1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * IPsec scenarios 357 * 358 * ipsa_lock -> ill_g_lock -> ill_lock 359 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ipsa_lock 361 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 362 * 363 * Trusted Solaris scenarios 364 * 365 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 366 * igsa_lock -> gcdb_lock 367 * gcgrp_rwlock -> ire_lock 368 * gcgrp_rwlock -> gcdb_lock 369 * 370 * 371 * Routing/forwarding table locking notes: 372 * 373 * Lock acquisition order: Radix tree lock, irb_lock. 374 * Requirements: 375 * i. Walker must not hold any locks during the walker callback. 376 * ii Walker must not see a truncated tree during the walk because of any node 377 * deletion. 378 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 379 * in many places in the code to walk the irb list. Thus even if all the 380 * ires in a bucket have been deleted, we still can't free the radix node 381 * until the ires have actually been inactive'd (freed). 382 * 383 * Tree traversal - Need to hold the global tree lock in read mode. 384 * Before dropping the global tree lock, need to either increment the ire_refcnt 385 * to ensure that the radix node can't be deleted. 386 * 387 * Tree add - Need to hold the global tree lock in write mode to add a 388 * radix node. To prevent the node from being deleted, increment the 389 * irb_refcnt, after the node is added to the tree. The ire itself is 390 * added later while holding the irb_lock, but not the tree lock. 391 * 392 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 393 * All associated ires must be inactive (i.e. freed), and irb_refcnt 394 * must be zero. 395 * 396 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 397 * global tree lock (read mode) for traversal. 398 * 399 * IPsec notes : 400 * 401 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 402 * in front of the actual packet. For outbound datagrams, the M_CTL 403 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 404 * information used by the IPsec code for applying the right level of 405 * protection. The information initialized by IP in the ipsec_out_t 406 * is determined by the per-socket policy or global policy in the system. 407 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 408 * ipsec_info.h) which starts out with nothing in it. It gets filled 409 * with the right information if it goes through the AH/ESP code, which 410 * happens if the incoming packet is secure. The information initialized 411 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 412 * the policy requirements needed by per-socket policy or global policy 413 * is met or not. 414 * 415 * If there is both per-socket policy (set using setsockopt) and there 416 * is also global policy match for the 5 tuples of the socket, 417 * ipsec_override_policy() makes the decision of which one to use. 418 * 419 * For fully connected sockets i.e dst, src [addr, port] is known, 420 * conn_policy_cached is set indicating that policy has been cached. 421 * conn_in_enforce_policy may or may not be set depending on whether 422 * there is a global policy match or per-socket policy match. 423 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 424 * Once the right policy is set on the conn_t, policy cannot change for 425 * this socket. This makes life simpler for TCP (UDP ?) where 426 * re-transmissions go out with the same policy. For symmetry, policy 427 * is cached for fully connected UDP sockets also. Thus if policy is cached, 428 * it also implies that policy is latched i.e policy cannot change 429 * on these sockets. As we have the right policy on the conn, we don't 430 * have to lookup global policy for every outbound and inbound datagram 431 * and thus serving as an optimization. Note that a global policy change 432 * does not affect fully connected sockets if they have policy. If fully 433 * connected sockets did not have any policy associated with it, global 434 * policy change may affect them. 435 * 436 * IP Flow control notes: 437 * 438 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 439 * cannot be sent down to the driver by IP, because of a canput failure, IP 440 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 441 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 442 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 443 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 444 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 445 * the queued messages, and removes the conn from the drain list, if all 446 * messages were drained. It also qenables the next conn in the drain list to 447 * continue the drain process. 448 * 449 * In reality the drain list is not a single list, but a configurable number 450 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 451 * list. If the ip_wsrv of the next qenabled conn does not run, because the 452 * stream closes, ip_close takes responsibility to qenable the next conn in 453 * the drain list. The directly called ip_wput path always does a putq, if 454 * it cannot putnext. Thus synchronization problems are handled between 455 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 456 * functions that manipulate this drain list. Furthermore conn_drain_insert 457 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 458 * running on a queue at any time. conn_drain_tail can be simultaneously called 459 * from both ip_wsrv and ip_close. 460 * 461 * IPQOS notes: 462 * 463 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 464 * and IPQoS modules. IPPF includes hooks in IP at different control points 465 * (callout positions) which direct packets to IPQoS modules for policy 466 * processing. Policies, if present, are global. 467 * 468 * The callout positions are located in the following paths: 469 * o local_in (packets destined for this host) 470 * o local_out (packets orginating from this host ) 471 * o fwd_in (packets forwarded by this m/c - inbound) 472 * o fwd_out (packets forwarded by this m/c - outbound) 473 * Hooks at these callout points can be enabled/disabled using the ndd variable 474 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 475 * By default all the callout positions are enabled. 476 * 477 * Outbound (local_out) 478 * Hooks are placed in ip_wput_ire and ipsec_out_process. 479 * 480 * Inbound (local_in) 481 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 482 * TCP and UDP fanout routines. 483 * 484 * Forwarding (in and out) 485 * Hooks are placed in ip_rput_forward. 486 * 487 * IP Policy Framework processing (IPPF processing) 488 * Policy processing for a packet is initiated by ip_process, which ascertains 489 * that the classifier (ipgpc) is loaded and configured, failing which the 490 * packet resumes normal processing in IP. If the clasifier is present, the 491 * packet is acted upon by one or more IPQoS modules (action instances), per 492 * filters configured in ipgpc and resumes normal IP processing thereafter. 493 * An action instance can drop a packet in course of its processing. 494 * 495 * A boolean variable, ip_policy, is used in all the fanout routines that can 496 * invoke ip_process for a packet. This variable indicates if the packet should 497 * to be sent for policy processing. The variable is set to B_TRUE by default, 498 * i.e. when the routines are invoked in the normal ip procesing path for a 499 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 500 * ip_policy is set to B_FALSE for all the routines called in these two 501 * functions because, in the former case, we don't process loopback traffic 502 * currently while in the latter, the packets have already been processed in 503 * icmp_inbound. 504 * 505 * Zones notes: 506 * 507 * The partitioning rules for networking are as follows: 508 * 1) Packets coming from a zone must have a source address belonging to that 509 * zone. 510 * 2) Packets coming from a zone can only be sent on a physical interface on 511 * which the zone has an IP address. 512 * 3) Between two zones on the same machine, packet delivery is only allowed if 513 * there's a matching route for the destination and zone in the forwarding 514 * table. 515 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 516 * different zones can bind to the same port with the wildcard address 517 * (INADDR_ANY). 518 * 519 * The granularity of interface partitioning is at the logical interface level. 520 * Therefore, every zone has its own IP addresses, and incoming packets can be 521 * attributed to a zone unambiguously. A logical interface is placed into a zone 522 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 523 * structure. Rule (1) is implemented by modifying the source address selection 524 * algorithm so that the list of eligible addresses is filtered based on the 525 * sending process zone. 526 * 527 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 528 * across all zones, depending on their type. Here is the break-up: 529 * 530 * IRE type Shared/exclusive 531 * -------- ---------------- 532 * IRE_BROADCAST Exclusive 533 * IRE_DEFAULT (default routes) Shared (*) 534 * IRE_LOCAL Exclusive (x) 535 * IRE_LOOPBACK Exclusive 536 * IRE_PREFIX (net routes) Shared (*) 537 * IRE_CACHE Exclusive 538 * IRE_IF_NORESOLVER (interface routes) Exclusive 539 * IRE_IF_RESOLVER (interface routes) Exclusive 540 * IRE_HOST (host routes) Shared (*) 541 * 542 * (*) A zone can only use a default or off-subnet route if the gateway is 543 * directly reachable from the zone, that is, if the gateway's address matches 544 * one of the zone's logical interfaces. 545 * 546 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 547 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 548 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 549 * address of the zone itself (the destination). Since IRE_LOCAL is used 550 * for communication between zones, ip_wput_ire has special logic to set 551 * the right source address when sending using an IRE_LOCAL. 552 * 553 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 554 * ire_cache_lookup restricts loopback using an IRE_LOCAL 555 * between zone to the case when L2 would have conceptually looped the packet 556 * back, i.e. the loopback which is required since neither Ethernet drivers 557 * nor Ethernet hardware loops them back. This is the case when the normal 558 * routes (ignoring IREs with different zoneids) would send out the packet on 559 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 560 * associated. 561 * 562 * Multiple zones can share a common broadcast address; typically all zones 563 * share the 255.255.255.255 address. Incoming as well as locally originated 564 * broadcast packets must be dispatched to all the zones on the broadcast 565 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 566 * since some zones may not be on the 10.16.72/24 network. To handle this, each 567 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 568 * sent to every zone that has an IRE_BROADCAST entry for the destination 569 * address on the input ill, see conn_wantpacket(). 570 * 571 * Applications in different zones can join the same multicast group address. 572 * For IPv4, group memberships are per-logical interface, so they're already 573 * inherently part of a zone. For IPv6, group memberships are per-physical 574 * interface, so we distinguish IPv6 group memberships based on group address, 575 * interface and zoneid. In both cases, received multicast packets are sent to 576 * every zone for which a group membership entry exists. On IPv6 we need to 577 * check that the target zone still has an address on the receiving physical 578 * interface; it could have been removed since the application issued the 579 * IPV6_JOIN_GROUP. 580 */ 581 582 /* 583 * Squeue Fanout flags: 584 * 0: No fanout. 585 * 1: Fanout across all squeues 586 */ 587 boolean_t ip_squeue_fanout = 0; 588 589 /* 590 * Maximum dups allowed per packet. 591 */ 592 uint_t ip_max_frag_dups = 10; 593 594 #define IS_SIMPLE_IPH(ipha) \ 595 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 596 597 /* RFC1122 Conformance */ 598 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 599 600 #define ILL_MAX_NAMELEN LIFNAMSIZ 601 602 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 603 604 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 605 606 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 607 ip_stack_t *); 608 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 609 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 610 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 611 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 612 mblk_t *, int, ip_stack_t *); 613 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 614 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 615 ill_t *, zoneid_t); 616 static void icmp_options_update(ipha_t *); 617 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 618 ip_stack_t *); 619 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 620 zoneid_t zoneid, ip_stack_t *); 621 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 622 static void icmp_redirect(ill_t *, mblk_t *); 623 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 624 ip_stack_t *); 625 626 static void ip_arp_news(queue_t *, mblk_t *); 627 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 628 ip_stack_t *); 629 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 630 char *ip_dot_addr(ipaddr_t, char *); 631 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 632 int ip_close(queue_t *, int); 633 static char *ip_dot_saddr(uchar_t *, char *); 634 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 635 boolean_t, boolean_t, ill_t *, zoneid_t); 636 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 637 boolean_t, boolean_t, zoneid_t); 638 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 639 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 640 static void ip_lrput(queue_t *, mblk_t *); 641 ipaddr_t ip_net_mask(ipaddr_t); 642 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 643 ip_stack_t *); 644 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 645 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 646 char *ip_nv_lookup(nv_t *, int); 647 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 648 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 649 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 650 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 651 ipndp_t *, size_t); 652 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 653 void ip_rput(queue_t *, mblk_t *); 654 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 655 void *dummy_arg); 656 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 657 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 658 ip_stack_t *); 659 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 660 ire_t *, ip_stack_t *); 661 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 662 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 663 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 664 ip_stack_t *); 665 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 666 uint16_t *); 667 int ip_snmp_get(queue_t *, mblk_t *); 668 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 669 mib2_ipIfStatsEntry_t *, ip_stack_t *); 670 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 671 ip_stack_t *); 672 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 674 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 675 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 676 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 678 ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 680 ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 682 ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 684 ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 698 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 699 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 700 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 701 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 702 static boolean_t ip_source_route_included(ipha_t *); 703 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 704 705 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 706 zoneid_t, ip_stack_t *); 707 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 708 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 709 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 710 zoneid_t, ip_stack_t *); 711 712 static void conn_drain_init(ip_stack_t *); 713 static void conn_drain_fini(ip_stack_t *); 714 static void conn_drain_tail(conn_t *connp, boolean_t closing); 715 716 static void conn_walk_drain(ip_stack_t *); 717 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 718 zoneid_t); 719 720 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 721 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 722 static void ip_stack_fini(netstackid_t stackid, void *arg); 723 724 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 725 zoneid_t); 726 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 727 void *dummy_arg); 728 729 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 730 731 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 732 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 733 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 734 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 735 736 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 737 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 738 caddr_t, cred_t *); 739 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 740 caddr_t cp, cred_t *cr); 741 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 742 cred_t *); 743 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 744 caddr_t cp, cred_t *cr); 745 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 746 cred_t *); 747 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 748 cred_t *); 749 static squeue_func_t ip_squeue_switch(int); 750 751 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 752 static void ip_kstat_fini(netstackid_t, kstat_t *); 753 static int ip_kstat_update(kstat_t *kp, int rw); 754 static void *icmp_kstat_init(netstackid_t); 755 static void icmp_kstat_fini(netstackid_t, kstat_t *); 756 static int icmp_kstat_update(kstat_t *kp, int rw); 757 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 758 static void ip_kstat2_fini(netstackid_t, kstat_t *); 759 760 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 761 762 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 763 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 764 765 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 766 ipha_t *, ill_t *, boolean_t); 767 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 768 769 /* How long, in seconds, we allow frags to hang around. */ 770 #define IP_FRAG_TIMEOUT 60 771 772 /* 773 * Threshold which determines whether MDT should be used when 774 * generating IP fragments; payload size must be greater than 775 * this threshold for MDT to take place. 776 */ 777 #define IP_WPUT_FRAG_MDT_MIN 32768 778 779 /* Setable in /etc/system only */ 780 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 781 782 static long ip_rput_pullups; 783 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 784 785 vmem_t *ip_minor_arena; 786 787 int ip_debug; 788 789 #ifdef DEBUG 790 uint32_t ipsechw_debug = 0; 791 #endif 792 793 /* 794 * Multirouting/CGTP stuff 795 */ 796 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 797 798 /* 799 * XXX following really should only be in a header. Would need more 800 * header and .c clean up first. 801 */ 802 extern optdb_obj_t ip_opt_obj; 803 804 ulong_t ip_squeue_enter_unbound = 0; 805 806 /* 807 * Named Dispatch Parameter Table. 808 * All of these are alterable, within the min/max values given, at run time. 809 */ 810 static ipparam_t lcl_param_arr[] = { 811 /* min max value name */ 812 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 813 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 814 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 815 { 0, 1, 0, "ip_respond_to_timestamp"}, 816 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 817 { 0, 1, 1, "ip_send_redirects"}, 818 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 819 { 0, 10, 0, "ip_debug"}, 820 { 0, 10, 0, "ip_mrtdebug"}, 821 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 822 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 823 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 824 { 1, 255, 255, "ip_def_ttl" }, 825 { 0, 1, 0, "ip_forward_src_routed"}, 826 { 0, 256, 32, "ip_wroff_extra" }, 827 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 828 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 829 { 0, 1, 1, "ip_path_mtu_discovery" }, 830 { 0, 240, 30, "ip_ignore_delete_time" }, 831 { 0, 1, 0, "ip_ignore_redirect" }, 832 { 0, 1, 1, "ip_output_queue" }, 833 { 1, 254, 1, "ip_broadcast_ttl" }, 834 { 0, 99999, 100, "ip_icmp_err_interval" }, 835 { 1, 99999, 10, "ip_icmp_err_burst" }, 836 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 837 { 0, 1, 0, "ip_strict_dst_multihoming" }, 838 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 839 { 0, 1, 0, "ipsec_override_persocket_policy" }, 840 { 0, 1, 1, "icmp_accept_clear_messages" }, 841 { 0, 1, 1, "igmp_accept_clear_messages" }, 842 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 843 "ip_ndp_delay_first_probe_time"}, 844 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 845 "ip_ndp_max_unicast_solicit"}, 846 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 847 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 848 { 0, 1, 0, "ip6_forward_src_routed"}, 849 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 850 { 0, 1, 1, "ip6_send_redirects"}, 851 { 0, 1, 0, "ip6_ignore_redirect" }, 852 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 853 854 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 855 856 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 857 858 { 0, 1, 1, "pim_accept_clear_messages" }, 859 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 860 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 861 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 862 { 0, 15, 0, "ip_policy_mask" }, 863 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 864 { 0, 255, 1, "ip_multirt_ttl" }, 865 { 0, 1, 1, "ip_multidata_outbound" }, 866 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 867 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 868 { 0, 1000, 1, "ip_max_temp_defend" }, 869 { 0, 1000, 3, "ip_max_defend" }, 870 { 0, 999999, 30, "ip_defend_interval" }, 871 { 0, 3600000, 300000, "ip_dup_recovery" }, 872 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 873 { 0, 1, 1, "ip_lso_outbound" }, 874 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 875 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 876 #ifdef DEBUG 877 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 878 #else 879 { 0, 0, 0, "" }, 880 #endif 881 }; 882 883 /* 884 * Extended NDP table 885 * The addresses for the first two are filled in to be ips_ip_g_forward 886 * and ips_ipv6_forward at init time. 887 */ 888 static ipndp_t lcl_ndp_arr[] = { 889 /* getf setf data name */ 890 #define IPNDP_IP_FORWARDING_OFFSET 0 891 { ip_param_generic_get, ip_forward_set, NULL, 892 "ip_forwarding" }, 893 #define IPNDP_IP6_FORWARDING_OFFSET 1 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip6_forwarding" }, 896 { ip_ill_report, NULL, NULL, 897 "ip_ill_status" }, 898 { ip_ipif_report, NULL, NULL, 899 "ip_ipif_status" }, 900 { ip_ire_report, NULL, NULL, 901 "ipv4_ire_status" }, 902 { ip_ire_report_v6, NULL, NULL, 903 "ipv6_ire_status" }, 904 { ip_conn_report, NULL, NULL, 905 "ip_conn_status" }, 906 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 907 "ip_rput_pullups" }, 908 { ndp_report, NULL, NULL, 909 "ip_ndp_cache_report" }, 910 { ip_srcid_report, NULL, NULL, 911 "ip_srcid_status" }, 912 { ip_param_generic_get, ip_squeue_profile_set, 913 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 914 { ip_param_generic_get, ip_squeue_bind_set, 915 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 916 { ip_param_generic_get, ip_input_proc_set, 917 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 918 { ip_param_generic_get, ip_int_set, 919 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 920 #define IPNDP_CGTP_FILTER_OFFSET 14 921 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 922 "ip_cgtp_filter" }, 923 { ip_param_generic_get, ip_int_set, 924 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 925 #define IPNDP_IPMP_HOOK_OFFSET 16 926 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 927 "ipmp_hook_emulation" }, 928 }; 929 930 /* 931 * Table of IP ioctls encoding the various properties of the ioctl and 932 * indexed based on the last byte of the ioctl command. Occasionally there 933 * is a clash, and there is more than 1 ioctl with the same last byte. 934 * In such a case 1 ioctl is encoded in the ndx table and the remaining 935 * ioctls are encoded in the misc table. An entry in the ndx table is 936 * retrieved by indexing on the last byte of the ioctl command and comparing 937 * the ioctl command with the value in the ndx table. In the event of a 938 * mismatch the misc table is then searched sequentially for the desired 939 * ioctl command. 940 * 941 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 942 */ 943 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 944 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 955 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 956 MISC_CMD, ip_siocaddrt, NULL }, 957 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 958 MISC_CMD, ip_siocdelrt, NULL }, 959 960 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 961 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 962 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 963 IF_CMD, ip_sioctl_get_addr, NULL }, 964 965 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 966 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 967 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 968 IPI_GET_CMD | IPI_REPL, 969 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 970 971 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 972 IPI_PRIV | IPI_WR | IPI_REPL, 973 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 974 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 975 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 976 IF_CMD, ip_sioctl_get_flags, NULL }, 977 978 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 981 /* copyin size cannot be coded for SIOCGIFCONF */ 982 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 983 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 984 985 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 986 IF_CMD, ip_sioctl_mtu, NULL }, 987 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 988 IF_CMD, ip_sioctl_get_mtu, NULL }, 989 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 990 IPI_GET_CMD | IPI_REPL, 991 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 992 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 993 IF_CMD, ip_sioctl_brdaddr, NULL }, 994 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 995 IPI_GET_CMD | IPI_REPL, 996 IF_CMD, ip_sioctl_get_netmask, NULL }, 997 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 998 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 999 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1000 IPI_GET_CMD | IPI_REPL, 1001 IF_CMD, ip_sioctl_get_metric, NULL }, 1002 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1003 IF_CMD, ip_sioctl_metric, NULL }, 1004 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1005 1006 /* See 166-168 below for extended SIOC*XARP ioctls */ 1007 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1008 ARP_CMD, ip_sioctl_arp, NULL }, 1009 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1010 ARP_CMD, ip_sioctl_arp, NULL }, 1011 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 1014 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1015 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1037 MISC_CMD, if_unitsel, if_unitsel_restart }, 1038 1039 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1059 IPI_PRIV | IPI_WR | IPI_MODOK, 1060 IF_CMD, ip_sioctl_sifname, NULL }, 1061 1062 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 1076 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1077 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1078 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1079 IF_CMD, ip_sioctl_get_muxid, NULL }, 1080 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1081 IPI_PRIV | IPI_WR | IPI_REPL, 1082 IF_CMD, ip_sioctl_muxid, NULL }, 1083 1084 /* Both if and lif variants share same func */ 1085 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1086 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1087 /* Both if and lif variants share same func */ 1088 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1089 IPI_PRIV | IPI_WR | IPI_REPL, 1090 IF_CMD, ip_sioctl_slifindex, NULL }, 1091 1092 /* copyin size cannot be coded for SIOCGIFCONF */ 1093 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1094 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1095 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1114 IPI_PRIV | IPI_WR | IPI_REPL, 1115 LIF_CMD, ip_sioctl_removeif, 1116 ip_sioctl_removeif_restart }, 1117 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1118 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_addif, NULL }, 1120 #define SIOCLIFADDR_NDX 112 1121 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1122 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1123 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1124 IPI_GET_CMD | IPI_REPL, 1125 LIF_CMD, ip_sioctl_get_addr, NULL }, 1126 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1127 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1128 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_REPL, 1130 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1131 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1132 IPI_PRIV | IPI_WR | IPI_REPL, 1133 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1134 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_flags, NULL }, 1137 1138 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 1141 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1142 ip_sioctl_get_lifconf, NULL }, 1143 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1144 LIF_CMD, ip_sioctl_mtu, NULL }, 1145 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1146 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1147 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1148 IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1150 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1151 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1152 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1153 IPI_GET_CMD | IPI_REPL, 1154 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1155 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1156 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1157 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1158 IPI_GET_CMD | IPI_REPL, 1159 LIF_CMD, ip_sioctl_get_metric, NULL }, 1160 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1161 LIF_CMD, ip_sioctl_metric, NULL }, 1162 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1163 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1164 LIF_CMD, ip_sioctl_slifname, 1165 ip_sioctl_slifname_restart }, 1166 1167 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1168 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1169 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1170 IPI_GET_CMD | IPI_REPL, 1171 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1172 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1173 