17450 bcopy(&ire->ire_src_addr, (char *)opt + off, 17451 IP_ADDR_LEN); 17452 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17453 break; 17454 case IPOPT_TS: 17455 /* Insert timestamp if there is romm */ 17456 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17457 case IPOPT_TS_TSONLY: 17458 off = IPOPT_TS_TIMELEN; 17459 break; 17460 case IPOPT_TS_PRESPEC: 17461 case IPOPT_TS_PRESPEC_RFC791: 17462 /* Verify that the address matched */ 17463 off = opt[IPOPT_OFFSET] - 1; 17464 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17465 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17466 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17467 if (dst_ire == NULL) { 17468 /* Not for us */ 17469 break; 17470 } 17471 ire_refrele(dst_ire); 17472 /* FALLTHRU */ 17473 case IPOPT_TS_TSANDADDR: 17474 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17475 break; 17476 default: 17477 /* 17478 * ip_*put_options should have already 17479 * dropped this packet. 17480 */ 17481 cmn_err(CE_PANIC, "ip_rput_local_options: " 17482 "unknown IT - bug in ip_rput_options?\n"); 17483 return (B_TRUE); /* Keep "lint" happy */ 17484 } 17485 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17486 /* Increase overflow counter */ 17487 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17488 opt[IPOPT_POS_OV_FLG] = 17489 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17490 (off << 4)); 17491 break; 17492 } 17493 off = opt[IPOPT_OFFSET] - 1; 17494 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17495 case IPOPT_TS_PRESPEC: 17496 case IPOPT_TS_PRESPEC_RFC791: 17497 case IPOPT_TS_TSANDADDR: 17498 bcopy(&ire->ire_src_addr, (char *)opt + off, 17499 IP_ADDR_LEN); 17500 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17501 /* FALLTHRU */ 17502 case IPOPT_TS_TSONLY: 17503 off = opt[IPOPT_OFFSET] - 1; 17504 /* Compute # of milliseconds since midnight */ 17505 gethrestime(&now); 17506 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17507 now.tv_nsec / (NANOSEC / MILLISEC); 17508 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17509 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17510 break; 17511 } 17512 break; 17513 } 17514 } 17515 return (B_TRUE); 17516 17517 bad_src_route: 17518 q = WR(q); 17519 if (q->q_next != NULL) 17520 ill = q->q_ptr; 17521 else 17522 ill = NULL; 17523 17524 /* make sure we clear any indication of a hardware checksum */ 17525 DB_CKSUMFLAGS(mp) = 0; 17526 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17527 if (zoneid == ALL_ZONES) 17528 freemsg(mp); 17529 else 17530 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17531 return (B_FALSE); 17532 17533 } 17534 17535 /* 17536 * Process IP options in an inbound packet. If an option affects the 17537 * effective destination address, return the next hop address via dstp. 17538 * Returns -1 if something fails in which case an ICMP error has been sent 17539 * and mp freed. 17540 */ 17541 static int 17542 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17543 { 17544 ipoptp_t opts; 17545 uchar_t *opt; 17546 uint8_t optval; 17547 uint8_t optlen; 17548 ipaddr_t dst; 17549 intptr_t code = 0; 17550 ire_t *ire = NULL; 17551 zoneid_t zoneid; 17552 ill_t *ill; 17553 17554 ip2dbg(("ip_rput_options\n")); 17555 dst = ipha->ipha_dst; 17556 for (optval = ipoptp_first(&opts, ipha); 17557 optval != IPOPT_EOL; 17558 optval = ipoptp_next(&opts)) { 17559 opt = opts.ipoptp_cur; 17560 optlen = opts.ipoptp_len; 17561 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17562 optval, optlen)); 17563 /* 17564 * Note: we need to verify the checksum before we 17565 * modify anything thus this routine only extracts the next 17566 * hop dst from any source route. 17567 */ 17568 switch (optval) { 17569 uint32_t off; 17570 case IPOPT_SSRR: 17571 case IPOPT_LSRR: 17572 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17573 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17574 if (ire == NULL) { 17575 if (optval == IPOPT_SSRR) { 17576 ip1dbg(("ip_rput_options: not next" 17577 " strict source route 0x%x\n", 17578 ntohl(dst))); 17579 code = (char *)&ipha->ipha_dst - 17580 (char *)ipha; 17581 goto param_prob; /* RouterReq's */ 17582 } 17583 ip2dbg(("ip_rput_options: " 17584 "not next source route 0x%x\n", 17585 ntohl(dst))); 17586 break; 17587 } 17588 ire_refrele(ire); 17589 17590 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17591 ip1dbg(( 17592 "ip_rput_options: bad option offset\n")); 17593 code = (char *)&opt[IPOPT_OLEN] - 17594 (char *)ipha; 17595 goto param_prob; 17596 } 17597 off = opt[IPOPT_OFFSET]; 17598 off--; 17599 redo_srr: 17600 if (optlen < IP_ADDR_LEN || 17601 off > optlen - IP_ADDR_LEN) { 17602 /* End of source route */ 17603 ip1dbg(("ip_rput_options: end of SR\n")); 17604 break; 17605 } 17606 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17607 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17608 ntohl(dst))); 17609 17610 /* 17611 * Check if our address is present more than 17612 * once as consecutive hops in source route. 17613 * XXX verify per-interface ip_forwarding 17614 * for source route? 17615 */ 17616 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17617 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17618 17619 if (ire != NULL) { 17620 ire_refrele(ire); 17621 off += IP_ADDR_LEN; 17622 goto redo_srr; 17623 } 17624 17625 if (dst == htonl(INADDR_LOOPBACK)) { 17626 ip1dbg(("ip_rput_options: loopback addr in " 17627 "source route!\n")); 17628 goto bad_src_route; 17629 } 17630 /* 17631 * For strict: verify that dst is directly 17632 * reachable. 17633 */ 17634 if (optval == IPOPT_SSRR) { 17635 ire = ire_ftable_lookup(dst, 0, 0, 17636 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17637 MBLK_GETLABEL(mp), 17638 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17639 if (ire == NULL) { 17640 ip1dbg(("ip_rput_options: SSRR not " 17641 "directly reachable: 0x%x\n", 17642 ntohl(dst))); 17643 goto bad_src_route; 17644 } 17645 ire_refrele(ire); 17646 } 17647 /* 17648 * Defer update of the offset and the record route 17649 * until the packet is forwarded. 17650 */ 17651 break; 17652 case IPOPT_RR: 17653 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17654 ip1dbg(( 17655 "ip_rput_options: bad option offset\n")); 17656 code = (char *)&opt[IPOPT_OLEN] - 17657 (char *)ipha; 17658 goto param_prob; 17659 } 17660 break; 17661 case IPOPT_TS: 17662 /* 17663 * Verify that length >= 5 and that there is either 17664 * room for another timestamp or that the overflow 17665 * counter is not maxed out. 17666 */ 17667 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17668 if (optlen < IPOPT_MINLEN_IT) { 17669 goto param_prob; 17670 } 17671 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17672 ip1dbg(( 17673 "ip_rput_options: bad option offset\n")); 17674 code = (char *)&opt[IPOPT_OFFSET] - 17675 (char *)ipha; 17676 goto param_prob; 17677 } 17678 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17679 case IPOPT_TS_TSONLY: 17680 off = IPOPT_TS_TIMELEN; 17681 break; 17682 case IPOPT_TS_TSANDADDR: 17683 case IPOPT_TS_PRESPEC: 17684 case IPOPT_TS_PRESPEC_RFC791: 17685 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17686 break; 17687 default: 17688 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17689 (char *)ipha; 17690 goto param_prob; 17691 } 17692 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17693 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17694 /* 17695 * No room and the overflow counter is 15 17696 * already. 17697 */ 17698 goto param_prob; 17699 } 17700 break; 17701 } 17702 } 17703 17704 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17705 *dstp = dst; 17706 return (0); 17707 } 17708 17709 ip1dbg(("ip_rput_options: error processing IP options.")); 17710 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17711 17712 param_prob: 17713 q = WR(q); 17714 if (q->q_next != NULL) 17715 ill = q->q_ptr; 17716 else 17717 ill = NULL; 17718 17719 /* make sure we clear any indication of a hardware checksum */ 17720 DB_CKSUMFLAGS(mp) = 0; 17721 /* Don't know whether this is for non-global or global/forwarding */ 17722 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17723 if (zoneid == ALL_ZONES) 17724 freemsg(mp); 17725 else 17726 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17727 return (-1); 17728 17729 bad_src_route: 17730 q = WR(q); 17731 if (q->q_next != NULL) 17732 ill = q->q_ptr; 17733 else 17734 ill = NULL; 17735 17736 /* make sure we clear any indication of a hardware checksum */ 17737 DB_CKSUMFLAGS(mp) = 0; 17738 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17739 if (zoneid == ALL_ZONES) 17740 freemsg(mp); 17741 else 17742 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17743 return (-1); 17744 } 17745 17746 /* 17747 * IP & ICMP info in >=14 msg's ... 17748 * - ip fixed part (mib2_ip_t) 17749 * - icmp fixed part (mib2_icmp_t) 17750 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17751 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17752 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17753 * - ipRouteAttributeTable (ip 102) labeled routes 17754 * - ip multicast membership (ip_member_t) 17755 * - ip multicast source filtering (ip_grpsrc_t) 17756 * - igmp fixed part (struct igmpstat) 17757 * - multicast routing stats (struct mrtstat) 17758 * - multicast routing vifs (array of struct vifctl) 17759 * - multicast routing routes (array of struct mfcctl) 17760 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17761 * One per ill plus one generic 17762 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17763 * One per ill plus one generic 17764 * - ipv6RouteEntry all IPv6 IREs 17765 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17766 * - ipv6NetToMediaEntry all Neighbor Cache entries 17767 * - ipv6AddrEntry all IPv6 ipifs 17768 * - ipv6 multicast membership (ipv6_member_t) 17769 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17770 * 17771 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17772 * 17773 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17774 * already filled in by the caller. 17775 * Return value of 0 indicates that no messages were sent and caller 17776 * should free mpctl. 17777 */ 17778 int 17779 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17780 { 17781 17782 if (mpctl == NULL || mpctl->b_cont == NULL) { 17783 return (0); 17784 } 17785 17786 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17787 return (1); 17788 } 17789 17790 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17791 return (1); 17792 } 17793 17794 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17795 return (1); 17796 } 17797 17798 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17799 return (1); 17800 } 17801 17802 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17803 return (1); 17804 } 17805 17806 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17807 return (1); 17808 } 17809 17810 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17811 return (1); 17812 } 17813 17814 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17815 return (1); 17816 } 17817 17818 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17819 return (1); 17820 } 17821 17822 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17823 return (1); 17824 } 17825 17826 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17827 return (1); 17828 } 17829 17830 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17831 return (1); 17832 } 17833 17834 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17835 return (1); 17836 } 17837 17838 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17839 return (1); 17840 } 17841 17842 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17843 return (1); 17844 } 17845 17846 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17847 return (1); 17848 } 17849 17850 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17851 return (1); 17852 } 17853 freemsg(mpctl); 17854 return (1); 17855 } 17856 17857 17858 /* Get global IPv4 statistics */ 17859 static mblk_t * 17860 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17861 { 17862 struct opthdr *optp; 17863 mblk_t *mp2ctl; 17864 17865 /* 17866 * make a copy of the original message 17867 */ 17868 mp2ctl = copymsg(mpctl); 17869 17870 /* fixed length IP structure... */ 17871 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17872 optp->level = MIB2_IP; 17873 optp->name = 0; 17874 SET_MIB(ip_mib.ipForwarding, 17875 (WE_ARE_FORWARDING ? 1 : 2)); 17876 SET_MIB(ip_mib.ipDefaultTTL, 17877 (uint32_t)ip_def_ttl); 17878 SET_MIB(ip_mib.ipReasmTimeout, 17879 ip_g_frag_timeout); 17880 SET_MIB(ip_mib.ipAddrEntrySize, 17881 sizeof (mib2_ipAddrEntry_t)); 17882 SET_MIB(ip_mib.ipRouteEntrySize, 17883 sizeof (mib2_ipRouteEntry_t)); 17884 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17885 sizeof (mib2_ipNetToMediaEntry_t)); 17886 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17887 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17888 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17889 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17890 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17891 (int)sizeof (ip_mib))) { 17892 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17893 (uint_t)sizeof (ip_mib))); 17894 } 17895 17896 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17897 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17898 (int)optp->level, (int)optp->name, (int)optp->len)); 17899 qreply(q, mpctl); 17900 return (mp2ctl); 17901 } 17902 17903 /* Global IPv4 ICMP statistics */ 17904 static mblk_t * 17905 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17906 { 17907 struct opthdr *optp; 17908 mblk_t *mp2ctl; 17909 17910 /* 17911 * Make a copy of the original message 17912 */ 17913 mp2ctl = copymsg(mpctl); 17914 17915 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17916 optp->level = MIB2_ICMP; 17917 optp->name = 0; 17918 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17919 (int)sizeof (icmp_mib))) { 17920 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17921 (uint_t)sizeof (icmp_mib))); 17922 } 17923 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17924 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17925 (int)optp->level, (int)optp->name, (int)optp->len)); 17926 qreply(q, mpctl); 17927 return (mp2ctl); 17928 } 17929 17930 /* Global IPv4 IGMP statistics */ 17931 static mblk_t * 17932 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17933 { 17934 struct opthdr *optp; 17935 mblk_t *mp2ctl; 17936 17937 /* 17938 * make a copy of the original message 17939 */ 17940 mp2ctl = copymsg(mpctl); 17941 17942 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17943 optp->level = EXPER_IGMP; 17944 optp->name = 0; 17945 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17946 (int)sizeof (igmpstat))) { 17947 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17948 (uint_t)sizeof (igmpstat))); 17949 } 17950 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17951 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17952 (int)optp->level, (int)optp->name, (int)optp->len)); 17953 qreply(q, mpctl); 17954 return (mp2ctl); 17955 } 17956 17957 /* Global IPv4 Multicast Routing statistics */ 17958 static mblk_t * 17959 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17960 { 17961 struct opthdr *optp; 17962 mblk_t *mp2ctl; 17963 17964 /* 17965 * make a copy of the original message 17966 */ 17967 mp2ctl = copymsg(mpctl); 17968 17969 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17970 optp->level = EXPER_DVMRP; 17971 optp->name = 0; 17972 if (!ip_mroute_stats(mpctl->b_cont)) { 17973 ip0dbg(("ip_mroute_stats: failed\n")); 17974 } 17975 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17976 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17977 (int)optp->level, (int)optp->name, (int)optp->len)); 17978 qreply(q, mpctl); 17979 return (mp2ctl); 17980 } 17981 17982 /* IPv4 address information */ 17983 static mblk_t * 17984 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17985 { 17986 struct opthdr *optp; 17987 mblk_t *mp2ctl; 17988 mblk_t *mp_tail = NULL; 17989 ill_t *ill; 17990 ipif_t *ipif; 17991 uint_t bitval; 17992 mib2_ipAddrEntry_t mae; 17993 zoneid_t zoneid; 17994 ill_walk_context_t ctx; 17995 17996 /* 17997 * make a copy of the original message 17998 */ 17999 mp2ctl = copymsg(mpctl); 18000 18001 /* ipAddrEntryTable */ 18002 18003 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18004 optp->level = MIB2_IP; 18005 optp->name = MIB2_IP_ADDR; 18006 zoneid = Q_TO_CONN(q)->conn_zoneid; 18007 18008 rw_enter(&ill_g_lock, RW_READER); 18009 ill = ILL_START_WALK_V4(&ctx); 18010 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18011 for (ipif = ill->ill_ipif; ipif != NULL; 18012 ipif = ipif->ipif_next) { 18013 if (ipif->ipif_zoneid != zoneid && 18014 ipif->ipif_zoneid != ALL_ZONES) 18015 continue; 18016 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18017 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18018 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18019 18020 (void) ipif_get_name(ipif, 18021 mae.ipAdEntIfIndex.o_bytes, 18022 OCTET_LENGTH); 18023 mae.ipAdEntIfIndex.o_length = 18024 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18025 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18026 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18027 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18028 mae.ipAdEntInfo.ae_subnet_len = 18029 ip_mask_to_plen(ipif->ipif_net_mask); 18030 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18031 for (bitval = 1; 18032 bitval && 18033 !(bitval & ipif->ipif_brd_addr); 18034 bitval <<= 1) 18035 noop; 18036 mae.ipAdEntBcastAddr = bitval; 18037 mae.ipAdEntReasmMaxSize = 65535; 18038 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18039 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18040 mae.ipAdEntInfo.ae_broadcast_addr = 18041 ipif->ipif_brd_addr; 18042 mae.ipAdEntInfo.ae_pp_dst_addr = 18043 ipif->ipif_pp_dst_addr; 18044 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18045 ill->ill_flags | ill->ill_phyint->phyint_flags; 18046 18047 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18048 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18049 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18050 "allocate %u bytes\n", 18051 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18052 } 18053 } 18054 } 18055 rw_exit(&ill_g_lock); 18056 18057 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18058 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18059 (int)optp->level, (int)optp->name, (int)optp->len)); 18060 qreply(q, mpctl); 18061 return (mp2ctl); 18062 } 18063 18064 /* IPv6 address information */ 18065 static mblk_t * 18066 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 18067 { 18068 struct opthdr *optp; 18069 mblk_t *mp2ctl; 18070 mblk_t *mp_tail = NULL; 18071 ill_t *ill; 18072 ipif_t *ipif; 18073 mib2_ipv6AddrEntry_t mae6; 18074 zoneid_t zoneid; 18075 ill_walk_context_t ctx; 18076 18077 /* 18078 * make a copy of the original message 18079 */ 18080 mp2ctl = copymsg(mpctl); 18081 18082 /* ipv6AddrEntryTable */ 18083 18084 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18085 optp->level = MIB2_IP6; 18086 optp->name = MIB2_IP6_ADDR; 18087 zoneid = Q_TO_CONN(q)->conn_zoneid; 18088 18089 rw_enter(&ill_g_lock, RW_READER); 18090 ill = ILL_START_WALK_V6(&ctx); 18091 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18092 for (ipif = ill->ill_ipif; ipif != NULL; 18093 ipif = ipif->ipif_next) { 18094 if (ipif->ipif_zoneid != zoneid && 18095 ipif->ipif_zoneid != ALL_ZONES) 18096 continue; 18097 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18098 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18099 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18100 18101 (void) ipif_get_name(ipif, 18102 mae6.ipv6AddrIfIndex.o_bytes, 18103 OCTET_LENGTH); 18104 mae6.ipv6AddrIfIndex.o_length = 18105 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18106 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18107 mae6.ipv6AddrPfxLength = 18108 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18109 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18110 mae6.ipv6AddrInfo.ae_subnet_len = 18111 mae6.ipv6AddrPfxLength; 18112 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18113 18114 /* Type: stateless(1), stateful(2), unknown(3) */ 18115 if (ipif->ipif_flags & IPIF_ADDRCONF) 18116 mae6.ipv6AddrType = 1; 18117 else 18118 mae6.ipv6AddrType = 2; 18119 /* Anycast: true(1), false(2) */ 18120 if (ipif->ipif_flags & IPIF_ANYCAST) 18121 mae6.ipv6AddrAnycastFlag = 1; 18122 else 18123 mae6.ipv6AddrAnycastFlag = 2; 18124 18125 /* 18126 * Address status: preferred(1), deprecated(2), 18127 * invalid(3), inaccessible(4), unknown(5) 18128 */ 18129 if (ipif->ipif_flags & IPIF_NOLOCAL) 18130 mae6.ipv6AddrStatus = 3; 18131 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18132 mae6.ipv6AddrStatus = 2; 18133 else 18134 mae6.ipv6AddrStatus = 1; 18135 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18136 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18137 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18138 ipif->ipif_v6pp_dst_addr; 18139 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18140 ill->ill_flags | ill->ill_phyint->phyint_flags; 18141 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18142 (char *)&mae6, 18143 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18144 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18145 "allocate %u bytes\n", 18146 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18147 } 18148 } 18149 } 18150 rw_exit(&ill_g_lock); 18151 18152 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18153 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18154 (int)optp->level, (int)optp->name, (int)optp->len)); 18155 qreply(q, mpctl); 18156 return (mp2ctl); 18157 } 18158 18159 /* IPv4 multicast group membership. */ 18160 static mblk_t * 18161 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 18162 { 18163 struct opthdr *optp; 18164 mblk_t *mp2ctl; 18165 ill_t *ill; 18166 ipif_t *ipif; 18167 ilm_t *ilm; 18168 ip_member_t ipm; 18169 mblk_t *mp_tail = NULL; 18170 ill_walk_context_t ctx; 18171 zoneid_t zoneid; 18172 18173 /* 18174 * make a copy of the original message 18175 */ 18176 mp2ctl = copymsg(mpctl); 18177 zoneid = Q_TO_CONN(q)->conn_zoneid; 18178 18179 /* ipGroupMember table */ 18180 optp = (struct opthdr *)&mpctl->b_rptr[ 18181 sizeof (struct T_optmgmt_ack)]; 18182 optp->level = MIB2_IP; 18183 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18184 18185 rw_enter(&ill_g_lock, RW_READER); 18186 ill = ILL_START_WALK_V4(&ctx); 18187 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18188 ILM_WALKER_HOLD(ill); 18189 for (ipif = ill->ill_ipif; ipif != NULL; 18190 ipif = ipif->ipif_next) { 18191 if (ipif->ipif_zoneid != zoneid && 18192 ipif->ipif_zoneid != ALL_ZONES) 18193 continue; /* not this zone */ 18194 (void) ipif_get_name(ipif, 18195 ipm.ipGroupMemberIfIndex.o_bytes, 18196 OCTET_LENGTH); 18197 ipm.ipGroupMemberIfIndex.o_length = 18198 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18199 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18200 ASSERT(ilm->ilm_ipif != NULL); 18201 ASSERT(ilm->ilm_ill == NULL); 18202 if (ilm->ilm_ipif != ipif) 18203 continue; 18204 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18205 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18206 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18207 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18208 (char *)&ipm, (int)sizeof (ipm))) { 18209 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18210 "failed to allocate %u bytes\n", 18211 (uint_t)sizeof (ipm))); 18212 } 18213 } 18214 } 18215 ILM_WALKER_RELE(ill); 18216 } 18217 rw_exit(&ill_g_lock); 18218 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18219 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18220 (int)optp->level, (int)optp->name, (int)optp->len)); 18221 qreply(q, mpctl); 18222 return (mp2ctl); 18223 } 18224 18225 /* IPv6 multicast group membership. */ 18226 static mblk_t * 18227 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18228 { 18229 struct opthdr *optp; 18230 mblk_t *mp2ctl; 18231 ill_t *ill; 18232 ilm_t *ilm; 18233 ipv6_member_t ipm6; 18234 mblk_t *mp_tail = NULL; 18235 ill_walk_context_t ctx; 18236 zoneid_t zoneid; 18237 18238 /* 18239 * make a copy of the original message 18240 */ 18241 mp2ctl = copymsg(mpctl); 18242 zoneid = Q_TO_CONN(q)->conn_zoneid; 18243 18244 /* ip6GroupMember table */ 18245 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18246 optp->level = MIB2_IP6; 18247 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18248 18249 rw_enter(&ill_g_lock, RW_READER); 18250 ill = ILL_START_WALK_V6(&ctx); 18251 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18252 ILM_WALKER_HOLD(ill); 18253 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18254 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18255 ASSERT(ilm->ilm_ipif == NULL); 18256 ASSERT(ilm->ilm_ill != NULL); 18257 if (ilm->ilm_zoneid != zoneid) 18258 continue; /* not this zone */ 18259 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18260 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18261 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18262 if (!snmp_append_data2(mpctl->b_cont, 18263 &mp_tail, 18264 (char *)&ipm6, (int)sizeof (ipm6))) { 18265 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18266 "failed to allocate %u bytes\n", 18267 (uint_t)sizeof (ipm6))); 18268 } 18269 } 18270 ILM_WALKER_RELE(ill); 18271 } 18272 rw_exit(&ill_g_lock); 18273 18274 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18275 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18276 (int)optp->level, (int)optp->name, (int)optp->len)); 18277 qreply(q, mpctl); 18278 return (mp2ctl); 18279 } 18280 18281 /* IP multicast filtered sources */ 18282 static mblk_t * 18283 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18284 { 18285 struct opthdr *optp; 18286 mblk_t *mp2ctl; 18287 ill_t *ill; 18288 ipif_t *ipif; 18289 ilm_t *ilm; 18290 ip_grpsrc_t ips; 18291 mblk_t *mp_tail = NULL; 18292 ill_walk_context_t ctx; 18293 zoneid_t zoneid; 18294 int i; 18295 slist_t *sl; 18296 18297 /* 18298 * make a copy of the original message 18299 */ 18300 mp2ctl = copymsg(mpctl); 18301 zoneid = Q_TO_CONN(q)->conn_zoneid; 18302 18303 /* ipGroupSource table */ 18304 optp = (struct opthdr *)&mpctl->b_rptr[ 18305 sizeof (struct T_optmgmt_ack)]; 18306 optp->level = MIB2_IP; 18307 optp->name = EXPER_IP_GROUP_SOURCES; 18308 18309 rw_enter(&ill_g_lock, RW_READER); 18310 ill = ILL_START_WALK_V4(&ctx); 18311 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18312 ILM_WALKER_HOLD(ill); 18313 for (ipif = ill->ill_ipif; ipif != NULL; 18314 ipif = ipif->ipif_next) { 18315 if (ipif->ipif_zoneid != zoneid) 18316 continue; /* not this zone */ 18317 (void) ipif_get_name(ipif, 18318 ips.ipGroupSourceIfIndex.o_bytes, 18319 OCTET_LENGTH); 18320 ips.ipGroupSourceIfIndex.o_length = 18321 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18322 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18323 ASSERT(ilm->ilm_ipif != NULL); 18324 ASSERT(ilm->ilm_ill == NULL); 18325 sl = ilm->ilm_filter; 18326 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18327 continue; 18328 ips.ipGroupSourceGroup = ilm->ilm_addr; 18329 for (i = 0; i < sl->sl_numsrc; i++) { 18330 if (!IN6_IS_ADDR_V4MAPPED( 18331 &sl->sl_addr[i])) 18332 continue; 18333 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18334 ips.ipGroupSourceAddress); 18335 if (snmp_append_data2(mpctl->b_cont, 18336 &mp_tail, (char *)&ips, 18337 (int)sizeof (ips)) == 0) { 18338 ip1dbg(("ip_snmp_get_mib2_" 18339 "ip_group_src: failed to " 18340 "allocate %u bytes\n", 18341 (uint_t)sizeof (ips))); 18342 } 18343 } 18344 } 18345 } 18346 ILM_WALKER_RELE(ill); 18347 } 18348 rw_exit(&ill_g_lock); 18349 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18350 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18351 (int)optp->level, (int)optp->name, (int)optp->len)); 18352 qreply(q, mpctl); 18353 return (mp2ctl); 18354 } 18355 18356 /* IPv6 multicast filtered sources. */ 18357 static mblk_t * 18358 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18359 { 18360 struct opthdr *optp; 18361 mblk_t *mp2ctl; 18362 ill_t *ill; 18363 ilm_t *ilm; 18364 ipv6_grpsrc_t ips6; 18365 mblk_t *mp_tail = NULL; 18366 ill_walk_context_t ctx; 18367 zoneid_t zoneid; 18368 int i; 18369 slist_t *sl; 18370 18371 /* 18372 * make a copy of the original message 18373 */ 18374 mp2ctl = copymsg(mpctl); 18375 zoneid = Q_TO_CONN(q)->conn_zoneid; 18376 18377 /* ip6GroupMember table */ 18378 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18379 optp->level = MIB2_IP6; 18380 optp->name = EXPER_IP6_GROUP_SOURCES; 18381 18382 rw_enter(&ill_g_lock, RW_READER); 18383 ill = ILL_START_WALK_V6(&ctx); 18384 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18385 ILM_WALKER_HOLD(ill); 18386 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18387 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18388 ASSERT(ilm->ilm_ipif == NULL); 18389 ASSERT(ilm->ilm_ill != NULL); 18390 sl = ilm->ilm_filter; 18391 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18392 continue; 18393 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18394 for (i = 0; i < sl->sl_numsrc; i++) { 18395 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18396 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18397 (char *)&ips6, (int)sizeof (ips6))) { 18398 ip1dbg(("ip_snmp_get_mib2_ip6_" 18399 "group_src: failed to allocate " 18400 "%u bytes\n", 18401 (uint_t)sizeof (ips6))); 18402 } 18403 } 18404 } 18405 ILM_WALKER_RELE(ill); 18406 } 18407 rw_exit(&ill_g_lock); 18408 18409 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18410 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18411 (int)optp->level, (int)optp->name, (int)optp->len)); 18412 qreply(q, mpctl); 18413 return (mp2ctl); 18414 } 18415 18416 /* Multicast routing virtual interface table. */ 18417 static mblk_t * 18418 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18419 { 18420 struct opthdr *optp; 18421 mblk_t *mp2ctl; 18422 18423 /* 18424 * make a copy of the original message 18425 */ 18426 mp2ctl = copymsg(mpctl); 18427 18428 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18429 optp->level = EXPER_DVMRP; 18430 optp->name = EXPER_DVMRP_VIF; 18431 if (!ip_mroute_vif(mpctl->b_cont)) { 18432 ip0dbg(("ip_mroute_vif: failed\n")); 18433 } 18434 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18435 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18436 (int)optp->level, (int)optp->name, (int)optp->len)); 18437 qreply(q, mpctl); 18438 return (mp2ctl); 18439 } 18440 18441 /* Multicast routing table. */ 18442 static mblk_t * 18443 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18444 { 18445 struct opthdr *optp; 18446 mblk_t *mp2ctl; 18447 18448 /* 18449 * make a copy of the original message 18450 */ 18451 mp2ctl = copymsg(mpctl); 18452 18453 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18454 optp->level = EXPER_DVMRP; 18455 optp->name = EXPER_DVMRP_MRT; 18456 if (!ip_mroute_mrt(mpctl->b_cont)) { 18457 ip0dbg(("ip_mroute_mrt: failed\n")); 18458 } 18459 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18460 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18461 (int)optp->level, (int)optp->name, (int)optp->len)); 18462 qreply(q, mpctl); 18463 return (mp2ctl); 18464 } 18465 18466 /* 18467 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18468 * in one IRE walk. 18469 */ 18470 static mblk_t * 18471 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18472 { 18473 struct opthdr *optp; 18474 mblk_t *mp2ctl; /* Returned */ 18475 mblk_t *mp3ctl; /* nettomedia */ 18476 mblk_t *mp4ctl; /* routeattrs */ 18477 iproutedata_t ird; 18478 zoneid_t zoneid; 18479 18480 /* 18481 * make copies of the original message 18482 * - mp2ctl is returned unchanged to the caller for his use 18483 * - mpctl is sent upstream as ipRouteEntryTable 18484 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18485 * - mp4ctl is sent upstream as ipRouteAttributeTable 18486 */ 18487 mp2ctl = copymsg(mpctl); 18488 mp3ctl = copymsg(mpctl); 18489 mp4ctl = copymsg(mpctl); 18490 if (mp3ctl == NULL || mp4ctl == NULL) { 18491 freemsg(mp4ctl); 18492 freemsg(mp3ctl); 18493 freemsg(mp2ctl); 18494 freemsg(mpctl); 18495 return (NULL); 18496 } 18497 18498 bzero(&ird, sizeof (ird)); 18499 18500 ird.ird_route.lp_head = mpctl->b_cont; 18501 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18502 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18503 18504 zoneid = Q_TO_CONN(q)->conn_zoneid; 18505 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18506 if (zoneid == GLOBAL_ZONEID) { 18507 /* 18508 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18509 * the sys_net_config privilege, it can only run in the global 18510 * zone, so we don't display these IREs in the other zones. 18511 */ 18512 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18513 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18514 } 18515 18516 /* ipRouteEntryTable in mpctl */ 18517 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18518 optp->level = MIB2_IP; 18519 optp->name = MIB2_IP_ROUTE; 18520 optp->len = msgdsize(ird.ird_route.lp_head); 18521 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18522 (int)optp->level, (int)optp->name, (int)optp->len)); 18523 qreply(q, mpctl); 18524 18525 /* ipNetToMediaEntryTable in mp3ctl */ 18526 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18527 optp->level = MIB2_IP; 18528 optp->name = MIB2_IP_MEDIA; 18529 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18530 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18531 (int)optp->level, (int)optp->name, (int)optp->len)); 18532 qreply(q, mp3ctl); 18533 18534 /* ipRouteAttributeTable in mp4ctl */ 18535 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18536 optp->level = MIB2_IP; 18537 optp->name = EXPER_IP_RTATTR; 18538 optp->len = msgdsize(ird.ird_attrs.lp_head); 18539 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18540 (int)optp->level, (int)optp->name, (int)optp->len)); 18541 if (optp->len == 0) 18542 freemsg(mp4ctl); 18543 else 18544 qreply(q, mp4ctl); 18545 18546 return (mp2ctl); 18547 } 18548 18549 /* 18550 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18551 * ipv6NetToMediaEntryTable in an NDP walk. 18552 */ 18553 static mblk_t * 18554 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18555 { 18556 struct opthdr *optp; 18557 mblk_t *mp2ctl; /* Returned */ 18558 mblk_t *mp3ctl; /* nettomedia */ 18559 mblk_t *mp4ctl; /* routeattrs */ 18560 iproutedata_t ird; 18561 zoneid_t zoneid; 18562 18563 /* 18564 * make copies of the original message 18565 * - mp2ctl is returned unchanged to the caller for his use 18566 * - mpctl is sent upstream as ipv6RouteEntryTable 18567 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18568 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18569 */ 18570 mp2ctl = copymsg(mpctl); 18571 mp3ctl = copymsg(mpctl); 18572 mp4ctl = copymsg(mpctl); 18573 if (mp3ctl == NULL || mp4ctl == NULL) { 18574 freemsg(mp4ctl); 18575 freemsg(mp3ctl); 18576 freemsg(mp2ctl); 18577 freemsg(mpctl); 18578 return (NULL); 18579 } 18580 18581 bzero(&ird, sizeof (ird)); 18582 18583 ird.ird_route.lp_head = mpctl->b_cont; 18584 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18585 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18586 18587 zoneid = Q_TO_CONN(q)->conn_zoneid; 18588 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18589 18590 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18591 optp->level = MIB2_IP6; 18592 optp->name = MIB2_IP6_ROUTE; 18593 optp->len = msgdsize(ird.ird_route.lp_head); 18594 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18595 (int)optp->level, (int)optp->name, (int)optp->len)); 18596 qreply(q, mpctl); 18597 18598 /* ipv6NetToMediaEntryTable in mp3ctl */ 18599 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18600 18601 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18602 optp->level = MIB2_IP6; 18603 optp->name = MIB2_IP6_MEDIA; 18604 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18605 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18606 (int)optp->level, (int)optp->name, (int)optp->len)); 18607 qreply(q, mp3ctl); 18608 18609 /* ipv6RouteAttributeTable in mp4ctl */ 18610 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18611 optp->level = MIB2_IP6; 18612 optp->name = EXPER_IP_RTATTR; 18613 optp->len = msgdsize(ird.ird_attrs.lp_head); 18614 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18615 (int)optp->level, (int)optp->name, (int)optp->len)); 18616 if (optp->len == 0) 18617 freemsg(mp4ctl); 18618 else 18619 qreply(q, mp4ctl); 18620 18621 return (mp2ctl); 18622 } 18623 18624 /* 18625 * ICMPv6 mib: One per ill 18626 */ 18627 static mblk_t * 18628 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18629 { 18630 struct opthdr *optp; 18631 mblk_t *mp2ctl; 18632 ill_t *ill; 18633 ill_walk_context_t ctx; 18634 mblk_t *mp_tail = NULL; 18635 18636 /* 18637 * Make a copy of the original message 18638 */ 18639 mp2ctl = copymsg(mpctl); 18640 18641 /* fixed length IPv6 structure ... */ 18642 18643 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18644 optp->level = MIB2_IP6; 18645 optp->name = 0; 18646 /* Include "unknown interface" ip6_mib */ 18647 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18648 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18649 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18650 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18651 sizeof (mib2_ipv6IfStatsEntry_t)); 18652 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18653 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18654 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18655 sizeof (mib2_ipv6NetToMediaEntry_t)); 18656 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18657 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18658 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18659 (int)sizeof (ip6_mib))) { 18660 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18661 (uint_t)sizeof (ip6_mib))); 18662 } 18663 18664 rw_enter(&ill_g_lock, RW_READER); 18665 ill = ILL_START_WALK_V6(&ctx); 18666 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18667 ill->ill_ip6_mib->ipv6IfIndex = 18668 ill->ill_phyint->phyint_ifindex; 18669 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18670 ipv6_forward ? 1 : 2); 18671 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18672 ill->ill_max_hops); 18673 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18674 sizeof (mib2_ipv6IfStatsEntry_t)); 18675 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18676 sizeof (mib2_ipv6AddrEntry_t)); 18677 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18678 sizeof (mib2_ipv6RouteEntry_t)); 18679 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18680 sizeof (mib2_ipv6NetToMediaEntry_t)); 18681 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18682 sizeof (ipv6_member_t)); 18683 18684 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18685 (char *)ill->ill_ip6_mib, 18686 (int)sizeof (*ill->ill_ip6_mib))) { 18687 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18688 "%u bytes\n", 18689 (uint_t)sizeof (*ill->ill_ip6_mib))); 18690 } 18691 } 18692 rw_exit(&ill_g_lock); 18693 18694 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18695 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18696 (int)optp->level, (int)optp->name, (int)optp->len)); 18697 qreply(q, mpctl); 18698 return (mp2ctl); 18699 } 18700 18701 /* 18702 * ICMPv6 mib: One per ill 18703 */ 18704 static mblk_t * 18705 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18706 { 18707 struct opthdr *optp; 18708 mblk_t *mp2ctl; 18709 ill_t *ill; 18710 ill_walk_context_t ctx; 18711 mblk_t *mp_tail = NULL; 18712 /* 18713 * Make a copy of the original message 18714 */ 18715 mp2ctl = copymsg(mpctl); 18716 18717 /* fixed length ICMPv6 structure ... */ 18718 18719 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18720 optp->level = MIB2_ICMP6; 18721 optp->name = 0; 18722 /* Include "unknown interface" icmp6_mib */ 18723 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18724 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18725 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18726 (int)sizeof (icmp6_mib))) { 18727 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18728 (uint_t)sizeof (icmp6_mib))); 18729 } 18730 18731 rw_enter(&ill_g_lock, RW_READER); 18732 ill = ILL_START_WALK_V6(&ctx); 18733 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18734 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18735 ill->ill_phyint->phyint_ifindex; 18736 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18737 sizeof (mib2_ipv6IfIcmpEntry_t); 18738 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18739 (char *)ill->ill_icmp6_mib, 18740 (int)sizeof (*ill->ill_icmp6_mib))) { 18741 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18742 "%u bytes\n", 18743 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18744 } 18745 } 18746 rw_exit(&ill_g_lock); 18747 18748 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18749 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18750 (int)optp->level, (int)optp->name, (int)optp->len)); 18751 qreply(q, mpctl); 18752 return (mp2ctl); 18753 } 18754 18755 /* 18756 * ire_walk routine to create both ipRouteEntryTable and 18757 * ipRouteAttributeTable in one IRE walk 18758 */ 18759 static void 18760 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18761 { 18762 ill_t *ill; 18763 ipif_t *ipif; 18764 mib2_ipRouteEntry_t *re; 18765 mib2_ipAttributeEntry_t *iae, *iaeptr; 18766 ipaddr_t gw_addr; 18767 tsol_ire_gw_secattr_t *attrp; 18768 tsol_gc_t *gc = NULL; 18769 tsol_gcgrp_t *gcgrp = NULL; 18770 uint_t sacnt = 0; 18771 int i; 18772 18773 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18774 18775 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18776 return; 18777 18778 if ((attrp = ire->ire_gw_secattr) != NULL) { 18779 mutex_enter(&attrp->igsa_lock); 18780 if ((gc = attrp->igsa_gc) != NULL) { 18781 gcgrp = gc->gc_grp; 18782 ASSERT(gcgrp != NULL); 18783 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18784 sacnt = 1; 18785 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18786 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18787 gc = gcgrp->gcgrp_head; 18788 sacnt = gcgrp->gcgrp_count; 18789 } 18790 mutex_exit(&attrp->igsa_lock); 18791 18792 /* do nothing if there's no gc to report */ 18793 if (gc == NULL) { 18794 ASSERT(sacnt == 0); 18795 if (gcgrp != NULL) { 18796 /* we might as well drop the lock now */ 18797 rw_exit(&gcgrp->gcgrp_rwlock); 18798 gcgrp = NULL; 18799 } 18800 attrp = NULL; 18801 } 18802 18803 ASSERT(gc == NULL || (gcgrp != NULL && 18804 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18805 } 18806 ASSERT(sacnt == 0 || gc != NULL); 18807 18808 if (sacnt != 0 && 18809 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18810 kmem_free(re, sizeof (*re)); 18811 rw_exit(&gcgrp->gcgrp_rwlock); 18812 return; 18813 } 18814 18815 /* 18816 * Return all IRE types for route table... let caller pick and choose 18817 */ 18818 re->ipRouteDest = ire->ire_addr; 18819 ipif = ire->ire_ipif; 18820 re->ipRouteIfIndex.o_length = 0; 18821 if (ire->ire_type == IRE_CACHE) { 18822 ill = (ill_t *)ire->ire_stq->q_ptr; 18823 re->ipRouteIfIndex.o_length = 18824 ill->ill_name_length == 0 ? 