1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 884 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 885 #ifdef DEBUG 886 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 887 #else 888 { 0, 0, 0, "" }, 889 #endif 890 }; 891 892 /* 893 * Extended NDP table 894 * The addresses for the first two are filled in to be ips_ip_g_forward 895 * and ips_ipv6_forward at init time. 896 */ 897 static ipndp_t lcl_ndp_arr[] = { 898 /* getf setf data name */ 899 #define IPNDP_IP_FORWARDING_OFFSET 0 900 { ip_param_generic_get, ip_forward_set, NULL, 901 "ip_forwarding" }, 902 #define IPNDP_IP6_FORWARDING_OFFSET 1 903 { ip_param_generic_get, ip_forward_set, NULL, 904 "ip6_forwarding" }, 905 { ip_ill_report, NULL, NULL, 906 "ip_ill_status" }, 907 { ip_ipif_report, NULL, NULL, 908 "ip_ipif_status" }, 909 { ip_ire_report, NULL, NULL, 910 "ipv4_ire_status" }, 911 { ip_ire_report_mrtun, NULL, NULL, 912 "ipv4_mrtun_ire_status" }, 913 { ip_ire_report_srcif, NULL, NULL, 914 "ipv4_srcif_ire_status" }, 915 { ip_ire_report_v6, NULL, NULL, 916 "ipv6_ire_status" }, 917 { ip_conn_report, NULL, NULL, 918 "ip_conn_status" }, 919 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 920 "ip_rput_pullups" }, 921 { ndp_report, NULL, NULL, 922 "ip_ndp_cache_report" }, 923 { ip_srcid_report, NULL, NULL, 924 "ip_srcid_status" }, 925 { ip_param_generic_get, ip_squeue_profile_set, 926 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 927 { ip_param_generic_get, ip_squeue_bind_set, 928 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 929 { ip_param_generic_get, ip_input_proc_set, 930 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 931 { ip_param_generic_get, ip_int_set, 932 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 933 #define IPNDP_CGTP_FILTER_OFFSET 16 934 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 935 "ip_cgtp_filter" }, 936 { ip_param_generic_get, ip_int_set, 937 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 938 #define IPNDP_IPMP_HOOK_OFFSET 18 939 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 940 "ipmp_hook_emulation" }, 941 }; 942 943 /* 944 * Table of IP ioctls encoding the various properties of the ioctl and 945 * indexed based on the last byte of the ioctl command. Occasionally there 946 * is a clash, and there is more than 1 ioctl with the same last byte. 947 * In such a case 1 ioctl is encoded in the ndx table and the remaining 948 * ioctls are encoded in the misc table. An entry in the ndx table is 949 * retrieved by indexing on the last byte of the ioctl command and comparing 950 * the ioctl command with the value in the ndx table. In the event of a 951 * mismatch the misc table is then searched sequentially for the desired 952 * ioctl command. 953 * 954 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 955 */ 956 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 957 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 966 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 967 968 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocaddrt, NULL }, 970 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 971 MISC_CMD, ip_siocdelrt, NULL }, 972 973 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 974 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 975 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 976 IF_CMD, ip_sioctl_get_addr, NULL }, 977 978 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 979 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 980 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 981 IPI_GET_CMD | IPI_REPL, 982 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 983 984 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 985 IPI_PRIV | IPI_WR | IPI_REPL, 986 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 987 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 988 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 989 IF_CMD, ip_sioctl_get_flags, NULL }, 990 991 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 992 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 993 994 /* copyin size cannot be coded for SIOCGIFCONF */ 995 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 996 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 997 998 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 999 IF_CMD, ip_sioctl_mtu, NULL }, 1000 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1001 IF_CMD, ip_sioctl_get_mtu, NULL }, 1002 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1003 IPI_GET_CMD | IPI_REPL, 1004 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1005 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1006 IF_CMD, ip_sioctl_brdaddr, NULL }, 1007 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1008 IPI_GET_CMD | IPI_REPL, 1009 IF_CMD, ip_sioctl_get_netmask, NULL }, 1010 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1011 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1012 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1013 IPI_GET_CMD | IPI_REPL, 1014 IF_CMD, ip_sioctl_get_metric, NULL }, 1015 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1016 IF_CMD, ip_sioctl_metric, NULL }, 1017 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 1019 /* See 166-168 below for extended SIOC*XARP ioctls */ 1020 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1025 MISC_CMD, ip_sioctl_arp, NULL }, 1026 1027 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 1049 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1050 MISC_CMD, if_unitsel, if_unitsel_restart }, 1051 1052 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 1071 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1072 IPI_PRIV | IPI_WR | IPI_MODOK, 1073 IF_CMD, ip_sioctl_sifname, NULL }, 1074 1075 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 1089 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1090 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1091 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1092 IF_CMD, ip_sioctl_get_muxid, NULL }, 1093 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1094 IPI_PRIV | IPI_WR | IPI_REPL, 1095 IF_CMD, ip_sioctl_muxid, NULL }, 1096 1097 /* Both if and lif variants share same func */ 1098 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1099 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1100 /* Both if and lif variants share same func */ 1101 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1102 IPI_PRIV | IPI_WR | IPI_REPL, 1103 IF_CMD, ip_sioctl_slifindex, NULL }, 1104 1105 /* copyin size cannot be coded for SIOCGIFCONF */ 1106 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1107 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1108 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 1126 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1127 IPI_PRIV | IPI_WR | IPI_REPL, 1128 LIF_CMD, ip_sioctl_removeif, 1129 ip_sioctl_removeif_restart }, 1130 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1131 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1132 LIF_CMD, ip_sioctl_addif, NULL }, 1133 #define SIOCLIFADDR_NDX 112 1134 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1135 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1136 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1137 IPI_GET_CMD | IPI_REPL, 1138 LIF_CMD, ip_sioctl_get_addr, NULL }, 1139 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1140 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1141 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1142 IPI_GET_CMD | IPI_REPL, 1143 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1144 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1145 IPI_PRIV | IPI_WR | IPI_REPL, 1146 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1147 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1148 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_flags, NULL }, 1150 1151 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 1154 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1155 ip_sioctl_get_lifconf, NULL }, 1156 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1157 LIF_CMD, ip_sioctl_mtu, NULL }, 1158 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1159 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1160 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1161 IPI_GET_CMD | IPI_REPL, 1162 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1163 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1164 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1165 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1166 IPI_GET_CMD | IPI_REPL, 1167 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1168 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1169 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1170 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1171 IPI_GET_CMD | IPI_REPL, 1172 LIF_CMD, ip_sioctl_get_metric, NULL }, 1173 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1174 LIF_CMD, ip_sioctl_metric, NULL }, 1175 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1176 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1177 LIF_CMD, ip_sioctl_slifname, 1178 ip_sioctl_slifname_restart }, 1179 1180 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1181 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1182 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1183 IPI_GET_CMD | IPI_REPL, 1184 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1185 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1186 IPI_PRIV | IPI_WR | IPI_REPL, 1187 LIF_CMD, ip_sioctl_muxid, NULL }, 1188 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1189 IPI_GET_CMD | IPI_REPL, 1190 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1191 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1192 IPI_PRIV | IPI_WR | IPI_REPL, 1193 LIF_CMD, ip_sioctl_slifindex, 0 }, 1194 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_token, NULL }, 1196 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1197 IPI_GET_CMD | IPI_REPL, 1198 LIF_CMD, ip_sioctl_get_token, NULL }, 1199 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1201 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1202 IPI_GET_CMD | IPI_REPL, 1203 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1204 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1206 1207 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1208 IPI_GET_CMD | IPI_REPL, 1209 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1210 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1211 LIF_CMD, ip_siocdelndp_v6, NULL }, 1212 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1213 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1214 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1215 LIF_CMD, ip_siocsetndp_v6, NULL }, 1216 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1218 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1219 MISC_CMD, ip_sioctl_tonlink, NULL }, 1220 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1221 MISC_CMD, ip_sioctl_tmysite, NULL }, 1222 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1223 TUN_CMD, ip_sioctl_tunparam, NULL }, 1224 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1225 IPI_PRIV | IPI_WR, 1226 TUN_CMD, ip_sioctl_tunparam, NULL }, 1227 1228 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1229 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1232 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1233 1234 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1235 IPI_PRIV | IPI_WR | IPI_REPL, 1236 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1237 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1238 IPI_PRIV | IPI_WR | IPI_REPL, 1239 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1240 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, 1242 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1243 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1244 IPI_GET_CMD | IPI_REPL, 1245 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1246 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1247 IPI_GET_CMD | IPI_REPL, 1248 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1249 1250 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1251 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1253 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1254 1255 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1256 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1257 1258 /* These are handled in ip_sioctl_copyin_setup itself */ 1259 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1262 MISC_CMD, NULL, NULL }, 1263 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1264 1265 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1266 ip_sioctl_get_lifconf, NULL }, 1267 1268 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1273 MISC_CMD, ip_sioctl_xarp, NULL }, 1274 1275 /* SIOCPOPSOCKFS is not handled by IP */ 1276 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1277 1278 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1279 IPI_GET_CMD | IPI_REPL, 1280 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1281 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1282 IPI_PRIV | IPI_WR | IPI_REPL, 1283 LIF_CMD, ip_sioctl_slifzone, 1284 ip_sioctl_slifzone_restart }, 1285 /* 172-174 are SCTP ioctls and not handled by IP */ 1286 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1288 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1289 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1290 IPI_GET_CMD, LIF_CMD, 1291 ip_sioctl_get_lifusesrc, 0 }, 1292 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1293 IPI_PRIV | IPI_WR, 1294 LIF_CMD, ip_sioctl_slifusesrc, 1295 NULL }, 1296 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1297 ip_sioctl_get_lifsrcof, NULL }, 1298 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1305 MISC_CMD, ip_sioctl_msfilter, NULL }, 1306 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1307 ip_sioctl_set_ipmpfailback, NULL } 1308 }; 1309 1310 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1311 1312 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1313 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1314 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1316 TUN_CMD, ip_sioctl_tunparam, NULL }, 1317 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1322 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1323 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1324 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl}, 1328 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1329 MISC_CMD, mrt_ioctl} 1330 }; 1331 1332 int ip_misc_ioctl_count = 1333 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1334 1335 int conn_drain_nthreads; /* Number of drainers reqd. */ 1336 /* Settable in /etc/system */ 1337 /* Defined in ip_ire.c */ 1338 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1339 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1340 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1341 1342 static nv_t ire_nv_arr[] = { 1343 { IRE_BROADCAST, "BROADCAST" }, 1344 { IRE_LOCAL, "LOCAL" }, 1345 { IRE_LOOPBACK, "LOOPBACK" }, 1346 { IRE_CACHE, "CACHE" }, 1347 { IRE_DEFAULT, "DEFAULT" }, 1348 { IRE_PREFIX, "PREFIX" }, 1349 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1350 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1351 { IRE_HOST, "HOST" }, 1352 { 0 } 1353 }; 1354 1355 nv_t *ire_nv_tbl = ire_nv_arr; 1356 1357 /* Defined in ip_netinfo.c */ 1358 extern ddi_taskq_t *eventq_queue_nic; 1359 1360 /* Simple ICMP IP Header Template */ 1361 static ipha_t icmp_ipha = { 1362 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1363 }; 1364 1365 struct module_info ip_mod_info = { 1366 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1367 }; 1368 1369 /* 1370 * Duplicate static symbols within a module confuses mdb; so we avoid the 1371 * problem by making the symbols here distinct from those in udp.c. 1372 */ 1373 1374 static struct qinit iprinit = { 1375 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 static struct qinit ipwinit = { 1380 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 static struct qinit iplrinit = { 1385 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 static struct qinit iplwinit = { 1390 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 struct streamtab ipinfo = { 1395 &iprinit, &ipwinit, &iplrinit, &iplwinit 1396 }; 1397 1398 #ifdef DEBUG 1399 static boolean_t skip_sctp_cksum = B_FALSE; 1400 #endif 1401 1402 /* 1403 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1404 * ip_rput_v6(), ip_output(), etc. If the message 1405 * block already has a M_CTL at the front of it, then simply set the zoneid 1406 * appropriately. 1407 */ 1408 mblk_t * 1409 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1410 { 1411 mblk_t *first_mp; 1412 ipsec_out_t *io; 1413 1414 ASSERT(zoneid != ALL_ZONES); 1415 if (mp->b_datap->db_type == M_CTL) { 1416 io = (ipsec_out_t *)mp->b_rptr; 1417 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1418 io->ipsec_out_zoneid = zoneid; 1419 return (mp); 1420 } 1421 1422 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1423 if (first_mp == NULL) 1424 return (NULL); 1425 io = (ipsec_out_t *)first_mp->b_rptr; 1426 /* This is not a secure packet */ 1427 io->ipsec_out_secure = B_FALSE; 1428 io->ipsec_out_zoneid = zoneid; 1429 first_mp->b_cont = mp; 1430 return (first_mp); 1431 } 1432 1433 /* 1434 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1435 */ 1436 mblk_t * 1437 ip_copymsg(mblk_t *mp) 1438 { 1439 mblk_t *nmp; 1440 ipsec_info_t *in; 1441 1442 if (mp->b_datap->db_type != M_CTL) 1443 return (copymsg(mp)); 1444 1445 in = (ipsec_info_t *)mp->b_rptr; 1446 1447 /* 1448 * Note that M_CTL is also used for delivering ICMP error messages 1449 * upstream to transport layers. 1450 */ 1451 if (in->ipsec_info_type != IPSEC_OUT && 1452 in->ipsec_info_type != IPSEC_IN) 1453 return (copymsg(mp)); 1454 1455 nmp = copymsg(mp->b_cont); 1456 1457 if (in->ipsec_info_type == IPSEC_OUT) { 1458 return (ipsec_out_tag(mp, nmp, 1459 ((ipsec_out_t *)in)->ipsec_out_ns)); 1460 } else { 1461 return (ipsec_in_tag(mp, nmp, 1462 ((ipsec_in_t *)in)->ipsec_in_ns)); 1463 } 1464 } 1465 1466 /* Generate an ICMP fragmentation needed message. */ 1467 static void 1468 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1469 ip_stack_t *ipst) 1470 { 1471 icmph_t icmph; 1472 mblk_t *first_mp; 1473 boolean_t mctl_present; 1474 1475 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1476 1477 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1478 if (mctl_present) 1479 freeb(first_mp); 1480 return; 1481 } 1482 1483 bzero(&icmph, sizeof (icmph_t)); 1484 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1485 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1486 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1487 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1489 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1490 ipst); 1491 } 1492 1493 /* 1494 * icmp_inbound deals with ICMP messages in the following ways. 1495 * 1496 * 1) It needs to send a reply back and possibly delivering it 1497 * to the "interested" upper clients. 1498 * 2) It needs to send it to the upper clients only. 1499 * 3) It needs to change some values in IP only. 1500 * 4) It needs to change some values in IP and upper layers e.g TCP. 1501 * 1502 * We need to accomodate icmp messages coming in clear until we get 1503 * everything secure from the wire. If icmp_accept_clear_messages 1504 * is zero we check with the global policy and act accordingly. If 1505 * it is non-zero, we accept the message without any checks. But 1506 * *this does not mean* that this will be delivered to the upper 1507 * clients. By accepting we might send replies back, change our MTU 1508 * value etc. but delivery to the ULP/clients depends on their policy 1509 * dispositions. 1510 * 1511 * We handle the above 4 cases in the context of IPSEC in the 1512 * following way : 1513 * 1514 * 1) Send the reply back in the same way as the request came in. 1515 * If it came in encrypted, it goes out encrypted. If it came in 1516 * clear, it goes out in clear. Thus, this will prevent chosen 1517 * plain text attack. 1518 * 2) The client may or may not expect things to come in secure. 1519 * If it comes in secure, the policy constraints are checked 1520 * before delivering it to the upper layers. If it comes in 1521 * clear, ipsec_inbound_accept_clear will decide whether to 1522 * accept this in clear or not. In both the cases, if the returned 1523 * message (IP header + 8 bytes) that caused the icmp message has 1524 * AH/ESP headers, it is sent up to AH/ESP for validation before 1525 * sending up. If there are only 8 bytes of returned message, then 1526 * upper client will not be notified. 1527 * 3) Check with global policy to see whether it matches the constaints. 1528 * But this will be done only if icmp_accept_messages_in_clear is 1529 * zero. 1530 * 4) If we need to change both in IP and ULP, then the decision taken 1531 * while affecting the values in IP and while delivering up to TCP 1532 * should be the same. 1533 * 1534 * There are two cases. 1535 * 1536 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1537 * failed), we will not deliver it to the ULP, even though they 1538 * are *willing* to accept in *clear*. This is fine as our global 1539 * disposition to icmp messages asks us reject the datagram. 1540 * 1541 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1542 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1543 * to deliver it to ULP (policy failed), it can lead to 1544 * consistency problems. The cases known at this time are 1545 * ICMP_DESTINATION_UNREACHABLE messages with following code 1546 * values : 1547 * 1548 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1549 * and Upper layer rejects. Then the communication will 1550 * come to a stop. This is solved by making similar decisions 1551 * at both levels. Currently, when we are unable to deliver 1552 * to the Upper Layer (due to policy failures) while IP has 1553 * adjusted ire_max_frag, the next outbound datagram would 1554 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1555 * will be with the right level of protection. Thus the right 1556 * value will be communicated even if we are not able to 1557 * communicate when we get from the wire initially. But this 1558 * assumes there would be at least one outbound datagram after 1559 * IP has adjusted its ire_max_frag value. To make things 1560 * simpler, we accept in clear after the validation of 1561 * AH/ESP headers. 1562 * 1563 * - Other ICMP ERRORS : We may not be able to deliver it to the 1564 * upper layer depending on the level of protection the upper 1565 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1566 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1567 * should be accepted in clear when the Upper layer expects secure. 1568 * Thus the communication may get aborted by some bad ICMP 1569 * packets. 1570 * 1571 * IPQoS Notes: 1572 * The only instance when a packet is sent for processing is when there 1573 * isn't an ICMP client and if we are interested in it. 1574 * If there is a client, IPPF processing will take place in the 1575 * ip_fanout_proto routine. 1576 * 1577 * Zones notes: 1578 * The packet is only processed in the context of the specified zone: typically 1579 * only this zone will reply to an echo request, and only interested clients in 1580 * this zone will receive a copy of the packet. This means that the caller must 1581 * call icmp_inbound() for each relevant zone. 1582 */ 1583 static void 1584 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1585 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1586 ill_t *recv_ill, zoneid_t zoneid) 1587 { 1588 icmph_t *icmph; 1589 ipha_t *ipha; 1590 int iph_hdr_length; 1591 int hdr_length; 1592 boolean_t interested; 1593 uint32_t ts; 1594 uchar_t *wptr; 1595 ipif_t *ipif; 1596 mblk_t *first_mp; 1597 ipsec_in_t *ii; 1598 ire_t *src_ire; 1599 boolean_t onlink; 1600 timestruc_t now; 1601 uint32_t ill_index; 1602 ip_stack_t *ipst; 1603 1604 ASSERT(ill != NULL); 1605 ipst = ill->ill_ipst; 1606 1607 first_mp = mp; 1608 if (mctl_present) { 1609 mp = first_mp->b_cont; 1610 ASSERT(mp != NULL); 1611 } 1612 1613 ipha = (ipha_t *)mp->b_rptr; 1614 if (ipst->ips_icmp_accept_clear_messages == 0) { 1615 first_mp = ipsec_check_global_policy(first_mp, NULL, 1616 ipha, NULL, mctl_present, ipst->ips_netstack); 1617 if (first_mp == NULL) 1618 return; 1619 } 1620 1621 /* 1622 * On a labeled system, we have to check whether the zone itself is 1623 * permitted to receive raw traffic. 1624 */ 1625 if (is_system_labeled()) { 1626 if (zoneid == ALL_ZONES) 1627 zoneid = tsol_packet_to_zoneid(mp); 1628 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1629 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1630 zoneid)); 1631 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1632 freemsg(first_mp); 1633 return; 1634 } 1635 } 1636 1637 /* 1638 * We have accepted the ICMP message. It means that we will 1639 * respond to the packet if needed. It may not be delivered 1640 * to the upper client depending on the policy constraints 1641 * and the disposition in ipsec_inbound_accept_clear. 1642 */ 1643 1644 ASSERT(ill != NULL); 1645 1646 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1647 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1648 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1649 /* Last chance to get real. */ 1650 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1651 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1652 freemsg(first_mp); 1653 return; 1654 } 1655 /* Refresh iph following the pullup. */ 1656 ipha = (ipha_t *)mp->b_rptr; 1657 } 1658 /* ICMP header checksum, including checksum field, should be zero. */ 1659 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1660 IP_CSUM(mp, iph_hdr_length, 0)) { 1661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1662 freemsg(first_mp); 1663 return; 1664 } 1665 /* The IP header will always be a multiple of four bytes */ 1666 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1667 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1668 icmph->icmph_code)); 1669 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1670 /* We will set "interested" to "true" if we want a copy */ 1671 interested = B_FALSE; 1672 switch (icmph->icmph_type) { 1673 case ICMP_ECHO_REPLY: 1674 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1675 break; 1676 case ICMP_DEST_UNREACHABLE: 1677 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1679 interested = B_TRUE; /* Pass up to transport */ 1680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1681 break; 1682 case ICMP_SOURCE_QUENCH: 1683 interested = B_TRUE; /* Pass up to transport */ 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1685 break; 1686 case ICMP_REDIRECT: 1687 if (!ipst->ips_ip_ignore_redirect) 1688 interested = B_TRUE; 1689 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1690 break; 1691 case ICMP_ECHO_REQUEST: 1692 /* 1693 * Whether to respond to echo requests that come in as IP 1694 * broadcasts or as IP multicast is subject to debate 1695 * (what isn't?). We aim to please, you pick it. 1696 * Default is do it. 1697 */ 1698 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1699 /* unicast: always respond */ 1700 interested = B_TRUE; 1701 } else if (CLASSD(ipha->ipha_dst)) { 1702 /* multicast: respond based on tunable */ 1703 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1704 } else if (broadcast) { 1705 /* broadcast: respond based on tunable */ 1706 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1707 } 1708 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1709 break; 1710 case ICMP_ROUTER_ADVERTISEMENT: 1711 case ICMP_ROUTER_SOLICITATION: 1712 break; 1713 case ICMP_TIME_EXCEEDED: 1714 interested = B_TRUE; /* Pass up to transport */ 1715 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1716 break; 1717 case ICMP_PARAM_PROBLEM: 1718 interested = B_TRUE; /* Pass up to transport */ 1719 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1720 break; 1721 case ICMP_TIME_STAMP_REQUEST: 1722 /* Response to Time Stamp Requests is local policy. */ 1723 if (ipst->ips_ip_g_resp_to_timestamp && 1724 /* So is whether to respond if it was an IP broadcast. */ 1725 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1726 int tstamp_len = 3 * sizeof (uint32_t); 1727 1728 if (wptr + tstamp_len > mp->b_wptr) { 1729 if (!pullupmsg(mp, wptr + tstamp_len - 1730 mp->b_rptr)) { 1731 BUMP_MIB(ill->ill_ip_mib, 1732 ipIfStatsInDiscards); 1733 freemsg(first_mp); 1734 return; 1735 } 1736 /* Refresh ipha following the pullup. */ 1737 ipha = (ipha_t *)mp->b_rptr; 1738 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1739 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1740 } 1741 interested = B_TRUE; 1742 } 1743 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1744 break; 1745 case ICMP_TIME_STAMP_REPLY: 1746 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1747 break; 1748 case ICMP_INFO_REQUEST: 1749 /* Per RFC 1122 3.2.2.7, ignore this. */ 1750 case ICMP_INFO_REPLY: 1751 break; 1752 case ICMP_ADDRESS_MASK_REQUEST: 1753 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1754 !broadcast) && 1755 /* TODO m_pullup of complete header? */ 1756 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1757 interested = B_TRUE; 1758 } 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1760 break; 1761 case ICMP_ADDRESS_MASK_REPLY: 1762 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1763 break; 1764 default: 1765 interested = B_TRUE; /* Pass up to transport */ 1766 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1767 break; 1768 } 1769 /* See if there is an ICMP client. */ 1770 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1771 /* If there is an ICMP client and we want one too, copy it. */ 1772 mblk_t *first_mp1; 1773 1774 if (!interested) { 1775 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1776 ip_policy, recv_ill, zoneid); 1777 return; 1778 } 1779 first_mp1 = ip_copymsg(first_mp); 1780 if (first_mp1 != NULL) { 1781 ip_fanout_proto(q, first_mp1, ill, ipha, 1782 0, mctl_present, ip_policy, recv_ill, zoneid); 1783 } 1784 } else if (!interested) { 1785 freemsg(first_mp); 1786 return; 1787 } else { 1788 /* 1789 * Initiate policy processing for this packet if ip_policy 1790 * is true. 1791 */ 1792 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1793 ill_index = ill->ill_phyint->phyint_ifindex; 1794 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1795 if (mp == NULL) { 1796 if (mctl_present) { 1797 freeb(first_mp); 1798 } 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1800 return; 1801 } 1802 } 1803 } 1804 /* We want to do something with it. */ 1805 /* Check db_ref to make sure we can modify the packet. */ 1806 if (mp->b_datap->db_ref > 1) { 1807 mblk_t *first_mp1; 1808 1809 first_mp1 = ip_copymsg(first_mp); 1810 freemsg(first_mp); 1811 if (!first_mp1) { 1812 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1813 return; 1814 } 1815 first_mp = first_mp1; 1816 if (mctl_present) { 1817 mp = first_mp->b_cont; 1818 ASSERT(mp != NULL); 1819 } else { 1820 mp = first_mp; 1821 } 1822 ipha = (ipha_t *)mp->b_rptr; 1823 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1824 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1825 } 1826 switch (icmph->icmph_type) { 1827 case ICMP_ADDRESS_MASK_REQUEST: 1828 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1829 if (ipif == NULL) { 1830 freemsg(first_mp); 1831 return; 1832 } 1833 /* 1834 * outging interface must be IPv4 1835 */ 1836 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1837 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1838 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1839 ipif_refrele(ipif); 1840 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1841 break; 1842 case ICMP_ECHO_REQUEST: 1843 icmph->icmph_type = ICMP_ECHO_REPLY; 1844 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1845 break; 1846 case ICMP_TIME_STAMP_REQUEST: { 1847 uint32_t *tsp; 1848 1849 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1850 tsp = (uint32_t *)wptr; 1851 tsp++; /* Skip past 'originate time' */ 1852 /* Compute # of milliseconds since midnight */ 1853 gethrestime(&now); 1854 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1855 now.tv_nsec / (NANOSEC / MILLISEC); 1856 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1857 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1858 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1859 break; 1860 } 1861 default: 1862 ipha = (ipha_t *)&icmph[1]; 1863 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1864 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1866 freemsg(first_mp); 1867 return; 1868 } 1869 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1870 ipha = (ipha_t *)&icmph[1]; 1871 } 1872 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1874 freemsg(first_mp); 1875 return; 1876 } 1877 hdr_length = IPH_HDR_LENGTH(ipha); 1878 if (hdr_length < sizeof (ipha_t)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1884 if (!pullupmsg(mp, 1885 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1887 freemsg(first_mp); 1888 return; 1889 } 1890 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1891 ipha = (ipha_t *)&icmph[1]; 1892 } 1893 switch (icmph->icmph_type) { 1894 case ICMP_REDIRECT: 1895 /* 1896 * As there is no upper client to deliver, we don't 1897 * need the first_mp any more. 1898 */ 1899 if (mctl_present) { 1900 freeb(first_mp); 1901 } 1902 icmp_redirect(ill, mp); 1903 return; 1904 case ICMP_DEST_UNREACHABLE: 1905 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1906 if (!icmp_inbound_too_big(icmph, ipha, ill, 1907 zoneid, mp, iph_hdr_length, ipst)) { 1908 freemsg(first_mp); 1909 return; 1910 } 1911 /* 1912 * icmp_inbound_too_big() may alter mp. 1913 * Resynch ipha and icmph accordingly. 1914 */ 1915 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1916 ipha = (ipha_t *)&icmph[1]; 1917 } 1918 /* FALLTHRU */ 1919 default : 1920 /* 1921 * IPQoS notes: Since we have already done IPQoS 1922 * processing we don't want to do it again in 1923 * the fanout routines called by 1924 * icmp_inbound_error_fanout, hence the last 1925 * argument, ip_policy, is B_FALSE. 1926 */ 1927 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1928 ipha, iph_hdr_length, hdr_length, mctl_present, 1929 B_FALSE, recv_ill, zoneid); 1930 } 1931 return; 1932 } 1933 /* Send out an ICMP packet */ 1934 icmph->icmph_checksum = 0; 1935 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1936 if (broadcast || CLASSD(ipha->ipha_dst)) { 1937 ipif_t *ipif_chosen; 1938 /* 1939 * Make it look like it was directed to us, so we don't look 1940 * like a fool with a broadcast or multicast source address. 1941 */ 1942 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1943 /* 1944 * Make sure that we haven't grabbed an interface that's DOWN. 1945 */ 1946 if (ipif != NULL) { 1947 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1948 ipha->ipha_src, zoneid); 1949 if (ipif_chosen != NULL) { 1950 ipif_refrele(ipif); 1951 ipif = ipif_chosen; 1952 } 1953 } 1954 if (ipif == NULL) { 1955 ip0dbg(("icmp_inbound: " 1956 "No source for broadcast/multicast:\n" 1957 "\tsrc 0x%x dst 0x%x ill %p " 1958 "ipif_lcl_addr 0x%x\n", 1959 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1960 (void *)ill, 1961 ill->ill_ipif->ipif_lcl_addr)); 1962 freemsg(first_mp); 1963 return; 1964 } 1965 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1966 ipha->ipha_dst = ipif->ipif_src_addr; 1967 ipif_refrele(ipif); 1968 } 1969 /* Reset time to live. */ 1970 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1971 { 1972 /* Swap source and destination addresses */ 1973 ipaddr_t tmp; 1974 1975 tmp = ipha->ipha_src; 1976 ipha->ipha_src = ipha->ipha_dst; 1977 ipha->ipha_dst = tmp; 1978 } 1979 ipha->ipha_ident = 0; 1980 if (!IS_SIMPLE_IPH(ipha)) 1981 icmp_options_update(ipha); 1982 1983 /* 1984 * ICMP echo replies should go out on the same interface 1985 * the request came on as probes used by in.mpathd for detecting 1986 * NIC failures are ECHO packets. We turn-off load spreading 1987 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1988 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1989 * function. This is in turn handled by ip_wput and ip_newroute 1990 * to make sure that the packet goes out on the interface it came 1991 * in on. If we don't turnoff load spreading, the packets might get 1992 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1993 * to go out and in.mpathd would wrongly detect a failure or 1994 * mis-detect a NIC failure for link failure. As load spreading 1995 * can happen only if ill_group is not NULL, we do only for 1996 * that case and this does not affect the normal case. 1997 * 1998 * We turn off load spreading only on echo packets that came from 1999 * on-link hosts. If the interface route has been deleted, this will 2000 * not be enforced as we can't do much. For off-link hosts, as the 2001 * default routes in IPv4 does not typically have an ire_ipif 2002 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2003 * Moreover, expecting a default route through this interface may 2004 * not be correct. We use ipha_dst because of the swap above. 2005 */ 2006 onlink = B_FALSE; 2007 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2008 /* 2009 * First, we need to make sure that it is not one of our 2010 * local addresses. If we set onlink when it is one of 2011 * our local addresses, we will end up creating IRE_CACHES 2012 * for one of our local addresses. Then, we will never 2013 * accept packets for them afterwards. 2014 */ 2015 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2016 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2017 if (src_ire == NULL) { 2018 ipif = ipif_get_next_ipif(NULL, ill); 2019 if (ipif == NULL) { 2020 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2021 freemsg(mp); 2022 return; 2023 } 2024 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2025 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2026 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2027 ipif_refrele(ipif); 2028 if (src_ire != NULL) { 2029 onlink = B_TRUE; 2030 ire_refrele(src_ire); 2031 } 2032 } else { 2033 ire_refrele(src_ire); 2034 } 2035 } 2036 if (!mctl_present) { 2037 /* 2038 * This packet should go out the same way as it 2039 * came in i.e in clear. To make sure that global 2040 * policy will not be applied to this in ip_wput_ire, 2041 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2042 */ 2043 ASSERT(first_mp == mp); 2044 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2045 if (first_mp == NULL) { 2046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2047 freemsg(mp); 2048 return; 2049 } 2050 ii = (ipsec_in_t *)first_mp->b_rptr; 2051 2052 /* This is not a secure packet */ 2053 ii->ipsec_in_secure = B_FALSE; 2054 if (onlink) { 2055 ii->ipsec_in_attach_if = B_TRUE; 2056 ii->ipsec_in_ill_index = 2057 ill->ill_phyint->phyint_ifindex; 2058 ii->ipsec_in_rill_index = 2059 recv_ill->ill_phyint->phyint_ifindex; 2060 } 2061 first_mp->b_cont = mp; 2062 } else if (onlink) { 2063 ii = (ipsec_in_t *)first_mp->b_rptr; 2064 ii->ipsec_in_attach_if = B_TRUE; 2065 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2066 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2067 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2068 } else { 2069 ii = (ipsec_in_t *)first_mp->b_rptr; 2070 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2071 } 2072 ii->ipsec_in_zoneid = zoneid; 2073 ASSERT(zoneid != ALL_ZONES); 2074 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2075 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2076 return; 2077 } 2078 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2079 put(WR(q), first_mp); 2080 } 2081 2082 static ipaddr_t 2083 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2084 { 2085 conn_t *connp; 2086 connf_t *connfp; 2087 ipaddr_t nexthop_addr = INADDR_ANY; 2088 int hdr_length = IPH_HDR_LENGTH(ipha); 2089 uint16_t *up; 2090 uint32_t ports; 2091 ip_stack_t *ipst = ill->ill_ipst; 2092 2093 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2094 switch (ipha->ipha_protocol) { 2095 case IPPROTO_TCP: 2096 { 2097 tcph_t *tcph; 2098 2099 /* do a reverse lookup */ 2100 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2101 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2102 TCPS_LISTEN, ipst); 2103 break; 2104 } 2105 case IPPROTO_UDP: 2106 { 2107 uint32_t dstport, srcport; 2108 2109 ((uint16_t *)&ports)[0] = up[1]; 2110 ((uint16_t *)&ports)[1] = up[0]; 2111 2112 /* Extract ports in net byte order */ 2113 dstport = htons(ntohl(ports) & 0xFFFF); 2114 srcport = htons(ntohl(ports) >> 16); 2115 2116 connfp = &ipst->ips_ipcl_udp_fanout[ 2117 IPCL_UDP_HASH(dstport, ipst)]; 2118 mutex_enter(&connfp->connf_lock); 2119 connp = connfp->connf_head; 2120 2121 /* do a reverse lookup */ 2122 while ((connp != NULL) && 2123 (!IPCL_UDP_MATCH(connp, dstport, 2124 ipha->ipha_src, srcport, ipha->ipha_dst) || 2125 !IPCL_ZONE_MATCH(connp, zoneid))) { 2126 connp = connp->conn_next; 2127 } 2128 if (connp != NULL) 2129 CONN_INC_REF(connp); 2130 mutex_exit(&connfp->connf_lock); 2131 break; 2132 } 2133 case IPPROTO_SCTP: 2134 { 2135 in6_addr_t map_src, map_dst; 2136 2137 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2138 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2139 ((uint16_t *)&ports)[0] = up[1]; 2140 ((uint16_t *)&ports)[1] = up[0]; 2141 2142 connp = sctp_find_conn(&map_src, &map_dst, ports, 2143 zoneid, ipst->ips_netstack->netstack_sctp); 2144 if (connp == NULL) { 2145 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2146 zoneid, ports, ipha, ipst); 2147 } else { 2148 CONN_INC_REF(connp); 2149 SCTP_REFRELE(CONN2SCTP(connp)); 2150 } 2151 break; 2152 } 2153 default: 2154 { 2155 ipha_t ripha; 2156 2157 ripha.ipha_src = ipha->ipha_dst; 2158 ripha.ipha_dst = ipha->ipha_src; 2159 ripha.ipha_protocol = ipha->ipha_protocol; 2160 2161 connfp = &ipst->ips_ipcl_proto_fanout[ 2162 ipha->ipha_protocol]; 2163 mutex_enter(&connfp->connf_lock); 2164 connp = connfp->connf_head; 2165 for (connp = connfp->connf_head; connp != NULL; 2166 connp = connp->conn_next) { 2167 if (IPCL_PROTO_MATCH(connp, 2168 ipha->ipha_protocol, &ripha, ill, 2169 0, zoneid)) { 2170 CONN_INC_REF(connp); 2171 break; 2172 } 2173 } 2174 mutex_exit(&connfp->connf_lock); 2175 } 2176 } 2177 if (connp != NULL) { 2178 if (connp->conn_nexthop_set) 2179 nexthop_addr = connp->conn_nexthop_v4; 2180 CONN_DEC_REF(connp); 2181 } 2182 return (nexthop_addr); 2183 } 2184 2185 /* Table from RFC 1191 */ 2186 static int icmp_frag_size_table[] = 2187 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2188 2189 /* 2190 * Process received ICMP Packet too big. 2191 * After updating any IRE it does the fanout to any matching transport streams. 2192 * Assumes the message has been pulled up till the IP header that caused 2193 * the error. 2194 * 2195 * Returns B_FALSE on failure and B_TRUE on success. 2196 */ 2197 static boolean_t 2198 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2199 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2200 ip_stack_t *ipst) 2201 { 2202 ire_t *ire, *first_ire; 2203 int mtu; 2204 int hdr_length; 2205 ipaddr_t nexthop_addr; 2206 2207 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2208 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2209 ASSERT(ill != NULL); 2210 2211 hdr_length = IPH_HDR_LENGTH(ipha); 2212 2213 /* Drop if the original packet contained a source route */ 2214 if (ip_source_route_included(ipha)) { 2215 return (B_FALSE); 2216 } 2217 /* 2218 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2219 * header. 2220 */ 2221 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2222 mp->b_wptr) { 2223 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2224 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2225 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2226 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2227 return (B_FALSE); 2228 } 2229 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2230 ipha = (ipha_t *)&icmph[1]; 2231 } 2232 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2233 if (nexthop_addr != INADDR_ANY) { 2234 /* nexthop set */ 2235 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2236 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2237 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2238 } else { 2239 /* nexthop not set */ 2240 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2241 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2242 } 2243 2244 if (!first_ire) { 2245 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2246 ntohl(ipha->ipha_dst))); 2247 return (B_FALSE); 2248 } 2249 /* Check for MTU discovery advice as described in RFC 1191 */ 2250 mtu = ntohs(icmph->icmph_du_mtu); 2251 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2252 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2253 ire = ire->ire_next) { 2254 /* 2255 * Look for the connection to which this ICMP message is 2256 * directed. If it has the IP_NEXTHOP option set, then the 2257 * search is limited to IREs with the MATCH_IRE_PRIVATE 2258 * option. Else the search is limited to regular IREs. 2259 */ 2260 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != ire->ire_gateway_addr)) || 2262 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2263 (nexthop_addr != INADDR_ANY))) 2264 continue; 2265 2266 mutex_enter(&ire->ire_lock); 2267 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2268 /* Reduce the IRE max frag value as advised. */ 2269 ip1dbg(("Received mtu from router: %d (was %d)\n", 2270 mtu, ire->ire_max_frag)); 2271 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2272 } else { 2273 uint32_t length; 2274 int i; 2275 2276 /* 2277 * Use the table from RFC 1191 to figure out 2278 * the next "plateau" based on the length in 2279 * the original IP packet. 2280 */ 2281 length = ntohs(ipha->ipha_length); 2282 if (ire->ire_max_frag <= length && 2283 ire->ire_max_frag >= length - hdr_length) { 2284 /* 2285 * Handle broken BSD 4.2 systems that 2286 * return the wrong iph_length in ICMP 2287 * errors. 2288 */ 2289 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2290 length, ire->ire_max_frag)); 2291 length -= hdr_length; 2292 } 2293 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2294 if (length > icmp_frag_size_table[i]) 2295 break; 2296 } 2297 if (i == A_CNT(icmp_frag_size_table)) { 2298 /* Smaller than 68! */ 2299 ip1dbg(("Too big for packet size %d\n", 2300 length)); 2301 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2302 ire->ire_frag_flag = 0; 2303 } else { 2304 mtu = icmp_frag_size_table[i]; 2305 ip1dbg(("Calculated mtu %d, packet size %d, " 2306 "before %d", mtu, length, 2307 ire->ire_max_frag)); 2308 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2309 ip1dbg((", after %d\n", ire->ire_max_frag)); 2310 } 2311 /* Record the new max frag size for the ULP. */ 2312 icmph->icmph_du_zero = 0; 2313 icmph->icmph_du_mtu = 2314 htons((uint16_t)ire->ire_max_frag); 2315 } 2316 mutex_exit(&ire->ire_lock); 2317 } 2318 rw_exit(&first_ire->ire_bucket->irb_lock); 2319 ire_refrele(first_ire); 2320 return (B_TRUE); 2321 } 2322 2323 /* 2324 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2325 * calls this function. 2326 */ 2327 static mblk_t * 2328 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2329 { 2330 ipha_t *ipha; 2331 icmph_t *icmph; 2332 ipha_t *in_ipha; 2333 int length; 2334 2335 ASSERT(mp->b_datap->db_type == M_DATA); 2336 2337 /* 2338 * For Self-encapsulated packets, we added an extra IP header 2339 * without the options. Inner IP header is the one from which 2340 * the outer IP header was formed. Thus, we need to remove the 2341 * outer IP header. To do this, we pullup the whole message 2342 * and overlay whatever follows the outer IP header over the 2343 * outer IP header. 2344 */ 2345 2346 if (!pullupmsg(mp, -1)) 2347 return (NULL); 2348 2349 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2350 ipha = (ipha_t *)&icmph[1]; 2351 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2352 2353 /* 2354 * The length that we want to overlay is following the inner 2355 * IP header. Subtracting the IP header + icmp header + outer 2356 * IP header's length should give us the length that we want to 2357 * overlay. 2358 */ 2359 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2360 hdr_length; 2361 /* 2362 * Overlay whatever follows the inner header over the 2363 * outer header. 2364 */ 2365 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2366 2367 /* Set the wptr to account for the outer header */ 2368 mp->b_wptr -= hdr_length; 2369 return (mp); 2370 } 2371 2372 /* 2373 * Try to pass the ICMP message upstream in case the ULP cares. 2374 * 2375 * If the packet that caused the ICMP error is secure, we send 2376 * it to AH/ESP to make sure that the attached packet has a 2377 * valid association. ipha in the code below points to the 2378 * IP header of the packet that caused the error. 2379 * 2380 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2381 * in the context of IPSEC. Normally we tell the upper layer 2382 * whenever we send the ire (including ip_bind), the IPSEC header 2383 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2384 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2385 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2386 * same thing. As TCP has the IPSEC options size that needs to be 2387 * adjusted, we just pass the MTU unchanged. 2388 * 2389 * IFN could have been generated locally or by some router. 2390 * 2391 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2392 * This happens because IP adjusted its value of MTU on an 2393 * earlier IFN message and could not tell the upper layer, 2394 * the new adjusted value of MTU e.g. Packet was encrypted 2395 * or there was not enough information to fanout to upper 2396 * layers. Thus on the next outbound datagram, ip_wput_ire 2397 * generates the IFN, where IPSEC processing has *not* been 2398 * done. 2399 * 2400 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2401 * could have generated this. This happens because ire_max_frag 2402 * value in IP was set to a new value, while the IPSEC processing 2403 * was being done and after we made the fragmentation check in 2404 * ip_wput_ire. Thus on return from IPSEC processing, 2405 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2406 * and generates the IFN. As IPSEC processing is over, we fanout 2407 * to AH/ESP to remove the header. 2408 * 2409 * In both these cases, ipsec_in_loopback will be set indicating 2410 * that IFN was generated locally. 2411 * 2412 * ROUTER : IFN could be secure or non-secure. 2413 * 2414 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2415 * packet in error has AH/ESP headers to validate the AH/ESP 2416 * headers. AH/ESP will verify whether there is a valid SA or 2417 * not and send it back. We will fanout again if we have more 2418 * data in the packet. 2419 * 2420 * If the packet in error does not have AH/ESP, we handle it 2421 * like any other case. 2422 * 2423 * * NON_SECURE : If the packet in error has AH/ESP headers, 2424 * we attach a dummy ipsec_in and send it up to AH/ESP 2425 * for validation. AH/ESP will verify whether there is a 2426 * valid SA or not and send it back. We will fanout again if 2427 * we have more data in the packet. 2428 * 2429 * If the packet in error does not have AH/ESP, we handle it 2430 * like any other case. 2431 */ 2432 static void 2433 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2434 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2435 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2436 zoneid_t zoneid) 2437 { 2438 uint16_t *up; /* Pointer to ports in ULP header */ 2439 uint32_t ports; /* reversed ports for fanout */ 2440 ipha_t ripha; /* With reversed addresses */ 2441 mblk_t *first_mp; 2442 ipsec_in_t *ii; 2443 tcph_t *tcph; 2444 conn_t *connp; 2445 ip_stack_t *ipst; 2446 2447 ASSERT(ill != NULL); 2448 2449 ASSERT(recv_ill != NULL); 2450 ipst = recv_ill->ill_ipst; 2451 2452 first_mp = mp; 2453 if (mctl_present) { 2454 mp = first_mp->b_cont; 2455 ASSERT(mp != NULL); 2456 2457 ii = (ipsec_in_t *)first_mp->b_rptr; 2458 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2459 } else { 2460 ii = NULL; 2461 } 2462 2463 switch (ipha->ipha_protocol) { 2464 case IPPROTO_UDP: 2465 /* 2466 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2467 * transport header. 2468 */ 2469 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2470 mp->b_wptr) { 2471 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2472 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2473 goto discard_pkt; 2474 } 2475 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2476 ipha = (ipha_t *)&icmph[1]; 2477 } 2478 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2479 2480 /* 2481 * Attempt to find a client stream based on port. 2482 * Note that we do a reverse lookup since the header is 2483 * in the form we sent it out. 2484 * The ripha header is only used for the IP_UDP_MATCH and we 2485 * only set the src and dst addresses and protocol. 2486 */ 2487 ripha.ipha_src = ipha->ipha_dst; 2488 ripha.ipha_dst = ipha->ipha_src; 2489 ripha.ipha_protocol = ipha->ipha_protocol; 2490 ((uint16_t *)&ports)[0] = up[1]; 2491 ((uint16_t *)&ports)[1] = up[0]; 2492 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2493 ntohl(ipha->ipha_src), ntohs(up[0]), 2494 ntohl(ipha->ipha_dst), ntohs(up[1]), 2495 icmph->icmph_type, icmph->icmph_code)); 2496 2497 /* Have to change db_type after any pullupmsg */ 2498 DB_TYPE(mp) = M_CTL; 2499 2500 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2501 mctl_present, ip_policy, recv_ill, zoneid); 2502 return; 2503 2504 case IPPROTO_TCP: 2505 /* 2506 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2507 * transport header. 2508 */ 2509 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2510 mp->b_wptr) { 2511 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2512 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2513 goto discard_pkt; 2514 } 2515 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2516 ipha = (ipha_t *)&icmph[1]; 2517 } 2518 /* 2519 * Find a TCP client stream for this packet. 2520 * Note that we do a reverse lookup since the header is 2521 * in the form we sent it out. 2522 */ 2523 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2524 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2525 ipst); 2526 if (connp == NULL) 2527 goto discard_pkt; 2528 2529 /* Have to change db_type after any pullupmsg */ 2530 DB_TYPE(mp) = M_CTL; 2531 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2532 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2533 return; 2534 2535 case IPPROTO_SCTP: 2536 /* 2537 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2538 * transport header. 2539 */ 2540 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2541 mp->b_wptr) { 2542 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2543 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2544 goto discard_pkt; 2545 } 2546 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2547 ipha = (ipha_t *)&icmph[1]; 2548 } 2549 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2550 /* 2551 * Find a SCTP client stream for this packet. 2552 * Note that we do a reverse lookup since the header is 2553 * in the form we sent it out. 2554 * The ripha header is only used for the matching and we 2555 * only set the src and dst addresses, protocol, and version. 2556 */ 2557 ripha.ipha_src = ipha->ipha_dst; 2558 ripha.ipha_dst = ipha->ipha_src; 2559 ripha.ipha_protocol = ipha->ipha_protocol; 2560 ripha.ipha_version_and_hdr_length = 2561 ipha->ipha_version_and_hdr_length; 2562 ((uint16_t *)&ports)[0] = up[1]; 2563 ((uint16_t *)&ports)[1] = up[0]; 2564 2565 /* Have to change db_type after any pullupmsg */ 2566 DB_TYPE(mp) = M_CTL; 2567 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2568 mctl_present, ip_policy, zoneid); 2569 return; 2570 2571 case IPPROTO_ESP: 2572 case IPPROTO_AH: { 2573 int ipsec_rc; 2574 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2575 2576 /* 2577 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2578 * We will re-use the IPSEC_IN if it is already present as 2579 * AH/ESP will not affect any fields in the IPSEC_IN for 2580 * ICMP errors. If there is no IPSEC_IN, allocate a new 2581 * one and attach it in the front. 2582 */ 2583 if (ii != NULL) { 2584 /* 2585 * ip_fanout_proto_again converts the ICMP errors 2586 * that come back from AH/ESP to M_DATA so that 2587 * if it is non-AH/ESP and we do a pullupmsg in 2588 * this function, it would work. Convert it back 2589 * to M_CTL before we send up as this is a ICMP 2590 * error. This could have been generated locally or 2591 * by some router. Validate the inner IPSEC 2592 * headers. 2593 * 2594 * NOTE : ill_index is used by ip_fanout_proto_again 2595 * to locate the ill. 2596 */ 2597 ASSERT(ill != NULL); 2598 ii->ipsec_in_ill_index = 2599 ill->ill_phyint->phyint_ifindex; 2600 ii->ipsec_in_rill_index = 2601 recv_ill->ill_phyint->phyint_ifindex; 2602 DB_TYPE(first_mp->b_cont) = M_CTL; 2603 } else { 2604 /* 2605 * IPSEC_IN is not present. We attach a ipsec_in 2606 * message and send up to IPSEC for validating 2607 * and removing the IPSEC headers. Clear 2608 * ipsec_in_secure so that when we return 2609 * from IPSEC, we don't mistakenly think that this 2610 * is a secure packet came from the network. 2611 * 2612 * NOTE : ill_index is used by ip_fanout_proto_again 2613 * to locate the ill. 2614 */ 2615 ASSERT(first_mp == mp); 2616 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2617 if (first_mp == NULL) { 2618 freemsg(mp); 2619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2620 return; 2621 } 2622 ii = (ipsec_in_t *)first_mp->b_rptr; 2623 2624 /* This is not a secure packet */ 2625 ii->ipsec_in_secure = B_FALSE; 2626 first_mp->b_cont = mp; 2627 DB_TYPE(mp) = M_CTL; 2628 ASSERT(ill != NULL); 2629 ii->ipsec_in_ill_index = 2630 ill->ill_phyint->phyint_ifindex; 2631 ii->ipsec_in_rill_index = 2632 recv_ill->ill_phyint->phyint_ifindex; 2633 } 2634 ip2dbg(("icmp_inbound_error: ipsec\n")); 2635 2636 if (!ipsec_loaded(ipss)) { 2637 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2638 return; 2639 } 2640 2641 if (ipha->ipha_protocol == IPPROTO_ESP) 2642 ipsec_rc = ipsecesp_icmp_error(first_mp); 2643 else 2644 ipsec_rc = ipsecah_icmp_error(first_mp); 2645 if (ipsec_rc == IPSEC_STATUS_FAILED) 2646 return; 2647 2648 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2649 return; 2650 } 2651 default: 2652 /* 2653 * The ripha header is only used for the lookup and we 2654 * only set the src and dst addresses and protocol. 2655 */ 2656 ripha.ipha_src = ipha->ipha_dst; 2657 ripha.ipha_dst = ipha->ipha_src; 2658 ripha.ipha_protocol = ipha->ipha_protocol; 2659 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2660 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2661 ntohl(ipha->ipha_dst), 2662 icmph->icmph_type, icmph->icmph_code)); 2663 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2664 ipha_t *in_ipha; 2665 2666 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2667 mp->b_wptr) { 2668 if (!pullupmsg(mp, (uchar_t *)ipha + 2669 hdr_length + sizeof (ipha_t) - 2670 mp->b_rptr)) { 2671 goto discard_pkt; 2672 } 2673 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2674 ipha = (ipha_t *)&icmph[1]; 2675 } 2676 /* 2677 * Caller has verified that length has to be 2678 * at least the size of IP header. 2679 */ 2680 ASSERT(hdr_length >= sizeof (ipha_t)); 2681 /* 2682 * Check the sanity of the inner IP header like 2683 * we did for the outer header. 2684 */ 2685 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2686 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2687 goto discard_pkt; 2688 } 2689 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2690 goto discard_pkt; 2691 } 2692 /* Check for Self-encapsulated tunnels */ 2693 if (in_ipha->ipha_src == ipha->ipha_src && 2694 in_ipha->ipha_dst == ipha->ipha_dst) { 2695 2696 mp = icmp_inbound_self_encap_error(mp, 2697 iph_hdr_length, hdr_length); 2698 if (mp == NULL) 2699 goto discard_pkt; 2700 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2701 ipha = (ipha_t *)&icmph[1]; 2702 hdr_length = IPH_HDR_LENGTH(ipha); 2703 /* 2704 * The packet in error is self-encapsualted. 2705 * And we are finding it further encapsulated 2706 * which we could not have possibly generated. 2707 */ 2708 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2709 goto discard_pkt; 2710 } 2711 icmp_inbound_error_fanout(q, ill, first_mp, 2712 icmph, ipha, iph_hdr_length, hdr_length, 2713 mctl_present, ip_policy, recv_ill, zoneid); 2714 return; 2715 } 2716 } 2717 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2718 ipha->ipha_protocol == IPPROTO_IPV6) && 2719 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2720 ii != NULL && 2721 ii->ipsec_in_loopback && 2722 ii->ipsec_in_secure) { 2723 /* 2724 * For IP tunnels that get a looped-back 2725 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2726 * reported new MTU to take into account the IPsec 2727 * headers protecting this configured tunnel. 2728 * 2729 * This allows the tunnel module (tun.c) to blindly 2730 * accept the MTU reported in an ICMP "too big" 2731 * message. 2732 * 2733 * Non-looped back ICMP messages will just be 2734 * handled by the security protocols (if needed), 2735 * and the first subsequent packet will hit this 2736 * path. 2737 */ 2738 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2739 ipsec_in_extra_length(first_mp)); 2740 } 2741 /* Have to change db_type after any pullupmsg */ 2742 DB_TYPE(mp) = M_CTL; 2743 2744 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2745 ip_policy, recv_ill, zoneid); 2746 return; 2747 } 2748 /* NOTREACHED */ 2749 discard_pkt: 2750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2751 drop_pkt:; 2752 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2753 freemsg(first_mp); 2754 } 2755 2756 /* 2757 * Common IP options parser. 2758 * 2759 * Setup routine: fill in *optp with options-parsing state, then 2760 * tail-call ipoptp_next to return the first option. 2761 */ 2762 uint8_t 2763 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2764 { 2765 uint32_t totallen; /* total length of all options */ 2766 2767 totallen = ipha->ipha_version_and_hdr_length - 2768 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2769 totallen <<= 2; 2770 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2771 optp->ipoptp_end = optp->ipoptp_next + totallen; 2772 optp->ipoptp_flags = 0; 2773 return (ipoptp_next(optp)); 2774 } 2775 2776 /* 2777 * Common IP options parser: extract next option. 2778 */ 2779 uint8_t 2780 ipoptp_next(ipoptp_t *optp) 2781 { 2782 uint8_t *end = optp->ipoptp_end; 2783 uint8_t *cur = optp->ipoptp_next; 2784 uint8_t opt, len, pointer; 2785 2786 /* 2787 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2788 * has been corrupted. 2789 */ 2790 ASSERT(cur <= end); 2791 2792 if (cur == end) 2793 return (IPOPT_EOL); 2794 2795 opt = cur[IPOPT_OPTVAL]; 2796 2797 /* 2798 * Skip any NOP options. 2799 */ 2800 while (opt == IPOPT_NOP) { 2801 cur++; 2802 if (cur == end) 2803 return (IPOPT_EOL); 2804 opt = cur[IPOPT_OPTVAL]; 2805 } 2806 2807 if (opt == IPOPT_EOL) 2808 return (IPOPT_EOL); 2809 2810 /* 2811 * Option requiring a length. 2812 */ 2813 if ((cur + 1) >= end) { 2814 optp->ipoptp_flags |= IPOPTP_ERROR; 2815 return (IPOPT_EOL); 2816 } 2817 len = cur[IPOPT_OLEN]; 2818 if (len < 2) { 2819 optp->ipoptp_flags |= IPOPTP_ERROR; 2820 return (IPOPT_EOL); 2821 } 2822 optp->ipoptp_cur = cur; 2823 optp->ipoptp_len = len; 2824 optp->ipoptp_next = cur + len; 2825 if (cur + len > end) { 2826 optp->ipoptp_flags |= IPOPTP_ERROR; 2827 return (IPOPT_EOL); 2828 } 2829 2830 /* 2831 * For the options which require a pointer field, make sure 2832 * its there, and make sure it points to either something 2833 * inside this option, or the end of the option. 2834 */ 2835 switch (opt) { 2836 case IPOPT_RR: 2837 case IPOPT_TS: 2838 case IPOPT_LSRR: 2839 case IPOPT_SSRR: 2840 if (len <= IPOPT_OFFSET) { 2841 optp->ipoptp_flags |= IPOPTP_ERROR; 2842 return (opt); 2843 } 2844 pointer = cur[IPOPT_OFFSET]; 2845 if (pointer - 1 > len) { 2846 optp->ipoptp_flags |= IPOPTP_ERROR; 2847 return (opt); 2848 } 2849 break; 2850 } 2851 2852 /* 2853 * Sanity check the pointer field based on the type of the 2854 * option. 2855 */ 2856 switch (opt) { 2857 case IPOPT_RR: 2858 case IPOPT_SSRR: 2859 case IPOPT_LSRR: 2860 if (pointer < IPOPT_MINOFF_SR) 2861 optp->ipoptp_flags |= IPOPTP_ERROR; 2862 break; 2863 case IPOPT_TS: 2864 if (pointer < IPOPT_MINOFF_IT) 2865 optp->ipoptp_flags |= IPOPTP_ERROR; 2866 /* 2867 * Note that the Internet Timestamp option also 2868 * contains two four bit fields (the Overflow field, 2869 * and the Flag field), which follow the pointer 2870 * field. We don't need to check that these fields 2871 * fall within the length of the option because this 2872 * was implicitely done above. We've checked that the 2873 * pointer value is at least IPOPT_MINOFF_IT, and that 2874 * it falls within the option. Since IPOPT_MINOFF_IT > 2875 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2876 */ 2877 ASSERT(len > IPOPT_POS_OV_FLG); 2878 break; 2879 } 2880 2881 return (opt); 2882 } 2883 2884 /* 2885 * Use the outgoing IP header to create an IP_OPTIONS option the way 2886 * it was passed down from the application. 2887 */ 2888 int 2889 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2890 { 2891 ipoptp_t opts; 2892 const uchar_t *opt; 2893 uint8_t optval; 2894 uint8_t optlen; 2895 uint32_t len = 0; 2896 uchar_t *buf1 = buf; 2897 2898 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2899 len += IP_ADDR_LEN; 2900 bzero(buf1, IP_ADDR_LEN); 2901 2902 /* 2903 * OK to cast away const here, as we don't store through the returned 2904 * opts.ipoptp_cur pointer. 2905 */ 2906 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2907 optval != IPOPT_EOL; 2908 optval = ipoptp_next(&opts)) { 2909 int off; 2910 2911 opt = opts.ipoptp_cur; 2912 optlen = opts.ipoptp_len; 2913 switch (optval) { 2914 case IPOPT_SSRR: 2915 case IPOPT_LSRR: 2916 2917 /* 2918 * Insert ipha_dst as the first entry in the source 2919 * route and move down the entries on step. 2920 * The last entry gets placed at buf1. 2921 */ 2922 buf[IPOPT_OPTVAL] = optval; 2923 buf[IPOPT_OLEN] = optlen; 2924 buf[IPOPT_OFFSET] = optlen; 2925 2926 off = optlen - IP_ADDR_LEN; 2927 if (off < 0) { 2928 /* No entries in source route */ 2929 break; 2930 } 2931 /* Last entry in source route */ 2932 bcopy(opt + off, buf1, IP_ADDR_LEN); 2933 off -= IP_ADDR_LEN; 2934 2935 while (off > 0) { 2936 bcopy(opt + off, 2937 buf + off + IP_ADDR_LEN, 2938 IP_ADDR_LEN); 2939 off -= IP_ADDR_LEN; 2940 } 2941 /* ipha_dst into first slot */ 2942 bcopy(&ipha->ipha_dst, 2943 buf + off + IP_ADDR_LEN, 2944 IP_ADDR_LEN); 2945 buf += optlen; 2946 len += optlen; 2947 break; 2948 2949 case IPOPT_COMSEC: 2950 case IPOPT_SECURITY: 2951 /* if passing up a label is not ok, then remove */ 2952 if (is_system_labeled()) 2953 break; 2954 /* FALLTHROUGH */ 2955 default: 2956 bcopy(opt, buf, optlen); 2957 buf += optlen; 2958 len += optlen; 2959 break; 2960 } 2961 } 2962 done: 2963 /* Pad the resulting options */ 2964 while (len & 0x3) { 2965 *buf++ = IPOPT_EOL; 2966 len++; 2967 } 2968 return (len); 2969 } 2970 2971 /* 2972 * Update any record route or timestamp options to include this host. 2973 * Reverse any source route option. 2974 * This routine assumes that the options are well formed i.e. that they 2975 * have already been checked. 2976 */ 2977 static void 2978 icmp_options_update(ipha_t *ipha) 2979 { 2980 ipoptp_t opts; 2981 uchar_t *opt; 2982 uint8_t optval; 2983 ipaddr_t src; /* Our local address */ 2984 ipaddr_t dst; 2985 2986 ip2dbg(("icmp_options_update\n")); 2987 src = ipha->ipha_src; 2988 dst = ipha->ipha_dst; 2989 2990 for (optval = ipoptp_first(&opts, ipha); 2991 optval != IPOPT_EOL; 2992 optval = ipoptp_next(&opts)) { 2993 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2994 opt = opts.ipoptp_cur; 2995 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2996 optval, opts.ipoptp_len)); 2997 switch (optval) { 2998 int off1, off2; 2999 case IPOPT_SSRR: 3000 case IPOPT_LSRR: 3001 /* 3002 * Reverse the source route. The first entry 3003 * should be the next to last one in the current 3004 * source route (the last entry is our address). 3005 * The last entry should be the final destination. 3006 */ 3007 off1 = IPOPT_MINOFF_SR - 1; 3008 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3009 if (off2 < 0) { 3010 /* No entries in source route */ 3011 ip1dbg(( 3012 "icmp_options_update: bad src route\n")); 3013 break; 3014 } 3015 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3016 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3017 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3018 off2 -= IP_ADDR_LEN; 3019 3020 while (off1 < off2) { 3021 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3022 bcopy((char *)opt + off2, (char *)opt + off1, 3023 IP_ADDR_LEN); 3024 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3025 off1 += IP_ADDR_LEN; 3026 off2 -= IP_ADDR_LEN; 3027 } 3028 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3029 break; 3030 } 3031 } 3032 } 3033 3034 /* 3035 * Process received ICMP Redirect messages. 3036 */ 3037 static void 3038 icmp_redirect(ill_t *ill, mblk_t *mp) 3039 { 3040 ipha_t *ipha; 3041 int iph_hdr_length; 3042 icmph_t *icmph; 3043 ipha_t *ipha_err; 3044 ire_t *ire; 3045 ire_t *prev_ire; 3046 ire_t *save_ire; 3047 ipaddr_t src, dst, gateway; 3048 iulp_t ulp_info = { 0 }; 3049 int error; 3050 ip_stack_t *ipst; 3051 3052 ASSERT(ill != NULL); 3053 ipst = ill->ill_ipst; 3054 3055 ipha = (ipha_t *)mp->b_rptr; 3056 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3057 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3058 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3059 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3060 freemsg(mp); 3061 return; 3062 } 3063 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3064 ipha_err = (ipha_t *)&icmph[1]; 3065 src = ipha->ipha_src; 3066 dst = ipha_err->ipha_dst; 3067 gateway = icmph->icmph_rd_gateway; 3068 /* Make sure the new gateway is reachable somehow. */ 3069 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3070 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3071 /* 3072 * Make sure we had a route for the dest in question and that 3073 * that route was pointing to the old gateway (the source of the 3074 * redirect packet.) 3075 */ 3076 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3077 NULL, MATCH_IRE_GW, ipst); 3078 /* 3079 * Check that 3080 * the redirect was not from ourselves 3081 * the new gateway and the old gateway are directly reachable 3082 */ 3083 if (!prev_ire || 3084 !ire || 3085 ire->ire_type == IRE_LOCAL) { 3086 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3087 freemsg(mp); 3088 if (ire != NULL) 3089 ire_refrele(ire); 3090 if (prev_ire != NULL) 3091 ire_refrele(prev_ire); 3092 return; 3093 } 3094 3095 /* 3096 * Should we use the old ULP info to create the new gateway? From 3097 * a user's perspective, we should inherit the info so that it 3098 * is a "smooth" transition. If we do not do that, then new 3099 * connections going thru the new gateway will have no route metrics, 3100 * which is counter-intuitive to user. From a network point of 3101 * view, this may or may not make sense even though the new gateway 3102 * is still directly connected to us so the route metrics should not 3103 * change much. 3104 * 3105 * But if the old ire_uinfo is not initialized, we do another 3106 * recursive lookup on the dest using the new gateway. There may 3107 * be a route to that. If so, use it to initialize the redirect 3108 * route. 3109 */ 3110 if (prev_ire->ire_uinfo.iulp_set) { 3111 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3112 } else { 3113 ire_t *tmp_ire; 3114 ire_t *sire; 3115 3116 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3117 ALL_ZONES, 0, NULL, 3118 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3119 ipst); 3120 if (sire != NULL) { 3121 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3122 /* 3123 * If sire != NULL, ire_ftable_lookup() should not 3124 * return a NULL value. 3125 */ 3126 ASSERT(tmp_ire != NULL); 3127 ire_refrele(tmp_ire); 3128 ire_refrele(sire); 3129 } else if (tmp_ire != NULL) { 3130 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3131 sizeof (iulp_t)); 3132 ire_refrele(tmp_ire); 3133 } 3134 } 3135 if (prev_ire->ire_type == IRE_CACHE) 3136 ire_delete(prev_ire); 3137 ire_refrele(prev_ire); 3138 /* 3139 * TODO: more precise handling for cases 0, 2, 3, the latter two 3140 * require TOS routing 3141 */ 3142 switch (icmph->icmph_code) { 3143 case 0: 3144 case 1: 3145 /* TODO: TOS specificity for cases 2 and 3 */ 3146 case 2: 3147 case 3: 3148 break; 3149 default: 3150 freemsg(mp); 3151 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3152 ire_refrele(ire); 3153 return; 3154 } 3155 /* 3156 * Create a Route Association. This will allow us to remember that 3157 * someone we believe told us to use the particular gateway. 3158 */ 3159 save_ire = ire; 3160 ire = ire_create( 3161 (uchar_t *)&dst, /* dest addr */ 3162 (uchar_t *)&ip_g_all_ones, /* mask */ 3163 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3164 (uchar_t *)&gateway, /* gateway addr */ 3165 NULL, /* no in_srcaddr */ 3166 &save_ire->ire_max_frag, /* max frag */ 3167 NULL, /* no src nce */ 3168 NULL, /* no rfq */ 3169 NULL, /* no stq */ 3170 IRE_HOST, 3171 NULL, /* ipif */ 3172 NULL, /* in_ill */ 3173 0, /* cmask */ 3174 0, /* phandle */ 3175 0, /* ihandle */ 3176 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3177 &ulp_info, 3178 NULL, /* tsol_gc_t */ 3179 NULL, /* gcgrp */ 3180 ipst); 3181 3182 if (ire == NULL) { 3183 freemsg(mp); 3184 ire_refrele(save_ire); 3185 return; 3186 } 3187 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3188 ire_refrele(save_ire); 3189 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3190 3191 if (error == 0) { 3192 ire_refrele(ire); /* Held in ire_add_v4 */ 3193 /* tell routing sockets that we received a redirect */ 3194 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3195 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3196 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3197 } 3198 3199 /* 3200 * Delete any existing IRE_HOST type redirect ires for this destination. 3201 * This together with the added IRE has the effect of 3202 * modifying an existing redirect. 3203 */ 3204 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3205 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3206 if (prev_ire != NULL) { 3207 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3208 ire_delete(prev_ire); 3209 ire_refrele(prev_ire); 3210 } 3211 3212 freemsg(mp); 3213 } 3214 3215 /* 3216 * Generate an ICMP parameter problem message. 3217 */ 3218 static void 3219 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3220 ip_stack_t *ipst) 3221 { 3222 icmph_t icmph; 3223 boolean_t mctl_present; 3224 mblk_t *first_mp; 3225 3226 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3227 3228 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3229 if (mctl_present) 3230 freeb(first_mp); 3231 return; 3232 } 3233 3234 bzero(&icmph, sizeof (icmph_t)); 3235 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3236 icmph.icmph_pp_ptr = ptr; 3237 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3238 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3239 ipst); 3240 } 3241 3242 /* 3243 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3244 * the ICMP header pointed to by "stuff". (May be called as writer.) 3245 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3246 * an icmp error packet can be sent. 3247 * Assigns an appropriate source address to the packet. If ipha_dst is 3248 * one of our addresses use it for source. Otherwise pick a source based 3249 * on a route lookup back to ipha_src. 3250 * Note that ipha_src must be set here since the 3251 * packet is likely to arrive on an ill queue in ip_wput() which will 3252 * not set a source address. 3253 */ 3254 static void 3255 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3256 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3257 { 3258 ipaddr_t dst; 3259 icmph_t *icmph; 3260 ipha_t *ipha; 3261 uint_t len_needed; 3262 size_t msg_len; 3263 mblk_t *mp1; 3264 ipaddr_t src; 3265 ire_t *ire; 3266 mblk_t *ipsec_mp; 3267 ipsec_out_t *io = NULL; 3268 boolean_t xmit_if_on = B_FALSE; 3269 3270 if (mctl_present) { 3271 /* 3272 * If it is : 3273 * 3274 * 1) a IPSEC_OUT, then this is caused by outbound 3275 * datagram originating on this host. IPSEC processing 3276 * may or may not have been done. Refer to comments above 3277 * icmp_inbound_error_fanout for details. 3278 * 3279 * 2) a IPSEC_IN if we are generating a icmp_message 3280 * for an incoming datagram destined for us i.e called 3281 * from ip_fanout_send_icmp. 3282 */ 3283 ipsec_info_t *in; 3284 ipsec_mp = mp; 3285 mp = ipsec_mp->b_cont; 3286 3287 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3288 ipha = (ipha_t *)mp->b_rptr; 3289 3290 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3291 in->ipsec_info_type == IPSEC_IN); 3292 3293 if (in->ipsec_info_type == IPSEC_IN) { 3294 /* 3295 * Convert the IPSEC_IN to IPSEC_OUT. 3296 */ 3297 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3298 BUMP_MIB(&ipst->ips_ip_mib, 3299 ipIfStatsOutDiscards); 3300 return; 3301 } 3302 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3303 } else { 3304 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3305 io = (ipsec_out_t *)in; 3306 if (io->ipsec_out_xmit_if) 3307 xmit_if_on = B_TRUE; 3308 /* 3309 * Clear out ipsec_out_proc_begin, so we do a fresh 3310 * ire lookup. 3311 */ 3312 io->ipsec_out_proc_begin = B_FALSE; 3313 } 3314 ASSERT(zoneid == io->ipsec_out_zoneid); 3315 ASSERT(zoneid != ALL_ZONES); 3316 } else { 3317 /* 3318 * This is in clear. The icmp message we are building 3319 * here should go out in clear. 3320 * 3321 * Pardon the convolution of it all, but it's easier to 3322 * allocate a "use cleartext" IPSEC_IN message and convert 3323 * it than it is to allocate a new one. 3324 */ 3325 ipsec_in_t *ii; 3326 ASSERT(DB_TYPE(mp) == M_DATA); 3327 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3328 if (ipsec_mp == NULL) { 3329 freemsg(mp); 3330 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3331 return; 3332 } 3333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3334 3335 /* This is not a secure packet */ 3336 ii->ipsec_in_secure = B_FALSE; 3337 /* 3338 * For trusted extensions using a shared IP address we can 3339 * send using any zoneid. 3340 */ 3341 if (zoneid == ALL_ZONES) 3342 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3343 else 3344 ii->ipsec_in_zoneid = zoneid; 3345 ipsec_mp->b_cont = mp; 3346 ipha = (ipha_t *)mp->b_rptr; 3347 /* 3348 * Convert the IPSEC_IN to IPSEC_OUT. 3349 */ 3350 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3351 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3352 return; 3353 } 3354 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3355 } 3356 3357 /* Remember our eventual destination */ 3358 dst = ipha->ipha_src; 3359 3360 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3361 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3362 if (ire != NULL && 3363 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3364 src = ipha->ipha_dst; 3365 } else if (!xmit_if_on) { 3366 if (ire != NULL) 3367 ire_refrele(ire); 3368 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3369 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3370 ipst); 3371 if (ire == NULL) { 3372 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3373 freemsg(ipsec_mp); 3374 return; 3375 } 3376 src = ire->ire_src_addr; 3377 } else { 3378 ipif_t *ipif = NULL; 3379 ill_t *ill; 3380 /* 3381 * This must be an ICMP error coming from 3382 * ip_mrtun_forward(). The src addr should 3383 * be equal to the IP-addr of the outgoing 3384 * interface. 3385 */ 3386 if (io == NULL) { 3387 /* This is not a IPSEC_OUT type control msg */ 3388 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3389 freemsg(ipsec_mp); 3390 return; 3391 } 3392 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3393 NULL, NULL, NULL, NULL, ipst); 3394 if (ill != NULL) { 3395 ipif = ipif_get_next_ipif(NULL, ill); 3396 ill_refrele(ill); 3397 } 3398 if (ipif == NULL) { 3399 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3400 freemsg(ipsec_mp); 3401 return; 3402 } 3403 src = ipif->ipif_src_addr; 3404 ipif_refrele(ipif); 3405 } 3406 3407 if (ire != NULL) 3408 ire_refrele(ire); 3409 3410 /* 3411 * Check if we can send back more then 8 bytes in addition to 3412 * the IP header. We try to send 64 bytes of data and the internal 3413 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3414 */ 3415 len_needed = IPH_HDR_LENGTH(ipha); 3416 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3417 ipha->ipha_protocol == IPPROTO_IPV6) { 3418 3419 if (!pullupmsg(mp, -1)) { 3420 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3421 freemsg(ipsec_mp); 3422 return; 3423 } 3424 ipha = (ipha_t *)mp->b_rptr; 3425 3426 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3427 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3428 len_needed)); 3429 } else { 3430 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3431 3432 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3433 len_needed += ip_hdr_length_v6(mp, ip6h); 3434 } 3435 } 3436 len_needed += ipst->ips_ip_icmp_return; 3437 msg_len = msgdsize(mp); 3438 if (msg_len > len_needed) { 3439 (void) adjmsg(mp, len_needed - msg_len); 3440 msg_len = len_needed; 3441 } 3442 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3443 if (mp1 == NULL) { 3444 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3445 freemsg(ipsec_mp); 3446 return; 3447 } 3448 mp1->b_cont = mp; 3449 mp = mp1; 3450 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3451 ipsec_mp->b_rptr == (uint8_t *)io && 3452 io->ipsec_out_type == IPSEC_OUT); 3453 ipsec_mp->b_cont = mp; 3454 3455 /* 3456 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3457 * node generates be accepted in peace by all on-host destinations. 3458 * If we do NOT assume that all on-host destinations trust 3459 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3460 * (Look for ipsec_out_icmp_loopback). 3461 */ 3462 io->ipsec_out_icmp_loopback = B_TRUE; 3463 3464 ipha = (ipha_t *)mp->b_rptr; 3465 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3466 *ipha = icmp_ipha; 3467 ipha->ipha_src = src; 3468 ipha->ipha_dst = dst; 3469 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3470 msg_len += sizeof (icmp_ipha) + len; 3471 if (msg_len > IP_MAXPACKET) { 3472 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3473 msg_len = IP_MAXPACKET; 3474 } 3475 ipha->ipha_length = htons((uint16_t)msg_len); 3476 icmph = (icmph_t *)&ipha[1]; 3477 bcopy(stuff, icmph, len); 3478 icmph->icmph_checksum = 0; 3479 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3480 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3481 put(q, ipsec_mp); 3482 } 3483 3484 /* 3485 * Determine if an ICMP error packet can be sent given the rate limit. 3486 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3487 * in milliseconds) and a burst size. Burst size number of packets can 3488 * be sent arbitrarely closely spaced. 3489 * The state is tracked using two variables to implement an approximate 3490 * token bucket filter: 3491 * icmp_pkt_err_last - lbolt value when the last burst started 3492 * icmp_pkt_err_sent - number of packets sent in current burst 3493 */ 3494 boolean_t 3495 icmp_err_rate_limit(ip_stack_t *ipst) 3496 { 3497 clock_t now = TICK_TO_MSEC(lbolt); 3498 uint_t refilled; /* Number of packets refilled in tbf since last */ 3499 /* Guard against changes by loading into local variable */ 3500 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3501 3502 if (err_interval == 0) 3503 return (B_FALSE); 3504 3505 if (ipst->ips_icmp_pkt_err_last > now) { 3506 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3507 ipst->ips_icmp_pkt_err_last = 0; 3508 ipst->ips_icmp_pkt_err_sent = 0; 3509 } 3510 /* 3511 * If we are in a burst update the token bucket filter. 3512 * Update the "last" time to be close to "now" but make sure 3513 * we don't loose precision. 3514 */ 3515 if (ipst->ips_icmp_pkt_err_sent != 0) { 3516 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3517 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3518 ipst->ips_icmp_pkt_err_sent = 0; 3519 } else { 3520 ipst->ips_icmp_pkt_err_sent -= refilled; 3521 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3522 } 3523 } 3524 if (ipst->ips_icmp_pkt_err_sent == 0) { 3525 /* Start of new burst */ 3526 ipst->ips_icmp_pkt_err_last = now; 3527 } 3528 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3529 ipst->ips_icmp_pkt_err_sent++; 3530 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3531 ipst->ips_icmp_pkt_err_sent)); 3532 return (B_FALSE); 3533 } 3534 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3535 return (B_TRUE); 3536 } 3537 3538 /* 3539 * Check if it is ok to send an IPv4 ICMP error packet in 3540 * response to the IPv4 packet in mp. 3541 * Free the message and return null if no 3542 * ICMP error packet should be sent. 3543 */ 3544 static mblk_t * 3545 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3546 { 3547 icmph_t *icmph; 3548 ipha_t *ipha; 3549 uint_t len_needed; 3550 ire_t *src_ire; 3551 ire_t *dst_ire; 3552 3553 if (!mp) 3554 return (NULL); 3555 ipha = (ipha_t *)mp->b_rptr; 3556 if (ip_csum_hdr(ipha)) { 3557 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3558 freemsg(mp); 3559 return (NULL); 3560 } 3561 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3562 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3563 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3564 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3565 if (src_ire != NULL || dst_ire != NULL || 3566 CLASSD(ipha->ipha_dst) || 3567 CLASSD(ipha->ipha_src) || 3568 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3569 /* Note: only errors to the fragment with offset 0 */ 3570 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3571 freemsg(mp); 3572 if (src_ire != NULL) 3573 ire_refrele(src_ire); 3574 if (dst_ire != NULL) 3575 ire_refrele(dst_ire); 3576 return (NULL); 3577 } 3578 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3579 /* 3580 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3581 * errors in response to any ICMP errors. 3582 */ 3583 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3584 if (mp->b_wptr - mp->b_rptr < len_needed) { 3585 if (!pullupmsg(mp, len_needed)) { 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 ipha = (ipha_t *)mp->b_rptr; 3591 } 3592 icmph = (icmph_t *) 3593 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3594 switch (icmph->icmph_type) { 3595 case ICMP_DEST_UNREACHABLE: 3596 case ICMP_SOURCE_QUENCH: 3597 case ICMP_TIME_EXCEEDED: 3598 case ICMP_PARAM_PROBLEM: 3599 case ICMP_REDIRECT: 3600 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3601 freemsg(mp); 3602 return (NULL); 3603 default: 3604 break; 3605 } 3606 } 3607 /* 3608 * If this is a labeled system, then check to see if we're allowed to 3609 * send a response to this particular sender. If not, then just drop. 3610 */ 3611 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3612 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3613 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3614 freemsg(mp); 3615 return (NULL); 3616 } 3617 if (icmp_err_rate_limit(ipst)) { 3618 /* 3619 * Only send ICMP error packets every so often. 3620 * This should be done on a per port/source basis, 3621 * but for now this will suffice. 3622 */ 3623 freemsg(mp); 3624 return (NULL); 3625 } 3626 return (mp); 3627 } 3628 3629 /* 3630 * Generate an ICMP redirect message. 3631 */ 3632 static void 3633 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3634 { 3635 icmph_t icmph; 3636 3637 /* 3638 * We are called from ip_rput where we could 3639 * not have attached an IPSEC_IN. 3640 */ 3641 ASSERT(mp->b_datap->db_type == M_DATA); 3642 3643 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3644 return; 3645 } 3646 3647 bzero(&icmph, sizeof (icmph_t)); 3648 icmph.icmph_type = ICMP_REDIRECT; 3649 icmph.icmph_code = 1; 3650 icmph.icmph_rd_gateway = gateway; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3652 /* Redirects sent by router, and router is global zone */ 3653 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP time exceeded message. 3658 */ 3659 void 3660 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 boolean_t mctl_present; 3665 mblk_t *first_mp; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3679 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3680 ipst); 3681 } 3682 3683 /* 3684 * Generate an ICMP unreachable message. 3685 */ 3686 void 3687 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3688 ip_stack_t *ipst) 3689 { 3690 icmph_t icmph; 3691 mblk_t *first_mp; 3692 boolean_t mctl_present; 3693 3694 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3695 3696 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3697 if (mctl_present) 3698 freeb(first_mp); 3699 return; 3700 } 3701 3702 bzero(&icmph, sizeof (icmph_t)); 3703 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3704 icmph.icmph_code = code; 3705 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3706 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3707 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3708 zoneid, ipst); 3709 } 3710 3711 /* 3712 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3713 * duplicate. As long as someone else holds the address, the interface will 3714 * stay down. When that conflict goes away, the interface is brought back up. 3715 * This is done so that accidental shutdowns of addresses aren't made 3716 * permanent. Your server will recover from a failure. 3717 * 3718 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3719 * user space process (dhcpagent). 3720 * 3721 * Recovery completes if ARP reports that the address is now ours (via 3722 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3723 * 3724 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3725 */ 3726 static void 3727 ipif_dup_recovery(void *arg) 3728 { 3729 ipif_t *ipif = arg; 3730 ill_t *ill = ipif->ipif_ill; 3731 mblk_t *arp_add_mp; 3732 mblk_t *arp_del_mp; 3733 area_t *area; 3734 ip_stack_t *ipst = ill->ill_ipst; 3735 3736 ipif->ipif_recovery_id = 0; 3737 3738 /* 3739 * No lock needed for moving or condemned check, as this is just an 3740 * optimization. 3741 */ 3742 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3743 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3744 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3745 /* No reason to try to bring this address back. */ 3746 return; 3747 } 3748 3749 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3750 goto alloc_fail; 3751 3752 if (ipif->ipif_arp_del_mp == NULL) { 3753 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3754 goto alloc_fail; 3755 ipif->ipif_arp_del_mp = arp_del_mp; 3756 } 3757 3758 /* Setting the 'unverified' flag restarts DAD */ 3759 area = (area_t *)arp_add_mp->b_rptr; 3760 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3761 ACE_F_UNVERIFIED; 3762 putnext(ill->ill_rq, arp_add_mp); 3763 return; 3764 3765 alloc_fail: 3766 /* 3767 * On allocation failure, just restart the timer. Note that the ipif 3768 * is down here, so no other thread could be trying to start a recovery 3769 * timer. The ill_lock protects the condemned flag and the recovery 3770 * timer ID. 3771 */ 3772 freemsg(arp_add_mp); 3773 mutex_enter(&ill->ill_lock); 3774 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3775 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3776 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3777 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3778 } 3779 mutex_exit(&ill->ill_lock); 3780 } 3781 3782 /* 3783 * This is for exclusive changes due to ARP. Either tear down an interface due 3784 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3785 */ 3786 /* ARGSUSED */ 3787 static void 3788 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3789 { 3790 ill_t *ill = rq->q_ptr; 3791 arh_t *arh; 3792 ipaddr_t src; 3793 ipif_t *ipif; 3794 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3795 char hbuf[MAC_STR_LEN]; 3796 char sbuf[INET_ADDRSTRLEN]; 3797 const char *failtype; 3798 boolean_t bring_up; 3799 ip_stack_t *ipst = ill->ill_ipst; 3800 3801 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3802 case AR_CN_READY: 3803 failtype = NULL; 3804 bring_up = B_TRUE; 3805 break; 3806 case AR_CN_FAILED: 3807 failtype = "in use"; 3808 bring_up = B_FALSE; 3809 break; 3810 default: 3811 failtype = "claimed"; 3812 bring_up = B_FALSE; 3813 break; 3814 } 3815 3816 arh = (arh_t *)mp->b_cont->b_rptr; 3817 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3818 3819 /* Handle failures due to probes */ 3820 if (src == 0) { 3821 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3822 IP_ADDR_LEN); 3823 } 3824 3825 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3826 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3827 sizeof (hbuf)); 3828 (void) ip_dot_addr(src, sbuf); 3829 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3830 3831 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3832 ipif->ipif_lcl_addr != src) { 3833 continue; 3834 } 3835 3836 /* 3837 * If we failed on a recovery probe, then restart the timer to 3838 * try again later. 3839 */ 3840 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3841 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3842 ill->ill_net_type == IRE_IF_RESOLVER && 3843 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3844 ipst->ips_ip_dup_recovery > 0 && 3845 ipif->ipif_recovery_id == 0) { 3846 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3847 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3848 continue; 3849 } 3850 3851 /* 3852 * If what we're trying to do has already been done, then do 3853 * nothing. 3854 */ 3855 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3856 continue; 3857 3858 if (ipif->ipif_id != 0) { 3859 (void) snprintf(ibuf + ill->ill_name_length - 1, 3860 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3861 ipif->ipif_id); 3862 } 3863 if (failtype == NULL) { 3864 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3865 ibuf); 3866 } else { 3867 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3868 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3869 } 3870 3871 if (bring_up) { 3872 ASSERT(ill->ill_dl_up); 3873 /* 3874 * Free up the ARP delete message so we can allocate 3875 * a fresh one through the normal path. 3876 */ 3877 freemsg(ipif->ipif_arp_del_mp); 3878 ipif->ipif_arp_del_mp = NULL; 3879 if (ipif_resolver_up(ipif, Res_act_initial) != 3880 EINPROGRESS) { 3881 ipif->ipif_addr_ready = 1; 3882 (void) ipif_up_done(ipif); 3883 } 3884 continue; 3885 } 3886 3887 mutex_enter(&ill->ill_lock); 3888 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3889 ipif->ipif_flags |= IPIF_DUPLICATE; 3890 ill->ill_ipif_dup_count++; 3891 mutex_exit(&ill->ill_lock); 3892 /* 3893 * Already exclusive on the ill; no need to handle deferred 3894 * processing here. 3895 */ 3896 (void) ipif_down(ipif, NULL, NULL); 3897 ipif_down_tail(ipif); 3898 mutex_enter(&ill->ill_lock); 3899 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3900 ill->ill_net_type == IRE_IF_RESOLVER && 3901 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3902 ipst->ips_ip_dup_recovery > 0) { 3903 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3904 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3905 } 3906 mutex_exit(&ill->ill_lock); 3907 } 3908 freemsg(mp); 3909 } 3910 3911 /* ARGSUSED */ 3912 static void 3913 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3914 { 3915 ill_t *ill = rq->q_ptr; 3916 arh_t *arh; 3917 ipaddr_t src; 3918 ipif_t *ipif; 3919 3920 arh = (arh_t *)mp->b_cont->b_rptr; 3921 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3922 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3923 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3924 (void) ipif_resolver_up(ipif, Res_act_defend); 3925 } 3926 freemsg(mp); 3927 } 3928 3929 /* 3930 * News from ARP. ARP sends notification of interesting events down 3931 * to its clients using M_CTL messages with the interesting ARP packet 3932 * attached via b_cont. 3933 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3934 * queue as opposed to ARP sending the message to all the clients, i.e. all 3935 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3936 * table if a cache IRE is found to delete all the entries for the address in 3937 * the packet. 3938 */ 3939 static void 3940 ip_arp_news(queue_t *q, mblk_t *mp) 3941 { 3942 arcn_t *arcn; 3943 arh_t *arh; 3944 ire_t *ire = NULL; 3945 char hbuf[MAC_STR_LEN]; 3946 char sbuf[INET_ADDRSTRLEN]; 3947 ipaddr_t src; 3948 in6_addr_t v6src; 3949 boolean_t isv6 = B_FALSE; 3950 ipif_t *ipif; 3951 ill_t *ill; 3952 ip_stack_t *ipst; 3953 3954 if (CONN_Q(q)) { 3955 conn_t *connp = Q_TO_CONN(q); 3956 3957 ipst = connp->conn_netstack->netstack_ip; 3958 } else { 3959 ill_t *ill = (ill_t *)q->q_ptr; 3960 3961 ipst = ill->ill_ipst; 3962 } 3963 3964 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3965 if (q->q_next) { 3966 putnext(q, mp); 3967 } else 3968 freemsg(mp); 3969 return; 3970 } 3971 arh = (arh_t *)mp->b_cont->b_rptr; 3972 /* Is it one we are interested in? */ 3973 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3974 isv6 = B_TRUE; 3975 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3976 IPV6_ADDR_LEN); 3977 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3978 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3979 IP_ADDR_LEN); 3980 } else { 3981 freemsg(mp); 3982 return; 3983 } 3984 3985 ill = q->q_ptr; 3986 3987 arcn = (arcn_t *)mp->b_rptr; 3988 switch (arcn->arcn_code) { 3989 case AR_CN_BOGON: 3990 /* 3991 * Someone is sending ARP packets with a source protocol 3992 * address that we have published and for which we believe our 3993 * entry is authoritative and (when ill_arp_extend is set) 3994 * verified to be unique on the network. 3995 * 3996 * The ARP module internally handles the cases where the sender 3997 * is just probing (for DAD) and where the hardware address of 3998 * a non-authoritative entry has changed. Thus, these are the 3999 * real conflicts, and we have to do resolution. 4000 * 4001 * We back away quickly from the address if it's from DHCP or 4002 * otherwise temporary and hasn't been used recently (or at 4003 * all). We'd like to include "deprecated" addresses here as 4004 * well (as there's no real reason to defend something we're 4005 * discarding), but IPMP "reuses" this flag to mean something 4006 * other than the standard meaning. 4007 * 4008 * If the ARP module above is not extended (meaning that it 4009 * doesn't know how to defend the address), then we just log 4010 * the problem as we always did and continue on. It's not 4011 * right, but there's little else we can do, and those old ATM 4012 * users are going away anyway. 4013 */ 4014 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4015 hbuf, sizeof (hbuf)); 4016 (void) ip_dot_addr(src, sbuf); 4017 if (isv6) { 4018 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4019 ipst); 4020 } else { 4021 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4022 } 4023 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4024 uint32_t now; 4025 uint32_t maxage; 4026 clock_t lused; 4027 uint_t maxdefense; 4028 uint_t defs; 4029 4030 /* 4031 * First, figure out if this address hasn't been used 4032 * in a while. If it hasn't, then it's a better 4033 * candidate for abandoning. 4034 */ 4035 ipif = ire->ire_ipif; 4036 ASSERT(ipif != NULL); 4037 now = gethrestime_sec(); 4038 maxage = now - ire->ire_create_time; 4039 if (maxage > ipst->ips_ip_max_temp_idle) 4040 maxage = ipst->ips_ip_max_temp_idle; 4041 lused = drv_hztousec(ddi_get_lbolt() - 4042 ire->ire_last_used_time) / MICROSEC + 1; 4043 if (lused >= maxage && (ipif->ipif_flags & 4044 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4045 maxdefense = ipst->ips_ip_max_temp_defend; 4046 else 4047 maxdefense = ipst->ips_ip_max_defend; 4048 4049 /* 4050 * Now figure out how many times we've defended 4051 * ourselves. Ignore defenses that happened long in 4052 * the past. 4053 */ 4054 mutex_enter(&ire->ire_lock); 4055 if ((defs = ire->ire_defense_count) > 0 && 4056 now - ire->ire_defense_time > 4057 ipst->ips_ip_defend_interval) { 4058 ire->ire_defense_count = defs = 0; 4059 } 4060 ire->ire_defense_count++; 4061 ire->ire_defense_time = now; 4062 mutex_exit(&ire->ire_lock); 4063 ill_refhold(ill); 4064 ire_refrele(ire); 4065 4066 /* 4067 * If we've defended ourselves too many times already, 4068 * then give up and tear down the interface(s) using 4069 * this address. Otherwise, defend by sending out a 4070 * gratuitous ARP. 4071 */ 4072 if (defs >= maxdefense && ill->ill_arp_extend) { 4073 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4074 B_FALSE); 4075 } else { 4076 cmn_err(CE_WARN, 4077 "node %s is using our IP address %s on %s", 4078 hbuf, sbuf, ill->ill_name); 4079 /* 4080 * If this is an old (ATM) ARP module, then 4081 * don't try to defend the address. Remain 4082 * compatible with the old behavior. Defend 4083 * only with new ARP. 4084 */ 4085 if (ill->ill_arp_extend) { 4086 qwriter_ip(ill, q, mp, ip_arp_defend, 4087 NEW_OP, B_FALSE); 4088 } else { 4089 ill_refrele(ill); 4090 } 4091 } 4092 return; 4093 } 4094 cmn_err(CE_WARN, 4095 "proxy ARP problem? Node '%s' is using %s on %s", 4096 hbuf, sbuf, ill->ill_name); 4097 if (ire != NULL) 4098 ire_refrele(ire); 4099 break; 4100 case AR_CN_ANNOUNCE: 4101 if (isv6) { 4102 /* 4103 * For XRESOLV interfaces. 4104 * Delete the IRE cache entry and NCE for this 4105 * v6 address 4106 */ 4107 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4108 /* 4109 * If v6src is a non-zero, it's a router address 4110 * as below. Do the same sort of thing to clean 4111 * out off-net IRE_CACHE entries that go through 4112 * the router. 4113 */ 4114 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4115 ire_walk_v6(ire_delete_cache_gw_v6, 4116 (char *)&v6src, ALL_ZONES, ipst); 4117 } 4118 } else { 4119 nce_hw_map_t hwm; 4120 4121 /* 4122 * ARP gives us a copy of any packet where it thinks 4123 * the address has changed, so that we can update our 4124 * caches. We're responsible for caching known answers 4125 * in the current design. We check whether the 4126 * hardware address really has changed in all of our 4127 * entries that have cached this mapping, and if so, we 4128 * blow them away. This way we will immediately pick 4129 * up the rare case of a host changing hardware 4130 * address. 4131 */ 4132 if (src == 0) 4133 break; 4134 hwm.hwm_addr = src; 4135 hwm.hwm_hwlen = arh->arh_hlen; 4136 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4137 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4138 ndp_walk_common(ipst->ips_ndp4, NULL, 4139 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4140 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4141 } 4142 break; 4143 case AR_CN_READY: 4144 /* No external v6 resolver has a contract to use this */ 4145 if (isv6) 4146 break; 4147 /* If the link is down, we'll retry this later */ 4148 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4149 break; 4150 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4151 NULL, NULL, ipst); 4152 if (ipif != NULL) { 4153 /* 4154 * If this is a duplicate recovery, then we now need to 4155 * go exclusive to bring this thing back up. 4156 */ 4157 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4158 IPIF_DUPLICATE) { 4159 ipif_refrele(ipif); 4160 ill_refhold(ill); 4161 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4162 B_FALSE); 4163 return; 4164 } 4165 /* 4166 * If this is the first notice that this address is 4167 * ready, then let the user know now. 4168 */ 4169 if ((ipif->ipif_flags & IPIF_UP) && 4170 !ipif->ipif_addr_ready) { 4171 ipif_mask_reply(ipif); 4172 ip_rts_ifmsg(ipif); 4173 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4174 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4175 } 4176 ipif->ipif_addr_ready = 1; 4177 ipif_refrele(ipif); 4178 } 4179 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4180 if (ire != NULL) { 4181 ire->ire_defense_count = 0; 4182 ire_refrele(ire); 4183 } 4184 break; 4185 case AR_CN_FAILED: 4186 /* No external v6 resolver has a contract to use this */ 4187 if (isv6) 4188 break; 4189 ill_refhold(ill); 4190 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4191 return; 4192 } 4193 freemsg(mp); 4194 } 4195 4196 /* 4197 * Create a mblk suitable for carrying the interface index and/or source link 4198 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4199 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4200 * application. 4201 */ 4202 mblk_t * 4203 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4204 ip_stack_t *ipst) 4205 { 4206 mblk_t *mp; 4207 ip_pktinfo_t *pinfo; 4208 ipha_t *ipha; 4209 struct ether_header *pether; 4210 4211 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4212 if (mp == NULL) { 4213 ip1dbg(("ip_add_info: allocation failure.\n")); 4214 return (data_mp); 4215 } 4216 4217 ipha = (ipha_t *)data_mp->b_rptr; 4218 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4219 bzero(pinfo, sizeof (ip_pktinfo_t)); 4220 pinfo->ip_pkt_flags = (uchar_t)flags; 4221 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4222 4223 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4224 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4225 if (flags & IPF_RECVADDR) { 4226 ipif_t *ipif; 4227 ire_t *ire; 4228 4229 /* 4230 * Only valid for V4 4231 */ 4232 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4233 (IPV4_VERSION << 4)); 4234 4235 ipif = ipif_get_next_ipif(NULL, ill); 4236 if (ipif != NULL) { 4237 /* 4238 * Since a decision has already been made to deliver the 4239 * packet, there is no need to test for SECATTR and 4240 * ZONEONLY. 4241 * When a multicast packet is transmitted 4242 * a cache entry is created for the multicast address. 4243 * When delivering a copy of the packet or when new 4244 * packets are received we do not want to match on the 4245 * cached entry so explicitly match on 4246 * IRE_LOCAL and IRE_LOOPBACK 4247 */ 4248 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4249 IRE_LOCAL | IRE_LOOPBACK, 4250 ipif, zoneid, NULL, 4251 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4252 if (ire == NULL) { 4253 /* 4254 * packet must have come on a different 4255 * interface. 4256 * Since a decision has already been made to 4257 * deliver the packet, there is no need to test 4258 * for SECATTR and ZONEONLY. 4259 * Only match on local and broadcast ire's. 4260 * See detailed comment above. 4261 */ 4262 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4263 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4264 NULL, MATCH_IRE_TYPE, ipst); 4265 } 4266 4267 if (ire == NULL) { 4268 /* 4269 * This is either a multicast packet or 4270 * the address has been removed since 4271 * the packet was received. 4272 * Return INADDR_ANY so that normal source 4273 * selection occurs for the response. 4274 */ 4275 4276 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4277 } else { 4278 pinfo->ip_pkt_match_addr.s_addr = 4279 ire->ire_src_addr; 4280 ire_refrele(ire); 4281 } 4282 ipif_refrele(ipif); 4283 } else { 4284 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4285 } 4286 } 4287 4288 pether = (struct ether_header *)((char *)ipha 4289 - sizeof (struct ether_header)); 4290 /* 4291 * Make sure the interface is an ethernet type, since this option 4292 * is currently supported only on this type of interface. Also make 4293 * sure we are pointing correctly above db_base. 4294 */ 4295 4296 if ((flags & IPF_RECVSLLA) && 4297 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4298 (ill->ill_type == IFT_ETHER) && 4299 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4300 4301 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4302 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4303 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4304 } else { 4305 /* 4306 * Clear the bit. Indicate to upper layer that IP is not 4307 * sending this ancillary info. 4308 */ 4309 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4310 } 4311 4312 mp->b_datap->db_type = M_CTL; 4313 mp->b_wptr += sizeof (ip_pktinfo_t); 4314 mp->b_cont = data_mp; 4315 4316 return (mp); 4317 } 4318 4319 /* 4320 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4321 * part of the bind request. 4322 */ 4323 4324 boolean_t 4325 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4326 { 4327 ipsec_in_t *ii; 4328 4329 ASSERT(policy_mp != NULL); 4330 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4331 4332 ii = (ipsec_in_t *)policy_mp->b_rptr; 4333 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4334 4335 connp->conn_policy = ii->ipsec_in_policy; 4336 ii->ipsec_in_policy = NULL; 4337 4338 if (ii->ipsec_in_action != NULL) { 4339 if (connp->conn_latch == NULL) { 4340 connp->conn_latch = iplatch_create(); 4341 if (connp->conn_latch == NULL) 4342 return (B_FALSE); 4343 } 4344 ipsec_latch_inbound(connp->conn_latch, ii); 4345 } 4346 return (B_TRUE); 4347 } 4348 4349 /* 4350 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4351 * and to arrange for power-fanout assist. The ULP is identified by 4352 * adding a single byte at the end of the original bind message. 4353 * A ULP other than UDP or TCP that wishes to be recognized passes 4354 * down a bind with a zero length address. 4355 * 4356 * The binding works as follows: 4357 * - A zero byte address means just bind to the protocol. 4358 * - A four byte address is treated as a request to validate 4359 * that the address is a valid local address, appropriate for 4360 * an application to bind to. This does not affect any fanout 4361 * information in IP. 4362 * - A sizeof sin_t byte address is used to bind to only the local address 4363 * and port. 4364 * - A sizeof ipa_conn_t byte address contains complete fanout information 4365 * consisting of local and remote addresses and ports. In 4366 * this case, the addresses are both validated as appropriate 4367 * for this operation, and, if so, the information is retained 4368 * for use in the inbound fanout. 4369 * 4370 * The ULP (except in the zero-length bind) can append an 4371 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4372 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4373 * a copy of the source or destination IRE (source for local bind; 4374 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4375 * policy information contained should be copied on to the conn. 4376 * 4377 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4378 */ 4379 mblk_t * 4380 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4381 { 4382 ssize_t len; 4383 struct T_bind_req *tbr; 4384 sin_t *sin; 4385 ipa_conn_t *ac; 4386 uchar_t *ucp; 4387 mblk_t *mp1; 4388 boolean_t ire_requested; 4389 boolean_t ipsec_policy_set = B_FALSE; 4390 int error = 0; 4391 int protocol; 4392 ipa_conn_x_t *acx; 4393 4394 ASSERT(!connp->conn_af_isv6); 4395 connp->conn_pkt_isv6 = B_FALSE; 4396 4397 len = MBLKL(mp); 4398 if (len < (sizeof (*tbr) + 1)) { 4399 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4400 "ip_bind: bogus msg, len %ld", len); 4401 /* XXX: Need to return something better */ 4402 goto bad_addr; 4403 } 4404 /* Back up and extract the protocol identifier. */ 4405 mp->b_wptr--; 4406 protocol = *mp->b_wptr & 0xFF; 4407 tbr = (struct T_bind_req *)mp->b_rptr; 4408 /* Reset the message type in preparation for shipping it back. */ 4409 DB_TYPE(mp) = M_PCPROTO; 4410 4411 connp->conn_ulp = (uint8_t)protocol; 4412 4413 /* 4414 * Check for a zero length address. This is from a protocol that 4415 * wants to register to receive all packets of its type. 4416 */ 4417 if (tbr->ADDR_length == 0) { 4418 /* 4419 * These protocols are now intercepted in ip_bind_v6(). 4420 * Reject protocol-level binds here for now. 4421 * 4422 * For SCTP raw socket, ICMP sends down a bind with sin_t 4423 * so that the protocol type cannot be SCTP. 4424 */ 4425 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4426 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4427 goto bad_addr; 4428 } 4429 4430 /* 4431 * 4432 * The udp module never sends down a zero-length address, 4433 * and allowing this on a labeled system will break MLP 4434 * functionality. 4435 */ 4436 if (is_system_labeled() && protocol == IPPROTO_UDP) 4437 goto bad_addr; 4438 4439 if (connp->conn_mac_exempt) 4440 goto bad_addr; 4441 4442 /* No hash here really. The table is big enough. */ 4443 connp->conn_srcv6 = ipv6_all_zeros; 4444 4445 ipcl_proto_insert(connp, protocol); 4446 4447 tbr->PRIM_type = T_BIND_ACK; 4448 return (mp); 4449 } 4450 4451 /* Extract the address pointer from the message. */ 4452 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4453 tbr->ADDR_length); 4454 if (ucp == NULL) { 4455 ip1dbg(("ip_bind: no address\n")); 4456 goto bad_addr; 4457 } 4458 if (!OK_32PTR(ucp)) { 4459 ip1dbg(("ip_bind: unaligned address\n")); 4460 goto bad_addr; 4461 } 4462 /* 4463 * Check for trailing mps. 4464 */ 4465 4466 mp1 = mp->b_cont; 4467 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4468 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4469 4470 switch (tbr->ADDR_length) { 4471 default: 4472 ip1dbg(("ip_bind: bad address length %d\n", 4473 (int)tbr->ADDR_length)); 4474 goto bad_addr; 4475 4476 case IP_ADDR_LEN: 4477 /* Verification of local address only */ 4478 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4479 ire_requested, ipsec_policy_set, B_FALSE); 4480 break; 4481 4482 case sizeof (sin_t): 4483 sin = (sin_t *)ucp; 4484 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4485 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4486 break; 4487 4488 case sizeof (ipa_conn_t): 4489 ac = (ipa_conn_t *)ucp; 4490 /* For raw socket, the local port is not set. */ 4491 if (ac->ac_lport == 0) 4492 ac->ac_lport = connp->conn_lport; 4493 /* Always verify destination reachability. */ 4494 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4495 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4496 ipsec_policy_set, B_TRUE, B_TRUE); 4497 break; 4498 4499 case sizeof (ipa_conn_x_t): 4500 acx = (ipa_conn_x_t *)ucp; 4501 /* 4502 * Whether or not to verify destination reachability depends 4503 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4504 */ 4505 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4506 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4507 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4508 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4509 break; 4510 } 4511 if (error == EINPROGRESS) 4512 return (NULL); 4513 else if (error != 0) 4514 goto bad_addr; 4515 /* 4516 * Pass the IPSEC headers size in ire_ipsec_overhead. 4517 * We can't do this in ip_bind_insert_ire because the policy 4518 * may not have been inherited at that point in time and hence 4519 * conn_out_enforce_policy may not be set. 4520 */ 4521 mp1 = mp->b_cont; 4522 if (ire_requested && connp->conn_out_enforce_policy && 4523 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4524 ire_t *ire = (ire_t *)mp1->b_rptr; 4525 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4526 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4527 } 4528 4529 /* Send it home. */ 4530 mp->b_datap->db_type = M_PCPROTO; 4531 tbr->PRIM_type = T_BIND_ACK; 4532 return (mp); 4533 4534 bad_addr: 4535 /* 4536 * If error = -1 then we generate a TBADADDR - otherwise error is 4537 * a unix errno. 