IPI_PRIV | IPI_WR | IPI_REPL, 1174 LIF_CMD, ip_sioctl_muxid, NULL }, 1175 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1176 IPI_GET_CMD | IPI_REPL, 1177 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1178 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1179 IPI_PRIV | IPI_WR | IPI_REPL, 1180 LIF_CMD, ip_sioctl_slifindex, 0 }, 1181 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1182 LIF_CMD, ip_sioctl_token, NULL }, 1183 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1184 IPI_GET_CMD | IPI_REPL, 1185 LIF_CMD, ip_sioctl_get_token, NULL }, 1186 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1187 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1188 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1189 IPI_GET_CMD | IPI_REPL, 1190 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1191 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1192 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1193 1194 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1197 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1198 LIF_CMD, ip_siocdelndp_v6, NULL }, 1199 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1200 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1201 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocsetndp_v6, NULL }, 1203 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1204 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1205 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1206 MISC_CMD, ip_sioctl_tonlink, NULL }, 1207 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1208 MISC_CMD, ip_sioctl_tmysite, NULL }, 1209 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1210 TUN_CMD, ip_sioctl_tunparam, NULL }, 1211 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1212 IPI_PRIV | IPI_WR, 1213 TUN_CMD, ip_sioctl_tunparam, NULL }, 1214 1215 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1216 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1217 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 1221 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1222 IPI_PRIV | IPI_WR | IPI_REPL, 1223 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1224 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1225 IPI_PRIV | IPI_WR | IPI_REPL, 1226 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1227 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1230 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1231 IPI_GET_CMD | IPI_REPL, 1232 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1233 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1236 1237 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1238 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 1242 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1244 1245 /* These are handled in ip_sioctl_copyin_setup itself */ 1246 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1247 MISC_CMD, NULL, NULL }, 1248 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1249 MISC_CMD, NULL, NULL }, 1250 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1251 1252 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1253 ip_sioctl_get_lifconf, NULL }, 1254 1255 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1256 XARP_CMD, ip_sioctl_arp, NULL }, 1257 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1258 XARP_CMD, ip_sioctl_arp, NULL }, 1259 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 1262 /* SIOCPOPSOCKFS is not handled by IP */ 1263 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1264 1265 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1266 IPI_GET_CMD | IPI_REPL, 1267 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1268 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1269 IPI_PRIV | IPI_WR | IPI_REPL, 1270 LIF_CMD, ip_sioctl_slifzone, 1271 ip_sioctl_slifzone_restart }, 1272 /* 172-174 are SCTP ioctls and not handled by IP */ 1273 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1277 IPI_GET_CMD, LIF_CMD, 1278 ip_sioctl_get_lifusesrc, 0 }, 1279 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR, 1281 LIF_CMD, ip_sioctl_slifusesrc, 1282 NULL }, 1283 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1284 ip_sioctl_get_lifsrcof, NULL }, 1285 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1286 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1287 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1288 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1289 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1294 ip_sioctl_set_ipmpfailback, NULL } 1295 }; 1296 1297 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1298 1299 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1300 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1301 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1302 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1303 TUN_CMD, ip_sioctl_tunparam, NULL }, 1304 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1305 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1306 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1311 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1312 MISC_CMD, mrt_ioctl}, 1313 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1314 MISC_CMD, mrt_ioctl}, 1315 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1316 MISC_CMD, mrt_ioctl} 1317 }; 1318 1319 int ip_misc_ioctl_count = 1320 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1321 1322 int conn_drain_nthreads; /* Number of drainers reqd. */ 1323 /* Settable in /etc/system */ 1324 /* Defined in ip_ire.c */ 1325 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1326 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1327 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1328 1329 static nv_t ire_nv_arr[] = { 1330 { IRE_BROADCAST, "BROADCAST" }, 1331 { IRE_LOCAL, "LOCAL" }, 1332 { IRE_LOOPBACK, "LOOPBACK" }, 1333 { IRE_CACHE, "CACHE" }, 1334 { IRE_DEFAULT, "DEFAULT" }, 1335 { IRE_PREFIX, "PREFIX" }, 1336 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1337 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1338 { IRE_HOST, "HOST" }, 1339 { 0 } 1340 }; 1341 1342 nv_t *ire_nv_tbl = ire_nv_arr; 1343 1344 /* Defined in ip_netinfo.c */ 1345 extern ddi_taskq_t *eventq_queue_nic; 1346 1347 /* Simple ICMP IP Header Template */ 1348 static ipha_t icmp_ipha = { 1349 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1350 }; 1351 1352 struct module_info ip_mod_info = { 1353 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1354 }; 1355 1356 /* 1357 * Duplicate static symbols within a module confuses mdb; so we avoid the 1358 * problem by making the symbols here distinct from those in udp.c. 1359 */ 1360 1361 static struct qinit iprinit = { 1362 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1363 &ip_mod_info 1364 }; 1365 1366 static struct qinit ipwinit = { 1367 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1368 &ip_mod_info 1369 }; 1370 1371 static struct qinit iplrinit = { 1372 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 static struct qinit iplwinit = { 1377 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1378 &ip_mod_info 1379 }; 1380 1381 struct streamtab ipinfo = { 1382 &iprinit, &ipwinit, &iplrinit, &iplwinit 1383 }; 1384 1385 #ifdef DEBUG 1386 static boolean_t skip_sctp_cksum = B_FALSE; 1387 #endif 1388 1389 /* 1390 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1391 * ip_rput_v6(), ip_output(), etc. If the message 1392 * block already has a M_CTL at the front of it, then simply set the zoneid 1393 * appropriately. 1394 */ 1395 mblk_t * 1396 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1397 { 1398 mblk_t *first_mp; 1399 ipsec_out_t *io; 1400 1401 ASSERT(zoneid != ALL_ZONES); 1402 if (mp->b_datap->db_type == M_CTL) { 1403 io = (ipsec_out_t *)mp->b_rptr; 1404 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1405 io->ipsec_out_zoneid = zoneid; 1406 return (mp); 1407 } 1408 1409 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1410 if (first_mp == NULL) 1411 return (NULL); 1412 io = (ipsec_out_t *)first_mp->b_rptr; 1413 /* This is not a secure packet */ 1414 io->ipsec_out_secure = B_FALSE; 1415 io->ipsec_out_zoneid = zoneid; 1416 first_mp->b_cont = mp; 1417 return (first_mp); 1418 } 1419 1420 /* 1421 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1422 */ 1423 mblk_t * 1424 ip_copymsg(mblk_t *mp) 1425 { 1426 mblk_t *nmp; 1427 ipsec_info_t *in; 1428 1429 if (mp->b_datap->db_type != M_CTL) 1430 return (copymsg(mp)); 1431 1432 in = (ipsec_info_t *)mp->b_rptr; 1433 1434 /* 1435 * Note that M_CTL is also used for delivering ICMP error messages 1436 * upstream to transport layers. 1437 */ 1438 if (in->ipsec_info_type != IPSEC_OUT && 1439 in->ipsec_info_type != IPSEC_IN) 1440 return (copymsg(mp)); 1441 1442 nmp = copymsg(mp->b_cont); 1443 1444 if (in->ipsec_info_type == IPSEC_OUT) { 1445 return (ipsec_out_tag(mp, nmp, 1446 ((ipsec_out_t *)in)->ipsec_out_ns)); 1447 } else { 1448 return (ipsec_in_tag(mp, nmp, 1449 ((ipsec_in_t *)in)->ipsec_in_ns)); 1450 } 1451 } 1452 1453 /* Generate an ICMP fragmentation needed message. */ 1454 static void 1455 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1456 ip_stack_t *ipst) 1457 { 1458 icmph_t icmph; 1459 mblk_t *first_mp; 1460 boolean_t mctl_present; 1461 1462 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1463 1464 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1465 if (mctl_present) 1466 freeb(first_mp); 1467 return; 1468 } 1469 1470 bzero(&icmph, sizeof (icmph_t)); 1471 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1472 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1473 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1474 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1475 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1476 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1477 ipst); 1478 } 1479 1480 /* 1481 * icmp_inbound deals with ICMP messages in the following ways. 1482 * 1483 * 1) It needs to send a reply back and possibly delivering it 1484 * to the "interested" upper clients. 1485 * 2) It needs to send it to the upper clients only. 1486 * 3) It needs to change some values in IP only. 1487 * 4) It needs to change some values in IP and upper layers e.g TCP. 1488 * 1489 * We need to accomodate icmp messages coming in clear until we get 1490 * everything secure from the wire. If icmp_accept_clear_messages 1491 * is zero we check with the global policy and act accordingly. If 1492 * it is non-zero, we accept the message without any checks. But 1493 * *this does not mean* that this will be delivered to the upper 1494 * clients. By accepting we might send replies back, change our MTU 1495 * value etc. but delivery to the ULP/clients depends on their policy 1496 * dispositions. 1497 * 1498 * We handle the above 4 cases in the context of IPsec in the 1499 * following way : 1500 * 1501 * 1) Send the reply back in the same way as the request came in. 1502 * If it came in encrypted, it goes out encrypted. If it came in 1503 * clear, it goes out in clear. Thus, this will prevent chosen 1504 * plain text attack. 1505 * 2) The client may or may not expect things to come in secure. 1506 * If it comes in secure, the policy constraints are checked 1507 * before delivering it to the upper layers. If it comes in 1508 * clear, ipsec_inbound_accept_clear will decide whether to 1509 * accept this in clear or not. In both the cases, if the returned 1510 * message (IP header + 8 bytes) that caused the icmp message has 1511 * AH/ESP headers, it is sent up to AH/ESP for validation before 1512 * sending up. If there are only 8 bytes of returned message, then 1513 * upper client will not be notified. 1514 * 3) Check with global policy to see whether it matches the constaints. 1515 * But this will be done only if icmp_accept_messages_in_clear is 1516 * zero. 1517 * 4) If we need to change both in IP and ULP, then the decision taken 1518 * while affecting the values in IP and while delivering up to TCP 1519 * should be the same. 1520 * 1521 * There are two cases. 1522 * 1523 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1524 * failed), we will not deliver it to the ULP, even though they 1525 * are *willing* to accept in *clear*. This is fine as our global 1526 * disposition to icmp messages asks us reject the datagram. 1527 * 1528 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1529 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1530 * to deliver it to ULP (policy failed), it can lead to 1531 * consistency problems. The cases known at this time are 1532 * ICMP_DESTINATION_UNREACHABLE messages with following code 1533 * values : 1534 * 1535 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1536 * and Upper layer rejects. Then the communication will 1537 * come to a stop. This is solved by making similar decisions 1538 * at both levels. Currently, when we are unable to deliver 1539 * to the Upper Layer (due to policy failures) while IP has 1540 * adjusted ire_max_frag, the next outbound datagram would 1541 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1542 * will be with the right level of protection. Thus the right 1543 * value will be communicated even if we are not able to 1544 * communicate when we get from the wire initially. But this 1545 * assumes there would be at least one outbound datagram after 1546 * IP has adjusted its ire_max_frag value. To make things 1547 * simpler, we accept in clear after the validation of 1548 * AH/ESP headers. 1549 * 1550 * - Other ICMP ERRORS : We may not be able to deliver it to the 1551 * upper layer depending on the level of protection the upper 1552 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1553 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1554 * should be accepted in clear when the Upper layer expects secure. 1555 * Thus the communication may get aborted by some bad ICMP 1556 * packets. 1557 * 1558 * IPQoS Notes: 1559 * The only instance when a packet is sent for processing is when there 1560 * isn't an ICMP client and if we are interested in it. 1561 * If there is a client, IPPF processing will take place in the 1562 * ip_fanout_proto routine. 1563 * 1564 * Zones notes: 1565 * The packet is only processed in the context of the specified zone: typically 1566 * only this zone will reply to an echo request, and only interested clients in 1567 * this zone will receive a copy of the packet. This means that the caller must 1568 * call icmp_inbound() for each relevant zone. 1569 */ 1570 static void 1571 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1572 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1573 ill_t *recv_ill, zoneid_t zoneid) 1574 { 1575 icmph_t *icmph; 1576 ipha_t *ipha; 1577 int iph_hdr_length; 1578 int hdr_length; 1579 boolean_t interested; 1580 uint32_t ts; 1581 uchar_t *wptr; 1582 ipif_t *ipif; 1583 mblk_t *first_mp; 1584 ipsec_in_t *ii; 1585 ire_t *src_ire; 1586 boolean_t onlink; 1587 timestruc_t now; 1588 uint32_t ill_index; 1589 ip_stack_t *ipst; 1590 1591 ASSERT(ill != NULL); 1592 ipst = ill->ill_ipst; 1593 1594 first_mp = mp; 1595 if (mctl_present) { 1596 mp = first_mp->b_cont; 1597 ASSERT(mp != NULL); 1598 } 1599 1600 ipha = (ipha_t *)mp->b_rptr; 1601 if (ipst->ips_icmp_accept_clear_messages == 0) { 1602 first_mp = ipsec_check_global_policy(first_mp, NULL, 1603 ipha, NULL, mctl_present, ipst->ips_netstack); 1604 if (first_mp == NULL) 1605 return; 1606 } 1607 1608 /* 1609 * On a labeled system, we have to check whether the zone itself is 1610 * permitted to receive raw traffic. 1611 */ 1612 if (is_system_labeled()) { 1613 if (zoneid == ALL_ZONES) 1614 zoneid = tsol_packet_to_zoneid(mp); 1615 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1616 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1617 zoneid)); 1618 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1619 freemsg(first_mp); 1620 return; 1621 } 1622 } 1623 1624 /* 1625 * We have accepted the ICMP message. It means that we will 1626 * respond to the packet if needed. It may not be delivered 1627 * to the upper client depending on the policy constraints 1628 * and the disposition in ipsec_inbound_accept_clear. 1629 */ 1630 1631 ASSERT(ill != NULL); 1632 1633 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1634 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1635 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1636 /* Last chance to get real. */ 1637 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1638 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1639 freemsg(first_mp); 1640 return; 1641 } 1642 /* Refresh iph following the pullup. */ 1643 ipha = (ipha_t *)mp->b_rptr; 1644 } 1645 /* ICMP header checksum, including checksum field, should be zero. */ 1646 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1647 IP_CSUM(mp, iph_hdr_length, 0)) { 1648 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1649 freemsg(first_mp); 1650 return; 1651 } 1652 /* The IP header will always be a multiple of four bytes */ 1653 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1654 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1655 icmph->icmph_code)); 1656 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1657 /* We will set "interested" to "true" if we want a copy */ 1658 interested = B_FALSE; 1659 switch (icmph->icmph_type) { 1660 case ICMP_ECHO_REPLY: 1661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1662 break; 1663 case ICMP_DEST_UNREACHABLE: 1664 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1666 interested = B_TRUE; /* Pass up to transport */ 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1668 break; 1669 case ICMP_SOURCE_QUENCH: 1670 interested = B_TRUE; /* Pass up to transport */ 1671 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1672 break; 1673 case ICMP_REDIRECT: 1674 if (!ipst->ips_ip_ignore_redirect) 1675 interested = B_TRUE; 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1677 break; 1678 case ICMP_ECHO_REQUEST: 1679 /* 1680 * Whether to respond to echo requests that come in as IP 1681 * broadcasts or as IP multicast is subject to debate 1682 * (what isn't?). We aim to please, you pick it. 1683 * Default is do it. 1684 */ 1685 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1686 /* unicast: always respond */ 1687 interested = B_TRUE; 1688 } else if (CLASSD(ipha->ipha_dst)) { 1689 /* multicast: respond based on tunable */ 1690 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1691 } else if (broadcast) { 1692 /* broadcast: respond based on tunable */ 1693 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1694 } 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1696 break; 1697 case ICMP_ROUTER_ADVERTISEMENT: 1698 case ICMP_ROUTER_SOLICITATION: 1699 break; 1700 case ICMP_TIME_EXCEEDED: 1701 interested = B_TRUE; /* Pass up to transport */ 1702 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1703 break; 1704 case ICMP_PARAM_PROBLEM: 1705 interested = B_TRUE; /* Pass up to transport */ 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1707 break; 1708 case ICMP_TIME_STAMP_REQUEST: 1709 /* Response to Time Stamp Requests is local policy. */ 1710 if (ipst->ips_ip_g_resp_to_timestamp && 1711 /* So is whether to respond if it was an IP broadcast. */ 1712 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1713 int tstamp_len = 3 * sizeof (uint32_t); 1714 1715 if (wptr + tstamp_len > mp->b_wptr) { 1716 if (!pullupmsg(mp, wptr + tstamp_len - 1717 mp->b_rptr)) { 1718 BUMP_MIB(ill->ill_ip_mib, 1719 ipIfStatsInDiscards); 1720 freemsg(first_mp); 1721 return; 1722 } 1723 /* Refresh ipha following the pullup. */ 1724 ipha = (ipha_t *)mp->b_rptr; 1725 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1726 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1727 } 1728 interested = B_TRUE; 1729 } 1730 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1731 break; 1732 case ICMP_TIME_STAMP_REPLY: 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1734 break; 1735 case ICMP_INFO_REQUEST: 1736 /* Per RFC 1122 3.2.2.7, ignore this. */ 1737 case ICMP_INFO_REPLY: 1738 break; 1739 case ICMP_ADDRESS_MASK_REQUEST: 1740 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1741 !broadcast) && 1742 /* TODO m_pullup of complete header? */ 1743 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1744 interested = B_TRUE; 1745 } 1746 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1747 break; 1748 case ICMP_ADDRESS_MASK_REPLY: 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1750 break; 1751 default: 1752 interested = B_TRUE; /* Pass up to transport */ 1753 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1754 break; 1755 } 1756 /* See if there is an ICMP client. */ 1757 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1758 /* If there is an ICMP client and we want one too, copy it. */ 1759 mblk_t *first_mp1; 1760 1761 if (!interested) { 1762 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1763 ip_policy, recv_ill, zoneid); 1764 return; 1765 } 1766 first_mp1 = ip_copymsg(first_mp); 1767 if (first_mp1 != NULL) { 1768 ip_fanout_proto(q, first_mp1, ill, ipha, 1769 0, mctl_present, ip_policy, recv_ill, zoneid); 1770 } 1771 } else if (!interested) { 1772 freemsg(first_mp); 1773 return; 1774 } else { 1775 /* 1776 * Initiate policy processing for this packet if ip_policy 1777 * is true. 1778 */ 1779 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1780 ill_index = ill->ill_phyint->phyint_ifindex; 1781 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1782 if (mp == NULL) { 1783 if (mctl_present) { 1784 freeb(first_mp); 1785 } 1786 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1787 return; 1788 } 1789 } 1790 } 1791 /* We want to do something with it. */ 1792 /* Check db_ref to make sure we can modify the packet. */ 1793 if (mp->b_datap->db_ref > 1) { 1794 mblk_t *first_mp1; 1795 1796 first_mp1 = ip_copymsg(first_mp); 1797 freemsg(first_mp); 1798 if (!first_mp1) { 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1800 return; 1801 } 1802 first_mp = first_mp1; 1803 if (mctl_present) { 1804 mp = first_mp->b_cont; 1805 ASSERT(mp != NULL); 1806 } else { 1807 mp = first_mp; 1808 } 1809 ipha = (ipha_t *)mp->b_rptr; 1810 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1811 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1812 } 1813 switch (icmph->icmph_type) { 1814 case ICMP_ADDRESS_MASK_REQUEST: 1815 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1816 if (ipif == NULL) { 1817 freemsg(first_mp); 1818 return; 1819 } 1820 /* 1821 * outging interface must be IPv4 1822 */ 1823 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1824 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1825 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1826 ipif_refrele(ipif); 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1828 break; 1829 case ICMP_ECHO_REQUEST: 1830 icmph->icmph_type = ICMP_ECHO_REPLY; 1831 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1832 break; 1833 case ICMP_TIME_STAMP_REQUEST: { 1834 uint32_t *tsp; 1835 1836 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1837 tsp = (uint32_t *)wptr; 1838 tsp++; /* Skip past 'originate time' */ 1839 /* Compute # of milliseconds since midnight */ 1840 gethrestime(&now); 1841 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1842 now.tv_nsec / (NANOSEC / MILLISEC); 1843 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1844 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1845 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1846 break; 1847 } 1848 default: 1849 ipha = (ipha_t *)&icmph[1]; 1850 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1851 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1853 freemsg(first_mp); 1854 return; 1855 } 1856 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1857 ipha = (ipha_t *)&icmph[1]; 1858 } 1859 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1861 freemsg(first_mp); 1862 return; 1863 } 1864 hdr_length = IPH_HDR_LENGTH(ipha); 1865 if (hdr_length < sizeof (ipha_t)) { 1866 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1867 freemsg(first_mp); 1868 return; 1869 } 1870 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1871 if (!pullupmsg(mp, 1872 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1874 freemsg(first_mp); 1875 return; 1876 } 1877 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1878 ipha = (ipha_t *)&icmph[1]; 1879 } 1880 switch (icmph->icmph_type) { 1881 case ICMP_REDIRECT: 1882 /* 1883 * As there is no upper client to deliver, we don't 1884 * need the first_mp any more. 1885 */ 1886 if (mctl_present) { 1887 freeb(first_mp); 1888 } 1889 icmp_redirect(ill, mp); 1890 return; 1891 case ICMP_DEST_UNREACHABLE: 1892 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1893 if (!icmp_inbound_too_big(icmph, ipha, ill, 1894 zoneid, mp, iph_hdr_length, ipst)) { 1895 freemsg(first_mp); 1896 return; 1897 } 1898 /* 1899 * icmp_inbound_too_big() may alter mp. 1900 * Resynch ipha and icmph accordingly. 1901 */ 1902 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1903 ipha = (ipha_t *)&icmph[1]; 1904 } 1905 /* FALLTHRU */ 1906 default : 1907 /* 1908 * IPQoS notes: Since we have already done IPQoS 1909 * processing we don't want to do it again in 1910 * the fanout routines called by 1911 * icmp_inbound_error_fanout, hence the last 1912 * argument, ip_policy, is B_FALSE. 1913 */ 1914 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1915 ipha, iph_hdr_length, hdr_length, mctl_present, 1916 B_FALSE, recv_ill, zoneid); 1917 } 1918 return; 1919 } 1920 /* Send out an ICMP packet */ 1921 icmph->icmph_checksum = 0; 1922 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1923 if (broadcast || CLASSD(ipha->ipha_dst)) { 1924 ipif_t *ipif_chosen; 1925 /* 1926 * Make it look like it was directed to us, so we don't look 1927 * like a fool with a broadcast or multicast source address. 1928 */ 1929 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1930 /* 1931 * Make sure that we haven't grabbed an interface that's DOWN. 1932 */ 1933 if (ipif != NULL) { 1934 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1935 ipha->ipha_src, zoneid); 1936 if (ipif_chosen != NULL) { 1937 ipif_refrele(ipif); 1938 ipif = ipif_chosen; 1939 } 1940 } 1941 if (ipif == NULL) { 1942 ip0dbg(("icmp_inbound: " 1943 "No source for broadcast/multicast:\n" 1944 "\tsrc 0x%x dst 0x%x ill %p " 1945 "ipif_lcl_addr 0x%x\n", 1946 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1947 (void *)ill, 1948 ill->ill_ipif->ipif_lcl_addr)); 1949 freemsg(first_mp); 1950 return; 1951 } 1952 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1953 ipha->ipha_dst = ipif->ipif_src_addr; 1954 ipif_refrele(ipif); 1955 } 1956 /* Reset time to live. */ 1957 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1958 { 1959 /* Swap source and destination addresses */ 1960 ipaddr_t tmp; 1961 1962 tmp = ipha->ipha_src; 1963 ipha->ipha_src = ipha->ipha_dst; 1964 ipha->ipha_dst = tmp; 1965 } 1966 ipha->ipha_ident = 0; 1967 if (!IS_SIMPLE_IPH(ipha)) 1968 icmp_options_update(ipha); 1969 1970 /* 1971 * ICMP echo replies should go out on the same interface 1972 * the request came on as probes used by in.mpathd for detecting 1973 * NIC failures are ECHO packets. We turn-off load spreading 1974 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1975 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1976 * function. This is in turn handled by ip_wput and ip_newroute 1977 * to make sure that the packet goes out on the interface it came 1978 * in on. If we don't turnoff load spreading, the packets might get 1979 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1980 * to go out and in.mpathd would wrongly detect a failure or 1981 * mis-detect a NIC failure for link failure. As load spreading 1982 * can happen only if ill_group is not NULL, we do only for 1983 * that case and this does not affect the normal case. 1984 * 1985 * We turn off load spreading only on echo packets that came from 1986 * on-link hosts. If the interface route has been deleted, this will 1987 * not be enforced as we can't do much. For off-link hosts, as the 1988 * default routes in IPv4 does not typically have an ire_ipif 1989 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 1990 * Moreover, expecting a default route through this interface may 1991 * not be correct. We use ipha_dst because of the swap above. 1992 */ 1993 onlink = B_FALSE; 1994 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 1995 /* 1996 * First, we need to make sure that it is not one of our 1997 * local addresses. If we set onlink when it is one of 1998 * our local addresses, we will end up creating IRE_CACHES 1999 * for one of our local addresses. Then, we will never 2000 * accept packets for them afterwards. 2001 */ 2002 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2003 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2004 if (src_ire == NULL) { 2005 ipif = ipif_get_next_ipif(NULL, ill); 2006 if (ipif == NULL) { 2007 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2008 freemsg(mp); 2009 return; 2010 } 2011 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2012 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2013 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2014 ipif_refrele(ipif); 2015 if (src_ire != NULL) { 2016 onlink = B_TRUE; 2017 ire_refrele(src_ire); 2018 } 2019 } else { 2020 ire_refrele(src_ire); 2021 } 2022 } 2023 if (!mctl_present) { 2024 /* 2025 * This packet should go out the same way as it 2026 * came in i.e in clear. To make sure that global 2027 * policy will not be applied to this in ip_wput_ire, 2028 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2029 */ 2030 ASSERT(first_mp == mp); 2031 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2032 if (first_mp == NULL) { 2033 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2034 freemsg(mp); 2035 return; 2036 } 2037 ii = (ipsec_in_t *)first_mp->b_rptr; 2038 2039 /* This is not a secure packet */ 2040 ii->ipsec_in_secure = B_FALSE; 2041 if (onlink) { 2042 ii->ipsec_in_attach_if = B_TRUE; 2043 ii->ipsec_in_ill_index = 2044 ill->ill_phyint->phyint_ifindex; 2045 ii->ipsec_in_rill_index = 2046 recv_ill->ill_phyint->phyint_ifindex; 2047 } 2048 first_mp->b_cont = mp; 2049 } else if (onlink) { 2050 ii = (ipsec_in_t *)first_mp->b_rptr; 2051 ii->ipsec_in_attach_if = B_TRUE; 2052 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2053 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2054 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2055 } else { 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2058 } 2059 ii->ipsec_in_zoneid = zoneid; 2060 ASSERT(zoneid != ALL_ZONES); 2061 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2063 return; 2064 } 2065 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2066 put(WR(q), first_mp); 2067 } 2068 2069 static ipaddr_t 2070 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2071 { 2072 conn_t *connp; 2073 connf_t *connfp; 2074 ipaddr_t nexthop_addr = INADDR_ANY; 2075 int hdr_length = IPH_HDR_LENGTH(ipha); 2076 uint16_t *up; 2077 uint32_t ports; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 2080 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2081 switch (ipha->ipha_protocol) { 2082 case IPPROTO_TCP: 2083 { 2084 tcph_t *tcph; 2085 2086 /* do a reverse lookup */ 2087 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2088 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2089 TCPS_LISTEN, ipst); 2090 break; 2091 } 2092 case IPPROTO_UDP: 2093 { 2094 uint32_t dstport, srcport; 2095 2096 ((uint16_t *)&ports)[0] = up[1]; 2097 ((uint16_t *)&ports)[1] = up[0]; 2098 2099 /* Extract ports in net byte order */ 2100 dstport = htons(ntohl(ports) & 0xFFFF); 2101 srcport = htons(ntohl(ports) >> 16); 2102 2103 connfp = &ipst->ips_ipcl_udp_fanout[ 2104 IPCL_UDP_HASH(dstport, ipst)]; 2105 mutex_enter(&connfp->connf_lock); 2106 connp = connfp->connf_head; 2107 2108 /* do a reverse lookup */ 2109 while ((connp != NULL) && 2110 (!IPCL_UDP_MATCH(connp, dstport, 2111 ipha->ipha_src, srcport, ipha->ipha_dst) || 2112 !IPCL_ZONE_MATCH(connp, zoneid))) { 2113 connp = connp->conn_next; 2114 } 2115 if (connp != NULL) 2116 CONN_INC_REF(connp); 2117 mutex_exit(&connfp->connf_lock); 2118 break; 2119 } 2120 case IPPROTO_SCTP: 2121 { 2122 in6_addr_t map_src, map_dst; 2123 2124 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2125 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2126 ((uint16_t *)&ports)[0] = up[1]; 2127 ((uint16_t *)&ports)[1] = up[0]; 2128 2129 connp = sctp_find_conn(&map_src, &map_dst, ports, 2130 zoneid, ipst->ips_netstack->netstack_sctp); 2131 if (connp == NULL) { 2132 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2133 zoneid, ports, ipha, ipst); 2134 } else { 2135 CONN_INC_REF(connp); 2136 SCTP_REFRELE(CONN2SCTP(connp)); 2137 } 2138 break; 2139 } 2140 default: 2141 { 2142 ipha_t ripha; 2143 2144 ripha.ipha_src = ipha->ipha_dst; 2145 ripha.ipha_dst = ipha->ipha_src; 2146 ripha.ipha_protocol = ipha->ipha_protocol; 2147 2148 connfp = &ipst->ips_ipcl_proto_fanout[ 2149 ipha->ipha_protocol]; 2150 mutex_enter(&connfp->connf_lock); 2151 connp = connfp->connf_head; 2152 for (connp = connfp->connf_head; connp != NULL; 2153 connp = connp->conn_next) { 2154 if (IPCL_PROTO_MATCH(connp, 2155 ipha->ipha_protocol, &ripha, ill, 2156 0, zoneid)) { 2157 CONN_INC_REF(connp); 2158 break; 2159 } 2160 } 2161 mutex_exit(&connfp->connf_lock); 2162 } 2163 } 2164 if (connp != NULL) { 2165 if (connp->conn_nexthop_set) 2166 nexthop_addr = connp->conn_nexthop_v4; 2167 CONN_DEC_REF(connp); 2168 } 2169 return (nexthop_addr); 2170 } 2171 2172 /* Table from RFC 1191 */ 2173 static int icmp_frag_size_table[] = 2174 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2175 2176 /* 2177 * Process received ICMP Packet too big. 2178 * After updating any IRE it does the fanout to any matching transport streams. 