0 : 18825 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18826 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18827 re->ipRouteIfIndex.o_length); 18828 } else if (ipif != NULL) { 18829 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18830 OCTET_LENGTH); 18831 re->ipRouteIfIndex.o_length = 18832 mi_strlen(re->ipRouteIfIndex.o_bytes); 18833 } 18834 re->ipRouteMetric1 = -1; 18835 re->ipRouteMetric2 = -1; 18836 re->ipRouteMetric3 = -1; 18837 re->ipRouteMetric4 = -1; 18838 18839 gw_addr = ire->ire_gateway_addr; 18840 18841 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18842 re->ipRouteNextHop = ire->ire_src_addr; 18843 else 18844 re->ipRouteNextHop = gw_addr; 18845 /* indirect(4), direct(3), or invalid(2) */ 18846 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18847 re->ipRouteType = 2; 18848 else 18849 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18850 re->ipRouteProto = -1; 18851 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18852 re->ipRouteMask = ire->ire_mask; 18853 re->ipRouteMetric5 = -1; 18854 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18855 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18856 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18857 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18858 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18859 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18860 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18861 re->ipRouteInfo.re_flags = ire->ire_flags; 18862 re->ipRouteInfo.re_in_ill.o_length = 0; 18863 18864 if (ire->ire_flags & RTF_DYNAMIC) { 18865 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 18866 } else { 18867 re->ipRouteInfo.re_ire_type = ire->ire_type; 18868 } 18869 18870 if (ire->ire_in_ill != NULL) { 18871 re->ipRouteInfo.re_in_ill.o_length = 18872 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18873 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18874 bcopy(ire->ire_in_ill->ill_name, 18875 re->ipRouteInfo.re_in_ill.o_bytes, 18876 re->ipRouteInfo.re_in_ill.o_length); 18877 } 18878 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18879 18880 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18881 (char *)re, (int)sizeof (*re))) { 18882 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18883 (uint_t)sizeof (*re))); 18884 } 18885 18886 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18887 iaeptr->iae_routeidx = ird->ird_idx; 18888 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18889 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18890 } 18891 18892 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18893 (char *)iae, sacnt * sizeof (*iae))) { 18894 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18895 (unsigned)(sacnt * sizeof (*iae)))); 18896 } 18897 18898 /* bump route index for next pass */ 18899 ird->ird_idx++; 18900 18901 kmem_free(re, sizeof (*re)); 18902 if (sacnt != 0) 18903 kmem_free(iae, sacnt * sizeof (*iae)); 18904 18905 if (gcgrp != NULL) 18906 rw_exit(&gcgrp->gcgrp_rwlock); 18907 } 18908 18909 /* 18910 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18911 */ 18912 static void 18913 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18914 { 18915 ill_t *ill; 18916 ipif_t *ipif; 18917 mib2_ipv6RouteEntry_t *re; 18918 mib2_ipAttributeEntry_t *iae, *iaeptr; 18919 in6_addr_t gw_addr_v6; 18920 tsol_ire_gw_secattr_t *attrp; 18921 tsol_gc_t *gc = NULL; 18922 tsol_gcgrp_t *gcgrp = NULL; 18923 uint_t sacnt = 0; 18924 int i; 18925 18926 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18927 18928 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18929 return; 18930 18931 if ((attrp = ire->ire_gw_secattr) != NULL) { 18932 mutex_enter(&attrp->igsa_lock); 18933 if ((gc = attrp->igsa_gc) != NULL) { 18934 gcgrp = gc->gc_grp; 18935 ASSERT(gcgrp != NULL); 18936 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18937 sacnt = 1; 18938 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18939 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18940 gc = gcgrp->gcgrp_head; 18941 sacnt = gcgrp->gcgrp_count; 18942 } 18943 mutex_exit(&attrp->igsa_lock); 18944 18945 /* do nothing if there's no gc to report */ 18946 if (gc == NULL) { 18947 ASSERT(sacnt == 0); 18948 if (gcgrp != NULL) { 18949 /* we might as well drop the lock now */ 18950 rw_exit(&gcgrp->gcgrp_rwlock); 18951 gcgrp = NULL; 18952 } 18953 attrp = NULL; 18954 } 18955 18956 ASSERT(gc == NULL || (gcgrp != NULL && 18957 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18958 } 18959 ASSERT(sacnt == 0 || gc != NULL); 18960 18961 if (sacnt != 0 && 18962 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18963 kmem_free(re, sizeof (*re)); 18964 rw_exit(&gcgrp->gcgrp_rwlock); 18965 return; 18966 } 18967 18968 /* 18969 * Return all IRE types for route table... let caller pick and choose 18970 */ 18971 re->ipv6RouteDest = ire->ire_addr_v6; 18972 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18973 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18974 re->ipv6RouteIfIndex.o_length = 0; 18975 ipif = ire->ire_ipif; 18976 if (ire->ire_type == IRE_CACHE) { 18977 ill = (ill_t *)ire->ire_stq->q_ptr; 18978 re->ipv6RouteIfIndex.o_length = 18979 ill->ill_name_length == 0 ? 0 : 18980 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18981 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18982 re->ipv6RouteIfIndex.o_length); 18983 } else if (ipif != NULL) { 18984 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18985 OCTET_LENGTH); 18986 re->ipv6RouteIfIndex.o_length = 18987 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18988 } 18989 18990 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18991 18992 mutex_enter(&ire->ire_lock); 18993 gw_addr_v6 = ire->ire_gateway_addr_v6; 18994 mutex_exit(&ire->ire_lock); 18995 18996 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18997 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18998 else 18999 re->ipv6RouteNextHop = gw_addr_v6; 19000 19001 /* remote(4), local(3), or discard(2) */ 19002 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19003 re->ipv6RouteType = 2; 19004 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19005 re->ipv6RouteType = 3; 19006 else 19007 re->ipv6RouteType = 4; 19008 19009 re->ipv6RouteProtocol = -1; 19010 re->ipv6RoutePolicy = 0; 19011 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19012 re->ipv6RouteNextHopRDI = 0; 19013 re->ipv6RouteWeight = 0; 19014 re->ipv6RouteMetric = 0; 19015 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19016 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19017 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19018 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19019 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19020 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19021 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19022 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19023 19024 if (ire->ire_flags & RTF_DYNAMIC) { 19025 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19026 } else { 19027 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19028 } 19029 19030 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19031 (char *)re, (int)sizeof (*re))) { 19032 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19033 (uint_t)sizeof (*re))); 19034 } 19035 19036 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19037 iaeptr->iae_routeidx = ird->ird_idx; 19038 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19039 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19040 } 19041 19042 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19043 (char *)iae, sacnt * sizeof (*iae))) { 19044 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19045 (unsigned)(sacnt * sizeof (*iae)))); 19046 } 19047 19048 /* bump route index for next pass */ 19049 ird->ird_idx++; 19050 19051 kmem_free(re, sizeof (*re)); 19052 if (sacnt != 0) 19053 kmem_free(iae, sacnt * sizeof (*iae)); 19054 19055 if (gcgrp != NULL) 19056 rw_exit(&gcgrp->gcgrp_rwlock); 19057 } 19058 19059 /* 19060 * ndp_walk routine to create ipv6NetToMediaEntryTable 19061 */ 19062 static int 19063 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19064 { 19065 ill_t *ill; 19066 mib2_ipv6NetToMediaEntry_t ntme; 19067 dl_unitdata_req_t *dl; 19068 19069 ill = nce->nce_ill; 19070 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19071 return (0); 19072 19073 /* 19074 * Neighbor cache entry attached to IRE with on-link 19075 * destination. 19076 */ 19077 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19078 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19079 if ((ill->ill_flags & ILLF_XRESOLV) && 19080 (nce->nce_res_mp != NULL)) { 19081 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19082 ntme.ipv6NetToMediaPhysAddress.o_length = 19083 dl->dl_dest_addr_length; 19084 } else { 19085 ntme.ipv6NetToMediaPhysAddress.o_length = 19086 ill->ill_phys_addr_length; 19087 } 19088 if (nce->nce_res_mp != NULL) { 19089 bcopy((char *)nce->nce_res_mp->b_rptr + 19090 NCE_LL_ADDR_OFFSET(ill), 19091 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19092 ntme.ipv6NetToMediaPhysAddress.o_length); 19093 } else { 19094 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19095 ill->ill_phys_addr_length); 19096 } 19097 /* 19098 * Note: Returns ND_* states. Should be: 19099 * reachable(1), stale(2), delay(3), probe(4), 19100 * invalid(5), unknown(6) 19101 */ 19102 ntme.ipv6NetToMediaState = nce->nce_state; 19103 ntme.ipv6NetToMediaLastUpdated = 0; 19104 19105 /* other(1), dynamic(2), static(3), local(4) */ 19106 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19107 ntme.ipv6NetToMediaType = 4; 19108 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19109 ntme.ipv6NetToMediaType = 1; 19110 } else { 19111 ntme.ipv6NetToMediaType = 2; 19112 } 19113 19114 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19115 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19116 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19117 (uint_t)sizeof (ntme))); 19118 } 19119 return (0); 19120 } 19121 19122 /* 19123 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19124 */ 19125 /* ARGSUSED */ 19126 int 19127 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19128 { 19129 switch (level) { 19130 case MIB2_IP: 19131 case MIB2_ICMP: 19132 switch (name) { 19133 default: 19134 break; 19135 } 19136 return (1); 19137 default: 19138 return (1); 19139 } 19140 } 19141 19142 /* 19143 * Called before the options are updated to check if this packet will 19144 * be source routed from here. 19145 * This routine assumes that the options are well formed i.e. that they 19146 * have already been checked. 19147 */ 19148 static boolean_t 19149 ip_source_routed(ipha_t *ipha) 19150 { 19151 ipoptp_t opts; 19152 uchar_t *opt; 19153 uint8_t optval; 19154 uint8_t optlen; 19155 ipaddr_t dst; 19156 ire_t *ire; 19157 19158 if (IS_SIMPLE_IPH(ipha)) { 19159 ip2dbg(("not source routed\n")); 19160 return (B_FALSE); 19161 } 19162 dst = ipha->ipha_dst; 19163 for (optval = ipoptp_first(&opts, ipha); 19164 optval != IPOPT_EOL; 19165 optval = ipoptp_next(&opts)) { 19166 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19167 opt = opts.ipoptp_cur; 19168 optlen = opts.ipoptp_len; 19169 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19170 optval, optlen)); 19171 switch (optval) { 19172 uint32_t off; 19173 case IPOPT_SSRR: 19174 case IPOPT_LSRR: 19175 /* 19176 * If dst is one of our addresses and there are some 19177 * entries left in the source route return (true). 19178 */ 19179 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19180 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19181 if (ire == NULL) { 19182 ip2dbg(("ip_source_routed: not next" 19183 " source route 0x%x\n", 19184 ntohl(dst))); 19185 return (B_FALSE); 19186 } 19187 ire_refrele(ire); 19188 off = opt[IPOPT_OFFSET]; 19189 off--; 19190 if (optlen < IP_ADDR_LEN || 19191 off > optlen - IP_ADDR_LEN) { 19192 /* End of source route */ 19193 ip1dbg(("ip_source_routed: end of SR\n")); 19194 return (B_FALSE); 19195 } 19196 return (B_TRUE); 19197 } 19198 } 19199 ip2dbg(("not source routed\n")); 19200 return (B_FALSE); 19201 } 19202 19203 /* 19204 * Check if the packet contains any source route. 19205 */ 19206 static boolean_t 19207 ip_source_route_included(ipha_t *ipha) 19208 { 19209 ipoptp_t opts; 19210 uint8_t optval; 19211 19212 if (IS_SIMPLE_IPH(ipha)) 19213 return (B_FALSE); 19214 for (optval = ipoptp_first(&opts, ipha); 19215 optval != IPOPT_EOL; 19216 optval = ipoptp_next(&opts)) { 19217 switch (optval) { 19218 case IPOPT_SSRR: 19219 case IPOPT_LSRR: 19220 return (B_TRUE); 19221 } 19222 } 19223 return (B_FALSE); 19224 } 19225 19226 /* 19227 * Called when the IRE expiration timer fires. 19228 */ 19229 /* ARGSUSED */ 19230 void 19231 ip_trash_timer_expire(void *args) 19232 { 19233 int flush_flag = 0; 19234 19235 /* 19236 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19237 * This lock makes sure that a new invocation of this function 19238 * that occurs due to an almost immediate timer firing will not 19239 * progress beyond this point until the current invocation is done 19240 */ 19241 mutex_enter(&ip_trash_timer_lock); 19242 ip_ire_expire_id = 0; 19243 mutex_exit(&ip_trash_timer_lock); 19244 19245 /* Periodic timer */ 19246 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19247 /* 19248 * Remove all IRE_CACHE entries since they might 19249 * contain arp information. 19250 */ 19251 flush_flag |= FLUSH_ARP_TIME; 19252 ip_ire_arp_time_elapsed = 0; 19253 IP_STAT(ip_ire_arp_timer_expired); 19254 } 19255 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19256 /* Remove all redirects */ 19257 flush_flag |= FLUSH_REDIRECT_TIME; 19258 ip_ire_rd_time_elapsed = 0; 19259 IP_STAT(ip_ire_redirect_timer_expired); 19260 } 19261 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19262 /* Increase path mtu */ 19263 flush_flag |= FLUSH_MTU_TIME; 19264 ip_ire_pmtu_time_elapsed = 0; 19265 IP_STAT(ip_ire_pmtu_timer_expired); 19266 } 19267 19268 /* 19269 * Optimize for the case when there are no redirects in the 19270 * ftable, that is, no need to walk the ftable in that case. 19271 */ 19272 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19273 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19274 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19275 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19276 } 19277 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19278 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19279 ire_expire, (char *)(uintptr_t)flush_flag, 19280 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19281 } 19282 if (flush_flag & FLUSH_MTU_TIME) { 19283 /* 19284 * Walk all IPv6 IRE's and update them 19285 * Note that ARP and redirect timers are not 19286 * needed since NUD handles stale entries. 19287 */ 19288 flush_flag = FLUSH_MTU_TIME; 19289 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19290 ALL_ZONES); 19291 } 19292 19293 ip_ire_arp_time_elapsed += ip_timer_interval; 19294 ip_ire_rd_time_elapsed += ip_timer_interval; 19295 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19296 19297 /* 19298 * Hold the lock to serialize timeout calls and prevent 19299 * stale values in ip_ire_expire_id. Otherwise it is possible 19300 * for the timer to fire and a new invocation of this function 19301 * to start before the return value of timeout has been stored 19302 * in ip_ire_expire_id by the current invocation. 19303 */ 19304 mutex_enter(&ip_trash_timer_lock); 19305 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19306 MSEC_TO_TICK(ip_timer_interval)); 19307 mutex_exit(&ip_trash_timer_lock); 19308 } 19309 19310 /* 19311 * Called by the memory allocator subsystem directly, when the system 19312 * is running low on memory. 19313 */ 19314 /* ARGSUSED */ 19315 void 19316 ip_trash_ire_reclaim(void *args) 19317 { 19318 ire_cache_count_t icc; 19319 ire_cache_reclaim_t icr; 19320 ncc_cache_count_t ncc; 19321 nce_cache_reclaim_t ncr; 19322 uint_t delete_cnt; 19323 /* 19324 * Memory reclaim call back. 19325 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19326 * Then, with a target of freeing 1/Nth of IRE_CACHE 19327 * entries, determine what fraction to free for 19328 * each category of IRE_CACHE entries giving absolute priority 19329 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19330 * entry will be freed unless all offlink entries are freed). 19331 */ 19332 icc.icc_total = 0; 19333 icc.icc_unused = 0; 19334 icc.icc_offlink = 0; 19335 icc.icc_pmtu = 0; 19336 icc.icc_onlink = 0; 19337 ire_walk(ire_cache_count, (char *)&icc); 19338 19339 /* 19340 * Free NCEs for IPv6 like the onlink ires. 19341 */ 19342 ncc.ncc_total = 0; 19343 ncc.ncc_host = 0; 19344 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19345 19346 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19347 icc.icc_pmtu + icc.icc_onlink); 19348 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19349 IP_STAT(ip_trash_ire_reclaim_calls); 19350 if (delete_cnt == 0) 19351 return; 19352 IP_STAT(ip_trash_ire_reclaim_success); 19353 /* Always delete all unused offlink entries */ 19354 icr.icr_unused = 1; 19355 if (delete_cnt <= icc.icc_unused) { 19356 /* 19357 * Only need to free unused entries. In other words, 19358 * there are enough unused entries to free to meet our 19359 * target number of freed ire cache entries. 19360 */ 19361 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19362 ncr.ncr_host = 0; 19363 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19364 /* 19365 * Only need to free unused entries, plus a fraction of offlink 19366 * entries. It follows from the first if statement that 19367 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19368 */ 19369 delete_cnt -= icc.icc_unused; 19370 /* Round up # deleted by truncating fraction */ 19371 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19372 icr.icr_pmtu = icr.icr_onlink = 0; 19373 ncr.ncr_host = 0; 19374 } else if (delete_cnt <= 19375 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19376 /* 19377 * Free all unused and offlink entries, plus a fraction of 19378 * pmtu entries. It follows from the previous if statement 19379 * that icc_pmtu is non-zero, and that 19380 * delete_cnt != icc_unused + icc_offlink. 19381 */ 19382 icr.icr_offlink = 1; 19383 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19384 /* Round up # deleted by truncating fraction */ 19385 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19386 icr.icr_onlink = 0; 19387 ncr.ncr_host = 0; 19388 } else { 19389 /* 19390 * Free all unused, offlink, and pmtu entries, plus a fraction 19391 * of onlink entries. If we're here, then we know that 19392 * icc_onlink is non-zero, and that 19393 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19394 */ 19395 icr.icr_offlink = icr.icr_pmtu = 1; 19396 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19397 icc.icc_pmtu; 19398 /* Round up # deleted by truncating fraction */ 19399 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19400 /* Using the same delete fraction as for onlink IREs */ 19401 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19402 } 19403 #ifdef DEBUG 19404 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19405 "fractions %d/%d/%d/%d\n", 19406 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19407 icc.icc_unused, icc.icc_offlink, 19408 icc.icc_pmtu, icc.icc_onlink, 19409 icr.icr_unused, icr.icr_offlink, 19410 icr.icr_pmtu, icr.icr_onlink)); 19411 #endif 19412 ire_walk(ire_cache_reclaim, (char *)&icr); 19413 if (ncr.ncr_host != 0) 19414 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19415 (uchar_t *)&ncr); 19416 #ifdef DEBUG 19417 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19418 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19419 ire_walk(ire_cache_count, (char *)&icc); 19420 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19421 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19422 icc.icc_pmtu, icc.icc_onlink)); 19423 #endif 19424 } 19425 19426 /* 19427 * ip_unbind is called when a copy of an unbind request is received from the 19428 * upper level protocol. We remove this conn from any fanout hash list it is 19429 * on, and zero out the bind information. No reply is expected up above. 19430 */ 19431 mblk_t * 19432 ip_unbind(queue_t *q, mblk_t *mp) 19433 { 19434 conn_t *connp = Q_TO_CONN(q); 19435 19436 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19437 19438 if (is_system_labeled() && connp->conn_anon_port) { 19439 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19440 connp->conn_mlp_type, connp->conn_ulp, 19441 ntohs(connp->conn_lport), B_FALSE); 19442 connp->conn_anon_port = 0; 19443 } 19444 connp->conn_mlp_type = mlptSingle; 19445 19446 ipcl_hash_remove(connp); 19447 19448 ASSERT(mp->b_cont == NULL); 19449 /* 19450 * Convert mp into a T_OK_ACK 19451 */ 19452 mp = mi_tpi_ok_ack_alloc(mp); 19453 19454 /* 19455 * should not happen in practice... T_OK_ACK is smaller than the 19456 * original message. 19457 */ 19458 if (mp == NULL) 19459 return (NULL); 19460 19461 /* 19462 * Don't bzero the ports if its TCP since TCP still needs the 19463 * lport to remove it from its own bind hash. TCP will do the 19464 * cleanup. 19465 */ 19466 if (!IPCL_IS_TCP(connp)) 19467 bzero(&connp->u_port, sizeof (connp->u_port)); 19468 19469 return (mp); 19470 } 19471 19472 /* 19473 * Write side put procedure. Outbound data, IOCTLs, responses from 19474 * resolvers, etc, come down through here. 19475 * 19476 * arg2 is always a queue_t *. 19477 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19478 * the zoneid. 19479 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19480 */ 19481 void 19482 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19483 { 19484 conn_t *connp = NULL; 19485 queue_t *q = (queue_t *)arg2; 19486 ipha_t *ipha; 19487 #define rptr ((uchar_t *)ipha) 19488 ire_t *ire = NULL; 19489 ire_t *sctp_ire = NULL; 19490 uint32_t v_hlen_tos_len; 19491 ipaddr_t dst; 19492 mblk_t *first_mp = NULL; 19493 boolean_t mctl_present; 19494 ipsec_out_t *io; 19495 int match_flags; 19496 ill_t *attach_ill = NULL; 19497 /* Bind to IPIF_NOFAILOVER ill etc. */ 19498 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19499 ipif_t *dst_ipif; 19500 boolean_t multirt_need_resolve = B_FALSE; 19501 mblk_t *copy_mp = NULL; 19502 int err; 19503 zoneid_t zoneid; 19504 int adjust; 19505 uint16_t iplen; 19506 boolean_t need_decref = B_FALSE; 19507 boolean_t ignore_dontroute = B_FALSE; 19508 boolean_t ignore_nexthop = B_FALSE; 19509 boolean_t ip_nexthop = B_FALSE; 19510 ipaddr_t nexthop_addr; 19511 19512 #ifdef _BIG_ENDIAN 19513 #define V_HLEN (v_hlen_tos_len >> 24) 19514 #else 19515 #define V_HLEN (v_hlen_tos_len & 0xFF) 19516 #endif 19517 19518 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19519 "ip_wput_start: q %p", q); 19520 19521 /* 19522 * ip_wput fast path 19523 */ 19524 19525 /* is packet from ARP ? */ 19526 if (q->q_next != NULL) { 19527 zoneid = (zoneid_t)(uintptr_t)arg; 19528 goto qnext; 19529 } 19530 19531 connp = (conn_t *)arg; 19532 ASSERT(connp != NULL); 19533 zoneid = connp->conn_zoneid; 19534 19535 /* is queue flow controlled? */ 19536 if ((q->q_first != NULL || connp->conn_draining) && 19537 (caller == IP_WPUT)) { 19538 ASSERT(!need_decref); 19539 (void) putq(q, mp); 19540 return; 19541 } 19542 19543 /* Multidata transmit? */ 19544 if (DB_TYPE(mp) == M_MULTIDATA) { 19545 /* 19546 * We should never get here, since all Multidata messages 19547 * originating from tcp should have been directed over to 19548 * tcp_multisend() in the first place. 19549 */ 19550 BUMP_MIB(&ip_mib, ipOutDiscards); 19551 freemsg(mp); 19552 return; 19553 } else if (DB_TYPE(mp) != M_DATA) 19554 goto notdata; 19555 19556 if (mp->b_flag & MSGHASREF) { 19557 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19558 mp->b_flag &= ~MSGHASREF; 19559 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19560 need_decref = B_TRUE; 19561 } 19562 ipha = (ipha_t *)mp->b_rptr; 19563 19564 /* is IP header non-aligned or mblk smaller than basic IP header */ 19565 #ifndef SAFETY_BEFORE_SPEED 19566 if (!OK_32PTR(rptr) || 19567 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19568 goto hdrtoosmall; 19569 #endif 19570 19571 ASSERT(OK_32PTR(ipha)); 19572 19573 /* 19574 * This function assumes that mp points to an IPv4 packet. If it's the 19575 * wrong version, we'll catch it again in ip_output_v6. 19576 * 19577 * Note that this is *only* locally-generated output here, and never 19578 * forwarded data, and that we need to deal only with transports that 19579 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19580 * label.) 19581 */ 19582 if (is_system_labeled() && 19583 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19584 !connp->conn_ulp_labeled) { 19585 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19586 connp->conn_mac_exempt); 19587 ipha = (ipha_t *)mp->b_rptr; 19588 if (err != 0) { 19589 first_mp = mp; 19590 if (err == EINVAL) 19591 goto icmp_parameter_problem; 19592 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19593 goto drop_pkt; 19594 } 19595 iplen = ntohs(ipha->ipha_length) + adjust; 19596 ipha->ipha_length = htons(iplen); 19597 } 19598 19599 /* 19600 * If there is a policy, try to attach an ipsec_out in 19601 * the front. At the end, first_mp either points to a 19602 * M_DATA message or IPSEC_OUT message linked to a 19603 * M_DATA message. We have to do it now as we might 19604 * lose the "conn" if we go through ip_newroute. 19605 */ 19606 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19607 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19608 ipha->ipha_protocol)) == NULL)) { 19609 if (need_decref) 19610 CONN_DEC_REF(connp); 19611 return; 19612 } else { 19613 ASSERT(mp->b_datap->db_type == M_CTL); 19614 first_mp = mp; 19615 mp = mp->b_cont; 19616 mctl_present = B_TRUE; 19617 } 19618 } else { 19619 first_mp = mp; 19620 mctl_present = B_FALSE; 19621 } 19622 19623 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19624 19625 /* is wrong version or IP options present */ 19626 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19627 goto version_hdrlen_check; 19628 dst = ipha->ipha_dst; 19629 19630 if (connp->conn_nofailover_ill != NULL) { 19631 attach_ill = conn_get_held_ill(connp, 19632 &connp->conn_nofailover_ill, &err); 19633 if (err == ILL_LOOKUP_FAILED) { 19634 if (need_decref) 19635 CONN_DEC_REF(connp); 19636 freemsg(first_mp); 19637 return; 19638 } 19639 } 19640 19641 /* is packet multicast? */ 19642 if (CLASSD(dst)) 19643 goto multicast; 19644 19645 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19646 (connp->conn_nexthop_set)) { 19647 /* 19648 * If the destination is a broadcast or a loopback 19649 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19650 * through the standard path. But in the case of local 19651 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19652 * the standard path not IP_XMIT_IF. 19653 */ 19654 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19655 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19656 (ire->ire_type != IRE_LOOPBACK))) { 19657 if ((connp->conn_dontroute || 19658 connp->conn_nexthop_set) && (ire != NULL) && 19659 (ire->ire_type == IRE_LOCAL)) 19660 goto standard_path; 19661 19662 if (ire != NULL) { 19663 ire_refrele(ire); 19664 /* No more access to ire */ 19665 ire = NULL; 19666 } 19667 /* 19668 * bypass routing checks and go directly to 19669 * interface. 19670 */ 19671 if (connp->conn_dontroute) { 19672 goto dontroute; 19673 } else if (connp->conn_nexthop_set) { 19674 ip_nexthop = B_TRUE; 19675 nexthop_addr = connp->conn_nexthop_v4; 19676 goto send_from_ill; 19677 } 19678 19679 /* 19680 * If IP_XMIT_IF socket option is set, 19681 * then we allow unicast and multicast 19682 * packets to go through the ill. It is 19683 * quite possible that the destination 19684 * is not in the ire cache table and we 19685 * do not want to go to ip_newroute() 19686 * instead we call ip_newroute_ipif. 19687 */ 19688 xmit_ill = conn_get_held_ill(connp, 19689 &connp->conn_xmit_if_ill, &err); 19690 if (err == ILL_LOOKUP_FAILED) { 19691 if (attach_ill != NULL) 19692 ill_refrele(attach_ill); 19693 if (need_decref) 19694 CONN_DEC_REF(connp); 19695 freemsg(first_mp); 19696 return; 19697 } 19698 goto send_from_ill; 19699 } 19700 standard_path: 19701 /* Must be a broadcast, a loopback or a local ire */ 19702 if (ire != NULL) { 19703 ire_refrele(ire); 19704 /* No more access to ire */ 19705 ire = NULL; 19706 } 19707 } 19708 19709 if (attach_ill != NULL) 19710 goto send_from_ill; 19711 19712 /* 19713 * We cache IRE_CACHEs to avoid lookups. We don't do 19714 * this for the tcp global queue and listen end point 19715 * as it does not really have a real destination to 19716 * talk to. This is also true for SCTP. 19717 */ 19718 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19719 !connp->conn_fully_bound) { 19720 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19721 if (ire == NULL) 19722 goto noirefound; 19723 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19724 "ip_wput_end: q %p (%S)", q, "end"); 19725 19726 /* 19727 * Check if the ire has the RTF_MULTIRT flag, inherited 19728 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19729 */ 19730 if (ire->ire_flags & RTF_MULTIRT) { 19731 19732 /* 19733 * Force the TTL of multirouted packets if required. 19734 * The TTL of such packets is bounded by the 19735 * ip_multirt_ttl ndd variable. 19736 */ 19737 if ((ip_multirt_ttl > 0) && 19738 (ipha->ipha_ttl > ip_multirt_ttl)) { 19739 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19740 "(was %d), dst 0x%08x\n", 19741 ip_multirt_ttl, ipha->ipha_ttl, 19742 ntohl(ire->ire_addr))); 19743 ipha->ipha_ttl = ip_multirt_ttl; 19744 } 19745 /* 19746 * We look at this point if there are pending 19747 * unresolved routes. ire_multirt_resolvable() 19748 * checks in O(n) that all IRE_OFFSUBNET ire 19749 * entries for the packet's destination and 19750 * flagged RTF_MULTIRT are currently resolved. 19751 * If some remain unresolved, we make a copy 19752 * of the current message. It will be used 19753 * to initiate additional route resolutions. 19754 */ 19755 multirt_need_resolve = 19756 ire_multirt_need_resolve(ire->ire_addr, 19757 MBLK_GETLABEL(first_mp)); 19758 ip2dbg(("ip_wput[TCP]: ire %p, " 19759 "multirt_need_resolve %d, first_mp %p\n", 19760 (void *)ire, multirt_need_resolve, 19761 (void *)first_mp)); 19762 if (multirt_need_resolve) { 19763 copy_mp = copymsg(first_mp); 19764 if (copy_mp != NULL) { 19765 MULTIRT_DEBUG_TAG(copy_mp); 19766 } 19767 } 19768 } 19769 19770 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19771 19772 /* 19773 * Try to resolve another multiroute if 19774 * ire_multirt_need_resolve() deemed it necessary. 19775 */ 19776 if (copy_mp != NULL) { 19777 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19778 } 19779 if (need_decref) 19780 CONN_DEC_REF(connp); 19781 return; 19782 } 19783 19784 /* 19785 * Access to conn_ire_cache. (protected by conn_lock) 19786 * 19787 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19788 * the ire bucket lock here to check for CONDEMNED as it is okay to 19789 * send a packet or two with the IRE_CACHE that is going away. 19790 * Access to the ire requires an ire refhold on the ire prior to 19791 * its use since an interface unplumb thread may delete the cached 19792 * ire and release the refhold at any time. 19793 * 19794 * Caching an ire in the conn_ire_cache 19795 * 19796 * o Caching an ire pointer in the conn requires a strict check for 19797 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19798 * ires before cleaning up the conns. So the caching of an ire pointer 19799 * in the conn is done after making sure under the bucket lock that the 19800 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19801 * caching an ire after the unplumb thread has cleaned up the conn. 19802 * If the conn does not send a packet subsequently the unplumb thread 19803 * will be hanging waiting for the ire count to drop to zero. 19804 * 19805 * o We also need to atomically test for a null conn_ire_cache and 19806 * set the conn_ire_cache under the the protection of the conn_lock 19807 * to avoid races among concurrent threads trying to simultaneously 19808 * cache an ire in the conn_ire_cache. 19809 */ 19810 mutex_enter(&connp->conn_lock); 19811 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19812 19813 if (ire != NULL && ire->ire_addr == dst && 19814 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19815 19816 IRE_REFHOLD(ire); 19817 mutex_exit(&connp->conn_lock); 19818 19819 } else { 19820 boolean_t cached = B_FALSE; 19821 connp->conn_ire_cache = NULL; 19822 mutex_exit(&connp->conn_lock); 19823 /* Release the old ire */ 19824 if (ire != NULL && sctp_ire == NULL) 19825 IRE_REFRELE_NOTR(ire); 19826 19827 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19828 if (ire == NULL) 19829 goto noirefound; 19830 IRE_REFHOLD_NOTR(ire); 19831 19832 mutex_enter(&connp->conn_lock); 19833 if (!(connp->conn_state_flags & CONN_CLOSING) && 19834 connp->conn_ire_cache == NULL) { 19835 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19836 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19837 connp->conn_ire_cache = ire; 19838 cached = B_TRUE; 19839 } 19840 rw_exit(&ire->ire_bucket->irb_lock); 19841 } 19842 mutex_exit(&connp->conn_lock); 19843 19844 /* 19845 * We can continue to use the ire but since it was 19846 * not cached, we should drop the extra reference. 19847 */ 19848 if (!cached) 19849 IRE_REFRELE_NOTR(ire); 19850 } 19851 19852 19853 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19854 "ip_wput_end: q %p (%S)", q, "end"); 19855 19856 /* 19857 * Check if the ire has the RTF_MULTIRT flag, inherited 19858 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19859 */ 19860 if (ire->ire_flags & RTF_MULTIRT) { 19861 19862 /* 19863 * Force the TTL of multirouted packets if required. 19864 * The TTL of such packets is bounded by the 19865 * ip_multirt_ttl ndd variable. 19866 */ 19867 if ((ip_multirt_ttl > 0) && 19868 (ipha->ipha_ttl > ip_multirt_ttl)) { 19869 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19870 "(was %d), dst 0x%08x\n", 19871 ip_multirt_ttl, ipha->ipha_ttl, 19872 ntohl(ire->ire_addr))); 19873 ipha->ipha_ttl = ip_multirt_ttl; 19874 } 19875 19876 /* 19877 * At this point, we check to see if there are any pending 19878 * unresolved routes. ire_multirt_resolvable() 19879 * checks in O(n) that all IRE_OFFSUBNET ire 19880 * entries for the packet's destination and 19881 * flagged RTF_MULTIRT are currently resolved. 19882 * If some remain unresolved, we make a copy 19883 * of the current message. It will be used 19884 * to initiate additional route resolutions. 19885 */ 19886 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19887 MBLK_GETLABEL(first_mp)); 19888 ip2dbg(("ip_wput[not TCP]: ire %p, " 19889 "multirt_need_resolve %d, first_mp %p\n", 19890 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19891 if (multirt_need_resolve) { 19892 copy_mp = copymsg(first_mp); 19893 if (copy_mp != NULL) { 19894 MULTIRT_DEBUG_TAG(copy_mp); 19895 } 19896 } 19897 } 19898 19899 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19900 19901 /* 19902 * Try to resolve another multiroute if 19903 * ire_multirt_resolvable() deemed it necessary 19904 */ 19905 if (copy_mp != NULL) { 19906 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19907 } 19908 if (need_decref) 19909 CONN_DEC_REF(connp); 19910 return; 19911 19912 qnext: 19913 /* 19914 * Upper Level Protocols pass down complete IP datagrams 19915 * as M_DATA messages. Everything else is a sideshow. 19916 * 19917 * 1) We could be re-entering ip_wput because of ip_neworute 19918 * in which case we could have a IPSEC_OUT message. We 19919 * need to pass through ip_wput like other datagrams and 19920 * hence cannot branch to ip_wput_nondata. 19921 * 19922 * 2) ARP, AH, ESP, and other clients who are on the module 19923 * instance of IP stream, give us something to deal with. 19924 * We will handle AH and ESP here and rest in ip_wput_nondata. 19925 * 19926 * 3) ICMP replies also could come here. 19927 */ 19928 if (DB_TYPE(mp) != M_DATA) { 19929 notdata: 19930 if (DB_TYPE(mp) == M_CTL) { 19931 /* 19932 * M_CTL messages are used by ARP, AH and ESP to 19933 * communicate with IP. We deal with IPSEC_IN and 19934 * IPSEC_OUT here. ip_wput_nondata handles other 19935 * cases. 19936 */ 19937 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19938 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19939 first_mp = mp->b_cont; 19940 first_mp->b_flag &= ~MSGHASREF; 19941 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19942 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19943 CONN_DEC_REF(connp); 19944 connp = NULL; 19945 } 19946 if (ii->ipsec_info_type == IPSEC_IN) { 19947 /* 19948 * Either this message goes back to 19949 * IPSEC for further processing or to 19950 * ULP after policy checks. 19951 */ 19952 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19953 return; 19954 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19955 io = (ipsec_out_t *)ii; 19956 if (io->ipsec_out_proc_begin) { 19957 /* 19958 * IPSEC processing has already started. 19959 * Complete it. 19960 * IPQoS notes: We don't care what is 19961 * in ipsec_out_ill_index since this 19962 * won't be processed for IPQoS policies 19963 * in ipsec_out_process. 19964 */ 19965 ipsec_out_process(q, mp, NULL, 19966 io->ipsec_out_ill_index); 19967 return; 19968 } else { 19969 connp = (q->q_next != NULL) ? 19970 NULL : Q_TO_CONN(q); 19971 first_mp = mp; 19972 mp = mp->b_cont; 19973 mctl_present = B_TRUE; 19974 } 19975 zoneid = io->ipsec_out_zoneid; 19976 ASSERT(zoneid != ALL_ZONES); 19977 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19978 /* 19979 * It's an IPsec control message requesting 19980 * an SADB update to be sent to the IPsec 19981 * hardware acceleration capable ills. 19982 */ 19983 ipsec_ctl_t *ipsec_ctl = 19984 (ipsec_ctl_t *)mp->b_rptr; 19985 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19986 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19987 mblk_t *cmp = mp->b_cont; 19988 19989 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19990 ASSERT(cmp != NULL); 19991 19992 freeb(mp); 19993 ill_ipsec_capab_send_all(satype, cmp, sa); 19994 return; 19995 } else { 19996 /* 19997 * This must be ARP or special TSOL signaling. 19998 */ 19999 ip_wput_nondata(NULL, q, mp, NULL); 20000 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20001 "ip_wput_end: q %p (%S)", q, "nondata"); 20002 return; 20003 } 20004 } else { 20005 /* 20006 * This must be non-(ARP/AH/ESP) messages. 20007 */ 20008 ASSERT(!need_decref); 20009 ip_wput_nondata(NULL, q, mp, NULL); 20010 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20011 "ip_wput_end: q %p (%S)", q, "nondata"); 20012 return; 20013 } 20014 } else { 20015 first_mp = mp; 20016 mctl_present = B_FALSE; 20017 } 20018 20019 ASSERT(first_mp != NULL); 20020 /* 20021 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20022 * to make sure that this packet goes out on the same interface it 20023 * came in. We handle that here. 20024 */ 20025 if (mctl_present) { 20026 uint_t ifindex; 20027 20028 io = (ipsec_out_t *)first_mp->b_rptr; 20029 if (io->ipsec_out_attach_if || 20030 io->ipsec_out_xmit_if || 20031 io->ipsec_out_ip_nexthop) { 20032 ill_t *ill; 20033 20034 /* 20035 * We may have lost the conn context if we are 20036 * coming here from ip_newroute(). Copy the 20037 * nexthop information. 20038 */ 20039 if (io->ipsec_out_ip_nexthop) { 20040 ip_nexthop = B_TRUE; 20041 nexthop_addr = io->ipsec_out_nexthop_addr; 20042 20043 ipha = (ipha_t *)mp->b_rptr; 20044 dst = ipha->ipha_dst; 20045 goto send_from_ill; 20046 } else { 20047 ASSERT(io->ipsec_out_ill_index != 0); 20048 ifindex = io->ipsec_out_ill_index; 20049 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20050 NULL, NULL, NULL, NULL); 20051 /* 20052 * ipsec_out_xmit_if bit is used to tell 20053 * ip_wput to use the ill to send outgoing data 20054 * as we have no conn when data comes from ICMP 20055 * error msg routines. Currently this feature is 20056 * only used by ip_mrtun_forward routine. 20057 */ 20058 if (io->ipsec_out_xmit_if) { 20059 xmit_ill = ill; 20060 if (xmit_ill == NULL) { 20061 ip1dbg(("ip_output:bad ifindex " 20062 "for xmit_ill %d\n", 20063 ifindex)); 20064 freemsg(first_mp); 20065 BUMP_MIB(&ip_mib, 20066 ipOutDiscards); 20067 ASSERT(!need_decref); 20068 return; 20069 } 20070 /* Free up the ipsec_out_t mblk */ 20071 ASSERT(first_mp->b_cont == mp); 20072 first_mp->b_cont = NULL; 20073 freeb(first_mp); 20074 /* Just send the IP header+ICMP+data */ 20075 first_mp = mp; 20076 ipha = (ipha_t *)mp->b_rptr; 20077 dst = ipha->ipha_dst; 20078 goto send_from_ill; 20079 } else { 20080 attach_ill = ill; 20081 } 20082 20083 if (attach_ill == NULL) { 20084 ASSERT(xmit_ill == NULL); 20085 ip1dbg(("ip_output: bad ifindex for " 20086 "(BIND TO IPIF_NOFAILOVER) %d\n", 20087 ifindex)); 20088 freemsg(first_mp); 20089 BUMP_MIB(&ip_mib, ipOutDiscards); 20090 ASSERT(!need_decref); 20091 return; 20092 } 20093 } 20094 } 20095 } 20096 20097 ASSERT(xmit_ill == NULL); 20098 20099 /* We have a complete IP datagram heading outbound. */ 20100 ipha = (ipha_t *)mp->b_rptr; 20101 20102 #ifndef SPEED_BEFORE_SAFETY 20103 /* 20104 * Make sure we have a full-word aligned message and that at least 20105 * a simple IP header is accessible in the first message. If not, 20106 * try a pullup. 20107 */ 20108 if (!OK_32PTR(rptr) || 20109 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20110 hdrtoosmall: 20111 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20112 BUMP_MIB(&ip_mib, ipOutDiscards); 20113 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20114 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20115 if (first_mp == NULL) 20116 first_mp = mp; 20117 goto drop_pkt; 20118 } 20119 20120 /* This function assumes that mp points to an IPv4 packet. */ 20121 if (is_system_labeled() && q->q_next == NULL && 20122 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20123 !connp->conn_ulp_labeled) { 20124 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20125 &adjust, connp->conn_mac_exempt); 20126 ipha = (ipha_t *)mp->b_rptr; 20127 if (first_mp != NULL) 20128 first_mp->b_cont = mp; 20129 if (err != 0) { 20130 if (first_mp == NULL) 20131 first_mp = mp; 20132 if (err == EINVAL) 20133 goto icmp_parameter_problem; 20134 ip2dbg(("ip_wput: label check failed (%d)\n", 20135 err)); 20136 goto drop_pkt; 20137 } 20138 iplen = ntohs(ipha->ipha_length) + adjust; 20139 ipha->ipha_length = htons(iplen); 20140 } 20141 20142 ipha = (ipha_t *)mp->b_rptr; 20143 if (first_mp == NULL) { 20144 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20145 /* 20146 * If we got here because of "goto hdrtoosmall" 20147 * We need to attach a IPSEC_OUT. 20148 */ 20149 if (connp->conn_out_enforce_policy) { 20150 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20151 NULL, ipha->ipha_protocol)) == NULL)) { 20152 if (need_decref) 20153 CONN_DEC_REF(connp); 20154 return; 20155 } else { 20156 ASSERT(mp->b_datap->db_type == M_CTL); 20157 first_mp = mp; 20158 mp = mp->b_cont; 20159 mctl_present = B_TRUE; 20160 } 20161 } else { 20162 first_mp = mp; 20163 mctl_present = B_FALSE; 20164 } 20165 } 20166 } 20167 #endif 20168 20169 /* Most of the code below is written for speed, not readability */ 20170 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20171 20172 /* 20173 * If ip_newroute() fails, we're going to need a full 20174 * header for the icmp wraparound. 20175 */ 20176 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20177 uint_t v_hlen; 20178 version_hdrlen_check: 20179 ASSERT(first_mp != NULL); 20180 v_hlen = V_HLEN; 20181 /* 20182 * siphon off IPv6 packets coming down from transport 20183 * layer modules here. 20184 * Note: high-order bit carries NUD reachability confirmation 20185 */ 20186 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20187 /* 20188 * XXX implement a IPv4 and IPv6 packet counter per 20189 * conn and switch when ratio exceeds e.g. 10:1 20190 */ 20191 #ifdef notyet 20192 if (q->q_next == NULL) /* Avoid ill queue */ 20193 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20194 #endif 20195 BUMP_MIB(&ip_mib, ipOutIPv6); 20196 ASSERT(xmit_ill == NULL); 20197 if (attach_ill != NULL) 20198 ill_refrele(attach_ill); 20199 if (need_decref) 20200 mp->b_flag |= MSGHASREF; 20201 (void) ip_output_v6(arg, first_mp, arg2, caller); 20202 return; 20203 } 20204 20205 if ((v_hlen >> 4) != IP_VERSION) { 20206 BUMP_MIB(&ip_mib, ipOutDiscards); 20207 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20208 "ip_wput_end: q %p (%S)", q, "badvers"); 20209 goto drop_pkt; 20210 } 20211 /* 20212 * Is the header length at least 20 bytes? 20213 * 20214 * Are there enough bytes accessible in the header? If 20215 * not, try a pullup. 20216 */ 20217 v_hlen &= 0xF; 20218 v_hlen <<= 2; 20219 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20220 BUMP_MIB(&ip_mib, ipOutDiscards); 20221 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20222 "ip_wput_end: q %p (%S)", q, "badlen"); 20223 goto drop_pkt; 20224 } 20225 if (v_hlen > (mp->b_wptr - rptr)) { 20226 if (!pullupmsg(mp, v_hlen)) { 20227 BUMP_MIB(&ip_mib, ipOutDiscards); 20228 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20229 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20230 goto drop_pkt; 20231 } 20232 ipha = (ipha_t *)mp->b_rptr; 20233 } 20234 /* 20235 * Move first entry from any source route into ipha_dst and 20236 * verify the options 20237 */ 20238 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20239 ASSERT(xmit_ill == NULL); 20240 if (attach_ill != NULL) 20241 ill_refrele(attach_ill); 20242 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20243 "ip_wput_end: q %p (%S)", q, "badopts"); 20244 if (need_decref) 20245 CONN_DEC_REF(connp); 20246 return; 20247 } 20248 } 20249 dst = ipha->ipha_dst; 20250 20251 /* 20252 * Try to get an IRE_CACHE for the destination address. If we can't, 20253 * we have to run the packet through ip_newroute which will take 20254 * the appropriate action to arrange for an IRE_CACHE, such as querying 20255 * a resolver, or assigning a default gateway, etc. 20256 */ 20257 if (CLASSD(dst)) { 20258 ipif_t *ipif; 20259 uint32_t setsrc = 0; 20260 20261 multicast: 20262 ASSERT(first_mp != NULL); 20263 ASSERT(xmit_ill == NULL); 20264 ip2dbg(("ip_wput: CLASSD\n")); 20265 if (connp == NULL) { 20266 /* 20267 * Use the first good ipif on the ill. 20268 * XXX Should this ever happen? (Appears 20269 * to show up with just ppp and no ethernet due 20270 * to in.rdisc.) 20271 * However, ire_send should be able to 20272 * call ip_wput_ire directly. 