4538 */ 4539 if (error > 0) 4540 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4541 else 4542 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4543 return (mp); 4544 } 4545 4546 /* 4547 * Here address is verified to be a valid local address. 4548 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4549 * address is also considered a valid local address. 4550 * In the case of a broadcast/multicast address, however, the 4551 * upper protocol is expected to reset the src address 4552 * to 0 if it sees a IRE_BROADCAST type returned so that 4553 * no packets are emitted with broadcast/multicast address as 4554 * source address (that violates hosts requirements RFC1122) 4555 * The addresses valid for bind are: 4556 * (1) - INADDR_ANY (0) 4557 * (2) - IP address of an UP interface 4558 * (3) - IP address of a DOWN interface 4559 * (4) - valid local IP broadcast addresses. In this case 4560 * the conn will only receive packets destined to 4561 * the specified broadcast address. 4562 * (5) - a multicast address. In this case 4563 * the conn will only receive packets destined to 4564 * the specified multicast address. Note: the 4565 * application still has to issue an 4566 * IP_ADD_MEMBERSHIP socket option. 4567 * 4568 * On error, return -1 for TBADADDR otherwise pass the 4569 * errno with TSYSERR reply. 4570 * 4571 * In all the above cases, the bound address must be valid in the current zone. 4572 * When the address is loopback, multicast or broadcast, there might be many 4573 * matching IREs so bind has to look up based on the zone. 4574 * 4575 * Note: lport is in network byte order. 4576 */ 4577 int 4578 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4579 boolean_t ire_requested, boolean_t ipsec_policy_set, 4580 boolean_t fanout_insert) 4581 { 4582 int error = 0; 4583 ire_t *src_ire; 4584 mblk_t *policy_mp; 4585 ipif_t *ipif; 4586 zoneid_t zoneid; 4587 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4588 4589 if (ipsec_policy_set) { 4590 policy_mp = mp->b_cont; 4591 } 4592 4593 /* 4594 * If it was previously connected, conn_fully_bound would have 4595 * been set. 4596 */ 4597 connp->conn_fully_bound = B_FALSE; 4598 4599 src_ire = NULL; 4600 ipif = NULL; 4601 4602 zoneid = IPCL_ZONEID(connp); 4603 4604 if (src_addr) { 4605 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4606 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4607 /* 4608 * If an address other than 0.0.0.0 is requested, 4609 * we verify that it is a valid address for bind 4610 * Note: Following code is in if-else-if form for 4611 * readability compared to a condition check. 4612 */ 4613 /* LINTED - statement has no consequent */ 4614 if (IRE_IS_LOCAL(src_ire)) { 4615 /* 4616 * (2) Bind to address of local UP interface 4617 */ 4618 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4619 /* 4620 * (4) Bind to broadcast address 4621 * Note: permitted only from transports that 4622 * request IRE 4623 */ 4624 if (!ire_requested) 4625 error = EADDRNOTAVAIL; 4626 } else { 4627 /* 4628 * (3) Bind to address of local DOWN interface 4629 * (ipif_lookup_addr() looks up all interfaces 4630 * but we do not get here for UP interfaces 4631 * - case (2) above) 4632 * We put the protocol byte back into the mblk 4633 * since we may come back via ip_wput_nondata() 4634 * later with this mblk if ipif_lookup_addr chooses 4635 * to defer processing. 4636 */ 4637 *mp->b_wptr++ = (char)connp->conn_ulp; 4638 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4639 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4640 &error, ipst)) != NULL) { 4641 ipif_refrele(ipif); 4642 } else if (error == EINPROGRESS) { 4643 if (src_ire != NULL) 4644 ire_refrele(src_ire); 4645 return (EINPROGRESS); 4646 } else if (CLASSD(src_addr)) { 4647 error = 0; 4648 if (src_ire != NULL) 4649 ire_refrele(src_ire); 4650 /* 4651 * (5) bind to multicast address. 4652 * Fake out the IRE returned to upper 4653 * layer to be a broadcast IRE. 4654 */ 4655 src_ire = ire_ctable_lookup( 4656 INADDR_BROADCAST, INADDR_ANY, 4657 IRE_BROADCAST, NULL, zoneid, NULL, 4658 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4659 ipst); 4660 if (src_ire == NULL || !ire_requested) 4661 error = EADDRNOTAVAIL; 4662 } else { 4663 /* 4664 * Not a valid address for bind 4665 */ 4666 error = EADDRNOTAVAIL; 4667 } 4668 /* 4669 * Just to keep it consistent with the processing in 4670 * ip_bind_v4() 4671 */ 4672 mp->b_wptr--; 4673 } 4674 if (error) { 4675 /* Red Alert! Attempting to be a bogon! */ 4676 ip1dbg(("ip_bind: bad src address 0x%x\n", 4677 ntohl(src_addr))); 4678 goto bad_addr; 4679 } 4680 } 4681 4682 /* 4683 * Allow setting new policies. For example, disconnects come 4684 * down as ipa_t bind. As we would have set conn_policy_cached 4685 * to B_TRUE before, we should set it to B_FALSE, so that policy 4686 * can change after the disconnect. 4687 */ 4688 connp->conn_policy_cached = B_FALSE; 4689 4690 /* 4691 * If not fanout_insert this was just an address verification 4692 */ 4693 if (fanout_insert) { 4694 /* 4695 * The addresses have been verified. Time to insert in 4696 * the correct fanout list. 4697 */ 4698 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4699 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4700 connp->conn_lport = lport; 4701 connp->conn_fport = 0; 4702 /* 4703 * Do we need to add a check to reject Multicast packets 4704 * 4705 * We need to make sure that the conn_recv is set to a non-null 4706 * value before we insert the conn into the classifier table. 4707 * This is to avoid a race with an incoming packet which does an 4708 * ipcl_classify(). 4709 */ 4710 if (*mp->b_wptr == IPPROTO_TCP) 4711 connp->conn_recv = tcp_conn_request; 4712 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4713 } 4714 4715 if (error == 0) { 4716 if (ire_requested) { 4717 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4718 error = -1; 4719 /* Falls through to bad_addr */ 4720 } 4721 } else if (ipsec_policy_set) { 4722 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4723 error = -1; 4724 /* Falls through to bad_addr */ 4725 } 4726 } 4727 } else if (connp->conn_ulp == IPPROTO_TCP) { 4728 connp->conn_recv = tcp_input; 4729 } 4730 bad_addr: 4731 if (error != 0) { 4732 if (connp->conn_anon_port) { 4733 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4734 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4735 B_FALSE); 4736 } 4737 connp->conn_mlp_type = mlptSingle; 4738 } 4739 if (src_ire != NULL) 4740 IRE_REFRELE(src_ire); 4741 if (ipsec_policy_set) { 4742 ASSERT(policy_mp == mp->b_cont); 4743 ASSERT(policy_mp != NULL); 4744 freeb(policy_mp); 4745 /* 4746 * As of now assume that nothing else accompanies 4747 * IPSEC_POLICY_SET. 4748 */ 4749 mp->b_cont = NULL; 4750 } 4751 return (error); 4752 } 4753 4754 /* 4755 * Verify that both the source and destination addresses 4756 * are valid. If verify_dst is false, then the destination address may be 4757 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4758 * destination reachability, while tunnels do not. 4759 * Note that we allow connect to broadcast and multicast 4760 * addresses when ire_requested is set. Thus the ULP 4761 * has to check for IRE_BROADCAST and multicast. 4762 * 4763 * Returns zero if ok. 4764 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4765 * (for use with TSYSERR reply). 4766 * 4767 * Note: lport and fport are in network byte order. 4768 */ 4769 int 4770 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4771 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4772 boolean_t ire_requested, boolean_t ipsec_policy_set, 4773 boolean_t fanout_insert, boolean_t verify_dst) 4774 { 4775 ire_t *src_ire; 4776 ire_t *dst_ire; 4777 int error = 0; 4778 int protocol; 4779 mblk_t *policy_mp; 4780 ire_t *sire = NULL; 4781 ire_t *md_dst_ire = NULL; 4782 ire_t *lso_dst_ire = NULL; 4783 ill_t *ill = NULL; 4784 zoneid_t zoneid; 4785 ipaddr_t src_addr = *src_addrp; 4786 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4787 4788 src_ire = dst_ire = NULL; 4789 protocol = *mp->b_wptr & 0xFF; 4790 4791 /* 4792 * If we never got a disconnect before, clear it now. 4793 */ 4794 connp->conn_fully_bound = B_FALSE; 4795 4796 if (ipsec_policy_set) { 4797 policy_mp = mp->b_cont; 4798 } 4799 4800 zoneid = IPCL_ZONEID(connp); 4801 4802 if (CLASSD(dst_addr)) { 4803 /* Pick up an IRE_BROADCAST */ 4804 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4805 NULL, zoneid, MBLK_GETLABEL(mp), 4806 (MATCH_IRE_RECURSIVE | 4807 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4808 MATCH_IRE_SECATTR), ipst); 4809 } else { 4810 /* 4811 * If conn_dontroute is set or if conn_nexthop_set is set, 4812 * and onlink ipif is not found set ENETUNREACH error. 4813 */ 4814 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4815 ipif_t *ipif; 4816 4817 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4818 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4819 if (ipif == NULL) { 4820 error = ENETUNREACH; 4821 goto bad_addr; 4822 } 4823 ipif_refrele(ipif); 4824 } 4825 4826 if (connp->conn_nexthop_set) { 4827 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4828 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4829 MATCH_IRE_SECATTR, ipst); 4830 } else { 4831 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4832 &sire, zoneid, MBLK_GETLABEL(mp), 4833 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4834 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4835 MATCH_IRE_SECATTR), ipst); 4836 } 4837 } 4838 /* 4839 * dst_ire can't be a broadcast when not ire_requested. 4840 * We also prevent ire's with src address INADDR_ANY to 4841 * be used, which are created temporarily for 4842 * sending out packets from endpoints that have 4843 * conn_unspec_src set. If verify_dst is true, the destination must be 4844 * reachable. If verify_dst is false, the destination needn't be 4845 * reachable. 4846 * 4847 * If we match on a reject or black hole, then we've got a 4848 * local failure. May as well fail out the connect() attempt, 4849 * since it's never going to succeed. 4850 */ 4851 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4852 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4853 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4854 /* 4855 * If we're verifying destination reachability, we always want 4856 * to complain here. 4857 * 4858 * If we're not verifying destination reachability but the 4859 * destination has a route, we still want to fail on the 4860 * temporary address and broadcast address tests. 4861 */ 4862 if (verify_dst || (dst_ire != NULL)) { 4863 if (ip_debug > 2) { 4864 pr_addr_dbg("ip_bind_connected: bad connected " 4865 "dst %s\n", AF_INET, &dst_addr); 4866 } 4867 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4868 error = ENETUNREACH; 4869 else 4870 error = EHOSTUNREACH; 4871 goto bad_addr; 4872 } 4873 } 4874 4875 /* 4876 * We now know that routing will allow us to reach the destination. 4877 * Check whether Trusted Solaris policy allows communication with this 4878 * host, and pretend that the destination is unreachable if not. 4879 * 4880 * This is never a problem for TCP, since that transport is known to 4881 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4882 * handling. If the remote is unreachable, it will be detected at that 4883 * point, so there's no reason to check it here. 4884 * 4885 * Note that for sendto (and other datagram-oriented friends), this 4886 * check is done as part of the data path label computation instead. 4887 * The check here is just to make non-TCP connect() report the right 4888 * error. 4889 */ 4890 if (dst_ire != NULL && is_system_labeled() && 4891 !IPCL_IS_TCP(connp) && 4892 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4893 connp->conn_mac_exempt, ipst) != 0) { 4894 error = EHOSTUNREACH; 4895 if (ip_debug > 2) { 4896 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4897 AF_INET, &dst_addr); 4898 } 4899 goto bad_addr; 4900 } 4901 4902 /* 4903 * If the app does a connect(), it means that it will most likely 4904 * send more than 1 packet to the destination. It makes sense 4905 * to clear the temporary flag. 4906 */ 4907 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4908 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4909 irb_t *irb = dst_ire->ire_bucket; 4910 4911 rw_enter(&irb->irb_lock, RW_WRITER); 4912 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4913 irb->irb_tmp_ire_cnt--; 4914 rw_exit(&irb->irb_lock); 4915 } 4916 4917 /* 4918 * See if we should notify ULP about LSO/MDT; we do this whether or not 4919 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4920 * eligibility tests for passive connects are handled separately 4921 * through tcp_adapt_ire(). We do this before the source address 4922 * selection, because dst_ire may change after a call to 4923 * ipif_select_source(). This is a best-effort check, as the 4924 * packet for this connection may not actually go through 4925 * dst_ire->ire_stq, and the exact IRE can only be known after 4926 * calling ip_newroute(). This is why we further check on the 4927 * IRE during LSO/Multidata packet transmission in 4928 * tcp_lsosend()/tcp_multisend(). 4929 */ 4930 if (!ipsec_policy_set && dst_ire != NULL && 4931 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4932 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4933 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4934 lso_dst_ire = dst_ire; 4935 IRE_REFHOLD(lso_dst_ire); 4936 } else if (ipst->ips_ip_multidata_outbound && 4937 ILL_MDT_CAPABLE(ill)) { 4938 md_dst_ire = dst_ire; 4939 IRE_REFHOLD(md_dst_ire); 4940 } 4941 } 4942 4943 if (dst_ire != NULL && 4944 dst_ire->ire_type == IRE_LOCAL && 4945 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4946 /* 4947 * If the IRE belongs to a different zone, look for a matching 4948 * route in the forwarding table and use the source address from 4949 * that route. 4950 */ 4951 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4952 zoneid, 0, NULL, 4953 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4954 MATCH_IRE_RJ_BHOLE, ipst); 4955 if (src_ire == NULL) { 4956 error = EHOSTUNREACH; 4957 goto bad_addr; 4958 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4959 if (!(src_ire->ire_type & IRE_HOST)) 4960 error = ENETUNREACH; 4961 else 4962 error = EHOSTUNREACH; 4963 goto bad_addr; 4964 } 4965 if (src_addr == INADDR_ANY) 4966 src_addr = src_ire->ire_src_addr; 4967 ire_refrele(src_ire); 4968 src_ire = NULL; 4969 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4970 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4971 src_addr = sire->ire_src_addr; 4972 ire_refrele(dst_ire); 4973 dst_ire = sire; 4974 sire = NULL; 4975 } else { 4976 /* 4977 * Pick a source address so that a proper inbound 4978 * load spreading would happen. 4979 */ 4980 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4981 ipif_t *src_ipif = NULL; 4982 ire_t *ipif_ire; 4983 4984 /* 4985 * Supply a local source address such that inbound 4986 * load spreading happens. 4987 * 4988 * Determine the best source address on this ill for 4989 * the destination. 4990 * 4991 * 1) For broadcast, we should return a broadcast ire 4992 * found above so that upper layers know that the 4993 * destination address is a broadcast address. 4994 * 4995 * 2) If this is part of a group, select a better 4996 * source address so that better inbound load 4997 * balancing happens. Do the same if the ipif 4998 * is DEPRECATED. 4999 * 5000 * 3) If the outgoing interface is part of a usesrc 5001 * group, then try selecting a source address from 5002 * the usesrc ILL. 5003 */ 5004 if ((dst_ire->ire_zoneid != zoneid && 5005 dst_ire->ire_zoneid != ALL_ZONES) || 5006 (!(dst_ire->ire_type & IRE_BROADCAST) && 5007 ((dst_ill->ill_group != NULL) || 5008 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5009 (dst_ill->ill_usesrc_ifindex != 0)))) { 5010 /* 5011 * If the destination is reachable via a 5012 * given gateway, the selected source address 5013 * should be in the same subnet as the gateway. 5014 * Otherwise, the destination is not reachable. 5015 * 5016 * If there are no interfaces on the same subnet 5017 * as the destination, ipif_select_source gives 5018 * first non-deprecated interface which might be 5019 * on a different subnet than the gateway. 5020 * This is not desirable. Hence pass the dst_ire 5021 * source address to ipif_select_source. 5022 * It is sure that the destination is reachable 5023 * with the dst_ire source address subnet. 5024 * So passing dst_ire source address to 5025 * ipif_select_source will make sure that the 5026 * selected source will be on the same subnet 5027 * as dst_ire source address. 5028 */ 5029 ipaddr_t saddr = 5030 dst_ire->ire_ipif->ipif_src_addr; 5031 src_ipif = ipif_select_source(dst_ill, 5032 saddr, zoneid); 5033 if (src_ipif != NULL) { 5034 if (IS_VNI(src_ipif->ipif_ill)) { 5035 /* 5036 * For VNI there is no 5037 * interface route 5038 */ 5039 src_addr = 5040 src_ipif->ipif_src_addr; 5041 } else { 5042 ipif_ire = 5043 ipif_to_ire(src_ipif); 5044 if (ipif_ire != NULL) { 5045 IRE_REFRELE(dst_ire); 5046 dst_ire = ipif_ire; 5047 } 5048 src_addr = 5049 dst_ire->ire_src_addr; 5050 } 5051 ipif_refrele(src_ipif); 5052 } else { 5053 src_addr = dst_ire->ire_src_addr; 5054 } 5055 } else { 5056 src_addr = dst_ire->ire_src_addr; 5057 } 5058 } 5059 } 5060 5061 /* 5062 * We do ire_route_lookup() here (and not 5063 * interface lookup as we assert that 5064 * src_addr should only come from an 5065 * UP interface for hard binding. 5066 */ 5067 ASSERT(src_ire == NULL); 5068 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5069 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5070 /* src_ire must be a local|loopback */ 5071 if (!IRE_IS_LOCAL(src_ire)) { 5072 if (ip_debug > 2) { 5073 pr_addr_dbg("ip_bind_connected: bad connected " 5074 "src %s\n", AF_INET, &src_addr); 5075 } 5076 error = EADDRNOTAVAIL; 5077 goto bad_addr; 5078 } 5079 5080 /* 5081 * If the source address is a loopback address, the 5082 * destination had best be local or multicast. 5083 * The transports that can't handle multicast will reject 5084 * those addresses. 5085 */ 5086 if (src_ire->ire_type == IRE_LOOPBACK && 5087 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5088 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5089 error = -1; 5090 goto bad_addr; 5091 } 5092 5093 /* 5094 * Allow setting new policies. For example, disconnects come 5095 * down as ipa_t bind. As we would have set conn_policy_cached 5096 * to B_TRUE before, we should set it to B_FALSE, so that policy 5097 * can change after the disconnect. 5098 */ 5099 connp->conn_policy_cached = B_FALSE; 5100 5101 /* 5102 * Set the conn addresses/ports immediately, so the IPsec policy calls 5103 * can handle their passed-in conn's. 5104 */ 5105 5106 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5107 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5108 connp->conn_lport = lport; 5109 connp->conn_fport = fport; 5110 *src_addrp = src_addr; 5111 5112 ASSERT(!(ipsec_policy_set && ire_requested)); 5113 if (ire_requested) { 5114 iulp_t *ulp_info = NULL; 5115 5116 /* 5117 * Note that sire will not be NULL if this is an off-link 5118 * connection and there is not cache for that dest yet. 5119 * 5120 * XXX Because of an existing bug, if there are multiple 5121 * default routes, the IRE returned now may not be the actual 5122 * default route used (default routes are chosen in a 5123 * round robin fashion). So if the metrics for different 5124 * default routes are different, we may return the wrong 5125 * metrics. This will not be a problem if the existing 5126 * bug is fixed. 5127 */ 5128 if (sire != NULL) { 5129 ulp_info = &(sire->ire_uinfo); 5130 } 5131 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5132 error = -1; 5133 goto bad_addr; 5134 } 5135 } else if (ipsec_policy_set) { 5136 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5137 error = -1; 5138 goto bad_addr; 5139 } 5140 } 5141 5142 /* 5143 * Cache IPsec policy in this conn. If we have per-socket policy, 5144 * we'll cache that. If we don't, we'll inherit global policy. 5145 * 5146 * We can't insert until the conn reflects the policy. Note that 5147 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5148 * connections where we don't have a policy. This is to prevent 5149 * global policy lookups in the inbound path. 5150 * 5151 * If we insert before we set conn_policy_cached, 5152 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5153 * because global policy cound be non-empty. We normally call 5154 * ipsec_check_policy() for conn_policy_cached connections only if 5155 * ipc_in_enforce_policy is set. But in this case, 5156 * conn_policy_cached can get set anytime since we made the 5157 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5158 * called, which will make the above assumption false. Thus, we 5159 * need to insert after we set conn_policy_cached. 5160 */ 5161 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5162 goto bad_addr; 5163 5164 if (fanout_insert) { 5165 /* 5166 * The addresses have been verified. Time to insert in 5167 * the correct fanout list. 5168 * We need to make sure that the conn_recv is set to a non-null 5169 * value before we insert into the classifier table to avoid a 5170 * race with an incoming packet which does an ipcl_classify(). 5171 */ 5172 if (protocol == IPPROTO_TCP) 5173 connp->conn_recv = tcp_input; 5174 error = ipcl_conn_insert(connp, protocol, src_addr, 5175 dst_addr, connp->conn_ports); 5176 } 5177 5178 if (error == 0) { 5179 connp->conn_fully_bound = B_TRUE; 5180 /* 5181 * Our initial checks for LSO/MDT have passed; the IRE is not 5182 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5183 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5184 * ip_xxinfo_return(), which performs further checks 5185 * against them and upon success, returns the LSO/MDT info 5186 * mblk which we will attach to the bind acknowledgment. 5187 */ 5188 if (lso_dst_ire != NULL) { 5189 mblk_t *lsoinfo_mp; 5190 5191 ASSERT(ill->ill_lso_capab != NULL); 5192 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5193 ill->ill_name, ill->ill_lso_capab)) != NULL) 5194 linkb(mp, lsoinfo_mp); 5195 } else if (md_dst_ire != NULL) { 5196 mblk_t *mdinfo_mp; 5197 5198 ASSERT(ill->ill_mdt_capab != NULL); 5199 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5200 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5201 linkb(mp, mdinfo_mp); 5202 } 5203 } 5204 bad_addr: 5205 if (ipsec_policy_set) { 5206 ASSERT(policy_mp == mp->b_cont); 5207 ASSERT(policy_mp != NULL); 5208 freeb(policy_mp); 5209 /* 5210 * As of now assume that nothing else accompanies 5211 * IPSEC_POLICY_SET. 5212 */ 5213 mp->b_cont = NULL; 5214 } 5215 if (src_ire != NULL) 5216 IRE_REFRELE(src_ire); 5217 if (dst_ire != NULL) 5218 IRE_REFRELE(dst_ire); 5219 if (sire != NULL) 5220 IRE_REFRELE(sire); 5221 if (md_dst_ire != NULL) 5222 IRE_REFRELE(md_dst_ire); 5223 if (lso_dst_ire != NULL) 5224 IRE_REFRELE(lso_dst_ire); 5225 return (error); 5226 } 5227 5228 /* 5229 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5230 * Prefers dst_ire over src_ire. 5231 */ 5232 static boolean_t 5233 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5234 { 5235 mblk_t *mp1; 5236 ire_t *ret_ire = NULL; 5237 5238 mp1 = mp->b_cont; 5239 ASSERT(mp1 != NULL); 5240 5241 if (ire != NULL) { 5242 /* 5243 * mp1 initialized above to IRE_DB_REQ_TYPE 5244 * appended mblk. Its <upper protocol>'s 5245 * job to make sure there is room. 5246 */ 5247 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5248 return (0); 5249 5250 mp1->b_datap->db_type = IRE_DB_TYPE; 5251 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5252 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5253 ret_ire = (ire_t *)mp1->b_rptr; 5254 /* 5255 * Pass the latest setting of the ip_path_mtu_discovery and 5256 * copy the ulp info if any. 5257 */ 5258 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5259 IPH_DF : 0; 5260 if (ulp_info != NULL) { 5261 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5262 sizeof (iulp_t)); 5263 } 5264 ret_ire->ire_mp = mp1; 5265 } else { 5266 /* 5267 * No IRE was found. Remove IRE mblk. 5268 */ 5269 mp->b_cont = mp1->b_cont; 5270 freeb(mp1); 5271 } 5272 5273 return (1); 5274 } 5275 5276 /* 5277 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5278 * the final piece where we don't. Return a pointer to the first mblk in the 5279 * result, and update the pointer to the next mblk to chew on. If anything 5280 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5281 * NULL pointer. 5282 */ 5283 mblk_t * 5284 ip_carve_mp(mblk_t **mpp, ssize_t len) 5285 { 5286 mblk_t *mp0; 5287 mblk_t *mp1; 5288 mblk_t *mp2; 5289 5290 if (!len || !mpp || !(mp0 = *mpp)) 5291 return (NULL); 5292 /* If we aren't going to consume the first mblk, we need a dup. */ 5293 if (mp0->b_wptr - mp0->b_rptr > len) { 5294 mp1 = dupb(mp0); 5295 if (mp1) { 5296 /* Partition the data between the two mblks. */ 5297 mp1->b_wptr = mp1->b_rptr + len; 5298 mp0->b_rptr = mp1->b_wptr; 5299 /* 5300 * after adjustments if mblk not consumed is now 5301 * unaligned, try to align it. If this fails free 5302 * all messages and let upper layer recover. 5303 */ 5304 if (!OK_32PTR(mp0->b_rptr)) { 5305 if (!pullupmsg(mp0, -1)) { 5306 freemsg(mp0); 5307 freemsg(mp1); 5308 *mpp = NULL; 5309 return (NULL); 5310 } 5311 } 5312 } 5313 return (mp1); 5314 } 5315 /* Eat through as many mblks as we need to get len bytes. */ 5316 len -= mp0->b_wptr - mp0->b_rptr; 5317 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5318 if (mp2->b_wptr - mp2->b_rptr > len) { 5319 /* 5320 * We won't consume the entire last mblk. Like 5321 * above, dup and partition it. 5322 */ 5323 mp1->b_cont = dupb(mp2); 5324 mp1 = mp1->b_cont; 5325 if (!mp1) { 5326 /* 5327 * Trouble. Rather than go to a lot of 5328 * trouble to clean up, we free the messages. 5329 * This won't be any worse than losing it on 5330 * the wire. 5331 */ 5332 freemsg(mp0); 5333 freemsg(mp2); 5334 *mpp = NULL; 5335 return (NULL); 5336 } 5337 mp1->b_wptr = mp1->b_rptr + len; 5338 mp2->b_rptr = mp1->b_wptr; 5339 /* 5340 * after adjustments if mblk not consumed is now 5341 * unaligned, try to align it. If this fails free 5342 * all messages and let upper layer recover. 5343 */ 5344 if (!OK_32PTR(mp2->b_rptr)) { 5345 if (!pullupmsg(mp2, -1)) { 5346 freemsg(mp0); 5347 freemsg(mp2); 5348 *mpp = NULL; 5349 return (NULL); 5350 } 5351 } 5352 *mpp = mp2; 5353 return (mp0); 5354 } 5355 /* Decrement len by the amount we just got. */ 5356 len -= mp2->b_wptr - mp2->b_rptr; 5357 } 5358 /* 5359 * len should be reduced to zero now. If not our caller has 5360 * screwed up. 5361 */ 5362 if (len) { 5363 /* Shouldn't happen! */ 5364 freemsg(mp0); 5365 *mpp = NULL; 5366 return (NULL); 5367 } 5368 /* 5369 * We consumed up to exactly the end of an mblk. Detach the part 5370 * we are returning from the rest of the chain. 5371 */ 5372 mp1->b_cont = NULL; 5373 *mpp = mp2; 5374 return (mp0); 5375 } 5376 5377 /* The ill stream is being unplumbed. Called from ip_close */ 5378 int 5379 ip_modclose(ill_t *ill) 5380 { 5381 boolean_t success; 5382 ipsq_t *ipsq; 5383 ipif_t *ipif; 5384 queue_t *q = ill->ill_rq; 5385 ip_stack_t *ipst = ill->ill_ipst; 5386 clock_t timeout; 5387 5388 /* 5389 * Wait for the ACKs of all deferred control messages to be processed. 5390 * In particular, we wait for a potential capability reset initiated 5391 * in ip_sioctl_plink() to complete before proceeding. 5392 * 5393 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5394 * in case the driver never replies. 5395 */ 5396 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5397 mutex_enter(&ill->ill_lock); 5398 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5399 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5400 /* Timeout */ 5401 break; 5402 } 5403 } 5404 mutex_exit(&ill->ill_lock); 5405 5406 /* 5407 * Forcibly enter the ipsq after some delay. This is to take 5408 * care of the case when some ioctl does not complete because 5409 * we sent a control message to the driver and it did not 5410 * send us a reply. We want to be able to at least unplumb 5411 * and replumb rather than force the user to reboot the system. 5412 */ 5413 success = ipsq_enter(ill, B_FALSE); 5414 5415 /* 5416 * Open/close/push/pop is guaranteed to be single threaded 5417 * per stream by STREAMS. FS guarantees that all references 5418 * from top are gone before close is called. So there can't 5419 * be another close thread that has set CONDEMNED on this ill. 5420 * and cause ipsq_enter to return failure. 5421 */ 5422 ASSERT(success); 5423 ipsq = ill->ill_phyint->phyint_ipsq; 5424 5425 /* 5426 * Mark it condemned. No new reference will be made to this ill. 5427 * Lookup functions will return an error. Threads that try to 5428 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5429 * that the refcnt will drop down to zero. 5430 */ 5431 mutex_enter(&ill->ill_lock); 5432 ill->ill_state_flags |= ILL_CONDEMNED; 5433 for (ipif = ill->ill_ipif; ipif != NULL; 5434 ipif = ipif->ipif_next) { 5435 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5436 } 5437 /* 5438 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5439 * returns error if ILL_CONDEMNED is set 5440 */ 5441 cv_broadcast(&ill->ill_cv); 5442 mutex_exit(&ill->ill_lock); 5443 5444 /* 5445 * Send all the deferred DLPI messages downstream which came in 5446 * during the small window right before ipsq_enter(). We do this 5447 * without waiting for the ACKs because all the ACKs for M_PROTO 5448 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5449 */ 5450 ill_dlpi_send_deferred(ill); 5451 5452 /* 5453 * Shut down fragmentation reassembly. 5454 * ill_frag_timer won't start a timer again. 5455 * Now cancel any existing timer 5456 */ 5457 (void) untimeout(ill->ill_frag_timer_id); 5458 (void) ill_frag_timeout(ill, 0); 5459 5460 /* 5461 * If MOVE was in progress, clear the 5462 * move_in_progress fields also. 5463 */ 5464 if (ill->ill_move_in_progress) { 5465 ILL_CLEAR_MOVE(ill); 5466 } 5467 5468 /* 5469 * Call ill_delete to bring down the ipifs, ilms and ill on 5470 * this ill. Then wait for the refcnts to drop to zero. 5471 * ill_is_quiescent checks whether the ill is really quiescent. 5472 * Then make sure that threads that are waiting to enter the 5473 * ipsq have seen the error returned by ipsq_enter and have 5474 * gone away. Then we call ill_delete_tail which does the 5475 * DL_UNBIND_REQ with the driver and then qprocsoff. 5476 */ 5477 ill_delete(ill); 5478 mutex_enter(&ill->ill_lock); 5479 while (!ill_is_quiescent(ill)) 5480 cv_wait(&ill->ill_cv, &ill->ill_lock); 5481 while (ill->ill_waiters) 5482 cv_wait(&ill->ill_cv, &ill->ill_lock); 5483 5484 mutex_exit(&ill->ill_lock); 5485 5486 /* 5487 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5488 * it held until the end of the function since the cleanup 5489 * below needs to be able to use the ip_stack_t. 5490 */ 5491 netstack_hold(ipst->ips_netstack); 5492 5493 /* qprocsoff is called in ill_delete_tail */ 5494 ill_delete_tail(ill); 5495 ASSERT(ill->ill_ipst == NULL); 5496 5497 /* 5498 * Walk through all upper (conn) streams and qenable 5499 * those that have queued data. 5500 * close synchronization needs this to 5501 * be done to ensure that all upper layers blocked 5502 * due to flow control to the closing device 5503 * get unblocked. 5504 */ 5505 ip1dbg(("ip_wsrv: walking\n")); 5506 conn_walk_drain(ipst); 5507 5508 mutex_enter(&ipst->ips_ip_mi_lock); 5509 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5510 mutex_exit(&ipst->ips_ip_mi_lock); 5511 5512 /* 5513 * credp could be null if the open didn't succeed and ip_modopen 5514 * itself calls ip_close. 5515 */ 5516 if (ill->ill_credp != NULL) 5517 crfree(ill->ill_credp); 5518 5519 mutex_enter(&ill->ill_lock); 5520 ill_nic_info_dispatch(ill); 5521 mutex_exit(&ill->ill_lock); 5522 5523 /* 5524 * Now we are done with the module close pieces that 5525 * need the netstack_t. 5526 */ 5527 netstack_rele(ipst->ips_netstack); 5528 5529 mi_close_free((IDP)ill); 5530 q->q_ptr = WR(q)->q_ptr = NULL; 5531 5532 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5533 5534 return (0); 5535 } 5536 5537 /* 5538 * This is called as part of close() for both IP and UDP 5539 * in order to quiesce the conn. 5540 */ 5541 void 5542 ip_quiesce_conn(conn_t *connp) 5543 { 5544 boolean_t drain_cleanup_reqd = B_FALSE; 5545 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5546 boolean_t ilg_cleanup_reqd = B_FALSE; 5547 ip_stack_t *ipst; 5548 5549 ASSERT(!IPCL_IS_TCP(connp)); 5550 ipst = connp->conn_netstack->netstack_ip; 5551 5552 /* 5553 * Mark the conn as closing, and this conn must not be 5554 * inserted in future into any list. Eg. conn_drain_insert(), 5555 * won't insert this conn into the conn_drain_list. 5556 * Similarly ill_pending_mp_add() will not add any mp to 5557 * the pending mp list, after this conn has started closing. 5558 * 5559 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5560 * cannot get set henceforth. 5561 */ 5562 mutex_enter(&connp->conn_lock); 5563 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5564 connp->conn_state_flags |= CONN_CLOSING; 5565 if (connp->conn_idl != NULL) 5566 drain_cleanup_reqd = B_TRUE; 5567 if (connp->conn_oper_pending_ill != NULL) 5568 conn_ioctl_cleanup_reqd = B_TRUE; 5569 if (connp->conn_ilg_inuse != 0) 5570 ilg_cleanup_reqd = B_TRUE; 5571 mutex_exit(&connp->conn_lock); 5572 5573 if (IPCL_IS_UDP(connp)) 5574 udp_quiesce_conn(connp); 5575 5576 if (conn_ioctl_cleanup_reqd) 5577 conn_ioctl_cleanup(connp); 5578 5579 if (is_system_labeled() && connp->conn_anon_port) { 5580 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5581 connp->conn_mlp_type, connp->conn_ulp, 5582 ntohs(connp->conn_lport), B_FALSE); 5583 connp->conn_anon_port = 0; 5584 } 5585 connp->conn_mlp_type = mlptSingle; 5586 5587 /* 5588 * Remove this conn from any fanout list it is on. 5589 * and then wait for any threads currently operating 5590 * on this endpoint to finish 5591 */ 5592 ipcl_hash_remove(connp); 5593 5594 /* 5595 * Remove this conn from the drain list, and do 5596 * any other cleanup that may be required. 5597 * (Only non-tcp streams may have a non-null conn_idl. 5598 * TCP streams are never flow controlled, and 5599 * conn_idl will be null) 5600 */ 5601 if (drain_cleanup_reqd) 5602 conn_drain_tail(connp, B_TRUE); 5603 5604 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5605 connp->conn_wq == ipst->ips_ip_g_mrouter) 5606 (void) ip_mrouter_done(NULL, ipst); 5607 5608 if (ilg_cleanup_reqd) 5609 ilg_delete_all(connp); 5610 5611 conn_delete_ire(connp, NULL); 5612 5613 /* 5614 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5615 * callers from write side can't be there now because close 5616 * is in progress. The only other caller is ipcl_walk 5617 * which checks for the condemned flag. 5618 */ 5619 mutex_enter(&connp->conn_lock); 5620 connp->conn_state_flags |= CONN_CONDEMNED; 5621 while (connp->conn_ref != 1) 5622 cv_wait(&connp->conn_cv, &connp->conn_lock); 5623 connp->conn_state_flags |= CONN_QUIESCED; 5624 mutex_exit(&connp->conn_lock); 5625 } 5626 5627 /* ARGSUSED */ 5628 int 5629 ip_close(queue_t *q, int flags) 5630 { 5631 conn_t *connp; 5632 5633 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5634 5635 /* 5636 * Call the appropriate delete routine depending on whether this is 5637 * a module or device. 5638 */ 5639 if (WR(q)->q_next != NULL) { 5640 /* This is a module close */ 5641 return (ip_modclose((ill_t *)q->q_ptr)); 5642 } 5643 5644 connp = q->q_ptr; 5645 ip_quiesce_conn(connp); 5646 5647 qprocsoff(q); 5648 5649 /* 5650 * Now we are truly single threaded on this stream, and can 5651 * delete the things hanging off the connp, and finally the connp. 5652 * We removed this connp from the fanout list, it cannot be 5653 * accessed thru the fanouts, and we already waited for the 5654 * conn_ref to drop to 0. We are already in close, so 5655 * there cannot be any other thread from the top. qprocsoff 5656 * has completed, and service has completed or won't run in 5657 * future. 5658 */ 5659 ASSERT(connp->conn_ref == 1); 5660 5661 /* 5662 * A conn which was previously marked as IPCL_UDP cannot 5663 * retain the flag because it would have been cleared by 5664 * udp_close(). 5665 */ 5666 ASSERT(!IPCL_IS_UDP(connp)); 5667 5668 if (connp->conn_latch != NULL) { 5669 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5670 connp->conn_latch = NULL; 5671 } 5672 if (connp->conn_policy != NULL) { 5673 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5674 connp->conn_policy = NULL; 5675 } 5676 if (connp->conn_ipsec_opt_mp != NULL) { 5677 freemsg(connp->conn_ipsec_opt_mp); 5678 connp->conn_ipsec_opt_mp = NULL; 5679 } 5680 5681 inet_minor_free(ip_minor_arena, connp->conn_dev); 5682 5683 connp->conn_ref--; 5684 ipcl_conn_destroy(connp); 5685 5686 q->q_ptr = WR(q)->q_ptr = NULL; 5687 return (0); 5688 } 5689 5690 int 5691 ip_snmpmod_close(queue_t *q) 5692 { 5693 conn_t *connp = Q_TO_CONN(q); 5694 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5695 5696 qprocsoff(q); 5697 5698 if (connp->conn_flags & IPCL_UDPMOD) 5699 udp_close_free(connp); 5700 5701 if (connp->conn_cred != NULL) { 5702 crfree(connp->conn_cred); 5703 connp->conn_cred = NULL; 5704 } 5705 CONN_DEC_REF(connp); 5706 q->q_ptr = WR(q)->q_ptr = NULL; 5707 return (0); 5708 } 5709 5710 /* 5711 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5712 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5713 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5714 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5715 * queues as we never enqueue messages there and we don't handle any ioctls. 5716 * Everything else is freed. 5717 */ 5718 void 5719 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5720 { 5721 conn_t *connp = q->q_ptr; 5722 pfi_t setfn; 5723 pfi_t getfn; 5724 5725 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5726 5727 switch (DB_TYPE(mp)) { 5728 case M_PROTO: 5729 case M_PCPROTO: 5730 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5731 ((((union T_primitives *)mp->b_rptr)->type == 5732 T_SVR4_OPTMGMT_REQ) || 5733 (((union T_primitives *)mp->b_rptr)->type == 5734 T_OPTMGMT_REQ))) { 5735 /* 5736 * This is the only TPI primitive supported. Its 5737 * handling does not require tcp_t, but it does require 5738 * conn_t to check permissions. 5739 */ 5740 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5741 5742 if (connp->conn_flags & IPCL_TCPMOD) { 5743 setfn = tcp_snmp_set; 5744 getfn = tcp_snmp_get; 5745 } else { 5746 setfn = udp_snmp_set; 5747 getfn = udp_snmp_get; 5748 } 5749 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5750 freemsg(mp); 5751 return; 5752 } 5753 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5754 != NULL) 5755 qreply(q, mp); 5756 break; 5757 case M_FLUSH: 5758 case M_IOCTL: 5759 putnext(q, mp); 5760 break; 5761 default: 5762 freemsg(mp); 5763 break; 5764 } 5765 } 5766 5767 /* Return the IP checksum for the IP header at "iph". */ 5768 uint16_t 5769 ip_csum_hdr(ipha_t *ipha) 5770 { 5771 uint16_t *uph; 5772 uint32_t sum; 5773 int opt_len; 5774 5775 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5776 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5777 uph = (uint16_t *)ipha; 5778 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5779 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5780 if (opt_len > 0) { 5781 do { 5782 sum += uph[10]; 5783 sum += uph[11]; 5784 uph += 2; 5785 } while (--opt_len); 5786 } 5787 sum = (sum & 0xFFFF) + (sum >> 16); 5788 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5789 if (sum == 0xffff) 5790 sum = 0; 5791 return ((uint16_t)sum); 5792 } 5793 5794 /* 5795 * Called when the module is about to be unloaded 5796 */ 5797 void 5798 ip_ddi_destroy(void) 5799 { 5800 tnet_fini(); 5801 5802 sctp_ddi_g_destroy(); 5803 tcp_ddi_g_destroy(); 5804 ipsec_policy_g_destroy(); 5805 ipcl_g_destroy(); 5806 ip_net_g_destroy(); 5807 ip_ire_g_fini(); 5808 inet_minor_destroy(ip_minor_arena); 5809 5810 netstack_unregister(NS_IP); 5811 } 5812 5813 /* 5814 * First step in cleanup. 5815 */ 5816 /* ARGSUSED */ 5817 static void 5818 ip_stack_shutdown(netstackid_t stackid, void *arg) 5819 { 5820 ip_stack_t *ipst = (ip_stack_t *)arg; 5821 5822 #ifdef NS_DEBUG 5823 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5824 #endif 5825 5826 /* Get rid of loopback interfaces and their IREs */ 5827 ip_loopback_cleanup(ipst); 5828 } 5829 5830 /* 5831 * Free the IP stack instance. 5832 */ 5833 static void 5834 ip_stack_fini(netstackid_t stackid, void *arg) 5835 { 5836 ip_stack_t *ipst = (ip_stack_t *)arg; 5837 int ret; 5838 5839 #ifdef NS_DEBUG 5840 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5841 #endif 5842 ipv4_hook_destroy(ipst); 5843 ipv6_hook_destroy(ipst); 5844 ip_net_destroy(ipst); 5845 5846 rw_destroy(&ipst->ips_srcid_lock); 5847 5848 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5849 ipst->ips_ip_mibkp = NULL; 5850 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5851 ipst->ips_icmp_mibkp = NULL; 5852 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5853 ipst->ips_ip_kstat = NULL; 5854 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5855 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5856 ipst->ips_ip6_kstat = NULL; 5857 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5858 5859 nd_free(&ipst->ips_ip_g_nd); 5860 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5861 ipst->ips_param_arr = NULL; 5862 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5863 ipst->ips_ndp_arr = NULL; 5864 5865 ip_mrouter_stack_destroy(ipst); 5866 5867 mutex_destroy(&ipst->ips_ip_mi_lock); 5868 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5869 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5870 rw_destroy(&ipst->ips_ip_g_nd_lock); 5871 5872 ret = untimeout(ipst->ips_igmp_timeout_id); 5873 if (ret == -1) { 5874 ASSERT(ipst->ips_igmp_timeout_id == 0); 5875 } else { 5876 ASSERT(ipst->ips_igmp_timeout_id != 0); 5877 ipst->ips_igmp_timeout_id = 0; 5878 } 5879 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5880 if (ret == -1) { 5881 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5882 } else { 5883 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5884 ipst->ips_igmp_slowtimeout_id = 0; 5885 } 5886 ret = untimeout(ipst->ips_mld_timeout_id); 5887 if (ret == -1) { 5888 ASSERT(ipst->ips_mld_timeout_id == 0); 5889 } else { 5890 ASSERT(ipst->ips_mld_timeout_id != 0); 5891 ipst->ips_mld_timeout_id = 0; 5892 } 5893 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5894 if (ret == -1) { 5895 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5896 } else { 5897 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5898 ipst->ips_mld_slowtimeout_id = 0; 5899 } 5900 ret = untimeout(ipst->ips_ip_ire_expire_id); 5901 if (ret == -1) { 5902 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5903 } else { 5904 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5905 ipst->ips_ip_ire_expire_id = 0; 5906 } 5907 5908 mutex_destroy(&ipst->ips_igmp_timer_lock); 5909 mutex_destroy(&ipst->ips_mld_timer_lock); 5910 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5911 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5912 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5913 rw_destroy(&ipst->ips_ill_g_lock); 5914 5915 ip_ire_fini(ipst); 5916 ip6_asp_free(ipst); 5917 conn_drain_fini(ipst); 5918 ipcl_destroy(ipst); 5919 5920 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5921 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5922 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5923 ipst->ips_ndp4 = NULL; 5924 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5925 ipst->ips_ndp6 = NULL; 5926 5927 if (ipst->ips_loopback_ksp != NULL) { 5928 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5929 ipst->ips_loopback_ksp = NULL; 5930 } 5931 5932 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5933 ipst->ips_phyint_g_list = NULL; 5934 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5935 ipst->ips_ill_g_heads = NULL; 5936 5937 kmem_free(ipst, sizeof (*ipst)); 5938 } 5939 5940 /* 5941 * Called when the IP kernel module is loaded into the kernel 5942 */ 5943 void 5944 ip_ddi_init(void) 5945 { 5946 TCP6_MAJ = ddi_name_to_major(TCP6); 5947 TCP_MAJ = ddi_name_to_major(TCP); 5948 SCTP_MAJ = ddi_name_to_major(SCTP); 5949 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5950 5951 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5952 5953 /* 5954 * For IP and TCP the minor numbers should start from 2 since we have 4 5955 * initial devices: ip, ip6, tcp, tcp6. 5956 */ 5957 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5958 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5959 cmn_err(CE_PANIC, 5960 "ip_ddi_init: ip_minor_arena creation failed\n"); 5961 } 5962 5963 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5964 5965 ipcl_g_init(); 5966 ip_ire_g_init(); 5967 ip_net_g_init(); 5968 5969 #ifdef ILL_DEBUG 5970 /* Default cleanup function */ 5971 ip_cleanup_func = ip_thread_exit; 5972 #endif 5973 5974 /* 5975 * We want to be informed each time a stack is created or 5976 * destroyed in the kernel, so we can maintain the 5977 * set of udp_stack_t's. 5978 */ 5979 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5980 ip_stack_fini); 5981 5982 ipsec_policy_g_init(); 5983 tcp_ddi_g_init(); 5984 sctp_ddi_g_init(); 5985 5986 tnet_init(); 5987 } 5988 5989 /* 5990 * Initialize the IP stack instance. 5991 */ 5992 static void * 5993 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5994 { 5995 ip_stack_t *ipst; 5996 ipparam_t *pa; 5997 ipndp_t *na; 5998 5999 #ifdef NS_DEBUG 6000 printf("ip_stack_init(stack %d)\n", stackid); 6001 #endif 6002 6003 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6004 ipst->ips_netstack = ns; 6005 6006 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6007 KM_SLEEP); 6008 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6009 KM_SLEEP); 6010 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6011 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6012 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6013 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6014 6015 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6016 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6017 ipst->ips_igmp_deferred_next = INFINITY; 6018 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6019 ipst->ips_mld_deferred_next = INFINITY; 6020 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6021 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6022 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6023 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6024 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6025 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6026 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6027 6028 ipcl_init(ipst); 6029 ip_ire_init(ipst); 6030 ip6_asp_init(ipst); 6031 ipif_init(ipst); 6032 conn_drain_init(ipst); 6033 ip_mrouter_stack_init(ipst); 6034 6035 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6036 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6037 6038 ipst->ips_ip_multirt_log_interval = 1000; 6039 6040 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6041 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6042 ipst->ips_ill_index = 1; 6043 6044 ipst->ips_saved_ip_g_forward = -1; 6045 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6046 6047 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6048 ipst->ips_param_arr = pa; 6049 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6050 6051 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6052 ipst->ips_ndp_arr = na; 6053 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6054 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6055 (caddr_t)&ipst->ips_ip_g_forward; 6056 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6057 (caddr_t)&ipst->ips_ipv6_forward; 6058 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6059 "ip_cgtp_filter") == 0); 6060 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6061 (caddr_t)&ip_cgtp_filter; 6062 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6063 "ipmp_hook_emulation") == 0); 6064 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6065 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6066 6067 (void) ip_param_register(&ipst->ips_ip_g_nd, 6068 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6069 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6070 6071 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6072 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6073 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6074 ipst->ips_ip6_kstat = 6075 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6076 6077 ipst->ips_ipmp_enable_failback = B_TRUE; 6078 6079 ipst->ips_ip_src_id = 1; 6080 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6081 6082 ip_net_init(ipst, ns); 6083 ipv4_hook_init(ipst); 6084 ipv6_hook_init(ipst); 6085 6086 return (ipst); 6087 } 6088 6089 /* 6090 * Allocate and initialize a DLPI template of the specified length. (May be 6091 * called as writer.) 6092 */ 6093 mblk_t * 6094 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6095 { 6096 mblk_t *mp; 6097 6098 mp = allocb(len, BPRI_MED); 6099 if (!mp) 6100 return (NULL); 6101 6102 /* 6103 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6104 * of which we don't seem to use) are sent with M_PCPROTO, and 6105 * that other DLPI are M_PROTO. 6106 */ 6107 if (prim == DL_INFO_REQ) { 6108 mp->b_datap->db_type = M_PCPROTO; 6109 } else { 6110 mp->b_datap->db_type = M_PROTO; 6111 } 6112 6113 mp->b_wptr = mp->b_rptr + len; 6114 bzero(mp->b_rptr, len); 6115 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6116 return (mp); 6117 } 6118 6119 const char * 6120 dlpi_prim_str(int prim) 6121 { 6122 switch (prim) { 6123 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6124 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6125 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6126 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6127 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6128 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6129 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6130 case DL_OK_ACK: return ("DL_OK_ACK"); 6131 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6132 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6133 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6134 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6135 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6136 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6137 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6138 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6139 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6140 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6141 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6142 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6143 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6144 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6145 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6146 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6147 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6148 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6149 default: return ("<unknown primitive>"); 6150 } 6151 } 6152 6153 const char * 6154 dlpi_err_str(int err) 6155 { 6156 switch (err) { 6157 case DL_ACCESS: return ("DL_ACCESS"); 6158 case DL_BADADDR: return ("DL_BADADDR"); 6159 case DL_BADCORR: return ("DL_BADCORR"); 6160 case DL_BADDATA: return ("DL_BADDATA"); 6161 case DL_BADPPA: return ("DL_BADPPA"); 6162 case DL_BADPRIM: return ("DL_BADPRIM"); 6163 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6164 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6165 case DL_BADSAP: return ("DL_BADSAP"); 6166 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6167 case DL_BOUND: return ("DL_BOUND"); 6168 case DL_INITFAILED: return ("DL_INITFAILED"); 6169 case DL_NOADDR: return ("DL_NOADDR"); 6170 case DL_NOTINIT: return ("DL_NOTINIT"); 6171 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6172 case DL_SYSERR: return ("DL_SYSERR"); 6173 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6174 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6175 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6176 case DL_TOOMANY: return ("DL_TOOMANY"); 6177 case DL_NOTENAB: return ("DL_NOTENAB"); 6178 case DL_BUSY: return ("DL_BUSY"); 6179 case DL_NOAUTO: return ("DL_NOAUTO"); 6180 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6181 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6182 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6183 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6184 case DL_PENDING: return ("DL_PENDING"); 6185 default: return ("<unknown error>"); 6186 } 6187 } 6188 6189 /* 6190 * Debug formatting routine. Returns a character string representation of the 6191 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6192 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6193 * 6194 * Once the ndd table-printing interfaces are removed, this can be changed to 6195 * standard dotted-decimal form. 6196 */ 6197 char * 6198 ip_dot_addr(ipaddr_t addr, char *buf) 6199 { 6200 uint8_t *ap = (uint8_t *)&addr; 6201 6202 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6203 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6204 return (buf); 6205 } 6206 6207 /* 6208 * Write the given MAC address as a printable string in the usual colon- 6209 * separated format. 6210 */ 6211 const char * 6212 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6213 { 6214 char *bp; 6215 6216 if (alen == 0 || buflen < 4) 6217 return ("?"); 6218 bp = buf; 6219 for (;;) { 6220 /* 6221 * If there are more MAC address bytes available, but we won't 6222 * have any room to print them, then add "..." to the string 6223 * instead. See below for the 'magic number' explanation. 6224 */ 6225 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6226 (void) strcpy(bp, "..."); 6227 break; 6228 } 6229 (void) sprintf(bp, "%02x", *addr++); 6230 bp += 2; 6231 if (--alen == 0) 6232 break; 6233 *bp++ = ':'; 6234 buflen -= 3; 6235 /* 6236 * At this point, based on the first 'if' statement above, 6237 * either alen == 1 and buflen >= 3, or alen > 1 and 6238 * buflen >= 4. The first case leaves room for the final "xx" 6239 * number and trailing NUL byte. The second leaves room for at 6240 * least "...". Thus the apparently 'magic' numbers chosen for 6241 * that statement. 6242 */ 6243 } 6244 return (buf); 6245 } 6246 6247 /* 6248 * Send an ICMP error after patching up the packet appropriately. Returns 6249 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6250 */ 6251 static boolean_t 6252 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6253 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6254 zoneid_t zoneid, ip_stack_t *ipst) 6255 { 6256 ipha_t *ipha; 6257 mblk_t *first_mp; 6258 boolean_t secure; 6259 unsigned char db_type; 6260 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6261 6262 first_mp = mp; 6263 if (mctl_present) { 6264 mp = mp->b_cont; 6265 secure = ipsec_in_is_secure(first_mp); 6266 ASSERT(mp != NULL); 6267 } else { 6268 /* 6269 * If this is an ICMP error being reported - which goes 6270 * up as M_CTLs, we need to convert them to M_DATA till 6271 * we finish checking with global policy because 6272 * ipsec_check_global_policy() assumes M_DATA as clear 6273 * and M_CTL as secure. 6274 */ 6275 db_type = DB_TYPE(mp); 6276 DB_TYPE(mp) = M_DATA; 6277 secure = B_FALSE; 6278 } 6279 /* 6280 * We are generating an icmp error for some inbound packet. 6281 * Called from all ip_fanout_(udp, tcp, proto) functions. 6282 * Before we generate an error, check with global policy 6283 * to see whether this is allowed to enter the system. As 6284 * there is no "conn", we are checking with global policy. 6285 */ 6286 ipha = (ipha_t *)mp->b_rptr; 6287 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6288 first_mp = ipsec_check_global_policy(first_mp, NULL, 6289 ipha, NULL, mctl_present, ipst->ips_netstack); 6290 if (first_mp == NULL) 6291 return (B_FALSE); 6292 } 6293 6294 if (!mctl_present) 6295 DB_TYPE(mp) = db_type; 6296 6297 if (flags & IP_FF_SEND_ICMP) { 6298 if (flags & IP_FF_HDR_COMPLETE) { 6299 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6300 freemsg(first_mp); 6301 return (B_TRUE); 6302 } 6303 } 6304 if (flags & IP_FF_CKSUM) { 6305 /* 6306 * Have to correct checksum since 6307 * the packet might have been 6308 * fragmented and the reassembly code in ip_rput 6309 * does not restore the IP checksum. 6310 */ 6311 ipha->ipha_hdr_checksum = 0; 6312 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6313 } 6314 switch (icmp_type) { 6315 case ICMP_DEST_UNREACHABLE: 6316 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6317 ipst); 6318 break; 6319 default: 6320 freemsg(first_mp); 6321 break; 6322 } 6323 } else { 6324 freemsg(first_mp); 6325 return (B_FALSE); 6326 } 6327 6328 return (B_TRUE); 6329 } 6330 6331 /* 6332 * Used to send an ICMP error message when a packet is received for 6333 * a protocol that is not supported. The mblk passed as argument 6334 * is consumed by this function. 6335 */ 6336 void 6337 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6338 ip_stack_t *ipst) 6339 { 6340 mblk_t *mp; 6341 ipha_t *ipha; 6342 ill_t *ill; 6343 ipsec_in_t *ii; 6344 6345 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6346 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6347 6348 mp = ipsec_mp->b_cont; 6349 ipsec_mp->b_cont = NULL; 6350 ipha = (ipha_t *)mp->b_rptr; 6351 /* Get ill from index in ipsec_in_t. */ 6352 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6353 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6354 ipst); 6355 if (ill != NULL) { 6356 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6357 if (ip_fanout_send_icmp(q, mp, flags, 6358 ICMP_DEST_UNREACHABLE, 6359 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6360 BUMP_MIB(ill->ill_ip_mib, 6361 ipIfStatsInUnknownProtos); 6362 } 6363 } else { 6364 if (ip_fanout_send_icmp_v6(q, mp, flags, 6365 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6366 0, B_FALSE, zoneid, ipst)) { 6367 BUMP_MIB(ill->ill_ip_mib, 6368 ipIfStatsInUnknownProtos); 6369 } 6370 } 6371 ill_refrele(ill); 6372 } else { /* re-link for the freemsg() below. */ 6373 ipsec_mp->b_cont = mp; 6374 } 6375 6376 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6377 freemsg(ipsec_mp); 6378 } 6379 6380 /* 6381 * See if the inbound datagram has had IPsec processing applied to it. 6382 */ 6383 boolean_t 6384 ipsec_in_is_secure(mblk_t *ipsec_mp) 6385 { 6386 ipsec_in_t *ii; 6387 6388 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6389 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6390 6391 if (ii->ipsec_in_loopback) { 6392 return (ii->ipsec_in_secure); 6393 } else { 6394 return (ii->ipsec_in_ah_sa != NULL || 6395 ii->ipsec_in_esp_sa != NULL || 6396 ii->ipsec_in_decaps); 6397 } 6398 } 6399 6400 /* 6401 * Handle protocols with which IP is less intimate. There 6402 * can be more than one stream bound to a particular 6403 * protocol. When this is the case, normally each one gets a copy 6404 * of any incoming packets. 6405 * 6406 * IPSEC NOTE : 6407 * 6408 * Don't allow a secure packet going up a non-secure connection. 6409 * We don't allow this because 6410 * 6411 * 1) Reply might go out in clear which will be dropped at 6412 * the sending side. 6413 * 2) If the reply goes out in clear it will give the 6414 * adversary enough information for getting the key in 6415 * most of the cases. 6416 * 6417 * Moreover getting a secure packet when we expect clear 6418 * implies that SA's were added without checking for 6419 * policy on both ends. This should not happen once ISAKMP 6420 * is used to negotiate SAs as SAs will be added only after 6421 * verifying the policy. 6422 * 6423 * NOTE : If the packet was tunneled and not multicast we only send 6424 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6425 * back to delivering packets to AF_INET6 raw sockets. 6426 * 6427 * IPQoS Notes: 6428 * Once we have determined the client, invoke IPPF processing. 6429 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6430 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6431 * ip_policy will be false. 6432 * 6433 * Zones notes: 6434 * Currently only applications in the global zone can create raw sockets for 6435 * protocols other than ICMP. So unlike the broadcast / multicast case of 6436 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6437 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6438 */ 6439 static void 6440 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6441 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6442 zoneid_t zoneid) 6443 { 6444 queue_t *rq; 6445 mblk_t *mp1, *first_mp1; 6446 uint_t protocol = ipha->ipha_protocol; 6447 ipaddr_t dst; 6448 boolean_t one_only; 6449 mblk_t *first_mp = mp; 6450 boolean_t secure; 6451 uint32_t ill_index; 6452 conn_t *connp, *first_connp, *next_connp; 6453 connf_t *connfp; 6454 boolean_t shared_addr; 6455 mib2_ipIfStatsEntry_t *mibptr; 6456 ip_stack_t *ipst = recv_ill->ill_ipst; 6457 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6458 6459 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6460 if (mctl_present) { 6461 mp = first_mp->b_cont; 6462 secure = ipsec_in_is_secure(first_mp); 6463 ASSERT(mp != NULL); 6464 } else { 6465 secure = B_FALSE; 6466 } 6467 dst = ipha->ipha_dst; 6468 /* 6469 * If the packet was tunneled and not multicast we only send to it 6470 * the first match. 6471 */ 6472 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6473 !CLASSD(dst)); 6474 6475 shared_addr = (zoneid == ALL_ZONES); 6476 if (shared_addr) { 6477 /* 6478 * We don't allow multilevel ports for raw IP, so no need to 6479 * check for that here. 6480 */ 6481 zoneid = tsol_packet_to_zoneid(mp); 6482 } 6483 6484 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6485 mutex_enter(&connfp->connf_lock); 6486 connp = connfp->connf_head; 6487 for (connp = connfp->connf_head; connp != NULL; 6488 connp = connp->conn_next) { 6489 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6490 zoneid) && 6491 (!is_system_labeled() || 6492 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6493 connp))) { 6494 break; 6495 } 6496 } 6497 6498 if (connp == NULL || connp->conn_upq == NULL) { 6499 /* 6500 * No one bound to these addresses. Is 6501 * there a client that wants all 6502 * unclaimed datagrams? 6503 */ 6504 mutex_exit(&connfp->connf_lock); 6505 /* 6506 * Check for IPPROTO_ENCAP... 6507 */ 6508 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6509 /* 6510 * If an IPsec mblk is here on a multicast 6511 * tunnel (using ip_mroute stuff), check policy here, 6512 * THEN ship off to ip_mroute_decap(). 6513 * 6514 * BTW, If I match a configured IP-in-IP 6515 * tunnel, this path will not be reached, and 6516 * ip_mroute_decap will never be called. 6517 */ 6518 first_mp = ipsec_check_global_policy(first_mp, connp, 6519 ipha, NULL, mctl_present, ipst->ips_netstack); 6520 if (first_mp != NULL) { 6521 if (mctl_present) 6522 freeb(first_mp); 6523 ip_mroute_decap(q, mp, ill); 6524 } /* Else we already freed everything! */ 6525 } else { 6526 /* 6527 * Otherwise send an ICMP protocol unreachable. 6528 */ 6529 if (ip_fanout_send_icmp(q, first_mp, flags, 6530 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6531 mctl_present, zoneid, ipst)) { 6532 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6533 } 6534 } 6535 return; 6536 } 6537 CONN_INC_REF(connp); 6538 first_connp = connp; 6539 6540 /* 6541 * Only send message to one tunnel driver by immediately 6542 * terminating the loop. 6543 */ 6544 connp = one_only ? NULL : connp->conn_next; 6545 6546 for (;;) { 6547 while (connp != NULL) { 6548 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6549 flags, zoneid) && 6550 (!is_system_labeled() || 6551 tsol_receive_local(mp, &dst, IPV4_VERSION, 6552 shared_addr, connp))) 6553 break; 6554 connp = connp->conn_next; 6555 } 6556 6557 /* 6558 * Copy the packet. 6559 */ 6560 if (connp == NULL || connp->conn_upq == NULL || 6561 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6562 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6563 /* 6564 * No more interested clients or memory 6565 * allocation failed 6566 */ 6567 connp = first_connp; 6568 break; 6569 } 6570 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6571 CONN_INC_REF(connp); 6572 mutex_exit(&connfp->connf_lock); 6573 rq = connp->conn_rq; 6574 if (!canputnext(rq)) { 6575 if (flags & IP_FF_RAWIP) { 6576 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6577 } else { 6578 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6579 } 6580 6581 freemsg(first_mp1); 6582 } else { 6583 /* 6584 * Don't enforce here if we're an actual tunnel - 6585 * let "tun" do it instead. 6586 */ 6587 if (!IPCL_IS_IPTUN(connp) && 6588 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6589 secure)) { 6590 first_mp1 = ipsec_check_inbound_policy 6591 (first_mp1, connp, ipha, NULL, 6592 mctl_present); 6593 } 6594 if (first_mp1 != NULL) { 6595 int in_flags = 0; 6596 /* 6597 * ip_fanout_proto also gets called from 6598 * icmp_inbound_error_fanout, in which case 6599 * the msg type is M_CTL. Don't add info 6600 * in this case for the time being. In future 6601 * when there is a need for knowing the 6602 * inbound iface index for ICMP error msgs, 6603 * then this can be changed. 6604 */ 6605 if (connp->conn_recvif) 6606 in_flags = IPF_RECVIF; 6607 /* 6608 * The ULP may support IP_RECVPKTINFO for both 6609 * IP v4 and v6 so pass the appropriate argument 6610 * based on conn IP version. 6611 */ 6612 if (connp->conn_ip_recvpktinfo) { 6613 if (connp->conn_af_isv6) { 6614 /* 6615 * V6 only needs index 6616 */ 6617 in_flags |= IPF_RECVIF; 6618 } else { 6619 /* 6620 * V4 needs index + 6621 * matching address. 6622 */ 6623 in_flags |= IPF_RECVADDR; 6624 } 6625 } 6626 if ((in_flags != 0) && 6627 (mp->b_datap->db_type != M_CTL)) { 6628 /* 6629 * the actual data will be 6630 * contained in b_cont upon 6631 * successful return of the 6632 * following call else 6633 * original mblk is returned 6634 */ 6635 ASSERT(recv_ill != NULL); 6636 mp1 = ip_add_info(mp1, recv_ill, 6637 in_flags, IPCL_ZONEID(connp), ipst); 6638 } 6639 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6640 if (mctl_present) 6641 freeb(first_mp1); 6642 putnext(rq, mp1); 6643 } 6644 } 6645 mutex_enter(&connfp->connf_lock); 6646 /* Follow the next pointer before releasing the conn. */ 6647 next_connp = connp->conn_next; 6648 CONN_DEC_REF(connp); 6649 connp = next_connp; 6650 } 6651 6652 /* Last one. Send it upstream. */ 6653 mutex_exit(&connfp->connf_lock); 6654 6655 /* 6656 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6657 * will be set to false. 6658 */ 6659 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6660 ill_index = ill->ill_phyint->phyint_ifindex; 6661 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6662 if (mp == NULL) { 6663 CONN_DEC_REF(connp); 6664 if (mctl_present) { 6665 freeb(first_mp); 6666 } 6667 return; 6668 } 6669 } 6670 6671 rq = connp->conn_rq; 6672 if (!canputnext(rq)) { 6673 if (flags & IP_FF_RAWIP) { 6674 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6675 } else { 6676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6677 } 6678 6679 freemsg(first_mp); 6680 } else { 6681 if (IPCL_IS_IPTUN(connp)) { 6682 /* 6683 * Tunneled packet. We enforce policy in the tunnel 6684 * module itself. 6685 * 6686 * Send the WHOLE packet up (incl. IPSEC_IN) without 6687 * a policy check. 6688 */ 6689 putnext(rq, first_mp); 6690 CONN_DEC_REF(connp); 6691 return; 6692 } 6693 6694 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6695 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6696 ipha, NULL, mctl_present); 6697 } 6698 6699 if (first_mp != NULL) { 6700 int in_flags = 0; 6701 6702 /* 6703 * ip_fanout_proto also gets called 6704 * from icmp_inbound_error_fanout, in 6705 * which case the msg type is M_CTL. 6706 * Don't add info in this case for time 6707 * being. In future when there is a 6708 * need for knowing the inbound iface 6709 * index for ICMP error msgs, then this 6710 * can be changed 6711 */ 6712 if (connp->conn_recvif) 6713 in_flags = IPF_RECVIF; 6714 if (connp->conn_ip_recvpktinfo) { 6715 if (connp->conn_af_isv6) { 6716 /* 6717 * V6 only needs index 6718 */ 6719 in_flags |= IPF_RECVIF; 6720 } else { 6721 /* 6722 * V4 needs index + 6723 * matching address. 6724 */ 6725 in_flags |= IPF_RECVADDR; 6726 } 6727 } 6728 if ((in_flags != 0) && 6729 (mp->b_datap->db_type != M_CTL)) { 6730 6731 /* 6732 * the actual data will be contained in 6733 * b_cont upon successful return 6734 * of the following call else original 6735 * mblk is returned 6736 */ 6737 ASSERT(recv_ill != NULL); 6738 mp = ip_add_info(mp, recv_ill, 6739 in_flags, IPCL_ZONEID(connp), ipst); 6740 } 6741 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6742 putnext(rq, mp); 6743 if (mctl_present) 6744 freeb(first_mp); 6745 } 6746 } 6747 CONN_DEC_REF(connp); 6748 } 6749 6750 /* 6751 * Fanout for TCP packets 6752 * The caller puts <fport, lport> in the ports parameter. 6753 * 6754 * IPQoS Notes 6755 * Before sending it to the client, invoke IPPF processing. 6756 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6757 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6758 * ip_policy is false. 6759 */ 6760 static void 6761 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6762 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6763 { 6764 mblk_t *first_mp; 6765 boolean_t secure; 6766 uint32_t ill_index; 6767 int ip_hdr_len; 6768 tcph_t *tcph; 6769 boolean_t syn_present = B_FALSE; 6770 conn_t *connp; 6771 ip_stack_t *ipst = recv_ill->ill_ipst; 6772 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6773 6774 ASSERT(recv_ill != NULL); 6775 6776 first_mp = mp; 6777 if (mctl_present) { 6778 ASSERT(first_mp->b_datap->db_type == M_CTL); 6779 mp = first_mp->b_cont; 6780 secure = ipsec_in_is_secure(first_mp); 6781 ASSERT(mp != NULL); 6782 } else { 6783 secure = B_FALSE; 6784 } 6785 6786 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6787 6788 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6789 zoneid, ipst)) == NULL) { 6790 /* 6791 * No connected connection or listener. Send a 6792 * TH_RST via tcp_xmit_listeners_reset. 6793 */ 6794 6795 /* Initiate IPPf processing, if needed. */ 6796 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6797 uint32_t ill_index; 6798 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6799 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6800 if (first_mp == NULL) 6801 return; 6802 } 6803 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6804 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6805 zoneid)); 6806 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6807 ipst->ips_netstack->netstack_tcp); 6808 return; 6809 } 6810 6811 /* 6812 * Allocate the SYN for the TCP connection here itself 6813 */ 6814 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6815 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6816 if (IPCL_IS_TCP(connp)) { 6817 squeue_t *sqp; 6818 6819 /* 6820 * For fused tcp loopback, assign the eager's 6821 * squeue to be that of the active connect's. 6822 * Note that we don't check for IP_FF_LOOPBACK 6823 * here since this routine gets called only 6824 * for loopback (unlike the IPv6 counterpart). 6825 */ 6826 ASSERT(Q_TO_CONN(q) != NULL); 6827 if (do_tcp_fusion && 6828 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6829 !secure && 6830 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6831 IPCL_IS_TCP(Q_TO_CONN(q))) { 6832 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6833 sqp = Q_TO_CONN(q)->conn_sqp; 6834 } else { 6835 sqp = IP_SQUEUE_GET(lbolt); 6836 } 6837 6838 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6839 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6840 syn_present = B_TRUE; 6841 } 6842 } 6843 6844 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6845 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6846 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6847 if ((flags & TH_RST) || (flags & TH_URG)) { 6848 CONN_DEC_REF(connp); 6849 freemsg(first_mp); 6850 return; 6851 } 6852 if (flags & TH_ACK) { 6853 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6854 ipst->ips_netstack->netstack_tcp); 6855 CONN_DEC_REF(connp); 6856 return; 6857 } 6858 6859 CONN_DEC_REF(connp); 6860 freemsg(first_mp); 6861 return; 6862 } 6863 6864 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6865 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6866 NULL, mctl_present); 6867 if (first_mp == NULL) { 6868 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6869 CONN_DEC_REF(connp); 6870 return; 6871 } 6872 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6873 ASSERT(syn_present); 6874 if (mctl_present) { 6875 ASSERT(first_mp != mp); 6876 first_mp->b_datap->db_struioflag |= 6877 STRUIO_POLICY; 6878 } else { 6879 ASSERT(first_mp == mp); 6880 mp->b_datap->db_struioflag &= 6881 ~STRUIO_EAGER; 6882 mp->b_datap->db_struioflag |= 6883 STRUIO_POLICY; 6884 } 6885 } else { 6886 /* 6887 * Discard first_mp early since we're dealing with a 6888 * fully-connected conn_t and tcp doesn't do policy in 6889 * this case. 6890 */ 6891 if (mctl_present) { 6892 freeb(first_mp); 6893 mctl_present = B_FALSE; 6894 } 6895 first_mp = mp; 6896 } 6897 } 6898 6899 /* 6900 * Initiate policy processing here if needed. If we get here from 6901 * icmp_inbound_error_fanout, ip_policy is false. 6902 */ 6903 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6904 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6905 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6906 if (mp == NULL) { 6907 CONN_DEC_REF(connp); 6908 if (mctl_present) 6909 freeb(first_mp); 6910 return; 6911 } else if (mctl_present) { 6912 ASSERT(first_mp != mp); 6913 first_mp->b_cont = mp; 6914 } else { 6915 first_mp = mp; 6916 } 6917 } 6918 6919 6920 6921 /* Handle socket options. */ 6922 if (!syn_present && 6923 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6924 /* Add header */ 6925 ASSERT(recv_ill != NULL); 6926 /* 6927 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6928 * IPF_RECVIF. 6929 */ 6930 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6931 ipst); 6932 if (mp == NULL) { 6933 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6934 CONN_DEC_REF(connp); 6935 if (mctl_present) 6936 freeb(first_mp); 6937 return; 6938 } else if (mctl_present) { 6939 /* 6940 * ip_add_info might return a new mp. 6941 */ 6942 ASSERT(first_mp != mp); 6943 first_mp->b_cont = mp; 6944 } else { 6945 first_mp = mp; 6946 } 6947 } 6948 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6949 if (IPCL_IS_TCP(connp)) { 6950 /* do not drain, certain use cases can blow the stack */ 6951 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6952 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6953 } else { 6954 putnext(connp->conn_rq, first_mp); 6955 CONN_DEC_REF(connp); 6956 } 6957 } 6958 6959 /* 6960 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6961 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6962 * Caller is responsible for dropping references to the conn, and freeing 6963 * first_mp. 6964 * 6965 * IPQoS Notes 6966 * Before sending it to the client, invoke IPPF processing. Policy processing 6967 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6968 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6969 * ip_wput_local, ip_policy is false. 6970 */ 6971 static void 6972 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6973 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6974 boolean_t ip_policy) 6975 { 6976 boolean_t mctl_present = (first_mp != NULL); 6977 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6978 uint32_t ill_index; 6979 ip_stack_t *ipst = recv_ill->ill_ipst; 6980 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6981 6982 ASSERT(ill != NULL); 6983 6984 if (mctl_present) 6985 first_mp->b_cont = mp; 6986 else 6987 first_mp = mp; 6988 6989 if (CONN_UDP_FLOWCTLD(connp)) { 6990 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6991 freemsg(first_mp); 6992 return; 6993 } 6994 6995 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6996 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6997 NULL, mctl_present); 6998 if (first_mp == NULL) { 6999 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7000 return; /* Freed by ipsec_check_inbound_policy(). */ 7001 } 7002 } 7003 if (mctl_present) 7004 freeb(first_mp); 7005 7006 /* Handle options. */ 7007 if (connp->conn_recvif) 7008 in_flags = IPF_RECVIF; 7009 /* 7010 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7011 * passed to ip_add_info is based on IP version of connp. 7012 */ 7013 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7014 if (connp->conn_af_isv6) { 7015 /* 7016 * V6 only needs index 7017 */ 7018 in_flags |= IPF_RECVIF; 7019 } else { 7020 /* 7021 * V4 needs index + matching address. 7022 */ 7023 in_flags |= IPF_RECVADDR; 7024 } 7025 } 7026 7027 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7028 in_flags |= IPF_RECVSLLA; 7029 7030 /* 7031 * Initiate IPPF processing here, if needed. Note first_mp won't be 7032 * freed if the packet is dropped. The caller will do so. 7033 */ 7034 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7035 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7036 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7037 if (mp == NULL) { 7038 return; 7039 } 7040 } 7041 if ((in_flags != 0) && 7042 (mp->b_datap->db_type != M_CTL)) { 7043 /* 7044 * The actual data will be contained in b_cont 7045 * upon successful return of the following call 7046 * else original mblk is returned 7047 */ 7048 ASSERT(recv_ill != NULL); 7049 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7050 ipst); 7051 } 7052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7053 /* Send it upstream */ 7054 CONN_UDP_RECV(connp, mp); 7055 } 7056 7057 /* 7058 * Fanout for UDP packets. 7059 * The caller puts <fport, lport> in the ports parameter. 7060 * 7061 * If SO_REUSEADDR is set all multicast and broadcast packets 7062 * will be delivered to all streams bound to the same port. 7063 * 7064 * Zones notes: 7065 * Multicast and broadcast packets will be distributed to streams in all zones. 7066 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7067 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7068 * packets. To maintain this behavior with multiple zones, the conns are grouped 7069 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7070 * each zone. If unset, all the following conns in the same zone are skipped. 7071 */ 7072 static void 7073 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7074 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7075 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7076 { 7077 uint32_t dstport, srcport; 7078 ipaddr_t dst; 7079 mblk_t *first_mp; 7080 boolean_t secure; 7081 in6_addr_t v6src; 7082 conn_t *connp; 7083 connf_t *connfp; 7084 conn_t *first_connp; 7085 conn_t *next_connp; 7086 mblk_t *mp1, *first_mp1; 7087 ipaddr_t src; 7088 zoneid_t last_zoneid; 7089 boolean_t reuseaddr; 7090 boolean_t shared_addr; 7091 ip_stack_t *ipst; 7092 7093 ASSERT(recv_ill != NULL); 7094 ipst = recv_ill->ill_ipst; 7095 7096 first_mp = mp; 7097 if (mctl_present) { 7098 mp = first_mp->b_cont; 7099 first_mp->b_cont = NULL; 7100 secure = ipsec_in_is_secure(first_mp); 7101 ASSERT(mp != NULL); 7102 } else { 7103 first_mp = NULL; 7104 secure = B_FALSE; 7105 } 7106 7107 /* Extract ports in net byte order */ 7108 dstport = htons(ntohl(ports) & 0xFFFF); 7109 srcport = htons(ntohl(ports) >> 16); 7110 dst = ipha->ipha_dst; 7111 src = ipha->ipha_src; 7112 7113 shared_addr = (zoneid == ALL_ZONES); 7114 if (shared_addr) { 7115 /* 7116 * No need to handle exclusive-stack zones since ALL_ZONES 7117 * only applies to the shared stack. 7118 */ 7119 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7120 if (zoneid == ALL_ZONES) 7121 zoneid = tsol_packet_to_zoneid(mp); 7122 } 7123 7124 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7125 mutex_enter(&connfp->connf_lock); 7126 connp = connfp->connf_head; 7127 if (!broadcast && !CLASSD(dst)) { 7128 /* 7129 * Not broadcast or multicast. Send to the one (first) 7130 * client we find. No need to check conn_wantpacket() 7131 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7132 * IPv4 unicast packets. 7133 */ 7134 while ((connp != NULL) && 7135 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7136 !IPCL_ZONE_MATCH(connp, zoneid))) { 7137 connp = connp->conn_next; 7138 } 7139 7140 if (connp == NULL || connp->conn_upq == NULL) 7141 goto notfound; 7142 7143 if (is_system_labeled() && 7144 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7145 connp)) 7146 goto notfound; 7147 7148 CONN_INC_REF(connp); 7149 mutex_exit(&connfp->connf_lock); 7150 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7151 flags, recv_ill, ip_policy); 7152 IP_STAT(ipst, ip_udp_fannorm); 7153 CONN_DEC_REF(connp); 7154 return; 7155 } 7156 7157 /* 7158 * Broadcast and multicast case 7159 * 7160 * Need to check conn_wantpacket(). 7161 * If SO_REUSEADDR has been set on the first we send the 7162 * packet to all clients that have joined the group and 7163 * match the port. 7164 */ 7165 7166 while (connp != NULL) { 7167 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7168 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7169 (!is_system_labeled() || 7170 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7171 connp))) 7172 break; 7173 connp = connp->conn_next; 7174 } 7175 7176 if (connp == NULL || connp->conn_upq == NULL) 7177 goto notfound; 7178 7179 first_connp = connp; 7180 /* 7181 * When SO_REUSEADDR is not set, send the packet only to the first 7182 * matching connection in its zone by keeping track of the zoneid. 7183 */ 7184 reuseaddr = first_connp->conn_reuseaddr; 7185 last_zoneid = first_connp->conn_zoneid; 7186 7187 CONN_INC_REF(connp); 7188 connp = connp->conn_next; 7189 for (;;) { 7190 while (connp != NULL) { 7191 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7192 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7193 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7194 (!is_system_labeled() || 7195 tsol_receive_local(mp, &dst, IPV4_VERSION, 7196 shared_addr, connp))) 7197 break; 7198 connp = connp->conn_next; 7199 } 7200 /* 7201 * Just copy the data part alone. The mctl part is 7202 * needed just for verifying policy and it is never 7203 * sent up. 7204 */ 7205 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7206 ((mp1 = copymsg(mp)) == NULL))) { 7207 /* 7208 * No more interested clients or memory 7209 * allocation failed 7210 */ 7211 connp = first_connp; 7212 break; 7213 } 7214 if (connp->conn_zoneid != last_zoneid) { 7215 /* 7216 * Update the zoneid so that the packet isn't sent to 7217 * any more conns in the same zone unless SO_REUSEADDR 7218 * is set. 7219 */ 7220 reuseaddr = connp->conn_reuseaddr; 7221 last_zoneid = connp->conn_zoneid; 7222 } 7223 if (first_mp != NULL) { 7224 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7225 ipsec_info_type == IPSEC_IN); 7226 first_mp1 = ipsec_in_tag(first_mp, NULL, 7227 ipst->ips_netstack); 7228 if (first_mp1 == NULL) { 7229 freemsg(mp1); 7230 connp = first_connp; 7231 break; 7232 } 7233 } else { 7234 first_mp1 = NULL; 7235 } 7236 CONN_INC_REF(connp); 7237 mutex_exit(&connfp->connf_lock); 7238 /* 7239 * IPQoS notes: We don't send the packet for policy 7240 * processing here, will do it for the last one (below). 7241 * i.e. we do it per-packet now, but if we do policy 7242 * processing per-conn, then we would need to do it 7243 * here too. 7244 */ 7245 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7246 ipha, flags, recv_ill, B_FALSE); 7247 mutex_enter(&connfp->connf_lock); 7248 /* Follow the next pointer before releasing the conn. */ 7249 next_connp = connp->conn_next; 7250 IP_STAT(ipst, ip_udp_fanmb); 7251 CONN_DEC_REF(connp); 7252 connp = next_connp; 7253 } 7254 7255 /* Last one. Send it upstream. */ 7256 mutex_exit(&connfp->connf_lock); 7257 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7258 recv_ill, ip_policy); 7259 IP_STAT(ipst, ip_udp_fanmb); 7260 CONN_DEC_REF(connp); 7261 return; 7262 7263 notfound: 7264 7265 mutex_exit(&connfp->connf_lock); 7266 IP_STAT(ipst, ip_udp_fanothers); 7267 /* 7268 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7269 * have already been matched above, since they live in the IPv4 7270 * fanout tables. This implies we only need to 7271 * check for IPv6 in6addr_any endpoints here. 7272 * Thus we compare using ipv6_all_zeros instead of the destination 7273 * address, except for the multicast group membership lookup which 7274 * uses the IPv4 destination. 7275 */ 7276 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7277 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7278 mutex_enter(&connfp->connf_lock); 7279 connp = connfp->connf_head; 7280 if (!broadcast && !CLASSD(dst)) { 7281 while (connp != NULL) { 7282 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7283 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7284 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7285 !connp->conn_ipv6_v6only) 7286 break; 7287 connp = connp->conn_next; 7288 } 7289 7290 if (connp != NULL && is_system_labeled() && 7291 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7292 connp)) 7293 connp = NULL; 7294 7295 if (connp == NULL || connp->conn_upq == NULL) { 7296 /* 7297 * No one bound to this port. Is 7298 * there a client that wants all 7299 * unclaimed datagrams? 7300 */ 7301 mutex_exit(&connfp->connf_lock); 7302 7303 if (mctl_present) 7304 first_mp->b_cont = mp; 7305 else 7306 first_mp = mp; 7307 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7308 connf_head != NULL) { 7309 ip_fanout_proto(q, first_mp, ill, ipha, 7310 flags | IP_FF_RAWIP, mctl_present, 7311 ip_policy, recv_ill, zoneid); 7312 } else { 7313 if (ip_fanout_send_icmp(q, first_mp, flags, 7314 ICMP_DEST_UNREACHABLE, 7315 ICMP_PORT_UNREACHABLE, 7316 mctl_present, zoneid, ipst)) { 7317 BUMP_MIB(ill->ill_ip_mib, 7318 udpIfStatsNoPorts); 7319 } 7320 } 7321 return; 7322 } 7323 7324 CONN_INC_REF(connp); 7325 mutex_exit(&connfp->connf_lock); 7326 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7327 flags, recv_ill, ip_policy); 7328 CONN_DEC_REF(connp); 7329 return; 7330 } 7331 /* 7332 * IPv4 multicast packet being delivered to an AF_INET6 7333 * in6addr_any endpoint. 7334 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7335 * and not conn_wantpacket_v6() since any multicast membership is 7336 * for an IPv4-mapped multicast address. 7337 * The packet is sent to all clients in all zones that have joined the 7338 * group and match the port. 7339 */ 7340 while (connp != NULL) { 7341 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7342 srcport, v6src) && 7343 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7344 (!is_system_labeled() || 7345 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7346 connp))) 7347 break; 7348 connp = connp->conn_next; 7349 } 7350 7351 if (connp == NULL || connp->conn_upq == NULL) { 7352 /* 7353 * No one bound to this port. Is 7354 * there a client that wants all 7355 * unclaimed datagrams? 7356 */ 7357 mutex_exit(&connfp->connf_lock); 7358 7359 if (mctl_present) 7360 first_mp->b_cont = mp; 7361 else 7362 first_mp = mp; 7363 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7364 NULL) { 7365 ip_fanout_proto(q, first_mp, ill, ipha, 7366 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7367 recv_ill, zoneid); 7368 } else { 7369 /* 7370 * We used to attempt to send an icmp error here, but 7371 * since this is known to be a multicast packet 7372 * and we don't send icmp errors in response to 7373 * multicast, just drop the packet and give up sooner. 7374 */ 7375 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7376 freemsg(first_mp); 7377 } 7378 return; 7379 } 7380 7381 first_connp = connp; 7382 7383 CONN_INC_REF(connp); 7384 connp = connp->conn_next; 7385 for (;;) { 7386 while (connp != NULL) { 7387 if (IPCL_UDP_MATCH_V6(connp, dstport, 7388 ipv6_all_zeros, srcport, v6src) && 7389 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7390 (!is_system_labeled() || 7391 tsol_receive_local(mp, &dst, IPV4_VERSION, 7392 shared_addr, connp))) 7393 break; 7394 connp = connp->conn_next; 7395 } 7396 /* 7397 * Just copy the data part alone. The mctl part is 7398 * needed just for verifying policy and it is never 7399 * sent up. 7400 */ 7401 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7402 ((mp1 = copymsg(mp)) == NULL))) { 7403 /* 7404 * No more intested clients or memory 7405 * allocation failed 7406 */ 7407 connp = first_connp; 7408 break; 7409 } 7410 if (first_mp != NULL) { 7411 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7412 ipsec_info_type == IPSEC_IN); 7413 first_mp1 = ipsec_in_tag(first_mp, NULL, 7414 ipst->ips_netstack); 7415 if (first_mp1 == NULL) { 7416 freemsg(mp1); 7417 connp = first_connp; 7418 break; 7419 } 7420 } else { 7421 first_mp1 = NULL; 7422 } 7423 CONN_INC_REF(connp); 7424 mutex_exit(&connfp->connf_lock); 7425 /* 7426 * IPQoS notes: We don't send the packet for policy 7427 * processing here, will do it for the last one (below). 7428 * i.e. we do it per-packet now, but if we do policy 7429 * processing per-conn, then we would need to do it 7430 * here too. 7431 */ 7432 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7433 ipha, flags, recv_ill, B_FALSE); 7434 mutex_enter(&connfp->connf_lock); 7435 /* Follow the next pointer before releasing the conn. */ 7436 next_connp = connp->conn_next; 7437 CONN_DEC_REF(connp); 7438 connp = next_connp; 7439 } 7440 7441 /* Last one. Send it upstream. */ 7442 mutex_exit(&connfp->connf_lock); 7443 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7444 recv_ill, ip_policy); 7445 CONN_DEC_REF(connp); 7446 } 7447 7448 /* 7449 * Complete the ip_wput header so that it 7450 * is possible to generate ICMP 7451 * errors. 7452 */ 7453 int 7454 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7455 { 7456 ire_t *ire; 7457 7458 if (ipha->ipha_src == INADDR_ANY) { 7459 ire = ire_lookup_local(zoneid, ipst); 7460 if (ire == NULL) { 7461 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7462 return (1); 7463 } 7464 ipha->ipha_src = ire->ire_addr; 7465 ire_refrele(ire); 7466 } 7467 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7468 ipha->ipha_hdr_checksum = 0; 7469 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7470 return (0); 7471 } 7472 7473 /* 7474 * Nobody should be sending 7475 * packets up this stream 7476 */ 7477 static void 7478 ip_lrput(queue_t *q, mblk_t *mp) 7479 { 7480 mblk_t *mp1; 7481 7482 switch (mp->b_datap->db_type) { 7483 case M_FLUSH: 7484 /* Turn around */ 7485 if (*mp->b_rptr & FLUSHW) { 7486 *mp->b_rptr &= ~FLUSHR; 7487 qreply(q, mp); 7488 return; 7489 } 7490 break; 7491 } 7492 /* Could receive messages that passed through ar_rput */ 7493 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7494 mp1->b_prev = mp1->b_next = NULL; 7495 freemsg(mp); 7496 } 7497 7498 /* Nobody should be sending packets down this stream */ 7499 /* ARGSUSED */ 7500 void 7501 ip_lwput(queue_t *q, mblk_t *mp) 7502 { 7503 freemsg(mp); 7504 } 7505 7506 /* 7507 * Move the first hop in any source route to ipha_dst and remove that part of 7508 * the source route. Called by other protocols. Errors in option formatting 7509 * are ignored - will be handled by ip_wput_options Return the final 7510 * destination (either ipha_dst or the last entry in a source route.) 7511 */ 7512 ipaddr_t 7513 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7514 { 7515 ipoptp_t opts; 7516 uchar_t *opt; 7517 uint8_t optval; 7518 uint8_t optlen; 7519 ipaddr_t dst; 7520 int i; 7521 ire_t *ire; 7522 ip_stack_t *ipst = ns->netstack_ip; 7523 7524 ip2dbg(("ip_massage_options\n")); 7525 dst = ipha->ipha_dst; 7526 for (optval = ipoptp_first(&opts, ipha); 7527 optval != IPOPT_EOL; 7528 optval = ipoptp_next(&opts)) { 7529 opt = opts.ipoptp_cur; 7530 switch (optval) { 7531 uint8_t off; 7532 case IPOPT_SSRR: 7533 case IPOPT_LSRR: 7534 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7535 ip1dbg(("ip_massage_options: bad src route\n")); 7536 break; 7537 } 7538 optlen = opts.ipoptp_len; 7539 off = opt[IPOPT_OFFSET]; 7540 off--; 7541 redo_srr: 7542 if (optlen < IP_ADDR_LEN || 7543 off > optlen - IP_ADDR_LEN) { 7544 /* End of source route */ 7545 ip1dbg(("ip_massage_options: end of SR\n")); 7546 break; 7547 } 7548 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7549 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7550 ntohl(dst))); 7551 /* 7552 * Check if our address is present more than 7553 * once as consecutive hops in source route. 7554 * XXX verify per-interface ip_forwarding 7555 * for source route? 7556 */ 7557 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7558 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7559 if (ire != NULL) { 7560 ire_refrele(ire); 7561 off += IP_ADDR_LEN; 7562 goto redo_srr; 7563 } 7564 if (dst == htonl(INADDR_LOOPBACK)) { 7565 ip1dbg(("ip_massage_options: loopback addr in " 7566 "source route!\n")); 7567 break; 7568 } 7569 /* 7570 * Update ipha_dst to be the first hop and remove the 7571 * first hop from the source route (by overwriting 7572 * part of the option with NOP options). 7573 */ 7574 ipha->ipha_dst = dst; 7575 /* Put the last entry in dst */ 7576 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7577 3; 7578 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7579 7580 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7581 ntohl(dst))); 7582 /* Move down and overwrite */ 7583 opt[IP_ADDR_LEN] = opt[0]; 7584 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7585 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7586 for (i = 0; i < IP_ADDR_LEN; i++) 7587 opt[i] = IPOPT_NOP; 7588 break; 7589 } 7590 } 7591 return (dst); 7592 } 7593 7594 /* 7595 * This function's job is to forward data to the reverse tunnel (FA->HA) 7596 * after doing a few checks. It is assumed that the incoming interface 7597 * of the packet is always different than the outgoing interface and the 7598 * ire_type of the found ire has to be a non-resolver type. 7599 * 7600 * IPQoS notes 7601 * IP policy is invoked twice for a forwarded packet, once on the read side 7602 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7603 * enabled. 7604 */ 7605 static void 7606 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7607 { 7608 ipha_t *ipha; 7609 queue_t *q; 7610 uint32_t pkt_len; 7611 #define rptr ((uchar_t *)ipha) 7612 uint32_t sum; 7613 uint32_t max_frag; 7614 mblk_t *first_mp; 7615 uint32_t ill_index; 7616 ipxmit_state_t pktxmit_state; 7617 ill_t *out_ill; 7618 ip_stack_t *ipst = in_ill->ill_ipst; 7619 7620 ASSERT(ire != NULL); 7621 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7622 ASSERT(ire->ire_stq != NULL); 7623 7624 /* Initiate read side IPPF processing */ 7625 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7626 ill_index = in_ill->ill_phyint->phyint_ifindex; 7627 ip_process(IPP_FWD_IN, &mp, ill_index); 7628 if (mp == NULL) { 7629 ip2dbg(("ip_mrtun_forward: inbound pkt " 7630 "dropped during IPPF processing\n")); 7631 return; 7632 } 7633 } 7634 7635 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7636 ILLF_ROUTER) == 0) || 7637 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7638 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7639 ip0dbg(("ip_mrtun_forward: Can't forward :" 7640 "forwarding is not turned on\n")); 7641 goto drop_pkt; 7642 } 7643 7644 /* 7645 * Don't forward if the interface is down 7646 */ 7647 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7648 goto discard_pkt; 7649 } 7650 7651 ipha = (ipha_t *)mp->b_rptr; 7652 pkt_len = ntohs(ipha->ipha_length); 7653 /* Adjust the checksum to reflect the ttl decrement. */ 7654 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7655 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7656 if (ipha->ipha_ttl-- <= 1) { 7657 if (ip_csum_hdr(ipha)) { 7658 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7659 goto drop_pkt; 7660 } 7661 q = ire->ire_stq; 7662 if ((first_mp = allocb(sizeof (ipsec_info_t), 7663 BPRI_HI)) == NULL) { 7664 goto discard_pkt; 7665 } 7666 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7667 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7668 /* Sent by forwarding path, and router is global zone */ 7669 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7670 GLOBAL_ZONEID, ipst); 7671 return; 7672 } 7673 7674 /* Get the ill_index of the ILL */ 7675 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7676 7677 /* 7678 * This location is chosen for the placement of the forwarding hook 7679 * because at this point we know that we have a path out for the 7680 * packet but haven't yet applied any logic (such as fragmenting) 7681 * that happen as part of transmitting the packet out. 7682 */ 7683 out_ill = ire->ire_ipif->ipif_ill; 7684 7685 DTRACE_PROBE4(ip4__forwarding__start, 7686 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7687 7688 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7689 ipst->ips_ipv4firewall_forwarding, 7690 in_ill, out_ill, ipha, mp, mp, ipst); 7691 7692 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7693 7694 if (mp == NULL) 7695 return; 7696 pkt_len = ntohs(ipha->ipha_length); 7697 7698 /* 7699 * ip_mrtun_forward is only used by foreign agent to reverse 7700 * tunnel the incoming packet. So it does not do any option 7701 * processing for source routing. 7702 */ 7703 max_frag = ire->ire_max_frag; 7704 if (pkt_len > max_frag) { 7705 /* 7706 * It needs fragging on its way out. We haven't 7707 * verified the header checksum yet. Since we 7708 * are going to put a surely good checksum in the 7709 * outgoing header, we have to make sure that it 7710 * was good coming in. 7711 */ 7712 if (ip_csum_hdr(ipha)) { 7713 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7714 goto drop_pkt; 7715 } 7716 7717 /* Initiate write side IPPF processing */ 7718 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7719 ip_process(IPP_FWD_OUT, &mp, ill_index); 7720 if (mp == NULL) { 7721 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7722 "dropped/deferred during ip policy "\ 7723 "processing\n")); 7724 return; 7725 } 7726 } 7727 if ((first_mp = allocb(sizeof (ipsec_info_t), 7728 BPRI_HI)) == NULL) { 7729 goto discard_pkt; 7730 } 7731 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7732 mp = first_mp; 7733 7734 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7735 return; 7736 } 7737 7738 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7739 7740 ASSERT(ire->ire_ipif != NULL); 7741 7742 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7743 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7744 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7745 ipst->ips_ipv4firewall_physical_out, 7746 NULL, out_ill, ipha, mp, mp, ipst); 7747 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7748 if (mp == NULL) 7749 return; 7750 7751 /* Now send the packet to the tunnel interface */ 7752 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7753 q = ire->ire_stq; 7754 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7755 if ((pktxmit_state == SEND_FAILED) || 7756 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7757 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7758 q->q_ptr)); 7759 } 7760 7761 return; 7762 discard_pkt: 7763 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7764 drop_pkt:; 7765 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7766 freemsg(mp); 7767 #undef rptr 7768 } 7769 7770 /* 7771 * Fills the ipsec_out_t data structure with appropriate fields and 7772 * prepends it to mp which contains the IP hdr + data that was meant 7773 * to be forwarded. Please note that ipsec_out_info data structure 7774 * is used here to communicate the outgoing ill path at ip_wput() 7775 * for the ICMP error packet. This has nothing to do with ipsec IP 7776 * security. ipsec_out_t is really used to pass the info to the module 7777 * IP where this information cannot be extracted from conn. 7778 * This functions is called by ip_mrtun_forward(). 7779 */ 7780 void 7781 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7782 { 7783 ipsec_out_t *io; 7784 7785 ASSERT(xmit_ill != NULL); 7786 first_mp->b_datap->db_type = M_CTL; 7787 first_mp->b_wptr += sizeof (ipsec_info_t); 7788 /* 7789 * This is to pass info to ip_wput in absence of conn. 7790 * ipsec_out_secure will be B_FALSE because of this. 7791 * Thus ipsec_out_secure being B_FALSE indicates that 7792 * this is not IPSEC security related information. 7793 */ 7794 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7795 io = (ipsec_out_t *)first_mp->b_rptr; 7796 io->ipsec_out_type = IPSEC_OUT; 7797 io->ipsec_out_len = sizeof (ipsec_out_t); 7798 first_mp->b_cont = mp; 7799 io->ipsec_out_ill_index = 7800 xmit_ill->ill_phyint->phyint_ifindex; 7801 io->ipsec_out_xmit_if = B_TRUE; 7802 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7803 } 7804 7805 /* 7806 * Return the network mask 7807 * associated with the specified address. 7808 */ 7809 ipaddr_t 7810 ip_net_mask(ipaddr_t addr) 7811 { 7812 uchar_t *up = (uchar_t *)&addr; 7813 ipaddr_t mask = 0; 7814 uchar_t *maskp = (uchar_t *)&mask; 7815 7816 #if defined(__i386) || defined(__amd64) 7817 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7818 #endif 7819 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7820 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7821 #endif 7822 if (CLASSD(addr)) { 7823 maskp[0] = 0xF0; 7824 return (mask); 7825 } 7826 if (addr == 0) 7827 return (0); 7828 maskp[0] = 0xFF; 7829 if ((up[0] & 0x80) == 0) 7830 return (mask); 7831 7832 maskp[1] = 0xFF; 7833 if ((up[0] & 0xC0) == 0x80) 7834 return (mask); 7835 7836 maskp[2] = 0xFF; 7837 if ((up[0] & 0xE0) == 0xC0) 7838 return (mask); 7839 7840 /* Must be experimental or multicast, indicate as much */ 7841 return ((ipaddr_t)0); 7842 } 7843 7844 /* 7845 * Select an ill for the packet by considering load spreading across 7846 * a different ill in the group if dst_ill is part of some group. 7847 */ 7848 ill_t * 7849 ip_newroute_get_dst_ill(ill_t *dst_ill) 7850 { 7851 ill_t *ill; 7852 7853 /* 7854 * We schedule irrespective of whether the source address is 7855 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7856 */ 7857 ill = illgrp_scheduler(dst_ill); 7858 if (ill == NULL) 7859 return (NULL); 7860 7861 /* 7862 * For groups with names ip_sioctl_groupname ensures that all 7863 * ills are of same type. For groups without names, ifgrp_insert 7864 * ensures this. 7865 */ 7866 ASSERT(dst_ill->ill_type == ill->ill_type); 7867 7868 return (ill); 7869 } 7870 7871 /* 7872 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7873 */ 7874 ill_t * 7875 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7876 ip_stack_t *ipst) 7877 { 7878 ill_t *ret_ill; 7879 7880 ASSERT(ifindex != 0); 7881 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7882 ipst); 7883 if (ret_ill == NULL || 7884 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7885 if (isv6) { 7886 if (ill != NULL) { 7887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7888 } else { 7889 BUMP_MIB(&ipst->ips_ip6_mib, 7890 ipIfStatsOutDiscards); 7891 } 7892 ip1dbg(("ip_grab_attach_ill (IPv6): " 7893 "bad ifindex %d.\n", ifindex)); 7894 } else { 7895 if (ill != NULL) { 7896 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7897 } else { 7898 BUMP_MIB(&ipst->ips_ip_mib, 7899 ipIfStatsOutDiscards); 7900 } 7901 ip1dbg(("ip_grab_attach_ill (IPv4): " 7902 "bad ifindex %d.\n", ifindex)); 7903 } 7904 if (ret_ill != NULL) 7905 ill_refrele(ret_ill); 7906 freemsg(first_mp); 7907 return (NULL); 7908 } 7909 7910 return (ret_ill); 7911 } 7912 7913 /* 7914 * IPv4 - 7915 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7916 * out a packet to a destination address for which we do not have specific 7917 * (or sufficient) routing information. 7918 * 7919 * NOTE : These are the scopes of some of the variables that point at IRE, 7920 * which needs to be followed while making any future modifications 7921 * to avoid memory leaks. 7922 * 7923 * - ire and sire are the entries looked up initially by 7924 * ire_ftable_lookup. 7925 * - ipif_ire is used to hold the interface ire associated with 7926 * the new cache ire. But it's scope is limited, so we always REFRELE 7927 * it before branching out to error paths. 7928 * - save_ire is initialized before ire_create, so that ire returned 7929 * by ire_create will not over-write the ire. We REFRELE save_ire 7930 * before breaking out of the switch. 7931 * 7932 * Thus on failures, we have to REFRELE only ire and sire, if they 7933 * are not NULL. 7934 */ 7935 void 7936 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7937 zoneid_t zoneid, ip_stack_t *ipst) 7938 { 7939 areq_t *areq; 7940 ipaddr_t gw = 0; 7941 ire_t *ire = NULL; 7942 mblk_t *res_mp; 7943 ipaddr_t *addrp; 7944 ipaddr_t nexthop_addr; 7945 ipif_t *src_ipif = NULL; 7946 ill_t *dst_ill = NULL; 7947 ipha_t *ipha; 7948 ire_t *sire = NULL; 7949 mblk_t *first_mp; 7950 ire_t *save_ire; 7951 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7952 ushort_t ire_marks = 0; 7953 boolean_t mctl_present; 7954 ipsec_out_t *io; 7955 mblk_t *saved_mp; 7956 ire_t *first_sire = NULL; 7957 mblk_t *copy_mp = NULL; 7958 mblk_t *xmit_mp = NULL; 7959 ipaddr_t save_dst; 7960 uint32_t multirt_flags = 7961 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7962 boolean_t multirt_is_resolvable; 7963 boolean_t multirt_resolve_next; 7964 boolean_t do_attach_ill = B_FALSE; 7965 boolean_t ip_nexthop = B_FALSE; 7966 tsol_ire_gw_secattr_t *attrp = NULL; 7967 tsol_gcgrp_t *gcgrp = NULL; 7968 tsol_gcgrp_addr_t ga; 7969 7970 if (ip_debug > 2) { 7971 /* ip1dbg */ 7972 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7973 } 7974 7975 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7976 if (mctl_present) { 7977 io = (ipsec_out_t *)first_mp->b_rptr; 7978 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7979 ASSERT(zoneid == io->ipsec_out_zoneid); 7980 ASSERT(zoneid != ALL_ZONES); 7981 } 7982 7983 ipha = (ipha_t *)mp->b_rptr; 7984 7985 /* All multicast lookups come through ip_newroute_ipif() */ 7986 if (CLASSD(dst)) { 7987 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7988 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7989 freemsg(first_mp); 7990 return; 7991 } 7992 7993 if (mctl_present && io->ipsec_out_attach_if) { 7994 /* ip_grab_attach_ill returns a held ill */ 7995 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7996 io->ipsec_out_ill_index, B_FALSE, ipst); 7997 7998 /* Failure case frees things for us. */ 7999 if (attach_ill == NULL) 8000 return; 8001 8002 /* 8003 * Check if we need an ire that will not be 8004 * looked up by anybody else i.e. HIDDEN. 8005 */ 8006 if (ill_is_probeonly(attach_ill)) 8007 ire_marks = IRE_MARK_HIDDEN; 8008 } 8009 if (mctl_present && io->ipsec_out_ip_nexthop) { 8010 ip_nexthop = B_TRUE; 8011 nexthop_addr = io->ipsec_out_nexthop_addr; 8012 } 8013 /* 8014 * If this IRE is created for forwarding or it is not for 8015 * traffic for congestion controlled protocols, mark it as temporary. 8016 */ 8017 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 8018 ire_marks |= IRE_MARK_TEMPORARY; 8019 8020 /* 8021 * Get what we can from ire_ftable_lookup which will follow an IRE 8022 * chain until it gets the most specific information available. 8023 * For example, we know that there is no IRE_CACHE for this dest, 8024 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8025 * ire_ftable_lookup will look up the gateway, etc. 8026 * Check if in_ill != NULL. If it is true, the packet must be 8027 * from an incoming interface where RTA_SRCIFP is set. 8028 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8029 * to the destination, of equal netmask length in the forward table, 8030 * will be recursively explored. If no information is available 8031 * for the final gateway of that route, we force the returned ire 8032 * to be equal to sire using MATCH_IRE_PARENT. 8033 * At least, in this case we have a starting point (in the buckets) 8034 * to look for other routes to the destination in the forward table. 8035 * This is actually used only for multirouting, where a list 8036 * of routes has to be processed in sequence. 8037 * 8038 * In the process of coming up with the most specific information, 8039 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8040 * for the gateway (i.e., one for which the ire_nce->nce_state is 8041 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8042 * Two caveats when handling incomplete ire's in ip_newroute: 8043 * - we should be careful when accessing its ire_nce (specifically 8044 * the nce_res_mp) ast it might change underneath our feet, and, 8045 * - not all legacy code path callers are prepared to handle 8046 * incomplete ire's, so we should not create/add incomplete 8047 * ire_cache entries here. (See discussion about temporary solution 8048 * further below). 8049 * 8050 * In order to minimize packet dropping, and to preserve existing 8051 * behavior, we treat this case as if there were no IRE_CACHE for the 8052 * gateway, and instead use the IF_RESOLVER ire to send out 8053 * another request to ARP (this is achieved by passing the 8054 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8055 * arp response comes back in ip_wput_nondata, we will create 8056 * a per-dst ire_cache that has an ND_COMPLETE ire. 8057 * 8058 * Note that this is a temporary solution; the correct solution is 8059 * to create an incomplete per-dst ire_cache entry, and send the 8060 * packet out when the gw's nce is resolved. In order to achieve this, 8061 * all packet processing must have been completed prior to calling 8062 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8063 * to be modified to accomodate this solution. 8064 */ 8065 if (in_ill != NULL) { 8066 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8067 in_ill, MATCH_IRE_TYPE); 8068 } else if (ip_nexthop) { 8069 /* 8070 * The first time we come here, we look for an IRE_INTERFACE 8071 * entry for the specified nexthop, set the dst to be the 8072 * nexthop address and create an IRE_CACHE entry for the 8073 * nexthop. The next time around, we are able to find an 8074 * IRE_CACHE entry for the nexthop, set the gateway to be the 8075 * nexthop address and create an IRE_CACHE entry for the 8076 * destination address via the specified nexthop. 8077 */ 8078 ire = ire_cache_lookup(nexthop_addr, zoneid, 8079 MBLK_GETLABEL(mp), ipst); 8080 if (ire != NULL) { 8081 gw = nexthop_addr; 8082 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8083 } else { 8084 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8085 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8086 MBLK_GETLABEL(mp), 8087 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8088 ipst); 8089 if (ire != NULL) { 8090 dst = nexthop_addr; 8091 } 8092 } 8093 } else if (attach_ill == NULL) { 8094 ire = ire_ftable_lookup(dst, 0, 0, 0, 8095 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8096 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8097 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8098 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8099 ipst); 8100 } else { 8101 /* 8102 * attach_ill is set only for communicating with 8103 * on-link hosts. So, don't look for DEFAULT. 8104 */ 8105 ipif_t *attach_ipif; 8106 8107 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8108 if (attach_ipif == NULL) { 8109 ill_refrele(attach_ill); 8110 goto icmp_err_ret; 8111 } 8112 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8113 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8114 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8115 MATCH_IRE_SECATTR, ipst); 8116 ipif_refrele(attach_ipif); 8117 } 8118 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8119 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8120 8121 /* 8122 * This loop is run only once in most cases. 8123 * We loop to resolve further routes only when the destination 8124 * can be reached through multiple RTF_MULTIRT-flagged ires. 8125 */ 8126 do { 8127 /* Clear the previous iteration's values */ 8128 if (src_ipif != NULL) { 8129 ipif_refrele(src_ipif); 8130 src_ipif = NULL; 8131 } 8132 if (dst_ill != NULL) { 8133 ill_refrele(dst_ill); 8134 dst_ill = NULL; 8135 } 8136 8137 multirt_resolve_next = B_FALSE; 8138 /* 8139 * We check if packets have to be multirouted. 8140 * In this case, given the current <ire, sire> couple, 8141 * we look for the next suitable <ire, sire>. 8142 * This check is done in ire_multirt_lookup(), 8143 * which applies various criteria to find the next route 8144 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8145 * unchanged if it detects it has not been tried yet. 8146 */ 8147 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8148 ip3dbg(("ip_newroute: starting next_resolution " 8149 "with first_mp %p, tag %d\n", 8150 (void *)first_mp, 8151 MULTIRT_DEBUG_TAGGED(first_mp))); 8152 8153 ASSERT(sire != NULL); 8154 multirt_is_resolvable = 8155 ire_multirt_lookup(&ire, &sire, multirt_flags, 8156 MBLK_GETLABEL(mp), ipst); 8157 8158 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8159 "ire %p, sire %p\n", 8160 multirt_is_resolvable, 8161 (void *)ire, (void *)sire)); 8162 8163 if (!multirt_is_resolvable) { 8164 /* 8165 * No more multirt route to resolve; give up 8166 * (all routes resolved or no more 8167 * resolvable routes). 8168 */ 8169 if (ire != NULL) { 8170 ire_refrele(ire); 8171 ire = NULL; 8172 } 8173 } else { 8174 ASSERT(sire != NULL); 8175 ASSERT(ire != NULL); 8176 /* 8177 * We simply use first_sire as a flag that 8178 * indicates if a resolvable multirt route 8179 * has already been found. 8180 * If it is not the case, we may have to send 8181 * an ICMP error to report that the 8182 * destination is unreachable. 8183 * We do not IRE_REFHOLD first_sire. 8184 */ 8185 if (first_sire == NULL) { 8186 first_sire = sire; 8187 } 8188 } 8189 } 8190 if (ire == NULL) { 8191 if (ip_debug > 3) { 8192 /* ip2dbg */ 8193 pr_addr_dbg("ip_newroute: " 8194 "can't resolve %s\n", AF_INET, &dst); 8195 } 8196 ip3dbg(("ip_newroute: " 8197 "ire %p, sire %p, first_sire %p\n", 8198 (void *)ire, (void *)sire, (void *)first_sire)); 8199 8200 if (sire != NULL) { 8201 ire_refrele(sire); 8202 sire = NULL; 8203 } 8204 8205 if (first_sire != NULL) { 8206 /* 8207 * At least one multirt route has been found 8208 * in the same call to ip_newroute(); 8209 * there is no need to report an ICMP error. 8210 * first_sire was not IRE_REFHOLDed. 8211 */ 8212 MULTIRT_DEBUG_UNTAG(first_mp); 8213 freemsg(first_mp); 8214 return; 8215 } 8216 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8217 RTA_DST, ipst); 8218 if (attach_ill != NULL) 8219 ill_refrele(attach_ill); 8220 goto icmp_err_ret; 8221 } 8222 8223 /* 8224 * When RTA_SRCIFP is used to add a route, then an interface 8225 * route is added in the source interface's routing table. 8226 * If the outgoing interface of this route is of type 8227 * IRE_IF_RESOLVER, then upon creation of the ire, 8228 * ire_nce->nce_res_mp is set to NULL. 8229 * Later, when this route is first used for forwarding 8230 * a packet, ip_newroute() is called 8231 * to resolve the hardware address of the outgoing ipif. 8232 * We do not come here for IRE_IF_NORESOLVER entries in the 8233 * source interface based table. We only come here if the 8234 * outgoing interface is a resolver interface and we don't 8235 * have the ire_nce->nce_res_mp information yet. 8236 * If in_ill is not null that means it is called from 8237 * ip_rput. 8238 */ 8239 8240 ASSERT(ire->ire_in_ill == NULL || 8241 (ire->ire_type == IRE_IF_RESOLVER && 8242 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8243 8244 /* 8245 * Verify that the returned IRE does not have either 8246 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8247 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8248 */ 8249 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8250 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8251 if (attach_ill != NULL) 8252 ill_refrele(attach_ill); 8253 goto icmp_err_ret; 8254 } 8255 /* 8256 * Increment the ire_ob_pkt_count field for ire if it is an 8257 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8258 * increment the same for the parent IRE, sire, if it is some 8259 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8260 */ 8261 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8262 UPDATE_OB_PKT_COUNT(ire); 8263 ire->ire_last_used_time = lbolt; 8264 } 8265 8266 if (sire != NULL) { 8267 gw = sire->ire_gateway_addr; 8268 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8269 IRE_INTERFACE)) == 0); 8270 UPDATE_OB_PKT_COUNT(sire); 8271 sire->ire_last_used_time = lbolt; 8272 } 8273 /* 8274 * We have a route to reach the destination. 