2179 * Assumes the message has been pulled up till the IP header that caused 2180 * the error. 2181 * 2182 * Returns B_FALSE on failure and B_TRUE on success. 2183 */ 2184 static boolean_t 2185 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2186 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2187 ip_stack_t *ipst) 2188 { 2189 ire_t *ire, *first_ire; 2190 int mtu; 2191 int hdr_length; 2192 ipaddr_t nexthop_addr; 2193 2194 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2195 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2196 ASSERT(ill != NULL); 2197 2198 hdr_length = IPH_HDR_LENGTH(ipha); 2199 2200 /* Drop if the original packet contained a source route */ 2201 if (ip_source_route_included(ipha)) { 2202 return (B_FALSE); 2203 } 2204 /* 2205 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2206 * header. 2207 */ 2208 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2209 mp->b_wptr) { 2210 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2211 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2213 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2214 return (B_FALSE); 2215 } 2216 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2217 ipha = (ipha_t *)&icmph[1]; 2218 } 2219 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2220 if (nexthop_addr != INADDR_ANY) { 2221 /* nexthop set */ 2222 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2223 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2224 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2225 } else { 2226 /* nexthop not set */ 2227 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2228 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2229 } 2230 2231 if (!first_ire) { 2232 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2233 ntohl(ipha->ipha_dst))); 2234 return (B_FALSE); 2235 } 2236 /* Check for MTU discovery advice as described in RFC 1191 */ 2237 mtu = ntohs(icmph->icmph_du_mtu); 2238 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2239 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2240 ire = ire->ire_next) { 2241 /* 2242 * Look for the connection to which this ICMP message is 2243 * directed. If it has the IP_NEXTHOP option set, then the 2244 * search is limited to IREs with the MATCH_IRE_PRIVATE 2245 * option. Else the search is limited to regular IREs. 2246 */ 2247 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2248 (nexthop_addr != ire->ire_gateway_addr)) || 2249 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2250 (nexthop_addr != INADDR_ANY))) 2251 continue; 2252 2253 mutex_enter(&ire->ire_lock); 2254 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2255 /* Reduce the IRE max frag value as advised. */ 2256 ip1dbg(("Received mtu from router: %d (was %d)\n", 2257 mtu, ire->ire_max_frag)); 2258 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2259 } else { 2260 uint32_t length; 2261 int i; 2262 2263 /* 2264 * Use the table from RFC 1191 to figure out 2265 * the next "plateau" based on the length in 2266 * the original IP packet. 2267 */ 2268 length = ntohs(ipha->ipha_length); 2269 if (ire->ire_max_frag <= length && 2270 ire->ire_max_frag >= length - hdr_length) { 2271 /* 2272 * Handle broken BSD 4.2 systems that 2273 * return the wrong iph_length in ICMP 2274 * errors. 2275 */ 2276 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2277 length, ire->ire_max_frag)); 2278 length -= hdr_length; 2279 } 2280 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2281 if (length > icmp_frag_size_table[i]) 2282 break; 2283 } 2284 if (i == A_CNT(icmp_frag_size_table)) { 2285 /* Smaller than 68! */ 2286 ip1dbg(("Too big for packet size %d\n", 2287 length)); 2288 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2289 ire->ire_frag_flag = 0; 2290 } else { 2291 mtu = icmp_frag_size_table[i]; 2292 ip1dbg(("Calculated mtu %d, packet size %d, " 2293 "before %d", mtu, length, 2294 ire->ire_max_frag)); 2295 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2296 ip1dbg((", after %d\n", ire->ire_max_frag)); 2297 } 2298 /* Record the new max frag size for the ULP. */ 2299 icmph->icmph_du_zero = 0; 2300 icmph->icmph_du_mtu = 2301 htons((uint16_t)ire->ire_max_frag); 2302 } 2303 mutex_exit(&ire->ire_lock); 2304 } 2305 rw_exit(&first_ire->ire_bucket->irb_lock); 2306 ire_refrele(first_ire); 2307 return (B_TRUE); 2308 } 2309 2310 /* 2311 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2312 * calls this function. 2313 */ 2314 static mblk_t * 2315 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2316 { 2317 ipha_t *ipha; 2318 icmph_t *icmph; 2319 ipha_t *in_ipha; 2320 int length; 2321 2322 ASSERT(mp->b_datap->db_type == M_DATA); 2323 2324 /* 2325 * For Self-encapsulated packets, we added an extra IP header 2326 * without the options. Inner IP header is the one from which 2327 * the outer IP header was formed. Thus, we need to remove the 2328 * outer IP header. To do this, we pullup the whole message 2329 * and overlay whatever follows the outer IP header over the 2330 * outer IP header. 2331 */ 2332 2333 if (!pullupmsg(mp, -1)) 2334 return (NULL); 2335 2336 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2337 ipha = (ipha_t *)&icmph[1]; 2338 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2339 2340 /* 2341 * The length that we want to overlay is following the inner 2342 * IP header. Subtracting the IP header + icmp header + outer 2343 * IP header's length should give us the length that we want to 2344 * overlay. 2345 */ 2346 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2347 hdr_length; 2348 /* 2349 * Overlay whatever follows the inner header over the 2350 * outer header. 2351 */ 2352 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2353 2354 /* Set the wptr to account for the outer header */ 2355 mp->b_wptr -= hdr_length; 2356 return (mp); 2357 } 2358 2359 /* 2360 * Try to pass the ICMP message upstream in case the ULP cares. 2361 * 2362 * If the packet that caused the ICMP error is secure, we send 2363 * it to AH/ESP to make sure that the attached packet has a 2364 * valid association. ipha in the code below points to the 2365 * IP header of the packet that caused the error. 2366 * 2367 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2368 * in the context of IPsec. Normally we tell the upper layer 2369 * whenever we send the ire (including ip_bind), the IPsec header 2370 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2371 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2372 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2373 * same thing. As TCP has the IPsec options size that needs to be 2374 * adjusted, we just pass the MTU unchanged. 2375 * 2376 * IFN could have been generated locally or by some router. 2377 * 2378 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2379 * This happens because IP adjusted its value of MTU on an 2380 * earlier IFN message and could not tell the upper layer, 2381 * the new adjusted value of MTU e.g. Packet was encrypted 2382 * or there was not enough information to fanout to upper 2383 * layers. Thus on the next outbound datagram, ip_wput_ire 2384 * generates the IFN, where IPsec processing has *not* been 2385 * done. 2386 * 2387 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2388 * could have generated this. This happens because ire_max_frag 2389 * value in IP was set to a new value, while the IPsec processing 2390 * was being done and after we made the fragmentation check in 2391 * ip_wput_ire. Thus on return from IPsec processing, 2392 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2393 * and generates the IFN. As IPsec processing is over, we fanout 2394 * to AH/ESP to remove the header. 2395 * 2396 * In both these cases, ipsec_in_loopback will be set indicating 2397 * that IFN was generated locally. 2398 * 2399 * ROUTER : IFN could be secure or non-secure. 2400 * 2401 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2402 * packet in error has AH/ESP headers to validate the AH/ESP 2403 * headers. AH/ESP will verify whether there is a valid SA or 2404 * not and send it back. We will fanout again if we have more 2405 * data in the packet. 2406 * 2407 * If the packet in error does not have AH/ESP, we handle it 2408 * like any other case. 2409 * 2410 * * NON_SECURE : If the packet in error has AH/ESP headers, 2411 * we attach a dummy ipsec_in and send it up to AH/ESP 2412 * for validation. AH/ESP will verify whether there is a 2413 * valid SA or not and send it back. We will fanout again if 2414 * we have more data in the packet. 2415 * 2416 * If the packet in error does not have AH/ESP, we handle it 2417 * like any other case. 2418 */ 2419 static void 2420 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2421 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2422 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2423 zoneid_t zoneid) 2424 { 2425 uint16_t *up; /* Pointer to ports in ULP header */ 2426 uint32_t ports; /* reversed ports for fanout */ 2427 ipha_t ripha; /* With reversed addresses */ 2428 mblk_t *first_mp; 2429 ipsec_in_t *ii; 2430 tcph_t *tcph; 2431 conn_t *connp; 2432 ip_stack_t *ipst; 2433 2434 ASSERT(ill != NULL); 2435 2436 ASSERT(recv_ill != NULL); 2437 ipst = recv_ill->ill_ipst; 2438 2439 first_mp = mp; 2440 if (mctl_present) { 2441 mp = first_mp->b_cont; 2442 ASSERT(mp != NULL); 2443 2444 ii = (ipsec_in_t *)first_mp->b_rptr; 2445 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2446 } else { 2447 ii = NULL; 2448 } 2449 2450 switch (ipha->ipha_protocol) { 2451 case IPPROTO_UDP: 2452 /* 2453 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2454 * transport header. 2455 */ 2456 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2457 mp->b_wptr) { 2458 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2459 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2460 goto discard_pkt; 2461 } 2462 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2463 ipha = (ipha_t *)&icmph[1]; 2464 } 2465 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2466 2467 /* 2468 * Attempt to find a client stream based on port. 2469 * Note that we do a reverse lookup since the header is 2470 * in the form we sent it out. 2471 * The ripha header is only used for the IP_UDP_MATCH and we 2472 * only set the src and dst addresses and protocol. 2473 */ 2474 ripha.ipha_src = ipha->ipha_dst; 2475 ripha.ipha_dst = ipha->ipha_src; 2476 ripha.ipha_protocol = ipha->ipha_protocol; 2477 ((uint16_t *)&ports)[0] = up[1]; 2478 ((uint16_t *)&ports)[1] = up[0]; 2479 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2480 ntohl(ipha->ipha_src), ntohs(up[0]), 2481 ntohl(ipha->ipha_dst), ntohs(up[1]), 2482 icmph->icmph_type, icmph->icmph_code)); 2483 2484 /* Have to change db_type after any pullupmsg */ 2485 DB_TYPE(mp) = M_CTL; 2486 2487 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2488 mctl_present, ip_policy, recv_ill, zoneid); 2489 return; 2490 2491 case IPPROTO_TCP: 2492 /* 2493 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2494 * transport header. 2495 */ 2496 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2497 mp->b_wptr) { 2498 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2499 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2500 goto discard_pkt; 2501 } 2502 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2503 ipha = (ipha_t *)&icmph[1]; 2504 } 2505 /* 2506 * Find a TCP client stream for this packet. 2507 * Note that we do a reverse lookup since the header is 2508 * in the form we sent it out. 2509 */ 2510 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2511 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2512 ipst); 2513 if (connp == NULL) 2514 goto discard_pkt; 2515 2516 /* Have to change db_type after any pullupmsg */ 2517 DB_TYPE(mp) = M_CTL; 2518 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2519 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2520 return; 2521 2522 case IPPROTO_SCTP: 2523 /* 2524 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2525 * transport header. 2526 */ 2527 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2528 mp->b_wptr) { 2529 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2530 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2531 goto discard_pkt; 2532 } 2533 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2534 ipha = (ipha_t *)&icmph[1]; 2535 } 2536 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2537 /* 2538 * Find a SCTP client stream for this packet. 2539 * Note that we do a reverse lookup since the header is 2540 * in the form we sent it out. 2541 * The ripha header is only used for the matching and we 2542 * only set the src and dst addresses, protocol, and version. 2543 */ 2544 ripha.ipha_src = ipha->ipha_dst; 2545 ripha.ipha_dst = ipha->ipha_src; 2546 ripha.ipha_protocol = ipha->ipha_protocol; 2547 ripha.ipha_version_and_hdr_length = 2548 ipha->ipha_version_and_hdr_length; 2549 ((uint16_t *)&ports)[0] = up[1]; 2550 ((uint16_t *)&ports)[1] = up[0]; 2551 2552 /* Have to change db_type after any pullupmsg */ 2553 DB_TYPE(mp) = M_CTL; 2554 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2555 mctl_present, ip_policy, zoneid); 2556 return; 2557 2558 case IPPROTO_ESP: 2559 case IPPROTO_AH: { 2560 int ipsec_rc; 2561 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2562 2563 /* 2564 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2565 * We will re-use the IPSEC_IN if it is already present as 2566 * AH/ESP will not affect any fields in the IPSEC_IN for 2567 * ICMP errors. If there is no IPSEC_IN, allocate a new 2568 * one and attach it in the front. 2569 */ 2570 if (ii != NULL) { 2571 /* 2572 * ip_fanout_proto_again converts the ICMP errors 2573 * that come back from AH/ESP to M_DATA so that 2574 * if it is non-AH/ESP and we do a pullupmsg in 2575 * this function, it would work. Convert it back 2576 * to M_CTL before we send up as this is a ICMP 2577 * error. This could have been generated locally or 2578 * by some router. Validate the inner IPsec 2579 * headers. 2580 * 2581 * NOTE : ill_index is used by ip_fanout_proto_again 2582 * to locate the ill. 2583 */ 2584 ASSERT(ill != NULL); 2585 ii->ipsec_in_ill_index = 2586 ill->ill_phyint->phyint_ifindex; 2587 ii->ipsec_in_rill_index = 2588 recv_ill->ill_phyint->phyint_ifindex; 2589 DB_TYPE(first_mp->b_cont) = M_CTL; 2590 } else { 2591 /* 2592 * IPSEC_IN is not present. We attach a ipsec_in 2593 * message and send up to IPsec for validating 2594 * and removing the IPsec headers. Clear 2595 * ipsec_in_secure so that when we return 2596 * from IPsec, we don't mistakenly think that this 2597 * is a secure packet came from the network. 2598 * 2599 * NOTE : ill_index is used by ip_fanout_proto_again 2600 * to locate the ill. 2601 */ 2602 ASSERT(first_mp == mp); 2603 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2604 if (first_mp == NULL) { 2605 freemsg(mp); 2606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2607 return; 2608 } 2609 ii = (ipsec_in_t *)first_mp->b_rptr; 2610 2611 /* This is not a secure packet */ 2612 ii->ipsec_in_secure = B_FALSE; 2613 first_mp->b_cont = mp; 2614 DB_TYPE(mp) = M_CTL; 2615 ASSERT(ill != NULL); 2616 ii->ipsec_in_ill_index = 2617 ill->ill_phyint->phyint_ifindex; 2618 ii->ipsec_in_rill_index = 2619 recv_ill->ill_phyint->phyint_ifindex; 2620 } 2621 ip2dbg(("icmp_inbound_error: ipsec\n")); 2622 2623 if (!ipsec_loaded(ipss)) { 2624 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2625 return; 2626 } 2627 2628 if (ipha->ipha_protocol == IPPROTO_ESP) 2629 ipsec_rc = ipsecesp_icmp_error(first_mp); 2630 else 2631 ipsec_rc = ipsecah_icmp_error(first_mp); 2632 if (ipsec_rc == IPSEC_STATUS_FAILED) 2633 return; 2634 2635 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2636 return; 2637 } 2638 default: 2639 /* 2640 * The ripha header is only used for the lookup and we 2641 * only set the src and dst addresses and protocol. 2642 */ 2643 ripha.ipha_src = ipha->ipha_dst; 2644 ripha.ipha_dst = ipha->ipha_src; 2645 ripha.ipha_protocol = ipha->ipha_protocol; 2646 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2647 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2648 ntohl(ipha->ipha_dst), 2649 icmph->icmph_type, icmph->icmph_code)); 2650 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2651 ipha_t *in_ipha; 2652 2653 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2654 mp->b_wptr) { 2655 if (!pullupmsg(mp, (uchar_t *)ipha + 2656 hdr_length + sizeof (ipha_t) - 2657 mp->b_rptr)) { 2658 goto discard_pkt; 2659 } 2660 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2661 ipha = (ipha_t *)&icmph[1]; 2662 } 2663 /* 2664 * Caller has verified that length has to be 2665 * at least the size of IP header. 2666 */ 2667 ASSERT(hdr_length >= sizeof (ipha_t)); 2668 /* 2669 * Check the sanity of the inner IP header like 2670 * we did for the outer header. 2671 */ 2672 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2673 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2674 goto discard_pkt; 2675 } 2676 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2677 goto discard_pkt; 2678 } 2679 /* Check for Self-encapsulated tunnels */ 2680 if (in_ipha->ipha_src == ipha->ipha_src && 2681 in_ipha->ipha_dst == ipha->ipha_dst) { 2682 2683 mp = icmp_inbound_self_encap_error(mp, 2684 iph_hdr_length, hdr_length); 2685 if (mp == NULL) 2686 goto discard_pkt; 2687 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2688 ipha = (ipha_t *)&icmph[1]; 2689 hdr_length = IPH_HDR_LENGTH(ipha); 2690 /* 2691 * The packet in error is self-encapsualted. 2692 * And we are finding it further encapsulated 2693 * which we could not have possibly generated. 2694 */ 2695 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2696 goto discard_pkt; 2697 } 2698 icmp_inbound_error_fanout(q, ill, first_mp, 2699 icmph, ipha, iph_hdr_length, hdr_length, 2700 mctl_present, ip_policy, recv_ill, zoneid); 2701 return; 2702 } 2703 } 2704 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2705 ipha->ipha_protocol == IPPROTO_IPV6) && 2706 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2707 ii != NULL && 2708 ii->ipsec_in_loopback && 2709 ii->ipsec_in_secure) { 2710 /* 2711 * For IP tunnels that get a looped-back 2712 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2713 * reported new MTU to take into account the IPsec 2714 * headers protecting this configured tunnel. 2715 * 2716 * This allows the tunnel module (tun.c) to blindly 2717 * accept the MTU reported in an ICMP "too big" 2718 * message. 2719 * 2720 * Non-looped back ICMP messages will just be 2721 * handled by the security protocols (if needed), 2722 * and the first subsequent packet will hit this 2723 * path. 2724 */ 2725 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2726 ipsec_in_extra_length(first_mp)); 2727 } 2728 /* Have to change db_type after any pullupmsg */ 2729 DB_TYPE(mp) = M_CTL; 2730 2731 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2732 ip_policy, recv_ill, zoneid); 2733 return; 2734 } 2735 /* NOTREACHED */ 2736 discard_pkt: 2737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2738 drop_pkt:; 2739 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2740 freemsg(first_mp); 2741 } 2742 2743 /* 2744 * Common IP options parser. 2745 * 2746 * Setup routine: fill in *optp with options-parsing state, then 2747 * tail-call ipoptp_next to return the first option. 2748 */ 2749 uint8_t 2750 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2751 { 2752 uint32_t totallen; /* total length of all options */ 2753 2754 totallen = ipha->ipha_version_and_hdr_length - 2755 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2756 totallen <<= 2; 2757 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2758 optp->ipoptp_end = optp->ipoptp_next + totallen; 2759 optp->ipoptp_flags = 0; 2760 return (ipoptp_next(optp)); 2761 } 2762 2763 /* 2764 * Common IP options parser: extract next option. 2765 */ 2766 uint8_t 2767 ipoptp_next(ipoptp_t *optp) 2768 { 2769 uint8_t *end = optp->ipoptp_end; 2770 uint8_t *cur = optp->ipoptp_next; 2771 uint8_t opt, len, pointer; 2772 2773 /* 2774 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2775 * has been corrupted. 2776 */ 2777 ASSERT(cur <= end); 2778 2779 if (cur == end) 2780 return (IPOPT_EOL); 2781 2782 opt = cur[IPOPT_OPTVAL]; 2783 2784 /* 2785 * Skip any NOP options. 2786 */ 2787 while (opt == IPOPT_NOP) { 2788 cur++; 2789 if (cur == end) 2790 return (IPOPT_EOL); 2791 opt = cur[IPOPT_OPTVAL]; 2792 } 2793 2794 if (opt == IPOPT_EOL) 2795 return (IPOPT_EOL); 2796 2797 /* 2798 * Option requiring a length. 2799 */ 2800 if ((cur + 1) >= end) { 2801 optp->ipoptp_flags |= IPOPTP_ERROR; 2802 return (IPOPT_EOL); 2803 } 2804 len = cur[IPOPT_OLEN]; 2805 if (len < 2) { 2806 optp->ipoptp_flags |= IPOPTP_ERROR; 2807 return (IPOPT_EOL); 2808 } 2809 optp->ipoptp_cur = cur; 2810 optp->ipoptp_len = len; 2811 optp->ipoptp_next = cur + len; 2812 if (cur + len > end) { 2813 optp->ipoptp_flags |= IPOPTP_ERROR; 2814 return (IPOPT_EOL); 2815 } 2816 2817 /* 2818 * For the options which require a pointer field, make sure 2819 * its there, and make sure it points to either something 2820 * inside this option, or the end of the option. 2821 */ 2822 switch (opt) { 2823 case IPOPT_RR: 2824 case IPOPT_TS: 2825 case IPOPT_LSRR: 2826 case IPOPT_SSRR: 2827 if (len <= IPOPT_OFFSET) { 2828 optp->ipoptp_flags |= IPOPTP_ERROR; 2829 return (opt); 2830 } 2831 pointer = cur[IPOPT_OFFSET]; 2832 if (pointer - 1 > len) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (opt); 2835 } 2836 break; 2837 } 2838 2839 /* 2840 * Sanity check the pointer field based on the type of the 2841 * option. 2842 */ 2843 switch (opt) { 2844 case IPOPT_RR: 2845 case IPOPT_SSRR: 2846 case IPOPT_LSRR: 2847 if (pointer < IPOPT_MINOFF_SR) 2848 optp->ipoptp_flags |= IPOPTP_ERROR; 2849 break; 2850 case IPOPT_TS: 2851 if (pointer < IPOPT_MINOFF_IT) 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 /* 2854 * Note that the Internet Timestamp option also 2855 * contains two four bit fields (the Overflow field, 2856 * and the Flag field), which follow the pointer 2857 * field. We don't need to check that these fields 2858 * fall within the length of the option because this 2859 * was implicitely done above. We've checked that the 2860 * pointer value is at least IPOPT_MINOFF_IT, and that 2861 * it falls within the option. Since IPOPT_MINOFF_IT > 2862 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2863 */ 2864 ASSERT(len > IPOPT_POS_OV_FLG); 2865 break; 2866 } 2867 2868 return (opt); 2869 } 2870 2871 /* 2872 * Use the outgoing IP header to create an IP_OPTIONS option the way 2873 * it was passed down from the application. 2874 */ 2875 int 2876 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2877 { 2878 ipoptp_t opts; 2879 const uchar_t *opt; 2880 uint8_t optval; 2881 uint8_t optlen; 2882 uint32_t len = 0; 2883 uchar_t *buf1 = buf; 2884 2885 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2886 len += IP_ADDR_LEN; 2887 bzero(buf1, IP_ADDR_LEN); 2888 2889 /* 2890 * OK to cast away const here, as we don't store through the returned 2891 * opts.ipoptp_cur pointer. 2892 */ 2893 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2894 optval != IPOPT_EOL; 2895 optval = ipoptp_next(&opts)) { 2896 int off; 2897 2898 opt = opts.ipoptp_cur; 2899 optlen = opts.ipoptp_len; 2900 switch (optval) { 2901 case IPOPT_SSRR: 2902 case IPOPT_LSRR: 2903 2904 /* 2905 * Insert ipha_dst as the first entry in the source 2906 * route and move down the entries on step. 2907 * The last entry gets placed at buf1. 2908 */ 2909 buf[IPOPT_OPTVAL] = optval; 2910 buf[IPOPT_OLEN] = optlen; 2911 buf[IPOPT_OFFSET] = optlen; 2912 2913 off = optlen - IP_ADDR_LEN; 2914 if (off < 0) { 2915 /* No entries in source route */ 2916 break; 2917 } 2918 /* Last entry in source route */ 2919 bcopy(opt + off, buf1, IP_ADDR_LEN); 2920 off -= IP_ADDR_LEN; 2921 2922 while (off > 0) { 2923 bcopy(opt + off, 2924 buf + off + IP_ADDR_LEN, 2925 IP_ADDR_LEN); 2926 off -= IP_ADDR_LEN; 2927 } 2928 /* ipha_dst into first slot */ 2929 bcopy(&ipha->ipha_dst, 2930 buf + off + IP_ADDR_LEN, 2931 IP_ADDR_LEN); 2932 buf += optlen; 2933 len += optlen; 2934 break; 2935 2936 case IPOPT_COMSEC: 2937 case IPOPT_SECURITY: 2938 /* if passing up a label is not ok, then remove */ 2939 if (is_system_labeled()) 2940 break; 2941 /* FALLTHROUGH */ 2942 default: 2943 bcopy(opt, buf, optlen); 2944 buf += optlen; 2945 len += optlen; 2946 break; 2947 } 2948 } 2949 done: 2950 /* Pad the resulting options */ 2951 while (len & 0x3) { 2952 *buf++ = IPOPT_EOL; 2953 len++; 2954 } 2955 return (len); 2956 } 2957 2958 /* 2959 * Update any record route or timestamp options to include this host. 2960 * Reverse any source route option. 2961 * This routine assumes that the options are well formed i.e. that they 2962 * have already been checked. 2963 */ 2964 static void 2965 icmp_options_update(ipha_t *ipha) 2966 { 2967 ipoptp_t opts; 2968 uchar_t *opt; 2969 uint8_t optval; 2970 ipaddr_t src; /* Our local address */ 2971 ipaddr_t dst; 2972 2973 ip2dbg(("icmp_options_update\n")); 2974 src = ipha->ipha_src; 2975 dst = ipha->ipha_dst; 2976 2977 for (optval = ipoptp_first(&opts, ipha); 2978 optval != IPOPT_EOL; 2979 optval = ipoptp_next(&opts)) { 2980 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2981 opt = opts.ipoptp_cur; 2982 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2983 optval, opts.ipoptp_len)); 2984 switch (optval) { 2985 int off1, off2; 2986 case IPOPT_SSRR: 2987 case IPOPT_LSRR: 2988 /* 2989 * Reverse the source route. The first entry 2990 * should be the next to last one in the current 2991 * source route (the last entry is our address). 2992 * The last entry should be the final destination. 2993 */ 2994 off1 = IPOPT_MINOFF_SR - 1; 2995 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2996 if (off2 < 0) { 2997 /* No entries in source route */ 2998 ip1dbg(( 2999 "icmp_options_update: bad src route\n")); 3000 break; 3001 } 3002 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3003 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3004 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3005 off2 -= IP_ADDR_LEN; 3006 3007 while (off1 < off2) { 3008 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3009 bcopy((char *)opt + off2, (char *)opt + off1, 3010 IP_ADDR_LEN); 3011 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3012 off1 += IP_ADDR_LEN; 3013 off2 -= IP_ADDR_LEN; 3014 } 3015 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3016 break; 3017 } 3018 } 3019 } 3020 3021 /* 3022 * Process received ICMP Redirect messages. 3023 */ 3024 static void 3025 icmp_redirect(ill_t *ill, mblk_t *mp) 3026 { 3027 ipha_t *ipha; 3028 int iph_hdr_length; 3029 icmph_t *icmph; 3030 ipha_t *ipha_err; 3031 ire_t *ire; 3032 ire_t *prev_ire; 3033 ire_t *save_ire; 3034 ipaddr_t src, dst, gateway; 3035 iulp_t ulp_info = { 0 }; 3036 int error; 3037 ip_stack_t *ipst; 3038 3039 ASSERT(ill != NULL); 3040 ipst = ill->ill_ipst; 3041 3042 ipha = (ipha_t *)mp->b_rptr; 3043 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3044 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3045 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3046 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3047 freemsg(mp); 3048 return; 3049 } 3050 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3051 ipha_err = (ipha_t *)&icmph[1]; 3052 src = ipha->ipha_src; 3053 dst = ipha_err->ipha_dst; 3054 gateway = icmph->icmph_rd_gateway; 3055 /* Make sure the new gateway is reachable somehow. */ 3056 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3057 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3058 /* 3059 * Make sure we had a route for the dest in question and that 3060 * that route was pointing to the old gateway (the source of the 3061 * redirect packet.) 3062 */ 3063 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3064 NULL, MATCH_IRE_GW, ipst); 3065 /* 3066 * Check that 3067 * the redirect was not from ourselves 3068 * the new gateway and the old gateway are directly reachable 3069 */ 3070 if (!prev_ire || 3071 !ire || 3072 ire->ire_type == IRE_LOCAL) { 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3074 freemsg(mp); 3075 if (ire != NULL) 3076 ire_refrele(ire); 3077 if (prev_ire != NULL) 3078 ire_refrele(prev_ire); 3079 return; 3080 } 3081 3082 /* 3083 * Should we use the old ULP info to create the new gateway? From 3084 * a user's perspective, we should inherit the info so that it 3085 * is a "smooth" transition. If we do not do that, then new 3086 * connections going thru the new gateway will have no route metrics, 3087 * which is counter-intuitive to user. From a network point of 3088 * view, this may or may not make sense even though the new gateway 3089 * is still directly connected to us so the route metrics should not 3090 * change much. 3091 * 3092 * But if the old ire_uinfo is not initialized, we do another 3093 * recursive lookup on the dest using the new gateway. There may 3094 * be a route to that. If so, use it to initialize the redirect 3095 * route. 3096 */ 3097 if (prev_ire->ire_uinfo.iulp_set) { 3098 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3099 } else { 3100 ire_t *tmp_ire; 3101 ire_t *sire; 3102 3103 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3104 ALL_ZONES, 0, NULL, 3105 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3106 ipst); 3107 if (sire != NULL) { 3108 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3109 /* 3110 * If sire != NULL, ire_ftable_lookup() should not 3111 * return a NULL value. 