20273 * 20274 * XXX Also, this can happen for ICMP and other packets 20275 * with multicast source addresses. Perhaps we should 20276 * fix things so that we drop the packet in question, 20277 * but for now, just run with it. 20278 */ 20279 ill_t *ill = (ill_t *)q->q_ptr; 20280 20281 /* 20282 * Don't honor attach_if for this case. If ill 20283 * is part of the group, ipif could belong to 20284 * any ill and we cannot maintain attach_ill 20285 * and ipif_ill same anymore and the assert 20286 * below would fail. 20287 */ 20288 if (mctl_present && io->ipsec_out_attach_if) { 20289 io->ipsec_out_ill_index = 0; 20290 io->ipsec_out_attach_if = B_FALSE; 20291 ASSERT(attach_ill != NULL); 20292 ill_refrele(attach_ill); 20293 attach_ill = NULL; 20294 } 20295 20296 ASSERT(attach_ill == NULL); 20297 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20298 if (ipif == NULL) { 20299 if (need_decref) 20300 CONN_DEC_REF(connp); 20301 freemsg(first_mp); 20302 return; 20303 } 20304 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20305 ntohl(dst), ill->ill_name)); 20306 } else { 20307 /* 20308 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20309 * IP_XMIT_IF is honoured. 20310 * Block comment above this function explains the 20311 * locking mechanism used here 20312 */ 20313 xmit_ill = conn_get_held_ill(connp, 20314 &connp->conn_xmit_if_ill, &err); 20315 if (err == ILL_LOOKUP_FAILED) { 20316 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20317 goto drop_pkt; 20318 } 20319 if (xmit_ill == NULL) { 20320 ipif = conn_get_held_ipif(connp, 20321 &connp->conn_multicast_ipif, &err); 20322 if (err == IPIF_LOOKUP_FAILED) { 20323 ip1dbg(("ip_wput: No ipif for " 20324 "multicast\n")); 20325 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20326 goto drop_pkt; 20327 } 20328 } 20329 if (xmit_ill != NULL) { 20330 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20331 if (ipif == NULL) { 20332 ip1dbg(("ip_wput: No ipif for " 20333 "IP_XMIT_IF\n")); 20334 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20335 goto drop_pkt; 20336 } 20337 } else if (ipif == NULL || ipif->ipif_isv6) { 20338 /* 20339 * We must do this ipif determination here 20340 * else we could pass through ip_newroute 20341 * and come back here without the conn context. 20342 * 20343 * Note: we do late binding i.e. we bind to 20344 * the interface when the first packet is sent. 20345 * For performance reasons we do not rebind on 20346 * each packet but keep the binding until the 20347 * next IP_MULTICAST_IF option. 20348 * 20349 * conn_multicast_{ipif,ill} are shared between 20350 * IPv4 and IPv6 and AF_INET6 sockets can 20351 * send both IPv4 and IPv6 packets. Hence 20352 * we have to check that "isv6" matches above. 20353 */ 20354 if (ipif != NULL) 20355 ipif_refrele(ipif); 20356 ipif = ipif_lookup_group(dst, zoneid); 20357 if (ipif == NULL) { 20358 ip1dbg(("ip_wput: No ipif for " 20359 "multicast\n")); 20360 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20361 goto drop_pkt; 20362 } 20363 err = conn_set_held_ipif(connp, 20364 &connp->conn_multicast_ipif, ipif); 20365 if (err == IPIF_LOOKUP_FAILED) { 20366 ipif_refrele(ipif); 20367 ip1dbg(("ip_wput: No ipif for " 20368 "multicast\n")); 20369 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20370 goto drop_pkt; 20371 } 20372 } 20373 } 20374 ASSERT(!ipif->ipif_isv6); 20375 /* 20376 * As we may lose the conn by the time we reach ip_wput_ire, 20377 * we copy conn_multicast_loop and conn_dontroute on to an 20378 * ipsec_out. In case if this datagram goes out secure, 20379 * we need the ill_index also. Copy that also into the 20380 * ipsec_out. 20381 */ 20382 if (mctl_present) { 20383 io = (ipsec_out_t *)first_mp->b_rptr; 20384 ASSERT(first_mp->b_datap->db_type == M_CTL); 20385 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20386 } else { 20387 ASSERT(mp == first_mp); 20388 if ((first_mp = allocb(sizeof (ipsec_info_t), 20389 BPRI_HI)) == NULL) { 20390 ipif_refrele(ipif); 20391 first_mp = mp; 20392 goto drop_pkt; 20393 } 20394 first_mp->b_datap->db_type = M_CTL; 20395 first_mp->b_wptr += sizeof (ipsec_info_t); 20396 /* ipsec_out_secure is B_FALSE now */ 20397 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20398 io = (ipsec_out_t *)first_mp->b_rptr; 20399 io->ipsec_out_type = IPSEC_OUT; 20400 io->ipsec_out_len = sizeof (ipsec_out_t); 20401 io->ipsec_out_use_global_policy = B_TRUE; 20402 first_mp->b_cont = mp; 20403 mctl_present = B_TRUE; 20404 } 20405 if (attach_ill != NULL) { 20406 ASSERT(attach_ill == ipif->ipif_ill); 20407 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20408 20409 /* 20410 * Check if we need an ire that will not be 20411 * looked up by anybody else i.e. HIDDEN. 20412 */ 20413 if (ill_is_probeonly(attach_ill)) { 20414 match_flags |= MATCH_IRE_MARK_HIDDEN; 20415 } 20416 io->ipsec_out_ill_index = 20417 attach_ill->ill_phyint->phyint_ifindex; 20418 io->ipsec_out_attach_if = B_TRUE; 20419 } else { 20420 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20421 io->ipsec_out_ill_index = 20422 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20423 } 20424 if (connp != NULL) { 20425 io->ipsec_out_multicast_loop = 20426 connp->conn_multicast_loop; 20427 io->ipsec_out_dontroute = connp->conn_dontroute; 20428 io->ipsec_out_zoneid = connp->conn_zoneid; 20429 } 20430 /* 20431 * If the application uses IP_MULTICAST_IF with 20432 * different logical addresses of the same ILL, we 20433 * need to make sure that the soruce address of 20434 * the packet matches the logical IP address used 20435 * in the option. We do it by initializing ipha_src 20436 * here. This should keep IPSEC also happy as 20437 * when we return from IPSEC processing, we don't 20438 * have to worry about getting the right address on 20439 * the packet. Thus it is sufficient to look for 20440 * IRE_CACHE using MATCH_IRE_ILL rathen than 20441 * MATCH_IRE_IPIF. 20442 * 20443 * NOTE : We need to do it for non-secure case also as 20444 * this might go out secure if there is a global policy 20445 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20446 * address, the source should be initialized already and 20447 * hence we won't be initializing here. 20448 * 20449 * As we do not have the ire yet, it is possible that 20450 * we set the source address here and then later discover 20451 * that the ire implies the source address to be assigned 20452 * through the RTF_SETSRC flag. 20453 * In that case, the setsrc variable will remind us 20454 * that overwritting the source address by the one 20455 * of the RTF_SETSRC-flagged ire is allowed. 20456 */ 20457 if (ipha->ipha_src == INADDR_ANY && 20458 (connp == NULL || !connp->conn_unspec_src)) { 20459 ipha->ipha_src = ipif->ipif_src_addr; 20460 setsrc = RTF_SETSRC; 20461 } 20462 /* 20463 * Find an IRE which matches the destination and the outgoing 20464 * queue (i.e. the outgoing interface.) 20465 * For loopback use a unicast IP address for 20466 * the ire lookup. 20467 */ 20468 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20469 PHYI_LOOPBACK) { 20470 dst = ipif->ipif_lcl_addr; 20471 } 20472 /* 20473 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20474 * We don't need to lookup ire in ctable as the packet 20475 * needs to be sent to the destination through the specified 20476 * ill irrespective of ires in the cache table. 20477 */ 20478 ire = NULL; 20479 if (xmit_ill == NULL) { 20480 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20481 zoneid, MBLK_GETLABEL(mp), match_flags); 20482 } 20483 20484 /* 20485 * refrele attach_ill as its not needed anymore. 20486 */ 20487 if (attach_ill != NULL) { 20488 ill_refrele(attach_ill); 20489 attach_ill = NULL; 20490 } 20491 20492 if (ire == NULL) { 20493 /* 20494 * Multicast loopback and multicast forwarding is 20495 * done in ip_wput_ire. 20496 * 20497 * Mark this packet to make it be delivered to 20498 * ip_wput_ire after the new ire has been 20499 * created. 20500 * 20501 * The call to ip_newroute_ipif takes into account 20502 * the setsrc reminder. In any case, we take care 20503 * of the RTF_MULTIRT flag. 20504 */ 20505 mp->b_prev = mp->b_next = NULL; 20506 if (xmit_ill == NULL || 20507 xmit_ill->ill_ipif_up_count > 0) { 20508 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20509 setsrc | RTF_MULTIRT, zoneid); 20510 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20511 "ip_wput_end: q %p (%S)", q, "noire"); 20512 } else { 20513 freemsg(first_mp); 20514 } 20515 ipif_refrele(ipif); 20516 if (xmit_ill != NULL) 20517 ill_refrele(xmit_ill); 20518 if (need_decref) 20519 CONN_DEC_REF(connp); 20520 return; 20521 } 20522 20523 ipif_refrele(ipif); 20524 ipif = NULL; 20525 ASSERT(xmit_ill == NULL); 20526 20527 /* 20528 * Honor the RTF_SETSRC flag for multicast packets, 20529 * if allowed by the setsrc reminder. 20530 */ 20531 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20532 ipha->ipha_src = ire->ire_src_addr; 20533 } 20534 20535 /* 20536 * Unconditionally force the TTL to 1 for 20537 * multirouted multicast packets: 20538 * multirouted multicast should not cross 20539 * multicast routers. 20540 */ 20541 if (ire->ire_flags & RTF_MULTIRT) { 20542 if (ipha->ipha_ttl > 1) { 20543 ip2dbg(("ip_wput: forcing multicast " 20544 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20545 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20546 ipha->ipha_ttl = 1; 20547 } 20548 } 20549 } else { 20550 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20551 if ((ire != NULL) && (ire->ire_type & 20552 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20553 ignore_dontroute = B_TRUE; 20554 ignore_nexthop = B_TRUE; 20555 } 20556 if (ire != NULL) { 20557 ire_refrele(ire); 20558 ire = NULL; 20559 } 20560 /* 20561 * Guard against coming in from arp in which case conn is NULL. 20562 * Also guard against non M_DATA with dontroute set but 20563 * destined to local, loopback or broadcast addresses. 20564 */ 20565 if (connp != NULL && connp->conn_dontroute && 20566 !ignore_dontroute) { 20567 dontroute: 20568 /* 20569 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20570 * routing protocols from seeing false direct 20571 * connectivity. 20572 */ 20573 ipha->ipha_ttl = 1; 20574 /* 20575 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20576 * along with SO_DONTROUTE, higher precedence is 20577 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20578 */ 20579 if (connp->conn_xmit_if_ill == NULL) { 20580 /* If suitable ipif not found, drop packet */ 20581 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20582 if (dst_ipif == NULL) { 20583 ip1dbg(("ip_wput: no route for " 20584 "dst using SO_DONTROUTE\n")); 20585 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20586 mp->b_prev = mp->b_next = NULL; 20587 if (first_mp == NULL) 20588 first_mp = mp; 20589 goto drop_pkt; 20590 } else { 20591 /* 20592 * If suitable ipif has been found, set 20593 * xmit_ill to the corresponding 20594 * ipif_ill because we'll be following 20595 * the IP_XMIT_IF logic. 20596 */ 20597 ASSERT(xmit_ill == NULL); 20598 xmit_ill = dst_ipif->ipif_ill; 20599 mutex_enter(&xmit_ill->ill_lock); 20600 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20601 mutex_exit(&xmit_ill->ill_lock); 20602 xmit_ill = NULL; 20603 ipif_refrele(dst_ipif); 20604 ip1dbg(("ip_wput: no route for" 20605 " dst using" 20606 " SO_DONTROUTE\n")); 20607 BUMP_MIB(&ip_mib, 20608 ipOutNoRoutes); 20609 mp->b_prev = mp->b_next = NULL; 20610 if (first_mp == NULL) 20611 first_mp = mp; 20612 goto drop_pkt; 20613 } 20614 ill_refhold_locked(xmit_ill); 20615 mutex_exit(&xmit_ill->ill_lock); 20616 ipif_refrele(dst_ipif); 20617 } 20618 } 20619 20620 } 20621 /* 20622 * If we are bound to IPIF_NOFAILOVER address, look for 20623 * an IRE_CACHE matching the ill. 20624 */ 20625 send_from_ill: 20626 if (attach_ill != NULL) { 20627 ipif_t *attach_ipif; 20628 20629 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20630 20631 /* 20632 * Check if we need an ire that will not be 20633 * looked up by anybody else i.e. HIDDEN. 20634 */ 20635 if (ill_is_probeonly(attach_ill)) { 20636 match_flags |= MATCH_IRE_MARK_HIDDEN; 20637 } 20638 20639 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20640 if (attach_ipif == NULL) { 20641 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20642 goto drop_pkt; 20643 } 20644 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20645 zoneid, MBLK_GETLABEL(mp), match_flags); 20646 ipif_refrele(attach_ipif); 20647 } else if (xmit_ill != NULL || (connp != NULL && 20648 connp->conn_xmit_if_ill != NULL)) { 20649 /* 20650 * Mark this packet as originated locally 20651 */ 20652 mp->b_prev = mp->b_next = NULL; 20653 /* 20654 * xmit_ill could be NULL if SO_DONTROUTE 20655 * is also set. 20656 */ 20657 if (xmit_ill == NULL) { 20658 xmit_ill = conn_get_held_ill(connp, 20659 &connp->conn_xmit_if_ill, &err); 20660 if (err == ILL_LOOKUP_FAILED) { 20661 if (need_decref) 20662 CONN_DEC_REF(connp); 20663 freemsg(first_mp); 20664 return; 20665 } 20666 if (xmit_ill == NULL) { 20667 if (connp->conn_dontroute) 20668 goto dontroute; 20669 goto send_from_ill; 20670 } 20671 } 20672 /* 20673 * could be SO_DONTROUTE case also. 20674 * check at least one interface is UP as 20675 * spcified by this ILL, and then call 20676 * ip_newroute_ipif() 20677 */ 20678 if (xmit_ill->ill_ipif_up_count > 0) { 20679 ipif_t *ipif; 20680 20681 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20682 if (ipif != NULL) { 20683 ip_newroute_ipif(q, first_mp, ipif, 20684 dst, connp, 0, zoneid); 20685 ipif_refrele(ipif); 20686 ip1dbg(("ip_wput: ip_unicast_if\n")); 20687 } 20688 } else { 20689 freemsg(first_mp); 20690 } 20691 ill_refrele(xmit_ill); 20692 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20693 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20694 if (need_decref) 20695 CONN_DEC_REF(connp); 20696 return; 20697 } else if (ip_nexthop || (connp != NULL && 20698 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20699 if (!ip_nexthop) { 20700 ip_nexthop = B_TRUE; 20701 nexthop_addr = connp->conn_nexthop_v4; 20702 } 20703 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20704 MATCH_IRE_GW; 20705 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20706 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20707 } else { 20708 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20709 } 20710 if (!ire) { 20711 /* 20712 * Make sure we don't load spread if this 20713 * is IPIF_NOFAILOVER case. 20714 */ 20715 if ((attach_ill != NULL) || 20716 (ip_nexthop && !ignore_nexthop)) { 20717 if (mctl_present) { 20718 io = (ipsec_out_t *)first_mp->b_rptr; 20719 ASSERT(first_mp->b_datap->db_type == 20720 M_CTL); 20721 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20722 } else { 20723 ASSERT(mp == first_mp); 20724 first_mp = allocb( 20725 sizeof (ipsec_info_t), BPRI_HI); 20726 if (first_mp == NULL) { 20727 first_mp = mp; 20728 goto drop_pkt; 20729 } 20730 first_mp->b_datap->db_type = M_CTL; 20731 first_mp->b_wptr += 20732 sizeof (ipsec_info_t); 20733 /* ipsec_out_secure is B_FALSE now */ 20734 bzero(first_mp->b_rptr, 20735 sizeof (ipsec_info_t)); 20736 io = (ipsec_out_t *)first_mp->b_rptr; 20737 io->ipsec_out_type = IPSEC_OUT; 20738 io->ipsec_out_len = 20739 sizeof (ipsec_out_t); 20740 io->ipsec_out_use_global_policy = 20741 B_TRUE; 20742 first_mp->b_cont = mp; 20743 mctl_present = B_TRUE; 20744 } 20745 if (attach_ill != NULL) { 20746 io->ipsec_out_ill_index = attach_ill-> 20747 ill_phyint->phyint_ifindex; 20748 io->ipsec_out_attach_if = B_TRUE; 20749 } else { 20750 io->ipsec_out_ip_nexthop = ip_nexthop; 20751 io->ipsec_out_nexthop_addr = 20752 nexthop_addr; 20753 } 20754 } 20755 noirefound: 20756 /* 20757 * Mark this packet as having originated on 20758 * this machine. This will be noted in 20759 * ire_add_then_send, which needs to know 20760 * whether to run it back through ip_wput or 20761 * ip_rput following successful resolution. 20762 */ 20763 mp->b_prev = NULL; 20764 mp->b_next = NULL; 20765 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20766 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20767 "ip_wput_end: q %p (%S)", q, "newroute"); 20768 if (attach_ill != NULL) 20769 ill_refrele(attach_ill); 20770 if (xmit_ill != NULL) 20771 ill_refrele(xmit_ill); 20772 if (need_decref) 20773 CONN_DEC_REF(connp); 20774 return; 20775 } 20776 } 20777 20778 /* We now know where we are going with it. */ 20779 20780 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20781 "ip_wput_end: q %p (%S)", q, "end"); 20782 20783 /* 20784 * Check if the ire has the RTF_MULTIRT flag, inherited 20785 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20786 */ 20787 if (ire->ire_flags & RTF_MULTIRT) { 20788 /* 20789 * Force the TTL of multirouted packets if required. 20790 * The TTL of such packets is bounded by the 20791 * ip_multirt_ttl ndd variable. 20792 */ 20793 if ((ip_multirt_ttl > 0) && 20794 (ipha->ipha_ttl > ip_multirt_ttl)) { 20795 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20796 "(was %d), dst 0x%08x\n", 20797 ip_multirt_ttl, ipha->ipha_ttl, 20798 ntohl(ire->ire_addr))); 20799 ipha->ipha_ttl = ip_multirt_ttl; 20800 } 20801 /* 20802 * At this point, we check to see if there are any pending 20803 * unresolved routes. ire_multirt_resolvable() 20804 * checks in O(n) that all IRE_OFFSUBNET ire 20805 * entries for the packet's destination and 20806 * flagged RTF_MULTIRT are currently resolved. 20807 * If some remain unresolved, we make a copy 20808 * of the current message. It will be used 20809 * to initiate additional route resolutions. 20810 */ 20811 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20812 MBLK_GETLABEL(first_mp)); 20813 ip2dbg(("ip_wput[noirefound]: ire %p, " 20814 "multirt_need_resolve %d, first_mp %p\n", 20815 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20816 if (multirt_need_resolve) { 20817 copy_mp = copymsg(first_mp); 20818 if (copy_mp != NULL) { 20819 MULTIRT_DEBUG_TAG(copy_mp); 20820 } 20821 } 20822 } 20823 20824 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20825 /* 20826 * Try to resolve another multiroute if 20827 * ire_multirt_resolvable() deemed it necessary. 20828 * At this point, we need to distinguish 20829 * multicasts from other packets. For multicasts, 20830 * we call ip_newroute_ipif() and request that both 20831 * multirouting and setsrc flags are checked. 20832 */ 20833 if (copy_mp != NULL) { 20834 if (CLASSD(dst)) { 20835 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20836 if (ipif) { 20837 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20838 RTF_SETSRC | RTF_MULTIRT, zoneid); 20839 ipif_refrele(ipif); 20840 } else { 20841 MULTIRT_DEBUG_UNTAG(copy_mp); 20842 freemsg(copy_mp); 20843 copy_mp = NULL; 20844 } 20845 } else { 20846 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20847 } 20848 } 20849 if (attach_ill != NULL) 20850 ill_refrele(attach_ill); 20851 if (xmit_ill != NULL) 20852 ill_refrele(xmit_ill); 20853 if (need_decref) 20854 CONN_DEC_REF(connp); 20855 return; 20856 20857 icmp_parameter_problem: 20858 /* could not have originated externally */ 20859 ASSERT(mp->b_prev == NULL); 20860 if (ip_hdr_complete(ipha, zoneid) == 0) { 20861 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20862 /* it's the IP header length that's in trouble */ 20863 icmp_param_problem(q, first_mp, 0, zoneid); 20864 first_mp = NULL; 20865 } 20866 20867 drop_pkt: 20868 ip1dbg(("ip_wput: dropped packet\n")); 20869 if (ire != NULL) 20870 ire_refrele(ire); 20871 if (need_decref) 20872 CONN_DEC_REF(connp); 20873 freemsg(first_mp); 20874 if (attach_ill != NULL) 20875 ill_refrele(attach_ill); 20876 if (xmit_ill != NULL) 20877 ill_refrele(xmit_ill); 20878 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20879 "ip_wput_end: q %p (%S)", q, "droppkt"); 20880 } 20881 20882 /* 20883 * If this is a conn_t queue, then we pass in the conn. This includes the 20884 * zoneid. 20885 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20886 * in which case we use the global zoneid since those are all part of 20887 * the global zone. 20888 */ 20889 void 20890 ip_wput(queue_t *q, mblk_t *mp) 20891 { 20892 if (CONN_Q(q)) 20893 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20894 else 20895 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20896 } 20897 20898 /* 20899 * 20900 * The following rules must be observed when accessing any ipif or ill 20901 * that has been cached in the conn. Typically conn_nofailover_ill, 20902 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20903 * 20904 * Access: The ipif or ill pointed to from the conn can be accessed under 20905 * the protection of the conn_lock or after it has been refheld under the 20906 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20907 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20908 * The reason for this is that a concurrent unplumb could actually be 20909 * cleaning up these cached pointers by walking the conns and might have 20910 * finished cleaning up the conn in question. The macros check that an 20911 * unplumb has not yet started on the ipif or ill. 20912 * 20913 * Caching: An ipif or ill pointer may be cached in the conn only after 20914 * making sure that an unplumb has not started. So the caching is done 20915 * while holding both the conn_lock and the ill_lock and after using the 20916 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20917 * flag before starting the cleanup of conns. 20918 * 20919 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20920 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20921 * or a reference to the ipif or a reference to an ire that references the 20922 * ipif. An ipif does not change its ill except for failover/failback. Since 20923 * failover/failback happens only after bringing down the ipif and making sure 20924 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20925 * the above holds. 20926 */ 20927 ipif_t * 20928 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20929 { 20930 ipif_t *ipif; 20931 ill_t *ill; 20932 20933 *err = 0; 20934 rw_enter(&ill_g_lock, RW_READER); 20935 mutex_enter(&connp->conn_lock); 20936 ipif = *ipifp; 20937 if (ipif != NULL) { 20938 ill = ipif->ipif_ill; 20939 mutex_enter(&ill->ill_lock); 20940 if (IPIF_CAN_LOOKUP(ipif)) { 20941 ipif_refhold_locked(ipif); 20942 mutex_exit(&ill->ill_lock); 20943 mutex_exit(&connp->conn_lock); 20944 rw_exit(&ill_g_lock); 20945 return (ipif); 20946 } else { 20947 *err = IPIF_LOOKUP_FAILED; 20948 } 20949 mutex_exit(&ill->ill_lock); 20950 } 20951 mutex_exit(&connp->conn_lock); 20952 rw_exit(&ill_g_lock); 20953 return (NULL); 20954 } 20955 20956 ill_t * 20957 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20958 { 20959 ill_t *ill; 20960 20961 *err = 0; 20962 mutex_enter(&connp->conn_lock); 20963 ill = *illp; 20964 if (ill != NULL) { 20965 mutex_enter(&ill->ill_lock); 20966 if (ILL_CAN_LOOKUP(ill)) { 20967 ill_refhold_locked(ill); 20968 mutex_exit(&ill->ill_lock); 20969 mutex_exit(&connp->conn_lock); 20970 return (ill); 20971 } else { 20972 *err = ILL_LOOKUP_FAILED; 20973 } 20974 mutex_exit(&ill->ill_lock); 20975 } 20976 mutex_exit(&connp->conn_lock); 20977 return (NULL); 20978 } 20979 20980 static int 20981 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20982 { 20983 ill_t *ill; 20984 20985 ill = ipif->ipif_ill; 20986 mutex_enter(&connp->conn_lock); 20987 mutex_enter(&ill->ill_lock); 20988 if (IPIF_CAN_LOOKUP(ipif)) { 20989 *ipifp = ipif; 20990 mutex_exit(&ill->ill_lock); 20991 mutex_exit(&connp->conn_lock); 20992 return (0); 20993 } 20994 mutex_exit(&ill->ill_lock); 20995 mutex_exit(&connp->conn_lock); 20996 return (IPIF_LOOKUP_FAILED); 20997 } 20998 20999 /* 21000 * This is called if the outbound datagram needs fragmentation. 21001 * 21002 * NOTE : This function does not ire_refrele the ire argument passed in. 21003 */ 21004 static void 21005 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 21006 { 21007 ipha_t *ipha; 21008 mblk_t *mp; 21009 uint32_t v_hlen_tos_len; 21010 uint32_t max_frag; 21011 uint32_t frag_flag; 21012 boolean_t dont_use; 21013 21014 if (ipsec_mp->b_datap->db_type == M_CTL) { 21015 mp = ipsec_mp->b_cont; 21016 } else { 21017 mp = ipsec_mp; 21018 } 21019 21020 ipha = (ipha_t *)mp->b_rptr; 21021 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21022 21023 #ifdef _BIG_ENDIAN 21024 #define V_HLEN (v_hlen_tos_len >> 24) 21025 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21026 #else 21027 #define V_HLEN (v_hlen_tos_len & 0xFF) 21028 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21029 #endif 21030 21031 #ifndef SPEED_BEFORE_SAFETY 21032 /* 21033 * Check that ipha_length is consistent with 21034 * the mblk length 21035 */ 21036 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21037 ip0dbg(("Packet length mismatch: %d, %ld\n", 21038 LENGTH, msgdsize(mp))); 21039 freemsg(ipsec_mp); 21040 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21041 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21042 "packet length mismatch"); 21043 return; 21044 } 21045 #endif 21046 /* 21047 * Don't use frag_flag if pre-built packet or source 21048 * routed or if multicast (since multicast packets do not solicit 21049 * ICMP "packet too big" messages). Get the values of 21050 * max_frag and frag_flag atomically by acquiring the 21051 * ire_lock. 21052 */ 21053 mutex_enter(&ire->ire_lock); 21054 max_frag = ire->ire_max_frag; 21055 frag_flag = ire->ire_frag_flag; 21056 mutex_exit(&ire->ire_lock); 21057 21058 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21059 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21060 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21061 21062 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21063 (dont_use ? 0 : frag_flag), zoneid); 21064 } 21065 21066 /* 21067 * Used for deciding the MSS size for the upper layer. Thus 21068 * we need to check the outbound policy values in the conn. 21069 */ 21070 int 21071 conn_ipsec_length(conn_t *connp) 21072 { 21073 ipsec_latch_t *ipl; 21074 21075 ipl = connp->conn_latch; 21076 if (ipl == NULL) 21077 return (0); 21078 21079 if (ipl->ipl_out_policy == NULL) 21080 return (0); 21081 21082 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21083 } 21084 21085 /* 21086 * Returns an estimate of the IPSEC headers size. This is used if 21087 * we don't want to call into IPSEC to get the exact size. 21088 */ 21089 int 21090 ipsec_out_extra_length(mblk_t *ipsec_mp) 21091 { 21092 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21093 ipsec_action_t *a; 21094 21095 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21096 if (!io->ipsec_out_secure) 21097 return (0); 21098 21099 a = io->ipsec_out_act; 21100 21101 if (a == NULL) { 21102 ASSERT(io->ipsec_out_policy != NULL); 21103 a = io->ipsec_out_policy->ipsp_act; 21104 } 21105 ASSERT(a != NULL); 21106 21107 return (a->ipa_ovhd); 21108 } 21109 21110 /* 21111 * Returns an estimate of the IPSEC headers size. This is used if 21112 * we don't want to call into IPSEC to get the exact size. 21113 */ 21114 int 21115 ipsec_in_extra_length(mblk_t *ipsec_mp) 21116 { 21117 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21118 ipsec_action_t *a; 21119 21120 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21121 21122 a = ii->ipsec_in_action; 21123 return (a == NULL ? 0 : a->ipa_ovhd); 21124 } 21125 21126 /* 21127 * If there are any source route options, return the true final 21128 * destination. Otherwise, return the destination. 21129 */ 21130 ipaddr_t 21131 ip_get_dst(ipha_t *ipha) 21132 { 21133 ipoptp_t opts; 21134 uchar_t *opt; 21135 uint8_t optval; 21136 uint8_t optlen; 21137 ipaddr_t dst; 21138 uint32_t off; 21139 21140 dst = ipha->ipha_dst; 21141 21142 if (IS_SIMPLE_IPH(ipha)) 21143 return (dst); 21144 21145 for (optval = ipoptp_first(&opts, ipha); 21146 optval != IPOPT_EOL; 21147 optval = ipoptp_next(&opts)) { 21148 opt = opts.ipoptp_cur; 21149 optlen = opts.ipoptp_len; 21150 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21151 switch (optval) { 21152 case IPOPT_SSRR: 21153 case IPOPT_LSRR: 21154 off = opt[IPOPT_OFFSET]; 21155 /* 21156 * If one of the conditions is true, it means 21157 * end of options and dst already has the right 21158 * value. 21159 */ 21160 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21161 off = optlen - IP_ADDR_LEN; 21162 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21163 } 21164 return (dst); 21165 default: 21166 break; 21167 } 21168 } 21169 21170 return (dst); 21171 } 21172 21173 mblk_t * 21174 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21175 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21176 { 21177 ipsec_out_t *io; 21178 mblk_t *first_mp; 21179 boolean_t policy_present; 21180 21181 first_mp = mp; 21182 if (mp->b_datap->db_type == M_CTL) { 21183 io = (ipsec_out_t *)first_mp->b_rptr; 21184 /* 21185 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21186 * 21187 * 1) There is per-socket policy (including cached global 21188 * policy) or a policy on the IP-in-IP tunnel. 21189 * 2) There is no per-socket policy, but it is 21190 * a multicast packet that needs to go out 21191 * on a specific interface. This is the case 21192 * where (ip_wput and ip_wput_multicast) attaches 21193 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21194 * 21195 * In case (2) we check with global policy to 21196 * see if there is a match and set the ill_index 21197 * appropriately so that we can lookup the ire 21198 * properly in ip_wput_ipsec_out. 21199 */ 21200 21201 /* 21202 * ipsec_out_use_global_policy is set to B_FALSE 21203 * in ipsec_in_to_out(). Refer to that function for 21204 * details. 21205 */ 21206 if ((io->ipsec_out_latch == NULL) && 21207 (io->ipsec_out_use_global_policy)) { 21208 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21209 ire, connp, unspec_src, zoneid)); 21210 } 21211 if (!io->ipsec_out_secure) { 21212 /* 21213 * If this is not a secure packet, drop 21214 * the IPSEC_OUT mp and treat it as a clear 21215 * packet. This happens when we are sending 21216 * a ICMP reply back to a clear packet. See 21217 * ipsec_in_to_out() for details. 21218 */ 21219 mp = first_mp->b_cont; 21220 freeb(first_mp); 21221 } 21222 return (mp); 21223 } 21224 /* 21225 * See whether we need to attach a global policy here. We 21226 * don't depend on the conn (as it could be null) for deciding 21227 * what policy this datagram should go through because it 21228 * should have happened in ip_wput if there was some 21229 * policy. This normally happens for connections which are not 21230 * fully bound preventing us from caching policies in 21231 * ip_bind. Packets coming from the TCP listener/global queue 21232 * - which are non-hard_bound - could also be affected by 21233 * applying policy here. 21234 * 21235 * If this packet is coming from tcp global queue or listener, 21236 * we will be applying policy here. This may not be *right* 21237 * if these packets are coming from the detached connection as 21238 * it could have gone in clear before. This happens only if a 21239 * TCP connection started when there is no policy and somebody 21240 * added policy before it became detached. Thus packets of the 21241 * detached connection could go out secure and the other end 21242 * would drop it because it will be expecting in clear. The 21243 * converse is not true i.e if somebody starts a TCP 21244 * connection and deletes the policy, all the packets will 21245 * still go out with the policy that existed before deleting 21246 * because ip_unbind sends up policy information which is used 21247 * by TCP on subsequent ip_wputs. The right solution is to fix 21248 * TCP to attach a dummy IPSEC_OUT and set 21249 * ipsec_out_use_global_policy to B_FALSE. As this might 21250 * affect performance for normal cases, we are not doing it. 21251 * Thus, set policy before starting any TCP connections. 21252 * 21253 * NOTE - We might apply policy even for a hard bound connection 21254 * - for which we cached policy in ip_bind - if somebody added 21255 * global policy after we inherited the policy in ip_bind. 21256 * This means that the packets that were going out in clear 21257 * previously would start going secure and hence get dropped 21258 * on the other side. To fix this, TCP attaches a dummy 21259 * ipsec_out and make sure that we don't apply global policy. 21260 */ 21261 if (ipha != NULL) 21262 policy_present = ipsec_outbound_v4_policy_present; 21263 else 21264 policy_present = ipsec_outbound_v6_policy_present; 21265 if (!policy_present) 21266 return (mp); 21267 21268 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21269 zoneid)); 21270 } 21271 21272 ire_t * 21273 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21274 { 21275 ipaddr_t addr; 21276 ire_t *save_ire; 21277 irb_t *irb; 21278 ill_group_t *illgrp; 21279 int err; 21280 21281 save_ire = ire; 21282 addr = ire->ire_addr; 21283 21284 ASSERT(ire->ire_type == IRE_BROADCAST); 21285 21286 illgrp = connp->conn_outgoing_ill->ill_group; 21287 if (illgrp == NULL) { 21288 *conn_outgoing_ill = conn_get_held_ill(connp, 21289 &connp->conn_outgoing_ill, &err); 21290 if (err == ILL_LOOKUP_FAILED) { 21291 ire_refrele(save_ire); 21292 return (NULL); 21293 } 21294 return (save_ire); 21295 } 21296 /* 21297 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21298 * If it is part of the group, we need to send on the ire 21299 * that has been cleared of IRE_MARK_NORECV and that belongs 21300 * to this group. This is okay as IP_BOUND_IF really means 21301 * any ill in the group. We depend on the fact that the 21302 * first ire in the group is always cleared of IRE_MARK_NORECV 21303 * if such an ire exists. This is possible only if you have 21304 * at least one ill in the group that has not failed. 21305 * 21306 * First get to the ire that matches the address and group. 21307 * 21308 * We don't look for an ire with a matching zoneid because a given zone 21309 * won't always have broadcast ires on all ills in the group. 21310 */ 21311 irb = ire->ire_bucket; 21312 rw_enter(&irb->irb_lock, RW_READER); 21313 if (ire->ire_marks & IRE_MARK_NORECV) { 21314 /* 21315 * If the current zone only has an ire broadcast for this 21316 * address marked NORECV, the ire we want is ahead in the 21317 * bucket, so we look it up deliberately ignoring the zoneid. 21318 */ 21319 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21320 if (ire->ire_addr != addr) 21321 continue; 21322 /* skip over deleted ires */ 21323 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21324 continue; 21325 } 21326 } 21327 while (ire != NULL) { 21328 /* 21329 * If a new interface is coming up, we could end up 21330 * seeing the loopback ire and the non-loopback ire 21331 * may not have been added yet. So check for ire_stq 21332 */ 21333 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21334 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21335 break; 21336 } 21337 ire = ire->ire_next; 21338 } 21339 if (ire != NULL && ire->ire_addr == addr && 21340 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21341 IRE_REFHOLD(ire); 21342 rw_exit(&irb->irb_lock); 21343 ire_refrele(save_ire); 21344 *conn_outgoing_ill = ire_to_ill(ire); 21345 /* 21346 * Refhold the ill to make the conn_outgoing_ill 21347 * independent of the ire. ip_wput_ire goes in a loop 21348 * and may refrele the ire. Since we have an ire at this 21349 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21350 */ 21351 ill_refhold(*conn_outgoing_ill); 21352 return (ire); 21353 } 21354 rw_exit(&irb->irb_lock); 21355 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21356 /* 21357 * If we can't find a suitable ire, return the original ire. 21358 */ 21359 return (save_ire); 21360 } 21361 21362 /* 21363 * This function does the ire_refrele of the ire passed in as the 21364 * argument. As this function looks up more ires i.e broadcast ires, 21365 * it needs to REFRELE them. Currently, for simplicity we don't 21366 * differentiate the one passed in and looked up here. We always 21367 * REFRELE. 21368 * IPQoS Notes: 21369 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21370 * IPSec packets are done in ipsec_out_process. 21371 * 21372 */ 21373 void 21374 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21375 zoneid_t zoneid) 21376 { 21377 ipha_t *ipha; 21378 #define rptr ((uchar_t *)ipha) 21379 queue_t *stq; 21380 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21381 uint32_t v_hlen_tos_len; 21382 uint32_t ttl_protocol; 21383 ipaddr_t src; 21384 ipaddr_t dst; 21385 uint32_t cksum; 21386 ipaddr_t orig_src; 21387 ire_t *ire1; 21388 mblk_t *next_mp; 21389 uint_t hlen; 21390 uint16_t *up; 21391 uint32_t max_frag = ire->ire_max_frag; 21392 ill_t *ill = ire_to_ill(ire); 21393 int clusterwide; 21394 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21395 int ipsec_len; 21396 mblk_t *first_mp; 21397 ipsec_out_t *io; 21398 boolean_t conn_dontroute; /* conn value for multicast */ 21399 boolean_t conn_multicast_loop; /* conn value for multicast */ 21400 boolean_t multicast_forward; /* Should we forward ? */ 21401 boolean_t unspec_src; 21402 ill_t *conn_outgoing_ill = NULL; 21403 ill_t *ire_ill; 21404 ill_t *ire1_ill; 21405 ill_t *out_ill; 21406 uint32_t ill_index = 0; 21407 boolean_t multirt_send = B_FALSE; 21408 int err; 21409 ipxmit_state_t pktxmit_state; 21410 21411 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21412 "ip_wput_ire_start: q %p", q); 21413 21414 multicast_forward = B_FALSE; 21415 unspec_src = (connp != NULL && connp->conn_unspec_src); 21416 21417 if (ire->ire_flags & RTF_MULTIRT) { 21418 /* 21419 * Multirouting case. The bucket where ire is stored 21420 * probably holds other RTF_MULTIRT flagged ire 21421 * to the destination. In this call to ip_wput_ire, 21422 * we attempt to send the packet through all 21423 * those ires. Thus, we first ensure that ire is the 21424 * first RTF_MULTIRT ire in the bucket, 21425 * before walking the ire list. 21426 */ 21427 ire_t *first_ire; 21428 irb_t *irb = ire->ire_bucket; 21429 ASSERT(irb != NULL); 21430 21431 /* Make sure we do not omit any multiroute ire. */ 21432 IRB_REFHOLD(irb); 21433 for (first_ire = irb->irb_ire; 21434 first_ire != NULL; 21435 first_ire = first_ire->ire_next) { 21436 if ((first_ire->ire_flags & RTF_MULTIRT) && 21437 (first_ire->ire_addr == ire->ire_addr) && 21438 !(first_ire->ire_marks & 21439 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21440 break; 21441 } 21442 21443 if ((first_ire != NULL) && (first_ire != ire)) { 21444 IRE_REFHOLD(first_ire); 21445 ire_refrele(ire); 21446 ire = first_ire; 21447 ill = ire_to_ill(ire); 21448 } 21449 IRB_REFRELE(irb); 21450 } 21451 21452 /* 21453 * conn_outgoing_ill is used only in the broadcast loop. 21454 * for performance we don't grab the mutexs in the fastpath 21455 */ 21456 if ((connp != NULL) && 21457 (connp->conn_xmit_if_ill == NULL) && 21458 (ire->ire_type == IRE_BROADCAST) && 21459 ((connp->conn_nofailover_ill != NULL) || 21460 (connp->conn_outgoing_ill != NULL))) { 21461 /* 21462 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21463 * option. So, see if this endpoint is bound to a 21464 * IPIF_NOFAILOVER address. If so, honor it. This implies 21465 * that if the interface is failed, we will still send 21466 * the packet on the same ill which is what we want. 21467 */ 21468 conn_outgoing_ill = conn_get_held_ill(connp, 21469 &connp->conn_nofailover_ill, &err); 21470 if (err == ILL_LOOKUP_FAILED) { 21471 ire_refrele(ire); 21472 freemsg(mp); 21473 return; 21474 } 21475 if (conn_outgoing_ill == NULL) { 21476 /* 21477 * Choose a good ill in the group to send the 21478 * packets on. 21479 */ 21480 ire = conn_set_outgoing_ill(connp, ire, 21481 &conn_outgoing_ill); 21482 if (ire == NULL) { 21483 freemsg(mp); 21484 return; 21485 } 21486 } 21487 } 21488 21489 if (mp->b_datap->db_type != M_CTL) { 21490 ipha = (ipha_t *)mp->b_rptr; 21491 } else { 21492 io = (ipsec_out_t *)mp->b_rptr; 21493 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21494 ASSERT(zoneid == io->ipsec_out_zoneid); 21495 ASSERT(zoneid != ALL_ZONES); 21496 ipha = (ipha_t *)mp->b_cont->b_rptr; 21497 dst = ipha->ipha_dst; 21498 /* 21499 * For the multicast case, ipsec_out carries conn_dontroute and 21500 * conn_multicast_loop as conn may not be available here. We 21501 * need this for multicast loopback and forwarding which is done 21502 * later in the code. 21503 */ 21504 if (CLASSD(dst)) { 21505 conn_dontroute = io->ipsec_out_dontroute; 21506 conn_multicast_loop = io->ipsec_out_multicast_loop; 21507 /* 21508 * If conn_dontroute is not set or conn_multicast_loop 21509 * is set, we need to do forwarding/loopback. For 21510 * datagrams from ip_wput_multicast, conn_dontroute is 21511 * set to B_TRUE and conn_multicast_loop is set to 21512 * B_FALSE so that we neither do forwarding nor 21513 * loopback. 21514 */ 21515 if (!conn_dontroute || conn_multicast_loop) 21516 multicast_forward = B_TRUE; 21517 } 21518 } 21519 21520 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21521 ire->ire_zoneid != ALL_ZONES) { 21522 /* 21523 * When a zone sends a packet to another zone, we try to deliver 21524 * the packet under the same conditions as if the destination 21525 * was a real node on the network. To do so, we look for a 21526 * matching route in the forwarding table. 21527 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21528 * ip_newroute() does. 21529 * Note that IRE_LOCAL are special, since they are used 21530 * when the zoneid doesn't match in some cases. This means that 21531 * we need to handle ipha_src differently since ire_src_addr 21532 * belongs to the receiving zone instead of the sending zone. 21533 * When ip_restrict_interzone_loopback is set, then 21534 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21535 * for loopback between zones when the logical "Ethernet" would 21536 * have looped them back. 21537 */ 21538 ire_t *src_ire; 21539 21540 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21541 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21542 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21543 if (src_ire != NULL && 21544 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21545 (!ip_restrict_interzone_loopback || 21546 ire_local_same_ill_group(ire, src_ire))) { 21547 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21548 ipha->ipha_src = src_ire->ire_src_addr; 21549 ire_refrele(src_ire); 21550 } else { 21551 ire_refrele(ire); 21552 if (conn_outgoing_ill != NULL) 21553 ill_refrele(conn_outgoing_ill); 21554 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21555 if (src_ire != NULL) { 21556 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21557 ire_refrele(src_ire); 21558 freemsg(mp); 21559 return; 21560 } 21561 ire_refrele(src_ire); 21562 } 21563 if (ip_hdr_complete(ipha, zoneid)) { 21564 /* Failed */ 21565 freemsg(mp); 21566 return; 21567 } 21568 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21569 return; 21570 } 21571 } 21572 21573 if (mp->b_datap->db_type == M_CTL || 21574 ipsec_outbound_v4_policy_present) { 21575 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21576 unspec_src, zoneid); 21577 if (mp == NULL) { 21578 ire_refrele(ire); 21579 if (conn_outgoing_ill != NULL) 21580 ill_refrele(conn_outgoing_ill); 21581 return; 21582 } 21583 } 21584 21585 first_mp = mp; 21586 ipsec_len = 0; 21587 21588 if (first_mp->b_datap->db_type == M_CTL) { 21589 io = (ipsec_out_t *)first_mp->b_rptr; 21590 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21591 mp = first_mp->b_cont; 21592 ipsec_len = ipsec_out_extra_length(first_mp); 21593 ASSERT(ipsec_len >= 0); 21594 /* We already picked up the zoneid from the M_CTL above */ 21595 ASSERT(zoneid == io->ipsec_out_zoneid); 21596 ASSERT(zoneid != ALL_ZONES); 21597 21598 /* 21599 * Drop M_CTL here if IPsec processing is not needed. 21600 * (Non-IPsec use of M_CTL extracted any information it 21601 * needed above). 21602 */ 21603 if (ipsec_len == 0) { 21604 freeb(first_mp); 21605 first_mp = mp; 21606 } 21607 } 21608 21609 /* 21610 * Fast path for ip_wput_ire 21611 */ 21612 21613 ipha = (ipha_t *)mp->b_rptr; 21614 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21615 dst = ipha->ipha_dst; 21616 21617 /* 21618 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21619 * if the socket is a SOCK_RAW type. The transport checksum should 21620 * be provided in the pre-built packet, so we don't need to compute it. 21621 * Also, other application set flags, like DF, should not be altered. 21622 * Other transport MUST pass down zero. 21623 */ 21624 ip_hdr_included = ipha->ipha_ident; 21625 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21626 21627 if (CLASSD(dst)) { 21628 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21629 ntohl(dst), 21630 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21631 ntohl(ire->ire_addr))); 21632 } 21633 21634 /* Macros to extract header fields from data already in registers */ 21635 #ifdef _BIG_ENDIAN 21636 #define V_HLEN (v_hlen_tos_len >> 24) 21637 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21638 #define PROTO (ttl_protocol & 0xFF) 21639 #else 21640 #define V_HLEN (v_hlen_tos_len & 0xFF) 21641 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21642 #define PROTO (ttl_protocol >> 8) 21643 #endif 21644 21645 21646 orig_src = src = ipha->ipha_src; 21647 /* (The loop back to "another" is explained down below.) */ 21648 another:; 21649 /* 21650 * Assign an ident value for this packet. We assign idents on 21651 * a per destination basis out of the IRE. There could be 21652 * other threads targeting the same destination, so we have to 21653 * arrange for a atomic increment. Note that we use a 32-bit 21654 * atomic add because it has better performance than its 21655 * 16-bit sibling. 