8275 * 8276 * 1) If the interface is part of ill group, try to get a new 8277 * ill taking load spreading into account. 8278 * 8279 * 2) After selecting the ill, get a source address that 8280 * might create good inbound load spreading. 8281 * ipif_select_source does this for us. 8282 * 8283 * If the application specified the ill (ifindex), we still 8284 * load spread. Only if the packets needs to go out 8285 * specifically on a given ill e.g. binding to 8286 * IPIF_NOFAILOVER address, then we don't try to use a 8287 * different ill for load spreading. 8288 */ 8289 if (attach_ill == NULL) { 8290 /* 8291 * Don't perform outbound load spreading in the 8292 * case of an RTF_MULTIRT route, as we actually 8293 * typically want to replicate outgoing packets 8294 * through particular interfaces. 8295 */ 8296 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8297 dst_ill = ire->ire_ipif->ipif_ill; 8298 /* for uniformity */ 8299 ill_refhold(dst_ill); 8300 } else { 8301 /* 8302 * If we are here trying to create an IRE_CACHE 8303 * for an offlink destination and have the 8304 * IRE_CACHE for the next hop and the latter is 8305 * using virtual IP source address selection i.e 8306 * it's ire->ire_ipif is pointing to a virtual 8307 * network interface (vni) then 8308 * ip_newroute_get_dst_ll() will return the vni 8309 * interface as the dst_ill. Since the vni is 8310 * virtual i.e not associated with any physical 8311 * interface, it cannot be the dst_ill, hence 8312 * in such a case call ip_newroute_get_dst_ll() 8313 * with the stq_ill instead of the ire_ipif ILL. 8314 * The function returns a refheld ill. 8315 */ 8316 if ((ire->ire_type == IRE_CACHE) && 8317 IS_VNI(ire->ire_ipif->ipif_ill)) 8318 dst_ill = ip_newroute_get_dst_ill( 8319 ire->ire_stq->q_ptr); 8320 else 8321 dst_ill = ip_newroute_get_dst_ill( 8322 ire->ire_ipif->ipif_ill); 8323 } 8324 if (dst_ill == NULL) { 8325 if (ip_debug > 2) { 8326 pr_addr_dbg("ip_newroute: " 8327 "no dst ill for dst" 8328 " %s\n", AF_INET, &dst); 8329 } 8330 goto icmp_err_ret; 8331 } 8332 } else { 8333 dst_ill = ire->ire_ipif->ipif_ill; 8334 /* for uniformity */ 8335 ill_refhold(dst_ill); 8336 /* 8337 * We should have found a route matching ill as we 8338 * called ire_ftable_lookup with MATCH_IRE_ILL. 8339 * Rather than asserting, when there is a mismatch, 8340 * we just drop the packet. 8341 */ 8342 if (dst_ill != attach_ill) { 8343 ip0dbg(("ip_newroute: Packet dropped as " 8344 "IPIF_NOFAILOVER ill is %s, " 8345 "ire->ire_ipif->ipif_ill is %s\n", 8346 attach_ill->ill_name, 8347 dst_ill->ill_name)); 8348 ill_refrele(attach_ill); 8349 goto icmp_err_ret; 8350 } 8351 } 8352 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8353 if (attach_ill != NULL) { 8354 ill_refrele(attach_ill); 8355 attach_ill = NULL; 8356 do_attach_ill = B_TRUE; 8357 } 8358 ASSERT(dst_ill != NULL); 8359 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8360 8361 /* 8362 * Pick the best source address from dst_ill. 8363 * 8364 * 1) If it is part of a multipathing group, we would 8365 * like to spread the inbound packets across different 8366 * interfaces. ipif_select_source picks a random source 8367 * across the different ills in the group. 8368 * 8369 * 2) If it is not part of a multipathing group, we try 8370 * to pick the source address from the destination 8371 * route. Clustering assumes that when we have multiple 8372 * prefixes hosted on an interface, the prefix of the 8373 * source address matches the prefix of the destination 8374 * route. We do this only if the address is not 8375 * DEPRECATED. 8376 * 8377 * 3) If the conn is in a different zone than the ire, we 8378 * need to pick a source address from the right zone. 8379 * 8380 * NOTE : If we hit case (1) above, the prefix of the source 8381 * address picked may not match the prefix of the 8382 * destination routes prefix as ipif_select_source 8383 * does not look at "dst" while picking a source 8384 * address. 8385 * If we want the same behavior as (2), we will need 8386 * to change the behavior of ipif_select_source. 8387 */ 8388 ASSERT(src_ipif == NULL); 8389 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8390 /* 8391 * The RTF_SETSRC flag is set in the parent ire (sire). 8392 * Check that the ipif matching the requested source 8393 * address still exists. 8394 */ 8395 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8396 zoneid, NULL, NULL, NULL, NULL, ipst); 8397 } 8398 if (src_ipif == NULL) { 8399 ire_marks |= IRE_MARK_USESRC_CHECK; 8400 if ((dst_ill->ill_group != NULL) || 8401 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8402 (connp != NULL && ire->ire_zoneid != zoneid && 8403 ire->ire_zoneid != ALL_ZONES) || 8404 (dst_ill->ill_usesrc_ifindex != 0)) { 8405 /* 8406 * If the destination is reachable via a 8407 * given gateway, the selected source address 8408 * should be in the same subnet as the gateway. 8409 * Otherwise, the destination is not reachable. 8410 * 8411 * If there are no interfaces on the same subnet 8412 * as the destination, ipif_select_source gives 8413 * first non-deprecated interface which might be 8414 * on a different subnet than the gateway. 8415 * This is not desirable. Hence pass the dst_ire 8416 * source address to ipif_select_source. 8417 * It is sure that the destination is reachable 8418 * with the dst_ire source address subnet. 8419 * So passing dst_ire source address to 8420 * ipif_select_source will make sure that the 8421 * selected source will be on the same subnet 8422 * as dst_ire source address. 8423 */ 8424 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8425 src_ipif = ipif_select_source(dst_ill, saddr, 8426 zoneid); 8427 if (src_ipif == NULL) { 8428 if (ip_debug > 2) { 8429 pr_addr_dbg("ip_newroute: " 8430 "no src for dst %s ", 8431 AF_INET, &dst); 8432 printf("through interface %s\n", 8433 dst_ill->ill_name); 8434 } 8435 goto icmp_err_ret; 8436 } 8437 } else { 8438 src_ipif = ire->ire_ipif; 8439 ASSERT(src_ipif != NULL); 8440 /* hold src_ipif for uniformity */ 8441 ipif_refhold(src_ipif); 8442 } 8443 } 8444 8445 /* 8446 * Assign a source address while we have the conn. 8447 * We can't have ip_wput_ire pick a source address when the 8448 * packet returns from arp since we need to look at 8449 * conn_unspec_src and conn_zoneid, and we lose the conn when 8450 * going through arp. 8451 * 8452 * NOTE : ip_newroute_v6 does not have this piece of code as 8453 * it uses ip6i to store this information. 8454 */ 8455 if (ipha->ipha_src == INADDR_ANY && 8456 (connp == NULL || !connp->conn_unspec_src)) { 8457 ipha->ipha_src = src_ipif->ipif_src_addr; 8458 } 8459 if (ip_debug > 3) { 8460 /* ip2dbg */ 8461 pr_addr_dbg("ip_newroute: first hop %s\n", 8462 AF_INET, &gw); 8463 } 8464 ip2dbg(("\tire type %s (%d)\n", 8465 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8466 8467 /* 8468 * The TTL of multirouted packets is bounded by the 8469 * ip_multirt_ttl ndd variable. 8470 */ 8471 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8472 /* Force TTL of multirouted packets */ 8473 if ((ipst->ips_ip_multirt_ttl > 0) && 8474 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8475 ip2dbg(("ip_newroute: forcing multirt TTL " 8476 "to %d (was %d), dst 0x%08x\n", 8477 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8478 ntohl(sire->ire_addr))); 8479 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8480 } 8481 } 8482 /* 8483 * At this point in ip_newroute(), ire is either the 8484 * IRE_CACHE of the next-hop gateway for an off-subnet 8485 * destination or an IRE_INTERFACE type that should be used 8486 * to resolve an on-subnet destination or an on-subnet 8487 * next-hop gateway. 8488 * 8489 * In the IRE_CACHE case, we have the following : 8490 * 8491 * 1) src_ipif - used for getting a source address. 8492 * 8493 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8494 * means packets using this IRE_CACHE will go out on 8495 * dst_ill. 8496 * 8497 * 3) The IRE sire will point to the prefix that is the 8498 * longest matching route for the destination. These 8499 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8500 * 8501 * The newly created IRE_CACHE entry for the off-subnet 8502 * destination is tied to both the prefix route and the 8503 * interface route used to resolve the next-hop gateway 8504 * via the ire_phandle and ire_ihandle fields, 8505 * respectively. 8506 * 8507 * In the IRE_INTERFACE case, we have the following : 8508 * 8509 * 1) src_ipif - used for getting a source address. 8510 * 8511 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8512 * means packets using the IRE_CACHE that we will build 8513 * here will go out on dst_ill. 8514 * 8515 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8516 * to be created will only be tied to the IRE_INTERFACE 8517 * that was derived from the ire_ihandle field. 8518 * 8519 * If sire is non-NULL, it means the destination is 8520 * off-link and we will first create the IRE_CACHE for the 8521 * gateway. Next time through ip_newroute, we will create 8522 * the IRE_CACHE for the final destination as described 8523 * above. 8524 * 8525 * In both cases, after the current resolution has been 8526 * completed (or possibly initialised, in the IRE_INTERFACE 8527 * case), the loop may be re-entered to attempt the resolution 8528 * of another RTF_MULTIRT route. 8529 * 8530 * When an IRE_CACHE entry for the off-subnet destination is 8531 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8532 * for further processing in emission loops. 8533 */ 8534 save_ire = ire; 8535 switch (ire->ire_type) { 8536 case IRE_CACHE: { 8537 ire_t *ipif_ire; 8538 8539 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8540 if (gw == 0) 8541 gw = ire->ire_gateway_addr; 8542 /* 8543 * We need 3 ire's to create a new cache ire for an 8544 * off-link destination from the cache ire of the 8545 * gateway. 8546 * 8547 * 1. The prefix ire 'sire' (Note that this does 8548 * not apply to the conn_nexthop_set case) 8549 * 2. The cache ire of the gateway 'ire' 8550 * 3. The interface ire 'ipif_ire' 8551 * 8552 * We have (1) and (2). We lookup (3) below. 8553 * 8554 * If there is no interface route to the gateway, 8555 * it is a race condition, where we found the cache 8556 * but the interface route has been deleted. 8557 */ 8558 if (ip_nexthop) { 8559 ipif_ire = ire_ihandle_lookup_onlink(ire); 8560 } else { 8561 ipif_ire = 8562 ire_ihandle_lookup_offlink(ire, sire); 8563 } 8564 if (ipif_ire == NULL) { 8565 ip1dbg(("ip_newroute: " 8566 "ire_ihandle_lookup_offlink failed\n")); 8567 goto icmp_err_ret; 8568 } 8569 8570 /* 8571 * Check cached gateway IRE for any security 8572 * attributes; if found, associate the gateway 8573 * credentials group to the destination IRE. 8574 */ 8575 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8576 mutex_enter(&attrp->igsa_lock); 8577 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8578 GCGRP_REFHOLD(gcgrp); 8579 mutex_exit(&attrp->igsa_lock); 8580 } 8581 8582 /* 8583 * XXX For the source of the resolver mp, 8584 * we are using the same DL_UNITDATA_REQ 8585 * (from save_ire->ire_nce->nce_res_mp) 8586 * though the save_ire is not pointing at the same ill. 8587 * This is incorrect. We need to send it up to the 8588 * resolver to get the right res_mp. For ethernets 8589 * this may be okay (ill_type == DL_ETHER). 8590 */ 8591 8592 ire = ire_create( 8593 (uchar_t *)&dst, /* dest address */ 8594 (uchar_t *)&ip_g_all_ones, /* mask */ 8595 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8596 (uchar_t *)&gw, /* gateway address */ 8597 NULL, 8598 &save_ire->ire_max_frag, 8599 save_ire->ire_nce, /* src nce */ 8600 dst_ill->ill_rq, /* recv-from queue */ 8601 dst_ill->ill_wq, /* send-to queue */ 8602 IRE_CACHE, /* IRE type */ 8603 src_ipif, 8604 in_ill, /* incoming ill */ 8605 (sire != NULL) ? 8606 sire->ire_mask : 0, /* Parent mask */ 8607 (sire != NULL) ? 8608 sire->ire_phandle : 0, /* Parent handle */ 8609 ipif_ire->ire_ihandle, /* Interface handle */ 8610 (sire != NULL) ? (sire->ire_flags & 8611 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8612 (sire != NULL) ? 8613 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8614 NULL, 8615 gcgrp, 8616 ipst); 8617 8618 if (ire == NULL) { 8619 if (gcgrp != NULL) { 8620 GCGRP_REFRELE(gcgrp); 8621 gcgrp = NULL; 8622 } 8623 ire_refrele(ipif_ire); 8624 ire_refrele(save_ire); 8625 break; 8626 } 8627 8628 /* reference now held by IRE */ 8629 gcgrp = NULL; 8630 8631 ire->ire_marks |= ire_marks; 8632 8633 /* 8634 * Prevent sire and ipif_ire from getting deleted. 8635 * The newly created ire is tied to both of them via 8636 * the phandle and ihandle respectively. 8637 */ 8638 if (sire != NULL) { 8639 IRB_REFHOLD(sire->ire_bucket); 8640 /* Has it been removed already ? */ 8641 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8642 IRB_REFRELE(sire->ire_bucket); 8643 ire_refrele(ipif_ire); 8644 ire_refrele(save_ire); 8645 break; 8646 } 8647 } 8648 8649 IRB_REFHOLD(ipif_ire->ire_bucket); 8650 /* Has it been removed already ? */ 8651 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8652 IRB_REFRELE(ipif_ire->ire_bucket); 8653 if (sire != NULL) 8654 IRB_REFRELE(sire->ire_bucket); 8655 ire_refrele(ipif_ire); 8656 ire_refrele(save_ire); 8657 break; 8658 } 8659 8660 xmit_mp = first_mp; 8661 /* 8662 * In the case of multirouting, a copy 8663 * of the packet is done before its sending. 8664 * The copy is used to attempt another 8665 * route resolution, in a next loop. 8666 */ 8667 if (ire->ire_flags & RTF_MULTIRT) { 8668 copy_mp = copymsg(first_mp); 8669 if (copy_mp != NULL) { 8670 xmit_mp = copy_mp; 8671 MULTIRT_DEBUG_TAG(first_mp); 8672 } 8673 } 8674 ire_add_then_send(q, ire, xmit_mp); 8675 ire_refrele(save_ire); 8676 8677 /* Assert that sire is not deleted yet. */ 8678 if (sire != NULL) { 8679 ASSERT(sire->ire_ptpn != NULL); 8680 IRB_REFRELE(sire->ire_bucket); 8681 } 8682 8683 /* Assert that ipif_ire is not deleted yet. */ 8684 ASSERT(ipif_ire->ire_ptpn != NULL); 8685 IRB_REFRELE(ipif_ire->ire_bucket); 8686 ire_refrele(ipif_ire); 8687 8688 /* 8689 * If copy_mp is not NULL, multirouting was 8690 * requested. We loop to initiate a next 8691 * route resolution attempt, starting from sire. 8692 */ 8693 if (copy_mp != NULL) { 8694 /* 8695 * Search for the next unresolved 8696 * multirt route. 8697 */ 8698 copy_mp = NULL; 8699 ipif_ire = NULL; 8700 ire = NULL; 8701 multirt_resolve_next = B_TRUE; 8702 continue; 8703 } 8704 if (sire != NULL) 8705 ire_refrele(sire); 8706 ipif_refrele(src_ipif); 8707 ill_refrele(dst_ill); 8708 return; 8709 } 8710 case IRE_IF_NORESOLVER: { 8711 8712 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8713 dst_ill->ill_resolver_mp == NULL) { 8714 ip1dbg(("ip_newroute: dst_ill %p " 8715 "for IRE_IF_NORESOLVER ire %p has " 8716 "no ill_resolver_mp\n", 8717 (void *)dst_ill, (void *)ire)); 8718 break; 8719 } 8720 8721 /* 8722 * TSol note: We are creating the ire cache for the 8723 * destination 'dst'. If 'dst' is offlink, going 8724 * through the first hop 'gw', the security attributes 8725 * of 'dst' must be set to point to the gateway 8726 * credentials of gateway 'gw'. If 'dst' is onlink, it 8727 * is possible that 'dst' is a potential gateway that is 8728 * referenced by some route that has some security 8729 * attributes. Thus in the former case, we need to do a 8730 * gcgrp_lookup of 'gw' while in the latter case we 8731 * need to do gcgrp_lookup of 'dst' itself. 8732 */ 8733 ga.ga_af = AF_INET; 8734 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8735 &ga.ga_addr); 8736 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8737 8738 ire = ire_create( 8739 (uchar_t *)&dst, /* dest address */ 8740 (uchar_t *)&ip_g_all_ones, /* mask */ 8741 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8742 (uchar_t *)&gw, /* gateway address */ 8743 NULL, 8744 &save_ire->ire_max_frag, 8745 NULL, /* no src nce */ 8746 dst_ill->ill_rq, /* recv-from queue */ 8747 dst_ill->ill_wq, /* send-to queue */ 8748 IRE_CACHE, 8749 src_ipif, 8750 in_ill, /* Incoming ill */ 8751 save_ire->ire_mask, /* Parent mask */ 8752 (sire != NULL) ? /* Parent handle */ 8753 sire->ire_phandle : 0, 8754 save_ire->ire_ihandle, /* Interface handle */ 8755 (sire != NULL) ? sire->ire_flags & 8756 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8757 &(save_ire->ire_uinfo), 8758 NULL, 8759 gcgrp, 8760 ipst); 8761 8762 if (ire == NULL) { 8763 if (gcgrp != NULL) { 8764 GCGRP_REFRELE(gcgrp); 8765 gcgrp = NULL; 8766 } 8767 ire_refrele(save_ire); 8768 break; 8769 } 8770 8771 /* reference now held by IRE */ 8772 gcgrp = NULL; 8773 8774 ire->ire_marks |= ire_marks; 8775 8776 /* Prevent save_ire from getting deleted */ 8777 IRB_REFHOLD(save_ire->ire_bucket); 8778 /* Has it been removed already ? */ 8779 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8780 IRB_REFRELE(save_ire->ire_bucket); 8781 ire_refrele(save_ire); 8782 break; 8783 } 8784 8785 /* 8786 * In the case of multirouting, a copy 8787 * of the packet is made before it is sent. 8788 * The copy is used in the next 8789 * loop to attempt another resolution. 8790 */ 8791 xmit_mp = first_mp; 8792 if ((sire != NULL) && 8793 (sire->ire_flags & RTF_MULTIRT)) { 8794 copy_mp = copymsg(first_mp); 8795 if (copy_mp != NULL) { 8796 xmit_mp = copy_mp; 8797 MULTIRT_DEBUG_TAG(first_mp); 8798 } 8799 } 8800 ire_add_then_send(q, ire, xmit_mp); 8801 8802 /* Assert that it is not deleted yet. */ 8803 ASSERT(save_ire->ire_ptpn != NULL); 8804 IRB_REFRELE(save_ire->ire_bucket); 8805 ire_refrele(save_ire); 8806 8807 if (copy_mp != NULL) { 8808 /* 8809 * If we found a (no)resolver, we ignore any 8810 * trailing top priority IRE_CACHE in further 8811 * loops. This ensures that we do not omit any 8812 * (no)resolver. 8813 * This IRE_CACHE, if any, will be processed 8814 * by another thread entering ip_newroute(). 8815 * IRE_CACHE entries, if any, will be processed 8816 * by another thread entering ip_newroute(), 8817 * (upon resolver response, for instance). 8818 * This aims to force parallel multirt 8819 * resolutions as soon as a packet must be sent. 8820 * In the best case, after the tx of only one 8821 * packet, all reachable routes are resolved. 8822 * Otherwise, the resolution of all RTF_MULTIRT 8823 * routes would require several emissions. 8824 */ 8825 multirt_flags &= ~MULTIRT_CACHEGW; 8826 8827 /* 8828 * Search for the next unresolved multirt 8829 * route. 8830 */ 8831 copy_mp = NULL; 8832 save_ire = NULL; 8833 ire = NULL; 8834 multirt_resolve_next = B_TRUE; 8835 continue; 8836 } 8837 8838 /* 8839 * Don't need sire anymore 8840 */ 8841 if (sire != NULL) 8842 ire_refrele(sire); 8843 8844 ipif_refrele(src_ipif); 8845 ill_refrele(dst_ill); 8846 return; 8847 } 8848 case IRE_IF_RESOLVER: 8849 /* 8850 * We can't build an IRE_CACHE yet, but at least we 8851 * found a resolver that can help. 8852 */ 8853 res_mp = dst_ill->ill_resolver_mp; 8854 if (!OK_RESOLVER_MP(res_mp)) 8855 break; 8856 8857 /* 8858 * To be at this point in the code with a non-zero gw 8859 * means that dst is reachable through a gateway that 8860 * we have never resolved. By changing dst to the gw 8861 * addr we resolve the gateway first. 8862 * When ire_add_then_send() tries to put the IP dg 8863 * to dst, it will reenter ip_newroute() at which 8864 * time we will find the IRE_CACHE for the gw and 8865 * create another IRE_CACHE in case IRE_CACHE above. 8866 */ 8867 if (gw != INADDR_ANY) { 8868 /* 8869 * The source ipif that was determined above was 8870 * relative to the destination address, not the 8871 * gateway's. If src_ipif was not taken out of 8872 * the IRE_IF_RESOLVER entry, we'll need to call 8873 * ipif_select_source() again. 8874 */ 8875 if (src_ipif != ire->ire_ipif) { 8876 ipif_refrele(src_ipif); 8877 src_ipif = ipif_select_source(dst_ill, 8878 gw, zoneid); 8879 if (src_ipif == NULL) { 8880 if (ip_debug > 2) { 8881 pr_addr_dbg( 8882 "ip_newroute: no " 8883 "src for gw %s ", 8884 AF_INET, &gw); 8885 printf("through " 8886 "interface %s\n", 8887 dst_ill->ill_name); 8888 } 8889 goto icmp_err_ret; 8890 } 8891 } 8892 save_dst = dst; 8893 dst = gw; 8894 gw = INADDR_ANY; 8895 } 8896 8897 /* 8898 * We obtain a partial IRE_CACHE which we will pass 8899 * along with the resolver query. When the response 8900 * comes back it will be there ready for us to add. 8901 * The ire_max_frag is atomically set under the 8902 * irebucket lock in ire_add_v[46]. 8903 */ 8904 8905 ire = ire_create_mp( 8906 (uchar_t *)&dst, /* dest address */ 8907 (uchar_t *)&ip_g_all_ones, /* mask */ 8908 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8909 (uchar_t *)&gw, /* gateway address */ 8910 NULL, /* no in_src_addr */ 8911 NULL, /* ire_max_frag */ 8912 NULL, /* no src nce */ 8913 dst_ill->ill_rq, /* recv-from queue */ 8914 dst_ill->ill_wq, /* send-to queue */ 8915 IRE_CACHE, 8916 src_ipif, /* Interface ipif */ 8917 in_ill, /* Incoming ILL */ 8918 save_ire->ire_mask, /* Parent mask */ 8919 0, 8920 save_ire->ire_ihandle, /* Interface handle */ 8921 0, /* flags if any */ 8922 &(save_ire->ire_uinfo), 8923 NULL, 8924 NULL, 8925 ipst); 8926 8927 if (ire == NULL) { 8928 ire_refrele(save_ire); 8929 break; 8930 } 8931 8932 if ((sire != NULL) && 8933 (sire->ire_flags & RTF_MULTIRT)) { 8934 copy_mp = copymsg(first_mp); 8935 if (copy_mp != NULL) 8936 MULTIRT_DEBUG_TAG(copy_mp); 8937 } 8938 8939 ire->ire_marks |= ire_marks; 8940 8941 /* 8942 * Construct message chain for the resolver 8943 * of the form: 8944 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8945 * Packet could contain a IPSEC_OUT mp. 8946 * 8947 * NOTE : ire will be added later when the response 8948 * comes back from ARP. If the response does not 8949 * come back, ARP frees the packet. For this reason, 8950 * we can't REFHOLD the bucket of save_ire to prevent 8951 * deletions. We may not be able to REFRELE the bucket 8952 * if the response never comes back. Thus, before 8953 * adding the ire, ire_add_v4 will make sure that the 8954 * interface route does not get deleted. This is the 8955 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8956 * where we can always prevent deletions because of 8957 * the synchronous nature of adding IRES i.e 8958 * ire_add_then_send is called after creating the IRE. 8959 */ 8960 ASSERT(ire->ire_mp != NULL); 8961 ire->ire_mp->b_cont = first_mp; 8962 /* Have saved_mp handy, for cleanup if canput fails */ 8963 saved_mp = mp; 8964 mp = copyb(res_mp); 8965 if (mp == NULL) { 8966 /* Prepare for cleanup */ 8967 mp = saved_mp; /* pkt */ 8968 ire_delete(ire); /* ire_mp */ 8969 ire = NULL; 8970 ire_refrele(save_ire); 8971 if (copy_mp != NULL) { 8972 MULTIRT_DEBUG_UNTAG(copy_mp); 8973 freemsg(copy_mp); 8974 copy_mp = NULL; 8975 } 8976 break; 8977 } 8978 linkb(mp, ire->ire_mp); 8979 8980 /* 8981 * Fill in the source and dest addrs for the resolver. 8982 * NOTE: this depends on memory layouts imposed by 8983 * ill_init(). 8984 */ 8985 areq = (areq_t *)mp->b_rptr; 8986 addrp = (ipaddr_t *)((char *)areq + 8987 areq->areq_sender_addr_offset); 8988 if (do_attach_ill) { 8989 /* 8990 * This is bind to no failover case. 8991 * arp packet also must go out on attach_ill. 8992 */ 8993 ASSERT(ipha->ipha_src != NULL); 8994 *addrp = ipha->ipha_src; 8995 } else { 8996 *addrp = save_ire->ire_src_addr; 8997 } 8998 8999 ire_refrele(save_ire); 9000 addrp = (ipaddr_t *)((char *)areq + 9001 areq->areq_target_addr_offset); 9002 *addrp = dst; 9003 /* Up to the resolver. */ 9004 if (canputnext(dst_ill->ill_rq) && 9005 !(dst_ill->ill_arp_closing)) { 9006 putnext(dst_ill->ill_rq, mp); 9007 ire = NULL; 9008 if (copy_mp != NULL) { 9009 /* 9010 * If we found a resolver, we ignore 9011 * any trailing top priority IRE_CACHE 9012 * in the further loops. This ensures 9013 * that we do not omit any resolver. 9014 * IRE_CACHE entries, if any, will be 9015 * processed next time we enter 9016 * ip_newroute(). 9017 */ 9018 multirt_flags &= ~MULTIRT_CACHEGW; 9019 /* 9020 * Search for the next unresolved 9021 * multirt route. 9022 */ 9023 first_mp = copy_mp; 9024 copy_mp = NULL; 9025 /* Prepare the next resolution loop. */ 9026 mp = first_mp; 9027 EXTRACT_PKT_MP(mp, first_mp, 9028 mctl_present); 9029 if (mctl_present) 9030 io = (ipsec_out_t *) 9031 first_mp->b_rptr; 9032 ipha = (ipha_t *)mp->b_rptr; 9033 9034 ASSERT(sire != NULL); 9035 9036 dst = save_dst; 9037 multirt_resolve_next = B_TRUE; 9038 continue; 9039 } 9040 9041 if (sire != NULL) 9042 ire_refrele(sire); 9043 9044 /* 9045 * The response will come back in ip_wput 9046 * with db_type IRE_DB_TYPE. 9047 */ 9048 ipif_refrele(src_ipif); 9049 ill_refrele(dst_ill); 9050 return; 9051 } else { 9052 /* Prepare for cleanup */ 9053 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9054 mp); 9055 mp->b_cont = NULL; 9056 freeb(mp); /* areq */ 9057 /* 9058 * this is an ire that is not added to the 9059 * cache. ire_freemblk will handle the release 9060 * of any resources associated with the ire. 9061 */ 9062 ire_delete(ire); /* ire_mp */ 9063 mp = saved_mp; /* pkt */ 9064 ire = NULL; 9065 if (copy_mp != NULL) { 9066 MULTIRT_DEBUG_UNTAG(copy_mp); 9067 freemsg(copy_mp); 9068 copy_mp = NULL; 9069 } 9070 break; 9071 } 9072 default: 9073 break; 9074 } 9075 } while (multirt_resolve_next); 9076 9077 ip1dbg(("ip_newroute: dropped\n")); 9078 /* Did this packet originate externally? */ 9079 if (mp->b_prev) { 9080 mp->b_next = NULL; 9081 mp->b_prev = NULL; 9082 if (in_ill != NULL) { 9083 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9084 } else { 9085 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9086 } 9087 } else { 9088 if (dst_ill != NULL) { 9089 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9090 } else { 9091 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9092 } 9093 } 9094 ASSERT(copy_mp == NULL); 9095 MULTIRT_DEBUG_UNTAG(first_mp); 9096 freemsg(first_mp); 9097 if (ire != NULL) 9098 ire_refrele(ire); 9099 if (sire != NULL) 9100 ire_refrele(sire); 9101 if (src_ipif != NULL) 9102 ipif_refrele(src_ipif); 9103 if (dst_ill != NULL) 9104 ill_refrele(dst_ill); 9105 return; 9106 9107 icmp_err_ret: 9108 ip1dbg(("ip_newroute: no route\n")); 9109 if (src_ipif != NULL) 9110 ipif_refrele(src_ipif); 9111 if (dst_ill != NULL) 9112 ill_refrele(dst_ill); 9113 if (sire != NULL) 9114 ire_refrele(sire); 9115 /* Did this packet originate externally? */ 9116 if (mp->b_prev) { 9117 mp->b_next = NULL; 9118 mp->b_prev = NULL; 9119 if (in_ill != NULL) { 9120 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9121 } else { 9122 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9123 } 9124 q = WR(q); 9125 } else { 9126 /* 9127 * There is no outgoing ill, so just increment the 9128 * system MIB. 9129 */ 9130 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9131 /* 9132 * Since ip_wput() isn't close to finished, we fill 9133 * in enough of the header for credible error reporting. 9134 */ 9135 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9136 /* Failed */ 9137 MULTIRT_DEBUG_UNTAG(first_mp); 9138 freemsg(first_mp); 9139 if (ire != NULL) 9140 ire_refrele(ire); 9141 return; 9142 } 9143 } 9144 9145 /* 9146 * At this point we will have ire only if RTF_BLACKHOLE 9147 * or RTF_REJECT flags are set on the IRE. It will not 9148 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9149 */ 9150 if (ire != NULL) { 9151 if (ire->ire_flags & RTF_BLACKHOLE) { 9152 ire_refrele(ire); 9153 MULTIRT_DEBUG_UNTAG(first_mp); 9154 freemsg(first_mp); 9155 return; 9156 } 9157 ire_refrele(ire); 9158 } 9159 if (ip_source_routed(ipha, ipst)) { 9160 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9161 zoneid, ipst); 9162 return; 9163 } 9164 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9165 } 9166 9167 ip_opt_info_t zero_info; 9168 9169 /* 9170 * IPv4 - 9171 * ip_newroute_ipif is called by ip_wput_multicast and 9172 * ip_rput_forward_multicast whenever we need to send 9173 * out a packet to a destination address for which we do not have specific 9174 * routing information. It is used when the packet will be sent out 9175 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9176 * socket option is set or icmp error message wants to go out on a particular 9177 * interface for a unicast packet. 9178 * 9179 * In most cases, the destination address is resolved thanks to the ipif 9180 * intrinsic resolver. However, there are some cases where the call to 9181 * ip_newroute_ipif must take into account the potential presence of 9182 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9183 * that uses the interface. This is specified through flags, 9184 * which can be a combination of: 9185 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9186 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9187 * and flags. Additionally, the packet source address has to be set to 9188 * the specified address. The caller is thus expected to set this flag 9189 * if the packet has no specific source address yet. 9190 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9191 * flag, the resulting ire will inherit the flag. All unresolved routes 9192 * to the destination must be explored in the same call to 9193 * ip_newroute_ipif(). 9194 */ 9195 static void 9196 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9197 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9198 { 9199 areq_t *areq; 9200 ire_t *ire = NULL; 9201 mblk_t *res_mp; 9202 ipaddr_t *addrp; 9203 mblk_t *first_mp; 9204 ire_t *save_ire = NULL; 9205 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9206 ipif_t *src_ipif = NULL; 9207 ushort_t ire_marks = 0; 9208 ill_t *dst_ill = NULL; 9209 boolean_t mctl_present; 9210 ipsec_out_t *io; 9211 ipha_t *ipha; 9212 int ihandle = 0; 9213 mblk_t *saved_mp; 9214 ire_t *fire = NULL; 9215 mblk_t *copy_mp = NULL; 9216 boolean_t multirt_resolve_next; 9217 ipaddr_t ipha_dst; 9218 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9219 9220 /* 9221 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9222 * here for uniformity 9223 */ 9224 ipif_refhold(ipif); 9225 9226 /* 9227 * This loop is run only once in most cases. 9228 * We loop to resolve further routes only when the destination 9229 * can be reached through multiple RTF_MULTIRT-flagged ires. 9230 */ 9231 do { 9232 if (dst_ill != NULL) { 9233 ill_refrele(dst_ill); 9234 dst_ill = NULL; 9235 } 9236 if (src_ipif != NULL) { 9237 ipif_refrele(src_ipif); 9238 src_ipif = NULL; 9239 } 9240 multirt_resolve_next = B_FALSE; 9241 9242 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9243 ipif->ipif_ill->ill_name)); 9244 9245 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9246 if (mctl_present) 9247 io = (ipsec_out_t *)first_mp->b_rptr; 9248 9249 ipha = (ipha_t *)mp->b_rptr; 9250 9251 /* 9252 * Save the packet destination address, we may need it after 9253 * the packet has been consumed. 9254 */ 9255 ipha_dst = ipha->ipha_dst; 9256 9257 /* 9258 * If the interface is a pt-pt interface we look for an 9259 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9260 * local_address and the pt-pt destination address. Otherwise 9261 * we just match the local address. 9262 * NOTE: dst could be different than ipha->ipha_dst in case 9263 * of sending igmp multicast packets over a point-to-point 9264 * connection. 9265 * Thus we must be careful enough to check ipha_dst to be a 9266 * multicast address, otherwise it will take xmit_if path for 9267 * multicast packets resulting into kernel stack overflow by 9268 * repeated calls to ip_newroute_ipif from ire_send(). 9269 */ 9270 if (CLASSD(ipha_dst) && 9271 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9272 goto err_ret; 9273 } 9274 9275 /* 9276 * We check if an IRE_OFFSUBNET for the addr that goes through 9277 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9278 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9279 * propagate its flags to the new ire. 9280 */ 9281 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9282 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9283 ip2dbg(("ip_newroute_ipif: " 9284 "ipif_lookup_multi_ire(" 9285 "ipif %p, dst %08x) = fire %p\n", 9286 (void *)ipif, ntohl(dst), (void *)fire)); 9287 } 9288 9289 if (mctl_present && io->ipsec_out_attach_if) { 9290 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9291 io->ipsec_out_ill_index, B_FALSE, ipst); 9292 9293 /* Failure case frees things for us. */ 9294 if (attach_ill == NULL) { 9295 ipif_refrele(ipif); 9296 if (fire != NULL) 9297 ire_refrele(fire); 9298 return; 9299 } 9300 9301 /* 9302 * Check if we need an ire that will not be 9303 * looked up by anybody else i.e. HIDDEN. 9304 */ 9305 if (ill_is_probeonly(attach_ill)) { 9306 ire_marks = IRE_MARK_HIDDEN; 9307 } 9308 /* 9309 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9310 * case. 9311 */ 9312 dst_ill = ipif->ipif_ill; 9313 /* attach_ill has been refheld by ip_grab_attach_ill */ 9314 ASSERT(dst_ill == attach_ill); 9315 } else { 9316 /* 9317 * If this is set by IP_XMIT_IF, then make sure that 9318 * ipif is pointing to the same ill as the IP_XMIT_IF 9319 * specified ill. 9320 */ 9321 ASSERT((connp == NULL) || 9322 (connp->conn_xmit_if_ill == NULL) || 9323 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9324 /* 9325 * If the interface belongs to an interface group, 9326 * make sure the next possible interface in the group 9327 * is used. This encourages load spreading among 9328 * peers in an interface group. 9329 * Note: load spreading is disabled for RTF_MULTIRT 9330 * routes. 9331 */ 9332 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9333 (fire->ire_flags & RTF_MULTIRT)) { 9334 /* 9335 * Don't perform outbound load spreading 9336 * in the case of an RTF_MULTIRT issued route, 9337 * we actually typically want to replicate 9338 * outgoing packets through particular 9339 * interfaces. 9340 */ 9341 dst_ill = ipif->ipif_ill; 9342 ill_refhold(dst_ill); 9343 } else { 9344 dst_ill = ip_newroute_get_dst_ill( 9345 ipif->ipif_ill); 9346 } 9347 if (dst_ill == NULL) { 9348 if (ip_debug > 2) { 9349 pr_addr_dbg("ip_newroute_ipif: " 9350 "no dst ill for dst %s\n", 9351 AF_INET, &dst); 9352 } 9353 goto err_ret; 9354 } 9355 } 9356 9357 /* 9358 * Pick a source address preferring non-deprecated ones. 9359 * Unlike ip_newroute, we don't do any source address 9360 * selection here since for multicast it really does not help 9361 * in inbound load spreading as in the unicast case. 9362 */ 9363 if ((flags & RTF_SETSRC) && (fire != NULL) && 9364 (fire->ire_flags & RTF_SETSRC)) { 9365 /* 9366 * As requested by flags, an IRE_OFFSUBNET was looked up 9367 * on that interface. This ire has RTF_SETSRC flag, so 9368 * the source address of the packet must be changed. 9369 * Check that the ipif matching the requested source 9370 * address still exists. 9371 */ 9372 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9373 zoneid, NULL, NULL, NULL, NULL, ipst); 9374 } 9375 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9376 (connp != NULL && ipif->ipif_zoneid != zoneid && 9377 ipif->ipif_zoneid != ALL_ZONES)) && 9378 (src_ipif == NULL)) { 9379 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9380 if (src_ipif == NULL) { 9381 if (ip_debug > 2) { 9382 /* ip1dbg */ 9383 pr_addr_dbg("ip_newroute_ipif: " 9384 "no src for dst %s", 9385 AF_INET, &dst); 9386 } 9387 ip1dbg((" through interface %s\n", 9388 dst_ill->ill_name)); 9389 goto err_ret; 9390 } 9391 ipif_refrele(ipif); 9392 ipif = src_ipif; 9393 ipif_refhold(ipif); 9394 } 9395 if (src_ipif == NULL) { 9396 src_ipif = ipif; 9397 ipif_refhold(src_ipif); 9398 } 9399 9400 /* 9401 * Assign a source address while we have the conn. 9402 * We can't have ip_wput_ire pick a source address when the 9403 * packet returns from arp since conn_unspec_src might be set 9404 * and we loose the conn when going through arp. 9405 */ 9406 if (ipha->ipha_src == INADDR_ANY && 9407 (connp == NULL || !connp->conn_unspec_src)) { 9408 ipha->ipha_src = src_ipif->ipif_src_addr; 9409 } 9410 9411 /* 9412 * In case of IP_XMIT_IF, it is possible that the outgoing 9413 * interface does not have an interface ire. 9414 * Example: Thousands of mobileip PPP interfaces to mobile 9415 * nodes. We don't want to create interface ires because 9416 * packets from other mobile nodes must not take the route 9417 * via interface ires to the visiting mobile node without 9418 * going through the home agent, in absence of mobileip 9419 * route optimization. 9420 */ 9421 if (CLASSD(ipha_dst) && (connp == NULL || 9422 connp->conn_xmit_if_ill == NULL) && 9423 infop->ip_opt_ill_index == 0) { 9424 /* ipif_to_ire returns an held ire */ 9425 ire = ipif_to_ire(ipif); 9426 if (ire == NULL) 9427 goto err_ret; 9428 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9429 goto err_ret; 9430 /* 9431 * ihandle is needed when the ire is added to 9432 * cache table. 9433 */ 9434 save_ire = ire; 9435 ihandle = save_ire->ire_ihandle; 9436 9437 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9438 "flags %04x\n", 9439 (void *)ire, (void *)ipif, flags)); 9440 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9441 (fire->ire_flags & RTF_MULTIRT)) { 9442 /* 9443 * As requested by flags, an IRE_OFFSUBNET was 9444 * looked up on that interface. This ire has 9445 * RTF_MULTIRT flag, so the resolution loop will 9446 * be re-entered to resolve additional routes on 9447 * other interfaces. For that purpose, a copy of 9448 * the packet is performed at this point. 9449 */ 9450 fire->ire_last_used_time = lbolt; 9451 copy_mp = copymsg(first_mp); 9452 if (copy_mp) { 9453 MULTIRT_DEBUG_TAG(copy_mp); 9454 } 9455 } 9456 if ((flags & RTF_SETSRC) && (fire != NULL) && 9457 (fire->ire_flags & RTF_SETSRC)) { 9458 /* 9459 * As requested by flags, an IRE_OFFSUBET was 9460 * looked up on that interface. This ire has 9461 * RTF_SETSRC flag, so the source address of the 9462 * packet must be changed. 9463 */ 9464 ipha->ipha_src = fire->ire_src_addr; 9465 } 9466 } else { 9467 ASSERT((connp == NULL) || 9468 (connp->conn_xmit_if_ill != NULL) || 9469 (connp->conn_dontroute) || 9470 infop->ip_opt_ill_index != 0); 9471 /* 9472 * The only ways we can come here are: 9473 * 1) IP_XMIT_IF socket option is set 9474 * 2) ICMP error message generated from 9475 * ip_mrtun_forward() routine and it needs 9476 * to go through the specified ill. 9477 * 3) SO_DONTROUTE socket option is set 9478 * 4) IP_PKTINFO option is passed in as ancillary data. 9479 * In all cases, the new ire will not be added 9480 * into cache table. 9481 */ 9482 ire_marks |= IRE_MARK_NOADD; 9483 } 9484 9485 switch (ipif->ipif_net_type) { 9486 case IRE_IF_NORESOLVER: { 9487 /* We have what we need to build an IRE_CACHE. */ 9488 9489 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9490 (dst_ill->ill_resolver_mp == NULL)) { 9491 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9492 "for IRE_IF_NORESOLVER ire %p has " 9493 "no ill_resolver_mp\n", 9494 (void *)dst_ill, (void *)ire)); 9495 break; 9496 } 9497 9498 /* 9499 * The new ire inherits the IRE_OFFSUBNET flags 9500 * and source address, if this was requested. 9501 */ 9502 ire = ire_create( 9503 (uchar_t *)&dst, /* dest address */ 9504 (uchar_t *)&ip_g_all_ones, /* mask */ 9505 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9506 NULL, /* gateway address */ 9507 NULL, 9508 &ipif->ipif_mtu, 9509 NULL, /* no src nce */ 9510 dst_ill->ill_rq, /* recv-from queue */ 9511 dst_ill->ill_wq, /* send-to queue */ 9512 IRE_CACHE, 9513 src_ipif, 9514 NULL, 9515 (save_ire != NULL ? save_ire->ire_mask : 0), 9516 (fire != NULL) ? /* Parent handle */ 9517 fire->ire_phandle : 0, 9518 ihandle, /* Interface handle */ 9519 (fire != NULL) ? 9520 (fire->ire_flags & 9521 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9522 (save_ire == NULL ? &ire_uinfo_null : 9523 &save_ire->ire_uinfo), 9524 NULL, 9525 NULL, 9526 ipst); 9527 9528 if (ire == NULL) { 9529 if (save_ire != NULL) 9530 ire_refrele(save_ire); 9531 break; 9532 } 9533 9534 ire->ire_marks |= ire_marks; 9535 9536 /* 9537 * If IRE_MARK_NOADD is set then we need to convert 9538 * the max_fragp to a useable value now. This is 9539 * normally done in ire_add_v[46]. We also need to 9540 * associate the ire with an nce (normally would be 9541 * done in ip_wput_nondata()). 9542 * 9543 * Note that IRE_MARK_NOADD packets created here 9544 * do not have a non-null ire_mp pointer. The null 9545 * value of ire_bucket indicates that they were 9546 * never added. 9547 */ 9548 if (ire->ire_marks & IRE_MARK_NOADD) { 9549 uint_t max_frag; 9550 9551 max_frag = *ire->ire_max_fragp; 9552 ire->ire_max_fragp = NULL; 9553 ire->ire_max_frag = max_frag; 9554 9555 if ((ire->ire_nce = ndp_lookup_v4( 9556 ire_to_ill(ire), 9557 (ire->ire_gateway_addr != INADDR_ANY ? 9558 &ire->ire_gateway_addr : &ire->ire_addr), 9559 B_FALSE)) == NULL) { 9560 if (save_ire != NULL) 9561 ire_refrele(save_ire); 9562 break; 9563 } 9564 ASSERT(ire->ire_nce->nce_state == 9565 ND_REACHABLE); 9566 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9567 } 9568 9569 /* Prevent save_ire from getting deleted */ 9570 if (save_ire != NULL) { 9571 IRB_REFHOLD(save_ire->ire_bucket); 9572 /* Has it been removed already ? */ 9573 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9574 IRB_REFRELE(save_ire->ire_bucket); 9575 ire_refrele(save_ire); 9576 break; 9577 } 9578 } 9579 9580 ire_add_then_send(q, ire, first_mp); 9581 9582 /* Assert that save_ire is not deleted yet. */ 9583 if (save_ire != NULL) { 9584 ASSERT(save_ire->ire_ptpn != NULL); 9585 IRB_REFRELE(save_ire->ire_bucket); 9586 ire_refrele(save_ire); 9587 save_ire = NULL; 9588 } 9589 if (fire != NULL) { 9590 ire_refrele(fire); 9591 fire = NULL; 9592 } 9593 9594 /* 9595 * the resolution loop is re-entered if this 9596 * was requested through flags and if we 9597 * actually are in a multirouting case. 9598 */ 9599 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9600 boolean_t need_resolve = 9601 ire_multirt_need_resolve(ipha_dst, 9602 MBLK_GETLABEL(copy_mp), ipst); 9603 if (!need_resolve) { 9604 MULTIRT_DEBUG_UNTAG(copy_mp); 9605 freemsg(copy_mp); 9606 copy_mp = NULL; 9607 } else { 9608 /* 9609 * ipif_lookup_group() calls 9610 * ire_lookup_multi() that uses 9611 * ire_ftable_lookup() to find 9612 * an IRE_INTERFACE for the group. 9613 * In the multirt case, 9614 * ire_lookup_multi() then invokes 9615 * ire_multirt_lookup() to find 9616 * the next resolvable ire. 9617 * As a result, we obtain an new 9618 * interface, derived from the 9619 * next ire. 9620 */ 9621 ipif_refrele(ipif); 9622 ipif = ipif_lookup_group(ipha_dst, 9623 zoneid, ipst); 9624 ip2dbg(("ip_newroute_ipif: " 9625 "multirt dst %08x, ipif %p\n", 9626 htonl(dst), (void *)ipif)); 9627 if (ipif != NULL) { 9628 mp = copy_mp; 9629 copy_mp = NULL; 9630 multirt_resolve_next = B_TRUE; 9631 continue; 9632 } else { 9633 freemsg(copy_mp); 9634 } 9635 } 9636 } 9637 if (ipif != NULL) 9638 ipif_refrele(ipif); 9639 ill_refrele(dst_ill); 9640 ipif_refrele(src_ipif); 9641 return; 9642 } 9643 case IRE_IF_RESOLVER: 9644 /* 9645 * We can't build an IRE_CACHE yet, but at least 9646 * we found a resolver that can help. 9647 */ 9648 res_mp = dst_ill->ill_resolver_mp; 9649 if (!OK_RESOLVER_MP(res_mp)) 9650 break; 9651 9652 /* 9653 * We obtain a partial IRE_CACHE which we will pass 9654 * along with the resolver query. When the response 9655 * comes back it will be there ready for us to add. 9656 * The new ire inherits the IRE_OFFSUBNET flags 9657 * and source address, if this was requested. 9658 * The ire_max_frag is atomically set under the 9659 * irebucket lock in ire_add_v[46]. Only in the 9660 * case of IRE_MARK_NOADD, we set it here itself. 9661 */ 9662 ire = ire_create_mp( 9663 (uchar_t *)&dst, /* dest address */ 9664 (uchar_t *)&ip_g_all_ones, /* mask */ 9665 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9666 NULL, /* gateway address */ 9667 NULL, /* no in_src_addr */ 9668 (ire_marks & IRE_MARK_NOADD) ? 9669 ipif->ipif_mtu : 0, /* max_frag */ 9670 NULL, /* no src nce */ 9671 dst_ill->ill_rq, /* recv-from queue */ 9672 dst_ill->ill_wq, /* send-to queue */ 9673 IRE_CACHE, 9674 src_ipif, 9675 NULL, 9676 (save_ire != NULL ? save_ire->ire_mask : 0), 9677 (fire != NULL) ? /* Parent handle */ 9678 fire->ire_phandle : 0, 9679 ihandle, /* Interface handle */ 9680 (fire != NULL) ? /* flags if any */ 9681 (fire->ire_flags & 9682 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9683 (save_ire == NULL ? &ire_uinfo_null : 9684 &save_ire->ire_uinfo), 9685 NULL, 9686 NULL, 9687 ipst); 9688 9689 if (save_ire != NULL) { 9690 ire_refrele(save_ire); 9691 save_ire = NULL; 9692 } 9693 if (ire == NULL) 9694 break; 9695 9696 ire->ire_marks |= ire_marks; 9697 /* 9698 * Construct message chain for the resolver of the 9699 * form: 9700 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9701 * 9702 * NOTE : ire will be added later when the response 9703 * comes back from ARP. If the response does not 9704 * come back, ARP frees the packet. For this reason, 9705 * we can't REFHOLD the bucket of save_ire to prevent 9706 * deletions. We may not be able to REFRELE the 9707 * bucket if the response never comes back. 9708 * Thus, before adding the ire, ire_add_v4 will make 9709 * sure that the interface route does not get deleted. 9710 * This is the only case unlike ip_newroute_v6, 9711 * ip_newroute_ipif_v6 where we can always prevent 9712 * deletions because ire_add_then_send is called after 9713 * creating the IRE. 9714 * If IRE_MARK_NOADD is set, then ire_add_then_send 9715 * does not add this IRE into the IRE CACHE. 9716 */ 9717 ASSERT(ire->ire_mp != NULL); 9718 ire->ire_mp->b_cont = first_mp; 9719 /* Have saved_mp handy, for cleanup if canput fails */ 9720 saved_mp = mp; 9721 mp = copyb(res_mp); 9722 if (mp == NULL) { 9723 /* Prepare for cleanup */ 9724 mp = saved_mp; /* pkt */ 9725 ire_delete(ire); /* ire_mp */ 9726 ire = NULL; 9727 if (copy_mp != NULL) { 9728 MULTIRT_DEBUG_UNTAG(copy_mp); 9729 freemsg(copy_mp); 9730 copy_mp = NULL; 9731 } 9732 break; 9733 } 9734 linkb(mp, ire->ire_mp); 9735 9736 /* 9737 * Fill in the source and dest addrs for the resolver. 9738 * NOTE: this depends on memory layouts imposed by 9739 * ill_init(). 9740 */ 9741 areq = (areq_t *)mp->b_rptr; 9742 addrp = (ipaddr_t *)((char *)areq + 9743 areq->areq_sender_addr_offset); 9744 *addrp = ire->ire_src_addr; 9745 addrp = (ipaddr_t *)((char *)areq + 9746 areq->areq_target_addr_offset); 9747 *addrp = dst; 9748 /* Up to the resolver. */ 9749 if (canputnext(dst_ill->ill_rq) && 9750 !(dst_ill->ill_arp_closing)) { 9751 putnext(dst_ill->ill_rq, mp); 9752 /* 9753 * The response will come back in ip_wput 9754 * with db_type IRE_DB_TYPE. 9755 */ 9756 } else { 9757 mp->b_cont = NULL; 9758 freeb(mp); /* areq */ 9759 ire_delete(ire); /* ire_mp */ 9760 saved_mp->b_next = NULL; 9761 saved_mp->b_prev = NULL; 9762 freemsg(first_mp); /* pkt */ 9763 ip2dbg(("ip_newroute_ipif: dropped\n")); 9764 } 9765 9766 if (fire != NULL) { 9767 ire_refrele(fire); 9768 fire = NULL; 9769 } 9770 9771 9772 /* 9773 * The resolution loop is re-entered if this was 9774 * requested through flags and we actually are 9775 * in a multirouting case. 9776 */ 9777 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9778 boolean_t need_resolve = 9779 ire_multirt_need_resolve(ipha_dst, 9780 MBLK_GETLABEL(copy_mp), ipst); 9781 if (!need_resolve) { 9782 MULTIRT_DEBUG_UNTAG(copy_mp); 9783 freemsg(copy_mp); 9784 copy_mp = NULL; 9785 } else { 9786 /* 9787 * ipif_lookup_group() calls 9788 * ire_lookup_multi() that uses 9789 * ire_ftable_lookup() to find 9790 * an IRE_INTERFACE for the group. 9791 * In the multirt case, 9792 * ire_lookup_multi() then invokes 9793 * ire_multirt_lookup() to find 9794 * the next resolvable ire. 9795 * As a result, we obtain an new 9796 * interface, derived from the 9797 * next ire. 9798 */ 9799 ipif_refrele(ipif); 9800 ipif = ipif_lookup_group(ipha_dst, 9801 zoneid, ipst); 9802 if (ipif != NULL) { 9803 mp = copy_mp; 9804 copy_mp = NULL; 9805 multirt_resolve_next = B_TRUE; 9806 continue; 9807 } else { 9808 freemsg(copy_mp); 9809 } 9810 } 9811 } 9812 if (ipif != NULL) 9813 ipif_refrele(ipif); 9814 ill_refrele(dst_ill); 9815 ipif_refrele(src_ipif); 9816 return; 9817 default: 9818 break; 9819 } 9820 } while (multirt_resolve_next); 9821 9822 err_ret: 9823 ip2dbg(("ip_newroute_ipif: dropped\n")); 9824 if (fire != NULL) 9825 ire_refrele(fire); 9826 ipif_refrele(ipif); 9827 /* Did this packet originate externally? */ 9828 if (dst_ill != NULL) 9829 ill_refrele(dst_ill); 9830 if (src_ipif != NULL) 9831 ipif_refrele(src_ipif); 9832 if (mp->b_prev || mp->b_next) { 9833 mp->b_next = NULL; 9834 mp->b_prev = NULL; 9835 } else { 9836 /* 9837 * Since ip_wput() isn't close to finished, we fill 9838 * in enough of the header for credible error reporting. 9839 */ 9840 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9841 /* Failed */ 9842 freemsg(first_mp); 9843 if (ire != NULL) 9844 ire_refrele(ire); 9845 return; 9846 } 9847 } 9848 /* 9849 * At this point we will have ire only if RTF_BLACKHOLE 9850 * or RTF_REJECT flags are set on the IRE. It will not 9851 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9852 */ 9853 if (ire != NULL) { 9854 if (ire->ire_flags & RTF_BLACKHOLE) { 9855 ire_refrele(ire); 9856 freemsg(first_mp); 9857 return; 9858 } 9859 ire_refrele(ire); 9860 } 9861 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9862 } 9863 9864 /* Name/Value Table Lookup Routine */ 9865 char * 9866 ip_nv_lookup(nv_t *nv, int value) 9867 { 9868 if (!nv) 9869 return (NULL); 9870 for (; nv->nv_name; nv++) { 9871 if (nv->nv_value == value) 9872 return (nv->nv_name); 9873 } 9874 return ("unknown"); 9875 } 9876 9877 /* 9878 * This is a module open, i.e. this is a control stream for access 9879 * to a DLPI device. We allocate an ill_t as the instance data in 9880 * this case. 9881 */ 9882 int 9883 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9884 { 9885 ill_t *ill; 9886 int err; 9887 zoneid_t zoneid; 9888 netstack_t *ns; 9889 ip_stack_t *ipst; 9890 9891 /* 9892 * Prevent unprivileged processes from pushing IP so that 9893 * they can't send raw IP. 9894 */ 9895 if (secpolicy_net_rawaccess(credp) != 0) 9896 return (EPERM); 9897 9898 ns = netstack_find_by_cred(credp); 9899 ASSERT(ns != NULL); 9900 ipst = ns->netstack_ip; 9901 ASSERT(ipst != NULL); 9902 9903 /* 9904 * For exclusive stacks we set the zoneid to zero 9905 * to make IP operate as if in the global zone. 9906 */ 9907 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9908 zoneid = GLOBAL_ZONEID; 9909 else 9910 zoneid = crgetzoneid(credp); 9911 9912 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9913 q->q_ptr = WR(q)->q_ptr = ill; 9914 ill->ill_ipst = ipst; 9915 ill->ill_zoneid = zoneid; 9916 9917 /* 9918 * ill_init initializes the ill fields and then sends down 9919 * down a DL_INFO_REQ after calling qprocson. 9920 */ 9921 err = ill_init(q, ill); 9922 if (err != 0) { 9923 mi_free(ill); 9924 netstack_rele(ipst->ips_netstack); 9925 q->q_ptr = NULL; 9926 WR(q)->q_ptr = NULL; 9927 return (err); 9928 } 9929 9930 /* ill_init initializes the ipsq marking this thread as writer */ 9931 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9932 /* Wait for the DL_INFO_ACK */ 9933 mutex_enter(&ill->ill_lock); 9934 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9935 /* 9936 * Return value of 0 indicates a pending signal. 9937 */ 9938 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9939 if (err == 0) { 9940 mutex_exit(&ill->ill_lock); 9941 (void) ip_close(q, 0); 9942 return (EINTR); 9943 } 9944 } 9945 mutex_exit(&ill->ill_lock); 9946 9947 /* 9948 * ip_rput_other could have set an error in ill_error on 9949 * receipt of M_ERROR. 9950 */ 9951 9952 err = ill->ill_error; 9953 if (err != 0) { 9954 (void) ip_close(q, 0); 9955 return (err); 9956 } 9957 9958 ill->ill_credp = credp; 9959 crhold(credp); 9960 9961 mutex_enter(&ipst->ips_ip_mi_lock); 9962 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9963 credp); 9964 mutex_exit(&ipst->ips_ip_mi_lock); 9965 if (err) { 9966 (void) ip_close(q, 0); 9967 return (err); 9968 } 9969 return (0); 9970 } 9971 9972 /* IP open routine. */ 9973 int 9974 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9975 { 9976 conn_t *connp; 9977 major_t maj; 9978 zoneid_t zoneid; 9979 netstack_t *ns; 9980 ip_stack_t *ipst; 9981 9982 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9983 9984 /* Allow reopen. */ 9985 if (q->q_ptr != NULL) 9986 return (0); 9987 9988 if (sflag & MODOPEN) { 9989 /* This is a module open */ 9990 return (ip_modopen(q, devp, flag, sflag, credp)); 9991 } 9992 9993 ns = netstack_find_by_cred(credp); 9994 ASSERT(ns != NULL); 9995 ipst = ns->netstack_ip; 9996 ASSERT(ipst != NULL); 9997 9998 /* 9999 * For exclusive stacks we set the zoneid to zero 10000 * to make IP operate as if in the global zone. 10001 */ 10002 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10003 zoneid = GLOBAL_ZONEID; 10004 else 10005 zoneid = crgetzoneid(credp); 10006 10007 /* 10008 * We are opening as a device. This is an IP client stream, and we 10009 * allocate an conn_t as the instance data. 10010 */ 10011 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10012 10013 /* 10014 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10015 * done by netstack_find_by_cred() 10016 */ 10017 netstack_rele(ipst->ips_netstack); 10018 10019 connp->conn_zoneid = zoneid; 10020 10021 connp->conn_upq = q; 10022 q->q_ptr = WR(q)->q_ptr = connp; 10023 10024 if (flag & SO_SOCKSTR) 10025 connp->conn_flags |= IPCL_SOCKET; 10026 10027 /* Minor tells us which /dev entry was opened */ 10028 if (geteminor(*devp) == IPV6_MINOR) { 10029 connp->conn_flags |= IPCL_ISV6; 10030 connp->conn_af_isv6 = B_TRUE; 10031 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10032 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10033 } else { 10034 connp->conn_af_isv6 = B_FALSE; 10035 connp->conn_pkt_isv6 = B_FALSE; 10036 } 10037 10038 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10039 /* CONN_DEC_REF takes care of netstack_rele() */ 10040 q->q_ptr = WR(q)->q_ptr = NULL; 10041 CONN_DEC_REF(connp); 10042 return (EBUSY); 10043 } 10044 10045 maj = getemajor(*devp); 10046 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10047 10048 /* 10049 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10050 */ 10051 connp->conn_cred = credp; 10052 crhold(connp->conn_cred); 10053 10054 /* 10055 * If the caller has the process-wide flag set, then default to MAC 10056 * exempt mode. This allows read-down to unlabeled hosts. 10057 */ 10058 if (getpflags(NET_MAC_AWARE, credp) != 0) 10059 connp->conn_mac_exempt = B_TRUE; 10060 10061 /* 10062 * This should only happen for ndd, netstat, raw socket or other SCTP 10063 * administrative ops. In these cases, we just need a normal conn_t 10064 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10065 * an error will be returned. 10066 */ 10067 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10068 connp->conn_rq = q; 10069 connp->conn_wq = WR(q); 10070 } else { 10071 connp->conn_ulp = IPPROTO_SCTP; 10072 connp->conn_rq = connp->conn_wq = NULL; 10073 } 10074 /* Non-zero default values */ 10075 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10076 10077 /* 10078 * Make the conn globally visible to walkers 10079 */ 10080 mutex_enter(&connp->conn_lock); 10081 connp->conn_state_flags &= ~CONN_INCIPIENT; 10082 mutex_exit(&connp->conn_lock); 10083 ASSERT(connp->conn_ref == 1); 10084 10085 qprocson(q); 10086 10087 return (0); 10088 } 10089 10090 /* 10091 * Change q_qinfo based on the value of isv6. 10092 * This can not called on an ill queue. 10093 * Note that there is no race since either q_qinfo works for conn queues - it 10094 * is just an optimization to enter the best wput routine directly. 10095 */ 10096 void 10097 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10098 { 10099 ASSERT(q->q_flag & QREADR); 10100 ASSERT(WR(q)->q_next == NULL); 10101 ASSERT(q->q_ptr != NULL); 10102 10103 if (minor == IPV6_MINOR) { 10104 if (bump_mib) { 10105 BUMP_MIB(&ipst->ips_ip6_mib, 10106 ipIfStatsOutSwitchIPVersion); 10107 } 10108 q->q_qinfo = &rinit_ipv6; 10109 WR(q)->q_qinfo = &winit_ipv6; 10110 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10111 } else { 10112 if (bump_mib) { 10113 BUMP_MIB(&ipst->ips_ip_mib, 10114 ipIfStatsOutSwitchIPVersion); 10115 } 10116 q->q_qinfo = &iprinit; 10117 WR(q)->q_qinfo = &ipwinit; 10118 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10119 } 10120 10121 } 10122 10123 /* 10124 * See if IPsec needs loading because of the options in mp. 10125 */ 10126 static boolean_t 10127 ipsec_opt_present(mblk_t *mp) 10128 { 10129 uint8_t *optcp, *next_optcp, *opt_endcp; 10130 struct opthdr *opt; 10131 struct T_opthdr *topt; 10132 int opthdr_len; 10133 t_uscalar_t optname, optlevel; 10134 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10135 ipsec_req_t *ipsr; 10136 10137 /* 10138 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10139 * return TRUE. 10140 */ 10141 10142 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10143 opt_endcp = optcp + tor->OPT_length; 10144 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10145 opthdr_len = sizeof (struct T_opthdr); 10146 } else { /* O_OPTMGMT_REQ */ 10147 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10148 opthdr_len = sizeof (struct opthdr); 10149 } 10150 for (; optcp < opt_endcp; optcp = next_optcp) { 10151 if (optcp + opthdr_len > opt_endcp) 10152 return (B_FALSE); /* Not enough option header. */ 10153 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10154 topt = (struct T_opthdr *)optcp; 10155 optlevel = topt->level; 10156 optname = topt->name; 10157 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10158 } else { 10159 opt = (struct opthdr *)optcp; 10160 optlevel = opt->level; 10161 optname = opt->name; 10162 next_optcp = optcp + opthdr_len + 10163 _TPI_ALIGN_OPT(opt->len); 10164 } 10165 if ((next_optcp < optcp) || /* wraparound pointer space */ 10166 ((next_optcp >= opt_endcp) && /* last option bad len */ 10167 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10168 return (B_FALSE); /* bad option buffer */ 10169 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10170 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10171 /* 10172 * Check to see if it's an all-bypass or all-zeroes 10173 * IPsec request. Don't bother loading IPsec if 10174 * the socket doesn't want to use it. (A good example 10175 * is a bypass request.) 10176 * 10177 * Basically, if any of the non-NEVER bits are set, 10178 * load IPsec. 10179 */ 10180 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10181 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10182 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10183 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10184 != 0) 10185 return (B_TRUE); 10186 } 10187 } 10188 return (B_FALSE); 10189 } 10190 10191 /* 10192 * If conn is is waiting for ipsec to finish loading, kick it. 10193 */ 10194 /* ARGSUSED */ 10195 static void 10196 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10197 { 10198 t_scalar_t optreq_prim; 10199 mblk_t *mp; 10200 cred_t *cr; 10201 int err = 0; 10202 10203 /* 10204 * This function is called, after ipsec loading is complete. 10205 * Since IP checks exclusively and atomically (i.e it prevents 10206 * ipsec load from completing until ip_optcom_req completes) 10207 * whether ipsec load is complete, there cannot be a race with IP 10208 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10209 */ 10210 mutex_enter(&connp->conn_lock); 10211 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10212 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10213 mp = connp->conn_ipsec_opt_mp; 10214 connp->conn_ipsec_opt_mp = NULL; 10215 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10216 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10217 mutex_exit(&connp->conn_lock); 10218 10219 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10220 10221 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10222 if (optreq_prim == T_OPTMGMT_REQ) { 10223 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10224 &ip_opt_obj); 10225 } else { 10226 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10227 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10228 &ip_opt_obj); 10229 } 10230 if (err != EINPROGRESS) 10231 CONN_OPER_PENDING_DONE(connp); 10232 return; 10233 } 10234 mutex_exit(&connp->conn_lock); 10235 } 10236 10237 /* 10238 * Called from the ipsec_loader thread, outside any perimeter, to tell 10239 * ip qenable any of the queues waiting for the ipsec loader to 10240 * complete. 10241 */ 10242 void 10243 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10244 { 10245 netstack_t *ns = ipss->ipsec_netstack; 10246 10247 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10248 } 10249 10250 /* 10251 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10252 * determines the grp on which it has to become exclusive, queues the mp 10253 * and sq draining restarts the optmgmt 10254 */ 10255 static boolean_t 10256 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10257 { 10258 conn_t *connp = Q_TO_CONN(q); 10259 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10260 10261 /* 10262 * Take IPsec requests and treat them special. 10263 */ 10264 if (ipsec_opt_present(mp)) { 10265 /* First check if IPsec is loaded. */ 10266 mutex_enter(&ipss->ipsec_loader_lock); 10267 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10268 mutex_exit(&ipss->ipsec_loader_lock); 10269 return (B_FALSE); 10270 } 10271 mutex_enter(&connp->conn_lock); 10272 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10273 10274 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10275 connp->conn_ipsec_opt_mp = mp; 10276 mutex_exit(&connp->conn_lock); 10277 mutex_exit(&ipss->ipsec_loader_lock); 10278 10279 ipsec_loader_loadnow(ipss); 10280 return (B_TRUE); 10281 } 10282 return (B_FALSE); 10283 } 10284 10285 /* 10286 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10287 * all of them are copied to the conn_t. If the req is "zero", the policy is 10288 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10289 * fields. 10290 * We keep only the latest setting of the policy and thus policy setting 10291 * is not incremental/cumulative. 10292 * 10293 * Requests to set policies with multiple alternative actions will 10294 * go through a different API. 10295 */ 10296 int 10297 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10298 { 10299 uint_t ah_req = 0; 10300 uint_t esp_req = 0; 10301 uint_t se_req = 0; 10302 ipsec_selkey_t sel; 10303 ipsec_act_t *actp = NULL; 10304 uint_t nact; 10305 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10306 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10307 ipsec_policy_root_t *pr; 10308 ipsec_policy_head_t *ph; 10309 int fam; 10310 boolean_t is_pol_reset; 10311 int error = 0; 10312 netstack_t *ns = connp->conn_netstack; 10313 ip_stack_t *ipst = ns->netstack_ip; 10314 ipsec_stack_t *ipss = ns->netstack_ipsec; 10315 10316 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10317 10318 /* 10319 * The IP_SEC_OPT option does not allow variable length parameters, 10320 * hence a request cannot be NULL. 10321 */ 10322 if (req == NULL) 10323 return (EINVAL); 10324 10325 ah_req = req->ipsr_ah_req; 10326 esp_req = req->ipsr_esp_req; 10327 se_req = req->ipsr_self_encap_req; 10328 10329 /* 10330 * Are we dealing with a request to reset the policy (i.e. 10331 * zero requests). 10332 */ 10333 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10334 (esp_req & REQ_MASK) == 0 && 10335 (se_req & REQ_MASK) == 0); 10336 10337 if (!is_pol_reset) { 10338 /* 10339 * If we couldn't load IPsec, fail with "protocol 10340 * not supported". 10341 * IPsec may not have been loaded for a request with zero 10342 * policies, so we don't fail in this case. 10343 */ 10344 mutex_enter(&ipss->ipsec_loader_lock); 10345 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10346 mutex_exit(&ipss->ipsec_loader_lock); 10347 return (EPROTONOSUPPORT); 10348 } 10349 mutex_exit(&ipss->ipsec_loader_lock); 10350 10351 /* 10352 * Test for valid requests. Invalid algorithms 10353 * need to be tested by IPSEC code because new 10354 * algorithms can be added dynamically. 10355 */ 10356 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10357 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10358 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10359 return (EINVAL); 10360 } 10361 10362 /* 10363 * Only privileged users can issue these 10364 * requests. 10365 */ 10366 if (((ah_req & IPSEC_PREF_NEVER) || 10367 (esp_req & IPSEC_PREF_NEVER) || 10368 (se_req & IPSEC_PREF_NEVER)) && 10369 secpolicy_ip_config(cr, B_FALSE) != 0) { 10370 return (EPERM); 10371 } 10372 10373 /* 10374 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10375 * are mutually exclusive. 10376 */ 10377 if (((ah_req & REQ_MASK) == REQ_MASK) || 10378 ((esp_req & REQ_MASK) == REQ_MASK) || 10379 ((se_req & REQ_MASK) == REQ_MASK)) { 10380 /* Both of them are set */ 10381 return (EINVAL); 10382 } 10383 } 10384 10385 mutex_enter(&connp->conn_lock); 10386 10387 /* 10388 * If we have already cached policies in ip_bind_connected*(), don't 10389 * let them change now. We cache policies for connections 10390 * whose src,dst [addr, port] is known. 10391 */ 10392 if (connp->conn_policy_cached) { 10393 mutex_exit(&connp->conn_lock); 10394 return (EINVAL); 10395 } 10396 10397 /* 10398 * We have a zero policies, reset the connection policy if already 10399 * set. This will cause the connection to inherit the 10400 * global policy, if any. 10401 */ 10402 if (is_pol_reset) { 10403 if (connp->conn_policy != NULL) { 10404 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10405 connp->conn_policy = NULL; 10406 } 10407 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10408 connp->conn_in_enforce_policy = B_FALSE; 10409 connp->conn_out_enforce_policy = B_FALSE; 10410 mutex_exit(&connp->conn_lock); 10411 return (0); 10412 } 10413 10414 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10415 ipst->ips_netstack); 10416 if (ph == NULL) 10417 goto enomem; 10418 10419 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10420 if (actp == NULL) 10421 goto enomem; 10422 10423 /* 10424 * Always allocate IPv4 policy entries, since they can also 10425 * apply to ipv6 sockets being used in ipv4-compat mode. 10426 */ 10427 bzero(&sel, sizeof (sel)); 10428 sel.ipsl_valid = IPSL_IPV4; 10429 10430 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10431 ipst->ips_netstack); 10432 if (pin4 == NULL) 10433 goto enomem; 10434 10435 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10436 ipst->ips_netstack); 10437 if (pout4 == NULL) 10438 goto enomem; 10439 10440 if (connp->conn_pkt_isv6) { 10441 /* 10442 * We're looking at a v6 socket, also allocate the 10443 * v6-specific entries... 10444 */ 10445 sel.ipsl_valid = IPSL_IPV6; 10446 pin6 = ipsec_policy_create(&sel, actp, nact, 10447 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10448 if (pin6 == NULL) 10449 goto enomem; 10450 10451 pout6 = ipsec_policy_create(&sel, actp, nact, 10452 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10453 if (pout6 == NULL) 10454 goto enomem; 10455 10456 /* 10457 * .. and file them away in the right place. 10458 */ 10459 fam = IPSEC_AF_V6; 10460 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10461 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10462 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10463 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10464 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10465 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10466 } 10467 10468 ipsec_actvec_free(actp, nact); 10469 10470 /* 10471 * File the v4 policies. 10472 */ 10473 fam = IPSEC_AF_V4; 10474 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10475 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10476 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10477 10478 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10479 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10480 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10481 10482 /* 10483 * If the requests need security, set enforce_policy. 10484 * If the requests are IPSEC_PREF_NEVER, one should 10485 * still set conn_out_enforce_policy so that an ipsec_out 10486 * gets attached in ip_wput. This is needed so that 10487 * for connections that we don't cache policy in ip_bind, 10488 * if global policy matches in ip_wput_attach_policy, we 10489 * don't wrongly inherit global policy. Similarly, we need 10490 * to set conn_in_enforce_policy also so that we don't verify 10491 * policy wrongly. 10492 */ 10493 if ((ah_req & REQ_MASK) != 0 || 10494 (esp_req & REQ_MASK) != 0 || 10495 (se_req & REQ_MASK) != 0) { 10496 connp->conn_in_enforce_policy = B_TRUE; 10497 connp->conn_out_enforce_policy = B_TRUE; 10498 connp->conn_flags |= IPCL_CHECK_POLICY; 10499 } 10500 10501 mutex_exit(&connp->conn_lock); 10502 return (error); 10503 #undef REQ_MASK 10504 10505 /* 10506 * Common memory-allocation-failure exit path. 10507 */ 10508 enomem: 10509 mutex_exit(&connp->conn_lock); 10510 if (actp != NULL) 10511 ipsec_actvec_free(actp, nact); 10512 if (pin4 != NULL) 10513 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10514 if (pout4 != NULL) 10515 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10516 if (pin6 != NULL) 10517 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10518 if (pout6 != NULL) 10519 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10520 return (ENOMEM); 10521 } 10522 10523 /* 10524 * Only for options that pass in an IP addr. Currently only V4 options 10525 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10526 * So this function assumes level is IPPROTO_IP 10527 */ 10528 int 10529 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10530 mblk_t *first_mp) 10531 { 10532 ipif_t *ipif = NULL; 10533 int error; 10534 ill_t *ill; 10535 int zoneid; 10536 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10537 10538 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10539 10540 if (addr != INADDR_ANY || checkonly) { 10541 ASSERT(connp != NULL); 10542 zoneid = IPCL_ZONEID(connp); 10543 if (option == IP_NEXTHOP) { 10544 ipif = ipif_lookup_onlink_addr(addr, 10545 connp->conn_zoneid, ipst); 10546 } else { 10547 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10548 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10549 &error, ipst); 10550 } 10551 if (ipif == NULL) { 10552 if (error == EINPROGRESS) 10553 return (error); 10554 else if ((option == IP_MULTICAST_IF) || 10555 (option == IP_NEXTHOP)) 10556 return (EHOSTUNREACH); 10557 else 10558 return (EINVAL); 10559 } else if (checkonly) { 10560 if (option == IP_MULTICAST_IF) { 10561 ill = ipif->ipif_ill; 10562 /* not supported by the virtual network iface */ 10563 if (IS_VNI(ill)) { 10564 ipif_refrele(ipif); 10565 return (EINVAL); 10566 } 10567 } 10568 ipif_refrele(ipif); 10569 return (0); 10570 } 10571 ill = ipif->ipif_ill; 10572 mutex_enter(&connp->conn_lock); 10573 mutex_enter(&ill->ill_lock); 10574 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10575 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10576 mutex_exit(&ill->ill_lock); 10577 mutex_exit(&connp->conn_lock); 10578 ipif_refrele(ipif); 10579 return (option == IP_MULTICAST_IF ? 10580 EHOSTUNREACH : EINVAL); 10581 } 10582 } else { 10583 mutex_enter(&connp->conn_lock); 10584 } 10585 10586 /* None of the options below are supported on the VNI */ 10587 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10588 mutex_exit(&ill->ill_lock); 10589 mutex_exit(&connp->conn_lock); 10590 ipif_refrele(ipif); 10591 return (EINVAL); 10592 } 10593 10594 switch (option) { 10595 case IP_DONTFAILOVER_IF: 10596 /* 10597 * This option is used by in.mpathd to ensure 10598 * that IPMP probe packets only go out on the 10599 * test interfaces. in.mpathd sets this option 10600 * on the non-failover interfaces. 10601 * For backward compatibility, this option 10602 * implicitly sets IP_MULTICAST_IF, as used 10603 * be done in bind(), so that ip_wput gets 10604 * this ipif to send mcast packets. 10605 */ 10606 if (ipif != NULL) { 10607 ASSERT(addr != INADDR_ANY); 10608 connp->conn_nofailover_ill = ipif->ipif_ill; 10609 connp->conn_multicast_ipif = ipif; 10610 } else { 10611 ASSERT(addr == INADDR_ANY); 10612 connp->conn_nofailover_ill = NULL; 10613 connp->conn_multicast_ipif = NULL; 10614 } 10615 break; 10616 10617 case IP_MULTICAST_IF: 10618 connp->conn_multicast_ipif = ipif; 10619 break; 10620 case IP_NEXTHOP: 10621 connp->conn_nexthop_v4 = addr; 10622 connp->conn_nexthop_set = B_TRUE; 10623 break; 10624 } 10625 10626 if (ipif != NULL) { 10627 mutex_exit(&ill->ill_lock); 10628 mutex_exit(&connp->conn_lock); 10629 ipif_refrele(ipif); 10630 return (0); 10631 } 10632 mutex_exit(&connp->conn_lock); 10633 /* We succeded in cleared the option */ 10634 return (0); 10635 } 10636 10637 /* 10638 * For options that pass in an ifindex specifying the ill. V6 options always 10639 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10640 */ 10641 int 10642 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10643 int level, int option, mblk_t *first_mp) 10644 { 10645 ill_t *ill = NULL; 10646 int error = 0; 10647 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10648 10649 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10650 if (ifindex != 0) { 10651 ASSERT(connp != NULL); 10652 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10653 first_mp, ip_restart_optmgmt, &error, ipst); 10654 if (ill != NULL) { 10655 if (checkonly) { 10656 /* not supported by the virtual network iface */ 10657 if (IS_VNI(ill)) { 10658 ill_refrele(ill); 10659 return (EINVAL); 10660 } 10661 ill_refrele(ill); 10662 return (0); 10663 } 10664 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10665 0, NULL)) { 10666 ill_refrele(ill); 10667 ill = NULL; 10668 mutex_enter(&connp->conn_lock); 10669 goto setit; 10670 } 10671 mutex_enter(&connp->conn_lock); 10672 mutex_enter(&ill->ill_lock); 10673 if (ill->ill_state_flags & ILL_CONDEMNED) { 10674 mutex_exit(&ill->ill_lock); 10675 mutex_exit(&connp->conn_lock); 10676 ill_refrele(ill); 10677 ill = NULL; 10678 mutex_enter(&connp->conn_lock); 10679 } 10680 goto setit; 10681 } else if (error == EINPROGRESS) { 10682 return (error); 10683 } else { 10684 error = 0; 10685 } 10686 } 10687 mutex_enter(&connp->conn_lock); 10688 setit: 10689 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10690 10691 /* 10692 * The options below assume that the ILL (if any) transmits and/or 10693 * receives traffic. Neither of which is true for the virtual network 10694 * interface, so fail setting these on a VNI. 10695 */ 10696 if (IS_VNI(ill)) { 10697 ASSERT(ill != NULL); 10698 mutex_exit(&ill->ill_lock); 10699 mutex_exit(&connp->conn_lock); 10700 ill_refrele(ill); 10701 return (EINVAL); 10702 } 10703 10704 if (level == IPPROTO_IP) { 10705 switch (option) { 10706 case IP_BOUND_IF: 10707 connp->conn_incoming_ill = ill; 10708 connp->conn_outgoing_ill = ill; 10709 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10710 0 : ifindex; 10711 break; 10712 10713 case IP_XMIT_IF: 10714 /* 10715 * Similar to IP_BOUND_IF, but this only 10716 * determines the outgoing interface for 10717 * unicast packets. Also no IRE_CACHE entry 10718 * is added for the destination of the 10719 * outgoing packets. This feature is needed 10720 * for mobile IP. 10721 */ 10722 connp->conn_xmit_if_ill = ill; 10723 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10724 0 : ifindex; 10725 break; 10726 10727 case IP_MULTICAST_IF: 10728 /* 10729 * This option is an internal special. The socket 10730 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10731 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10732 * specifies an ifindex and we try first on V6 ill's. 10733 * If we don't find one, we they try using on v4 ill's 10734 * intenally and we come here. 10735 */ 10736 if (!checkonly && ill != NULL) { 10737 ipif_t *ipif; 10738 ipif = ill->ill_ipif; 10739 10740 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10741 mutex_exit(&ill->ill_lock); 10742 mutex_exit(&connp->conn_lock); 10743 ill_refrele(ill); 10744 ill = NULL; 10745 mutex_enter(&connp->conn_lock); 10746 } else { 10747 connp->conn_multicast_ipif = ipif; 10748 } 10749 } 10750 break; 10751 } 10752 } else { 10753 switch (option) { 10754 case IPV6_BOUND_IF: 10755 connp->conn_incoming_ill = ill; 10756 connp->conn_outgoing_ill = ill; 10757 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10758 0 : ifindex; 10759 break; 10760 10761 case IPV6_BOUND_PIF: 10762 /* 10763 * Limit all transmit to this ill. 10764 * Unlike IPV6_BOUND_IF, using this option 10765 * prevents load spreading and failover from 10766 * happening when the interface is part of the 10767 * group. That's why we don't need to remember 10768 * the ifindex in orig_bound_ifindex as in 10769 * IPV6_BOUND_IF. 10770 */ 10771 connp->conn_outgoing_pill = ill; 10772 break; 10773 10774 case IPV6_DONTFAILOVER_IF: 10775 /* 10776 * This option is used by in.mpathd to ensure 10777 * that IPMP probe packets only go out on the 10778 * test interfaces. in.mpathd sets this option 10779 * on the non-failover interfaces. 10780 */ 10781 connp->conn_nofailover_ill = ill; 10782 /* 10783 * For backward compatibility, this option 10784 * implicitly sets ip_multicast_ill as used in 10785 * IP_MULTICAST_IF so that ip_wput gets 10786 * this ipif to send mcast packets. 10787 */ 10788 connp->conn_multicast_ill = ill; 10789 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10790 0 : ifindex; 10791 break; 10792 10793 case IPV6_MULTICAST_IF: 10794 /* 10795 * Set conn_multicast_ill to be the IPv6 ill. 10796 * Set conn_multicast_ipif to be an IPv4 ipif 10797 * for ifindex to make IPv4 mapped addresses 10798 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10799 * Even if no IPv6 ill exists for the ifindex 10800 * we need to check for an IPv4 ifindex in order 10801 * for this to work with mapped addresses. In that 10802 * case only set conn_multicast_ipif. 10803 */ 10804 if (!checkonly) { 10805 if (ifindex == 0) { 10806 connp->conn_multicast_ill = NULL; 10807 connp->conn_orig_multicast_ifindex = 0; 10808 connp->conn_multicast_ipif = NULL; 10809 } else if (ill != NULL) { 10810 connp->conn_multicast_ill = ill; 10811 connp->conn_orig_multicast_ifindex = 10812 ifindex; 10813 } 10814 } 10815 break; 10816 } 10817 } 10818 10819 if (ill != NULL) { 10820 mutex_exit(&ill->ill_lock); 10821 mutex_exit(&connp->conn_lock); 10822 ill_refrele(ill); 10823 return (0); 10824 } 10825 mutex_exit(&connp->conn_lock); 10826 /* 10827 * We succeeded in clearing the option (ifindex == 0) or failed to 10828 * locate the ill and could not set the option (ifindex != 0) 10829 */ 10830 return (ifindex == 0 ? 0 : EINVAL); 10831 } 10832 10833 /* This routine sets socket options. */ 10834 /* ARGSUSED */ 10835 int 10836 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10837 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10838 void *dummy, cred_t *cr, mblk_t *first_mp) 10839 { 10840 int *i1 = (int *)invalp; 10841 conn_t *connp = Q_TO_CONN(q); 10842 int error = 0; 10843 boolean_t checkonly; 10844 ire_t *ire; 10845 boolean_t found; 10846 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10847 10848 switch (optset_context) { 10849 10850 case SETFN_OPTCOM_CHECKONLY: 10851 checkonly = B_TRUE; 10852 /* 10853 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10854 * inlen != 0 implies value supplied and 10855 * we have to "pretend" to set it. 10856 * inlen == 0 implies that there is no 10857 * value part in T_CHECK request and just validation 10858 * done elsewhere should be enough, we just return here. 10859 */ 10860 if (inlen == 0) { 10861 *outlenp = 0; 10862 return (0); 10863 } 10864 break; 10865 case SETFN_OPTCOM_NEGOTIATE: 10866 case SETFN_UD_NEGOTIATE: 10867 case SETFN_CONN_NEGOTIATE: 10868 checkonly = B_FALSE; 10869 break; 10870 default: 10871 /* 10872 * We should never get here 10873 */ 10874 *outlenp = 0; 10875 return (EINVAL); 10876 } 10877 10878 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10879 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10880 10881 /* 10882 * For fixed length options, no sanity check 10883 * of passed in length is done. It is assumed *_optcom_req() 10884 * routines do the right thing. 10885 */ 10886 10887 switch (level) { 10888 case SOL_SOCKET: 10889 /* 10890 * conn_lock protects the bitfields, and is used to 10891 * set the fields atomically. 10892 */ 10893 switch (name) { 10894 case SO_BROADCAST: 10895 if (!checkonly) { 10896 /* TODO: use value someplace? */ 10897 mutex_enter(&connp->conn_lock); 10898 connp->conn_broadcast = *i1 ? 1 : 0; 10899 mutex_exit(&connp->conn_lock); 10900 } 10901 break; /* goto sizeof (int) option return */ 10902 case SO_USELOOPBACK: 10903 if (!checkonly) { 10904 /* TODO: use value someplace? */ 10905 mutex_enter(&connp->conn_lock); 10906 connp->conn_loopback = *i1 ? 1 : 0; 10907 mutex_exit(&connp->conn_lock); 10908 } 10909 break; /* goto sizeof (int) option return */ 10910 case SO_DONTROUTE: 10911 if (!checkonly) { 10912 mutex_enter(&connp->conn_lock); 10913 connp->conn_dontroute = *i1 ? 1 : 0; 10914 mutex_exit(&connp->conn_lock); 10915 } 10916 break; /* goto sizeof (int) option return */ 10917 case SO_REUSEADDR: 10918 if (!checkonly) { 10919 mutex_enter(&connp->conn_lock); 10920 connp->conn_reuseaddr = *i1 ? 1 : 0; 10921 mutex_exit(&connp->conn_lock); 10922 } 10923 break; /* goto sizeof (int) option return */ 10924 case SO_PROTOTYPE: 10925 if (!checkonly) { 10926 mutex_enter(&connp->conn_lock); 10927 connp->conn_proto = *i1; 10928 mutex_exit(&connp->conn_lock); 10929 } 10930 break; /* goto sizeof (int) option return */ 10931 case SO_ALLZONES: 10932 if (!checkonly) { 10933 mutex_enter(&connp->conn_lock); 10934 if (IPCL_IS_BOUND(connp)) { 10935 mutex_exit(&connp->conn_lock); 10936 return (EINVAL); 10937 } 10938 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10939 mutex_exit(&connp->conn_lock); 10940 } 10941 break; /* goto sizeof (int) option return */ 10942 case SO_ANON_MLP: 10943 if (!checkonly) { 10944 mutex_enter(&connp->conn_lock); 10945 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10946 mutex_exit(&connp->conn_lock); 10947 } 10948 break; /* goto sizeof (int) option return */ 10949 case SO_MAC_EXEMPT: 10950 if (secpolicy_net_mac_aware(cr) != 0 || 10951 IPCL_IS_BOUND(connp)) 10952 return (EACCES); 10953 if (!checkonly) { 10954 mutex_enter(&connp->conn_lock); 10955 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10956 mutex_exit(&connp->conn_lock); 10957 } 10958 break; /* goto sizeof (int) option return */ 10959 default: 10960 /* 10961 * "soft" error (negative) 10962 * option not handled at this level 10963 * Note: Do not modify *outlenp 10964 */ 10965 return (-EINVAL); 10966 } 10967 break; 10968 case IPPROTO_IP: 10969 switch (name) { 10970 case IP_NEXTHOP: 10971 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10972 return (EPERM); 10973 /* FALLTHRU */ 10974 case IP_MULTICAST_IF: 10975 case IP_DONTFAILOVER_IF: { 10976 ipaddr_t addr = *i1; 10977 10978 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10979 first_mp); 10980 if (error != 0) 10981 return (error); 10982 break; /* goto sizeof (int) option return */ 10983 } 10984 10985 case IP_MULTICAST_TTL: 10986 /* Recorded in transport above IP */ 10987 *outvalp = *invalp; 10988 *outlenp = sizeof (uchar_t); 10989 return (0); 10990 case IP_MULTICAST_LOOP: 10991 if (!checkonly) { 10992 mutex_enter(&connp->conn_lock); 10993 connp->conn_multicast_loop = *invalp ? 1 : 0; 10994 mutex_exit(&connp->conn_lock); 10995 } 10996 *outvalp = *invalp; 10997 *outlenp = sizeof (uchar_t); 10998 return (0); 10999 case IP_ADD_MEMBERSHIP: 11000 case MCAST_JOIN_GROUP: 11001 case IP_DROP_MEMBERSHIP: 11002 case MCAST_LEAVE_GROUP: { 11003 struct ip_mreq *mreqp; 11004 struct group_req *greqp; 11005 ire_t *ire; 11006 boolean_t done = B_FALSE; 11007 ipaddr_t group, ifaddr; 11008 struct sockaddr_in *sin; 11009 uint32_t *ifindexp; 11010 boolean_t mcast_opt = B_TRUE; 11011 mcast_record_t fmode; 11012 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11013 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11014 11015 switch (name) { 11016 case IP_ADD_MEMBERSHIP: 11017 mcast_opt = B_FALSE; 11018 /* FALLTHRU */ 11019 case MCAST_JOIN_GROUP: 11020 fmode = MODE_IS_EXCLUDE; 11021 optfn = ip_opt_add_group; 11022 break; 11023 11024 case IP_DROP_MEMBERSHIP: 11025 mcast_opt = B_FALSE; 11026 /* FALLTHRU */ 11027 case MCAST_LEAVE_GROUP: 11028 fmode = MODE_IS_INCLUDE; 11029 optfn = ip_opt_delete_group; 11030 break; 11031 } 11032 11033 if (mcast_opt) { 11034 greqp = (struct group_req *)i1; 11035 sin = (struct sockaddr_in *)&greqp->gr_group; 11036 if (sin->sin_family != AF_INET) { 11037 *outlenp = 0; 11038 return (ENOPROTOOPT); 11039 } 11040 group = (ipaddr_t)sin->sin_addr.s_addr; 11041 ifaddr = INADDR_ANY; 11042 ifindexp = &greqp->gr_interface; 11043 } else { 11044 mreqp = (struct ip_mreq *)i1; 11045 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11046 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11047 ifindexp = NULL; 11048 } 11049 11050 /* 11051 * In the multirouting case, we need to replicate 11052 * the request on all interfaces that will take part 11053 * in replication. We do so because multirouting is 11054 * reflective, thus we will probably receive multi- 11055 * casts on those interfaces. 11056 * The ip_multirt_apply_membership() succeeds if the 11057 * operation succeeds on at least one interface. 11058 */ 11059 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11060 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11061 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11062 if (ire != NULL) { 11063 if (ire->ire_flags & RTF_MULTIRT) { 11064 error = ip_multirt_apply_membership( 11065 optfn, ire, connp, checkonly, group, 11066 fmode, INADDR_ANY, first_mp); 11067 done = B_TRUE; 11068 } 11069 ire_refrele(ire); 11070 } 11071 if (!done) { 11072 error = optfn(connp, checkonly, group, ifaddr, 11073 ifindexp, fmode, INADDR_ANY, first_mp); 11074 } 11075 if (error) { 11076 /* 11077 * EINPROGRESS is a soft error, needs retry 11078 * so don't make *outlenp zero. 11079 */ 11080 if (error != EINPROGRESS) 11081 *outlenp = 0; 11082 return (error); 11083 } 11084 /* OK return - copy input buffer into output buffer */ 11085 if (invalp != outvalp) { 11086 /* don't trust bcopy for identical src/dst */ 11087 bcopy(invalp, outvalp, inlen); 11088 } 11089 *outlenp = inlen; 11090 return (0); 11091 } 11092 case IP_BLOCK_SOURCE: 11093 case IP_UNBLOCK_SOURCE: 11094 case IP_ADD_SOURCE_MEMBERSHIP: 11095 case IP_DROP_SOURCE_MEMBERSHIP: 11096 case MCAST_BLOCK_SOURCE: 11097 case MCAST_UNBLOCK_SOURCE: 11098 case MCAST_JOIN_SOURCE_GROUP: 11099 case MCAST_LEAVE_SOURCE_GROUP: { 11100 struct ip_mreq_source *imreqp; 11101 struct group_source_req *gsreqp; 11102 in_addr_t grp, src, ifaddr = INADDR_ANY; 11103 uint32_t ifindex = 0; 11104 mcast_record_t fmode; 11105 struct sockaddr_in *sin; 11106 ire_t *ire; 11107 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11108 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11109 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11110 11111 switch (name) { 11112 case IP_BLOCK_SOURCE: 11113 mcast_opt = B_FALSE; 11114 /* FALLTHRU */ 11115 case MCAST_BLOCK_SOURCE: 11116 fmode = MODE_IS_EXCLUDE; 11117 optfn = ip_opt_add_group; 11118 break; 11119 11120 case IP_UNBLOCK_SOURCE: 11121 mcast_opt = B_FALSE; 11122 /* FALLTHRU */ 11123 case MCAST_UNBLOCK_SOURCE: 11124 fmode = MODE_IS_EXCLUDE; 11125 optfn = ip_opt_delete_group; 11126 break; 11127 11128 case IP_ADD_SOURCE_MEMBERSHIP: 11129 mcast_opt = B_FALSE; 11130 /* FALLTHRU */ 11131 case MCAST_JOIN_SOURCE_GROUP: 11132 fmode = MODE_IS_INCLUDE; 11133 optfn = ip_opt_add_group; 11134 break; 11135 11136 case IP_DROP_SOURCE_MEMBERSHIP: 11137 mcast_opt = B_FALSE; 11138 /* FALLTHRU */ 11139 case MCAST_LEAVE_SOURCE_GROUP: 11140 fmode = MODE_IS_INCLUDE; 11141 optfn = ip_opt_delete_group; 11142 break; 11143 } 11144 11145 if (mcast_opt) { 11146 gsreqp = (struct group_source_req *)i1; 11147 if (gsreqp->gsr_group.ss_family != AF_INET) { 11148 *outlenp = 0; 11149 return (ENOPROTOOPT); 11150 } 11151 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11152 grp = (ipaddr_t)sin->sin_addr.s_addr; 11153 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11154 src = (ipaddr_t)sin->sin_addr.s_addr; 11155 ifindex = gsreqp->gsr_interface; 11156 } else { 11157 imreqp = (struct ip_mreq_source *)i1; 11158 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11159 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11160 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11161 } 11162 11163 /* 11164 * In the multirouting case, we need to replicate 11165 * the request as noted in the mcast cases above. 11166 */ 11167 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11168 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11169 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11170 if (ire != NULL) { 11171 if (ire->ire_flags & RTF_MULTIRT) { 11172 error = ip_multirt_apply_membership( 11173 optfn, ire, connp, checkonly, grp, 11174 fmode, src, first_mp); 11175 done = B_TRUE; 11176 } 11177 ire_refrele(ire); 11178 } 11179 if (!done) { 11180 error = optfn(connp, checkonly, grp, ifaddr, 11181 &ifindex, fmode, src, first_mp); 11182 } 11183 if (error != 0) { 11184 /* 11185 * EINPROGRESS is a soft error, needs retry 11186 * so don't make *outlenp zero. 11187 */ 11188 if (error != EINPROGRESS) 11189 *outlenp = 0; 11190 return (error); 11191 } 11192 /* OK return - copy input buffer into output buffer */ 11193 if (invalp != outvalp) { 11194 bcopy(invalp, outvalp, inlen); 11195 } 11196 *outlenp = inlen; 11197 return (0); 11198 } 11199 case IP_SEC_OPT: 11200 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11201 if (error != 0) { 11202 *outlenp = 0; 11203 return (error); 11204 } 11205 break; 11206 case IP_HDRINCL: 11207 case IP_OPTIONS: 11208 case T_IP_OPTIONS: 11209 case IP_TOS: 11210 case T_IP_TOS: 11211 case IP_TTL: 11212 case IP_RECVDSTADDR: 11213 case IP_RECVOPTS: 11214 /* OK return - copy input buffer into output buffer */ 11215 if (invalp != outvalp) { 11216 /* don't trust bcopy for identical src/dst */ 11217 bcopy(invalp, outvalp, inlen); 11218 } 11219 *outlenp = inlen; 11220 return (0); 11221 case IP_RECVIF: 11222 /* Retrieve the inbound interface index */ 11223 if (!checkonly) { 11224 mutex_enter(&connp->conn_lock); 11225 connp->conn_recvif = *i1 ? 1 : 0; 11226 mutex_exit(&connp->conn_lock); 11227 } 11228 break; /* goto sizeof (int) option return */ 11229 case IP_RECVPKTINFO: 11230 if (!checkonly) { 11231 mutex_enter(&connp->conn_lock); 11232 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11233 mutex_exit(&connp->conn_lock); 11234 } 11235 break; /* goto sizeof (int) option return */ 11236 case IP_RECVSLLA: 11237 /* Retrieve the source link layer address */ 11238 if (!checkonly) { 11239 mutex_enter(&connp->conn_lock); 11240 connp->conn_recvslla = *i1 ? 1 : 0; 11241 mutex_exit(&connp->conn_lock); 11242 } 11243 break; /* goto sizeof (int) option return */ 11244 case MRT_INIT: 11245 case MRT_DONE: 11246 case MRT_ADD_VIF: 11247 case MRT_DEL_VIF: 11248 case MRT_ADD_MFC: 11249 case MRT_DEL_MFC: 11250 case MRT_ASSERT: 11251 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11252 *outlenp = 0; 11253 return (error); 11254 } 11255 error = ip_mrouter_set((int)name, q, checkonly, 11256 (uchar_t *)invalp, inlen, first_mp); 11257 if (error) { 11258 *outlenp = 0; 11259 return (error); 11260 } 11261 /* OK return - copy input buffer into output buffer */ 11262 if (invalp != outvalp) { 11263 /* don't trust bcopy for identical src/dst */ 11264 bcopy(invalp, outvalp, inlen); 11265 } 11266 *outlenp = inlen; 11267 return (0); 11268 case IP_BOUND_IF: 11269 case IP_XMIT_IF: 11270 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11271 level, name, first_mp); 11272 if (error != 0) 11273 return (error); 11274 break; /* goto sizeof (int) option return */ 11275 11276 case IP_UNSPEC_SRC: 11277 /* Allow sending with a zero source address */ 11278 if (!checkonly) { 11279 mutex_enter(&connp->conn_lock); 11280 connp->conn_unspec_src = *i1 ? 1 : 0; 11281 mutex_exit(&connp->conn_lock); 11282 } 11283 break; /* goto sizeof (int) option return */ 11284 default: 11285 /* 11286 * "soft" error (negative) 11287 * option not handled at this level 11288 * Note: Do not modify *outlenp 11289 */ 11290 return (-EINVAL); 11291 } 11292 break; 11293 case IPPROTO_IPV6: 11294 switch (name) { 11295 case IPV6_BOUND_IF: 11296 case IPV6_BOUND_PIF: 11297 case IPV6_DONTFAILOVER_IF: 11298 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11299 level, name, first_mp); 11300 if (error != 0) 11301 return (error); 11302 break; /* goto sizeof (int) option return */ 11303 11304 case IPV6_MULTICAST_IF: 11305 /* 11306 * The only possible errors are EINPROGRESS and 11307 * EINVAL. EINPROGRESS will be restarted and is not 11308 * a hard error. We call this option on both V4 and V6 11309 * If both return EINVAL, then this call returns 11310 * EINVAL. If at least one of them succeeds we 11311 * return success. 11312 */ 11313 found = B_FALSE; 11314 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11315 level, name, first_mp); 11316 if (error == EINPROGRESS) 11317 return (error); 11318 if (error == 0) 11319 found = B_TRUE; 11320 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11321 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11322 if (error == 0) 11323 found = B_TRUE; 11324 if (!found) 11325 return (error); 11326 break; /* goto sizeof (int) option return */ 11327 11328 case IPV6_MULTICAST_HOPS: 11329 /* Recorded in transport above IP */ 11330 break; /* goto sizeof (int) option return */ 11331 case IPV6_MULTICAST_LOOP: 11332 if (!checkonly) { 11333 mutex_enter(&connp->conn_lock); 11334 connp->conn_multicast_loop = *i1; 11335 mutex_exit(&connp->conn_lock); 11336 } 11337 break; /* goto sizeof (int) option return */ 11338 case IPV6_JOIN_GROUP: 11339 case MCAST_JOIN_GROUP: 11340 case IPV6_LEAVE_GROUP: 11341 case MCAST_LEAVE_GROUP: { 11342 struct ipv6_mreq *ip_mreqp; 11343 struct group_req *greqp; 11344 ire_t *ire; 11345 boolean_t done = B_FALSE; 11346 in6_addr_t groupv6; 11347 uint32_t ifindex; 11348 boolean_t mcast_opt = B_TRUE; 11349 mcast_record_t fmode; 11350 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11351 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11352 11353 switch (name) { 11354 case IPV6_JOIN_GROUP: 11355 mcast_opt = B_FALSE; 11356 /* FALLTHRU */ 11357 case MCAST_JOIN_GROUP: 11358 fmode = MODE_IS_EXCLUDE; 11359 optfn = ip_opt_add_group_v6; 11360 break; 11361 11362 case IPV6_LEAVE_GROUP: 11363 mcast_opt = B_FALSE; 11364 /* FALLTHRU */ 11365 case MCAST_LEAVE_GROUP: 11366 fmode = MODE_IS_INCLUDE; 11367 optfn = ip_opt_delete_group_v6; 11368 break; 11369 } 11370 11371 if (mcast_opt) { 11372 struct sockaddr_in *sin; 11373 struct sockaddr_in6 *sin6; 11374 greqp = (struct group_req *)i1; 11375 if (greqp->gr_group.ss_family == AF_INET) { 11376 sin = (struct sockaddr_in *) 11377 &(greqp->gr_group); 11378 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11379 &groupv6); 11380 } else { 11381 sin6 = (struct sockaddr_in6 *) 11382 &(greqp->gr_group); 11383 groupv6 = sin6->sin6_addr; 11384 } 11385 ifindex = greqp->gr_interface; 11386 } else { 11387 ip_mreqp = (struct ipv6_mreq *)i1; 11388 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11389 ifindex = ip_mreqp->ipv6mr_interface; 11390 } 11391 /* 11392 * In the multirouting case, we need to replicate 11393 * the request on all interfaces that will take part 11394 * in replication. We do so because multirouting is 11395 * reflective, thus we will probably receive multi- 11396 * casts on those interfaces. 11397 * The ip_multirt_apply_membership_v6() succeeds if 11398 * the operation succeeds on at least one interface. 11399 */ 11400 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11401 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11402 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11403 if (ire != NULL) { 11404 if (ire->ire_flags & RTF_MULTIRT) { 11405 error = ip_multirt_apply_membership_v6( 11406 optfn, ire, connp, checkonly, 11407 &groupv6, fmode, &ipv6_all_zeros, 11408 first_mp); 11409 done = B_TRUE; 11410 } 11411 ire_refrele(ire); 11412 } 11413 if (!done) { 11414 error = optfn(connp, checkonly, &groupv6, 11415 ifindex, fmode, &ipv6_all_zeros, first_mp); 11416 } 11417 if (error) { 11418 /* 11419 * EINPROGRESS is a soft error, needs retry 11420 * so don't make *outlenp zero. 11421 */ 11422 if (error != EINPROGRESS) 11423 *outlenp = 0; 11424 return (error); 11425 } 11426 /* OK return - copy input buffer into output buffer */ 11427 if (invalp != outvalp) { 11428 /* don't trust bcopy for identical src/dst */ 11429 bcopy(invalp, outvalp, inlen); 11430 } 11431 *outlenp = inlen; 11432 return (0); 11433 } 11434 case MCAST_BLOCK_SOURCE: 11435 case MCAST_UNBLOCK_SOURCE: 11436 case MCAST_JOIN_SOURCE_GROUP: 11437 case MCAST_LEAVE_SOURCE_GROUP: { 11438 struct group_source_req *gsreqp; 11439 in6_addr_t v6grp, v6src; 11440 uint32_t ifindex; 11441 mcast_record_t fmode; 11442 ire_t *ire; 11443 boolean_t done = B_FALSE; 11444 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11445 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11446 11447 switch (name) { 11448 case MCAST_BLOCK_SOURCE: 11449 fmode = MODE_IS_EXCLUDE; 11450 optfn = ip_opt_add_group_v6; 11451 break; 11452 case MCAST_UNBLOCK_SOURCE: 11453 fmode = MODE_IS_EXCLUDE; 11454 optfn = ip_opt_delete_group_v6; 11455 break; 11456 case MCAST_JOIN_SOURCE_GROUP: 11457 fmode = MODE_IS_INCLUDE; 11458 optfn = ip_opt_add_group_v6; 11459 break; 11460 case MCAST_LEAVE_SOURCE_GROUP: 11461 fmode = MODE_IS_INCLUDE; 11462 optfn = ip_opt_delete_group_v6; 11463 break; 11464 } 11465 11466 gsreqp = (struct group_source_req *)i1; 11467 ifindex = gsreqp->gsr_interface; 11468 if (gsreqp->gsr_group.ss_family == AF_INET) { 11469 struct sockaddr_in *s; 11470 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11471 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11472 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11473 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11474 } else { 11475 struct sockaddr_in6 *s6; 11476 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11477 v6grp = s6->sin6_addr; 11478 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11479 v6src = s6->sin6_addr; 11480 } 11481 11482 /* 11483 * In the multirouting case, we need to replicate 11484 * the request as noted in the mcast cases above. 11485 */ 11486 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11487 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11488 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11489 if (ire != NULL) { 11490 if (ire->ire_flags & RTF_MULTIRT) { 11491 error = ip_multirt_apply_membership_v6( 11492 optfn, ire, connp, checkonly, 11493 &v6grp, fmode, &v6src, first_mp); 11494 done = B_TRUE; 11495 } 11496 ire_refrele(ire); 11497 } 11498 if (!done) { 11499 error = optfn(connp, checkonly, &v6grp, 11500 ifindex, fmode, &v6src, first_mp); 11501 } 11502 if (error != 0) { 11503 /* 11504 * EINPROGRESS is a soft error, needs retry 11505 * so don't make *outlenp zero. 11506 */ 11507 if (error != EINPROGRESS) 11508 *outlenp = 0; 11509 return (error); 11510 } 11511 /* OK return - copy input buffer into output buffer */ 11512 if (invalp != outvalp) { 11513 bcopy(invalp, outvalp, inlen); 11514 } 11515 *outlenp = inlen; 11516 return (0); 11517 } 11518 case IPV6_UNICAST_HOPS: 11519 /* Recorded in transport above IP */ 11520 break; /* goto sizeof (int) option return */ 11521 case IPV6_UNSPEC_SRC: 11522 /* Allow sending with a zero source address */ 11523 if (!checkonly) { 11524 mutex_enter(&connp->conn_lock); 11525 connp->conn_unspec_src = *i1 ? 1 : 0; 11526 mutex_exit(&connp->conn_lock); 11527 } 11528 break; /* goto sizeof (int) option return */ 11529 case IPV6_RECVPKTINFO: 11530 if (!checkonly) { 11531 mutex_enter(&connp->conn_lock); 11532 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11533 mutex_exit(&connp->conn_lock); 11534 } 11535 break; /* goto sizeof (int) option return */ 11536 case IPV6_RECVTCLASS: 11537 if (!checkonly) { 11538 if (*i1 < 0 || *i1 > 1) { 11539 return (EINVAL); 11540 } 11541 mutex_enter(&connp->conn_lock); 11542 connp->conn_ipv6_recvtclass = *i1; 11543 mutex_exit(&connp->conn_lock); 11544 } 11545 break; 11546 case IPV6_RECVPATHMTU: 11547 if (!checkonly) { 11548 if (*i1 < 0 || *i1 > 1) { 11549 return (EINVAL); 11550 } 11551 mutex_enter(&connp->conn_lock); 11552 connp->conn_ipv6_recvpathmtu = *i1; 11553 mutex_exit(&connp->conn_lock); 11554 } 11555 break; 11556 case IPV6_RECVHOPLIMIT: 11557 if (!checkonly) { 11558 mutex_enter(&connp->conn_lock); 11559 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11560 mutex_exit(&connp->conn_lock); 11561 } 11562 break; /* goto sizeof (int) option return */ 11563 case IPV6_RECVHOPOPTS: 11564 if (!checkonly) { 11565 mutex_enter(&connp->conn_lock); 11566 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11567 mutex_exit(&connp->conn_lock); 11568 } 11569 break; /* goto sizeof (int) option return */ 11570 case IPV6_RECVDSTOPTS: 11571 if (!checkonly) { 11572 mutex_enter(&connp->conn_lock); 11573 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11574 mutex_exit(&connp->conn_lock); 11575 } 11576 break; /* goto sizeof (int) option return */ 11577 case IPV6_RECVRTHDR: 11578 if (!checkonly) { 11579 mutex_enter(&connp->conn_lock); 11580 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11581 mutex_exit(&connp->conn_lock); 11582 } 11583 break; /* goto sizeof (int) option return */ 11584 case IPV6_RECVRTHDRDSTOPTS: 11585 if (!checkonly) { 11586 mutex_enter(&connp->conn_lock); 11587 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11588 mutex_exit(&connp->conn_lock); 11589 } 11590 break; /* goto sizeof (int) option return */ 11591 case IPV6_PKTINFO: 11592 if (inlen == 0) 11593 return (-EINVAL); /* clearing option */ 11594 error = ip6_set_pktinfo(cr, connp, 11595 (struct in6_pktinfo *)invalp, first_mp); 11596 if (error != 0) 11597 *outlenp = 0; 11598 else 11599 *outlenp = inlen; 11600 return (error); 11601 case IPV6_NEXTHOP: { 11602 struct sockaddr_in6 *sin6; 11603 11604 /* Verify that the nexthop is reachable */ 11605 if (inlen == 0) 11606 return (-EINVAL); /* clearing option */ 11607 11608 sin6 = (struct sockaddr_in6 *)invalp; 11609 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11610 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11611 NULL, MATCH_IRE_DEFAULT, ipst); 11612 11613 if (ire == NULL) { 11614 *outlenp = 0; 11615 return (EHOSTUNREACH); 11616 } 11617 ire_refrele(ire); 11618 return (-EINVAL); 11619 } 11620 case IPV6_SEC_OPT: 11621 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11622 if (error != 0) { 11623 *outlenp = 0; 11624 return (error); 11625 } 11626 break; 11627 case IPV6_SRC_PREFERENCES: { 11628 /* 11629 * This is implemented strictly in the ip module 11630 * (here and in tcp_opt_*() to accomodate tcp 11631 * sockets). Modules above ip pass this option 11632 * down here since ip is the only one that needs to 11633 * be aware of source address preferences. 11634 * 11635 * This socket option only affects connected 11636 * sockets that haven't already bound to a specific 11637 * IPv6 address. In other words, sockets that 11638 * don't call bind() with an address other than the 11639 * unspecified address and that call connect(). 11640 * ip_bind_connected_v6() passes these preferences 11641 * to the ipif_select_source_v6() function. 11642 */ 11643 if (inlen != sizeof (uint32_t)) 11644 return (EINVAL); 11645 error = ip6_set_src_preferences(connp, 11646 *(uint32_t *)invalp); 11647 if (error != 0) { 11648 *outlenp = 0; 11649 return (error); 11650 } else { 11651 *outlenp = sizeof (uint32_t); 11652 } 11653 break; 11654 } 11655 case IPV6_V6ONLY: 11656 if (*i1 < 0 || *i1 > 1) { 11657 return (EINVAL); 11658 } 11659 mutex_enter(&connp->conn_lock); 11660 connp->conn_ipv6_v6only = *i1; 11661 mutex_exit(&connp->conn_lock); 11662 break; 11663 default: 11664 return (-EINVAL); 11665 } 11666 break; 11667 default: 11668 /* 11669 * "soft" error (negative) 11670 * option not handled at this level 11671 * Note: Do not modify *outlenp 11672 */ 11673 return (-EINVAL); 11674 } 11675 /* 11676 * Common case of return from an option that is sizeof (int) 11677 */ 11678 *(int *)outvalp = *i1; 11679 *outlenp = sizeof (int); 11680 return (0); 11681 } 11682 11683 /* 11684 * This routine gets default values of certain options whose default 11685 * values are maintained by protocol specific code 11686 */ 11687 /* ARGSUSED */ 11688 int 11689 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11690 { 11691 int *i1 = (int *)ptr; 11692 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11693 11694 switch (level) { 11695 case IPPROTO_IP: 11696 switch (name) { 11697 case IP_MULTICAST_TTL: 11698 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11699 return (sizeof (uchar_t)); 11700 case IP_MULTICAST_LOOP: 11701 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11702 return (sizeof (uchar_t)); 11703 default: 11704 return (-1); 11705 } 11706 case IPPROTO_IPV6: 11707 switch (name) { 11708 case IPV6_UNICAST_HOPS: 11709 *i1 = ipst->ips_ipv6_def_hops; 11710 return (sizeof (int)); 11711 case IPV6_MULTICAST_HOPS: 11712 *i1 = IP_DEFAULT_MULTICAST_TTL; 11713 return (sizeof (int)); 11714 case IPV6_MULTICAST_LOOP: 11715 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11716 return (sizeof (int)); 11717 case IPV6_V6ONLY: 11718 *i1 = 1; 11719 return (sizeof (int)); 11720 default: 11721 return (-1); 11722 } 11723 default: 11724 return (-1); 11725 } 11726 /* NOTREACHED */ 11727 } 11728 11729 /* 11730 * Given a destination address and a pointer to where to put the information 11731 * this routine fills in the mtuinfo. 11732 */ 11733 int 11734 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11735 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11736 { 11737 ire_t *ire; 11738 ip_stack_t *ipst = ns->netstack_ip; 11739 11740 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11741 return (-1); 11742 11743 bzero(mtuinfo, sizeof (*mtuinfo)); 11744 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11745 mtuinfo->ip6m_addr.sin6_port = port; 11746 mtuinfo->ip6m_addr.sin6_addr = *in6; 11747 11748 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11749 if (ire != NULL) { 11750 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11751 ire_refrele(ire); 11752 } else { 11753 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11754 } 11755 return (sizeof (struct ip6_mtuinfo)); 11756 } 11757 11758 /* 11759 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11760 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11761 * isn't. This doesn't matter as the error checking is done properly for the 11762 * other MRT options coming in through ip_opt_set. 11763 */ 11764 int 11765 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11766 { 11767 conn_t *connp = Q_TO_CONN(q); 11768 ipsec_req_t *req = (ipsec_req_t *)ptr; 11769 11770 switch (level) { 11771 case IPPROTO_IP: 11772 switch (name) { 11773 case MRT_VERSION: 11774 case MRT_ASSERT: 11775 (void) ip_mrouter_get(name, q, ptr); 11776 return (sizeof (int)); 11777 case IP_SEC_OPT: 11778 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11779 case IP_NEXTHOP: 11780 if (connp->conn_nexthop_set) { 11781 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11782 return (sizeof (ipaddr_t)); 11783 } else 11784 return (0); 11785 case IP_RECVPKTINFO: 11786 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11787 return (sizeof (int)); 11788 default: 11789 break; 11790 } 11791 break; 11792 case IPPROTO_IPV6: 11793 switch (name) { 11794 case IPV6_SEC_OPT: 11795 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11796 case IPV6_SRC_PREFERENCES: { 11797 return (ip6_get_src_preferences(connp, 11798 (uint32_t *)ptr)); 11799 } 11800 case IPV6_V6ONLY: 11801 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11802 return (sizeof (int)); 11803 case IPV6_PATHMTU: 11804 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11805 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11806 default: 11807 break; 11808 } 11809 break; 11810 default: 11811 break; 11812 } 11813 return (-1); 11814 } 11815 11816 /* Named Dispatch routine to get a current value out of our parameter table. */ 11817 /* ARGSUSED */ 11818 static int 11819 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11820 { 11821 ipparam_t *ippa = (ipparam_t *)cp; 11822 11823 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11824 return (0); 11825 } 11826 11827 /* ARGSUSED */ 11828 static int 11829 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11830 { 11831 11832 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11833 return (0); 11834 } 11835 11836 /* 11837 * Set ip{,6}_forwarding values. This means walking through all of the 11838 * ill's and toggling their forwarding values. 11839 */ 11840 /* ARGSUSED */ 11841 static int 11842 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11843 { 11844 long new_value; 11845 int *forwarding_value = (int *)cp; 11846 ill_t *ill; 11847 boolean_t isv6; 11848 ill_walk_context_t ctx; 11849 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11850 11851 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11852 11853 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11854 new_value < 0 || new_value > 1) { 11855 return (EINVAL); 11856 } 11857 11858 *forwarding_value = new_value; 11859 11860 /* 11861 * Regardless of the current value of ip_forwarding, set all per-ill 11862 * values of ip_forwarding to the value being set. 11863 * 11864 * Bring all the ill's up to date with the new global value. 11865 */ 11866 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11867 11868 if (isv6) 11869 ill = ILL_START_WALK_V6(&ctx, ipst); 11870 else 11871 ill = ILL_START_WALK_V4(&ctx, ipst); 11872 11873 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11874 (void) ill_forward_set(ill, new_value != 0); 11875 11876 rw_exit(&ipst->ips_ill_g_lock); 11877 return (0); 11878 } 11879 11880 /* 11881 * Walk through the param array specified registering each element with the 11882 * Named Dispatch handler. This is called only during init. So it is ok 11883 * not to acquire any locks 11884 */ 11885 static boolean_t 11886 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11887 ipndp_t *ipnd, size_t ipnd_cnt) 11888 { 11889 for (; ippa_cnt-- > 0; ippa++) { 11890 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11891 if (!nd_load(ndp, ippa->ip_param_name, 11892 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11893 nd_free(ndp); 11894 return (B_FALSE); 11895 } 11896 } 11897 } 11898 11899 for (; ipnd_cnt-- > 0; ipnd++) { 11900 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11901 if (!nd_load(ndp, ipnd->ip_ndp_name, 11902 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11903 ipnd->ip_ndp_data)) { 11904 nd_free(ndp); 11905 return (B_FALSE); 11906 } 11907 } 11908 } 11909 11910 return (B_TRUE); 11911 } 11912 11913 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11914 /* ARGSUSED */ 11915 static int 11916 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11917 { 11918 long new_value; 11919 ipparam_t *ippa = (ipparam_t *)cp; 11920 11921 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11922 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11923 return (EINVAL); 11924 } 11925 ippa->ip_param_value = new_value; 11926 return (0); 11927 } 11928 11929 /* 11930 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11931 * When an ipf is passed here for the first time, if 11932 * we already have in-order fragments on the queue, we convert from the fast- 11933 * path reassembly scheme to the hard-case scheme. From then on, additional 11934 * fragments are reassembled here. We keep track of the start and end offsets 11935 * of each piece, and the number of holes in the chain. When the hole count 11936 * goes to zero, we are done! 11937 * 11938 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11939 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11940 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11941 * after the call to ip_reassemble(). 11942 */ 11943 int 11944 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11945 size_t msg_len) 11946 { 11947 uint_t end; 11948 mblk_t *next_mp; 11949 mblk_t *mp1; 11950 uint_t offset; 11951 boolean_t incr_dups = B_TRUE; 11952 boolean_t offset_zero_seen = B_FALSE; 11953 boolean_t pkt_boundary_checked = B_FALSE; 11954 11955 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11956 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11957 11958 /* Add in byte count */ 11959 ipf->ipf_count += msg_len; 11960 if (ipf->ipf_end) { 11961 /* 11962 * We were part way through in-order reassembly, but now there 11963 * is a hole. We walk through messages already queued, and 11964 * mark them for hard case reassembly. We know that up till 11965 * now they were in order starting from offset zero. 11966 */ 11967 offset = 0; 11968 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11969 IP_REASS_SET_START(mp1, offset); 11970 if (offset == 0) { 11971 ASSERT(ipf->ipf_nf_hdr_len != 0); 11972 offset = -ipf->ipf_nf_hdr_len; 11973 } 11974 offset += mp1->b_wptr - mp1->b_rptr; 11975 IP_REASS_SET_END(mp1, offset); 11976 } 11977 /* One hole at the end. */ 11978 ipf->ipf_hole_cnt = 1; 11979 /* Brand it as a hard case, forever. */ 11980 ipf->ipf_end = 0; 11981 } 11982 /* Walk through all the new pieces. */ 11983 do { 11984 end = start + (mp->b_wptr - mp->b_rptr); 11985 /* 11986 * If start is 0, decrease 'end' only for the first mblk of 11987 * the fragment. Otherwise 'end' can get wrong value in the 11988 * second pass of the loop if first mblk is exactly the 11989 * size of ipf_nf_hdr_len. 11990 */ 11991 if (start == 0 && !offset_zero_seen) { 11992 /* First segment */ 11993 ASSERT(ipf->ipf_nf_hdr_len != 0); 11994 end -= ipf->ipf_nf_hdr_len; 11995 offset_zero_seen = B_TRUE; 11996 } 11997 next_mp = mp->b_cont; 11998 /* 11999 * We are checking to see if there is any interesing data 12000 * to process. If there isn't and the mblk isn't the 12001 * one which carries the unfragmentable header then we 12002 * drop it. It's possible to have just the unfragmentable 12003 * header come through without any data. That needs to be 12004 * saved. 12005 * 12006 * If the assert at the top of this function holds then the 12007 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12008 * is infrequently traveled enough that the test is left in 12009 * to protect against future code changes which break that 12010 * invariant. 12011 */ 12012 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12013 /* Empty. Blast it. */ 12014 IP_REASS_SET_START(mp, 0); 12015 IP_REASS_SET_END(mp, 0); 12016 /* 12017 * If the ipf points to the mblk we are about to free, 12018 * update ipf to point to the next mblk (or NULL 12019 * if none). 12020 */ 12021 if (ipf->ipf_mp->b_cont == mp) 12022 ipf->ipf_mp->b_cont = next_mp; 12023 freeb(mp); 12024 continue; 12025 } 12026 mp->b_cont = NULL; 12027 IP_REASS_SET_START(mp, start); 12028 IP_REASS_SET_END(mp, end); 12029 if (!ipf->ipf_tail_mp) { 12030 ipf->ipf_tail_mp = mp; 12031 ipf->ipf_mp->b_cont = mp; 12032 if (start == 0 || !more) { 12033 ipf->ipf_hole_cnt = 1; 12034 /* 12035 * if the first fragment comes in more than one 12036 * mblk, this loop will be executed for each 12037 * mblk. Need to adjust hole count so exiting 12038 * this routine will leave hole count at 1. 