3112 */ 3113 ASSERT(tmp_ire != NULL); 3114 ire_refrele(tmp_ire); 3115 ire_refrele(sire); 3116 } else if (tmp_ire != NULL) { 3117 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3118 sizeof (iulp_t)); 3119 ire_refrele(tmp_ire); 3120 } 3121 } 3122 if (prev_ire->ire_type == IRE_CACHE) 3123 ire_delete(prev_ire); 3124 ire_refrele(prev_ire); 3125 /* 3126 * TODO: more precise handling for cases 0, 2, 3, the latter two 3127 * require TOS routing 3128 */ 3129 switch (icmph->icmph_code) { 3130 case 0: 3131 case 1: 3132 /* TODO: TOS specificity for cases 2 and 3 */ 3133 case 2: 3134 case 3: 3135 break; 3136 default: 3137 freemsg(mp); 3138 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3139 ire_refrele(ire); 3140 return; 3141 } 3142 /* 3143 * Create a Route Association. This will allow us to remember that 3144 * someone we believe told us to use the particular gateway. 3145 */ 3146 save_ire = ire; 3147 ire = ire_create( 3148 (uchar_t *)&dst, /* dest addr */ 3149 (uchar_t *)&ip_g_all_ones, /* mask */ 3150 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3151 (uchar_t *)&gateway, /* gateway addr */ 3152 &save_ire->ire_max_frag, /* max frag */ 3153 NULL, /* no src nce */ 3154 NULL, /* no rfq */ 3155 NULL, /* no stq */ 3156 IRE_HOST, 3157 NULL, /* ipif */ 3158 0, /* cmask */ 3159 0, /* phandle */ 3160 0, /* ihandle */ 3161 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3162 &ulp_info, 3163 NULL, /* tsol_gc_t */ 3164 NULL, /* gcgrp */ 3165 ipst); 3166 3167 if (ire == NULL) { 3168 freemsg(mp); 3169 ire_refrele(save_ire); 3170 return; 3171 } 3172 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3173 ire_refrele(save_ire); 3174 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3175 3176 if (error == 0) { 3177 ire_refrele(ire); /* Held in ire_add_v4 */ 3178 /* tell routing sockets that we received a redirect */ 3179 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3180 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3181 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3182 } 3183 3184 /* 3185 * Delete any existing IRE_HOST type redirect ires for this destination. 3186 * This together with the added IRE has the effect of 3187 * modifying an existing redirect. 3188 */ 3189 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3190 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3191 if (prev_ire != NULL) { 3192 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3193 ire_delete(prev_ire); 3194 ire_refrele(prev_ire); 3195 } 3196 3197 freemsg(mp); 3198 } 3199 3200 /* 3201 * Generate an ICMP parameter problem message. 3202 */ 3203 static void 3204 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3205 ip_stack_t *ipst) 3206 { 3207 icmph_t icmph; 3208 boolean_t mctl_present; 3209 mblk_t *first_mp; 3210 3211 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3212 3213 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3214 if (mctl_present) 3215 freeb(first_mp); 3216 return; 3217 } 3218 3219 bzero(&icmph, sizeof (icmph_t)); 3220 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3221 icmph.icmph_pp_ptr = ptr; 3222 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3223 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3224 ipst); 3225 } 3226 3227 /* 3228 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3229 * the ICMP header pointed to by "stuff". (May be called as writer.) 3230 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3231 * an icmp error packet can be sent. 3232 * Assigns an appropriate source address to the packet. If ipha_dst is 3233 * one of our addresses use it for source. Otherwise pick a source based 3234 * on a route lookup back to ipha_src. 3235 * Note that ipha_src must be set here since the 3236 * packet is likely to arrive on an ill queue in ip_wput() which will 3237 * not set a source address. 3238 */ 3239 static void 3240 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3241 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3242 { 3243 ipaddr_t dst; 3244 icmph_t *icmph; 3245 ipha_t *ipha; 3246 uint_t len_needed; 3247 size_t msg_len; 3248 mblk_t *mp1; 3249 ipaddr_t src; 3250 ire_t *ire; 3251 mblk_t *ipsec_mp; 3252 ipsec_out_t *io = NULL; 3253 3254 if (mctl_present) { 3255 /* 3256 * If it is : 3257 * 3258 * 1) a IPSEC_OUT, then this is caused by outbound 3259 * datagram originating on this host. IPsec processing 3260 * may or may not have been done. Refer to comments above 3261 * icmp_inbound_error_fanout for details. 3262 * 3263 * 2) a IPSEC_IN if we are generating a icmp_message 3264 * for an incoming datagram destined for us i.e called 3265 * from ip_fanout_send_icmp. 3266 */ 3267 ipsec_info_t *in; 3268 ipsec_mp = mp; 3269 mp = ipsec_mp->b_cont; 3270 3271 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3272 ipha = (ipha_t *)mp->b_rptr; 3273 3274 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3275 in->ipsec_info_type == IPSEC_IN); 3276 3277 if (in->ipsec_info_type == IPSEC_IN) { 3278 /* 3279 * Convert the IPSEC_IN to IPSEC_OUT. 3280 */ 3281 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3282 BUMP_MIB(&ipst->ips_ip_mib, 3283 ipIfStatsOutDiscards); 3284 return; 3285 } 3286 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3287 } else { 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3289 io = (ipsec_out_t *)in; 3290 /* 3291 * Clear out ipsec_out_proc_begin, so we do a fresh 3292 * ire lookup. 3293 */ 3294 io->ipsec_out_proc_begin = B_FALSE; 3295 } 3296 ASSERT(zoneid == io->ipsec_out_zoneid); 3297 ASSERT(zoneid != ALL_ZONES); 3298 } else { 3299 /* 3300 * This is in clear. The icmp message we are building 3301 * here should go out in clear. 3302 * 3303 * Pardon the convolution of it all, but it's easier to 3304 * allocate a "use cleartext" IPSEC_IN message and convert 3305 * it than it is to allocate a new one. 3306 */ 3307 ipsec_in_t *ii; 3308 ASSERT(DB_TYPE(mp) == M_DATA); 3309 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3310 if (ipsec_mp == NULL) { 3311 freemsg(mp); 3312 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3313 return; 3314 } 3315 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3316 3317 /* This is not a secure packet */ 3318 ii->ipsec_in_secure = B_FALSE; 3319 /* 3320 * For trusted extensions using a shared IP address we can 3321 * send using any zoneid. 3322 */ 3323 if (zoneid == ALL_ZONES) 3324 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3325 else 3326 ii->ipsec_in_zoneid = zoneid; 3327 ipsec_mp->b_cont = mp; 3328 ipha = (ipha_t *)mp->b_rptr; 3329 /* 3330 * Convert the IPSEC_IN to IPSEC_OUT. 3331 */ 3332 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3333 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3334 return; 3335 } 3336 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3337 } 3338 3339 /* Remember our eventual destination */ 3340 dst = ipha->ipha_src; 3341 3342 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3343 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3344 if (ire != NULL && 3345 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3346 src = ipha->ipha_dst; 3347 } else { 3348 if (ire != NULL) 3349 ire_refrele(ire); 3350 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3351 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3352 ipst); 3353 if (ire == NULL) { 3354 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3355 freemsg(ipsec_mp); 3356 return; 3357 } 3358 src = ire->ire_src_addr; 3359 } 3360 3361 if (ire != NULL) 3362 ire_refrele(ire); 3363 3364 /* 3365 * Check if we can send back more then 8 bytes in addition to 3366 * the IP header. We try to send 64 bytes of data and the internal 3367 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3368 */ 3369 len_needed = IPH_HDR_LENGTH(ipha); 3370 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3371 ipha->ipha_protocol == IPPROTO_IPV6) { 3372 3373 if (!pullupmsg(mp, -1)) { 3374 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3375 freemsg(ipsec_mp); 3376 return; 3377 } 3378 ipha = (ipha_t *)mp->b_rptr; 3379 3380 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3381 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3382 len_needed)); 3383 } else { 3384 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3385 3386 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3387 len_needed += ip_hdr_length_v6(mp, ip6h); 3388 } 3389 } 3390 len_needed += ipst->ips_ip_icmp_return; 3391 msg_len = msgdsize(mp); 3392 if (msg_len > len_needed) { 3393 (void) adjmsg(mp, len_needed - msg_len); 3394 msg_len = len_needed; 3395 } 3396 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3397 if (mp1 == NULL) { 3398 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3399 freemsg(ipsec_mp); 3400 return; 3401 } 3402 mp1->b_cont = mp; 3403 mp = mp1; 3404 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3405 ipsec_mp->b_rptr == (uint8_t *)io && 3406 io->ipsec_out_type == IPSEC_OUT); 3407 ipsec_mp->b_cont = mp; 3408 3409 /* 3410 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3411 * node generates be accepted in peace by all on-host destinations. 3412 * If we do NOT assume that all on-host destinations trust 3413 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3414 * (Look for ipsec_out_icmp_loopback). 3415 */ 3416 io->ipsec_out_icmp_loopback = B_TRUE; 3417 3418 ipha = (ipha_t *)mp->b_rptr; 3419 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3420 *ipha = icmp_ipha; 3421 ipha->ipha_src = src; 3422 ipha->ipha_dst = dst; 3423 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3424 msg_len += sizeof (icmp_ipha) + len; 3425 if (msg_len > IP_MAXPACKET) { 3426 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3427 msg_len = IP_MAXPACKET; 3428 } 3429 ipha->ipha_length = htons((uint16_t)msg_len); 3430 icmph = (icmph_t *)&ipha[1]; 3431 bcopy(stuff, icmph, len); 3432 icmph->icmph_checksum = 0; 3433 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3434 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3435 put(q, ipsec_mp); 3436 } 3437 3438 /* 3439 * Determine if an ICMP error packet can be sent given the rate limit. 3440 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3441 * in milliseconds) and a burst size. Burst size number of packets can 3442 * be sent arbitrarely closely spaced. 3443 * The state is tracked using two variables to implement an approximate 3444 * token bucket filter: 3445 * icmp_pkt_err_last - lbolt value when the last burst started 3446 * icmp_pkt_err_sent - number of packets sent in current burst 3447 */ 3448 boolean_t 3449 icmp_err_rate_limit(ip_stack_t *ipst) 3450 { 3451 clock_t now = TICK_TO_MSEC(lbolt); 3452 uint_t refilled; /* Number of packets refilled in tbf since last */ 3453 /* Guard against changes by loading into local variable */ 3454 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3455 3456 if (err_interval == 0) 3457 return (B_FALSE); 3458 3459 if (ipst->ips_icmp_pkt_err_last > now) { 3460 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3461 ipst->ips_icmp_pkt_err_last = 0; 3462 ipst->ips_icmp_pkt_err_sent = 0; 3463 } 3464 /* 3465 * If we are in a burst update the token bucket filter. 3466 * Update the "last" time to be close to "now" but make sure 3467 * we don't loose precision. 3468 */ 3469 if (ipst->ips_icmp_pkt_err_sent != 0) { 3470 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3471 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3472 ipst->ips_icmp_pkt_err_sent = 0; 3473 } else { 3474 ipst->ips_icmp_pkt_err_sent -= refilled; 3475 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3476 } 3477 } 3478 if (ipst->ips_icmp_pkt_err_sent == 0) { 3479 /* Start of new burst */ 3480 ipst->ips_icmp_pkt_err_last = now; 3481 } 3482 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3483 ipst->ips_icmp_pkt_err_sent++; 3484 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3485 ipst->ips_icmp_pkt_err_sent)); 3486 return (B_FALSE); 3487 } 3488 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3489 return (B_TRUE); 3490 } 3491 3492 /* 3493 * Check if it is ok to send an IPv4 ICMP error packet in 3494 * response to the IPv4 packet in mp. 3495 * Free the message and return null if no 3496 * ICMP error packet should be sent. 3497 */ 3498 static mblk_t * 3499 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3500 { 3501 icmph_t *icmph; 3502 ipha_t *ipha; 3503 uint_t len_needed; 3504 ire_t *src_ire; 3505 ire_t *dst_ire; 3506 3507 if (!mp) 3508 return (NULL); 3509 ipha = (ipha_t *)mp->b_rptr; 3510 if (ip_csum_hdr(ipha)) { 3511 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3512 freemsg(mp); 3513 return (NULL); 3514 } 3515 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3516 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3517 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3518 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3519 if (src_ire != NULL || dst_ire != NULL || 3520 CLASSD(ipha->ipha_dst) || 3521 CLASSD(ipha->ipha_src) || 3522 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3523 /* Note: only errors to the fragment with offset 0 */ 3524 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3525 freemsg(mp); 3526 if (src_ire != NULL) 3527 ire_refrele(src_ire); 3528 if (dst_ire != NULL) 3529 ire_refrele(dst_ire); 3530 return (NULL); 3531 } 3532 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3533 /* 3534 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3535 * errors in response to any ICMP errors. 3536 */ 3537 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3538 if (mp->b_wptr - mp->b_rptr < len_needed) { 3539 if (!pullupmsg(mp, len_needed)) { 3540 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3541 freemsg(mp); 3542 return (NULL); 3543 } 3544 ipha = (ipha_t *)mp->b_rptr; 3545 } 3546 icmph = (icmph_t *) 3547 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3548 switch (icmph->icmph_type) { 3549 case ICMP_DEST_UNREACHABLE: 3550 case ICMP_SOURCE_QUENCH: 3551 case ICMP_TIME_EXCEEDED: 3552 case ICMP_PARAM_PROBLEM: 3553 case ICMP_REDIRECT: 3554 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3555 freemsg(mp); 3556 return (NULL); 3557 default: 3558 break; 3559 } 3560 } 3561 /* 3562 * If this is a labeled system, then check to see if we're allowed to 3563 * send a response to this particular sender. If not, then just drop. 3564 */ 3565 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3566 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3567 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3568 freemsg(mp); 3569 return (NULL); 3570 } 3571 if (icmp_err_rate_limit(ipst)) { 3572 /* 3573 * Only send ICMP error packets every so often. 3574 * This should be done on a per port/source basis, 3575 * but for now this will suffice. 3576 */ 3577 freemsg(mp); 3578 return (NULL); 3579 } 3580 return (mp); 3581 } 3582 3583 /* 3584 * Generate an ICMP redirect message. 3585 */ 3586 static void 3587 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3588 { 3589 icmph_t icmph; 3590 3591 /* 3592 * We are called from ip_rput where we could 3593 * not have attached an IPSEC_IN. 3594 */ 3595 ASSERT(mp->b_datap->db_type == M_DATA); 3596 3597 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3598 return; 3599 } 3600 3601 bzero(&icmph, sizeof (icmph_t)); 3602 icmph.icmph_type = ICMP_REDIRECT; 3603 icmph.icmph_code = 1; 3604 icmph.icmph_rd_gateway = gateway; 3605 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3606 /* Redirects sent by router, and router is global zone */ 3607 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3608 } 3609 3610 /* 3611 * Generate an ICMP time exceeded message. 3612 */ 3613 void 3614 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3615 ip_stack_t *ipst) 3616 { 3617 icmph_t icmph; 3618 boolean_t mctl_present; 3619 mblk_t *first_mp; 3620 3621 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3622 3623 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3624 if (mctl_present) 3625 freeb(first_mp); 3626 return; 3627 } 3628 3629 bzero(&icmph, sizeof (icmph_t)); 3630 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3631 icmph.icmph_code = code; 3632 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3633 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3634 ipst); 3635 } 3636 3637 /* 3638 * Generate an ICMP unreachable message. 3639 */ 3640 void 3641 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3642 ip_stack_t *ipst) 3643 { 3644 icmph_t icmph; 3645 mblk_t *first_mp; 3646 boolean_t mctl_present; 3647 3648 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3649 3650 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3651 if (mctl_present) 3652 freeb(first_mp); 3653 return; 3654 } 3655 3656 bzero(&icmph, sizeof (icmph_t)); 3657 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3658 icmph.icmph_code = code; 3659 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3660 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3661 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3662 zoneid, ipst); 3663 } 3664 3665 /* 3666 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3667 * duplicate. As long as someone else holds the address, the interface will 3668 * stay down. When that conflict goes away, the interface is brought back up. 3669 * This is done so that accidental shutdowns of addresses aren't made 3670 * permanent. Your server will recover from a failure. 3671 * 3672 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3673 * user space process (dhcpagent). 3674 * 3675 * Recovery completes if ARP reports that the address is now ours (via 3676 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3677 * 3678 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3679 */ 3680 static void 3681 ipif_dup_recovery(void *arg) 3682 { 3683 ipif_t *ipif = arg; 3684 ill_t *ill = ipif->ipif_ill; 3685 mblk_t *arp_add_mp; 3686 mblk_t *arp_del_mp; 3687 area_t *area; 3688 ip_stack_t *ipst = ill->ill_ipst; 3689 3690 ipif->ipif_recovery_id = 0; 3691 3692 /* 3693 * No lock needed for moving or condemned check, as this is just an 3694 * optimization. 3695 */ 3696 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3697 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3698 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3699 /* No reason to try to bring this address back. */ 3700 return; 3701 } 3702 3703 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3704 goto alloc_fail; 3705 3706 if (ipif->ipif_arp_del_mp == NULL) { 3707 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3708 goto alloc_fail; 3709 ipif->ipif_arp_del_mp = arp_del_mp; 3710 } 3711 3712 /* Setting the 'unverified' flag restarts DAD */ 3713 area = (area_t *)arp_add_mp->b_rptr; 3714 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3715 ACE_F_UNVERIFIED; 3716 putnext(ill->ill_rq, arp_add_mp); 3717 return; 3718 3719 alloc_fail: 3720 /* 3721 * On allocation failure, just restart the timer. Note that the ipif 3722 * is down here, so no other thread could be trying to start a recovery 3723 * timer. The ill_lock protects the condemned flag and the recovery 3724 * timer ID. 3725 */ 3726 freemsg(arp_add_mp); 3727 mutex_enter(&ill->ill_lock); 3728 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3729 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3730 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3731 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3732 } 3733 mutex_exit(&ill->ill_lock); 3734 } 3735 3736 /* 3737 * This is for exclusive changes due to ARP. Either tear down an interface due 3738 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3739 */ 3740 /* ARGSUSED */ 3741 static void 3742 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3743 { 3744 ill_t *ill = rq->q_ptr; 3745 arh_t *arh; 3746 ipaddr_t src; 3747 ipif_t *ipif; 3748 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3749 char hbuf[MAC_STR_LEN]; 3750 char sbuf[INET_ADDRSTRLEN]; 3751 const char *failtype; 3752 boolean_t bring_up; 3753 ip_stack_t *ipst = ill->ill_ipst; 3754 3755 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3756 case AR_CN_READY: 3757 failtype = NULL; 3758 bring_up = B_TRUE; 3759 break; 3760 case AR_CN_FAILED: 3761 failtype = "in use"; 3762 bring_up = B_FALSE; 3763 break; 3764 default: 3765 failtype = "claimed"; 3766 bring_up = B_FALSE; 3767 break; 3768 } 3769 3770 arh = (arh_t *)mp->b_cont->b_rptr; 3771 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3772 3773 /* Handle failures due to probes */ 3774 if (src == 0) { 3775 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3776 IP_ADDR_LEN); 3777 } 3778 3779 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3780 sizeof (hbuf)); 3781 (void) ip_dot_addr(src, sbuf); 3782 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3783 3784 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3785 ipif->ipif_lcl_addr != src) { 3786 continue; 3787 } 3788 3789 /* 3790 * If we failed on a recovery probe, then restart the timer to 3791 * try again later. 3792 */ 3793 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3794 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3795 ill->ill_net_type == IRE_IF_RESOLVER && 3796 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3797 ipst->ips_ip_dup_recovery > 0 && 3798 ipif->ipif_recovery_id == 0) { 3799 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3800 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3801 continue; 3802 } 3803 3804 /* 3805 * If what we're trying to do has already been done, then do 3806 * nothing. 3807 */ 3808 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3809 continue; 3810 3811 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3812 3813 if (failtype == NULL) { 3814 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3815 ibuf); 3816 } else { 3817 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3818 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3819 } 3820 3821 if (bring_up) { 3822 ASSERT(ill->ill_dl_up); 3823 /* 3824 * Free up the ARP delete message so we can allocate 3825 * a fresh one through the normal path. 3826 */ 3827 freemsg(ipif->ipif_arp_del_mp); 3828 ipif->ipif_arp_del_mp = NULL; 3829 if (ipif_resolver_up(ipif, Res_act_initial) != 3830 EINPROGRESS) { 3831 ipif->ipif_addr_ready = 1; 3832 (void) ipif_up_done(ipif); 3833 } 3834 continue; 3835 } 3836 3837 mutex_enter(&ill->ill_lock); 3838 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3839 ipif->ipif_flags |= IPIF_DUPLICATE; 3840 ill->ill_ipif_dup_count++; 3841 mutex_exit(&ill->ill_lock); 3842 /* 3843 * Already exclusive on the ill; no need to handle deferred 3844 * processing here. 3845 */ 3846 (void) ipif_down(ipif, NULL, NULL); 3847 ipif_down_tail(ipif); 3848 mutex_enter(&ill->ill_lock); 3849 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3850 ill->ill_net_type == IRE_IF_RESOLVER && 3851 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3852 ipst->ips_ip_dup_recovery > 0) { 3853 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3854 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3855 } 3856 mutex_exit(&ill->ill_lock); 3857 } 3858 freemsg(mp); 3859 } 3860 3861 /* ARGSUSED */ 3862 static void 3863 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3864 { 3865 ill_t *ill = rq->q_ptr; 3866 arh_t *arh; 3867 ipaddr_t src; 3868 ipif_t *ipif; 3869 3870 arh = (arh_t *)mp->b_cont->b_rptr; 3871 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3872 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3873 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3874 (void) ipif_resolver_up(ipif, Res_act_defend); 3875 } 3876 freemsg(mp); 3877 } 3878 3879 /* 3880 * News from ARP. ARP sends notification of interesting events down 3881 * to its clients using M_CTL messages with the interesting ARP packet 3882 * attached via b_cont. 3883 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3884 * queue as opposed to ARP sending the message to all the clients, i.e. all 3885 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3886 * table if a cache IRE is found to delete all the entries for the address in 3887 * the packet. 3888 */ 3889 static void 3890 ip_arp_news(queue_t *q, mblk_t *mp) 3891 { 3892 arcn_t *arcn; 3893 arh_t *arh; 3894 ire_t *ire = NULL; 3895 char hbuf[MAC_STR_LEN]; 3896 char sbuf[INET_ADDRSTRLEN]; 3897 ipaddr_t src; 3898 in6_addr_t v6src; 3899 boolean_t isv6 = B_FALSE; 3900 ipif_t *ipif; 3901 ill_t *ill; 3902 ip_stack_t *ipst; 3903 3904 if (CONN_Q(q)) { 3905 conn_t *connp = Q_TO_CONN(q); 3906 3907 ipst = connp->conn_netstack->netstack_ip; 3908 } else { 3909 ill_t *ill = (ill_t *)q->q_ptr; 3910 3911 ipst = ill->ill_ipst; 3912 } 3913 3914 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3915 if (q->q_next) { 3916 putnext(q, mp); 3917 } else 3918 freemsg(mp); 3919 return; 3920 } 3921 arh = (arh_t *)mp->b_cont->b_rptr; 3922 /* Is it one we are interested in? */ 3923 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3924 isv6 = B_TRUE; 3925 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3926 IPV6_ADDR_LEN); 3927 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3928 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3929 IP_ADDR_LEN); 3930 } else { 3931 freemsg(mp); 3932 return; 3933 } 3934 3935 ill = q->q_ptr; 3936 3937 arcn = (arcn_t *)mp->b_rptr; 3938 switch (arcn->arcn_code) { 3939 case AR_CN_BOGON: 3940 /* 3941 * Someone is sending ARP packets with a source protocol 3942 * address that we have published and for which we believe our 3943 * entry is authoritative and (when ill_arp_extend is set) 3944 * verified to be unique on the network. 3945 * 3946 * The ARP module internally handles the cases where the sender 3947 * is just probing (for DAD) and where the hardware address of 3948 * a non-authoritative entry has changed. Thus, these are the 3949 * real conflicts, and we have to do resolution. 3950 * 3951 * We back away quickly from the address if it's from DHCP or 3952 * otherwise temporary and hasn't been used recently (or at 3953 * all). We'd like to include "deprecated" addresses here as 3954 * well (as there's no real reason to defend something we're 3955 * discarding), but IPMP "reuses" this flag to mean something 3956 * other than the standard meaning. 3957 * 3958 * If the ARP module above is not extended (meaning that it 3959 * doesn't know how to defend the address), then we just log 3960 * the problem as we always did and continue on. It's not 3961 * right, but there's little else we can do, and those old ATM 3962 * users are going away anyway. 3963 */ 3964 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3965 hbuf, sizeof (hbuf)); 3966 (void) ip_dot_addr(src, sbuf); 3967 if (isv6) { 3968 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3969 ipst); 3970 } else { 3971 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3972 } 3973 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3974 uint32_t now; 3975 uint32_t maxage; 3976 clock_t lused; 3977 uint_t maxdefense; 3978 uint_t defs; 3979 3980 /* 3981 * First, figure out if this address hasn't been used 3982 * in a while. If it hasn't, then it's a better 3983 * candidate for abandoning. 3984 */ 3985 ipif = ire->ire_ipif; 3986 ASSERT(ipif != NULL); 3987 now = gethrestime_sec(); 3988 maxage = now - ire->ire_create_time; 3989 if (maxage > ipst->ips_ip_max_temp_idle) 3990 maxage = ipst->ips_ip_max_temp_idle; 3991 lused = drv_hztousec(ddi_get_lbolt() - 3992 ire->ire_last_used_time) / MICROSEC + 1; 3993 if (lused >= maxage && (ipif->ipif_flags & 3994 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3995 maxdefense = ipst->ips_ip_max_temp_defend; 3996 else 3997 maxdefense = ipst->ips_ip_max_defend; 3998 3999 /* 4000 * Now figure out how many times we've defended 4001 * ourselves. Ignore defenses that happened long in 4002 * the past. 4003 */ 4004 mutex_enter(&ire->ire_lock); 4005 if ((defs = ire->ire_defense_count) > 0 && 4006 now - ire->ire_defense_time > 4007 ipst->ips_ip_defend_interval) { 4008 ire->ire_defense_count = defs = 0; 4009 } 4010 ire->ire_defense_count++; 4011 ire->ire_defense_time = now; 4012 mutex_exit(&ire->ire_lock); 4013 ill_refhold(ill); 4014 ire_refrele(ire); 4015 4016 /* 4017 * If we've defended ourselves too many times already, 4018 * then give up and tear down the interface(s) using 4019 * this address. Otherwise, defend by sending out a 4020 * gratuitous ARP. 4021 */ 4022 if (defs >= maxdefense && ill->ill_arp_extend) { 4023 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4024 B_FALSE); 4025 } else { 4026 cmn_err(CE_WARN, 4027 "node %s is using our IP address %s on %s", 4028 hbuf, sbuf, ill->ill_name); 4029 /* 4030 * If this is an old (ATM) ARP module, then 4031 * don't try to defend the address. Remain 4032 * compatible with the old behavior. Defend 4033 * only with new ARP. 4034 */ 4035 if (ill->ill_arp_extend) { 4036 qwriter_ip(ill, q, mp, ip_arp_defend, 4037 NEW_OP, B_FALSE); 4038 } else { 4039 ill_refrele(ill); 4040 } 4041 } 4042 return; 4043 } 4044 cmn_err(CE_WARN, 4045 "proxy ARP problem? Node '%s' is using %s on %s", 4046 hbuf, sbuf, ill->ill_name); 4047 if (ire != NULL) 4048 ire_refrele(ire); 4049 break; 4050 case AR_CN_ANNOUNCE: 4051 if (isv6) { 4052 /* 4053 * For XRESOLV interfaces. 4054 * Delete the IRE cache entry and NCE for this 4055 * v6 address 4056 */ 4057 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4058 /* 4059 * If v6src is a non-zero, it's a router address 4060 * as below. Do the same sort of thing to clean 4061 * out off-net IRE_CACHE entries that go through 4062 * the router. 4063 */ 4064 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4065 ire_walk_v6(ire_delete_cache_gw_v6, 4066 (char *)&v6src, ALL_ZONES, ipst); 4067 } 4068 } else { 4069 nce_hw_map_t hwm; 4070 4071 /* 4072 * ARP gives us a copy of any packet where it thinks 4073 * the address has changed, so that we can update our 4074 * caches. We're responsible for caching known answers 4075 * in the current design. We check whether the 4076 * hardware address really has changed in all of our 4077 * entries that have cached this mapping, and if so, we 4078 * blow them away. This way we will immediately pick 4079 * up the rare case of a host changing hardware 4080 * address. 4081 */ 4082 if (src == 0) 4083 break; 4084 hwm.hwm_addr = src; 4085 hwm.hwm_hwlen = arh->arh_hlen; 4086 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4087 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4088 ndp_walk_common(ipst->ips_ndp4, NULL, 4089 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4090 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4091 } 4092 break; 4093 case AR_CN_READY: 4094 /* No external v6 resolver has a contract to use this */ 4095 if (isv6) 4096 break; 4097 /* If the link is down, we'll retry this later */ 4098 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4099 break; 4100 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4101 NULL, NULL, ipst); 4102 if (ipif != NULL) { 4103 /* 4104 * If this is a duplicate recovery, then we now need to 4105 * go exclusive to bring this thing back up. 4106 */ 4107 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4108 IPIF_DUPLICATE) { 4109 ipif_refrele(ipif); 4110 ill_refhold(ill); 4111 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4112 B_FALSE); 4113 return; 4114 } 4115 /* 4116 * If this is the first notice that this address is 4117 * ready, then let the user know now. 4118 */ 4119 if ((ipif->ipif_flags & IPIF_UP) && 4120 !ipif->ipif_addr_ready) { 4121 ipif_mask_reply(ipif); 4122 ip_rts_ifmsg(ipif); 4123 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4124 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4125 } 4126 ipif->ipif_addr_ready = 1; 4127 ipif_refrele(ipif); 4128 } 4129 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4130 if (ire != NULL) { 4131 ire->ire_defense_count = 0; 4132 ire_refrele(ire); 4133 } 4134 break; 4135 case AR_CN_FAILED: 4136 /* No external v6 resolver has a contract to use this */ 4137 if (isv6) 4138 break; 4139 ill_refhold(ill); 4140 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4141 return; 4142 } 4143 freemsg(mp); 4144 } 4145 4146 /* 4147 * Create a mblk suitable for carrying the interface index and/or source link 4148 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4149 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4150 * application. 