21656 * 21657 * If running in cluster mode and if the source address 21658 * belongs to a replicated service then vector through 21659 * cl_inet_ipident vector to allocate ip identifier 21660 * NOTE: This is a contract private interface with the 21661 * clustering group. 21662 */ 21663 clusterwide = 0; 21664 if (cl_inet_ipident) { 21665 ASSERT(cl_inet_isclusterwide); 21666 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21667 AF_INET, (uint8_t *)(uintptr_t)src)) { 21668 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21669 AF_INET, (uint8_t *)(uintptr_t)src, 21670 (uint8_t *)(uintptr_t)dst); 21671 clusterwide = 1; 21672 } 21673 } 21674 if (!clusterwide) { 21675 ipha->ipha_ident = 21676 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21677 } 21678 21679 #ifndef _BIG_ENDIAN 21680 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21681 #endif 21682 21683 /* 21684 * Set source address unless sent on an ill or conn_unspec_src is set. 21685 * This is needed to obey conn_unspec_src when packets go through 21686 * ip_newroute + arp. 21687 * Assumes ip_newroute{,_multi} sets the source address as well. 21688 */ 21689 if (src == INADDR_ANY && !unspec_src) { 21690 /* 21691 * Assign the appropriate source address from the IRE if none 21692 * was specified. 21693 */ 21694 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21695 21696 /* 21697 * With IP multipathing, broadcast packets are sent on the ire 21698 * that has been cleared of IRE_MARK_NORECV and that belongs to 21699 * the group. However, this ire might not be in the same zone so 21700 * we can't always use its source address. We look for a 21701 * broadcast ire in the same group and in the right zone. 21702 */ 21703 if (ire->ire_type == IRE_BROADCAST && 21704 ire->ire_zoneid != zoneid) { 21705 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21706 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21707 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21708 if (src_ire != NULL) { 21709 src = src_ire->ire_src_addr; 21710 ire_refrele(src_ire); 21711 } else { 21712 ire_refrele(ire); 21713 if (conn_outgoing_ill != NULL) 21714 ill_refrele(conn_outgoing_ill); 21715 freemsg(first_mp); 21716 BUMP_MIB(&ip_mib, ipOutDiscards); 21717 return; 21718 } 21719 } else { 21720 src = ire->ire_src_addr; 21721 } 21722 21723 if (connp == NULL) { 21724 ip1dbg(("ip_wput_ire: no connp and no src " 21725 "address for dst 0x%x, using src 0x%x\n", 21726 ntohl(dst), 21727 ntohl(src))); 21728 } 21729 ipha->ipha_src = src; 21730 } 21731 stq = ire->ire_stq; 21732 21733 /* 21734 * We only allow ire chains for broadcasts since there will 21735 * be multiple IRE_CACHE entries for the same multicast 21736 * address (one per ipif). 21737 */ 21738 next_mp = NULL; 21739 21740 /* broadcast packet */ 21741 if (ire->ire_type == IRE_BROADCAST) 21742 goto broadcast; 21743 21744 /* loopback ? */ 21745 if (stq == NULL) 21746 goto nullstq; 21747 21748 /* The ill_index for outbound ILL */ 21749 ill_index = Q_TO_INDEX(stq); 21750 21751 BUMP_MIB(&ip_mib, ipOutRequests); 21752 ttl_protocol = ((uint16_t *)ipha)[4]; 21753 21754 /* pseudo checksum (do it in parts for IP header checksum) */ 21755 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21756 21757 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21758 queue_t *dev_q = stq->q_next; 21759 21760 /* flow controlled */ 21761 if ((dev_q->q_next || dev_q->q_first) && 21762 !canput(dev_q)) 21763 goto blocked; 21764 if ((PROTO == IPPROTO_UDP) && 21765 (ip_hdr_included != IP_HDR_INCLUDED)) { 21766 hlen = (V_HLEN & 0xF) << 2; 21767 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21768 if (*up != 0) { 21769 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21770 hlen, LENGTH, max_frag, ipsec_len, cksum); 21771 /* Software checksum? */ 21772 if (DB_CKSUMFLAGS(mp) == 0) { 21773 IP_STAT(ip_out_sw_cksum); 21774 IP_STAT_UPDATE( 21775 ip_udp_out_sw_cksum_bytes, 21776 LENGTH - hlen); 21777 } 21778 } 21779 } 21780 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21781 hlen = (V_HLEN & 0xF) << 2; 21782 if (PROTO == IPPROTO_TCP) { 21783 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21784 /* 21785 * The packet header is processed once and for all, even 21786 * in the multirouting case. We disable hardware 21787 * checksum if the packet is multirouted, as it will be 21788 * replicated via several interfaces, and not all of 21789 * them may have this capability. 21790 */ 21791 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21792 LENGTH, max_frag, ipsec_len, cksum); 21793 /* Software checksum? */ 21794 if (DB_CKSUMFLAGS(mp) == 0) { 21795 IP_STAT(ip_out_sw_cksum); 21796 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21797 LENGTH - hlen); 21798 } 21799 } else { 21800 sctp_hdr_t *sctph; 21801 21802 ASSERT(PROTO == IPPROTO_SCTP); 21803 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21804 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21805 /* 21806 * Zero out the checksum field to ensure proper 21807 * checksum calculation. 21808 */ 21809 sctph->sh_chksum = 0; 21810 #ifdef DEBUG 21811 if (!skip_sctp_cksum) 21812 #endif 21813 sctph->sh_chksum = sctp_cksum(mp, hlen); 21814 } 21815 } 21816 21817 /* 21818 * If this is a multicast packet and originated from ip_wput 21819 * we need to do loopback and forwarding checks. If it comes 21820 * from ip_wput_multicast, we SHOULD not do this. 21821 */ 21822 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21823 21824 /* checksum */ 21825 cksum += ttl_protocol; 21826 21827 /* fragment the packet */ 21828 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21829 goto fragmentit; 21830 /* 21831 * Don't use frag_flag if packet is pre-built or source 21832 * routed or if multicast (since multicast packets do 21833 * not solicit ICMP "packet too big" messages). 21834 */ 21835 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21836 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21837 !ip_source_route_included(ipha)) && 21838 !CLASSD(ipha->ipha_dst)) 21839 ipha->ipha_fragment_offset_and_flags |= 21840 htons(ire->ire_frag_flag); 21841 21842 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21843 /* calculate IP header checksum */ 21844 cksum += ipha->ipha_ident; 21845 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21846 cksum += ipha->ipha_fragment_offset_and_flags; 21847 21848 /* IP options present */ 21849 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21850 if (hlen) 21851 goto checksumoptions; 21852 21853 /* calculate hdr checksum */ 21854 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21855 cksum = ~(cksum + (cksum >> 16)); 21856 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21857 } 21858 if (ipsec_len != 0) { 21859 /* 21860 * We will do the rest of the processing after 21861 * we come back from IPSEC in ip_wput_ipsec_out(). 21862 */ 21863 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21864 21865 io = (ipsec_out_t *)first_mp->b_rptr; 21866 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21867 ill_phyint->phyint_ifindex; 21868 21869 ipsec_out_process(q, first_mp, ire, ill_index); 21870 ire_refrele(ire); 21871 if (conn_outgoing_ill != NULL) 21872 ill_refrele(conn_outgoing_ill); 21873 return; 21874 } 21875 21876 /* 21877 * In most cases, the emission loop below is entered only 21878 * once. Only in the case where the ire holds the 21879 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21880 * flagged ires in the bucket, and send the packet 21881 * through all crossed RTF_MULTIRT routes. 21882 */ 21883 if (ire->ire_flags & RTF_MULTIRT) { 21884 multirt_send = B_TRUE; 21885 } 21886 do { 21887 if (multirt_send) { 21888 irb_t *irb; 21889 /* 21890 * We are in a multiple send case, need to get 21891 * the next ire and make a duplicate of the packet. 21892 * ire1 holds here the next ire to process in the 21893 * bucket. If multirouting is expected, 21894 * any non-RTF_MULTIRT ire that has the 21895 * right destination address is ignored. 21896 */ 21897 irb = ire->ire_bucket; 21898 ASSERT(irb != NULL); 21899 21900 IRB_REFHOLD(irb); 21901 for (ire1 = ire->ire_next; 21902 ire1 != NULL; 21903 ire1 = ire1->ire_next) { 21904 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21905 continue; 21906 if (ire1->ire_addr != ire->ire_addr) 21907 continue; 21908 if (ire1->ire_marks & 21909 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21910 continue; 21911 21912 /* Got one */ 21913 IRE_REFHOLD(ire1); 21914 break; 21915 } 21916 IRB_REFRELE(irb); 21917 21918 if (ire1 != NULL) { 21919 next_mp = copyb(mp); 21920 if ((next_mp == NULL) || 21921 ((mp->b_cont != NULL) && 21922 ((next_mp->b_cont = 21923 dupmsg(mp->b_cont)) == NULL))) { 21924 freemsg(next_mp); 21925 next_mp = NULL; 21926 ire_refrele(ire1); 21927 ire1 = NULL; 21928 } 21929 } 21930 21931 /* Last multiroute ire; don't loop anymore. */ 21932 if (ire1 == NULL) { 21933 multirt_send = B_FALSE; 21934 } 21935 } 21936 21937 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 21938 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 21939 mblk_t *, mp); 21940 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 21941 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp); 21942 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21943 if (mp == NULL) 21944 goto release_ire_and_ill; 21945 21946 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21947 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21948 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21949 if ((pktxmit_state == SEND_FAILED) || 21950 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21951 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21952 "- packet dropped\n")); 21953 release_ire_and_ill: 21954 ire_refrele(ire); 21955 if (next_mp != NULL) { 21956 freemsg(next_mp); 21957 ire_refrele(ire1); 21958 } 21959 if (conn_outgoing_ill != NULL) 21960 ill_refrele(conn_outgoing_ill); 21961 return; 21962 } 21963 21964 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21965 "ip_wput_ire_end: q %p (%S)", 21966 q, "last copy out"); 21967 IRE_REFRELE(ire); 21968 21969 if (multirt_send) { 21970 ASSERT(ire1); 21971 /* 21972 * Proceed with the next RTF_MULTIRT ire, 21973 * Also set up the send-to queue accordingly. 21974 */ 21975 ire = ire1; 21976 ire1 = NULL; 21977 stq = ire->ire_stq; 21978 mp = next_mp; 21979 next_mp = NULL; 21980 ipha = (ipha_t *)mp->b_rptr; 21981 ill_index = Q_TO_INDEX(stq); 21982 } 21983 } while (multirt_send); 21984 if (conn_outgoing_ill != NULL) 21985 ill_refrele(conn_outgoing_ill); 21986 return; 21987 21988 /* 21989 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21990 */ 21991 broadcast: 21992 { 21993 /* 21994 * Avoid broadcast storms by setting the ttl to 1 21995 * for broadcasts. This parameter can be set 21996 * via ndd, so make sure that for the SO_DONTROUTE 21997 * case that ipha_ttl is always set to 1. 21998 * In the event that we are replying to incoming 21999 * ICMP packets, conn could be NULL. 22000 */ 22001 if ((connp != NULL) && connp->conn_dontroute) 22002 ipha->ipha_ttl = 1; 22003 else 22004 ipha->ipha_ttl = ip_broadcast_ttl; 22005 22006 /* 22007 * Note that we are not doing a IRB_REFHOLD here. 22008 * Actually we don't care if the list changes i.e 22009 * if somebody deletes an IRE from the list while 22010 * we drop the lock, the next time we come around 22011 * ire_next will be NULL and hence we won't send 22012 * out multiple copies which is fine. 22013 */ 22014 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22015 ire1 = ire->ire_next; 22016 if (conn_outgoing_ill != NULL) { 22017 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22018 ASSERT(ire1 == ire->ire_next); 22019 if (ire1 != NULL && ire1->ire_addr == dst) { 22020 ire_refrele(ire); 22021 ire = ire1; 22022 IRE_REFHOLD(ire); 22023 ire1 = ire->ire_next; 22024 continue; 22025 } 22026 rw_exit(&ire->ire_bucket->irb_lock); 22027 /* Did not find a matching ill */ 22028 ip1dbg(("ip_wput_ire: broadcast with no " 22029 "matching IP_BOUND_IF ill %s\n", 22030 conn_outgoing_ill->ill_name)); 22031 freemsg(first_mp); 22032 if (ire != NULL) 22033 ire_refrele(ire); 22034 ill_refrele(conn_outgoing_ill); 22035 return; 22036 } 22037 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22038 /* 22039 * If the next IRE has the same address and is not one 22040 * of the two copies that we need to send, try to see 22041 * whether this copy should be sent at all. This 22042 * assumes that we insert loopbacks first and then 22043 * non-loopbacks. This is acheived by inserting the 22044 * loopback always before non-loopback. 22045 * This is used to send a single copy of a broadcast 22046 * packet out all physical interfaces that have an 22047 * matching IRE_BROADCAST while also looping 22048 * back one copy (to ip_wput_local) for each 22049 * matching physical interface. However, we avoid 22050 * sending packets out different logical that match by 22051 * having ipif_up/ipif_down supress duplicate 22052 * IRE_BROADCASTS. 22053 * 22054 * This feature is currently used to get broadcasts 22055 * sent to multiple interfaces, when the broadcast 22056 * address being used applies to multiple interfaces. 22057 * For example, a whole net broadcast will be 22058 * replicated on every connected subnet of 22059 * the target net. 22060 * 22061 * Each zone has its own set of IRE_BROADCASTs, so that 22062 * we're able to distribute inbound packets to multiple 22063 * zones who share a broadcast address. We avoid looping 22064 * back outbound packets in different zones but on the 22065 * same ill, as the application would see duplicates. 22066 * 22067 * If the interfaces are part of the same group, 22068 * we would want to send only one copy out for 22069 * whole group. 22070 * 22071 * This logic assumes that ire_add_v4() groups the 22072 * IRE_BROADCAST entries so that those with the same 22073 * ire_addr and ill_group are kept together. 22074 */ 22075 ire_ill = ire->ire_ipif->ipif_ill; 22076 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22077 if (ire_ill->ill_group != NULL && 22078 (ire->ire_marks & IRE_MARK_NORECV)) { 22079 /* 22080 * If the current zone only has an ire 22081 * broadcast for this address marked 22082 * NORECV, the ire we want is ahead in 22083 * the bucket, so we look it up 22084 * deliberately ignoring the zoneid. 22085 */ 22086 for (ire1 = ire->ire_bucket->irb_ire; 22087 ire1 != NULL; 22088 ire1 = ire1->ire_next) { 22089 ire1_ill = 22090 ire1->ire_ipif->ipif_ill; 22091 if (ire1->ire_addr != dst) 22092 continue; 22093 /* skip over the current ire */ 22094 if (ire1 == ire) 22095 continue; 22096 /* skip over deleted ires */ 22097 if (ire1->ire_marks & 22098 IRE_MARK_CONDEMNED) 22099 continue; 22100 /* 22101 * non-loopback ire in our 22102 * group: use it for the next 22103 * pass in the loop 22104 */ 22105 if (ire1->ire_stq != NULL && 22106 ire1_ill->ill_group == 22107 ire_ill->ill_group) 22108 break; 22109 } 22110 } 22111 } else { 22112 while (ire1 != NULL && ire1->ire_addr == dst) { 22113 ire1_ill = ire1->ire_ipif->ipif_ill; 22114 /* 22115 * We can have two broadcast ires on the 22116 * same ill in different zones; here 22117 * we'll send a copy of the packet on 22118 * each ill and the fanout code will 22119 * call conn_wantpacket() to check that 22120 * the zone has the broadcast address 22121 * configured on the ill. If the two 22122 * ires are in the same group we only 22123 * send one copy up. 22124 */ 22125 if (ire1_ill != ire_ill && 22126 (ire1_ill->ill_group == NULL || 22127 ire_ill->ill_group == NULL || 22128 ire1_ill->ill_group != 22129 ire_ill->ill_group)) { 22130 break; 22131 } 22132 ire1 = ire1->ire_next; 22133 } 22134 } 22135 } 22136 ASSERT(multirt_send == B_FALSE); 22137 if (ire1 != NULL && ire1->ire_addr == dst) { 22138 if ((ire->ire_flags & RTF_MULTIRT) && 22139 (ire1->ire_flags & RTF_MULTIRT)) { 22140 /* 22141 * We are in the multirouting case. 22142 * The message must be sent at least 22143 * on both ires. These ires have been 22144 * inserted AFTER the standard ones 22145 * in ip_rt_add(). There are thus no 22146 * other ire entries for the destination 22147 * address in the rest of the bucket 22148 * that do not have the RTF_MULTIRT 22149 * flag. We don't process a copy 22150 * of the message here. This will be 22151 * done in the final sending loop. 22152 */ 22153 multirt_send = B_TRUE; 22154 } else { 22155 next_mp = ip_copymsg(first_mp); 22156 if (next_mp != NULL) 22157 IRE_REFHOLD(ire1); 22158 } 22159 } 22160 rw_exit(&ire->ire_bucket->irb_lock); 22161 } 22162 22163 if (stq) { 22164 /* 22165 * A non-NULL send-to queue means this packet is going 22166 * out of this machine. 22167 */ 22168 22169 BUMP_MIB(&ip_mib, ipOutRequests); 22170 ttl_protocol = ((uint16_t *)ipha)[4]; 22171 /* 22172 * We accumulate the pseudo header checksum in cksum. 22173 * This is pretty hairy code, so watch close. One 22174 * thing to keep in mind is that UDP and TCP have 22175 * stored their respective datagram lengths in their 22176 * checksum fields. This lines things up real nice. 22177 */ 22178 cksum = (dst >> 16) + (dst & 0xFFFF) + 22179 (src >> 16) + (src & 0xFFFF); 22180 /* 22181 * We assume the udp checksum field contains the 22182 * length, so to compute the pseudo header checksum, 22183 * all we need is the protocol number and src/dst. 22184 */ 22185 /* Provide the checksums for UDP and TCP. */ 22186 if ((PROTO == IPPROTO_TCP) && 22187 (ip_hdr_included != IP_HDR_INCLUDED)) { 22188 /* hlen gets the number of uchar_ts in the IP header */ 22189 hlen = (V_HLEN & 0xF) << 2; 22190 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22191 IP_STAT(ip_out_sw_cksum); 22192 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22193 LENGTH - hlen); 22194 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22195 if (*up == 0) 22196 *up = 0xFFFF; 22197 } else if (PROTO == IPPROTO_SCTP && 22198 (ip_hdr_included != IP_HDR_INCLUDED)) { 22199 sctp_hdr_t *sctph; 22200 22201 hlen = (V_HLEN & 0xF) << 2; 22202 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22203 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22204 sctph->sh_chksum = 0; 22205 #ifdef DEBUG 22206 if (!skip_sctp_cksum) 22207 #endif 22208 sctph->sh_chksum = sctp_cksum(mp, hlen); 22209 } else { 22210 queue_t *dev_q = stq->q_next; 22211 22212 if ((dev_q->q_next || dev_q->q_first) && 22213 !canput(dev_q)) { 22214 blocked: 22215 ipha->ipha_ident = ip_hdr_included; 22216 /* 22217 * If we don't have a conn to apply 22218 * backpressure, free the message. 22219 * In the ire_send path, we don't know 22220 * the position to requeue the packet. Rather 22221 * than reorder packets, we just drop this 22222 * packet. 22223 */ 22224 if (ip_output_queue && connp != NULL && 22225 caller != IRE_SEND) { 22226 if (caller == IP_WSRV) { 22227 connp->conn_did_putbq = 1; 22228 (void) putbq(connp->conn_wq, 22229 first_mp); 22230 conn_drain_insert(connp); 22231 /* 22232 * This is the service thread, 22233 * and the queue is already 22234 * noenabled. The check for 22235 * canput and the putbq is not 22236 * atomic. So we need to check 22237 * again. 22238 */ 22239 if (canput(stq->q_next)) 22240 connp->conn_did_putbq 22241 = 0; 22242 IP_STAT(ip_conn_flputbq); 22243 } else { 22244 /* 22245 * We are not the service proc. 22246 * ip_wsrv will be scheduled or 22247 * is already running. 22248 */ 22249 (void) putq(connp->conn_wq, 22250 first_mp); 22251 } 22252 } else { 22253 BUMP_MIB(&ip_mib, ipOutDiscards); 22254 freemsg(first_mp); 22255 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22256 "ip_wput_ire_end: q %p (%S)", 22257 q, "discard"); 22258 } 22259 ire_refrele(ire); 22260 if (next_mp) { 22261 ire_refrele(ire1); 22262 freemsg(next_mp); 22263 } 22264 if (conn_outgoing_ill != NULL) 22265 ill_refrele(conn_outgoing_ill); 22266 return; 22267 } 22268 if ((PROTO == IPPROTO_UDP) && 22269 (ip_hdr_included != IP_HDR_INCLUDED)) { 22270 /* 22271 * hlen gets the number of uchar_ts in the 22272 * IP header 22273 */ 22274 hlen = (V_HLEN & 0xF) << 2; 22275 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22276 max_frag = ire->ire_max_frag; 22277 if (*up != 0) { 22278 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22279 up, PROTO, hlen, LENGTH, max_frag, 22280 ipsec_len, cksum); 22281 /* Software checksum? */ 22282 if (DB_CKSUMFLAGS(mp) == 0) { 22283 IP_STAT(ip_out_sw_cksum); 22284 IP_STAT_UPDATE( 22285 ip_udp_out_sw_cksum_bytes, 22286 LENGTH - hlen); 22287 } 22288 } 22289 } 22290 } 22291 /* 22292 * Need to do this even when fragmenting. The local 22293 * loopback can be done without computing checksums 22294 * but forwarding out other interface must be done 22295 * after the IP checksum (and ULP checksums) have been 22296 * computed. 22297 * 22298 * NOTE : multicast_forward is set only if this packet 22299 * originated from ip_wput. For packets originating from 22300 * ip_wput_multicast, it is not set. 22301 */ 22302 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22303 multi_loopback: 22304 ip2dbg(("ip_wput: multicast, loop %d\n", 22305 conn_multicast_loop)); 22306 22307 /* Forget header checksum offload */ 22308 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22309 22310 /* 22311 * Local loopback of multicasts? Check the 22312 * ill. 22313 * 22314 * Note that the loopback function will not come 22315 * in through ip_rput - it will only do the 22316 * client fanout thus we need to do an mforward 22317 * as well. The is different from the BSD 22318 * logic. 22319 */ 22320 if (ill != NULL) { 22321 ilm_t *ilm; 22322 22323 ILM_WALKER_HOLD(ill); 22324 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22325 ALL_ZONES); 22326 ILM_WALKER_RELE(ill); 22327 if (ilm != NULL) { 22328 /* 22329 * Pass along the virtual output q. 22330 * ip_wput_local() will distribute the 22331 * packet to all the matching zones, 22332 * except the sending zone when 22333 * IP_MULTICAST_LOOP is false. 22334 */ 22335 ip_multicast_loopback(q, ill, first_mp, 22336 conn_multicast_loop ? 0 : 22337 IP_FF_NO_MCAST_LOOP, zoneid); 22338 } 22339 } 22340 if (ipha->ipha_ttl == 0) { 22341 /* 22342 * 0 => only to this host i.e. we are 22343 * done. We are also done if this was the 22344 * loopback interface since it is sufficient 22345 * to loopback one copy of a multicast packet. 22346 */ 22347 freemsg(first_mp); 22348 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22349 "ip_wput_ire_end: q %p (%S)", 22350 q, "loopback"); 22351 ire_refrele(ire); 22352 if (conn_outgoing_ill != NULL) 22353 ill_refrele(conn_outgoing_ill); 22354 return; 22355 } 22356 /* 22357 * ILLF_MULTICAST is checked in ip_newroute 22358 * i.e. we don't need to check it here since 22359 * all IRE_CACHEs come from ip_newroute. 22360 * For multicast traffic, SO_DONTROUTE is interpreted 22361 * to mean only send the packet out the interface 22362 * (optionally specified with IP_MULTICAST_IF) 22363 * and do not forward it out additional interfaces. 22364 * RSVP and the rsvp daemon is an example of a 22365 * protocol and user level process that 22366 * handles it's own routing. Hence, it uses the 22367 * SO_DONTROUTE option to accomplish this. 22368 */ 22369 22370 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22371 /* Unconditionally redo the checksum */ 22372 ipha->ipha_hdr_checksum = 0; 22373 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22374 22375 /* 22376 * If this needs to go out secure, we need 22377 * to wait till we finish the IPSEC 22378 * processing. 22379 */ 22380 if (ipsec_len == 0 && 22381 ip_mforward(ill, ipha, mp)) { 22382 freemsg(first_mp); 22383 ip1dbg(("ip_wput: mforward failed\n")); 22384 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22385 "ip_wput_ire_end: q %p (%S)", 22386 q, "mforward failed"); 22387 ire_refrele(ire); 22388 if (conn_outgoing_ill != NULL) 22389 ill_refrele(conn_outgoing_ill); 22390 return; 22391 } 22392 } 22393 } 22394 max_frag = ire->ire_max_frag; 22395 cksum += ttl_protocol; 22396 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22397 /* No fragmentation required for this one. */ 22398 /* 22399 * Don't use frag_flag if packet is pre-built or source 22400 * routed or if multicast (since multicast packets do 22401 * not solicit ICMP "packet too big" messages). 22402 */ 22403 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22404 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22405 !ip_source_route_included(ipha)) && 22406 !CLASSD(ipha->ipha_dst)) 22407 ipha->ipha_fragment_offset_and_flags |= 22408 htons(ire->ire_frag_flag); 22409 22410 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22411 /* Complete the IP header checksum. */ 22412 cksum += ipha->ipha_ident; 22413 cksum += (v_hlen_tos_len >> 16)+ 22414 (v_hlen_tos_len & 0xFFFF); 22415 cksum += ipha->ipha_fragment_offset_and_flags; 22416 hlen = (V_HLEN & 0xF) - 22417 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22418 if (hlen) { 22419 checksumoptions: 22420 /* 22421 * Account for the IP Options in the IP 22422 * header checksum. 22423 */ 22424 up = (uint16_t *)(rptr+ 22425 IP_SIMPLE_HDR_LENGTH); 22426 do { 22427 cksum += up[0]; 22428 cksum += up[1]; 22429 up += 2; 22430 } while (--hlen); 22431 } 22432 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22433 cksum = ~(cksum + (cksum >> 16)); 22434 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22435 } 22436 if (ipsec_len != 0) { 22437 ipsec_out_process(q, first_mp, ire, ill_index); 22438 if (!next_mp) { 22439 ire_refrele(ire); 22440 if (conn_outgoing_ill != NULL) 22441 ill_refrele(conn_outgoing_ill); 22442 return; 22443 } 22444 goto next; 22445 } 22446 22447 /* 22448 * multirt_send has already been handled 22449 * for broadcast, but not yet for multicast 22450 * or IP options. 22451 */ 22452 if (next_mp == NULL) { 22453 if (ire->ire_flags & RTF_MULTIRT) { 22454 multirt_send = B_TRUE; 22455 } 22456 } 22457 22458 /* 22459 * In most cases, the emission loop below is 22460 * entered only once. Only in the case where 22461 * the ire holds the RTF_MULTIRT flag, do we loop 22462 * to process all RTF_MULTIRT ires in the bucket, 22463 * and send the packet through all crossed 22464 * RTF_MULTIRT routes. 22465 */ 22466 do { 22467 if (multirt_send) { 22468 irb_t *irb; 22469 22470 irb = ire->ire_bucket; 22471 ASSERT(irb != NULL); 22472 /* 22473 * We are in a multiple send case, 22474 * need to get the next IRE and make 22475 * a duplicate of the packet. 22476 */ 22477 IRB_REFHOLD(irb); 22478 for (ire1 = ire->ire_next; 22479 ire1 != NULL; 22480 ire1 = ire1->ire_next) { 22481 if (!(ire1->ire_flags & 22482 RTF_MULTIRT)) 22483 continue; 22484 if (ire1->ire_addr != 22485 ire->ire_addr) 22486 continue; 22487 if (ire1->ire_marks & 22488 (IRE_MARK_CONDEMNED| 22489 IRE_MARK_HIDDEN)) 22490 continue; 22491 22492 /* Got one */ 22493 IRE_REFHOLD(ire1); 22494 break; 22495 } 22496 IRB_REFRELE(irb); 22497 22498 if (ire1 != NULL) { 22499 next_mp = copyb(mp); 22500 if ((next_mp == NULL) || 22501 ((mp->b_cont != NULL) && 22502 ((next_mp->b_cont = 22503 dupmsg(mp->b_cont)) 22504 == NULL))) { 22505 freemsg(next_mp); 22506 next_mp = NULL; 22507 ire_refrele(ire1); 22508 ire1 = NULL; 22509 } 22510 } 22511 22512 /* 22513 * Last multiroute ire; don't loop 22514 * anymore. The emission is over 22515 * and next_mp is NULL. 22516 */ 22517 if (ire1 == NULL) { 22518 multirt_send = B_FALSE; 22519 } 22520 } 22521 22522 out_ill = ire->ire_ipif->ipif_ill; 22523 DTRACE_PROBE4(ip4__physical__out__start, 22524 ill_t *, NULL, 22525 ill_t *, out_ill, 22526 ipha_t *, ipha, mblk_t *, mp); 22527 FW_HOOKS(ip4_physical_out_event, 22528 ipv4firewall_physical_out, 22529 NULL, out_ill, ipha, mp, mp); 22530 DTRACE_PROBE1(ip4__physical__out__end, 22531 mblk_t *, mp); 22532 if (mp == NULL) 22533 goto release_ire_and_ill_2; 22534 22535 ASSERT(ipsec_len == 0); 22536 mp->b_prev = 22537 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22538 DTRACE_PROBE2(ip__xmit__2, 22539 mblk_t *, mp, ire_t *, ire); 22540 pktxmit_state = ip_xmit_v4(mp, ire, 22541 NULL, B_TRUE); 22542 if ((pktxmit_state == SEND_FAILED) || 22543 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22544 release_ire_and_ill_2: 22545 if (next_mp) { 22546 freemsg(next_mp); 22547 ire_refrele(ire1); 22548 } 22549 ire_refrele(ire); 22550 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22551 "ip_wput_ire_end: q %p (%S)", 22552 q, "discard MDATA"); 22553 if (conn_outgoing_ill != NULL) 22554 ill_refrele(conn_outgoing_ill); 22555 return; 22556 } 22557 22558 if (multirt_send) { 22559 /* 22560 * We are in a multiple send case, 22561 * need to re-enter the sending loop 22562 * using the next ire. 22563 */ 22564 ire_refrele(ire); 22565 ire = ire1; 22566 stq = ire->ire_stq; 22567 mp = next_mp; 22568 next_mp = NULL; 22569 ipha = (ipha_t *)mp->b_rptr; 22570 ill_index = Q_TO_INDEX(stq); 22571 } 22572 } while (multirt_send); 22573 22574 if (!next_mp) { 22575 /* 22576 * Last copy going out (the ultra-common 22577 * case). Note that we intentionally replicate 22578 * the putnext rather than calling it before 22579 * the next_mp check in hopes of a little 22580 * tail-call action out of the compiler. 22581 */ 22582 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22583 "ip_wput_ire_end: q %p (%S)", 22584 q, "last copy out(1)"); 22585 ire_refrele(ire); 22586 if (conn_outgoing_ill != NULL) 22587 ill_refrele(conn_outgoing_ill); 22588 return; 22589 } 22590 /* More copies going out below. */ 22591 } else { 22592 int offset; 22593 fragmentit: 22594 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22595 /* 22596 * If this would generate a icmp_frag_needed message, 22597 * we need to handle it before we do the IPSEC 22598 * processing. Otherwise, we need to strip the IPSEC 22599 * headers before we send up the message to the ULPs 22600 * which becomes messy and difficult. 22601 */ 22602 if (ipsec_len != 0) { 22603 if ((max_frag < (unsigned int)(LENGTH + 22604 ipsec_len)) && (offset & IPH_DF)) { 22605 22606 BUMP_MIB(&ip_mib, ipFragFails); 22607 ipha->ipha_hdr_checksum = 0; 22608 ipha->ipha_hdr_checksum = 22609 (uint16_t)ip_csum_hdr(ipha); 22610 icmp_frag_needed(ire->ire_stq, first_mp, 22611 max_frag, zoneid); 22612 if (!next_mp) { 22613 ire_refrele(ire); 22614 if (conn_outgoing_ill != NULL) { 22615 ill_refrele( 22616 conn_outgoing_ill); 22617 } 22618 return; 22619 } 22620 } else { 22621 /* 22622 * This won't cause a icmp_frag_needed 22623 * message. to be gnerated. Send it on 22624 * the wire. Note that this could still 22625 * cause fragmentation and all we 22626 * do is the generation of the message 22627 * to the ULP if needed before IPSEC. 22628 */ 22629 if (!next_mp) { 22630 ipsec_out_process(q, first_mp, 22631 ire, ill_index); 22632 TRACE_2(TR_FAC_IP, 22633 TR_IP_WPUT_IRE_END, 22634 "ip_wput_ire_end: q %p " 22635 "(%S)", q, 22636 "last ipsec_out_process"); 22637 ire_refrele(ire); 22638 if (conn_outgoing_ill != NULL) { 22639 ill_refrele( 22640 conn_outgoing_ill); 22641 } 22642 return; 22643 } 22644 ipsec_out_process(q, first_mp, 22645 ire, ill_index); 22646 } 22647 } else { 22648 /* 22649 * Initiate IPPF processing. For 22650 * fragmentable packets we finish 22651 * all QOS packet processing before 22652 * calling: 22653 * ip_wput_ire_fragmentit->ip_wput_frag 22654 */ 22655 22656 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22657 ip_process(IPP_LOCAL_OUT, &mp, 22658 ill_index); 22659 if (mp == NULL) { 22660 BUMP_MIB(&ip_mib, 22661 ipOutDiscards); 22662 if (next_mp != NULL) { 22663 freemsg(next_mp); 22664 ire_refrele(ire1); 22665 } 22666 ire_refrele(ire); 22667 TRACE_2(TR_FAC_IP, 22668 TR_IP_WPUT_IRE_END, 22669 "ip_wput_ire: q %p (%S)", 22670 q, "discard MDATA"); 22671 if (conn_outgoing_ill != NULL) { 22672 ill_refrele( 22673 conn_outgoing_ill); 22674 } 22675 return; 22676 } 22677 } 22678 if (!next_mp) { 22679 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22680 "ip_wput_ire_end: q %p (%S)", 22681 q, "last fragmentation"); 22682 ip_wput_ire_fragmentit(mp, ire, 22683 zoneid); 22684 ire_refrele(ire); 22685 if (conn_outgoing_ill != NULL) 22686 ill_refrele(conn_outgoing_ill); 22687 return; 22688 } 22689 ip_wput_ire_fragmentit(mp, ire, zoneid); 22690 } 22691 } 22692 } else { 22693 nullstq: 22694 /* A NULL stq means the destination address is local. */ 22695 UPDATE_OB_PKT_COUNT(ire); 22696 ire->ire_last_used_time = lbolt; 22697 ASSERT(ire->ire_ipif != NULL); 22698 if (!next_mp) { 22699 /* 22700 * Is there an "in" and "out" for traffic local 22701 * to a host (loopback)? The code in Solaris doesn't 22702 * explicitly draw a line in its code for in vs out, 22703 * so we've had to draw a line in the sand: ip_wput_ire 22704 * is considered to be the "output" side and 22705 * ip_wput_local to be the "input" side. 22706 */ 22707 out_ill = ire->ire_ipif->ipif_ill; 22708 22709 DTRACE_PROBE4(ip4__loopback__out__start, 22710 ill_t *, NULL, ill_t *, out_ill, 22711 ipha_t *, ipha, mblk_t *, first_mp); 22712 22713 FW_HOOKS(ip4_loopback_out_event, 22714 ipv4firewall_loopback_out, 22715 NULL, out_ill, ipha, first_mp, mp); 22716 22717 DTRACE_PROBE1(ip4__loopback__out_end, 22718 mblk_t *, first_mp); 22719 22720 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22721 "ip_wput_ire_end: q %p (%S)", 22722 q, "local address"); 22723 22724 if (first_mp != NULL) 22725 ip_wput_local(q, out_ill, ipha, 22726 first_mp, ire, 0, ire->ire_zoneid); 22727 ire_refrele(ire); 22728 if (conn_outgoing_ill != NULL) 22729 ill_refrele(conn_outgoing_ill); 22730 return; 22731 } 22732 22733 out_ill = ire->ire_ipif->ipif_ill; 22734 22735 DTRACE_PROBE4(ip4__loopback__out__start, 22736 ill_t *, NULL, ill_t *, out_ill, 22737 ipha_t *, ipha, mblk_t *, first_mp); 22738 22739 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 22740 NULL, out_ill, ipha, first_mp, mp); 22741 22742 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 22743 22744 if (first_mp != NULL) 22745 ip_wput_local(q, out_ill, ipha, 22746 first_mp, ire, 0, ire->ire_zoneid); 22747 } 22748 next: 22749 /* 22750 * More copies going out to additional interfaces. 22751 * ire1 has already been held. We don't need the 22752 * "ire" anymore. 22753 */ 22754 ire_refrele(ire); 22755 ire = ire1; 22756 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22757 mp = next_mp; 22758 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22759 ill = ire_to_ill(ire); 22760 first_mp = mp; 22761 if (ipsec_len != 0) { 22762 ASSERT(first_mp->b_datap->db_type == M_CTL); 22763 mp = mp->b_cont; 22764 } 22765 dst = ire->ire_addr; 22766 ipha = (ipha_t *)mp->b_rptr; 22767 /* 22768 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22769 * Restore ipha_ident "no checksum" flag. 22770 */ 22771 src = orig_src; 22772 ipha->ipha_ident = ip_hdr_included; 22773 goto another; 22774 22775 #undef rptr 22776 #undef Q_TO_INDEX 22777 } 22778 22779 /* 22780 * Routine to allocate a message that is used to notify the ULP about MDT. 22781 * The caller may provide a pointer to the link-layer MDT capabilities, 22782 * or NULL if MDT is to be disabled on the stream. 22783 */ 22784 mblk_t * 22785 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22786 { 22787 mblk_t *mp; 22788 ip_mdt_info_t *mdti; 22789 ill_mdt_capab_t *idst; 22790 22791 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22792 DB_TYPE(mp) = M_CTL; 22793 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22794 mdti = (ip_mdt_info_t *)mp->b_rptr; 22795 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22796 idst = &(mdti->mdt_capab); 22797 22798 /* 22799 * If the caller provides us with the capability, copy 22800 * it over into our notification message; otherwise 22801 * we zero out the capability portion. 22802 */ 22803 if (isrc != NULL) 22804 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22805 else 22806 bzero((caddr_t)idst, sizeof (*idst)); 22807 } 22808 return (mp); 22809 } 22810 22811 /* 22812 * Routine which determines whether MDT can be enabled on the destination 22813 * IRE and IPC combination, and if so, allocates and returns the MDT 22814 * notification mblk that may be used by ULP. We also check if we need to 22815 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22816 * MDT usage in the past have been lifted. This gets called during IP 22817 * and ULP binding. 22818 */ 22819 mblk_t * 22820 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22821 ill_mdt_capab_t *mdt_cap) 22822 { 22823 mblk_t *mp; 22824 boolean_t rc = B_FALSE; 22825 22826 ASSERT(dst_ire != NULL); 22827 ASSERT(connp != NULL); 22828 ASSERT(mdt_cap != NULL); 22829 22830 /* 22831 * Currently, we only support simple TCP/{IPv4,IPv6} with 22832 * Multidata, which is handled in tcp_multisend(). This 22833 * is the reason why we do all these checks here, to ensure 22834 * that we don't enable Multidata for the cases which we 22835 * can't handle at the moment. 22836 */ 22837 do { 22838 /* Only do TCP at the moment */ 22839 if (connp->conn_ulp != IPPROTO_TCP) 22840 break; 22841 22842 /* 22843 * IPSEC outbound policy present? Note that we get here 22844 * after calling ipsec_conn_cache_policy() where the global 22845 * policy checking is performed. conn_latch will be 22846 * non-NULL as long as there's a policy defined, 22847 * i.e. conn_out_enforce_policy may be NULL in such case 22848 * when the connection is non-secure, and hence we check 22849 * further if the latch refers to an outbound policy. 22850 */ 22851 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22852 break; 22853 22854 /* CGTP (multiroute) is enabled? */ 22855 if (dst_ire->ire_flags & RTF_MULTIRT) 22856 break; 22857 22858 /* Outbound IPQoS enabled? */ 22859 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22860 /* 22861 * In this case, we disable MDT for this and all 22862 * future connections going over the interface. 22863 */ 22864 mdt_cap->ill_mdt_on = 0; 22865 break; 22866 } 22867 22868 /* socket option(s) present? */ 22869 if (!CONN_IS_MD_FASTPATH(connp)) 22870 break; 22871 22872 rc = B_TRUE; 22873 /* CONSTCOND */ 22874 } while (0); 22875 22876 /* Remember the result */ 22877 connp->conn_mdt_ok = rc; 22878 22879 if (!rc) 22880 return (NULL); 22881 else if (!mdt_cap->ill_mdt_on) { 22882 /* 22883 * If MDT has been previously turned off in the past, and we 22884 * currently can do MDT (due to IPQoS policy removal, etc.) 22885 * then enable it for this interface. 22886 */ 22887 mdt_cap->ill_mdt_on = 1; 22888 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22889 "interface %s\n", ill_name)); 22890 } 22891 22892 /* Allocate the MDT info mblk */ 22893 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22894 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22895 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22896 return (NULL); 22897 } 22898 return (mp); 22899 } 22900 22901 /* 22902 * Create destination address attribute, and fill it with the physical 22903 * destination address and SAP taken from the template DL_UNITDATA_REQ 22904 * message block. 22905 */ 22906 boolean_t 22907 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 22908 { 22909 dl_unitdata_req_t *dlurp; 22910 pattr_t *pa; 22911 pattrinfo_t pa_info; 22912 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 22913 uint_t das_len, das_off; 22914 22915 ASSERT(dlmp != NULL); 22916 22917 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 22918 das_len = dlurp->dl_dest_addr_length; 22919 das_off = dlurp->dl_dest_addr_offset; 22920 22921 pa_info.type = PATTR_DSTADDRSAP; 22922 pa_info.len = sizeof (**das) + das_len - 1; 22923 22924 /* create and associate the attribute */ 22925 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22926 if (pa != NULL) { 22927 ASSERT(*das != NULL); 22928 (*das)->addr_is_group = 0; 22929 (*das)->addr_len = (uint8_t)das_len; 22930 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 22931 } 22932 22933 return (pa != NULL); 22934 } 22935 22936 /* 22937 * Create hardware checksum attribute and fill it with the values passed. 22938 */ 22939 boolean_t 22940 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 22941 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 22942 { 22943 pattr_t *pa; 22944 pattrinfo_t pa_info; 22945 22946 ASSERT(mmd != NULL); 22947 22948 pa_info.type = PATTR_HCKSUM; 22949 pa_info.len = sizeof (pattr_hcksum_t); 22950 22951 /* create and associate the attribute */ 22952 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22953 if (pa != NULL) { 22954 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 22955 22956 hck->hcksum_start_offset = start_offset; 22957 hck->hcksum_stuff_offset = stuff_offset; 22958 hck->hcksum_end_offset = end_offset; 22959 hck->hcksum_flags = flags; 22960 } 22961 return (pa != NULL); 22962 } 22963 22964 /* 22965 * Create zerocopy attribute and fill it with the specified flags 22966 */ 22967 boolean_t 22968 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 22969 { 22970 pattr_t *pa; 22971 pattrinfo_t pa_info; 22972 22973 ASSERT(mmd != NULL); 22974 pa_info.type = PATTR_ZCOPY; 22975 pa_info.len = sizeof (pattr_zcopy_t); 22976 22977 /* create and associate the attribute */ 22978 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22979 if (pa != NULL) { 22980 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 22981 22982 zcopy->zcopy_flags = flags; 22983 } 22984 return (pa != NULL); 22985 } 22986 22987 /* 22988 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22989 * block chain. We could rewrite to handle arbitrary message block chains but 22990 * that would make the code complicated and slow. Right now there three 22991 * restrictions: 22992 * 22993 * 1. The first message block must contain the complete IP header and 22994 * at least 1 byte of payload data. 22995 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22996 * so that we can use a single Multidata message. 22997 * 3. No frag must be distributed over two or more message blocks so 22998 * that we don't need more than two packet descriptors per frag. 22999 * 23000 * The above restrictions allow us to support userland applications (which 23001 * will send down a single message block) and NFS over UDP (which will 23002 * send down a chain of at most three message blocks). 23003 * 23004 * We also don't use MDT for payloads with less than or equal to 23005 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23006 */ 23007 boolean_t 23008 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23009 { 23010 int blocks; 23011 ssize_t total, missing, size; 23012 23013 ASSERT(mp != NULL); 23014 ASSERT(hdr_len > 0); 23015 23016 size = MBLKL(mp) - hdr_len; 23017 if (size <= 0) 23018 return (B_FALSE); 23019 23020 /* The first mblk contains the header and some payload. */ 23021 blocks = 1; 23022 total = size; 23023 size %= len; 23024 missing = (size == 0) ? 0 : (len - size); 23025 mp = mp->b_cont; 23026 23027 while (mp != NULL) { 23028 /* 23029 * Give up if we encounter a zero length message block. 23030 * In practice, this should rarely happen and therefore 23031 * not worth the trouble of freeing and re-linking the 23032 * mblk from the chain to handle such case. 23033 */ 23034 if ((size = MBLKL(mp)) == 0) 23035 return (B_FALSE); 23036 23037 /* Too many payload buffers for a single Multidata message? */ 23038 if (++blocks > MULTIDATA_MAX_PBUFS) 23039 return (B_FALSE); 23040 23041 total += size; 23042 /* Is a frag distributed over two or more message blocks? */ 23043 if (missing > size) 23044 return (B_FALSE); 23045 size -= missing; 23046 23047 size %= len; 23048 missing = (size == 0) ? 0 : (len - size); 23049 23050 mp = mp->b_cont; 23051 } 23052 23053 return (total > ip_wput_frag_mdt_min); 23054 } 23055 23056 /* 23057 * Outbound IPv4 fragmentation routine using MDT. 23058 */ 23059 static void 23060 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23061 uint32_t frag_flag, int offset) 23062 { 23063 ipha_t *ipha_orig; 23064 int i1, ip_data_end; 23065 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23066 mblk_t *hdr_mp, *md_mp = NULL; 23067 unsigned char *hdr_ptr, *pld_ptr; 23068 multidata_t *mmd; 23069 ip_pdescinfo_t pdi; 23070 23071 ASSERT(DB_TYPE(mp) == M_DATA); 23072 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23073 23074 ipha_orig = (ipha_t *)mp->b_rptr; 23075 mp->b_rptr += sizeof (ipha_t); 23076 23077 /* Calculate how many packets we will send out */ 23078 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23079 pkts = (i1 + len - 1) / len; 23080 ASSERT(pkts > 1); 23081 23082 /* Allocate a message block which will hold all the IP Headers. */ 23083 wroff = ip_wroff_extra; 23084 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23085 23086 i1 = pkts * hdr_chunk_len; 23087 /* 23088 * Create the header buffer, Multidata and destination address 23089 * and SAP attribute that should be associated with it. 23090 */ 23091 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23092 ((hdr_mp->b_wptr += i1), 23093 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23094 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23095 freemsg(mp); 23096 if (md_mp == NULL) { 23097 freemsg(hdr_mp); 23098 } else { 23099 free_mmd: IP_STAT(ip_frag_mdt_discarded); 23100 freemsg(md_mp); 23101 } 23102 IP_STAT(ip_frag_mdt_allocfail); 23103 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 23104 return; 23105 } 23106 IP_STAT(ip_frag_mdt_allocd); 23107 23108 /* 23109 * Add a payload buffer to the Multidata; this operation must not 23110 * fail, or otherwise our logic in this routine is broken. There 23111 * is no memory allocation done by the routine, so any returned 23112 * failure simply tells us that we've done something wrong. 