12039 */ 12040 if (next_mp) 12041 ipf->ipf_hole_cnt++; 12042 } else 12043 ipf->ipf_hole_cnt = 2; 12044 continue; 12045 } else if (ipf->ipf_last_frag_seen && !more && 12046 !pkt_boundary_checked) { 12047 /* 12048 * We check datagram boundary only if this fragment 12049 * claims to be the last fragment and we have seen a 12050 * last fragment in the past too. We do this only 12051 * once for a given fragment. 12052 * 12053 * start cannot be 0 here as fragments with start=0 12054 * and MF=0 gets handled as a complete packet. These 12055 * fragments should not reach here. 12056 */ 12057 12058 if (start + msgdsize(mp) != 12059 IP_REASS_END(ipf->ipf_tail_mp)) { 12060 /* 12061 * We have two fragments both of which claim 12062 * to be the last fragment but gives conflicting 12063 * information about the whole datagram size. 12064 * Something fishy is going on. Drop the 12065 * fragment and free up the reassembly list. 12066 */ 12067 return (IP_REASS_FAILED); 12068 } 12069 12070 /* 12071 * We shouldn't come to this code block again for this 12072 * particular fragment. 12073 */ 12074 pkt_boundary_checked = B_TRUE; 12075 } 12076 12077 /* New stuff at or beyond tail? */ 12078 offset = IP_REASS_END(ipf->ipf_tail_mp); 12079 if (start >= offset) { 12080 if (ipf->ipf_last_frag_seen) { 12081 /* current fragment is beyond last fragment */ 12082 return (IP_REASS_FAILED); 12083 } 12084 /* Link it on end. */ 12085 ipf->ipf_tail_mp->b_cont = mp; 12086 ipf->ipf_tail_mp = mp; 12087 if (more) { 12088 if (start != offset) 12089 ipf->ipf_hole_cnt++; 12090 } else if (start == offset && next_mp == NULL) 12091 ipf->ipf_hole_cnt--; 12092 continue; 12093 } 12094 mp1 = ipf->ipf_mp->b_cont; 12095 offset = IP_REASS_START(mp1); 12096 /* New stuff at the front? */ 12097 if (start < offset) { 12098 if (start == 0) { 12099 if (end >= offset) { 12100 /* Nailed the hole at the begining. */ 12101 ipf->ipf_hole_cnt--; 12102 } 12103 } else if (end < offset) { 12104 /* 12105 * A hole, stuff, and a hole where there used 12106 * to be just a hole. 12107 */ 12108 ipf->ipf_hole_cnt++; 12109 } 12110 mp->b_cont = mp1; 12111 /* Check for overlap. */ 12112 while (end > offset) { 12113 if (end < IP_REASS_END(mp1)) { 12114 mp->b_wptr -= end - offset; 12115 IP_REASS_SET_END(mp, offset); 12116 BUMP_MIB(ill->ill_ip_mib, 12117 ipIfStatsReasmPartDups); 12118 break; 12119 } 12120 /* Did we cover another hole? */ 12121 if ((mp1->b_cont && 12122 IP_REASS_END(mp1) != 12123 IP_REASS_START(mp1->b_cont) && 12124 end >= IP_REASS_START(mp1->b_cont)) || 12125 (!ipf->ipf_last_frag_seen && !more)) { 12126 ipf->ipf_hole_cnt--; 12127 } 12128 /* Clip out mp1. */ 12129 if ((mp->b_cont = mp1->b_cont) == NULL) { 12130 /* 12131 * After clipping out mp1, this guy 12132 * is now hanging off the end. 12133 */ 12134 ipf->ipf_tail_mp = mp; 12135 } 12136 IP_REASS_SET_START(mp1, 0); 12137 IP_REASS_SET_END(mp1, 0); 12138 /* Subtract byte count */ 12139 ipf->ipf_count -= mp1->b_datap->db_lim - 12140 mp1->b_datap->db_base; 12141 freeb(mp1); 12142 BUMP_MIB(ill->ill_ip_mib, 12143 ipIfStatsReasmPartDups); 12144 mp1 = mp->b_cont; 12145 if (!mp1) 12146 break; 12147 offset = IP_REASS_START(mp1); 12148 } 12149 ipf->ipf_mp->b_cont = mp; 12150 continue; 12151 } 12152 /* 12153 * The new piece starts somewhere between the start of the head 12154 * and before the end of the tail. 12155 */ 12156 for (; mp1; mp1 = mp1->b_cont) { 12157 offset = IP_REASS_END(mp1); 12158 if (start < offset) { 12159 if (end <= offset) { 12160 /* Nothing new. */ 12161 IP_REASS_SET_START(mp, 0); 12162 IP_REASS_SET_END(mp, 0); 12163 /* Subtract byte count */ 12164 ipf->ipf_count -= mp->b_datap->db_lim - 12165 mp->b_datap->db_base; 12166 if (incr_dups) { 12167 ipf->ipf_num_dups++; 12168 incr_dups = B_FALSE; 12169 } 12170 freeb(mp); 12171 BUMP_MIB(ill->ill_ip_mib, 12172 ipIfStatsReasmDuplicates); 12173 break; 12174 } 12175 /* 12176 * Trim redundant stuff off beginning of new 12177 * piece. 12178 */ 12179 IP_REASS_SET_START(mp, offset); 12180 mp->b_rptr += offset - start; 12181 BUMP_MIB(ill->ill_ip_mib, 12182 ipIfStatsReasmPartDups); 12183 start = offset; 12184 if (!mp1->b_cont) { 12185 /* 12186 * After trimming, this guy is now 12187 * hanging off the end. 12188 */ 12189 mp1->b_cont = mp; 12190 ipf->ipf_tail_mp = mp; 12191 if (!more) { 12192 ipf->ipf_hole_cnt--; 12193 } 12194 break; 12195 } 12196 } 12197 if (start >= IP_REASS_START(mp1->b_cont)) 12198 continue; 12199 /* Fill a hole */ 12200 if (start > offset) 12201 ipf->ipf_hole_cnt++; 12202 mp->b_cont = mp1->b_cont; 12203 mp1->b_cont = mp; 12204 mp1 = mp->b_cont; 12205 offset = IP_REASS_START(mp1); 12206 if (end >= offset) { 12207 ipf->ipf_hole_cnt--; 12208 /* Check for overlap. */ 12209 while (end > offset) { 12210 if (end < IP_REASS_END(mp1)) { 12211 mp->b_wptr -= end - offset; 12212 IP_REASS_SET_END(mp, offset); 12213 /* 12214 * TODO we might bump 12215 * this up twice if there is 12216 * overlap at both ends. 12217 */ 12218 BUMP_MIB(ill->ill_ip_mib, 12219 ipIfStatsReasmPartDups); 12220 break; 12221 } 12222 /* Did we cover another hole? */ 12223 if ((mp1->b_cont && 12224 IP_REASS_END(mp1) 12225 != IP_REASS_START(mp1->b_cont) && 12226 end >= 12227 IP_REASS_START(mp1->b_cont)) || 12228 (!ipf->ipf_last_frag_seen && 12229 !more)) { 12230 ipf->ipf_hole_cnt--; 12231 } 12232 /* Clip out mp1. */ 12233 if ((mp->b_cont = mp1->b_cont) == 12234 NULL) { 12235 /* 12236 * After clipping out mp1, 12237 * this guy is now hanging 12238 * off the end. 12239 */ 12240 ipf->ipf_tail_mp = mp; 12241 } 12242 IP_REASS_SET_START(mp1, 0); 12243 IP_REASS_SET_END(mp1, 0); 12244 /* Subtract byte count */ 12245 ipf->ipf_count -= 12246 mp1->b_datap->db_lim - 12247 mp1->b_datap->db_base; 12248 freeb(mp1); 12249 BUMP_MIB(ill->ill_ip_mib, 12250 ipIfStatsReasmPartDups); 12251 mp1 = mp->b_cont; 12252 if (!mp1) 12253 break; 12254 offset = IP_REASS_START(mp1); 12255 } 12256 } 12257 break; 12258 } 12259 } while (start = end, mp = next_mp); 12260 12261 /* Fragment just processed could be the last one. Remember this fact */ 12262 if (!more) 12263 ipf->ipf_last_frag_seen = B_TRUE; 12264 12265 /* Still got holes? */ 12266 if (ipf->ipf_hole_cnt) 12267 return (IP_REASS_PARTIAL); 12268 /* Clean up overloaded fields to avoid upstream disasters. */ 12269 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12270 IP_REASS_SET_START(mp1, 0); 12271 IP_REASS_SET_END(mp1, 0); 12272 } 12273 return (IP_REASS_COMPLETE); 12274 } 12275 12276 /* 12277 * ipsec processing for the fast path, used for input UDP Packets 12278 */ 12279 static boolean_t 12280 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12281 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12282 { 12283 uint32_t ill_index; 12284 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12285 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12286 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12287 12288 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12289 /* The ill_index of the incoming ILL */ 12290 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12291 12292 /* pass packet up to the transport */ 12293 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12294 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12295 NULL, mctl_present); 12296 if (*first_mpp == NULL) { 12297 return (B_FALSE); 12298 } 12299 } 12300 12301 /* Initiate IPPF processing for fastpath UDP */ 12302 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12303 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12304 if (*mpp == NULL) { 12305 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12306 "deferred/dropped during IPPF processing\n")); 12307 return (B_FALSE); 12308 } 12309 } 12310 /* 12311 * We make the checks as below since we are in the fast path 12312 * and want to minimize the number of checks if the IP_RECVIF and/or 12313 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12314 */ 12315 if (connp->conn_recvif || connp->conn_recvslla || 12316 connp->conn_ip_recvpktinfo) { 12317 if (connp->conn_recvif) { 12318 in_flags = IPF_RECVIF; 12319 } 12320 /* 12321 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12322 * so the flag passed to ip_add_info is based on IP version 12323 * of connp. 12324 */ 12325 if (connp->conn_ip_recvpktinfo) { 12326 if (connp->conn_af_isv6) { 12327 /* 12328 * V6 only needs index 12329 */ 12330 in_flags |= IPF_RECVIF; 12331 } else { 12332 /* 12333 * V4 needs index + matching address. 12334 */ 12335 in_flags |= IPF_RECVADDR; 12336 } 12337 } 12338 if (connp->conn_recvslla) { 12339 in_flags |= IPF_RECVSLLA; 12340 } 12341 /* 12342 * since in_flags are being set ill will be 12343 * referenced in ip_add_info, so it better not 12344 * be NULL. 12345 */ 12346 /* 12347 * the actual data will be contained in b_cont 12348 * upon successful return of the following call. 12349 * If the call fails then the original mblk is 12350 * returned. 12351 */ 12352 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12353 ipst); 12354 } 12355 12356 return (B_TRUE); 12357 } 12358 12359 /* 12360 * Fragmentation reassembly. Each ILL has a hash table for 12361 * queuing packets undergoing reassembly for all IPIFs 12362 * associated with the ILL. The hash is based on the packet 12363 * IP ident field. The ILL frag hash table was allocated 12364 * as a timer block at the time the ILL was created. Whenever 12365 * there is anything on the reassembly queue, the timer will 12366 * be running. Returns B_TRUE if successful else B_FALSE; 12367 * frees mp on failure. 12368 */ 12369 static boolean_t 12370 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12371 uint32_t *cksum_val, uint16_t *cksum_flags) 12372 { 12373 uint32_t frag_offset_flags; 12374 ill_t *ill = (ill_t *)q->q_ptr; 12375 mblk_t *mp = *mpp; 12376 mblk_t *t_mp; 12377 ipaddr_t dst; 12378 uint8_t proto = ipha->ipha_protocol; 12379 uint32_t sum_val; 12380 uint16_t sum_flags; 12381 ipf_t *ipf; 12382 ipf_t **ipfp; 12383 ipfb_t *ipfb; 12384 uint16_t ident; 12385 uint32_t offset; 12386 ipaddr_t src; 12387 uint_t hdr_length; 12388 uint32_t end; 12389 mblk_t *mp1; 12390 mblk_t *tail_mp; 12391 size_t count; 12392 size_t msg_len; 12393 uint8_t ecn_info = 0; 12394 uint32_t packet_size; 12395 boolean_t pruned = B_FALSE; 12396 ip_stack_t *ipst = ill->ill_ipst; 12397 12398 if (cksum_val != NULL) 12399 *cksum_val = 0; 12400 if (cksum_flags != NULL) 12401 *cksum_flags = 0; 12402 12403 /* 12404 * Drop the fragmented as early as possible, if 12405 * we don't have resource(s) to re-assemble. 12406 */ 12407 if (ipst->ips_ip_reass_queue_bytes == 0) { 12408 freemsg(mp); 12409 return (B_FALSE); 12410 } 12411 12412 /* Check for fragmentation offset; return if there's none */ 12413 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12414 (IPH_MF | IPH_OFFSET)) == 0) 12415 return (B_TRUE); 12416 12417 /* 12418 * We utilize hardware computed checksum info only for UDP since 12419 * IP fragmentation is a normal occurence for the protocol. In 12420 * addition, checksum offload support for IP fragments carrying 12421 * UDP payload is commonly implemented across network adapters. 12422 */ 12423 ASSERT(ill != NULL); 12424 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12425 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12426 mblk_t *mp1 = mp->b_cont; 12427 int32_t len; 12428 12429 /* Record checksum information from the packet */ 12430 sum_val = (uint32_t)DB_CKSUM16(mp); 12431 sum_flags = DB_CKSUMFLAGS(mp); 12432 12433 /* IP payload offset from beginning of mblk */ 12434 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12435 12436 if ((sum_flags & HCK_PARTIALCKSUM) && 12437 (mp1 == NULL || mp1->b_cont == NULL) && 12438 offset >= DB_CKSUMSTART(mp) && 12439 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12440 uint32_t adj; 12441 /* 12442 * Partial checksum has been calculated by hardware 12443 * and attached to the packet; in addition, any 12444 * prepended extraneous data is even byte aligned. 12445 * If any such data exists, we adjust the checksum; 12446 * this would also handle any postpended data. 12447 */ 12448 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12449 mp, mp1, len, adj); 12450 12451 /* One's complement subtract extraneous checksum */ 12452 if (adj >= sum_val) 12453 sum_val = ~(adj - sum_val) & 0xFFFF; 12454 else 12455 sum_val -= adj; 12456 } 12457 } else { 12458 sum_val = 0; 12459 sum_flags = 0; 12460 } 12461 12462 /* Clear hardware checksumming flag */ 12463 DB_CKSUMFLAGS(mp) = 0; 12464 12465 ident = ipha->ipha_ident; 12466 offset = (frag_offset_flags << 3) & 0xFFFF; 12467 src = ipha->ipha_src; 12468 dst = ipha->ipha_dst; 12469 hdr_length = IPH_HDR_LENGTH(ipha); 12470 end = ntohs(ipha->ipha_length) - hdr_length; 12471 12472 /* If end == 0 then we have a packet with no data, so just free it */ 12473 if (end == 0) { 12474 freemsg(mp); 12475 return (B_FALSE); 12476 } 12477 12478 /* Record the ECN field info. */ 12479 ecn_info = (ipha->ipha_type_of_service & 0x3); 12480 if (offset != 0) { 12481 /* 12482 * If this isn't the first piece, strip the header, and 12483 * add the offset to the end value. 12484 */ 12485 mp->b_rptr += hdr_length; 12486 end += offset; 12487 } 12488 12489 msg_len = MBLKSIZE(mp); 12490 tail_mp = mp; 12491 while (tail_mp->b_cont != NULL) { 12492 tail_mp = tail_mp->b_cont; 12493 msg_len += MBLKSIZE(tail_mp); 12494 } 12495 12496 /* If the reassembly list for this ILL will get too big, prune it */ 12497 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12498 ipst->ips_ip_reass_queue_bytes) { 12499 ill_frag_prune(ill, 12500 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12501 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12502 pruned = B_TRUE; 12503 } 12504 12505 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12506 mutex_enter(&ipfb->ipfb_lock); 12507 12508 ipfp = &ipfb->ipfb_ipf; 12509 /* Try to find an existing fragment queue for this packet. */ 12510 for (;;) { 12511 ipf = ipfp[0]; 12512 if (ipf != NULL) { 12513 /* 12514 * It has to match on ident and src/dst address. 12515 */ 12516 if (ipf->ipf_ident == ident && 12517 ipf->ipf_src == src && 12518 ipf->ipf_dst == dst && 12519 ipf->ipf_protocol == proto) { 12520 /* 12521 * If we have received too many 12522 * duplicate fragments for this packet 12523 * free it. 12524 */ 12525 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12526 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12527 freemsg(mp); 12528 mutex_exit(&ipfb->ipfb_lock); 12529 return (B_FALSE); 12530 } 12531 /* Found it. */ 12532 break; 12533 } 12534 ipfp = &ipf->ipf_hash_next; 12535 continue; 12536 } 12537 12538 /* 12539 * If we pruned the list, do we want to store this new 12540 * fragment?. We apply an optimization here based on the 12541 * fact that most fragments will be received in order. 12542 * So if the offset of this incoming fragment is zero, 12543 * it is the first fragment of a new packet. We will 12544 * keep it. Otherwise drop the fragment, as we have 12545 * probably pruned the packet already (since the 12546 * packet cannot be found). 12547 */ 12548 if (pruned && offset != 0) { 12549 mutex_exit(&ipfb->ipfb_lock); 12550 freemsg(mp); 12551 return (B_FALSE); 12552 } 12553 12554 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12555 /* 12556 * Too many fragmented packets in this hash 12557 * bucket. Free the oldest. 12558 */ 12559 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12560 } 12561 12562 /* New guy. Allocate a frag message. */ 12563 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12564 if (mp1 == NULL) { 12565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12566 freemsg(mp); 12567 reass_done: 12568 mutex_exit(&ipfb->ipfb_lock); 12569 return (B_FALSE); 12570 } 12571 12572 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12573 mp1->b_cont = mp; 12574 12575 /* Initialize the fragment header. */ 12576 ipf = (ipf_t *)mp1->b_rptr; 12577 ipf->ipf_mp = mp1; 12578 ipf->ipf_ptphn = ipfp; 12579 ipfp[0] = ipf; 12580 ipf->ipf_hash_next = NULL; 12581 ipf->ipf_ident = ident; 12582 ipf->ipf_protocol = proto; 12583 ipf->ipf_src = src; 12584 ipf->ipf_dst = dst; 12585 ipf->ipf_nf_hdr_len = 0; 12586 /* Record reassembly start time. */ 12587 ipf->ipf_timestamp = gethrestime_sec(); 12588 /* Record ipf generation and account for frag header */ 12589 ipf->ipf_gen = ill->ill_ipf_gen++; 12590 ipf->ipf_count = MBLKSIZE(mp1); 12591 ipf->ipf_last_frag_seen = B_FALSE; 12592 ipf->ipf_ecn = ecn_info; 12593 ipf->ipf_num_dups = 0; 12594 ipfb->ipfb_frag_pkts++; 12595 ipf->ipf_checksum = 0; 12596 ipf->ipf_checksum_flags = 0; 12597 12598 /* Store checksum value in fragment header */ 12599 if (sum_flags != 0) { 12600 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12601 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12602 ipf->ipf_checksum = sum_val; 12603 ipf->ipf_checksum_flags = sum_flags; 12604 } 12605 12606 /* 12607 * We handle reassembly two ways. In the easy case, 12608 * where all the fragments show up in order, we do 12609 * minimal bookkeeping, and just clip new pieces on 12610 * the end. If we ever see a hole, then we go off 12611 * to ip_reassemble which has to mark the pieces and 12612 * keep track of the number of holes, etc. Obviously, 12613 * the point of having both mechanisms is so we can 12614 * handle the easy case as efficiently as possible. 12615 */ 12616 if (offset == 0) { 12617 /* Easy case, in-order reassembly so far. */ 12618 ipf->ipf_count += msg_len; 12619 ipf->ipf_tail_mp = tail_mp; 12620 /* 12621 * Keep track of next expected offset in 12622 * ipf_end. 12623 */ 12624 ipf->ipf_end = end; 12625 ipf->ipf_nf_hdr_len = hdr_length; 12626 } else { 12627 /* Hard case, hole at the beginning. */ 12628 ipf->ipf_tail_mp = NULL; 12629 /* 12630 * ipf_end == 0 means that we have given up 12631 * on easy reassembly. 12632 */ 12633 ipf->ipf_end = 0; 12634 12635 /* Forget checksum offload from now on */ 12636 ipf->ipf_checksum_flags = 0; 12637 12638 /* 12639 * ipf_hole_cnt is set by ip_reassemble. 12640 * ipf_count is updated by ip_reassemble. 12641 * No need to check for return value here 12642 * as we don't expect reassembly to complete 12643 * or fail for the first fragment itself. 12644 */ 12645 (void) ip_reassemble(mp, ipf, 12646 (frag_offset_flags & IPH_OFFSET) << 3, 12647 (frag_offset_flags & IPH_MF), ill, msg_len); 12648 } 12649 /* Update per ipfb and ill byte counts */ 12650 ipfb->ipfb_count += ipf->ipf_count; 12651 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12652 ill->ill_frag_count += ipf->ipf_count; 12653 /* If the frag timer wasn't already going, start it. */ 12654 mutex_enter(&ill->ill_lock); 12655 ill_frag_timer_start(ill); 12656 mutex_exit(&ill->ill_lock); 12657 goto reass_done; 12658 } 12659 12660 /* 12661 * If the packet's flag has changed (it could be coming up 12662 * from an interface different than the previous, therefore 12663 * possibly different checksum capability), then forget about 12664 * any stored checksum states. Otherwise add the value to 12665 * the existing one stored in the fragment header. 12666 */ 12667 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12668 sum_val += ipf->ipf_checksum; 12669 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12670 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12671 ipf->ipf_checksum = sum_val; 12672 } else if (ipf->ipf_checksum_flags != 0) { 12673 /* Forget checksum offload from now on */ 12674 ipf->ipf_checksum_flags = 0; 12675 } 12676 12677 /* 12678 * We have a new piece of a datagram which is already being 12679 * reassembled. Update the ECN info if all IP fragments 12680 * are ECN capable. If there is one which is not, clear 12681 * all the info. If there is at least one which has CE 12682 * code point, IP needs to report that up to transport. 12683 */ 12684 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12685 if (ecn_info == IPH_ECN_CE) 12686 ipf->ipf_ecn = IPH_ECN_CE; 12687 } else { 12688 ipf->ipf_ecn = IPH_ECN_NECT; 12689 } 12690 if (offset && ipf->ipf_end == offset) { 12691 /* The new fragment fits at the end */ 12692 ipf->ipf_tail_mp->b_cont = mp; 12693 /* Update the byte count */ 12694 ipf->ipf_count += msg_len; 12695 /* Update per ipfb and ill byte counts */ 12696 ipfb->ipfb_count += msg_len; 12697 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12698 ill->ill_frag_count += msg_len; 12699 if (frag_offset_flags & IPH_MF) { 12700 /* More to come. */ 12701 ipf->ipf_end = end; 12702 ipf->ipf_tail_mp = tail_mp; 12703 goto reass_done; 12704 } 12705 } else { 12706 /* Go do the hard cases. */ 12707 int ret; 12708 12709 if (offset == 0) 12710 ipf->ipf_nf_hdr_len = hdr_length; 12711 12712 /* Save current byte count */ 12713 count = ipf->ipf_count; 12714 ret = ip_reassemble(mp, ipf, 12715 (frag_offset_flags & IPH_OFFSET) << 3, 12716 (frag_offset_flags & IPH_MF), ill, msg_len); 12717 /* Count of bytes added and subtracted (freeb()ed) */ 12718 count = ipf->ipf_count - count; 12719 if (count) { 12720 /* Update per ipfb and ill byte counts */ 12721 ipfb->ipfb_count += count; 12722 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12723 ill->ill_frag_count += count; 12724 } 12725 if (ret == IP_REASS_PARTIAL) { 12726 goto reass_done; 12727 } else if (ret == IP_REASS_FAILED) { 12728 /* Reassembly failed. Free up all resources */ 12729 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12730 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12731 IP_REASS_SET_START(t_mp, 0); 12732 IP_REASS_SET_END(t_mp, 0); 12733 } 12734 freemsg(mp); 12735 goto reass_done; 12736 } 12737 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12738 } 12739 /* 12740 * We have completed reassembly. Unhook the frag header from 12741 * the reassembly list. 12742 * 12743 * Before we free the frag header, record the ECN info 12744 * to report back to the transport. 12745 */ 12746 ecn_info = ipf->ipf_ecn; 12747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12748 ipfp = ipf->ipf_ptphn; 12749 12750 /* We need to supply these to caller */ 12751 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12752 sum_val = ipf->ipf_checksum; 12753 else 12754 sum_val = 0; 12755 12756 mp1 = ipf->ipf_mp; 12757 count = ipf->ipf_count; 12758 ipf = ipf->ipf_hash_next; 12759 if (ipf != NULL) 12760 ipf->ipf_ptphn = ipfp; 12761 ipfp[0] = ipf; 12762 ill->ill_frag_count -= count; 12763 ASSERT(ipfb->ipfb_count >= count); 12764 ipfb->ipfb_count -= count; 12765 ipfb->ipfb_frag_pkts--; 12766 mutex_exit(&ipfb->ipfb_lock); 12767 /* Ditch the frag header. */ 12768 mp = mp1->b_cont; 12769 12770 freeb(mp1); 12771 12772 /* Restore original IP length in header. */ 12773 packet_size = (uint32_t)msgdsize(mp); 12774 if (packet_size > IP_MAXPACKET) { 12775 freemsg(mp); 12776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12777 return (B_FALSE); 12778 } 12779 12780 if (DB_REF(mp) > 1) { 12781 mblk_t *mp2 = copymsg(mp); 12782 12783 freemsg(mp); 12784 if (mp2 == NULL) { 12785 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12786 return (B_FALSE); 12787 } 12788 mp = mp2; 12789 } 12790 ipha = (ipha_t *)mp->b_rptr; 12791 12792 ipha->ipha_length = htons((uint16_t)packet_size); 12793 /* We're now complete, zip the frag state */ 12794 ipha->ipha_fragment_offset_and_flags = 0; 12795 /* Record the ECN info. */ 12796 ipha->ipha_type_of_service &= 0xFC; 12797 ipha->ipha_type_of_service |= ecn_info; 12798 *mpp = mp; 12799 12800 /* Reassembly is successful; return checksum information if needed */ 12801 if (cksum_val != NULL) 12802 *cksum_val = sum_val; 12803 if (cksum_flags != NULL) 12804 *cksum_flags = sum_flags; 12805 12806 return (B_TRUE); 12807 } 12808 12809 /* 12810 * Perform ip header check sum update local options. 12811 * return B_TRUE if all is well, else return B_FALSE and release 12812 * the mp. caller is responsible for decrementing ire ref cnt. 12813 */ 12814 static boolean_t 12815 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12816 ip_stack_t *ipst) 12817 { 12818 mblk_t *first_mp; 12819 boolean_t mctl_present; 12820 uint16_t sum; 12821 12822 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12823 /* 12824 * Don't do the checksum if it has gone through AH/ESP 12825 * processing. 12826 */ 12827 if (!mctl_present) { 12828 sum = ip_csum_hdr(ipha); 12829 if (sum != 0) { 12830 if (ill != NULL) { 12831 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12832 } else { 12833 BUMP_MIB(&ipst->ips_ip_mib, 12834 ipIfStatsInCksumErrs); 12835 } 12836 freemsg(first_mp); 12837 return (B_FALSE); 12838 } 12839 } 12840 12841 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12842 if (mctl_present) 12843 freeb(first_mp); 12844 return (B_FALSE); 12845 } 12846 12847 return (B_TRUE); 12848 } 12849 12850 /* 12851 * All udp packet are delivered to the local host via this routine. 12852 */ 12853 void 12854 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12855 ill_t *recv_ill) 12856 { 12857 uint32_t sum; 12858 uint32_t u1; 12859 boolean_t mctl_present; 12860 conn_t *connp; 12861 mblk_t *first_mp; 12862 uint16_t *up; 12863 ill_t *ill = (ill_t *)q->q_ptr; 12864 uint16_t reass_hck_flags = 0; 12865 ip_stack_t *ipst; 12866 12867 ASSERT(recv_ill != NULL); 12868 ipst = recv_ill->ill_ipst; 12869 12870 #define rptr ((uchar_t *)ipha) 12871 12872 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12873 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12874 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12875 ASSERT(ill != NULL); 12876 12877 /* 12878 * FAST PATH for udp packets 12879 */ 12880 12881 /* u1 is # words of IP options */ 12882 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12883 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12884 12885 /* IP options present */ 12886 if (u1 != 0) 12887 goto ipoptions; 12888 12889 /* Check the IP header checksum. */ 12890 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12891 /* Clear the IP header h/w cksum flag */ 12892 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12893 } else { 12894 #define uph ((uint16_t *)ipha) 12895 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12896 uph[6] + uph[7] + uph[8] + uph[9]; 12897 #undef uph 12898 /* finish doing IP checksum */ 12899 sum = (sum & 0xFFFF) + (sum >> 16); 12900 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12901 /* 12902 * Don't verify header checksum if this packet is coming 12903 * back from AH/ESP as we already did it. 12904 */ 12905 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12906 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12907 freemsg(first_mp); 12908 return; 12909 } 12910 } 12911 12912 /* 12913 * Count for SNMP of inbound packets for ire. 12914 * if mctl is present this might be a secure packet and 12915 * has already been counted for in ip_proto_input(). 12916 */ 12917 if (!mctl_present) { 12918 UPDATE_IB_PKT_COUNT(ire); 12919 ire->ire_last_used_time = lbolt; 12920 } 12921 12922 /* packet part of fragmented IP packet? */ 12923 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12924 if (u1 & (IPH_MF | IPH_OFFSET)) { 12925 goto fragmented; 12926 } 12927 12928 /* u1 = IP header length (20 bytes) */ 12929 u1 = IP_SIMPLE_HDR_LENGTH; 12930 12931 /* packet does not contain complete IP & UDP headers */ 12932 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12933 goto udppullup; 12934 12935 /* up points to UDP header */ 12936 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12937 #define iphs ((uint16_t *)ipha) 12938 12939 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12940 if (up[3] != 0) { 12941 mblk_t *mp1 = mp->b_cont; 12942 boolean_t cksum_err; 12943 uint16_t hck_flags = 0; 12944 12945 /* Pseudo-header checksum */ 12946 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12947 iphs[9] + up[2]; 12948 12949 /* 12950 * Revert to software checksum calculation if the interface 12951 * isn't capable of checksum offload or if IPsec is present. 12952 */ 12953 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12954 hck_flags = DB_CKSUMFLAGS(mp); 12955 12956 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12957 IP_STAT(ipst, ip_in_sw_cksum); 12958 12959 IP_CKSUM_RECV(hck_flags, u1, 12960 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12961 (int32_t)((uchar_t *)up - rptr), 12962 mp, mp1, cksum_err); 12963 12964 if (cksum_err) { 12965 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12966 if (hck_flags & HCK_FULLCKSUM) 12967 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12968 else if (hck_flags & HCK_PARTIALCKSUM) 12969 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12970 else 12971 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12972 12973 freemsg(first_mp); 12974 return; 12975 } 12976 } 12977 12978 /* Non-fragmented broadcast or multicast packet? */ 12979 if (ire->ire_type == IRE_BROADCAST) 12980 goto udpslowpath; 12981 12982 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12983 ire->ire_zoneid, ipst)) != NULL) { 12984 ASSERT(connp->conn_upq != NULL); 12985 IP_STAT(ipst, ip_udp_fast_path); 12986 12987 if (CONN_UDP_FLOWCTLD(connp)) { 12988 freemsg(mp); 12989 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12990 } else { 12991 if (!mctl_present) { 12992 BUMP_MIB(ill->ill_ip_mib, 12993 ipIfStatsHCInDelivers); 12994 } 12995 /* 12996 * mp and first_mp can change. 12997 */ 12998 if (ip_udp_check(q, connp, recv_ill, 12999 ipha, &mp, &first_mp, mctl_present)) { 13000 /* Send it upstream */ 13001 CONN_UDP_RECV(connp, mp); 13002 } 13003 } 13004 /* 13005 * freeb() cannot deal with null mblk being passed 13006 * in and first_mp can be set to null in the call 13007 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13008 */ 13009 if (mctl_present && first_mp != NULL) { 13010 freeb(first_mp); 13011 } 13012 CONN_DEC_REF(connp); 13013 return; 13014 } 13015 13016 /* 13017 * if we got here we know the packet is not fragmented and 13018 * has no options. The classifier could not find a conn_t and 13019 * most likely its an icmp packet so send it through slow path. 13020 */ 13021 13022 goto udpslowpath; 13023 13024 ipoptions: 13025 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13026 goto slow_done; 13027 } 13028 13029 UPDATE_IB_PKT_COUNT(ire); 13030 ire->ire_last_used_time = lbolt; 13031 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13032 if (u1 & (IPH_MF | IPH_OFFSET)) { 13033 fragmented: 13034 /* 13035 * "sum" and "reass_hck_flags" are non-zero if the 13036 * reassembled packet has a valid hardware computed 13037 * checksum information associated with it. 13038 */ 13039 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13040 goto slow_done; 13041 /* 13042 * Make sure that first_mp points back to mp as 13043 * the mp we came in with could have changed in 13044 * ip_rput_fragment(). 13045 */ 13046 ASSERT(!mctl_present); 13047 ipha = (ipha_t *)mp->b_rptr; 13048 first_mp = mp; 13049 } 13050 13051 /* Now we have a complete datagram, destined for this machine. */ 13052 u1 = IPH_HDR_LENGTH(ipha); 13053 /* Pull up the UDP header, if necessary. */ 13054 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13055 udppullup: 13056 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13058 freemsg(first_mp); 13059 goto slow_done; 13060 } 13061 ipha = (ipha_t *)mp->b_rptr; 13062 } 13063 13064 /* 13065 * Validate the checksum for the reassembled packet; for the 13066 * pullup case we calculate the payload checksum in software. 13067 */ 13068 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13069 if (up[3] != 0) { 13070 boolean_t cksum_err; 13071 13072 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13073 IP_STAT(ipst, ip_in_sw_cksum); 13074 13075 IP_CKSUM_RECV_REASS(reass_hck_flags, 13076 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13077 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13078 iphs[9] + up[2], sum, cksum_err); 13079 13080 if (cksum_err) { 13081 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13082 13083 if (reass_hck_flags & HCK_FULLCKSUM) 13084 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13085 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13086 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13087 else 13088 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13089 13090 freemsg(first_mp); 13091 goto slow_done; 13092 } 13093 } 13094 udpslowpath: 13095 13096 /* Clear hardware checksum flag to be safe */ 13097 DB_CKSUMFLAGS(mp) = 0; 13098 13099 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13100 (ire->ire_type == IRE_BROADCAST), 13101 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13102 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13103 13104 slow_done: 13105 IP_STAT(ipst, ip_udp_slow_path); 13106 return; 13107 13108 #undef iphs 13109 #undef rptr 13110 } 13111 13112 /* ARGSUSED */ 13113 static mblk_t * 13114 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13115 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13116 ill_rx_ring_t *ill_ring) 13117 { 13118 conn_t *connp; 13119 uint32_t sum; 13120 uint32_t u1; 13121 uint16_t *up; 13122 int offset; 13123 ssize_t len; 13124 mblk_t *mp1; 13125 boolean_t syn_present = B_FALSE; 13126 tcph_t *tcph; 13127 uint_t ip_hdr_len; 13128 ill_t *ill = (ill_t *)q->q_ptr; 13129 zoneid_t zoneid = ire->ire_zoneid; 13130 boolean_t cksum_err; 13131 uint16_t hck_flags = 0; 13132 ip_stack_t *ipst = recv_ill->ill_ipst; 13133 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13134 13135 #define rptr ((uchar_t *)ipha) 13136 13137 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13138 ASSERT(ill != NULL); 13139 13140 /* 13141 * FAST PATH for tcp packets 13142 */ 13143 13144 /* u1 is # words of IP options */ 13145 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13146 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13147 13148 /* IP options present */ 13149 if (u1) { 13150 goto ipoptions; 13151 } else { 13152 /* Check the IP header checksum. */ 13153 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13154 /* Clear the IP header h/w cksum flag */ 13155 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13156 } else { 13157 #define uph ((uint16_t *)ipha) 13158 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13159 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13160 #undef uph 13161 /* finish doing IP checksum */ 13162 sum = (sum & 0xFFFF) + (sum >> 16); 13163 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13164 /* 13165 * Don't verify header checksum if this packet 13166 * is coming back from AH/ESP as we already did it. 13167 */ 13168 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13169 BUMP_MIB(ill->ill_ip_mib, 13170 ipIfStatsInCksumErrs); 13171 goto error; 13172 } 13173 } 13174 } 13175 13176 if (!mctl_present) { 13177 UPDATE_IB_PKT_COUNT(ire); 13178 ire->ire_last_used_time = lbolt; 13179 } 13180 13181 /* packet part of fragmented IP packet? */ 13182 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13183 if (u1 & (IPH_MF | IPH_OFFSET)) { 13184 goto fragmented; 13185 } 13186 13187 /* u1 = IP header length (20 bytes) */ 13188 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13189 13190 /* does packet contain IP+TCP headers? */ 13191 len = mp->b_wptr - rptr; 13192 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13193 IP_STAT(ipst, ip_tcppullup); 13194 goto tcppullup; 13195 } 13196 13197 /* TCP options present? */ 13198 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13199 13200 /* 13201 * If options need to be pulled up, then goto tcpoptions. 13202 * otherwise we are still in the fast path 13203 */ 13204 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13205 IP_STAT(ipst, ip_tcpoptions); 13206 goto tcpoptions; 13207 } 13208 13209 /* multiple mblks of tcp data? */ 13210 if ((mp1 = mp->b_cont) != NULL) { 13211 /* more then two? */ 13212 if (mp1->b_cont != NULL) { 13213 IP_STAT(ipst, ip_multipkttcp); 13214 goto multipkttcp; 13215 } 13216 len += mp1->b_wptr - mp1->b_rptr; 13217 } 13218 13219 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13220 13221 /* part of pseudo checksum */ 13222 13223 /* TCP datagram length */ 13224 u1 = len - IP_SIMPLE_HDR_LENGTH; 13225 13226 #define iphs ((uint16_t *)ipha) 13227 13228 #ifdef _BIG_ENDIAN 13229 u1 += IPPROTO_TCP; 13230 #else 13231 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13232 #endif 13233 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13234 13235 /* 13236 * Revert to software checksum calculation if the interface 13237 * isn't capable of checksum offload or if IPsec is present. 13238 */ 13239 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13240 hck_flags = DB_CKSUMFLAGS(mp); 13241 13242 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13243 IP_STAT(ipst, ip_in_sw_cksum); 13244 13245 IP_CKSUM_RECV(hck_flags, u1, 13246 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13247 (int32_t)((uchar_t *)up - rptr), 13248 mp, mp1, cksum_err); 13249 13250 if (cksum_err) { 13251 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13252 13253 if (hck_flags & HCK_FULLCKSUM) 13254 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13255 else if (hck_flags & HCK_PARTIALCKSUM) 13256 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13257 else 13258 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13259 13260 goto error; 13261 } 13262 13263 try_again: 13264 13265 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13266 zoneid, ipst)) == NULL) { 13267 /* Send the TH_RST */ 13268 goto no_conn; 13269 } 13270 13271 /* 13272 * TCP FAST PATH for AF_INET socket. 13273 * 13274 * TCP fast path to avoid extra work. An AF_INET socket type 13275 * does not have facility to receive extra information via 13276 * ip_process or ip_add_info. Also, when the connection was 13277 * established, we made a check if this connection is impacted 13278 * by any global IPSec policy or per connection policy (a 13279 * policy that comes in effect later will not apply to this 13280 * connection). Since all this can be determined at the 13281 * connection establishment time, a quick check of flags 13282 * can avoid extra work. 13283 */ 13284 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13285 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13286 ASSERT(first_mp == mp); 13287 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13288 SET_SQUEUE(mp, tcp_rput_data, connp); 13289 return (mp); 13290 } 13291 13292 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13293 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13294 if (IPCL_IS_TCP(connp)) { 13295 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13296 DB_CKSUMSTART(mp) = 13297 (intptr_t)ip_squeue_get(ill_ring); 13298 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13299 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13300 BUMP_MIB(ill->ill_ip_mib, 13301 ipIfStatsHCInDelivers); 13302 SET_SQUEUE(mp, connp->conn_recv, connp); 13303 return (mp); 13304 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13305 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13306 BUMP_MIB(ill->ill_ip_mib, 13307 ipIfStatsHCInDelivers); 13308 ip_squeue_enter_unbound++; 13309 SET_SQUEUE(mp, tcp_conn_request_unbound, 13310 connp); 13311 return (mp); 13312 } 13313 syn_present = B_TRUE; 13314 } 13315 13316 } 13317 13318 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13319 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13320 13321 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13322 /* No need to send this packet to TCP */ 13323 if ((flags & TH_RST) || (flags & TH_URG)) { 13324 CONN_DEC_REF(connp); 13325 freemsg(first_mp); 13326 return (NULL); 13327 } 13328 if (flags & TH_ACK) { 13329 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13330 ipst->ips_netstack->netstack_tcp); 13331 CONN_DEC_REF(connp); 13332 return (NULL); 13333 } 13334 13335 CONN_DEC_REF(connp); 13336 freemsg(first_mp); 13337 return (NULL); 13338 } 13339 13340 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13341 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13342 ipha, NULL, mctl_present); 13343 if (first_mp == NULL) { 13344 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13345 CONN_DEC_REF(connp); 13346 return (NULL); 13347 } 13348 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13349 ASSERT(syn_present); 13350 if (mctl_present) { 13351 ASSERT(first_mp != mp); 13352 first_mp->b_datap->db_struioflag |= 13353 STRUIO_POLICY; 13354 } else { 13355 ASSERT(first_mp == mp); 13356 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13357 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13358 } 13359 } else { 13360 /* 13361 * Discard first_mp early since we're dealing with a 13362 * fully-connected conn_t and tcp doesn't do policy in 13363 * this case. 13364 */ 13365 if (mctl_present) { 13366 freeb(first_mp); 13367 mctl_present = B_FALSE; 13368 } 13369 first_mp = mp; 13370 } 13371 } 13372 13373 /* Initiate IPPF processing for fastpath */ 13374 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13375 uint32_t ill_index; 13376 13377 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13378 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13379 if (mp == NULL) { 13380 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13381 "deferred/dropped during IPPF processing\n")); 13382 CONN_DEC_REF(connp); 13383 if (mctl_present) 13384 freeb(first_mp); 13385 return (NULL); 13386 } else if (mctl_present) { 13387 /* 13388 * ip_process might return a new mp. 13389 */ 13390 ASSERT(first_mp != mp); 13391 first_mp->b_cont = mp; 13392 } else { 13393 first_mp = mp; 13394 } 13395 13396 } 13397 13398 if (!syn_present && connp->conn_ip_recvpktinfo) { 13399 /* 13400 * TCP does not support IP_RECVPKTINFO for v4 so lets 13401 * make sure IPF_RECVIF is passed to ip_add_info. 13402 */ 13403 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13404 IPCL_ZONEID(connp), ipst); 13405 if (mp == NULL) { 13406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13407 CONN_DEC_REF(connp); 13408 if (mctl_present) 13409 freeb(first_mp); 13410 return (NULL); 13411 } else if (mctl_present) { 13412 /* 13413 * ip_add_info might return a new mp. 13414 */ 13415 ASSERT(first_mp != mp); 13416 first_mp->b_cont = mp; 13417 } else { 13418 first_mp = mp; 13419 } 13420 } 13421 13422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13423 if (IPCL_IS_TCP(connp)) { 13424 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13425 return (first_mp); 13426 } else { 13427 putnext(connp->conn_rq, first_mp); 13428 CONN_DEC_REF(connp); 13429 return (NULL); 13430 } 13431 13432 no_conn: 13433 /* Initiate IPPf processing, if needed. */ 13434 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13435 uint32_t ill_index; 13436 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13437 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13438 if (first_mp == NULL) { 13439 return (NULL); 13440 } 13441 } 13442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13443 13444 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13445 ipst->ips_netstack->netstack_tcp); 13446 return (NULL); 13447 ipoptions: 13448 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13449 goto slow_done; 13450 } 13451 13452 UPDATE_IB_PKT_COUNT(ire); 13453 ire->ire_last_used_time = lbolt; 13454 13455 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13456 if (u1 & (IPH_MF | IPH_OFFSET)) { 13457 fragmented: 13458 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13459 if (mctl_present) 13460 freeb(first_mp); 13461 goto slow_done; 13462 } 13463 /* 13464 * Make sure that first_mp points back to mp as 13465 * the mp we came in with could have changed in 13466 * ip_rput_fragment(). 13467 */ 13468 ASSERT(!mctl_present); 13469 ipha = (ipha_t *)mp->b_rptr; 13470 first_mp = mp; 13471 } 13472 13473 /* Now we have a complete datagram, destined for this machine. */ 13474 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13475 13476 len = mp->b_wptr - mp->b_rptr; 13477 /* Pull up a minimal TCP header, if necessary. */ 13478 if (len < (u1 + 20)) { 13479 tcppullup: 13480 if (!pullupmsg(mp, u1 + 20)) { 13481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13482 goto error; 13483 } 13484 ipha = (ipha_t *)mp->b_rptr; 13485 len = mp->b_wptr - mp->b_rptr; 13486 } 13487 13488 /* 13489 * Extract the offset field from the TCP header. As usual, we 13490 * try to help the compiler more than the reader. 13491 */ 13492 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13493 if (offset != 5) { 13494 tcpoptions: 13495 if (offset < 5) { 13496 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13497 goto error; 13498 } 13499 /* 13500 * There must be TCP options. 13501 * Make sure we can grab them. 13502 */ 13503 offset <<= 2; 13504 offset += u1; 13505 if (len < offset) { 13506 if (!pullupmsg(mp, offset)) { 13507 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13508 goto error; 13509 } 13510 ipha = (ipha_t *)mp->b_rptr; 13511 len = mp->b_wptr - rptr; 13512 } 13513 } 13514 13515 /* Get the total packet length in len, including headers. */ 13516 if (mp->b_cont) { 13517 multipkttcp: 13518 len = msgdsize(mp); 13519 } 13520 13521 /* 13522 * Check the TCP checksum by pulling together the pseudo- 13523 * header checksum, and passing it to ip_csum to be added in 13524 * with the TCP datagram. 13525 * 13526 * Since we are not using the hwcksum if available we must 13527 * clear the flag. We may come here via tcppullup or tcpoptions. 13528 * If either of these fails along the way the mblk is freed. 13529 * If this logic ever changes and mblk is reused to say send 13530 * ICMP's back, then this flag may need to be cleared in 13531 * other places as well. 13532 */ 13533 DB_CKSUMFLAGS(mp) = 0; 13534 13535 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13536 13537 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13538 #ifdef _BIG_ENDIAN 13539 u1 += IPPROTO_TCP; 13540 #else 13541 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13542 #endif 13543 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13544 /* 13545 * Not M_DATA mblk or its a dup, so do the checksum now. 13546 */ 13547 IP_STAT(ipst, ip_in_sw_cksum); 13548 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13549 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13550 goto error; 13551 } 13552 13553 IP_STAT(ipst, ip_tcp_slow_path); 13554 goto try_again; 13555 #undef iphs 13556 #undef rptr 13557 13558 error: 13559 freemsg(first_mp); 13560 slow_done: 13561 return (NULL); 13562 } 13563 13564 /* ARGSUSED */ 13565 static void 13566 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13567 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13568 { 13569 conn_t *connp; 13570 uint32_t sum; 13571 uint32_t u1; 13572 ssize_t len; 13573 sctp_hdr_t *sctph; 13574 zoneid_t zoneid = ire->ire_zoneid; 13575 uint32_t pktsum; 13576 uint32_t calcsum; 13577 uint32_t ports; 13578 in6_addr_t map_src, map_dst; 13579 ill_t *ill = (ill_t *)q->q_ptr; 13580 ip_stack_t *ipst; 13581 sctp_stack_t *sctps; 13582 13583 ASSERT(recv_ill != NULL); 13584 ipst = recv_ill->ill_ipst; 13585 sctps = ipst->ips_netstack->netstack_sctp; 13586 13587 #define rptr ((uchar_t *)ipha) 13588 13589 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13590 ASSERT(ill != NULL); 13591 13592 /* u1 is # words of IP options */ 13593 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13594 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13595 13596 /* IP options present */ 13597 if (u1 > 0) { 13598 goto ipoptions; 13599 } else { 13600 /* Check the IP header checksum. */ 13601 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13602 #define uph ((uint16_t *)ipha) 13603 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13604 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13605 #undef uph 13606 /* finish doing IP checksum */ 13607 sum = (sum & 0xFFFF) + (sum >> 16); 13608 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13609 /* 13610 * Don't verify header checksum if this packet 13611 * is coming back from AH/ESP as we already did it. 13612 */ 13613 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13615 goto error; 13616 } 13617 } 13618 /* 13619 * Since there is no SCTP h/w cksum support yet, just 13620 * clear the flag. 13621 */ 13622 DB_CKSUMFLAGS(mp) = 0; 13623 } 13624 13625 /* 13626 * Don't verify header checksum if this packet is coming 13627 * back from AH/ESP as we already did it. 13628 */ 13629 if (!mctl_present) { 13630 UPDATE_IB_PKT_COUNT(ire); 13631 ire->ire_last_used_time = lbolt; 13632 } 13633 13634 /* packet part of fragmented IP packet? */ 13635 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13636 if (u1 & (IPH_MF | IPH_OFFSET)) 13637 goto fragmented; 13638 13639 /* u1 = IP header length (20 bytes) */ 13640 u1 = IP_SIMPLE_HDR_LENGTH; 13641 13642 find_sctp_client: 13643 /* Pullup if we don't have the sctp common header. */ 13644 len = MBLKL(mp); 13645 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13646 if (mp->b_cont == NULL || 13647 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13649 goto error; 13650 } 13651 ipha = (ipha_t *)mp->b_rptr; 13652 len = MBLKL(mp); 13653 } 13654 13655 sctph = (sctp_hdr_t *)(rptr + u1); 13656 #ifdef DEBUG 13657 if (!skip_sctp_cksum) { 13658 #endif 13659 pktsum = sctph->sh_chksum; 13660 sctph->sh_chksum = 0; 13661 calcsum = sctp_cksum(mp, u1); 13662 if (calcsum != pktsum) { 13663 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13664 goto error; 13665 } 13666 sctph->sh_chksum = pktsum; 13667 #ifdef DEBUG /* skip_sctp_cksum */ 13668 } 13669 #endif 13670 /* get the ports */ 13671 ports = *(uint32_t *)&sctph->sh_sport; 13672 13673 IRE_REFRELE(ire); 13674 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13675 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13676 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13677 sctps)) == NULL) { 13678 /* Check for raw socket or OOTB handling */ 13679 goto no_conn; 13680 } 13681 13682 /* Found a client; up it goes */ 13683 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13684 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13685 return; 13686 13687 no_conn: 13688 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13689 ports, mctl_present, flags, B_TRUE, zoneid); 13690 return; 13691 13692 ipoptions: 13693 DB_CKSUMFLAGS(mp) = 0; 13694 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13695 goto slow_done; 13696 13697 UPDATE_IB_PKT_COUNT(ire); 13698 ire->ire_last_used_time = lbolt; 13699 13700 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13701 if (u1 & (IPH_MF | IPH_OFFSET)) { 13702 fragmented: 13703 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13704 goto slow_done; 13705 /* 13706 * Make sure that first_mp points back to mp as 13707 * the mp we came in with could have changed in 13708 * ip_rput_fragment(). 13709 */ 13710 ASSERT(!mctl_present); 13711 ipha = (ipha_t *)mp->b_rptr; 13712 first_mp = mp; 13713 } 13714 13715 /* Now we have a complete datagram, destined for this machine. */ 13716 u1 = IPH_HDR_LENGTH(ipha); 13717 goto find_sctp_client; 13718 #undef iphs 13719 #undef rptr 13720 13721 error: 13722 freemsg(first_mp); 13723 slow_done: 13724 IRE_REFRELE(ire); 13725 } 13726 13727 #define VER_BITS 0xF0 13728 #define VERSION_6 0x60 13729 13730 static boolean_t 13731 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13732 ipaddr_t *dstp, ip_stack_t *ipst) 13733 { 13734 uint_t opt_len; 13735 ipha_t *ipha; 13736 ssize_t len; 13737 uint_t pkt_len; 13738 13739 ASSERT(ill != NULL); 13740 IP_STAT(ipst, ip_ipoptions); 13741 ipha = *iphapp; 13742 13743 #define rptr ((uchar_t *)ipha) 13744 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13745 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13747 freemsg(mp); 13748 return (B_FALSE); 13749 } 13750 13751 /* multiple mblk or too short */ 13752 pkt_len = ntohs(ipha->ipha_length); 13753 13754 /* Get the number of words of IP options in the IP header. */ 13755 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13756 if (opt_len) { 13757 /* IP Options present! Validate and process. */ 13758 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13760 goto done; 13761 } 13762 /* 13763 * Recompute complete header length and make sure we 13764 * have access to all of it. 13765 */ 13766 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13767 if (len > (mp->b_wptr - rptr)) { 13768 if (len > pkt_len) { 13769 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13770 goto done; 13771 } 13772 if (!pullupmsg(mp, len)) { 13773 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13774 goto done; 13775 } 13776 ipha = (ipha_t *)mp->b_rptr; 13777 } 13778 /* 13779 * Go off to ip_rput_options which returns the next hop 13780 * destination address, which may have been affected 13781 * by source routing. 13782 */ 13783 IP_STAT(ipst, ip_opt); 13784 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13785 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13786 return (B_FALSE); 13787 } 13788 } 13789 *iphapp = ipha; 13790 return (B_TRUE); 13791 done: 13792 /* clear b_prev - used by ip_mroute_decap */ 13793 mp->b_prev = NULL; 13794 freemsg(mp); 13795 return (B_FALSE); 13796 #undef rptr 13797 } 13798 13799 /* 13800 * Deal with the fact that there is no ire for the destination. 13801 * The incoming ill (in_ill) is passed in to ip_newroute only 13802 * in the case of packets coming from mobile ip forward tunnel. 13803 * It must be null otherwise. 13804 */ 13805 static ire_t * 13806 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13807 ipaddr_t dst) 13808 { 13809 ipha_t *ipha; 13810 ill_t *ill; 13811 ire_t *ire; 13812 boolean_t check_multirt = B_FALSE; 13813 ip_stack_t *ipst; 13814 13815 ipha = (ipha_t *)mp->b_rptr; 13816 ill = (ill_t *)q->q_ptr; 13817 13818 ASSERT(ill != NULL); 13819 ipst = ill->ill_ipst; 13820 13821 /* 13822 * No IRE for this destination, so it can't be for us. 13823 * Unless we are forwarding, drop the packet. 13824 * We have to let source routed packets through 13825 * since we don't yet know if they are 'ping -l' 13826 * packets i.e. if they will go out over the 13827 * same interface as they came in on. 13828 */ 13829 if (ll_multicast) { 13830 freemsg(mp); 13831 return (NULL); 13832 } 13833 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13834 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13835 freemsg(mp); 13836 return (NULL); 13837 } 13838 13839 /* 13840 * Mark this packet as having originated externally. 13841 * 13842 * For non-forwarding code path, ire_send later double 13843 * checks this interface to see if it is still exists 13844 * post-ARP resolution. 13845 * 13846 * Also, IPQOS uses this to differentiate between 13847 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13848 * QOS packet processing in ip_wput_attach_llhdr(). 13849 * The QoS module can mark the b_band for a fastpath message 13850 * or the dl_priority field in a unitdata_req header for 13851 * CoS marking. This info can only be found in 13852 * ip_wput_attach_llhdr(). 13853 */ 13854 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13855 /* 13856 * Clear the indication that this may have a hardware checksum 13857 * as we are not using it 13858 */ 13859 DB_CKSUMFLAGS(mp) = 0; 13860 13861 if (in_ill != NULL) { 13862 /* 13863 * Now hand the packet to ip_newroute. 13864 */ 13865 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13866 return (NULL); 13867 } 13868 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13869 MBLK_GETLABEL(mp), ipst); 13870 13871 if (ire == NULL && check_multirt) { 13872 /* Let ip_newroute handle CGTP */ 13873 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13874 return (NULL); 13875 } 13876 13877 if (ire != NULL) 13878 return (ire); 13879 13880 mp->b_prev = mp->b_next = 0; 13881 /* send icmp unreachable */ 13882 q = WR(q); 13883 /* Sent by forwarding path, and router is global zone */ 13884 if (ip_source_routed(ipha, ipst)) { 13885 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13886 GLOBAL_ZONEID, ipst); 13887 } else { 13888 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13889 ipst); 13890 } 13891 13892 return (NULL); 13893 13894 } 13895 13896 /* 13897 * check ip header length and align it. 13898 */ 13899 static boolean_t 13900 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13901 { 13902 ssize_t len; 13903 ill_t *ill; 13904 ipha_t *ipha; 13905 13906 len = MBLKL(mp); 13907 13908 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13909 ill = (ill_t *)q->q_ptr; 13910 13911 if (!OK_32PTR(mp->b_rptr)) 13912 IP_STAT(ipst, ip_notaligned1); 13913 else 13914 IP_STAT(ipst, ip_notaligned2); 13915 /* Guard against bogus device drivers */ 13916 if (len < 0) { 13917 /* clear b_prev - used by ip_mroute_decap */ 13918 mp->b_prev = NULL; 13919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13920 freemsg(mp); 13921 return (B_FALSE); 13922 } 13923 13924 if (ip_rput_pullups++ == 0) { 13925 ipha = (ipha_t *)mp->b_rptr; 13926 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13927 "ip_check_and_align_header: %s forced us to " 13928 " pullup pkt, hdr len %ld, hdr addr %p", 13929 ill->ill_name, len, ipha); 13930 } 13931 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13932 /* clear b_prev - used by ip_mroute_decap */ 13933 mp->b_prev = NULL; 13934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13935 freemsg(mp); 13936 return (B_FALSE); 13937 } 13938 } 13939 return (B_TRUE); 13940 } 13941 13942 ire_t * 13943 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13944 { 13945 ire_t *new_ire; 13946 ill_t *ire_ill; 13947 uint_t ifindex; 13948 ip_stack_t *ipst = ill->ill_ipst; 13949 boolean_t strict_check = B_FALSE; 13950 13951 /* 13952 * This packet came in on an interface other than the one associated 13953 * with the first ire we found for the destination address. We do 13954 * another ire lookup here, using the ingress ill, to see if the 13955 * interface is in an interface group. 13956 * As long as the ills belong to the same group, we don't consider 13957 * them to be arriving on the wrong interface. Thus, if the switch 13958 * is doing inbound load spreading, we won't drop packets when the 13959 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13960 * for 'usesrc groups' where the destination address may belong to 13961 * another interface to allow multipathing to happen. 13962 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13963 * where the local address may not be unique. In this case we were 13964 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13965 * actually returned. The new lookup, which is more specific, should 13966 * only find the IRE_LOCAL associated with the ingress ill if one 13967 * exists. 13968 */ 13969 13970 if (ire->ire_ipversion == IPV4_VERSION) { 13971 if (ipst->ips_ip_strict_dst_multihoming) 13972 strict_check = B_TRUE; 13973 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13974 ill->ill_ipif, ALL_ZONES, NULL, 13975 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13976 } else { 13977 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13978 if (ipst->ips_ipv6_strict_dst_multihoming) 13979 strict_check = B_TRUE; 13980 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13981 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13982 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13983 } 13984 /* 13985 * If the same ire that was returned in ip_input() is found then this 13986 * is an indication that interface groups are in use. The packet 13987 * arrived on a different ill in the group than the one associated with 13988 * the destination address. If a different ire was found then the same 13989 * IP address must be hosted on multiple ills. This is possible with 13990 * unnumbered point2point interfaces. We switch to use this new ire in 13991 * order to have accurate interface statistics. 13992 */ 13993 if (new_ire != NULL) { 13994 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13995 ire_refrele(ire); 13996 ire = new_ire; 13997 } else { 13998 ire_refrele(new_ire); 13999 } 14000 return (ire); 14001 } else if ((ire->ire_rfq == NULL) && 14002 (ire->ire_ipversion == IPV4_VERSION)) { 14003 /* 14004 * The best match could have been the original ire which 14005 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14006 * the strict multihoming checks are irrelevant as we consider 14007 * local addresses hosted on lo0 to be interface agnostic. We 14008 * only expect a null ire_rfq on IREs which are associated with 14009 * lo0 hence we can return now. 14010 */ 14011 return (ire); 14012 } 14013 14014 /* 14015 * Chase pointers once and store locally. 14016 */ 14017 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14018 (ill_t *)(ire->ire_rfq->q_ptr); 14019 ifindex = ill->ill_usesrc_ifindex; 14020 14021 /* 14022 * Check if it's a legal address on the 'usesrc' interface. 14023 */ 14024 if ((ifindex != 0) && (ire_ill != NULL) && 14025 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14026 return (ire); 14027 } 14028 14029 /* 14030 * If the ip*_strict_dst_multihoming switch is on then we can 14031 * only accept this packet if the interface is marked as routing. 14032 */ 14033 if (!(strict_check)) 14034 return (ire); 14035 14036 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14037 ILLF_ROUTER) != 0) { 14038 return (ire); 14039 } 14040 14041 ire_refrele(ire); 14042 return (NULL); 14043 } 14044 14045 ire_t * 14046 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14047 { 14048 ipha_t *ipha; 14049 ipaddr_t ip_dst, ip_src; 14050 ire_t *src_ire = NULL; 14051 ill_t *stq_ill; 14052 uint_t hlen; 14053 uint_t pkt_len; 14054 uint32_t sum; 14055 queue_t *dev_q; 14056 boolean_t check_multirt = B_FALSE; 14057 ip_stack_t *ipst = ill->ill_ipst; 14058 14059 ipha = (ipha_t *)mp->b_rptr; 14060 14061 /* 14062 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14063 * The loopback address check for both src and dst has already 14064 * been checked in ip_input 14065 */ 14066 ip_dst = ntohl(dst); 14067 ip_src = ntohl(ipha->ipha_src); 14068 14069 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14070 IN_CLASSD(ip_src)) { 14071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14072 goto drop; 14073 } 14074 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14075 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14076 14077 if (src_ire != NULL) { 14078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14079 goto drop; 14080 } 14081 14082 14083 /* No ire cache of nexthop. So first create one */ 14084 if (ire == NULL) { 14085 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14086 /* 14087 * We only come to ip_fast_forward if ip_cgtp_filter is 14088 * is not set. So upon return from ire_forward 14089 * check_multirt should remain as false. 14090 */ 14091 ASSERT(!check_multirt); 14092 if (ire == NULL) { 14093 /* An attempt was made to forward the packet */ 14094 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14095 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14096 mp->b_prev = mp->b_next = 0; 14097 /* send icmp unreachable */ 14098 /* Sent by forwarding path, and router is global zone */ 14099 if (ip_source_routed(ipha, ipst)) { 14100 icmp_unreachable(ill->ill_wq, mp, 14101 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14102 ipst); 14103 } else { 14104 icmp_unreachable(ill->ill_wq, mp, 14105 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14106 ipst); 14107 } 14108 return (ire); 14109 } 14110 } 14111 14112 /* 14113 * Forwarding fastpath exception case: 14114 * If either of the follwoing case is true, we take 14115 * the slowpath 14116 * o forwarding is not enabled 14117 * o incoming and outgoing interface are the same, or the same 14118 * IPMP group 14119 * o corresponding ire is in incomplete state 14120 * o packet needs fragmentation 14121 * 14122 * The codeflow from here on is thus: 14123 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14124 */ 14125 pkt_len = ntohs(ipha->ipha_length); 14126 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14127 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14128 !(ill->ill_flags & ILLF_ROUTER) || 14129 (ill == stq_ill) || 14130 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14131 (ire->ire_nce == NULL) || 14132 (ire->ire_nce->nce_state != ND_REACHABLE) || 14133 (pkt_len > ire->ire_max_frag) || 14134 ipha->ipha_ttl <= 1) { 14135 ip_rput_process_forward(ill->ill_rq, mp, ire, 14136 ipha, ill, B_FALSE); 14137 return (ire); 14138 } 14139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14140 14141 DTRACE_PROBE4(ip4__forwarding__start, 14142 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14143 14144 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14145 ipst->ips_ipv4firewall_forwarding, 14146 ill, stq_ill, ipha, mp, mp, ipst); 14147 14148 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14149 14150 if (mp == NULL) 14151 goto drop; 14152 14153 mp->b_datap->db_struioun.cksum.flags = 0; 14154 /* Adjust the checksum to reflect the ttl decrement. */ 14155 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14156 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14157 ipha->ipha_ttl--; 14158 14159 dev_q = ire->ire_stq->q_next; 14160 if ((dev_q->q_next != NULL || 14161 dev_q->q_first != NULL) && !canput(dev_q)) { 14162 goto indiscard; 14163 } 14164 14165 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14166 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14167 14168 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14169 mblk_t *mpip = mp; 14170 14171 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14172 if (mp != NULL) { 14173 DTRACE_PROBE4(ip4__physical__out__start, 14174 ill_t *, NULL, ill_t *, stq_ill, 14175 ipha_t *, ipha, mblk_t *, mp); 14176 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14177 ipst->ips_ipv4firewall_physical_out, 14178 NULL, stq_ill, ipha, mp, mpip, ipst); 14179 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14180 mp); 14181 if (mp == NULL) 14182 goto drop; 14183 14184 UPDATE_IB_PKT_COUNT(ire); 14185 ire->ire_last_used_time = lbolt; 14186 BUMP_MIB(stq_ill->ill_ip_mib, 14187 ipIfStatsHCOutForwDatagrams); 14188 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14189 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14190 pkt_len); 14191 putnext(ire->ire_stq, mp); 14192 return (ire); 14193 } 14194 } 14195 14196 indiscard: 14197 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14198 drop: 14199 if (mp != NULL) 14200 freemsg(mp); 14201 if (src_ire != NULL) 14202 ire_refrele(src_ire); 14203 return (ire); 14204 14205 } 14206 14207 /* 14208 * This function is called in the forwarding slowpath, when 14209 * either the ire lacks the link-layer address, or the packet needs 14210 * further processing(eg. fragmentation), before transmission. 14211 */ 14212 14213 static void 14214 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14215 ill_t *ill, boolean_t ll_multicast) 14216 { 14217 ill_group_t *ill_group; 14218 ill_group_t *ire_group; 14219 queue_t *dev_q; 14220 ire_t *src_ire; 14221 ip_stack_t *ipst = ill->ill_ipst; 14222 14223 ASSERT(ire->ire_stq != NULL); 14224 14225 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14226 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14227 14228 if (ll_multicast != 0) { 14229 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14230 goto drop_pkt; 14231 } 14232 14233 /* 14234 * check if ipha_src is a broadcast address. Note that this 14235 * check is redundant when we get here from ip_fast_forward() 14236 * which has already done this check. However, since we can 14237 * also get here from ip_rput_process_broadcast() or, for 14238 * for the slow path through ip_fast_forward(), we perform 14239 * the check again for code-reusability 14240 */ 14241 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14242 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14243 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14244 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14245 if (src_ire != NULL) 14246 ire_refrele(src_ire); 14247 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14248 ip2dbg(("ip_rput_process_forward: Received packet with" 14249 " bad src/dst address on %s\n", ill->ill_name)); 14250 goto drop_pkt; 14251 } 14252 14253 ill_group = ill->ill_group; 14254 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14255 /* 14256 * Check if we want to forward this one at this time. 14257 * We allow source routed packets on a host provided that 14258 * they go out the same interface or same interface group 14259 * as they came in on. 14260 * 14261 * XXX To be quicker, we may wish to not chase pointers to 14262 * get the ILLF_ROUTER flag and instead store the 14263 * forwarding policy in the ire. An unfortunate 14264 * side-effect of that would be requiring an ire flush 14265 * whenever the ILLF_ROUTER flag changes. 14266 */ 14267 if (((ill->ill_flags & 14268 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14269 ILLF_ROUTER) == 0) && 14270 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14271 (ill_group != NULL && ill_group == ire_group)))) { 14272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14273 if (ip_source_routed(ipha, ipst)) { 14274 q = WR(q); 14275 /* 14276 * Clear the indication that this may have 14277 * hardware checksum as we are not using it. 14278 */ 14279 DB_CKSUMFLAGS(mp) = 0; 14280 /* Sent by forwarding path, and router is global zone */ 14281 icmp_unreachable(q, mp, 14282 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14283 return; 14284 } 14285 goto drop_pkt; 14286 } 14287 14288 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14289 14290 /* Packet is being forwarded. Turning off hwcksum flag. */ 14291 DB_CKSUMFLAGS(mp) = 0; 14292 if (ipst->ips_ip_g_send_redirects) { 14293 /* 14294 * Check whether the incoming interface and outgoing 14295 * interface is part of the same group. If so, 14296 * send redirects. 14297 * 14298 * Check the source address to see if it originated 14299 * on the same logical subnet it is going back out on. 14300 * If so, we should be able to send it a redirect. 14301 * Avoid sending a redirect if the destination 14302 * is directly connected (i.e., ipha_dst is the same 14303 * as ire_gateway_addr or the ire_addr of the 14304 * nexthop IRE_CACHE ), or if the packet was source 14305 * routed out this interface. 14306 */ 14307 ipaddr_t src, nhop; 14308 mblk_t *mp1; 14309 ire_t *nhop_ire = NULL; 14310 14311 /* 14312 * Check whether ire_rfq and q are from the same ill 14313 * or if they are not same, they at least belong 14314 * to the same group. If so, send redirects. 14315 */ 14316 if ((ire->ire_rfq == q || 14317 (ill_group != NULL && ill_group == ire_group)) && 14318 !ip_source_routed(ipha, ipst)) { 14319 14320 nhop = (ire->ire_gateway_addr != 0 ? 14321 ire->ire_gateway_addr : ire->ire_addr); 14322 14323 if (ipha->ipha_dst == nhop) { 14324 /* 14325 * We avoid sending a redirect if the 14326 * destination is directly connected 14327 * because it is possible that multiple 14328 * IP subnets may have been configured on 14329 * the link, and the source may not 14330 * be on the same subnet as ip destination, 14331 * even though they are on the same 14332 * physical link. 14333 */ 14334 goto sendit; 14335 } 14336 14337 src = ipha->ipha_src; 14338 14339 /* 14340 * We look up the interface ire for the nexthop, 14341 * to see if ipha_src is in the same subnet 14342 * as the nexthop. 14343 * 14344 * Note that, if, in the future, IRE_CACHE entries 14345 * are obsoleted, this lookup will not be needed, 14346 * as the ire passed to this function will be the 14347 * same as the nhop_ire computed below. 14348 */ 14349 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14350 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14351 0, NULL, MATCH_IRE_TYPE, ipst); 14352 14353 if (nhop_ire != NULL) { 14354 if ((src & nhop_ire->ire_mask) == 14355 (nhop & nhop_ire->ire_mask)) { 14356 /* 14357 * The source is directly connected. 14358 * Just copy the ip header (which is 14359 * in the first mblk) 14360 */ 14361 mp1 = copyb(mp); 14362 if (mp1 != NULL) { 14363 icmp_send_redirect(WR(q), mp1, 14364 nhop, ipst); 14365 } 14366 } 14367 ire_refrele(nhop_ire); 14368 } 14369 } 14370 } 14371 sendit: 14372 dev_q = ire->ire_stq->q_next; 14373 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14374 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14375 freemsg(mp); 14376 return; 14377 } 14378 14379 ip_rput_forward(ire, ipha, mp, ill); 14380 return; 14381 14382 drop_pkt: 14383 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14384 freemsg(mp); 14385 } 14386 14387 ire_t * 14388 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14389 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14390 { 14391 queue_t *q; 14392 uint16_t hcksumflags; 14393 ip_stack_t *ipst = ill->ill_ipst; 14394 14395 q = *qp; 14396 14397 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14398 14399 /* 14400 * Clear the indication that this may have hardware 14401 * checksum as we are not using it for forwarding. 14402 */ 14403 hcksumflags = DB_CKSUMFLAGS(mp); 14404 DB_CKSUMFLAGS(mp) = 0; 14405 14406 /* 14407 * Directed broadcast forwarding: if the packet came in over a 14408 * different interface then it is routed out over we can forward it. 14409 */ 14410 if (ipha->ipha_protocol == IPPROTO_TCP) { 14411 ire_refrele(ire); 14412 freemsg(mp); 14413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14414 return (NULL); 14415 } 14416 /* 14417 * For multicast we have set dst to be INADDR_BROADCAST 14418 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14419 * only for broadcast packets. 14420 */ 14421 if (!CLASSD(ipha->ipha_dst)) { 14422 ire_t *new_ire; 14423 ipif_t *ipif; 14424 /* 14425 * For ill groups, as the switch duplicates broadcasts 14426 * across all the ports, we need to filter out and 14427 * send up only one copy. There is one copy for every 14428 * broadcast address on each ill. Thus, we look for a 14429 * specific IRE on this ill and look at IRE_MARK_NORECV 14430 * later to see whether this ill is eligible to receive 14431 * them or not. ill_nominate_bcast_rcv() nominates only 14432 * one set of IREs for receiving. 14433 */ 14434 14435 ipif = ipif_get_next_ipif(NULL, ill); 14436 if (ipif == NULL) { 14437 ire_refrele(ire); 14438 freemsg(mp); 14439 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14440 return (NULL); 14441 } 14442 new_ire = ire_ctable_lookup(dst, 0, 0, 14443 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14444 ipif_refrele(ipif); 14445 14446 if (new_ire != NULL) { 14447 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14448 ire_refrele(ire); 14449 ire_refrele(new_ire); 14450 freemsg(mp); 14451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14452 return (NULL); 14453 } 14454 /* 14455 * In the special case of multirouted broadcast 14456 * packets, we unconditionally need to "gateway" 14457 * them to the appropriate interface here. 14458 * In the normal case, this cannot happen, because 14459 * there is no broadcast IRE tagged with the 14460 * RTF_MULTIRT flag. 14461 */ 14462 if (new_ire->ire_flags & RTF_MULTIRT) { 14463 ire_refrele(new_ire); 14464 if (ire->ire_rfq != NULL) { 14465 q = ire->ire_rfq; 14466 *qp = q; 14467 } 14468 } else { 14469 ire_refrele(ire); 14470 ire = new_ire; 14471 } 14472 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14473 if (!ipst->ips_ip_g_forward_directed_bcast) { 14474 /* 14475 * Free the message if 14476 * ip_g_forward_directed_bcast is turned 14477 * off for non-local broadcast. 14478 */ 14479 ire_refrele(ire); 14480 freemsg(mp); 14481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14482 return (NULL); 14483 } 14484 } else { 14485 /* 14486 * This CGTP packet successfully passed the 14487 * CGTP filter, but the related CGTP 14488 * broadcast IRE has not been found, 14489 * meaning that the redundant ipif is 14490 * probably down. However, if we discarded 14491 * this packet, its duplicate would be 14492 * filtered out by the CGTP filter so none 14493 * of them would get through. So we keep 14494 * going with this one. 14495 */ 14496 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14497 if (ire->ire_rfq != NULL) { 14498 q = ire->ire_rfq; 14499 *qp = q; 14500 } 14501 } 14502 } 14503 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14504 /* 14505 * Verify that there are not more then one 14506 * IRE_BROADCAST with this broadcast address which 14507 * has ire_stq set. 14508 * TODO: simplify, loop over all IRE's 14509 */ 14510 ire_t *ire1; 14511 int num_stq = 0; 14512 mblk_t *mp1; 14513 14514 /* Find the first one with ire_stq set */ 14515 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14516 for (ire1 = ire; ire1 && 14517 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14518 ire1 = ire1->ire_next) 14519 ; 14520 if (ire1) { 14521 ire_refrele(ire); 14522 ire = ire1; 14523 IRE_REFHOLD(ire); 14524 } 14525 14526 /* Check if there are additional ones with stq set */ 14527 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14528 if (ire->ire_addr != ire1->ire_addr) 14529 break; 14530 if (ire1->ire_stq) { 14531 num_stq++; 14532 break; 14533 } 14534 } 14535 rw_exit(&ire->ire_bucket->irb_lock); 14536 if (num_stq == 1 && ire->ire_stq != NULL) { 14537 ip1dbg(("ip_rput_process_broadcast: directed " 14538 "broadcast to 0x%x\n", 14539 ntohl(ire->ire_addr))); 14540 mp1 = copymsg(mp); 14541 if (mp1) { 14542 switch (ipha->ipha_protocol) { 14543 case IPPROTO_UDP: 14544 ip_udp_input(q, mp1, ipha, ire, ill); 14545 break; 14546 default: 14547 ip_proto_input(q, mp1, ipha, ire, ill); 14548 break; 14549 } 14550 } 14551 /* 14552 * Adjust ttl to 2 (1+1 - the forward engine 14553 * will decrement it by one. 14554 */ 14555 if (ip_csum_hdr(ipha)) { 14556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14557 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14558 freemsg(mp); 14559 ire_refrele(ire); 14560 return (NULL); 14561 } 14562 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14563 ipha->ipha_hdr_checksum = 0; 14564 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14565 ip_rput_process_forward(q, mp, ire, ipha, 14566 ill, ll_multicast); 14567 ire_refrele(ire); 14568 return (NULL); 14569 } 14570 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14571 ntohl(ire->ire_addr))); 14572 } 14573 14574 14575 /* Restore any hardware checksum flags */ 14576 DB_CKSUMFLAGS(mp) = hcksumflags; 14577 return (ire); 14578 } 14579 14580 /* ARGSUSED */ 14581 static boolean_t 14582 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14583 int *ll_multicast, ipaddr_t *dstp) 14584 { 14585 ip_stack_t *ipst = ill->ill_ipst; 14586 14587 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14588 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14589 ntohs(ipha->ipha_length)); 14590 14591 /* 14592 * Forward packets only if we have joined the allmulti 14593 * group on this interface. 14594 */ 14595 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14596 int retval; 14597 14598 /* 14599 * Clear the indication that this may have hardware 14600 * checksum as we are not using it. 14601 */ 14602 DB_CKSUMFLAGS(mp) = 0; 14603 retval = ip_mforward(ill, ipha, mp); 14604 /* ip_mforward updates mib variables if needed */ 14605 /* clear b_prev - used by ip_mroute_decap */ 14606 mp->b_prev = NULL; 14607 14608 switch (retval) { 14609 case 0: 14610 /* 14611 * pkt is okay and arrived on phyint. 14612 * 14613 * If we are running as a multicast router 14614 * we need to see all IGMP and/or PIM packets. 14615 */ 14616 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14617 (ipha->ipha_protocol == IPPROTO_PIM)) { 14618 goto done; 14619 } 14620 break; 14621 case -1: 14622 /* pkt is mal-formed, toss it */ 14623 goto drop_pkt; 14624 case 1: 14625 /* pkt is okay and arrived on a tunnel */ 14626 /* 14627 * If we are running a multicast router 14628 * we need to see all igmp packets. 14629 */ 14630 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14631 *dstp = INADDR_BROADCAST; 14632 *ll_multicast = 1; 14633 return (B_FALSE); 14634 } 14635 14636 goto drop_pkt; 14637 } 14638 } 14639 14640 ILM_WALKER_HOLD(ill); 14641 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14642 /* 14643 * This might just be caused by the fact that 14644 * multiple IP Multicast addresses map to the same 14645 * link layer multicast - no need to increment counter! 14646 */ 14647 ILM_WALKER_RELE(ill); 14648 freemsg(mp); 14649 return (B_TRUE); 14650 } 14651 ILM_WALKER_RELE(ill); 14652 done: 14653 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14654 /* 14655 * This assumes the we deliver to all streams for multicast 14656 * and broadcast packets. 14657 */ 14658 *dstp = INADDR_BROADCAST; 14659 *ll_multicast = 1; 14660 return (B_FALSE); 14661 drop_pkt: 14662 ip2dbg(("ip_rput: drop pkt\n")); 14663 freemsg(mp); 14664 return (B_TRUE); 14665 } 14666 14667 static boolean_t 14668 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14669 int *ll_multicast, mblk_t **mpp) 14670 { 14671 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14672 boolean_t must_copy = B_FALSE; 14673 struct iocblk *iocp; 14674 ipha_t *ipha; 14675 ip_stack_t *ipst = ill->ill_ipst; 14676 14677 #define rptr ((uchar_t *)ipha) 14678 14679 first_mp = *first_mpp; 14680 mp = *mpp; 14681 14682 ASSERT(first_mp == mp); 14683 14684 /* 14685 * if db_ref > 1 then copymsg and free original. Packet may be 14686 * changed and do not want other entity who has a reference to this 14687 * message to trip over the changes. This is a blind change because 14688 * trying to catch all places that might change packet is too 14689 * difficult (since it may be a module above this one) 14690 * 14691 * This corresponds to the non-fast path case. We walk down the full 14692 * chain in this case, and check the db_ref count of all the dblks, 14693 * and do a copymsg if required. It is possible that the db_ref counts 14694 * of the data blocks in the mblk chain can be different. 14695 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14696 * count of 1, followed by a M_DATA block with a ref count of 2, if 14697 * 'snoop' is running. 14698 */ 14699 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14700 if (mp1->b_datap->db_ref > 1) { 14701 must_copy = B_TRUE; 14702 break; 14703 } 14704 } 14705 14706 if (must_copy) { 14707 mp1 = copymsg(mp); 14708 if (mp1 == NULL) { 14709 for (mp1 = mp; mp1 != NULL; 14710 mp1 = mp1->b_cont) { 14711 mp1->b_next = NULL; 14712 mp1->b_prev = NULL; 14713 } 14714 freemsg(mp); 14715 if (ill != NULL) { 14716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14717 } else { 14718 BUMP_MIB(&ipst->ips_ip_mib, 14719 ipIfStatsInDiscards); 14720 } 14721 return (B_TRUE); 14722 } 14723 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14724 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14725 /* Copy b_prev - used by ip_mroute_decap */ 14726 to_mp->b_prev = from_mp->b_prev; 14727 from_mp->b_prev = NULL; 14728 } 14729 *first_mpp = first_mp = mp1; 14730 freemsg(mp); 14731 mp = mp1; 14732 *mpp = mp1; 14733 } 14734 14735 ipha = (ipha_t *)mp->b_rptr; 14736 14737 /* 14738 * previous code has a case for M_DATA. 14739 * We want to check how that happens. 14740 */ 14741 ASSERT(first_mp->b_datap->db_type != M_DATA); 14742 switch (first_mp->b_datap->db_type) { 14743 case M_PROTO: 14744 case M_PCPROTO: 14745 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14746 DL_UNITDATA_IND) { 14747 /* Go handle anything other than data elsewhere. */ 14748 ip_rput_dlpi(q, mp); 14749 return (B_TRUE); 14750 } 14751 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14752 /* Ditch the DLPI header. */ 14753 mp1 = mp->b_cont; 14754 ASSERT(first_mp == mp); 14755 *first_mpp = mp1; 14756 freeb(mp); 14757 *mpp = mp1; 14758 return (B_FALSE); 14759 case M_IOCACK: 14760 ip1dbg(("got iocack ")); 14761 iocp = (struct iocblk *)mp->b_rptr; 14762 switch (iocp->ioc_cmd) { 14763 case DL_IOC_HDR_INFO: 14764 ill = (ill_t *)q->q_ptr; 14765 ill_fastpath_ack(ill, mp); 14766 return (B_TRUE); 14767 case SIOCSTUNPARAM: 14768 case OSIOCSTUNPARAM: 14769 /* Go through qwriter_ip */ 14770 break; 14771 case SIOCGTUNPARAM: 14772 case OSIOCGTUNPARAM: 14773 ip_rput_other(NULL, q, mp, NULL); 14774 return (B_TRUE); 14775 default: 14776 putnext(q, mp); 14777 return (B_TRUE); 14778 } 14779 /* FALLTHRU */ 14780 case M_ERROR: 14781 case M_HANGUP: 14782 /* 14783 * Since this is on the ill stream we unconditionally 14784 * bump up the refcount 14785 */ 14786 ill_refhold(ill); 14787 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14788 return (B_TRUE); 14789 case M_CTL: 14790 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14791 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14792 IPHADA_M_CTL)) { 14793 /* 14794 * It's an IPsec accelerated packet. 14795 * Make sure that the ill from which we received the 14796 * packet has enabled IPsec hardware acceleration. 14797 */ 14798 if (!(ill->ill_capabilities & 14799 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14800 /* IPsec kstats: bean counter */ 14801 freemsg(mp); 14802 return (B_TRUE); 14803 } 14804 14805 /* 14806 * Make mp point to the mblk following the M_CTL, 14807 * then process according to type of mp. 14808 * After this processing, first_mp will point to 14809 * the data-attributes and mp to the pkt following 14810 * the M_CTL. 14811 */ 14812 mp = first_mp->b_cont; 14813 if (mp == NULL) { 14814 freemsg(first_mp); 14815 return (B_TRUE); 14816 } 14817 /* 14818 * A Hardware Accelerated packet can only be M_DATA 14819 * ESP or AH packet. 14820 */ 14821 if (mp->b_datap->db_type != M_DATA) { 14822 /* non-M_DATA IPsec accelerated packet */ 14823 IPSECHW_DEBUG(IPSECHW_PKT, 14824 ("non-M_DATA IPsec accelerated pkt\n")); 14825 freemsg(first_mp); 14826 return (B_TRUE); 14827 } 14828 ipha = (ipha_t *)mp->b_rptr; 14829 if (ipha->ipha_protocol != IPPROTO_AH && 14830 ipha->ipha_protocol != IPPROTO_ESP) { 14831 IPSECHW_DEBUG(IPSECHW_PKT, 14832 ("non-M_DATA IPsec accelerated pkt\n")); 14833 freemsg(first_mp); 14834 return (B_TRUE); 14835 } 14836 *mpp = mp; 14837 return (B_FALSE); 14838 } 14839 putnext(q, mp); 14840 return (B_TRUE); 14841 case M_IOCNAK: 14842 ip1dbg(("got iocnak ")); 14843 iocp = (struct iocblk *)mp->b_rptr; 14844 switch (iocp->ioc_cmd) { 14845 case SIOCSTUNPARAM: 14846 case OSIOCSTUNPARAM: 14847 /* 14848 * Since this is on the ill stream we unconditionally 14849 * bump up the refcount 14850 */ 14851 ill_refhold(ill); 14852 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14853 return (B_TRUE); 14854 case DL_IOC_HDR_INFO: 14855 case SIOCGTUNPARAM: 14856 case OSIOCGTUNPARAM: 14857 ip_rput_other(NULL, q, mp, NULL); 14858 return (B_TRUE); 14859 default: 14860 break; 14861 } 14862 /* FALLTHRU */ 14863 default: 14864 putnext(q, mp); 14865 return (B_TRUE); 14866 } 14867 } 14868 14869 /* Read side put procedure. Packets coming from the wire arrive here. */ 14870 void 14871 ip_rput(queue_t *q, mblk_t *mp) 14872 { 14873 ill_t *ill = (ill_t *)q->q_ptr; 14874 ip_stack_t *ipst = ill->ill_ipst; 14875 union DL_primitives *dl; 14876 14877 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14878 14879 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14880 /* 14881 * If things are opening or closing, only accept high-priority 14882 * DLPI messages. (On open ill->ill_ipif has not yet been 14883 * created; on close, things hanging off the ill may have been 14884 * freed already.) 14885 */ 14886 dl = (union DL_primitives *)mp->b_rptr; 14887 if (DB_TYPE(mp) != M_PCPROTO || 14888 dl->dl_primitive == DL_UNITDATA_IND) { 14889 /* 14890 * SIOC[GS]TUNPARAM ioctls can come here. 14891 */ 14892 inet_freemsg(mp); 14893 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14894 "ip_rput_end: q %p (%S)", q, "uninit"); 14895 return; 14896 } 14897 } 14898 14899 /* 14900 * if db_ref > 1 then copymsg and free original. Packet may be 14901 * changed and we do not want the other entity who has a reference to 14902 * this message to trip over the changes. This is a blind change because 14903 * trying to catch all places that might change the packet is too 14904 * difficult. 14905 * 14906 * This corresponds to the fast path case, where we have a chain of 14907 * M_DATA mblks. We check the db_ref count of only the 1st data block 14908 * in the mblk chain. There doesn't seem to be a reason why a device 14909 * driver would send up data with varying db_ref counts in the mblk 14910 * chain. In any case the Fast path is a private interface, and our 14911 * drivers don't do such a thing. Given the above assumption, there is 14912 * no need to walk down the entire mblk chain (which could have a 14913 * potential performance problem) 14914 */ 14915 if (mp->b_datap->db_ref > 1) { 14916 mblk_t *mp1; 14917 boolean_t adjusted = B_FALSE; 14918 IP_STAT(ipst, ip_db_ref); 14919 14920 /* 14921 * The IP_RECVSLLA option depends on having the link layer 14922 * header. First check that: 14923 * a> the underlying device is of type ether, since this 14924 * option is currently supported only over ethernet. 14925 * b> there is enough room to copy over the link layer header. 14926 * 14927 * Once the checks are done, adjust rptr so that the link layer 14928 * header will be copied via copymsg. Note that, IFT_ETHER may 14929 * be returned by some non-ethernet drivers but in this case the 14930 * second check will fail. 14931 */ 14932 if (ill->ill_type == IFT_ETHER && 14933 (mp->b_rptr - mp->b_datap->db_base) >= 14934 sizeof (struct ether_header)) { 14935 mp->b_rptr -= sizeof (struct ether_header); 14936 adjusted = B_TRUE; 14937 } 14938 mp1 = copymsg(mp); 14939 if (mp1 == NULL) { 14940 mp->b_next = NULL; 14941 /* clear b_prev - used by ip_mroute_decap */ 14942 mp->b_prev = NULL; 14943 freemsg(mp); 14944 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14945 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14946 "ip_rput_end: q %p (%S)", q, "copymsg"); 14947 return; 14948 } 14949 if (adjusted) { 14950 /* 14951 * Copy is done. Restore the pointer in the _new_ mblk 14952 */ 14953 mp1->b_rptr += sizeof (struct ether_header); 14954 } 14955 /* Copy b_prev - used by ip_mroute_decap */ 14956 mp1->b_prev = mp->b_prev; 14957 mp->b_prev = NULL; 14958 freemsg(mp); 14959 mp = mp1; 14960 } 14961 14962 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14963 "ip_rput_end: q %p (%S)", q, "end"); 14964 14965 ip_input(ill, NULL, mp, NULL); 14966 } 14967 14968 /* 14969 * Direct read side procedure capable of dealing with chains. GLDv3 based 14970 * drivers call this function directly with mblk chains while STREAMS 14971 * read side procedure ip_rput() calls this for single packet with ip_ring 14972 * set to NULL to process one packet at a time. 14973 * 14974 * The ill will always be valid if this function is called directly from 14975 * the driver. 14976 * 14977 * If ip_input() is called from GLDv3: 14978 * 14979 * - This must be a non-VLAN IP stream. 14980 * - 'mp' is either an untagged or a special priority-tagged packet. 14981 * - Any VLAN tag that was in the MAC header has been stripped. 14982 * 14983 * If the IP header in packet is not 32-bit aligned, every message in the 14984 * chain will be aligned before further operations. This is required on SPARC 14985 * platform. 14986 */ 14987 /* ARGSUSED */ 14988 void 14989 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14990 struct mac_header_info_s *mhip) 14991 { 14992 ipaddr_t dst = NULL; 14993 ipaddr_t prev_dst; 14994 ire_t *ire = NULL; 14995 ipha_t *ipha; 14996 uint_t pkt_len; 14997 ssize_t len; 14998 uint_t opt_len; 14999 int ll_multicast; 15000 int cgtp_flt_pkt; 15001 queue_t *q = ill->ill_rq; 15002 squeue_t *curr_sqp = NULL; 15003 mblk_t *head = NULL; 15004 mblk_t *tail = NULL; 15005 mblk_t *first_mp; 15006 mblk_t *mp; 15007 mblk_t *dmp; 15008 int cnt = 0; 15009 ip_stack_t *ipst = ill->ill_ipst; 15010 15011 ASSERT(mp_chain != NULL); 15012 ASSERT(ill != NULL); 15013 15014 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15015 15016 #define rptr ((uchar_t *)ipha) 15017 15018 while (mp_chain != NULL) { 15019 first_mp = mp = mp_chain; 15020 mp_chain = mp_chain->b_next; 15021 mp->b_next = NULL; 15022 ll_multicast = 0; 15023 15024 /* 15025 * We do ire caching from one iteration to 15026 * another. In the event the packet chain contains 15027 * all packets from the same dst, this caching saves 15028 * an ire_cache_lookup for each of the succeeding 15029 * packets in a packet chain. 15030 */ 15031 prev_dst = dst; 15032 15033 /* 15034 * Check and align the IP header. 15035 */ 15036 if (DB_TYPE(mp) == M_DATA) { 15037 dmp = mp; 15038 } else if (DB_TYPE(mp) == M_PROTO && 15039 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15040 dmp = mp->b_cont; 15041 } else { 15042 dmp = NULL; 15043 } 15044 if (dmp != NULL) { 15045 /* 15046 * IP header ptr not aligned? 15047 * OR IP header not complete in first mblk 15048 */ 15049 if (!OK_32PTR(dmp->b_rptr) || 15050 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15051 if (!ip_check_and_align_header(q, dmp, ipst)) 15052 continue; 15053 } 15054 } 15055 15056 /* 15057 * ip_input fast path 15058 */ 15059 15060 /* mblk type is not M_DATA */ 15061 if (DB_TYPE(mp) != M_DATA) { 15062 if (ip_rput_process_notdata(q, &first_mp, ill, 15063 &ll_multicast, &mp)) 15064 continue; 15065 } 15066 15067 /* Make sure its an M_DATA and that its aligned */ 15068 ASSERT(DB_TYPE(mp) == M_DATA); 15069 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15070 15071 ipha = (ipha_t *)mp->b_rptr; 15072 len = mp->b_wptr - rptr; 15073 pkt_len = ntohs(ipha->ipha_length); 15074 15075 /* 15076 * We must count all incoming packets, even if they end 15077 * up being dropped later on. 15078 */ 15079 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15080 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15081 15082 /* multiple mblk or too short */ 15083 len -= pkt_len; 15084 if (len != 0) { 15085 /* 15086 * Make sure we have data length consistent 15087 * with the IP header. 15088 */ 15089 if (mp->b_cont == NULL) { 15090 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15091 BUMP_MIB(ill->ill_ip_mib, 15092 ipIfStatsInHdrErrors); 15093 ip2dbg(("ip_input: drop pkt\n")); 15094 freemsg(mp); 15095 continue; 15096 } 15097 mp->b_wptr = rptr + pkt_len; 15098 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15099 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15100 BUMP_MIB(ill->ill_ip_mib, 15101 ipIfStatsInHdrErrors); 15102 ip2dbg(("ip_input: drop pkt\n")); 15103 freemsg(mp); 15104 continue; 15105 } 15106 (void) adjmsg(mp, -len); 15107 IP_STAT(ipst, ip_multimblk3); 15108 } 15109 } 15110 15111 /* Obtain the dst of the current packet */ 15112 dst = ipha->ipha_dst; 15113 15114 if (IP_LOOPBACK_ADDR(dst) || 15115 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15116 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15117 cmn_err(CE_CONT, "dst %X src %X\n", 15118 dst, ipha->ipha_src); 15119 freemsg(mp); 15120 continue; 15121 } 15122 15123 /* 15124 * The event for packets being received from a 'physical' 15125 * interface is placed after validation of the source and/or 15126 * destination address as being local so that packets can be 15127 * redirected to loopback addresses using ipnat. 15128 */ 15129 DTRACE_PROBE4(ip4__physical__in__start, 15130 ill_t *, ill, ill_t *, NULL, 15131 ipha_t *, ipha, mblk_t *, first_mp); 15132 15133 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15134 ipst->ips_ipv4firewall_physical_in, 15135 ill, NULL, ipha, first_mp, mp, ipst); 15136 15137 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15138 15139 if (first_mp == NULL) { 15140 continue; 15141 } 15142 dst = ipha->ipha_dst; 15143 15144 /* 15145 * Attach any necessary label information to 15146 * this packet 15147 */ 15148 if (is_system_labeled() && 15149 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15150 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15151 freemsg(mp); 15152 continue; 15153 } 15154 15155 /* 15156 * Reuse the cached ire only if the ipha_dst of the previous 15157 * packet is the same as the current packet AND it is not 15158 * INADDR_ANY. 15159 */ 15160 if (!(dst == prev_dst && dst != INADDR_ANY) && 15161 (ire != NULL)) { 15162 ire_refrele(ire); 15163 ire = NULL; 15164 } 15165 opt_len = ipha->ipha_version_and_hdr_length - 15166 IP_SIMPLE_HDR_VERSION; 15167 15168 /* 15169 * Check to see if we can take the fastpath. 15170 * That is possible if the following conditions are met 15171 * o Tsol disabled 15172 * o CGTP disabled 15173 * o ipp_action_count is 0 15174 * o Mobile IP not running 15175 * o no options in the packet 15176 * o not a RSVP packet 15177 * o not a multicast packet 15178 */ 15179 if (!is_system_labeled() && 15180 !ip_cgtp_filter && ipp_action_count == 0 && 15181 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15182 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15183 !ll_multicast && !CLASSD(dst)) { 15184 if (ire == NULL) 15185 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15186 ipst); 15187 15188 /* incoming packet is for forwarding */ 15189 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15190 ire = ip_fast_forward(ire, dst, ill, mp); 15191 continue; 15192 } 15193 /* incoming packet is for local consumption */ 15194 if (ire->ire_type & IRE_LOCAL) 15195 goto local; 15196 } 15197 15198 /* 15199 * Disable ire caching for anything more complex 15200 * than the simple fast path case we checked for above. 15201 */ 15202 if (ire != NULL) { 15203 ire_refrele(ire); 15204 ire = NULL; 15205 } 15206 15207 /* Full-blown slow path */ 15208 if (opt_len != 0) { 15209 if (len != 0) 15210 IP_STAT(ipst, ip_multimblk4); 15211 else 15212 IP_STAT(ipst, ip_ipoptions); 15213 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15214 &dst, ipst)) 15215 continue; 15216 } 15217 15218 /* 15219 * Invoke the CGTP (multirouting) filtering module to process 15220 * the incoming packet. Packets identified as duplicates 15221 * must be discarded. Filtering is active only if the 15222 * the ip_cgtp_filter ndd variable is non-zero. 15223 * 15224 * Only applies to the shared stack since the filter_ops 15225 * do not carry an ip_stack_t or zoneid. 15226 */ 15227 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15228 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15229 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15230 cgtp_flt_pkt = 15231 ip_cgtp_filter_ops->cfo_filter(q, mp); 15232 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15233 freemsg(first_mp); 15234 continue; 15235 } 15236 } 15237 15238 /* 15239 * If rsvpd is running, let RSVP daemon handle its processing 15240 * and forwarding of RSVP multicast/unicast packets. 15241 * If rsvpd is not running but mrouted is running, RSVP 15242 * multicast packets are forwarded as multicast traffic 15243 * and RSVP unicast packets are forwarded by unicast router. 15244 * If neither rsvpd nor mrouted is running, RSVP multicast 15245 * packets are not forwarded, but the unicast packets are 15246 * forwarded like unicast traffic. 15247 */ 15248 if (ipha->ipha_protocol == IPPROTO_RSVP && 15249 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15250 NULL) { 15251 /* RSVP packet and rsvpd running. Treat as ours */ 15252 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15253 /* 15254 * This assumes that we deliver to all streams for 15255 * multicast and broadcast packets. 15256 * We have to force ll_multicast to 1 to handle the 15257 * M_DATA messages passed in from ip_mroute_decap. 15258 */ 15259 dst = INADDR_BROADCAST; 15260 ll_multicast = 1; 15261 } else if (CLASSD(dst)) { 15262 /* packet is multicast */ 15263 mp->b_next = NULL; 15264 if (ip_rput_process_multicast(q, mp, ill, ipha, 15265 &ll_multicast, &dst)) 15266 continue; 15267 } 15268 15269 15270 /* 15271 * Check if the packet is coming from the Mobile IP 15272 * forward tunnel interface 15273 */ 15274 if (ill->ill_srcif_refcnt > 0) { 15275 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15276 NULL, ill, MATCH_IRE_TYPE); 15277 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15278 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15279 15280 /* We need to resolve the link layer info */ 15281 ire_refrele(ire); 15282 ire = NULL; 15283 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15284 ll_multicast, dst); 15285 continue; 15286 } 15287 } 15288 15289 if (ire == NULL) { 15290 ire = ire_cache_lookup(dst, ALL_ZONES, 15291 MBLK_GETLABEL(mp), ipst); 15292 } 15293 15294 /* 15295 * If mipagent is running and reverse tunnel is created as per 15296 * mobile node request, then any packet coming through the 15297 * incoming interface from the mobile-node, should be reverse 15298 * tunneled to it's home agent except those that are destined 15299 * to foreign agent only. 15300 * This needs source address based ire lookup. The routing 15301 * entries for source address based lookup are only created by 15302 * mipagent program only when a reverse tunnel is created. 15303 * Reference : RFC2002, RFC2344 15304 */ 15305 if (ill->ill_mrtun_refcnt > 0) { 15306 ipaddr_t srcaddr; 15307 ire_t *tmp_ire; 15308 15309 tmp_ire = ire; /* Save, we might need it later */ 15310 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15311 ire->ire_type != IRE_BROADCAST)) { 15312 srcaddr = ipha->ipha_src; 15313 ire = ire_mrtun_lookup(srcaddr, ill); 15314 if (ire != NULL) { 15315 /* 15316 * Should not be getting iphada packet 15317 * here. we should only get those for 15318 * IRE_LOCAL traffic, excluded above. 15319 * Fail-safe (drop packet) in the event 15320 * hardware is misbehaving. 15321 */ 15322 if (first_mp != mp) { 15323 /* IPsec KSTATS: beancount me */ 15324 freemsg(first_mp); 15325 } else { 15326 /* 15327 * This packet must be forwarded 15328 * to Reverse Tunnel 15329 */ 15330 ip_mrtun_forward(ire, ill, mp); 15331 } 15332 ire_refrele(ire); 15333 ire = NULL; 15334 if (tmp_ire != NULL) { 15335 ire_refrele(tmp_ire); 15336 tmp_ire = NULL; 15337 } 15338 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15339 "ip_input_end: q %p (%S)", 15340 q, "uninit"); 15341 continue; 15342 } 15343 } 15344 /* 15345 * If this packet is from a non-mobilenode or a 15346 * mobile-node which does not request reverse 15347 * tunnel service 15348 */ 15349 ire = tmp_ire; 15350 } 15351 15352 15353 /* 15354 * If we reach here that means the incoming packet satisfies 15355 * one of the following conditions: 15356 * - packet is from a mobile node which does not request 15357 * reverse tunnel 15358 * - packet is from a non-mobile node, which is the most 15359 * common case 15360 * - packet is from a reverse tunnel enabled mobile node 15361 * and destined to foreign agent only 15362 */ 15363 15364 if (ire == NULL) { 15365 /* 15366 * No IRE for this destination, so it can't be for us. 15367 * Unless we are forwarding, drop the packet. 15368 * We have to let source routed packets through 15369 * since we don't yet know if they are 'ping -l' 15370 * packets i.e. if they will go out over the 15371 * same interface as they came in on. 15372 */ 15373 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15374 if (ire == NULL) 15375 continue; 15376 } 15377 15378 /* 15379 * Broadcast IRE may indicate either broadcast or 15380 * multicast packet 15381 */ 15382 if (ire->ire_type == IRE_BROADCAST) { 15383 /* 15384 * Skip broadcast checks if packet is UDP multicast; 15385 * we'd rather not enter ip_rput_process_broadcast() 15386 * unless the packet is broadcast for real, since 15387 * that routine is a no-op for multicast. 15388 */ 15389 if (ipha->ipha_protocol != IPPROTO_UDP || 15390 !CLASSD(ipha->ipha_dst)) { 15391 ire = ip_rput_process_broadcast(&q, mp, 15392 ire, ipha, ill, dst, cgtp_flt_pkt, 15393 ll_multicast); 15394 if (ire == NULL) 15395 continue; 15396 } 15397 } else if (ire->ire_stq != NULL) { 15398 /* fowarding? */ 15399 ip_rput_process_forward(q, mp, ire, ipha, ill, 15400 ll_multicast); 15401 /* ip_rput_process_forward consumed the packet */ 15402 continue; 15403 } 15404 15405 local: 15406 /* 15407 * If the queue in the ire is different to the ingress queue 15408 * then we need to check to see if we can accept the packet. 15409 * Note that for multicast packets and broadcast packets sent 15410 * to a broadcast address which is shared between multiple 15411 * interfaces we should not do this since we just got a random 15412 * broadcast ire. 15413 */ 15414 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15415 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15416 ill)) == NULL) { 15417 /* Drop packet */ 15418 BUMP_MIB(ill->ill_ip_mib, 15419 ipIfStatsForwProhibits); 15420 freemsg(mp); 15421 continue; 15422 } 15423 if (ire->ire_rfq != NULL) 15424 q = ire->ire_rfq; 15425 } 15426 15427 switch (ipha->ipha_protocol) { 15428 case IPPROTO_TCP: 15429 ASSERT(first_mp == mp); 15430 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15431 mp, 0, q, ip_ring)) != NULL) { 15432 if (curr_sqp == NULL) { 15433 curr_sqp = GET_SQUEUE(mp); 15434 ASSERT(cnt == 0); 15435 cnt++; 15436 head = tail = mp; 15437 } else if (curr_sqp == GET_SQUEUE(mp)) { 15438 ASSERT(tail != NULL); 15439 cnt++; 15440 tail->b_next = mp; 15441 tail = mp; 15442 } else { 15443 /* 15444 * A different squeue. Send the 15445 * chain for the previous squeue on 15446 * its way. This shouldn't happen 15447 * often unless interrupt binding 15448 * changes. 15449 */ 15450 IP_STAT(ipst, ip_input_multi_squeue); 15451 squeue_enter_chain(curr_sqp, head, 15452 tail, cnt, SQTAG_IP_INPUT); 15453 curr_sqp = GET_SQUEUE(mp); 15454 head = mp; 15455 tail = mp; 15456 cnt = 1; 15457 } 15458 } 15459 continue; 15460 case IPPROTO_UDP: 15461 ASSERT(first_mp == mp); 15462 ip_udp_input(q, mp, ipha, ire, ill); 15463 continue; 15464 case IPPROTO_SCTP: 15465 ASSERT(first_mp == mp); 15466 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15467 q, dst); 15468 /* ire has been released by ip_sctp_input */ 15469 ire = NULL; 15470 continue; 15471 default: 15472 ip_proto_input(q, first_mp, ipha, ire, ill); 15473 continue; 15474 } 15475 } 15476 15477 if (ire != NULL) 15478 ire_refrele(ire); 15479 15480 if (head != NULL) 15481 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15482 15483 /* 15484 * This code is there just to make netperf/ttcp look good. 15485 * 15486 * Its possible that after being in polling mode (and having cleared 15487 * the backlog), squeues have turned the interrupt frequency higher 15488 * to improve latency at the expense of more CPU utilization (less 15489 * packets per interrupts or more number of interrupts). Workloads 15490 * like ttcp/netperf do manage to tickle polling once in a while 15491 * but for the remaining time, stay in higher interrupt mode since 15492 * their packet arrival rate is pretty uniform and this shows up 15493 * as higher CPU utilization. Since people care about CPU utilization 15494 * while running netperf/ttcp, turn the interrupt frequency back to 15495 * normal/default if polling has not been used in ip_poll_normal_ticks. 15496 */ 15497 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15498 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15499 ip_ring->rr_poll_state &= ~ILL_POLLING; 15500 ip_ring->rr_blank(ip_ring->rr_handle, 15501 ip_ring->rr_normal_blank_time, 15502 ip_ring->rr_normal_pkt_cnt); 15503 } 15504 } 15505 15506 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15507 "ip_input_end: q %p (%S)", q, "end"); 15508 #undef rptr 15509 } 15510 15511 static void 15512 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15513 t_uscalar_t err) 15514 { 15515 if (dl_err == DL_SYSERR) { 15516 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15517 "%s: %s failed: DL_SYSERR (errno %u)\n", 15518 ill->ill_name, dlpi_prim_str(prim), err); 15519 return; 15520 } 15521 15522 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15523 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15524 dlpi_err_str(dl_err)); 15525 } 15526 15527 /* 15528 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15529 * than DL_UNITDATA_IND messages. If we need to process this message 15530 * exclusively, we call qwriter_ip, in which case we also need to call 15531 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15532 */ 15533 void 15534 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15535 { 15536 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15537 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15538 ill_t *ill = (ill_t *)q->q_ptr; 15539 boolean_t pending; 15540 15541 ip1dbg(("ip_rput_dlpi")); 15542 if (dloa->dl_primitive == DL_ERROR_ACK) { 15543 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15544 "%s (0x%x), unix %u\n", ill->ill_name, 15545 dlpi_prim_str(dlea->dl_error_primitive), 15546 dlea->dl_error_primitive, 15547 dlpi_err_str(dlea->dl_errno), 15548 dlea->dl_errno, 15549 dlea->dl_unix_errno)); 15550 } 15551 15552 /* 15553 * If we received an ACK but didn't send a request for it, then it 15554 * can't be part of any pending operation; discard up-front. 15555 */ 15556 switch (dloa->dl_primitive) { 15557 case DL_NOTIFY_IND: 15558 pending = B_TRUE; 15559 break; 15560 case DL_ERROR_ACK: 15561 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15562 break; 15563 case DL_OK_ACK: 15564 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15565 break; 15566 case DL_INFO_ACK: 15567 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15568 break; 15569 case DL_BIND_ACK: 15570 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15571 break; 15572 case DL_PHYS_ADDR_ACK: 15573 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15574 break; 15575 case DL_NOTIFY_ACK: 15576 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15577 break; 15578 case DL_CONTROL_ACK: 15579 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15580 break; 15581 case DL_CAPABILITY_ACK: 15582 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15583 break; 15584 default: 15585 /* Not a DLPI message we support or were expecting */ 15586 freemsg(mp); 15587 return; 15588 } 15589 15590 if (!pending) { 15591 freemsg(mp); 15592 return; 15593 } 15594 15595 switch (dloa->dl_primitive) { 15596 case DL_ERROR_ACK: 15597 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15598 mutex_enter(&ill->ill_lock); 15599 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15600 cv_signal(&ill->ill_cv); 15601 mutex_exit(&ill->ill_lock); 15602 } 15603 break; 15604 15605 case DL_OK_ACK: 15606 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15607 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15608 switch (dloa->dl_correct_primitive) { 15609 case DL_UNBIND_REQ: 15610 mutex_enter(&ill->ill_lock); 15611 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15612 cv_signal(&ill->ill_cv); 15613 mutex_exit(&ill->ill_lock); 15614 break; 15615 15616 case DL_ENABMULTI_REQ: 15617 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15618 ill->ill_dlpi_multicast_state = IDS_OK; 15619 break; 15620 } 15621 break; 15622 default: 15623 break; 15624 } 15625 15626 /* 15627 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15628 * and we need to become writer to continue to process it. If it's not 15629 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15630 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15631 * some work as part of the current exclusive operation that actually 15632 * is not part of it -- which is wrong, but better than the 15633 * alternative of deadlock (if NEW_OP is always used). Someday, we 15634 * should track which DLPI requests have ACKs that we wait on 15635 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15636 * 15637 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15638 * Since this is on the ill stream we unconditionally bump up the 15639 * refcount without doing ILL_CAN_LOOKUP(). 15640 */ 15641 ill_refhold(ill); 15642 if (dloa->dl_primitive == DL_NOTIFY_IND) 15643 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15644 else 15645 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15646 } 15647 15648 /* 15649 * Handling of DLPI messages that require exclusive access to the ipsq. 15650 * 15651 * Need to do ill_pending_mp_release on ioctl completion, which could 15652 * happen here. (along with mi_copy_done) 15653 */ 15654 /* ARGSUSED */ 15655 static void 15656 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15657 { 15658 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15659 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15660 int err = 0; 15661 ill_t *ill; 15662 ipif_t *ipif = NULL; 15663 mblk_t *mp1 = NULL; 15664 conn_t *connp = NULL; 15665 t_uscalar_t paddrreq; 15666 mblk_t *mp_hw; 15667 boolean_t success; 15668 boolean_t ioctl_aborted = B_FALSE; 15669 boolean_t log = B_TRUE; 15670 hook_nic_event_t *info; 15671 ip_stack_t *ipst; 15672 15673 ip1dbg(("ip_rput_dlpi_writer ..")); 15674 ill = (ill_t *)q->q_ptr; 15675 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15676 15677 ASSERT(IAM_WRITER_ILL(ill)); 15678 15679 ipst = ill->ill_ipst; 15680 15681 /* 15682 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15683 * both are null or non-null. However we can assert that only 15684 * after grabbing the ipsq_lock. So we don't make any assertion 15685 * here and in other places in the code. 15686 */ 15687 ipif = ipsq->ipsq_pending_ipif; 15688 /* 15689 * The current ioctl could have been aborted by the user and a new 15690 * ioctl to bring up another ill could have started. We could still 15691 * get a response from the driver later. 15692 */ 15693 if (ipif != NULL && ipif->ipif_ill != ill) 15694 ioctl_aborted = B_TRUE; 15695 15696 switch (dloa->dl_primitive) { 15697 case DL_ERROR_ACK: 15698 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15699 dlpi_prim_str(dlea->dl_error_primitive))); 15700 15701 switch (dlea->dl_error_primitive) { 15702 case DL_PROMISCON_REQ: 15703 case DL_PROMISCOFF_REQ: 15704 case DL_DISABMULTI_REQ: 15705 case DL_UNBIND_REQ: 15706 case DL_ATTACH_REQ: 15707 case DL_INFO_REQ: 15708 ill_dlpi_done(ill, dlea->dl_error_primitive); 15709 break; 15710 case DL_NOTIFY_REQ: 15711 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15712 log = B_FALSE; 15713 break; 15714 case DL_PHYS_ADDR_REQ: 15715 /* 15716 * For IPv6 only, there are two additional 15717 * phys_addr_req's sent to the driver to get the 15718 * IPv6 token and lla. This allows IP to acquire 15719 * the hardware address format for a given interface 15720 * without having built in knowledge of the hardware 15721 * address. ill_phys_addr_pend keeps track of the last 15722 * DL_PAR sent so we know which response we are 15723 * dealing with. ill_dlpi_done will update 15724 * ill_phys_addr_pend when it sends the next req. 15725 * We don't complete the IOCTL until all three DL_PARs 15726 * have been attempted, so set *_len to 0 and break. 15727 */ 15728 paddrreq = ill->ill_phys_addr_pend; 15729 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15730 if (paddrreq == DL_IPV6_TOKEN) { 15731 ill->ill_token_length = 0; 15732 log = B_FALSE; 15733 break; 15734 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15735 ill->ill_nd_lla_len = 0; 15736 log = B_FALSE; 15737 break; 15738 } 15739 /* 15740 * Something went wrong with the DL_PHYS_ADDR_REQ. 15741 * We presumably have an IOCTL hanging out waiting 15742 * for completion. Find it and complete the IOCTL 15743 * with the error noted. 15744 * However, ill_dl_phys was called on an ill queue 15745 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15746 * set. But the ioctl is known to be pending on ill_wq. 15747 */ 15748 if (!ill->ill_ifname_pending) 15749 break; 15750 ill->ill_ifname_pending = 0; 15751 if (!ioctl_aborted) 15752 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15753 if (mp1 != NULL) { 15754 /* 15755 * This operation (SIOCSLIFNAME) must have 15756 * happened on the ill. Assert there is no conn 15757 */ 15758 ASSERT(connp == NULL); 15759 q = ill->ill_wq; 15760 } 15761 break; 15762 case DL_BIND_REQ: 15763 ill_dlpi_done(ill, DL_BIND_REQ); 15764 if (ill->ill_ifname_pending) 15765 break; 15766 /* 15767 * Something went wrong with the bind. We presumably 15768 * have an IOCTL hanging out waiting for completion. 15769 * Find it, take down the interface that was coming 15770 * up, and complete the IOCTL with the error noted. 