4151 */ 4152 mblk_t * 4153 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4154 ip_stack_t *ipst) 4155 { 4156 mblk_t *mp; 4157 ip_pktinfo_t *pinfo; 4158 ipha_t *ipha; 4159 struct ether_header *pether; 4160 4161 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4162 if (mp == NULL) { 4163 ip1dbg(("ip_add_info: allocation failure.\n")); 4164 return (data_mp); 4165 } 4166 4167 ipha = (ipha_t *)data_mp->b_rptr; 4168 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4169 bzero(pinfo, sizeof (ip_pktinfo_t)); 4170 pinfo->ip_pkt_flags = (uchar_t)flags; 4171 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4172 4173 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4174 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4175 if (flags & IPF_RECVADDR) { 4176 ipif_t *ipif; 4177 ire_t *ire; 4178 4179 /* 4180 * Only valid for V4 4181 */ 4182 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4183 (IPV4_VERSION << 4)); 4184 4185 ipif = ipif_get_next_ipif(NULL, ill); 4186 if (ipif != NULL) { 4187 /* 4188 * Since a decision has already been made to deliver the 4189 * packet, there is no need to test for SECATTR and 4190 * ZONEONLY. 4191 * When a multicast packet is transmitted 4192 * a cache entry is created for the multicast address. 4193 * When delivering a copy of the packet or when new 4194 * packets are received we do not want to match on the 4195 * cached entry so explicitly match on 4196 * IRE_LOCAL and IRE_LOOPBACK 4197 */ 4198 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4199 IRE_LOCAL | IRE_LOOPBACK, 4200 ipif, zoneid, NULL, 4201 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4202 if (ire == NULL) { 4203 /* 4204 * packet must have come on a different 4205 * interface. 4206 * Since a decision has already been made to 4207 * deliver the packet, there is no need to test 4208 * for SECATTR and ZONEONLY. 4209 * Only match on local and broadcast ire's. 4210 * See detailed comment above. 4211 */ 4212 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4213 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4214 NULL, MATCH_IRE_TYPE, ipst); 4215 } 4216 4217 if (ire == NULL) { 4218 /* 4219 * This is either a multicast packet or 4220 * the address has been removed since 4221 * the packet was received. 4222 * Return INADDR_ANY so that normal source 4223 * selection occurs for the response. 4224 */ 4225 4226 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4227 } else { 4228 pinfo->ip_pkt_match_addr.s_addr = 4229 ire->ire_src_addr; 4230 ire_refrele(ire); 4231 } 4232 ipif_refrele(ipif); 4233 } else { 4234 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4235 } 4236 } 4237 4238 pether = (struct ether_header *)((char *)ipha 4239 - sizeof (struct ether_header)); 4240 /* 4241 * Make sure the interface is an ethernet type, since this option 4242 * is currently supported only on this type of interface. Also make 4243 * sure we are pointing correctly above db_base. 4244 */ 4245 4246 if ((flags & IPF_RECVSLLA) && 4247 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4248 (ill->ill_type == IFT_ETHER) && 4249 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4250 4251 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4252 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4253 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4254 } else { 4255 /* 4256 * Clear the bit. Indicate to upper layer that IP is not 4257 * sending this ancillary info. 4258 */ 4259 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4260 } 4261 4262 mp->b_datap->db_type = M_CTL; 4263 mp->b_wptr += sizeof (ip_pktinfo_t); 4264 mp->b_cont = data_mp; 4265 4266 return (mp); 4267 } 4268 4269 /* 4270 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4271 * part of the bind request. 4272 */ 4273 4274 boolean_t 4275 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4276 { 4277 ipsec_in_t *ii; 4278 4279 ASSERT(policy_mp != NULL); 4280 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4281 4282 ii = (ipsec_in_t *)policy_mp->b_rptr; 4283 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4284 4285 connp->conn_policy = ii->ipsec_in_policy; 4286 ii->ipsec_in_policy = NULL; 4287 4288 if (ii->ipsec_in_action != NULL) { 4289 if (connp->conn_latch == NULL) { 4290 connp->conn_latch = iplatch_create(); 4291 if (connp->conn_latch == NULL) 4292 return (B_FALSE); 4293 } 4294 ipsec_latch_inbound(connp->conn_latch, ii); 4295 } 4296 return (B_TRUE); 4297 } 4298 4299 /* 4300 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4301 * and to arrange for power-fanout assist. The ULP is identified by 4302 * adding a single byte at the end of the original bind message. 4303 * A ULP other than UDP or TCP that wishes to be recognized passes 4304 * down a bind with a zero length address. 4305 * 4306 * The binding works as follows: 4307 * - A zero byte address means just bind to the protocol. 4308 * - A four byte address is treated as a request to validate 4309 * that the address is a valid local address, appropriate for 4310 * an application to bind to. This does not affect any fanout 4311 * information in IP. 4312 * - A sizeof sin_t byte address is used to bind to only the local address 4313 * and port. 4314 * - A sizeof ipa_conn_t byte address contains complete fanout information 4315 * consisting of local and remote addresses and ports. In 4316 * this case, the addresses are both validated as appropriate 4317 * for this operation, and, if so, the information is retained 4318 * for use in the inbound fanout. 4319 * 4320 * The ULP (except in the zero-length bind) can append an 4321 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4322 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4323 * a copy of the source or destination IRE (source for local bind; 4324 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4325 * policy information contained should be copied on to the conn. 4326 * 4327 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4328 */ 4329 mblk_t * 4330 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4331 { 4332 ssize_t len; 4333 struct T_bind_req *tbr; 4334 sin_t *sin; 4335 ipa_conn_t *ac; 4336 uchar_t *ucp; 4337 mblk_t *mp1; 4338 boolean_t ire_requested; 4339 boolean_t ipsec_policy_set = B_FALSE; 4340 int error = 0; 4341 int protocol; 4342 ipa_conn_x_t *acx; 4343 4344 ASSERT(!connp->conn_af_isv6); 4345 connp->conn_pkt_isv6 = B_FALSE; 4346 4347 len = MBLKL(mp); 4348 if (len < (sizeof (*tbr) + 1)) { 4349 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4350 "ip_bind: bogus msg, len %ld", len); 4351 /* XXX: Need to return something better */ 4352 goto bad_addr; 4353 } 4354 /* Back up and extract the protocol identifier. */ 4355 mp->b_wptr--; 4356 protocol = *mp->b_wptr & 0xFF; 4357 tbr = (struct T_bind_req *)mp->b_rptr; 4358 /* Reset the message type in preparation for shipping it back. */ 4359 DB_TYPE(mp) = M_PCPROTO; 4360 4361 connp->conn_ulp = (uint8_t)protocol; 4362 4363 /* 4364 * Check for a zero length address. This is from a protocol that 4365 * wants to register to receive all packets of its type. 4366 */ 4367 if (tbr->ADDR_length == 0) { 4368 /* 4369 * These protocols are now intercepted in ip_bind_v6(). 4370 * Reject protocol-level binds here for now. 4371 * 4372 * For SCTP raw socket, ICMP sends down a bind with sin_t 4373 * so that the protocol type cannot be SCTP. 4374 */ 4375 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4376 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4377 goto bad_addr; 4378 } 4379 4380 /* 4381 * 4382 * The udp module never sends down a zero-length address, 4383 * and allowing this on a labeled system will break MLP 4384 * functionality. 4385 */ 4386 if (is_system_labeled() && protocol == IPPROTO_UDP) 4387 goto bad_addr; 4388 4389 if (connp->conn_mac_exempt) 4390 goto bad_addr; 4391 4392 /* No hash here really. The table is big enough. */ 4393 connp->conn_srcv6 = ipv6_all_zeros; 4394 4395 ipcl_proto_insert(connp, protocol); 4396 4397 tbr->PRIM_type = T_BIND_ACK; 4398 return (mp); 4399 } 4400 4401 /* Extract the address pointer from the message. */ 4402 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4403 tbr->ADDR_length); 4404 if (ucp == NULL) { 4405 ip1dbg(("ip_bind: no address\n")); 4406 goto bad_addr; 4407 } 4408 if (!OK_32PTR(ucp)) { 4409 ip1dbg(("ip_bind: unaligned address\n")); 4410 goto bad_addr; 4411 } 4412 /* 4413 * Check for trailing mps. 4414 */ 4415 4416 mp1 = mp->b_cont; 4417 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4418 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4419 4420 switch (tbr->ADDR_length) { 4421 default: 4422 ip1dbg(("ip_bind: bad address length %d\n", 4423 (int)tbr->ADDR_length)); 4424 goto bad_addr; 4425 4426 case IP_ADDR_LEN: 4427 /* Verification of local address only */ 4428 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4429 ire_requested, ipsec_policy_set, B_FALSE); 4430 break; 4431 4432 case sizeof (sin_t): 4433 sin = (sin_t *)ucp; 4434 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4435 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4436 break; 4437 4438 case sizeof (ipa_conn_t): 4439 ac = (ipa_conn_t *)ucp; 4440 /* For raw socket, the local port is not set. */ 4441 if (ac->ac_lport == 0) 4442 ac->ac_lport = connp->conn_lport; 4443 /* Always verify destination reachability. */ 4444 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4445 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4446 ipsec_policy_set, B_TRUE, B_TRUE); 4447 break; 4448 4449 case sizeof (ipa_conn_x_t): 4450 acx = (ipa_conn_x_t *)ucp; 4451 /* 4452 * Whether or not to verify destination reachability depends 4453 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4454 */ 4455 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4456 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4457 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4458 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4459 break; 4460 } 4461 if (error == EINPROGRESS) 4462 return (NULL); 4463 else if (error != 0) 4464 goto bad_addr; 4465 /* 4466 * Pass the IPsec headers size in ire_ipsec_overhead. 4467 * We can't do this in ip_bind_insert_ire because the policy 4468 * may not have been inherited at that point in time and hence 4469 * conn_out_enforce_policy may not be set. 4470 */ 4471 mp1 = mp->b_cont; 4472 if (ire_requested && connp->conn_out_enforce_policy && 4473 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4474 ire_t *ire = (ire_t *)mp1->b_rptr; 4475 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4476 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4477 } 4478 4479 /* Send it home. */ 4480 mp->b_datap->db_type = M_PCPROTO; 4481 tbr->PRIM_type = T_BIND_ACK; 4482 return (mp); 4483 4484 bad_addr: 4485 /* 4486 * If error = -1 then we generate a TBADADDR - otherwise error is 4487 * a unix errno. 4488 */ 4489 if (error > 0) 4490 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4491 else 4492 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4493 return (mp); 4494 } 4495 4496 /* 4497 * Here address is verified to be a valid local address. 4498 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4499 * address is also considered a valid local address. 4500 * In the case of a broadcast/multicast address, however, the 4501 * upper protocol is expected to reset the src address 4502 * to 0 if it sees a IRE_BROADCAST type returned so that 4503 * no packets are emitted with broadcast/multicast address as 4504 * source address (that violates hosts requirements RFC1122) 4505 * The addresses valid for bind are: 4506 * (1) - INADDR_ANY (0) 4507 * (2) - IP address of an UP interface 4508 * (3) - IP address of a DOWN interface 4509 * (4) - valid local IP broadcast addresses. In this case 4510 * the conn will only receive packets destined to 4511 * the specified broadcast address. 4512 * (5) - a multicast address. In this case 4513 * the conn will only receive packets destined to 4514 * the specified multicast address. Note: the 4515 * application still has to issue an 4516 * IP_ADD_MEMBERSHIP socket option. 4517 * 4518 * On error, return -1 for TBADADDR otherwise pass the 4519 * errno with TSYSERR reply. 4520 * 4521 * In all the above cases, the bound address must be valid in the current zone. 4522 * When the address is loopback, multicast or broadcast, there might be many 4523 * matching IREs so bind has to look up based on the zone. 4524 * 4525 * Note: lport is in network byte order. 4526 */ 4527 int 4528 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4529 boolean_t ire_requested, boolean_t ipsec_policy_set, 4530 boolean_t fanout_insert) 4531 { 4532 int error = 0; 4533 ire_t *src_ire; 4534 mblk_t *policy_mp; 4535 ipif_t *ipif; 4536 zoneid_t zoneid; 4537 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4538 4539 if (ipsec_policy_set) { 4540 policy_mp = mp->b_cont; 4541 } 4542 4543 /* 4544 * If it was previously connected, conn_fully_bound would have 4545 * been set. 4546 */ 4547 connp->conn_fully_bound = B_FALSE; 4548 4549 src_ire = NULL; 4550 ipif = NULL; 4551 4552 zoneid = IPCL_ZONEID(connp); 4553 4554 if (src_addr) { 4555 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4556 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4557 /* 4558 * If an address other than 0.0.0.0 is requested, 4559 * we verify that it is a valid address for bind 4560 * Note: Following code is in if-else-if form for 4561 * readability compared to a condition check. 4562 */ 4563 /* LINTED - statement has no consequent */ 4564 if (IRE_IS_LOCAL(src_ire)) { 4565 /* 4566 * (2) Bind to address of local UP interface 4567 */ 4568 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4569 /* 4570 * (4) Bind to broadcast address 4571 * Note: permitted only from transports that 4572 * request IRE 4573 */ 4574 if (!ire_requested) 4575 error = EADDRNOTAVAIL; 4576 } else { 4577 /* 4578 * (3) Bind to address of local DOWN interface 4579 * (ipif_lookup_addr() looks up all interfaces 4580 * but we do not get here for UP interfaces 4581 * - case (2) above) 4582 * We put the protocol byte back into the mblk 4583 * since we may come back via ip_wput_nondata() 4584 * later with this mblk if ipif_lookup_addr chooses 4585 * to defer processing. 4586 */ 4587 *mp->b_wptr++ = (char)connp->conn_ulp; 4588 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4589 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4590 &error, ipst)) != NULL) { 4591 ipif_refrele(ipif); 4592 } else if (error == EINPROGRESS) { 4593 if (src_ire != NULL) 4594 ire_refrele(src_ire); 4595 return (EINPROGRESS); 4596 } else if (CLASSD(src_addr)) { 4597 error = 0; 4598 if (src_ire != NULL) 4599 ire_refrele(src_ire); 4600 /* 4601 * (5) bind to multicast address. 4602 * Fake out the IRE returned to upper 4603 * layer to be a broadcast IRE. 4604 */ 4605 src_ire = ire_ctable_lookup( 4606 INADDR_BROADCAST, INADDR_ANY, 4607 IRE_BROADCAST, NULL, zoneid, NULL, 4608 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4609 ipst); 4610 if (src_ire == NULL || !ire_requested) 4611 error = EADDRNOTAVAIL; 4612 } else { 4613 /* 4614 * Not a valid address for bind 4615 */ 4616 error = EADDRNOTAVAIL; 4617 } 4618 /* 4619 * Just to keep it consistent with the processing in 4620 * ip_bind_v4() 4621 */ 4622 mp->b_wptr--; 4623 } 4624 if (error) { 4625 /* Red Alert! Attempting to be a bogon! */ 4626 ip1dbg(("ip_bind: bad src address 0x%x\n", 4627 ntohl(src_addr))); 4628 goto bad_addr; 4629 } 4630 } 4631 4632 /* 4633 * Allow setting new policies. For example, disconnects come 4634 * down as ipa_t bind. As we would have set conn_policy_cached 4635 * to B_TRUE before, we should set it to B_FALSE, so that policy 4636 * can change after the disconnect. 4637 */ 4638 connp->conn_policy_cached = B_FALSE; 4639 4640 /* 4641 * If not fanout_insert this was just an address verification 4642 */ 4643 if (fanout_insert) { 4644 /* 4645 * The addresses have been verified. Time to insert in 4646 * the correct fanout list. 4647 */ 4648 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4649 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4650 connp->conn_lport = lport; 4651 connp->conn_fport = 0; 4652 /* 4653 * Do we need to add a check to reject Multicast packets 4654 * 4655 * We need to make sure that the conn_recv is set to a non-null 4656 * value before we insert the conn into the classifier table. 4657 * This is to avoid a race with an incoming packet which does an 4658 * ipcl_classify(). 4659 */ 4660 if (*mp->b_wptr == IPPROTO_TCP) 4661 connp->conn_recv = tcp_conn_request; 4662 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4663 } 4664 4665 if (error == 0) { 4666 if (ire_requested) { 4667 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4668 error = -1; 4669 /* Falls through to bad_addr */ 4670 } 4671 } else if (ipsec_policy_set) { 4672 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4673 error = -1; 4674 /* Falls through to bad_addr */ 4675 } 4676 } 4677 } else if (connp->conn_ulp == IPPROTO_TCP) { 4678 connp->conn_recv = tcp_input; 4679 } 4680 bad_addr: 4681 if (error != 0) { 4682 if (connp->conn_anon_port) { 4683 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4684 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4685 B_FALSE); 4686 } 4687 connp->conn_mlp_type = mlptSingle; 4688 } 4689 if (src_ire != NULL) 4690 IRE_REFRELE(src_ire); 4691 if (ipsec_policy_set) { 4692 ASSERT(policy_mp == mp->b_cont); 4693 ASSERT(policy_mp != NULL); 4694 freeb(policy_mp); 4695 /* 4696 * As of now assume that nothing else accompanies 4697 * IPSEC_POLICY_SET. 4698 */ 4699 mp->b_cont = NULL; 4700 } 4701 return (error); 4702 } 4703 4704 /* 4705 * Verify that both the source and destination addresses 4706 * are valid. If verify_dst is false, then the destination address may be 4707 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4708 * destination reachability, while tunnels do not. 4709 * Note that we allow connect to broadcast and multicast 4710 * addresses when ire_requested is set. Thus the ULP 4711 * has to check for IRE_BROADCAST and multicast. 4712 * 4713 * Returns zero if ok. 4714 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4715 * (for use with TSYSERR reply). 4716 * 4717 * Note: lport and fport are in network byte order. 4718 */ 4719 int 4720 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4721 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4722 boolean_t ire_requested, boolean_t ipsec_policy_set, 4723 boolean_t fanout_insert, boolean_t verify_dst) 4724 { 4725 ire_t *src_ire; 4726 ire_t *dst_ire; 4727 int error = 0; 4728 int protocol; 4729 mblk_t *policy_mp; 4730 ire_t *sire = NULL; 4731 ire_t *md_dst_ire = NULL; 4732 ire_t *lso_dst_ire = NULL; 4733 ill_t *ill = NULL; 4734 zoneid_t zoneid; 4735 ipaddr_t src_addr = *src_addrp; 4736 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4737 4738 src_ire = dst_ire = NULL; 4739 protocol = *mp->b_wptr & 0xFF; 4740 4741 /* 4742 * If we never got a disconnect before, clear it now. 4743 */ 4744 connp->conn_fully_bound = B_FALSE; 4745 4746 if (ipsec_policy_set) { 4747 policy_mp = mp->b_cont; 4748 } 4749 4750 zoneid = IPCL_ZONEID(connp); 4751 4752 if (CLASSD(dst_addr)) { 4753 /* Pick up an IRE_BROADCAST */ 4754 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4755 NULL, zoneid, MBLK_GETLABEL(mp), 4756 (MATCH_IRE_RECURSIVE | 4757 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4758 MATCH_IRE_SECATTR), ipst); 4759 } else { 4760 /* 4761 * If conn_dontroute is set or if conn_nexthop_set is set, 4762 * and onlink ipif is not found set ENETUNREACH error. 4763 */ 4764 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4765 ipif_t *ipif; 4766 4767 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4768 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4769 if (ipif == NULL) { 4770 error = ENETUNREACH; 4771 goto bad_addr; 4772 } 4773 ipif_refrele(ipif); 4774 } 4775 4776 if (connp->conn_nexthop_set) { 4777 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4778 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4779 MATCH_IRE_SECATTR, ipst); 4780 } else { 4781 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4782 &sire, zoneid, MBLK_GETLABEL(mp), 4783 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4784 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4785 MATCH_IRE_SECATTR), ipst); 4786 } 4787 } 4788 /* 4789 * dst_ire can't be a broadcast when not ire_requested. 4790 * We also prevent ire's with src address INADDR_ANY to 4791 * be used, which are created temporarily for 4792 * sending out packets from endpoints that have 4793 * conn_unspec_src set. If verify_dst is true, the destination must be 4794 * reachable. If verify_dst is false, the destination needn't be 4795 * reachable. 4796 * 4797 * If we match on a reject or black hole, then we've got a 4798 * local failure. May as well fail out the connect() attempt, 4799 * since it's never going to succeed. 4800 */ 4801 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4802 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4803 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4804 /* 4805 * If we're verifying destination reachability, we always want 4806 * to complain here. 4807 * 4808 * If we're not verifying destination reachability but the 4809 * destination has a route, we still want to fail on the 4810 * temporary address and broadcast address tests. 4811 */ 4812 if (verify_dst || (dst_ire != NULL)) { 4813 if (ip_debug > 2) { 4814 pr_addr_dbg("ip_bind_connected: bad connected " 4815 "dst %s\n", AF_INET, &dst_addr); 4816 } 4817 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4818 error = ENETUNREACH; 4819 else 4820 error = EHOSTUNREACH; 4821 goto bad_addr; 4822 } 4823 } 4824 4825 /* 4826 * We now know that routing will allow us to reach the destination. 4827 * Check whether Trusted Solaris policy allows communication with this 4828 * host, and pretend that the destination is unreachable if not. 4829 * 4830 * This is never a problem for TCP, since that transport is known to 4831 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4832 * handling. If the remote is unreachable, it will be detected at that 4833 * point, so there's no reason to check it here. 4834 * 4835 * Note that for sendto (and other datagram-oriented friends), this 4836 * check is done as part of the data path label computation instead. 4837 * The check here is just to make non-TCP connect() report the right 4838 * error. 4839 */ 4840 if (dst_ire != NULL && is_system_labeled() && 4841 !IPCL_IS_TCP(connp) && 4842 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4843 connp->conn_mac_exempt, ipst) != 0) { 4844 error = EHOSTUNREACH; 4845 if (ip_debug > 2) { 4846 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4847 AF_INET, &dst_addr); 4848 } 4849 goto bad_addr; 4850 } 4851 4852 /* 4853 * If the app does a connect(), it means that it will most likely 4854 * send more than 1 packet to the destination. It makes sense 4855 * to clear the temporary flag. 4856 */ 4857 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4858 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4859 irb_t *irb = dst_ire->ire_bucket; 4860 4861 rw_enter(&irb->irb_lock, RW_WRITER); 4862 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4863 irb->irb_tmp_ire_cnt--; 4864 rw_exit(&irb->irb_lock); 4865 } 4866 4867 /* 4868 * See if we should notify ULP about LSO/MDT; we do this whether or not 4869 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4870 * eligibility tests for passive connects are handled separately 4871 * through tcp_adapt_ire(). We do this before the source address 4872 * selection, because dst_ire may change after a call to 4873 * ipif_select_source(). This is a best-effort check, as the 4874 * packet for this connection may not actually go through 4875 * dst_ire->ire_stq, and the exact IRE can only be known after 4876 * calling ip_newroute(). This is why we further check on the 4877 * IRE during LSO/Multidata packet transmission in 4878 * tcp_lsosend()/tcp_multisend(). 4879 */ 4880 if (!ipsec_policy_set && dst_ire != NULL && 4881 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4882 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4883 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4884 lso_dst_ire = dst_ire; 4885 IRE_REFHOLD(lso_dst_ire); 4886 } else if (ipst->ips_ip_multidata_outbound && 4887 ILL_MDT_CAPABLE(ill)) { 4888 md_dst_ire = dst_ire; 4889 IRE_REFHOLD(md_dst_ire); 4890 } 4891 } 4892 4893 if (dst_ire != NULL && 4894 dst_ire->ire_type == IRE_LOCAL && 4895 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4896 /* 4897 * If the IRE belongs to a different zone, look for a matching 4898 * route in the forwarding table and use the source address from 4899 * that route. 4900 */ 4901 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4902 zoneid, 0, NULL, 4903 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4904 MATCH_IRE_RJ_BHOLE, ipst); 4905 if (src_ire == NULL) { 4906 error = EHOSTUNREACH; 4907 goto bad_addr; 4908 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4909 if (!(src_ire->ire_type & IRE_HOST)) 4910 error = ENETUNREACH; 4911 else 4912 error = EHOSTUNREACH; 4913 goto bad_addr; 4914 } 4915 if (src_addr == INADDR_ANY) 4916 src_addr = src_ire->ire_src_addr; 4917 ire_refrele(src_ire); 4918 src_ire = NULL; 4919 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4920 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4921 src_addr = sire->ire_src_addr; 4922 ire_refrele(dst_ire); 4923 dst_ire = sire; 4924 sire = NULL; 4925 } else { 4926 /* 4927 * Pick a source address so that a proper inbound 4928 * load spreading would happen. 4929 */ 4930 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4931 ipif_t *src_ipif = NULL; 4932 ire_t *ipif_ire; 4933 4934 /* 4935 * Supply a local source address such that inbound 4936 * load spreading happens. 4937 * 4938 * Determine the best source address on this ill for 4939 * the destination. 4940 * 4941 * 1) For broadcast, we should return a broadcast ire 4942 * found above so that upper layers know that the 4943 * destination address is a broadcast address. 4944 * 4945 * 2) If this is part of a group, select a better 4946 * source address so that better inbound load 4947 * balancing happens. Do the same if the ipif 4948 * is DEPRECATED. 4949 * 4950 * 3) If the outgoing interface is part of a usesrc 4951 * group, then try selecting a source address from 4952 * the usesrc ILL. 4953 */ 4954 if ((dst_ire->ire_zoneid != zoneid && 4955 dst_ire->ire_zoneid != ALL_ZONES) || 4956 (!(dst_ire->ire_type & IRE_BROADCAST) && 4957 ((dst_ill->ill_group != NULL) || 4958 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4959 (dst_ill->ill_usesrc_ifindex != 0)))) { 4960 /* 4961 * If the destination is reachable via a 4962 * given gateway, the selected source address 4963 * should be in the same subnet as the gateway. 4964 * Otherwise, the destination is not reachable. 4965 * 4966 * If there are no interfaces on the same subnet 4967 * as the destination, ipif_select_source gives 4968 * first non-deprecated interface which might be 4969 * on a different subnet than the gateway. 4970 * This is not desirable. Hence pass the dst_ire 4971 * source address to ipif_select_source. 4972 * It is sure that the destination is reachable 4973 * with the dst_ire source address subnet. 4974 * So passing dst_ire source address to 4975 * ipif_select_source will make sure that the 4976 * selected source will be on the same subnet 4977 * as dst_ire source address. 4978 */ 4979 ipaddr_t saddr = 4980 dst_ire->ire_ipif->ipif_src_addr; 4981 src_ipif = ipif_select_source(dst_ill, 4982 saddr, zoneid); 4983 if (src_ipif != NULL) { 4984 if (IS_VNI(src_ipif->ipif_ill)) { 4985 /* 4986 * For VNI there is no 4987 * interface route 4988 */ 4989 src_addr = 4990 src_ipif->ipif_src_addr; 4991 } else { 4992 ipif_ire = 4993 ipif_to_ire(src_ipif); 4994 if (ipif_ire != NULL) { 4995 IRE_REFRELE(dst_ire); 4996 dst_ire = ipif_ire; 4997 } 4998 src_addr = 4999 dst_ire->ire_src_addr; 5000 } 5001 ipif_refrele(src_ipif); 5002 } else { 5003 src_addr = dst_ire->ire_src_addr; 5004 } 5005 } else { 5006 src_addr = dst_ire->ire_src_addr; 5007 } 5008 } 5009 } 5010 5011 /* 5012 * We do ire_route_lookup() here (and not 5013 * interface lookup as we assert that 5014 * src_addr should only come from an 5015 * UP interface for hard binding. 5016 */ 5017 ASSERT(src_ire == NULL); 5018 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5019 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5020 /* src_ire must be a local|loopback */ 5021 if (!IRE_IS_LOCAL(src_ire)) { 5022 if (ip_debug > 2) { 5023 pr_addr_dbg("ip_bind_connected: bad connected " 5024 "src %s\n", AF_INET, &src_addr); 5025 } 5026 error = EADDRNOTAVAIL; 5027 goto bad_addr; 5028 } 5029 5030 /* 5031 * If the source address is a loopback address, the 5032 * destination had best be local or multicast. 5033 * The transports that can't handle multicast will reject 5034 * those addresses. 5035 */ 5036 if (src_ire->ire_type == IRE_LOOPBACK && 5037 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5038 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5039 error = -1; 5040 goto bad_addr; 5041 } 5042 5043 /* 5044 * Allow setting new policies. For example, disconnects come 5045 * down as ipa_t bind. As we would have set conn_policy_cached 5046 * to B_TRUE before, we should set it to B_FALSE, so that policy 5047 * can change after the disconnect. 5048 */ 5049 connp->conn_policy_cached = B_FALSE; 5050 5051 /* 5052 * Set the conn addresses/ports immediately, so the IPsec policy calls 5053 * can handle their passed-in conn's. 5054 */ 5055 5056 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5057 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5058 connp->conn_lport = lport; 5059 connp->conn_fport = fport; 5060 *src_addrp = src_addr; 5061 5062 ASSERT(!(ipsec_policy_set && ire_requested)); 5063 if (ire_requested) { 5064 iulp_t *ulp_info = NULL; 5065 5066 /* 5067 * Note that sire will not be NULL if this is an off-link 5068 * connection and there is not cache for that dest yet. 5069 * 5070 * XXX Because of an existing bug, if there are multiple 5071 * default routes, the IRE returned now may not be the actual 5072 * default route used (default routes are chosen in a 5073 * round robin fashion). So if the metrics for different 5074 * default routes are different, we may return the wrong 5075 * metrics. This will not be a problem if the existing 5076 * bug is fixed. 5077 */ 5078 if (sire != NULL) { 5079 ulp_info = &(sire->ire_uinfo); 5080 } 5081 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5082 error = -1; 5083 goto bad_addr; 5084 } 5085 } else if (ipsec_policy_set) { 5086 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5087 error = -1; 5088 goto bad_addr; 5089 } 5090 } 5091 5092 /* 5093 * Cache IPsec policy in this conn. If we have per-socket policy, 5094 * we'll cache that. If we don't, we'll inherit global policy. 5095 * 5096 * We can't insert until the conn reflects the policy. Note that 5097 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5098 * connections where we don't have a policy. This is to prevent 5099 * global policy lookups in the inbound path. 5100 * 5101 * If we insert before we set conn_policy_cached, 5102 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5103 * because global policy cound be non-empty. We normally call 5104 * ipsec_check_policy() for conn_policy_cached connections only if 5105 * ipc_in_enforce_policy is set. But in this case, 5106 * conn_policy_cached can get set anytime since we made the 5107 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5108 * called, which will make the above assumption false. Thus, we 5109 * need to insert after we set conn_policy_cached. 5110 */ 5111 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5112 goto bad_addr; 5113 5114 if (fanout_insert) { 5115 /* 5116 * The addresses have been verified. Time to insert in 5117 * the correct fanout list. 5118 * We need to make sure that the conn_recv is set to a non-null 5119 * value before we insert into the classifier table to avoid a 5120 * race with an incoming packet which does an ipcl_classify(). 