23113 * 23114 * A failure tells us that either we're adding the same payload 23115 * buffer more than once, or we're trying to add more buffers than 23116 * allowed. None of the above cases should happen, and we panic 23117 * because either there's horrible heap corruption, and/or 23118 * programming mistake. 23119 */ 23120 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23121 goto pbuf_panic; 23122 23123 hdr_ptr = hdr_mp->b_rptr; 23124 pld_ptr = mp->b_rptr; 23125 23126 /* Establish the ending byte offset, based on the starting offset. */ 23127 offset <<= 3; 23128 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23129 IP_SIMPLE_HDR_LENGTH; 23130 23131 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23132 23133 while (pld_ptr < mp->b_wptr) { 23134 ipha_t *ipha; 23135 uint16_t offset_and_flags; 23136 uint16_t ip_len; 23137 int error; 23138 23139 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23140 ipha = (ipha_t *)(hdr_ptr + wroff); 23141 ASSERT(OK_32PTR(ipha)); 23142 *ipha = *ipha_orig; 23143 23144 if (ip_data_end - offset > len) { 23145 offset_and_flags = IPH_MF; 23146 } else { 23147 /* 23148 * Last frag. Set len to the length of this last piece. 23149 */ 23150 len = ip_data_end - offset; 23151 /* A frag of a frag might have IPH_MF non-zero */ 23152 offset_and_flags = 23153 ntohs(ipha->ipha_fragment_offset_and_flags) & 23154 IPH_MF; 23155 } 23156 offset_and_flags |= (uint16_t)(offset >> 3); 23157 offset_and_flags |= (uint16_t)frag_flag; 23158 /* Store the offset and flags in the IP header. */ 23159 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23160 23161 /* Store the length in the IP header. */ 23162 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23163 ipha->ipha_length = htons(ip_len); 23164 23165 /* 23166 * Set the IP header checksum. Note that mp is just 23167 * the header, so this is easy to pass to ip_csum. 23168 */ 23169 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23170 23171 /* 23172 * Record offset and size of header and data of the next packet 23173 * in the multidata message. 23174 */ 23175 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23176 PDESC_PLD_INIT(&pdi); 23177 i1 = MIN(mp->b_wptr - pld_ptr, len); 23178 ASSERT(i1 > 0); 23179 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23180 if (i1 == len) { 23181 pld_ptr += len; 23182 } else { 23183 i1 = len - i1; 23184 mp = mp->b_cont; 23185 ASSERT(mp != NULL); 23186 ASSERT(MBLKL(mp) >= i1); 23187 /* 23188 * Attach the next payload message block to the 23189 * multidata message. 23190 */ 23191 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23192 goto pbuf_panic; 23193 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23194 pld_ptr = mp->b_rptr + i1; 23195 } 23196 23197 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23198 KM_NOSLEEP)) == NULL) { 23199 /* 23200 * Any failure other than ENOMEM indicates that we 23201 * have passed in invalid pdesc info or parameters 23202 * to mmd_addpdesc, which must not happen. 23203 * 23204 * EINVAL is a result of failure on boundary checks 23205 * against the pdesc info contents. It should not 23206 * happen, and we panic because either there's 23207 * horrible heap corruption, and/or programming 23208 * mistake. 23209 */ 23210 if (error != ENOMEM) { 23211 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23212 "pdesc logic error detected for " 23213 "mmd %p pinfo %p (%d)\n", 23214 (void *)mmd, (void *)&pdi, error); 23215 /* NOTREACHED */ 23216 } 23217 IP_STAT(ip_frag_mdt_addpdescfail); 23218 /* Free unattached payload message blocks as well */ 23219 md_mp->b_cont = mp->b_cont; 23220 goto free_mmd; 23221 } 23222 23223 /* Advance fragment offset. */ 23224 offset += len; 23225 23226 /* Advance to location for next header in the buffer. */ 23227 hdr_ptr += hdr_chunk_len; 23228 23229 /* Did we reach the next payload message block? */ 23230 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23231 mp = mp->b_cont; 23232 /* 23233 * Attach the next message block with payload 23234 * data to the multidata message. 23235 */ 23236 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23237 goto pbuf_panic; 23238 pld_ptr = mp->b_rptr; 23239 } 23240 } 23241 23242 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23243 ASSERT(mp->b_wptr == pld_ptr); 23244 23245 /* Update IP statistics */ 23246 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 23247 BUMP_MIB(&ip_mib, ipFragOKs); 23248 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23249 23250 if (pkt_type == OB_PKT) { 23251 ire->ire_ob_pkt_count += pkts; 23252 if (ire->ire_ipif != NULL) 23253 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23254 } else { 23255 /* 23256 * The type is IB_PKT in the forwarding path and in 23257 * the mobile IP case when the packet is being reverse- 23258 * tunneled to the home agent. 23259 */ 23260 ire->ire_ib_pkt_count += pkts; 23261 ASSERT(!IRE_IS_LOCAL(ire)); 23262 if (ire->ire_type & IRE_BROADCAST) 23263 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23264 else 23265 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23266 } 23267 ire->ire_last_used_time = lbolt; 23268 /* Send it down */ 23269 putnext(ire->ire_stq, md_mp); 23270 return; 23271 23272 pbuf_panic: 23273 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23274 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23275 pbuf_idx); 23276 /* NOTREACHED */ 23277 } 23278 23279 /* 23280 * Outbound IP fragmentation routine. 23281 * 23282 * NOTE : This routine does not ire_refrele the ire that is passed in 23283 * as the argument. 23284 */ 23285 static void 23286 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23287 uint32_t frag_flag, zoneid_t zoneid) 23288 { 23289 int i1; 23290 mblk_t *ll_hdr_mp; 23291 int ll_hdr_len; 23292 int hdr_len; 23293 mblk_t *hdr_mp; 23294 ipha_t *ipha; 23295 int ip_data_end; 23296 int len; 23297 mblk_t *mp = mp_orig, *mp1; 23298 int offset; 23299 queue_t *q; 23300 uint32_t v_hlen_tos_len; 23301 mblk_t *first_mp; 23302 boolean_t mctl_present; 23303 ill_t *ill; 23304 ill_t *out_ill; 23305 mblk_t *xmit_mp; 23306 mblk_t *carve_mp; 23307 ire_t *ire1 = NULL; 23308 ire_t *save_ire = NULL; 23309 mblk_t *next_mp = NULL; 23310 boolean_t last_frag = B_FALSE; 23311 boolean_t multirt_send = B_FALSE; 23312 ire_t *first_ire = NULL; 23313 irb_t *irb = NULL; 23314 23315 /* 23316 * IPSEC does not allow hw accelerated packets to be fragmented 23317 * This check is made in ip_wput_ipsec_out prior to coming here 23318 * via ip_wput_ire_fragmentit. 23319 * 23320 * If at this point we have an ire whose ARP request has not 23321 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23322 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23323 * This packet and all fragmentable packets for this ire will 23324 * continue to get dropped while ire_nce->nce_state remains in 23325 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23326 * ND_REACHABLE, all subsquent large packets for this ire will 23327 * get fragemented and sent out by this function. 23328 */ 23329 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23330 /* If nce_state is ND_INITIAL, trigger ARP query */ 23331 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23332 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23333 " - dropping packet\n")); 23334 BUMP_MIB(&ip_mib, ipFragFails); 23335 freemsg(mp); 23336 return; 23337 } 23338 23339 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23340 "ip_wput_frag_start:"); 23341 23342 if (mp->b_datap->db_type == M_CTL) { 23343 first_mp = mp; 23344 mp_orig = mp = mp->b_cont; 23345 mctl_present = B_TRUE; 23346 } else { 23347 first_mp = mp; 23348 mctl_present = B_FALSE; 23349 } 23350 23351 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23352 ipha = (ipha_t *)mp->b_rptr; 23353 23354 /* 23355 * If the Don't Fragment flag is on, generate an ICMP destination 23356 * unreachable, fragmentation needed. 23357 */ 23358 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23359 if (offset & IPH_DF) { 23360 BUMP_MIB(&ip_mib, ipFragFails); 23361 /* 23362 * Need to compute hdr checksum if called from ip_wput_ire. 23363 * Note that ip_rput_forward verifies the checksum before 23364 * calling this routine so in that case this is a noop. 23365 */ 23366 ipha->ipha_hdr_checksum = 0; 23367 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23368 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23369 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23370 "ip_wput_frag_end:(%S)", 23371 "don't fragment"); 23372 return; 23373 } 23374 if (mctl_present) 23375 freeb(first_mp); 23376 /* 23377 * Establish the starting offset. May not be zero if we are fragging 23378 * a fragment that is being forwarded. 23379 */ 23380 offset = offset & IPH_OFFSET; 23381 23382 /* TODO why is this test needed? */ 23383 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23384 if (((max_frag - LENGTH) & ~7) < 8) { 23385 /* TODO: notify ulp somehow */ 23386 BUMP_MIB(&ip_mib, ipFragFails); 23387 freemsg(mp); 23388 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23389 "ip_wput_frag_end:(%S)", 23390 "len < 8"); 23391 return; 23392 } 23393 23394 hdr_len = (V_HLEN & 0xF) << 2; 23395 23396 ipha->ipha_hdr_checksum = 0; 23397 23398 /* 23399 * Establish the number of bytes maximum per frag, after putting 23400 * in the header. 23401 */ 23402 len = (max_frag - hdr_len) & ~7; 23403 23404 /* Check if we can use MDT to send out the frags. */ 23405 ASSERT(!IRE_IS_LOCAL(ire)); 23406 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23407 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23408 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23409 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23410 ASSERT(ill->ill_mdt_capab != NULL); 23411 if (!ill->ill_mdt_capab->ill_mdt_on) { 23412 /* 23413 * If MDT has been previously turned off in the past, 23414 * and we currently can do MDT (due to IPQoS policy 23415 * removal, etc.) then enable it for this interface. 23416 */ 23417 ill->ill_mdt_capab->ill_mdt_on = 1; 23418 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23419 ill->ill_name)); 23420 } 23421 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23422 offset); 23423 return; 23424 } 23425 23426 /* Get a copy of the header for the trailing frags */ 23427 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23428 if (!hdr_mp) { 23429 BUMP_MIB(&ip_mib, ipOutDiscards); 23430 freemsg(mp); 23431 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23432 "ip_wput_frag_end:(%S)", 23433 "couldn't copy hdr"); 23434 return; 23435 } 23436 if (DB_CRED(mp) != NULL) 23437 mblk_setcred(hdr_mp, DB_CRED(mp)); 23438 23439 /* Store the starting offset, with the MoreFrags flag. */ 23440 i1 = offset | IPH_MF | frag_flag; 23441 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23442 23443 /* Establish the ending byte offset, based on the starting offset. */ 23444 offset <<= 3; 23445 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23446 23447 /* Store the length of the first fragment in the IP header. */ 23448 i1 = len + hdr_len; 23449 ASSERT(i1 <= IP_MAXPACKET); 23450 ipha->ipha_length = htons((uint16_t)i1); 23451 23452 /* 23453 * Compute the IP header checksum for the first frag. We have to 23454 * watch out that we stop at the end of the header. 23455 */ 23456 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23457 23458 /* 23459 * Now carve off the first frag. Note that this will include the 23460 * original IP header. 23461 */ 23462 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23463 BUMP_MIB(&ip_mib, ipOutDiscards); 23464 freeb(hdr_mp); 23465 freemsg(mp_orig); 23466 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23467 "ip_wput_frag_end:(%S)", 23468 "couldn't carve first"); 23469 return; 23470 } 23471 23472 /* 23473 * Multirouting case. Each fragment is replicated 23474 * via all non-condemned RTF_MULTIRT routes 23475 * currently resolved. 23476 * We ensure that first_ire is the first RTF_MULTIRT 23477 * ire in the bucket. 23478 */ 23479 if (ire->ire_flags & RTF_MULTIRT) { 23480 irb = ire->ire_bucket; 23481 ASSERT(irb != NULL); 23482 23483 multirt_send = B_TRUE; 23484 23485 /* Make sure we do not omit any multiroute ire. */ 23486 IRB_REFHOLD(irb); 23487 for (first_ire = irb->irb_ire; 23488 first_ire != NULL; 23489 first_ire = first_ire->ire_next) { 23490 if ((first_ire->ire_flags & RTF_MULTIRT) && 23491 (first_ire->ire_addr == ire->ire_addr) && 23492 !(first_ire->ire_marks & 23493 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23494 break; 23495 } 23496 23497 if (first_ire != NULL) { 23498 if (first_ire != ire) { 23499 IRE_REFHOLD(first_ire); 23500 /* 23501 * Do not release the ire passed in 23502 * as the argument. 23503 */ 23504 ire = first_ire; 23505 } else { 23506 first_ire = NULL; 23507 } 23508 } 23509 IRB_REFRELE(irb); 23510 23511 /* 23512 * Save the first ire; we will need to restore it 23513 * for the trailing frags. 23514 * We REFHOLD save_ire, as each iterated ire will be 23515 * REFRELEd. 23516 */ 23517 save_ire = ire; 23518 IRE_REFHOLD(save_ire); 23519 } 23520 23521 /* 23522 * First fragment emission loop. 23523 * In most cases, the emission loop below is entered only 23524 * once. Only in the case where the ire holds the RTF_MULTIRT 23525 * flag, do we loop to process all RTF_MULTIRT ires in the 23526 * bucket, and send the fragment through all crossed 23527 * RTF_MULTIRT routes. 23528 */ 23529 do { 23530 if (ire->ire_flags & RTF_MULTIRT) { 23531 /* 23532 * We are in a multiple send case, need to get 23533 * the next ire and make a copy of the packet. 23534 * ire1 holds here the next ire to process in the 23535 * bucket. If multirouting is expected, 23536 * any non-RTF_MULTIRT ire that has the 23537 * right destination address is ignored. 23538 * 23539 * We have to take into account the MTU of 23540 * each walked ire. max_frag is set by the 23541 * the caller and generally refers to 23542 * the primary ire entry. Here we ensure that 23543 * no route with a lower MTU will be used, as 23544 * fragments are carved once for all ires, 23545 * then replicated. 23546 */ 23547 ASSERT(irb != NULL); 23548 IRB_REFHOLD(irb); 23549 for (ire1 = ire->ire_next; 23550 ire1 != NULL; 23551 ire1 = ire1->ire_next) { 23552 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23553 continue; 23554 if (ire1->ire_addr != ire->ire_addr) 23555 continue; 23556 if (ire1->ire_marks & 23557 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23558 continue; 23559 /* 23560 * Ensure we do not exceed the MTU 23561 * of the next route. 23562 */ 23563 if (ire1->ire_max_frag < max_frag) { 23564 ip_multirt_bad_mtu(ire1, max_frag); 23565 continue; 23566 } 23567 23568 /* Got one. */ 23569 IRE_REFHOLD(ire1); 23570 break; 23571 } 23572 IRB_REFRELE(irb); 23573 23574 if (ire1 != NULL) { 23575 next_mp = copyb(mp); 23576 if ((next_mp == NULL) || 23577 ((mp->b_cont != NULL) && 23578 ((next_mp->b_cont = 23579 dupmsg(mp->b_cont)) == NULL))) { 23580 freemsg(next_mp); 23581 next_mp = NULL; 23582 ire_refrele(ire1); 23583 ire1 = NULL; 23584 } 23585 } 23586 23587 /* Last multiroute ire; don't loop anymore. */ 23588 if (ire1 == NULL) { 23589 multirt_send = B_FALSE; 23590 } 23591 } 23592 23593 ll_hdr_len = 0; 23594 LOCK_IRE_FP_MP(ire); 23595 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23596 if (ll_hdr_mp != NULL) { 23597 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23598 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23599 } else { 23600 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23601 } 23602 23603 /* If there is a transmit header, get a copy for this frag. */ 23604 /* 23605 * TODO: should check db_ref before calling ip_carve_mp since 23606 * it might give us a dup. 23607 */ 23608 if (!ll_hdr_mp) { 23609 /* No xmit header. */ 23610 xmit_mp = mp; 23611 23612 /* We have a link-layer header that can fit in our mblk. */ 23613 } else if (mp->b_datap->db_ref == 1 && 23614 ll_hdr_len != 0 && 23615 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23616 /* M_DATA fastpath */ 23617 mp->b_rptr -= ll_hdr_len; 23618 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23619 xmit_mp = mp; 23620 23621 /* Corner case if copyb has failed */ 23622 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23623 UNLOCK_IRE_FP_MP(ire); 23624 BUMP_MIB(&ip_mib, ipOutDiscards); 23625 freeb(hdr_mp); 23626 freemsg(mp); 23627 freemsg(mp_orig); 23628 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23629 "ip_wput_frag_end:(%S)", 23630 "discard"); 23631 23632 if (multirt_send) { 23633 ASSERT(ire1); 23634 ASSERT(next_mp); 23635 23636 freemsg(next_mp); 23637 ire_refrele(ire1); 23638 } 23639 if (save_ire != NULL) 23640 IRE_REFRELE(save_ire); 23641 23642 if (first_ire != NULL) 23643 ire_refrele(first_ire); 23644 return; 23645 23646 /* 23647 * Case of res_mp OR the fastpath mp can't fit 23648 * in the mblk 23649 */ 23650 } else { 23651 xmit_mp->b_cont = mp; 23652 if (DB_CRED(mp) != NULL) 23653 mblk_setcred(xmit_mp, DB_CRED(mp)); 23654 /* 23655 * Get priority marking, if any. 23656 * We propagate the CoS marking from the 23657 * original packet that went to QoS processing 23658 * in ip_wput_ire to the newly carved mp. 23659 */ 23660 if (DB_TYPE(xmit_mp) == M_DATA) 23661 xmit_mp->b_band = mp->b_band; 23662 } 23663 UNLOCK_IRE_FP_MP(ire); 23664 q = ire->ire_stq; 23665 BUMP_MIB(&ip_mib, ipFragCreates); 23666 23667 out_ill = (ill_t *)q->q_ptr; 23668 23669 DTRACE_PROBE4(ip4__physical__out__start, 23670 ill_t *, NULL, ill_t *, out_ill, 23671 ipha_t *, ipha, mblk_t *, xmit_mp); 23672 23673 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 23674 NULL, out_ill, ipha, xmit_mp, mp); 23675 23676 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 23677 23678 if (xmit_mp != NULL) { 23679 putnext(q, xmit_mp); 23680 if (pkt_type != OB_PKT) { 23681 /* 23682 * Update the packet count of trailing 23683 * RTF_MULTIRT ires. 23684 */ 23685 UPDATE_OB_PKT_COUNT(ire); 23686 } 23687 } 23688 23689 if (multirt_send) { 23690 /* 23691 * We are in a multiple send case; look for 23692 * the next ire and re-enter the loop. 23693 */ 23694 ASSERT(ire1); 23695 ASSERT(next_mp); 23696 /* REFRELE the current ire before looping */ 23697 ire_refrele(ire); 23698 ire = ire1; 23699 ire1 = NULL; 23700 mp = next_mp; 23701 next_mp = NULL; 23702 } 23703 } while (multirt_send); 23704 23705 ASSERT(ire1 == NULL); 23706 23707 /* Restore the original ire; we need it for the trailing frags */ 23708 if (save_ire != NULL) { 23709 /* REFRELE the last iterated ire */ 23710 ire_refrele(ire); 23711 /* save_ire has been REFHOLDed */ 23712 ire = save_ire; 23713 save_ire = NULL; 23714 q = ire->ire_stq; 23715 } 23716 23717 if (pkt_type == OB_PKT) { 23718 UPDATE_OB_PKT_COUNT(ire); 23719 } else { 23720 UPDATE_IB_PKT_COUNT(ire); 23721 } 23722 23723 /* Advance the offset to the second frag starting point. */ 23724 offset += len; 23725 /* 23726 * Update hdr_len from the copied header - there might be less options 23727 * in the later fragments. 23728 */ 23729 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23730 /* Loop until done. */ 23731 for (;;) { 23732 uint16_t offset_and_flags; 23733 uint16_t ip_len; 23734 23735 if (ip_data_end - offset > len) { 23736 /* 23737 * Carve off the appropriate amount from the original 23738 * datagram. 23739 */ 23740 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23741 mp = NULL; 23742 break; 23743 } 23744 /* 23745 * More frags after this one. Get another copy 23746 * of the header. 23747 */ 23748 if (carve_mp->b_datap->db_ref == 1 && 23749 hdr_mp->b_wptr - hdr_mp->b_rptr < 23750 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23751 /* Inline IP header */ 23752 carve_mp->b_rptr -= hdr_mp->b_wptr - 23753 hdr_mp->b_rptr; 23754 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23755 hdr_mp->b_wptr - hdr_mp->b_rptr); 23756 mp = carve_mp; 23757 } else { 23758 if (!(mp = copyb(hdr_mp))) { 23759 freemsg(carve_mp); 23760 break; 23761 } 23762 /* Get priority marking, if any. */ 23763 mp->b_band = carve_mp->b_band; 23764 mp->b_cont = carve_mp; 23765 } 23766 ipha = (ipha_t *)mp->b_rptr; 23767 offset_and_flags = IPH_MF; 23768 } else { 23769 /* 23770 * Last frag. Consume the header. Set len to 23771 * the length of this last piece. 23772 */ 23773 len = ip_data_end - offset; 23774 23775 /* 23776 * Carve off the appropriate amount from the original 23777 * datagram. 23778 */ 23779 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23780 mp = NULL; 23781 break; 23782 } 23783 if (carve_mp->b_datap->db_ref == 1 && 23784 hdr_mp->b_wptr - hdr_mp->b_rptr < 23785 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23786 /* Inline IP header */ 23787 carve_mp->b_rptr -= hdr_mp->b_wptr - 23788 hdr_mp->b_rptr; 23789 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23790 hdr_mp->b_wptr - hdr_mp->b_rptr); 23791 mp = carve_mp; 23792 freeb(hdr_mp); 23793 hdr_mp = mp; 23794 } else { 23795 mp = hdr_mp; 23796 /* Get priority marking, if any. */ 23797 mp->b_band = carve_mp->b_band; 23798 mp->b_cont = carve_mp; 23799 } 23800 ipha = (ipha_t *)mp->b_rptr; 23801 /* A frag of a frag might have IPH_MF non-zero */ 23802 offset_and_flags = 23803 ntohs(ipha->ipha_fragment_offset_and_flags) & 23804 IPH_MF; 23805 } 23806 offset_and_flags |= (uint16_t)(offset >> 3); 23807 offset_and_flags |= (uint16_t)frag_flag; 23808 /* Store the offset and flags in the IP header. */ 23809 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23810 23811 /* Store the length in the IP header. */ 23812 ip_len = (uint16_t)(len + hdr_len); 23813 ipha->ipha_length = htons(ip_len); 23814 23815 /* 23816 * Set the IP header checksum. Note that mp is just 23817 * the header, so this is easy to pass to ip_csum. 23818 */ 23819 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23820 23821 /* Attach a transmit header, if any, and ship it. */ 23822 if (pkt_type == OB_PKT) { 23823 UPDATE_OB_PKT_COUNT(ire); 23824 } else { 23825 UPDATE_IB_PKT_COUNT(ire); 23826 } 23827 23828 if (ire->ire_flags & RTF_MULTIRT) { 23829 irb = ire->ire_bucket; 23830 ASSERT(irb != NULL); 23831 23832 multirt_send = B_TRUE; 23833 23834 /* 23835 * Save the original ire; we will need to restore it 23836 * for the tailing frags. 23837 */ 23838 save_ire = ire; 23839 IRE_REFHOLD(save_ire); 23840 } 23841 /* 23842 * Emission loop for this fragment, similar 23843 * to what is done for the first fragment. 23844 */ 23845 do { 23846 if (multirt_send) { 23847 /* 23848 * We are in a multiple send case, need to get 23849 * the next ire and make a copy of the packet. 23850 */ 23851 ASSERT(irb != NULL); 23852 IRB_REFHOLD(irb); 23853 for (ire1 = ire->ire_next; 23854 ire1 != NULL; 23855 ire1 = ire1->ire_next) { 23856 if (!(ire1->ire_flags & RTF_MULTIRT)) 23857 continue; 23858 if (ire1->ire_addr != ire->ire_addr) 23859 continue; 23860 if (ire1->ire_marks & 23861 (IRE_MARK_CONDEMNED| 23862 IRE_MARK_HIDDEN)) 23863 continue; 23864 /* 23865 * Ensure we do not exceed the MTU 23866 * of the next route. 23867 */ 23868 if (ire1->ire_max_frag < max_frag) { 23869 ip_multirt_bad_mtu(ire1, 23870 max_frag); 23871 continue; 23872 } 23873 23874 /* Got one. */ 23875 IRE_REFHOLD(ire1); 23876 break; 23877 } 23878 IRB_REFRELE(irb); 23879 23880 if (ire1 != NULL) { 23881 next_mp = copyb(mp); 23882 if ((next_mp == NULL) || 23883 ((mp->b_cont != NULL) && 23884 ((next_mp->b_cont = 23885 dupmsg(mp->b_cont)) == NULL))) { 23886 freemsg(next_mp); 23887 next_mp = NULL; 23888 ire_refrele(ire1); 23889 ire1 = NULL; 23890 } 23891 } 23892 23893 /* Last multiroute ire; don't loop anymore. */ 23894 if (ire1 == NULL) { 23895 multirt_send = B_FALSE; 23896 } 23897 } 23898 23899 /* Update transmit header */ 23900 ll_hdr_len = 0; 23901 LOCK_IRE_FP_MP(ire); 23902 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23903 if (ll_hdr_mp != NULL) { 23904 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23905 ll_hdr_len = MBLKL(ll_hdr_mp); 23906 } else { 23907 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23908 } 23909 23910 if (!ll_hdr_mp) { 23911 xmit_mp = mp; 23912 23913 /* 23914 * We have link-layer header that can fit in 23915 * our mblk. 23916 */ 23917 } else if (mp->b_datap->db_ref == 1 && 23918 ll_hdr_len != 0 && 23919 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23920 /* M_DATA fastpath */ 23921 mp->b_rptr -= ll_hdr_len; 23922 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 23923 ll_hdr_len); 23924 xmit_mp = mp; 23925 23926 /* 23927 * Case of res_mp OR the fastpath mp can't fit 23928 * in the mblk 23929 */ 23930 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 23931 xmit_mp->b_cont = mp; 23932 if (DB_CRED(mp) != NULL) 23933 mblk_setcred(xmit_mp, DB_CRED(mp)); 23934 /* Get priority marking, if any. */ 23935 if (DB_TYPE(xmit_mp) == M_DATA) 23936 xmit_mp->b_band = mp->b_band; 23937 23938 /* Corner case if copyb failed */ 23939 } else { 23940 /* 23941 * Exit both the replication and 23942 * fragmentation loops. 23943 */ 23944 UNLOCK_IRE_FP_MP(ire); 23945 goto drop_pkt; 23946 } 23947 UNLOCK_IRE_FP_MP(ire); 23948 BUMP_MIB(&ip_mib, ipFragCreates); 23949 23950 mp1 = mp; 23951 out_ill = (ill_t *)q->q_ptr; 23952 23953 DTRACE_PROBE4(ip4__physical__out__start, 23954 ill_t *, NULL, ill_t *, out_ill, 23955 ipha_t *, ipha, mblk_t *, xmit_mp); 23956 23957 FW_HOOKS(ip4_physical_out_event, 23958 ipv4firewall_physical_out, 23959 NULL, out_ill, ipha, xmit_mp, mp); 23960 23961 DTRACE_PROBE1(ip4__physical__out__end, 23962 mblk_t *, xmit_mp); 23963 23964 if (mp != mp1 && hdr_mp == mp1) 23965 hdr_mp = mp; 23966 if (mp != mp1 && mp_orig == mp1) 23967 mp_orig = mp; 23968 23969 if (xmit_mp != NULL) { 23970 putnext(q, xmit_mp); 23971 23972 if (pkt_type != OB_PKT) { 23973 /* 23974 * Update the packet count of trailing 23975 * RTF_MULTIRT ires. 23976 */ 23977 UPDATE_OB_PKT_COUNT(ire); 23978 } 23979 } 23980 23981 /* All done if we just consumed the hdr_mp. */ 23982 if (mp == hdr_mp) { 23983 last_frag = B_TRUE; 23984 } 23985 23986 if (multirt_send) { 23987 /* 23988 * We are in a multiple send case; look for 23989 * the next ire and re-enter the loop. 23990 */ 23991 ASSERT(ire1); 23992 ASSERT(next_mp); 23993 /* REFRELE the current ire before looping */ 23994 ire_refrele(ire); 23995 ire = ire1; 23996 ire1 = NULL; 23997 q = ire->ire_stq; 23998 mp = next_mp; 23999 next_mp = NULL; 24000 } 24001 } while (multirt_send); 24002 /* 24003 * Restore the original ire; we need it for the 24004 * trailing frags 24005 */ 24006 if (save_ire != NULL) { 24007 ASSERT(ire1 == NULL); 24008 /* REFRELE the last iterated ire */ 24009 ire_refrele(ire); 24010 /* save_ire has been REFHOLDed */ 24011 ire = save_ire; 24012 q = ire->ire_stq; 24013 save_ire = NULL; 24014 } 24015 24016 if (last_frag) { 24017 BUMP_MIB(&ip_mib, ipFragOKs); 24018 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24019 "ip_wput_frag_end:(%S)", 24020 "consumed hdr_mp"); 24021 24022 if (first_ire != NULL) 24023 ire_refrele(first_ire); 24024 return; 24025 } 24026 /* Otherwise, advance and loop. */ 24027 offset += len; 24028 } 24029 24030 drop_pkt: 24031 /* Clean up following allocation failure. */ 24032 BUMP_MIB(&ip_mib, ipOutDiscards); 24033 freemsg(mp); 24034 if (mp != hdr_mp) 24035 freeb(hdr_mp); 24036 if (mp != mp_orig) 24037 freemsg(mp_orig); 24038 24039 if (save_ire != NULL) 24040 IRE_REFRELE(save_ire); 24041 if (first_ire != NULL) 24042 ire_refrele(first_ire); 24043 24044 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24045 "ip_wput_frag_end:(%S)", 24046 "end--alloc failure"); 24047 } 24048 24049 /* 24050 * Copy the header plus those options which have the copy bit set 24051 */ 24052 static mblk_t * 24053 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 24054 { 24055 mblk_t *mp; 24056 uchar_t *up; 24057 24058 /* 24059 * Quick check if we need to look for options without the copy bit 24060 * set 24061 */ 24062 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 24063 if (!mp) 24064 return (mp); 24065 mp->b_rptr += ip_wroff_extra; 24066 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24067 bcopy(rptr, mp->b_rptr, hdr_len); 24068 mp->b_wptr += hdr_len + ip_wroff_extra; 24069 return (mp); 24070 } 24071 up = mp->b_rptr; 24072 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24073 up += IP_SIMPLE_HDR_LENGTH; 24074 rptr += IP_SIMPLE_HDR_LENGTH; 24075 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24076 while (hdr_len > 0) { 24077 uint32_t optval; 24078 uint32_t optlen; 24079 24080 optval = *rptr; 24081 if (optval == IPOPT_EOL) 24082 break; 24083 if (optval == IPOPT_NOP) 24084 optlen = 1; 24085 else 24086 optlen = rptr[1]; 24087 if (optval & IPOPT_COPY) { 24088 bcopy(rptr, up, optlen); 24089 up += optlen; 24090 } 24091 rptr += optlen; 24092 hdr_len -= optlen; 24093 } 24094 /* 24095 * Make sure that we drop an even number of words by filling 24096 * with EOL to the next word boundary. 24097 */ 24098 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24099 hdr_len & 0x3; hdr_len++) 24100 *up++ = IPOPT_EOL; 24101 mp->b_wptr = up; 24102 /* Update header length */ 24103 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24104 return (mp); 24105 } 24106 24107 /* 24108 * Delivery to local recipients including fanout to multiple recipients. 24109 * Does not do checksumming of UDP/TCP. 24110 * Note: q should be the read side queue for either the ill or conn. 24111 * Note: rq should be the read side q for the lower (ill) stream. 24112 * We don't send packets to IPPF processing, thus the last argument 24113 * to all the fanout calls are B_FALSE. 24114 */ 24115 void 24116 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24117 int fanout_flags, zoneid_t zoneid) 24118 { 24119 uint32_t protocol; 24120 mblk_t *first_mp; 24121 boolean_t mctl_present; 24122 int ire_type; 24123 #define rptr ((uchar_t *)ipha) 24124 24125 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24126 "ip_wput_local_start: q %p", q); 24127 24128 if (ire != NULL) { 24129 ire_type = ire->ire_type; 24130 } else { 24131 /* 24132 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24133 * packet is not multicast, we can't tell the ire type. 24134 */ 24135 ASSERT(CLASSD(ipha->ipha_dst)); 24136 ire_type = IRE_BROADCAST; 24137 } 24138 24139 first_mp = mp; 24140 if (first_mp->b_datap->db_type == M_CTL) { 24141 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24142 if (!io->ipsec_out_secure) { 24143 /* 24144 * This ipsec_out_t was allocated in ip_wput 24145 * for multicast packets to store the ill_index. 24146 * As this is being delivered locally, we don't 24147 * need this anymore. 24148 */ 24149 mp = first_mp->b_cont; 24150 freeb(first_mp); 24151 first_mp = mp; 24152 mctl_present = B_FALSE; 24153 } else { 24154 /* 24155 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24156 * security properties for the looped-back packet. 24157 */ 24158 mctl_present = B_TRUE; 24159 mp = first_mp->b_cont; 24160 ASSERT(mp != NULL); 24161 ipsec_out_to_in(first_mp); 24162 } 24163 } else { 24164 mctl_present = B_FALSE; 24165 } 24166 24167 DTRACE_PROBE4(ip4__loopback__in__start, 24168 ill_t *, ill, ill_t *, NULL, 24169 ipha_t *, ipha, mblk_t *, first_mp); 24170 24171 FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in, 24172 ill, NULL, ipha, first_mp, mp); 24173 24174 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24175 24176 if (first_mp == NULL) 24177 return; 24178 24179 loopback_packets++; 24180 24181 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24182 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24183 if (!IS_SIMPLE_IPH(ipha)) { 24184 ip_wput_local_options(ipha); 24185 } 24186 24187 protocol = ipha->ipha_protocol; 24188 switch (protocol) { 24189 case IPPROTO_ICMP: { 24190 ire_t *ire_zone; 24191 ilm_t *ilm; 24192 mblk_t *mp1; 24193 zoneid_t last_zoneid; 24194 24195 if (CLASSD(ipha->ipha_dst) && 24196 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 24197 ASSERT(ire_type == IRE_BROADCAST); 24198 /* 24199 * In the multicast case, applications may have joined 24200 * the group from different zones, so we need to deliver 24201 * the packet to each of them. Loop through the 24202 * multicast memberships structures (ilm) on the receive 24203 * ill and send a copy of the packet up each matching 24204 * one. However, we don't do this for multicasts sent on 24205 * the loopback interface (PHYI_LOOPBACK flag set) as 24206 * they must stay in the sender's zone. 24207 * 24208 * ilm_add_v6() ensures that ilms in the same zone are 24209 * contiguous in the ill_ilm list. We use this property 24210 * to avoid sending duplicates needed when two 24211 * applications in the same zone join the same group on 24212 * different logical interfaces: we ignore the ilm if 24213 * it's zoneid is the same as the last matching one. 24214 * In addition, the sending of the packet for 24215 * ire_zoneid is delayed until all of the other ilms 24216 * have been exhausted. 24217 */ 24218 last_zoneid = -1; 24219 ILM_WALKER_HOLD(ill); 24220 for (ilm = ill->ill_ilm; ilm != NULL; 24221 ilm = ilm->ilm_next) { 24222 if ((ilm->ilm_flags & ILM_DELETED) || 24223 ipha->ipha_dst != ilm->ilm_addr || 24224 ilm->ilm_zoneid == last_zoneid || 24225 ilm->ilm_zoneid == zoneid || 24226 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24227 continue; 24228 mp1 = ip_copymsg(first_mp); 24229 if (mp1 == NULL) 24230 continue; 24231 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24232 mctl_present, B_FALSE, ill, 24233 ilm->ilm_zoneid); 24234 last_zoneid = ilm->ilm_zoneid; 24235 } 24236 ILM_WALKER_RELE(ill); 24237 /* 24238 * Loopback case: the sending endpoint has 24239 * IP_MULTICAST_LOOP disabled, therefore we don't 24240 * dispatch the multicast packet to the sending zone. 24241 */ 24242 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24243 freemsg(first_mp); 24244 return; 24245 } 24246 } else if (ire_type == IRE_BROADCAST) { 24247 /* 24248 * In the broadcast case, there may be many zones 24249 * which need a copy of the packet delivered to them. 24250 * There is one IRE_BROADCAST per broadcast address 24251 * and per zone; we walk those using a helper function. 24252 * In addition, the sending of the packet for zoneid is 24253 * delayed until all of the other ires have been 24254 * processed. 24255 */ 24256 IRB_REFHOLD(ire->ire_bucket); 24257 ire_zone = NULL; 24258 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24259 ire)) != NULL) { 24260 mp1 = ip_copymsg(first_mp); 24261 if (mp1 == NULL) 24262 continue; 24263 24264 UPDATE_IB_PKT_COUNT(ire_zone); 24265 ire_zone->ire_last_used_time = lbolt; 24266 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24267 mctl_present, B_FALSE, ill, 24268 ire_zone->ire_zoneid); 24269 } 24270 IRB_REFRELE(ire->ire_bucket); 24271 } 24272 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24273 0, mctl_present, B_FALSE, ill, zoneid); 24274 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24275 "ip_wput_local_end: q %p (%S)", 24276 q, "icmp"); 24277 return; 24278 } 24279 case IPPROTO_IGMP: 24280 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24281 /* Bad packet - discarded by igmp_input */ 24282 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24283 "ip_wput_local_end: q %p (%S)", 24284 q, "igmp_input--bad packet"); 24285 if (mctl_present) 24286 freeb(first_mp); 24287 return; 24288 } 24289 /* 24290 * igmp_input() may have returned the pulled up message. 24291 * So first_mp and ipha need to be reinitialized. 24292 */ 24293 ipha = (ipha_t *)mp->b_rptr; 24294 if (mctl_present) 24295 first_mp->b_cont = mp; 24296 else 24297 first_mp = mp; 24298 /* deliver to local raw users */ 24299 break; 24300 case IPPROTO_ENCAP: 24301 /* 24302 * This case is covered by either ip_fanout_proto, or by 24303 * the above security processing for self-tunneled packets. 24304 */ 24305 break; 24306 case IPPROTO_UDP: { 24307 uint16_t *up; 24308 uint32_t ports; 24309 24310 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24311 UDP_PORTS_OFFSET); 24312 /* Force a 'valid' checksum. */ 24313 up[3] = 0; 24314 24315 ports = *(uint32_t *)up; 24316 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24317 (ire_type == IRE_BROADCAST), 24318 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24319 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24320 ill, zoneid); 24321 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24322 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24323 return; 24324 } 24325 case IPPROTO_TCP: { 24326 24327 /* 24328 * For TCP, discard broadcast packets. 24329 */ 24330 if ((ushort_t)ire_type == IRE_BROADCAST) { 24331 freemsg(first_mp); 24332 BUMP_MIB(&ip_mib, ipInDiscards); 24333 ip2dbg(("ip_wput_local: discard broadcast\n")); 24334 return; 24335 } 24336 24337 if (mp->b_datap->db_type == M_DATA) { 24338 /* 24339 * M_DATA mblk, so init mblk (chain) for no struio(). 24340 */ 24341 mblk_t *mp1 = mp; 24342 24343 do 24344 mp1->b_datap->db_struioflag = 0; 24345 while ((mp1 = mp1->b_cont) != NULL); 24346 } 24347 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24348 <= mp->b_wptr); 24349 ip_fanout_tcp(q, first_mp, ill, ipha, 24350 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24351 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24352 mctl_present, B_FALSE, zoneid); 24353 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24354 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24355 return; 24356 } 24357 case IPPROTO_SCTP: 24358 { 24359 uint32_t ports; 24360 24361 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24362 ip_fanout_sctp(first_mp, ill, ipha, ports, 24363 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24364 IP_FF_IP6INFO, 24365 mctl_present, B_FALSE, 0, zoneid); 24366 return; 24367 } 24368 24369 default: 24370 break; 24371 } 24372 /* 24373 * Find a client for some other protocol. We give 24374 * copies to multiple clients, if more than one is 24375 * bound. 24376 */ 24377 ip_fanout_proto(q, first_mp, ill, ipha, 24378 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24379 mctl_present, B_FALSE, ill, zoneid); 24380 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24381 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24382 #undef rptr 24383 } 24384 24385 /* 24386 * Update any source route, record route, or timestamp options. 24387 * Check that we are at end of strict source route. 24388 * The options have been sanity checked by ip_wput_options(). 24389 */ 24390 static void 24391 ip_wput_local_options(ipha_t *ipha) 24392 { 24393 ipoptp_t opts; 24394 uchar_t *opt; 24395 uint8_t optval; 24396 uint8_t optlen; 24397 ipaddr_t dst; 24398 uint32_t ts; 24399 ire_t *ire; 24400 timestruc_t now; 24401 24402 ip2dbg(("ip_wput_local_options\n")); 24403 for (optval = ipoptp_first(&opts, ipha); 24404 optval != IPOPT_EOL; 24405 optval = ipoptp_next(&opts)) { 24406 opt = opts.ipoptp_cur; 24407 optlen = opts.ipoptp_len; 24408 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24409 switch (optval) { 24410 uint32_t off; 24411 case IPOPT_SSRR: 24412 case IPOPT_LSRR: 24413 off = opt[IPOPT_OFFSET]; 24414 off--; 24415 if (optlen < IP_ADDR_LEN || 24416 off > optlen - IP_ADDR_LEN) { 24417 /* End of source route */ 24418 break; 24419 } 24420 /* 24421 * This will only happen if two consecutive entries 24422 * in the source route contains our address or if 24423 * it is a packet with a loose source route which 24424 * reaches us before consuming the whole source route 24425 */ 24426 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24427 if (optval == IPOPT_SSRR) { 24428 return; 24429 } 24430 /* 24431 * Hack: instead of dropping the packet truncate the 24432 * source route to what has been used by filling the 24433 * rest with IPOPT_NOP. 24434 */ 24435 opt[IPOPT_OLEN] = (uint8_t)off; 24436 while (off < optlen) { 24437 opt[off++] = IPOPT_NOP; 24438 } 24439 break; 24440 case IPOPT_RR: 24441 off = opt[IPOPT_OFFSET]; 24442 off--; 24443 if (optlen < IP_ADDR_LEN || 24444 off > optlen - IP_ADDR_LEN) { 24445 /* No more room - ignore */ 24446 ip1dbg(( 24447 "ip_wput_forward_options: end of RR\n")); 24448 break; 24449 } 24450 dst = htonl(INADDR_LOOPBACK); 24451 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24452 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24453 break; 24454 case IPOPT_TS: 24455 /* Insert timestamp if there is romm */ 24456 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24457 case IPOPT_TS_TSONLY: 24458 off = IPOPT_TS_TIMELEN; 24459 break; 24460 case IPOPT_TS_PRESPEC: 24461 case IPOPT_TS_PRESPEC_RFC791: 24462 /* Verify that the address matched */ 24463 off = opt[IPOPT_OFFSET] - 1; 24464 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24465 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24466 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24467 if (ire == NULL) { 24468 /* Not for us */ 24469 break; 24470 } 24471 ire_refrele(ire); 24472 /* FALLTHRU */ 24473 case IPOPT_TS_TSANDADDR: 24474 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24475 break; 24476 default: 24477 /* 24478 * ip_*put_options should have already 24479 * dropped this packet. 24480 */ 24481 cmn_err(CE_PANIC, "ip_wput_local_options: " 24482 "unknown IT - bug in ip_wput_options?\n"); 24483 return; /* Keep "lint" happy */ 24484 } 24485 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24486 /* Increase overflow counter */ 24487 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24488 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24489 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24490 (off << 4); 24491 break; 24492 } 24493 off = opt[IPOPT_OFFSET] - 1; 24494 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24495 case IPOPT_TS_PRESPEC: 24496 case IPOPT_TS_PRESPEC_RFC791: 24497 case IPOPT_TS_TSANDADDR: 24498 dst = htonl(INADDR_LOOPBACK); 24499 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24500 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24501 /* FALLTHRU */ 24502 case IPOPT_TS_TSONLY: 24503 off = opt[IPOPT_OFFSET] - 1; 24504 /* Compute # of milliseconds since midnight */ 24505 gethrestime(&now); 24506 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24507 now.tv_nsec / (NANOSEC / MILLISEC); 24508 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24509 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24510 break; 24511 } 24512 break; 24513 } 24514 } 24515 } 24516 24517 /* 24518 * Send out a multicast packet on interface ipif. 24519 * The sender does not have an conn. 24520 * Caller verifies that this isn't a PHYI_LOOPBACK. 24521 */ 24522 void 24523 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24524 { 24525 ipha_t *ipha; 24526 ire_t *ire; 24527 ipaddr_t dst; 24528 mblk_t *first_mp; 24529 24530 /* igmp_sendpkt always allocates a ipsec_out_t */ 24531 ASSERT(mp->b_datap->db_type == M_CTL); 24532 ASSERT(!ipif->ipif_isv6); 24533 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24534 24535 first_mp = mp; 24536 mp = first_mp->b_cont; 24537 ASSERT(mp->b_datap->db_type == M_DATA); 24538 ipha = (ipha_t *)mp->b_rptr; 24539 24540 /* 24541 * Find an IRE which matches the destination and the outgoing 24542 * queue (i.e. the outgoing interface.) 24543 */ 24544 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24545 dst = ipif->ipif_pp_dst_addr; 24546 else 24547 dst = ipha->ipha_dst; 24548 /* 24549 * The source address has already been initialized by the 24550 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24551 * be sufficient rather than MATCH_IRE_IPIF. 24552 * 24553 * This function is used for sending IGMP packets. We need 24554 * to make sure that we send the packet out of the interface 24555 * (ipif->ipif_ill) where we joined the group. This is to 24556 * prevent from switches doing IGMP snooping to send us multicast 24557 * packets for a given group on the interface we have joined. 24558 * If we can't find an ire, igmp_sendpkt has already initialized 24559 * ipsec_out_attach_if so that this will not be load spread in 24560 * ip_newroute_ipif. 24561 */ 24562 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24563 MATCH_IRE_ILL); 24564 if (!ire) { 24565 /* 24566 * Mark this packet to make it be delivered to 24567 * ip_wput_ire after the new ire has been 24568 * created. 24569 */ 24570 mp->b_prev = NULL; 24571 mp->b_next = NULL; 24572 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24573 zoneid); 24574 return; 24575 } 24576 24577 /* 24578 * Honor the RTF_SETSRC flag; this is the only case 24579 * where we force this addr whatever the current src addr is, 24580 * because this address is set by igmp_sendpkt(), and 24581 * cannot be specified by any user. 24582 */ 24583 if (ire->ire_flags & RTF_SETSRC) { 24584 ipha->ipha_src = ire->ire_src_addr; 24585 } 24586 24587 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24588 } 24589 24590 /* 24591 * NOTE : This function does not ire_refrele the ire argument passed in. 24592 * 24593 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24594 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24595 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24596 * the ire_lock to access the nce_fp_mp in this case. 24597 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24598 * prepending a fastpath message IPQoS processing must precede it, we also set 24599 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24600 * (IPQoS might have set the b_band for CoS marking). 