15771 */ 15772 if (!ioctl_aborted) 15773 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15774 if (mp1 != NULL) { 15775 /* 15776 * This operation (SIOCSLIFFLAGS) must have 15777 * happened from a conn. 15778 */ 15779 ASSERT(connp != NULL); 15780 q = CONNP_TO_WQ(connp); 15781 if (ill->ill_move_in_progress) { 15782 ILL_CLEAR_MOVE(ill); 15783 } 15784 (void) ipif_down(ipif, NULL, NULL); 15785 /* error is set below the switch */ 15786 } 15787 break; 15788 case DL_ENABMULTI_REQ: 15789 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15790 15791 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15792 ill->ill_dlpi_multicast_state = IDS_FAILED; 15793 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15794 ipif_t *ipif; 15795 15796 printf("ip: joining multicasts failed (%d)" 15797 " on %s - will use link layer " 15798 "broadcasts for multicast\n", 15799 dlea->dl_errno, ill->ill_name); 15800 15801 /* 15802 * Set up the multicast mapping alone. 15803 * writer, so ok to access ill->ill_ipif 15804 * without any lock. 15805 */ 15806 ipif = ill->ill_ipif; 15807 mutex_enter(&ill->ill_phyint->phyint_lock); 15808 ill->ill_phyint->phyint_flags |= 15809 PHYI_MULTI_BCAST; 15810 mutex_exit(&ill->ill_phyint->phyint_lock); 15811 15812 if (!ill->ill_isv6) { 15813 (void) ipif_arp_setup_multicast(ipif, 15814 NULL); 15815 } else { 15816 (void) ipif_ndp_setup_multicast(ipif, 15817 NULL); 15818 } 15819 } 15820 freemsg(mp); /* Don't want to pass this up */ 15821 return; 15822 15823 case DL_CAPABILITY_REQ: 15824 case DL_CONTROL_REQ: 15825 ill_dlpi_done(ill, dlea->dl_error_primitive); 15826 ill->ill_dlpi_capab_state = IDS_FAILED; 15827 freemsg(mp); 15828 return; 15829 } 15830 /* 15831 * Note the error for IOCTL completion (mp1 is set when 15832 * ready to complete ioctl). If ill_ifname_pending_err is 15833 * set, an error occured during plumbing (ill_ifname_pending), 15834 * so we want to report that error. 15835 * 15836 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15837 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15838 * expected to get errack'd if the driver doesn't support 15839 * these flags (e.g. ethernet). log will be set to B_FALSE 15840 * if these error conditions are encountered. 15841 */ 15842 if (mp1 != NULL) { 15843 if (ill->ill_ifname_pending_err != 0) { 15844 err = ill->ill_ifname_pending_err; 15845 ill->ill_ifname_pending_err = 0; 15846 } else { 15847 err = dlea->dl_unix_errno ? 15848 dlea->dl_unix_errno : ENXIO; 15849 } 15850 /* 15851 * If we're plumbing an interface and an error hasn't already 15852 * been saved, set ill_ifname_pending_err to the error passed 15853 * up. Ignore the error if log is B_FALSE (see comment above). 15854 */ 15855 } else if (log && ill->ill_ifname_pending && 15856 ill->ill_ifname_pending_err == 0) { 15857 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15858 dlea->dl_unix_errno : ENXIO; 15859 } 15860 15861 if (log) 15862 ip_dlpi_error(ill, dlea->dl_error_primitive, 15863 dlea->dl_errno, dlea->dl_unix_errno); 15864 break; 15865 case DL_CAPABILITY_ACK: { 15866 boolean_t reneg_flag = B_FALSE; 15867 /* Call a routine to handle this one. */ 15868 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15869 /* 15870 * Check if the ACK is due to renegotiation case since we 15871 * will need to send a new CAPABILITY_REQ later. 15872 */ 15873 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15874 /* This is the ack for a renogiation case */ 15875 reneg_flag = B_TRUE; 15876 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15877 } 15878 ill_capability_ack(ill, mp); 15879 if (reneg_flag) 15880 ill_capability_probe(ill); 15881 break; 15882 } 15883 case DL_CONTROL_ACK: 15884 /* We treat all of these as "fire and forget" */ 15885 ill_dlpi_done(ill, DL_CONTROL_REQ); 15886 break; 15887 case DL_INFO_ACK: 15888 /* Call a routine to handle this one. */ 15889 ill_dlpi_done(ill, DL_INFO_REQ); 15890 ip_ll_subnet_defaults(ill, mp); 15891 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15892 return; 15893 case DL_BIND_ACK: 15894 /* 15895 * We should have an IOCTL waiting on this unless 15896 * sent by ill_dl_phys, in which case just return 15897 */ 15898 ill_dlpi_done(ill, DL_BIND_REQ); 15899 if (ill->ill_ifname_pending) 15900 break; 15901 15902 if (!ioctl_aborted) 15903 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15904 if (mp1 == NULL) 15905 break; 15906 /* 15907 * Because mp1 was added by ill_dl_up(), and it always 15908 * passes a valid connp, connp must be valid here. 15909 */ 15910 ASSERT(connp != NULL); 15911 q = CONNP_TO_WQ(connp); 15912 15913 /* 15914 * We are exclusive. So nothing can change even after 15915 * we get the pending mp. If need be we can put it back 15916 * and restart, as in calling ipif_arp_up() below. 15917 */ 15918 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15919 15920 mutex_enter(&ill->ill_lock); 15921 15922 ill->ill_dl_up = 1; 15923 15924 if ((info = ill->ill_nic_event_info) != NULL) { 15925 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15926 "attached for %s\n", info->hne_event, 15927 ill->ill_name)); 15928 if (info->hne_data != NULL) 15929 kmem_free(info->hne_data, info->hne_datalen); 15930 kmem_free(info, sizeof (hook_nic_event_t)); 15931 } 15932 15933 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15934 if (info != NULL) { 15935 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15936 info->hne_lif = 0; 15937 info->hne_event = NE_UP; 15938 info->hne_data = NULL; 15939 info->hne_datalen = 0; 15940 info->hne_family = ill->ill_isv6 ? 15941 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15942 } else 15943 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15944 "event information for %s (ENOMEM)\n", 15945 ill->ill_name)); 15946 15947 ill->ill_nic_event_info = info; 15948 15949 mutex_exit(&ill->ill_lock); 15950 15951 /* 15952 * Now bring up the resolver; when that is complete, we'll 15953 * create IREs. Note that we intentionally mirror what 15954 * ipif_up() would have done, because we got here by way of 15955 * ill_dl_up(), which stopped ipif_up()'s processing. 15956 */ 15957 if (ill->ill_isv6) { 15958 /* 15959 * v6 interfaces. 15960 * Unlike ARP which has to do another bind 15961 * and attach, once we get here we are 15962 * done with NDP. Except in the case of 15963 * ILLF_XRESOLV, in which case we send an 15964 * AR_INTERFACE_UP to the external resolver. 15965 * If all goes well, the ioctl will complete 15966 * in ip_rput(). If there's an error, we 15967 * complete it here. 15968 */ 15969 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 15970 if (err == 0) { 15971 if (ill->ill_flags & ILLF_XRESOLV) { 15972 mutex_enter(&connp->conn_lock); 15973 mutex_enter(&ill->ill_lock); 15974 success = ipsq_pending_mp_add( 15975 connp, ipif, q, mp1, 0); 15976 mutex_exit(&ill->ill_lock); 15977 mutex_exit(&connp->conn_lock); 15978 if (success) { 15979 err = ipif_resolver_up(ipif, 15980 Res_act_initial); 15981 if (err == EINPROGRESS) { 15982 freemsg(mp); 15983 return; 15984 } 15985 ASSERT(err != 0); 15986 mp1 = ipsq_pending_mp_get(ipsq, 15987 &connp); 15988 ASSERT(mp1 != NULL); 15989 } else { 15990 /* conn has started closing */ 15991 err = EINTR; 15992 } 15993 } else { /* Non XRESOLV interface */ 15994 (void) ipif_resolver_up(ipif, 15995 Res_act_initial); 15996 err = ipif_up_done_v6(ipif); 15997 } 15998 } 15999 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16000 /* 16001 * ARP and other v4 external resolvers. 16002 * Leave the pending mblk intact so that 16003 * the ioctl completes in ip_rput(). 16004 */ 16005 mutex_enter(&connp->conn_lock); 16006 mutex_enter(&ill->ill_lock); 16007 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16008 mutex_exit(&ill->ill_lock); 16009 mutex_exit(&connp->conn_lock); 16010 if (success) { 16011 err = ipif_resolver_up(ipif, Res_act_initial); 16012 if (err == EINPROGRESS) { 16013 freemsg(mp); 16014 return; 16015 } 16016 ASSERT(err != 0); 16017 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16018 } else { 16019 /* The conn has started closing */ 16020 err = EINTR; 16021 } 16022 } else { 16023 /* 16024 * This one is complete. Reply to pending ioctl. 16025 */ 16026 (void) ipif_resolver_up(ipif, Res_act_initial); 16027 err = ipif_up_done(ipif); 16028 } 16029 16030 if ((err == 0) && (ill->ill_up_ipifs)) { 16031 err = ill_up_ipifs(ill, q, mp1); 16032 if (err == EINPROGRESS) { 16033 freemsg(mp); 16034 return; 16035 } 16036 } 16037 16038 if (ill->ill_up_ipifs) { 16039 ill_group_cleanup(ill); 16040 } 16041 16042 break; 16043 case DL_NOTIFY_IND: { 16044 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16045 ire_t *ire; 16046 boolean_t need_ire_walk_v4 = B_FALSE; 16047 boolean_t need_ire_walk_v6 = B_FALSE; 16048 16049 switch (notify->dl_notification) { 16050 case DL_NOTE_PHYS_ADDR: 16051 err = ill_set_phys_addr(ill, mp); 16052 break; 16053 16054 case DL_NOTE_FASTPATH_FLUSH: 16055 ill_fastpath_flush(ill); 16056 break; 16057 16058 case DL_NOTE_SDU_SIZE: 16059 /* 16060 * Change the MTU size of the interface, of all 16061 * attached ipif's, and of all relevant ire's. The 16062 * new value's a uint32_t at notify->dl_data. 16063 * Mtu change Vs. new ire creation - protocol below. 16064 * 16065 * a Mark the ipif as IPIF_CHANGING. 16066 * b Set the new mtu in the ipif. 16067 * c Change the ire_max_frag on all affected ires 16068 * d Unmark the IPIF_CHANGING 16069 * 16070 * To see how the protocol works, assume an interface 16071 * route is also being added simultaneously by 16072 * ip_rt_add and let 'ipif' be the ipif referenced by 16073 * the ire. If the ire is created before step a, 16074 * it will be cleaned up by step c. If the ire is 16075 * created after step d, it will see the new value of 16076 * ipif_mtu. Any attempt to create the ire between 16077 * steps a to d will fail because of the IPIF_CHANGING 16078 * flag. Note that ire_create() is passed a pointer to 16079 * the ipif_mtu, and not the value. During ire_add 16080 * under the bucket lock, the ire_max_frag of the 16081 * new ire being created is set from the ipif/ire from 16082 * which it is being derived. 16083 */ 16084 mutex_enter(&ill->ill_lock); 16085 ill->ill_max_frag = (uint_t)notify->dl_data; 16086 16087 /* 16088 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16089 * leave it alone 16090 */ 16091 if (ill->ill_mtu_userspecified) { 16092 mutex_exit(&ill->ill_lock); 16093 break; 16094 } 16095 ill->ill_max_mtu = ill->ill_max_frag; 16096 if (ill->ill_isv6) { 16097 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16098 ill->ill_max_mtu = IPV6_MIN_MTU; 16099 } else { 16100 if (ill->ill_max_mtu < IP_MIN_MTU) 16101 ill->ill_max_mtu = IP_MIN_MTU; 16102 } 16103 for (ipif = ill->ill_ipif; ipif != NULL; 16104 ipif = ipif->ipif_next) { 16105 /* 16106 * Don't override the mtu if the user 16107 * has explicitly set it. 16108 */ 16109 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16110 continue; 16111 ipif->ipif_mtu = (uint_t)notify->dl_data; 16112 if (ipif->ipif_isv6) 16113 ire = ipif_to_ire_v6(ipif); 16114 else 16115 ire = ipif_to_ire(ipif); 16116 if (ire != NULL) { 16117 ire->ire_max_frag = ipif->ipif_mtu; 16118 ire_refrele(ire); 16119 } 16120 if (ipif->ipif_flags & IPIF_UP) { 16121 if (ill->ill_isv6) 16122 need_ire_walk_v6 = B_TRUE; 16123 else 16124 need_ire_walk_v4 = B_TRUE; 16125 } 16126 } 16127 mutex_exit(&ill->ill_lock); 16128 if (need_ire_walk_v4) 16129 ire_walk_v4(ill_mtu_change, (char *)ill, 16130 ALL_ZONES, ipst); 16131 if (need_ire_walk_v6) 16132 ire_walk_v6(ill_mtu_change, (char *)ill, 16133 ALL_ZONES, ipst); 16134 break; 16135 case DL_NOTE_LINK_UP: 16136 case DL_NOTE_LINK_DOWN: { 16137 /* 16138 * We are writer. ill / phyint / ipsq assocs stable. 16139 * The RUNNING flag reflects the state of the link. 16140 */ 16141 phyint_t *phyint = ill->ill_phyint; 16142 uint64_t new_phyint_flags; 16143 boolean_t changed = B_FALSE; 16144 boolean_t went_up; 16145 16146 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16147 mutex_enter(&phyint->phyint_lock); 16148 new_phyint_flags = went_up ? 16149 phyint->phyint_flags | PHYI_RUNNING : 16150 phyint->phyint_flags & ~PHYI_RUNNING; 16151 if (new_phyint_flags != phyint->phyint_flags) { 16152 phyint->phyint_flags = new_phyint_flags; 16153 changed = B_TRUE; 16154 } 16155 mutex_exit(&phyint->phyint_lock); 16156 /* 16157 * ill_restart_dad handles the DAD restart and routing 16158 * socket notification logic. 16159 */ 16160 if (changed) { 16161 ill_restart_dad(phyint->phyint_illv4, went_up); 16162 ill_restart_dad(phyint->phyint_illv6, went_up); 16163 } 16164 break; 16165 } 16166 case DL_NOTE_PROMISC_ON_PHYS: 16167 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16168 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16169 mutex_enter(&ill->ill_lock); 16170 ill->ill_promisc_on_phys = B_TRUE; 16171 mutex_exit(&ill->ill_lock); 16172 break; 16173 case DL_NOTE_PROMISC_OFF_PHYS: 16174 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16175 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16176 mutex_enter(&ill->ill_lock); 16177 ill->ill_promisc_on_phys = B_FALSE; 16178 mutex_exit(&ill->ill_lock); 16179 break; 16180 case DL_NOTE_CAPAB_RENEG: 16181 /* 16182 * Something changed on the driver side. 16183 * It wants us to renegotiate the capabilities 16184 * on this ill. The most likely cause is the 16185 * aggregation interface under us where a 16186 * port got added or went away. 16187 * 16188 * We reset the capabilities and set the 16189 * state to IDS_RENG so that when the ack 16190 * comes back, we can start the 16191 * renegotiation process. 16192 */ 16193 ill_capability_reset(ill); 16194 ill->ill_dlpi_capab_state = IDS_RENEG; 16195 break; 16196 default: 16197 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16198 "type 0x%x for DL_NOTIFY_IND\n", 16199 notify->dl_notification)); 16200 break; 16201 } 16202 16203 /* 16204 * As this is an asynchronous operation, we 16205 * should not call ill_dlpi_done 16206 */ 16207 break; 16208 } 16209 case DL_NOTIFY_ACK: { 16210 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16211 16212 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16213 ill->ill_note_link = 1; 16214 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16215 break; 16216 } 16217 case DL_PHYS_ADDR_ACK: { 16218 /* 16219 * As part of plumbing the interface via SIOCSLIFNAME, 16220 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16221 * whose answers we receive here. As each answer is received, 16222 * we call ill_dlpi_done() to dispatch the next request as 16223 * we're processing the current one. Once all answers have 16224 * been received, we use ipsq_pending_mp_get() to dequeue the 16225 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16226 * is invoked from an ill queue, conn_oper_pending_ill is not 16227 * available, but we know the ioctl is pending on ill_wq.) 16228 */ 16229 uint_t paddrlen, paddroff; 16230 16231 paddrreq = ill->ill_phys_addr_pend; 16232 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16233 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16234 16235 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16236 if (paddrreq == DL_IPV6_TOKEN) { 16237 /* 16238 * bcopy to low-order bits of ill_token 16239 * 16240 * XXX Temporary hack - currently, all known tokens 16241 * are 64 bits, so I'll cheat for the moment. 16242 */ 16243 bcopy(mp->b_rptr + paddroff, 16244 &ill->ill_token.s6_addr32[2], paddrlen); 16245 ill->ill_token_length = paddrlen; 16246 break; 16247 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16248 ASSERT(ill->ill_nd_lla_mp == NULL); 16249 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16250 mp = NULL; 16251 break; 16252 } 16253 16254 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16255 ASSERT(ill->ill_phys_addr_mp == NULL); 16256 if (!ill->ill_ifname_pending) 16257 break; 16258 ill->ill_ifname_pending = 0; 16259 if (!ioctl_aborted) 16260 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16261 if (mp1 != NULL) { 16262 ASSERT(connp == NULL); 16263 q = ill->ill_wq; 16264 } 16265 /* 16266 * If any error acks received during the plumbing sequence, 16267 * ill_ifname_pending_err will be set. Break out and send up 16268 * the error to the pending ioctl. 16269 */ 16270 if (ill->ill_ifname_pending_err != 0) { 16271 err = ill->ill_ifname_pending_err; 16272 ill->ill_ifname_pending_err = 0; 16273 break; 16274 } 16275 16276 ill->ill_phys_addr_mp = mp; 16277 ill->ill_phys_addr = mp->b_rptr + paddroff; 16278 mp = NULL; 16279 16280 /* 16281 * If paddrlen is zero, the DLPI provider doesn't support 16282 * physical addresses. The other two tests were historical 16283 * workarounds for bugs in our former PPP implementation, but 16284 * now other things have grown dependencies on them -- e.g., 16285 * the tun module specifies a dl_addr_length of zero in its 16286 * DL_BIND_ACK, but then specifies an incorrect value in its 16287 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16288 * but only after careful testing ensures that all dependent 16289 * broken DLPI providers have been fixed. 16290 */ 16291 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16292 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16293 ill->ill_phys_addr = NULL; 16294 } else if (paddrlen != ill->ill_phys_addr_length) { 16295 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16296 paddrlen, ill->ill_phys_addr_length)); 16297 err = EINVAL; 16298 break; 16299 } 16300 16301 if (ill->ill_nd_lla_mp == NULL) { 16302 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16303 err = ENOMEM; 16304 break; 16305 } 16306 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16307 } 16308 16309 /* 16310 * Set the interface token. If the zeroth interface address 16311 * is unspecified, then set it to the link local address. 16312 */ 16313 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16314 (void) ill_setdefaulttoken(ill); 16315 16316 ASSERT(ill->ill_ipif->ipif_id == 0); 16317 if (ipif != NULL && 16318 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16319 (void) ipif_setlinklocal(ipif); 16320 } 16321 break; 16322 } 16323 case DL_OK_ACK: 16324 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16325 dlpi_prim_str((int)dloa->dl_correct_primitive), 16326 dloa->dl_correct_primitive)); 16327 switch (dloa->dl_correct_primitive) { 16328 case DL_PROMISCON_REQ: 16329 case DL_PROMISCOFF_REQ: 16330 case DL_ENABMULTI_REQ: 16331 case DL_DISABMULTI_REQ: 16332 case DL_UNBIND_REQ: 16333 case DL_ATTACH_REQ: 16334 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16335 break; 16336 } 16337 break; 16338 default: 16339 break; 16340 } 16341 16342 freemsg(mp); 16343 if (mp1 != NULL) { 16344 /* 16345 * The operation must complete without EINPROGRESS 16346 * since ipsq_pending_mp_get() has removed the mblk 16347 * from ipsq_pending_mp. Otherwise, the operation 16348 * will be stuck forever in the ipsq. 16349 */ 16350 ASSERT(err != EINPROGRESS); 16351 16352 switch (ipsq->ipsq_current_ioctl) { 16353 case 0: 16354 ipsq_current_finish(ipsq); 16355 break; 16356 16357 case SIOCLIFADDIF: 16358 case SIOCSLIFNAME: 16359 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16360 break; 16361 16362 default: 16363 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16364 break; 16365 } 16366 } 16367 } 16368 16369 /* 16370 * ip_rput_other is called by ip_rput to handle messages modifying the global 16371 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16372 */ 16373 /* ARGSUSED */ 16374 void 16375 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16376 { 16377 ill_t *ill; 16378 struct iocblk *iocp; 16379 mblk_t *mp1; 16380 conn_t *connp = NULL; 16381 16382 ip1dbg(("ip_rput_other ")); 16383 ill = (ill_t *)q->q_ptr; 16384 /* 16385 * This routine is not a writer in the case of SIOCGTUNPARAM 16386 * in which case ipsq is NULL. 16387 */ 16388 if (ipsq != NULL) { 16389 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16390 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16391 } 16392 16393 switch (mp->b_datap->db_type) { 16394 case M_ERROR: 16395 case M_HANGUP: 16396 /* 16397 * The device has a problem. We force the ILL down. It can 16398 * be brought up again manually using SIOCSIFFLAGS (via 16399 * ifconfig or equivalent). 16400 */ 16401 ASSERT(ipsq != NULL); 16402 if (mp->b_rptr < mp->b_wptr) 16403 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16404 if (ill->ill_error == 0) 16405 ill->ill_error = ENXIO; 16406 if (!ill_down_start(q, mp)) 16407 return; 16408 ipif_all_down_tail(ipsq, q, mp, NULL); 16409 break; 16410 case M_IOCACK: 16411 iocp = (struct iocblk *)mp->b_rptr; 16412 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16413 switch (iocp->ioc_cmd) { 16414 case SIOCSTUNPARAM: 16415 case OSIOCSTUNPARAM: 16416 ASSERT(ipsq != NULL); 16417 /* 16418 * Finish socket ioctl passed through to tun. 16419 * We should have an IOCTL waiting on this. 16420 */ 16421 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16422 if (ill->ill_isv6) { 16423 struct iftun_req *ta; 16424 16425 /* 16426 * if a source or destination is 16427 * being set, try and set the link 16428 * local address for the tunnel 16429 */ 16430 ta = (struct iftun_req *)mp->b_cont-> 16431 b_cont->b_rptr; 16432 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16433 ipif_set_tun_llink(ill, ta); 16434 } 16435 16436 } 16437 if (mp1 != NULL) { 16438 /* 16439 * Now copy back the b_next/b_prev used by 16440 * mi code for the mi_copy* functions. 16441 * See ip_sioctl_tunparam() for the reason. 16442 * Also protect against missing b_cont. 16443 */ 16444 if (mp->b_cont != NULL) { 16445 mp->b_cont->b_next = 16446 mp1->b_cont->b_next; 16447 mp->b_cont->b_prev = 16448 mp1->b_cont->b_prev; 16449 } 16450 inet_freemsg(mp1); 16451 ASSERT(connp != NULL); 16452 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16453 iocp->ioc_error, NO_COPYOUT, ipsq); 16454 } else { 16455 ASSERT(connp == NULL); 16456 putnext(q, mp); 16457 } 16458 break; 16459 case SIOCGTUNPARAM: 16460 case OSIOCGTUNPARAM: 16461 /* 16462 * This is really M_IOCDATA from the tunnel driver. 16463 * convert back and complete the ioctl. 16464 * We should have an IOCTL waiting on this. 16465 */ 16466 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16467 if (mp1) { 16468 /* 16469 * Now copy back the b_next/b_prev used by 16470 * mi code for the mi_copy* functions. 16471 * See ip_sioctl_tunparam() for the reason. 16472 * Also protect against missing b_cont. 16473 */ 16474 if (mp->b_cont != NULL) { 16475 mp->b_cont->b_next = 16476 mp1->b_cont->b_next; 16477 mp->b_cont->b_prev = 16478 mp1->b_cont->b_prev; 16479 } 16480 inet_freemsg(mp1); 16481 if (iocp->ioc_error == 0) 16482 mp->b_datap->db_type = M_IOCDATA; 16483 ASSERT(connp != NULL); 16484 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16485 iocp->ioc_error, COPYOUT, NULL); 16486 } else { 16487 ASSERT(connp == NULL); 16488 putnext(q, mp); 16489 } 16490 break; 16491 default: 16492 break; 16493 } 16494 break; 16495 case M_IOCNAK: 16496 iocp = (struct iocblk *)mp->b_rptr; 16497 16498 switch (iocp->ioc_cmd) { 16499 int mode; 16500 16501 case DL_IOC_HDR_INFO: 16502 /* 16503 * If this was the first attempt turn of the 16504 * fastpath probing. 16505 */ 16506 mutex_enter(&ill->ill_lock); 16507 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16508 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16509 mutex_exit(&ill->ill_lock); 16510 ill_fastpath_nack(ill); 16511 ip1dbg(("ip_rput: DLPI fastpath off on " 16512 "interface %s\n", 16513 ill->ill_name)); 16514 } else { 16515 mutex_exit(&ill->ill_lock); 16516 } 16517 freemsg(mp); 16518 break; 16519 case SIOCSTUNPARAM: 16520 case OSIOCSTUNPARAM: 16521 ASSERT(ipsq != NULL); 16522 /* 16523 * Finish socket ioctl passed through to tun 16524 * We should have an IOCTL waiting on this. 16525 */ 16526 /* FALLTHRU */ 16527 case SIOCGTUNPARAM: 16528 case OSIOCGTUNPARAM: 16529 /* 16530 * This is really M_IOCDATA from the tunnel driver. 16531 * convert back and complete the ioctl. 16532 * We should have an IOCTL waiting on this. 16533 */ 16534 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16535 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16536 mp1 = ill_pending_mp_get(ill, &connp, 16537 iocp->ioc_id); 16538 mode = COPYOUT; 16539 ipsq = NULL; 16540 } else { 16541 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16542 mode = NO_COPYOUT; 16543 } 16544 if (mp1 != NULL) { 16545 /* 16546 * Now copy back the b_next/b_prev used by 16547 * mi code for the mi_copy* functions. 16548 * See ip_sioctl_tunparam() for the reason. 16549 * Also protect against missing b_cont. 16550 */ 16551 if (mp->b_cont != NULL) { 16552 mp->b_cont->b_next = 16553 mp1->b_cont->b_next; 16554 mp->b_cont->b_prev = 16555 mp1->b_cont->b_prev; 16556 } 16557 inet_freemsg(mp1); 16558 if (iocp->ioc_error == 0) 16559 iocp->ioc_error = EINVAL; 16560 ASSERT(connp != NULL); 16561 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16562 iocp->ioc_error, mode, ipsq); 16563 } else { 16564 ASSERT(connp == NULL); 16565 putnext(q, mp); 16566 } 16567 break; 16568 default: 16569 break; 16570 } 16571 default: 16572 break; 16573 } 16574 } 16575 16576 /* 16577 * NOTE : This function does not ire_refrele the ire argument passed in. 16578 * 16579 * IPQoS notes 16580 * IP policy is invoked twice for a forwarded packet, once on the read side 16581 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16582 * enabled. An additional parameter, in_ill, has been added for this purpose. 16583 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16584 * because ip_mroute drops this information. 16585 * 16586 */ 16587 void 16588 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16589 { 16590 uint32_t old_pkt_len; 16591 uint32_t pkt_len; 16592 queue_t *q; 16593 uint32_t sum; 16594 #define rptr ((uchar_t *)ipha) 16595 uint32_t max_frag; 16596 uint32_t ill_index; 16597 ill_t *out_ill; 16598 mib2_ipIfStatsEntry_t *mibptr; 16599 ip_stack_t *ipst = in_ill->ill_ipst; 16600 16601 /* Get the ill_index of the incoming ILL */ 16602 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16603 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16604 16605 /* Initiate Read side IPPF processing */ 16606 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16607 ip_process(IPP_FWD_IN, &mp, ill_index); 16608 if (mp == NULL) { 16609 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16610 "during IPPF processing\n")); 16611 return; 16612 } 16613 } 16614 16615 /* Adjust the checksum to reflect the ttl decrement. */ 16616 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16617 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16618 16619 if (ipha->ipha_ttl-- <= 1) { 16620 if (ip_csum_hdr(ipha)) { 16621 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16622 goto drop_pkt; 16623 } 16624 /* 16625 * Note: ire_stq this will be NULL for multicast 16626 * datagrams using the long path through arp (the IRE 16627 * is not an IRE_CACHE). This should not cause 16628 * problems since we don't generate ICMP errors for 16629 * multicast packets. 16630 */ 16631 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16632 q = ire->ire_stq; 16633 if (q != NULL) { 16634 /* Sent by forwarding path, and router is global zone */ 16635 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16636 GLOBAL_ZONEID, ipst); 16637 } else 16638 freemsg(mp); 16639 return; 16640 } 16641 16642 /* 16643 * Don't forward if the interface is down 16644 */ 16645 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16646 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16647 ip2dbg(("ip_rput_forward:interface is down\n")); 16648 goto drop_pkt; 16649 } 16650 16651 /* Get the ill_index of the outgoing ILL */ 16652 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16653 16654 out_ill = ire->ire_ipif->ipif_ill; 16655 16656 DTRACE_PROBE4(ip4__forwarding__start, 16657 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16658 16659 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16660 ipst->ips_ipv4firewall_forwarding, 16661 in_ill, out_ill, ipha, mp, mp, ipst); 16662 16663 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16664 16665 if (mp == NULL) 16666 return; 16667 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16668 16669 if (is_system_labeled()) { 16670 mblk_t *mp1; 16671 16672 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16673 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16674 goto drop_pkt; 16675 } 16676 /* Size may have changed */ 16677 mp = mp1; 16678 ipha = (ipha_t *)mp->b_rptr; 16679 pkt_len = ntohs(ipha->ipha_length); 16680 } 16681 16682 /* Check if there are options to update */ 16683 if (!IS_SIMPLE_IPH(ipha)) { 16684 if (ip_csum_hdr(ipha)) { 16685 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16686 goto drop_pkt; 16687 } 16688 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16689 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16690 return; 16691 } 16692 16693 ipha->ipha_hdr_checksum = 0; 16694 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16695 } 16696 max_frag = ire->ire_max_frag; 16697 if (pkt_len > max_frag) { 16698 /* 16699 * It needs fragging on its way out. We haven't 16700 * verified the header checksum yet. Since we 16701 * are going to put a surely good checksum in the 16702 * outgoing header, we have to make sure that it 16703 * was good coming in. 16704 */ 16705 if (ip_csum_hdr(ipha)) { 16706 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16707 goto drop_pkt; 16708 } 16709 /* Initiate Write side IPPF processing */ 16710 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16711 ip_process(IPP_FWD_OUT, &mp, ill_index); 16712 if (mp == NULL) { 16713 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16714 " during IPPF processing\n")); 16715 return; 16716 } 16717 } 16718 /* 16719 * Handle labeled packet resizing. 16720 * 16721 * If we have added a label, inform ip_wput_frag() of its 16722 * effect on the MTU for ICMP messages. 16723 */ 16724 if (pkt_len > old_pkt_len) { 16725 uint32_t secopt_size; 16726 16727 secopt_size = pkt_len - old_pkt_len; 16728 if (secopt_size < max_frag) 16729 max_frag -= secopt_size; 16730 } 16731 16732 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16733 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16734 return; 16735 } 16736 16737 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16738 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16739 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16740 ipst->ips_ipv4firewall_physical_out, 16741 NULL, out_ill, ipha, mp, mp, ipst); 16742 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16743 if (mp == NULL) 16744 return; 16745 16746 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16747 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16748 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16749 /* ip_xmit_v4 always consumes the packet */ 16750 return; 16751 16752 drop_pkt:; 16753 ip1dbg(("ip_rput_forward: drop pkt\n")); 16754 freemsg(mp); 16755 #undef rptr 16756 } 16757 16758 void 16759 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16760 { 16761 ire_t *ire; 16762 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16763 16764 ASSERT(!ipif->ipif_isv6); 16765 /* 16766 * Find an IRE which matches the destination and the outgoing 16767 * queue in the cache table. All we need is an IRE_CACHE which 16768 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16769 * then it is enough to have some IRE_CACHE in the group. 16770 */ 16771 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16772 dst = ipif->ipif_pp_dst_addr; 16773 16774 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16775 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16776 if (ire == NULL) { 16777 /* 16778 * Mark this packet to make it be delivered to 16779 * ip_rput_forward after the new ire has been 16780 * created. 16781 */ 16782 mp->b_prev = NULL; 16783 mp->b_next = mp; 16784 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16785 NULL, 0, GLOBAL_ZONEID, &zero_info); 16786 } else { 16787 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16788 IRE_REFRELE(ire); 16789 } 16790 } 16791 16792 /* Update any source route, record route or timestamp options */ 16793 static int 16794 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16795 { 16796 ipoptp_t opts; 16797 uchar_t *opt; 16798 uint8_t optval; 16799 uint8_t optlen; 16800 ipaddr_t dst; 16801 uint32_t ts; 16802 ire_t *dst_ire = NULL; 16803 ire_t *tmp_ire = NULL; 16804 timestruc_t now; 16805 16806 ip2dbg(("ip_rput_forward_options\n")); 16807 dst = ipha->ipha_dst; 16808 for (optval = ipoptp_first(&opts, ipha); 16809 optval != IPOPT_EOL; 16810 optval = ipoptp_next(&opts)) { 16811 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16812 opt = opts.ipoptp_cur; 16813 optlen = opts.ipoptp_len; 16814 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16815 optval, opts.ipoptp_len)); 16816 switch (optval) { 16817 uint32_t off; 16818 case IPOPT_SSRR: 16819 case IPOPT_LSRR: 16820 /* Check if adminstratively disabled */ 16821 if (!ipst->ips_ip_forward_src_routed) { 16822 if (ire->ire_stq != NULL) { 16823 /* 16824 * Sent by forwarding path, and router 16825 * is global zone 16826 */ 16827 icmp_unreachable(ire->ire_stq, mp, 16828 ICMP_SOURCE_ROUTE_FAILED, 16829 GLOBAL_ZONEID, ipst); 16830 } else { 16831 ip0dbg(("ip_rput_forward_options: " 16832 "unable to send unreach\n")); 16833 freemsg(mp); 16834 } 16835 return (-1); 16836 } 16837 16838 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16839 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16840 if (dst_ire == NULL) { 16841 /* 16842 * Must be partial since ip_rput_options 16843 * checked for strict. 16844 */ 16845 break; 16846 } 16847 off = opt[IPOPT_OFFSET]; 16848 off--; 16849 redo_srr: 16850 if (optlen < IP_ADDR_LEN || 16851 off > optlen - IP_ADDR_LEN) { 16852 /* End of source route */ 16853 ip1dbg(( 16854 "ip_rput_forward_options: end of SR\n")); 16855 ire_refrele(dst_ire); 16856 break; 16857 } 16858 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16859 bcopy(&ire->ire_src_addr, (char *)opt + off, 16860 IP_ADDR_LEN); 16861 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16862 ntohl(dst))); 16863 16864 /* 16865 * Check if our address is present more than 16866 * once as consecutive hops in source route. 16867 */ 16868 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16869 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16870 if (tmp_ire != NULL) { 16871 ire_refrele(tmp_ire); 16872 off += IP_ADDR_LEN; 16873 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16874 goto redo_srr; 16875 } 16876 ipha->ipha_dst = dst; 16877 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16878 ire_refrele(dst_ire); 16879 break; 16880 case IPOPT_RR: 16881 off = opt[IPOPT_OFFSET]; 16882 off--; 16883 if (optlen < IP_ADDR_LEN || 16884 off > optlen - IP_ADDR_LEN) { 16885 /* No more room - ignore */ 16886 ip1dbg(( 16887 "ip_rput_forward_options: end of RR\n")); 16888 break; 16889 } 16890 bcopy(&ire->ire_src_addr, (char *)opt + off, 16891 IP_ADDR_LEN); 16892 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16893 break; 16894 case IPOPT_TS: 16895 /* Insert timestamp if there is room */ 16896 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16897 case IPOPT_TS_TSONLY: 16898 off = IPOPT_TS_TIMELEN; 16899 break; 16900 case IPOPT_TS_PRESPEC: 16901 case IPOPT_TS_PRESPEC_RFC791: 16902 /* Verify that the address matched */ 16903 off = opt[IPOPT_OFFSET] - 1; 16904 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16905 dst_ire = ire_ctable_lookup(dst, 0, 16906 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16907 MATCH_IRE_TYPE, ipst); 16908 if (dst_ire == NULL) { 16909 /* Not for us */ 16910 break; 16911 } 16912 ire_refrele(dst_ire); 16913 /* FALLTHRU */ 16914 case IPOPT_TS_TSANDADDR: 16915 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16916 break; 16917 default: 16918 /* 16919 * ip_*put_options should have already 16920 * dropped this packet. 16921 */ 16922 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16923 "unknown IT - bug in ip_rput_options?\n"); 16924 return (0); /* Keep "lint" happy */ 16925 } 16926 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16927 /* Increase overflow counter */ 16928 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16929 opt[IPOPT_POS_OV_FLG] = 16930 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16931 (off << 4)); 16932 break; 16933 } 16934 off = opt[IPOPT_OFFSET] - 1; 16935 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16936 case IPOPT_TS_PRESPEC: 16937 case IPOPT_TS_PRESPEC_RFC791: 16938 case IPOPT_TS_TSANDADDR: 16939 bcopy(&ire->ire_src_addr, 16940 (char *)opt + off, IP_ADDR_LEN); 16941 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16942 /* FALLTHRU */ 16943 case IPOPT_TS_TSONLY: 16944 off = opt[IPOPT_OFFSET] - 1; 16945 /* Compute # of milliseconds since midnight */ 16946 gethrestime(&now); 16947 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16948 now.tv_nsec / (NANOSEC / MILLISEC); 16949 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16950 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16951 break; 16952 } 16953 break; 16954 } 16955 } 16956 return (0); 16957 } 16958 16959 /* 16960 * This is called after processing at least one of AH/ESP headers. 16961 * 16962 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16963 * the actual, physical interface on which the packet was received, 16964 * but, when ip_strict_dst_multihoming is set to 1, could be the 16965 * interface which had the ipha_dst configured when the packet went 16966 * through ip_rput. The ill_index corresponding to the recv_ill 16967 * is saved in ipsec_in_rill_index 16968 * 16969 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16970 * cannot assume "ire" points to valid data for any IPv6 cases. 16971 */ 16972 void 16973 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16974 { 16975 mblk_t *mp; 16976 ipaddr_t dst; 16977 in6_addr_t *v6dstp; 16978 ipha_t *ipha; 16979 ip6_t *ip6h; 16980 ipsec_in_t *ii; 16981 boolean_t ill_need_rele = B_FALSE; 16982 boolean_t rill_need_rele = B_FALSE; 16983 boolean_t ire_need_rele = B_FALSE; 16984 netstack_t *ns; 16985 ip_stack_t *ipst; 16986 16987 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16988 ASSERT(ii->ipsec_in_ill_index != 0); 16989 ns = ii->ipsec_in_ns; 16990 ASSERT(ii->ipsec_in_ns != NULL); 16991 ipst = ns->netstack_ip; 16992 16993 mp = ipsec_mp->b_cont; 16994 ASSERT(mp != NULL); 16995 16996 16997 if (ill == NULL) { 16998 ASSERT(recv_ill == NULL); 16999 /* 17000 * We need to get the original queue on which ip_rput_local 17001 * or ip_rput_data_v6 was called. 17002 */ 17003 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17004 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17005 ill_need_rele = B_TRUE; 17006 17007 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17008 recv_ill = ill_lookup_on_ifindex( 17009 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17010 NULL, NULL, NULL, NULL, ipst); 17011 rill_need_rele = B_TRUE; 17012 } else { 17013 recv_ill = ill; 17014 } 17015 17016 if ((ill == NULL) || (recv_ill == NULL)) { 17017 ip0dbg(("ip_fanout_proto_again: interface " 17018 "disappeared\n")); 17019 if (ill != NULL) 17020 ill_refrele(ill); 17021 if (recv_ill != NULL) 17022 ill_refrele(recv_ill); 17023 freemsg(ipsec_mp); 17024 return; 17025 } 17026 } 17027 17028 ASSERT(ill != NULL && recv_ill != NULL); 17029 17030 if (mp->b_datap->db_type == M_CTL) { 17031 /* 17032 * AH/ESP is returning the ICMP message after 17033 * removing their headers. Fanout again till 17034 * it gets to the right protocol. 17035 */ 17036 if (ii->ipsec_in_v4) { 17037 icmph_t *icmph; 17038 int iph_hdr_length; 17039 int hdr_length; 17040 17041 ipha = (ipha_t *)mp->b_rptr; 17042 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17043 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17044 ipha = (ipha_t *)&icmph[1]; 17045 hdr_length = IPH_HDR_LENGTH(ipha); 17046 /* 17047 * icmp_inbound_error_fanout may need to do pullupmsg. 17048 * Reset the type to M_DATA. 17049 */ 17050 mp->b_datap->db_type = M_DATA; 17051 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17052 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17053 B_FALSE, ill, ii->ipsec_in_zoneid); 17054 } else { 17055 icmp6_t *icmp6; 17056 int hdr_length; 17057 17058 ip6h = (ip6_t *)mp->b_rptr; 17059 /* Don't call hdr_length_v6() unless you have to. */ 17060 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17061 hdr_length = ip_hdr_length_v6(mp, ip6h); 17062 else 17063 hdr_length = IPV6_HDR_LEN; 17064 17065 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17066 /* 17067 * icmp_inbound_error_fanout_v6 may need to do 17068 * pullupmsg. Reset the type to M_DATA. 17069 */ 17070 mp->b_datap->db_type = M_DATA; 17071 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17072 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17073 } 17074 if (ill_need_rele) 17075 ill_refrele(ill); 17076 if (rill_need_rele) 17077 ill_refrele(recv_ill); 17078 return; 17079 } 17080 17081 if (ii->ipsec_in_v4) { 17082 ipha = (ipha_t *)mp->b_rptr; 17083 dst = ipha->ipha_dst; 17084 if (CLASSD(dst)) { 17085 /* 17086 * Multicast has to be delivered to all streams. 17087 */ 17088 dst = INADDR_BROADCAST; 17089 } 17090 17091 if (ire == NULL) { 17092 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17093 MBLK_GETLABEL(mp), ipst); 17094 if (ire == NULL) { 17095 if (ill_need_rele) 17096 ill_refrele(ill); 17097 if (rill_need_rele) 17098 ill_refrele(recv_ill); 17099 ip1dbg(("ip_fanout_proto_again: " 17100 "IRE not found")); 17101 freemsg(ipsec_mp); 17102 return; 17103 } 17104 ire_need_rele = B_TRUE; 17105 } 17106 17107 switch (ipha->ipha_protocol) { 17108 case IPPROTO_UDP: 17109 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17110 recv_ill); 17111 if (ire_need_rele) 17112 ire_refrele(ire); 17113 break; 17114 case IPPROTO_TCP: 17115 if (!ire_need_rele) 17116 IRE_REFHOLD(ire); 17117 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17118 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17119 IRE_REFRELE(ire); 17120 if (mp != NULL) 17121 squeue_enter_chain(GET_SQUEUE(mp), mp, 17122 mp, 1, SQTAG_IP_PROTO_AGAIN); 17123 break; 17124 case IPPROTO_SCTP: 17125 if (!ire_need_rele) 17126 IRE_REFHOLD(ire); 17127 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17128 ipsec_mp, 0, ill->ill_rq, dst); 17129 break; 17130 default: 17131 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17132 recv_ill); 17133 if (ire_need_rele) 17134 ire_refrele(ire); 17135 break; 17136 } 17137 } else { 17138 uint32_t rput_flags = 0; 17139 17140 ip6h = (ip6_t *)mp->b_rptr; 17141 v6dstp = &ip6h->ip6_dst; 17142 /* 17143 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17144 * address. 17145 * 17146 * Currently, we don't store that state in the IPSEC_IN 17147 * message, and we may need to. 17148 */ 17149 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17150 IP6_IN_LLMCAST : 0); 17151 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17152 NULL, NULL); 17153 } 17154 if (ill_need_rele) 17155 ill_refrele(ill); 17156 if (rill_need_rele) 17157 ill_refrele(recv_ill); 17158 } 17159 17160 /* 17161 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17162 * returns 'true' if there are still fragments left on the queue, in 17163 * which case we restart the timer. 17164 */ 17165 void 17166 ill_frag_timer(void *arg) 17167 { 17168 ill_t *ill = (ill_t *)arg; 17169 boolean_t frag_pending; 17170 ip_stack_t *ipst = ill->ill_ipst; 17171 17172 mutex_enter(&ill->ill_lock); 17173 ASSERT(!ill->ill_fragtimer_executing); 17174 if (ill->ill_state_flags & ILL_CONDEMNED) { 17175 ill->ill_frag_timer_id = 0; 17176 mutex_exit(&ill->ill_lock); 17177 return; 17178 } 17179 ill->ill_fragtimer_executing = 1; 17180 mutex_exit(&ill->ill_lock); 17181 17182 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17183 17184 /* 17185 * Restart the timer, if we have fragments pending or if someone 17186 * wanted us to be scheduled again. 17187 */ 17188 mutex_enter(&ill->ill_lock); 17189 ill->ill_fragtimer_executing = 0; 17190 ill->ill_frag_timer_id = 0; 17191 if (frag_pending || ill->ill_fragtimer_needrestart) 17192 ill_frag_timer_start(ill); 17193 mutex_exit(&ill->ill_lock); 17194 } 17195 17196 void 17197 ill_frag_timer_start(ill_t *ill) 17198 { 17199 ip_stack_t *ipst = ill->ill_ipst; 17200 17201 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17202 17203 /* If the ill is closing or opening don't proceed */ 17204 if (ill->ill_state_flags & ILL_CONDEMNED) 17205 return; 17206 17207 if (ill->ill_fragtimer_executing) { 17208 /* 17209 * ill_frag_timer is currently executing. Just record the 17210 * the fact that we want the timer to be restarted. 17211 * ill_frag_timer will post a timeout before it returns, 17212 * ensuring it will be called again. 17213 */ 17214 ill->ill_fragtimer_needrestart = 1; 17215 return; 17216 } 17217 17218 if (ill->ill_frag_timer_id == 0) { 17219 /* 17220 * The timer is neither running nor is the timeout handler 17221 * executing. Post a timeout so that ill_frag_timer will be 17222 * called 17223 */ 17224 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17225 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17226 ill->ill_fragtimer_needrestart = 0; 17227 } 17228 } 17229 17230 /* 17231 * This routine is needed for loopback when forwarding multicasts. 17232 * 17233 * IPQoS Notes: 17234 * IPPF processing is done in fanout routines. 17235 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17236 * processing for IPSec packets is done when it comes back in clear. 17237 * NOTE : The callers of this function need to do the ire_refrele for the 17238 * ire that is being passed in. 17239 */ 17240 void 17241 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17242 ill_t *recv_ill) 17243 { 17244 ill_t *ill = (ill_t *)q->q_ptr; 17245 uint32_t sum; 17246 uint32_t u1; 17247 uint32_t u2; 17248 int hdr_length; 17249 boolean_t mctl_present; 17250 mblk_t *first_mp = mp; 17251 mblk_t *hada_mp = NULL; 17252 ipha_t *inner_ipha; 17253 ip_stack_t *ipst; 17254 17255 ASSERT(recv_ill != NULL); 17256 ipst = recv_ill->ill_ipst; 17257 17258 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17259 "ip_rput_locl_start: q %p", q); 17260 17261 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17262 ASSERT(ill != NULL); 17263 17264 17265 #define rptr ((uchar_t *)ipha) 17266 #define iphs ((uint16_t *)ipha) 17267 17268 /* 17269 * no UDP or TCP packet should come here anymore. 17270 */ 17271 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17272 (ipha->ipha_protocol != IPPROTO_UDP)); 17273 17274 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17275 if (mctl_present && 17276 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17277 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17278 17279 /* 17280 * It's an IPsec accelerated packet. 17281 * Keep a pointer to the data attributes around until 17282 * we allocate the ipsec_info_t. 17283 */ 17284 IPSECHW_DEBUG(IPSECHW_PKT, 17285 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17286 hada_mp = first_mp; 17287 hada_mp->b_cont = NULL; 17288 /* 17289 * Since it is accelerated, it comes directly from 17290 * the ill and the data attributes is followed by 17291 * the packet data. 17292 */ 17293 ASSERT(mp->b_datap->db_type != M_CTL); 17294 first_mp = mp; 17295 mctl_present = B_FALSE; 17296 } 17297 17298 /* 17299 * IF M_CTL is not present, then ipsec_in_is_secure 17300 * should return B_TRUE. There is a case where loopback 17301 * packets has an M_CTL in the front with all the 17302 * IPSEC options set to IPSEC_PREF_NEVER - which means 17303 * ipsec_in_is_secure will return B_FALSE. As loopback 17304 * packets never comes here, it is safe to ASSERT the 17305 * following. 17306 */ 17307 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17308 17309 17310 /* u1 is # words of IP options */ 17311 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17312 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17313 17314 if (u1) { 17315 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17316 if (hada_mp != NULL) 17317 freemsg(hada_mp); 17318 return; 17319 } 17320 } else { 17321 /* Check the IP header checksum. */ 17322 #define uph ((uint16_t *)ipha) 17323 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17324 uph[6] + uph[7] + uph[8] + uph[9]; 17325 #undef uph 17326 /* finish doing IP checksum */ 17327 sum = (sum & 0xFFFF) + (sum >> 16); 17328 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17329 /* 17330 * Don't verify header checksum if this packet is coming 17331 * back from AH/ESP as we already did it. 17332 */ 17333 if (!mctl_present && (sum && sum != 0xFFFF)) { 17334 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17335 goto drop_pkt; 17336 } 17337 } 17338 17339 /* 17340 * Count for SNMP of inbound packets for ire. As ip_proto_input 17341 * might be called more than once for secure packets, count only 17342 * the first time. 17343 */ 17344 if (!mctl_present) { 17345 UPDATE_IB_PKT_COUNT(ire); 17346 ire->ire_last_used_time = lbolt; 17347 } 17348 17349 /* Check for fragmentation offset. */ 17350 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17351 u1 = u2 & (IPH_MF | IPH_OFFSET); 17352 if (u1) { 17353 /* 17354 * We re-assemble fragments before we do the AH/ESP 17355 * processing. Thus, M_CTL should not be present 17356 * while we are re-assembling. 17357 */ 17358 ASSERT(!mctl_present); 17359 ASSERT(first_mp == mp); 17360 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17361 return; 17362 } 17363 /* 17364 * Make sure that first_mp points back to mp as 17365 * the mp we came in with could have changed in 17366 * ip_rput_fragment(). 17367 */ 17368 ipha = (ipha_t *)mp->b_rptr; 17369 first_mp = mp; 17370 } 17371 17372 /* 17373 * Clear hardware checksumming flag as it is currently only 17374 * used by TCP and UDP. 17375 */ 17376 DB_CKSUMFLAGS(mp) = 0; 17377 17378 /* Now we have a complete datagram, destined for this machine. */ 17379 u1 = IPH_HDR_LENGTH(ipha); 17380 switch (ipha->ipha_protocol) { 17381 case IPPROTO_ICMP: { 17382 ire_t *ire_zone; 17383 ilm_t *ilm; 17384 mblk_t *mp1; 17385 zoneid_t last_zoneid; 17386 17387 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17388 ASSERT(ire->ire_type == IRE_BROADCAST); 17389 /* 17390 * In the multicast case, applications may have joined 17391 * the group from different zones, so we need to deliver 17392 * the packet to each of them. Loop through the 17393 * multicast memberships structures (ilm) on the receive 17394 * ill and send a copy of the packet up each matching 17395 * one. However, we don't do this for multicasts sent on 17396 * the loopback interface (PHYI_LOOPBACK flag set) as 17397 * they must stay in the sender's zone. 17398 * 17399 * ilm_add_v6() ensures that ilms in the same zone are 17400 * contiguous in the ill_ilm list. We use this property 17401 * to avoid sending duplicates needed when two 17402 * applications in the same zone join the same group on 17403 * different logical interfaces: we ignore the ilm if 17404 * its zoneid is the same as the last matching one. 17405 * In addition, the sending of the packet for 17406 * ire_zoneid is delayed until all of the other ilms 17407 * have been exhausted. 17408 */ 17409 last_zoneid = -1; 17410 ILM_WALKER_HOLD(recv_ill); 17411 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17412 ilm = ilm->ilm_next) { 17413 if ((ilm->ilm_flags & ILM_DELETED) || 17414 ipha->ipha_dst != ilm->ilm_addr || 17415 ilm->ilm_zoneid == last_zoneid || 17416 ilm->ilm_zoneid == ire->ire_zoneid || 17417 ilm->ilm_zoneid == ALL_ZONES || 17418 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17419 continue; 17420 mp1 = ip_copymsg(first_mp); 17421 if (mp1 == NULL) 17422 continue; 17423 icmp_inbound(q, mp1, B_TRUE, ill, 17424 0, sum, mctl_present, B_TRUE, 17425 recv_ill, ilm->ilm_zoneid); 17426 last_zoneid = ilm->ilm_zoneid; 17427 } 17428 ILM_WALKER_RELE(recv_ill); 17429 } else if (ire->ire_type == IRE_BROADCAST) { 17430 /* 17431 * In the broadcast case, there may be many zones 17432 * which need a copy of the packet delivered to them. 17433 * There is one IRE_BROADCAST per broadcast address 17434 * and per zone; we walk those using a helper function. 17435 * In addition, the sending of the packet for ire is 17436 * delayed until all of the other ires have been 17437 * processed. 17438 */ 17439 IRB_REFHOLD(ire->ire_bucket); 17440 ire_zone = NULL; 17441 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17442 ire)) != NULL) { 17443 mp1 = ip_copymsg(first_mp); 17444 if (mp1 == NULL) 17445 continue; 17446 17447 UPDATE_IB_PKT_COUNT(ire_zone); 17448 ire_zone->ire_last_used_time = lbolt; 17449 icmp_inbound(q, mp1, B_TRUE, ill, 17450 0, sum, mctl_present, B_TRUE, 17451 recv_ill, ire_zone->ire_zoneid); 17452 } 17453 IRB_REFRELE(ire->ire_bucket); 17454 } 17455 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17456 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17457 ire->ire_zoneid); 17458 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17459 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17460 return; 17461 } 17462 case IPPROTO_IGMP: 17463 /* 17464 * If we are not willing to accept IGMP packets in clear, 17465 * then check with global policy. 17466 */ 17467 if (ipst->ips_igmp_accept_clear_messages == 0) { 17468 first_mp = ipsec_check_global_policy(first_mp, NULL, 17469 ipha, NULL, mctl_present, ipst->ips_netstack); 17470 if (first_mp == NULL) 17471 return; 17472 } 17473 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17474 freemsg(first_mp); 17475 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17477 return; 17478 } 17479 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17480 /* Bad packet - discarded by igmp_input */ 17481 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17482 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17483 if (mctl_present) 17484 freeb(first_mp); 17485 return; 17486 } 17487 /* 17488 * igmp_input() may have returned the pulled up message. 17489 * So first_mp and ipha need to be reinitialized. 17490 */ 17491 ipha = (ipha_t *)mp->b_rptr; 17492 if (mctl_present) 17493 first_mp->b_cont = mp; 17494 else 17495 first_mp = mp; 17496 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17497 connf_head != NULL) { 17498 /* No user-level listener for IGMP packets */ 17499 goto drop_pkt; 17500 } 17501 /* deliver to local raw users */ 17502 break; 17503 case IPPROTO_PIM: 17504 /* 17505 * If we are not willing to accept PIM packets in clear, 17506 * then check with global policy. 17507 */ 17508 if (ipst->ips_pim_accept_clear_messages == 0) { 17509 first_mp = ipsec_check_global_policy(first_mp, NULL, 17510 ipha, NULL, mctl_present, ipst->ips_netstack); 17511 if (first_mp == NULL) 17512 return; 17513 } 17514 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17515 freemsg(first_mp); 17516 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17517 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17518 return; 17519 } 17520 if (pim_input(q, mp, ill) != 0) { 17521 /* Bad packet - discarded by pim_input */ 17522 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17523 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17524 if (mctl_present) 17525 freeb(first_mp); 17526 return; 17527 } 17528 17529 /* 17530 * pim_input() may have pulled up the message so ipha needs to 17531 * be reinitialized. 17532 */ 17533 ipha = (ipha_t *)mp->b_rptr; 17534 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17535 connf_head != NULL) { 17536 /* No user-level listener for PIM packets */ 17537 goto drop_pkt; 17538 } 17539 /* deliver to local raw users */ 17540 break; 17541 case IPPROTO_ENCAP: 17542 /* 17543 * Handle self-encapsulated packets (IP-in-IP where 17544 * the inner addresses == the outer addresses). 17545 */ 17546 hdr_length = IPH_HDR_LENGTH(ipha); 17547 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17548 mp->b_wptr) { 17549 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17550 sizeof (ipha_t) - mp->b_rptr)) { 17551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17552 freemsg(first_mp); 17553 return; 17554 } 17555 ipha = (ipha_t *)mp->b_rptr; 17556 } 17557 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17558 /* 17559 * Check the sanity of the inner IP header. 17560 */ 17561 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17563 freemsg(first_mp); 17564 return; 17565 } 17566 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17568 freemsg(first_mp); 17569 return; 17570 } 17571 if (inner_ipha->ipha_src == ipha->ipha_src && 17572 inner_ipha->ipha_dst == ipha->ipha_dst) { 17573 ipsec_in_t *ii; 17574 17575 /* 17576 * Self-encapsulated tunnel packet. Remove 17577 * the outer IP header and fanout again. 17578 * We also need to make sure that the inner 17579 * header is pulled up until options. 17580 */ 17581 mp->b_rptr = (uchar_t *)inner_ipha; 17582 ipha = inner_ipha; 17583 hdr_length = IPH_HDR_LENGTH(ipha); 17584 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17585 if (!pullupmsg(mp, (uchar_t *)ipha + 17586 + hdr_length - mp->b_rptr)) { 17587 freemsg(first_mp); 17588 return; 17589 } 17590 ipha = (ipha_t *)mp->b_rptr; 17591 } 17592 if (!mctl_present) { 17593 ASSERT(first_mp == mp); 17594 /* 17595 * This means that somebody is sending 17596 * Self-encapsualted packets without AH/ESP. 17597 * If AH/ESP was present, we would have already 17598 * allocated the first_mp. 17599 */ 17600 first_mp = ipsec_in_alloc(B_TRUE, 17601 ipst->ips_netstack); 17602 if (first_mp == NULL) { 17603 ip1dbg(("ip_proto_input: IPSEC_IN " 17604 "allocation failure.\n")); 17605 BUMP_MIB(ill->ill_ip_mib, 17606 ipIfStatsInDiscards); 17607 freemsg(mp); 17608 return; 17609 } 17610 first_mp->b_cont = mp; 17611 } 17612 /* 17613 * We generally store the ill_index if we need to 17614 * do IPSEC processing as we lose the ill queue when 17615 * we come back. But in this case, we never should 17616 * have to store the ill_index here as it should have 17617 * been stored previously when we processed the 17618 * AH/ESP header in this routine or for non-ipsec 17619 * cases, we still have the queue. But for some bad 17620 * packets from the wire, we can get to IPSEC after 17621 * this and we better store the index for that case. 17622 */ 17623 ill = (ill_t *)q->q_ptr; 17624 ii = (ipsec_in_t *)first_mp->b_rptr; 17625 ii->ipsec_in_ill_index = 17626 ill->ill_phyint->phyint_ifindex; 17627 ii->ipsec_in_rill_index = 17628 recv_ill->ill_phyint->phyint_ifindex; 17629 if (ii->ipsec_in_decaps) { 17630 /* 17631 * This packet is self-encapsulated multiple 17632 * times. We don't want to recurse infinitely. 17633 * To keep it simple, drop the packet. 17634 */ 17635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17636 freemsg(first_mp); 17637 return; 17638 } 17639 ii->ipsec_in_decaps = B_TRUE; 17640 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17641 ire); 17642 return; 17643 } 17644 break; 17645 case IPPROTO_AH: 17646 case IPPROTO_ESP: { 17647 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17648 17649 /* 17650 * Fast path for AH/ESP. If this is the first time 17651 * we are sending a datagram to AH/ESP, allocate 17652 * a IPSEC_IN message and prepend it. Otherwise, 17653 * just fanout. 17654 */ 17655 17656 int ipsec_rc; 17657 ipsec_in_t *ii; 17658 netstack_t *ns = ipst->ips_netstack; 17659 17660 IP_STAT(ipst, ipsec_proto_ahesp); 17661 if (!mctl_present) { 17662 ASSERT(first_mp == mp); 17663 first_mp = ipsec_in_alloc(B_TRUE, ns); 17664 if (first_mp == NULL) { 17665 ip1dbg(("ip_proto_input: IPSEC_IN " 17666 "allocation failure.\n")); 17667 freemsg(hada_mp); /* okay ifnull */ 17668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17669 freemsg(mp); 17670 return; 17671 } 17672 /* 17673 * Store the ill_index so that when we come back 17674 * from IPSEC we ride on the same queue. 17675 */ 17676 ill = (ill_t *)q->q_ptr; 17677 ii = (ipsec_in_t *)first_mp->b_rptr; 17678 ii->ipsec_in_ill_index = 17679 ill->ill_phyint->phyint_ifindex; 17680 ii->ipsec_in_rill_index = 17681 recv_ill->ill_phyint->phyint_ifindex; 17682 first_mp->b_cont = mp; 17683 /* 17684 * Cache hardware acceleration info. 17685 */ 17686 if (hada_mp != NULL) { 17687 IPSECHW_DEBUG(IPSECHW_PKT, 17688 ("ip_rput_local: caching data attr.\n")); 17689 ii->ipsec_in_accelerated = B_TRUE; 17690 ii->ipsec_in_da = hada_mp; 17691 hada_mp = NULL; 17692 } 17693 } else { 17694 ii = (ipsec_in_t *)first_mp->b_rptr; 17695 } 17696 17697 if (!ipsec_loaded(ipss)) { 17698 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17699 ire->ire_zoneid, ipst); 17700 return; 17701 } 17702 17703 ns = ipst->ips_netstack; 17704 /* select inbound SA and have IPsec process the pkt */ 17705 if (ipha->ipha_protocol == IPPROTO_ESP) { 17706 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17707 if (esph == NULL) 17708 return; 17709 ASSERT(ii->ipsec_in_esp_sa != NULL); 17710 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17711 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17712 first_mp, esph); 17713 } else { 17714 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17715 if (ah == NULL) 17716 return; 17717 ASSERT(ii->ipsec_in_ah_sa != NULL); 17718 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17719 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17720 first_mp, ah); 17721 } 17722 17723 switch (ipsec_rc) { 17724 case IPSEC_STATUS_SUCCESS: 17725 break; 17726 case IPSEC_STATUS_FAILED: 17727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17728 /* FALLTHRU */ 17729 case IPSEC_STATUS_PENDING: 17730 return; 17731 } 17732 /* we're done with IPsec processing, send it up */ 17733 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17734 return; 17735 } 17736 default: 17737 break; 17738 } 17739 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17740 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17741 ire->ire_zoneid)); 17742 goto drop_pkt; 17743 } 17744 /* 17745 * Handle protocols with which IP is less intimate. There 17746 * can be more than one stream bound to a particular 17747 * protocol. When this is the case, each one gets a copy 17748 * of any incoming packets. 17749 */ 17750 ip_fanout_proto(q, first_mp, ill, ipha, 17751 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17752 B_TRUE, recv_ill, ire->ire_zoneid); 17753 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17754 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17755 return; 17756 17757 drop_pkt: 17758 freemsg(first_mp); 17759 if (hada_mp != NULL) 17760 freeb(hada_mp); 17761 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17762 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17763 #undef rptr 17764 #undef iphs 17765 17766 } 17767 17768 /* 17769 * Update any source route, record route or timestamp options. 17770 * Check that we are at end of strict source route. 17771 * The options have already been checked for sanity in ip_rput_options(). 17772 */ 17773 static boolean_t 17774 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17775 ip_stack_t *ipst) 17776 { 17777 ipoptp_t opts; 17778 uchar_t *opt; 17779 uint8_t optval; 17780 uint8_t optlen; 17781 ipaddr_t dst; 17782 uint32_t ts; 17783 ire_t *dst_ire; 17784 timestruc_t now; 17785 zoneid_t zoneid; 17786 ill_t *ill; 17787 17788 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17789 17790 ip2dbg(("ip_rput_local_options\n")); 17791 17792 for (optval = ipoptp_first(&opts, ipha); 17793 optval != IPOPT_EOL; 17794 optval = ipoptp_next(&opts)) { 17795 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17796 opt = opts.ipoptp_cur; 17797 optlen = opts.ipoptp_len; 17798 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17799 optval, optlen)); 17800 switch (optval) { 17801 uint32_t off; 17802 case IPOPT_SSRR: 17803 case IPOPT_LSRR: 17804 off = opt[IPOPT_OFFSET]; 17805 off--; 17806 if (optlen < IP_ADDR_LEN || 17807 off > optlen - IP_ADDR_LEN) { 17808 /* End of source route */ 17809 ip1dbg(("ip_rput_local_options: end of SR\n")); 17810 break; 17811 } 17812 /* 17813 * This will only happen if two consecutive entries 17814 * in the source route contains our address or if 17815 * it is a packet with a loose source route which 17816 * reaches us before consuming the whole source route 17817 */ 17818 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17819 if (optval == IPOPT_SSRR) { 17820 goto bad_src_route; 17821 } 17822 /* 17823 * Hack: instead of dropping the packet truncate the 17824 * source route to what has been used by filling the 17825 * rest with IPOPT_NOP. 17826 */ 17827 opt[IPOPT_OLEN] = (uint8_t)off; 17828 while (off < optlen) { 17829 opt[off++] = IPOPT_NOP; 17830 } 17831 break; 17832 case IPOPT_RR: 17833 off = opt[IPOPT_OFFSET]; 17834 off--; 17835 if (optlen < IP_ADDR_LEN || 17836 off > optlen - IP_ADDR_LEN) { 17837 /* No more room - ignore */ 17838 ip1dbg(( 17839 "ip_rput_local_options: end of RR\n")); 17840 break; 17841 } 17842 bcopy(&ire->ire_src_addr, (char *)opt + off, 17843 IP_ADDR_LEN); 17844 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17845 break; 17846 case IPOPT_TS: 17847 /* Insert timestamp if there is romm */ 17848 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17849 case IPOPT_TS_TSONLY: 17850 off = IPOPT_TS_TIMELEN; 17851 break; 17852 case IPOPT_TS_PRESPEC: 17853 case IPOPT_TS_PRESPEC_RFC791: 17854 /* Verify that the address matched */ 17855 off = opt[IPOPT_OFFSET] - 1; 17856 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17857 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17858 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17859 ipst); 17860 if (dst_ire == NULL) { 17861 /* Not for us */ 17862 break; 17863 } 17864 ire_refrele(dst_ire); 17865 /* FALLTHRU */ 17866 case IPOPT_TS_TSANDADDR: 17867 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17868 break; 17869 default: 17870 /* 17871 * ip_*put_options should have already 17872 * dropped this packet. 17873 */ 17874 cmn_err(CE_PANIC, "ip_rput_local_options: " 17875 "unknown IT - bug in ip_rput_options?\n"); 17876 return (B_TRUE); /* Keep "lint" happy */ 17877 } 17878 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17879 /* Increase overflow counter */ 17880 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17881 opt[IPOPT_POS_OV_FLG] = 17882 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17883 (off << 4)); 17884 break; 17885 } 17886 off = opt[IPOPT_OFFSET] - 1; 17887 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17888 case IPOPT_TS_PRESPEC: 17889 case IPOPT_TS_PRESPEC_RFC791: 17890 case IPOPT_TS_TSANDADDR: 17891 bcopy(&ire->ire_src_addr, (char *)opt + off, 17892 IP_ADDR_LEN); 17893 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17894 /* FALLTHRU */ 17895 case IPOPT_TS_TSONLY: 17896 off = opt[IPOPT_OFFSET] - 1; 17897 /* Compute # of milliseconds since midnight */ 17898 gethrestime(&now); 17899 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17900 now.tv_nsec / (NANOSEC / MILLISEC); 17901 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17902 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17903 break; 17904 } 17905 break; 17906 } 17907 } 17908 return (B_TRUE); 17909 17910 bad_src_route: 17911 q = WR(q); 17912 if (q->q_next != NULL) 17913 ill = q->q_ptr; 17914 else 17915 ill = NULL; 17916 17917 /* make sure we clear any indication of a hardware checksum */ 17918 DB_CKSUMFLAGS(mp) = 0; 17919 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17920 if (zoneid == ALL_ZONES) 17921 freemsg(mp); 17922 else 17923 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17924 return (B_FALSE); 17925 17926 } 17927 17928 /* 17929 * Process IP options in an inbound packet. If an option affects the 17930 * effective destination address, return the next hop address via dstp. 17931 * Returns -1 if something fails in which case an ICMP error has been sent 17932 * and mp freed. 17933 */ 17934 static int 17935 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17936 ip_stack_t *ipst) 17937 { 17938 ipoptp_t opts; 17939 uchar_t *opt; 17940 uint8_t optval; 17941 uint8_t optlen; 17942 ipaddr_t dst; 17943 intptr_t code = 0; 17944 ire_t *ire = NULL; 17945 zoneid_t zoneid; 17946 ill_t *ill; 17947 17948 ip2dbg(("ip_rput_options\n")); 17949 dst = ipha->ipha_dst; 17950 for (optval = ipoptp_first(&opts, ipha); 17951 optval != IPOPT_EOL; 17952 optval = ipoptp_next(&opts)) { 17953 opt = opts.ipoptp_cur; 17954 optlen = opts.ipoptp_len; 17955 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17956 optval, optlen)); 17957 /* 17958 * Note: we need to verify the checksum before we 17959 * modify anything thus this routine only extracts the next 17960 * hop dst from any source route. 17961 */ 17962 switch (optval) { 17963 uint32_t off; 17964 case IPOPT_SSRR: 17965 case IPOPT_LSRR: 17966 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17967 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17968 if (ire == NULL) { 17969 if (optval == IPOPT_SSRR) { 17970 ip1dbg(("ip_rput_options: not next" 17971 " strict source route 0x%x\n", 17972 ntohl(dst))); 17973 code = (char *)&ipha->ipha_dst - 17974 (char *)ipha; 17975 goto param_prob; /* RouterReq's */ 17976 } 17977 ip2dbg(("ip_rput_options: " 17978 "not next source route 0x%x\n", 17979 ntohl(dst))); 17980 break; 17981 } 17982 ire_refrele(ire); 17983 17984 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17985 ip1dbg(( 17986 "ip_rput_options: bad option offset\n")); 17987 code = (char *)&opt[IPOPT_OLEN] - 17988 (char *)ipha; 17989 goto param_prob; 17990 } 17991 off = opt[IPOPT_OFFSET]; 17992 off--; 17993 redo_srr: 17994 if (optlen < IP_ADDR_LEN || 17995 off > optlen - IP_ADDR_LEN) { 17996 /* End of source route */ 17997 ip1dbg(("ip_rput_options: end of SR\n")); 17998 break; 17999 } 18000 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18001 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18002 ntohl(dst))); 18003 18004 /* 18005 * Check if our address is present more than 18006 * once as consecutive hops in source route. 18007 * XXX verify per-interface ip_forwarding 18008 * for source route? 18009 */ 18010 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18011 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18012 18013 if (ire != NULL) { 18014 ire_refrele(ire); 18015 off += IP_ADDR_LEN; 18016 goto redo_srr; 18017 } 18018 18019 if (dst == htonl(INADDR_LOOPBACK)) { 18020 ip1dbg(("ip_rput_options: loopback addr in " 18021 "source route!\n")); 18022 goto bad_src_route; 18023 } 18024 /* 18025 * For strict: verify that dst is directly 18026 * reachable. 18027 */ 18028 if (optval == IPOPT_SSRR) { 18029 ire = ire_ftable_lookup(dst, 0, 0, 18030 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18031 MBLK_GETLABEL(mp), 18032 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18033 if (ire == NULL) { 18034 ip1dbg(("ip_rput_options: SSRR not " 18035 "directly reachable: 0x%x\n", 18036 ntohl(dst))); 18037 goto bad_src_route; 18038 } 18039 ire_refrele(ire); 18040 } 18041 /* 18042 * Defer update of the offset and the record route 18043 * until the packet is forwarded. 18044 */ 18045 break; 18046 case IPOPT_RR: 18047 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18048 ip1dbg(( 18049 "ip_rput_options: bad option offset\n")); 18050 code = (char *)&opt[IPOPT_OLEN] - 18051 (char *)ipha; 18052 goto param_prob; 18053 } 18054 break; 18055 case IPOPT_TS: 18056 /* 18057 * Verify that length >= 5 and that there is either 18058 * room for another timestamp or that the overflow 18059 * counter is not maxed out. 18060 */ 18061 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18062 if (optlen < IPOPT_MINLEN_IT) { 18063 goto param_prob; 18064 } 18065 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18066 ip1dbg(( 18067 "ip_rput_options: bad option offset\n")); 18068 code = (char *)&opt[IPOPT_OFFSET] - 18069 (char *)ipha; 18070 goto param_prob; 18071 } 18072 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18073 case IPOPT_TS_TSONLY: 18074 off = IPOPT_TS_TIMELEN; 18075 break; 18076 case IPOPT_TS_TSANDADDR: 18077 case IPOPT_TS_PRESPEC: 18078 case IPOPT_TS_PRESPEC_RFC791: 18079 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18080 break; 18081 default: 18082 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18083 (char *)ipha; 18084 goto param_prob; 18085 } 18086 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18087 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18088 /* 18089 * No room and the overflow counter is 15 18090 * already. 18091 */ 18092 goto param_prob; 18093 } 18094 break; 18095 } 18096 } 18097 18098 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18099 *dstp = dst; 18100 return (0); 18101 } 18102 18103 ip1dbg(("ip_rput_options: error processing IP options.")); 18104 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18105 18106 param_prob: 18107 q = WR(q); 18108 if (q->q_next != NULL) 18109 ill = q->q_ptr; 18110 else 18111 ill = NULL; 18112 18113 /* make sure we clear any indication of a hardware checksum */ 18114 DB_CKSUMFLAGS(mp) = 0; 18115 /* Don't know whether this is for non-global or global/forwarding */ 18116 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18117 if (zoneid == ALL_ZONES) 18118 freemsg(mp); 18119 else 18120 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18121 return (-1); 18122 18123 bad_src_route: 18124 q = WR(q); 18125 if (q->q_next != NULL) 18126 ill = q->q_ptr; 18127 else 18128 ill = NULL; 18129 18130 /* make sure we clear any indication of a hardware checksum */ 18131 DB_CKSUMFLAGS(mp) = 0; 18132 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18133 if (zoneid == ALL_ZONES) 18134 freemsg(mp); 18135 else 18136 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18137 return (-1); 18138 } 18139 18140 /* 18141 * IP & ICMP info in >=14 msg's ... 18142 * - ip fixed part (mib2_ip_t) 18143 * - icmp fixed part (mib2_icmp_t) 18144 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18145 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18146 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18147 * - ipRouteAttributeTable (ip 102) labeled routes 18148 * - ip multicast membership (ip_member_t) 18149 * - ip multicast source filtering (ip_grpsrc_t) 18150 * - igmp fixed part (struct igmpstat) 18151 * - multicast routing stats (struct mrtstat) 18152 * - multicast routing vifs (array of struct vifctl) 18153 * - multicast routing routes (array of struct mfcctl) 18154 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18155 * One per ill plus one generic 18156 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18157 * One per ill plus one generic 18158 * - ipv6RouteEntry all IPv6 IREs 18159 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18160 * - ipv6NetToMediaEntry all Neighbor Cache entries 18161 * - ipv6AddrEntry all IPv6 ipifs 18162 * - ipv6 multicast membership (ipv6_member_t) 18163 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18164 * 18165 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18166 * 18167 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18168 * already filled in by the caller. 18169 * Return value of 0 indicates that no messages were sent and caller 18170 * should free mpctl. 18171 */ 18172 int 18173 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18174 { 18175 ip_stack_t *ipst; 18176 sctp_stack_t *sctps; 18177 18178 18179 if (q->q_next != NULL) { 18180 ipst = ILLQ_TO_IPST(q); 18181 } else { 18182 ipst = CONNQ_TO_IPST(q); 18183 } 18184 ASSERT(ipst != NULL); 18185 sctps = ipst->ips_netstack->netstack_sctp; 18186 18187 if (mpctl == NULL || mpctl->b_cont == NULL) { 18188 return (0); 18189 } 18190 18191 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18192 ipst)) == NULL) { 18193 return (1); 18194 } 18195 18196 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18197 return (1); 18198 } 18199 18200 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18201 return (1); 18202 } 18203 18204 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18205 return (1); 18206 } 18207 18208 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18209 return (1); 18210 } 18211 18212 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18213 return (1); 18214 } 18215 18216 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18217 return (1); 18218 } 18219 18220 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18221 return (1); 18222 } 18223 18224 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18225 return (1); 18226 } 18227 18228 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18229 return (1); 18230 } 18231 18232 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18233 return (1); 18234 } 18235 18236 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18237 return (1); 18238 } 18239 18240 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18241 return (1); 18242 } 18243 18244 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18245 return (1); 18246 } 18247 18248 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18249 return (1); 18250 } 18251 18252 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18253 if (mpctl == NULL) { 18254 return (1); 18255 } 18256 18257 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18258 return (1); 18259 } 18260 freemsg(mpctl); 18261 return (1); 18262 } 18263 18264 18265 /* Get global (legacy) IPv4 statistics */ 18266 static mblk_t * 18267 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18268 ip_stack_t *ipst) 18269 { 18270 mib2_ip_t old_ip_mib; 18271 struct opthdr *optp; 18272 mblk_t *mp2ctl; 18273 18274 /* 18275 * make a copy of the original message 18276 */ 18277 mp2ctl = copymsg(mpctl); 18278 18279 /* fixed length IP structure... */ 18280 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18281 optp->level = MIB2_IP; 18282 optp->name = 0; 18283 SET_MIB(old_ip_mib.ipForwarding, 18284 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18285 SET_MIB(old_ip_mib.ipDefaultTTL, 18286 (uint32_t)ipst->ips_ip_def_ttl); 18287 SET_MIB(old_ip_mib.ipReasmTimeout, 18288 ipst->ips_ip_g_frag_timeout); 18289 SET_MIB(old_ip_mib.ipAddrEntrySize, 18290 sizeof (mib2_ipAddrEntry_t)); 18291 SET_MIB(old_ip_mib.ipRouteEntrySize, 18292 sizeof (mib2_ipRouteEntry_t)); 18293 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18294 sizeof (mib2_ipNetToMediaEntry_t)); 18295 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18296 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18297 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18298 sizeof (mib2_ipAttributeEntry_t)); 18299 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18300 18301 /* 18302 * Grab the statistics from the new IP MIB 18303 */ 18304 SET_MIB(old_ip_mib.ipInReceives, 18305 (uint32_t)ipmib->ipIfStatsHCInReceives); 18306 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18307 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18308 SET_MIB(old_ip_mib.ipForwDatagrams, 18309 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18310 SET_MIB(old_ip_mib.ipInUnknownProtos, 18311 ipmib->ipIfStatsInUnknownProtos); 18312 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18313 SET_MIB(old_ip_mib.ipInDelivers, 18314 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18315 SET_MIB(old_ip_mib.ipOutRequests, 18316 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18317 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18318 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18319 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18320 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18321 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18322 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18323 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18324 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18325 18326 /* ipRoutingDiscards is not being used */ 18327 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18328 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18329 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18330 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18331 SET_MIB(old_ip_mib.ipReasmDuplicates, 18332 ipmib->ipIfStatsReasmDuplicates); 18333 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18334 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18335 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18336 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18337 SET_MIB(old_ip_mib.rawipInOverflows, 18338 ipmib->rawipIfStatsInOverflows); 18339 18340 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18341 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18342 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18343 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18344 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18345 ipmib->ipIfStatsOutSwitchIPVersion); 18346 18347 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18348 (int)sizeof (old_ip_mib))) { 18349 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18350 (uint_t)sizeof (old_ip_mib))); 18351 } 18352 18353 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18354 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18355 (int)optp->level, (int)optp->name, (int)optp->len)); 18356 qreply(q, mpctl); 18357 return (mp2ctl); 18358 } 18359 18360 /* Per interface IPv4 statistics */ 18361 static mblk_t * 18362 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18363 { 18364 struct opthdr *optp; 18365 mblk_t *mp2ctl; 18366 ill_t *ill; 18367 ill_walk_context_t ctx; 18368 mblk_t *mp_tail = NULL; 18369 mib2_ipIfStatsEntry_t global_ip_mib; 18370 18371 /* 18372 * Make a copy of the original message 18373 */ 18374 mp2ctl = copymsg(mpctl); 18375 18376 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18377 optp->level = MIB2_IP; 18378 optp->name = MIB2_IP_TRAFFIC_STATS; 18379 /* Include "unknown interface" ip_mib */ 18380 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18381 ipst->ips_ip_mib.ipIfStatsIfIndex = 18382 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18383 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18384 (ipst->ips_ip_g_forward ? 1 : 2)); 18385 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18386 (uint32_t)ipst->ips_ip_def_ttl); 18387 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18388 sizeof (mib2_ipIfStatsEntry_t)); 18389 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18390 sizeof (mib2_ipAddrEntry_t)); 18391 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18392 sizeof (mib2_ipRouteEntry_t)); 18393 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18394 sizeof (mib2_ipNetToMediaEntry_t)); 18395 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18396 sizeof (ip_member_t)); 18397 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18398 sizeof (ip_grpsrc_t)); 18399 18400 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18401 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18402 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18403 "failed to allocate %u bytes\n", 18404 (uint_t)sizeof (ipst->ips_ip_mib))); 18405 } 18406 18407 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18408 18409 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18410 ill = ILL_START_WALK_V4(&ctx, ipst); 18411 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18412 ill->ill_ip_mib->ipIfStatsIfIndex = 18413 ill->ill_phyint->phyint_ifindex; 18414 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18415 (ipst->ips_ip_g_forward ? 1 : 2)); 18416 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18417 (uint32_t)ipst->ips_ip_def_ttl); 18418 18419 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18420 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18421 (char *)ill->ill_ip_mib, 18422 (int)sizeof (*ill->ill_ip_mib))) { 18423 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18424 "failed to allocate %u bytes\n", 18425 (uint_t)sizeof (*ill->ill_ip_mib))); 18426 } 18427 } 18428 rw_exit(&ipst->ips_ill_g_lock); 18429 18430 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18431 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18432 "level %d, name %d, len %d\n", 18433 (int)optp->level, (int)optp->name, (int)optp->len)); 18434 qreply(q, mpctl); 18435 18436 if (mp2ctl == NULL) 18437 return (NULL); 18438 18439 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18440 } 18441 18442 /* Global IPv4 ICMP statistics */ 18443 static mblk_t * 18444 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18445 { 18446 struct opthdr *optp; 18447 mblk_t *mp2ctl; 18448 18449 /* 18450 * Make a copy of the original message 18451 */ 18452 mp2ctl = copymsg(mpctl); 18453 18454 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18455 optp->level = MIB2_ICMP; 18456 optp->name = 0; 18457 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18458 (int)sizeof (ipst->ips_icmp_mib))) { 18459 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18460 (uint_t)sizeof (ipst->ips_icmp_mib))); 18461 } 18462 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18463 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18464 (int)optp->level, (int)optp->name, (int)optp->len)); 18465 qreply(q, mpctl); 18466 return (mp2ctl); 18467 } 18468 18469 /* Global IPv4 IGMP statistics */ 18470 static mblk_t * 18471 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18472 { 18473 struct opthdr *optp; 18474 mblk_t *mp2ctl; 18475 18476 /* 18477 * make a copy of the original message 18478 */ 18479 mp2ctl = copymsg(mpctl); 18480 18481 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18482 optp->level = EXPER_IGMP; 18483 optp->name = 0; 18484 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18485 (int)sizeof (ipst->ips_igmpstat))) { 18486 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18487 (uint_t)sizeof (ipst->ips_igmpstat))); 18488 } 18489 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18490 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18491 (int)optp->level, (int)optp->name, (int)optp->len)); 18492 qreply(q, mpctl); 18493 return (mp2ctl); 18494 } 18495 18496 /* Global IPv4 Multicast Routing statistics */ 18497 static mblk_t * 18498 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18499 { 18500 struct opthdr *optp; 18501 mblk_t *mp2ctl; 18502 18503 /* 18504 * make a copy of the original message 18505 */ 18506 mp2ctl = copymsg(mpctl); 18507 18508 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18509 optp->level = EXPER_DVMRP; 18510 optp->name = 0; 18511 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18512 ip0dbg(("ip_mroute_stats: failed\n")); 18513 } 18514 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18515 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18516 (int)optp->level, (int)optp->name, (int)optp->len)); 18517 qreply(q, mpctl); 18518 return (mp2ctl); 18519 } 18520 18521 /* IPv4 address information */ 18522 static mblk_t * 18523 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18524 { 18525 struct opthdr *optp; 18526 mblk_t *mp2ctl; 18527 mblk_t *mp_tail = NULL; 18528 ill_t *ill; 18529 ipif_t *ipif; 18530 uint_t bitval; 18531 mib2_ipAddrEntry_t mae; 18532 zoneid_t zoneid; 18533 ill_walk_context_t ctx; 18534 18535 /* 18536 * make a copy of the original message 18537 */ 18538 mp2ctl = copymsg(mpctl); 18539 18540 /* ipAddrEntryTable */ 18541 18542 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18543 optp->level = MIB2_IP; 18544 optp->name = MIB2_IP_ADDR; 18545 zoneid = Q_TO_CONN(q)->conn_zoneid; 18546 18547 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18548 ill = ILL_START_WALK_V4(&ctx, ipst); 18549 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18550 for (ipif = ill->ill_ipif; ipif != NULL; 18551 ipif = ipif->ipif_next) { 18552 if (ipif->ipif_zoneid != zoneid && 18553 ipif->ipif_zoneid != ALL_ZONES) 18554 continue; 18555 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18556 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18557 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18558 18559 (void) ipif_get_name(ipif, 18560 mae.ipAdEntIfIndex.o_bytes, 18561 OCTET_LENGTH); 18562 mae.ipAdEntIfIndex.o_length = 18563 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18564 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18565 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18566 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18567 mae.ipAdEntInfo.ae_subnet_len = 18568 ip_mask_to_plen(ipif->ipif_net_mask); 18569 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18570 for (bitval = 1; 18571 bitval && 18572 !(bitval & ipif->ipif_brd_addr); 18573 bitval <<= 1) 18574 noop; 18575 mae.ipAdEntBcastAddr = bitval; 18576 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18577 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18578 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18579 mae.ipAdEntInfo.ae_broadcast_addr = 18580 ipif->ipif_brd_addr; 18581 mae.ipAdEntInfo.ae_pp_dst_addr = 18582 ipif->ipif_pp_dst_addr; 18583 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18584 ill->ill_flags | ill->ill_phyint->phyint_flags; 18585 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18586 18587 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18588 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18589 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18590 "allocate %u bytes\n", 18591 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18592 } 18593 } 18594 } 18595 rw_exit(&ipst->ips_ill_g_lock); 18596 18597 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18598 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18599 (int)optp->level, (int)optp->name, (int)optp->len)); 18600 qreply(q, mpctl); 18601 return (mp2ctl); 18602 } 18603 18604 /* IPv6 address information */ 18605 static mblk_t * 18606 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18607 { 18608 struct opthdr *optp; 18609 mblk_t *mp2ctl; 18610 mblk_t *mp_tail = NULL; 18611 ill_t *ill; 18612 ipif_t *ipif; 18613 mib2_ipv6AddrEntry_t mae6; 18614 zoneid_t zoneid; 18615 ill_walk_context_t ctx; 18616 18617 /* 18618 * make a copy of the original message 18619 */ 18620 mp2ctl = copymsg(mpctl); 18621 18622 /* ipv6AddrEntryTable */ 18623 18624 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18625 optp->level = MIB2_IP6; 18626 optp->name = MIB2_IP6_ADDR; 18627 zoneid = Q_TO_CONN(q)->conn_zoneid; 18628 18629 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18630 ill = ILL_START_WALK_V6(&ctx, ipst); 18631 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18632 for (ipif = ill->ill_ipif; ipif != NULL; 18633 ipif = ipif->ipif_next) { 18634 if (ipif->ipif_zoneid != zoneid && 18635 ipif->ipif_zoneid != ALL_ZONES) 18636 continue; 18637 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18638 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18639 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18640 18641 (void) ipif_get_name(ipif, 18642 mae6.ipv6AddrIfIndex.o_bytes, 18643 OCTET_LENGTH); 18644 mae6.ipv6AddrIfIndex.o_length = 18645 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18646 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18647 mae6.ipv6AddrPfxLength = 18648 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18649 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18650 mae6.ipv6AddrInfo.ae_subnet_len = 18651 mae6.ipv6AddrPfxLength; 18652 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18653 18654 /* Type: stateless(1), stateful(2), unknown(3) */ 18655 if (ipif->ipif_flags & IPIF_ADDRCONF) 18656 mae6.ipv6AddrType = 1; 18657 else 18658 mae6.ipv6AddrType = 2; 18659 /* Anycast: true(1), false(2) */ 18660 if (ipif->ipif_flags & IPIF_ANYCAST) 18661 mae6.ipv6AddrAnycastFlag = 1; 18662 else 18663 mae6.ipv6AddrAnycastFlag = 2; 18664 18665 /* 18666 * Address status: preferred(1), deprecated(2), 18667 * invalid(3), inaccessible(4), unknown(5) 18668 */ 18669 if (ipif->ipif_flags & IPIF_NOLOCAL) 18670 mae6.ipv6AddrStatus = 3; 18671 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18672 mae6.ipv6AddrStatus = 2; 18673 else 18674 mae6.ipv6AddrStatus = 1; 18675 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18676 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18677 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18678 ipif->ipif_v6pp_dst_addr; 18679 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18680 ill->ill_flags | ill->ill_phyint->phyint_flags; 18681 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18682 mae6.ipv6AddrIdentifier = ill->ill_token; 18683 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18684 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18685 mae6.ipv6AddrRetransmitTime = 18686 ill->ill_reachable_retrans_time; 18687 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18688 (char *)&mae6, 18689 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18690 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18691 "allocate %u bytes\n", 18692 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18693 } 18694 } 18695 } 18696 rw_exit(&ipst->ips_ill_g_lock); 18697 18698 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18699 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18700 (int)optp->level, (int)optp->name, (int)optp->len)); 18701 qreply(q, mpctl); 18702 return (mp2ctl); 18703 } 18704 18705 /* IPv4 multicast group membership. */ 18706 static mblk_t * 18707 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18708 { 18709 struct opthdr *optp; 18710 mblk_t *mp2ctl; 18711 ill_t *ill; 18712 ipif_t *ipif; 18713 ilm_t *ilm; 18714 ip_member_t ipm; 18715 mblk_t *mp_tail = NULL; 18716 ill_walk_context_t ctx; 18717 zoneid_t zoneid; 18718 18719 /* 18720 * make a copy of the original message 18721 */ 18722 mp2ctl = copymsg(mpctl); 18723 zoneid = Q_TO_CONN(q)->conn_zoneid; 18724 18725 /* ipGroupMember table */ 18726 optp = (struct opthdr *)&mpctl->b_rptr[ 18727 sizeof (struct T_optmgmt_ack)]; 18728 optp->level = MIB2_IP; 18729 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18730 18731 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18732 ill = ILL_START_WALK_V4(&ctx, ipst); 18733 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18734 ILM_WALKER_HOLD(ill); 18735 for (ipif = ill->ill_ipif; ipif != NULL; 18736 ipif = ipif->ipif_next) { 18737 if (ipif->ipif_zoneid != zoneid && 18738 ipif->ipif_zoneid != ALL_ZONES) 18739 continue; /* not this zone */ 18740 (void) ipif_get_name(ipif, 18741 ipm.ipGroupMemberIfIndex.o_bytes, 18742 OCTET_LENGTH); 18743 ipm.ipGroupMemberIfIndex.o_length = 18744 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18745 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18746 ASSERT(ilm->ilm_ipif != NULL); 18747 ASSERT(ilm->ilm_ill == NULL); 18748 if (ilm->ilm_ipif != ipif) 18749 continue; 18750 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18751 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18752 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18753 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18754 (char *)&ipm, (int)sizeof (ipm))) { 18755 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18756 "failed to allocate %u bytes\n", 18757 (uint_t)sizeof (ipm))); 18758 } 18759 } 18760 } 18761 ILM_WALKER_RELE(ill); 18762 } 18763 rw_exit(&ipst->ips_ill_g_lock); 18764 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18765 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18766 (int)optp->level, (int)optp->name, (int)optp->len)); 18767 qreply(q, mpctl); 18768 return (mp2ctl); 18769 } 18770 18771 /* IPv6 multicast group membership. */ 18772 static mblk_t * 18773 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18774 { 18775 struct opthdr *optp; 18776 mblk_t *mp2ctl; 18777 ill_t *ill; 18778 ilm_t *ilm; 18779 ipv6_member_t ipm6; 18780 mblk_t *mp_tail = NULL; 18781 ill_walk_context_t ctx; 18782 zoneid_t zoneid; 18783 18784 /* 18785 * make a copy of the original message 18786 */ 18787 mp2ctl = copymsg(mpctl); 18788 zoneid = Q_TO_CONN(q)->conn_zoneid; 18789 18790 /* ip6GroupMember table */ 18791 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18792 optp->level = MIB2_IP6; 18793 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18794 18795 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18796 ill = ILL_START_WALK_V6(&ctx, ipst); 18797 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18798 ILM_WALKER_HOLD(ill); 18799 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18800 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18801 ASSERT(ilm->ilm_ipif == NULL); 18802 ASSERT(ilm->ilm_ill != NULL); 18803 if (ilm->ilm_zoneid != zoneid) 18804 continue; /* not this zone */ 18805 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18806 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18807 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18808 if (!snmp_append_data2(mpctl->b_cont, 18809 &mp_tail, 18810 (char *)&ipm6, (int)sizeof (ipm6))) { 18811 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18812 "failed to allocate %u bytes\n", 18813 (uint_t)sizeof (ipm6))); 18814 } 18815 } 18816 ILM_WALKER_RELE(ill); 18817 } 18818 rw_exit(&ipst->ips_ill_g_lock); 18819 18820 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18821 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18822 (int)optp->level, (int)optp->name, (int)optp->len)); 18823 qreply(q, mpctl); 18824 return (mp2ctl); 18825 } 18826 18827 /* IP multicast filtered sources */ 18828 static mblk_t * 18829 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18830 { 18831 struct opthdr *optp; 18832 mblk_t *mp2ctl; 18833 ill_t *ill; 18834 ipif_t *ipif; 18835 ilm_t *ilm; 18836 ip_grpsrc_t ips; 18837 mblk_t *mp_tail = NULL; 18838 ill_walk_context_t ctx; 18839 zoneid_t zoneid; 18840 int i; 18841 slist_t *sl; 18842 18843 /* 18844 * make a copy of the original message 18845 */ 18846 mp2ctl = copymsg(mpctl); 18847 zoneid = Q_TO_CONN(q)->conn_zoneid; 18848 18849 /* ipGroupSource table */ 18850 optp = (struct opthdr *)&mpctl->b_rptr[ 18851 sizeof (struct T_optmgmt_ack)]; 18852 optp->level = MIB2_IP; 18853 optp->name = EXPER_IP_GROUP_SOURCES; 18854 18855 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18856 ill = ILL_START_WALK_V4(&ctx, ipst); 18857 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18858 ILM_WALKER_HOLD(ill); 18859 for (ipif = ill->ill_ipif; ipif != NULL; 18860 ipif = ipif->ipif_next) { 18861 if (ipif->ipif_zoneid != zoneid) 18862 continue; /* not this zone */ 18863 (void) ipif_get_name(ipif, 18864 ips.ipGroupSourceIfIndex.o_bytes, 18865 OCTET_LENGTH); 18866 ips.ipGroupSourceIfIndex.o_length = 18867 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18868 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18869 ASSERT(ilm->ilm_ipif != NULL); 18870 ASSERT(ilm->ilm_ill == NULL); 18871 sl = ilm->ilm_filter; 18872 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18873 continue; 18874 ips.ipGroupSourceGroup = ilm->ilm_addr; 18875 for (i = 0; i < sl->sl_numsrc; i++) { 18876 if (!IN6_IS_ADDR_V4MAPPED( 18877 &sl->sl_addr[i])) 18878 continue; 18879 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18880 ips.ipGroupSourceAddress); 18881 if (snmp_append_data2(mpctl->b_cont, 18882 &mp_tail, (char *)&ips, 18883 (int)sizeof (ips)) == 0) { 18884 ip1dbg(("ip_snmp_get_mib2_" 18885 "ip_group_src: failed to " 18886 "allocate %u bytes\n", 18887 (uint_t)sizeof (ips))); 18888 } 18889 } 18890 } 18891 } 18892 ILM_WALKER_RELE(ill); 18893 } 18894 rw_exit(&ipst->ips_ill_g_lock); 18895 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18896 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18897 (int)optp->level, (int)optp->name, (int)optp->len)); 18898 qreply(q, mpctl); 18899 return (mp2ctl); 18900 } 18901 18902 /* IPv6 multicast filtered sources. */ 18903 static mblk_t * 18904 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18905 { 18906 struct opthdr *optp; 18907 mblk_t *mp2ctl; 18908 ill_t *ill; 18909 ilm_t *ilm; 18910 ipv6_grpsrc_t ips6; 18911 mblk_t *mp_tail = NULL; 18912 ill_walk_context_t ctx; 18913 zoneid_t zoneid; 18914 int i; 18915 slist_t *sl; 18916 18917 /* 18918 * make a copy of the original message 18919 */ 18920 mp2ctl = copymsg(mpctl); 18921 zoneid = Q_TO_CONN(q)->conn_zoneid; 18922 18923 /* ip6GroupMember table */ 18924 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18925 optp->level = MIB2_IP6; 18926 optp->name = EXPER_IP6_GROUP_SOURCES; 18927 18928 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18929 ill = ILL_START_WALK_V6(&ctx, ipst); 18930 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18931 ILM_WALKER_HOLD(ill); 18932 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18933 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18934 ASSERT(ilm->ilm_ipif == NULL); 18935 ASSERT(ilm->ilm_ill != NULL); 18936 sl = ilm->ilm_filter; 18937 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18938 continue; 18939 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18940 for (i = 0; i < sl->sl_numsrc; i++) { 18941 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18942 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18943 (char *)&ips6, (int)sizeof (ips6))) { 18944 ip1dbg(("ip_snmp_get_mib2_ip6_" 18945 "group_src: failed to allocate " 18946 "%u bytes\n", 18947 (uint_t)sizeof (ips6))); 18948 } 18949 } 18950 } 18951 ILM_WALKER_RELE(ill); 18952 } 18953 rw_exit(&ipst->ips_ill_g_lock); 18954 18955 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18956 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18957 (int)optp->level, (int)optp->name, (int)optp->len)); 18958 qreply(q, mpctl); 18959 return (mp2ctl); 18960 } 18961 18962 /* Multicast routing virtual interface table. */ 18963 static mblk_t * 18964 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18965 { 18966 struct opthdr *optp; 18967 mblk_t *mp2ctl; 18968 18969 /* 18970 * make a copy of the original message 18971 */ 18972 mp2ctl = copymsg(mpctl); 18973 18974 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18975 optp->level = EXPER_DVMRP; 18976 optp->name = EXPER_DVMRP_VIF; 18977 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18978 ip0dbg(("ip_mroute_vif: failed\n")); 18979 } 18980 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18981 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18982 (int)optp->level, (int)optp->name, (int)optp->len)); 18983 qreply(q, mpctl); 18984 return (mp2ctl); 18985 } 18986 18987 /* Multicast routing table. */ 18988 static mblk_t * 18989 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18990 { 18991 struct opthdr *optp; 18992 mblk_t *mp2ctl; 18993 18994 /* 18995 * make a copy of the original message 18996 */ 18997 mp2ctl = copymsg(mpctl); 18998 18999 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19000 optp->level = EXPER_DVMRP; 19001 optp->name = EXPER_DVMRP_MRT; 19002 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19003 ip0dbg(("ip_mroute_mrt: failed\n")); 19004 } 19005 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19006 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19007 (int)optp->level, (int)optp->name, (int)optp->len)); 19008 qreply(q, mpctl); 19009 return (mp2ctl); 19010 } 19011 19012 /* 19013 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19014 * in one IRE walk. 19015 */ 19016 static mblk_t * 19017 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19018 { 19019 struct opthdr *optp; 19020 mblk_t *mp2ctl; /* Returned */ 19021 mblk_t *mp3ctl; /* nettomedia */ 19022 mblk_t *mp4ctl; /* routeattrs */ 19023 iproutedata_t ird; 19024 zoneid_t zoneid; 19025 19026 /* 19027 * make copies of the original message 19028 * - mp2ctl is returned unchanged to the caller for his use 19029 * - mpctl is sent upstream as ipRouteEntryTable 19030 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19031 * - mp4ctl is sent upstream as ipRouteAttributeTable 19032 */ 19033 mp2ctl = copymsg(mpctl); 19034 mp3ctl = copymsg(mpctl); 19035 mp4ctl = copymsg(mpctl); 19036 if (mp3ctl == NULL || mp4ctl == NULL) { 19037 freemsg(mp4ctl); 19038 freemsg(mp3ctl); 19039 freemsg(mp2ctl); 19040 freemsg(mpctl); 19041 return (NULL); 19042 } 19043 19044 bzero(&ird, sizeof (ird)); 19045 19046 ird.ird_route.lp_head = mpctl->b_cont; 19047 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19048 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19049 19050 zoneid = Q_TO_CONN(q)->conn_zoneid; 19051 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19052 if (zoneid == GLOBAL_ZONEID) { 19053 /* 19054 * Those IREs are used by Mobile-IP; since mipagent(1M) 19055 * requires the sys_net_config or sys_ip_config privilege, 19056 * it can only run in the global zone or an exclusive-IP zone, 19057 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19058 */ 19059 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19060 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19061 } 19062 19063 /* ipRouteEntryTable in mpctl */ 19064 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19065 optp->level = MIB2_IP; 19066 optp->name = MIB2_IP_ROUTE; 19067 optp->len = msgdsize(ird.ird_route.lp_head); 19068 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19069 (int)optp->level, (int)optp->name, (int)optp->len)); 19070 qreply(q, mpctl); 19071 19072 /* ipNetToMediaEntryTable in mp3ctl */ 19073 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19074 optp->level = MIB2_IP; 19075 optp->name = MIB2_IP_MEDIA; 19076 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19077 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19078 (int)optp->level, (int)optp->name, (int)optp->len)); 19079 qreply(q, mp3ctl); 19080 19081 /* ipRouteAttributeTable in mp4ctl */ 19082 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19083 optp->level = MIB2_IP; 19084 optp->name = EXPER_IP_RTATTR; 19085 optp->len = msgdsize(ird.ird_attrs.lp_head); 19086 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19087 (int)optp->level, (int)optp->name, (int)optp->len)); 19088 if (optp->len == 0) 19089 freemsg(mp4ctl); 19090 else 19091 qreply(q, mp4ctl); 19092 19093 return (mp2ctl); 19094 } 19095 19096 /* 19097 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19098 * ipv6NetToMediaEntryTable in an NDP walk. 19099 */ 19100 static mblk_t * 19101 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19102 { 19103 struct opthdr *optp; 19104 mblk_t *mp2ctl; /* Returned */ 19105 mblk_t *mp3ctl; /* nettomedia */ 19106 mblk_t *mp4ctl; /* routeattrs */ 19107 iproutedata_t ird; 19108 zoneid_t zoneid; 19109 19110 /* 19111 * make copies of the original message 19112 * - mp2ctl is returned unchanged to the caller for his use 19113 * - mpctl is sent upstream as ipv6RouteEntryTable 19114 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19115 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19116 */ 19117 mp2ctl = copymsg(mpctl); 19118 mp3ctl = copymsg(mpctl); 19119 mp4ctl = copymsg(mpctl); 19120 if (mp3ctl == NULL || mp4ctl == NULL) { 19121 freemsg(mp4ctl); 19122 freemsg(mp3ctl); 19123 freemsg(mp2ctl); 19124 freemsg(mpctl); 19125 return (NULL); 19126 } 19127 19128 bzero(&ird, sizeof (ird)); 19129 19130 ird.ird_route.lp_head = mpctl->b_cont; 19131 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19132 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19133 19134 zoneid = Q_TO_CONN(q)->conn_zoneid; 19135 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19136 19137 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19138 optp->level = MIB2_IP6; 19139 optp->name = MIB2_IP6_ROUTE; 19140 optp->len = msgdsize(ird.ird_route.lp_head); 19141 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19142 (int)optp->level, (int)optp->name, (int)optp->len)); 19143 qreply(q, mpctl); 19144 19145 /* ipv6NetToMediaEntryTable in mp3ctl */ 19146 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19147 19148 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19149 optp->level = MIB2_IP6; 19150 optp->name = MIB2_IP6_MEDIA; 19151 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19152 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19153 (int)optp->level, (int)optp->name, (int)optp->len)); 19154 qreply(q, mp3ctl); 19155 19156 /* ipv6RouteAttributeTable in mp4ctl */ 19157 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19158 optp->level = MIB2_IP6; 19159 optp->name = EXPER_IP_RTATTR; 19160 optp->len = msgdsize(ird.ird_attrs.lp_head); 19161 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19162 (int)optp->level, (int)optp->name, (int)optp->len)); 19163 if (optp->len == 0) 19164 freemsg(mp4ctl); 19165 else 19166 qreply(q, mp4ctl); 19167 19168 return (mp2ctl); 19169 } 19170 19171 /* 19172 * IPv6 mib: One per ill 19173 */ 19174 static mblk_t * 19175 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19176 { 19177 struct opthdr *optp; 19178 mblk_t *mp2ctl; 19179 ill_t *ill; 19180 ill_walk_context_t ctx; 19181 mblk_t *mp_tail = NULL; 19182 19183 /* 19184 * Make a copy of the original message 19185 */ 19186 mp2ctl = copymsg(mpctl); 19187 19188 /* fixed length IPv6 structure ... */ 19189 19190 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19191 optp->level = MIB2_IP6; 19192 optp->name = 0; 19193 /* Include "unknown interface" ip6_mib */ 19194 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19195 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19196 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19197 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19198 ipst->ips_ipv6_forward ? 1 : 2); 19199 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19200 ipst->ips_ipv6_def_hops); 19201 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19202 sizeof (mib2_ipIfStatsEntry_t)); 19203 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19204 sizeof (mib2_ipv6AddrEntry_t)); 19205 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19206 sizeof (mib2_ipv6RouteEntry_t)); 19207 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19208 sizeof (mib2_ipv6NetToMediaEntry_t)); 19209 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19210 sizeof (ipv6_member_t)); 19211 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19212 sizeof (ipv6_grpsrc_t)); 19213 19214 /* 19215 * Synchronize 64- and 32-bit counters 19216 */ 19217 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19218 ipIfStatsHCInReceives); 19219 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19220 ipIfStatsHCInDelivers); 19221 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19222 ipIfStatsHCOutRequests); 19223 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19224 ipIfStatsHCOutForwDatagrams); 19225 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19226 ipIfStatsHCOutMcastPkts); 19227 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19228 ipIfStatsHCInMcastPkts); 19229 19230 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19231 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19232 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19233 (uint_t)sizeof (ipst->ips_ip6_mib))); 19234 } 19235 19236 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19237 ill = ILL_START_WALK_V6(&ctx, ipst); 19238 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19239 ill->ill_ip_mib->ipIfStatsIfIndex = 19240 ill->ill_phyint->phyint_ifindex; 19241 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19242 ipst->ips_ipv6_forward ? 1 : 2); 19243 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19244 ill->ill_max_hops); 19245 19246 /* 19247 * Synchronize 64- and 32-bit counters 19248 */ 19249 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19250 ipIfStatsHCInReceives); 19251 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19252 ipIfStatsHCInDelivers); 19253 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19254 ipIfStatsHCOutRequests); 19255 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19256 ipIfStatsHCOutForwDatagrams); 19257 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19258 ipIfStatsHCOutMcastPkts); 19259 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19260 ipIfStatsHCInMcastPkts); 19261 19262 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19263 (char *)ill->ill_ip_mib, 19264 (int)sizeof (*ill->ill_ip_mib))) { 19265 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19266 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19267 } 19268 } 19269 rw_exit(&ipst->ips_ill_g_lock); 19270 19271 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19272 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19273 (int)optp->level, (int)optp->name, (int)optp->len)); 19274 qreply(q, mpctl); 19275 return (mp2ctl); 19276 } 19277 19278 /* 19279 * ICMPv6 mib: One per ill 19280 */ 19281 static mblk_t * 19282 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19283 { 19284 struct opthdr *optp; 19285 mblk_t *mp2ctl; 19286 ill_t *ill; 19287 ill_walk_context_t ctx; 19288 mblk_t *mp_tail = NULL; 19289 /* 19290 * Make a copy of the original message 19291 */ 19292 mp2ctl = copymsg(mpctl); 19293 19294 /* fixed length ICMPv6 structure ... */ 19295 19296 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19297 optp->level = MIB2_ICMP6; 19298 optp->name = 0; 19299 /* Include "unknown interface" icmp6_mib */ 19300 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19301 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19302 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19303 sizeof (mib2_ipv6IfIcmpEntry_t); 19304 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19305 (char *)&ipst->ips_icmp6_mib, 19306 (int)sizeof (ipst->ips_icmp6_mib))) { 19307 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19308 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19309 } 19310 19311 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19312 ill = ILL_START_WALK_V6(&ctx, ipst); 19313 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19314 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19315 ill->ill_phyint->phyint_ifindex; 19316 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19317 (char *)ill->ill_icmp6_mib, 19318 (int)sizeof (*ill->ill_icmp6_mib))) { 19319 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19320 "%u bytes\n", 19321 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19322 } 19323 } 19324 rw_exit(&ipst->ips_ill_g_lock); 19325 19326 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19327 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19328 (int)optp->level, (int)optp->name, (int)optp->len)); 19329 qreply(q, mpctl); 19330 return (mp2ctl); 19331 } 19332 19333 /* 19334 * ire_walk routine to create both ipRouteEntryTable and 19335 * ipRouteAttributeTable in one IRE walk 19336 */ 19337 static void 19338 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19339 { 19340 ill_t *ill; 19341 ipif_t *ipif; 19342 mib2_ipRouteEntry_t *re; 19343 mib2_ipAttributeEntry_t *iae, *iaeptr; 19344 ipaddr_t gw_addr; 19345 tsol_ire_gw_secattr_t *attrp; 19346 tsol_gc_t *gc = NULL; 19347 tsol_gcgrp_t *gcgrp = NULL; 19348 uint_t sacnt = 0; 19349 int i; 19350 19351 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19352 19353 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19354 return; 19355 19356 if ((attrp = ire->ire_gw_secattr) != NULL) { 19357 mutex_enter(&attrp->igsa_lock); 19358 if ((gc = attrp->igsa_gc) != NULL) { 19359 gcgrp = gc->gc_grp; 19360 ASSERT(gcgrp != NULL); 19361 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19362 sacnt = 1; 19363 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19364 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19365 gc = gcgrp->gcgrp_head; 19366 sacnt = gcgrp->gcgrp_count; 19367 } 19368 mutex_exit(&attrp->igsa_lock); 19369 19370 /* do nothing if there's no gc to report */ 19371 if (gc == NULL) { 19372 ASSERT(sacnt == 0); 19373 if (gcgrp != NULL) { 19374 /* we might as well drop the lock now */ 19375 rw_exit(&gcgrp->gcgrp_rwlock); 19376 gcgrp = NULL; 19377 } 19378 attrp = NULL; 19379 } 19380 19381 ASSERT(gc == NULL || (gcgrp != NULL && 19382 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19383 } 19384 ASSERT(sacnt == 0 || gc != NULL); 19385 19386 if (sacnt != 0 && 19387 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19388 kmem_free(re, sizeof (*re)); 19389 rw_exit(&gcgrp->gcgrp_rwlock); 19390 return; 19391 } 19392 19393 /* 19394 * Return all IRE types for route table... let caller pick and choose 19395 */ 19396 re->ipRouteDest = ire->ire_addr; 19397 ipif = ire->ire_ipif; 19398 re->ipRouteIfIndex.o_length = 0; 19399 if (ire->ire_type == IRE_CACHE) { 19400 ill = (ill_t *)ire->ire_stq->q_ptr; 19401 re->ipRouteIfIndex.o_length = 19402 ill->ill_name_length == 0 ? 