5121 */ 5122 if (protocol == IPPROTO_TCP) 5123 connp->conn_recv = tcp_input; 5124 error = ipcl_conn_insert(connp, protocol, src_addr, 5125 dst_addr, connp->conn_ports); 5126 } 5127 5128 if (error == 0) { 5129 connp->conn_fully_bound = B_TRUE; 5130 /* 5131 * Our initial checks for LSO/MDT have passed; the IRE is not 5132 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5133 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5134 * ip_xxinfo_return(), which performs further checks 5135 * against them and upon success, returns the LSO/MDT info 5136 * mblk which we will attach to the bind acknowledgment. 5137 */ 5138 if (lso_dst_ire != NULL) { 5139 mblk_t *lsoinfo_mp; 5140 5141 ASSERT(ill->ill_lso_capab != NULL); 5142 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5143 ill->ill_name, ill->ill_lso_capab)) != NULL) 5144 linkb(mp, lsoinfo_mp); 5145 } else if (md_dst_ire != NULL) { 5146 mblk_t *mdinfo_mp; 5147 5148 ASSERT(ill->ill_mdt_capab != NULL); 5149 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5150 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5151 linkb(mp, mdinfo_mp); 5152 } 5153 } 5154 bad_addr: 5155 if (ipsec_policy_set) { 5156 ASSERT(policy_mp == mp->b_cont); 5157 ASSERT(policy_mp != NULL); 5158 freeb(policy_mp); 5159 /* 5160 * As of now assume that nothing else accompanies 5161 * IPSEC_POLICY_SET. 5162 */ 5163 mp->b_cont = NULL; 5164 } 5165 if (src_ire != NULL) 5166 IRE_REFRELE(src_ire); 5167 if (dst_ire != NULL) 5168 IRE_REFRELE(dst_ire); 5169 if (sire != NULL) 5170 IRE_REFRELE(sire); 5171 if (md_dst_ire != NULL) 5172 IRE_REFRELE(md_dst_ire); 5173 if (lso_dst_ire != NULL) 5174 IRE_REFRELE(lso_dst_ire); 5175 return (error); 5176 } 5177 5178 /* 5179 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5180 * Prefers dst_ire over src_ire. 5181 */ 5182 static boolean_t 5183 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5184 { 5185 mblk_t *mp1; 5186 ire_t *ret_ire = NULL; 5187 5188 mp1 = mp->b_cont; 5189 ASSERT(mp1 != NULL); 5190 5191 if (ire != NULL) { 5192 /* 5193 * mp1 initialized above to IRE_DB_REQ_TYPE 5194 * appended mblk. Its <upper protocol>'s 5195 * job to make sure there is room. 5196 */ 5197 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5198 return (0); 5199 5200 mp1->b_datap->db_type = IRE_DB_TYPE; 5201 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5202 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5203 ret_ire = (ire_t *)mp1->b_rptr; 5204 /* 5205 * Pass the latest setting of the ip_path_mtu_discovery and 5206 * copy the ulp info if any. 5207 */ 5208 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5209 IPH_DF : 0; 5210 if (ulp_info != NULL) { 5211 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5212 sizeof (iulp_t)); 5213 } 5214 ret_ire->ire_mp = mp1; 5215 } else { 5216 /* 5217 * No IRE was found. Remove IRE mblk. 5218 */ 5219 mp->b_cont = mp1->b_cont; 5220 freeb(mp1); 5221 } 5222 5223 return (1); 5224 } 5225 5226 /* 5227 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5228 * the final piece where we don't. Return a pointer to the first mblk in the 5229 * result, and update the pointer to the next mblk to chew on. If anything 5230 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5231 * NULL pointer. 5232 */ 5233 mblk_t * 5234 ip_carve_mp(mblk_t **mpp, ssize_t len) 5235 { 5236 mblk_t *mp0; 5237 mblk_t *mp1; 5238 mblk_t *mp2; 5239 5240 if (!len || !mpp || !(mp0 = *mpp)) 5241 return (NULL); 5242 /* If we aren't going to consume the first mblk, we need a dup. */ 5243 if (mp0->b_wptr - mp0->b_rptr > len) { 5244 mp1 = dupb(mp0); 5245 if (mp1) { 5246 /* Partition the data between the two mblks. */ 5247 mp1->b_wptr = mp1->b_rptr + len; 5248 mp0->b_rptr = mp1->b_wptr; 5249 /* 5250 * after adjustments if mblk not consumed is now 5251 * unaligned, try to align it. If this fails free 5252 * all messages and let upper layer recover. 5253 */ 5254 if (!OK_32PTR(mp0->b_rptr)) { 5255 if (!pullupmsg(mp0, -1)) { 5256 freemsg(mp0); 5257 freemsg(mp1); 5258 *mpp = NULL; 5259 return (NULL); 5260 } 5261 } 5262 } 5263 return (mp1); 5264 } 5265 /* Eat through as many mblks as we need to get len bytes. */ 5266 len -= mp0->b_wptr - mp0->b_rptr; 5267 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5268 if (mp2->b_wptr - mp2->b_rptr > len) { 5269 /* 5270 * We won't consume the entire last mblk. Like 5271 * above, dup and partition it. 5272 */ 5273 mp1->b_cont = dupb(mp2); 5274 mp1 = mp1->b_cont; 5275 if (!mp1) { 5276 /* 5277 * Trouble. Rather than go to a lot of 5278 * trouble to clean up, we free the messages. 5279 * This won't be any worse than losing it on 5280 * the wire. 5281 */ 5282 freemsg(mp0); 5283 freemsg(mp2); 5284 *mpp = NULL; 5285 return (NULL); 5286 } 5287 mp1->b_wptr = mp1->b_rptr + len; 5288 mp2->b_rptr = mp1->b_wptr; 5289 /* 5290 * after adjustments if mblk not consumed is now 5291 * unaligned, try to align it. If this fails free 5292 * all messages and let upper layer recover. 5293 */ 5294 if (!OK_32PTR(mp2->b_rptr)) { 5295 if (!pullupmsg(mp2, -1)) { 5296 freemsg(mp0); 5297 freemsg(mp2); 5298 *mpp = NULL; 5299 return (NULL); 5300 } 5301 } 5302 *mpp = mp2; 5303 return (mp0); 5304 } 5305 /* Decrement len by the amount we just got. */ 5306 len -= mp2->b_wptr - mp2->b_rptr; 5307 } 5308 /* 5309 * len should be reduced to zero now. If not our caller has 5310 * screwed up. 5311 */ 5312 if (len) { 5313 /* Shouldn't happen! */ 5314 freemsg(mp0); 5315 *mpp = NULL; 5316 return (NULL); 5317 } 5318 /* 5319 * We consumed up to exactly the end of an mblk. Detach the part 5320 * we are returning from the rest of the chain. 5321 */ 5322 mp1->b_cont = NULL; 5323 *mpp = mp2; 5324 return (mp0); 5325 } 5326 5327 /* The ill stream is being unplumbed. Called from ip_close */ 5328 int 5329 ip_modclose(ill_t *ill) 5330 { 5331 boolean_t success; 5332 ipsq_t *ipsq; 5333 ipif_t *ipif; 5334 queue_t *q = ill->ill_rq; 5335 ip_stack_t *ipst = ill->ill_ipst; 5336 clock_t timeout; 5337 5338 /* 5339 * Wait for the ACKs of all deferred control messages to be processed. 5340 * In particular, we wait for a potential capability reset initiated 5341 * in ip_sioctl_plink() to complete before proceeding. 5342 * 5343 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5344 * in case the driver never replies. 5345 */ 5346 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5347 mutex_enter(&ill->ill_lock); 5348 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5349 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5350 /* Timeout */ 5351 break; 5352 } 5353 } 5354 mutex_exit(&ill->ill_lock); 5355 5356 /* 5357 * Forcibly enter the ipsq after some delay. This is to take 5358 * care of the case when some ioctl does not complete because 5359 * we sent a control message to the driver and it did not 5360 * send us a reply. We want to be able to at least unplumb 5361 * and replumb rather than force the user to reboot the system. 5362 */ 5363 success = ipsq_enter(ill, B_FALSE); 5364 5365 /* 5366 * Open/close/push/pop is guaranteed to be single threaded 5367 * per stream by STREAMS. FS guarantees that all references 5368 * from top are gone before close is called. So there can't 5369 * be another close thread that has set CONDEMNED on this ill. 5370 * and cause ipsq_enter to return failure. 5371 */ 5372 ASSERT(success); 5373 ipsq = ill->ill_phyint->phyint_ipsq; 5374 5375 /* 5376 * Mark it condemned. No new reference will be made to this ill. 5377 * Lookup functions will return an error. Threads that try to 5378 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5379 * that the refcnt will drop down to zero. 5380 */ 5381 mutex_enter(&ill->ill_lock); 5382 ill->ill_state_flags |= ILL_CONDEMNED; 5383 for (ipif = ill->ill_ipif; ipif != NULL; 5384 ipif = ipif->ipif_next) { 5385 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5386 } 5387 /* 5388 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5389 * returns error if ILL_CONDEMNED is set 5390 */ 5391 cv_broadcast(&ill->ill_cv); 5392 mutex_exit(&ill->ill_lock); 5393 5394 /* 5395 * Send all the deferred DLPI messages downstream which came in 5396 * during the small window right before ipsq_enter(). We do this 5397 * without waiting for the ACKs because all the ACKs for M_PROTO 5398 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5399 */ 5400 ill_dlpi_send_deferred(ill); 5401 5402 /* 5403 * Shut down fragmentation reassembly. 5404 * ill_frag_timer won't start a timer again. 5405 * Now cancel any existing timer 5406 */ 5407 (void) untimeout(ill->ill_frag_timer_id); 5408 (void) ill_frag_timeout(ill, 0); 5409 5410 /* 5411 * If MOVE was in progress, clear the 5412 * move_in_progress fields also. 5413 */ 5414 if (ill->ill_move_in_progress) { 5415 ILL_CLEAR_MOVE(ill); 5416 } 5417 5418 /* 5419 * Call ill_delete to bring down the ipifs, ilms and ill on 5420 * this ill. Then wait for the refcnts to drop to zero. 5421 * ill_is_quiescent checks whether the ill is really quiescent. 5422 * Then make sure that threads that are waiting to enter the 5423 * ipsq have seen the error returned by ipsq_enter and have 5424 * gone away. Then we call ill_delete_tail which does the 5425 * DL_UNBIND_REQ with the driver and then qprocsoff. 5426 */ 5427 ill_delete(ill); 5428 mutex_enter(&ill->ill_lock); 5429 while (!ill_is_quiescent(ill)) 5430 cv_wait(&ill->ill_cv, &ill->ill_lock); 5431 while (ill->ill_waiters) 5432 cv_wait(&ill->ill_cv, &ill->ill_lock); 5433 5434 mutex_exit(&ill->ill_lock); 5435 5436 /* 5437 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5438 * it held until the end of the function since the cleanup 5439 * below needs to be able to use the ip_stack_t. 5440 */ 5441 netstack_hold(ipst->ips_netstack); 5442 5443 /* qprocsoff is called in ill_delete_tail */ 5444 ill_delete_tail(ill); 5445 ASSERT(ill->ill_ipst == NULL); 5446 5447 /* 5448 * Walk through all upper (conn) streams and qenable 5449 * those that have queued data. 5450 * close synchronization needs this to 5451 * be done to ensure that all upper layers blocked 5452 * due to flow control to the closing device 5453 * get unblocked. 5454 */ 5455 ip1dbg(("ip_wsrv: walking\n")); 5456 conn_walk_drain(ipst); 5457 5458 mutex_enter(&ipst->ips_ip_mi_lock); 5459 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5460 mutex_exit(&ipst->ips_ip_mi_lock); 5461 5462 /* 5463 * credp could be null if the open didn't succeed and ip_modopen 5464 * itself calls ip_close. 5465 */ 5466 if (ill->ill_credp != NULL) 5467 crfree(ill->ill_credp); 5468 5469 mutex_enter(&ill->ill_lock); 5470 ill_nic_info_dispatch(ill); 5471 mutex_exit(&ill->ill_lock); 5472 5473 /* 5474 * Now we are done with the module close pieces that 5475 * need the netstack_t. 5476 */ 5477 netstack_rele(ipst->ips_netstack); 5478 5479 mi_close_free((IDP)ill); 5480 q->q_ptr = WR(q)->q_ptr = NULL; 5481 5482 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5483 5484 return (0); 5485 } 5486 5487 /* 5488 * This is called as part of close() for both IP and UDP 5489 * in order to quiesce the conn. 5490 */ 5491 void 5492 ip_quiesce_conn(conn_t *connp) 5493 { 5494 boolean_t drain_cleanup_reqd = B_FALSE; 5495 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5496 boolean_t ilg_cleanup_reqd = B_FALSE; 5497 ip_stack_t *ipst; 5498 5499 ASSERT(!IPCL_IS_TCP(connp)); 5500 ipst = connp->conn_netstack->netstack_ip; 5501 5502 /* 5503 * Mark the conn as closing, and this conn must not be 5504 * inserted in future into any list. Eg. conn_drain_insert(), 5505 * won't insert this conn into the conn_drain_list. 5506 * Similarly ill_pending_mp_add() will not add any mp to 5507 * the pending mp list, after this conn has started closing. 5508 * 5509 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5510 * cannot get set henceforth. 5511 */ 5512 mutex_enter(&connp->conn_lock); 5513 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5514 connp->conn_state_flags |= CONN_CLOSING; 5515 if (connp->conn_idl != NULL) 5516 drain_cleanup_reqd = B_TRUE; 5517 if (connp->conn_oper_pending_ill != NULL) 5518 conn_ioctl_cleanup_reqd = B_TRUE; 5519 if (connp->conn_ilg_inuse != 0) 5520 ilg_cleanup_reqd = B_TRUE; 5521 mutex_exit(&connp->conn_lock); 5522 5523 if (IPCL_IS_UDP(connp)) 5524 udp_quiesce_conn(connp); 5525 5526 if (conn_ioctl_cleanup_reqd) 5527 conn_ioctl_cleanup(connp); 5528 5529 if (is_system_labeled() && connp->conn_anon_port) { 5530 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5531 connp->conn_mlp_type, connp->conn_ulp, 5532 ntohs(connp->conn_lport), B_FALSE); 5533 connp->conn_anon_port = 0; 5534 } 5535 connp->conn_mlp_type = mlptSingle; 5536 5537 /* 5538 * Remove this conn from any fanout list it is on. 5539 * and then wait for any threads currently operating 5540 * on this endpoint to finish 5541 */ 5542 ipcl_hash_remove(connp); 5543 5544 /* 5545 * Remove this conn from the drain list, and do 5546 * any other cleanup that may be required. 5547 * (Only non-tcp streams may have a non-null conn_idl. 5548 * TCP streams are never flow controlled, and 5549 * conn_idl will be null) 5550 */ 5551 if (drain_cleanup_reqd) 5552 conn_drain_tail(connp, B_TRUE); 5553 5554 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5555 connp->conn_wq == ipst->ips_ip_g_mrouter) 5556 (void) ip_mrouter_done(NULL, ipst); 5557 5558 if (ilg_cleanup_reqd) 5559 ilg_delete_all(connp); 5560 5561 conn_delete_ire(connp, NULL); 5562 5563 /* 5564 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5565 * callers from write side can't be there now because close 5566 * is in progress. The only other caller is ipcl_walk 5567 * which checks for the condemned flag. 5568 */ 5569 mutex_enter(&connp->conn_lock); 5570 connp->conn_state_flags |= CONN_CONDEMNED; 5571 while (connp->conn_ref != 1) 5572 cv_wait(&connp->conn_cv, &connp->conn_lock); 5573 connp->conn_state_flags |= CONN_QUIESCED; 5574 mutex_exit(&connp->conn_lock); 5575 } 5576 5577 /* ARGSUSED */ 5578 int 5579 ip_close(queue_t *q, int flags) 5580 { 5581 conn_t *connp; 5582 5583 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5584 5585 /* 5586 * Call the appropriate delete routine depending on whether this is 5587 * a module or device. 5588 */ 5589 if (WR(q)->q_next != NULL) { 5590 /* This is a module close */ 5591 return (ip_modclose((ill_t *)q->q_ptr)); 5592 } 5593 5594 connp = q->q_ptr; 5595 ip_quiesce_conn(connp); 5596 5597 qprocsoff(q); 5598 5599 /* 5600 * Now we are truly single threaded on this stream, and can 5601 * delete the things hanging off the connp, and finally the connp. 5602 * We removed this connp from the fanout list, it cannot be 5603 * accessed thru the fanouts, and we already waited for the 5604 * conn_ref to drop to 0. We are already in close, so 5605 * there cannot be any other thread from the top. qprocsoff 5606 * has completed, and service has completed or won't run in 5607 * future. 5608 */ 5609 ASSERT(connp->conn_ref == 1); 5610 5611 /* 5612 * A conn which was previously marked as IPCL_UDP cannot 5613 * retain the flag because it would have been cleared by 5614 * udp_close(). 5615 */ 5616 ASSERT(!IPCL_IS_UDP(connp)); 5617 5618 if (connp->conn_latch != NULL) { 5619 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5620 connp->conn_latch = NULL; 5621 } 5622 if (connp->conn_policy != NULL) { 5623 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5624 connp->conn_policy = NULL; 5625 } 5626 if (connp->conn_ipsec_opt_mp != NULL) { 5627 freemsg(connp->conn_ipsec_opt_mp); 5628 connp->conn_ipsec_opt_mp = NULL; 5629 } 5630 5631 inet_minor_free(ip_minor_arena, connp->conn_dev); 5632 5633 connp->conn_ref--; 5634 ipcl_conn_destroy(connp); 5635 5636 q->q_ptr = WR(q)->q_ptr = NULL; 5637 return (0); 5638 } 5639 5640 int 5641 ip_snmpmod_close(queue_t *q) 5642 { 5643 conn_t *connp = Q_TO_CONN(q); 5644 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5645 5646 qprocsoff(q); 5647 5648 if (connp->conn_flags & IPCL_UDPMOD) 5649 udp_close_free(connp); 5650 5651 if (connp->conn_cred != NULL) { 5652 crfree(connp->conn_cred); 5653 connp->conn_cred = NULL; 5654 } 5655 CONN_DEC_REF(connp); 5656 q->q_ptr = WR(q)->q_ptr = NULL; 5657 return (0); 5658 } 5659 5660 /* 5661 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5662 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5663 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5664 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5665 * queues as we never enqueue messages there and we don't handle any ioctls. 5666 * Everything else is freed. 5667 */ 5668 void 5669 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5670 { 5671 conn_t *connp = q->q_ptr; 5672 pfi_t setfn; 5673 pfi_t getfn; 5674 5675 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5676 5677 switch (DB_TYPE(mp)) { 5678 case M_PROTO: 5679 case M_PCPROTO: 5680 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5681 ((((union T_primitives *)mp->b_rptr)->type == 5682 T_SVR4_OPTMGMT_REQ) || 5683 (((union T_primitives *)mp->b_rptr)->type == 5684 T_OPTMGMT_REQ))) { 5685 /* 5686 * This is the only TPI primitive supported. Its 5687 * handling does not require tcp_t, but it does require 5688 * conn_t to check permissions. 5689 */ 5690 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5691 5692 if (connp->conn_flags & IPCL_TCPMOD) { 5693 setfn = tcp_snmp_set; 5694 getfn = tcp_snmp_get; 5695 } else { 5696 setfn = udp_snmp_set; 5697 getfn = udp_snmp_get; 5698 } 5699 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5700 freemsg(mp); 5701 return; 5702 } 5703 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5704 != NULL) 5705 qreply(q, mp); 5706 break; 5707 case M_FLUSH: 5708 case M_IOCTL: 5709 putnext(q, mp); 5710 break; 5711 default: 5712 freemsg(mp); 5713 break; 5714 } 5715 } 5716 5717 /* Return the IP checksum for the IP header at "iph". */ 5718 uint16_t 5719 ip_csum_hdr(ipha_t *ipha) 5720 { 5721 uint16_t *uph; 5722 uint32_t sum; 5723 int opt_len; 5724 5725 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5726 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5727 uph = (uint16_t *)ipha; 5728 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5729 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5730 if (opt_len > 0) { 5731 do { 5732 sum += uph[10]; 5733 sum += uph[11]; 5734 uph += 2; 5735 } while (--opt_len); 5736 } 5737 sum = (sum & 0xFFFF) + (sum >> 16); 5738 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5739 if (sum == 0xffff) 5740 sum = 0; 5741 return ((uint16_t)sum); 5742 } 5743 5744 /* 5745 * Called when the module is about to be unloaded 5746 */ 5747 void 5748 ip_ddi_destroy(void) 5749 { 5750 tnet_fini(); 5751 5752 sctp_ddi_g_destroy(); 5753 tcp_ddi_g_destroy(); 5754 ipsec_policy_g_destroy(); 5755 ipcl_g_destroy(); 5756 ip_net_g_destroy(); 5757 ip_ire_g_fini(); 5758 inet_minor_destroy(ip_minor_arena); 5759 5760 netstack_unregister(NS_IP); 5761 } 5762 5763 /* 5764 * First step in cleanup. 5765 */ 5766 /* ARGSUSED */ 5767 static void 5768 ip_stack_shutdown(netstackid_t stackid, void *arg) 5769 { 5770 ip_stack_t *ipst = (ip_stack_t *)arg; 5771 5772 #ifdef NS_DEBUG 5773 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5774 #endif 5775 5776 /* Get rid of loopback interfaces and their IREs */ 5777 ip_loopback_cleanup(ipst); 5778 } 5779 5780 /* 5781 * Free the IP stack instance. 5782 */ 5783 static void 5784 ip_stack_fini(netstackid_t stackid, void *arg) 5785 { 5786 ip_stack_t *ipst = (ip_stack_t *)arg; 5787 int ret; 5788 5789 #ifdef NS_DEBUG 5790 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5791 #endif 5792 ipv4_hook_destroy(ipst); 5793 ipv6_hook_destroy(ipst); 5794 ip_net_destroy(ipst); 5795 5796 rw_destroy(&ipst->ips_srcid_lock); 5797 5798 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5799 ipst->ips_ip_mibkp = NULL; 5800 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5801 ipst->ips_icmp_mibkp = NULL; 5802 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5803 ipst->ips_ip_kstat = NULL; 5804 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5805 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5806 ipst->ips_ip6_kstat = NULL; 5807 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5808 5809 nd_free(&ipst->ips_ip_g_nd); 5810 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5811 ipst->ips_param_arr = NULL; 5812 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5813 ipst->ips_ndp_arr = NULL; 5814 5815 ip_mrouter_stack_destroy(ipst); 5816 5817 mutex_destroy(&ipst->ips_ip_mi_lock); 5818 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5819 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5820 rw_destroy(&ipst->ips_ip_g_nd_lock); 5821 5822 ret = untimeout(ipst->ips_igmp_timeout_id); 5823 if (ret == -1) { 5824 ASSERT(ipst->ips_igmp_timeout_id == 0); 5825 } else { 5826 ASSERT(ipst->ips_igmp_timeout_id != 0); 5827 ipst->ips_igmp_timeout_id = 0; 5828 } 5829 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5830 if (ret == -1) { 5831 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5832 } else { 5833 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5834 ipst->ips_igmp_slowtimeout_id = 0; 5835 } 5836 ret = untimeout(ipst->ips_mld_timeout_id); 5837 if (ret == -1) { 5838 ASSERT(ipst->ips_mld_timeout_id == 0); 5839 } else { 5840 ASSERT(ipst->ips_mld_timeout_id != 0); 5841 ipst->ips_mld_timeout_id = 0; 5842 } 5843 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5844 if (ret == -1) { 5845 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5846 } else { 5847 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5848 ipst->ips_mld_slowtimeout_id = 0; 5849 } 5850 ret = untimeout(ipst->ips_ip_ire_expire_id); 5851 if (ret == -1) { 5852 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5853 } else { 5854 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5855 ipst->ips_ip_ire_expire_id = 0; 5856 } 5857 5858 mutex_destroy(&ipst->ips_igmp_timer_lock); 5859 mutex_destroy(&ipst->ips_mld_timer_lock); 5860 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5861 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5862 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5863 rw_destroy(&ipst->ips_ill_g_lock); 5864 5865 ip_ire_fini(ipst); 5866 ip6_asp_free(ipst); 5867 conn_drain_fini(ipst); 5868 ipcl_destroy(ipst); 5869 5870 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5871 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5872 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5873 ipst->ips_ndp4 = NULL; 5874 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5875 ipst->ips_ndp6 = NULL; 5876 5877 if (ipst->ips_loopback_ksp != NULL) { 5878 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5879 ipst->ips_loopback_ksp = NULL; 5880 } 5881 5882 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5883 ipst->ips_phyint_g_list = NULL; 5884 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5885 ipst->ips_ill_g_heads = NULL; 5886 5887 kmem_free(ipst, sizeof (*ipst)); 5888 } 5889 5890 /* 5891 * Called when the IP kernel module is loaded into the kernel 5892 */ 5893 void 5894 ip_ddi_init(void) 5895 { 5896 TCP6_MAJ = ddi_name_to_major(TCP6); 5897 TCP_MAJ = ddi_name_to_major(TCP); 5898 SCTP_MAJ = ddi_name_to_major(SCTP); 5899 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5900 5901 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5902 5903 /* 5904 * For IP and TCP the minor numbers should start from 2 since we have 4 5905 * initial devices: ip, ip6, tcp, tcp6. 5906 */ 5907 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5908 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5909 cmn_err(CE_PANIC, 5910 "ip_ddi_init: ip_minor_arena creation failed\n"); 5911 } 5912 5913 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5914 5915 ipcl_g_init(); 5916 ip_ire_g_init(); 5917 ip_net_g_init(); 5918 5919 #ifdef ILL_DEBUG 5920 /* Default cleanup function */ 5921 ip_cleanup_func = ip_thread_exit; 5922 #endif 5923 5924 /* 5925 * We want to be informed each time a stack is created or 5926 * destroyed in the kernel, so we can maintain the 5927 * set of udp_stack_t's. 5928 */ 5929 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5930 ip_stack_fini); 5931 5932 ipsec_policy_g_init(); 5933 tcp_ddi_g_init(); 5934 sctp_ddi_g_init(); 5935 5936 tnet_init(); 5937 } 5938 5939 /* 5940 * Initialize the IP stack instance. 5941 */ 5942 static void * 5943 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5944 { 5945 ip_stack_t *ipst; 5946 ipparam_t *pa; 5947 ipndp_t *na; 5948 5949 #ifdef NS_DEBUG 5950 printf("ip_stack_init(stack %d)\n", stackid); 5951 #endif 5952 5953 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5954 ipst->ips_netstack = ns; 5955 5956 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5957 KM_SLEEP); 5958 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5959 KM_SLEEP); 5960 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5961 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5962 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5963 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5964 5965 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5966 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5967 ipst->ips_igmp_deferred_next = INFINITY; 5968 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5969 ipst->ips_mld_deferred_next = INFINITY; 5970 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5971 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5972 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5973 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5974 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5975 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5976 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5977 5978 ipcl_init(ipst); 5979 ip_ire_init(ipst); 5980 ip6_asp_init(ipst); 5981 ipif_init(ipst); 5982 conn_drain_init(ipst); 5983 ip_mrouter_stack_init(ipst); 5984 5985 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5986 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5987 5988 ipst->ips_ip_multirt_log_interval = 1000; 5989 5990 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5991 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5992 ipst->ips_ill_index = 1; 5993 5994 ipst->ips_saved_ip_g_forward = -1; 5995 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5996 5997 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5998 ipst->ips_param_arr = pa; 5999 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6000 6001 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6002 ipst->ips_ndp_arr = na; 6003 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6004 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6005 (caddr_t)&ipst->ips_ip_g_forward; 6006 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6007 (caddr_t)&ipst->ips_ipv6_forward; 6008 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6009 "ip_cgtp_filter") == 0); 6010 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6011 (caddr_t)&ipst->ips_ip_cgtp_filter; 6012 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6013 "ipmp_hook_emulation") == 0); 6014 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6015 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6016 6017 (void) ip_param_register(&ipst->ips_ip_g_nd, 6018 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6019 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6020 6021 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6022 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6023 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6024 ipst->ips_ip6_kstat = 6025 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6026 6027 ipst->ips_ipmp_enable_failback = B_TRUE; 6028 6029 ipst->ips_ip_src_id = 1; 6030 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6031 6032 ip_net_init(ipst, ns); 6033 ipv4_hook_init(ipst); 6034 ipv6_hook_init(ipst); 6035 6036 return (ipst); 6037 } 6038 6039 /* 6040 * Allocate and initialize a DLPI template of the specified length. (May be 6041 * called as writer.) 6042 */ 6043 mblk_t * 6044 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6045 { 6046 mblk_t *mp; 6047 6048 mp = allocb(len, BPRI_MED); 6049 if (!mp) 6050 return (NULL); 6051 6052 /* 6053 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6054 * of which we don't seem to use) are sent with M_PCPROTO, and 6055 * that other DLPI are M_PROTO. 6056 */ 6057 if (prim == DL_INFO_REQ) { 6058 mp->b_datap->db_type = M_PCPROTO; 6059 } else { 6060 mp->b_datap->db_type = M_PROTO; 6061 } 6062 6063 mp->b_wptr = mp->b_rptr + len; 6064 bzero(mp->b_rptr, len); 6065 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6066 return (mp); 6067 } 6068 6069 const char * 6070 dlpi_prim_str(int prim) 6071 { 6072 switch (prim) { 6073 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6074 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6075 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6076 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6077 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6078 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6079 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6080 case DL_OK_ACK: return ("DL_OK_ACK"); 6081 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6082 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6083 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6084 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6085 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6086 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6087 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6088 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6089 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6090 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6091 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6092 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6093 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6094 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6095 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6096 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6097 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6098 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6099 default: return ("<unknown primitive>"); 6100 } 6101 } 6102 6103 const char * 6104 dlpi_err_str(int err) 6105 { 6106 switch (err) { 6107 case DL_ACCESS: return ("DL_ACCESS"); 6108 case DL_BADADDR: return ("DL_BADADDR"); 6109 case DL_BADCORR: return ("DL_BADCORR"); 6110 case DL_BADDATA: return ("DL_BADDATA"); 6111 case DL_BADPPA: return ("DL_BADPPA"); 6112 case DL_BADPRIM: return ("DL_BADPRIM"); 6113 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6114 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6115 case DL_BADSAP: return ("DL_BADSAP"); 6116 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6117 case DL_BOUND: return ("DL_BOUND"); 6118 case DL_INITFAILED: return ("DL_INITFAILED"); 6119 case DL_NOADDR: return ("DL_NOADDR"); 6120 case DL_NOTINIT: return ("DL_NOTINIT"); 6121 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6122 case DL_SYSERR: return ("DL_SYSERR"); 6123 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6124 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6125 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6126 case DL_TOOMANY: return ("DL_TOOMANY"); 6127 case DL_NOTENAB: return ("DL_NOTENAB"); 6128 case DL_BUSY: return ("DL_BUSY"); 6129 case DL_NOAUTO: return ("DL_NOAUTO"); 6130 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6131 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6132 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6133 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6134 case DL_PENDING: return ("DL_PENDING"); 6135 default: return ("<unknown error>"); 6136 } 6137 } 6138 6139 /* 6140 * Debug formatting routine. Returns a character string representation of the 6141 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6142 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6143 * 6144 * Once the ndd table-printing interfaces are removed, this can be changed to 6145 * standard dotted-decimal form. 6146 */ 6147 char * 6148 ip_dot_addr(ipaddr_t addr, char *buf) 6149 { 6150 uint8_t *ap = (uint8_t *)&addr; 6151 6152 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6153 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6154 return (buf); 6155 } 6156 6157 /* 6158 * Write the given MAC address as a printable string in the usual colon- 6159 * separated format. 