24601 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24602 * must follow it so that IPQoS can mark the dl_priority field for CoS 24603 * marking, if needed. 24604 */ 24605 static mblk_t * 24606 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24607 { 24608 uint_t hlen; 24609 ipha_t *ipha; 24610 mblk_t *mp1; 24611 boolean_t qos_done = B_FALSE; 24612 uchar_t *ll_hdr; 24613 24614 #define rptr ((uchar_t *)ipha) 24615 24616 ipha = (ipha_t *)mp->b_rptr; 24617 hlen = 0; 24618 LOCK_IRE_FP_MP(ire); 24619 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24620 ASSERT(DB_TYPE(mp1) == M_DATA); 24621 /* Initiate IPPF processing */ 24622 if ((proc != 0) && IPP_ENABLED(proc)) { 24623 UNLOCK_IRE_FP_MP(ire); 24624 ip_process(proc, &mp, ill_index); 24625 if (mp == NULL) 24626 return (NULL); 24627 24628 ipha = (ipha_t *)mp->b_rptr; 24629 LOCK_IRE_FP_MP(ire); 24630 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24631 qos_done = B_TRUE; 24632 goto no_fp_mp; 24633 } 24634 ASSERT(DB_TYPE(mp1) == M_DATA); 24635 } 24636 hlen = MBLKL(mp1); 24637 /* 24638 * Check if we have enough room to prepend fastpath 24639 * header 24640 */ 24641 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24642 ll_hdr = rptr - hlen; 24643 bcopy(mp1->b_rptr, ll_hdr, hlen); 24644 /* 24645 * Set the b_rptr to the start of the link layer 24646 * header 24647 */ 24648 mp->b_rptr = ll_hdr; 24649 mp1 = mp; 24650 } else { 24651 mp1 = copyb(mp1); 24652 if (mp1 == NULL) 24653 goto unlock_err; 24654 mp1->b_band = mp->b_band; 24655 mp1->b_cont = mp; 24656 /* 24657 * certain system generated traffic may not 24658 * have cred/label in ip header block. This 24659 * is true even for a labeled system. But for 24660 * labeled traffic, inherit the label in the 24661 * new header. 24662 */ 24663 if (DB_CRED(mp) != NULL) 24664 mblk_setcred(mp1, DB_CRED(mp)); 24665 /* 24666 * XXX disable ICK_VALID and compute checksum 24667 * here; can happen if nce_fp_mp changes and 24668 * it can't be copied now due to insufficient 24669 * space. (unlikely, fp mp can change, but it 24670 * does not increase in length) 24671 */ 24672 } 24673 UNLOCK_IRE_FP_MP(ire); 24674 } else { 24675 no_fp_mp: 24676 mp1 = copyb(ire->ire_nce->nce_res_mp); 24677 if (mp1 == NULL) { 24678 unlock_err: 24679 UNLOCK_IRE_FP_MP(ire); 24680 freemsg(mp); 24681 return (NULL); 24682 } 24683 UNLOCK_IRE_FP_MP(ire); 24684 mp1->b_cont = mp; 24685 /* 24686 * certain system generated traffic may not 24687 * have cred/label in ip header block. This 24688 * is true even for a labeled system. But for 24689 * labeled traffic, inherit the label in the 24690 * new header. 24691 */ 24692 if (DB_CRED(mp) != NULL) 24693 mblk_setcred(mp1, DB_CRED(mp)); 24694 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24695 ip_process(proc, &mp1, ill_index); 24696 if (mp1 == NULL) 24697 return (NULL); 24698 } 24699 } 24700 return (mp1); 24701 #undef rptr 24702 } 24703 24704 /* 24705 * Finish the outbound IPsec processing for an IPv6 packet. This function 24706 * is called from ipsec_out_process() if the IPsec packet was processed 24707 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24708 * asynchronously. 24709 */ 24710 void 24711 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24712 ire_t *ire_arg) 24713 { 24714 in6_addr_t *v6dstp; 24715 ire_t *ire; 24716 mblk_t *mp; 24717 ip6_t *ip6h1; 24718 uint_t ill_index; 24719 ipsec_out_t *io; 24720 boolean_t attach_if, hwaccel; 24721 uint32_t flags = IP6_NO_IPPOLICY; 24722 int match_flags; 24723 zoneid_t zoneid; 24724 boolean_t ill_need_rele = B_FALSE; 24725 boolean_t ire_need_rele = B_FALSE; 24726 24727 mp = ipsec_mp->b_cont; 24728 ip6h1 = (ip6_t *)mp->b_rptr; 24729 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24730 ill_index = io->ipsec_out_ill_index; 24731 if (io->ipsec_out_reachable) { 24732 flags |= IPV6_REACHABILITY_CONFIRMATION; 24733 } 24734 attach_if = io->ipsec_out_attach_if; 24735 hwaccel = io->ipsec_out_accelerated; 24736 zoneid = io->ipsec_out_zoneid; 24737 ASSERT(zoneid != ALL_ZONES); 24738 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24739 /* Multicast addresses should have non-zero ill_index. */ 24740 v6dstp = &ip6h->ip6_dst; 24741 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24742 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24743 ASSERT(!attach_if || ill_index != 0); 24744 if (ill_index != 0) { 24745 if (ill == NULL) { 24746 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24747 B_TRUE); 24748 24749 /* Failure case frees things for us. */ 24750 if (ill == NULL) 24751 return; 24752 24753 ill_need_rele = B_TRUE; 24754 } 24755 /* 24756 * If this packet needs to go out on a particular interface 24757 * honor it. 24758 */ 24759 if (attach_if) { 24760 match_flags = MATCH_IRE_ILL; 24761 24762 /* 24763 * Check if we need an ire that will not be 24764 * looked up by anybody else i.e. HIDDEN. 24765 */ 24766 if (ill_is_probeonly(ill)) { 24767 match_flags |= MATCH_IRE_MARK_HIDDEN; 24768 } 24769 } 24770 } 24771 ASSERT(mp != NULL); 24772 24773 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24774 boolean_t unspec_src; 24775 ipif_t *ipif; 24776 24777 /* 24778 * Use the ill_index to get the right ill. 24779 */ 24780 unspec_src = io->ipsec_out_unspec_src; 24781 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24782 if (ipif == NULL) { 24783 if (ill_need_rele) 24784 ill_refrele(ill); 24785 freemsg(ipsec_mp); 24786 return; 24787 } 24788 24789 if (ire_arg != NULL) { 24790 ire = ire_arg; 24791 } else { 24792 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24793 zoneid, MBLK_GETLABEL(mp), match_flags); 24794 ire_need_rele = B_TRUE; 24795 } 24796 if (ire != NULL) { 24797 ipif_refrele(ipif); 24798 /* 24799 * XXX Do the multicast forwarding now, as the IPSEC 24800 * processing has been done. 24801 */ 24802 goto send; 24803 } 24804 24805 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24806 mp->b_prev = NULL; 24807 mp->b_next = NULL; 24808 24809 /* 24810 * If the IPsec packet was processed asynchronously, 24811 * drop it now. 24812 */ 24813 if (q == NULL) { 24814 if (ill_need_rele) 24815 ill_refrele(ill); 24816 freemsg(ipsec_mp); 24817 return; 24818 } 24819 24820 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24821 unspec_src, zoneid); 24822 ipif_refrele(ipif); 24823 } else { 24824 if (attach_if) { 24825 ipif_t *ipif; 24826 24827 ipif = ipif_get_next_ipif(NULL, ill); 24828 if (ipif == NULL) { 24829 if (ill_need_rele) 24830 ill_refrele(ill); 24831 freemsg(ipsec_mp); 24832 return; 24833 } 24834 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24835 zoneid, MBLK_GETLABEL(mp), match_flags); 24836 ire_need_rele = B_TRUE; 24837 ipif_refrele(ipif); 24838 } else { 24839 if (ire_arg != NULL) { 24840 ire = ire_arg; 24841 } else { 24842 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24843 ire_need_rele = B_TRUE; 24844 } 24845 } 24846 if (ire != NULL) 24847 goto send; 24848 /* 24849 * ire disappeared underneath. 24850 * 24851 * What we need to do here is the ip_newroute 24852 * logic to get the ire without doing the IPSEC 24853 * processing. Follow the same old path. But this 24854 * time, ip_wput or ire_add_then_send will call us 24855 * directly as all the IPSEC operations are done. 24856 */ 24857 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24858 mp->b_prev = NULL; 24859 mp->b_next = NULL; 24860 24861 /* 24862 * If the IPsec packet was processed asynchronously, 24863 * drop it now. 24864 */ 24865 if (q == NULL) { 24866 if (ill_need_rele) 24867 ill_refrele(ill); 24868 freemsg(ipsec_mp); 24869 return; 24870 } 24871 24872 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24873 zoneid); 24874 } 24875 if (ill != NULL && ill_need_rele) 24876 ill_refrele(ill); 24877 return; 24878 send: 24879 if (ill != NULL && ill_need_rele) 24880 ill_refrele(ill); 24881 24882 /* Local delivery */ 24883 if (ire->ire_stq == NULL) { 24884 ill_t *out_ill; 24885 ASSERT(q != NULL); 24886 24887 /* PFHooks: LOOPBACK_OUT */ 24888 out_ill = ire->ire_ipif->ipif_ill; 24889 24890 DTRACE_PROBE4(ip6__loopback__out__start, 24891 ill_t *, NULL, ill_t *, out_ill, 24892 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 24893 24894 FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out, 24895 NULL, out_ill, ip6h1, ipsec_mp, mp); 24896 24897 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 24898 24899 if (ipsec_mp != NULL) 24900 ip_wput_local_v6(RD(q), out_ill, 24901 ip6h, ipsec_mp, ire, 0); 24902 if (ire_need_rele) 24903 ire_refrele(ire); 24904 return; 24905 } 24906 /* 24907 * Everything is done. Send it out on the wire. 24908 * We force the insertion of a fragment header using the 24909 * IPH_FRAG_HDR flag in two cases: 24910 * - after reception of an ICMPv6 "packet too big" message 24911 * with a MTU < 1280 (cf. RFC 2460 section 5) 24912 * - for multirouted IPv6 packets, so that the receiver can 24913 * discard duplicates according to their fragment identifier 24914 */ 24915 /* XXX fix flow control problems. */ 24916 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 24917 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 24918 if (hwaccel) { 24919 /* 24920 * hardware acceleration does not handle these 24921 * "slow path" cases. 24922 */ 24923 /* IPsec KSTATS: should bump bean counter here. */ 24924 if (ire_need_rele) 24925 ire_refrele(ire); 24926 freemsg(ipsec_mp); 24927 return; 24928 } 24929 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 24930 (mp->b_cont ? msgdsize(mp) : 24931 mp->b_wptr - (uchar_t *)ip6h)) { 24932 /* IPsec KSTATS: should bump bean counter here. */ 24933 ip0dbg(("Packet length mismatch: %d, %ld\n", 24934 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 24935 msgdsize(mp))); 24936 if (ire_need_rele) 24937 ire_refrele(ire); 24938 freemsg(ipsec_mp); 24939 return; 24940 } 24941 ASSERT(mp->b_prev == NULL); 24942 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 24943 ntohs(ip6h->ip6_plen) + 24944 IPV6_HDR_LEN, ire->ire_max_frag)); 24945 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 24946 ire->ire_max_frag); 24947 } else { 24948 UPDATE_OB_PKT_COUNT(ire); 24949 ire->ire_last_used_time = lbolt; 24950 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 24951 } 24952 if (ire_need_rele) 24953 ire_refrele(ire); 24954 freeb(ipsec_mp); 24955 } 24956 24957 void 24958 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 24959 { 24960 mblk_t *hada_mp; /* attributes M_CTL mblk */ 24961 da_ipsec_t *hada; /* data attributes */ 24962 ill_t *ill = (ill_t *)q->q_ptr; 24963 24964 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 24965 24966 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 24967 /* IPsec KSTATS: Bump lose counter here! */ 24968 freemsg(mp); 24969 return; 24970 } 24971 24972 /* 24973 * It's an IPsec packet that must be 24974 * accelerated by the Provider, and the 24975 * outbound ill is IPsec acceleration capable. 24976 * Prepends the mblk with an IPHADA_M_CTL, and ship it 24977 * to the ill. 24978 * IPsec KSTATS: should bump packet counter here. 24979 */ 24980 24981 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 24982 if (hada_mp == NULL) { 24983 /* IPsec KSTATS: should bump packet counter here. */ 24984 freemsg(mp); 24985 return; 24986 } 24987 24988 hada_mp->b_datap->db_type = M_CTL; 24989 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 24990 hada_mp->b_cont = mp; 24991 24992 hada = (da_ipsec_t *)hada_mp->b_rptr; 24993 bzero(hada, sizeof (da_ipsec_t)); 24994 hada->da_type = IPHADA_M_CTL; 24995 24996 putnext(q, hada_mp); 24997 } 24998 24999 /* 25000 * Finish the outbound IPsec processing. This function is called from 25001 * ipsec_out_process() if the IPsec packet was processed 25002 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25003 * asynchronously. 25004 */ 25005 void 25006 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25007 ire_t *ire_arg) 25008 { 25009 uint32_t v_hlen_tos_len; 25010 ipaddr_t dst; 25011 ipif_t *ipif = NULL; 25012 ire_t *ire; 25013 ire_t *ire1 = NULL; 25014 mblk_t *next_mp = NULL; 25015 uint32_t max_frag; 25016 boolean_t multirt_send = B_FALSE; 25017 mblk_t *mp; 25018 mblk_t *mp1; 25019 ipha_t *ipha1; 25020 uint_t ill_index; 25021 ipsec_out_t *io; 25022 boolean_t attach_if; 25023 int match_flags, offset; 25024 irb_t *irb = NULL; 25025 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25026 zoneid_t zoneid; 25027 uint32_t cksum; 25028 uint16_t *up; 25029 ipxmit_state_t pktxmit_state; 25030 #ifdef _BIG_ENDIAN 25031 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25032 #else 25033 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25034 #endif 25035 25036 mp = ipsec_mp->b_cont; 25037 ipha1 = (ipha_t *)mp->b_rptr; 25038 ASSERT(mp != NULL); 25039 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25040 dst = ipha->ipha_dst; 25041 25042 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25043 ill_index = io->ipsec_out_ill_index; 25044 attach_if = io->ipsec_out_attach_if; 25045 zoneid = io->ipsec_out_zoneid; 25046 ASSERT(zoneid != ALL_ZONES); 25047 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25048 if (ill_index != 0) { 25049 if (ill == NULL) { 25050 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25051 ill_index, B_FALSE); 25052 25053 /* Failure case frees things for us. */ 25054 if (ill == NULL) 25055 return; 25056 25057 ill_need_rele = B_TRUE; 25058 } 25059 /* 25060 * If this packet needs to go out on a particular interface 25061 * honor it. 25062 */ 25063 if (attach_if) { 25064 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25065 25066 /* 25067 * Check if we need an ire that will not be 25068 * looked up by anybody else i.e. HIDDEN. 25069 */ 25070 if (ill_is_probeonly(ill)) { 25071 match_flags |= MATCH_IRE_MARK_HIDDEN; 25072 } 25073 } 25074 } 25075 25076 if (CLASSD(dst)) { 25077 boolean_t conn_dontroute; 25078 /* 25079 * Use the ill_index to get the right ipif. 25080 */ 25081 conn_dontroute = io->ipsec_out_dontroute; 25082 if (ill_index == 0) 25083 ipif = ipif_lookup_group(dst, zoneid); 25084 else 25085 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25086 if (ipif == NULL) { 25087 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25088 " multicast\n")); 25089 BUMP_MIB(&ip_mib, ipOutNoRoutes); 25090 freemsg(ipsec_mp); 25091 goto done; 25092 } 25093 /* 25094 * ipha_src has already been intialized with the 25095 * value of the ipif in ip_wput. All we need now is 25096 * an ire to send this downstream. 25097 */ 25098 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25099 MBLK_GETLABEL(mp), match_flags); 25100 if (ire != NULL) { 25101 ill_t *ill1; 25102 /* 25103 * Do the multicast forwarding now, as the IPSEC 25104 * processing has been done. 25105 */ 25106 if (ip_g_mrouter && !conn_dontroute && 25107 (ill1 = ire_to_ill(ire))) { 25108 if (ip_mforward(ill1, ipha, mp)) { 25109 freemsg(ipsec_mp); 25110 ip1dbg(("ip_wput_ipsec_out: mforward " 25111 "failed\n")); 25112 ire_refrele(ire); 25113 goto done; 25114 } 25115 } 25116 goto send; 25117 } 25118 25119 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25120 mp->b_prev = NULL; 25121 mp->b_next = NULL; 25122 25123 /* 25124 * If the IPsec packet was processed asynchronously, 25125 * drop it now. 25126 */ 25127 if (q == NULL) { 25128 freemsg(ipsec_mp); 25129 goto done; 25130 } 25131 25132 /* 25133 * We may be using a wrong ipif to create the ire. 25134 * But it is okay as the source address is assigned 25135 * for the packet already. Next outbound packet would 25136 * create the IRE with the right IPIF in ip_wput. 25137 * 25138 * Also handle RTF_MULTIRT routes. 25139 */ 25140 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25141 zoneid); 25142 } else { 25143 if (attach_if) { 25144 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25145 zoneid, MBLK_GETLABEL(mp), match_flags); 25146 } else { 25147 if (ire_arg != NULL) { 25148 ire = ire_arg; 25149 ire_need_rele = B_FALSE; 25150 } else { 25151 ire = ire_cache_lookup(dst, zoneid, 25152 MBLK_GETLABEL(mp)); 25153 } 25154 } 25155 if (ire != NULL) { 25156 goto send; 25157 } 25158 25159 /* 25160 * ire disappeared underneath. 25161 * 25162 * What we need to do here is the ip_newroute 25163 * logic to get the ire without doing the IPSEC 25164 * processing. Follow the same old path. But this 25165 * time, ip_wput or ire_add_then_put will call us 25166 * directly as all the IPSEC operations are done. 25167 */ 25168 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25169 mp->b_prev = NULL; 25170 mp->b_next = NULL; 25171 25172 /* 25173 * If the IPsec packet was processed asynchronously, 25174 * drop it now. 25175 */ 25176 if (q == NULL) { 25177 freemsg(ipsec_mp); 25178 goto done; 25179 } 25180 25181 /* 25182 * Since we're going through ip_newroute() again, we 25183 * need to make sure we don't: 25184 * 25185 * 1.) Trigger the ASSERT() with the ipha_ident 25186 * overloading. 25187 * 2.) Redo transport-layer checksumming, since we've 25188 * already done all that to get this far. 25189 * 25190 * The easiest way not do either of the above is to set 25191 * the ipha_ident field to IP_HDR_INCLUDED. 25192 */ 25193 ipha->ipha_ident = IP_HDR_INCLUDED; 25194 ip_newroute(q, ipsec_mp, dst, NULL, 25195 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 25196 } 25197 goto done; 25198 send: 25199 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 25200 /* 25201 * ESP NAT-Traversal packet. 25202 * 25203 * Just do software checksum for now. 25204 */ 25205 25206 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25207 IP_STAT(ip_out_sw_cksum); 25208 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 25209 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25210 #define iphs ((uint16_t *)ipha) 25211 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25212 iphs[9] + ntohs(htons(ipha->ipha_length) - 25213 IP_SIMPLE_HDR_LENGTH); 25214 #undef iphs 25215 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 25216 cksum = 0xFFFF; 25217 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25218 if (mp1->b_wptr - mp1->b_rptr >= 25219 offset + sizeof (uint16_t)) { 25220 up = (uint16_t *)(mp1->b_rptr + offset); 25221 *up = cksum; 25222 break; /* out of for loop */ 25223 } else { 25224 offset -= (mp->b_wptr - mp->b_rptr); 25225 } 25226 } /* Otherwise, just keep the all-zero checksum. */ 25227 25228 if (ire->ire_stq == NULL) { 25229 ill_t *out_ill; 25230 /* 25231 * Loopbacks go through ip_wput_local except for one case. 25232 * We come here if we generate a icmp_frag_needed message 25233 * after IPSEC processing is over. When this function calls 25234 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25235 * icmp_frag_needed. The message generated comes back here 25236 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25237 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25238 * source address as it is usually set in ip_wput_ire. As 25239 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25240 * and we end up here. We can't enter ip_wput_ire once the 25241 * IPSEC processing is over and hence we need to do it here. 25242 */ 25243 ASSERT(q != NULL); 25244 UPDATE_OB_PKT_COUNT(ire); 25245 ire->ire_last_used_time = lbolt; 25246 if (ipha->ipha_src == 0) 25247 ipha->ipha_src = ire->ire_src_addr; 25248 25249 /* PFHooks: LOOPBACK_OUT */ 25250 out_ill = ire->ire_ipif->ipif_ill; 25251 25252 DTRACE_PROBE4(ip4__loopback__out__start, 25253 ill_t *, NULL, ill_t *, out_ill, 25254 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25255 25256 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 25257 NULL, out_ill, ipha1, ipsec_mp, mp); 25258 25259 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25260 25261 if (ipsec_mp != NULL) 25262 ip_wput_local(RD(q), out_ill, 25263 ipha, ipsec_mp, ire, 0, zoneid); 25264 if (ire_need_rele) 25265 ire_refrele(ire); 25266 goto done; 25267 } 25268 25269 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25270 /* 25271 * We are through with IPSEC processing. 25272 * Fragment this and send it on the wire. 25273 */ 25274 if (io->ipsec_out_accelerated) { 25275 /* 25276 * The packet has been accelerated but must 25277 * be fragmented. This should not happen 25278 * since AH and ESP must not accelerate 25279 * packets that need fragmentation, however 25280 * the configuration could have changed 25281 * since the AH or ESP processing. 25282 * Drop packet. 25283 * IPsec KSTATS: bump bean counter here. 25284 */ 25285 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25286 "fragmented accelerated packet!\n")); 25287 freemsg(ipsec_mp); 25288 } else { 25289 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 25290 } 25291 if (ire_need_rele) 25292 ire_refrele(ire); 25293 goto done; 25294 } 25295 25296 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25297 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25298 (void *)ire->ire_ipif, (void *)ipif)); 25299 25300 /* 25301 * Multiroute the secured packet, unless IPsec really 25302 * requires the packet to go out only through a particular 25303 * interface. 25304 */ 25305 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25306 ire_t *first_ire; 25307 irb = ire->ire_bucket; 25308 ASSERT(irb != NULL); 25309 /* 25310 * This ire has been looked up as the one that 25311 * goes through the given ipif; 25312 * make sure we do not omit any other multiroute ire 25313 * that may be present in the bucket before this one. 25314 */ 25315 IRB_REFHOLD(irb); 25316 for (first_ire = irb->irb_ire; 25317 first_ire != NULL; 25318 first_ire = first_ire->ire_next) { 25319 if ((first_ire->ire_flags & RTF_MULTIRT) && 25320 (first_ire->ire_addr == ire->ire_addr) && 25321 !(first_ire->ire_marks & 25322 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25323 break; 25324 } 25325 25326 if ((first_ire != NULL) && (first_ire != ire)) { 25327 /* 25328 * Don't change the ire if the packet must 25329 * be fragmented if sent via this new one. 25330 */ 25331 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25332 IRE_REFHOLD(first_ire); 25333 if (ire_need_rele) 25334 ire_refrele(ire); 25335 else 25336 ire_need_rele = B_TRUE; 25337 ire = first_ire; 25338 } 25339 } 25340 IRB_REFRELE(irb); 25341 25342 multirt_send = B_TRUE; 25343 max_frag = ire->ire_max_frag; 25344 } else { 25345 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25346 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25347 "flag, attach_if %d\n", attach_if)); 25348 } 25349 } 25350 25351 /* 25352 * In most cases, the emission loop below is entered only once. 25353 * Only in the case where the ire holds the RTF_MULTIRT 25354 * flag, we loop to process all RTF_MULTIRT ires in the 25355 * bucket, and send the packet through all crossed 25356 * RTF_MULTIRT routes. 25357 */ 25358 do { 25359 if (multirt_send) { 25360 /* 25361 * ire1 holds here the next ire to process in the 25362 * bucket. If multirouting is expected, 25363 * any non-RTF_MULTIRT ire that has the 25364 * right destination address is ignored. 25365 */ 25366 ASSERT(irb != NULL); 25367 IRB_REFHOLD(irb); 25368 for (ire1 = ire->ire_next; 25369 ire1 != NULL; 25370 ire1 = ire1->ire_next) { 25371 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25372 continue; 25373 if (ire1->ire_addr != ire->ire_addr) 25374 continue; 25375 if (ire1->ire_marks & 25376 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25377 continue; 25378 /* No loopback here */ 25379 if (ire1->ire_stq == NULL) 25380 continue; 25381 /* 25382 * Ensure we do not exceed the MTU 25383 * of the next route. 25384 */ 25385 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25386 ip_multirt_bad_mtu(ire1, max_frag); 25387 continue; 25388 } 25389 25390 IRE_REFHOLD(ire1); 25391 break; 25392 } 25393 IRB_REFRELE(irb); 25394 if (ire1 != NULL) { 25395 /* 25396 * We are in a multiple send case, need to 25397 * make a copy of the packet. 25398 */ 25399 next_mp = copymsg(ipsec_mp); 25400 if (next_mp == NULL) { 25401 ire_refrele(ire1); 25402 ire1 = NULL; 25403 } 25404 } 25405 } 25406 /* 25407 * Everything is done. Send it out on the wire 25408 * 25409 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25410 * either send it on the wire or, in the case of 25411 * HW acceleration, call ipsec_hw_putnext. 25412 */ 25413 if (ire->ire_nce && 25414 ire->ire_nce->nce_state != ND_REACHABLE) { 25415 DTRACE_PROBE2(ip__wput__ipsec__bail, 25416 (ire_t *), ire, (mblk_t *), ipsec_mp); 25417 /* 25418 * If ire's link-layer is unresolved (this 25419 * would only happen if the incomplete ire 25420 * was added to cachetable via forwarding path) 25421 * don't bother going to ip_xmit_v4. Just drop the 25422 * packet. 25423 * There is a slight risk here, in that, if we 25424 * have the forwarding path create an incomplete 25425 * IRE, then until the IRE is completed, any 25426 * transmitted IPSEC packets will be dropped 25427 * instead of being queued waiting for resolution. 25428 * 25429 * But the likelihood of a forwarding packet and a wput 25430 * packet sending to the same dst at the same time 25431 * and there not yet be an ARP entry for it is small. 25432 * Furthermore, if this actually happens, it might 25433 * be likely that wput would generate multiple 25434 * packets (and forwarding would also have a train 25435 * of packets) for that destination. If this is 25436 * the case, some of them would have been dropped 25437 * anyway, since ARP only queues a few packets while 25438 * waiting for resolution 25439 * 25440 * NOTE: We should really call ip_xmit_v4, 25441 * and let it queue the packet and send the 25442 * ARP query and have ARP come back thus: 25443 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25444 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25445 * hw accel work. But it's too complex to get 25446 * the IPsec hw acceleration approach to fit 25447 * well with ip_xmit_v4 doing ARP without 25448 * doing IPSEC simplification. For now, we just 25449 * poke ip_xmit_v4 to trigger the arp resolve, so 25450 * that we can continue with the send on the next 25451 * attempt. 25452 * 25453 * XXX THis should be revisited, when 25454 * the IPsec/IP interaction is cleaned up 25455 */ 25456 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25457 " - dropping packet\n")); 25458 freemsg(ipsec_mp); 25459 /* 25460 * Call ip_xmit_v4() to trigger ARP query 25461 * in case the nce_state is ND_INITIAL 25462 */ 25463 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25464 goto drop_pkt; 25465 } 25466 25467 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 25468 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 25469 mblk_t *, mp); 25470 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 25471 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp); 25472 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 25473 if (mp == NULL) 25474 goto drop_pkt; 25475 25476 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25477 pktxmit_state = ip_xmit_v4(mp, ire, 25478 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25479 25480 if ((pktxmit_state == SEND_FAILED) || 25481 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25482 25483 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25484 drop_pkt: 25485 BUMP_MIB(&ip_mib, ipOutDiscards); 25486 if (ire_need_rele) 25487 ire_refrele(ire); 25488 if (ire1 != NULL) { 25489 ire_refrele(ire1); 25490 freemsg(next_mp); 25491 } 25492 goto done; 25493 } 25494 25495 freeb(ipsec_mp); 25496 if (ire_need_rele) 25497 ire_refrele(ire); 25498 25499 if (ire1 != NULL) { 25500 ire = ire1; 25501 ire_need_rele = B_TRUE; 25502 ASSERT(next_mp); 25503 ipsec_mp = next_mp; 25504 mp = ipsec_mp->b_cont; 25505 ire1 = NULL; 25506 next_mp = NULL; 25507 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25508 } else { 25509 multirt_send = B_FALSE; 25510 } 25511 } while (multirt_send); 25512 done: 25513 if (ill != NULL && ill_need_rele) 25514 ill_refrele(ill); 25515 if (ipif != NULL) 25516 ipif_refrele(ipif); 25517 } 25518 25519 /* 25520 * Get the ill corresponding to the specified ire, and compare its 25521 * capabilities with the protocol and algorithms specified by the 25522 * the SA obtained from ipsec_out. If they match, annotate the 25523 * ipsec_out structure to indicate that the packet needs acceleration. 25524 * 25525 * 25526 * A packet is eligible for outbound hardware acceleration if the 25527 * following conditions are satisfied: 25528 * 25529 * 1. the packet will not be fragmented 25530 * 2. the provider supports the algorithm 25531 * 3. there is no pending control message being exchanged 25532 * 4. snoop is not attached 25533 * 5. the destination address is not a broadcast or multicast address. 25534 * 25535 * Rationale: 25536 * - Hardware drivers do not support fragmentation with 25537 * the current interface. 25538 * - snoop, multicast, and broadcast may result in exposure of 25539 * a cleartext datagram. 25540 * We check all five of these conditions here. 25541 * 25542 * XXX would like to nuke "ire_t *" parameter here; problem is that 25543 * IRE is only way to figure out if a v4 address is a broadcast and 25544 * thus ineligible for acceleration... 25545 */ 25546 static void 25547 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25548 { 25549 ipsec_out_t *io; 25550 mblk_t *data_mp; 25551 uint_t plen, overhead; 25552 25553 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25554 return; 25555 25556 if (ill == NULL) 25557 return; 25558 25559 /* 25560 * Destination address is a broadcast or multicast. Punt. 25561 */ 25562 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25563 IRE_LOCAL))) 25564 return; 25565 25566 data_mp = ipsec_mp->b_cont; 25567 25568 if (ill->ill_isv6) { 25569 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25570 25571 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25572 return; 25573 25574 plen = ip6h->ip6_plen; 25575 } else { 25576 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25577 25578 if (CLASSD(ipha->ipha_dst)) 25579 return; 25580 25581 plen = ipha->ipha_length; 25582 } 25583 /* 25584 * Is there a pending DLPI control message being exchanged 25585 * between IP/IPsec and the DLS Provider? If there is, it 25586 * could be a SADB update, and the state of the DLS Provider 25587 * SADB might not be in sync with the SADB maintained by 25588 * IPsec. To avoid dropping packets or using the wrong keying 25589 * material, we do not accelerate this packet. 25590 */ 25591 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25592 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25593 "ill_dlpi_pending! don't accelerate packet\n")); 25594 return; 25595 } 25596 25597 /* 25598 * Is the Provider in promiscous mode? If it does, we don't 25599 * accelerate the packet since it will bounce back up to the 25600 * listeners in the clear. 25601 */ 25602 if (ill->ill_promisc_on_phys) { 25603 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25604 "ill in promiscous mode, don't accelerate packet\n")); 25605 return; 25606 } 25607 25608 /* 25609 * Will the packet require fragmentation? 25610 */ 25611 25612 /* 25613 * IPsec ESP note: this is a pessimistic estimate, but the same 25614 * as is used elsewhere. 25615 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25616 * + 2-byte trailer 25617 */ 25618 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25619 IPSEC_BASE_ESP_HDR_SIZE(sa); 25620 25621 if ((plen + overhead) > ill->ill_max_mtu) 25622 return; 25623 25624 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25625 25626 /* 25627 * Can the ill accelerate this IPsec protocol and algorithm 25628 * specified by the SA? 25629 */ 25630 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25631 ill->ill_isv6, sa)) { 25632 return; 25633 } 25634 25635 /* 25636 * Tell AH or ESP that the outbound ill is capable of 25637 * accelerating this packet. 25638 */ 25639 io->ipsec_out_is_capab_ill = B_TRUE; 25640 } 25641 25642 /* 25643 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25644 * 25645 * If this function returns B_TRUE, the requested SA's have been filled 25646 * into the ipsec_out_*_sa pointers. 25647 * 25648 * If the function returns B_FALSE, the packet has been "consumed", most 25649 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25650 * 25651 * The SA references created by the protocol-specific "select" 25652 * function will be released when the ipsec_mp is freed, thanks to the 25653 * ipsec_out_free destructor -- see spd.c. 25654 */ 25655 static boolean_t 25656 ipsec_out_select_sa(mblk_t *ipsec_mp) 25657 { 25658 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25659 ipsec_out_t *io; 25660 ipsec_policy_t *pp; 25661 ipsec_action_t *ap; 25662 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25663 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25664 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25665 25666 if (!io->ipsec_out_secure) { 25667 /* 25668 * We came here by mistake. 25669 * Don't bother with ipsec processing 25670 * We should "discourage" this path in the future. 25671 */ 25672 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25673 return (B_FALSE); 25674 } 25675 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25676 ASSERT((io->ipsec_out_policy != NULL) || 25677 (io->ipsec_out_act != NULL)); 25678 25679 ASSERT(io->ipsec_out_failed == B_FALSE); 25680 25681 /* 25682 * IPSEC processing has started. 25683 */ 25684 io->ipsec_out_proc_begin = B_TRUE; 25685 ap = io->ipsec_out_act; 25686 if (ap == NULL) { 25687 pp = io->ipsec_out_policy; 25688 ASSERT(pp != NULL); 25689 ap = pp->ipsp_act; 25690 ASSERT(ap != NULL); 25691 } 25692 25693 /* 25694 * We have an action. now, let's select SA's. 25695 * (In the future, we can cache this in the conn_t..) 25696 */ 25697 if (ap->ipa_want_esp) { 25698 if (io->ipsec_out_esp_sa == NULL) { 25699 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25700 IPPROTO_ESP); 25701 } 25702 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25703 } 25704 25705 if (ap->ipa_want_ah) { 25706 if (io->ipsec_out_ah_sa == NULL) { 25707 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25708 IPPROTO_AH); 25709 } 25710 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25711 /* 25712 * The ESP and AH processing order needs to be preserved 25713 * when both protocols are required (ESP should be applied 25714 * before AH for an outbound packet). Force an ESP ACQUIRE 25715 * when both ESP and AH are required, and an AH ACQUIRE 25716 * is needed. 25717 */ 25718 if (ap->ipa_want_esp && need_ah_acquire) 25719 need_esp_acquire = B_TRUE; 25720 } 25721 25722 /* 25723 * Send an ACQUIRE (extended, regular, or both) if we need one. 25724 * Release SAs that got referenced, but will not be used until we 25725 * acquire _all_ of the SAs we need. 25726 */ 25727 if (need_ah_acquire || need_esp_acquire) { 25728 if (io->ipsec_out_ah_sa != NULL) { 25729 IPSA_REFRELE(io->ipsec_out_ah_sa); 25730 io->ipsec_out_ah_sa = NULL; 25731 } 25732 if (io->ipsec_out_esp_sa != NULL) { 25733 IPSA_REFRELE(io->ipsec_out_esp_sa); 25734 io->ipsec_out_esp_sa = NULL; 25735 } 25736 25737 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25738 return (B_FALSE); 25739 } 25740 25741 return (B_TRUE); 25742 } 25743 25744 /* 25745 * Process an IPSEC_OUT message and see what you can 25746 * do with it. 25747 * IPQoS Notes: 25748 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25749 * IPSec. 25750 * XXX would like to nuke ire_t. 25751 * XXX ill_index better be "real" 25752 */ 25753 void 25754 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25755 { 25756 ipsec_out_t *io; 25757 ipsec_policy_t *pp; 25758 ipsec_action_t *ap; 25759 ipha_t *ipha; 25760 ip6_t *ip6h; 25761 mblk_t *mp; 25762 ill_t *ill; 25763 zoneid_t zoneid; 25764 ipsec_status_t ipsec_rc; 25765 boolean_t ill_need_rele = B_FALSE; 25766 25767 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25768 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25769 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25770 mp = ipsec_mp->b_cont; 25771 25772 /* 25773 * Initiate IPPF processing. We do it here to account for packets 25774 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25775 * We can check for ipsec_out_proc_begin even for such packets, as 25776 * they will always be false (asserted below). 25777 */ 25778 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25779 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25780 io->ipsec_out_ill_index : ill_index); 25781 if (mp == NULL) { 25782 ip2dbg(("ipsec_out_process: packet dropped "\ 25783 "during IPPF processing\n")); 25784 freeb(ipsec_mp); 25785 BUMP_MIB(&ip_mib, ipOutDiscards); 25786 return; 25787 } 25788 } 25789 25790 if (!io->ipsec_out_secure) { 25791 /* 25792 * We came here by mistake. 25793 * Don't bother with ipsec processing 25794 * Should "discourage" this path in the future. 25795 */ 25796 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25797 goto done; 25798 } 25799 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25800 ASSERT((io->ipsec_out_policy != NULL) || 25801 (io->ipsec_out_act != NULL)); 25802 ASSERT(io->ipsec_out_failed == B_FALSE); 25803 25804 if (!ipsec_loaded()) { 25805 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25806 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25807 BUMP_MIB(&ip_mib, ipOutDiscards); 25808 } else { 25809 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25810 } 25811 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25812 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25813 return; 25814 } 25815 25816 /* 25817 * IPSEC processing has started. 25818 */ 25819 io->ipsec_out_proc_begin = B_TRUE; 25820 ap = io->ipsec_out_act; 25821 if (ap == NULL) { 25822 pp = io->ipsec_out_policy; 25823 ASSERT(pp != NULL); 25824 ap = pp->ipsp_act; 25825 ASSERT(ap != NULL); 25826 } 25827 25828 /* 25829 * Save the outbound ill index. When the packet comes back 25830 * from IPsec, we make sure the ill hasn't changed or disappeared 25831 * before sending it the accelerated packet. 25832 */ 25833 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25834 int ifindex; 25835 ill = ire_to_ill(ire); 25836 ifindex = ill->ill_phyint->phyint_ifindex; 25837 io->ipsec_out_capab_ill_index = ifindex; 25838 } 25839 25840 /* 25841 * The order of processing is first insert a IP header if needed. 25842 * Then insert the ESP header and then the AH header. 25843 */ 25844 if ((io->ipsec_out_se_done == B_FALSE) && 25845 (ap->ipa_want_se)) { 25846 /* 25847 * First get the outer IP header before sending 25848 * it to ESP. 25849 */ 25850 ipha_t *oipha, *iipha; 25851 mblk_t *outer_mp, *inner_mp; 25852 25853 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25854 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25855 "ipsec_out_process: " 25856 "Self-Encapsulation failed: Out of memory\n"); 25857 freemsg(ipsec_mp); 25858 BUMP_MIB(&ip_mib, ipOutDiscards); 25859 return; 25860 } 25861 inner_mp = ipsec_mp->b_cont; 25862 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25863 oipha = (ipha_t *)outer_mp->b_rptr; 25864 iipha = (ipha_t *)inner_mp->b_rptr; 25865 *oipha = *iipha; 25866 outer_mp->b_wptr += sizeof (ipha_t); 25867 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25868 sizeof (ipha_t)); 25869 oipha->ipha_protocol = IPPROTO_ENCAP; 25870 oipha->ipha_version_and_hdr_length = 25871 IP_SIMPLE_HDR_VERSION; 25872 oipha->ipha_hdr_checksum = 0; 25873 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25874 outer_mp->b_cont = inner_mp; 25875 ipsec_mp->b_cont = outer_mp; 25876 25877 io->ipsec_out_se_done = B_TRUE; 25878 io->ipsec_out_tunnel = B_TRUE; 25879 } 25880 25881 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25882 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25883 !ipsec_out_select_sa(ipsec_mp)) 25884 return; 25885 25886 /* 25887 * By now, we know what SA's to use. Toss over to ESP & AH 25888 * to do the heavy lifting. 25889 */ 25890 zoneid = io->ipsec_out_zoneid; 25891 ASSERT(zoneid != ALL_ZONES); 25892 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 25893 ASSERT(io->ipsec_out_esp_sa != NULL); 25894 io->ipsec_out_esp_done = B_TRUE; 25895 /* 25896 * Note that since hw accel can only apply one transform, 25897 * not two, we skip hw accel for ESP if we also have AH 25898 * This is an design limitation of the interface 25899 * which should be revisited. 25900 */ 25901 ASSERT(ire != NULL); 25902 if (io->ipsec_out_ah_sa == NULL) { 25903 ill = (ill_t *)ire->ire_stq->q_ptr; 25904 ipsec_out_is_accelerated(ipsec_mp, 25905 io->ipsec_out_esp_sa, ill, ire); 25906 } 25907 25908 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 25909 switch (ipsec_rc) { 25910 case IPSEC_STATUS_SUCCESS: 25911 break; 25912 case IPSEC_STATUS_FAILED: 25913 BUMP_MIB(&ip_mib, ipOutDiscards); 25914 /* FALLTHRU */ 25915 case IPSEC_STATUS_PENDING: 25916 return; 25917 } 25918 } 25919 25920 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 25921 ASSERT(io->ipsec_out_ah_sa != NULL); 25922 io->ipsec_out_ah_done = B_TRUE; 25923 if (ire == NULL) { 25924 int idx = io->ipsec_out_capab_ill_index; 25925 ill = ill_lookup_on_ifindex(idx, B_FALSE, 25926 NULL, NULL, NULL, NULL); 25927 ill_need_rele = B_TRUE; 25928 } else { 25929 ill = (ill_t *)ire->ire_stq->q_ptr; 25930 } 25931 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 25932 ire); 25933 25934 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 25935 switch (ipsec_rc) { 25936 case IPSEC_STATUS_SUCCESS: 25937 break; 25938 case IPSEC_STATUS_FAILED: 25939 BUMP_MIB(&ip_mib, ipOutDiscards); 25940 /* FALLTHRU */ 25941 case IPSEC_STATUS_PENDING: 25942 if (ill != NULL && ill_need_rele) 25943 ill_refrele(ill); 25944 return; 25945 } 25946 } 25947 /* 25948 * We are done with IPSEC processing. Send it over 25949 * the wire. 25950 */ 25951 done: 25952 mp = ipsec_mp->b_cont; 25953 ipha = (ipha_t *)mp->b_rptr; 25954 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25955 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 25956 } else { 25957 ip6h = (ip6_t *)ipha; 25958 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 25959 } 25960 if (ill != NULL && ill_need_rele) 25961 ill_refrele(ill); 25962 } 25963 25964 /* ARGSUSED */ 25965 void 25966 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 25967 { 25968 opt_restart_t *or; 25969 int err; 25970 conn_t *connp; 25971 25972 ASSERT(CONN_Q(q)); 25973 connp = Q_TO_CONN(q); 25974 25975 ASSERT(first_mp->b_datap->db_type == M_CTL); 25976 or = (opt_restart_t *)first_mp->b_rptr; 25977 /* 25978 * We don't need to pass any credentials here since this is just 25979 * a restart. The credentials are passed in when svr4_optcom_req 25980 * is called the first time (from ip_wput_nondata). 25981 */ 25982 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 25983 err = svr4_optcom_req(q, first_mp, NULL, 25984 &ip_opt_obj); 25985 } else { 25986 ASSERT(or->or_type == T_OPTMGMT_REQ); 25987 err = tpi_optcom_req(q, first_mp, NULL, 25988 &ip_opt_obj); 25989 } 25990 if (err != EINPROGRESS) { 25991 /* operation is done */ 25992 CONN_OPER_PENDING_DONE(connp); 25993 } 25994 } 25995 25996 /* 25997 * ioctls that go through a down/up sequence may need to wait for the down 25998 * to complete. This involves waiting for the ire and ipif refcnts to go down 25999 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26000 */ 26001 /* ARGSUSED */ 26002 void 26003 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26004 { 26005 struct iocblk *iocp; 26006 mblk_t *mp1; 26007 ipif_t *ipif; 26008 ip_ioctl_cmd_t *ipip; 26009 int err; 26010 sin_t *sin; 26011 struct lifreq *lifr; 26012 struct ifreq *ifr; 26013 26014 iocp = (struct iocblk *)mp->b_rptr; 26015 ASSERT(ipsq != NULL); 26016 /* Existence of mp1 verified in ip_wput_nondata */ 26017 mp1 = mp->b_cont->b_cont; 26018 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26019 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26020 ill_t *ill; 26021 /* 26022 * Special case where ipsq_current_ipif may not be set. 26023 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26024 * ill could also have become part of a ipmp group in the 26025 * process, we are here as were not able to complete the 26026 * operation in ipif_set_values because we could not become 26027 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26028 * will not be set so we need to set it. 26029 */ 26030 ill = (ill_t *)q->q_ptr; 26031 ipsq->ipsq_current_ipif = ill->ill_ipif; 26032 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26033 } 26034 26035 ipif = ipsq->ipsq_current_ipif; 26036 ASSERT(ipif != NULL); 26037 if (ipip->ipi_cmd_type == IF_CMD) { 26038 /* This a old style SIOC[GS]IF* command */ 26039 ifr = (struct ifreq *)mp1->b_rptr; 26040 sin = (sin_t *)&ifr->ifr_addr; 26041 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26042 /* This a new style SIOC[GS]LIF* command */ 26043 lifr = (struct lifreq *)mp1->b_rptr; 26044 sin = (sin_t *)&lifr->lifr_addr; 26045 } else { 26046 sin = NULL; 26047 } 26048 26049 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 26050 (void *)mp1->b_rptr); 26051 26052 /* SIOCLIFREMOVEIF could have removed the ipif */ 26053 ip_ioctl_finish(q, mp, err, 26054 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26055 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 26056 } 26057 26058 /* 26059 * ioctl processing 26060 * 26061 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26062 * the ioctl command in the ioctl tables and determines the copyin data size 26063 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26064 * size. 26065 * 26066 * ioctl processing then continues when the M_IOCDATA makes its way down. 26067 * Now the ioctl is looked up again in the ioctl table, and its properties are 26068 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26069 * and the general ioctl processing function ip_process_ioctl is called. 