0 : 19403 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19404 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19405 re->ipRouteIfIndex.o_length); 19406 } else if (ipif != NULL) { 19407 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19408 OCTET_LENGTH); 19409 re->ipRouteIfIndex.o_length = 19410 mi_strlen(re->ipRouteIfIndex.o_bytes); 19411 } 19412 re->ipRouteMetric1 = -1; 19413 re->ipRouteMetric2 = -1; 19414 re->ipRouteMetric3 = -1; 19415 re->ipRouteMetric4 = -1; 19416 19417 gw_addr = ire->ire_gateway_addr; 19418 19419 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19420 re->ipRouteNextHop = ire->ire_src_addr; 19421 else 19422 re->ipRouteNextHop = gw_addr; 19423 /* indirect(4), direct(3), or invalid(2) */ 19424 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19425 re->ipRouteType = 2; 19426 else 19427 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19428 re->ipRouteProto = -1; 19429 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19430 re->ipRouteMask = ire->ire_mask; 19431 re->ipRouteMetric5 = -1; 19432 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19433 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19434 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19435 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19436 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19437 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19438 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19439 re->ipRouteInfo.re_flags = ire->ire_flags; 19440 re->ipRouteInfo.re_in_ill.o_length = 0; 19441 19442 if (ire->ire_flags & RTF_DYNAMIC) { 19443 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19444 } else { 19445 re->ipRouteInfo.re_ire_type = ire->ire_type; 19446 } 19447 19448 if (ire->ire_in_ill != NULL) { 19449 re->ipRouteInfo.re_in_ill.o_length = 19450 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19451 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19452 bcopy(ire->ire_in_ill->ill_name, 19453 re->ipRouteInfo.re_in_ill.o_bytes, 19454 re->ipRouteInfo.re_in_ill.o_length); 19455 } 19456 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19457 19458 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19459 (char *)re, (int)sizeof (*re))) { 19460 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19461 (uint_t)sizeof (*re))); 19462 } 19463 19464 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19465 iaeptr->iae_routeidx = ird->ird_idx; 19466 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19467 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19468 } 19469 19470 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19471 (char *)iae, sacnt * sizeof (*iae))) { 19472 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19473 (unsigned)(sacnt * sizeof (*iae)))); 19474 } 19475 19476 /* bump route index for next pass */ 19477 ird->ird_idx++; 19478 19479 kmem_free(re, sizeof (*re)); 19480 if (sacnt != 0) 19481 kmem_free(iae, sacnt * sizeof (*iae)); 19482 19483 if (gcgrp != NULL) 19484 rw_exit(&gcgrp->gcgrp_rwlock); 19485 } 19486 19487 /* 19488 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19489 */ 19490 static void 19491 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19492 { 19493 ill_t *ill; 19494 ipif_t *ipif; 19495 mib2_ipv6RouteEntry_t *re; 19496 mib2_ipAttributeEntry_t *iae, *iaeptr; 19497 in6_addr_t gw_addr_v6; 19498 tsol_ire_gw_secattr_t *attrp; 19499 tsol_gc_t *gc = NULL; 19500 tsol_gcgrp_t *gcgrp = NULL; 19501 uint_t sacnt = 0; 19502 int i; 19503 19504 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19505 19506 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19507 return; 19508 19509 if ((attrp = ire->ire_gw_secattr) != NULL) { 19510 mutex_enter(&attrp->igsa_lock); 19511 if ((gc = attrp->igsa_gc) != NULL) { 19512 gcgrp = gc->gc_grp; 19513 ASSERT(gcgrp != NULL); 19514 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19515 sacnt = 1; 19516 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19517 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19518 gc = gcgrp->gcgrp_head; 19519 sacnt = gcgrp->gcgrp_count; 19520 } 19521 mutex_exit(&attrp->igsa_lock); 19522 19523 /* do nothing if there's no gc to report */ 19524 if (gc == NULL) { 19525 ASSERT(sacnt == 0); 19526 if (gcgrp != NULL) { 19527 /* we might as well drop the lock now */ 19528 rw_exit(&gcgrp->gcgrp_rwlock); 19529 gcgrp = NULL; 19530 } 19531 attrp = NULL; 19532 } 19533 19534 ASSERT(gc == NULL || (gcgrp != NULL && 19535 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19536 } 19537 ASSERT(sacnt == 0 || gc != NULL); 19538 19539 if (sacnt != 0 && 19540 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19541 kmem_free(re, sizeof (*re)); 19542 rw_exit(&gcgrp->gcgrp_rwlock); 19543 return; 19544 } 19545 19546 /* 19547 * Return all IRE types for route table... let caller pick and choose 19548 */ 19549 re->ipv6RouteDest = ire->ire_addr_v6; 19550 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19551 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19552 re->ipv6RouteIfIndex.o_length = 0; 19553 ipif = ire->ire_ipif; 19554 if (ire->ire_type == IRE_CACHE) { 19555 ill = (ill_t *)ire->ire_stq->q_ptr; 19556 re->ipv6RouteIfIndex.o_length = 19557 ill->ill_name_length == 0 ? 0 : 19558 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19559 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19560 re->ipv6RouteIfIndex.o_length); 19561 } else if (ipif != NULL) { 19562 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19563 OCTET_LENGTH); 19564 re->ipv6RouteIfIndex.o_length = 19565 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19566 } 19567 19568 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19569 19570 mutex_enter(&ire->ire_lock); 19571 gw_addr_v6 = ire->ire_gateway_addr_v6; 19572 mutex_exit(&ire->ire_lock); 19573 19574 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19575 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19576 else 19577 re->ipv6RouteNextHop = gw_addr_v6; 19578 19579 /* remote(4), local(3), or discard(2) */ 19580 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19581 re->ipv6RouteType = 2; 19582 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19583 re->ipv6RouteType = 3; 19584 else 19585 re->ipv6RouteType = 4; 19586 19587 re->ipv6RouteProtocol = -1; 19588 re->ipv6RoutePolicy = 0; 19589 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19590 re->ipv6RouteNextHopRDI = 0; 19591 re->ipv6RouteWeight = 0; 19592 re->ipv6RouteMetric = 0; 19593 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19594 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19595 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19596 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19597 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19598 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19599 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19600 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19601 19602 if (ire->ire_flags & RTF_DYNAMIC) { 19603 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19604 } else { 19605 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19606 } 19607 19608 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19609 (char *)re, (int)sizeof (*re))) { 19610 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19611 (uint_t)sizeof (*re))); 19612 } 19613 19614 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19615 iaeptr->iae_routeidx = ird->ird_idx; 19616 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19617 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19618 } 19619 19620 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19621 (char *)iae, sacnt * sizeof (*iae))) { 19622 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19623 (unsigned)(sacnt * sizeof (*iae)))); 19624 } 19625 19626 /* bump route index for next pass */ 19627 ird->ird_idx++; 19628 19629 kmem_free(re, sizeof (*re)); 19630 if (sacnt != 0) 19631 kmem_free(iae, sacnt * sizeof (*iae)); 19632 19633 if (gcgrp != NULL) 19634 rw_exit(&gcgrp->gcgrp_rwlock); 19635 } 19636 19637 /* 19638 * ndp_walk routine to create ipv6NetToMediaEntryTable 19639 */ 19640 static int 19641 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19642 { 19643 ill_t *ill; 19644 mib2_ipv6NetToMediaEntry_t ntme; 19645 dl_unitdata_req_t *dl; 19646 19647 ill = nce->nce_ill; 19648 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19649 return (0); 19650 19651 /* 19652 * Neighbor cache entry attached to IRE with on-link 19653 * destination. 19654 */ 19655 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19656 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19657 if ((ill->ill_flags & ILLF_XRESOLV) && 19658 (nce->nce_res_mp != NULL)) { 19659 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19660 ntme.ipv6NetToMediaPhysAddress.o_length = 19661 dl->dl_dest_addr_length; 19662 } else { 19663 ntme.ipv6NetToMediaPhysAddress.o_length = 19664 ill->ill_phys_addr_length; 19665 } 19666 if (nce->nce_res_mp != NULL) { 19667 bcopy((char *)nce->nce_res_mp->b_rptr + 19668 NCE_LL_ADDR_OFFSET(ill), 19669 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19670 ntme.ipv6NetToMediaPhysAddress.o_length); 19671 } else { 19672 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19673 ill->ill_phys_addr_length); 19674 } 19675 /* 19676 * Note: Returns ND_* states. Should be: 19677 * reachable(1), stale(2), delay(3), probe(4), 19678 * invalid(5), unknown(6) 19679 */ 19680 ntme.ipv6NetToMediaState = nce->nce_state; 19681 ntme.ipv6NetToMediaLastUpdated = 0; 19682 19683 /* other(1), dynamic(2), static(3), local(4) */ 19684 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19685 ntme.ipv6NetToMediaType = 4; 19686 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19687 ntme.ipv6NetToMediaType = 1; 19688 } else { 19689 ntme.ipv6NetToMediaType = 2; 19690 } 19691 19692 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19693 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19694 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19695 (uint_t)sizeof (ntme))); 19696 } 19697 return (0); 19698 } 19699 19700 /* 19701 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19702 */ 19703 /* ARGSUSED */ 19704 int 19705 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19706 { 19707 switch (level) { 19708 case MIB2_IP: 19709 case MIB2_ICMP: 19710 switch (name) { 19711 default: 19712 break; 19713 } 19714 return (1); 19715 default: 19716 return (1); 19717 } 19718 } 19719 19720 /* 19721 * When there exists both a 64- and 32-bit counter of a particular type 19722 * (i.e., InReceives), only the 64-bit counters are added. 19723 */ 19724 void 19725 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19726 { 19727 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19728 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19729 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19730 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19731 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19732 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19733 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19734 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19735 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19736 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19737 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19738 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19739 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19740 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19741 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19742 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19743 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19744 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19745 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19746 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19747 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19748 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19749 o2->ipIfStatsInWrongIPVersion); 19750 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19751 o2->ipIfStatsInWrongIPVersion); 19752 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19753 o2->ipIfStatsOutSwitchIPVersion); 19754 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19755 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19756 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19757 o2->ipIfStatsHCInForwDatagrams); 19758 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19759 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19760 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19761 o2->ipIfStatsHCOutForwDatagrams); 19762 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19763 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19764 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19765 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19766 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19767 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19768 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19769 o2->ipIfStatsHCOutMcastOctets); 19770 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19771 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19772 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19773 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19774 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19775 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19776 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19777 } 19778 19779 void 19780 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19781 { 19782 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19783 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19784 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19785 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19786 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19787 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19788 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19789 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19790 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19791 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19792 o2->ipv6IfIcmpInRouterSolicits); 19793 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19794 o2->ipv6IfIcmpInRouterAdvertisements); 19795 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19796 o2->ipv6IfIcmpInNeighborSolicits); 19797 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19798 o2->ipv6IfIcmpInNeighborAdvertisements); 19799 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19800 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19801 o2->ipv6IfIcmpInGroupMembQueries); 19802 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19803 o2->ipv6IfIcmpInGroupMembResponses); 19804 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19805 o2->ipv6IfIcmpInGroupMembReductions); 19806 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19807 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19808 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19809 o2->ipv6IfIcmpOutDestUnreachs); 19810 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19811 o2->ipv6IfIcmpOutAdminProhibs); 19812 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19813 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19814 o2->ipv6IfIcmpOutParmProblems); 19815 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19816 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19817 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19818 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19819 o2->ipv6IfIcmpOutRouterSolicits); 19820 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19821 o2->ipv6IfIcmpOutRouterAdvertisements); 19822 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19823 o2->ipv6IfIcmpOutNeighborSolicits); 19824 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19825 o2->ipv6IfIcmpOutNeighborAdvertisements); 19826 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19827 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19828 o2->ipv6IfIcmpOutGroupMembQueries); 19829 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19830 o2->ipv6IfIcmpOutGroupMembResponses); 19831 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19832 o2->ipv6IfIcmpOutGroupMembReductions); 19833 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19834 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19835 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19836 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19837 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19838 o2->ipv6IfIcmpInBadNeighborSolicitations); 19839 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19840 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19841 o2->ipv6IfIcmpInGroupMembTotal); 19842 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19843 o2->ipv6IfIcmpInGroupMembBadQueries); 19844 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19845 o2->ipv6IfIcmpInGroupMembBadReports); 19846 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19847 o2->ipv6IfIcmpInGroupMembOurReports); 19848 } 19849 19850 /* 19851 * Called before the options are updated to check if this packet will 19852 * be source routed from here. 19853 * This routine assumes that the options are well formed i.e. that they 19854 * have already been checked. 19855 */ 19856 static boolean_t 19857 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19858 { 19859 ipoptp_t opts; 19860 uchar_t *opt; 19861 uint8_t optval; 19862 uint8_t optlen; 19863 ipaddr_t dst; 19864 ire_t *ire; 19865 19866 if (IS_SIMPLE_IPH(ipha)) { 19867 ip2dbg(("not source routed\n")); 19868 return (B_FALSE); 19869 } 19870 dst = ipha->ipha_dst; 19871 for (optval = ipoptp_first(&opts, ipha); 19872 optval != IPOPT_EOL; 19873 optval = ipoptp_next(&opts)) { 19874 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19875 opt = opts.ipoptp_cur; 19876 optlen = opts.ipoptp_len; 19877 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19878 optval, optlen)); 19879 switch (optval) { 19880 uint32_t off; 19881 case IPOPT_SSRR: 19882 case IPOPT_LSRR: 19883 /* 19884 * If dst is one of our addresses and there are some 19885 * entries left in the source route return (true). 19886 */ 19887 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19888 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19889 if (ire == NULL) { 19890 ip2dbg(("ip_source_routed: not next" 19891 " source route 0x%x\n", 19892 ntohl(dst))); 19893 return (B_FALSE); 19894 } 19895 ire_refrele(ire); 19896 off = opt[IPOPT_OFFSET]; 19897 off--; 19898 if (optlen < IP_ADDR_LEN || 19899 off > optlen - IP_ADDR_LEN) { 19900 /* End of source route */ 19901 ip1dbg(("ip_source_routed: end of SR\n")); 19902 return (B_FALSE); 19903 } 19904 return (B_TRUE); 19905 } 19906 } 19907 ip2dbg(("not source routed\n")); 19908 return (B_FALSE); 19909 } 19910 19911 /* 19912 * Check if the packet contains any source route. 19913 */ 19914 static boolean_t 19915 ip_source_route_included(ipha_t *ipha) 19916 { 19917 ipoptp_t opts; 19918 uint8_t optval; 19919 19920 if (IS_SIMPLE_IPH(ipha)) 19921 return (B_FALSE); 19922 for (optval = ipoptp_first(&opts, ipha); 19923 optval != IPOPT_EOL; 19924 optval = ipoptp_next(&opts)) { 19925 switch (optval) { 19926 case IPOPT_SSRR: 19927 case IPOPT_LSRR: 19928 return (B_TRUE); 19929 } 19930 } 19931 return (B_FALSE); 19932 } 19933 19934 /* 19935 * Called when the IRE expiration timer fires. 19936 */ 19937 void 19938 ip_trash_timer_expire(void *args) 19939 { 19940 int flush_flag = 0; 19941 ire_expire_arg_t iea; 19942 ip_stack_t *ipst = (ip_stack_t *)args; 19943 19944 iea.iea_ipst = ipst; /* No netstack_hold */ 19945 19946 /* 19947 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19948 * This lock makes sure that a new invocation of this function 19949 * that occurs due to an almost immediate timer firing will not 19950 * progress beyond this point until the current invocation is done 19951 */ 19952 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19953 ipst->ips_ip_ire_expire_id = 0; 19954 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19955 19956 /* Periodic timer */ 19957 if (ipst->ips_ip_ire_arp_time_elapsed >= 19958 ipst->ips_ip_ire_arp_interval) { 19959 /* 19960 * Remove all IRE_CACHE entries since they might 19961 * contain arp information. 19962 */ 19963 flush_flag |= FLUSH_ARP_TIME; 19964 ipst->ips_ip_ire_arp_time_elapsed = 0; 19965 IP_STAT(ipst, ip_ire_arp_timer_expired); 19966 } 19967 if (ipst->ips_ip_ire_rd_time_elapsed >= 19968 ipst->ips_ip_ire_redir_interval) { 19969 /* Remove all redirects */ 19970 flush_flag |= FLUSH_REDIRECT_TIME; 19971 ipst->ips_ip_ire_rd_time_elapsed = 0; 19972 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19973 } 19974 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19975 ipst->ips_ip_ire_pathmtu_interval) { 19976 /* Increase path mtu */ 19977 flush_flag |= FLUSH_MTU_TIME; 19978 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19979 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19980 } 19981 19982 /* 19983 * Optimize for the case when there are no redirects in the 19984 * ftable, that is, no need to walk the ftable in that case. 19985 */ 19986 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19987 iea.iea_flush_flag = flush_flag; 19988 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19989 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19990 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19991 NULL, ALL_ZONES, ipst); 19992 } 19993 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19994 ipst->ips_ip_redirect_cnt > 0) { 19995 iea.iea_flush_flag = flush_flag; 19996 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19997 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19998 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19999 } 20000 if (flush_flag & FLUSH_MTU_TIME) { 20001 /* 20002 * Walk all IPv6 IRE's and update them 20003 * Note that ARP and redirect timers are not 20004 * needed since NUD handles stale entries. 20005 */ 20006 flush_flag = FLUSH_MTU_TIME; 20007 iea.iea_flush_flag = flush_flag; 20008 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20009 ALL_ZONES, ipst); 20010 } 20011 20012 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20013 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20014 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20015 20016 /* 20017 * Hold the lock to serialize timeout calls and prevent 20018 * stale values in ip_ire_expire_id. Otherwise it is possible 20019 * for the timer to fire and a new invocation of this function 20020 * to start before the return value of timeout has been stored 20021 * in ip_ire_expire_id by the current invocation. 20022 */ 20023 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20024 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20025 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20026 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20027 } 20028 20029 /* 20030 * Called by the memory allocator subsystem directly, when the system 20031 * is running low on memory. 20032 */ 20033 /* ARGSUSED */ 20034 void 20035 ip_trash_ire_reclaim(void *args) 20036 { 20037 netstack_handle_t nh; 20038 netstack_t *ns; 20039 20040 netstack_next_init(&nh); 20041 while ((ns = netstack_next(&nh)) != NULL) { 20042 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20043 netstack_rele(ns); 20044 } 20045 netstack_next_fini(&nh); 20046 } 20047 20048 static void 20049 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20050 { 20051 ire_cache_count_t icc; 20052 ire_cache_reclaim_t icr; 20053 ncc_cache_count_t ncc; 20054 nce_cache_reclaim_t ncr; 20055 uint_t delete_cnt; 20056 /* 20057 * Memory reclaim call back. 20058 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20059 * Then, with a target of freeing 1/Nth of IRE_CACHE 20060 * entries, determine what fraction to free for 20061 * each category of IRE_CACHE entries giving absolute priority 20062 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20063 * entry will be freed unless all offlink entries are freed). 20064 */ 20065 icc.icc_total = 0; 20066 icc.icc_unused = 0; 20067 icc.icc_offlink = 0; 20068 icc.icc_pmtu = 0; 20069 icc.icc_onlink = 0; 20070 ire_walk(ire_cache_count, (char *)&icc, ipst); 20071 20072 /* 20073 * Free NCEs for IPv6 like the onlink ires. 20074 */ 20075 ncc.ncc_total = 0; 20076 ncc.ncc_host = 0; 20077 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20078 20079 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20080 icc.icc_pmtu + icc.icc_onlink); 20081 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20082 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20083 if (delete_cnt == 0) 20084 return; 20085 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20086 /* Always delete all unused offlink entries */ 20087 icr.icr_ipst = ipst; 20088 icr.icr_unused = 1; 20089 if (delete_cnt <= icc.icc_unused) { 20090 /* 20091 * Only need to free unused entries. In other words, 20092 * there are enough unused entries to free to meet our 20093 * target number of freed ire cache entries. 20094 */ 20095 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20096 ncr.ncr_host = 0; 20097 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20098 /* 20099 * Only need to free unused entries, plus a fraction of offlink 20100 * entries. It follows from the first if statement that 20101 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20102 */ 20103 delete_cnt -= icc.icc_unused; 20104 /* Round up # deleted by truncating fraction */ 20105 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20106 icr.icr_pmtu = icr.icr_onlink = 0; 20107 ncr.ncr_host = 0; 20108 } else if (delete_cnt <= 20109 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20110 /* 20111 * Free all unused and offlink entries, plus a fraction of 20112 * pmtu entries. It follows from the previous if statement 20113 * that icc_pmtu is non-zero, and that 20114 * delete_cnt != icc_unused + icc_offlink. 20115 */ 20116 icr.icr_offlink = 1; 20117 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20118 /* Round up # deleted by truncating fraction */ 20119 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20120 icr.icr_onlink = 0; 20121 ncr.ncr_host = 0; 20122 } else { 20123 /* 20124 * Free all unused, offlink, and pmtu entries, plus a fraction 20125 * of onlink entries. If we're here, then we know that 20126 * icc_onlink is non-zero, and that 20127 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20128 */ 20129 icr.icr_offlink = icr.icr_pmtu = 1; 20130 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20131 icc.icc_pmtu; 20132 /* Round up # deleted by truncating fraction */ 20133 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20134 /* Using the same delete fraction as for onlink IREs */ 20135 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20136 } 20137 #ifdef DEBUG 20138 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20139 "fractions %d/%d/%d/%d\n", 20140 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20141 icc.icc_unused, icc.icc_offlink, 20142 icc.icc_pmtu, icc.icc_onlink, 20143 icr.icr_unused, icr.icr_offlink, 20144 icr.icr_pmtu, icr.icr_onlink)); 20145 #endif 20146 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20147 if (ncr.ncr_host != 0) 20148 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20149 (uchar_t *)&ncr, ipst); 20150 #ifdef DEBUG 20151 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20152 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20153 ire_walk(ire_cache_count, (char *)&icc, ipst); 20154 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20155 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20156 icc.icc_pmtu, icc.icc_onlink)); 20157 #endif 20158 } 20159 20160 /* 20161 * ip_unbind is called when a copy of an unbind request is received from the 20162 * upper level protocol. We remove this conn from any fanout hash list it is 20163 * on, and zero out the bind information. No reply is expected up above. 20164 */ 20165 mblk_t * 20166 ip_unbind(queue_t *q, mblk_t *mp) 20167 { 20168 conn_t *connp = Q_TO_CONN(q); 20169 20170 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20171 20172 if (is_system_labeled() && connp->conn_anon_port) { 20173 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20174 connp->conn_mlp_type, connp->conn_ulp, 20175 ntohs(connp->conn_lport), B_FALSE); 20176 connp->conn_anon_port = 0; 20177 } 20178 connp->conn_mlp_type = mlptSingle; 20179 20180 ipcl_hash_remove(connp); 20181 20182 ASSERT(mp->b_cont == NULL); 20183 /* 20184 * Convert mp into a T_OK_ACK 20185 */ 20186 mp = mi_tpi_ok_ack_alloc(mp); 20187 20188 /* 20189 * should not happen in practice... T_OK_ACK is smaller than the 20190 * original message. 20191 */ 20192 if (mp == NULL) 20193 return (NULL); 20194 20195 /* 20196 * Don't bzero the ports if its TCP since TCP still needs the 20197 * lport to remove it from its own bind hash. TCP will do the 20198 * cleanup. 20199 */ 20200 if (!IPCL_IS_TCP(connp)) 20201 bzero(&connp->u_port, sizeof (connp->u_port)); 20202 20203 return (mp); 20204 } 20205 20206 /* 20207 * Write side put procedure. Outbound data, IOCTLs, responses from 20208 * resolvers, etc, come down through here. 20209 * 20210 * arg2 is always a queue_t *. 20211 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20212 * the zoneid. 20213 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20214 */ 20215 void 20216 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20217 { 20218 ip_output_options(arg, mp, arg2, caller, &zero_info); 20219 } 20220 20221 void 20222 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20223 ip_opt_info_t *infop) 20224 { 20225 conn_t *connp = NULL; 20226 queue_t *q = (queue_t *)arg2; 20227 ipha_t *ipha; 20228 #define rptr ((uchar_t *)ipha) 20229 ire_t *ire = NULL; 20230 ire_t *sctp_ire = NULL; 20231 uint32_t v_hlen_tos_len; 20232 ipaddr_t dst; 20233 mblk_t *first_mp = NULL; 20234 boolean_t mctl_present; 20235 ipsec_out_t *io; 20236 int match_flags; 20237 ill_t *attach_ill = NULL; 20238 /* Bind to IPIF_NOFAILOVER ill etc. */ 20239 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20240 ipif_t *dst_ipif; 20241 boolean_t multirt_need_resolve = B_FALSE; 20242 mblk_t *copy_mp = NULL; 20243 int err; 20244 zoneid_t zoneid; 20245 int adjust; 20246 uint16_t iplen; 20247 boolean_t need_decref = B_FALSE; 20248 boolean_t ignore_dontroute = B_FALSE; 20249 boolean_t ignore_nexthop = B_FALSE; 20250 boolean_t ip_nexthop = B_FALSE; 20251 ipaddr_t nexthop_addr; 20252 ip_stack_t *ipst; 20253 20254 #ifdef _BIG_ENDIAN 20255 #define V_HLEN (v_hlen_tos_len >> 24) 20256 #else 20257 #define V_HLEN (v_hlen_tos_len & 0xFF) 20258 #endif 20259 20260 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20261 "ip_wput_start: q %p", q); 20262 20263 /* 20264 * ip_wput fast path 20265 */ 20266 20267 /* is packet from ARP ? */ 20268 if (q->q_next != NULL) { 20269 zoneid = (zoneid_t)(uintptr_t)arg; 20270 goto qnext; 20271 } 20272 20273 connp = (conn_t *)arg; 20274 ASSERT(connp != NULL); 20275 zoneid = connp->conn_zoneid; 20276 ipst = connp->conn_netstack->netstack_ip; 20277 20278 /* is queue flow controlled? */ 20279 if ((q->q_first != NULL || connp->conn_draining) && 20280 (caller == IP_WPUT)) { 20281 ASSERT(!need_decref); 20282 (void) putq(q, mp); 20283 return; 20284 } 20285 20286 /* Multidata transmit? */ 20287 if (DB_TYPE(mp) == M_MULTIDATA) { 20288 /* 20289 * We should never get here, since all Multidata messages 20290 * originating from tcp should have been directed over to 20291 * tcp_multisend() in the first place. 20292 */ 20293 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20294 freemsg(mp); 20295 return; 20296 } else if (DB_TYPE(mp) != M_DATA) 20297 goto notdata; 20298 20299 if (mp->b_flag & MSGHASREF) { 20300 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20301 mp->b_flag &= ~MSGHASREF; 20302 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20303 need_decref = B_TRUE; 20304 } 20305 ipha = (ipha_t *)mp->b_rptr; 20306 20307 /* is IP header non-aligned or mblk smaller than basic IP header */ 20308 #ifndef SAFETY_BEFORE_SPEED 20309 if (!OK_32PTR(rptr) || 20310 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20311 goto hdrtoosmall; 20312 #endif 20313 20314 ASSERT(OK_32PTR(ipha)); 20315 20316 /* 20317 * This function assumes that mp points to an IPv4 packet. If it's the 20318 * wrong version, we'll catch it again in ip_output_v6. 20319 * 20320 * Note that this is *only* locally-generated output here, and never 20321 * forwarded data, and that we need to deal only with transports that 20322 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20323 * label.) 20324 */ 20325 if (is_system_labeled() && 20326 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20327 !connp->conn_ulp_labeled) { 20328 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20329 connp->conn_mac_exempt, ipst); 20330 ipha = (ipha_t *)mp->b_rptr; 20331 if (err != 0) { 20332 first_mp = mp; 20333 if (err == EINVAL) 20334 goto icmp_parameter_problem; 20335 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20336 goto discard_pkt; 20337 } 20338 iplen = ntohs(ipha->ipha_length) + adjust; 20339 ipha->ipha_length = htons(iplen); 20340 } 20341 20342 ASSERT(infop != NULL); 20343 20344 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20345 /* 20346 * IP_PKTINFO ancillary option is present. 20347 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20348 * allows using address of any zone as the source address. 20349 */ 20350 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20351 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20352 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20353 if (ire == NULL) 20354 goto drop_pkt; 20355 ire_refrele(ire); 20356 ire = NULL; 20357 } 20358 20359 /* 20360 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20361 * ill index passed in IP_PKTINFO. 20362 */ 20363 if (infop->ip_opt_ill_index != 0 && 20364 connp->conn_xmit_if_ill == NULL && 20365 connp->conn_nofailover_ill == NULL) { 20366 20367 xmit_ill = ill_lookup_on_ifindex( 20368 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20369 ipst); 20370 20371 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20372 goto drop_pkt; 20373 /* 20374 * check that there is an ipif belonging 20375 * to our zone. IPCL_ZONEID is not used because 20376 * IP_ALLZONES option is valid only when the ill is 20377 * accessible from all zones i.e has a valid ipif in 20378 * all zones. 20379 */ 20380 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20381 goto drop_pkt; 20382 } 20383 } 20384 20385 /* 20386 * If there is a policy, try to attach an ipsec_out in 20387 * the front. At the end, first_mp either points to a 20388 * M_DATA message or IPSEC_OUT message linked to a 20389 * M_DATA message. We have to do it now as we might 20390 * lose the "conn" if we go through ip_newroute. 20391 */ 20392 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20393 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20394 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20395 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20396 if (need_decref) 20397 CONN_DEC_REF(connp); 20398 return; 20399 } else { 20400 ASSERT(mp->b_datap->db_type == M_CTL); 20401 first_mp = mp; 20402 mp = mp->b_cont; 20403 mctl_present = B_TRUE; 20404 } 20405 } else { 20406 first_mp = mp; 20407 mctl_present = B_FALSE; 20408 } 20409 20410 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20411 20412 /* is wrong version or IP options present */ 20413 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20414 goto version_hdrlen_check; 20415 dst = ipha->ipha_dst; 20416 20417 if (connp->conn_nofailover_ill != NULL) { 20418 attach_ill = conn_get_held_ill(connp, 20419 &connp->conn_nofailover_ill, &err); 20420 if (err == ILL_LOOKUP_FAILED) { 20421 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20422 if (need_decref) 20423 CONN_DEC_REF(connp); 20424 freemsg(first_mp); 20425 return; 20426 } 20427 } 20428 20429 20430 /* is packet multicast? */ 20431 if (CLASSD(dst)) 20432 goto multicast; 20433 20434 /* 20435 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20436 * takes precedence over conn_dontroute and conn_nexthop_set 20437 */ 20438 if (xmit_ill != NULL) { 20439 goto send_from_ill; 20440 } 20441 20442 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20443 (connp->conn_nexthop_set)) { 20444 /* 20445 * If the destination is a broadcast or a loopback 20446 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20447 * through the standard path. But in the case of local 20448 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20449 * the standard path not IP_XMIT_IF. 20450 */ 20451 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20452 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20453 (ire->ire_type != IRE_LOOPBACK))) { 20454 if ((connp->conn_dontroute || 20455 connp->conn_nexthop_set) && (ire != NULL) && 20456 (ire->ire_type == IRE_LOCAL)) 20457 goto standard_path; 20458 20459 if (ire != NULL) { 20460 ire_refrele(ire); 20461 /* No more access to ire */ 20462 ire = NULL; 20463 } 20464 /* 20465 * bypass routing checks and go directly to 20466 * interface. 20467 */ 20468 if (connp->conn_dontroute) { 20469 goto dontroute; 20470 } else if (connp->conn_nexthop_set) { 20471 ip_nexthop = B_TRUE; 20472 nexthop_addr = connp->conn_nexthop_v4; 20473 goto send_from_ill; 20474 } 20475 20476 /* 20477 * If IP_XMIT_IF socket option is set, 20478 * then we allow unicast and multicast 20479 * packets to go through the ill. It is 20480 * quite possible that the destination 20481 * is not in the ire cache table and we 20482 * do not want to go to ip_newroute() 20483 * instead we call ip_newroute_ipif. 20484 */ 20485 xmit_ill = conn_get_held_ill(connp, 20486 &connp->conn_xmit_if_ill, &err); 20487 if (err == ILL_LOOKUP_FAILED) { 20488 BUMP_MIB(&ipst->ips_ip_mib, 20489 ipIfStatsOutDiscards); 20490 if (attach_ill != NULL) 20491 ill_refrele(attach_ill); 20492 if (need_decref) 20493 CONN_DEC_REF(connp); 20494 freemsg(first_mp); 20495 return; 20496 } 20497 goto send_from_ill; 20498 } 20499 standard_path: 20500 /* Must be a broadcast, a loopback or a local ire */ 20501 if (ire != NULL) { 20502 ire_refrele(ire); 20503 /* No more access to ire */ 20504 ire = NULL; 20505 } 20506 } 20507 20508 if (attach_ill != NULL) 20509 goto send_from_ill; 20510 20511 /* 20512 * We cache IRE_CACHEs to avoid lookups. We don't do 20513 * this for the tcp global queue and listen end point 20514 * as it does not really have a real destination to 20515 * talk to. This is also true for SCTP. 20516 */ 20517 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20518 !connp->conn_fully_bound) { 20519 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20520 if (ire == NULL) 20521 goto noirefound; 20522 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20523 "ip_wput_end: q %p (%S)", q, "end"); 20524 20525 /* 20526 * Check if the ire has the RTF_MULTIRT flag, inherited 20527 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20528 */ 20529 if (ire->ire_flags & RTF_MULTIRT) { 20530 20531 /* 20532 * Force the TTL of multirouted packets if required. 20533 * The TTL of such packets is bounded by the 20534 * ip_multirt_ttl ndd variable. 20535 */ 20536 if ((ipst->ips_ip_multirt_ttl > 0) && 20537 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20538 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20539 "(was %d), dst 0x%08x\n", 20540 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20541 ntohl(ire->ire_addr))); 20542 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20543 } 20544 /* 20545 * We look at this point if there are pending 20546 * unresolved routes. ire_multirt_resolvable() 20547 * checks in O(n) that all IRE_OFFSUBNET ire 20548 * entries for the packet's destination and 20549 * flagged RTF_MULTIRT are currently resolved. 20550 * If some remain unresolved, we make a copy 20551 * of the current message. It will be used 20552 * to initiate additional route resolutions. 20553 */ 20554 multirt_need_resolve = 20555 ire_multirt_need_resolve(ire->ire_addr, 20556 MBLK_GETLABEL(first_mp), ipst); 20557 ip2dbg(("ip_wput[TCP]: ire %p, " 20558 "multirt_need_resolve %d, first_mp %p\n", 20559 (void *)ire, multirt_need_resolve, 20560 (void *)first_mp)); 20561 if (multirt_need_resolve) { 20562 copy_mp = copymsg(first_mp); 20563 if (copy_mp != NULL) { 20564 MULTIRT_DEBUG_TAG(copy_mp); 20565 } 20566 } 20567 } 20568 20569 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20570 20571 /* 20572 * Try to resolve another multiroute if 20573 * ire_multirt_need_resolve() deemed it necessary. 20574 */ 20575 if (copy_mp != NULL) { 20576 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20577 } 20578 if (need_decref) 20579 CONN_DEC_REF(connp); 20580 return; 20581 } 20582 20583 /* 20584 * Access to conn_ire_cache. (protected by conn_lock) 20585 * 20586 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20587 * the ire bucket lock here to check for CONDEMNED as it is okay to 20588 * send a packet or two with the IRE_CACHE that is going away. 20589 * Access to the ire requires an ire refhold on the ire prior to 20590 * its use since an interface unplumb thread may delete the cached 20591 * ire and release the refhold at any time. 20592 * 20593 * Caching an ire in the conn_ire_cache 20594 * 20595 * o Caching an ire pointer in the conn requires a strict check for 20596 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20597 * ires before cleaning up the conns. So the caching of an ire pointer 20598 * in the conn is done after making sure under the bucket lock that the 20599 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20600 * caching an ire after the unplumb thread has cleaned up the conn. 20601 * If the conn does not send a packet subsequently the unplumb thread 20602 * will be hanging waiting for the ire count to drop to zero. 20603 * 20604 * o We also need to atomically test for a null conn_ire_cache and 20605 * set the conn_ire_cache under the the protection of the conn_lock 20606 * to avoid races among concurrent threads trying to simultaneously 20607 * cache an ire in the conn_ire_cache. 20608 */ 20609 mutex_enter(&connp->conn_lock); 20610 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20611 20612 if (ire != NULL && ire->ire_addr == dst && 20613 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20614 20615 IRE_REFHOLD(ire); 20616 mutex_exit(&connp->conn_lock); 20617 20618 } else { 20619 boolean_t cached = B_FALSE; 20620 connp->conn_ire_cache = NULL; 20621 mutex_exit(&connp->conn_lock); 20622 /* Release the old ire */ 20623 if (ire != NULL && sctp_ire == NULL) 20624 IRE_REFRELE_NOTR(ire); 20625 20626 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20627 if (ire == NULL) 20628 goto noirefound; 20629 IRE_REFHOLD_NOTR(ire); 20630 20631 mutex_enter(&connp->conn_lock); 20632 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20633 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20634 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20635 if (connp->conn_ulp == IPPROTO_TCP) 20636 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20637 connp->conn_ire_cache = ire; 20638 cached = B_TRUE; 20639 } 20640 rw_exit(&ire->ire_bucket->irb_lock); 20641 } 20642 mutex_exit(&connp->conn_lock); 20643 20644 /* 20645 * We can continue to use the ire but since it was 20646 * not cached, we should drop the extra reference. 20647 */ 20648 if (!cached) 20649 IRE_REFRELE_NOTR(ire); 20650 } 20651 20652 20653 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20654 "ip_wput_end: q %p (%S)", q, "end"); 20655 20656 /* 20657 * Check if the ire has the RTF_MULTIRT flag, inherited 20658 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20659 */ 20660 if (ire->ire_flags & RTF_MULTIRT) { 20661 20662 /* 20663 * Force the TTL of multirouted packets if required. 20664 * The TTL of such packets is bounded by the 20665 * ip_multirt_ttl ndd variable. 20666 */ 20667 if ((ipst->ips_ip_multirt_ttl > 0) && 20668 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20669 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20670 "(was %d), dst 0x%08x\n", 20671 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20672 ntohl(ire->ire_addr))); 20673 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20674 } 20675 20676 /* 20677 * At this point, we check to see if there are any pending 20678 * unresolved routes. ire_multirt_resolvable() 20679 * checks in O(n) that all IRE_OFFSUBNET ire 20680 * entries for the packet's destination and 20681 * flagged RTF_MULTIRT are currently resolved. 20682 * If some remain unresolved, we make a copy 20683 * of the current message. It will be used 20684 * to initiate additional route resolutions. 20685 */ 20686 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20687 MBLK_GETLABEL(first_mp), ipst); 20688 ip2dbg(("ip_wput[not TCP]: ire %p, " 20689 "multirt_need_resolve %d, first_mp %p\n", 20690 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20691 if (multirt_need_resolve) { 20692 copy_mp = copymsg(first_mp); 20693 if (copy_mp != NULL) { 20694 MULTIRT_DEBUG_TAG(copy_mp); 20695 } 20696 } 20697 } 20698 20699 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20700 20701 /* 20702 * Try to resolve another multiroute if 20703 * ire_multirt_resolvable() deemed it necessary 20704 */ 20705 if (copy_mp != NULL) { 20706 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20707 } 20708 if (need_decref) 20709 CONN_DEC_REF(connp); 20710 return; 20711 20712 qnext: 20713 /* 20714 * Upper Level Protocols pass down complete IP datagrams 20715 * as M_DATA messages. Everything else is a sideshow. 20716 * 20717 * 1) We could be re-entering ip_wput because of ip_neworute 20718 * in which case we could have a IPSEC_OUT message. We 20719 * need to pass through ip_wput like other datagrams and 20720 * hence cannot branch to ip_wput_nondata. 20721 * 20722 * 2) ARP, AH, ESP, and other clients who are on the module 20723 * instance of IP stream, give us something to deal with. 20724 * We will handle AH and ESP here and rest in ip_wput_nondata. 20725 * 20726 * 3) ICMP replies also could come here. 20727 */ 20728 ipst = ILLQ_TO_IPST(q); 20729 20730 if (DB_TYPE(mp) != M_DATA) { 20731 notdata: 20732 if (DB_TYPE(mp) == M_CTL) { 20733 /* 20734 * M_CTL messages are used by ARP, AH and ESP to 20735 * communicate with IP. We deal with IPSEC_IN and 20736 * IPSEC_OUT here. ip_wput_nondata handles other 20737 * cases. 20738 */ 20739 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20740 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20741 first_mp = mp->b_cont; 20742 first_mp->b_flag &= ~MSGHASREF; 20743 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20744 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20745 CONN_DEC_REF(connp); 20746 connp = NULL; 20747 } 20748 if (ii->ipsec_info_type == IPSEC_IN) { 20749 /* 20750 * Either this message goes back to 20751 * IPSEC for further processing or to 20752 * ULP after policy checks. 20753 */ 20754 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20755 return; 20756 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20757 io = (ipsec_out_t *)ii; 20758 if (io->ipsec_out_proc_begin) { 20759 /* 20760 * IPSEC processing has already started. 20761 * Complete it. 20762 * IPQoS notes: We don't care what is 20763 * in ipsec_out_ill_index since this 20764 * won't be processed for IPQoS policies 20765 * in ipsec_out_process. 20766 */ 20767 ipsec_out_process(q, mp, NULL, 20768 io->ipsec_out_ill_index); 20769 return; 20770 } else { 20771 connp = (q->q_next != NULL) ? 20772 NULL : Q_TO_CONN(q); 20773 first_mp = mp; 20774 mp = mp->b_cont; 20775 mctl_present = B_TRUE; 20776 } 20777 zoneid = io->ipsec_out_zoneid; 20778 ASSERT(zoneid != ALL_ZONES); 20779 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20780 /* 20781 * It's an IPsec control message requesting 20782 * an SADB update to be sent to the IPsec 20783 * hardware acceleration capable ills. 20784 */ 20785 ipsec_ctl_t *ipsec_ctl = 20786 (ipsec_ctl_t *)mp->b_rptr; 20787 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20788 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20789 mblk_t *cmp = mp->b_cont; 20790 20791 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20792 ASSERT(cmp != NULL); 20793 20794 freeb(mp); 20795 ill_ipsec_capab_send_all(satype, cmp, sa, 20796 ipst->ips_netstack); 20797 return; 20798 } else { 20799 /* 20800 * This must be ARP or special TSOL signaling. 20801 */ 20802 ip_wput_nondata(NULL, q, mp, NULL); 20803 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20804 "ip_wput_end: q %p (%S)", q, "nondata"); 20805 return; 20806 } 20807 } else { 20808 /* 20809 * This must be non-(ARP/AH/ESP) messages. 20810 */ 20811 ASSERT(!need_decref); 20812 ip_wput_nondata(NULL, q, mp, NULL); 20813 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20814 "ip_wput_end: q %p (%S)", q, "nondata"); 20815 return; 20816 } 20817 } else { 20818 first_mp = mp; 20819 mctl_present = B_FALSE; 20820 } 20821 20822 ASSERT(first_mp != NULL); 20823 /* 20824 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20825 * to make sure that this packet goes out on the same interface it 20826 * came in. We handle that here. 20827 */ 20828 if (mctl_present) { 20829 uint_t ifindex; 20830 20831 io = (ipsec_out_t *)first_mp->b_rptr; 20832 if (io->ipsec_out_attach_if || 20833 io->ipsec_out_xmit_if || 20834 io->ipsec_out_ip_nexthop) { 20835 ill_t *ill; 20836 20837 /* 20838 * We may have lost the conn context if we are 20839 * coming here from ip_newroute(). Copy the 20840 * nexthop information. 20841 */ 20842 if (io->ipsec_out_ip_nexthop) { 20843 ip_nexthop = B_TRUE; 20844 nexthop_addr = io->ipsec_out_nexthop_addr; 20845 20846 ipha = (ipha_t *)mp->b_rptr; 20847 dst = ipha->ipha_dst; 20848 goto send_from_ill; 20849 } else { 20850 ASSERT(io->ipsec_out_ill_index != 0); 20851 ifindex = io->ipsec_out_ill_index; 20852 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20853 NULL, NULL, NULL, NULL, ipst); 20854 /* 20855 * ipsec_out_xmit_if bit is used to tell 20856 * ip_wput to use the ill to send outgoing data 20857 * as we have no conn when data comes from ICMP 20858 * error msg routines. Currently this feature is 20859 * only used by ip_mrtun_forward routine. 20860 */ 20861 if (io->ipsec_out_xmit_if) { 20862 xmit_ill = ill; 20863 if (xmit_ill == NULL) { 20864 ip1dbg(("ip_output:bad ifindex " 20865 "for xmit_ill %d\n", 20866 ifindex)); 20867 freemsg(first_mp); 20868 BUMP_MIB(&ipst->ips_ip_mib, 20869 ipIfStatsOutDiscards); 20870 ASSERT(!need_decref); 20871 return; 20872 } 20873 /* Free up the ipsec_out_t mblk */ 20874 ASSERT(first_mp->b_cont == mp); 20875 first_mp->b_cont = NULL; 20876 freeb(first_mp); 20877 /* Just send the IP header+ICMP+data */ 20878 first_mp = mp; 20879 ipha = (ipha_t *)mp->b_rptr; 20880 dst = ipha->ipha_dst; 20881 goto send_from_ill; 20882 } else { 20883 attach_ill = ill; 20884 } 20885 20886 if (attach_ill == NULL) { 20887 ASSERT(xmit_ill == NULL); 20888 ip1dbg(("ip_output: bad ifindex for " 20889 "(BIND TO IPIF_NOFAILOVER) %d\n", 20890 ifindex)); 20891 freemsg(first_mp); 20892 BUMP_MIB(&ipst->ips_ip_mib, 20893 ipIfStatsOutDiscards); 20894 ASSERT(!need_decref); 20895 return; 20896 } 20897 } 20898 } 20899 } 20900 20901 ASSERT(xmit_ill == NULL); 20902 20903 /* We have a complete IP datagram heading outbound. */ 20904 ipha = (ipha_t *)mp->b_rptr; 20905 20906 #ifndef SPEED_BEFORE_SAFETY 20907 /* 20908 * Make sure we have a full-word aligned message and that at least 20909 * a simple IP header is accessible in the first message. If not, 20910 * try a pullup. 20911 */ 20912 if (!OK_32PTR(rptr) || 20913 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20914 hdrtoosmall: 20915 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20916 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20917 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20918 if (first_mp == NULL) 20919 first_mp = mp; 20920 goto discard_pkt; 20921 } 20922 20923 /* This function assumes that mp points to an IPv4 packet. */ 20924 if (is_system_labeled() && q->q_next == NULL && 20925 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20926 !connp->conn_ulp_labeled) { 20927 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20928 &adjust, connp->conn_mac_exempt, ipst); 20929 ipha = (ipha_t *)mp->b_rptr; 20930 if (first_mp != NULL) 20931 first_mp->b_cont = mp; 20932 if (err != 0) { 20933 if (first_mp == NULL) 20934 first_mp = mp; 20935 if (err == EINVAL) 20936 goto icmp_parameter_problem; 20937 ip2dbg(("ip_wput: label check failed (%d)\n", 20938 err)); 20939 goto discard_pkt; 20940 } 20941 iplen = ntohs(ipha->ipha_length) + adjust; 20942 ipha->ipha_length = htons(iplen); 20943 } 20944 20945 ipha = (ipha_t *)mp->b_rptr; 20946 if (first_mp == NULL) { 20947 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20948 /* 20949 * If we got here because of "goto hdrtoosmall" 20950 * We need to attach a IPSEC_OUT. 20951 */ 20952 if (connp->conn_out_enforce_policy) { 20953 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20954 NULL, ipha->ipha_protocol, 20955 ipst->ips_netstack)) == NULL)) { 20956 BUMP_MIB(&ipst->ips_ip_mib, 20957 ipIfStatsOutDiscards); 20958 if (need_decref) 20959 CONN_DEC_REF(connp); 20960 return; 20961 } else { 20962 ASSERT(mp->b_datap->db_type == M_CTL); 20963 first_mp = mp; 20964 mp = mp->b_cont; 20965 mctl_present = B_TRUE; 20966 } 20967 } else { 20968 first_mp = mp; 20969 mctl_present = B_FALSE; 20970 } 20971 } 20972 } 20973 #endif 20974 20975 /* Most of the code below is written for speed, not readability */ 20976 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20977 20978 /* 20979 * If ip_newroute() fails, we're going to need a full 20980 * header for the icmp wraparound. 20981 */ 20982 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20983 uint_t v_hlen; 20984 version_hdrlen_check: 20985 ASSERT(first_mp != NULL); 20986 v_hlen = V_HLEN; 20987 /* 20988 * siphon off IPv6 packets coming down from transport 20989 * layer modules here. 20990 * Note: high-order bit carries NUD reachability confirmation 20991 */ 20992 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20993 /* 20994 * XXX implement a IPv4 and IPv6 packet counter per 20995 * conn and switch when ratio exceeds e.g. 10:1 20996 */ 20997 #ifdef notyet 20998 if (q->q_next == NULL) /* Avoid ill queue */ 20999 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21000 #endif 21001 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21002 ASSERT(xmit_ill == NULL); 21003 if (attach_ill != NULL) 21004 ill_refrele(attach_ill); 21005 if (need_decref) 21006 mp->b_flag |= MSGHASREF; 21007 (void) ip_output_v6(arg, first_mp, arg2, caller); 21008 return; 21009 } 21010 21011 if ((v_hlen >> 4) != IP_VERSION) { 21012 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21013 "ip_wput_end: q %p (%S)", q, "badvers"); 21014 goto discard_pkt; 21015 } 21016 /* 21017 * Is the header length at least 20 bytes? 21018 * 21019 * Are there enough bytes accessible in the header? If 21020 * not, try a pullup. 21021 */ 21022 v_hlen &= 0xF; 21023 v_hlen <<= 2; 21024 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21025 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21026 "ip_wput_end: q %p (%S)", q, "badlen"); 21027 goto discard_pkt; 21028 } 21029 if (v_hlen > (mp->b_wptr - rptr)) { 21030 if (!pullupmsg(mp, v_hlen)) { 21031 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21032 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21033 goto discard_pkt; 21034 } 21035 ipha = (ipha_t *)mp->b_rptr; 21036 } 21037 /* 21038 * Move first entry from any source route into ipha_dst and 21039 * verify the options 21040 */ 21041 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21042 zoneid, ipst)) { 21043 ASSERT(xmit_ill == NULL); 21044 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21045 if (attach_ill != NULL) 21046 ill_refrele(attach_ill); 21047 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21048 "ip_wput_end: q %p (%S)", q, "badopts"); 21049 if (need_decref) 21050 CONN_DEC_REF(connp); 21051 return; 21052 } 21053 } 21054 dst = ipha->ipha_dst; 21055 21056 /* 21057 * Try to get an IRE_CACHE for the destination address. If we can't, 21058 * we have to run the packet through ip_newroute which will take 21059 * the appropriate action to arrange for an IRE_CACHE, such as querying 21060 * a resolver, or assigning a default gateway, etc. 21061 */ 21062 if (CLASSD(dst)) { 21063 ipif_t *ipif; 21064 uint32_t setsrc = 0; 21065 21066 multicast: 21067 ASSERT(first_mp != NULL); 21068 ip2dbg(("ip_wput: CLASSD\n")); 21069 if (connp == NULL) { 21070 /* 21071 * Use the first good ipif on the ill. 21072 * XXX Should this ever happen? (Appears 21073 * to show up with just ppp and no ethernet due 21074 * to in.rdisc.) 21075 * However, ire_send should be able to 21076 * call ip_wput_ire directly. 21077 * 21078 * XXX Also, this can happen for ICMP and other packets 21079 * with multicast source addresses. Perhaps we should 21080 * fix things so that we drop the packet in question, 21081 * but for now, just run with it. 21082 */ 21083 ill_t *ill = (ill_t *)q->q_ptr; 21084 21085 /* 21086 * Don't honor attach_if for this case. If ill 21087 * is part of the group, ipif could belong to 21088 * any ill and we cannot maintain attach_ill 21089 * and ipif_ill same anymore and the assert 21090 * below would fail. 21091 */ 21092 if (mctl_present && io->ipsec_out_attach_if) { 21093 io->ipsec_out_ill_index = 0; 21094 io->ipsec_out_attach_if = B_FALSE; 21095 ASSERT(attach_ill != NULL); 21096 ill_refrele(attach_ill); 21097 attach_ill = NULL; 21098 } 21099 21100 ASSERT(attach_ill == NULL); 21101 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21102 if (ipif == NULL) { 21103 if (need_decref) 21104 CONN_DEC_REF(connp); 21105 freemsg(first_mp); 21106 return; 21107 } 21108 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21109 ntohl(dst), ill->ill_name)); 21110 } else { 21111 /* 21112 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21113 * and IP_MULTICAST_IF. 21114 * Block comment above this function explains the 21115 * locking mechanism used here 21116 */ 21117 if (xmit_ill == NULL) { 21118 xmit_ill = conn_get_held_ill(connp, 21119 &connp->conn_xmit_if_ill, &err); 21120 if (err == ILL_LOOKUP_FAILED) { 21121 ip1dbg(("ip_wput: No ill for " 21122 "IP_XMIT_IF\n")); 21123 BUMP_MIB(&ipst->ips_ip_mib, 21124 ipIfStatsOutNoRoutes); 21125 goto drop_pkt; 21126 } 21127 } 21128 21129 if (xmit_ill == NULL) { 21130 ipif = conn_get_held_ipif(connp, 21131 &connp->conn_multicast_ipif, &err); 21132 if (err == IPIF_LOOKUP_FAILED) { 21133 ip1dbg(("ip_wput: No ipif for " 21134 "multicast\n")); 21135 BUMP_MIB(&ipst->ips_ip_mib, 21136 ipIfStatsOutNoRoutes); 21137 goto drop_pkt; 21138 } 21139 } 21140 if (xmit_ill != NULL) { 21141 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21142 if (ipif == NULL) { 21143 ip1dbg(("ip_wput: No ipif for " 21144 "IP_XMIT_IF\n")); 21145 BUMP_MIB(&ipst->ips_ip_mib, 21146 ipIfStatsOutNoRoutes); 21147 goto drop_pkt; 21148 } 21149 } else if (ipif == NULL || ipif->ipif_isv6) { 21150 /* 21151 * We must do this ipif determination here 21152 * else we could pass through ip_newroute 21153 * and come back here without the conn context. 21154 * 21155 * Note: we do late binding i.e. we bind to 21156 * the interface when the first packet is sent. 21157 * For performance reasons we do not rebind on 21158 * each packet but keep the binding until the 21159 * next IP_MULTICAST_IF option. 21160 * 21161 * conn_multicast_{ipif,ill} are shared between 21162 * IPv4 and IPv6 and AF_INET6 sockets can 21163 * send both IPv4 and IPv6 packets. Hence 21164 * we have to check that "isv6" matches above. 21165 */ 21166 if (ipif != NULL) 21167 ipif_refrele(ipif); 21168 ipif = ipif_lookup_group(dst, zoneid, ipst); 21169 if (ipif == NULL) { 21170 ip1dbg(("ip_wput: No ipif for " 21171 "multicast\n")); 21172 BUMP_MIB(&ipst->ips_ip_mib, 21173 ipIfStatsOutNoRoutes); 21174 goto drop_pkt; 21175 } 21176 err = conn_set_held_ipif(connp, 21177 &connp->conn_multicast_ipif, ipif); 21178 if (err == IPIF_LOOKUP_FAILED) { 21179 ipif_refrele(ipif); 21180 ip1dbg(("ip_wput: No ipif for " 21181 "multicast\n")); 21182 BUMP_MIB(&ipst->ips_ip_mib, 21183 ipIfStatsOutNoRoutes); 21184 goto drop_pkt; 21185 } 21186 } 21187 } 21188 ASSERT(!ipif->ipif_isv6); 21189 /* 21190 * As we may lose the conn by the time we reach ip_wput_ire, 21191 * we copy conn_multicast_loop and conn_dontroute on to an 21192 * ipsec_out. In case if this datagram goes out secure, 21193 * we need the ill_index also. Copy that also into the 21194 * ipsec_out. 21195 */ 21196 if (mctl_present) { 21197 io = (ipsec_out_t *)first_mp->b_rptr; 21198 ASSERT(first_mp->b_datap->db_type == M_CTL); 21199 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21200 } else { 21201 ASSERT(mp == first_mp); 21202 if ((first_mp = allocb(sizeof (ipsec_info_t), 21203 BPRI_HI)) == NULL) { 21204 ipif_refrele(ipif); 21205 first_mp = mp; 21206 goto discard_pkt; 21207 } 21208 first_mp->b_datap->db_type = M_CTL; 21209 first_mp->b_wptr += sizeof (ipsec_info_t); 21210 /* ipsec_out_secure is B_FALSE now */ 21211 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21212 io = (ipsec_out_t *)first_mp->b_rptr; 21213 io->ipsec_out_type = IPSEC_OUT; 21214 io->ipsec_out_len = sizeof (ipsec_out_t); 21215 io->ipsec_out_use_global_policy = B_TRUE; 21216 io->ipsec_out_ns = ipst->ips_netstack; 21217 first_mp->b_cont = mp; 21218 mctl_present = B_TRUE; 21219 } 21220 if (attach_ill != NULL) { 21221 ASSERT(attach_ill == ipif->ipif_ill); 21222 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21223 21224 /* 21225 * Check if we need an ire that will not be 21226 * looked up by anybody else i.e. HIDDEN. 21227 */ 21228 if (ill_is_probeonly(attach_ill)) { 21229 match_flags |= MATCH_IRE_MARK_HIDDEN; 21230 } 21231 io->ipsec_out_ill_index = 21232 attach_ill->ill_phyint->phyint_ifindex; 21233 io->ipsec_out_attach_if = B_TRUE; 21234 } else { 21235 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21236 io->ipsec_out_ill_index = 21237 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21238 } 21239 if (connp != NULL) { 21240 io->ipsec_out_multicast_loop = 21241 connp->conn_multicast_loop; 21242 io->ipsec_out_dontroute = connp->conn_dontroute; 21243 io->ipsec_out_zoneid = connp->conn_zoneid; 21244 } 21245 /* 21246 * If the application uses IP_MULTICAST_IF with 21247 * different logical addresses of the same ILL, we 21248 * need to make sure that the soruce address of 21249 * the packet matches the logical IP address used 21250 * in the option. We do it by initializing ipha_src 21251 * here. This should keep IPSEC also happy as 21252 * when we return from IPSEC processing, we don't 21253 * have to worry about getting the right address on 21254 * the packet. Thus it is sufficient to look for 21255 * IRE_CACHE using MATCH_IRE_ILL rathen than 21256 * MATCH_IRE_IPIF. 21257 * 21258 * NOTE : We need to do it for non-secure case also as 21259 * this might go out secure if there is a global policy 21260 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21261 * address, the source should be initialized already and 21262 * hence we won't be initializing here. 21263 * 21264 * As we do not have the ire yet, it is possible that 21265 * we set the source address here and then later discover 21266 * that the ire implies the source address to be assigned 21267 * through the RTF_SETSRC flag. 21268 * In that case, the setsrc variable will remind us 21269 * that overwritting the source address by the one 21270 * of the RTF_SETSRC-flagged ire is allowed. 21271 */ 21272 if (ipha->ipha_src == INADDR_ANY && 21273 (connp == NULL || !connp->conn_unspec_src)) { 21274 ipha->ipha_src = ipif->ipif_src_addr; 21275 setsrc = RTF_SETSRC; 21276 } 21277 /* 21278 * Find an IRE which matches the destination and the outgoing 21279 * queue (i.e. the outgoing interface.) 21280 * For loopback use a unicast IP address for 21281 * the ire lookup. 21282 */ 21283 if (IS_LOOPBACK(ipif->ipif_ill)) 21284 dst = ipif->ipif_lcl_addr; 21285 21286 /* 21287 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21288 * We don't need to lookup ire in ctable as the packet 21289 * needs to be sent to the destination through the specified 21290 * ill irrespective of ires in the cache table. 21291 */ 21292 ire = NULL; 21293 if (xmit_ill == NULL) { 21294 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21295 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21296 } 21297 21298 /* 21299 * refrele attach_ill as its not needed anymore. 21300 */ 21301 if (attach_ill != NULL) { 21302 ill_refrele(attach_ill); 21303 attach_ill = NULL; 21304 } 21305 21306 if (ire == NULL) { 21307 /* 21308 * Multicast loopback and multicast forwarding is 21309 * done in ip_wput_ire. 21310 * 21311 * Mark this packet to make it be delivered to 21312 * ip_wput_ire after the new ire has been 21313 * created. 21314 * 21315 * The call to ip_newroute_ipif takes into account 21316 * the setsrc reminder. In any case, we take care 21317 * of the RTF_MULTIRT flag. 21318 */ 21319 mp->b_prev = mp->b_next = NULL; 21320 if (xmit_ill == NULL || 21321 xmit_ill->ill_ipif_up_count > 0) { 21322 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21323 setsrc | RTF_MULTIRT, zoneid, infop); 21324 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21325 "ip_wput_end: q %p (%S)", q, "noire"); 21326 } else { 21327 freemsg(first_mp); 21328 } 21329 ipif_refrele(ipif); 21330 if (xmit_ill != NULL) 21331 ill_refrele(xmit_ill); 21332 if (need_decref) 21333 CONN_DEC_REF(connp); 21334 return; 21335 } 21336 21337 ipif_refrele(ipif); 21338 ipif = NULL; 21339 ASSERT(xmit_ill == NULL); 21340 21341 /* 21342 * Honor the RTF_SETSRC flag for multicast packets, 21343 * if allowed by the setsrc reminder. 21344 */ 21345 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21346 ipha->ipha_src = ire->ire_src_addr; 21347 } 21348 21349 /* 21350 * Unconditionally force the TTL to 1 for 21351 * multirouted multicast packets: 21352 * multirouted multicast should not cross 21353 * multicast routers. 21354 */ 21355 if (ire->ire_flags & RTF_MULTIRT) { 21356 if (ipha->ipha_ttl > 1) { 21357 ip2dbg(("ip_wput: forcing multicast " 21358 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21359 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21360 ipha->ipha_ttl = 1; 21361 } 21362 } 21363 } else { 21364 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21365 if ((ire != NULL) && (ire->ire_type & 21366 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21367 ignore_dontroute = B_TRUE; 21368 ignore_nexthop = B_TRUE; 21369 } 21370 if (ire != NULL) { 21371 ire_refrele(ire); 21372 ire = NULL; 21373 } 21374 /* 21375 * Guard against coming in from arp in which case conn is NULL. 21376 * Also guard against non M_DATA with dontroute set but 21377 * destined to local, loopback or broadcast addresses. 21378 */ 21379 if (connp != NULL && connp->conn_dontroute && 21380 !ignore_dontroute) { 21381 dontroute: 21382 /* 21383 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21384 * routing protocols from seeing false direct 21385 * connectivity. 21386 */ 21387 ipha->ipha_ttl = 1; 21388 /* 21389 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21390 * along with SO_DONTROUTE, higher precedence is 21391 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21392 */ 21393 if (connp->conn_xmit_if_ill == NULL) { 21394 /* If suitable ipif not found, drop packet */ 21395 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21396 ipst); 21397 if (dst_ipif == NULL) { 21398 ip1dbg(("ip_wput: no route for " 21399 "dst using SO_DONTROUTE\n")); 21400 BUMP_MIB(&ipst->ips_ip_mib, 21401 ipIfStatsOutNoRoutes); 21402 mp->b_prev = mp->b_next = NULL; 21403 if (first_mp == NULL) 21404 first_mp = mp; 21405 goto drop_pkt; 21406 } else { 21407 /* 21408 * If suitable ipif has been found, set 21409 * xmit_ill to the corresponding 21410 * ipif_ill because we'll be following 21411 * the IP_XMIT_IF logic. 21412 */ 21413 ASSERT(xmit_ill == NULL); 21414 xmit_ill = dst_ipif->ipif_ill; 21415 mutex_enter(&xmit_ill->ill_lock); 21416 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21417 mutex_exit(&xmit_ill->ill_lock); 21418 xmit_ill = NULL; 21419 ipif_refrele(dst_ipif); 21420 ip1dbg(("ip_wput: no route for" 21421 " dst using" 21422 " SO_DONTROUTE\n")); 21423 BUMP_MIB(&ipst->ips_ip_mib, 21424 ipIfStatsOutNoRoutes); 21425 mp->b_prev = mp->b_next = NULL; 21426 if (first_mp == NULL) 21427 first_mp = mp; 21428 goto drop_pkt; 21429 } 21430 ill_refhold_locked(xmit_ill); 21431 mutex_exit(&xmit_ill->ill_lock); 21432 ipif_refrele(dst_ipif); 21433 } 21434 } 21435 21436 } 21437 /* 21438 * If we are bound to IPIF_NOFAILOVER address, look for 21439 * an IRE_CACHE matching the ill. 21440 */ 21441 send_from_ill: 21442 if (attach_ill != NULL) { 21443 ipif_t *attach_ipif; 21444 21445 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21446 21447 /* 21448 * Check if we need an ire that will not be 21449 * looked up by anybody else i.e. HIDDEN. 21450 */ 21451 if (ill_is_probeonly(attach_ill)) { 21452 match_flags |= MATCH_IRE_MARK_HIDDEN; 21453 } 21454 21455 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21456 if (attach_ipif == NULL) { 21457 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21458 goto discard_pkt; 21459 } 21460 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21461 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21462 ipif_refrele(attach_ipif); 21463 } else if (xmit_ill != NULL || (connp != NULL && 21464 connp->conn_xmit_if_ill != NULL)) { 21465 /* 21466 * Mark this packet as originated locally 21467 */ 21468 mp->b_prev = mp->b_next = NULL; 21469 /* 21470 * xmit_ill could be NULL if SO_DONTROUTE 21471 * is also set. 21472 */ 21473 if (xmit_ill == NULL) { 21474 xmit_ill = conn_get_held_ill(connp, 21475 &connp->conn_xmit_if_ill, &err); 21476 if (err == ILL_LOOKUP_FAILED) { 21477 BUMP_MIB(&ipst->ips_ip_mib, 21478 ipIfStatsOutDiscards); 21479 if (need_decref) 21480 CONN_DEC_REF(connp); 21481 freemsg(first_mp); 21482 return; 21483 } 21484 if (xmit_ill == NULL) { 21485 if (connp->conn_dontroute) 21486 goto dontroute; 21487 goto send_from_ill; 21488 } 21489 } 21490 /* 21491 * Could be SO_DONTROUTE case also. 21492 * check at least one interface is UP as 21493 * specified by this ILL 21494 */ 21495 if (xmit_ill->ill_ipif_up_count > 0) { 21496 ipif_t *ipif; 21497 21498 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21499 if (ipif == NULL) { 21500 ip1dbg(("ip_output: " 21501 "xmit_ill NULL ipif\n")); 21502 goto drop_pkt; 21503 } 21504 /* 21505 * Look for a ire that is part of the group, 21506 * if found use it else call ip_newroute_ipif. 21507 * IPCL_ZONEID is not used for matching because 21508 * IP_ALLZONES option is valid only when the 21509 * ill is accessible from all zones i.e has a 21510 * valid ipif in all zones. 21511 */ 21512 match_flags = MATCH_IRE_ILL_GROUP | 21513 MATCH_IRE_SECATTR; 21514 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21515 MBLK_GETLABEL(mp), match_flags, ipst); 21516 /* 21517 * If an ire exists use it or else create 21518 * an ire but don't add it to the cache. 21519 * Adding an ire may cause issues with 21520 * asymmetric routing. 21521 * In case of multiroute always act as if 21522 * ire does not exist. 21523 */ 21524 if (ire == NULL || 21525 ire->ire_flags & RTF_MULTIRT) { 21526 if (ire != NULL) 21527 ire_refrele(ire); 21528 ip_newroute_ipif(q, first_mp, ipif, 21529 dst, connp, 0, zoneid, infop); 21530 ipif_refrele(ipif); 21531 ip1dbg(("ip_wput: ip_unicast_if\n")); 21532 ill_refrele(xmit_ill); 21533 if (need_decref) 21534 CONN_DEC_REF(connp); 21535 return; 21536 } 21537 ipif_refrele(ipif); 21538 } else { 21539 goto drop_pkt; 21540 } 21541 } else if (ip_nexthop || (connp != NULL && 21542 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21543 if (!ip_nexthop) { 21544 ip_nexthop = B_TRUE; 21545 nexthop_addr = connp->conn_nexthop_v4; 21546 } 21547 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21548 MATCH_IRE_GW; 21549 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21550 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21551 } else { 21552 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21553 ipst); 21554 } 21555 if (!ire) { 21556 /* 21557 * Make sure we don't load spread if this 21558 * is IPIF_NOFAILOVER case. 21559 */ 21560 if ((attach_ill != NULL) || 21561 (ip_nexthop && !ignore_nexthop)) { 21562 if (mctl_present) { 21563 io = (ipsec_out_t *)first_mp->b_rptr; 21564 ASSERT(first_mp->b_datap->db_type == 21565 M_CTL); 21566 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21567 } else { 21568 ASSERT(mp == first_mp); 21569 first_mp = allocb( 21570 sizeof (ipsec_info_t), BPRI_HI); 21571 if (first_mp == NULL) { 21572 first_mp = mp; 21573 goto discard_pkt; 21574 } 21575 first_mp->b_datap->db_type = M_CTL; 21576 first_mp->b_wptr += 21577 sizeof (ipsec_info_t); 21578 /* ipsec_out_secure is B_FALSE now */ 21579 bzero(first_mp->b_rptr, 21580 sizeof (ipsec_info_t)); 21581 io = (ipsec_out_t *)first_mp->b_rptr; 21582 io->ipsec_out_type = IPSEC_OUT; 21583 io->ipsec_out_len = 21584 sizeof (ipsec_out_t); 21585 io->ipsec_out_use_global_policy = 21586 B_TRUE; 21587 io->ipsec_out_ns = ipst->ips_netstack; 21588 first_mp->b_cont = mp; 21589 mctl_present = B_TRUE; 21590 } 21591 if (attach_ill != NULL) { 21592 io->ipsec_out_ill_index = attach_ill-> 21593 ill_phyint->phyint_ifindex; 21594 io->ipsec_out_attach_if = B_TRUE; 21595 } else { 21596 io->ipsec_out_ip_nexthop = ip_nexthop; 21597 io->ipsec_out_nexthop_addr = 21598 nexthop_addr; 21599 } 21600 } 21601 noirefound: 21602 /* 21603 * Mark this packet as having originated on 21604 * this machine. This will be noted in 21605 * ire_add_then_send, which needs to know 21606 * whether to run it back through ip_wput or 21607 * ip_rput following successful resolution. 21608 */ 21609 mp->b_prev = NULL; 21610 mp->b_next = NULL; 21611 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21612 ipst); 21613 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21614 "ip_wput_end: q %p (%S)", q, "newroute"); 21615 if (attach_ill != NULL) 21616 ill_refrele(attach_ill); 21617 if (xmit_ill != NULL) 21618 ill_refrele(xmit_ill); 21619 if (need_decref) 21620 CONN_DEC_REF(connp); 21621 return; 21622 } 21623 } 21624 21625 /* We now know where we are going with it. */ 21626 21627 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21628 "ip_wput_end: q %p (%S)", q, "end"); 21629 21630 /* 21631 * Check if the ire has the RTF_MULTIRT flag, inherited 21632 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21633 */ 21634 if (ire->ire_flags & RTF_MULTIRT) { 21635 /* 21636 * Force the TTL of multirouted packets if required. 21637 * The TTL of such packets is bounded by the 21638 * ip_multirt_ttl ndd variable. 21639 */ 21640 if ((ipst->ips_ip_multirt_ttl > 0) && 21641 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21642 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21643 "(was %d), dst 0x%08x\n", 21644 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21645 ntohl(ire->ire_addr))); 21646 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21647 } 21648 /* 21649 * At this point, we check to see if there are any pending 21650 * unresolved routes. ire_multirt_resolvable() 21651 * checks in O(n) that all IRE_OFFSUBNET ire 21652 * entries for the packet's destination and 21653 * flagged RTF_MULTIRT are currently resolved. 21654 * If some remain unresolved, we make a copy 21655 * of the current message. It will be used 21656 * to initiate additional route resolutions. 21657 */ 21658 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21659 MBLK_GETLABEL(first_mp), ipst); 21660 ip2dbg(("ip_wput[noirefound]: ire %p, " 21661 "multirt_need_resolve %d, first_mp %p\n", 21662 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21663 if (multirt_need_resolve) { 21664 copy_mp = copymsg(first_mp); 21665 if (copy_mp != NULL) { 21666 MULTIRT_DEBUG_TAG(copy_mp); 21667 } 21668 } 21669 } 21670 21671 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21672 /* 21673 * Try to resolve another multiroute if 21674 * ire_multirt_resolvable() deemed it necessary. 21675 * At this point, we need to distinguish 21676 * multicasts from other packets. For multicasts, 21677 * we call ip_newroute_ipif() and request that both 21678 * multirouting and setsrc flags are checked. 21679 */ 21680 if (copy_mp != NULL) { 21681 if (CLASSD(dst)) { 21682 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21683 if (ipif) { 21684 ASSERT(infop->ip_opt_ill_index == 0); 21685 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21686 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21687 ipif_refrele(ipif); 21688 } else { 21689 MULTIRT_DEBUG_UNTAG(copy_mp); 21690 freemsg(copy_mp); 21691 copy_mp = NULL; 21692 } 21693 } else { 21694 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21695 } 21696 } 21697 if (attach_ill != NULL) 21698 ill_refrele(attach_ill); 21699 if (xmit_ill != NULL) 21700 ill_refrele(xmit_ill); 21701 if (need_decref) 21702 CONN_DEC_REF(connp); 21703 return; 21704 21705 icmp_parameter_problem: 21706 /* could not have originated externally */ 21707 ASSERT(mp->b_prev == NULL); 21708 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21709 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21710 /* it's the IP header length that's in trouble */ 21711 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21712 first_mp = NULL; 21713 } 21714 21715 discard_pkt: 21716 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21717 drop_pkt: 21718 ip1dbg(("ip_wput: dropped packet\n")); 21719 if (ire != NULL) 21720 ire_refrele(ire); 21721 if (need_decref) 21722 CONN_DEC_REF(connp); 21723 freemsg(first_mp); 21724 if (attach_ill != NULL) 21725 ill_refrele(attach_ill); 21726 if (xmit_ill != NULL) 21727 ill_refrele(xmit_ill); 21728 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21729 "ip_wput_end: q %p (%S)", q, "droppkt"); 21730 } 21731 21732 /* 21733 * If this is a conn_t queue, then we pass in the conn. This includes the 21734 * zoneid. 21735 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21736 * in which case we use the global zoneid since those are all part of 21737 * the global zone. 21738 */ 21739 void 21740 ip_wput(queue_t *q, mblk_t *mp) 21741 { 21742 if (CONN_Q(q)) 21743 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21744 else 21745 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21746 } 21747 21748 /* 21749 * 21750 * The following rules must be observed when accessing any ipif or ill 21751 * that has been cached in the conn. Typically conn_nofailover_ill, 21752 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21753 * 21754 * Access: The ipif or ill pointed to from the conn can be accessed under 21755 * the protection of the conn_lock or after it has been refheld under the 21756 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21757 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21758 * The reason for this is that a concurrent unplumb could actually be 21759 * cleaning up these cached pointers by walking the conns and might have 21760 * finished cleaning up the conn in question. The macros check that an 21761 * unplumb has not yet started on the ipif or ill. 21762 * 21763 * Caching: An ipif or ill pointer may be cached in the conn only after 21764 * making sure that an unplumb has not started. So the caching is done 21765 * while holding both the conn_lock and the ill_lock and after using the 21766 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21767 * flag before starting the cleanup of conns. 21768 * 21769 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21770 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21771 * or a reference to the ipif or a reference to an ire that references the 21772 * ipif. An ipif does not change its ill except for failover/failback. Since 21773 * failover/failback happens only after bringing down the ipif and making sure 21774 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21775 * the above holds. 21776 */ 21777 ipif_t * 21778 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21779 { 21780 ipif_t *ipif; 21781 ill_t *ill; 21782 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21783 21784 *err = 0; 21785 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21786 mutex_enter(&connp->conn_lock); 21787 ipif = *ipifp; 21788 if (ipif != NULL) { 21789 ill = ipif->ipif_ill; 21790 mutex_enter(&ill->ill_lock); 21791 if (IPIF_CAN_LOOKUP(ipif)) { 21792 ipif_refhold_locked(ipif); 21793 mutex_exit(&ill->ill_lock); 21794 mutex_exit(&connp->conn_lock); 21795 rw_exit(&ipst->ips_ill_g_lock); 21796 return (ipif); 21797 } else { 21798 *err = IPIF_LOOKUP_FAILED; 21799 } 21800 mutex_exit(&ill->ill_lock); 21801 } 21802 mutex_exit(&connp->conn_lock); 21803 rw_exit(&ipst->ips_ill_g_lock); 21804 return (NULL); 21805 } 21806 21807 ill_t * 21808 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21809 { 21810 ill_t *ill; 21811 21812 *err = 0; 21813 mutex_enter(&connp->conn_lock); 21814 ill = *illp; 21815 if (ill != NULL) { 21816 mutex_enter(&ill->ill_lock); 21817 if (ILL_CAN_LOOKUP(ill)) { 21818 ill_refhold_locked(ill); 21819 mutex_exit(&ill->ill_lock); 21820 mutex_exit(&connp->conn_lock); 21821 return (ill); 21822 } else { 21823 *err = ILL_LOOKUP_FAILED; 21824 } 21825 mutex_exit(&ill->ill_lock); 21826 } 21827 mutex_exit(&connp->conn_lock); 21828 return (NULL); 21829 } 21830 21831 static int 21832 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21833 { 21834 ill_t *ill; 21835 21836 ill = ipif->ipif_ill; 21837 mutex_enter(&connp->conn_lock); 21838 mutex_enter(&ill->ill_lock); 21839 if (IPIF_CAN_LOOKUP(ipif)) { 21840 *ipifp = ipif; 21841 mutex_exit(&ill->ill_lock); 21842 mutex_exit(&connp->conn_lock); 21843 return (0); 21844 } 21845 mutex_exit(&ill->ill_lock); 21846 mutex_exit(&connp->conn_lock); 21847 return (IPIF_LOOKUP_FAILED); 21848 } 21849 21850 /* 21851 * This is called if the outbound datagram needs fragmentation. 21852 * 21853 * NOTE : This function does not ire_refrele the ire argument passed in. 21854 */ 21855 static void 21856 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21857 ip_stack_t *ipst) 21858 { 21859 ipha_t *ipha; 21860 mblk_t *mp; 21861 uint32_t v_hlen_tos_len; 21862 uint32_t max_frag; 21863 uint32_t frag_flag; 21864 boolean_t dont_use; 21865 21866 if (ipsec_mp->b_datap->db_type == M_CTL) { 21867 mp = ipsec_mp->b_cont; 21868 } else { 21869 mp = ipsec_mp; 21870 } 21871 21872 ipha = (ipha_t *)mp->b_rptr; 21873 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21874 21875 #ifdef _BIG_ENDIAN 21876 #define V_HLEN (v_hlen_tos_len >> 24) 21877 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21878 #else 21879 #define V_HLEN (v_hlen_tos_len & 0xFF) 21880 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21881 #endif 21882 21883 #ifndef SPEED_BEFORE_SAFETY 21884 /* 21885 * Check that ipha_length is consistent with 21886 * the mblk length 21887 */ 21888 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21889 ip0dbg(("Packet length mismatch: %d, %ld\n", 21890 LENGTH, msgdsize(mp))); 21891 freemsg(ipsec_mp); 21892 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21893 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21894 "packet length mismatch"); 21895 return; 21896 } 21897 #endif 21898 /* 21899 * Don't use frag_flag if pre-built packet or source 21900 * routed or if multicast (since multicast packets do not solicit 21901 * ICMP "packet too big" messages). Get the values of 21902 * max_frag and frag_flag atomically by acquiring the 21903 * ire_lock. 21904 */ 21905 mutex_enter(&ire->ire_lock); 21906 max_frag = ire->ire_max_frag; 21907 frag_flag = ire->ire_frag_flag; 21908 mutex_exit(&ire->ire_lock); 21909 21910 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21911 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21912 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21913 21914 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21915 (dont_use ? 0 : frag_flag), zoneid, ipst); 21916 } 21917 21918 /* 21919 * Used for deciding the MSS size for the upper layer. Thus 21920 * we need to check the outbound policy values in the conn. 21921 */ 21922 int 21923 conn_ipsec_length(conn_t *connp) 21924 { 21925 ipsec_latch_t *ipl; 21926 21927 ipl = connp->conn_latch; 21928 if (ipl == NULL) 21929 return (0); 21930 21931 if (ipl->ipl_out_policy == NULL) 21932 return (0); 21933 21934 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21935 } 21936 21937 /* 21938 * Returns an estimate of the IPSEC headers size. This is used if 21939 * we don't want to call into IPSEC to get the exact size. 21940 */ 21941 int 21942 ipsec_out_extra_length(mblk_t *ipsec_mp) 21943 { 21944 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21945 ipsec_action_t *a; 21946 21947 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21948 if (!io->ipsec_out_secure) 21949 return (0); 21950 21951 a = io->ipsec_out_act; 21952 21953 if (a == NULL) { 21954 ASSERT(io->ipsec_out_policy != NULL); 21955 a = io->ipsec_out_policy->ipsp_act; 21956 } 21957 ASSERT(a != NULL); 21958 21959 return (a->ipa_ovhd); 21960 } 21961 21962 /* 21963 * Returns an estimate of the IPSEC headers size. This is used if 21964 * we don't want to call into IPSEC to get the exact size. 21965 */ 21966 int 21967 ipsec_in_extra_length(mblk_t *ipsec_mp) 21968 { 21969 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21970 ipsec_action_t *a; 21971 21972 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21973 21974 a = ii->ipsec_in_action; 21975 return (a == NULL ? 0 : a->ipa_ovhd); 21976 } 21977 21978 /* 21979 * If there are any source route options, return the true final 21980 * destination. Otherwise, return the destination. 21981 */ 21982 ipaddr_t 21983 ip_get_dst(ipha_t *ipha) 21984 { 21985 ipoptp_t opts; 21986 uchar_t *opt; 21987 uint8_t optval; 21988 uint8_t optlen; 21989 ipaddr_t dst; 21990 uint32_t off; 21991 21992 dst = ipha->ipha_dst; 21993 21994 if (IS_SIMPLE_IPH(ipha)) 21995 return (dst); 21996 21997 for (optval = ipoptp_first(&opts, ipha); 21998 optval != IPOPT_EOL; 21999 optval = ipoptp_next(&opts)) { 22000 opt = opts.ipoptp_cur; 22001 optlen = opts.ipoptp_len; 22002 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22003 switch (optval) { 22004 case IPOPT_SSRR: 22005 case IPOPT_LSRR: 22006 off = opt[IPOPT_OFFSET]; 22007 /* 22008 * If one of the conditions is true, it means 22009 * end of options and dst already has the right 22010 * value. 22011 */ 22012 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22013 off = optlen - IP_ADDR_LEN; 22014 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22015 } 22016 return (dst); 22017 default: 22018 break; 22019 } 22020 } 22021 22022 return (dst); 22023 } 22024 22025 mblk_t * 22026 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22027 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22028 { 22029 ipsec_out_t *io; 22030 mblk_t *first_mp; 22031 boolean_t policy_present; 22032 ip_stack_t *ipst; 22033 ipsec_stack_t *ipss; 22034 22035 ASSERT(ire != NULL); 22036 ipst = ire->ire_ipst; 22037 ipss = ipst->ips_netstack->netstack_ipsec; 22038 22039 first_mp = mp; 22040 if (mp->b_datap->db_type == M_CTL) { 22041 io = (ipsec_out_t *)first_mp->b_rptr; 22042 /* 22043 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22044 * 22045 * 1) There is per-socket policy (including cached global 22046 * policy) or a policy on the IP-in-IP tunnel. 22047 * 2) There is no per-socket policy, but it is 22048 * a multicast packet that needs to go out 22049 * on a specific interface. This is the case 22050 * where (ip_wput and ip_wput_multicast) attaches 22051 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22052 * 22053 * In case (2) we check with global policy to 22054 * see if there is a match and set the ill_index 22055 * appropriately so that we can lookup the ire 22056 * properly in ip_wput_ipsec_out. 22057 */ 22058 22059 /* 22060 * ipsec_out_use_global_policy is set to B_FALSE 22061 * in ipsec_in_to_out(). Refer to that function for 22062 * details. 22063 */ 22064 if ((io->ipsec_out_latch == NULL) && 22065 (io->ipsec_out_use_global_policy)) { 22066 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22067 ire, connp, unspec_src, zoneid)); 22068 } 22069 if (!io->ipsec_out_secure) { 22070 /* 22071 * If this is not a secure packet, drop 22072 * the IPSEC_OUT mp and treat it as a clear 22073 * packet. This happens when we are sending 22074 * a ICMP reply back to a clear packet. See 22075 * ipsec_in_to_out() for details. 22076 */ 22077 mp = first_mp->b_cont; 22078 freeb(first_mp); 22079 } 22080 return (mp); 22081 } 22082 /* 22083 * See whether we need to attach a global policy here. We 22084 * don't depend on the conn (as it could be null) for deciding 22085 * what policy this datagram should go through because it 22086 * should have happened in ip_wput if there was some 22087 * policy. This normally happens for connections which are not 22088 * fully bound preventing us from caching policies in 22089 * ip_bind. Packets coming from the TCP listener/global queue 22090 * - which are non-hard_bound - could also be affected by 22091 * applying policy here. 22092 * 22093 * If this packet is coming from tcp global queue or listener, 22094 * we will be applying policy here. This may not be *right* 22095 * if these packets are coming from the detached connection as 22096 * it could have gone in clear before. This happens only if a 22097 * TCP connection started when there is no policy and somebody 22098 * added policy before it became detached. Thus packets of the 22099 * detached connection could go out secure and the other end 22100 * would drop it because it will be expecting in clear. The 22101 * converse is not true i.e if somebody starts a TCP 22102 * connection and deletes the policy, all the packets will 22103 * still go out with the policy that existed before deleting 22104 * because ip_unbind sends up policy information which is used 22105 * by TCP on subsequent ip_wputs. The right solution is to fix 22106 * TCP to attach a dummy IPSEC_OUT and set 22107 * ipsec_out_use_global_policy to B_FALSE. As this might 22108 * affect performance for normal cases, we are not doing it. 22109 * Thus, set policy before starting any TCP connections. 22110 * 22111 * NOTE - We might apply policy even for a hard bound connection 22112 * - for which we cached policy in ip_bind - if somebody added 22113 * global policy after we inherited the policy in ip_bind. 22114 * This means that the packets that were going out in clear 22115 * previously would start going secure and hence get dropped 22116 * on the other side. To fix this, TCP attaches a dummy 22117 * ipsec_out and make sure that we don't apply global policy. 22118 */ 22119 if (ipha != NULL) 22120 policy_present = ipss->ipsec_outbound_v4_policy_present; 22121 else 22122 policy_present = ipss->ipsec_outbound_v6_policy_present; 22123 if (!policy_present) 22124 return (mp); 22125 22126 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22127 zoneid)); 22128 } 22129 22130 ire_t * 22131 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22132 { 22133 ipaddr_t addr; 22134 ire_t *save_ire; 22135 irb_t *irb; 22136 ill_group_t *illgrp; 22137 int err; 22138 22139 save_ire = ire; 22140 addr = ire->ire_addr; 22141 22142 ASSERT(ire->ire_type == IRE_BROADCAST); 22143 22144 illgrp = connp->conn_outgoing_ill->ill_group; 22145 if (illgrp == NULL) { 22146 *conn_outgoing_ill = conn_get_held_ill(connp, 22147 &connp->conn_outgoing_ill, &err); 22148 if (err == ILL_LOOKUP_FAILED) { 22149 ire_refrele(save_ire); 22150 return (NULL); 22151 } 22152 return (save_ire); 22153 } 22154 /* 22155 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22156 * If it is part of the group, we need to send on the ire 22157 * that has been cleared of IRE_MARK_NORECV and that belongs 22158 * to this group. This is okay as IP_BOUND_IF really means 22159 * any ill in the group. We depend on the fact that the 22160 * first ire in the group is always cleared of IRE_MARK_NORECV 22161 * if such an ire exists. This is possible only if you have 22162 * at least one ill in the group that has not failed. 22163 * 22164 * First get to the ire that matches the address and group. 22165 * 22166 * We don't look for an ire with a matching zoneid because a given zone 22167 * won't always have broadcast ires on all ills in the group. 22168 */ 22169 irb = ire->ire_bucket; 22170 rw_enter(&irb->irb_lock, RW_READER); 22171 if (ire->ire_marks & IRE_MARK_NORECV) { 22172 /* 22173 * If the current zone only has an ire broadcast for this 22174 * address marked NORECV, the ire we want is ahead in the 22175 * bucket, so we look it up deliberately ignoring the zoneid. 22176 */ 22177 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22178 if (ire->ire_addr != addr) 22179 continue; 22180 /* skip over deleted ires */ 22181 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22182 continue; 22183 } 22184 } 22185 while (ire != NULL) { 22186 /* 22187 * If a new interface is coming up, we could end up 22188 * seeing the loopback ire and the non-loopback ire 22189 * may not have been added yet. So check for ire_stq 22190 */ 22191 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22192 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22193 break; 22194 } 22195 ire = ire->ire_next; 22196 } 22197 if (ire != NULL && ire->ire_addr == addr && 22198 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22199 IRE_REFHOLD(ire); 22200 rw_exit(&irb->irb_lock); 22201 ire_refrele(save_ire); 22202 *conn_outgoing_ill = ire_to_ill(ire); 22203 /* 22204 * Refhold the ill to make the conn_outgoing_ill 22205 * independent of the ire. ip_wput_ire goes in a loop 22206 * and may refrele the ire. Since we have an ire at this 22207 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22208 */ 22209 ill_refhold(*conn_outgoing_ill); 22210 return (ire); 22211 } 22212 rw_exit(&irb->irb_lock); 22213 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22214 /* 22215 * If we can't find a suitable ire, return the original ire. 22216 */ 22217 return (save_ire); 22218 } 22219 22220 /* 22221 * This function does the ire_refrele of the ire passed in as the 22222 * argument. As this function looks up more ires i.e broadcast ires, 22223 * it needs to REFRELE them. Currently, for simplicity we don't 22224 * differentiate the one passed in and looked up here. We always 22225 * REFRELE. 22226 * IPQoS Notes: 22227 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22228 * IPSec packets are done in ipsec_out_process. 22229 * 22230 */ 22231 void 22232 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22233 zoneid_t zoneid) 22234 { 22235 ipha_t *ipha; 22236 #define rptr ((uchar_t *)ipha) 22237 queue_t *stq; 22238 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22239 uint32_t v_hlen_tos_len; 22240 uint32_t ttl_protocol; 22241 ipaddr_t src; 22242 ipaddr_t dst; 22243 uint32_t cksum; 22244 ipaddr_t orig_src; 22245 ire_t *ire1; 22246 mblk_t *next_mp; 22247 uint_t hlen; 22248 uint16_t *up; 22249 uint32_t max_frag = ire->ire_max_frag; 22250 ill_t *ill = ire_to_ill(ire); 22251 int clusterwide; 22252 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22253 int ipsec_len; 22254 mblk_t *first_mp; 22255 ipsec_out_t *io; 22256 boolean_t conn_dontroute; /* conn value for multicast */ 22257 boolean_t conn_multicast_loop; /* conn value for multicast */ 22258 boolean_t multicast_forward; /* Should we forward ? */ 22259 boolean_t unspec_src; 22260 ill_t *conn_outgoing_ill = NULL; 22261 ill_t *ire_ill; 22262 ill_t *ire1_ill; 22263 ill_t *out_ill; 22264 uint32_t ill_index = 0; 22265 boolean_t multirt_send = B_FALSE; 22266 int err; 22267 ipxmit_state_t pktxmit_state; 22268 ip_stack_t *ipst = ire->ire_ipst; 22269 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22270 22271 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22272 "ip_wput_ire_start: q %p", q); 22273 22274 multicast_forward = B_FALSE; 22275 unspec_src = (connp != NULL && connp->conn_unspec_src); 22276 22277 if (ire->ire_flags & RTF_MULTIRT) { 22278 /* 22279 * Multirouting case. The bucket where ire is stored 22280 * probably holds other RTF_MULTIRT flagged ire 22281 * to the destination. In this call to ip_wput_ire, 22282 * we attempt to send the packet through all 22283 * those ires. Thus, we first ensure that ire is the 22284 * first RTF_MULTIRT ire in the bucket, 22285 * before walking the ire list. 22286 */ 22287 ire_t *first_ire; 22288 irb_t *irb = ire->ire_bucket; 22289 ASSERT(irb != NULL); 22290 22291 /* Make sure we do not omit any multiroute ire. */ 22292 IRB_REFHOLD(irb); 22293 for (first_ire = irb->irb_ire; 22294 first_ire != NULL; 22295 first_ire = first_ire->ire_next) { 22296 if ((first_ire->ire_flags & RTF_MULTIRT) && 22297 (first_ire->ire_addr == ire->ire_addr) && 22298 !(first_ire->ire_marks & 22299 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22300 break; 22301 } 22302 } 22303 22304 if ((first_ire != NULL) && (first_ire != ire)) { 22305 IRE_REFHOLD(first_ire); 22306 ire_refrele(ire); 22307 ire = first_ire; 22308 ill = ire_to_ill(ire); 22309 } 22310 IRB_REFRELE(irb); 22311 } 22312 22313 /* 22314 * conn_outgoing_ill is used only in the broadcast loop. 22315 * for performance we don't grab the mutexs in the fastpath 22316 */ 22317 if ((connp != NULL) && 22318 (connp->conn_xmit_if_ill == NULL) && 22319 (ire->ire_type == IRE_BROADCAST) && 22320 ((connp->conn_nofailover_ill != NULL) || 22321 (connp->conn_outgoing_ill != NULL))) { 22322 /* 22323 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22324 * option. So, see if this endpoint is bound to a 22325 * IPIF_NOFAILOVER address. If so, honor it. This implies 22326 * that if the interface is failed, we will still send 22327 * the packet on the same ill which is what we want. 22328 */ 22329 conn_outgoing_ill = conn_get_held_ill(connp, 22330 &connp->conn_nofailover_ill, &err); 22331 if (err == ILL_LOOKUP_FAILED) { 22332 ire_refrele(ire); 22333 freemsg(mp); 22334 return; 22335 } 22336 if (conn_outgoing_ill == NULL) { 22337 /* 22338 * Choose a good ill in the group to send the 22339 * packets on. 22340 */ 22341 ire = conn_set_outgoing_ill(connp, ire, 22342 &conn_outgoing_ill); 22343 if (ire == NULL) { 22344 freemsg(mp); 22345 return; 22346 } 22347 } 22348 } 22349 22350 if (mp->b_datap->db_type != M_CTL) { 22351 ipha = (ipha_t *)mp->b_rptr; 22352 } else { 22353 io = (ipsec_out_t *)mp->b_rptr; 22354 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22355 ASSERT(zoneid == io->ipsec_out_zoneid); 22356 ASSERT(zoneid != ALL_ZONES); 22357 ipha = (ipha_t *)mp->b_cont->b_rptr; 22358 dst = ipha->ipha_dst; 22359 /* 22360 * For the multicast case, ipsec_out carries conn_dontroute and 22361 * conn_multicast_loop as conn may not be available here. We 22362 * need this for multicast loopback and forwarding which is done 22363 * later in the code. 22364 */ 22365 if (CLASSD(dst)) { 22366 conn_dontroute = io->ipsec_out_dontroute; 22367 conn_multicast_loop = io->ipsec_out_multicast_loop; 22368 /* 22369 * If conn_dontroute is not set or conn_multicast_loop 22370 * is set, we need to do forwarding/loopback. For 22371 * datagrams from ip_wput_multicast, conn_dontroute is 22372 * set to B_TRUE and conn_multicast_loop is set to 22373 * B_FALSE so that we neither do forwarding nor 22374 * loopback. 22375 */ 22376 if (!conn_dontroute || conn_multicast_loop) 22377 multicast_forward = B_TRUE; 22378 } 22379 } 22380 22381 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22382 ire->ire_zoneid != ALL_ZONES) { 22383 /* 22384 * When a zone sends a packet to another zone, we try to deliver 22385 * the packet under the same conditions as if the destination 22386 * was a real node on the network. To do so, we look for a 22387 * matching route in the forwarding table. 22388 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22389 * ip_newroute() does. 22390 * Note that IRE_LOCAL are special, since they are used 22391 * when the zoneid doesn't match in some cases. This means that 22392 * we need to handle ipha_src differently since ire_src_addr 22393 * belongs to the receiving zone instead of the sending zone. 22394 * When ip_restrict_interzone_loopback is set, then 22395 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22396 * for loopback between zones when the logical "Ethernet" would 22397 * have looped them back. 22398 */ 22399 ire_t *src_ire; 22400 22401 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22402 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22403 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22404 if (src_ire != NULL && 22405 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22406 (!ipst->ips_ip_restrict_interzone_loopback || 22407 ire_local_same_ill_group(ire, src_ire))) { 22408 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22409 ipha->ipha_src = src_ire->ire_src_addr; 22410 ire_refrele(src_ire); 22411 } else { 22412 ire_refrele(ire); 22413 if (conn_outgoing_ill != NULL) 22414 ill_refrele(conn_outgoing_ill); 22415 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22416 if (src_ire != NULL) { 22417 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22418 ire_refrele(src_ire); 22419 freemsg(mp); 22420 return; 22421 } 22422 ire_refrele(src_ire); 22423 } 22424 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22425 /* Failed */ 22426 freemsg(mp); 22427 return; 22428 } 22429 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22430 ipst); 22431 return; 22432 } 22433 } 22434 22435 if (mp->b_datap->db_type == M_CTL || 22436 ipss->ipsec_outbound_v4_policy_present) { 22437 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22438 unspec_src, zoneid); 22439 if (mp == NULL) { 22440 ire_refrele(ire); 22441 if (conn_outgoing_ill != NULL) 22442 ill_refrele(conn_outgoing_ill); 22443 return; 22444 } 22445 } 22446 22447 first_mp = mp; 22448 ipsec_len = 0; 22449 22450 if (first_mp->b_datap->db_type == M_CTL) { 22451 io = (ipsec_out_t *)first_mp->b_rptr; 22452 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22453 mp = first_mp->b_cont; 22454 ipsec_len = ipsec_out_extra_length(first_mp); 22455 ASSERT(ipsec_len >= 0); 22456 /* We already picked up the zoneid from the M_CTL above */ 22457 ASSERT(zoneid == io->ipsec_out_zoneid); 22458 ASSERT(zoneid != ALL_ZONES); 22459 22460 /* 22461 * Drop M_CTL here if IPsec processing is not needed. 22462 * (Non-IPsec use of M_CTL extracted any information it 22463 * needed above). 22464 */ 22465 if (ipsec_len == 0) { 22466 freeb(first_mp); 22467 first_mp = mp; 22468 } 22469 } 22470 22471 /* 22472 * Fast path for ip_wput_ire 22473 */ 22474 22475 ipha = (ipha_t *)mp->b_rptr; 22476 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22477 dst = ipha->ipha_dst; 22478 22479 /* 22480 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22481 * if the socket is a SOCK_RAW type. The transport checksum should 22482 * be provided in the pre-built packet, so we don't need to compute it. 22483 * Also, other application set flags, like DF, should not be altered. 22484 * Other transport MUST pass down zero. 22485 */ 22486 ip_hdr_included = ipha->ipha_ident; 22487 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22488 22489 if (CLASSD(dst)) { 22490 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22491 ntohl(dst), 22492 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22493 ntohl(ire->ire_addr))); 22494 } 22495 22496 /* Macros to extract header fields from data already in registers */ 22497 #ifdef _BIG_ENDIAN 22498 #define V_HLEN (v_hlen_tos_len >> 24) 22499 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22500 #define PROTO (ttl_protocol & 0xFF) 22501 #else 22502 #define V_HLEN (v_hlen_tos_len & 0xFF) 22503 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22504 #define PROTO (ttl_protocol >> 8) 22505 #endif 22506 22507 22508 orig_src = src = ipha->ipha_src; 22509 /* (The loop back to "another" is explained down below.) */ 22510 another:; 22511 /* 22512 * Assign an ident value for this packet. We assign idents on 22513 * a per destination basis out of the IRE. There could be 22514 * other threads targeting the same destination, so we have to 22515 * arrange for a atomic increment. Note that we use a 32-bit 22516 * atomic add because it has better performance than its 22517 * 16-bit sibling. 22518 * 22519 * If running in cluster mode and if the source address 22520 * belongs to a replicated service then vector through 22521 * cl_inet_ipident vector to allocate ip identifier 22522 * NOTE: This is a contract private interface with the 22523 * clustering group. 22524 */ 22525 clusterwide = 0; 22526 if (cl_inet_ipident) { 22527 ASSERT(cl_inet_isclusterwide); 22528 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22529 AF_INET, (uint8_t *)(uintptr_t)src)) { 22530 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22531 AF_INET, (uint8_t *)(uintptr_t)src, 22532 (uint8_t *)(uintptr_t)dst); 22533 clusterwide = 1; 22534 } 22535 } 22536 if (!clusterwide) { 22537 ipha->ipha_ident = 22538 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22539 } 22540 22541 #ifndef _BIG_ENDIAN 22542 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22543 #endif 22544 22545 /* 22546 * Set source address unless sent on an ill or conn_unspec_src is set. 22547 * This is needed to obey conn_unspec_src when packets go through 22548 * ip_newroute + arp. 22549 * Assumes ip_newroute{,_multi} sets the source address as well. 22550 */ 22551 if (src == INADDR_ANY && !unspec_src) { 22552 /* 22553 * Assign the appropriate source address from the IRE if none 22554 * was specified. 22555 */ 22556 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22557 22558 /* 22559 * With IP multipathing, broadcast packets are sent on the ire 22560 * that has been cleared of IRE_MARK_NORECV and that belongs to 22561 * the group. However, this ire might not be in the same zone so 22562 * we can't always use its source address. We look for a 22563 * broadcast ire in the same group and in the right zone. 22564 */ 22565 if (ire->ire_type == IRE_BROADCAST && 22566 ire->ire_zoneid != zoneid) { 22567 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22568 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22569 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22570 if (src_ire != NULL) { 22571 src = src_ire->ire_src_addr; 22572 ire_refrele(src_ire); 22573 } else { 22574 ire_refrele(ire); 22575 if (conn_outgoing_ill != NULL) 22576 ill_refrele(conn_outgoing_ill); 22577 freemsg(first_mp); 22578 if (ill != NULL) { 22579 BUMP_MIB(ill->ill_ip_mib, 22580 ipIfStatsOutDiscards); 22581 } else { 22582 BUMP_MIB(&ipst->ips_ip_mib, 22583 ipIfStatsOutDiscards); 22584 } 22585 return; 22586 } 22587 } else { 22588 src = ire->ire_src_addr; 22589 } 22590 22591 if (connp == NULL) { 22592 ip1dbg(("ip_wput_ire: no connp and no src " 22593 "address for dst 0x%x, using src 0x%x\n", 22594 ntohl(dst), 22595 ntohl(src))); 22596 } 22597 ipha->ipha_src = src; 22598 } 22599 stq = ire->ire_stq; 22600 22601 /* 22602 * We only allow ire chains for broadcasts since there will 22603 * be multiple IRE_CACHE entries for the same multicast 22604 * address (one per ipif). 22605 */ 22606 next_mp = NULL; 22607 22608 /* broadcast packet */ 22609 if (ire->ire_type == IRE_BROADCAST) 22610 goto broadcast; 22611 22612 /* loopback ? */ 22613 if (stq == NULL) 22614 goto nullstq; 22615 22616 /* The ill_index for outbound ILL */ 22617 ill_index = Q_TO_INDEX(stq); 22618 22619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22620 ttl_protocol = ((uint16_t *)ipha)[4]; 22621 22622 /* pseudo checksum (do it in parts for IP header checksum) */ 22623 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22624 22625 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22626 queue_t *dev_q = stq->q_next; 22627 22628 /* flow controlled */ 22629 if ((dev_q->q_next || dev_q->q_first) && 22630 !canput(dev_q)) 22631 goto blocked; 22632 if ((PROTO == IPPROTO_UDP) && 22633 (ip_hdr_included != IP_HDR_INCLUDED)) { 22634 hlen = (V_HLEN & 0xF) << 2; 22635 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22636 if (*up != 0) { 22637 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22638 hlen, LENGTH, max_frag, ipsec_len, cksum); 22639 /* Software checksum? */ 22640 if (DB_CKSUMFLAGS(mp) == 0) { 22641 IP_STAT(ipst, ip_out_sw_cksum); 22642 IP_STAT_UPDATE(ipst, 22643 ip_udp_out_sw_cksum_bytes, 22644 LENGTH - hlen); 22645 } 22646 } 22647 } 22648 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22649 hlen = (V_HLEN & 0xF) << 2; 22650 if (PROTO == IPPROTO_TCP) { 22651 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22652 /* 22653 * The packet header is processed once and for all, even 22654 * in the multirouting case. We disable hardware 22655 * checksum if the packet is multirouted, as it will be 22656 * replicated via several interfaces, and not all of 22657 * them may have this capability. 22658 */ 22659 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22660 LENGTH, max_frag, ipsec_len, cksum); 22661 /* Software checksum? */ 22662 if (DB_CKSUMFLAGS(mp) == 0) { 22663 IP_STAT(ipst, ip_out_sw_cksum); 22664 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22665 LENGTH - hlen); 22666 } 22667 } else { 22668 sctp_hdr_t *sctph; 22669 22670 ASSERT(PROTO == IPPROTO_SCTP); 22671 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22672 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22673 /* 22674 * Zero out the checksum field to ensure proper 22675 * checksum calculation. 22676 */ 22677 sctph->sh_chksum = 0; 22678 #ifdef DEBUG 22679 if (!skip_sctp_cksum) 22680 #endif 22681 sctph->sh_chksum = sctp_cksum(mp, hlen); 22682 } 22683 } 22684 22685 /* 22686 * If this is a multicast packet and originated from ip_wput 22687 * we need to do loopback and forwarding checks. If it comes 22688 * from ip_wput_multicast, we SHOULD not do this. 22689 */ 22690 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22691 22692 /* checksum */ 22693 cksum += ttl_protocol; 22694 22695 /* fragment the packet */ 22696 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22697 goto fragmentit; 22698 /* 22699 * Don't use frag_flag if packet is pre-built or source 22700 * routed or if multicast (since multicast packets do 22701 * not solicit ICMP "packet too big" messages). 22702 */ 22703 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22704 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22705 !ip_source_route_included(ipha)) && 22706 !CLASSD(ipha->ipha_dst)) 22707 ipha->ipha_fragment_offset_and_flags |= 22708 htons(ire->ire_frag_flag); 22709 22710 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22711 /* calculate IP header checksum */ 22712 cksum += ipha->ipha_ident; 22713 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22714 cksum += ipha->ipha_fragment_offset_and_flags; 22715 22716 /* IP options present */ 22717 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22718 if (hlen) 22719 goto checksumoptions; 22720 22721 /* calculate hdr checksum */ 22722 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22723 cksum = ~(cksum + (cksum >> 16)); 22724 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22725 } 22726 if (ipsec_len != 0) { 22727 /* 22728 * We will do the rest of the processing after 22729 * we come back from IPSEC in ip_wput_ipsec_out(). 22730 */ 22731 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22732 22733 io = (ipsec_out_t *)first_mp->b_rptr; 22734 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22735 ill_phyint->phyint_ifindex; 22736 22737 ipsec_out_process(q, first_mp, ire, ill_index); 22738 ire_refrele(ire); 22739 if (conn_outgoing_ill != NULL) 22740 ill_refrele(conn_outgoing_ill); 22741 return; 22742 } 22743 22744 /* 22745 * In most cases, the emission loop below is entered only 22746 * once. Only in the case where the ire holds the 22747 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22748 * flagged ires in the bucket, and send the packet 22749 * through all crossed RTF_MULTIRT routes. 22750 */ 22751 if (ire->ire_flags & RTF_MULTIRT) { 22752 multirt_send = B_TRUE; 22753 } 22754 do { 22755 if (multirt_send) { 22756 irb_t *irb; 22757 /* 22758 * We are in a multiple send case, need to get 22759 * the next ire and make a duplicate of the packet. 22760 * ire1 holds here the next ire to process in the 22761 * bucket. If multirouting is expected, 22762 * any non-RTF_MULTIRT ire that has the 22763 * right destination address is ignored. 22764 */ 22765 irb = ire->ire_bucket; 22766 ASSERT(irb != NULL); 22767 22768 IRB_REFHOLD(irb); 22769 for (ire1 = ire->ire_next; 22770 ire1 != NULL; 22771 ire1 = ire1->ire_next) { 22772 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22773 continue; 22774 if (ire1->ire_addr != ire->ire_addr) 22775 continue; 22776 if (ire1->ire_marks & 22777 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22778 continue; 22779 22780 /* Got one */ 22781 IRE_REFHOLD(ire1); 22782 break; 22783 } 22784 IRB_REFRELE(irb); 22785 22786 if (ire1 != NULL) { 22787 next_mp = copyb(mp); 22788 if ((next_mp == NULL) || 22789 ((mp->b_cont != NULL) && 22790 ((next_mp->b_cont = 22791 dupmsg(mp->b_cont)) == NULL))) { 22792 freemsg(next_mp); 22793 next_mp = NULL; 22794 ire_refrele(ire1); 22795 ire1 = NULL; 22796 } 22797 } 22798 22799 /* Last multiroute ire; don't loop anymore. */ 22800 if (ire1 == NULL) { 22801 multirt_send = B_FALSE; 22802 } 22803 } 22804 22805 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22806 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22807 mblk_t *, mp); 22808 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22809 ipst->ips_ipv4firewall_physical_out, 22810 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22811 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22812 if (mp == NULL) 22813 goto release_ire_and_ill; 22814 22815 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22816 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22817 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22818 if ((pktxmit_state == SEND_FAILED) || 22819 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22820 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22821 "- packet dropped\n")); 22822 release_ire_and_ill: 22823 ire_refrele(ire); 22824 if (next_mp != NULL) { 22825 freemsg(next_mp); 22826 ire_refrele(ire1); 22827 } 22828 if (conn_outgoing_ill != NULL) 22829 ill_refrele(conn_outgoing_ill); 22830 return; 22831 } 22832 22833 if (CLASSD(dst)) { 22834 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22835 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22836 LENGTH); 22837 } 22838 22839 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22840 "ip_wput_ire_end: q %p (%S)", 22841 q, "last copy out"); 22842 IRE_REFRELE(ire); 22843 22844 if (multirt_send) { 22845 ASSERT(ire1); 22846 /* 22847 * Proceed with the next RTF_MULTIRT ire, 22848 * Also set up the send-to queue accordingly. 22849 */ 22850 ire = ire1; 22851 ire1 = NULL; 22852 stq = ire->ire_stq; 22853 mp = next_mp; 22854 next_mp = NULL; 22855 ipha = (ipha_t *)mp->b_rptr; 22856 ill_index = Q_TO_INDEX(stq); 22857 ill = (ill_t *)stq->q_ptr; 22858 } 22859 } while (multirt_send); 22860 if (conn_outgoing_ill != NULL) 22861 ill_refrele(conn_outgoing_ill); 22862 return; 22863 22864 /* 22865 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22866 */ 22867 broadcast: 22868 { 22869 /* 22870 * Avoid broadcast storms by setting the ttl to 1 22871 * for broadcasts. This parameter can be set 22872 * via ndd, so make sure that for the SO_DONTROUTE 22873 * case that ipha_ttl is always set to 1. 22874 * In the event that we are replying to incoming 22875 * ICMP packets, conn could be NULL. 22876 */ 22877 if ((connp != NULL) && connp->conn_dontroute) 22878 ipha->ipha_ttl = 1; 22879 else 22880 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22881 22882 /* 22883 * Note that we are not doing a IRB_REFHOLD here. 22884 * Actually we don't care if the list changes i.e 22885 * if somebody deletes an IRE from the list while 22886 * we drop the lock, the next time we come around 22887 * ire_next will be NULL and hence we won't send 22888 * out multiple copies which is fine. 22889 */ 22890 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22891 ire1 = ire->ire_next; 22892 if (conn_outgoing_ill != NULL) { 22893 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22894 ASSERT(ire1 == ire->ire_next); 22895 if (ire1 != NULL && ire1->ire_addr == dst) { 22896 ire_refrele(ire); 22897 ire = ire1; 22898 IRE_REFHOLD(ire); 22899 ire1 = ire->ire_next; 22900 continue; 22901 } 22902 rw_exit(&ire->ire_bucket->irb_lock); 22903 /* Did not find a matching ill */ 22904 ip1dbg(("ip_wput_ire: broadcast with no " 22905 "matching IP_BOUND_IF ill %s\n", 22906 conn_outgoing_ill->ill_name)); 22907 freemsg(first_mp); 22908 if (ire != NULL) 22909 ire_refrele(ire); 22910 ill_refrele(conn_outgoing_ill); 22911 return; 22912 } 22913 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22914 /* 22915 * If the next IRE has the same address and is not one 22916 * of the two copies that we need to send, try to see 22917 * whether this copy should be sent at all. This 22918 * assumes that we insert loopbacks first and then 22919 * non-loopbacks. This is acheived by inserting the 22920 * loopback always before non-loopback. 