6160 */ 6161 const char * 6162 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6163 { 6164 char *bp; 6165 6166 if (alen == 0 || buflen < 4) 6167 return ("?"); 6168 bp = buf; 6169 for (;;) { 6170 /* 6171 * If there are more MAC address bytes available, but we won't 6172 * have any room to print them, then add "..." to the string 6173 * instead. See below for the 'magic number' explanation. 6174 */ 6175 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6176 (void) strcpy(bp, "..."); 6177 break; 6178 } 6179 (void) sprintf(bp, "%02x", *addr++); 6180 bp += 2; 6181 if (--alen == 0) 6182 break; 6183 *bp++ = ':'; 6184 buflen -= 3; 6185 /* 6186 * At this point, based on the first 'if' statement above, 6187 * either alen == 1 and buflen >= 3, or alen > 1 and 6188 * buflen >= 4. The first case leaves room for the final "xx" 6189 * number and trailing NUL byte. The second leaves room for at 6190 * least "...". Thus the apparently 'magic' numbers chosen for 6191 * that statement. 6192 */ 6193 } 6194 return (buf); 6195 } 6196 6197 /* 6198 * Send an ICMP error after patching up the packet appropriately. Returns 6199 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6200 */ 6201 static boolean_t 6202 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6203 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6204 zoneid_t zoneid, ip_stack_t *ipst) 6205 { 6206 ipha_t *ipha; 6207 mblk_t *first_mp; 6208 boolean_t secure; 6209 unsigned char db_type; 6210 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6211 6212 first_mp = mp; 6213 if (mctl_present) { 6214 mp = mp->b_cont; 6215 secure = ipsec_in_is_secure(first_mp); 6216 ASSERT(mp != NULL); 6217 } else { 6218 /* 6219 * If this is an ICMP error being reported - which goes 6220 * up as M_CTLs, we need to convert them to M_DATA till 6221 * we finish checking with global policy because 6222 * ipsec_check_global_policy() assumes M_DATA as clear 6223 * and M_CTL as secure. 6224 */ 6225 db_type = DB_TYPE(mp); 6226 DB_TYPE(mp) = M_DATA; 6227 secure = B_FALSE; 6228 } 6229 /* 6230 * We are generating an icmp error for some inbound packet. 6231 * Called from all ip_fanout_(udp, tcp, proto) functions. 6232 * Before we generate an error, check with global policy 6233 * to see whether this is allowed to enter the system. As 6234 * there is no "conn", we are checking with global policy. 6235 */ 6236 ipha = (ipha_t *)mp->b_rptr; 6237 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6238 first_mp = ipsec_check_global_policy(first_mp, NULL, 6239 ipha, NULL, mctl_present, ipst->ips_netstack); 6240 if (first_mp == NULL) 6241 return (B_FALSE); 6242 } 6243 6244 if (!mctl_present) 6245 DB_TYPE(mp) = db_type; 6246 6247 if (flags & IP_FF_SEND_ICMP) { 6248 if (flags & IP_FF_HDR_COMPLETE) { 6249 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6250 freemsg(first_mp); 6251 return (B_TRUE); 6252 } 6253 } 6254 if (flags & IP_FF_CKSUM) { 6255 /* 6256 * Have to correct checksum since 6257 * the packet might have been 6258 * fragmented and the reassembly code in ip_rput 6259 * does not restore the IP checksum. 6260 */ 6261 ipha->ipha_hdr_checksum = 0; 6262 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6263 } 6264 switch (icmp_type) { 6265 case ICMP_DEST_UNREACHABLE: 6266 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6267 ipst); 6268 break; 6269 default: 6270 freemsg(first_mp); 6271 break; 6272 } 6273 } else { 6274 freemsg(first_mp); 6275 return (B_FALSE); 6276 } 6277 6278 return (B_TRUE); 6279 } 6280 6281 /* 6282 * Used to send an ICMP error message when a packet is received for 6283 * a protocol that is not supported. The mblk passed as argument 6284 * is consumed by this function. 6285 */ 6286 void 6287 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6288 ip_stack_t *ipst) 6289 { 6290 mblk_t *mp; 6291 ipha_t *ipha; 6292 ill_t *ill; 6293 ipsec_in_t *ii; 6294 6295 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6296 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6297 6298 mp = ipsec_mp->b_cont; 6299 ipsec_mp->b_cont = NULL; 6300 ipha = (ipha_t *)mp->b_rptr; 6301 /* Get ill from index in ipsec_in_t. */ 6302 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6303 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6304 ipst); 6305 if (ill != NULL) { 6306 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6307 if (ip_fanout_send_icmp(q, mp, flags, 6308 ICMP_DEST_UNREACHABLE, 6309 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6310 BUMP_MIB(ill->ill_ip_mib, 6311 ipIfStatsInUnknownProtos); 6312 } 6313 } else { 6314 if (ip_fanout_send_icmp_v6(q, mp, flags, 6315 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6316 0, B_FALSE, zoneid, ipst)) { 6317 BUMP_MIB(ill->ill_ip_mib, 6318 ipIfStatsInUnknownProtos); 6319 } 6320 } 6321 ill_refrele(ill); 6322 } else { /* re-link for the freemsg() below. */ 6323 ipsec_mp->b_cont = mp; 6324 } 6325 6326 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6327 freemsg(ipsec_mp); 6328 } 6329 6330 /* 6331 * See if the inbound datagram has had IPsec processing applied to it. 6332 */ 6333 boolean_t 6334 ipsec_in_is_secure(mblk_t *ipsec_mp) 6335 { 6336 ipsec_in_t *ii; 6337 6338 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6339 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6340 6341 if (ii->ipsec_in_loopback) { 6342 return (ii->ipsec_in_secure); 6343 } else { 6344 return (ii->ipsec_in_ah_sa != NULL || 6345 ii->ipsec_in_esp_sa != NULL || 6346 ii->ipsec_in_decaps); 6347 } 6348 } 6349 6350 /* 6351 * Handle protocols with which IP is less intimate. There 6352 * can be more than one stream bound to a particular 6353 * protocol. When this is the case, normally each one gets a copy 6354 * of any incoming packets. 6355 * 6356 * IPsec NOTE : 6357 * 6358 * Don't allow a secure packet going up a non-secure connection. 6359 * We don't allow this because 6360 * 6361 * 1) Reply might go out in clear which will be dropped at 6362 * the sending side. 6363 * 2) If the reply goes out in clear it will give the 6364 * adversary enough information for getting the key in 6365 * most of the cases. 6366 * 6367 * Moreover getting a secure packet when we expect clear 6368 * implies that SA's were added without checking for 6369 * policy on both ends. This should not happen once ISAKMP 6370 * is used to negotiate SAs as SAs will be added only after 6371 * verifying the policy. 6372 * 6373 * NOTE : If the packet was tunneled and not multicast we only send 6374 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6375 * back to delivering packets to AF_INET6 raw sockets. 6376 * 6377 * IPQoS Notes: 6378 * Once we have determined the client, invoke IPPF processing. 6379 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6380 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6381 * ip_policy will be false. 6382 * 6383 * Zones notes: 6384 * Currently only applications in the global zone can create raw sockets for 6385 * protocols other than ICMP. So unlike the broadcast / multicast case of 6386 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6387 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6388 */ 6389 static void 6390 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6391 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6392 zoneid_t zoneid) 6393 { 6394 queue_t *rq; 6395 mblk_t *mp1, *first_mp1; 6396 uint_t protocol = ipha->ipha_protocol; 6397 ipaddr_t dst; 6398 boolean_t one_only; 6399 mblk_t *first_mp = mp; 6400 boolean_t secure; 6401 uint32_t ill_index; 6402 conn_t *connp, *first_connp, *next_connp; 6403 connf_t *connfp; 6404 boolean_t shared_addr; 6405 mib2_ipIfStatsEntry_t *mibptr; 6406 ip_stack_t *ipst = recv_ill->ill_ipst; 6407 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6408 6409 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6410 if (mctl_present) { 6411 mp = first_mp->b_cont; 6412 secure = ipsec_in_is_secure(first_mp); 6413 ASSERT(mp != NULL); 6414 } else { 6415 secure = B_FALSE; 6416 } 6417 dst = ipha->ipha_dst; 6418 /* 6419 * If the packet was tunneled and not multicast we only send to it 6420 * the first match. 6421 */ 6422 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6423 !CLASSD(dst)); 6424 6425 shared_addr = (zoneid == ALL_ZONES); 6426 if (shared_addr) { 6427 /* 6428 * We don't allow multilevel ports for raw IP, so no need to 6429 * check for that here. 6430 */ 6431 zoneid = tsol_packet_to_zoneid(mp); 6432 } 6433 6434 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6435 mutex_enter(&connfp->connf_lock); 6436 connp = connfp->connf_head; 6437 for (connp = connfp->connf_head; connp != NULL; 6438 connp = connp->conn_next) { 6439 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6440 zoneid) && 6441 (!is_system_labeled() || 6442 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6443 connp))) { 6444 break; 6445 } 6446 } 6447 6448 if (connp == NULL || connp->conn_upq == NULL) { 6449 /* 6450 * No one bound to these addresses. Is 6451 * there a client that wants all 6452 * unclaimed datagrams? 6453 */ 6454 mutex_exit(&connfp->connf_lock); 6455 /* 6456 * Check for IPPROTO_ENCAP... 6457 */ 6458 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6459 /* 6460 * If an IPsec mblk is here on a multicast 6461 * tunnel (using ip_mroute stuff), check policy here, 6462 * THEN ship off to ip_mroute_decap(). 6463 * 6464 * BTW, If I match a configured IP-in-IP 6465 * tunnel, this path will not be reached, and 6466 * ip_mroute_decap will never be called. 6467 */ 6468 first_mp = ipsec_check_global_policy(first_mp, connp, 6469 ipha, NULL, mctl_present, ipst->ips_netstack); 6470 if (first_mp != NULL) { 6471 if (mctl_present) 6472 freeb(first_mp); 6473 ip_mroute_decap(q, mp, ill); 6474 } /* Else we already freed everything! */ 6475 } else { 6476 /* 6477 * Otherwise send an ICMP protocol unreachable. 6478 */ 6479 if (ip_fanout_send_icmp(q, first_mp, flags, 6480 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6481 mctl_present, zoneid, ipst)) { 6482 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6483 } 6484 } 6485 return; 6486 } 6487 CONN_INC_REF(connp); 6488 first_connp = connp; 6489 6490 /* 6491 * Only send message to one tunnel driver by immediately 6492 * terminating the loop. 6493 */ 6494 connp = one_only ? NULL : connp->conn_next; 6495 6496 for (;;) { 6497 while (connp != NULL) { 6498 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6499 flags, zoneid) && 6500 (!is_system_labeled() || 6501 tsol_receive_local(mp, &dst, IPV4_VERSION, 6502 shared_addr, connp))) 6503 break; 6504 connp = connp->conn_next; 6505 } 6506 6507 /* 6508 * Copy the packet. 6509 */ 6510 if (connp == NULL || connp->conn_upq == NULL || 6511 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6512 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6513 /* 6514 * No more interested clients or memory 6515 * allocation failed 6516 */ 6517 connp = first_connp; 6518 break; 6519 } 6520 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6521 CONN_INC_REF(connp); 6522 mutex_exit(&connfp->connf_lock); 6523 rq = connp->conn_rq; 6524 if (!canputnext(rq)) { 6525 if (flags & IP_FF_RAWIP) { 6526 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6527 } else { 6528 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6529 } 6530 6531 freemsg(first_mp1); 6532 } else { 6533 /* 6534 * Don't enforce here if we're an actual tunnel - 6535 * let "tun" do it instead. 6536 */ 6537 if (!IPCL_IS_IPTUN(connp) && 6538 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6539 secure)) { 6540 first_mp1 = ipsec_check_inbound_policy 6541 (first_mp1, connp, ipha, NULL, 6542 mctl_present); 6543 } 6544 if (first_mp1 != NULL) { 6545 int in_flags = 0; 6546 /* 6547 * ip_fanout_proto also gets called from 6548 * icmp_inbound_error_fanout, in which case 6549 * the msg type is M_CTL. Don't add info 6550 * in this case for the time being. In future 6551 * when there is a need for knowing the 6552 * inbound iface index for ICMP error msgs, 6553 * then this can be changed. 6554 */ 6555 if (connp->conn_recvif) 6556 in_flags = IPF_RECVIF; 6557 /* 6558 * The ULP may support IP_RECVPKTINFO for both 6559 * IP v4 and v6 so pass the appropriate argument 6560 * based on conn IP version. 6561 */ 6562 if (connp->conn_ip_recvpktinfo) { 6563 if (connp->conn_af_isv6) { 6564 /* 6565 * V6 only needs index 6566 */ 6567 in_flags |= IPF_RECVIF; 6568 } else { 6569 /* 6570 * V4 needs index + 6571 * matching address. 6572 */ 6573 in_flags |= IPF_RECVADDR; 6574 } 6575 } 6576 if ((in_flags != 0) && 6577 (mp->b_datap->db_type != M_CTL)) { 6578 /* 6579 * the actual data will be 6580 * contained in b_cont upon 6581 * successful return of the 6582 * following call else 6583 * original mblk is returned 6584 */ 6585 ASSERT(recv_ill != NULL); 6586 mp1 = ip_add_info(mp1, recv_ill, 6587 in_flags, IPCL_ZONEID(connp), ipst); 6588 } 6589 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6590 if (mctl_present) 6591 freeb(first_mp1); 6592 putnext(rq, mp1); 6593 } 6594 } 6595 mutex_enter(&connfp->connf_lock); 6596 /* Follow the next pointer before releasing the conn. */ 6597 next_connp = connp->conn_next; 6598 CONN_DEC_REF(connp); 6599 connp = next_connp; 6600 } 6601 6602 /* Last one. Send it upstream. */ 6603 mutex_exit(&connfp->connf_lock); 6604 6605 /* 6606 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6607 * will be set to false. 6608 */ 6609 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6610 ill_index = ill->ill_phyint->phyint_ifindex; 6611 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6612 if (mp == NULL) { 6613 CONN_DEC_REF(connp); 6614 if (mctl_present) { 6615 freeb(first_mp); 6616 } 6617 return; 6618 } 6619 } 6620 6621 rq = connp->conn_rq; 6622 if (!canputnext(rq)) { 6623 if (flags & IP_FF_RAWIP) { 6624 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6625 } else { 6626 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6627 } 6628 6629 freemsg(first_mp); 6630 } else { 6631 if (IPCL_IS_IPTUN(connp)) { 6632 /* 6633 * Tunneled packet. We enforce policy in the tunnel 6634 * module itself. 6635 * 6636 * Send the WHOLE packet up (incl. IPSEC_IN) without 6637 * a policy check. 6638 */ 6639 putnext(rq, first_mp); 6640 CONN_DEC_REF(connp); 6641 return; 6642 } 6643 6644 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6645 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6646 ipha, NULL, mctl_present); 6647 } 6648 6649 if (first_mp != NULL) { 6650 int in_flags = 0; 6651 6652 /* 6653 * ip_fanout_proto also gets called 6654 * from icmp_inbound_error_fanout, in 6655 * which case the msg type is M_CTL. 6656 * Don't add info in this case for time 6657 * being. In future when there is a 6658 * need for knowing the inbound iface 6659 * index for ICMP error msgs, then this 6660 * can be changed 6661 */ 6662 if (connp->conn_recvif) 6663 in_flags = IPF_RECVIF; 6664 if (connp->conn_ip_recvpktinfo) { 6665 if (connp->conn_af_isv6) { 6666 /* 6667 * V6 only needs index 6668 */ 6669 in_flags |= IPF_RECVIF; 6670 } else { 6671 /* 6672 * V4 needs index + 6673 * matching address. 6674 */ 6675 in_flags |= IPF_RECVADDR; 6676 } 6677 } 6678 if ((in_flags != 0) && 6679 (mp->b_datap->db_type != M_CTL)) { 6680 6681 /* 6682 * the actual data will be contained in 6683 * b_cont upon successful return 6684 * of the following call else original 6685 * mblk is returned 6686 */ 6687 ASSERT(recv_ill != NULL); 6688 mp = ip_add_info(mp, recv_ill, 6689 in_flags, IPCL_ZONEID(connp), ipst); 6690 } 6691 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6692 putnext(rq, mp); 6693 if (mctl_present) 6694 freeb(first_mp); 6695 } 6696 } 6697 CONN_DEC_REF(connp); 6698 } 6699 6700 /* 6701 * Fanout for TCP packets 6702 * The caller puts <fport, lport> in the ports parameter. 6703 * 6704 * IPQoS Notes 6705 * Before sending it to the client, invoke IPPF processing. 6706 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6707 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6708 * ip_policy is false. 6709 */ 6710 static void 6711 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6712 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6713 { 6714 mblk_t *first_mp; 6715 boolean_t secure; 6716 uint32_t ill_index; 6717 int ip_hdr_len; 6718 tcph_t *tcph; 6719 boolean_t syn_present = B_FALSE; 6720 conn_t *connp; 6721 ip_stack_t *ipst = recv_ill->ill_ipst; 6722 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6723 6724 ASSERT(recv_ill != NULL); 6725 6726 first_mp = mp; 6727 if (mctl_present) { 6728 ASSERT(first_mp->b_datap->db_type == M_CTL); 6729 mp = first_mp->b_cont; 6730 secure = ipsec_in_is_secure(first_mp); 6731 ASSERT(mp != NULL); 6732 } else { 6733 secure = B_FALSE; 6734 } 6735 6736 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6737 6738 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6739 zoneid, ipst)) == NULL) { 6740 /* 6741 * No connected connection or listener. Send a 6742 * TH_RST via tcp_xmit_listeners_reset. 6743 */ 6744 6745 /* Initiate IPPf processing, if needed. */ 6746 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6747 uint32_t ill_index; 6748 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6749 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6750 if (first_mp == NULL) 6751 return; 6752 } 6753 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6754 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6755 zoneid)); 6756 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6757 ipst->ips_netstack->netstack_tcp); 6758 return; 6759 } 6760 6761 /* 6762 * Allocate the SYN for the TCP connection here itself 6763 */ 6764 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6765 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6766 if (IPCL_IS_TCP(connp)) { 6767 squeue_t *sqp; 6768 6769 /* 6770 * For fused tcp loopback, assign the eager's 6771 * squeue to be that of the active connect's. 6772 * Note that we don't check for IP_FF_LOOPBACK 6773 * here since this routine gets called only 6774 * for loopback (unlike the IPv6 counterpart). 6775 */ 6776 ASSERT(Q_TO_CONN(q) != NULL); 6777 if (do_tcp_fusion && 6778 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6779 !secure && 6780 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6781 IPCL_IS_TCP(Q_TO_CONN(q))) { 6782 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6783 sqp = Q_TO_CONN(q)->conn_sqp; 6784 } else { 6785 sqp = IP_SQUEUE_GET(lbolt); 6786 } 6787 6788 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6789 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6790 syn_present = B_TRUE; 6791 } 6792 } 6793 6794 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6795 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6796 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6797 if ((flags & TH_RST) || (flags & TH_URG)) { 6798 CONN_DEC_REF(connp); 6799 freemsg(first_mp); 6800 return; 6801 } 6802 if (flags & TH_ACK) { 6803 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6804 ipst->ips_netstack->netstack_tcp); 6805 CONN_DEC_REF(connp); 6806 return; 6807 } 6808 6809 CONN_DEC_REF(connp); 6810 freemsg(first_mp); 6811 return; 6812 } 6813 6814 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6815 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6816 NULL, mctl_present); 6817 if (first_mp == NULL) { 6818 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6819 CONN_DEC_REF(connp); 6820 return; 6821 } 6822 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6823 ASSERT(syn_present); 6824 if (mctl_present) { 6825 ASSERT(first_mp != mp); 6826 first_mp->b_datap->db_struioflag |= 6827 STRUIO_POLICY; 6828 } else { 6829 ASSERT(first_mp == mp); 6830 mp->b_datap->db_struioflag &= 6831 ~STRUIO_EAGER; 6832 mp->b_datap->db_struioflag |= 6833 STRUIO_POLICY; 6834 } 6835 } else { 6836 /* 6837 * Discard first_mp early since we're dealing with a 6838 * fully-connected conn_t and tcp doesn't do policy in 6839 * this case. 6840 */ 6841 if (mctl_present) { 6842 freeb(first_mp); 6843 mctl_present = B_FALSE; 6844 } 6845 first_mp = mp; 6846 } 6847 } 6848 6849 /* 6850 * Initiate policy processing here if needed. If we get here from 6851 * icmp_inbound_error_fanout, ip_policy is false. 6852 */ 6853 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6854 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6855 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6856 if (mp == NULL) { 6857 CONN_DEC_REF(connp); 6858 if (mctl_present) 6859 freeb(first_mp); 6860 return; 6861 } else if (mctl_present) { 6862 ASSERT(first_mp != mp); 6863 first_mp->b_cont = mp; 6864 } else { 6865 first_mp = mp; 6866 } 6867 } 6868 6869 6870 6871 /* Handle socket options. */ 6872 if (!syn_present && 6873 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6874 /* Add header */ 6875 ASSERT(recv_ill != NULL); 6876 /* 6877 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6878 * IPF_RECVIF. 6879 */ 6880 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6881 ipst); 6882 if (mp == NULL) { 6883 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6884 CONN_DEC_REF(connp); 6885 if (mctl_present) 6886 freeb(first_mp); 6887 return; 6888 } else if (mctl_present) { 6889 /* 6890 * ip_add_info might return a new mp. 6891 */ 6892 ASSERT(first_mp != mp); 6893 first_mp->b_cont = mp; 6894 } else { 6895 first_mp = mp; 6896 } 6897 } 6898 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6899 if (IPCL_IS_TCP(connp)) { 6900 /* do not drain, certain use cases can blow the stack */ 6901 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6902 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6903 } else { 6904 putnext(connp->conn_rq, first_mp); 6905 CONN_DEC_REF(connp); 6906 } 6907 } 6908 6909 /* 6910 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6911 * pass it along to ESP if the SPI is non-zero. 6912 * 6913 * One of three things can happen, all of which affect the passed-in mblk: 6914 * 6915 * 1.) The packet is stock UDP and has had its zero-SPI stripped. Return TRUE. 6916 * (NOTE: ICMP messages that go through here just get returned.) 6917 * 6918 * 2.) The packet is ESP-in-UDP, has been transformed into an equivalent 6919 * ESP packet, and is passed along to ESP. Return FALSE. 6920 * 6921 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6922 */ 6923 static boolean_t 6924 zero_spi_check(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 6925 ill_t *recv_ill, ipsec_stack_t *ipss) 6926 { 6927 int shift, plen, iph_len = IPH_HDR_LENGTH(ipha); 6928 udpha_t *udpha; 6929 uint32_t *spi; 6930 uint8_t *orptr; 6931 boolean_t udp_pkt, free_ire; 6932 6933 if (DB_TYPE(mp) == M_CTL) { 6934 /* 6935 * ICMP message with UDP inside. Don't bother stripping, just 6936 * send it up. 6937 * 6938 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6939 * to ignore errors set by ICMP anyway ('cause they might be 6940 * forged), but that's the app's decision, not ours. 6941 */ 6942 6943 /* Bunch of reality checks for DEBUG kernels... */ 6944 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6945 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6946 ASSERT((uint8_t *)ipha != mp->b_rptr); 6947 6948 return (B_TRUE); 6949 } 6950 6951 ASSERT((uint8_t *)ipha == mp->b_rptr); 6952 plen = ntohs(ipha->ipha_length); 6953 6954 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6955 /* 6956 * Most likely a keepalive for the benefit of an intervening 6957 * NAT. These aren't for us, per se, so drop it. 6958 * 6959 * RFC 3947/8 doesn't say for sure what to do for 2-3 6960 * byte packets (keepalives are 1-byte), but we'll drop them 6961 * also. 6962 */ 6963 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6964 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6965 return (B_FALSE); 6966 } 6967 6968 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6969 mblk_t *tmp = msgpullup(mp, -1); 6970 6971 /* might as well pull it all up - it might be ESP. */ 6972 if (tmp == NULL) { 6973 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6974 DROPPER(ipss, ipds_esp_nomem), 6975 &ipss->ipsec_dropper); 6976 return (B_FALSE); 6977 } 6978 freemsg(mp); 6979 mp = tmp; 6980 } 6981 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6982 if (*spi == 0) { 6983 /* UDP packet - remove 0-spi. */ 6984 shift = sizeof (uint32_t); 6985 } else { 6986 /* ESP-in-UDP packet - reduce to ESP. */ 6987 ipha->ipha_protocol = IPPROTO_ESP; 6988 shift = sizeof (udpha_t); 6989 } 6990 6991 /* Fix IP header */ 6992 ipha->ipha_length = htons(plen - shift); 6993 ipha->ipha_hdr_checksum = 0; 6994 6995 orptr = mp->b_rptr; 6996 mp->b_rptr += shift; 6997 6998 if (*spi == 0) { 6999 ASSERT((uint8_t *)ipha == orptr); 7000 udpha = (udpha_t *)(orptr + iph_len); 7001 udpha->uha_length = htons(plen - shift - iph_len); 7002 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7003 udp_pkt = B_TRUE; 7004 } else { 7005 udp_pkt = B_FALSE; 7006 } 7007 ovbcopy(orptr, orptr + shift, iph_len); 7008 if (!udp_pkt) /* Punt up for ESP processing. */ { 7009 ipha = (ipha_t *)(orptr + shift); 7010 7011 free_ire = (ire == NULL); 7012 if (free_ire) { 7013 /* Re-acquire ire. */ 7014 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7015 ipss->ipsec_netstack->netstack_ip); 7016 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7017 if (ire != NULL) 7018 ire_refrele(ire); 7019 /* 7020 * Do a regular freemsg(), as this is an IP 7021 * error (no local route) not an IPsec one. 7022 */ 7023 freemsg(mp); 7024 } 7025 } 7026 7027 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 7028 if (free_ire) 7029 ire_refrele(ire); 7030 } 7031 7032 return (udp_pkt); 7033 } 7034 7035 /* 7036 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7037 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7038 * Caller is responsible for dropping references to the conn, and freeing 7039 * first_mp. 7040 * 7041 * IPQoS Notes 7042 * Before sending it to the client, invoke IPPF processing. Policy processing 7043 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7044 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7045 * ip_wput_local, ip_policy is false. 7046 */ 7047 static void 7048 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7049 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7050 boolean_t ip_policy) 7051 { 7052 boolean_t mctl_present = (first_mp != NULL); 7053 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7054 uint32_t ill_index; 7055 ip_stack_t *ipst = recv_ill->ill_ipst; 7056 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7057 7058 ASSERT(ill != NULL); 7059 7060 if (mctl_present) 7061 first_mp->b_cont = mp; 7062 else 7063 first_mp = mp; 7064 7065 if (CONN_UDP_FLOWCTLD(connp)) { 7066 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7067 freemsg(first_mp); 7068 return; 7069 } 7070 7071 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7072 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7073 NULL, mctl_present); 7074 if (first_mp == NULL) { 7075 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7076 return; /* Freed by ipsec_check_inbound_policy(). */ 7077 } 7078 } 7079 if (mctl_present) 7080 freeb(first_mp); 7081 7082 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7083 if (connp->conn_udp->udp_nat_t_endpoint) { 7084 if (mctl_present) { 7085 /* mctl_present *shouldn't* happen. */ 7086 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7087 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7088 &ipss->ipsec_dropper); 7089 return; 7090 } 7091 7092 if (!zero_spi_check(ill->ill_rq, mp, ipha, NULL, recv_ill, 7093 ipss)) { 7094 return; 7095 } 7096 } 7097 7098 /* Handle options. */ 7099 if (connp->conn_recvif) 7100 in_flags = IPF_RECVIF; 7101 /* 7102 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7103 * passed to ip_add_info is based on IP version of connp. 7104 */ 7105 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7106 if (connp->conn_af_isv6) { 7107 /* 7108 * V6 only needs index 7109 */ 7110 in_flags |= IPF_RECVIF; 7111 } else { 7112 /* 7113 * V4 needs index + matching address. 7114 */ 7115 in_flags |= IPF_RECVADDR; 7116 } 7117 } 7118 7119 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7120 in_flags |= IPF_RECVSLLA; 7121 7122 /* 7123 * Initiate IPPF processing here, if needed. Note first_mp won't be 7124 * freed if the packet is dropped. The caller will do so. 7125 */ 7126 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7127 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7128 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7129 if (mp == NULL) { 7130 return; 7131 } 7132 } 7133 if ((in_flags != 0) && 7134 (mp->b_datap->db_type != M_CTL)) { 7135 /* 7136 * The actual data will be contained in b_cont 7137 * upon successful return of the following call 7138 * else original mblk is returned 7139 */ 7140 ASSERT(recv_ill != NULL); 7141 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7142 ipst); 7143 } 7144 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7145 /* Send it upstream */ 7146 CONN_UDP_RECV(connp, mp); 7147 } 7148 7149 /* 7150 * Fanout for UDP packets. 7151 * The caller puts <fport, lport> in the ports parameter. 7152 * 7153 * If SO_REUSEADDR is set all multicast and broadcast packets 7154 * will be delivered to all streams bound to the same port. 7155 * 7156 * Zones notes: 7157 * Multicast and broadcast packets will be distributed to streams in all zones. 7158 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7159 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7160 * packets. To maintain this behavior with multiple zones, the conns are grouped 7161 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7162 * each zone. If unset, all the following conns in the same zone are skipped. 7163 */ 7164 static void 7165 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7166 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7167 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7168 { 7169 uint32_t dstport, srcport; 7170 ipaddr_t dst; 7171 mblk_t *first_mp; 7172 boolean_t secure; 7173 in6_addr_t v6src; 7174 conn_t *connp; 7175 connf_t *connfp; 7176 conn_t *first_connp; 7177 conn_t *next_connp; 7178 mblk_t *mp1, *first_mp1; 7179 ipaddr_t src; 7180 zoneid_t last_zoneid; 7181 boolean_t reuseaddr; 7182 boolean_t shared_addr; 7183 ip_stack_t *ipst; 7184 7185 ASSERT(recv_ill != NULL); 7186 ipst = recv_ill->ill_ipst; 7187 7188 first_mp = mp; 7189 if (mctl_present) { 7190 mp = first_mp->b_cont; 7191 first_mp->b_cont = NULL; 7192 secure = ipsec_in_is_secure(first_mp); 7193 ASSERT(mp != NULL); 7194 } else { 7195 first_mp = NULL; 7196 secure = B_FALSE; 7197 } 7198 7199 /* Extract ports in net byte order */ 7200 dstport = htons(ntohl(ports) & 0xFFFF); 7201 srcport = htons(ntohl(ports) >> 16); 7202 dst = ipha->ipha_dst; 7203 src = ipha->ipha_src; 7204 7205 shared_addr = (zoneid == ALL_ZONES); 7206 if (shared_addr) { 7207 /* 7208 * No need to handle exclusive-stack zones since ALL_ZONES 7209 * only applies to the shared stack. 7210 */ 7211 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7212 if (zoneid == ALL_ZONES) 7213 zoneid = tsol_packet_to_zoneid(mp); 7214 } 7215 7216 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7217 mutex_enter(&connfp->connf_lock); 7218 connp = connfp->connf_head; 7219 if (!broadcast && !CLASSD(dst)) { 7220 /* 7221 * Not broadcast or multicast. Send to the one (first) 7222 * client we find. No need to check conn_wantpacket() 7223 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7224 * IPv4 unicast packets. 