26070 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26071 * so goes thru the serialization primitive ipsq_try_enter. Then the 26072 * appropriate function to handle the ioctl is called based on the entry in 26073 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26074 * which also refreleases the 'conn' that was refheld at the start of the 26075 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26076 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26077 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26078 * 26079 * Many exclusive ioctls go thru an internal down up sequence as part of 26080 * the operation. For example an attempt to change the IP address of an 26081 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26082 * does all the cleanup such as deleting all ires that use this address. 26083 * Then we need to wait till all references to the interface go away. 26084 */ 26085 void 26086 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26087 { 26088 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26089 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26090 cmd_info_t ci; 26091 int err; 26092 boolean_t entered_ipsq = B_FALSE; 26093 26094 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26095 26096 if (ipip == NULL) 26097 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26098 26099 /* 26100 * SIOCLIFADDIF needs to go thru a special path since the 26101 * ill may not exist yet. This happens in the case of lo0 26102 * which is created using this ioctl. 26103 */ 26104 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26105 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26106 ip_ioctl_finish(q, mp, err, 26107 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26108 NULL, NULL); 26109 return; 26110 } 26111 26112 ci.ci_ipif = NULL; 26113 switch (ipip->ipi_cmd_type) { 26114 case IF_CMD: 26115 case LIF_CMD: 26116 /* 26117 * ioctls that pass in a [l]ifreq appear here. 26118 * ip_extract_lifreq_cmn returns a refheld ipif in 26119 * ci.ci_ipif 26120 */ 26121 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26122 ipip->ipi_flags, &ci, ip_process_ioctl); 26123 if (err != 0) { 26124 ip_ioctl_finish(q, mp, err, 26125 ipip->ipi_flags & IPI_GET_CMD ? 26126 COPYOUT : NO_COPYOUT, NULL, NULL); 26127 return; 26128 } 26129 ASSERT(ci.ci_ipif != NULL); 26130 break; 26131 26132 case TUN_CMD: 26133 /* 26134 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26135 * a refheld ipif in ci.ci_ipif 26136 */ 26137 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26138 if (err != 0) { 26139 ip_ioctl_finish(q, mp, err, 26140 ipip->ipi_flags & IPI_GET_CMD ? 26141 COPYOUT : NO_COPYOUT, NULL, NULL); 26142 return; 26143 } 26144 ASSERT(ci.ci_ipif != NULL); 26145 break; 26146 26147 case MISC_CMD: 26148 /* 26149 * ioctls that neither pass in [l]ifreq or iftun_req come here 26150 * For eg. SIOCGLIFCONF will appear here. 26151 */ 26152 switch (ipip->ipi_cmd) { 26153 case IF_UNITSEL: 26154 /* ioctl comes down the ill */ 26155 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26156 ipif_refhold(ci.ci_ipif); 26157 break; 26158 case SIOCGMSFILTER: 26159 case SIOCSMSFILTER: 26160 case SIOCGIPMSFILTER: 26161 case SIOCSIPMSFILTER: 26162 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26163 ip_process_ioctl); 26164 if (err != 0) { 26165 ip_ioctl_finish(q, mp, err, 26166 ipip->ipi_flags & IPI_GET_CMD ? 26167 COPYOUT : NO_COPYOUT, NULL, NULL); 26168 return; 26169 } 26170 break; 26171 } 26172 err = 0; 26173 ci.ci_sin = NULL; 26174 ci.ci_sin6 = NULL; 26175 ci.ci_lifr = NULL; 26176 break; 26177 } 26178 26179 /* 26180 * If ipsq is non-null, we are already being called exclusively 26181 */ 26182 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26183 if (!(ipip->ipi_flags & IPI_WR)) { 26184 /* 26185 * A return value of EINPROGRESS means the ioctl is 26186 * either queued and waiting for some reason or has 26187 * already completed. 26188 */ 26189 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26190 ci.ci_lifr); 26191 if (ci.ci_ipif != NULL) 26192 ipif_refrele(ci.ci_ipif); 26193 ip_ioctl_finish(q, mp, err, 26194 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26195 NULL, NULL); 26196 return; 26197 } 26198 26199 ASSERT(ci.ci_ipif != NULL); 26200 26201 if (ipsq == NULL) { 26202 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26203 ip_process_ioctl, NEW_OP, B_TRUE); 26204 entered_ipsq = B_TRUE; 26205 } 26206 /* 26207 * Release the ipif so that ipif_down and friends that wait for 26208 * references to go away are not misled about the current ipif_refcnt 26209 * values. We are writer so we can access the ipif even after releasing 26210 * the ipif. 26211 */ 26212 ipif_refrele(ci.ci_ipif); 26213 if (ipsq == NULL) 26214 return; 26215 26216 mutex_enter(&ipsq->ipsq_lock); 26217 ASSERT(ipsq->ipsq_current_ipif == NULL); 26218 ipsq->ipsq_current_ipif = ci.ci_ipif; 26219 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26220 mutex_exit(&ipsq->ipsq_lock); 26221 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26222 /* 26223 * For most set ioctls that come here, this serves as a single point 26224 * where we set the IPIF_CHANGING flag. This ensures that there won't 26225 * be any new references to the ipif. This helps functions that go 26226 * through this path and end up trying to wait for the refcnts 26227 * associated with the ipif to go down to zero. Some exceptions are 26228 * Failover, Failback, and Groupname commands that operate on more than 26229 * just the ci.ci_ipif. These commands internally determine the 26230 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26231 * flags on that set. Another exception is the Removeif command that 26232 * sets the IPIF_CONDEMNED flag internally after identifying the right 26233 * ipif to operate on. 26234 */ 26235 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26236 ipip->ipi_cmd != SIOCLIFFAILOVER && 26237 ipip->ipi_cmd != SIOCLIFFAILBACK && 26238 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26239 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26240 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26241 26242 /* 26243 * A return value of EINPROGRESS means the ioctl is 26244 * either queued and waiting for some reason or has 26245 * already completed. 26246 */ 26247 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26248 ci.ci_lifr); 26249 26250 /* SIOCLIFREMOVEIF could have removed the ipif */ 26251 ip_ioctl_finish(q, mp, err, 26252 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26253 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 26254 26255 if (entered_ipsq) 26256 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26257 } 26258 26259 /* 26260 * Complete the ioctl. Typically ioctls use the mi package and need to 26261 * do mi_copyout/mi_copy_done. 26262 */ 26263 void 26264 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 26265 ipif_t *ipif, ipsq_t *ipsq) 26266 { 26267 conn_t *connp = NULL; 26268 hook_nic_event_t *info; 26269 26270 if (err == EINPROGRESS) 26271 return; 26272 26273 if (CONN_Q(q)) { 26274 connp = Q_TO_CONN(q); 26275 ASSERT(connp->conn_ref >= 2); 26276 } 26277 26278 switch (mode) { 26279 case COPYOUT: 26280 if (err == 0) 26281 mi_copyout(q, mp); 26282 else 26283 mi_copy_done(q, mp, err); 26284 break; 26285 26286 case NO_COPYOUT: 26287 mi_copy_done(q, mp, err); 26288 break; 26289 26290 default: 26291 /* An ioctl aborted through a conn close would take this path */ 26292 break; 26293 } 26294 26295 /* 26296 * The refhold placed at the start of the ioctl is released here. 26297 */ 26298 if (connp != NULL) 26299 CONN_OPER_PENDING_DONE(connp); 26300 26301 /* 26302 * If the ioctl were an exclusive ioctl it would have set 26303 * IPIF_CHANGING at the start of the ioctl which is undone here. 26304 */ 26305 if (ipif != NULL) { 26306 mutex_enter(&(ipif)->ipif_ill->ill_lock); 26307 ipif->ipif_state_flags &= ~IPIF_CHANGING; 26308 26309 /* 26310 * Unhook the nic event message from the ill and enqueue it into 26311 * the nic event taskq. 26312 */ 26313 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 26314 if (ddi_taskq_dispatch(eventq_queue_nic, 26315 ip_ne_queue_func, (void *)info, DDI_SLEEP) 26316 == DDI_FAILURE) { 26317 ip2dbg(("ip_ioctl_finish: ddi_taskq_dispatch" 26318 "failed\n")); 26319 if (info->hne_data != NULL) 26320 kmem_free(info->hne_data, 26321 info->hne_datalen); 26322 kmem_free(info, sizeof (hook_nic_event_t)); 26323 } 26324 26325 ipif->ipif_ill->ill_nic_event_info = NULL; 26326 } 26327 26328 mutex_exit(&(ipif)->ipif_ill->ill_lock); 26329 } 26330 26331 /* 26332 * Clear the current ipif in the ipsq at the completion of the ioctl. 26333 * Note that a non-null ipsq_current_ipif prevents new ioctls from 26334 * entering the ipsq 26335 */ 26336 if (ipsq != NULL) { 26337 mutex_enter(&ipsq->ipsq_lock); 26338 ipsq->ipsq_current_ipif = NULL; 26339 mutex_exit(&ipsq->ipsq_lock); 26340 } 26341 } 26342 26343 /* 26344 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26345 */ 26346 /* ARGSUSED */ 26347 void 26348 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26349 { 26350 conn_t *connp = arg; 26351 tcp_t *tcp; 26352 26353 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26354 tcp = connp->conn_tcp; 26355 26356 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26357 freemsg(mp); 26358 else 26359 tcp_rput_other(tcp, mp); 26360 CONN_OPER_PENDING_DONE(connp); 26361 } 26362 26363 /* Called from ip_wput for all non data messages */ 26364 /* ARGSUSED */ 26365 void 26366 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26367 { 26368 mblk_t *mp1; 26369 ire_t *ire, *fake_ire; 26370 ill_t *ill; 26371 struct iocblk *iocp; 26372 ip_ioctl_cmd_t *ipip; 26373 cred_t *cr; 26374 conn_t *connp = NULL; 26375 int cmd, err; 26376 nce_t *nce; 26377 ipif_t *ipif; 26378 26379 if (CONN_Q(q)) 26380 connp = Q_TO_CONN(q); 26381 26382 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26383 26384 /* Check if it is a queue to /dev/sctp. */ 26385 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26386 connp->conn_rq == NULL) { 26387 sctp_wput(q, mp); 26388 return; 26389 } 26390 26391 switch (DB_TYPE(mp)) { 26392 case M_IOCTL: 26393 /* 26394 * IOCTL processing begins in ip_sioctl_copyin_setup which 26395 * will arrange to copy in associated control structures. 26396 */ 26397 ip_sioctl_copyin_setup(q, mp); 26398 return; 26399 case M_IOCDATA: 26400 /* 26401 * Ensure that this is associated with one of our trans- 26402 * parent ioctls. If it's not ours, discard it if we're 26403 * running as a driver, or pass it on if we're a module. 26404 */ 26405 iocp = (struct iocblk *)mp->b_rptr; 26406 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26407 if (ipip == NULL) { 26408 if (q->q_next == NULL) { 26409 goto nak; 26410 } else { 26411 putnext(q, mp); 26412 } 26413 return; 26414 } else if ((q->q_next != NULL) && 26415 !(ipip->ipi_flags & IPI_MODOK)) { 26416 /* 26417 * the ioctl is one we recognise, but is not 26418 * consumed by IP as a module, pass M_IOCDATA 26419 * for processing downstream, but only for 26420 * common Streams ioctls. 26421 */ 26422 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26423 putnext(q, mp); 26424 return; 26425 } else { 26426 goto nak; 26427 } 26428 } 26429 26430 /* IOCTL continuation following copyin or copyout. */ 26431 if (mi_copy_state(q, mp, NULL) == -1) { 26432 /* 26433 * The copy operation failed. mi_copy_state already 26434 * cleaned up, so we're out of here. 26435 */ 26436 return; 26437 } 26438 /* 26439 * If we just completed a copy in, we become writer and 26440 * continue processing in ip_sioctl_copyin_done. If it 26441 * was a copy out, we call mi_copyout again. If there is 26442 * nothing more to copy out, it will complete the IOCTL. 26443 */ 26444 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26445 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26446 mi_copy_done(q, mp, EPROTO); 26447 return; 26448 } 26449 /* 26450 * Check for cases that need more copying. A return 26451 * value of 0 means a second copyin has been started, 26452 * so we return; a return value of 1 means no more 26453 * copying is needed, so we continue. 26454 */ 26455 cmd = iocp->ioc_cmd; 26456 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26457 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26458 MI_COPY_COUNT(mp) == 1) { 26459 if (ip_copyin_msfilter(q, mp) == 0) 26460 return; 26461 } 26462 /* 26463 * Refhold the conn, till the ioctl completes. This is 26464 * needed in case the ioctl ends up in the pending mp 26465 * list. Every mp in the ill_pending_mp list and 26466 * the ipsq_pending_mp must have a refhold on the conn 26467 * to resume processing. The refhold is released when 26468 * the ioctl completes. (normally or abnormally) 26469 * In all cases ip_ioctl_finish is called to finish 26470 * the ioctl. 26471 */ 26472 if (connp != NULL) { 26473 /* This is not a reentry */ 26474 ASSERT(ipsq == NULL); 26475 CONN_INC_REF(connp); 26476 } else { 26477 if (!(ipip->ipi_flags & IPI_MODOK)) { 26478 mi_copy_done(q, mp, EINVAL); 26479 return; 26480 } 26481 } 26482 26483 ip_process_ioctl(ipsq, q, mp, ipip); 26484 26485 } else { 26486 mi_copyout(q, mp); 26487 } 26488 return; 26489 nak: 26490 iocp->ioc_error = EINVAL; 26491 mp->b_datap->db_type = M_IOCNAK; 26492 iocp->ioc_count = 0; 26493 qreply(q, mp); 26494 return; 26495 26496 case M_IOCNAK: 26497 /* 26498 * The only way we could get here is if a resolver didn't like 26499 * an IOCTL we sent it. This shouldn't happen. 26500 */ 26501 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26502 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26503 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26504 freemsg(mp); 26505 return; 26506 case M_IOCACK: 26507 /* Finish socket ioctls passed through to ARP. */ 26508 ip_sioctl_iocack(q, mp); 26509 return; 26510 case M_FLUSH: 26511 if (*mp->b_rptr & FLUSHW) 26512 flushq(q, FLUSHALL); 26513 if (q->q_next) { 26514 /* 26515 * M_FLUSH is sent up to IP by some drivers during 26516 * unbind. ip_rput has already replied to it. We are 26517 * here for the M_FLUSH that we originated in IP 26518 * before sending the unbind request to the driver. 26519 * Just free it as we don't queue packets in IP 26520 * on the write side of the device instance. 26521 */ 26522 freemsg(mp); 26523 return; 26524 } 26525 if (*mp->b_rptr & FLUSHR) { 26526 *mp->b_rptr &= ~FLUSHW; 26527 qreply(q, mp); 26528 return; 26529 } 26530 freemsg(mp); 26531 return; 26532 case IRE_DB_REQ_TYPE: 26533 /* An Upper Level Protocol wants a copy of an IRE. */ 26534 ip_ire_req(q, mp); 26535 return; 26536 case M_CTL: 26537 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26538 break; 26539 26540 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 26541 TUN_HELLO) { 26542 ASSERT(connp != NULL); 26543 connp->conn_flags |= IPCL_IPTUN; 26544 freeb(mp); 26545 return; 26546 } 26547 26548 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26549 IP_ULP_OUT_LABELED) { 26550 out_labeled_t *olp; 26551 26552 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26553 break; 26554 olp = (out_labeled_t *)mp->b_rptr; 26555 connp->conn_ulp_labeled = olp->out_qnext == q; 26556 freemsg(mp); 26557 return; 26558 } 26559 26560 /* M_CTL messages are used by ARP to tell us things. */ 26561 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26562 break; 26563 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26564 case AR_ENTRY_SQUERY: 26565 ip_wput_ctl(q, mp); 26566 return; 26567 case AR_CLIENT_NOTIFY: 26568 ip_arp_news(q, mp); 26569 return; 26570 case AR_DLPIOP_DONE: 26571 ASSERT(q->q_next != NULL); 26572 ill = (ill_t *)q->q_ptr; 26573 /* qwriter_ip releases the refhold */ 26574 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26575 ill_refhold(ill); 26576 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26577 CUR_OP, B_FALSE); 26578 return; 26579 case AR_ARP_CLOSING: 26580 /* 26581 * ARP (above us) is closing. If no ARP bringup is 26582 * currently pending, ack the message so that ARP 26583 * can complete its close. Also mark ill_arp_closing 26584 * so that new ARP bringups will fail. If any 26585 * ARP bringup is currently in progress, we will 26586 * ack this when the current ARP bringup completes. 26587 */ 26588 ASSERT(q->q_next != NULL); 26589 ill = (ill_t *)q->q_ptr; 26590 mutex_enter(&ill->ill_lock); 26591 ill->ill_arp_closing = 1; 26592 if (!ill->ill_arp_bringup_pending) { 26593 mutex_exit(&ill->ill_lock); 26594 qreply(q, mp); 26595 } else { 26596 mutex_exit(&ill->ill_lock); 26597 freemsg(mp); 26598 } 26599 return; 26600 case AR_ARP_EXTEND: 26601 /* 26602 * The ARP module above us is capable of duplicate 26603 * address detection. Old ATM drivers will not send 26604 * this message. 26605 */ 26606 ASSERT(q->q_next != NULL); 26607 ill = (ill_t *)q->q_ptr; 26608 ill->ill_arp_extend = B_TRUE; 26609 freemsg(mp); 26610 return; 26611 default: 26612 break; 26613 } 26614 break; 26615 case M_PROTO: 26616 case M_PCPROTO: 26617 /* 26618 * The only PROTO messages we expect are ULP binds and 26619 * copies of option negotiation acknowledgements. 26620 */ 26621 switch (((union T_primitives *)mp->b_rptr)->type) { 26622 case O_T_BIND_REQ: 26623 case T_BIND_REQ: { 26624 /* Request can get queued in bind */ 26625 ASSERT(connp != NULL); 26626 /* 26627 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26628 * instead of going through this path. We only get 26629 * here in the following cases: 26630 * 26631 * a. Bind retries, where ipsq is non-NULL. 26632 * b. T_BIND_REQ is issued from non TCP/UDP 26633 * transport, e.g. icmp for raw socket, 26634 * in which case ipsq will be NULL. 26635 */ 26636 ASSERT(ipsq != NULL || 26637 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26638 26639 /* Don't increment refcnt if this is a re-entry */ 26640 if (ipsq == NULL) 26641 CONN_INC_REF(connp); 26642 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26643 connp, NULL) : ip_bind_v4(q, mp, connp); 26644 if (mp == NULL) 26645 return; 26646 if (IPCL_IS_TCP(connp)) { 26647 /* 26648 * In the case of TCP endpoint we 26649 * come here only for bind retries 26650 */ 26651 ASSERT(ipsq != NULL); 26652 CONN_INC_REF(connp); 26653 squeue_fill(connp->conn_sqp, mp, 26654 ip_resume_tcp_bind, connp, 26655 SQTAG_BIND_RETRY); 26656 return; 26657 } else if (IPCL_IS_UDP(connp)) { 26658 /* 26659 * In the case of UDP endpoint we 26660 * come here only for bind retries 26661 */ 26662 ASSERT(ipsq != NULL); 26663 udp_resume_bind(connp, mp); 26664 return; 26665 } 26666 qreply(q, mp); 26667 CONN_OPER_PENDING_DONE(connp); 26668 return; 26669 } 26670 case T_SVR4_OPTMGMT_REQ: 26671 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26672 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26673 26674 ASSERT(connp != NULL); 26675 if (!snmpcom_req(q, mp, ip_snmp_set, 26676 ip_snmp_get, cr)) { 26677 /* 26678 * Call svr4_optcom_req so that it can 26679 * generate the ack. We don't come here 26680 * if this operation is being restarted. 26681 * ip_restart_optmgmt will drop the conn ref. 26682 * In the case of ipsec option after the ipsec 26683 * load is complete conn_restart_ipsec_waiter 26684 * drops the conn ref. 26685 */ 26686 ASSERT(ipsq == NULL); 26687 CONN_INC_REF(connp); 26688 if (ip_check_for_ipsec_opt(q, mp)) 26689 return; 26690 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26691 if (err != EINPROGRESS) { 26692 /* Operation is done */ 26693 CONN_OPER_PENDING_DONE(connp); 26694 } 26695 } 26696 return; 26697 case T_OPTMGMT_REQ: 26698 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26699 /* 26700 * Note: No snmpcom_req support through new 26701 * T_OPTMGMT_REQ. 26702 * Call tpi_optcom_req so that it can 26703 * generate the ack. 26704 */ 26705 ASSERT(connp != NULL); 26706 ASSERT(ipsq == NULL); 26707 /* 26708 * We don't come here for restart. ip_restart_optmgmt 26709 * will drop the conn ref. In the case of ipsec option 26710 * after the ipsec load is complete 26711 * conn_restart_ipsec_waiter drops the conn ref. 26712 */ 26713 CONN_INC_REF(connp); 26714 if (ip_check_for_ipsec_opt(q, mp)) 26715 return; 26716 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26717 if (err != EINPROGRESS) { 26718 /* Operation is done */ 26719 CONN_OPER_PENDING_DONE(connp); 26720 } 26721 return; 26722 case T_UNBIND_REQ: 26723 mp = ip_unbind(q, mp); 26724 qreply(q, mp); 26725 return; 26726 default: 26727 /* 26728 * Have to drop any DLPI messages coming down from 26729 * arp (such as an info_req which would cause ip 26730 * to receive an extra info_ack if it was passed 26731 * through. 26732 */ 26733 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26734 (int)*(uint_t *)mp->b_rptr)); 26735 freemsg(mp); 26736 return; 26737 } 26738 /* NOTREACHED */ 26739 case IRE_DB_TYPE: { 26740 nce_t *nce; 26741 ill_t *ill; 26742 in6_addr_t gw_addr_v6; 26743 26744 26745 /* 26746 * This is a response back from a resolver. It 26747 * consists of a message chain containing: 26748 * IRE_MBLK-->LL_HDR_MBLK->pkt 26749 * The IRE_MBLK is the one we allocated in ip_newroute. 26750 * The LL_HDR_MBLK is the DLPI header to use to get 26751 * the attached packet, and subsequent ones for the 26752 * same destination, transmitted. 26753 */ 26754 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26755 break; 26756 /* 26757 * First, check to make sure the resolution succeeded. 26758 * If it failed, the second mblk will be empty. 26759 * If it is, free the chain, dropping the packet. 26760 * (We must ire_delete the ire; that frees the ire mblk) 26761 * We're doing this now to support PVCs for ATM; it's 26762 * a partial xresolv implementation. When we fully implement 26763 * xresolv interfaces, instead of freeing everything here 26764 * we'll initiate neighbor discovery. 26765 * 26766 * For v4 (ARP and other external resolvers) the resolver 26767 * frees the message, so no check is needed. This check 26768 * is required, though, for a full xresolve implementation. 26769 * Including this code here now both shows how external 26770 * resolvers can NACK a resolution request using an 26771 * existing design that has no specific provisions for NACKs, 26772 * and also takes into account that the current non-ARP 26773 * external resolver has been coded to use this method of 26774 * NACKing for all IPv6 (xresolv) cases, 26775 * whether our xresolv implementation is complete or not. 26776 * 26777 */ 26778 ire = (ire_t *)mp->b_rptr; 26779 ill = ire_to_ill(ire); 26780 mp1 = mp->b_cont; /* dl_unitdata_req */ 26781 if (mp1->b_rptr == mp1->b_wptr) { 26782 if (ire->ire_ipversion == IPV6_VERSION) { 26783 /* 26784 * XRESOLV interface. 26785 */ 26786 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26787 mutex_enter(&ire->ire_lock); 26788 gw_addr_v6 = ire->ire_gateway_addr_v6; 26789 mutex_exit(&ire->ire_lock); 26790 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26791 nce = ndp_lookup_v6(ill, 26792 &ire->ire_addr_v6, B_FALSE); 26793 } else { 26794 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26795 B_FALSE); 26796 } 26797 if (nce != NULL) { 26798 nce_resolv_failed(nce); 26799 ndp_delete(nce); 26800 NCE_REFRELE(nce); 26801 } 26802 } 26803 mp->b_cont = NULL; 26804 freemsg(mp1); /* frees the pkt as well */ 26805 ASSERT(ire->ire_nce == NULL); 26806 ire_delete((ire_t *)mp->b_rptr); 26807 return; 26808 } 26809 26810 /* 26811 * Split them into IRE_MBLK and pkt and feed it into 26812 * ire_add_then_send. Then in ire_add_then_send 26813 * the IRE will be added, and then the packet will be 26814 * run back through ip_wput. This time it will make 26815 * it to the wire. 26816 */ 26817 mp->b_cont = NULL; 26818 mp = mp1->b_cont; /* now, mp points to pkt */ 26819 mp1->b_cont = NULL; 26820 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26821 if (ire->ire_ipversion == IPV6_VERSION) { 26822 /* 26823 * XRESOLV interface. Find the nce and put a copy 26824 * of the dl_unitdata_req in nce_res_mp 26825 */ 26826 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26827 mutex_enter(&ire->ire_lock); 26828 gw_addr_v6 = ire->ire_gateway_addr_v6; 26829 mutex_exit(&ire->ire_lock); 26830 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26831 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26832 B_FALSE); 26833 } else { 26834 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26835 } 26836 if (nce != NULL) { 26837 /* 26838 * We have to protect nce_res_mp here 26839 * from being accessed by other threads 26840 * while we change the mblk pointer. 26841 * Other functions will also lock the nce when 26842 * accessing nce_res_mp. 26843 * 26844 * The reason we change the mblk pointer 26845 * here rather than copying the resolved address 26846 * into the template is that, unlike with 26847 * ethernet, we have no guarantee that the 26848 * resolved address length will be 26849 * smaller than or equal to the lla length 26850 * with which the template was allocated, 26851 * (for ethernet, they're equal) 26852 * so we have to use the actual resolved 26853 * address mblk - which holds the real 26854 * dl_unitdata_req with the resolved address. 26855 * 26856 * Doing this is the same behavior as was 26857 * previously used in the v4 ARP case. 26858 */ 26859 mutex_enter(&nce->nce_lock); 26860 if (nce->nce_res_mp != NULL) 26861 freemsg(nce->nce_res_mp); 26862 nce->nce_res_mp = mp1; 26863 mutex_exit(&nce->nce_lock); 26864 /* 26865 * We do a fastpath probe here because 26866 * we have resolved the address without 26867 * using Neighbor Discovery. 26868 * In the non-XRESOLV v6 case, the fastpath 26869 * probe is done right after neighbor 26870 * discovery completes. 26871 */ 26872 if (nce->nce_res_mp != NULL) { 26873 int res; 26874 nce_fastpath_list_add(nce); 26875 res = ill_fastpath_probe(ill, 26876 nce->nce_res_mp); 26877 if (res != 0 && res != EAGAIN) 26878 nce_fastpath_list_delete(nce); 26879 } 26880 26881 ire_add_then_send(q, ire, mp); 26882 /* 26883 * Now we have to clean out any packets 26884 * that may have been queued on the nce 26885 * while it was waiting for address resolution 26886 * to complete. 26887 */ 26888 mutex_enter(&nce->nce_lock); 26889 mp1 = nce->nce_qd_mp; 26890 nce->nce_qd_mp = NULL; 26891 mutex_exit(&nce->nce_lock); 26892 while (mp1 != NULL) { 26893 mblk_t *nxt_mp; 26894 queue_t *fwdq = NULL; 26895 ill_t *inbound_ill; 26896 uint_t ifindex; 26897 26898 nxt_mp = mp1->b_next; 26899 mp1->b_next = NULL; 26900 /* 26901 * Retrieve ifindex stored in 26902 * ip_rput_data_v6() 26903 */ 26904 ifindex = 26905 (uint_t)(uintptr_t)mp1->b_prev; 26906 inbound_ill = 26907 ill_lookup_on_ifindex(ifindex, 26908 B_TRUE, NULL, NULL, NULL, 26909 NULL); 26910 mp1->b_prev = NULL; 26911 if (inbound_ill != NULL) 26912 fwdq = inbound_ill->ill_rq; 26913 26914 if (fwdq != NULL) { 26915 put(fwdq, mp1); 26916 ill_refrele(inbound_ill); 26917 } else 26918 put(WR(ill->ill_rq), mp1); 26919 mp1 = nxt_mp; 26920 } 26921 NCE_REFRELE(nce); 26922 } else { /* nce is NULL; clean up */ 26923 ire_delete(ire); 26924 freemsg(mp); 26925 freemsg(mp1); 26926 return; 26927 } 26928 } else { 26929 nce_t *arpce; 26930 /* 26931 * Link layer resolution succeeded. Recompute the 26932 * ire_nce. 26933 */ 26934 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 26935 if ((arpce = ndp_lookup_v4(ill, 26936 (ire->ire_gateway_addr != INADDR_ANY ? 26937 &ire->ire_gateway_addr : &ire->ire_addr), 26938 B_FALSE)) == NULL) { 26939 freeb(ire->ire_mp); 26940 freeb(mp1); 26941 freemsg(mp); 26942 return; 26943 } 26944 mutex_enter(&arpce->nce_lock); 26945 arpce->nce_last = TICK_TO_MSEC(lbolt64); 26946 if (arpce->nce_state == ND_REACHABLE) { 26947 /* 26948 * Someone resolved this before us; 26949 * cleanup the res_mp. Since ire has 26950 * not been added yet, the call to ire_add_v4 26951 * from ire_add_then_send (when a dup is 26952 * detected) will clean up the ire. 26953 */ 26954 freeb(mp1); 26955 } else { 26956 if (arpce->nce_res_mp != NULL) 26957 freemsg(arpce->nce_res_mp); 26958 arpce->nce_res_mp = mp1; 26959 arpce->nce_state = ND_REACHABLE; 26960 } 26961 mutex_exit(&arpce->nce_lock); 26962 if (ire->ire_marks & IRE_MARK_NOADD) { 26963 /* 26964 * this ire will not be added to the ire 26965 * cache table, so we can set the ire_nce 26966 * here, as there are no atomicity constraints. 26967 */ 26968 ire->ire_nce = arpce; 26969 /* 26970 * We are associating this nce with the ire 26971 * so change the nce ref taken in 26972 * ndp_lookup_v4() from 26973 * NCE_REFHOLD to NCE_REFHOLD_NOTR 26974 */ 26975 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 26976 } else { 26977 NCE_REFRELE(arpce); 26978 } 26979 ire_add_then_send(q, ire, mp); 26980 } 26981 return; /* All is well, the packet has been sent. */ 26982 } 26983 case IRE_ARPRESOLVE_TYPE: { 26984 26985 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 26986 break; 26987 mp1 = mp->b_cont; /* dl_unitdata_req */ 26988 mp->b_cont = NULL; 26989 /* 26990 * First, check to make sure the resolution succeeded. 26991 * If it failed, the second mblk will be empty. 26992 */ 26993 if (mp1->b_rptr == mp1->b_wptr) { 26994 /* cleanup the incomplete ire, free queued packets */ 26995 freemsg(mp); /* fake ire */ 26996 freeb(mp1); /* dl_unitdata response */ 26997 return; 26998 } 26999 27000 /* 27001 * update any incomplete nce_t found. we lookup the ctable 27002 * and find the nce from the ire->ire_nce because we need 27003 * to pass the ire to ip_xmit_v4 later, and can find both 27004 * ire and nce in one lookup from the ctable. 27005 */ 27006 fake_ire = (ire_t *)mp->b_rptr; 27007 /* 27008 * By the time we come back here from ARP 27009 * the logical outgoing interface of the incomplete ire 27010 * we added in ire_forward could have disappeared, 27011 * causing the incomplete ire to also have 27012 * dissapeared. So we need to retreive the 27013 * proper ipif for the ire before looking 27014 * in ctable; do the ctablelookup based on ire_ipif_seqid 27015 */ 27016 ill = q->q_ptr; 27017 27018 /* Get the outgoing ipif */ 27019 mutex_enter(&ill->ill_lock); 27020 if (ill->ill_state_flags & ILL_CONDEMNED) { 27021 mutex_exit(&ill->ill_lock); 27022 freemsg(mp); /* fake ire */ 27023 freeb(mp1); /* dl_unitdata response */ 27024 return; 27025 } 27026 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27027 27028 if (ipif == NULL) { 27029 mutex_exit(&ill->ill_lock); 27030 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27031 freemsg(mp); 27032 freeb(mp1); 27033 return; 27034 } 27035 ipif_refhold_locked(ipif); 27036 mutex_exit(&ill->ill_lock); 27037 ire = ire_ctable_lookup(fake_ire->ire_addr, 27038 fake_ire->ire_gateway_addr, IRE_CACHE, 27039 ipif, fake_ire->ire_zoneid, NULL, 27040 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 27041 ipif_refrele(ipif); 27042 if (ire == NULL) { 27043 /* 27044 * no ire was found; check if there is an nce 27045 * for this lookup; if it has no ire's pointing at it 27046 * cleanup. 27047 */ 27048 if ((nce = ndp_lookup_v4(ill, 27049 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27050 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27051 B_FALSE)) != NULL) { 27052 /* 27053 * cleanup: just reset nce. 27054 * We check for refcnt 2 (one for the nce 27055 * hash list + 1 for the ref taken by 27056 * ndp_lookup_v4) to ensure that there are 27057 * no ire's pointing at the nce. 27058 */ 27059 if (nce->nce_refcnt == 2) { 27060 nce = nce_reinit(nce); 27061 } 27062 if (nce != NULL) 27063 NCE_REFRELE(nce); 27064 } 27065 freeb(mp1); /* dl_unitdata response */ 27066 freemsg(mp); /* fake ire */ 27067 return; 27068 } 27069 nce = ire->ire_nce; 27070 DTRACE_PROBE2(ire__arpresolve__type, 27071 ire_t *, ire, nce_t *, nce); 27072 ASSERT(nce->nce_state != ND_INITIAL); 27073 mutex_enter(&nce->nce_lock); 27074 nce->nce_last = TICK_TO_MSEC(lbolt64); 27075 if (nce->nce_state == ND_REACHABLE) { 27076 /* 27077 * Someone resolved this before us; 27078 * our response is not needed any more. 27079 */ 27080 mutex_exit(&nce->nce_lock); 27081 freeb(mp1); /* dl_unitdata response */ 27082 } else { 27083 if (nce->nce_res_mp != NULL) { 27084 freemsg(nce->nce_res_mp); 27085 /* existing dl_unitdata template */ 27086 } 27087 nce->nce_res_mp = mp1; 27088 nce->nce_state = ND_REACHABLE; 27089 mutex_exit(&nce->nce_lock); 27090 ire_fastpath(ire); 27091 } 27092 /* 27093 * The cached nce_t has been updated to be reachable; 27094 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 27095 */ 27096 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27097 freemsg(mp); 27098 /* 27099 * send out queued packets. 27100 */ 27101 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27102 27103 IRE_REFRELE(ire); 27104 return; 27105 } 27106 default: 27107 break; 27108 } 27109 if (q->q_next) { 27110 putnext(q, mp); 27111 } else 27112 freemsg(mp); 27113 } 27114 27115 /* 27116 * Process IP options in an outbound packet. Modify the destination if there 27117 * is a source route option. 27118 * Returns non-zero if something fails in which case an ICMP error has been 27119 * sent and mp freed. 27120 */ 27121 static int 27122 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27123 boolean_t mctl_present, zoneid_t zoneid) 27124 { 27125 ipoptp_t opts; 27126 uchar_t *opt; 27127 uint8_t optval; 27128 uint8_t optlen; 27129 ipaddr_t dst; 27130 intptr_t code = 0; 27131 mblk_t *mp; 27132 ire_t *ire = NULL; 27133 27134 ip2dbg(("ip_wput_options\n")); 27135 mp = ipsec_mp; 27136 if (mctl_present) { 27137 mp = ipsec_mp->b_cont; 27138 } 27139 27140 dst = ipha->ipha_dst; 27141 for (optval = ipoptp_first(&opts, ipha); 27142 optval != IPOPT_EOL; 27143 optval = ipoptp_next(&opts)) { 27144 opt = opts.ipoptp_cur; 27145 optlen = opts.ipoptp_len; 27146 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27147 optval, optlen)); 27148 switch (optval) { 27149 uint32_t off; 27150 case IPOPT_SSRR: 27151 case IPOPT_LSRR: 27152 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27153 ip1dbg(( 27154 "ip_wput_options: bad option offset\n")); 27155 code = (char *)&opt[IPOPT_OLEN] - 27156 (char *)ipha; 27157 goto param_prob; 27158 } 27159 off = opt[IPOPT_OFFSET]; 27160 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27161 ntohl(dst))); 27162 /* 27163 * For strict: verify that dst is directly 27164 * reachable. 27165 */ 27166 if (optval == IPOPT_SSRR) { 27167 ire = ire_ftable_lookup(dst, 0, 0, 27168 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27169 MBLK_GETLABEL(mp), 27170 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 27171 if (ire == NULL) { 27172 ip1dbg(("ip_wput_options: SSRR not" 27173 " directly reachable: 0x%x\n", 27174 ntohl(dst))); 27175 goto bad_src_route; 27176 } 27177 ire_refrele(ire); 27178 } 27179 break; 27180 case IPOPT_RR: 27181 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27182 ip1dbg(( 27183 "ip_wput_options: bad option offset\n")); 27184 code = (char *)&opt[IPOPT_OLEN] - 27185 (char *)ipha; 27186 goto param_prob; 27187 } 27188 break; 27189 case IPOPT_TS: 27190 /* 27191 * Verify that length >=5 and that there is either 27192 * room for another timestamp or that the overflow 27193 * counter is not maxed out. 27194 */ 27195 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27196 if (optlen < IPOPT_MINLEN_IT) { 27197 goto param_prob; 27198 } 27199 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27200 ip1dbg(( 27201 "ip_wput_options: bad option offset\n")); 27202 code = (char *)&opt[IPOPT_OFFSET] - 27203 (char *)ipha; 27204 goto param_prob; 27205 } 27206 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27207 case IPOPT_TS_TSONLY: 27208 off = IPOPT_TS_TIMELEN; 27209 break; 27210 case IPOPT_TS_TSANDADDR: 27211 case IPOPT_TS_PRESPEC: 27212 case IPOPT_TS_PRESPEC_RFC791: 27213 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27214 break; 27215 default: 27216 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27217 (char *)ipha; 27218 goto param_prob; 27219 } 27220 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27221 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27222 /* 27223 * No room and the overflow counter is 15 27224 * already. 27225 */ 27226 goto param_prob; 27227 } 27228 break; 27229 } 27230 } 27231 27232 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27233 return (0); 27234 27235 ip1dbg(("ip_wput_options: error processing IP options.")); 27236 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27237 27238 param_prob: 27239 /* 27240 * Since ip_wput() isn't close to finished, we fill 27241 * in enough of the header for credible error reporting. 27242 */ 27243 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27244 /* Failed */ 27245 freemsg(ipsec_mp); 27246 return (-1); 27247 } 27248 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 27249 return (-1); 27250 27251 bad_src_route: 27252 /* 27253 * Since ip_wput() isn't close to finished, we fill 27254 * in enough of the header for credible error reporting. 27255 */ 27256 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27257 /* Failed */ 27258 freemsg(ipsec_mp); 27259 return (-1); 27260 } 27261 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 27262 return (-1); 27263 } 27264 27265 /* 27266 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27267 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27268 * thru /etc/system. 27269 */ 27270 #define CONN_MAXDRAINCNT 64 27271 27272 static void 27273 conn_drain_init(void) 27274 { 27275 int i; 27276 27277 conn_drain_list_cnt = conn_drain_nthreads; 27278 27279 if ((conn_drain_list_cnt == 0) || 27280 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27281 /* 27282 * Default value of the number of drainers is the 27283 * number of cpus, subject to maximum of 8 drainers. 27284 */ 27285 if (boot_max_ncpus != -1) 27286 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27287 else 27288 conn_drain_list_cnt = MIN(max_ncpus, 8); 27289 } 27290 27291 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 27292 KM_SLEEP); 27293 27294 for (i = 0; i < conn_drain_list_cnt; i++) { 27295 mutex_init(&conn_drain_list[i].idl_lock, NULL, 27296 MUTEX_DEFAULT, NULL); 27297 } 27298 } 27299 27300 static void 27301 conn_drain_fini(void) 27302 { 27303 int i; 27304 27305 for (i = 0; i < conn_drain_list_cnt; i++) 27306 mutex_destroy(&conn_drain_list[i].idl_lock); 27307 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 27308 conn_drain_list = NULL; 27309 } 27310 27311 /* 27312 * Note: For an overview of how flowcontrol is handled in IP please see the 27313 * IP Flowcontrol notes at the top of this file. 27314 * 27315 * Flow control has blocked us from proceeding. Insert the given conn in one 27316 * of the conn drain lists. These conn wq's will be qenabled later on when 27317 * STREAMS flow control does a backenable. conn_walk_drain will enable 27318 * the first conn in each of these drain lists. Each of these qenabled conns 27319 * in turn enables the next in the list, after it runs, or when it closes, 27320 * thus sustaining the drain process. 27321 * 27322 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27323 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27324 * running at any time, on a given conn, since there can be only 1 service proc 27325 * running on a queue at any time. 27326 */ 27327 void 27328 conn_drain_insert(conn_t *connp) 27329 { 27330 idl_t *idl; 27331 uint_t index; 27332 27333 mutex_enter(&connp->conn_lock); 27334 if (connp->conn_state_flags & CONN_CLOSING) { 27335 /* 27336 * The conn is closing as a result of which CONN_CLOSING 27337 * is set. Return. 27338 */ 27339 mutex_exit(&connp->conn_lock); 27340 return; 27341 } else if (connp->conn_idl == NULL) { 27342 /* 27343 * Assign the next drain list round robin. We dont' use 27344 * a lock, and thus it may not be strictly round robin. 27345 * Atomicity of load/stores is enough to make sure that 27346 * conn_drain_list_index is always within bounds. 27347 */ 27348 index = conn_drain_list_index; 27349 ASSERT(index < conn_drain_list_cnt); 27350 connp->conn_idl = &conn_drain_list[index]; 27351 index++; 27352 if (index == conn_drain_list_cnt) 27353 index = 0; 27354 conn_drain_list_index = index; 27355 } 27356 mutex_exit(&connp->conn_lock); 27357 27358 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27359 if ((connp->conn_drain_prev != NULL) || 27360 (connp->conn_state_flags & CONN_CLOSING)) { 27361 /* 27362 * The conn is already in the drain list, OR 27363 * the conn is closing. We need to check again for 27364 * the closing case again since close can happen 27365 * after we drop the conn_lock, and before we 27366 * acquire the CONN_DRAIN_LIST_LOCK. 27367 */ 27368 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27369 return; 27370 } else { 27371 idl = connp->conn_idl; 27372 } 27373 27374 /* 27375 * The conn is not in the drain list. Insert it at the 27376 * tail of the drain list. The drain list is circular 27377 * and doubly linked. idl_conn points to the 1st element 27378 * in the list. 27379 */ 27380 if (idl->idl_conn == NULL) { 27381 idl->idl_conn = connp; 27382 connp->conn_drain_next = connp; 27383 connp->conn_drain_prev = connp; 27384 } else { 27385 conn_t *head = idl->idl_conn; 27386 27387 connp->conn_drain_next = head; 27388 connp->conn_drain_prev = head->conn_drain_prev; 27389 head->conn_drain_prev->conn_drain_next = connp; 27390 head->conn_drain_prev = connp; 27391 } 27392 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27393 } 27394 27395 /* 27396 * This conn is closing, and we are called from ip_close. OR 27397 * This conn has been serviced by ip_wsrv, and we need to do the tail 27398 * processing. 27399 * If this conn is part of the drain list, we may need to sustain the drain 27400 * process by qenabling the next conn in the drain list. We may also need to 27401 * remove this conn from the list, if it is done. 27402 */ 27403 static void 27404 conn_drain_tail(conn_t *connp, boolean_t closing) 27405 { 27406 idl_t *idl; 27407 27408 /* 27409 * connp->conn_idl is stable at this point, and no lock is needed 27410 * to check it. If we are called from ip_close, close has already 27411 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27412 * called us only because conn_idl is non-null. If we are called thru 27413 * service, conn_idl could be null, but it cannot change because 27414 * service is single-threaded per queue, and there cannot be another 27415 * instance of service trying to call conn_drain_insert on this conn 27416 * now. 27417 */ 27418 ASSERT(!closing || (connp->conn_idl != NULL)); 27419 27420 /* 27421 * If connp->conn_idl is null, the conn has not been inserted into any 27422 * drain list even once since creation of the conn. Just return. 27423 */ 27424 if (connp->conn_idl == NULL) 27425 return; 27426 27427 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27428 27429 if (connp->conn_drain_prev == NULL) { 27430 /* This conn is currently not in the drain list. */ 27431 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27432 return; 27433 } 27434 idl = connp->conn_idl; 27435 if (idl->idl_conn_draining == connp) { 27436 /* 27437 * This conn is the current drainer. If this is the last conn 27438 * in the drain list, we need to do more checks, in the 'if' 27439 * below. Otherwwise we need to just qenable the next conn, 27440 * to sustain the draining, and is handled in the 'else' 27441 * below. 27442 */ 27443 if (connp->conn_drain_next == idl->idl_conn) { 27444 /* 27445 * This conn is the last in this list. This round 27446 * of draining is complete. If idl_repeat is set, 27447 * it means another flow enabling has happened from 27448 * the driver/streams and we need to another round 27449 * of draining. 27450 * If there are more than 2 conns in the drain list, 27451 * do a left rotate by 1, so that all conns except the 27452 * conn at the head move towards the head by 1, and the 27453 * the conn at the head goes to the tail. This attempts 27454 * a more even share for all queues that are being 27455 * drained. 27456 */ 27457 if ((connp->conn_drain_next != connp) && 27458 (idl->idl_conn->conn_drain_next != connp)) { 27459 idl->idl_conn = idl->idl_conn->conn_drain_next; 27460 } 27461 if (idl->idl_repeat) { 27462 qenable(idl->idl_conn->conn_wq); 27463 idl->idl_conn_draining = idl->idl_conn; 27464 idl->idl_repeat = 0; 27465 } else { 27466 idl->idl_conn_draining = NULL; 27467 } 27468 } else { 27469 /* 27470 * If the next queue that we are now qenable'ing, 27471 * is closing, it will remove itself from this list 27472 * and qenable the subsequent queue in ip_close(). 27473 * Serialization is acheived thru idl_lock. 27474 */ 27475 qenable(connp->conn_drain_next->conn_wq); 27476 idl->idl_conn_draining = connp->conn_drain_next; 27477 } 27478 } 27479 if (!connp->conn_did_putbq || closing) { 27480 /* 27481 * Remove ourself from the drain list, if we did not do 27482 * a putbq, or if the conn is closing. 