22921 * This is used to send a single copy of a broadcast 22922 * packet out all physical interfaces that have an 22923 * matching IRE_BROADCAST while also looping 22924 * back one copy (to ip_wput_local) for each 22925 * matching physical interface. However, we avoid 22926 * sending packets out different logical that match by 22927 * having ipif_up/ipif_down supress duplicate 22928 * IRE_BROADCASTS. 22929 * 22930 * This feature is currently used to get broadcasts 22931 * sent to multiple interfaces, when the broadcast 22932 * address being used applies to multiple interfaces. 22933 * For example, a whole net broadcast will be 22934 * replicated on every connected subnet of 22935 * the target net. 22936 * 22937 * Each zone has its own set of IRE_BROADCASTs, so that 22938 * we're able to distribute inbound packets to multiple 22939 * zones who share a broadcast address. We avoid looping 22940 * back outbound packets in different zones but on the 22941 * same ill, as the application would see duplicates. 22942 * 22943 * If the interfaces are part of the same group, 22944 * we would want to send only one copy out for 22945 * whole group. 22946 * 22947 * This logic assumes that ire_add_v4() groups the 22948 * IRE_BROADCAST entries so that those with the same 22949 * ire_addr and ill_group are kept together. 22950 */ 22951 ire_ill = ire->ire_ipif->ipif_ill; 22952 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22953 if (ire_ill->ill_group != NULL && 22954 (ire->ire_marks & IRE_MARK_NORECV)) { 22955 /* 22956 * If the current zone only has an ire 22957 * broadcast for this address marked 22958 * NORECV, the ire we want is ahead in 22959 * the bucket, so we look it up 22960 * deliberately ignoring the zoneid. 22961 */ 22962 for (ire1 = ire->ire_bucket->irb_ire; 22963 ire1 != NULL; 22964 ire1 = ire1->ire_next) { 22965 ire1_ill = 22966 ire1->ire_ipif->ipif_ill; 22967 if (ire1->ire_addr != dst) 22968 continue; 22969 /* skip over the current ire */ 22970 if (ire1 == ire) 22971 continue; 22972 /* skip over deleted ires */ 22973 if (ire1->ire_marks & 22974 IRE_MARK_CONDEMNED) 22975 continue; 22976 /* 22977 * non-loopback ire in our 22978 * group: use it for the next 22979 * pass in the loop 22980 */ 22981 if (ire1->ire_stq != NULL && 22982 ire1_ill->ill_group == 22983 ire_ill->ill_group) 22984 break; 22985 } 22986 } 22987 } else { 22988 while (ire1 != NULL && ire1->ire_addr == dst) { 22989 ire1_ill = ire1->ire_ipif->ipif_ill; 22990 /* 22991 * We can have two broadcast ires on the 22992 * same ill in different zones; here 22993 * we'll send a copy of the packet on 22994 * each ill and the fanout code will 22995 * call conn_wantpacket() to check that 22996 * the zone has the broadcast address 22997 * configured on the ill. If the two 22998 * ires are in the same group we only 22999 * send one copy up. 23000 */ 23001 if (ire1_ill != ire_ill && 23002 (ire1_ill->ill_group == NULL || 23003 ire_ill->ill_group == NULL || 23004 ire1_ill->ill_group != 23005 ire_ill->ill_group)) { 23006 break; 23007 } 23008 ire1 = ire1->ire_next; 23009 } 23010 } 23011 } 23012 ASSERT(multirt_send == B_FALSE); 23013 if (ire1 != NULL && ire1->ire_addr == dst) { 23014 if ((ire->ire_flags & RTF_MULTIRT) && 23015 (ire1->ire_flags & RTF_MULTIRT)) { 23016 /* 23017 * We are in the multirouting case. 23018 * The message must be sent at least 23019 * on both ires. These ires have been 23020 * inserted AFTER the standard ones 23021 * in ip_rt_add(). There are thus no 23022 * other ire entries for the destination 23023 * address in the rest of the bucket 23024 * that do not have the RTF_MULTIRT 23025 * flag. We don't process a copy 23026 * of the message here. This will be 23027 * done in the final sending loop. 23028 */ 23029 multirt_send = B_TRUE; 23030 } else { 23031 next_mp = ip_copymsg(first_mp); 23032 if (next_mp != NULL) 23033 IRE_REFHOLD(ire1); 23034 } 23035 } 23036 rw_exit(&ire->ire_bucket->irb_lock); 23037 } 23038 23039 if (stq) { 23040 /* 23041 * A non-NULL send-to queue means this packet is going 23042 * out of this machine. 23043 */ 23044 out_ill = (ill_t *)stq->q_ptr; 23045 23046 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23047 ttl_protocol = ((uint16_t *)ipha)[4]; 23048 /* 23049 * We accumulate the pseudo header checksum in cksum. 23050 * This is pretty hairy code, so watch close. One 23051 * thing to keep in mind is that UDP and TCP have 23052 * stored their respective datagram lengths in their 23053 * checksum fields. This lines things up real nice. 23054 */ 23055 cksum = (dst >> 16) + (dst & 0xFFFF) + 23056 (src >> 16) + (src & 0xFFFF); 23057 /* 23058 * We assume the udp checksum field contains the 23059 * length, so to compute the pseudo header checksum, 23060 * all we need is the protocol number and src/dst. 23061 */ 23062 /* Provide the checksums for UDP and TCP. */ 23063 if ((PROTO == IPPROTO_TCP) && 23064 (ip_hdr_included != IP_HDR_INCLUDED)) { 23065 /* hlen gets the number of uchar_ts in the IP header */ 23066 hlen = (V_HLEN & 0xF) << 2; 23067 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23068 IP_STAT(ipst, ip_out_sw_cksum); 23069 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23070 LENGTH - hlen); 23071 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23072 } else if (PROTO == IPPROTO_SCTP && 23073 (ip_hdr_included != IP_HDR_INCLUDED)) { 23074 sctp_hdr_t *sctph; 23075 23076 hlen = (V_HLEN & 0xF) << 2; 23077 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23078 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23079 sctph->sh_chksum = 0; 23080 #ifdef DEBUG 23081 if (!skip_sctp_cksum) 23082 #endif 23083 sctph->sh_chksum = sctp_cksum(mp, hlen); 23084 } else { 23085 queue_t *dev_q = stq->q_next; 23086 23087 if ((dev_q->q_next || dev_q->q_first) && 23088 !canput(dev_q)) { 23089 blocked: 23090 ipha->ipha_ident = ip_hdr_included; 23091 /* 23092 * If we don't have a conn to apply 23093 * backpressure, free the message. 23094 * In the ire_send path, we don't know 23095 * the position to requeue the packet. Rather 23096 * than reorder packets, we just drop this 23097 * packet. 23098 */ 23099 if (ipst->ips_ip_output_queue && 23100 connp != NULL && 23101 caller != IRE_SEND) { 23102 if (caller == IP_WSRV) { 23103 connp->conn_did_putbq = 1; 23104 (void) putbq(connp->conn_wq, 23105 first_mp); 23106 conn_drain_insert(connp); 23107 /* 23108 * This is the service thread, 23109 * and the queue is already 23110 * noenabled. The check for 23111 * canput and the putbq is not 23112 * atomic. So we need to check 23113 * again. 23114 */ 23115 if (canput(stq->q_next)) 23116 connp->conn_did_putbq 23117 = 0; 23118 IP_STAT(ipst, ip_conn_flputbq); 23119 } else { 23120 /* 23121 * We are not the service proc. 23122 * ip_wsrv will be scheduled or 23123 * is already running. 23124 */ 23125 (void) putq(connp->conn_wq, 23126 first_mp); 23127 } 23128 } else { 23129 out_ill = (ill_t *)stq->q_ptr; 23130 BUMP_MIB(out_ill->ill_ip_mib, 23131 ipIfStatsOutDiscards); 23132 freemsg(first_mp); 23133 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23134 "ip_wput_ire_end: q %p (%S)", 23135 q, "discard"); 23136 } 23137 ire_refrele(ire); 23138 if (next_mp) { 23139 ire_refrele(ire1); 23140 freemsg(next_mp); 23141 } 23142 if (conn_outgoing_ill != NULL) 23143 ill_refrele(conn_outgoing_ill); 23144 return; 23145 } 23146 if ((PROTO == IPPROTO_UDP) && 23147 (ip_hdr_included != IP_HDR_INCLUDED)) { 23148 /* 23149 * hlen gets the number of uchar_ts in the 23150 * IP header 23151 */ 23152 hlen = (V_HLEN & 0xF) << 2; 23153 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23154 max_frag = ire->ire_max_frag; 23155 if (*up != 0) { 23156 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23157 up, PROTO, hlen, LENGTH, max_frag, 23158 ipsec_len, cksum); 23159 /* Software checksum? */ 23160 if (DB_CKSUMFLAGS(mp) == 0) { 23161 IP_STAT(ipst, ip_out_sw_cksum); 23162 IP_STAT_UPDATE(ipst, 23163 ip_udp_out_sw_cksum_bytes, 23164 LENGTH - hlen); 23165 } 23166 } 23167 } 23168 } 23169 /* 23170 * Need to do this even when fragmenting. The local 23171 * loopback can be done without computing checksums 23172 * but forwarding out other interface must be done 23173 * after the IP checksum (and ULP checksums) have been 23174 * computed. 23175 * 23176 * NOTE : multicast_forward is set only if this packet 23177 * originated from ip_wput. For packets originating from 23178 * ip_wput_multicast, it is not set. 23179 */ 23180 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23181 multi_loopback: 23182 ip2dbg(("ip_wput: multicast, loop %d\n", 23183 conn_multicast_loop)); 23184 23185 /* Forget header checksum offload */ 23186 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23187 23188 /* 23189 * Local loopback of multicasts? Check the 23190 * ill. 23191 * 23192 * Note that the loopback function will not come 23193 * in through ip_rput - it will only do the 23194 * client fanout thus we need to do an mforward 23195 * as well. The is different from the BSD 23196 * logic. 23197 */ 23198 if (ill != NULL) { 23199 ilm_t *ilm; 23200 23201 ILM_WALKER_HOLD(ill); 23202 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23203 ALL_ZONES); 23204 ILM_WALKER_RELE(ill); 23205 if (ilm != NULL) { 23206 /* 23207 * Pass along the virtual output q. 23208 * ip_wput_local() will distribute the 23209 * packet to all the matching zones, 23210 * except the sending zone when 23211 * IP_MULTICAST_LOOP is false. 23212 */ 23213 ip_multicast_loopback(q, ill, first_mp, 23214 conn_multicast_loop ? 0 : 23215 IP_FF_NO_MCAST_LOOP, zoneid); 23216 } 23217 } 23218 if (ipha->ipha_ttl == 0) { 23219 /* 23220 * 0 => only to this host i.e. we are 23221 * done. We are also done if this was the 23222 * loopback interface since it is sufficient 23223 * to loopback one copy of a multicast packet. 23224 */ 23225 freemsg(first_mp); 23226 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23227 "ip_wput_ire_end: q %p (%S)", 23228 q, "loopback"); 23229 ire_refrele(ire); 23230 if (conn_outgoing_ill != NULL) 23231 ill_refrele(conn_outgoing_ill); 23232 return; 23233 } 23234 /* 23235 * ILLF_MULTICAST is checked in ip_newroute 23236 * i.e. we don't need to check it here since 23237 * all IRE_CACHEs come from ip_newroute. 23238 * For multicast traffic, SO_DONTROUTE is interpreted 23239 * to mean only send the packet out the interface 23240 * (optionally specified with IP_MULTICAST_IF) 23241 * and do not forward it out additional interfaces. 23242 * RSVP and the rsvp daemon is an example of a 23243 * protocol and user level process that 23244 * handles it's own routing. Hence, it uses the 23245 * SO_DONTROUTE option to accomplish this. 23246 */ 23247 23248 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23249 ill != NULL) { 23250 /* Unconditionally redo the checksum */ 23251 ipha->ipha_hdr_checksum = 0; 23252 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23253 23254 /* 23255 * If this needs to go out secure, we need 23256 * to wait till we finish the IPSEC 23257 * processing. 23258 */ 23259 if (ipsec_len == 0 && 23260 ip_mforward(ill, ipha, mp)) { 23261 freemsg(first_mp); 23262 ip1dbg(("ip_wput: mforward failed\n")); 23263 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23264 "ip_wput_ire_end: q %p (%S)", 23265 q, "mforward failed"); 23266 ire_refrele(ire); 23267 if (conn_outgoing_ill != NULL) 23268 ill_refrele(conn_outgoing_ill); 23269 return; 23270 } 23271 } 23272 } 23273 max_frag = ire->ire_max_frag; 23274 cksum += ttl_protocol; 23275 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23276 /* No fragmentation required for this one. */ 23277 /* 23278 * Don't use frag_flag if packet is pre-built or source 23279 * routed or if multicast (since multicast packets do 23280 * not solicit ICMP "packet too big" messages). 23281 */ 23282 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23283 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23284 !ip_source_route_included(ipha)) && 23285 !CLASSD(ipha->ipha_dst)) 23286 ipha->ipha_fragment_offset_and_flags |= 23287 htons(ire->ire_frag_flag); 23288 23289 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23290 /* Complete the IP header checksum. */ 23291 cksum += ipha->ipha_ident; 23292 cksum += (v_hlen_tos_len >> 16)+ 23293 (v_hlen_tos_len & 0xFFFF); 23294 cksum += ipha->ipha_fragment_offset_and_flags; 23295 hlen = (V_HLEN & 0xF) - 23296 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23297 if (hlen) { 23298 checksumoptions: 23299 /* 23300 * Account for the IP Options in the IP 23301 * header checksum. 23302 */ 23303 up = (uint16_t *)(rptr+ 23304 IP_SIMPLE_HDR_LENGTH); 23305 do { 23306 cksum += up[0]; 23307 cksum += up[1]; 23308 up += 2; 23309 } while (--hlen); 23310 } 23311 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23312 cksum = ~(cksum + (cksum >> 16)); 23313 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23314 } 23315 if (ipsec_len != 0) { 23316 ipsec_out_process(q, first_mp, ire, ill_index); 23317 if (!next_mp) { 23318 ire_refrele(ire); 23319 if (conn_outgoing_ill != NULL) 23320 ill_refrele(conn_outgoing_ill); 23321 return; 23322 } 23323 goto next; 23324 } 23325 23326 /* 23327 * multirt_send has already been handled 23328 * for broadcast, but not yet for multicast 23329 * or IP options. 23330 */ 23331 if (next_mp == NULL) { 23332 if (ire->ire_flags & RTF_MULTIRT) { 23333 multirt_send = B_TRUE; 23334 } 23335 } 23336 23337 /* 23338 * In most cases, the emission loop below is 23339 * entered only once. Only in the case where 23340 * the ire holds the RTF_MULTIRT flag, do we loop 23341 * to process all RTF_MULTIRT ires in the bucket, 23342 * and send the packet through all crossed 23343 * RTF_MULTIRT routes. 23344 */ 23345 do { 23346 if (multirt_send) { 23347 irb_t *irb; 23348 23349 irb = ire->ire_bucket; 23350 ASSERT(irb != NULL); 23351 /* 23352 * We are in a multiple send case, 23353 * need to get the next IRE and make 23354 * a duplicate of the packet. 23355 */ 23356 IRB_REFHOLD(irb); 23357 for (ire1 = ire->ire_next; 23358 ire1 != NULL; 23359 ire1 = ire1->ire_next) { 23360 if (!(ire1->ire_flags & 23361 RTF_MULTIRT)) { 23362 continue; 23363 } 23364 if (ire1->ire_addr != 23365 ire->ire_addr) { 23366 continue; 23367 } 23368 if (ire1->ire_marks & 23369 (IRE_MARK_CONDEMNED| 23370 IRE_MARK_HIDDEN)) { 23371 continue; 23372 } 23373 23374 /* Got one */ 23375 IRE_REFHOLD(ire1); 23376 break; 23377 } 23378 IRB_REFRELE(irb); 23379 23380 if (ire1 != NULL) { 23381 next_mp = copyb(mp); 23382 if ((next_mp == NULL) || 23383 ((mp->b_cont != NULL) && 23384 ((next_mp->b_cont = 23385 dupmsg(mp->b_cont)) 23386 == NULL))) { 23387 freemsg(next_mp); 23388 next_mp = NULL; 23389 ire_refrele(ire1); 23390 ire1 = NULL; 23391 } 23392 } 23393 23394 /* 23395 * Last multiroute ire; don't loop 23396 * anymore. The emission is over 23397 * and next_mp is NULL. 23398 */ 23399 if (ire1 == NULL) { 23400 multirt_send = B_FALSE; 23401 } 23402 } 23403 23404 out_ill = ire->ire_ipif->ipif_ill; 23405 DTRACE_PROBE4(ip4__physical__out__start, 23406 ill_t *, NULL, 23407 ill_t *, out_ill, 23408 ipha_t *, ipha, mblk_t *, mp); 23409 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23410 ipst->ips_ipv4firewall_physical_out, 23411 NULL, out_ill, ipha, mp, mp, ipst); 23412 DTRACE_PROBE1(ip4__physical__out__end, 23413 mblk_t *, mp); 23414 if (mp == NULL) 23415 goto release_ire_and_ill_2; 23416 23417 ASSERT(ipsec_len == 0); 23418 mp->b_prev = 23419 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23420 DTRACE_PROBE2(ip__xmit__2, 23421 mblk_t *, mp, ire_t *, ire); 23422 pktxmit_state = ip_xmit_v4(mp, ire, 23423 NULL, B_TRUE); 23424 if ((pktxmit_state == SEND_FAILED) || 23425 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23426 release_ire_and_ill_2: 23427 if (next_mp) { 23428 freemsg(next_mp); 23429 ire_refrele(ire1); 23430 } 23431 ire_refrele(ire); 23432 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23433 "ip_wput_ire_end: q %p (%S)", 23434 q, "discard MDATA"); 23435 if (conn_outgoing_ill != NULL) 23436 ill_refrele(conn_outgoing_ill); 23437 return; 23438 } 23439 23440 if (CLASSD(dst)) { 23441 BUMP_MIB(out_ill->ill_ip_mib, 23442 ipIfStatsHCOutMcastPkts); 23443 UPDATE_MIB(out_ill->ill_ip_mib, 23444 ipIfStatsHCOutMcastOctets, 23445 LENGTH); 23446 } else if (ire->ire_type == IRE_BROADCAST) { 23447 BUMP_MIB(out_ill->ill_ip_mib, 23448 ipIfStatsHCOutBcastPkts); 23449 } 23450 23451 if (multirt_send) { 23452 /* 23453 * We are in a multiple send case, 23454 * need to re-enter the sending loop 23455 * using the next ire. 23456 */ 23457 ire_refrele(ire); 23458 ire = ire1; 23459 stq = ire->ire_stq; 23460 mp = next_mp; 23461 next_mp = NULL; 23462 ipha = (ipha_t *)mp->b_rptr; 23463 ill_index = Q_TO_INDEX(stq); 23464 } 23465 } while (multirt_send); 23466 23467 if (!next_mp) { 23468 /* 23469 * Last copy going out (the ultra-common 23470 * case). Note that we intentionally replicate 23471 * the putnext rather than calling it before 23472 * the next_mp check in hopes of a little 23473 * tail-call action out of the compiler. 23474 */ 23475 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23476 "ip_wput_ire_end: q %p (%S)", 23477 q, "last copy out(1)"); 23478 ire_refrele(ire); 23479 if (conn_outgoing_ill != NULL) 23480 ill_refrele(conn_outgoing_ill); 23481 return; 23482 } 23483 /* More copies going out below. */ 23484 } else { 23485 int offset; 23486 fragmentit: 23487 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23488 /* 23489 * If this would generate a icmp_frag_needed message, 23490 * we need to handle it before we do the IPSEC 23491 * processing. Otherwise, we need to strip the IPSEC 23492 * headers before we send up the message to the ULPs 23493 * which becomes messy and difficult. 23494 */ 23495 if (ipsec_len != 0) { 23496 if ((max_frag < (unsigned int)(LENGTH + 23497 ipsec_len)) && (offset & IPH_DF)) { 23498 out_ill = (ill_t *)stq->q_ptr; 23499 BUMP_MIB(out_ill->ill_ip_mib, 23500 ipIfStatsOutFragFails); 23501 BUMP_MIB(out_ill->ill_ip_mib, 23502 ipIfStatsOutFragReqds); 23503 ipha->ipha_hdr_checksum = 0; 23504 ipha->ipha_hdr_checksum = 23505 (uint16_t)ip_csum_hdr(ipha); 23506 icmp_frag_needed(ire->ire_stq, first_mp, 23507 max_frag, zoneid, ipst); 23508 if (!next_mp) { 23509 ire_refrele(ire); 23510 if (conn_outgoing_ill != NULL) { 23511 ill_refrele( 23512 conn_outgoing_ill); 23513 } 23514 return; 23515 } 23516 } else { 23517 /* 23518 * This won't cause a icmp_frag_needed 23519 * message. to be generated. Send it on 23520 * the wire. Note that this could still 23521 * cause fragmentation and all we 23522 * do is the generation of the message 23523 * to the ULP if needed before IPSEC. 23524 */ 23525 if (!next_mp) { 23526 ipsec_out_process(q, first_mp, 23527 ire, ill_index); 23528 TRACE_2(TR_FAC_IP, 23529 TR_IP_WPUT_IRE_END, 23530 "ip_wput_ire_end: q %p " 23531 "(%S)", q, 23532 "last ipsec_out_process"); 23533 ire_refrele(ire); 23534 if (conn_outgoing_ill != NULL) { 23535 ill_refrele( 23536 conn_outgoing_ill); 23537 } 23538 return; 23539 } 23540 ipsec_out_process(q, first_mp, 23541 ire, ill_index); 23542 } 23543 } else { 23544 /* 23545 * Initiate IPPF processing. For 23546 * fragmentable packets we finish 23547 * all QOS packet processing before 23548 * calling: 23549 * ip_wput_ire_fragmentit->ip_wput_frag 23550 */ 23551 23552 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23553 ip_process(IPP_LOCAL_OUT, &mp, 23554 ill_index); 23555 if (mp == NULL) { 23556 out_ill = (ill_t *)stq->q_ptr; 23557 BUMP_MIB(out_ill->ill_ip_mib, 23558 ipIfStatsOutDiscards); 23559 if (next_mp != NULL) { 23560 freemsg(next_mp); 23561 ire_refrele(ire1); 23562 } 23563 ire_refrele(ire); 23564 TRACE_2(TR_FAC_IP, 23565 TR_IP_WPUT_IRE_END, 23566 "ip_wput_ire: q %p (%S)", 23567 q, "discard MDATA"); 23568 if (conn_outgoing_ill != NULL) { 23569 ill_refrele( 23570 conn_outgoing_ill); 23571 } 23572 return; 23573 } 23574 } 23575 if (!next_mp) { 23576 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23577 "ip_wput_ire_end: q %p (%S)", 23578 q, "last fragmentation"); 23579 ip_wput_ire_fragmentit(mp, ire, 23580 zoneid, ipst); 23581 ire_refrele(ire); 23582 if (conn_outgoing_ill != NULL) 23583 ill_refrele(conn_outgoing_ill); 23584 return; 23585 } 23586 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23587 } 23588 } 23589 } else { 23590 nullstq: 23591 /* A NULL stq means the destination address is local. */ 23592 UPDATE_OB_PKT_COUNT(ire); 23593 ire->ire_last_used_time = lbolt; 23594 ASSERT(ire->ire_ipif != NULL); 23595 if (!next_mp) { 23596 /* 23597 * Is there an "in" and "out" for traffic local 23598 * to a host (loopback)? The code in Solaris doesn't 23599 * explicitly draw a line in its code for in vs out, 23600 * so we've had to draw a line in the sand: ip_wput_ire 23601 * is considered to be the "output" side and 23602 * ip_wput_local to be the "input" side. 23603 */ 23604 out_ill = ire->ire_ipif->ipif_ill; 23605 23606 DTRACE_PROBE4(ip4__loopback__out__start, 23607 ill_t *, NULL, ill_t *, out_ill, 23608 ipha_t *, ipha, mblk_t *, first_mp); 23609 23610 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23611 ipst->ips_ipv4firewall_loopback_out, 23612 NULL, out_ill, ipha, first_mp, mp, ipst); 23613 23614 DTRACE_PROBE1(ip4__loopback__out_end, 23615 mblk_t *, first_mp); 23616 23617 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23618 "ip_wput_ire_end: q %p (%S)", 23619 q, "local address"); 23620 23621 if (first_mp != NULL) 23622 ip_wput_local(q, out_ill, ipha, 23623 first_mp, ire, 0, ire->ire_zoneid); 23624 ire_refrele(ire); 23625 if (conn_outgoing_ill != NULL) 23626 ill_refrele(conn_outgoing_ill); 23627 return; 23628 } 23629 23630 out_ill = ire->ire_ipif->ipif_ill; 23631 23632 DTRACE_PROBE4(ip4__loopback__out__start, 23633 ill_t *, NULL, ill_t *, out_ill, 23634 ipha_t *, ipha, mblk_t *, first_mp); 23635 23636 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23637 ipst->ips_ipv4firewall_loopback_out, 23638 NULL, out_ill, ipha, first_mp, mp, ipst); 23639 23640 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23641 23642 if (first_mp != NULL) 23643 ip_wput_local(q, out_ill, ipha, 23644 first_mp, ire, 0, ire->ire_zoneid); 23645 } 23646 next: 23647 /* 23648 * More copies going out to additional interfaces. 23649 * ire1 has already been held. We don't need the 23650 * "ire" anymore. 23651 */ 23652 ire_refrele(ire); 23653 ire = ire1; 23654 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23655 mp = next_mp; 23656 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23657 ill = ire_to_ill(ire); 23658 first_mp = mp; 23659 if (ipsec_len != 0) { 23660 ASSERT(first_mp->b_datap->db_type == M_CTL); 23661 mp = mp->b_cont; 23662 } 23663 dst = ire->ire_addr; 23664 ipha = (ipha_t *)mp->b_rptr; 23665 /* 23666 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23667 * Restore ipha_ident "no checksum" flag. 23668 */ 23669 src = orig_src; 23670 ipha->ipha_ident = ip_hdr_included; 23671 goto another; 23672 23673 #undef rptr 23674 #undef Q_TO_INDEX 23675 } 23676 23677 /* 23678 * Routine to allocate a message that is used to notify the ULP about MDT. 23679 * The caller may provide a pointer to the link-layer MDT capabilities, 23680 * or NULL if MDT is to be disabled on the stream. 23681 */ 23682 mblk_t * 23683 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23684 { 23685 mblk_t *mp; 23686 ip_mdt_info_t *mdti; 23687 ill_mdt_capab_t *idst; 23688 23689 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23690 DB_TYPE(mp) = M_CTL; 23691 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23692 mdti = (ip_mdt_info_t *)mp->b_rptr; 23693 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23694 idst = &(mdti->mdt_capab); 23695 23696 /* 23697 * If the caller provides us with the capability, copy 23698 * it over into our notification message; otherwise 23699 * we zero out the capability portion. 23700 */ 23701 if (isrc != NULL) 23702 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23703 else 23704 bzero((caddr_t)idst, sizeof (*idst)); 23705 } 23706 return (mp); 23707 } 23708 23709 /* 23710 * Routine which determines whether MDT can be enabled on the destination 23711 * IRE and IPC combination, and if so, allocates and returns the MDT 23712 * notification mblk that may be used by ULP. We also check if we need to 23713 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23714 * MDT usage in the past have been lifted. This gets called during IP 23715 * and ULP binding. 23716 */ 23717 mblk_t * 23718 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23719 ill_mdt_capab_t *mdt_cap) 23720 { 23721 mblk_t *mp; 23722 boolean_t rc = B_FALSE; 23723 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23724 23725 ASSERT(dst_ire != NULL); 23726 ASSERT(connp != NULL); 23727 ASSERT(mdt_cap != NULL); 23728 23729 /* 23730 * Currently, we only support simple TCP/{IPv4,IPv6} with 23731 * Multidata, which is handled in tcp_multisend(). This 23732 * is the reason why we do all these checks here, to ensure 23733 * that we don't enable Multidata for the cases which we 23734 * can't handle at the moment. 23735 */ 23736 do { 23737 /* Only do TCP at the moment */ 23738 if (connp->conn_ulp != IPPROTO_TCP) 23739 break; 23740 23741 /* 23742 * IPSEC outbound policy present? Note that we get here 23743 * after calling ipsec_conn_cache_policy() where the global 23744 * policy checking is performed. conn_latch will be 23745 * non-NULL as long as there's a policy defined, 23746 * i.e. conn_out_enforce_policy may be NULL in such case 23747 * when the connection is non-secure, and hence we check 23748 * further if the latch refers to an outbound policy. 23749 */ 23750 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23751 break; 23752 23753 /* CGTP (multiroute) is enabled? */ 23754 if (dst_ire->ire_flags & RTF_MULTIRT) 23755 break; 23756 23757 /* Outbound IPQoS enabled? */ 23758 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23759 /* 23760 * In this case, we disable MDT for this and all 23761 * future connections going over the interface. 23762 */ 23763 mdt_cap->ill_mdt_on = 0; 23764 break; 23765 } 23766 23767 /* socket option(s) present? */ 23768 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23769 break; 23770 23771 rc = B_TRUE; 23772 /* CONSTCOND */ 23773 } while (0); 23774 23775 /* Remember the result */ 23776 connp->conn_mdt_ok = rc; 23777 23778 if (!rc) 23779 return (NULL); 23780 else if (!mdt_cap->ill_mdt_on) { 23781 /* 23782 * If MDT has been previously turned off in the past, and we 23783 * currently can do MDT (due to IPQoS policy removal, etc.) 23784 * then enable it for this interface. 23785 */ 23786 mdt_cap->ill_mdt_on = 1; 23787 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23788 "interface %s\n", ill_name)); 23789 } 23790 23791 /* Allocate the MDT info mblk */ 23792 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23793 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23794 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23795 return (NULL); 23796 } 23797 return (mp); 23798 } 23799 23800 /* 23801 * Routine to allocate a message that is used to notify the ULP about LSO. 23802 * The caller may provide a pointer to the link-layer LSO capabilities, 23803 * or NULL if LSO is to be disabled on the stream. 23804 */ 23805 mblk_t * 23806 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23807 { 23808 mblk_t *mp; 23809 ip_lso_info_t *lsoi; 23810 ill_lso_capab_t *idst; 23811 23812 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23813 DB_TYPE(mp) = M_CTL; 23814 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23815 lsoi = (ip_lso_info_t *)mp->b_rptr; 23816 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23817 idst = &(lsoi->lso_capab); 23818 23819 /* 23820 * If the caller provides us with the capability, copy 23821 * it over into our notification message; otherwise 23822 * we zero out the capability portion. 23823 */ 23824 if (isrc != NULL) 23825 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23826 else 23827 bzero((caddr_t)idst, sizeof (*idst)); 23828 } 23829 return (mp); 23830 } 23831 23832 /* 23833 * Routine which determines whether LSO can be enabled on the destination 23834 * IRE and IPC combination, and if so, allocates and returns the LSO 23835 * notification mblk that may be used by ULP. We also check if we need to 23836 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23837 * LSO usage in the past have been lifted. This gets called during IP 23838 * and ULP binding. 23839 */ 23840 mblk_t * 23841 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23842 ill_lso_capab_t *lso_cap) 23843 { 23844 mblk_t *mp; 23845 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23846 23847 ASSERT(dst_ire != NULL); 23848 ASSERT(connp != NULL); 23849 ASSERT(lso_cap != NULL); 23850 23851 connp->conn_lso_ok = B_TRUE; 23852 23853 if ((connp->conn_ulp != IPPROTO_TCP) || 23854 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23855 (dst_ire->ire_flags & RTF_MULTIRT) || 23856 !CONN_IS_LSO_MD_FASTPATH(connp) || 23857 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23858 connp->conn_lso_ok = B_FALSE; 23859 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23860 /* 23861 * Disable LSO for this and all future connections going 23862 * over the interface. 23863 */ 23864 lso_cap->ill_lso_on = 0; 23865 } 23866 } 23867 23868 if (!connp->conn_lso_ok) 23869 return (NULL); 23870 else if (!lso_cap->ill_lso_on) { 23871 /* 23872 * If LSO has been previously turned off in the past, and we 23873 * currently can do LSO (due to IPQoS policy removal, etc.) 23874 * then enable it for this interface. 23875 */ 23876 lso_cap->ill_lso_on = 1; 23877 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23878 ill_name)); 23879 } 23880 23881 /* Allocate the LSO info mblk */ 23882 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23883 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23884 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23885 23886 return (mp); 23887 } 23888 23889 /* 23890 * Create destination address attribute, and fill it with the physical 23891 * destination address and SAP taken from the template DL_UNITDATA_REQ 23892 * message block. 23893 */ 23894 boolean_t 23895 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23896 { 23897 dl_unitdata_req_t *dlurp; 23898 pattr_t *pa; 23899 pattrinfo_t pa_info; 23900 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23901 uint_t das_len, das_off; 23902 23903 ASSERT(dlmp != NULL); 23904 23905 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23906 das_len = dlurp->dl_dest_addr_length; 23907 das_off = dlurp->dl_dest_addr_offset; 23908 23909 pa_info.type = PATTR_DSTADDRSAP; 23910 pa_info.len = sizeof (**das) + das_len - 1; 23911 23912 /* create and associate the attribute */ 23913 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23914 if (pa != NULL) { 23915 ASSERT(*das != NULL); 23916 (*das)->addr_is_group = 0; 23917 (*das)->addr_len = (uint8_t)das_len; 23918 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23919 } 23920 23921 return (pa != NULL); 23922 } 23923 23924 /* 23925 * Create hardware checksum attribute and fill it with the values passed. 23926 */ 23927 boolean_t 23928 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23929 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23930 { 23931 pattr_t *pa; 23932 pattrinfo_t pa_info; 23933 23934 ASSERT(mmd != NULL); 23935 23936 pa_info.type = PATTR_HCKSUM; 23937 pa_info.len = sizeof (pattr_hcksum_t); 23938 23939 /* create and associate the attribute */ 23940 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23941 if (pa != NULL) { 23942 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23943 23944 hck->hcksum_start_offset = start_offset; 23945 hck->hcksum_stuff_offset = stuff_offset; 23946 hck->hcksum_end_offset = end_offset; 23947 hck->hcksum_flags = flags; 23948 } 23949 return (pa != NULL); 23950 } 23951 23952 /* 23953 * Create zerocopy attribute and fill it with the specified flags 23954 */ 23955 boolean_t 23956 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23957 { 23958 pattr_t *pa; 23959 pattrinfo_t pa_info; 23960 23961 ASSERT(mmd != NULL); 23962 pa_info.type = PATTR_ZCOPY; 23963 pa_info.len = sizeof (pattr_zcopy_t); 23964 23965 /* create and associate the attribute */ 23966 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23967 if (pa != NULL) { 23968 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23969 23970 zcopy->zcopy_flags = flags; 23971 } 23972 return (pa != NULL); 23973 } 23974 23975 /* 23976 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23977 * block chain. We could rewrite to handle arbitrary message block chains but 23978 * that would make the code complicated and slow. Right now there three 23979 * restrictions: 23980 * 23981 * 1. The first message block must contain the complete IP header and 23982 * at least 1 byte of payload data. 23983 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23984 * so that we can use a single Multidata message. 23985 * 3. No frag must be distributed over two or more message blocks so 23986 * that we don't need more than two packet descriptors per frag. 23987 * 23988 * The above restrictions allow us to support userland applications (which 23989 * will send down a single message block) and NFS over UDP (which will 23990 * send down a chain of at most three message blocks). 23991 * 23992 * We also don't use MDT for payloads with less than or equal to 23993 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23994 */ 23995 boolean_t 23996 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23997 { 23998 int blocks; 23999 ssize_t total, missing, size; 24000 24001 ASSERT(mp != NULL); 24002 ASSERT(hdr_len > 0); 24003 24004 size = MBLKL(mp) - hdr_len; 24005 if (size <= 0) 24006 return (B_FALSE); 24007 24008 /* The first mblk contains the header and some payload. */ 24009 blocks = 1; 24010 total = size; 24011 size %= len; 24012 missing = (size == 0) ? 0 : (len - size); 24013 mp = mp->b_cont; 24014 24015 while (mp != NULL) { 24016 /* 24017 * Give up if we encounter a zero length message block. 24018 * In practice, this should rarely happen and therefore 24019 * not worth the trouble of freeing and re-linking the 24020 * mblk from the chain to handle such case. 24021 */ 24022 if ((size = MBLKL(mp)) == 0) 24023 return (B_FALSE); 24024 24025 /* Too many payload buffers for a single Multidata message? */ 24026 if (++blocks > MULTIDATA_MAX_PBUFS) 24027 return (B_FALSE); 24028 24029 total += size; 24030 /* Is a frag distributed over two or more message blocks? */ 24031 if (missing > size) 24032 return (B_FALSE); 24033 size -= missing; 24034 24035 size %= len; 24036 missing = (size == 0) ? 0 : (len - size); 24037 24038 mp = mp->b_cont; 24039 } 24040 24041 return (total > ip_wput_frag_mdt_min); 24042 } 24043 24044 /* 24045 * Outbound IPv4 fragmentation routine using MDT. 24046 */ 24047 static void 24048 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24049 uint32_t frag_flag, int offset) 24050 { 24051 ipha_t *ipha_orig; 24052 int i1, ip_data_end; 24053 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24054 mblk_t *hdr_mp, *md_mp = NULL; 24055 unsigned char *hdr_ptr, *pld_ptr; 24056 multidata_t *mmd; 24057 ip_pdescinfo_t pdi; 24058 ill_t *ill; 24059 ip_stack_t *ipst = ire->ire_ipst; 24060 24061 ASSERT(DB_TYPE(mp) == M_DATA); 24062 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24063 24064 ill = ire_to_ill(ire); 24065 ASSERT(ill != NULL); 24066 24067 ipha_orig = (ipha_t *)mp->b_rptr; 24068 mp->b_rptr += sizeof (ipha_t); 24069 24070 /* Calculate how many packets we will send out */ 24071 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24072 pkts = (i1 + len - 1) / len; 24073 ASSERT(pkts > 1); 24074 24075 /* Allocate a message block which will hold all the IP Headers. */ 24076 wroff = ipst->ips_ip_wroff_extra; 24077 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24078 24079 i1 = pkts * hdr_chunk_len; 24080 /* 24081 * Create the header buffer, Multidata and destination address 24082 * and SAP attribute that should be associated with it. 24083 */ 24084 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24085 ((hdr_mp->b_wptr += i1), 24086 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24087 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24088 freemsg(mp); 24089 if (md_mp == NULL) { 24090 freemsg(hdr_mp); 24091 } else { 24092 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24093 freemsg(md_mp); 24094 } 24095 IP_STAT(ipst, ip_frag_mdt_allocfail); 24096 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24097 return; 24098 } 24099 IP_STAT(ipst, ip_frag_mdt_allocd); 24100 24101 /* 24102 * Add a payload buffer to the Multidata; this operation must not 24103 * fail, or otherwise our logic in this routine is broken. There 24104 * is no memory allocation done by the routine, so any returned 24105 * failure simply tells us that we've done something wrong. 24106 * 24107 * A failure tells us that either we're adding the same payload 24108 * buffer more than once, or we're trying to add more buffers than 24109 * allowed. None of the above cases should happen, and we panic 24110 * because either there's horrible heap corruption, and/or 24111 * programming mistake. 24112 */ 24113 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24114 goto pbuf_panic; 24115 24116 hdr_ptr = hdr_mp->b_rptr; 24117 pld_ptr = mp->b_rptr; 24118 24119 /* Establish the ending byte offset, based on the starting offset. */ 24120 offset <<= 3; 24121 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24122 IP_SIMPLE_HDR_LENGTH; 24123 24124 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24125 24126 while (pld_ptr < mp->b_wptr) { 24127 ipha_t *ipha; 24128 uint16_t offset_and_flags; 24129 uint16_t ip_len; 24130 int error; 24131 24132 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24133 ipha = (ipha_t *)(hdr_ptr + wroff); 24134 ASSERT(OK_32PTR(ipha)); 24135 *ipha = *ipha_orig; 24136 24137 if (ip_data_end - offset > len) { 24138 offset_and_flags = IPH_MF; 24139 } else { 24140 /* 24141 * Last frag. Set len to the length of this last piece. 24142 */ 24143 len = ip_data_end - offset; 24144 /* A frag of a frag might have IPH_MF non-zero */ 24145 offset_and_flags = 24146 ntohs(ipha->ipha_fragment_offset_and_flags) & 24147 IPH_MF; 24148 } 24149 offset_and_flags |= (uint16_t)(offset >> 3); 24150 offset_and_flags |= (uint16_t)frag_flag; 24151 /* Store the offset and flags in the IP header. */ 24152 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24153 24154 /* Store the length in the IP header. */ 24155 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24156 ipha->ipha_length = htons(ip_len); 24157 24158 /* 24159 * Set the IP header checksum. Note that mp is just 24160 * the header, so this is easy to pass to ip_csum. 24161 */ 24162 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24163 24164 /* 24165 * Record offset and size of header and data of the next packet 24166 * in the multidata message. 24167 */ 24168 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24169 PDESC_PLD_INIT(&pdi); 24170 i1 = MIN(mp->b_wptr - pld_ptr, len); 24171 ASSERT(i1 > 0); 24172 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24173 if (i1 == len) { 24174 pld_ptr += len; 24175 } else { 24176 i1 = len - i1; 24177 mp = mp->b_cont; 24178 ASSERT(mp != NULL); 24179 ASSERT(MBLKL(mp) >= i1); 24180 /* 24181 * Attach the next payload message block to the 24182 * multidata message. 24183 */ 24184 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24185 goto pbuf_panic; 24186 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24187 pld_ptr = mp->b_rptr + i1; 24188 } 24189 24190 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24191 KM_NOSLEEP)) == NULL) { 24192 /* 24193 * Any failure other than ENOMEM indicates that we 24194 * have passed in invalid pdesc info or parameters 24195 * to mmd_addpdesc, which must not happen. 24196 * 24197 * EINVAL is a result of failure on boundary checks 24198 * against the pdesc info contents. It should not 24199 * happen, and we panic because either there's 24200 * horrible heap corruption, and/or programming 24201 * mistake. 24202 */ 24203 if (error != ENOMEM) { 24204 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24205 "pdesc logic error detected for " 24206 "mmd %p pinfo %p (%d)\n", 24207 (void *)mmd, (void *)&pdi, error); 24208 /* NOTREACHED */ 24209 } 24210 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24211 /* Free unattached payload message blocks as well */ 24212 md_mp->b_cont = mp->b_cont; 24213 goto free_mmd; 24214 } 24215 24216 /* Advance fragment offset. */ 24217 offset += len; 24218 24219 /* Advance to location for next header in the buffer. */ 24220 hdr_ptr += hdr_chunk_len; 24221 24222 /* Did we reach the next payload message block? */ 24223 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24224 mp = mp->b_cont; 24225 /* 24226 * Attach the next message block with payload 24227 * data to the multidata message. 24228 */ 24229 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24230 goto pbuf_panic; 24231 pld_ptr = mp->b_rptr; 24232 } 24233 } 24234 24235 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24236 ASSERT(mp->b_wptr == pld_ptr); 24237 24238 /* Update IP statistics */ 24239 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24240 24241 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24242 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24243 24244 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24245 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24246 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24247 24248 if (pkt_type == OB_PKT) { 24249 ire->ire_ob_pkt_count += pkts; 24250 if (ire->ire_ipif != NULL) 24251 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24252 } else { 24253 /* 24254 * The type is IB_PKT in the forwarding path and in 24255 * the mobile IP case when the packet is being reverse- 24256 * tunneled to the home agent. 24257 */ 24258 ire->ire_ib_pkt_count += pkts; 24259 ASSERT(!IRE_IS_LOCAL(ire)); 24260 if (ire->ire_type & IRE_BROADCAST) { 24261 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24262 } else { 24263 UPDATE_MIB(ill->ill_ip_mib, 24264 ipIfStatsHCOutForwDatagrams, pkts); 24265 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24266 } 24267 } 24268 ire->ire_last_used_time = lbolt; 24269 /* Send it down */ 24270 putnext(ire->ire_stq, md_mp); 24271 return; 24272 24273 pbuf_panic: 24274 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24275 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24276 pbuf_idx); 24277 /* NOTREACHED */ 24278 } 24279 24280 /* 24281 * Outbound IP fragmentation routine. 24282 * 24283 * NOTE : This routine does not ire_refrele the ire that is passed in 24284 * as the argument. 24285 */ 24286 static void 24287 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24288 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24289 { 24290 int i1; 24291 mblk_t *ll_hdr_mp; 24292 int ll_hdr_len; 24293 int hdr_len; 24294 mblk_t *hdr_mp; 24295 ipha_t *ipha; 24296 int ip_data_end; 24297 int len; 24298 mblk_t *mp = mp_orig, *mp1; 24299 int offset; 24300 queue_t *q; 24301 uint32_t v_hlen_tos_len; 24302 mblk_t *first_mp; 24303 boolean_t mctl_present; 24304 ill_t *ill; 24305 ill_t *out_ill; 24306 mblk_t *xmit_mp; 24307 mblk_t *carve_mp; 24308 ire_t *ire1 = NULL; 24309 ire_t *save_ire = NULL; 24310 mblk_t *next_mp = NULL; 24311 boolean_t last_frag = B_FALSE; 24312 boolean_t multirt_send = B_FALSE; 24313 ire_t *first_ire = NULL; 24314 irb_t *irb = NULL; 24315 mib2_ipIfStatsEntry_t *mibptr = NULL; 24316 24317 ill = ire_to_ill(ire); 24318 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24319 24320 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24321 24322 if (max_frag == 0) { 24323 ip1dbg(("ip_wput_frag: ire frag size is 0" 24324 " - dropping packet\n")); 24325 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24326 freemsg(mp); 24327 return; 24328 } 24329 24330 /* 24331 * IPSEC does not allow hw accelerated packets to be fragmented 24332 * This check is made in ip_wput_ipsec_out prior to coming here 24333 * via ip_wput_ire_fragmentit. 24334 * 24335 * If at this point we have an ire whose ARP request has not 24336 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24337 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24338 * This packet and all fragmentable packets for this ire will 24339 * continue to get dropped while ire_nce->nce_state remains in 24340 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24341 * ND_REACHABLE, all subsquent large packets for this ire will 24342 * get fragemented and sent out by this function. 24343 */ 24344 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24345 /* If nce_state is ND_INITIAL, trigger ARP query */ 24346 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24347 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24348 " - dropping packet\n")); 24349 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24350 freemsg(mp); 24351 return; 24352 } 24353 24354 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24355 "ip_wput_frag_start:"); 24356 24357 if (mp->b_datap->db_type == M_CTL) { 24358 first_mp = mp; 24359 mp_orig = mp = mp->b_cont; 24360 mctl_present = B_TRUE; 24361 } else { 24362 first_mp = mp; 24363 mctl_present = B_FALSE; 24364 } 24365 24366 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24367 ipha = (ipha_t *)mp->b_rptr; 24368 24369 /* 24370 * If the Don't Fragment flag is on, generate an ICMP destination 24371 * unreachable, fragmentation needed. 24372 */ 24373 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24374 if (offset & IPH_DF) { 24375 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24376 if (is_system_labeled()) { 24377 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24378 ire->ire_max_frag - max_frag, AF_INET); 24379 } 24380 /* 24381 * Need to compute hdr checksum if called from ip_wput_ire. 24382 * Note that ip_rput_forward verifies the checksum before 24383 * calling this routine so in that case this is a noop. 24384 */ 24385 ipha->ipha_hdr_checksum = 0; 24386 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24387 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24388 ipst); 24389 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24390 "ip_wput_frag_end:(%S)", 24391 "don't fragment"); 24392 return; 24393 } 24394 /* 24395 * Labeled systems adjust max_frag if they add a label 24396 * to send the correct path mtu. We need the real mtu since we 24397 * are fragmenting the packet after label adjustment. 24398 */ 24399 if (is_system_labeled()) 24400 max_frag = ire->ire_max_frag; 24401 if (mctl_present) 24402 freeb(first_mp); 24403 /* 24404 * Establish the starting offset. May not be zero if we are fragging 24405 * a fragment that is being forwarded. 24406 */ 24407 offset = offset & IPH_OFFSET; 24408 24409 /* TODO why is this test needed? */ 24410 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24411 if (((max_frag - LENGTH) & ~7) < 8) { 24412 /* TODO: notify ulp somehow */ 24413 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24414 freemsg(mp); 24415 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24416 "ip_wput_frag_end:(%S)", 24417 "len < 8"); 24418 return; 24419 } 24420 24421 hdr_len = (V_HLEN & 0xF) << 2; 24422 24423 ipha->ipha_hdr_checksum = 0; 24424 24425 /* 24426 * Establish the number of bytes maximum per frag, after putting 24427 * in the header. 24428 */ 24429 len = (max_frag - hdr_len) & ~7; 24430 24431 /* Check if we can use MDT to send out the frags. */ 24432 ASSERT(!IRE_IS_LOCAL(ire)); 24433 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24434 ipst->ips_ip_multidata_outbound && 24435 !(ire->ire_flags & RTF_MULTIRT) && 24436 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24437 ill != NULL && ILL_MDT_CAPABLE(ill) && 24438 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24439 ASSERT(ill->ill_mdt_capab != NULL); 24440 if (!ill->ill_mdt_capab->ill_mdt_on) { 24441 /* 24442 * If MDT has been previously turned off in the past, 24443 * and we currently can do MDT (due to IPQoS policy 24444 * removal, etc.) then enable it for this interface. 24445 */ 24446 ill->ill_mdt_capab->ill_mdt_on = 1; 24447 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24448 ill->ill_name)); 24449 } 24450 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24451 offset); 24452 return; 24453 } 24454 24455 /* Get a copy of the header for the trailing frags */ 24456 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24457 if (!hdr_mp) { 24458 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24459 freemsg(mp); 24460 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24461 "ip_wput_frag_end:(%S)", 24462 "couldn't copy hdr"); 24463 return; 24464 } 24465 if (DB_CRED(mp) != NULL) 24466 mblk_setcred(hdr_mp, DB_CRED(mp)); 24467 24468 /* Store the starting offset, with the MoreFrags flag. */ 24469 i1 = offset | IPH_MF | frag_flag; 24470 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24471 24472 /* Establish the ending byte offset, based on the starting offset. */ 24473 offset <<= 3; 24474 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24475 24476 /* Store the length of the first fragment in the IP header. */ 24477 i1 = len + hdr_len; 24478 ASSERT(i1 <= IP_MAXPACKET); 24479 ipha->ipha_length = htons((uint16_t)i1); 24480 24481 /* 24482 * Compute the IP header checksum for the first frag. We have to 24483 * watch out that we stop at the end of the header. 24484 */ 24485 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24486 24487 /* 24488 * Now carve off the first frag. Note that this will include the 24489 * original IP header. 24490 */ 24491 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24492 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24493 freeb(hdr_mp); 24494 freemsg(mp_orig); 24495 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24496 "ip_wput_frag_end:(%S)", 24497 "couldn't carve first"); 24498 return; 24499 } 24500 24501 /* 24502 * Multirouting case. Each fragment is replicated 24503 * via all non-condemned RTF_MULTIRT routes 24504 * currently resolved. 24505 * We ensure that first_ire is the first RTF_MULTIRT 24506 * ire in the bucket. 24507 */ 24508 if (ire->ire_flags & RTF_MULTIRT) { 24509 irb = ire->ire_bucket; 24510 ASSERT(irb != NULL); 24511 24512 multirt_send = B_TRUE; 24513 24514 /* Make sure we do not omit any multiroute ire. */ 24515 IRB_REFHOLD(irb); 24516 for (first_ire = irb->irb_ire; 24517 first_ire != NULL; 24518 first_ire = first_ire->ire_next) { 24519 if ((first_ire->ire_flags & RTF_MULTIRT) && 24520 (first_ire->ire_addr == ire->ire_addr) && 24521 !(first_ire->ire_marks & 24522 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24523 break; 24524 } 24525 } 24526 24527 if (first_ire != NULL) { 24528 if (first_ire != ire) { 24529 IRE_REFHOLD(first_ire); 24530 /* 24531 * Do not release the ire passed in 24532 * as the argument. 24533 */ 24534 ire = first_ire; 24535 } else { 24536 first_ire = NULL; 24537 } 24538 } 24539 IRB_REFRELE(irb); 24540 24541 /* 24542 * Save the first ire; we will need to restore it 24543 * for the trailing frags. 24544 * We REFHOLD save_ire, as each iterated ire will be 24545 * REFRELEd. 24546 */ 24547 save_ire = ire; 24548 IRE_REFHOLD(save_ire); 24549 } 24550 24551 /* 24552 * First fragment emission loop. 24553 * In most cases, the emission loop below is entered only 24554 * once. Only in the case where the ire holds the RTF_MULTIRT 24555 * flag, do we loop to process all RTF_MULTIRT ires in the 24556 * bucket, and send the fragment through all crossed 24557 * RTF_MULTIRT routes. 24558 */ 24559 do { 24560 if (ire->ire_flags & RTF_MULTIRT) { 24561 /* 24562 * We are in a multiple send case, need to get 24563 * the next ire and make a copy of the packet. 24564 * ire1 holds here the next ire to process in the 24565 * bucket. If multirouting is expected, 24566 * any non-RTF_MULTIRT ire that has the 24567 * right destination address is ignored. 24568 * 24569 * We have to take into account the MTU of 24570 * each walked ire. max_frag is set by the 24571 * the caller and generally refers to 24572 * the primary ire entry. Here we ensure that 24573 * no route with a lower MTU will be used, as 24574 * fragments are carved once for all ires, 24575 * then replicated. 24576 */ 24577 ASSERT(irb != NULL); 24578 IRB_REFHOLD(irb); 24579 for (ire1 = ire->ire_next; 24580 ire1 != NULL; 24581 ire1 = ire1->ire_next) { 24582 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24583 continue; 24584 if (ire1->ire_addr != ire->ire_addr) 24585 continue; 24586 if (ire1->ire_marks & 24587 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24588 continue; 24589 /* 24590 * Ensure we do not exceed the MTU 24591 * of the next route. 24592 */ 24593 if (ire1->ire_max_frag < max_frag) { 24594 ip_multirt_bad_mtu(ire1, max_frag); 24595 continue; 24596 } 24597 24598 /* Got one. */ 24599 IRE_REFHOLD(ire1); 24600 break; 24601 } 24602 IRB_REFRELE(irb); 24603 24604 if (ire1 != NULL) { 24605 next_mp = copyb(mp); 24606 if ((next_mp == NULL) || 24607 ((mp->b_cont != NULL) && 24608 ((next_mp->b_cont = 24609 dupmsg(mp->b_cont)) == NULL))) { 24610 freemsg(next_mp); 24611 next_mp = NULL; 24612 ire_refrele(ire1); 24613 ire1 = NULL; 24614 } 24615 } 24616 24617 /* Last multiroute ire; don't loop anymore. */ 24618 if (ire1 == NULL) { 24619 multirt_send = B_FALSE; 24620 } 24621 } 24622 24623 ll_hdr_len = 0; 24624 LOCK_IRE_FP_MP(ire); 24625 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24626 if (ll_hdr_mp != NULL) { 24627 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24628 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24629 } else { 24630 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24631 } 24632 24633 /* If there is a transmit header, get a copy for this frag. */ 24634 /* 24635 * TODO: should check db_ref before calling ip_carve_mp since 24636 * it might give us a dup. 24637 */ 24638 if (!ll_hdr_mp) { 24639 /* No xmit header. */ 24640 xmit_mp = mp; 24641 24642 /* We have a link-layer header that can fit in our mblk. */ 24643 } else if (mp->b_datap->db_ref == 1 && 24644 ll_hdr_len != 0 && 24645 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24646 /* M_DATA fastpath */ 24647 mp->b_rptr -= ll_hdr_len; 24648 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24649 xmit_mp = mp; 24650 24651 /* Corner case if copyb has failed */ 24652 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24653 UNLOCK_IRE_FP_MP(ire); 24654 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24655 freeb(hdr_mp); 24656 freemsg(mp); 24657 freemsg(mp_orig); 24658 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24659 "ip_wput_frag_end:(%S)", 24660 "discard"); 24661 24662 if (multirt_send) { 24663 ASSERT(ire1); 24664 ASSERT(next_mp); 24665 24666 freemsg(next_mp); 24667 ire_refrele(ire1); 24668 } 24669 if (save_ire != NULL) 24670 IRE_REFRELE(save_ire); 24671 24672 if (first_ire != NULL) 24673 ire_refrele(first_ire); 24674 return; 24675 24676 /* 24677 * Case of res_mp OR the fastpath mp can't fit 24678 * in the mblk 24679 */ 24680 } else { 24681 xmit_mp->b_cont = mp; 24682 if (DB_CRED(mp) != NULL) 24683 mblk_setcred(xmit_mp, DB_CRED(mp)); 24684 /* 24685 * Get priority marking, if any. 24686 * We propagate the CoS marking from the 24687 * original packet that went to QoS processing 24688 * in ip_wput_ire to the newly carved mp. 24689 */ 24690 if (DB_TYPE(xmit_mp) == M_DATA) 24691 xmit_mp->b_band = mp->b_band; 24692 } 24693 UNLOCK_IRE_FP_MP(ire); 24694 24695 q = ire->ire_stq; 24696 out_ill = (ill_t *)q->q_ptr; 24697 24698 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24699 24700 DTRACE_PROBE4(ip4__physical__out__start, 24701 ill_t *, NULL, ill_t *, out_ill, 24702 ipha_t *, ipha, mblk_t *, xmit_mp); 24703 24704 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24705 ipst->ips_ipv4firewall_physical_out, 24706 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24707 24708 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24709 24710 if (xmit_mp != NULL) { 24711 putnext(q, xmit_mp); 24712 24713 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24714 UPDATE_MIB(out_ill->ill_ip_mib, 24715 ipIfStatsHCOutOctets, i1); 24716 24717 if (pkt_type != OB_PKT) { 24718 /* 24719 * Update the packet count and MIB stats 24720 * of trailing RTF_MULTIRT ires. 24721 */ 24722 UPDATE_OB_PKT_COUNT(ire); 24723 BUMP_MIB(out_ill->ill_ip_mib, 24724 ipIfStatsOutFragReqds); 24725 } 24726 } 24727 24728 if (multirt_send) { 24729 /* 24730 * We are in a multiple send case; look for 24731 * the next ire and re-enter the loop. 24732 */ 24733 ASSERT(ire1); 24734 ASSERT(next_mp); 24735 /* REFRELE the current ire before looping */ 24736 ire_refrele(ire); 24737 ire = ire1; 24738 ire1 = NULL; 24739 mp = next_mp; 24740 next_mp = NULL; 24741 } 24742 } while (multirt_send); 24743 24744 ASSERT(ire1 == NULL); 24745 24746 /* Restore the original ire; we need it for the trailing frags */ 24747 if (save_ire != NULL) { 24748 /* REFRELE the last iterated ire */ 24749 ire_refrele(ire); 24750 /* save_ire has been REFHOLDed */ 24751 ire = save_ire; 24752 save_ire = NULL; 24753 q = ire->ire_stq; 24754 } 24755 24756 if (pkt_type == OB_PKT) { 24757 UPDATE_OB_PKT_COUNT(ire); 24758 } else { 24759 out_ill = (ill_t *)q->q_ptr; 24760 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24761 UPDATE_IB_PKT_COUNT(ire); 24762 } 24763 24764 /* Advance the offset to the second frag starting point. */ 24765 offset += len; 24766 /* 24767 * Update hdr_len from the copied header - there might be less options 24768 * in the later fragments. 24769 */ 24770 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24771 /* Loop until done. */ 24772 for (;;) { 24773 uint16_t offset_and_flags; 24774 uint16_t ip_len; 24775 24776 if (ip_data_end - offset > len) { 24777 /* 24778 * Carve off the appropriate amount from the original 24779 * datagram. 24780 */ 24781 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24782 mp = NULL; 24783 break; 24784 } 24785 /* 24786 * More frags after this one. Get another copy 24787 * of the header. 24788 */ 24789 if (carve_mp->b_datap->db_ref == 1 && 24790 hdr_mp->b_wptr - hdr_mp->b_rptr < 24791 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24792 /* Inline IP header */ 24793 carve_mp->b_rptr -= hdr_mp->b_wptr - 24794 hdr_mp->b_rptr; 24795 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24796 hdr_mp->b_wptr - hdr_mp->b_rptr); 24797 mp = carve_mp; 24798 } else { 24799 if (!(mp = copyb(hdr_mp))) { 24800 freemsg(carve_mp); 24801 break; 24802 } 24803 /* Get priority marking, if any. */ 24804 mp->b_band = carve_mp->b_band; 24805 mp->b_cont = carve_mp; 24806 } 24807 ipha = (ipha_t *)mp->b_rptr; 24808 offset_and_flags = IPH_MF; 24809 } else { 24810 /* 24811 * Last frag. Consume the header. Set len to 24812 * the length of this last piece. 24813 */ 24814 len = ip_data_end - offset; 24815 24816 /* 24817 * Carve off the appropriate amount from the original 24818 * datagram. 24819 */ 24820 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24821 mp = NULL; 24822 break; 24823 } 24824 if (carve_mp->b_datap->db_ref == 1 && 24825 hdr_mp->b_wptr - hdr_mp->b_rptr < 24826 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24827 /* Inline IP header */ 24828 carve_mp->b_rptr -= hdr_mp->b_wptr - 24829 hdr_mp->b_rptr; 24830 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24831 hdr_mp->b_wptr - hdr_mp->b_rptr); 24832 mp = carve_mp; 24833 freeb(hdr_mp); 24834 hdr_mp = mp; 24835 } else { 24836 mp = hdr_mp; 24837 /* Get priority marking, if any. */ 24838 mp->b_band = carve_mp->b_band; 24839 mp->b_cont = carve_mp; 24840 } 24841 ipha = (ipha_t *)mp->b_rptr; 24842 /* A frag of a frag might have IPH_MF non-zero */ 24843 offset_and_flags = 24844 ntohs(ipha->ipha_fragment_offset_and_flags) & 24845 IPH_MF; 24846 } 24847 offset_and_flags |= (uint16_t)(offset >> 3); 24848 offset_and_flags |= (uint16_t)frag_flag; 24849 /* Store the offset and flags in the IP header. */ 24850 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24851 24852 /* Store the length in the IP header. */ 24853 ip_len = (uint16_t)(len + hdr_len); 24854 ipha->ipha_length = htons(ip_len); 24855 24856 /* 24857 * Set the IP header checksum. Note that mp is just 24858 * the header, so this is easy to pass to ip_csum. 24859 */ 24860 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24861 24862 /* Attach a transmit header, if any, and ship it. */ 24863 if (pkt_type == OB_PKT) { 24864 UPDATE_OB_PKT_COUNT(ire); 24865 } else { 24866 out_ill = (ill_t *)q->q_ptr; 24867 BUMP_MIB(out_ill->ill_ip_mib, 24868 ipIfStatsHCOutForwDatagrams); 24869 UPDATE_IB_PKT_COUNT(ire); 24870 } 24871 24872 if (ire->ire_flags & RTF_MULTIRT) { 24873 irb = ire->ire_bucket; 24874 ASSERT(irb != NULL); 24875 24876 multirt_send = B_TRUE; 24877 24878 /* 24879 * Save the original ire; we will need to restore it 24880 * for the tailing frags. 24881 */ 24882 save_ire = ire; 24883 IRE_REFHOLD(save_ire); 24884 } 24885 /* 24886 * Emission loop for this fragment, similar 24887 * to what is done for the first fragment. 24888 */ 24889 do { 24890 if (multirt_send) { 24891 /* 24892 * We are in a multiple send case, need to get 24893 * the next ire and make a copy of the packet. 24894 */ 24895 ASSERT(irb != NULL); 24896 IRB_REFHOLD(irb); 24897 for (ire1 = ire->ire_next; 24898 ire1 != NULL; 24899 ire1 = ire1->ire_next) { 24900 if (!(ire1->ire_flags & RTF_MULTIRT)) 24901 continue; 24902 if (ire1->ire_addr != ire->ire_addr) 24903 continue; 24904 if (ire1->ire_marks & 24905 (IRE_MARK_CONDEMNED| 24906 IRE_MARK_HIDDEN)) { 24907 continue; 24908 } 24909 /* 24910 * Ensure we do not exceed the MTU 24911 * of the next route. 24912 */ 24913 if (ire1->ire_max_frag < max_frag) { 24914 ip_multirt_bad_mtu(ire1, 24915 max_frag); 24916 continue; 24917 } 24918 24919 /* Got one. */ 24920 IRE_REFHOLD(ire1); 24921 break; 24922 } 24923 IRB_REFRELE(irb); 24924 24925 if (ire1 != NULL) { 24926 next_mp = copyb(mp); 24927 if ((next_mp == NULL) || 24928 ((mp->b_cont != NULL) && 24929 ((next_mp->b_cont = 24930 dupmsg(mp->b_cont)) == NULL))) { 24931 freemsg(next_mp); 24932 next_mp = NULL; 24933 ire_refrele(ire1); 24934 ire1 = NULL; 24935 } 24936 } 24937 24938 /* Last multiroute ire; don't loop anymore. */ 24939 if (ire1 == NULL) { 24940 multirt_send = B_FALSE; 24941 } 24942 } 24943 24944 /* Update transmit header */ 24945 ll_hdr_len = 0; 24946 LOCK_IRE_FP_MP(ire); 24947 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24948 if (ll_hdr_mp != NULL) { 24949 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24950 ll_hdr_len = MBLKL(ll_hdr_mp); 24951 } else { 24952 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24953 } 24954 24955 if (!ll_hdr_mp) { 24956 xmit_mp = mp; 24957 24958 /* 24959 * We have link-layer header that can fit in 24960 * our mblk. 24961 */ 24962 } else if (mp->b_datap->db_ref == 1 && 24963 ll_hdr_len != 0 && 24964 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24965 /* M_DATA fastpath */ 24966 mp->b_rptr -= ll_hdr_len; 24967 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24968 ll_hdr_len); 24969 xmit_mp = mp; 24970 24971 /* 24972 * Case of res_mp OR the fastpath mp can't fit 24973 * in the mblk 24974 */ 24975 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24976 xmit_mp->b_cont = mp; 24977 if (DB_CRED(mp) != NULL) 24978 mblk_setcred(xmit_mp, DB_CRED(mp)); 24979 /* Get priority marking, if any. */ 24980 if (DB_TYPE(xmit_mp) == M_DATA) 24981 xmit_mp->b_band = mp->b_band; 24982 24983 /* Corner case if copyb failed */ 24984 } else { 24985 /* 24986 * Exit both the replication and 24987 * fragmentation loops. 24988 */ 24989 UNLOCK_IRE_FP_MP(ire); 24990 goto drop_pkt; 24991 } 24992 UNLOCK_IRE_FP_MP(ire); 24993 24994 mp1 = mp; 24995 out_ill = (ill_t *)q->q_ptr; 24996 24997 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24998 24999 DTRACE_PROBE4(ip4__physical__out__start, 25000 ill_t *, NULL, ill_t *, out_ill, 25001 ipha_t *, ipha, mblk_t *, xmit_mp); 25002 25003 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25004 ipst->ips_ipv4firewall_physical_out, 25005 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25006 25007 DTRACE_PROBE1(ip4__physical__out__end, 25008 mblk_t *, xmit_mp); 25009 25010 if (mp != mp1 && hdr_mp == mp1) 25011 hdr_mp = mp; 25012 if (mp != mp1 && mp_orig == mp1) 25013 mp_orig = mp; 25014 25015 if (xmit_mp != NULL) { 25016 putnext(q, xmit_mp); 25017 25018 BUMP_MIB(out_ill->ill_ip_mib, 25019 ipIfStatsHCOutTransmits); 25020 UPDATE_MIB(out_ill->ill_ip_mib, 25021 ipIfStatsHCOutOctets, ip_len); 25022 25023 if (pkt_type != OB_PKT) { 25024 /* 25025 * Update the packet count of trailing 25026 * RTF_MULTIRT ires. 25027 */ 25028 UPDATE_OB_PKT_COUNT(ire); 25029 } 25030 } 25031 25032 /* All done if we just consumed the hdr_mp. */ 25033 if (mp == hdr_mp) { 25034 last_frag = B_TRUE; 25035 BUMP_MIB(out_ill->ill_ip_mib, 25036 ipIfStatsOutFragOKs); 25037 } 25038 25039 if (multirt_send) { 25040 /* 25041 * We are in a multiple send case; look for 25042 * the next ire and re-enter the loop. 25043 */ 25044 ASSERT(ire1); 25045 ASSERT(next_mp); 25046 /* REFRELE the current ire before looping */ 25047 ire_refrele(ire); 25048 ire = ire1; 25049 ire1 = NULL; 25050 q = ire->ire_stq; 25051 mp = next_mp; 25052 next_mp = NULL; 25053 } 25054 } while (multirt_send); 25055 /* 25056 * Restore the original ire; we need it for the 25057 * trailing frags 25058 */ 25059 if (save_ire != NULL) { 25060 ASSERT(ire1 == NULL); 25061 /* REFRELE the last iterated ire */ 25062 ire_refrele(ire); 25063 /* save_ire has been REFHOLDed */ 25064 ire = save_ire; 25065 q = ire->ire_stq; 25066 save_ire = NULL; 25067 } 25068 25069 if (last_frag) { 25070 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25071 "ip_wput_frag_end:(%S)", 25072 "consumed hdr_mp"); 25073 25074 if (first_ire != NULL) 25075 ire_refrele(first_ire); 25076 return; 25077 } 25078 /* Otherwise, advance and loop. */ 25079 offset += len; 25080 } 25081 25082 drop_pkt: 25083 /* Clean up following allocation failure. */ 25084 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25085 freemsg(mp); 25086 if (mp != hdr_mp) 25087 freeb(hdr_mp); 25088 if (mp != mp_orig) 25089 freemsg(mp_orig); 25090 25091 if (save_ire != NULL) 25092 IRE_REFRELE(save_ire); 25093 if (first_ire != NULL) 25094 ire_refrele(first_ire); 25095 25096 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25097 "ip_wput_frag_end:(%S)", 25098 "end--alloc failure"); 25099 } 25100 25101 /* 25102 * Copy the header plus those options which have the copy bit set 25103 */ 25104 static mblk_t * 25105 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25106 { 25107 mblk_t *mp; 25108 uchar_t *up; 25109 25110 /* 25111 * Quick check if we need to look for options without the copy bit 25112 * set 25113 */ 25114 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25115 if (!mp) 25116 return (mp); 25117 mp->b_rptr += ipst->ips_ip_wroff_extra; 25118 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25119 bcopy(rptr, mp->b_rptr, hdr_len); 25120 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25121 return (mp); 25122 } 25123 up = mp->b_rptr; 25124 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25125 up += IP_SIMPLE_HDR_LENGTH; 25126 rptr += IP_SIMPLE_HDR_LENGTH; 25127 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25128 while (hdr_len > 0) { 25129 uint32_t optval; 25130 uint32_t optlen; 25131 25132 optval = *rptr; 25133 if (optval == IPOPT_EOL) 25134 break; 25135 if (optval == IPOPT_NOP) 25136 optlen = 1; 25137 else 25138 optlen = rptr[1]; 25139 if (optval & IPOPT_COPY) { 25140 bcopy(rptr, up, optlen); 25141 up += optlen; 25142 } 25143 rptr += optlen; 25144 hdr_len -= optlen; 25145 } 25146 /* 25147 * Make sure that we drop an even number of words by filling 25148 * with EOL to the next word boundary. 25149 */ 25150 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25151 hdr_len & 0x3; hdr_len++) 25152 *up++ = IPOPT_EOL; 25153 mp->b_wptr = up; 25154 /* Update header length */ 25155 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25156 return (mp); 25157 } 25158 25159 /* 25160 * Delivery to local recipients including fanout to multiple recipients. 25161 * Does not do checksumming of UDP/TCP. 25162 * Note: q should be the read side queue for either the ill or conn. 25163 * Note: rq should be the read side q for the lower (ill) stream. 25164 * We don't send packets to IPPF processing, thus the last argument 25165 * to all the fanout calls are B_FALSE. 25166 */ 25167 void 25168 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25169 int fanout_flags, zoneid_t zoneid) 25170 { 25171 uint32_t protocol; 25172 mblk_t *first_mp; 25173 boolean_t mctl_present; 25174 int ire_type; 25175 #define rptr ((uchar_t *)ipha) 25176 ip_stack_t *ipst = ill->ill_ipst; 25177 25178 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25179 "ip_wput_local_start: q %p", q); 25180 25181 if (ire != NULL) { 25182 ire_type = ire->ire_type; 25183 } else { 25184 /* 25185 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25186 * packet is not multicast, we can't tell the ire type. 25187 */ 25188 ASSERT(CLASSD(ipha->ipha_dst)); 25189 ire_type = IRE_BROADCAST; 25190 } 25191 25192 first_mp = mp; 25193 if (first_mp->b_datap->db_type == M_CTL) { 25194 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25195 if (!io->ipsec_out_secure) { 25196 /* 25197 * This ipsec_out_t was allocated in ip_wput 25198 * for multicast packets to store the ill_index. 25199 * As this is being delivered locally, we don't 25200 * need this anymore. 25201 */ 25202 mp = first_mp->b_cont; 25203 freeb(first_mp); 25204 first_mp = mp; 25205 mctl_present = B_FALSE; 25206 } else { 25207 /* 25208 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25209 * security properties for the looped-back packet. 25210 */ 25211 mctl_present = B_TRUE; 25212 mp = first_mp->b_cont; 25213 ASSERT(mp != NULL); 25214 ipsec_out_to_in(first_mp); 25215 } 25216 } else { 25217 mctl_present = B_FALSE; 25218 } 25219 25220 DTRACE_PROBE4(ip4__loopback__in__start, 25221 ill_t *, ill, ill_t *, NULL, 25222 ipha_t *, ipha, mblk_t *, first_mp); 25223 25224 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25225 ipst->ips_ipv4firewall_loopback_in, 25226 ill, NULL, ipha, first_mp, mp, ipst); 25227 25228 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25229 25230 if (first_mp == NULL) 25231 return; 25232 25233 ipst->ips_loopback_packets++; 25234 25235 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25236 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25237 if (!IS_SIMPLE_IPH(ipha)) { 25238 ip_wput_local_options(ipha, ipst); 25239 } 25240 25241 protocol = ipha->ipha_protocol; 25242 switch (protocol) { 25243 case IPPROTO_ICMP: { 25244 ire_t *ire_zone; 25245 ilm_t *ilm; 25246 mblk_t *mp1; 25247 zoneid_t last_zoneid; 25248 25249 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25250 ASSERT(ire_type == IRE_BROADCAST); 25251 /* 25252 * In the multicast case, applications may have joined 25253 * the group from different zones, so we need to deliver 25254 * the packet to each of them. Loop through the 25255 * multicast memberships structures (ilm) on the receive 25256 * ill and send a copy of the packet up each matching 25257 * one. However, we don't do this for multicasts sent on 25258 * the loopback interface (PHYI_LOOPBACK flag set) as 25259 * they must stay in the sender's zone. 25260 * 25261 * ilm_add_v6() ensures that ilms in the same zone are 25262 * contiguous in the ill_ilm list. We use this property 25263 * to avoid sending duplicates needed when two 25264 * applications in the same zone join the same group on 25265 * different logical interfaces: we ignore the ilm if 25266 * it's zoneid is the same as the last matching one. 25267 * In addition, the sending of the packet for 25268 * ire_zoneid is delayed until all of the other ilms 25269 * have been exhausted. 25270 */ 25271 last_zoneid = -1; 25272 ILM_WALKER_HOLD(ill); 25273 for (ilm = ill->ill_ilm; ilm != NULL; 25274 ilm = ilm->ilm_next) { 25275 if ((ilm->ilm_flags & ILM_DELETED) || 25276 ipha->ipha_dst != ilm->ilm_addr || 25277 ilm->ilm_zoneid == last_zoneid || 25278 ilm->ilm_zoneid == zoneid || 25279 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25280 continue; 25281 mp1 = ip_copymsg(first_mp); 25282 if (mp1 == NULL) 25283 continue; 25284 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25285 mctl_present, B_FALSE, ill, 25286 ilm->ilm_zoneid); 25287 last_zoneid = ilm->ilm_zoneid; 25288 } 25289 ILM_WALKER_RELE(ill); 25290 /* 25291 * Loopback case: the sending endpoint has 25292 * IP_MULTICAST_LOOP disabled, therefore we don't 25293 * dispatch the multicast packet to the sending zone. 25294 */ 25295 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25296 freemsg(first_mp); 25297 return; 25298 } 25299 } else if (ire_type == IRE_BROADCAST) { 25300 /* 25301 * In the broadcast case, there may be many zones 25302 * which need a copy of the packet delivered to them. 25303 * There is one IRE_BROADCAST per broadcast address 25304 * and per zone; we walk those using a helper function. 25305 * In addition, the sending of the packet for zoneid is 25306 * delayed until all of the other ires have been 25307 * processed. 25308 */ 25309 IRB_REFHOLD(ire->ire_bucket); 25310 ire_zone = NULL; 25311 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25312 ire)) != NULL) { 25313 mp1 = ip_copymsg(first_mp); 25314 if (mp1 == NULL) 25315 continue; 25316 25317 UPDATE_IB_PKT_COUNT(ire_zone); 25318 ire_zone->ire_last_used_time = lbolt; 25319 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25320 mctl_present, B_FALSE, ill, 25321 ire_zone->ire_zoneid); 25322 } 25323 IRB_REFRELE(ire->ire_bucket); 25324 } 25325 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25326 0, mctl_present, B_FALSE, ill, zoneid); 25327 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25328 "ip_wput_local_end: q %p (%S)", 25329 q, "icmp"); 25330 return; 25331 } 25332 case IPPROTO_IGMP: 25333 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25334 /* Bad packet - discarded by igmp_input */ 25335 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25336 "ip_wput_local_end: q %p (%S)", 25337 q, "igmp_input--bad packet"); 25338 if (mctl_present) 25339 freeb(first_mp); 25340 return; 25341 } 25342 /* 25343 * igmp_input() may have returned the pulled up message. 25344 * So first_mp and ipha need to be reinitialized. 25345 */ 25346 ipha = (ipha_t *)mp->b_rptr; 25347 if (mctl_present) 25348 first_mp->b_cont = mp; 25349 else 25350 first_mp = mp; 25351 /* deliver to local raw users */ 25352 break; 25353 case IPPROTO_ENCAP: 25354 /* 25355 * This case is covered by either ip_fanout_proto, or by 25356 * the above security processing for self-tunneled packets. 25357 */ 25358 break; 25359 case IPPROTO_UDP: { 25360 uint16_t *up; 25361 uint32_t ports; 25362 25363 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25364 UDP_PORTS_OFFSET); 25365 /* Force a 'valid' checksum. */ 25366 up[3] = 0; 25367 25368 ports = *(uint32_t *)up; 25369 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25370 (ire_type == IRE_BROADCAST), 25371 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25372 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25373 ill, zoneid); 25374 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25375 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25376 return; 25377 } 25378 case IPPROTO_TCP: { 25379 25380 /* 25381 * For TCP, discard broadcast packets. 25382 */ 25383 if ((ushort_t)ire_type == IRE_BROADCAST) { 25384 freemsg(first_mp); 25385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25386 ip2dbg(("ip_wput_local: discard broadcast\n")); 25387 return; 25388 } 25389 25390 if (mp->b_datap->db_type == M_DATA) { 25391 /* 25392 * M_DATA mblk, so init mblk (chain) for no struio(). 25393 */ 25394 mblk_t *mp1 = mp; 25395 25396 do { 25397 mp1->b_datap->db_struioflag = 0; 25398 } while ((mp1 = mp1->b_cont) != NULL); 25399 } 25400 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25401 <= mp->b_wptr); 25402 ip_fanout_tcp(q, first_mp, ill, ipha, 25403 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25404 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25405 mctl_present, B_FALSE, zoneid); 25406 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25407 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25408 return; 25409 } 25410 case IPPROTO_SCTP: 25411 { 25412 uint32_t ports; 25413 25414 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25415 ip_fanout_sctp(first_mp, ill, ipha, ports, 25416 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25417 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25418 return; 25419 } 25420 25421 default: 25422 break; 25423 } 25424 /* 25425 * Find a client for some other protocol. We give 25426 * copies to multiple clients, if more than one is 25427 * bound. 25428 */ 25429 ip_fanout_proto(q, first_mp, ill, ipha, 25430 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25431 mctl_present, B_FALSE, ill, zoneid); 25432 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25433 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25434 #undef rptr 25435 } 25436 25437 /* 25438 * Update any source route, record route, or timestamp options. 25439 * Check that we are at end of strict source route. 25440 * The options have been sanity checked by ip_wput_options(). 25441 */ 25442 static void 25443 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25444 { 25445 ipoptp_t opts; 25446 uchar_t *opt; 25447 uint8_t optval; 25448 uint8_t optlen; 25449 ipaddr_t dst; 25450 uint32_t ts; 25451 ire_t *ire; 25452 timestruc_t now; 25453 25454 ip2dbg(("ip_wput_local_options\n")); 25455 for (optval = ipoptp_first(&opts, ipha); 25456 optval != IPOPT_EOL; 25457 optval = ipoptp_next(&opts)) { 25458 opt = opts.ipoptp_cur; 25459 optlen = opts.ipoptp_len; 25460 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25461 switch (optval) { 25462 uint32_t off; 25463 case IPOPT_SSRR: 25464 case IPOPT_LSRR: 25465 off = opt[IPOPT_OFFSET]; 25466 off--; 25467 if (optlen < IP_ADDR_LEN || 25468 off > optlen - IP_ADDR_LEN) { 25469 /* End of source route */ 25470 break; 25471 } 25472 /* 25473 * This will only happen if two consecutive entries 25474 * in the source route contains our address or if 25475 * it is a packet with a loose source route which 25476 * reaches us before consuming the whole source route 25477 */ 25478 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25479 if (optval == IPOPT_SSRR) { 25480 return; 25481 } 25482 /* 25483 * Hack: instead of dropping the packet truncate the 25484 * source route to what has been used by filling the 25485 * rest with IPOPT_NOP. 25486 */ 25487 opt[IPOPT_OLEN] = (uint8_t)off; 25488 while (off < optlen) { 25489 opt[off++] = IPOPT_NOP; 25490 } 25491 break; 25492 case IPOPT_RR: 25493 off = opt[IPOPT_OFFSET]; 25494 off--; 25495 if (optlen < IP_ADDR_LEN || 25496 off > optlen - IP_ADDR_LEN) { 25497 /* No more room - ignore */ 25498 ip1dbg(( 25499 "ip_wput_forward_options: end of RR\n")); 25500 break; 25501 } 25502 dst = htonl(INADDR_LOOPBACK); 25503 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25504 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25505 break; 25506 case IPOPT_TS: 25507 /* Insert timestamp if there is romm */ 25508 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25509 case IPOPT_TS_TSONLY: 25510 off = IPOPT_TS_TIMELEN; 25511 break; 25512 case IPOPT_TS_PRESPEC: 25513 case IPOPT_TS_PRESPEC_RFC791: 25514 /* Verify that the address matched */ 25515 off = opt[IPOPT_OFFSET] - 1; 25516 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25517 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25518 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25519 ipst); 25520 if (ire == NULL) { 25521 /* Not for us */ 25522 break; 25523 } 25524 ire_refrele(ire); 25525 /* FALLTHRU */ 25526 case IPOPT_TS_TSANDADDR: 25527 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25528 break; 25529 default: 25530 /* 25531 * ip_*put_options should have already 25532 * dropped this packet. 25533 */ 25534 cmn_err(CE_PANIC, "ip_wput_local_options: " 25535 "unknown IT - bug in ip_wput_options?\n"); 25536 return; /* Keep "lint" happy */ 25537 } 25538 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25539 /* Increase overflow counter */ 25540 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25541 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25542 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25543 (off << 4); 25544 break; 25545 } 25546 off = opt[IPOPT_OFFSET] - 1; 25547 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25548 case IPOPT_TS_PRESPEC: 25549 case IPOPT_TS_PRESPEC_RFC791: 25550 case IPOPT_TS_TSANDADDR: 25551 dst = htonl(INADDR_LOOPBACK); 25552 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25553 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25554 /* FALLTHRU */ 25555 case IPOPT_TS_TSONLY: 25556 off = opt[IPOPT_OFFSET] - 1; 25557 /* Compute # of milliseconds since midnight */ 25558 gethrestime(&now); 25559 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25560 now.tv_nsec / (NANOSEC / MILLISEC); 25561 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25562 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25563 break; 25564 } 25565 break; 25566 } 25567 } 25568 } 25569 25570 /* 25571 * Send out a multicast packet on interface ipif. 25572 * The sender does not have an conn. 25573 * Caller verifies that this isn't a PHYI_LOOPBACK. 25574 */ 25575 void 25576 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25577 { 25578 ipha_t *ipha; 25579 ire_t *ire; 25580 ipaddr_t dst; 25581 mblk_t *first_mp; 25582 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25583 25584 /* igmp_sendpkt always allocates a ipsec_out_t */ 25585 ASSERT(mp->b_datap->db_type == M_CTL); 25586 ASSERT(!ipif->ipif_isv6); 25587 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25588 25589 first_mp = mp; 25590 mp = first_mp->b_cont; 25591 ASSERT(mp->b_datap->db_type == M_DATA); 25592 ipha = (ipha_t *)mp->b_rptr; 25593 25594 /* 25595 * Find an IRE which matches the destination and the outgoing 25596 * queue (i.e. the outgoing interface.) 25597 */ 25598 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25599 dst = ipif->ipif_pp_dst_addr; 25600 else 25601 dst = ipha->ipha_dst; 25602 /* 25603 * The source address has already been initialized by the 25604 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25605 * be sufficient rather than MATCH_IRE_IPIF. 25606 * 25607 * This function is used for sending IGMP packets. We need 25608 * to make sure that we send the packet out of the interface 25609 * (ipif->ipif_ill) where we joined the group. This is to 25610 * prevent from switches doing IGMP snooping to send us multicast 25611 * packets for a given group on the interface we have joined. 25612 * If we can't find an ire, igmp_sendpkt has already initialized 25613 * ipsec_out_attach_if so that this will not be load spread in 25614 * ip_newroute_ipif. 25615 */ 25616 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25617 MATCH_IRE_ILL, ipst); 25618 if (!ire) { 25619 /* 25620 * Mark this packet to make it be delivered to 25621 * ip_wput_ire after the new ire has been 25622 * created. 25623 */ 25624 mp->b_prev = NULL; 25625 mp->b_next = NULL; 25626 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25627 zoneid, &zero_info); 25628 return; 25629 } 25630 25631 /* 25632 * Honor the RTF_SETSRC flag; this is the only case 25633 * where we force this addr whatever the current src addr is, 25634 * because this address is set by igmp_sendpkt(), and 25635 * cannot be specified by any user. 25636 */ 25637 if (ire->ire_flags & RTF_SETSRC) { 25638 ipha->ipha_src = ire->ire_src_addr; 25639 } 25640 25641 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25642 } 25643 25644 /* 25645 * NOTE : This function does not ire_refrele the ire argument passed in. 25646 * 25647 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25648 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25649 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25650 * the ire_lock to access the nce_fp_mp in this case. 25651 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25652 * prepending a fastpath message IPQoS processing must precede it, we also set 25653 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25654 * (IPQoS might have set the b_band for CoS marking). 25655 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25656 * must follow it so that IPQoS can mark the dl_priority field for CoS 25657 * marking, if needed. 25658 */ 25659 static mblk_t * 25660 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25661 { 25662 uint_t hlen; 25663 ipha_t *ipha; 25664 mblk_t *mp1; 25665 boolean_t qos_done = B_FALSE; 25666 uchar_t *ll_hdr; 25667 ip_stack_t *ipst = ire->ire_ipst; 25668 25669 #define rptr ((uchar_t *)ipha) 25670 25671 ipha = (ipha_t *)mp->b_rptr; 25672 hlen = 0; 25673 LOCK_IRE_FP_MP(ire); 25674 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25675 ASSERT(DB_TYPE(mp1) == M_DATA); 25676 /* Initiate IPPF processing */ 25677 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25678 UNLOCK_IRE_FP_MP(ire); 25679 ip_process(proc, &mp, ill_index); 25680 if (mp == NULL) 25681 return (NULL); 25682 25683 ipha = (ipha_t *)mp->b_rptr; 25684 LOCK_IRE_FP_MP(ire); 25685 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25686 qos_done = B_TRUE; 25687 goto no_fp_mp; 25688 } 25689 ASSERT(DB_TYPE(mp1) == M_DATA); 25690 } 25691 hlen = MBLKL(mp1); 25692 /* 25693 * Check if we have enough room to prepend fastpath 25694 * header 25695 */ 25696 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25697 ll_hdr = rptr - hlen; 25698 bcopy(mp1->b_rptr, ll_hdr, hlen); 25699 /* 25700 * Set the b_rptr to the start of the link layer 25701 * header 25702 */ 25703 mp->b_rptr = ll_hdr; 25704 mp1 = mp; 25705 } else { 25706 mp1 = copyb(mp1); 25707 if (mp1 == NULL) 25708 goto unlock_err; 25709 mp1->b_band = mp->b_band; 25710 mp1->b_cont = mp; 25711 /* 25712 * certain system generated traffic may not 25713 * have cred/label in ip header block. This 25714 * is true even for a labeled system. But for 25715 * labeled traffic, inherit the label in the 25716 * new header. 25717 */ 25718 if (DB_CRED(mp) != NULL) 25719 mblk_setcred(mp1, DB_CRED(mp)); 25720 /* 25721 * XXX disable ICK_VALID and compute checksum 25722 * here; can happen if nce_fp_mp changes and 25723 * it can't be copied now due to insufficient 25724 * space. (unlikely, fp mp can change, but it 25725 * does not increase in length) 25726 */ 25727 } 25728 UNLOCK_IRE_FP_MP(ire); 25729 } else { 25730 no_fp_mp: 25731 mp1 = copyb(ire->ire_nce->nce_res_mp); 25732 if (mp1 == NULL) { 25733 unlock_err: 25734 UNLOCK_IRE_FP_MP(ire); 25735 freemsg(mp); 25736 return (NULL); 25737 } 25738 UNLOCK_IRE_FP_MP(ire); 25739 mp1->b_cont = mp; 25740 /* 25741 * certain system generated traffic may not 25742 * have cred/label in ip header block. This 25743 * is true even for a labeled system. But for 25744 * labeled traffic, inherit the label in the 25745 * new header. 25746 */ 25747 if (DB_CRED(mp) != NULL) 25748 mblk_setcred(mp1, DB_CRED(mp)); 25749 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25750 ip_process(proc, &mp1, ill_index); 25751 if (mp1 == NULL) 25752 return (NULL); 25753 } 25754 } 25755 return (mp1); 25756 #undef rptr 25757 } 25758 25759 /* 25760 * Finish the outbound IPsec processing for an IPv6 packet. This function 25761 * is called from ipsec_out_process() if the IPsec packet was processed 25762 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25763 * asynchronously. 25764 */ 25765 void 25766 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25767 ire_t *ire_arg) 25768 { 25769 in6_addr_t *v6dstp; 25770 ire_t *ire; 25771 mblk_t *mp; 25772 ip6_t *ip6h1; 25773 uint_t ill_index; 25774 ipsec_out_t *io; 25775 boolean_t attach_if, hwaccel; 25776 uint32_t flags = IP6_NO_IPPOLICY; 25777 int match_flags; 25778 zoneid_t zoneid; 25779 boolean_t ill_need_rele = B_FALSE; 25780 boolean_t ire_need_rele = B_FALSE; 25781 ip_stack_t *ipst; 25782 25783 mp = ipsec_mp->b_cont; 25784 ip6h1 = (ip6_t *)mp->b_rptr; 25785 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25786 ASSERT(io->ipsec_out_ns != NULL); 25787 ipst = io->ipsec_out_ns->netstack_ip; 25788 ill_index = io->ipsec_out_ill_index; 25789 if (io->ipsec_out_reachable) { 25790 flags |= IPV6_REACHABILITY_CONFIRMATION; 25791 } 25792 attach_if = io->ipsec_out_attach_if; 25793 hwaccel = io->ipsec_out_accelerated; 25794 zoneid = io->ipsec_out_zoneid; 25795 ASSERT(zoneid != ALL_ZONES); 25796 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25797 /* Multicast addresses should have non-zero ill_index. */ 25798 v6dstp = &ip6h->ip6_dst; 25799 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25800 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25801 ASSERT(!attach_if || ill_index != 0); 25802 if (ill_index != 0) { 25803 if (ill == NULL) { 25804 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25805 B_TRUE, ipst); 25806 25807 /* Failure case frees things for us. */ 25808 if (ill == NULL) 25809 return; 25810 25811 ill_need_rele = B_TRUE; 25812 } 25813 /* 25814 * If this packet needs to go out on a particular interface 25815 * honor it. 25816 */ 25817 if (attach_if) { 25818 match_flags = MATCH_IRE_ILL; 25819 25820 /* 25821 * Check if we need an ire that will not be 25822 * looked up by anybody else i.e. HIDDEN. 25823 */ 25824 if (ill_is_probeonly(ill)) { 25825 match_flags |= MATCH_IRE_MARK_HIDDEN; 25826 } 25827 } 25828 } 25829 ASSERT(mp != NULL); 25830 25831 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25832 boolean_t unspec_src; 25833 ipif_t *ipif; 25834 25835 /* 25836 * Use the ill_index to get the right ill. 25837 */ 25838 unspec_src = io->ipsec_out_unspec_src; 25839 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25840 if (ipif == NULL) { 25841 if (ill_need_rele) 25842 ill_refrele(ill); 25843 freemsg(ipsec_mp); 25844 return; 25845 } 25846 25847 if (ire_arg != NULL) { 25848 ire = ire_arg; 25849 } else { 25850 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25851 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25852 ire_need_rele = B_TRUE; 25853 } 25854 if (ire != NULL) { 25855 ipif_refrele(ipif); 25856 /* 25857 * XXX Do the multicast forwarding now, as the IPSEC 25858 * processing has been done. 25859 */ 25860 goto send; 25861 } 25862 25863 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25864 mp->b_prev = NULL; 25865 mp->b_next = NULL; 25866 25867 /* 25868 * If the IPsec packet was processed asynchronously, 25869 * drop it now. 25870 */ 25871 if (q == NULL) { 25872 if (ill_need_rele) 25873 ill_refrele(ill); 25874 freemsg(ipsec_mp); 25875 return; 25876 } 25877 25878 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25879 unspec_src, zoneid); 25880 ipif_refrele(ipif); 25881 } else { 25882 if (attach_if) { 25883 ipif_t *ipif; 25884 25885 ipif = ipif_get_next_ipif(NULL, ill); 25886 if (ipif == NULL) { 25887 if (ill_need_rele) 25888 ill_refrele(ill); 25889 freemsg(ipsec_mp); 25890 return; 25891 } 25892 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25893 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25894 ire_need_rele = B_TRUE; 25895 ipif_refrele(ipif); 25896 } else { 25897 if (ire_arg != NULL) { 25898 ire = ire_arg; 25899 } else { 25900 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25901 ipst); 25902 ire_need_rele = B_TRUE; 25903 } 25904 } 25905 if (ire != NULL) 25906 goto send; 25907 /* 25908 * ire disappeared underneath. 25909 * 25910 * What we need to do here is the ip_newroute 25911 * logic to get the ire without doing the IPSEC 25912 * processing. Follow the same old path. But this 25913 * time, ip_wput or ire_add_then_send will call us 25914 * directly as all the IPSEC operations are done. 25915 */ 25916 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25917 mp->b_prev = NULL; 25918 mp->b_next = NULL; 25919 25920 /* 25921 * If the IPsec packet was processed asynchronously, 25922 * drop it now. 25923 */ 25924 if (q == NULL) { 25925 if (ill_need_rele) 25926 ill_refrele(ill); 25927 freemsg(ipsec_mp); 25928 return; 25929 } 25930 25931 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25932 zoneid, ipst); 25933 } 25934 if (ill != NULL && ill_need_rele) 25935 ill_refrele(ill); 25936 return; 25937 send: 25938 if (ill != NULL && ill_need_rele) 25939 ill_refrele(ill); 25940 25941 /* Local delivery */ 25942 if (ire->ire_stq == NULL) { 25943 ill_t *out_ill; 25944 ASSERT(q != NULL); 25945 25946 /* PFHooks: LOOPBACK_OUT */ 25947 out_ill = ire->ire_ipif->ipif_ill; 25948 25949 DTRACE_PROBE4(ip6__loopback__out__start, 25950 ill_t *, NULL, ill_t *, out_ill, 25951 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25952 25953 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25954 ipst->ips_ipv6firewall_loopback_out, 25955 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25956 25957 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25958 25959 if (ipsec_mp != NULL) 25960 ip_wput_local_v6(RD(q), out_ill, 25961 ip6h, ipsec_mp, ire, 0); 25962 if (ire_need_rele) 25963 ire_refrele(ire); 25964 return; 25965 } 25966 /* 25967 * Everything is done. Send it out on the wire. 25968 * We force the insertion of a fragment header using the 25969 * IPH_FRAG_HDR flag in two cases: 25970 * - after reception of an ICMPv6 "packet too big" message 25971 * with a MTU < 1280 (cf. RFC 2460 section 5) 25972 * - for multirouted IPv6 packets, so that the receiver can 25973 * discard duplicates according to their fragment identifier 25974 */ 25975 /* XXX fix flow control problems. */ 25976 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25977 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25978 if (hwaccel) { 25979 /* 25980 * hardware acceleration does not handle these 25981 * "slow path" cases. 25982 */ 25983 /* IPsec KSTATS: should bump bean counter here. */ 25984 if (ire_need_rele) 25985 ire_refrele(ire); 25986 freemsg(ipsec_mp); 25987 return; 25988 } 25989 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25990 (mp->b_cont ? msgdsize(mp) : 25991 mp->b_wptr - (uchar_t *)ip6h)) { 25992 /* IPsec KSTATS: should bump bean counter here. */ 25993 ip0dbg(("Packet length mismatch: %d, %ld\n", 25994 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25995 msgdsize(mp))); 25996 if (ire_need_rele) 25997 ire_refrele(ire); 25998 freemsg(ipsec_mp); 25999 return; 26000 } 26001 ASSERT(mp->b_prev == NULL); 26002 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26003 ntohs(ip6h->ip6_plen) + 26004 IPV6_HDR_LEN, ire->ire_max_frag)); 26005 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26006 ire->ire_max_frag); 26007 } else { 26008 UPDATE_OB_PKT_COUNT(ire); 26009 ire->ire_last_used_time = lbolt; 26010 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26011 } 26012 if (ire_need_rele) 26013 ire_refrele(ire); 26014 freeb(ipsec_mp); 26015 } 26016 26017 void 26018 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26019 { 26020 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26021 da_ipsec_t *hada; /* data attributes */ 26022 ill_t *ill = (ill_t *)q->q_ptr; 26023 26024 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26025 26026 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26027 /* IPsec KSTATS: Bump lose counter here! */ 26028 freemsg(mp); 26029 return; 26030 } 26031 26032 /* 26033 * It's an IPsec packet that must be 26034 * accelerated by the Provider, and the 26035 * outbound ill is IPsec acceleration capable. 26036 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26037 * to the ill. 26038 * IPsec KSTATS: should bump packet counter here. 26039 */ 26040 26041 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26042 if (hada_mp == NULL) { 26043 /* IPsec KSTATS: should bump packet counter here. */ 26044 freemsg(mp); 26045 return; 26046 } 26047 26048 hada_mp->b_datap->db_type = M_CTL; 26049 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26050 hada_mp->b_cont = mp; 26051 26052 hada = (da_ipsec_t *)hada_mp->b_rptr; 26053 bzero(hada, sizeof (da_ipsec_t)); 26054 hada->da_type = IPHADA_M_CTL; 26055 26056 putnext(q, hada_mp); 26057 } 26058 26059 /* 26060 * Finish the outbound IPsec processing. This function is called from 26061 * ipsec_out_process() if the IPsec packet was processed 26062 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26063 * asynchronously. 26064 */ 26065 void 26066 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26067 ire_t *ire_arg) 26068 { 26069 uint32_t v_hlen_tos_len; 26070 ipaddr_t dst; 26071 ipif_t *ipif = NULL; 26072 ire_t *ire; 26073 ire_t *ire1 = NULL; 26074 mblk_t *next_mp = NULL; 26075 uint32_t max_frag; 26076 boolean_t multirt_send = B_FALSE; 26077 mblk_t *mp; 26078 mblk_t *mp1; 26079 ipha_t *ipha1; 26080 uint_t ill_index; 26081 ipsec_out_t *io; 26082 boolean_t attach_if; 26083 int match_flags, offset; 26084 irb_t *irb = NULL; 26085 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26086 zoneid_t zoneid; 26087 uint32_t cksum; 26088 uint16_t *up; 26089 ipxmit_state_t pktxmit_state; 26090 ip_stack_t *ipst; 26091 26092 #ifdef _BIG_ENDIAN 26093 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26094 #else 26095 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26096 #endif 26097 26098 mp = ipsec_mp->b_cont; 26099 ipha1 = (ipha_t *)mp->b_rptr; 26100 ASSERT(mp != NULL); 26101 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26102 dst = ipha->ipha_dst; 26103 26104 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26105 ill_index = io->ipsec_out_ill_index; 26106 attach_if = io->ipsec_out_attach_if; 26107 zoneid = io->ipsec_out_zoneid; 26108 ASSERT(zoneid != ALL_ZONES); 26109 ipst = io->ipsec_out_ns->netstack_ip; 26110 ASSERT(io->ipsec_out_ns != NULL); 26111 26112 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26113 if (ill_index != 0) { 26114 if (ill == NULL) { 26115 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26116 ill_index, B_FALSE, ipst); 26117 26118 /* Failure case frees things for us. */ 26119 if (ill == NULL) 26120 return; 26121 26122 ill_need_rele = B_TRUE; 26123 } 26124 /* 26125 * If this packet needs to go out on a particular interface 26126 * honor it. 26127 */ 26128 if (attach_if) { 26129 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26130 26131 /* 26132 * Check if we need an ire that will not be 26133 * looked up by anybody else i.e. HIDDEN. 26134 */ 26135 if (ill_is_probeonly(ill)) { 26136 match_flags |= MATCH_IRE_MARK_HIDDEN; 26137 } 26138 } 26139 } 26140 26141 if (CLASSD(dst)) { 26142 boolean_t conn_dontroute; 26143 /* 26144 * Use the ill_index to get the right ipif. 26145 */ 26146 conn_dontroute = io->ipsec_out_dontroute; 26147 if (ill_index == 0) 26148 ipif = ipif_lookup_group(dst, zoneid, ipst); 26149 else 26150 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26151 if (ipif == NULL) { 26152 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26153 " multicast\n")); 26154 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26155 freemsg(ipsec_mp); 26156 goto done; 26157 } 26158 /* 26159 * ipha_src has already been intialized with the 26160 * value of the ipif in ip_wput. All we need now is 26161 * an ire to send this downstream. 26162 */ 26163 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26164 MBLK_GETLABEL(mp), match_flags, ipst); 26165 if (ire != NULL) { 26166 ill_t *ill1; 26167 /* 26168 * Do the multicast forwarding now, as the IPSEC 26169 * processing has been done. 26170 */ 26171 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26172 (ill1 = ire_to_ill(ire))) { 26173 if (ip_mforward(ill1, ipha, mp)) { 26174 freemsg(ipsec_mp); 26175 ip1dbg(("ip_wput_ipsec_out: mforward " 26176 "failed\n")); 26177 ire_refrele(ire); 26178 goto done; 26179 } 26180 } 26181 goto send; 26182 } 26183 26184 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26185 mp->b_prev = NULL; 26186 mp->b_next = NULL; 26187 26188 /* 26189 * If the IPsec packet was processed asynchronously, 26190 * drop it now. 26191 */ 26192 if (q == NULL) { 26193 freemsg(ipsec_mp); 26194 goto done; 26195 } 26196 26197 /* 26198 * We may be using a wrong ipif to create the ire. 26199 * But it is okay as the source address is assigned 26200 * for the packet already. Next outbound packet would 26201 * create the IRE with the right IPIF in ip_wput. 26202 * 26203 * Also handle RTF_MULTIRT routes. 26204 */ 26205 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26206 zoneid, &zero_info); 26207 } else { 26208 if (attach_if) { 26209 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26210 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26211 } else { 26212 if (ire_arg != NULL) { 26213 ire = ire_arg; 26214 ire_need_rele = B_FALSE; 26215 } else { 26216 ire = ire_cache_lookup(dst, zoneid, 26217 MBLK_GETLABEL(mp), ipst); 26218 } 26219 } 26220 if (ire != NULL) { 26221 goto send; 26222 } 26223 26224 /* 26225 * ire disappeared underneath. 26226 * 26227 * What we need to do here is the ip_newroute 26228 * logic to get the ire without doing the IPSEC 26229 * processing. Follow the same old path. But this 26230 * time, ip_wput or ire_add_then_put will call us 26231 * directly as all the IPSEC operations are done. 26232 */ 26233 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26234 mp->b_prev = NULL; 26235 mp->b_next = NULL; 26236 26237 /* 26238 * If the IPsec packet was processed asynchronously, 26239 * drop it now. 26240 */ 26241 if (q == NULL) { 26242 freemsg(ipsec_mp); 26243 goto done; 26244 } 26245 26246 /* 26247 * Since we're going through ip_newroute() again, we 26248 * need to make sure we don't: 26249 * 26250 * 1.) Trigger the ASSERT() with the ipha_ident 26251 * overloading. 26252 * 2.) Redo transport-layer checksumming, since we've 26253 * already done all that to get this far. 26254 * 26255 * The easiest way not do either of the above is to set 26256 * the ipha_ident field to IP_HDR_INCLUDED. 26257 */ 26258 ipha->ipha_ident = IP_HDR_INCLUDED; 26259 ip_newroute(q, ipsec_mp, dst, NULL, 26260 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26261 } 26262 goto done; 26263 send: 26264 if (ipha->ipha_protocol == IPPROTO_UDP && 26265 udp_compute_checksum(ipst->ips_netstack)) { 26266 /* 26267 * ESP NAT-Traversal packet. 26268 * 26269 * Just do software checksum for now. 26270 */ 26271 26272 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26273 IP_STAT(ipst, ip_out_sw_cksum); 26274 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26275 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26276 #define iphs ((uint16_t *)ipha) 26277 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26278 iphs[9] + ntohs(htons(ipha->ipha_length) - 26279 IP_SIMPLE_HDR_LENGTH); 26280 #undef iphs 26281 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26282 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26283 if (mp1->b_wptr - mp1->b_rptr >= 26284 offset + sizeof (uint16_t)) { 26285 up = (uint16_t *)(mp1->b_rptr + offset); 26286 *up = cksum; 26287 break; /* out of for loop */ 26288 } else { 26289 offset -= (mp->b_wptr - mp->b_rptr); 26290 } 26291 } /* Otherwise, just keep the all-zero checksum. */ 26292 26293 if (ire->ire_stq == NULL) { 26294 ill_t *out_ill; 26295 /* 26296 * Loopbacks go through ip_wput_local except for one case. 26297 * We come here if we generate a icmp_frag_needed message 26298 * after IPSEC processing is over. When this function calls 26299 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26300 * icmp_frag_needed. The message generated comes back here 26301 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26302 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26303 * source address as it is usually set in ip_wput_ire. As 26304 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26305 * and we end up here. We can't enter ip_wput_ire once the 26306 * IPSEC processing is over and hence we need to do it here. 26307 */ 26308 ASSERT(q != NULL); 26309 UPDATE_OB_PKT_COUNT(ire); 26310 ire->ire_last_used_time = lbolt; 26311 if (ipha->ipha_src == 0) 26312 ipha->ipha_src = ire->ire_src_addr; 26313 26314 /* PFHooks: LOOPBACK_OUT */ 26315 out_ill = ire->ire_ipif->ipif_ill; 26316 26317 DTRACE_PROBE4(ip4__loopback__out__start, 26318 ill_t *, NULL, ill_t *, out_ill, 26319 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26320 26321 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26322 ipst->ips_ipv4firewall_loopback_out, 26323 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26324 26325 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26326 26327 if (ipsec_mp != NULL) 26328 ip_wput_local(RD(q), out_ill, 26329 ipha, ipsec_mp, ire, 0, zoneid); 26330 if (ire_need_rele) 26331 ire_refrele(ire); 26332 goto done; 26333 } 26334 26335 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26336 /* 26337 * We are through with IPSEC processing. 26338 * Fragment this and send it on the wire. 26339 */ 26340 if (io->ipsec_out_accelerated) { 26341 /* 26342 * The packet has been accelerated but must 26343 * be fragmented. This should not happen 26344 * since AH and ESP must not accelerate 26345 * packets that need fragmentation, however 26346 * the configuration could have changed 26347 * since the AH or ESP processing. 26348 * Drop packet. 26349 * IPsec KSTATS: bump bean counter here. 26350 */ 26351 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26352 "fragmented accelerated packet!\n")); 26353 freemsg(ipsec_mp); 26354 } else { 26355 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26356 } 26357 if (ire_need_rele) 26358 ire_refrele(ire); 26359 goto done; 26360 } 26361 26362 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26363 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26364 (void *)ire->ire_ipif, (void *)ipif)); 26365 26366 /* 26367 * Multiroute the secured packet, unless IPsec really 26368 * requires the packet to go out only through a particular 26369 * interface. 26370 */ 26371 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26372 ire_t *first_ire; 26373 irb = ire->ire_bucket; 26374 ASSERT(irb != NULL); 26375 /* 26376 * This ire has been looked up as the one that 26377 * goes through the given ipif; 26378 * make sure we do not omit any other multiroute ire 26379 * that may be present in the bucket before this one. 26380 */ 26381 IRB_REFHOLD(irb); 26382 for (first_ire = irb->irb_ire; 26383 first_ire != NULL; 26384 first_ire = first_ire->ire_next) { 26385 if ((first_ire->ire_flags & RTF_MULTIRT) && 26386 (first_ire->ire_addr == ire->ire_addr) && 26387 !(first_ire->ire_marks & 26388 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26389 break; 26390 } 26391 } 26392 26393 if ((first_ire != NULL) && (first_ire != ire)) { 26394 /* 26395 * Don't change the ire if the packet must 26396 * be fragmented if sent via this new one. 26397 */ 26398 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26399 IRE_REFHOLD(first_ire); 26400 if (ire_need_rele) 26401 ire_refrele(ire); 26402 else 26403 ire_need_rele = B_TRUE; 26404 ire = first_ire; 26405 } 26406 } 26407 IRB_REFRELE(irb); 26408 26409 multirt_send = B_TRUE; 26410 max_frag = ire->ire_max_frag; 26411 } else { 26412 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26413 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26414 "flag, attach_if %d\n", attach_if)); 26415 } 26416 } 26417 26418 /* 26419 * In most cases, the emission loop below is entered only once. 26420 * Only in the case where the ire holds the RTF_MULTIRT 26421 * flag, we loop to process all RTF_MULTIRT ires in the 26422 * bucket, and send the packet through all crossed 26423 * RTF_MULTIRT routes. 26424 */ 26425 do { 26426 if (multirt_send) { 26427 /* 26428 * ire1 holds here the next ire to process in the 26429 * bucket. If multirouting is expected, 26430 * any non-RTF_MULTIRT ire that has the 26431 * right destination address is ignored. 26432 */ 26433 ASSERT(irb != NULL); 26434 IRB_REFHOLD(irb); 26435 for (ire1 = ire->ire_next; 26436 ire1 != NULL; 26437 ire1 = ire1->ire_next) { 26438 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26439 continue; 26440 if (ire1->ire_addr != ire->ire_addr) 26441 continue; 26442 if (ire1->ire_marks & 26443 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26444 continue; 26445 /* No loopback here */ 26446 if (ire1->ire_stq == NULL) 26447 continue; 26448 /* 26449 * Ensure we do not exceed the MTU 26450 * of the next route. 26451 */ 26452 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26453 ip_multirt_bad_mtu(ire1, max_frag); 26454 continue; 26455 } 26456 26457 IRE_REFHOLD(ire1); 26458 break; 26459 } 26460 IRB_REFRELE(irb); 26461 if (ire1 != NULL) { 26462 /* 26463 * We are in a multiple send case, need to 26464 * make a copy of the packet. 26465 */ 26466 next_mp = copymsg(ipsec_mp); 26467 if (next_mp == NULL) { 26468 ire_refrele(ire1); 26469 ire1 = NULL; 26470 } 26471 } 26472 } 26473 /* 26474 * Everything is done. Send it out on the wire 26475 * 26476 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26477 * either send it on the wire or, in the case of 26478 * HW acceleration, call ipsec_hw_putnext. 26479 */ 26480 if (ire->ire_nce && 26481 ire->ire_nce->nce_state != ND_REACHABLE) { 26482 DTRACE_PROBE2(ip__wput__ipsec__bail, 26483 (ire_t *), ire, (mblk_t *), ipsec_mp); 26484 /* 26485 * If ire's link-layer is unresolved (this 26486 * would only happen if the incomplete ire 26487 * was added to cachetable via forwarding path) 26488 * don't bother going to ip_xmit_v4. Just drop the 26489 * packet. 26490 * There is a slight risk here, in that, if we 26491 * have the forwarding path create an incomplete 26492 * IRE, then until the IRE is completed, any 26493 * transmitted IPSEC packets will be dropped 26494 * instead of being queued waiting for resolution. 26495 * 26496 * But the likelihood of a forwarding packet and a wput 26497 * packet sending to the same dst at the same time 26498 * and there not yet be an ARP entry for it is small. 26499 * Furthermore, if this actually happens, it might 26500 * be likely that wput would generate multiple 26501 * packets (and forwarding would also have a train 26502 * of packets) for that destination. If this is 26503 * the case, some of them would have been dropped 26504 * anyway, since ARP only queues a few packets while 26505 * waiting for resolution 26506 * 26507 * NOTE: We should really call ip_xmit_v4, 26508 * and let it queue the packet and send the 26509 * ARP query and have ARP come back thus: 26510 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26511 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26512 * hw accel work. But it's too complex to get 26513 * the IPsec hw acceleration approach to fit 26514 * well with ip_xmit_v4 doing ARP without 26515 * doing IPSEC simplification. For now, we just 26516 * poke ip_xmit_v4 to trigger the arp resolve, so 26517 * that we can continue with the send on the next 26518 * attempt. 26519 * 26520 * XXX THis should be revisited, when 26521 * the IPsec/IP interaction is cleaned up 26522 */ 26523 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26524 " - dropping packet\n")); 26525 freemsg(ipsec_mp); 26526 /* 26527 * Call ip_xmit_v4() to trigger ARP query 26528 * in case the nce_state is ND_INITIAL 26529 */ 26530 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26531 goto drop_pkt; 26532 } 26533 26534 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26535 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26536 mblk_t *, ipsec_mp); 26537 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26538 ipst->ips_ipv4firewall_physical_out, 26539 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26540 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26541 if (ipsec_mp == NULL) 26542 goto drop_pkt; 26543 26544 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26545 pktxmit_state = ip_xmit_v4(mp, ire, 26546 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26547 26548 if ((pktxmit_state == SEND_FAILED) || 26549 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26550 26551 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26552 drop_pkt: 26553 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26554 ipIfStatsOutDiscards); 26555 if (ire_need_rele) 26556 ire_refrele(ire); 26557 if (ire1 != NULL) { 26558 ire_refrele(ire1); 26559 freemsg(next_mp); 26560 } 26561 goto done; 26562 } 26563 26564 freeb(ipsec_mp); 26565 if (ire_need_rele) 26566 ire_refrele(ire); 26567 26568 if (ire1 != NULL) { 26569 ire = ire1; 26570 ire_need_rele = B_TRUE; 26571 ASSERT(next_mp); 26572 ipsec_mp = next_mp; 26573 mp = ipsec_mp->b_cont; 26574 ire1 = NULL; 26575 next_mp = NULL; 26576 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26577 } else { 26578 multirt_send = B_FALSE; 26579 } 26580 } while (multirt_send); 26581 done: 26582 if (ill != NULL && ill_need_rele) 26583 ill_refrele(ill); 26584 if (ipif != NULL) 26585 ipif_refrele(ipif); 26586 } 26587 26588 /* 26589 * Get the ill corresponding to the specified ire, and compare its 26590 * capabilities with the protocol and algorithms specified by the 26591 * the SA obtained from ipsec_out. If they match, annotate the 26592 * ipsec_out structure to indicate that the packet needs acceleration. 26593 * 26594 * 26595 * A packet is eligible for outbound hardware acceleration if the 26596 * following conditions are satisfied: 26597 * 26598 * 1. the packet will not be fragmented 26599 * 2. the provider supports the algorithm 26600 * 3. there is no pending control message being exchanged 26601 * 4. snoop is not attached 26602 * 5. the destination address is not a broadcast or multicast address. 26603 * 26604 * Rationale: 26605 * - Hardware drivers do not support fragmentation with 26606 * the current interface. 26607 * - snoop, multicast, and broadcast may result in exposure of 26608 * a cleartext datagram. 26609 * We check all five of these conditions here. 26610 * 26611 * XXX would like to nuke "ire_t *" parameter here; problem is that 26612 * IRE is only way to figure out if a v4 address is a broadcast and 26613 * thus ineligible for acceleration... 26614 */ 26615 static void 26616 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26617 { 26618 ipsec_out_t *io; 26619 mblk_t *data_mp; 26620 uint_t plen, overhead; 26621 ip_stack_t *ipst; 26622 26623 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26624 return; 26625 26626 if (ill == NULL) 26627 return; 26628 ipst = ill->ill_ipst; 26629 /* 26630 * Destination address is a broadcast or multicast. Punt. 26631 */ 26632 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26633 IRE_LOCAL))) 26634 return; 26635 26636 data_mp = ipsec_mp->b_cont; 26637 26638 if (ill->ill_isv6) { 26639 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26640 26641 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26642 return; 26643 26644 plen = ip6h->ip6_plen; 26645 } else { 26646 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26647 26648 if (CLASSD(ipha->ipha_dst)) 26649 return; 26650 26651 plen = ipha->ipha_length; 26652 } 26653 /* 26654 * Is there a pending DLPI control message being exchanged 26655 * between IP/IPsec and the DLS Provider? If there is, it 26656 * could be a SADB update, and the state of the DLS Provider 26657 * SADB might not be in sync with the SADB maintained by 26658 * IPsec. To avoid dropping packets or using the wrong keying 26659 * material, we do not accelerate this packet. 26660 */ 26661 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26662 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26663 "ill_dlpi_pending! don't accelerate packet\n")); 26664 return; 26665 } 26666 26667 /* 26668 * Is the Provider in promiscous mode? If it does, we don't 26669 * accelerate the packet since it will bounce back up to the 26670 * listeners in the clear. 26671 */ 26672 if (ill->ill_promisc_on_phys) { 26673 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26674 "ill in promiscous mode, don't accelerate packet\n")); 26675 return; 26676 } 26677 26678 /* 26679 * Will the packet require fragmentation? 26680 */ 26681 26682 /* 26683 * IPsec ESP note: this is a pessimistic estimate, but the same 26684 * as is used elsewhere. 26685 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26686 * + 2-byte trailer 26687 */ 26688 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26689 IPSEC_BASE_ESP_HDR_SIZE(sa); 26690 26691 if ((plen + overhead) > ill->ill_max_mtu) 26692 return; 26693 26694 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26695 26696 /* 26697 * Can the ill accelerate this IPsec protocol and algorithm 26698 * specified by the SA? 26699 */ 26700 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26701 ill->ill_isv6, sa, ipst->ips_netstack)) { 26702 return; 26703 } 26704 26705 /* 26706 * Tell AH or ESP that the outbound ill is capable of 26707 * accelerating this packet. 26708 */ 26709 io->ipsec_out_is_capab_ill = B_TRUE; 26710 } 26711 26712 /* 26713 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26714 * 26715 * If this function returns B_TRUE, the requested SA's have been filled 26716 * into the ipsec_out_*_sa pointers. 26717 * 26718 * If the function returns B_FALSE, the packet has been "consumed", most 26719 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26720 * 26721 * The SA references created by the protocol-specific "select" 26722 * function will be released when the ipsec_mp is freed, thanks to the 26723 * ipsec_out_free destructor -- see spd.c. 26724 */ 26725 static boolean_t 26726 ipsec_out_select_sa(mblk_t *ipsec_mp) 26727 { 26728 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26729 ipsec_out_t *io; 26730 ipsec_policy_t *pp; 26731 ipsec_action_t *ap; 26732 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26733 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26734 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26735 26736 if (!io->ipsec_out_secure) { 26737 /* 26738 * We came here by mistake. 26739 * Don't bother with ipsec processing 26740 * We should "discourage" this path in the future. 26741 */ 26742 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26743 return (B_FALSE); 26744 } 26745 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26746 ASSERT((io->ipsec_out_policy != NULL) || 26747 (io->ipsec_out_act != NULL)); 26748 26749 ASSERT(io->ipsec_out_failed == B_FALSE); 26750 26751 /* 26752 * IPSEC processing has started. 26753 */ 26754 io->ipsec_out_proc_begin = B_TRUE; 26755 ap = io->ipsec_out_act; 26756 if (ap == NULL) { 26757 pp = io->ipsec_out_policy; 26758 ASSERT(pp != NULL); 26759 ap = pp->ipsp_act; 26760 ASSERT(ap != NULL); 26761 } 26762 26763 /* 26764 * We have an action. now, let's select SA's. 26765 * (In the future, we can cache this in the conn_t..) 26766 */ 26767 if (ap->ipa_want_esp) { 26768 if (io->ipsec_out_esp_sa == NULL) { 26769 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26770 IPPROTO_ESP); 26771 } 26772 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26773 } 26774 26775 if (ap->ipa_want_ah) { 26776 if (io->ipsec_out_ah_sa == NULL) { 26777 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26778 IPPROTO_AH); 26779 } 26780 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26781 /* 26782 * The ESP and AH processing order needs to be preserved 26783 * when both protocols are required (ESP should be applied 26784 * before AH for an outbound packet). Force an ESP ACQUIRE 26785 * when both ESP and AH are required, and an AH ACQUIRE 26786 * is needed. 26787 */ 26788 if (ap->ipa_want_esp && need_ah_acquire) 26789 need_esp_acquire = B_TRUE; 26790 } 26791 26792 /* 26793 * Send an ACQUIRE (extended, regular, or both) if we need one. 26794 * Release SAs that got referenced, but will not be used until we 26795 * acquire _all_ of the SAs we need. 26796 */ 26797 if (need_ah_acquire || need_esp_acquire) { 26798 if (io->ipsec_out_ah_sa != NULL) { 26799 IPSA_REFRELE(io->ipsec_out_ah_sa); 26800 io->ipsec_out_ah_sa = NULL; 26801 } 26802 if (io->ipsec_out_esp_sa != NULL) { 26803 IPSA_REFRELE(io->ipsec_out_esp_sa); 26804 io->ipsec_out_esp_sa = NULL; 26805 } 26806 26807 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26808 return (B_FALSE); 26809 } 26810 26811 return (B_TRUE); 26812 } 26813 26814 /* 26815 * Process an IPSEC_OUT message and see what you can 26816 * do with it. 26817 * IPQoS Notes: 26818 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26819 * IPSec. 26820 * XXX would like to nuke ire_t. 26821 * XXX ill_index better be "real" 26822 */ 26823 void 26824 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26825 { 26826 ipsec_out_t *io; 26827 ipsec_policy_t *pp; 26828 ipsec_action_t *ap; 26829 ipha_t *ipha; 26830 ip6_t *ip6h; 26831 mblk_t *mp; 26832 ill_t *ill; 26833 zoneid_t zoneid; 26834 ipsec_status_t ipsec_rc; 26835 boolean_t ill_need_rele = B_FALSE; 26836 ip_stack_t *ipst; 26837 ipsec_stack_t *ipss; 26838 26839 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26840 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26841 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26842 ipst = io->ipsec_out_ns->netstack_ip; 26843 mp = ipsec_mp->b_cont; 26844 26845 /* 26846 * Initiate IPPF processing. We do it here to account for packets 26847 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26848 * We can check for ipsec_out_proc_begin even for such packets, as 26849 * they will always be false (asserted below). 26850 */ 26851 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26852 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26853 io->ipsec_out_ill_index : ill_index); 26854 if (mp == NULL) { 26855 ip2dbg(("ipsec_out_process: packet dropped "\ 26856 "during IPPF processing\n")); 26857 freeb(ipsec_mp); 26858 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26859 return; 26860 } 26861 } 26862 26863 if (!io->ipsec_out_secure) { 26864 /* 26865 * We came here by mistake. 26866 * Don't bother with ipsec processing 26867 * Should "discourage" this path in the future. 26868 */ 26869 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26870 goto done; 26871 } 26872 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26873 ASSERT((io->ipsec_out_policy != NULL) || 26874 (io->ipsec_out_act != NULL)); 26875 ASSERT(io->ipsec_out_failed == B_FALSE); 26876 26877 ipss = ipst->ips_netstack->netstack_ipsec; 26878 if (!ipsec_loaded(ipss)) { 26879 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26880 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26881 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26882 } else { 26883 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26884 } 26885 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26886 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26887 &ipss->ipsec_dropper); 26888 return; 26889 } 26890 26891 /* 26892 * IPSEC processing has started. 26893 */ 26894 io->ipsec_out_proc_begin = B_TRUE; 26895 ap = io->ipsec_out_act; 26896 if (ap == NULL) { 26897 pp = io->ipsec_out_policy; 26898 ASSERT(pp != NULL); 26899 ap = pp->ipsp_act; 26900 ASSERT(ap != NULL); 26901 } 26902 26903 /* 26904 * Save the outbound ill index. When the packet comes back 26905 * from IPsec, we make sure the ill hasn't changed or disappeared 26906 * before sending it the accelerated packet. 26907 */ 26908 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26909 int ifindex; 26910 ill = ire_to_ill(ire); 26911 ifindex = ill->ill_phyint->phyint_ifindex; 26912 io->ipsec_out_capab_ill_index = ifindex; 26913 } 26914 26915 /* 26916 * The order of processing is first insert a IP header if needed. 26917 * Then insert the ESP header and then the AH header. 26918 */ 26919 if ((io->ipsec_out_se_done == B_FALSE) && 26920 (ap->ipa_want_se)) { 26921 /* 26922 * First get the outer IP header before sending 26923 * it to ESP. 26924 */ 26925 ipha_t *oipha, *iipha; 26926 mblk_t *outer_mp, *inner_mp; 26927 26928 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26929 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26930 "ipsec_out_process: " 26931 "Self-Encapsulation failed: Out of memory\n"); 26932 freemsg(ipsec_mp); 26933 if (ill != NULL) { 26934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26935 } else { 26936 BUMP_MIB(&ipst->ips_ip_mib, 26937 ipIfStatsOutDiscards); 26938 } 26939 return; 26940 } 26941 inner_mp = ipsec_mp->b_cont; 26942 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26943 oipha = (ipha_t *)outer_mp->b_rptr; 26944 iipha = (ipha_t *)inner_mp->b_rptr; 26945 *oipha = *iipha; 26946 outer_mp->b_wptr += sizeof (ipha_t); 26947 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26948 sizeof (ipha_t)); 26949 oipha->ipha_protocol = IPPROTO_ENCAP; 26950 oipha->ipha_version_and_hdr_length = 26951 IP_SIMPLE_HDR_VERSION; 26952 oipha->ipha_hdr_checksum = 0; 26953 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26954 outer_mp->b_cont = inner_mp; 26955 ipsec_mp->b_cont = outer_mp; 26956 26957 io->ipsec_out_se_done = B_TRUE; 26958 io->ipsec_out_tunnel = B_TRUE; 26959 } 26960 26961 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26962 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26963 !ipsec_out_select_sa(ipsec_mp)) 26964 return; 26965 26966 /* 26967 * By now, we know what SA's to use. Toss over to ESP & AH 26968 * to do the heavy lifting. 26969 */ 26970 zoneid = io->ipsec_out_zoneid; 26971 ASSERT(zoneid != ALL_ZONES); 26972 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26973 ASSERT(io->ipsec_out_esp_sa != NULL); 26974 io->ipsec_out_esp_done = B_TRUE; 26975 /* 26976 * Note that since hw accel can only apply one transform, 26977 * not two, we skip hw accel for ESP if we also have AH 26978 * This is an design limitation of the interface 26979 * which should be revisited. 26980 */ 26981 ASSERT(ire != NULL); 26982 if (io->ipsec_out_ah_sa == NULL) { 26983 ill = (ill_t *)ire->ire_stq->q_ptr; 26984 ipsec_out_is_accelerated(ipsec_mp, 26985 io->ipsec_out_esp_sa, ill, ire); 26986 } 26987 26988 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26989 switch (ipsec_rc) { 26990 case IPSEC_STATUS_SUCCESS: 26991 break; 26992 case IPSEC_STATUS_FAILED: 26993 if (ill != NULL) { 26994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26995 } else { 26996 BUMP_MIB(&ipst->ips_ip_mib, 26997 ipIfStatsOutDiscards); 26998 } 26999 /* FALLTHRU */ 27000 case IPSEC_STATUS_PENDING: 27001 return; 27002 } 27003 } 27004 27005 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27006 ASSERT(io->ipsec_out_ah_sa != NULL); 27007 io->ipsec_out_ah_done = B_TRUE; 27008 if (ire == NULL) { 27009 int idx = io->ipsec_out_capab_ill_index; 27010 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27011 NULL, NULL, NULL, NULL, ipst); 27012 ill_need_rele = B_TRUE; 27013 } else { 27014 ill = (ill_t *)ire->ire_stq->q_ptr; 27015 } 27016 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27017 ire); 27018 27019 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27020 switch (ipsec_rc) { 27021 case IPSEC_STATUS_SUCCESS: 27022 break; 27023 case IPSEC_STATUS_FAILED: 27024 if (ill != NULL) { 27025 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27026 } else { 27027 BUMP_MIB(&ipst->ips_ip_mib, 27028 ipIfStatsOutDiscards); 27029 } 27030 /* FALLTHRU */ 27031 case IPSEC_STATUS_PENDING: 27032 if (ill != NULL && ill_need_rele) 27033 ill_refrele(ill); 27034 return; 27035 } 27036 } 27037 /* 27038 * We are done with IPSEC processing. Send it over 27039 * the wire. 27040 */ 27041 done: 27042 mp = ipsec_mp->b_cont; 27043 ipha = (ipha_t *)mp->b_rptr; 27044 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27045 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27046 } else { 27047 ip6h = (ip6_t *)ipha; 27048 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27049 } 27050 if (ill != NULL && ill_need_rele) 27051 ill_refrele(ill); 27052 } 27053 27054 /* ARGSUSED */ 27055 void 27056 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27057 { 27058 opt_restart_t *or; 27059 int err; 27060 conn_t *connp; 27061 27062 ASSERT(CONN_Q(q)); 27063 connp = Q_TO_CONN(q); 27064 27065 ASSERT(first_mp->b_datap->db_type == M_CTL); 27066 or = (opt_restart_t *)first_mp->b_rptr; 27067 /* 27068 * We don't need to pass any credentials here since this is just 27069 * a restart. The credentials are passed in when svr4_optcom_req 27070 * is called the first time (from ip_wput_nondata). 27071 */ 27072 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27073 err = svr4_optcom_req(q, first_mp, NULL, 27074 &ip_opt_obj); 27075 } else { 27076 ASSERT(or->or_type == T_OPTMGMT_REQ); 27077 err = tpi_optcom_req(q, first_mp, NULL, 27078 &ip_opt_obj); 27079 } 27080 if (err != EINPROGRESS) { 27081 /* operation is done */ 27082 CONN_OPER_PENDING_DONE(connp); 27083 } 27084 } 27085 27086 /* 27087 * ioctls that go through a down/up sequence may need to wait for the down 27088 * to complete. This involves waiting for the ire and ipif refcnts to go down 27089 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27090 */ 27091 /* ARGSUSED */ 27092 void 27093 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27094 { 27095 struct iocblk *iocp; 27096 mblk_t *mp1; 27097 ip_ioctl_cmd_t *ipip; 27098 int err; 27099 sin_t *sin; 27100 struct lifreq *lifr; 27101 struct ifreq *ifr; 27102 27103 iocp = (struct iocblk *)mp->b_rptr; 27104 ASSERT(ipsq != NULL); 27105 /* Existence of mp1 verified in ip_wput_nondata */ 27106 mp1 = mp->b_cont->b_cont; 27107 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27108 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27109 /* 27110 * Special case where ipsq_current_ipif is not set: 27111 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27112 * ill could also have become part of a ipmp group in the 27113 * process, we are here as were not able to complete the 27114 * operation in ipif_set_values because we could not become 27115 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27116 * will not be set so we need to set it. 27117 */ 27118 ill_t *ill = q->q_ptr; 27119 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27120 } 27121 ASSERT(ipsq->ipsq_current_ipif != NULL); 27122 27123 if (ipip->ipi_cmd_type == IF_CMD) { 27124 /* This a old style SIOC[GS]IF* command */ 27125 ifr = (struct ifreq *)mp1->b_rptr; 27126 sin = (sin_t *)&ifr->ifr_addr; 27127 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27128 /* This a new style SIOC[GS]LIF* command */ 27129 lifr = (struct lifreq *)mp1->b_rptr; 27130 sin = (sin_t *)&lifr->lifr_addr; 27131 } else { 27132 sin = NULL; 27133 } 27134 27135 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27136 ipip, mp1->b_rptr); 27137 27138 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27139 } 27140 27141 /* 27142 * ioctl processing 27143 * 27144 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27145 * the ioctl command in the ioctl tables and determines the copyin data size 27146 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27147 * size. 27148 * 27149 * ioctl processing then continues when the M_IOCDATA makes its way down. 27150 * Now the ioctl is looked up again in the ioctl table, and its properties are 27151 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27152 * and the general ioctl processing function ip_process_ioctl is called. 27153 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27154 * so goes thru the serialization primitive ipsq_try_enter. Then the 27155 * appropriate function to handle the ioctl is called based on the entry in 27156 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27157 * which also refreleases the 'conn' that was refheld at the start of the 27158 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27159 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27160 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27161 * 27162 * Many exclusive ioctls go thru an internal down up sequence as part of 27163 * the operation. For example an attempt to change the IP address of an 27164 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27165 * does all the cleanup such as deleting all ires that use this address. 27166 * Then we need to wait till all references to the interface go away. 27167 */ 27168 void 27169 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27170 { 27171 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27172 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27173 cmd_info_t ci; 27174 int err; 27175 boolean_t entered_ipsq = B_FALSE; 27176 27177 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27178 27179 if (ipip == NULL) 27180 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27181 27182 /* 27183 * SIOCLIFADDIF needs to go thru a special path since the 27184 * ill may not exist yet. This happens in the case of lo0 27185 * which is created using this ioctl. 27186 */ 27187 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27188 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27189 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27190 return; 27191 } 27192 27193 ci.ci_ipif = NULL; 27194 switch (ipip->ipi_cmd_type) { 27195 case IF_CMD: 27196 case LIF_CMD: 27197 /* 27198 * ioctls that pass in a [l]ifreq appear here. 27199 * ip_extract_lifreq_cmn returns a refheld ipif in 27200 * ci.ci_ipif 27201 */ 27202 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27203 ipip->ipi_flags, &ci, ip_process_ioctl); 27204 if (err != 0) { 27205 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27206 return; 27207 } 27208 ASSERT(ci.ci_ipif != NULL); 27209 break; 27210 27211 case TUN_CMD: 27212 /* 27213 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27214 * a refheld ipif in ci.ci_ipif 27215 */ 27216 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27217 if (err != 0) { 27218 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27219 return; 27220 } 27221 ASSERT(ci.ci_ipif != NULL); 27222 break; 27223 27224 case MISC_CMD: 27225 /* 27226 * ioctls that neither pass in [l]ifreq or iftun_req come here 27227 * For eg. SIOCGLIFCONF will appear here. 27228 */ 27229 switch (ipip->ipi_cmd) { 27230 case IF_UNITSEL: 27231 /* ioctl comes down the ill */ 27232 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27233 ipif_refhold(ci.ci_ipif); 27234 break; 27235 case SIOCGMSFILTER: 27236 case SIOCSMSFILTER: 27237 case SIOCGIPMSFILTER: 27238 case SIOCSIPMSFILTER: 27239 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27240 ip_process_ioctl); 27241 if (err != 0) { 27242 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27243 NULL); 27244 } 27245 break; 27246 } 27247 err = 0; 27248 ci.ci_sin = NULL; 27249 ci.ci_sin6 = NULL; 27250 ci.ci_lifr = NULL; 27251 break; 27252 } 27253 27254 /* 27255 * If ipsq is non-null, we are already being called exclusively 27256 */ 27257 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27258 if (!(ipip->ipi_flags & IPI_WR)) { 27259 /* 27260 * A return value of EINPROGRESS means the ioctl is 27261 * either queued and waiting for some reason or has 27262 * already completed. 27263 */ 27264 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27265 ci.ci_lifr); 27266 if (ci.ci_ipif != NULL) 27267 ipif_refrele(ci.ci_ipif); 27268 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27269 return; 27270 } 27271 27272 ASSERT(ci.ci_ipif != NULL); 27273 27274 if (ipsq == NULL) { 27275 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27276 ip_process_ioctl, NEW_OP, B_TRUE); 27277 entered_ipsq = B_TRUE; 27278 } 27279 /* 27280 * Release the ipif so that ipif_down and friends that wait for 27281 * references to go away are not misled about the current ipif_refcnt 27282 * values. We are writer so we can access the ipif even after releasing 27283 * the ipif. 27284 */ 27285 ipif_refrele(ci.ci_ipif); 27286 if (ipsq == NULL) 27287 return; 27288 27289 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27290 27291 /* 27292 * For most set ioctls that come here, this serves as a single point 27293 * where we set the IPIF_CHANGING flag. This ensures that there won't 27294 * be any new references to the ipif. This helps functions that go 27295 * through this path and end up trying to wait for the refcnts 27296 * associated with the ipif to go down to zero. Some exceptions are 27297 * Failover, Failback, and Groupname commands that operate on more than 27298 * just the ci.ci_ipif. These commands internally determine the 27299 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27300 * flags on that set. Another exception is the Removeif command that 27301 * sets the IPIF_CONDEMNED flag internally after identifying the right 27302 * ipif to operate on. 27303 */ 27304 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27305 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27306 ipip->ipi_cmd != SIOCLIFFAILOVER && 27307 ipip->ipi_cmd != SIOCLIFFAILBACK && 27308 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27309 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27310 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27311 27312 /* 27313 * A return value of EINPROGRESS means the ioctl is 27314 * either queued and waiting for some reason or has 27315 * already completed. 27316 */ 27317 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27318 27319 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27320 27321 if (entered_ipsq) 27322 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27323 } 27324 27325 /* 27326 * Complete the ioctl. Typically ioctls use the mi package and need to 27327 * do mi_copyout/mi_copy_done. 27328 */ 27329 void 27330 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27331 { 27332 conn_t *connp = NULL; 27333 27334 if (err == EINPROGRESS) 27335 return; 27336 27337 if (CONN_Q(q)) { 27338 connp = Q_TO_CONN(q); 27339 ASSERT(connp->conn_ref >= 2); 27340 } 27341 27342 switch (mode) { 27343 case COPYOUT: 27344 if (err == 0) 27345 mi_copyout(q, mp); 27346 else 27347 mi_copy_done(q, mp, err); 27348 break; 27349 27350 case NO_COPYOUT: 27351 mi_copy_done(q, mp, err); 27352 break; 27353 27354 default: 27355 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27356 break; 27357 } 27358 27359 /* 27360 * The refhold placed at the start of the ioctl is released here. 27361 */ 27362 if (connp != NULL) 27363 CONN_OPER_PENDING_DONE(connp); 27364 27365 if (ipsq != NULL) 27366 ipsq_current_finish(ipsq); 27367 } 27368 27369 /* 27370 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27371 */ 27372 /* ARGSUSED */ 27373 void 27374 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27375 { 27376 conn_t *connp = arg; 27377 tcp_t *tcp; 27378 27379 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27380 tcp = connp->conn_tcp; 27381 27382 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27383 freemsg(mp); 27384 else 27385 tcp_rput_other(tcp, mp); 27386 CONN_OPER_PENDING_DONE(connp); 27387 } 27388 27389 /* Called from ip_wput for all non data messages */ 27390 /* ARGSUSED */ 27391 void 27392 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27393 { 27394 mblk_t *mp1; 27395 ire_t *ire, *fake_ire; 27396 ill_t *ill; 27397 struct iocblk *iocp; 27398 ip_ioctl_cmd_t *ipip; 27399 cred_t *cr; 27400 conn_t *connp; 27401 int cmd, err; 27402 nce_t *nce; 27403 ipif_t *ipif; 27404 ip_stack_t *ipst; 27405 char *proto_str; 27406 27407 if (CONN_Q(q)) { 27408 connp = Q_TO_CONN(q); 27409 ipst = connp->conn_netstack->netstack_ip; 27410 } else { 27411 connp = NULL; 27412 ipst = ILLQ_TO_IPST(q); 27413 } 27414 27415 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27416 27417 /* Check if it is a queue to /dev/sctp. */ 27418 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27419 connp->conn_rq == NULL) { 27420 sctp_wput(q, mp); 27421 return; 27422 } 27423 27424 switch (DB_TYPE(mp)) { 27425 case M_IOCTL: 27426 /* 27427 * IOCTL processing begins in ip_sioctl_copyin_setup which 27428 * will arrange to copy in associated control structures. 27429 */ 27430 ip_sioctl_copyin_setup(q, mp); 27431 return; 27432 case M_IOCDATA: 27433 /* 27434 * Ensure that this is associated with one of our trans- 27435 * parent ioctls. If it's not ours, discard it if we're 27436 * running as a driver, or pass it on if we're a module. 27437 */ 27438 iocp = (struct iocblk *)mp->b_rptr; 27439 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27440 if (ipip == NULL) { 27441 if (q->q_next == NULL) { 27442 goto nak; 27443 } else { 27444 putnext(q, mp); 27445 } 27446 return; 27447 } else if ((q->q_next != NULL) && 27448 !(ipip->ipi_flags & IPI_MODOK)) { 27449 /* 27450 * the ioctl is one we recognise, but is not 27451 * consumed by IP as a module, pass M_IOCDATA 27452 * for processing downstream, but only for 27453 * common Streams ioctls. 27454 */ 27455 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27456 putnext(q, mp); 27457 return; 27458 } else { 27459 goto nak; 27460 } 27461 } 27462 27463 /* IOCTL continuation following copyin or copyout. */ 27464 if (mi_copy_state(q, mp, NULL) == -1) { 27465 /* 27466 * The copy operation failed. mi_copy_state already 27467 * cleaned up, so we're out of here. 27468 */ 27469 return; 27470 } 27471 /* 27472 * If we just completed a copy in, we become writer and 27473 * continue processing in ip_sioctl_copyin_done. If it 27474 * was a copy out, we call mi_copyout again. If there is 27475 * nothing more to copy out, it will complete the IOCTL. 27476 */ 27477 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27478 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27479 mi_copy_done(q, mp, EPROTO); 27480 return; 27481 } 27482 /* 27483 * Check for cases that need more copying. A return 27484 * value of 0 means a second copyin has been started, 27485 * so we return; a return value of 1 means no more 27486 * copying is needed, so we continue. 27487 */ 27488 cmd = iocp->ioc_cmd; 27489 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27490 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27491 MI_COPY_COUNT(mp) == 1) { 27492 if (ip_copyin_msfilter(q, mp) == 0) 27493 return; 27494 } 27495 /* 27496 * Refhold the conn, till the ioctl completes. This is 27497 * needed in case the ioctl ends up in the pending mp 27498 * list. Every mp in the ill_pending_mp list and 27499 * the ipsq_pending_mp must have a refhold on the conn 27500 * to resume processing. The refhold is released when 27501 * the ioctl completes. (normally or abnormally) 27502 * In all cases ip_ioctl_finish is called to finish 27503 * the ioctl. 27504 */ 27505 if (connp != NULL) { 27506 /* This is not a reentry */ 27507 ASSERT(ipsq == NULL); 27508 CONN_INC_REF(connp); 27509 } else { 27510 if (!(ipip->ipi_flags & IPI_MODOK)) { 27511 mi_copy_done(q, mp, EINVAL); 27512 return; 27513 } 27514 } 27515 27516 ip_process_ioctl(ipsq, q, mp, ipip); 27517 27518 } else { 27519 mi_copyout(q, mp); 27520 } 27521 return; 27522 nak: 27523 iocp->ioc_error = EINVAL; 27524 mp->b_datap->db_type = M_IOCNAK; 27525 iocp->ioc_count = 0; 27526 qreply(q, mp); 27527 return; 27528 27529 case M_IOCNAK: 27530 /* 27531 * The only way we could get here is if a resolver didn't like 27532 * an IOCTL we sent it. This shouldn't happen. 27533 */ 27534 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27535 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27536 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27537 freemsg(mp); 27538 return; 27539 case M_IOCACK: 27540 /* /dev/ip shouldn't see this */ 27541 if (CONN_Q(q)) 27542 goto nak; 27543 27544 /* Finish socket ioctls passed through to ARP. */ 27545 ip_sioctl_iocack(q, mp); 27546 return; 27547 case M_FLUSH: 27548 if (*mp->b_rptr & FLUSHW) 27549 flushq(q, FLUSHALL); 27550 if (q->q_next) { 27551 putnext(q, mp); 27552 return; 27553 } 27554 if (*mp->b_rptr & FLUSHR) { 27555 *mp->b_rptr &= ~FLUSHW; 27556 qreply(q, mp); 27557 return; 27558 } 27559 freemsg(mp); 27560 return; 27561 case IRE_DB_REQ_TYPE: 27562 if (connp == NULL) { 27563 proto_str = "IRE_DB_REQ_TYPE"; 27564 goto protonak; 27565 } 27566 /* An Upper Level Protocol wants a copy of an IRE. */ 27567 ip_ire_req(q, mp); 27568 return; 27569 case M_CTL: 27570 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27571 break; 27572 27573 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27574 TUN_HELLO) { 27575 ASSERT(connp != NULL); 27576 connp->conn_flags |= IPCL_IPTUN; 27577 freeb(mp); 27578 return; 27579 } 27580 27581 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27582 IP_ULP_OUT_LABELED) { 27583 out_labeled_t *olp; 27584 27585 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27586 break; 27587 olp = (out_labeled_t *)mp->b_rptr; 27588 connp->conn_ulp_labeled = olp->out_qnext == q; 27589 freemsg(mp); 27590 return; 27591 } 27592 27593 /* M_CTL messages are used by ARP to tell us things. */ 27594 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27595 break; 27596 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27597 case AR_ENTRY_SQUERY: 27598 ip_wput_ctl(q, mp); 27599 return; 27600 case AR_CLIENT_NOTIFY: 27601 ip_arp_news(q, mp); 27602 return; 27603 case AR_DLPIOP_DONE: 27604 ASSERT(q->q_next != NULL); 27605 ill = (ill_t *)q->q_ptr; 27606 /* qwriter_ip releases the refhold */ 27607 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27608 ill_refhold(ill); 27609 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27610 return; 27611 case AR_ARP_CLOSING: 27612 /* 27613 * ARP (above us) is closing. If no ARP bringup is 27614 * currently pending, ack the message so that ARP 27615 * can complete its close. Also mark ill_arp_closing 27616 * so that new ARP bringups will fail. If any 27617 * ARP bringup is currently in progress, we will 27618 * ack this when the current ARP bringup completes. 27619 */ 27620 ASSERT(q->q_next != NULL); 27621 ill = (ill_t *)q->q_ptr; 27622 mutex_enter(&ill->ill_lock); 27623 ill->ill_arp_closing = 1; 27624 if (!ill->ill_arp_bringup_pending) { 27625 mutex_exit(&ill->ill_lock); 27626 qreply(q, mp); 27627 } else { 27628 mutex_exit(&ill->ill_lock); 27629 freemsg(mp); 27630 } 27631 return; 27632 case AR_ARP_EXTEND: 27633 /* 27634 * The ARP module above us is capable of duplicate 27635 * address detection. Old ATM drivers will not send 27636 * this message. 27637 */ 27638 ASSERT(q->q_next != NULL); 27639 ill = (ill_t *)q->q_ptr; 27640 ill->ill_arp_extend = B_TRUE; 27641 freemsg(mp); 27642 return; 27643 default: 27644 break; 27645 } 27646 break; 27647 case M_PROTO: 27648 case M_PCPROTO: 27649 /* 27650 * The only PROTO messages we expect are ULP binds and 27651 * copies of option negotiation acknowledgements. 27652 */ 27653 switch (((union T_primitives *)mp->b_rptr)->type) { 27654 case O_T_BIND_REQ: 27655 case T_BIND_REQ: { 27656 /* Request can get queued in bind */ 27657 if (connp == NULL) { 27658 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27659 goto protonak; 27660 } 27661 /* 27662 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27663 * instead of going through this path. We only get 27664 * here in the following cases: 27665 * 27666 * a. Bind retries, where ipsq is non-NULL. 27667 * b. T_BIND_REQ is issued from non TCP/UDP 27668 * transport, e.g. icmp for raw socket, 27669 * in which case ipsq will be NULL. 27670 */ 27671 ASSERT(ipsq != NULL || 27672 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27673 27674 /* Don't increment refcnt if this is a re-entry */ 27675 if (ipsq == NULL) 27676 CONN_INC_REF(connp); 27677 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27678 connp, NULL) : ip_bind_v4(q, mp, connp); 27679 if (mp == NULL) 27680 return; 27681 if (IPCL_IS_TCP(connp)) { 27682 /* 27683 * In the case of TCP endpoint we 27684 * come here only for bind retries 27685 */ 27686 ASSERT(ipsq != NULL); 27687 CONN_INC_REF(connp); 27688 squeue_fill(connp->conn_sqp, mp, 27689 ip_resume_tcp_bind, connp, 27690 SQTAG_BIND_RETRY); 27691 return; 27692 } else if (IPCL_IS_UDP(connp)) { 27693 /* 27694 * In the case of UDP endpoint we 27695 * come here only for bind retries 27696 */ 27697 ASSERT(ipsq != NULL); 27698 udp_resume_bind(connp, mp); 27699 return; 27700 } 27701 qreply(q, mp); 27702 CONN_OPER_PENDING_DONE(connp); 27703 return; 27704 } 27705 case T_SVR4_OPTMGMT_REQ: 27706 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27707 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27708 27709 if (connp == NULL) { 27710 proto_str = "T_SVR4_OPTMGMT_REQ"; 27711 goto protonak; 27712 } 27713 27714 if (!snmpcom_req(q, mp, ip_snmp_set, 27715 ip_snmp_get, cr)) { 27716 /* 27717 * Call svr4_optcom_req so that it can 27718 * generate the ack. We don't come here 27719 * if this operation is being restarted. 27720 * ip_restart_optmgmt will drop the conn ref. 27721 * In the case of ipsec option after the ipsec 27722 * load is complete conn_restart_ipsec_waiter 27723 * drops the conn ref. 27724 */ 27725 ASSERT(ipsq == NULL); 27726 CONN_INC_REF(connp); 27727 if (ip_check_for_ipsec_opt(q, mp)) 27728 return; 27729 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27730 if (err != EINPROGRESS) { 27731 /* Operation is done */ 27732 CONN_OPER_PENDING_DONE(connp); 27733 } 27734 } 27735 return; 27736 case T_OPTMGMT_REQ: 27737 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27738 /* 27739 * Note: No snmpcom_req support through new 27740 * T_OPTMGMT_REQ. 27741 * Call tpi_optcom_req so that it can 27742 * generate the ack. 27743 */ 27744 if (connp == NULL) { 27745 proto_str = "T_OPTMGMT_REQ"; 27746 goto protonak; 27747 } 27748 27749 ASSERT(ipsq == NULL); 27750 /* 27751 * We don't come here for restart. ip_restart_optmgmt 27752 * will drop the conn ref. In the case of ipsec option 27753 * after the ipsec load is complete 27754 * conn_restart_ipsec_waiter drops the conn ref. 27755 */ 27756 CONN_INC_REF(connp); 27757 if (ip_check_for_ipsec_opt(q, mp)) 27758 return; 27759 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27760 if (err != EINPROGRESS) { 27761 /* Operation is done */ 27762 CONN_OPER_PENDING_DONE(connp); 27763 } 27764 return; 27765 case T_UNBIND_REQ: 27766 if (connp == NULL) { 27767 proto_str = "T_UNBIND_REQ"; 27768 goto protonak; 27769 } 27770 mp = ip_unbind(q, mp); 27771 qreply(q, mp); 27772 return; 27773 default: 27774 /* 27775 * Have to drop any DLPI messages coming down from 27776 * arp (such as an info_req which would cause ip 27777 * to receive an extra info_ack if it was passed 27778 * through. 27779 */ 27780 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27781 (int)*(uint_t *)mp->b_rptr)); 27782 freemsg(mp); 27783 return; 27784 } 27785 /* NOTREACHED */ 27786 case IRE_DB_TYPE: { 27787 nce_t *nce; 27788 ill_t *ill; 27789 in6_addr_t gw_addr_v6; 27790 27791 27792 /* 27793 * This is a response back from a resolver. It 27794 * consists of a message chain containing: 27795 * IRE_MBLK-->LL_HDR_MBLK->pkt 27796 * The IRE_MBLK is the one we allocated in ip_newroute. 27797 * The LL_HDR_MBLK is the DLPI header to use to get 27798 * the attached packet, and subsequent ones for the 27799 * same destination, transmitted. 27800 */ 27801 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27802 break; 27803 /* 27804 * First, check to make sure the resolution succeeded. 27805 * If it failed, the second mblk will be empty. 27806 * If it is, free the chain, dropping the packet. 27807 * (We must ire_delete the ire; that frees the ire mblk) 27808 * We're doing this now to support PVCs for ATM; it's 27809 * a partial xresolv implementation. When we fully implement 27810 * xresolv interfaces, instead of freeing everything here 27811 * we'll initiate neighbor discovery. 27812 * 27813 * For v4 (ARP and other external resolvers) the resolver 27814 * frees the message, so no check is needed. This check 27815 * is required, though, for a full xresolve implementation. 27816 * Including this code here now both shows how external 27817 * resolvers can NACK a resolution request using an 27818 * existing design that has no specific provisions for NACKs, 27819 * and also takes into account that the current non-ARP 27820 * external resolver has been coded to use this method of 27821 * NACKing for all IPv6 (xresolv) cases, 27822 * whether our xresolv implementation is complete or not. 27823 * 27824 */ 27825 ire = (ire_t *)mp->b_rptr; 27826 ill = ire_to_ill(ire); 27827 mp1 = mp->b_cont; /* dl_unitdata_req */ 27828 if (mp1->b_rptr == mp1->b_wptr) { 27829 if (ire->ire_ipversion == IPV6_VERSION) { 27830 /* 27831 * XRESOLV interface. 27832 */ 27833 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27834 mutex_enter(&ire->ire_lock); 27835 gw_addr_v6 = ire->ire_gateway_addr_v6; 27836 mutex_exit(&ire->ire_lock); 27837 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27838 nce = ndp_lookup_v6(ill, 27839 &ire->ire_addr_v6, B_FALSE); 27840 } else { 27841 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27842 B_FALSE); 27843 } 27844 if (nce != NULL) { 27845 nce_resolv_failed(nce); 27846 ndp_delete(nce); 27847 NCE_REFRELE(nce); 27848 } 27849 } 27850 mp->b_cont = NULL; 27851 freemsg(mp1); /* frees the pkt as well */ 27852 ASSERT(ire->ire_nce == NULL); 27853 ire_delete((ire_t *)mp->b_rptr); 27854 return; 27855 } 27856 27857 /* 27858 * Split them into IRE_MBLK and pkt and feed it into 27859 * ire_add_then_send. Then in ire_add_then_send 27860 * the IRE will be added, and then the packet will be 27861 * run back through ip_wput. This time it will make 27862 * it to the wire. 27863 */ 27864 mp->b_cont = NULL; 27865 mp = mp1->b_cont; /* now, mp points to pkt */ 27866 mp1->b_cont = NULL; 27867 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27868 if (ire->ire_ipversion == IPV6_VERSION) { 27869 /* 27870 * XRESOLV interface. Find the nce and put a copy 27871 * of the dl_unitdata_req in nce_res_mp 27872 */ 27873 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27874 mutex_enter(&ire->ire_lock); 27875 gw_addr_v6 = ire->ire_gateway_addr_v6; 27876 mutex_exit(&ire->ire_lock); 27877 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27878 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27879 B_FALSE); 27880 } else { 27881 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27882 } 27883 if (nce != NULL) { 27884 /* 27885 * We have to protect nce_res_mp here 27886 * from being accessed by other threads 27887 * while we change the mblk pointer. 27888 * Other functions will also lock the nce when 27889 * accessing nce_res_mp. 27890 * 27891 * The reason we change the mblk pointer 27892 * here rather than copying the resolved address 27893 * into the template is that, unlike with 27894 * ethernet, we have no guarantee that the 27895 * resolved address length will be 27896 * smaller than or equal to the lla length 27897 * with which the template was allocated, 27898 * (for ethernet, they're equal) 27899 * so we have to use the actual resolved 27900 * address mblk - which holds the real 27901 * dl_unitdata_req with the resolved address. 27902 * 27903 * Doing this is the same behavior as was 27904 * previously used in the v4 ARP case. 27905 */ 27906 mutex_enter(&nce->nce_lock); 27907 if (nce->nce_res_mp != NULL) 27908 freemsg(nce->nce_res_mp); 27909 nce->nce_res_mp = mp1; 27910 mutex_exit(&nce->nce_lock); 27911 /* 27912 * We do a fastpath probe here because 27913 * we have resolved the address without 27914 * using Neighbor Discovery. 27915 * In the non-XRESOLV v6 case, the fastpath 27916 * probe is done right after neighbor 27917 * discovery completes. 27918 */ 27919 if (nce->nce_res_mp != NULL) { 27920 int res; 27921 nce_fastpath_list_add(nce); 27922 res = ill_fastpath_probe(ill, 27923 nce->nce_res_mp); 27924 if (res != 0 && res != EAGAIN) 27925 nce_fastpath_list_delete(nce); 27926 } 27927 27928 ire_add_then_send(q, ire, mp); 27929 /* 27930 * Now we have to clean out any packets 27931 * that may have been queued on the nce 27932 * while it was waiting for address resolution 27933 * to complete. 27934 */ 27935 mutex_enter(&nce->nce_lock); 27936 mp1 = nce->nce_qd_mp; 27937 nce->nce_qd_mp = NULL; 27938 mutex_exit(&nce->nce_lock); 27939 while (mp1 != NULL) { 27940 mblk_t *nxt_mp; 27941 queue_t *fwdq = NULL; 27942 ill_t *inbound_ill; 27943 uint_t ifindex; 27944 27945 nxt_mp = mp1->b_next; 27946 mp1->b_next = NULL; 27947 /* 27948 * Retrieve ifindex stored in 27949 * ip_rput_data_v6() 27950 */ 27951 ifindex = 27952 (uint_t)(uintptr_t)mp1->b_prev; 27953 inbound_ill = 27954 ill_lookup_on_ifindex(ifindex, 27955 B_TRUE, NULL, NULL, NULL, 27956 NULL, ipst); 27957 mp1->b_prev = NULL; 27958 if (inbound_ill != NULL) 27959 fwdq = inbound_ill->ill_rq; 27960 27961 if (fwdq != NULL) { 27962 put(fwdq, mp1); 27963 ill_refrele(inbound_ill); 27964 } else 27965 put(WR(ill->ill_rq), mp1); 27966 mp1 = nxt_mp; 27967 } 27968 NCE_REFRELE(nce); 27969 } else { /* nce is NULL; clean up */ 27970 ire_delete(ire); 27971 freemsg(mp); 27972 freemsg(mp1); 27973 return; 27974 } 27975 } else { 27976 nce_t *arpce; 27977 /* 27978 * Link layer resolution succeeded. Recompute the 27979 * ire_nce. 27980 */ 27981 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27982 if ((arpce = ndp_lookup_v4(ill, 27983 (ire->ire_gateway_addr != INADDR_ANY ? 27984 &ire->ire_gateway_addr : &ire->ire_addr), 27985 B_FALSE)) == NULL) { 27986 freeb(ire->ire_mp); 27987 freeb(mp1); 27988 freemsg(mp); 27989 return; 27990 } 27991 mutex_enter(&arpce->nce_lock); 27992 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27993 if (arpce->nce_state == ND_REACHABLE) { 27994 /* 27995 * Someone resolved this before us; 27996 * cleanup the res_mp. Since ire has 27997 * not been added yet, the call to ire_add_v4 27998 * from ire_add_then_send (when a dup is 27999 * detected) will clean up the ire. 28000 */ 28001 freeb(mp1); 28002 } else { 28003 ASSERT(arpce->nce_res_mp == NULL); 28004 arpce->nce_res_mp = mp1; 28005 arpce->nce_state = ND_REACHABLE; 28006 } 28007 mutex_exit(&arpce->nce_lock); 28008 if (ire->ire_marks & IRE_MARK_NOADD) { 28009 /* 28010 * this ire will not be added to the ire 28011 * cache table, so we can set the ire_nce 28012 * here, as there are no atomicity constraints. 28013 */ 28014 ire->ire_nce = arpce; 28015 /* 28016 * We are associating this nce with the ire 28017 * so change the nce ref taken in 28018 * ndp_lookup_v4() from 28019 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28020 */ 28021 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28022 } else { 28023 NCE_REFRELE(arpce); 28024 } 28025 ire_add_then_send(q, ire, mp); 28026 } 28027 return; /* All is well, the packet has been sent. */ 28028 } 28029 case IRE_ARPRESOLVE_TYPE: { 28030 28031 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28032 break; 28033 mp1 = mp->b_cont; /* dl_unitdata_req */ 28034 mp->b_cont = NULL; 28035 /* 28036 * First, check to make sure the resolution succeeded. 28037 * If it failed, the second mblk will be empty. 28038 */ 28039 if (mp1->b_rptr == mp1->b_wptr) { 28040 /* cleanup the incomplete ire, free queued packets */ 28041 freemsg(mp); /* fake ire */ 28042 freeb(mp1); /* dl_unitdata response */ 28043 return; 28044 } 28045 28046 /* 28047 * update any incomplete nce_t found. we lookup the ctable 28048 * and find the nce from the ire->ire_nce because we need 28049 * to pass the ire to ip_xmit_v4 later, and can find both 28050 * ire and nce in one lookup from the ctable. 28051 */ 28052 fake_ire = (ire_t *)mp->b_rptr; 28053 /* 28054 * By the time we come back here from ARP 28055 * the logical outgoing interface of the incomplete ire 28056 * we added in ire_forward could have disappeared, 28057 * causing the incomplete ire to also have 28058 * dissapeared. So we need to retreive the 28059 * proper ipif for the ire before looking 28060 * in ctable; do the ctablelookup based on ire_ipif_seqid 28061 */ 28062 ill = q->q_ptr; 28063 28064 /* Get the outgoing ipif */ 28065 mutex_enter(&ill->ill_lock); 28066 if (ill->ill_state_flags & ILL_CONDEMNED) { 28067 mutex_exit(&ill->ill_lock); 28068 freemsg(mp); /* fake ire */ 28069 freeb(mp1); /* dl_unitdata response */ 28070 return; 28071 } 28072 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28073 28074 if (ipif == NULL) { 28075 mutex_exit(&ill->ill_lock); 28076 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28077 freemsg(mp); 28078 freeb(mp1); 28079 return; 28080 } 28081 ipif_refhold_locked(ipif); 28082 mutex_exit(&ill->ill_lock); 28083 ire = ire_ctable_lookup(fake_ire->ire_addr, 28084 fake_ire->ire_gateway_addr, IRE_CACHE, 28085 ipif, fake_ire->ire_zoneid, NULL, 28086 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28087 ipif_refrele(ipif); 28088 if (ire == NULL) { 28089 /* 28090 * no ire was found; check if there is an nce 28091 * for this lookup; if it has no ire's pointing at it 28092 * cleanup. 28093 */ 28094 if ((nce = ndp_lookup_v4(ill, 28095 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28096 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28097 B_FALSE)) != NULL) { 28098 /* 28099 * cleanup: 28100 * We check for refcnt 2 (one for the nce 28101 * hash list + 1 for the ref taken by 28102 * ndp_lookup_v4) to check that there are 28103 * no ire's pointing at the nce. 28104 */ 28105 if (nce->nce_refcnt == 2) 28106 ndp_delete(nce); 28107 NCE_REFRELE(nce); 28108 } 28109 freeb(mp1); /* dl_unitdata response */ 28110 freemsg(mp); /* fake ire */ 28111 return; 28112 } 28113 nce = ire->ire_nce; 28114 DTRACE_PROBE2(ire__arpresolve__type, 28115 ire_t *, ire, nce_t *, nce); 28116 ASSERT(nce->nce_state != ND_INITIAL); 28117 mutex_enter(&nce->nce_lock); 28118 nce->nce_last = TICK_TO_MSEC(lbolt64); 28119 if (nce->nce_state == ND_REACHABLE) { 28120 /* 28121 * Someone resolved this before us; 28122 * our response is not needed any more. 28123 */ 28124 mutex_exit(&nce->nce_lock); 28125 freeb(mp1); /* dl_unitdata response */ 28126 } else { 28127 ASSERT(nce->nce_res_mp == NULL); 28128 nce->nce_res_mp = mp1; 28129 nce->nce_state = ND_REACHABLE; 28130 mutex_exit(&nce->nce_lock); 28131 nce_fastpath(nce); 28132 } 28133 /* 28134 * The cached nce_t has been updated to be reachable; 28135 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 28136 */ 28137 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28138 freemsg(mp); 28139 /* 28140 * send out queued packets. 28141 */ 28142 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28143 28144 IRE_REFRELE(ire); 28145 return; 28146 } 28147 default: 28148 break; 28149 } 28150 if (q->q_next) { 28151 putnext(q, mp); 28152 } else 28153 freemsg(mp); 28154 return; 28155 28156 protonak: 28157 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28158 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28159 qreply(q, mp); 28160 } 28161 28162 /* 28163 * Process IP options in an outbound packet. Modify the destination if there 28164 * is a source route option. 28165 * Returns non-zero if something fails in which case an ICMP error has been 28166 * sent and mp freed. 28167 */ 28168 static int 28169 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28170 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28171 { 28172 ipoptp_t opts; 28173 uchar_t *opt; 28174 uint8_t optval; 28175 uint8_t optlen; 28176 ipaddr_t dst; 28177 intptr_t code = 0; 28178 mblk_t *mp; 28179 ire_t *ire = NULL; 28180 28181 ip2dbg(("ip_wput_options\n")); 28182 mp = ipsec_mp; 28183 if (mctl_present) { 28184 mp = ipsec_mp->b_cont; 28185 } 28186 28187 dst = ipha->ipha_dst; 28188 for (optval = ipoptp_first(&opts, ipha); 28189 optval != IPOPT_EOL; 28190 optval = ipoptp_next(&opts)) { 28191 opt = opts.ipoptp_cur; 28192 optlen = opts.ipoptp_len; 28193 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28194 optval, optlen)); 28195 switch (optval) { 28196 uint32_t off; 28197 case IPOPT_SSRR: 28198 case IPOPT_LSRR: 28199 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28200 ip1dbg(( 28201 "ip_wput_options: bad option offset\n")); 28202 code = (char *)&opt[IPOPT_OLEN] - 28203 (char *)ipha; 28204 goto param_prob; 28205 } 28206 off = opt[IPOPT_OFFSET]; 28207 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28208 ntohl(dst))); 28209 /* 28210 * For strict: verify that dst is directly 28211 * reachable. 28212 */ 28213 if (optval == IPOPT_SSRR) { 28214 ire = ire_ftable_lookup(dst, 0, 0, 28215 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28216 MBLK_GETLABEL(mp), 28217 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28218 if (ire == NULL) { 28219 ip1dbg(("ip_wput_options: SSRR not" 28220 " directly reachable: 0x%x\n", 28221 ntohl(dst))); 28222 goto bad_src_route; 28223 } 28224 ire_refrele(ire); 28225 } 28226 break; 28227 case IPOPT_RR: 28228 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28229 ip1dbg(( 28230 "ip_wput_options: bad option offset\n")); 28231 code = (char *)&opt[IPOPT_OLEN] - 28232 (char *)ipha; 28233 goto param_prob; 28234 } 28235 break; 28236 case IPOPT_TS: 28237 /* 28238 * Verify that length >=5 and that there is either 28239 * room for another timestamp or that the overflow 28240 * counter is not maxed out. 28241 */ 28242 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28243 if (optlen < IPOPT_MINLEN_IT) { 28244 goto param_prob; 28245 } 28246 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28247 ip1dbg(( 28248 "ip_wput_options: bad option offset\n")); 28249 code = (char *)&opt[IPOPT_OFFSET] - 28250 (char *)ipha; 28251 goto param_prob; 28252 } 28253 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28254 case IPOPT_TS_TSONLY: 28255 off = IPOPT_TS_TIMELEN; 28256 break; 28257 case IPOPT_TS_TSANDADDR: 28258 case IPOPT_TS_PRESPEC: 28259 case IPOPT_TS_PRESPEC_RFC791: 28260 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28261 break; 28262 default: 28263 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28264 (char *)ipha; 28265 goto param_prob; 28266 } 28267 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28268 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28269 /* 28270 * No room and the overflow counter is 15 28271 * already. 28272 */ 28273 goto param_prob; 28274 } 28275 break; 28276 } 28277 } 28278 28279 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28280 return (0); 28281 28282 ip1dbg(("ip_wput_options: error processing IP options.")); 28283 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28284 28285 param_prob: 28286 /* 28287 * Since ip_wput() isn't close to finished, we fill 28288 * in enough of the header for credible error reporting. 28289 */ 28290 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28291 /* Failed */ 28292 freemsg(ipsec_mp); 28293 return (-1); 28294 } 28295 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28296 return (-1); 28297 28298 bad_src_route: 28299 /* 28300 * Since ip_wput() isn't close to finished, we fill 28301 * in enough of the header for credible error reporting. 28302 */ 28303 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28304 /* Failed */ 28305 freemsg(ipsec_mp); 28306 return (-1); 28307 } 28308 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28309 return (-1); 28310 } 28311 28312 /* 28313 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28314 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28315 * thru /etc/system. 28316 */ 28317 #define CONN_MAXDRAINCNT 64 28318 28319 static void 28320 conn_drain_init(ip_stack_t *ipst) 28321 { 28322 int i; 28323 28324 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28325 28326 if ((ipst->ips_conn_drain_list_cnt == 0) || 28327 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28328 /* 28329 * Default value of the number of drainers is the 28330 * number of cpus, subject to maximum of 8 drainers. 28331 */ 28332 if (boot_max_ncpus != -1) 28333 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28334 else 28335 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28336 } 28337 28338 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28339 sizeof (idl_t), KM_SLEEP); 28340 28341 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28342 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28343 MUTEX_DEFAULT, NULL); 28344 } 28345 } 28346 28347 static void 28348 conn_drain_fini(ip_stack_t *ipst) 28349 { 28350 int i; 28351 28352 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28353 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28354 kmem_free(ipst->ips_conn_drain_list, 28355 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28356 ipst->ips_conn_drain_list = NULL; 28357 } 28358 28359 /* 28360 * Note: For an overview of how flowcontrol is handled in IP please see the 28361 * IP Flowcontrol notes at the top of this file. 28362 * 28363 * Flow control has blocked us from proceeding. Insert the given conn in one 28364 * of the conn drain lists. These conn wq's will be qenabled later on when 28365 * STREAMS flow control does a backenable. conn_walk_drain will enable 28366 * the first conn in each of these drain lists. Each of these qenabled conns 28367 * in turn enables the next in the list, after it runs, or when it closes, 28368 * thus sustaining the drain process. 28369 * 28370 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28371 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28372 * running at any time, on a given conn, since there can be only 1 service proc 28373 * running on a queue at any time. 28374 */ 28375 void 28376 conn_drain_insert(conn_t *connp) 28377 { 28378 idl_t *idl; 28379 uint_t index; 28380 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28381 28382 mutex_enter(&connp->conn_lock); 28383 if (connp->conn_state_flags & CONN_CLOSING) { 28384 /* 28385 * The conn is closing as a result of which CONN_CLOSING 28386 * is set. Return. 28387 */ 28388 mutex_exit(&connp->conn_lock); 28389 return; 28390 } else if (connp->conn_idl == NULL) { 28391 /* 28392 * Assign the next drain list round robin. We dont' use 28393 * a lock, and thus it may not be strictly round robin. 28394 * Atomicity of load/stores is enough to make sure that 28395 * conn_drain_list_index is always within bounds. 28396 */ 28397 index = ipst->ips_conn_drain_list_index; 28398 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28399 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28400 index++; 28401 if (index == ipst->ips_conn_drain_list_cnt) 28402 index = 0; 28403 ipst->ips_conn_drain_list_index = index; 28404 } 28405 mutex_exit(&connp->conn_lock); 28406 28407 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28408 if ((connp->conn_drain_prev != NULL) || 28409 (connp->conn_state_flags & CONN_CLOSING)) { 28410 /* 28411 * The conn is already in the drain list, OR 28412 * the conn is closing. We need to check again for 28413 * the closing case again since close can happen 28414 * after we drop the conn_lock, and before we 28415 * acquire the CONN_DRAIN_LIST_LOCK. 28416 */ 28417 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28418 return; 28419 } else { 28420 idl = connp->conn_idl; 28421 } 28422 28423 /* 28424 * The conn is not in the drain list. Insert it at the 28425 * tail of the drain list. The drain list is circular 28426 * and doubly linked. idl_conn points to the 1st element 28427 * in the list. 28428 */ 28429 if (idl->idl_conn == NULL) { 28430 idl->idl_conn = connp; 28431 connp->conn_drain_next = connp; 28432 connp->conn_drain_prev = connp; 28433 } else { 28434 conn_t *head = idl->idl_conn; 28435 28436 connp->conn_drain_next = head; 28437 connp->conn_drain_prev = head->conn_drain_prev; 28438 head->conn_drain_prev->conn_drain_next = connp; 28439 head->conn_drain_prev = connp; 28440 } 28441 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28442 } 28443 28444 /* 28445 * This conn is closing, and we are called from ip_close. OR 28446 * This conn has been serviced by ip_wsrv, and we need to do the tail 28447 * processing. 28448 * If this conn is part of the drain list, we may need to sustain the drain 28449 * process by qenabling the next conn in the drain list. We may also need to 28450 * remove this conn from the list, if it is done. 28451 */ 28452 static void 28453 conn_drain_tail(conn_t *connp, boolean_t closing) 28454 { 28455 idl_t *idl; 28456 28457 /* 28458 * connp->conn_idl is stable at this point, and no lock is needed 28459 * to check it. If we are called from ip_close, close has already 28460 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28461 * called us only because conn_idl is non-null. If we are called thru 28462 * service, conn_idl could be null, but it cannot change because 28463 * service is single-threaded per queue, and there cannot be another 28464 * instance of service trying to call conn_drain_insert on this conn 28465 * now. 28466 */ 28467 ASSERT(!closing || (connp->conn_idl != NULL)); 28468 28469 /* 28470 * If connp->conn_idl is null, the conn has not been inserted into any 28471 * drain list even once since creation of the conn. Just return. 28472 */ 28473 if (connp->conn_idl == NULL) 28474 return; 28475 28476 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28477 28478 if (connp->conn_drain_prev == NULL) { 28479 /* This conn is currently not in the drain list. */ 28480 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28481 return; 28482 } 28483 idl = connp->conn_idl; 28484 if (idl->idl_conn_draining == connp) { 28485 /* 28486 * This conn is the current drainer. If this is the last conn 28487 * in the drain list, we need to do more checks, in the 'if' 28488 * below. Otherwwise we need to just qenable the next conn, 28489 * to sustain the draining, and is handled in the 'else' 28490 * below. 28491 */ 28492 if (connp->conn_drain_next == idl->idl_conn) { 28493 /* 28494 * This conn is the last in this list. This round 28495 * of draining is complete. If idl_repeat is set, 28496 * it means another flow enabling has happened from 28497 * the driver/streams and we need to another round 28498 * of draining. 28499 * If there are more than 2 conns in the drain list, 28500 * do a left rotate by 1, so that all conns except the 28501 * conn at the head move towards the head by 1, and the 28502 * the conn at the head goes to the tail. This attempts 28503 * a more even share for all queues that are being 28504 * drained. 28505 */ 28506 if ((connp->conn_drain_next != connp) && 28507 (idl->idl_conn->conn_drain_next != connp)) { 28508 idl->idl_conn = idl->idl_conn->conn_drain_next; 28509 } 28510 if (idl->idl_repeat) { 28511 qenable(idl->idl_conn->conn_wq); 28512 idl->idl_conn_draining = idl->idl_conn; 28513 idl->idl_repeat = 0; 28514 } else { 28515 idl->idl_conn_draining = NULL; 28516 } 28517 } else { 28518 /* 28519 * If the next queue that we are now qenable'ing, 28520 * is closing, it will remove itself from this list 28521 * and qenable the subsequent queue in ip_close(). 28522 * Serialization is acheived thru idl_lock. 28523 */ 28524 qenable(connp->conn_drain_next->conn_wq); 28525 idl->idl_conn_draining = connp->conn_drain_next; 28526 } 28527 } 28528 if (!connp->conn_did_putbq || closing) { 28529 /* 28530 * Remove ourself from the drain list, if we did not do 28531 * a putbq, or if the conn is closing. 28532 * Note: It is possible that q->q_first is non-null. It means 28533 * that these messages landed after we did a enableok() in 28534 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28535 * service them. 28536 */ 28537 if (connp->conn_drain_next == connp) { 28538 /* Singleton in the list */ 28539 ASSERT(connp->conn_drain_prev == connp); 28540 idl->idl_conn = NULL; 28541 idl->idl_conn_draining = NULL; 28542 } else { 28543 connp->conn_drain_prev->conn_drain_next = 28544 connp->conn_drain_next; 28545 connp->conn_drain_next->conn_drain_prev = 28546 connp->conn_drain_prev; 28547 if (idl->idl_conn == connp) 28548 idl->idl_conn = connp->conn_drain_next; 28549 ASSERT(idl->idl_conn_draining != connp); 28550 28551 } 28552 connp->conn_drain_next = NULL; 28553 connp->conn_drain_prev = NULL; 28554 } 28555 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28556 } 28557 28558 /* 28559 * Write service routine. Shared perimeter entry point. 28560 * ip_wsrv can be called in any of the following ways. 28561 * 1. The device queue's messages has fallen below the low water mark 28562 * and STREAMS has backenabled the ill_wq. We walk thru all the 28563 * the drain lists and backenable the first conn in each list. 28564 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28565 * qenabled non-tcp upper layers. We start dequeing messages and call 28566 * ip_wput for each message. 28567 */ 28568 28569 void 28570 ip_wsrv(queue_t *q) 28571 { 28572 conn_t *connp; 28573 ill_t *ill; 28574 mblk_t *mp; 28575 28576 if (q->q_next) { 28577 ill = (ill_t *)q->q_ptr; 28578 if (ill->ill_state_flags == 0) { 28579 /* 28580 * The device flow control has opened up. 28581 * Walk through conn drain lists and qenable the 28582 * first conn in each list. This makes sense only 28583 * if the stream is fully plumbed and setup. 28584 * Hence the if check above. 28585 */ 28586 ip1dbg(("ip_wsrv: walking\n")); 28587 conn_walk_drain(ill->ill_ipst); 28588 } 28589 return; 28590 } 28591 28592 connp = Q_TO_CONN(q); 28593 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28594 28595 /* 28596 * 1. Set conn_draining flag to signal that service is active. 28597 * 28598 * 2. ip_output determines whether it has been called from service, 28599 * based on the last parameter. If it is IP_WSRV it concludes it 28600 * has been called from service. 28601 * 28602 * 3. Message ordering is preserved by the following logic. 28603 * i. A directly called ip_output (i.e. not thru service) will queue 28604 * the message at the tail, if conn_draining is set (i.e. service 28605 * is running) or if q->q_first is non-null. 28606 * 28607 * ii. If ip_output is called from service, and if ip_output cannot 28608 * putnext due to flow control, it does a putbq. 28609 * 28610 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28611 * (causing an infinite loop). 28612 */ 28613 ASSERT(!connp->conn_did_putbq); 28614 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28615 connp->conn_draining = 1; 28616 noenable(q); 28617 while ((mp = getq(q)) != NULL) { 28618 ASSERT(CONN_Q(q)); 28619 28620 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28621 if (connp->conn_did_putbq) { 28622 /* ip_wput did a putbq */ 28623 break; 28624 } 28625 } 28626 /* 28627 * At this point, a thread coming down from top, calling 28628 * ip_wput, may end up queueing the message. We have not yet 28629 * enabled the queue, so ip_wsrv won't be called again. 28630 * To avoid this race, check q->q_first again (in the loop) 28631 * If the other thread queued the message before we call 28632 * enableok(), we will catch it in the q->q_first check. 28633 * If the other thread queues the message after we call 28634 * enableok(), ip_wsrv will be called again by STREAMS. 28635 */ 28636 connp->conn_draining = 0; 28637 enableok(q); 28638 } 28639 28640 /* Enable the next conn for draining */ 28641 conn_drain_tail(connp, B_FALSE); 28642 28643 connp->conn_did_putbq = 0; 28644 } 28645 28646 /* 28647 * Walk the list of all conn's calling the function provided with the 28648 * specified argument for each. Note that this only walks conn's that 28649 * have been bound. 28650 * Applies to both IPv4 and IPv6. 28651 */ 28652 static void 28653 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28654 { 28655 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28656 ipst->ips_ipcl_udp_fanout_size, 28657 func, arg, zoneid); 28658 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28659 ipst->ips_ipcl_conn_fanout_size, 28660 func, arg, zoneid); 28661 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28662 ipst->ips_ipcl_bind_fanout_size, 28663 func, arg, zoneid); 28664 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28665 IPPROTO_MAX, func, arg, zoneid); 28666 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28667 IPPROTO_MAX, func, arg, zoneid); 28668 } 28669 28670 /* 28671 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28672 * of conns that need to be drained, check if drain is already in progress. 28673 * If so set the idl_repeat bit, indicating that the last conn in the list 28674 * needs to reinitiate the drain once again, for the list. If drain is not 28675 * in progress for the list, initiate the draining, by qenabling the 1st 28676 * conn in the list. The drain is self-sustaining, each qenabled conn will 28677 * in turn qenable the next conn, when it is done/blocked/closing. 28678 */ 28679 static void 28680 conn_walk_drain(ip_stack_t *ipst) 28681 { 28682 int i; 28683 idl_t *idl; 28684 28685 IP_STAT(ipst, ip_conn_walk_drain); 28686 28687 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28688 idl = &ipst->ips_conn_drain_list[i]; 28689 mutex_enter(&idl->idl_lock); 28690 if (idl->idl_conn == NULL) { 28691 mutex_exit(&idl->idl_lock); 28692 continue; 28693 } 28694 /* 28695 * If this list is not being drained currently by 28696 * an ip_wsrv thread, start the process. 28697 */ 28698 if (idl->idl_conn_draining == NULL) { 28699 ASSERT(idl->idl_repeat == 0); 28700 qenable(idl->idl_conn->conn_wq); 28701 idl->idl_conn_draining = idl->idl_conn; 28702 } else { 28703 idl->idl_repeat = 1; 28704 } 28705 mutex_exit(&idl->idl_lock); 28706 } 28707 } 28708 28709 /* 28710 * Walk an conn hash table of `count' buckets, calling func for each entry. 28711 */ 28712 static void 28713 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28714 zoneid_t zoneid) 28715 { 28716 conn_t *connp; 28717 28718 while (count-- > 0) { 28719 mutex_enter(&connfp->connf_lock); 28720 for (connp = connfp->connf_head; connp != NULL; 28721 connp = connp->conn_next) { 28722 if (zoneid == GLOBAL_ZONEID || 28723 zoneid == connp->conn_zoneid) { 28724 CONN_INC_REF(connp); 28725 mutex_exit(&connfp->connf_lock); 28726 (*func)(connp, arg); 28727 mutex_enter(&connfp->connf_lock); 28728 CONN_DEC_REF(connp); 28729 } 28730 } 28731 mutex_exit(&connfp->connf_lock); 28732 connfp++; 28733 } 28734 } 28735 28736 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28737 static void 28738 conn_report1(conn_t *connp, void *mp) 28739 { 28740 char buf1[INET6_ADDRSTRLEN]; 28741 char buf2[INET6_ADDRSTRLEN]; 28742 uint_t print_len, buf_len; 28743 28744 ASSERT(connp != NULL); 28745 28746 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28747 if (buf_len <= 0) 28748 return; 28749 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28750 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28751 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28752 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28753 "%5d %s/%05d %s/%05d\n", 28754 (void *)connp, (void *)CONNP_TO_RQ(connp), 28755 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28756 buf1, connp->conn_lport, 28757 buf2, connp->conn_fport); 28758 if (print_len < buf_len) { 28759 ((mblk_t *)mp)->b_wptr += print_len; 28760 } else { 28761 ((mblk_t *)mp)->b_wptr += buf_len; 28762 } 28763 } 28764 28765 /* 28766 * Named Dispatch routine to produce a formatted report on all conns 28767 * that are listed in one of the fanout tables. 28768 * This report is accessed by using the ndd utility to "get" ND variable 28769 * "ip_conn_status". 28770 */ 28771 /* ARGSUSED */ 28772 static int 28773 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28774 { 28775 conn_t *connp = Q_TO_CONN(q); 28776 28777 (void) mi_mpprintf(mp, 28778 "CONN " MI_COL_HDRPAD_STR 28779 "rfq " MI_COL_HDRPAD_STR 28780 "stq " MI_COL_HDRPAD_STR 28781 " zone local remote"); 28782 28783 /* 28784 * Because of the ndd constraint, at most we can have 64K buffer 28785 * to put in all conn info. So to be more efficient, just 28786 * allocate a 64K buffer here, assuming we need that large buffer. 28787 * This should be OK as only privileged processes can do ndd /dev/ip. 28788 */ 28789 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28790 /* The following may work even if we cannot get a large buf. */ 28791 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28792 return (0); 28793 } 28794 28795 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28796 connp->conn_netstack->netstack_ip); 28797 return (0); 28798 } 28799 28800 /* 28801 * Determine if the ill and multicast aspects of that packets 28802 * "matches" the conn. 28803 */ 28804 boolean_t 28805 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28806 zoneid_t zoneid) 28807 { 28808 ill_t *in_ill; 28809 boolean_t found; 28810 ipif_t *ipif; 28811 ire_t *ire; 28812 ipaddr_t dst, src; 28813 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28814 28815 dst = ipha->ipha_dst; 28816 src = ipha->ipha_src; 28817 28818 /* 28819 * conn_incoming_ill is set by IP_BOUND_IF which limits 28820 * unicast, broadcast and multicast reception to 28821 * conn_incoming_ill. conn_wantpacket itself is called 28822 * only for BROADCAST and multicast. 28823 * 28824 * 1) ip_rput supresses duplicate broadcasts if the ill 28825 * is part of a group. Hence, we should be receiving 28826 * just one copy of broadcast for the whole group. 28827 * Thus, if it is part of the group the packet could 28828 * come on any ill of the group and hence we need a 28829 * match on the group. Otherwise, match on ill should 28830 * be sufficient. 28831 * 28832 * 2) ip_rput does not suppress duplicate multicast packets. 28833 * If there are two interfaces in a ill group and we have 28834 * 2 applications (conns) joined a multicast group G on 28835 * both the interfaces, ilm_lookup_ill filter in ip_rput 28836 * will give us two packets because we join G on both the 28837 * interfaces rather than nominating just one interface 28838 * for receiving multicast like broadcast above. So, 28839 * we have to call ilg_lookup_ill to filter out duplicate 28840 * copies, if ill is part of a group. 28841 */ 28842 in_ill = connp->conn_incoming_ill; 28843 if (in_ill != NULL) { 28844 if (in_ill->ill_group == NULL) { 28845 if (in_ill != ill) 28846 return (B_FALSE); 28847 } else if (in_ill->ill_group != ill->ill_group) { 28848 return (B_FALSE); 28849 } 28850 } 28851 28852 if (!CLASSD(dst)) { 28853 if (IPCL_ZONE_MATCH(connp, zoneid)) 28854 return (B_TRUE); 28855 /* 28856 * The conn is in a different zone; we need to check that this 28857 * broadcast address is configured in the application's zone and 28858 * on one ill in the group. 28859 */ 28860 ipif = ipif_get_next_ipif(NULL, ill); 28861 if (ipif == NULL) 28862 return (B_FALSE); 28863 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28864 connp->conn_zoneid, NULL, 28865 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28866 ipif_refrele(ipif); 28867 if (ire != NULL) { 28868 ire_refrele(ire); 28869 return (B_TRUE); 28870 } else { 28871 return (B_FALSE); 28872 } 28873 } 28874 28875 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28876 connp->conn_zoneid == zoneid) { 28877 /* 28878 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28879 * disabled, therefore we don't dispatch the multicast packet to 28880 * the sending zone. 28881 */ 28882 return (B_FALSE); 28883 } 28884 28885 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28886 /* 28887 * Multicast packet on the loopback interface: we only match 28888 * conns who joined the group in the specified zone. 28889 */ 28890 return (B_FALSE); 28891 } 28892 28893 if (connp->conn_multi_router) { 28894 /* multicast packet and multicast router socket: send up */ 28895 return (B_TRUE); 28896 } 28897 28898 mutex_enter(&connp->conn_lock); 28899 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28900 mutex_exit(&connp->conn_lock); 28901 return (found); 28902 } 28903 28904 /* 28905 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28906 */ 28907 /* ARGSUSED */ 28908 static void 28909 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28910 { 28911 ill_t *ill = (ill_t *)q->q_ptr; 28912 mblk_t *mp1, *mp2; 28913 ipif_t *ipif; 28914 int err = 0; 28915 conn_t *connp = NULL; 28916 ipsq_t *ipsq; 28917 arc_t *arc; 28918 28919 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28920 28921 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28922 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28923 28924 ASSERT(IAM_WRITER_ILL(ill)); 28925 mp2 = mp->b_cont; 28926 mp->b_cont = NULL; 28927 28928 /* 28929 * We have now received the arp bringup completion message 28930 * from ARP. Mark the arp bringup as done. Also if the arp 28931 * stream has already started closing, send up the AR_ARP_CLOSING 28932 * ack now since ARP is waiting in close for this ack. 28933 */ 28934 mutex_enter(&ill->ill_lock); 28935 ill->ill_arp_bringup_pending = 0; 28936 if (ill->ill_arp_closing) { 28937 mutex_exit(&ill->ill_lock); 28938 /* Let's reuse the mp for sending the ack */ 28939 arc = (arc_t *)mp->b_rptr; 28940 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28941 arc->arc_cmd = AR_ARP_CLOSING; 28942 qreply(q, mp); 28943 } else { 28944 mutex_exit(&ill->ill_lock); 28945 freeb(mp); 28946 } 28947 28948 ipsq = ill->ill_phyint->phyint_ipsq; 28949 ipif = ipsq->ipsq_pending_ipif; 28950 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28951 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28952 if (mp1 == NULL) { 28953 /* bringup was aborted by the user */ 28954 freemsg(mp2); 28955 return; 28956 } 28957 28958 /* 28959 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28960 * must have an associated conn_t. Otherwise, we're bringing this 28961 * interface back up as part of handling an asynchronous event (e.g., 28962 * physical address change). 28963 */ 28964 if (ipsq->ipsq_current_ioctl != 0) { 28965 ASSERT(connp != NULL); 28966 q = CONNP_TO_WQ(connp); 28967 } else { 28968 ASSERT(connp == NULL); 28969 q = ill->ill_rq; 28970 } 28971 28972 /* 28973 * If the DL_BIND_REQ fails, it is noted 28974 * in arc_name_offset. 28975 */ 28976 err = *((int *)mp2->b_rptr); 28977 if (err == 0) { 28978 if (ipif->ipif_isv6) { 28979 if ((err = ipif_up_done_v6(ipif)) != 0) 28980 ip0dbg(("ip_arp_done: init failed\n")); 28981 } else { 28982 if ((err = ipif_up_done(ipif)) != 0) 28983 ip0dbg(("ip_arp_done: init failed\n")); 28984 } 28985 } else { 28986 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28987 } 28988 28989 freemsg(mp2); 28990 28991 if ((err == 0) && (ill->ill_up_ipifs)) { 28992 err = ill_up_ipifs(ill, q, mp1); 28993 if (err == EINPROGRESS) 28994 return; 28995 } 28996 28997 if (ill->ill_up_ipifs) 28998 ill_group_cleanup(ill); 28999 29000 /* 29001 * The operation must complete without EINPROGRESS since 29002 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29003 * Otherwise, the operation will be stuck forever in the ipsq. 29004 */ 29005 ASSERT(err != EINPROGRESS); 29006 if (ipsq->ipsq_current_ioctl != 0) 29007 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29008 else 29009 ipsq_current_finish(ipsq); 29010 } 29011 29012 /* Allocate the private structure */ 29013 static int 29014 ip_priv_alloc(void **bufp) 29015 { 29016 void *buf; 29017 29018 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29019 return (ENOMEM); 29020 29021 *bufp = buf; 29022 return (0); 29023 } 29024 29025 /* Function to delete the private structure */ 29026 void 29027 ip_priv_free(void *buf) 29028 { 29029 ASSERT(buf != NULL); 29030 kmem_free(buf, sizeof (ip_priv_t)); 29031 } 29032 29033 /* 29034 * The entry point for IPPF processing. 29035 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29036 * routine just returns. 29037 * 29038 * When called, ip_process generates an ipp_packet_t structure 29039 * which holds the state information for this packet and invokes the 29040 * the classifier (via ipp_packet_process). The classification, depending on 29041 * configured filters, results in a list of actions for this packet. Invoking 29042 * an action may cause the packet to be dropped, in which case the resulting 29043 * mblk (*mpp) is NULL. proc indicates the callout position for 29044 * this packet and ill_index is the interface this packet on or will leave 29045 * on (inbound and outbound resp.). 29046 */ 29047 void 29048 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29049 { 29050 mblk_t *mp; 29051 ip_priv_t *priv; 29052 ipp_action_id_t aid; 29053 int rc = 0; 29054 ipp_packet_t *pp; 29055 #define IP_CLASS "ip" 29056 29057 /* If the classifier is not loaded, return */ 29058 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29059 return; 29060 } 29061 29062 mp = *mpp; 29063 ASSERT(mp != NULL); 29064 29065 /* Allocate the packet structure */ 29066 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29067 if (rc != 0) { 29068 *mpp = NULL; 29069 freemsg(mp); 29070 return; 29071 } 29072 29073 /* Allocate the private structure */ 29074 rc = ip_priv_alloc((void **)&priv); 29075 if (rc != 0) { 29076 *mpp = NULL; 29077 freemsg(mp); 29078 ipp_packet_free(pp); 29079 return; 29080 } 29081 priv->proc = proc; 29082 priv->ill_index = ill_index; 29083 ipp_packet_set_private(pp, priv, ip_priv_free); 29084 ipp_packet_set_data(pp, mp); 29085 29086 /* Invoke the classifier */ 29087 rc = ipp_packet_process(&pp); 29088 if (pp != NULL) { 29089 mp = ipp_packet_get_data(pp); 29090 ipp_packet_free(pp); 29091 if (rc != 0) { 29092 freemsg(mp); 29093 *mpp = NULL; 29094 } 29095 } else { 29096 *mpp = NULL; 29097 } 29098 #undef IP_CLASS 29099 } 29100 29101 /* 29102 * Propagate a multicast group membership operation (add/drop) on 29103 * all the interfaces crossed by the related multirt routes. 29104 * The call is considered successful if the operation succeeds 29105 * on at least one interface. 29106 */ 29107 static int 29108 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29109 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29110 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29111 mblk_t *first_mp) 29112 { 29113 ire_t *ire_gw; 29114 irb_t *irb; 29115 int error = 0; 29116 opt_restart_t *or; 29117 ip_stack_t *ipst = ire->ire_ipst; 29118 29119 irb = ire->ire_bucket; 29120 ASSERT(irb != NULL); 29121 29122 ASSERT(DB_TYPE(first_mp) == M_CTL); 29123 29124 or = (opt_restart_t *)first_mp->b_rptr; 29125 IRB_REFHOLD(irb); 29126 for (; ire != NULL; ire = ire->ire_next) { 29127 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29128 continue; 29129 if (ire->ire_addr != group) 29130 continue; 29131 29132 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29133 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29134 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29135 /* No resolver exists for the gateway; skip this ire. */ 29136 if (ire_gw == NULL) 29137 continue; 29138 29139 /* 29140 * This function can return EINPROGRESS. If so the operation 29141 * will be restarted from ip_restart_optmgmt which will 29142 * call ip_opt_set and option processing will restart for 29143 * this option. So we may end up calling 'fn' more than once. 29144 * This requires that 'fn' is idempotent except for the 29145 * return value. The operation is considered a success if 29146 * it succeeds at least once on any one interface. 29147 */ 29148 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29149 NULL, fmode, src, first_mp); 29150 if (error == 0) 29151 or->or_private = CGTP_MCAST_SUCCESS; 29152 29153 if (ip_debug > 0) { 29154 ulong_t off; 29155 char *ksym; 29156 ksym = kobj_getsymname((uintptr_t)fn, &off); 29157 ip2dbg(("ip_multirt_apply_membership: " 29158 "called %s, multirt group 0x%08x via itf 0x%08x, " 29159 "error %d [success %u]\n", 29160 ksym ? ksym : "?", 29161 ntohl(group), ntohl(ire_gw->ire_src_addr), 29162 error, or->or_private)); 29163 } 29164 29165 ire_refrele(ire_gw); 29166 if (error == EINPROGRESS) { 29167 IRB_REFRELE(irb); 29168 return (error); 29169 } 29170 } 29171 IRB_REFRELE(irb); 29172 /* 29173 * Consider the call as successful if we succeeded on at least 29174 * one interface. Otherwise, return the last encountered error. 29175 */ 29176 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29177 } 29178 29179 29180 /* 29181 * Issue a warning regarding a route crossing an interface with an 29182 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29183 * amount of time is logged. 29184 */ 29185 static void 29186 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29187 { 29188 hrtime_t current = gethrtime(); 29189 char buf[INET_ADDRSTRLEN]; 29190 ip_stack_t *ipst = ire->ire_ipst; 29191 29192 /* Convert interval in ms to hrtime in ns */ 29193 if (ipst->ips_multirt_bad_mtu_last_time + 29194 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29195 current) { 29196 cmn_err(CE_WARN, "ip: ignoring multiroute " 29197 "to %s, incorrect MTU %u (expected %u)\n", 29198 ip_dot_addr(ire->ire_addr, buf), 29199 ire->ire_max_frag, max_frag); 29200 29201 ipst->ips_multirt_bad_mtu_last_time = current; 29202 } 29203 } 29204 29205 29206 /* 29207 * Get the CGTP (multirouting) filtering status. 29208 * If 0, the CGTP hooks are transparent. 29209 */ 29210 /* ARGSUSED */ 29211 static int 29212 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29213 { 29214 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29215 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29216 29217 /* 29218 * Only applies to the shared stack since the filter_ops 29219 * do not carry an ip_stack_t or zoneid. 29220 */ 29221 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29222 return (ENOTSUP); 29223 29224 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29225 return (0); 29226 } 29227 29228 29229 /* 29230 * Set the CGTP (multirouting) filtering status. 29231 * If the status is changed from active to transparent 29232 * or from transparent to active, forward the new status 29233 * to the filtering module (if loaded). 29234 */ 29235 /* ARGSUSED */ 29236 static int 29237 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29238 cred_t *ioc_cr) 29239 { 29240 long new_value; 29241 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29242 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29243 29244 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29245 return (EPERM); 29246 29247 /* 29248 * Only applies to the shared stack since the filter_ops 29249 * do not carry an ip_stack_t or zoneid. 29250 */ 29251 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29252 return (ENOTSUP); 29253 29254 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29255 new_value < 0 || new_value > 1) { 29256 return (EINVAL); 29257 } 29258 29259 /* 29260 * Do not enable CGTP filtering - thus preventing the hooks 29261 * from being invoked - if the version number of the 29262 * filtering module hooks does not match. 29263 */ 29264 if ((ip_cgtp_filter_ops != NULL) && 29265 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29266 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29267 "(module hooks version %d, expecting %d)\n", 29268 ip_cgtp_filter_ops->cfo_filter_rev, 29269 CGTP_FILTER_REV); 29270 return (ENOTSUP); 29271 } 29272 29273 if ((!*ip_cgtp_filter_value) && new_value) { 29274 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29275 ip_cgtp_filter_ops == NULL ? 29276 " (module not loaded)" : ""); 29277 } 29278 if (*ip_cgtp_filter_value && (!new_value)) { 29279 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29280 ip_cgtp_filter_ops == NULL ? 29281 " (module not loaded)" : ""); 29282 } 29283 29284 if (ip_cgtp_filter_ops != NULL) { 29285 int res; 29286 29287 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29288 if (res) 29289 return (res); 29290 } 29291 29292 *ip_cgtp_filter_value = (boolean_t)new_value; 29293 29294 return (0); 29295 } 29296 29297 29298 /* 29299 * Return the expected CGTP hooks version number. 29300 */ 29301 int 29302 ip_cgtp_filter_supported(void) 29303 { 29304 ip_stack_t *ipst; 29305 int ret; 29306 29307 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29308 if (ipst == NULL) 29309 return (-1); 29310 ret = ip_cgtp_filter_rev; 29311 netstack_rele(ipst->ips_netstack); 29312 return (ret); 29313 } 29314 29315 29316 /* 29317 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29318 * or by invoking this function. In the first case, the version number 29319 * of the registered structure is checked at hooks activation time 29320 * in ip_cgtp_filter_set(). 29321 * 29322 * Only applies to the shared stack since the filter_ops 29323 * do not carry an ip_stack_t or zoneid. 29324 */ 29325 int 29326 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29327 { 29328 ip_stack_t *ipst; 29329 29330 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29331 return (ENOTSUP); 29332 29333 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29334 if (ipst == NULL) 29335 return (EINVAL); 29336 29337 ip_cgtp_filter_ops = ops; 29338 netstack_rele(ipst->ips_netstack); 29339 return (0); 29340 } 29341 29342 static squeue_func_t 29343 ip_squeue_switch(int val) 29344 { 29345 squeue_func_t rval = squeue_fill; 29346 29347 switch (val) { 29348 case IP_SQUEUE_ENTER_NODRAIN: 29349 rval = squeue_enter_nodrain; 29350 break; 29351 case IP_SQUEUE_ENTER: 29352 rval = squeue_enter; 29353 break; 29354 default: 29355 break; 29356 } 29357 return (rval); 29358 } 29359 29360 /* ARGSUSED */ 29361 static int 29362 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29363 caddr_t addr, cred_t *cr) 29364 { 29365 int *v = (int *)addr; 29366 long new_value; 29367 29368 if (secpolicy_net_config(cr, B_FALSE) != 0) 29369 return (EPERM); 29370 29371 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29372 return (EINVAL); 29373 29374 ip_input_proc = ip_squeue_switch(new_value); 29375 *v = new_value; 29376 return (0); 29377 } 29378 29379 /* ARGSUSED */ 29380 static int 29381 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29382 caddr_t addr, cred_t *cr) 29383 { 29384 int *v = (int *)addr; 29385 long new_value; 29386 29387 if (secpolicy_net_config(cr, B_FALSE) != 0) 29388 return (EPERM); 29389 29390 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29391 return (EINVAL); 29392 29393 *v = new_value; 29394 return (0); 29395 } 29396 29397 /* 29398 * Handle changes to ipmp_hook_emulation ndd variable. 29399 * Need to update phyint_hook_ifindex. 29400 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29401 */ 29402 static void 29403 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29404 { 29405 phyint_t *phyi; 29406 phyint_t *phyi_tmp; 29407 char *groupname; 29408 int namelen; 29409 ill_t *ill; 29410 boolean_t new_group; 29411 29412 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29413 /* 29414 * Group indicies are stored in the phyint - a common structure 29415 * to both IPv4 and IPv6. 29416 */ 29417 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29418 for (; phyi != NULL; 29419 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29420 phyi, AVL_AFTER)) { 29421 /* Ignore the ones that do not have a group */ 29422 if (phyi->phyint_groupname_len == 0) 29423 continue; 29424 29425 /* 29426 * Look for other phyint in group. 29427 * Clear name/namelen so the lookup doesn't find ourselves. 29428 */ 29429 namelen = phyi->phyint_groupname_len; 29430 groupname = phyi->phyint_groupname; 29431 phyi->phyint_groupname_len = 0; 29432 phyi->phyint_groupname = NULL; 29433 29434 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29435 /* Restore */ 29436 phyi->phyint_groupname_len = namelen; 29437 phyi->phyint_groupname = groupname; 29438 29439 new_group = B_FALSE; 29440 if (ipst->ips_ipmp_hook_emulation) { 29441 /* 29442 * If the group already exists and has already 29443 * been assigned a group ifindex, we use the existing 29444 * group_ifindex, otherwise we pick a new group_ifindex 29445 * here. 29446 */ 29447 if (phyi_tmp != NULL && 29448 phyi_tmp->phyint_group_ifindex != 0) { 29449 phyi->phyint_group_ifindex = 29450 phyi_tmp->phyint_group_ifindex; 29451 } else { 29452 /* XXX We need a recovery strategy here. */ 29453 if (!ip_assign_ifindex( 29454 &phyi->phyint_group_ifindex, ipst)) 29455 cmn_err(CE_PANIC, 29456 "ip_assign_ifindex() failed"); 29457 new_group = B_TRUE; 29458 } 29459 } else { 29460 phyi->phyint_group_ifindex = 0; 29461 } 29462 if (ipst->ips_ipmp_hook_emulation) 29463 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29464 else 29465 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29466 29467 /* 29468 * For IP Filter to find out the relationship between 29469 * names and interface indicies, we need to generate 29470 * a NE_PLUMB event when a new group can appear. 29471 * We always generate events when a new interface appears 29472 * (even when ipmp_hook_emulation is set) so there 29473 * is no need to generate NE_PLUMB events when 29474 * ipmp_hook_emulation is turned off. 29475 * And since it isn't critical for IP Filter to get 29476 * the NE_UNPLUMB events we skip those here. 29477 */ 29478 if (new_group) { 29479 /* 29480 * First phyint in group - generate group PLUMB event. 29481 * Since we are not running inside the ipsq we do 29482 * the dispatch immediately. 29483 */ 29484 if (phyi->phyint_illv4 != NULL) 29485 ill = phyi->phyint_illv4; 29486 else 29487 ill = phyi->phyint_illv6; 29488 29489 if (ill != NULL) { 29490 mutex_enter(&ill->ill_lock); 29491 ill_nic_info_plumb(ill, B_TRUE); 29492 ill_nic_info_dispatch(ill); 29493 mutex_exit(&ill->ill_lock); 29494 } 29495 } 29496 } 29497 rw_exit(&ipst->ips_ill_g_lock); 29498 } 29499 29500 /* ARGSUSED */ 29501 static int 29502 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29503 caddr_t addr, cred_t *cr) 29504 { 29505 int *v = (int *)addr; 29506 long new_value; 29507 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29508 29509 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29510 return (EINVAL); 29511 29512 if (*v != new_value) { 29513 *v = new_value; 29514 ipmp_hook_emulation_changed(ipst); 29515 } 29516 return (0); 29517 } 29518 29519 static void * 29520 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29521 { 29522 kstat_t *ksp; 29523 29524 ip_stat_t template = { 29525 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29526 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29527 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29528 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29529 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29530 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29531 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29532 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29533 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29534 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29535 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29536 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29537 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29538 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29539 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29540 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29541 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29542 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29543 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29544 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29545 { "ip_opt", KSTAT_DATA_UINT64 }, 29546 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29547 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29548 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29549 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29550 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29551 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29552 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29553 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29554 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29555 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29556 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29557 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29558 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29559 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29560 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29561 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29562 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29563 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29564 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29565 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29566 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29567 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29568 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29569 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29570 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29571 }; 29572 29573 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29574 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29575 KSTAT_FLAG_VIRTUAL, stackid); 29576 29577 if (ksp == NULL) 29578 return (NULL); 29579 29580 bcopy(&template, ip_statisticsp, sizeof (template)); 29581 ksp->ks_data = (void *)ip_statisticsp; 29582 ksp->ks_private = (void *)(uintptr_t)stackid; 29583 29584 kstat_install(ksp); 29585 return (ksp); 29586 } 29587 29588 static void 29589 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29590 { 29591 if (ksp != NULL) { 29592 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29593 kstat_delete_netstack(ksp, stackid); 29594 } 29595 } 29596 29597 static void * 29598 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29599 { 29600 kstat_t *ksp; 29601 29602 ip_named_kstat_t template = { 29603 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29604 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29605 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29606 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29607 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29608 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29609 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29610 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29611 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29612 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29613 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29614 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29615 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29616 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29617 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29618 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29619 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29620 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29621 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29622 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29623 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29624 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29625 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29626 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29627 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29628 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29629 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29630 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29631 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29632 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29633 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29634 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29635 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29636 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29637 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29638 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29639 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29640 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29641 }; 29642 29643 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29644 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29645 if (ksp == NULL || ksp->ks_data == NULL) 29646 return (NULL); 29647 29648 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29649 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29650 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29651 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29652 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29653 29654 template.netToMediaEntrySize.value.i32 = 29655 sizeof (mib2_ipNetToMediaEntry_t); 29656 29657 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29658 29659 bcopy(&template, ksp->ks_data, sizeof (template)); 29660 ksp->ks_update = ip_kstat_update; 29661 ksp->ks_private = (void *)(uintptr_t)stackid; 29662 29663 kstat_install(ksp); 29664 return (ksp); 29665 } 29666 29667 static void 29668 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29669 { 29670 if (ksp != NULL) { 29671 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29672 kstat_delete_netstack(ksp, stackid); 29673 } 29674 } 29675 29676 static int 29677 ip_kstat_update(kstat_t *kp, int rw) 29678 { 29679 ip_named_kstat_t *ipkp; 29680 mib2_ipIfStatsEntry_t ipmib; 29681 ill_walk_context_t ctx; 29682 ill_t *ill; 29683 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29684 netstack_t *ns; 29685 ip_stack_t *ipst; 29686 29687 if (kp == NULL || kp->ks_data == NULL) 29688 return (EIO); 29689 29690 if (rw == KSTAT_WRITE) 29691 return (EACCES); 29692 29693 ns = netstack_find_by_stackid(stackid); 29694 if (ns == NULL) 29695 return (-1); 29696 ipst = ns->netstack_ip; 29697 if (ipst == NULL) { 29698 netstack_rele(ns); 29699 return (-1); 29700 } 29701 ipkp = (ip_named_kstat_t *)kp->ks_data; 29702 29703 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29704 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29705 ill = ILL_START_WALK_V4(&ctx, ipst); 29706 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29707 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29708 rw_exit(&ipst->ips_ill_g_lock); 29709 29710 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29711 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29712 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29713 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29714 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29715 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29716 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29717 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29718 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29719 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29720 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29721 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29722 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29723 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29724 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29725 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29726 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29727 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29728 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29729 29730 ipkp->routingDiscards.value.ui32 = 0; 29731 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29732 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29733 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29734 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29735 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29736 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29737 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29738 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29739 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29740 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29741 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29742 29743 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29744 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29745 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29746 29747 netstack_rele(ns); 29748 29749 return (0); 29750 } 29751 29752 static void * 29753 icmp_kstat_init(netstackid_t stackid) 29754 { 29755 kstat_t *ksp; 29756 29757 icmp_named_kstat_t template = { 29758 { "inMsgs", KSTAT_DATA_UINT32 }, 29759 { "inErrors", KSTAT_DATA_UINT32 }, 29760 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29761 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29762 { "inParmProbs", KSTAT_DATA_UINT32 }, 29763 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29764 { "inRedirects", KSTAT_DATA_UINT32 }, 29765 { "inEchos", KSTAT_DATA_UINT32 }, 29766 { "inEchoReps", KSTAT_DATA_UINT32 }, 29767 { "inTimestamps", KSTAT_DATA_UINT32 }, 29768 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29769 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29770 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29771 { "outMsgs", KSTAT_DATA_UINT32 }, 29772 { "outErrors", KSTAT_DATA_UINT32 }, 29773 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29774 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29775 { "outParmProbs", KSTAT_DATA_UINT32 }, 29776 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29777 { "outRedirects", KSTAT_DATA_UINT32 }, 29778 { "outEchos", KSTAT_DATA_UINT32 }, 29779 { "outEchoReps", KSTAT_DATA_UINT32 }, 29780 { "outTimestamps", KSTAT_DATA_UINT32 }, 29781 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29782 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29783 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29784 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29785 { "inUnknowns", KSTAT_DATA_UINT32 }, 29786 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29787 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29788 { "outDrops", KSTAT_DATA_UINT32 }, 29789 { "inOverFlows", KSTAT_DATA_UINT32 }, 29790 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29791 }; 29792 29793 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29794 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29795 if (ksp == NULL || ksp->ks_data == NULL) 29796 return (NULL); 29797 29798 bcopy(&template, ksp->ks_data, sizeof (template)); 29799 29800 ksp->ks_update = icmp_kstat_update; 29801 ksp->ks_private = (void *)(uintptr_t)stackid; 29802 29803 kstat_install(ksp); 29804 return (ksp); 29805 } 29806 29807 static void 29808 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29809 { 29810 if (ksp != NULL) { 29811 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29812 kstat_delete_netstack(ksp, stackid); 29813 } 29814 } 29815 29816 static int 29817 icmp_kstat_update(kstat_t *kp, int rw) 29818 { 29819 icmp_named_kstat_t *icmpkp; 29820 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29821 netstack_t *ns; 29822 ip_stack_t *ipst; 29823 29824 if ((kp == NULL) || (kp->ks_data == NULL)) 29825 return (EIO); 29826 29827 if (rw == KSTAT_WRITE) 29828 return (EACCES); 29829 29830 ns = netstack_find_by_stackid(stackid); 29831 if (ns == NULL) 29832 return (-1); 29833 ipst = ns->netstack_ip; 29834 if (ipst == NULL) { 29835 netstack_rele(ns); 29836 return (-1); 29837 } 29838 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29839 29840 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29841 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29842 icmpkp->inDestUnreachs.value.ui32 = 29843 ipst->ips_icmp_mib.icmpInDestUnreachs; 29844 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29845 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29846 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29847 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29848 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29849 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29850 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29851 icmpkp->inTimestampReps.value.ui32 = 29852 ipst->ips_icmp_mib.icmpInTimestampReps; 29853 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29854 icmpkp->inAddrMaskReps.value.ui32 = 29855 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29856 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29857 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29858 icmpkp->outDestUnreachs.value.ui32 = 29859 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29860 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29861 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29862 icmpkp->outSrcQuenchs.value.ui32 = 29863 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29864 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29865 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29866 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29867 icmpkp->outTimestamps.value.ui32 = 29868 ipst->ips_icmp_mib.icmpOutTimestamps; 29869 icmpkp->outTimestampReps.value.ui32 = 29870 ipst->ips_icmp_mib.icmpOutTimestampReps; 29871 icmpkp->outAddrMasks.value.ui32 = 29872 ipst->ips_icmp_mib.icmpOutAddrMasks; 29873 icmpkp->outAddrMaskReps.value.ui32 = 29874 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29875 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29876 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29877 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29878 icmpkp->outFragNeeded.value.ui32 = 29879 ipst->ips_icmp_mib.icmpOutFragNeeded; 29880 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29881 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29882 icmpkp->inBadRedirects.value.ui32 = 29883 ipst->ips_icmp_mib.icmpInBadRedirects; 29884 29885 netstack_rele(ns); 29886 return (0); 29887 } 29888 29889 /* 29890 * This is the fanout function for raw socket opened for SCTP. Note 29891 * that it is called after SCTP checks that there is no socket which 29892 * wants a packet. Then before SCTP handles this out of the blue packet, 29893 * this function is called to see if there is any raw socket for SCTP. 29894 * If there is and it is bound to the correct address, the packet will 29895 * be sent to that socket. Note that only one raw socket can be bound to 29896 * a port. This is assured in ipcl_sctp_hash_insert(); 29897 */ 29898 void 29899 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29900 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29901 zoneid_t zoneid) 29902 { 29903 conn_t *connp; 29904 queue_t *rq; 29905 mblk_t *first_mp; 29906 boolean_t secure; 29907 ip6_t *ip6h; 29908 ip_stack_t *ipst = recv_ill->ill_ipst; 29909 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29910 29911 first_mp = mp; 29912 if (mctl_present) { 29913 mp = first_mp->b_cont; 29914 secure = ipsec_in_is_secure(first_mp); 29915 ASSERT(mp != NULL); 29916 } else { 29917 secure = B_FALSE; 29918 } 29919 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29920 29921 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29922 if (connp == NULL) { 29923 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29924 return; 29925 } 29926 rq = connp->conn_rq; 29927 if (!canputnext(rq)) { 29928 CONN_DEC_REF(connp); 29929 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29930 freemsg(first_mp); 29931 return; 29932 } 29933 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29934 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29935 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29936 (isv4 ? ipha : NULL), ip6h, mctl_present); 29937 if (first_mp == NULL) { 29938 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29939 CONN_DEC_REF(connp); 29940 return; 29941 } 29942 } 29943 /* 29944 * We probably should not send M_CTL message up to 29945 * raw socket. 29946 */ 29947 if (mctl_present) 29948 freeb(first_mp); 29949 29950 /* Initiate IPPF processing here if needed. */ 29951 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29952 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29953 ip_process(IPP_LOCAL_IN, &mp, 29954 recv_ill->ill_phyint->phyint_ifindex); 29955 if (mp == NULL) { 29956 CONN_DEC_REF(connp); 29957 return; 29958 } 29959 } 29960 29961 if (connp->conn_recvif || connp->conn_recvslla || 29962 ((connp->conn_ip_recvpktinfo || 29963 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29964 (flags & IP_FF_IPINFO))) { 29965 int in_flags = 0; 29966 29967 /* 29968 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29969 * IPF_RECVIF. 29970 */ 29971 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29972 in_flags = IPF_RECVIF; 29973 } 29974 if (connp->conn_recvslla) { 29975 in_flags |= IPF_RECVSLLA; 29976 } 29977 if (isv4) { 29978 mp = ip_add_info(mp, recv_ill, in_flags, 29979 IPCL_ZONEID(connp), ipst); 29980 } else { 29981 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29982 if (mp == NULL) { 29983 BUMP_MIB(recv_ill->ill_ip_mib, 29984 ipIfStatsInDiscards); 29985 CONN_DEC_REF(connp); 29986 return; 29987 } 29988 } 29989 } 29990 29991 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29992 /* 29993 * We are sending the IPSEC_IN message also up. Refer 29994 * to comments above this function. 29995 */ 29996 putnext(rq, mp); 29997 CONN_DEC_REF(connp); 29998 } 29999 30000 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30001 { \ 30002 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30003 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30004 } 30005 /* 30006 * This function should be called only if all packet processing 30007 * including fragmentation is complete. Callers of this function 30008 * must set mp->b_prev to one of these values: 30009 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30010 * prior to handing over the mp as first argument to this function. 30011 * 30012 * If the ire passed by caller is incomplete, this function 30013 * queues the packet and if necessary, sends ARP request and bails. 30014 * If the ire passed is fully resolved, we simply prepend 30015 * the link-layer header to the packet, do ipsec hw acceleration 30016 * work if necessary, and send the packet out on the wire. 30017 * 30018 * NOTE: IPSEC will only call this function with fully resolved 30019 * ires if hw acceleration is involved. 30020 * TODO list : 30021 * a Handle M_MULTIDATA so that 30022 * tcp_multisend->tcp_multisend_data can 30023 * call ip_xmit_v4 directly 30024 * b Handle post-ARP work for fragments so that 30025 * ip_wput_frag can call this function. 30026 */ 30027 ipxmit_state_t 30028 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30029 { 30030 nce_t *arpce; 30031 queue_t *q; 30032 int ill_index; 30033 mblk_t *nxt_mp, *first_mp; 30034 boolean_t xmit_drop = B_FALSE; 30035 ip_proc_t proc; 30036 ill_t *out_ill; 30037 int pkt_len; 30038 30039 arpce = ire->ire_nce; 30040 ASSERT(arpce != NULL); 30041 30042 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30043 30044 mutex_enter(&arpce->nce_lock); 30045 switch (arpce->nce_state) { 30046 case ND_REACHABLE: 30047 /* If there are other queued packets, queue this packet */ 30048 if (arpce->nce_qd_mp != NULL) { 30049 if (mp != NULL) 30050 nce_queue_mp_common(arpce, mp, B_FALSE); 30051 mp = arpce->nce_qd_mp; 30052 } 30053 arpce->nce_qd_mp = NULL; 30054 mutex_exit(&arpce->nce_lock); 30055 30056 /* 30057 * Flush the queue. In the common case, where the 30058 * ARP is already resolved, it will go through the 30059 * while loop only once. 30060 */ 30061 while (mp != NULL) { 30062 30063 nxt_mp = mp->b_next; 30064 mp->b_next = NULL; 30065 ASSERT(mp->b_datap->db_type != M_CTL); 30066 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30067 /* 30068 * This info is needed for IPQOS to do COS marking 30069 * in ip_wput_attach_llhdr->ip_process. 30070 */ 30071 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30072 mp->b_prev = NULL; 30073 30074 /* set up ill index for outbound qos processing */ 30075 out_ill = ire->ire_ipif->ipif_ill; 30076 ill_index = out_ill->ill_phyint->phyint_ifindex; 30077 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30078 ill_index); 30079 if (first_mp == NULL) { 30080 xmit_drop = B_TRUE; 30081 BUMP_MIB(out_ill->ill_ip_mib, 30082 ipIfStatsOutDiscards); 30083 goto next_mp; 30084 } 30085 /* non-ipsec hw accel case */ 30086 if (io == NULL || !io->ipsec_out_accelerated) { 30087 /* send it */ 30088 q = ire->ire_stq; 30089 if (proc == IPP_FWD_OUT) { 30090 UPDATE_IB_PKT_COUNT(ire); 30091 } else { 30092 UPDATE_OB_PKT_COUNT(ire); 30093 } 30094 ire->ire_last_used_time = lbolt; 30095 30096 if (flow_ctl_enabled || canputnext(q)) { 30097 if (proc == IPP_FWD_OUT) { 30098 30099 BUMP_MIB(out_ill->ill_ip_mib, 30100 ipIfStatsHCOutForwDatagrams); 30101 30102 } 30103 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30104 pkt_len); 30105 30106 putnext(q, first_mp); 30107 } else { 30108 BUMP_MIB(out_ill->ill_ip_mib, 30109 ipIfStatsOutDiscards); 30110 xmit_drop = B_TRUE; 30111 freemsg(first_mp); 30112 } 30113 } else { 30114 /* 30115 * Safety Pup says: make sure this 30116 * is going to the right interface! 30117 */ 30118 ill_t *ill1 = 30119 (ill_t *)ire->ire_stq->q_ptr; 30120 int ifindex = 30121 ill1->ill_phyint->phyint_ifindex; 30122 if (ifindex != 30123 io->ipsec_out_capab_ill_index) { 30124 xmit_drop = B_TRUE; 30125 freemsg(mp); 30126 } else { 30127 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30128 pkt_len); 30129 ipsec_hw_putnext(ire->ire_stq, mp); 30130 } 30131 } 30132 next_mp: 30133 mp = nxt_mp; 30134 } /* while (mp != NULL) */ 30135 if (xmit_drop) 30136 return (SEND_FAILED); 30137 else 30138 return (SEND_PASSED); 30139 30140 case ND_INITIAL: 30141 case ND_INCOMPLETE: 30142 30143 /* 30144 * While we do send off packets to dests that 30145 * use fully-resolved CGTP routes, we do not 30146 * handle unresolved CGTP routes. 30147 */ 30148 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30149 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30150 30151 if (mp != NULL) { 30152 /* queue the packet */ 30153 nce_queue_mp_common(arpce, mp, B_FALSE); 30154 } 30155 30156 if (arpce->nce_state == ND_INCOMPLETE) { 30157 mutex_exit(&arpce->nce_lock); 30158 DTRACE_PROBE3(ip__xmit__incomplete, 30159 (ire_t *), ire, (mblk_t *), mp, 30160 (ipsec_out_t *), io); 30161 return (LOOKUP_IN_PROGRESS); 30162 } 30163 30164 arpce->nce_state = ND_INCOMPLETE; 30165 mutex_exit(&arpce->nce_lock); 30166 /* 30167 * Note that ire_add() (called from ire_forward()) 30168 * holds a ref on the ire until ARP is completed. 30169 */ 30170 30171 ire_arpresolve(ire, ire_to_ill(ire)); 30172 return (LOOKUP_IN_PROGRESS); 30173 default: 30174 ASSERT(0); 30175 mutex_exit(&arpce->nce_lock); 30176 return (LLHDR_RESLV_FAILED); 30177 } 30178 } 30179 30180 #undef UPDATE_IP_MIB_OB_COUNTERS 30181 30182 /* 30183 * Return B_TRUE if the buffers differ in length or content. 30184 * This is used for comparing extension header buffers. 30185 * Note that an extension header would be declared different 30186 * even if all that changed was the next header value in that header i.e. 30187 * what really changed is the next extension header. 30188 */ 30189 boolean_t 30190 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30191 uint_t blen) 30192 { 30193 if (!b_valid) 30194 blen = 0; 30195 30196 if (alen != blen) 30197 return (B_TRUE); 30198 if (alen == 0) 30199 return (B_FALSE); /* Both zero length */ 30200 return (bcmp(abuf, bbuf, alen)); 30201 } 30202 30203 /* 30204 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30205 * Return B_FALSE if memory allocation fails - don't change any state! 30206 */ 30207 boolean_t 30208 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30209 const void *src, uint_t srclen) 30210 { 30211 void *dst; 30212 30213 if (!src_valid) 30214 srclen = 0; 30215 30216 ASSERT(*dstlenp == 0); 30217 if (src != NULL && srclen != 0) { 30218 dst = mi_alloc(srclen, BPRI_MED); 30219 if (dst == NULL) 30220 return (B_FALSE); 30221 } else { 30222 dst = NULL; 30223 } 30224 if (*dstp != NULL) 30225 mi_free(*dstp); 30226 *dstp = dst; 30227 *dstlenp = dst == NULL ? 0 : srclen; 30228 return (B_TRUE); 30229 } 30230 30231 /* 30232 * Replace what is in *dst, *dstlen with the source. 30233 * Assumes ip_allocbuf has already been called. 30234 */ 30235 void 30236 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30237 const void *src, uint_t srclen) 30238 { 30239 if (!src_valid) 30240 srclen = 0; 30241 30242 ASSERT(*dstlenp == srclen); 30243 if (src != NULL && srclen != 0) 30244 bcopy(src, *dstp, srclen); 30245 } 30246 30247 /* 30248 * Free the storage pointed to by the members of an ip6_pkt_t. 30249 */ 30250 void 30251 ip6_pkt_free(ip6_pkt_t *ipp) 30252 { 30253 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30254 30255 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30256 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30257 ipp->ipp_hopopts = NULL; 30258 ipp->ipp_hopoptslen = 0; 30259 } 30260 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30261 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30262 ipp->ipp_rtdstopts = NULL; 30263 ipp->ipp_rtdstoptslen = 0; 30264 } 30265 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30266 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30267 ipp->ipp_dstopts = NULL; 30268 ipp->ipp_dstoptslen = 0; 30269 } 30270 if (ipp->ipp_fields & IPPF_RTHDR) { 30271 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30272 ipp->ipp_rthdr = NULL; 30273 ipp->ipp_rthdrlen = 0; 30274 } 30275 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30276 IPPF_RTHDR); 30277 } 30278