27483 * Note: It is possible that q->q_first is non-null. It means 27484 * that these messages landed after we did a enableok() in 27485 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27486 * service them. 27487 */ 27488 if (connp->conn_drain_next == connp) { 27489 /* Singleton in the list */ 27490 ASSERT(connp->conn_drain_prev == connp); 27491 idl->idl_conn = NULL; 27492 idl->idl_conn_draining = NULL; 27493 } else { 27494 connp->conn_drain_prev->conn_drain_next = 27495 connp->conn_drain_next; 27496 connp->conn_drain_next->conn_drain_prev = 27497 connp->conn_drain_prev; 27498 if (idl->idl_conn == connp) 27499 idl->idl_conn = connp->conn_drain_next; 27500 ASSERT(idl->idl_conn_draining != connp); 27501 27502 } 27503 connp->conn_drain_next = NULL; 27504 connp->conn_drain_prev = NULL; 27505 } 27506 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27507 } 27508 27509 /* 27510 * Write service routine. Shared perimeter entry point. 27511 * ip_wsrv can be called in any of the following ways. 27512 * 1. The device queue's messages has fallen below the low water mark 27513 * and STREAMS has backenabled the ill_wq. We walk thru all the 27514 * the drain lists and backenable the first conn in each list. 27515 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27516 * qenabled non-tcp upper layers. We start dequeing messages and call 27517 * ip_wput for each message. 27518 */ 27519 27520 void 27521 ip_wsrv(queue_t *q) 27522 { 27523 conn_t *connp; 27524 ill_t *ill; 27525 mblk_t *mp; 27526 27527 if (q->q_next) { 27528 ill = (ill_t *)q->q_ptr; 27529 if (ill->ill_state_flags == 0) { 27530 /* 27531 * The device flow control has opened up. 27532 * Walk through conn drain lists and qenable the 27533 * first conn in each list. This makes sense only 27534 * if the stream is fully plumbed and setup. 27535 * Hence the if check above. 27536 */ 27537 ip1dbg(("ip_wsrv: walking\n")); 27538 conn_walk_drain(); 27539 } 27540 return; 27541 } 27542 27543 connp = Q_TO_CONN(q); 27544 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27545 27546 /* 27547 * 1. Set conn_draining flag to signal that service is active. 27548 * 27549 * 2. ip_output determines whether it has been called from service, 27550 * based on the last parameter. If it is IP_WSRV it concludes it 27551 * has been called from service. 27552 * 27553 * 3. Message ordering is preserved by the following logic. 27554 * i. A directly called ip_output (i.e. not thru service) will queue 27555 * the message at the tail, if conn_draining is set (i.e. service 27556 * is running) or if q->q_first is non-null. 27557 * 27558 * ii. If ip_output is called from service, and if ip_output cannot 27559 * putnext due to flow control, it does a putbq. 27560 * 27561 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27562 * (causing an infinite loop). 27563 */ 27564 ASSERT(!connp->conn_did_putbq); 27565 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27566 connp->conn_draining = 1; 27567 noenable(q); 27568 while ((mp = getq(q)) != NULL) { 27569 ASSERT(CONN_Q(q)); 27570 27571 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27572 if (connp->conn_did_putbq) { 27573 /* ip_wput did a putbq */ 27574 break; 27575 } 27576 } 27577 /* 27578 * At this point, a thread coming down from top, calling 27579 * ip_wput, may end up queueing the message. We have not yet 27580 * enabled the queue, so ip_wsrv won't be called again. 27581 * To avoid this race, check q->q_first again (in the loop) 27582 * If the other thread queued the message before we call 27583 * enableok(), we will catch it in the q->q_first check. 27584 * If the other thread queues the message after we call 27585 * enableok(), ip_wsrv will be called again by STREAMS. 27586 */ 27587 connp->conn_draining = 0; 27588 enableok(q); 27589 } 27590 27591 /* Enable the next conn for draining */ 27592 conn_drain_tail(connp, B_FALSE); 27593 27594 connp->conn_did_putbq = 0; 27595 } 27596 27597 /* 27598 * Walk the list of all conn's calling the function provided with the 27599 * specified argument for each. Note that this only walks conn's that 27600 * have been bound. 27601 * Applies to both IPv4 and IPv6. 27602 */ 27603 static void 27604 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27605 { 27606 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27607 func, arg, zoneid); 27608 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27609 func, arg, zoneid); 27610 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27611 func, arg, zoneid); 27612 conn_walk_fanout_table(ipcl_proto_fanout, 27613 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27614 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27615 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27616 } 27617 27618 /* 27619 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27620 * of conns that need to be drained, check if drain is already in progress. 27621 * If so set the idl_repeat bit, indicating that the last conn in the list 27622 * needs to reinitiate the drain once again, for the list. If drain is not 27623 * in progress for the list, initiate the draining, by qenabling the 1st 27624 * conn in the list. The drain is self-sustaining, each qenabled conn will 27625 * in turn qenable the next conn, when it is done/blocked/closing. 27626 */ 27627 static void 27628 conn_walk_drain(void) 27629 { 27630 int i; 27631 idl_t *idl; 27632 27633 IP_STAT(ip_conn_walk_drain); 27634 27635 for (i = 0; i < conn_drain_list_cnt; i++) { 27636 idl = &conn_drain_list[i]; 27637 mutex_enter(&idl->idl_lock); 27638 if (idl->idl_conn == NULL) { 27639 mutex_exit(&idl->idl_lock); 27640 continue; 27641 } 27642 /* 27643 * If this list is not being drained currently by 27644 * an ip_wsrv thread, start the process. 27645 */ 27646 if (idl->idl_conn_draining == NULL) { 27647 ASSERT(idl->idl_repeat == 0); 27648 qenable(idl->idl_conn->conn_wq); 27649 idl->idl_conn_draining = idl->idl_conn; 27650 } else { 27651 idl->idl_repeat = 1; 27652 } 27653 mutex_exit(&idl->idl_lock); 27654 } 27655 } 27656 27657 /* 27658 * Walk an conn hash table of `count' buckets, calling func for each entry. 27659 */ 27660 static void 27661 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27662 zoneid_t zoneid) 27663 { 27664 conn_t *connp; 27665 27666 while (count-- > 0) { 27667 mutex_enter(&connfp->connf_lock); 27668 for (connp = connfp->connf_head; connp != NULL; 27669 connp = connp->conn_next) { 27670 if (zoneid == GLOBAL_ZONEID || 27671 zoneid == connp->conn_zoneid) { 27672 CONN_INC_REF(connp); 27673 mutex_exit(&connfp->connf_lock); 27674 (*func)(connp, arg); 27675 mutex_enter(&connfp->connf_lock); 27676 CONN_DEC_REF(connp); 27677 } 27678 } 27679 mutex_exit(&connfp->connf_lock); 27680 connfp++; 27681 } 27682 } 27683 27684 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27685 static void 27686 conn_report1(conn_t *connp, void *mp) 27687 { 27688 char buf1[INET6_ADDRSTRLEN]; 27689 char buf2[INET6_ADDRSTRLEN]; 27690 uint_t print_len, buf_len; 27691 27692 ASSERT(connp != NULL); 27693 27694 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27695 if (buf_len <= 0) 27696 return; 27697 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27698 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27699 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27700 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27701 "%5d %s/%05d %s/%05d\n", 27702 (void *)connp, (void *)CONNP_TO_RQ(connp), 27703 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27704 buf1, connp->conn_lport, 27705 buf2, connp->conn_fport); 27706 if (print_len < buf_len) { 27707 ((mblk_t *)mp)->b_wptr += print_len; 27708 } else { 27709 ((mblk_t *)mp)->b_wptr += buf_len; 27710 } 27711 } 27712 27713 /* 27714 * Named Dispatch routine to produce a formatted report on all conns 27715 * that are listed in one of the fanout tables. 27716 * This report is accessed by using the ndd utility to "get" ND variable 27717 * "ip_conn_status". 27718 */ 27719 /* ARGSUSED */ 27720 static int 27721 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27722 { 27723 (void) mi_mpprintf(mp, 27724 "CONN " MI_COL_HDRPAD_STR 27725 "rfq " MI_COL_HDRPAD_STR 27726 "stq " MI_COL_HDRPAD_STR 27727 " zone local remote"); 27728 27729 /* 27730 * Because of the ndd constraint, at most we can have 64K buffer 27731 * to put in all conn info. So to be more efficient, just 27732 * allocate a 64K buffer here, assuming we need that large buffer. 27733 * This should be OK as only privileged processes can do ndd /dev/ip. 27734 */ 27735 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27736 /* The following may work even if we cannot get a large buf. */ 27737 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27738 return (0); 27739 } 27740 27741 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27742 return (0); 27743 } 27744 27745 /* 27746 * Determine if the ill and multicast aspects of that packets 27747 * "matches" the conn. 27748 */ 27749 boolean_t 27750 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27751 zoneid_t zoneid) 27752 { 27753 ill_t *in_ill; 27754 boolean_t found; 27755 ipif_t *ipif; 27756 ire_t *ire; 27757 ipaddr_t dst, src; 27758 27759 dst = ipha->ipha_dst; 27760 src = ipha->ipha_src; 27761 27762 /* 27763 * conn_incoming_ill is set by IP_BOUND_IF which limits 27764 * unicast, broadcast and multicast reception to 27765 * conn_incoming_ill. conn_wantpacket itself is called 27766 * only for BROADCAST and multicast. 27767 * 27768 * 1) ip_rput supresses duplicate broadcasts if the ill 27769 * is part of a group. Hence, we should be receiving 27770 * just one copy of broadcast for the whole group. 27771 * Thus, if it is part of the group the packet could 27772 * come on any ill of the group and hence we need a 27773 * match on the group. Otherwise, match on ill should 27774 * be sufficient. 27775 * 27776 * 2) ip_rput does not suppress duplicate multicast packets. 27777 * If there are two interfaces in a ill group and we have 27778 * 2 applications (conns) joined a multicast group G on 27779 * both the interfaces, ilm_lookup_ill filter in ip_rput 27780 * will give us two packets because we join G on both the 27781 * interfaces rather than nominating just one interface 27782 * for receiving multicast like broadcast above. So, 27783 * we have to call ilg_lookup_ill to filter out duplicate 27784 * copies, if ill is part of a group. 27785 */ 27786 in_ill = connp->conn_incoming_ill; 27787 if (in_ill != NULL) { 27788 if (in_ill->ill_group == NULL) { 27789 if (in_ill != ill) 27790 return (B_FALSE); 27791 } else if (in_ill->ill_group != ill->ill_group) { 27792 return (B_FALSE); 27793 } 27794 } 27795 27796 if (!CLASSD(dst)) { 27797 if (IPCL_ZONE_MATCH(connp, zoneid)) 27798 return (B_TRUE); 27799 /* 27800 * The conn is in a different zone; we need to check that this 27801 * broadcast address is configured in the application's zone and 27802 * on one ill in the group. 27803 */ 27804 ipif = ipif_get_next_ipif(NULL, ill); 27805 if (ipif == NULL) 27806 return (B_FALSE); 27807 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27808 connp->conn_zoneid, NULL, 27809 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27810 ipif_refrele(ipif); 27811 if (ire != NULL) { 27812 ire_refrele(ire); 27813 return (B_TRUE); 27814 } else { 27815 return (B_FALSE); 27816 } 27817 } 27818 27819 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27820 connp->conn_zoneid == zoneid) { 27821 /* 27822 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27823 * disabled, therefore we don't dispatch the multicast packet to 27824 * the sending zone. 27825 */ 27826 return (B_FALSE); 27827 } 27828 27829 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27830 connp->conn_zoneid != zoneid) { 27831 /* 27832 * Multicast packet on the loopback interface: we only match 27833 * conns who joined the group in the specified zone. 27834 */ 27835 return (B_FALSE); 27836 } 27837 27838 if (connp->conn_multi_router) { 27839 /* multicast packet and multicast router socket: send up */ 27840 return (B_TRUE); 27841 } 27842 27843 mutex_enter(&connp->conn_lock); 27844 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27845 mutex_exit(&connp->conn_lock); 27846 return (found); 27847 } 27848 27849 /* 27850 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27851 */ 27852 /* ARGSUSED */ 27853 static void 27854 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27855 { 27856 ill_t *ill = (ill_t *)q->q_ptr; 27857 mblk_t *mp1, *mp2; 27858 ipif_t *ipif; 27859 int err = 0; 27860 conn_t *connp = NULL; 27861 ipsq_t *ipsq; 27862 arc_t *arc; 27863 27864 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27865 27866 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27867 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27868 27869 ASSERT(IAM_WRITER_ILL(ill)); 27870 mp2 = mp->b_cont; 27871 mp->b_cont = NULL; 27872 27873 /* 27874 * We have now received the arp bringup completion message 27875 * from ARP. Mark the arp bringup as done. Also if the arp 27876 * stream has already started closing, send up the AR_ARP_CLOSING 27877 * ack now since ARP is waiting in close for this ack. 27878 */ 27879 mutex_enter(&ill->ill_lock); 27880 ill->ill_arp_bringup_pending = 0; 27881 if (ill->ill_arp_closing) { 27882 mutex_exit(&ill->ill_lock); 27883 /* Let's reuse the mp for sending the ack */ 27884 arc = (arc_t *)mp->b_rptr; 27885 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27886 arc->arc_cmd = AR_ARP_CLOSING; 27887 qreply(q, mp); 27888 } else { 27889 mutex_exit(&ill->ill_lock); 27890 freeb(mp); 27891 } 27892 27893 /* We should have an IOCTL waiting on this. */ 27894 ipsq = ill->ill_phyint->phyint_ipsq; 27895 ipif = ipsq->ipsq_pending_ipif; 27896 mp1 = ipsq_pending_mp_get(ipsq, &connp); 27897 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 27898 if (mp1 == NULL) { 27899 /* bringup was aborted by the user */ 27900 freemsg(mp2); 27901 return; 27902 } 27903 ASSERT(connp != NULL); 27904 q = CONNP_TO_WQ(connp); 27905 /* 27906 * If the DL_BIND_REQ fails, it is noted 27907 * in arc_name_offset. 27908 */ 27909 err = *((int *)mp2->b_rptr); 27910 if (err == 0) { 27911 if (ipif->ipif_isv6) { 27912 if ((err = ipif_up_done_v6(ipif)) != 0) 27913 ip0dbg(("ip_arp_done: init failed\n")); 27914 } else { 27915 if ((err = ipif_up_done(ipif)) != 0) 27916 ip0dbg(("ip_arp_done: init failed\n")); 27917 } 27918 } else { 27919 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 27920 } 27921 27922 freemsg(mp2); 27923 27924 if ((err == 0) && (ill->ill_up_ipifs)) { 27925 err = ill_up_ipifs(ill, q, mp1); 27926 if (err == EINPROGRESS) 27927 return; 27928 } 27929 27930 if (ill->ill_up_ipifs) { 27931 ill_group_cleanup(ill); 27932 } 27933 27934 /* 27935 * The ioctl must complete now without EINPROGRESS 27936 * since ipsq_pending_mp_get has removed the ioctl mblk 27937 * from ipsq_pending_mp. Otherwise the ioctl will be 27938 * stuck for ever in the ipsq. 27939 */ 27940 ASSERT(err != EINPROGRESS); 27941 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 27942 } 27943 27944 /* Allocate the private structure */ 27945 static int 27946 ip_priv_alloc(void **bufp) 27947 { 27948 void *buf; 27949 27950 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 27951 return (ENOMEM); 27952 27953 *bufp = buf; 27954 return (0); 27955 } 27956 27957 /* Function to delete the private structure */ 27958 void 27959 ip_priv_free(void *buf) 27960 { 27961 ASSERT(buf != NULL); 27962 kmem_free(buf, sizeof (ip_priv_t)); 27963 } 27964 27965 /* 27966 * The entry point for IPPF processing. 27967 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 27968 * routine just returns. 27969 * 27970 * When called, ip_process generates an ipp_packet_t structure 27971 * which holds the state information for this packet and invokes the 27972 * the classifier (via ipp_packet_process). The classification, depending on 27973 * configured filters, results in a list of actions for this packet. Invoking 27974 * an action may cause the packet to be dropped, in which case the resulting 27975 * mblk (*mpp) is NULL. proc indicates the callout position for 27976 * this packet and ill_index is the interface this packet on or will leave 27977 * on (inbound and outbound resp.). 27978 */ 27979 void 27980 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 27981 { 27982 mblk_t *mp; 27983 ip_priv_t *priv; 27984 ipp_action_id_t aid; 27985 int rc = 0; 27986 ipp_packet_t *pp; 27987 #define IP_CLASS "ip" 27988 27989 /* If the classifier is not loaded, return */ 27990 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 27991 return; 27992 } 27993 27994 mp = *mpp; 27995 ASSERT(mp != NULL); 27996 27997 /* Allocate the packet structure */ 27998 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 27999 if (rc != 0) { 28000 *mpp = NULL; 28001 freemsg(mp); 28002 return; 28003 } 28004 28005 /* Allocate the private structure */ 28006 rc = ip_priv_alloc((void **)&priv); 28007 if (rc != 0) { 28008 *mpp = NULL; 28009 freemsg(mp); 28010 ipp_packet_free(pp); 28011 return; 28012 } 28013 priv->proc = proc; 28014 priv->ill_index = ill_index; 28015 ipp_packet_set_private(pp, priv, ip_priv_free); 28016 ipp_packet_set_data(pp, mp); 28017 28018 /* Invoke the classifier */ 28019 rc = ipp_packet_process(&pp); 28020 if (pp != NULL) { 28021 mp = ipp_packet_get_data(pp); 28022 ipp_packet_free(pp); 28023 if (rc != 0) { 28024 freemsg(mp); 28025 *mpp = NULL; 28026 } 28027 } else { 28028 *mpp = NULL; 28029 } 28030 #undef IP_CLASS 28031 } 28032 28033 /* 28034 * Propagate a multicast group membership operation (add/drop) on 28035 * all the interfaces crossed by the related multirt routes. 28036 * The call is considered successful if the operation succeeds 28037 * on at least one interface. 28038 */ 28039 static int 28040 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28041 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28042 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28043 mblk_t *first_mp) 28044 { 28045 ire_t *ire_gw; 28046 irb_t *irb; 28047 int error = 0; 28048 opt_restart_t *or; 28049 28050 irb = ire->ire_bucket; 28051 ASSERT(irb != NULL); 28052 28053 ASSERT(DB_TYPE(first_mp) == M_CTL); 28054 28055 or = (opt_restart_t *)first_mp->b_rptr; 28056 IRB_REFHOLD(irb); 28057 for (; ire != NULL; ire = ire->ire_next) { 28058 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28059 continue; 28060 if (ire->ire_addr != group) 28061 continue; 28062 28063 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28064 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28065 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 28066 /* No resolver exists for the gateway; skip this ire. */ 28067 if (ire_gw == NULL) 28068 continue; 28069 28070 /* 28071 * This function can return EINPROGRESS. If so the operation 28072 * will be restarted from ip_restart_optmgmt which will 28073 * call ip_opt_set and option processing will restart for 28074 * this option. So we may end up calling 'fn' more than once. 28075 * This requires that 'fn' is idempotent except for the 28076 * return value. The operation is considered a success if 28077 * it succeeds at least once on any one interface. 28078 */ 28079 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28080 NULL, fmode, src, first_mp); 28081 if (error == 0) 28082 or->or_private = CGTP_MCAST_SUCCESS; 28083 28084 if (ip_debug > 0) { 28085 ulong_t off; 28086 char *ksym; 28087 ksym = kobj_getsymname((uintptr_t)fn, &off); 28088 ip2dbg(("ip_multirt_apply_membership: " 28089 "called %s, multirt group 0x%08x via itf 0x%08x, " 28090 "error %d [success %u]\n", 28091 ksym ? ksym : "?", 28092 ntohl(group), ntohl(ire_gw->ire_src_addr), 28093 error, or->or_private)); 28094 } 28095 28096 ire_refrele(ire_gw); 28097 if (error == EINPROGRESS) { 28098 IRB_REFRELE(irb); 28099 return (error); 28100 } 28101 } 28102 IRB_REFRELE(irb); 28103 /* 28104 * Consider the call as successful if we succeeded on at least 28105 * one interface. Otherwise, return the last encountered error. 28106 */ 28107 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28108 } 28109 28110 28111 /* 28112 * Issue a warning regarding a route crossing an interface with an 28113 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28114 * amount of time is logged. 28115 */ 28116 static void 28117 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28118 { 28119 hrtime_t current = gethrtime(); 28120 char buf[INET_ADDRSTRLEN]; 28121 28122 /* Convert interval in ms to hrtime in ns */ 28123 if (multirt_bad_mtu_last_time + 28124 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 28125 current) { 28126 cmn_err(CE_WARN, "ip: ignoring multiroute " 28127 "to %s, incorrect MTU %u (expected %u)\n", 28128 ip_dot_addr(ire->ire_addr, buf), 28129 ire->ire_max_frag, max_frag); 28130 28131 multirt_bad_mtu_last_time = current; 28132 } 28133 } 28134 28135 28136 /* 28137 * Get the CGTP (multirouting) filtering status. 28138 * If 0, the CGTP hooks are transparent. 28139 */ 28140 /* ARGSUSED */ 28141 static int 28142 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28143 { 28144 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28145 28146 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28147 return (0); 28148 } 28149 28150 28151 /* 28152 * Set the CGTP (multirouting) filtering status. 28153 * If the status is changed from active to transparent 28154 * or from transparent to active, forward the new status 28155 * to the filtering module (if loaded). 28156 */ 28157 /* ARGSUSED */ 28158 static int 28159 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28160 cred_t *ioc_cr) 28161 { 28162 long new_value; 28163 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28164 28165 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28166 new_value < 0 || new_value > 1) { 28167 return (EINVAL); 28168 } 28169 28170 /* 28171 * Do not enable CGTP filtering - thus preventing the hooks 28172 * from being invoked - if the version number of the 28173 * filtering module hooks does not match. 28174 */ 28175 if ((ip_cgtp_filter_ops != NULL) && 28176 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28177 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28178 "(module hooks version %d, expecting %d)\n", 28179 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 28180 return (ENOTSUP); 28181 } 28182 28183 if ((!*ip_cgtp_filter_value) && new_value) { 28184 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28185 ip_cgtp_filter_ops == NULL ? 28186 " (module not loaded)" : ""); 28187 } 28188 if (*ip_cgtp_filter_value && (!new_value)) { 28189 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28190 ip_cgtp_filter_ops == NULL ? 28191 " (module not loaded)" : ""); 28192 } 28193 28194 if (ip_cgtp_filter_ops != NULL) { 28195 int res; 28196 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 28197 return (res); 28198 } 28199 } 28200 28201 *ip_cgtp_filter_value = (boolean_t)new_value; 28202 28203 return (0); 28204 } 28205 28206 28207 /* 28208 * Return the expected CGTP hooks version number. 28209 */ 28210 int 28211 ip_cgtp_filter_supported(void) 28212 { 28213 return (ip_cgtp_filter_rev); 28214 } 28215 28216 28217 /* 28218 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28219 * or by invoking this function. In the first case, the version number 28220 * of the registered structure is checked at hooks activation time 28221 * in ip_cgtp_filter_set(). 28222 */ 28223 int 28224 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28225 { 28226 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28227 return (ENOTSUP); 28228 28229 ip_cgtp_filter_ops = ops; 28230 return (0); 28231 } 28232 28233 static squeue_func_t 28234 ip_squeue_switch(int val) 28235 { 28236 squeue_func_t rval = squeue_fill; 28237 28238 switch (val) { 28239 case IP_SQUEUE_ENTER_NODRAIN: 28240 rval = squeue_enter_nodrain; 28241 break; 28242 case IP_SQUEUE_ENTER: 28243 rval = squeue_enter; 28244 break; 28245 default: 28246 break; 28247 } 28248 return (rval); 28249 } 28250 28251 /* ARGSUSED */ 28252 static int 28253 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28254 caddr_t addr, cred_t *cr) 28255 { 28256 int *v = (int *)addr; 28257 long new_value; 28258 28259 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28260 return (EINVAL); 28261 28262 ip_input_proc = ip_squeue_switch(new_value); 28263 *v = new_value; 28264 return (0); 28265 } 28266 28267 /* ARGSUSED */ 28268 static int 28269 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28270 caddr_t addr, cred_t *cr) 28271 { 28272 int *v = (int *)addr; 28273 long new_value; 28274 28275 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28276 return (EINVAL); 28277 28278 *v = new_value; 28279 return (0); 28280 } 28281 28282 static void 28283 ip_kstat_init(void) 28284 { 28285 ip_named_kstat_t template = { 28286 { "forwarding", KSTAT_DATA_UINT32, 0 }, 28287 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 28288 { "inReceives", KSTAT_DATA_UINT32, 0 }, 28289 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 28290 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 28291 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 28292 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 28293 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 28294 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 28295 { "outRequests", KSTAT_DATA_UINT32, 0 }, 28296 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 28297 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 28298 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 28299 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 28300 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 28301 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 28302 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 28303 { "fragFails", KSTAT_DATA_UINT32, 0 }, 28304 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 28305 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 28306 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 28307 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 28308 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 28309 { "inErrs", KSTAT_DATA_UINT32, 0 }, 28310 { "noPorts", KSTAT_DATA_UINT32, 0 }, 28311 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 28312 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 28313 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 28314 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 28315 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 28316 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 28317 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 28318 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 28319 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 28320 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 28321 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 28322 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 28323 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 28324 }; 28325 28326 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 28327 NUM_OF_FIELDS(ip_named_kstat_t), 28328 0); 28329 if (!ip_mibkp) 28330 return; 28331 28332 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 28333 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 28334 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 28335 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 28336 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 28337 28338 template.netToMediaEntrySize.value.i32 = 28339 sizeof (mib2_ipNetToMediaEntry_t); 28340 28341 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 28342 28343 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 28344 28345 ip_mibkp->ks_update = ip_kstat_update; 28346 28347 kstat_install(ip_mibkp); 28348 } 28349 28350 static void 28351 ip_kstat_fini(void) 28352 { 28353 28354 if (ip_mibkp != NULL) { 28355 kstat_delete(ip_mibkp); 28356 ip_mibkp = NULL; 28357 } 28358 } 28359 28360 static int 28361 ip_kstat_update(kstat_t *kp, int rw) 28362 { 28363 ip_named_kstat_t *ipkp; 28364 28365 if (!kp || !kp->ks_data) 28366 return (EIO); 28367 28368 if (rw == KSTAT_WRITE) 28369 return (EACCES); 28370 28371 ipkp = (ip_named_kstat_t *)kp->ks_data; 28372 28373 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 28374 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 28375 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 28376 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 28377 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 28378 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 28379 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 28380 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 28381 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 28382 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 28383 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 28384 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28385 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28386 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28387 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28388 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28389 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28390 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28391 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28392 28393 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28394 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28395 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28396 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28397 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28398 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28399 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28400 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28401 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28402 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28403 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28404 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28405 28406 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28407 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28408 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28409 28410 return (0); 28411 } 28412 28413 static void 28414 icmp_kstat_init(void) 28415 { 28416 icmp_named_kstat_t template = { 28417 { "inMsgs", KSTAT_DATA_UINT32 }, 28418 { "inErrors", KSTAT_DATA_UINT32 }, 28419 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28420 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28421 { "inParmProbs", KSTAT_DATA_UINT32 }, 28422 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28423 { "inRedirects", KSTAT_DATA_UINT32 }, 28424 { "inEchos", KSTAT_DATA_UINT32 }, 28425 { "inEchoReps", KSTAT_DATA_UINT32 }, 28426 { "inTimestamps", KSTAT_DATA_UINT32 }, 28427 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28428 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28429 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28430 { "outMsgs", KSTAT_DATA_UINT32 }, 28431 { "outErrors", KSTAT_DATA_UINT32 }, 28432 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28433 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28434 { "outParmProbs", KSTAT_DATA_UINT32 }, 28435 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28436 { "outRedirects", KSTAT_DATA_UINT32 }, 28437 { "outEchos", KSTAT_DATA_UINT32 }, 28438 { "outEchoReps", KSTAT_DATA_UINT32 }, 28439 { "outTimestamps", KSTAT_DATA_UINT32 }, 28440 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28441 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28442 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28443 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28444 { "inUnknowns", KSTAT_DATA_UINT32 }, 28445 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28446 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28447 { "outDrops", KSTAT_DATA_UINT32 }, 28448 { "inOverFlows", KSTAT_DATA_UINT32 }, 28449 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28450 }; 28451 28452 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28453 NUM_OF_FIELDS(icmp_named_kstat_t), 28454 0); 28455 if (icmp_mibkp == NULL) 28456 return; 28457 28458 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28459 28460 icmp_mibkp->ks_update = icmp_kstat_update; 28461 28462 kstat_install(icmp_mibkp); 28463 } 28464 28465 static void 28466 icmp_kstat_fini(void) 28467 { 28468 28469 if (icmp_mibkp != NULL) { 28470 kstat_delete(icmp_mibkp); 28471 icmp_mibkp = NULL; 28472 } 28473 } 28474 28475 static int 28476 icmp_kstat_update(kstat_t *kp, int rw) 28477 { 28478 icmp_named_kstat_t *icmpkp; 28479 28480 if ((kp == NULL) || (kp->ks_data == NULL)) 28481 return (EIO); 28482 28483 if (rw == KSTAT_WRITE) 28484 return (EACCES); 28485 28486 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28487 28488 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28489 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28490 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28491 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28492 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28493 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28494 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28495 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28496 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28497 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28498 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28499 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28500 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28501 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28502 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28503 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28504 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28505 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28506 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28507 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28508 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28509 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28510 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28511 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28512 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28513 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28514 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28515 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28516 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28517 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28518 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28519 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28520 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28521 28522 return (0); 28523 } 28524 28525 /* 28526 * This is the fanout function for raw socket opened for SCTP. Note 28527 * that it is called after SCTP checks that there is no socket which 28528 * wants a packet. Then before SCTP handles this out of the blue packet, 28529 * this function is called to see if there is any raw socket for SCTP. 28530 * If there is and it is bound to the correct address, the packet will 28531 * be sent to that socket. Note that only one raw socket can be bound to 28532 * a port. This is assured in ipcl_sctp_hash_insert(); 28533 */ 28534 void 28535 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28536 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28537 uint_t ipif_seqid, zoneid_t zoneid) 28538 { 28539 conn_t *connp; 28540 queue_t *rq; 28541 mblk_t *first_mp; 28542 boolean_t secure; 28543 ip6_t *ip6h; 28544 28545 first_mp = mp; 28546 if (mctl_present) { 28547 mp = first_mp->b_cont; 28548 secure = ipsec_in_is_secure(first_mp); 28549 ASSERT(mp != NULL); 28550 } else { 28551 secure = B_FALSE; 28552 } 28553 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28554 28555 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28556 if (connp == NULL) { 28557 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28558 mctl_present); 28559 return; 28560 } 28561 rq = connp->conn_rq; 28562 if (!canputnext(rq)) { 28563 CONN_DEC_REF(connp); 28564 BUMP_MIB(&ip_mib, rawipInOverflows); 28565 freemsg(first_mp); 28566 return; 28567 } 28568 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28569 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28570 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28571 (isv4 ? ipha : NULL), ip6h, mctl_present); 28572 if (first_mp == NULL) { 28573 CONN_DEC_REF(connp); 28574 return; 28575 } 28576 } 28577 /* 28578 * We probably should not send M_CTL message up to 28579 * raw socket. 28580 */ 28581 if (mctl_present) 28582 freeb(first_mp); 28583 28584 /* Initiate IPPF processing here if needed. */ 28585 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28586 (!isv4 && IP6_IN_IPP(flags))) { 28587 ip_process(IPP_LOCAL_IN, &mp, 28588 recv_ill->ill_phyint->phyint_ifindex); 28589 if (mp == NULL) { 28590 CONN_DEC_REF(connp); 28591 return; 28592 } 28593 } 28594 28595 if (connp->conn_recvif || connp->conn_recvslla || 28596 ((connp->conn_ipv6_recvpktinfo || 28597 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28598 (flags & IP_FF_IP6INFO))) { 28599 int in_flags = 0; 28600 28601 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28602 in_flags = IPF_RECVIF; 28603 } 28604 if (connp->conn_recvslla) { 28605 in_flags |= IPF_RECVSLLA; 28606 } 28607 if (isv4) { 28608 mp = ip_add_info(mp, recv_ill, in_flags); 28609 } else { 28610 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28611 if (mp == NULL) { 28612 CONN_DEC_REF(connp); 28613 return; 28614 } 28615 } 28616 } 28617 28618 BUMP_MIB(&ip_mib, ipInDelivers); 28619 /* 28620 * We are sending the IPSEC_IN message also up. Refer 28621 * to comments above this function. 28622 */ 28623 putnext(rq, mp); 28624 CONN_DEC_REF(connp); 28625 } 28626 28627 /* 28628 * This function should be called only if all packet processing 28629 * including fragmentation is complete. Callers of this function 28630 * must set mp->b_prev to one of these values: 28631 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28632 * prior to handing over the mp as first argument to this function. 28633 * 28634 * If the ire passed by caller is incomplete, this function 28635 * queues the packet and if necessary, sends ARP request and bails. 28636 * If the ire passed is fully resolved, we simply prepend 28637 * the link-layer header to the packet, do ipsec hw acceleration 28638 * work if necessary, and send the packet out on the wire. 28639 * 28640 * NOTE: IPSEC will only call this function with fully resolved 28641 * ires if hw acceleration is involved. 28642 * TODO list : 28643 * a Handle M_MULTIDATA so that 28644 * tcp_multisend->tcp_multisend_data can 28645 * call ip_xmit_v4 directly 28646 * b Handle post-ARP work for fragments so that 28647 * ip_wput_frag can call this function. 28648 */ 28649 ipxmit_state_t 28650 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28651 { 28652 nce_t *arpce; 28653 queue_t *q; 28654 int ill_index; 28655 mblk_t *nxt_mp, *first_mp; 28656 boolean_t xmit_drop = B_FALSE; 28657 ip_proc_t proc; 28658 ill_t *out_ill; 28659 28660 arpce = ire->ire_nce; 28661 ASSERT(arpce != NULL); 28662 28663 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28664 28665 mutex_enter(&arpce->nce_lock); 28666 switch (arpce->nce_state) { 28667 case ND_REACHABLE: 28668 /* If there are other queued packets, queue this packet */ 28669 if (arpce->nce_qd_mp != NULL) { 28670 if (mp != NULL) 28671 nce_queue_mp_common(arpce, mp, B_FALSE); 28672 mp = arpce->nce_qd_mp; 28673 } 28674 arpce->nce_qd_mp = NULL; 28675 mutex_exit(&arpce->nce_lock); 28676 28677 /* 28678 * Flush the queue. In the common case, where the 28679 * ARP is already resolved, it will go through the 28680 * while loop only once. 28681 */ 28682 while (mp != NULL) { 28683 28684 nxt_mp = mp->b_next; 28685 mp->b_next = NULL; 28686 /* 28687 * This info is needed for IPQOS to do COS marking 28688 * in ip_wput_attach_llhdr->ip_process. 28689 */ 28690 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28691 mp->b_prev = NULL; 28692 28693 /* set up ill index for outbound qos processing */ 28694 out_ill = ire->ire_ipif->ipif_ill; 28695 ill_index = out_ill->ill_phyint->phyint_ifindex; 28696 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 28697 ill_index); 28698 if (first_mp == NULL) { 28699 xmit_drop = B_TRUE; 28700 if (proc == IPP_FWD_OUT) { 28701 BUMP_MIB(&ip_mib, ipInDiscards); 28702 } else { 28703 BUMP_MIB(&ip_mib, ipOutDiscards); 28704 } 28705 goto next_mp; 28706 } 28707 /* non-ipsec hw accel case */ 28708 if (io == NULL || !io->ipsec_out_accelerated) { 28709 /* send it */ 28710 q = ire->ire_stq; 28711 if (proc == IPP_FWD_OUT) { 28712 UPDATE_IB_PKT_COUNT(ire); 28713 } else { 28714 UPDATE_OB_PKT_COUNT(ire); 28715 } 28716 ire->ire_last_used_time = lbolt; 28717 28718 if (flow_ctl_enabled || canputnext(q)) { 28719 if (proc == IPP_FWD_OUT) { 28720 BUMP_MIB(&ip_mib, 28721 ipForwDatagrams); 28722 } 28723 28724 if (mp == NULL) 28725 goto next_mp; 28726 putnext(q, first_mp); 28727 } else { 28728 BUMP_MIB(&ip_mib, 28729 ipOutDiscards); 28730 xmit_drop = B_TRUE; 28731 freemsg(first_mp); 28732 } 28733 } else { 28734 /* 28735 * Safety Pup says: make sure this 28736 * is going to the right interface! 28737 */ 28738 ill_t *ill1 = 28739 (ill_t *)ire->ire_stq->q_ptr; 28740 int ifindex = 28741 ill1->ill_phyint->phyint_ifindex; 28742 if (ifindex != 28743 io->ipsec_out_capab_ill_index) { 28744 xmit_drop = B_TRUE; 28745 freemsg(mp); 28746 } else { 28747 ipsec_hw_putnext(ire->ire_stq, 28748 mp); 28749 } 28750 } 28751 next_mp: 28752 mp = nxt_mp; 28753 } /* while (mp != NULL) */ 28754 if (xmit_drop) 28755 return (SEND_FAILED); 28756 else 28757 return (SEND_PASSED); 28758 28759 case ND_INITIAL: 28760 case ND_INCOMPLETE: 28761 28762 /* 28763 * While we do send off packets to dests that 28764 * use fully-resolved CGTP routes, we do not 28765 * handle unresolved CGTP routes. 28766 */ 28767 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28768 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28769 28770 if (mp != NULL) { 28771 /* queue the packet */ 28772 nce_queue_mp_common(arpce, mp, B_FALSE); 28773 } 28774 28775 if (arpce->nce_state == ND_INCOMPLETE) { 28776 mutex_exit(&arpce->nce_lock); 28777 DTRACE_PROBE3(ip__xmit__incomplete, 28778 (ire_t *), ire, (mblk_t *), mp, 28779 (ipsec_out_t *), io); 28780 return (LOOKUP_IN_PROGRESS); 28781 } 28782 28783 arpce->nce_state = ND_INCOMPLETE; 28784 mutex_exit(&arpce->nce_lock); 28785 /* 28786 * Note that ire_add() (called from ire_forward()) 28787 * holds a ref on the ire until ARP is completed. 28788 */ 28789 28790 ire_arpresolve(ire, ire_to_ill(ire)); 28791 return (LOOKUP_IN_PROGRESS); 28792 default: 28793 ASSERT(0); 28794 mutex_exit(&arpce->nce_lock); 28795 return (LLHDR_RESLV_FAILED); 28796 } 28797 } 28798 28799 /* 28800 * Return B_TRUE if the buffers differ in length or content. 28801 * This is used for comparing extension header buffers. 28802 * Note that an extension header would be declared different 28803 * even if all that changed was the next header value in that header i.e. 28804 * what really changed is the next extension header. 28805 */ 28806 boolean_t 28807 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28808 uint_t blen) 28809 { 28810 if (!b_valid) 28811 blen = 0; 28812 28813 if (alen != blen) 28814 return (B_TRUE); 28815 if (alen == 0) 28816 return (B_FALSE); /* Both zero length */ 28817 return (bcmp(abuf, bbuf, alen)); 28818 } 28819 28820 /* 28821 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28822 * Return B_FALSE if memory allocation fails - don't change any state! 28823 */ 28824 boolean_t 28825 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28826 const void *src, uint_t srclen) 28827 { 28828 void *dst; 28829 28830 if (!src_valid) 28831 srclen = 0; 28832 28833 ASSERT(*dstlenp == 0); 28834 if (src != NULL && srclen != 0) { 28835 dst = mi_alloc(srclen, BPRI_MED); 28836 if (dst == NULL) 28837 return (B_FALSE); 28838 } else { 28839 dst = NULL; 28840 } 28841 if (*dstp != NULL) 28842 mi_free(*dstp); 28843 *dstp = dst; 28844 *dstlenp = dst == NULL ? 0 : srclen; 28845 return (B_TRUE); 28846 } 28847 28848 /* 28849 * Replace what is in *dst, *dstlen with the source. 28850 * Assumes ip_allocbuf has already been called. 28851 */ 28852 void 28853 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28854 const void *src, uint_t srclen) 28855 { 28856 if (!src_valid) 28857 srclen = 0; 28858 28859 ASSERT(*dstlenp == srclen); 28860 if (src != NULL && srclen != 0) 28861 bcopy(src, *dstp, srclen); 28862 } 28863 28864 /* 28865 * Free the storage pointed to by the members of an ip6_pkt_t. 28866 */ 28867 void 28868 ip6_pkt_free(ip6_pkt_t *ipp) 28869 { 28870 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28871 28872 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28873 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28874 ipp->ipp_hopopts = NULL; 28875 ipp->ipp_hopoptslen = 0; 28876 } 28877 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28878 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28879 ipp->ipp_rtdstopts = NULL; 28880 ipp->ipp_rtdstoptslen = 0; 28881 } 28882 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28883 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28884 ipp->ipp_dstopts = NULL; 28885 ipp->ipp_dstoptslen = 0; 28886 } 28887 if (ipp->ipp_fields & IPPF_RTHDR) { 28888 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 28889 ipp->ipp_rthdr = NULL; 28890 ipp->ipp_rthdrlen = 0; 28891 } 28892 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 28893 IPPF_RTHDR); 28894 } 28895