7225 */ 7226 while ((connp != NULL) && 7227 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7228 !IPCL_ZONE_MATCH(connp, zoneid))) { 7229 connp = connp->conn_next; 7230 } 7231 7232 if (connp == NULL || connp->conn_upq == NULL) 7233 goto notfound; 7234 7235 if (is_system_labeled() && 7236 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7237 connp)) 7238 goto notfound; 7239 7240 CONN_INC_REF(connp); 7241 mutex_exit(&connfp->connf_lock); 7242 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7243 flags, recv_ill, ip_policy); 7244 IP_STAT(ipst, ip_udp_fannorm); 7245 CONN_DEC_REF(connp); 7246 return; 7247 } 7248 7249 /* 7250 * Broadcast and multicast case 7251 * 7252 * Need to check conn_wantpacket(). 7253 * If SO_REUSEADDR has been set on the first we send the 7254 * packet to all clients that have joined the group and 7255 * match the port. 7256 */ 7257 7258 while (connp != NULL) { 7259 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7260 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7261 (!is_system_labeled() || 7262 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7263 connp))) 7264 break; 7265 connp = connp->conn_next; 7266 } 7267 7268 if (connp == NULL || connp->conn_upq == NULL) 7269 goto notfound; 7270 7271 first_connp = connp; 7272 /* 7273 * When SO_REUSEADDR is not set, send the packet only to the first 7274 * matching connection in its zone by keeping track of the zoneid. 7275 */ 7276 reuseaddr = first_connp->conn_reuseaddr; 7277 last_zoneid = first_connp->conn_zoneid; 7278 7279 CONN_INC_REF(connp); 7280 connp = connp->conn_next; 7281 for (;;) { 7282 while (connp != NULL) { 7283 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7284 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7285 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7286 (!is_system_labeled() || 7287 tsol_receive_local(mp, &dst, IPV4_VERSION, 7288 shared_addr, connp))) 7289 break; 7290 connp = connp->conn_next; 7291 } 7292 /* 7293 * Just copy the data part alone. The mctl part is 7294 * needed just for verifying policy and it is never 7295 * sent up. 7296 */ 7297 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7298 ((mp1 = copymsg(mp)) == NULL))) { 7299 /* 7300 * No more interested clients or memory 7301 * allocation failed 7302 */ 7303 connp = first_connp; 7304 break; 7305 } 7306 if (connp->conn_zoneid != last_zoneid) { 7307 /* 7308 * Update the zoneid so that the packet isn't sent to 7309 * any more conns in the same zone unless SO_REUSEADDR 7310 * is set. 7311 */ 7312 reuseaddr = connp->conn_reuseaddr; 7313 last_zoneid = connp->conn_zoneid; 7314 } 7315 if (first_mp != NULL) { 7316 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7317 ipsec_info_type == IPSEC_IN); 7318 first_mp1 = ipsec_in_tag(first_mp, NULL, 7319 ipst->ips_netstack); 7320 if (first_mp1 == NULL) { 7321 freemsg(mp1); 7322 connp = first_connp; 7323 break; 7324 } 7325 } else { 7326 first_mp1 = NULL; 7327 } 7328 CONN_INC_REF(connp); 7329 mutex_exit(&connfp->connf_lock); 7330 /* 7331 * IPQoS notes: We don't send the packet for policy 7332 * processing here, will do it for the last one (below). 7333 * i.e. we do it per-packet now, but if we do policy 7334 * processing per-conn, then we would need to do it 7335 * here too. 7336 */ 7337 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7338 ipha, flags, recv_ill, B_FALSE); 7339 mutex_enter(&connfp->connf_lock); 7340 /* Follow the next pointer before releasing the conn. */ 7341 next_connp = connp->conn_next; 7342 IP_STAT(ipst, ip_udp_fanmb); 7343 CONN_DEC_REF(connp); 7344 connp = next_connp; 7345 } 7346 7347 /* Last one. Send it upstream. */ 7348 mutex_exit(&connfp->connf_lock); 7349 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7350 recv_ill, ip_policy); 7351 IP_STAT(ipst, ip_udp_fanmb); 7352 CONN_DEC_REF(connp); 7353 return; 7354 7355 notfound: 7356 7357 mutex_exit(&connfp->connf_lock); 7358 IP_STAT(ipst, ip_udp_fanothers); 7359 /* 7360 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7361 * have already been matched above, since they live in the IPv4 7362 * fanout tables. This implies we only need to 7363 * check for IPv6 in6addr_any endpoints here. 7364 * Thus we compare using ipv6_all_zeros instead of the destination 7365 * address, except for the multicast group membership lookup which 7366 * uses the IPv4 destination. 7367 */ 7368 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7369 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7370 mutex_enter(&connfp->connf_lock); 7371 connp = connfp->connf_head; 7372 if (!broadcast && !CLASSD(dst)) { 7373 while (connp != NULL) { 7374 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7375 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7376 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7377 !connp->conn_ipv6_v6only) 7378 break; 7379 connp = connp->conn_next; 7380 } 7381 7382 if (connp != NULL && is_system_labeled() && 7383 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7384 connp)) 7385 connp = NULL; 7386 7387 if (connp == NULL || connp->conn_upq == NULL) { 7388 /* 7389 * No one bound to this port. Is 7390 * there a client that wants all 7391 * unclaimed datagrams? 7392 */ 7393 mutex_exit(&connfp->connf_lock); 7394 7395 if (mctl_present) 7396 first_mp->b_cont = mp; 7397 else 7398 first_mp = mp; 7399 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7400 connf_head != NULL) { 7401 ip_fanout_proto(q, first_mp, ill, ipha, 7402 flags | IP_FF_RAWIP, mctl_present, 7403 ip_policy, recv_ill, zoneid); 7404 } else { 7405 if (ip_fanout_send_icmp(q, first_mp, flags, 7406 ICMP_DEST_UNREACHABLE, 7407 ICMP_PORT_UNREACHABLE, 7408 mctl_present, zoneid, ipst)) { 7409 BUMP_MIB(ill->ill_ip_mib, 7410 udpIfStatsNoPorts); 7411 } 7412 } 7413 return; 7414 } 7415 7416 CONN_INC_REF(connp); 7417 mutex_exit(&connfp->connf_lock); 7418 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7419 flags, recv_ill, ip_policy); 7420 CONN_DEC_REF(connp); 7421 return; 7422 } 7423 /* 7424 * IPv4 multicast packet being delivered to an AF_INET6 7425 * in6addr_any endpoint. 7426 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7427 * and not conn_wantpacket_v6() since any multicast membership is 7428 * for an IPv4-mapped multicast address. 7429 * The packet is sent to all clients in all zones that have joined the 7430 * group and match the port. 7431 */ 7432 while (connp != NULL) { 7433 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7434 srcport, v6src) && 7435 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7436 (!is_system_labeled() || 7437 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7438 connp))) 7439 break; 7440 connp = connp->conn_next; 7441 } 7442 7443 if (connp == NULL || connp->conn_upq == NULL) { 7444 /* 7445 * No one bound to this port. Is 7446 * there a client that wants all 7447 * unclaimed datagrams? 7448 */ 7449 mutex_exit(&connfp->connf_lock); 7450 7451 if (mctl_present) 7452 first_mp->b_cont = mp; 7453 else 7454 first_mp = mp; 7455 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7456 NULL) { 7457 ip_fanout_proto(q, first_mp, ill, ipha, 7458 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7459 recv_ill, zoneid); 7460 } else { 7461 /* 7462 * We used to attempt to send an icmp error here, but 7463 * since this is known to be a multicast packet 7464 * and we don't send icmp errors in response to 7465 * multicast, just drop the packet and give up sooner. 7466 */ 7467 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7468 freemsg(first_mp); 7469 } 7470 return; 7471 } 7472 7473 first_connp = connp; 7474 7475 CONN_INC_REF(connp); 7476 connp = connp->conn_next; 7477 for (;;) { 7478 while (connp != NULL) { 7479 if (IPCL_UDP_MATCH_V6(connp, dstport, 7480 ipv6_all_zeros, srcport, v6src) && 7481 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7482 (!is_system_labeled() || 7483 tsol_receive_local(mp, &dst, IPV4_VERSION, 7484 shared_addr, connp))) 7485 break; 7486 connp = connp->conn_next; 7487 } 7488 /* 7489 * Just copy the data part alone. The mctl part is 7490 * needed just for verifying policy and it is never 7491 * sent up. 7492 */ 7493 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7494 ((mp1 = copymsg(mp)) == NULL))) { 7495 /* 7496 * No more intested clients or memory 7497 * allocation failed 7498 */ 7499 connp = first_connp; 7500 break; 7501 } 7502 if (first_mp != NULL) { 7503 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7504 ipsec_info_type == IPSEC_IN); 7505 first_mp1 = ipsec_in_tag(first_mp, NULL, 7506 ipst->ips_netstack); 7507 if (first_mp1 == NULL) { 7508 freemsg(mp1); 7509 connp = first_connp; 7510 break; 7511 } 7512 } else { 7513 first_mp1 = NULL; 7514 } 7515 CONN_INC_REF(connp); 7516 mutex_exit(&connfp->connf_lock); 7517 /* 7518 * IPQoS notes: We don't send the packet for policy 7519 * processing here, will do it for the last one (below). 7520 * i.e. we do it per-packet now, but if we do policy 7521 * processing per-conn, then we would need to do it 7522 * here too. 7523 */ 7524 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7525 ipha, flags, recv_ill, B_FALSE); 7526 mutex_enter(&connfp->connf_lock); 7527 /* Follow the next pointer before releasing the conn. */ 7528 next_connp = connp->conn_next; 7529 CONN_DEC_REF(connp); 7530 connp = next_connp; 7531 } 7532 7533 /* Last one. Send it upstream. */ 7534 mutex_exit(&connfp->connf_lock); 7535 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7536 recv_ill, ip_policy); 7537 CONN_DEC_REF(connp); 7538 } 7539 7540 /* 7541 * Complete the ip_wput header so that it 7542 * is possible to generate ICMP 7543 * errors. 7544 */ 7545 int 7546 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7547 { 7548 ire_t *ire; 7549 7550 if (ipha->ipha_src == INADDR_ANY) { 7551 ire = ire_lookup_local(zoneid, ipst); 7552 if (ire == NULL) { 7553 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7554 return (1); 7555 } 7556 ipha->ipha_src = ire->ire_addr; 7557 ire_refrele(ire); 7558 } 7559 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7560 ipha->ipha_hdr_checksum = 0; 7561 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7562 return (0); 7563 } 7564 7565 /* 7566 * Nobody should be sending 7567 * packets up this stream 7568 */ 7569 static void 7570 ip_lrput(queue_t *q, mblk_t *mp) 7571 { 7572 mblk_t *mp1; 7573 7574 switch (mp->b_datap->db_type) { 7575 case M_FLUSH: 7576 /* Turn around */ 7577 if (*mp->b_rptr & FLUSHW) { 7578 *mp->b_rptr &= ~FLUSHR; 7579 qreply(q, mp); 7580 return; 7581 } 7582 break; 7583 } 7584 /* Could receive messages that passed through ar_rput */ 7585 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7586 mp1->b_prev = mp1->b_next = NULL; 7587 freemsg(mp); 7588 } 7589 7590 /* Nobody should be sending packets down this stream */ 7591 /* ARGSUSED */ 7592 void 7593 ip_lwput(queue_t *q, mblk_t *mp) 7594 { 7595 freemsg(mp); 7596 } 7597 7598 /* 7599 * Move the first hop in any source route to ipha_dst and remove that part of 7600 * the source route. Called by other protocols. Errors in option formatting 7601 * are ignored - will be handled by ip_wput_options Return the final 7602 * destination (either ipha_dst or the last entry in a source route.) 7603 */ 7604 ipaddr_t 7605 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7606 { 7607 ipoptp_t opts; 7608 uchar_t *opt; 7609 uint8_t optval; 7610 uint8_t optlen; 7611 ipaddr_t dst; 7612 int i; 7613 ire_t *ire; 7614 ip_stack_t *ipst = ns->netstack_ip; 7615 7616 ip2dbg(("ip_massage_options\n")); 7617 dst = ipha->ipha_dst; 7618 for (optval = ipoptp_first(&opts, ipha); 7619 optval != IPOPT_EOL; 7620 optval = ipoptp_next(&opts)) { 7621 opt = opts.ipoptp_cur; 7622 switch (optval) { 7623 uint8_t off; 7624 case IPOPT_SSRR: 7625 case IPOPT_LSRR: 7626 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7627 ip1dbg(("ip_massage_options: bad src route\n")); 7628 break; 7629 } 7630 optlen = opts.ipoptp_len; 7631 off = opt[IPOPT_OFFSET]; 7632 off--; 7633 redo_srr: 7634 if (optlen < IP_ADDR_LEN || 7635 off > optlen - IP_ADDR_LEN) { 7636 /* End of source route */ 7637 ip1dbg(("ip_massage_options: end of SR\n")); 7638 break; 7639 } 7640 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7641 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7642 ntohl(dst))); 7643 /* 7644 * Check if our address is present more than 7645 * once as consecutive hops in source route. 7646 * XXX verify per-interface ip_forwarding 7647 * for source route? 7648 */ 7649 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7650 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7651 if (ire != NULL) { 7652 ire_refrele(ire); 7653 off += IP_ADDR_LEN; 7654 goto redo_srr; 7655 } 7656 if (dst == htonl(INADDR_LOOPBACK)) { 7657 ip1dbg(("ip_massage_options: loopback addr in " 7658 "source route!\n")); 7659 break; 7660 } 7661 /* 7662 * Update ipha_dst to be the first hop and remove the 7663 * first hop from the source route (by overwriting 7664 * part of the option with NOP options). 7665 */ 7666 ipha->ipha_dst = dst; 7667 /* Put the last entry in dst */ 7668 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7669 3; 7670 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7671 7672 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7673 ntohl(dst))); 7674 /* Move down and overwrite */ 7675 opt[IP_ADDR_LEN] = opt[0]; 7676 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7677 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7678 for (i = 0; i < IP_ADDR_LEN; i++) 7679 opt[i] = IPOPT_NOP; 7680 break; 7681 } 7682 } 7683 return (dst); 7684 } 7685 7686 /* 7687 * Return the network mask 7688 * associated with the specified address. 7689 */ 7690 ipaddr_t 7691 ip_net_mask(ipaddr_t addr) 7692 { 7693 uchar_t *up = (uchar_t *)&addr; 7694 ipaddr_t mask = 0; 7695 uchar_t *maskp = (uchar_t *)&mask; 7696 7697 #if defined(__i386) || defined(__amd64) 7698 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7699 #endif 7700 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7701 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7702 #endif 7703 if (CLASSD(addr)) { 7704 maskp[0] = 0xF0; 7705 return (mask); 7706 } 7707 if (addr == 0) 7708 return (0); 7709 maskp[0] = 0xFF; 7710 if ((up[0] & 0x80) == 0) 7711 return (mask); 7712 7713 maskp[1] = 0xFF; 7714 if ((up[0] & 0xC0) == 0x80) 7715 return (mask); 7716 7717 maskp[2] = 0xFF; 7718 if ((up[0] & 0xE0) == 0xC0) 7719 return (mask); 7720 7721 /* Must be experimental or multicast, indicate as much */ 7722 return ((ipaddr_t)0); 7723 } 7724 7725 /* 7726 * Select an ill for the packet by considering load spreading across 7727 * a different ill in the group if dst_ill is part of some group. 7728 */ 7729 ill_t * 7730 ip_newroute_get_dst_ill(ill_t *dst_ill) 7731 { 7732 ill_t *ill; 7733 7734 /* 7735 * We schedule irrespective of whether the source address is 7736 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7737 */ 7738 ill = illgrp_scheduler(dst_ill); 7739 if (ill == NULL) 7740 return (NULL); 7741 7742 /* 7743 * For groups with names ip_sioctl_groupname ensures that all 7744 * ills are of same type. For groups without names, ifgrp_insert 7745 * ensures this. 7746 */ 7747 ASSERT(dst_ill->ill_type == ill->ill_type); 7748 7749 return (ill); 7750 } 7751 7752 /* 7753 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7754 */ 7755 ill_t * 7756 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7757 ip_stack_t *ipst) 7758 { 7759 ill_t *ret_ill; 7760 7761 ASSERT(ifindex != 0); 7762 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7763 ipst); 7764 if (ret_ill == NULL || 7765 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7766 if (isv6) { 7767 if (ill != NULL) { 7768 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7769 } else { 7770 BUMP_MIB(&ipst->ips_ip6_mib, 7771 ipIfStatsOutDiscards); 7772 } 7773 ip1dbg(("ip_grab_attach_ill (IPv6): " 7774 "bad ifindex %d.\n", ifindex)); 7775 } else { 7776 if (ill != NULL) { 7777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7778 } else { 7779 BUMP_MIB(&ipst->ips_ip_mib, 7780 ipIfStatsOutDiscards); 7781 } 7782 ip1dbg(("ip_grab_attach_ill (IPv4): " 7783 "bad ifindex %d.\n", ifindex)); 7784 } 7785 if (ret_ill != NULL) 7786 ill_refrele(ret_ill); 7787 freemsg(first_mp); 7788 return (NULL); 7789 } 7790 7791 return (ret_ill); 7792 } 7793 7794 /* 7795 * IPv4 - 7796 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7797 * out a packet to a destination address for which we do not have specific 7798 * (or sufficient) routing information. 7799 * 7800 * NOTE : These are the scopes of some of the variables that point at IRE, 7801 * which needs to be followed while making any future modifications 7802 * to avoid memory leaks. 7803 * 7804 * - ire and sire are the entries looked up initially by 7805 * ire_ftable_lookup. 7806 * - ipif_ire is used to hold the interface ire associated with 7807 * the new cache ire. But it's scope is limited, so we always REFRELE 7808 * it before branching out to error paths. 7809 * - save_ire is initialized before ire_create, so that ire returned 7810 * by ire_create will not over-write the ire. We REFRELE save_ire 7811 * before breaking out of the switch. 7812 * 7813 * Thus on failures, we have to REFRELE only ire and sire, if they 7814 * are not NULL. 7815 */ 7816 void 7817 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7818 zoneid_t zoneid, ip_stack_t *ipst) 7819 { 7820 areq_t *areq; 7821 ipaddr_t gw = 0; 7822 ire_t *ire = NULL; 7823 mblk_t *res_mp; 7824 ipaddr_t *addrp; 7825 ipaddr_t nexthop_addr; 7826 ipif_t *src_ipif = NULL; 7827 ill_t *dst_ill = NULL; 7828 ipha_t *ipha; 7829 ire_t *sire = NULL; 7830 mblk_t *first_mp; 7831 ire_t *save_ire; 7832 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7833 ushort_t ire_marks = 0; 7834 boolean_t mctl_present; 7835 ipsec_out_t *io; 7836 mblk_t *saved_mp; 7837 ire_t *first_sire = NULL; 7838 mblk_t *copy_mp = NULL; 7839 mblk_t *xmit_mp = NULL; 7840 ipaddr_t save_dst; 7841 uint32_t multirt_flags = 7842 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7843 boolean_t multirt_is_resolvable; 7844 boolean_t multirt_resolve_next; 7845 boolean_t do_attach_ill = B_FALSE; 7846 boolean_t ip_nexthop = B_FALSE; 7847 tsol_ire_gw_secattr_t *attrp = NULL; 7848 tsol_gcgrp_t *gcgrp = NULL; 7849 tsol_gcgrp_addr_t ga; 7850 7851 if (ip_debug > 2) { 7852 /* ip1dbg */ 7853 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7854 } 7855 7856 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7857 if (mctl_present) { 7858 io = (ipsec_out_t *)first_mp->b_rptr; 7859 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7860 ASSERT(zoneid == io->ipsec_out_zoneid); 7861 ASSERT(zoneid != ALL_ZONES); 7862 } 7863 7864 ipha = (ipha_t *)mp->b_rptr; 7865 7866 /* All multicast lookups come through ip_newroute_ipif() */ 7867 if (CLASSD(dst)) { 7868 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7869 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7870 freemsg(first_mp); 7871 return; 7872 } 7873 7874 if (mctl_present && io->ipsec_out_attach_if) { 7875 /* ip_grab_attach_ill returns a held ill */ 7876 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7877 io->ipsec_out_ill_index, B_FALSE, ipst); 7878 7879 /* Failure case frees things for us. */ 7880 if (attach_ill == NULL) 7881 return; 7882 7883 /* 7884 * Check if we need an ire that will not be 7885 * looked up by anybody else i.e. HIDDEN. 7886 */ 7887 if (ill_is_probeonly(attach_ill)) 7888 ire_marks = IRE_MARK_HIDDEN; 7889 } 7890 if (mctl_present && io->ipsec_out_ip_nexthop) { 7891 ip_nexthop = B_TRUE; 7892 nexthop_addr = io->ipsec_out_nexthop_addr; 7893 } 7894 /* 7895 * If this IRE is created for forwarding or it is not for 7896 * traffic for congestion controlled protocols, mark it as temporary. 7897 */ 7898 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7899 ire_marks |= IRE_MARK_TEMPORARY; 7900 7901 /* 7902 * Get what we can from ire_ftable_lookup which will follow an IRE 7903 * chain until it gets the most specific information available. 7904 * For example, we know that there is no IRE_CACHE for this dest, 7905 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7906 * ire_ftable_lookup will look up the gateway, etc. 7907 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7908 * to the destination, of equal netmask length in the forward table, 7909 * will be recursively explored. If no information is available 7910 * for the final gateway of that route, we force the returned ire 7911 * to be equal to sire using MATCH_IRE_PARENT. 7912 * At least, in this case we have a starting point (in the buckets) 7913 * to look for other routes to the destination in the forward table. 7914 * This is actually used only for multirouting, where a list 7915 * of routes has to be processed in sequence. 7916 * 7917 * In the process of coming up with the most specific information, 7918 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7919 * for the gateway (i.e., one for which the ire_nce->nce_state is 7920 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7921 * Two caveats when handling incomplete ire's in ip_newroute: 7922 * - we should be careful when accessing its ire_nce (specifically 7923 * the nce_res_mp) ast it might change underneath our feet, and, 7924 * - not all legacy code path callers are prepared to handle 7925 * incomplete ire's, so we should not create/add incomplete 7926 * ire_cache entries here. (See discussion about temporary solution 7927 * further below). 7928 * 7929 * In order to minimize packet dropping, and to preserve existing 7930 * behavior, we treat this case as if there were no IRE_CACHE for the 7931 * gateway, and instead use the IF_RESOLVER ire to send out 7932 * another request to ARP (this is achieved by passing the 7933 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7934 * arp response comes back in ip_wput_nondata, we will create 7935 * a per-dst ire_cache that has an ND_COMPLETE ire. 7936 * 7937 * Note that this is a temporary solution; the correct solution is 7938 * to create an incomplete per-dst ire_cache entry, and send the 7939 * packet out when the gw's nce is resolved. In order to achieve this, 7940 * all packet processing must have been completed prior to calling 7941 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7942 * to be modified to accomodate this solution. 7943 */ 7944 if (ip_nexthop) { 7945 /* 7946 * The first time we come here, we look for an IRE_INTERFACE 7947 * entry for the specified nexthop, set the dst to be the 7948 * nexthop address and create an IRE_CACHE entry for the 7949 * nexthop. The next time around, we are able to find an 7950 * IRE_CACHE entry for the nexthop, set the gateway to be the 7951 * nexthop address and create an IRE_CACHE entry for the 7952 * destination address via the specified nexthop. 7953 */ 7954 ire = ire_cache_lookup(nexthop_addr, zoneid, 7955 MBLK_GETLABEL(mp), ipst); 7956 if (ire != NULL) { 7957 gw = nexthop_addr; 7958 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7959 } else { 7960 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7961 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7962 MBLK_GETLABEL(mp), 7963 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7964 ipst); 7965 if (ire != NULL) { 7966 dst = nexthop_addr; 7967 } 7968 } 7969 } else if (attach_ill == NULL) { 7970 ire = ire_ftable_lookup(dst, 0, 0, 0, 7971 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7972 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7973 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7974 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7975 ipst); 7976 } else { 7977 /* 7978 * attach_ill is set only for communicating with 7979 * on-link hosts. So, don't look for DEFAULT. 7980 */ 7981 ipif_t *attach_ipif; 7982 7983 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7984 if (attach_ipif == NULL) { 7985 ill_refrele(attach_ill); 7986 goto icmp_err_ret; 7987 } 7988 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7989 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7990 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7991 MATCH_IRE_SECATTR, ipst); 7992 ipif_refrele(attach_ipif); 7993 } 7994 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7995 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7996 7997 /* 7998 * This loop is run only once in most cases. 7999 * We loop to resolve further routes only when the destination 8000 * can be reached through multiple RTF_MULTIRT-flagged ires. 8001 */ 8002 do { 8003 /* Clear the previous iteration's values */ 8004 if (src_ipif != NULL) { 8005 ipif_refrele(src_ipif); 8006 src_ipif = NULL; 8007 } 8008 if (dst_ill != NULL) { 8009 ill_refrele(dst_ill); 8010 dst_ill = NULL; 8011 } 8012 8013 multirt_resolve_next = B_FALSE; 8014 /* 8015 * We check if packets have to be multirouted. 8016 * In this case, given the current <ire, sire> couple, 8017 * we look for the next suitable <ire, sire>. 8018 * This check is done in ire_multirt_lookup(), 8019 * which applies various criteria to find the next route 8020 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8021 * unchanged if it detects it has not been tried yet. 8022 */ 8023 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8024 ip3dbg(("ip_newroute: starting next_resolution " 8025 "with first_mp %p, tag %d\n", 8026 (void *)first_mp, 8027 MULTIRT_DEBUG_TAGGED(first_mp))); 8028 8029 ASSERT(sire != NULL); 8030 multirt_is_resolvable = 8031 ire_multirt_lookup(&ire, &sire, multirt_flags, 8032 MBLK_GETLABEL(mp), ipst); 8033 8034 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8035 "ire %p, sire %p\n", 8036 multirt_is_resolvable, 8037 (void *)ire, (void *)sire)); 8038 8039 if (!multirt_is_resolvable) { 8040 /* 8041 * No more multirt route to resolve; give up 8042 * (all routes resolved or no more 8043 * resolvable routes). 8044 */ 8045 if (ire != NULL) { 8046 ire_refrele(ire); 8047 ire = NULL; 8048 } 8049 } else { 8050 ASSERT(sire != NULL); 8051 ASSERT(ire != NULL); 8052 /* 8053 * We simply use first_sire as a flag that 8054 * indicates if a resolvable multirt route 8055 * has already been found. 8056 * If it is not the case, we may have to send 8057 * an ICMP error to report that the 8058 * destination is unreachable. 8059 * We do not IRE_REFHOLD first_sire. 8060 */ 8061 if (first_sire == NULL) { 8062 first_sire = sire; 8063 } 8064 } 8065 } 8066 if (ire == NULL) { 8067 if (ip_debug > 3) { 8068 /* ip2dbg */ 8069 pr_addr_dbg("ip_newroute: " 8070 "can't resolve %s\n", AF_INET, &dst); 8071 } 8072 ip3dbg(("ip_newroute: " 8073 "ire %p, sire %p, first_sire %p\n", 8074 (void *)ire, (void *)sire, (void *)first_sire)); 8075 8076 if (sire != NULL) { 8077 ire_refrele(sire); 8078 sire = NULL; 8079 } 8080 8081 if (first_sire != NULL) { 8082 /* 8083 * At least one multirt route has been found 8084 * in the same call to ip_newroute(); 8085 * there is no need to report an ICMP error. 8086 * first_sire was not IRE_REFHOLDed. 8087 */ 8088 MULTIRT_DEBUG_UNTAG(first_mp); 8089 freemsg(first_mp); 8090 return; 8091 } 8092 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8093 RTA_DST, ipst); 8094 if (attach_ill != NULL) 8095 ill_refrele(attach_ill); 8096 goto icmp_err_ret; 8097 } 8098 8099 /* 8100 * Verify that the returned IRE does not have either 8101 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8102 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8103 */ 8104 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8105 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8106 if (attach_ill != NULL) 8107 ill_refrele(attach_ill); 8108 goto icmp_err_ret; 8109 } 8110 /* 8111 * Increment the ire_ob_pkt_count field for ire if it is an 8112 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8113 * increment the same for the parent IRE, sire, if it is some 8114 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8115 */ 8116 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8117 UPDATE_OB_PKT_COUNT(ire); 8118 ire->ire_last_used_time = lbolt; 8119 } 8120 8121 if (sire != NULL) { 8122 gw = sire->ire_gateway_addr; 8123 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8124 IRE_INTERFACE)) == 0); 8125 UPDATE_OB_PKT_COUNT(sire); 8126 sire->ire_last_used_time = lbolt; 8127 } 8128 /* 8129 * We have a route to reach the destination. 8130 * 8131 * 1) If the interface is part of ill group, try to get a new 8132 * ill taking load spreading into account. 8133 * 8134 * 2) After selecting the ill, get a source address that 8135 * might create good inbound load spreading. 8136 * ipif_select_source does this for us. 8137 * 8138 * If the application specified the ill (ifindex), we still 8139 * load spread. Only if the packets needs to go out 8140 * specifically on a given ill e.g. binding to 8141 * IPIF_NOFAILOVER address, then we don't try to use a 8142 * different ill for load spreading. 8143 */ 8144 if (attach_ill == NULL) { 8145 /* 8146 * Don't perform outbound load spreading in the 8147 * case of an RTF_MULTIRT route, as we actually 8148 * typically want to replicate outgoing packets 8149 * through particular interfaces. 8150 */ 8151 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8152 dst_ill = ire->ire_ipif->ipif_ill; 8153 /* for uniformity */ 8154 ill_refhold(dst_ill); 8155 } else { 8156 /* 8157 * If we are here trying to create an IRE_CACHE 8158 * for an offlink destination and have the 8159 * IRE_CACHE for the next hop and the latter is 8160 * using virtual IP source address selection i.e 8161 * it's ire->ire_ipif is pointing to a virtual 8162 * network interface (vni) then 8163 * ip_newroute_get_dst_ll() will return the vni 8164 * interface as the dst_ill. Since the vni is 8165 * virtual i.e not associated with any physical 8166 * interface, it cannot be the dst_ill, hence 8167 * in such a case call ip_newroute_get_dst_ll() 8168 * with the stq_ill instead of the ire_ipif ILL. 8169 * The function returns a refheld ill. 8170 */ 8171 if ((ire->ire_type == IRE_CACHE) && 8172 IS_VNI(ire->ire_ipif->ipif_ill)) 8173 dst_ill = ip_newroute_get_dst_ill( 8174 ire->ire_stq->q_ptr); 8175 else 8176 dst_ill = ip_newroute_get_dst_ill( 8177 ire->ire_ipif->ipif_ill); 8178 } 8179 if (dst_ill == NULL) { 8180 if (ip_debug > 2) { 8181 pr_addr_dbg("ip_newroute: " 8182 "no dst ill for dst" 8183 " %s\n", AF_INET, &dst); 8184 } 8185 goto icmp_err_ret; 8186 } 8187 } else { 8188 dst_ill = ire->ire_ipif->ipif_ill; 8189 /* for uniformity */ 8190 ill_refhold(dst_ill); 8191 /* 8192 * We should have found a route matching ill as we 8193 * called ire_ftable_lookup with MATCH_IRE_ILL. 8194 * Rather than asserting, when there is a mismatch, 8195 * we just drop the packet. 8196 */ 8197 if (dst_ill != attach_ill) { 8198 ip0dbg(("ip_newroute: Packet dropped as " 8199 "IPIF_NOFAILOVER ill is %s, " 8200 "ire->ire_ipif->ipif_ill is %s\n", 8201 attach_ill->ill_name, 8202 dst_ill->ill_name)); 8203 ill_refrele(attach_ill); 8204 goto icmp_err_ret; 8205 } 8206 } 8207 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8208 if (attach_ill != NULL) { 8209 ill_refrele(attach_ill); 8210 attach_ill = NULL; 8211 do_attach_ill = B_TRUE; 8212 } 8213 ASSERT(dst_ill != NULL); 8214 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8215 8216 /* 8217 * Pick the best source address from dst_ill. 8218 * 8219 * 1) If it is part of a multipathing group, we would 8220 * like to spread the inbound packets across different 8221 * interfaces. ipif_select_source picks a random source 8222 * across the different ills in the group. 8223 * 8224 * 2) If it is not part of a multipathing group, we try 8225 * to pick the source address from the destination 8226 * route. Clustering assumes that when we have multiple 8227 * prefixes hosted on an interface, the prefix of the 8228 * source address matches the prefix of the destination 8229 * route. We do this only if the address is not 8230 * DEPRECATED. 8231 * 8232 * 3) If the conn is in a different zone than the ire, we 8233 * need to pick a source address from the right zone. 8234 * 8235 * NOTE : If we hit case (1) above, the prefix of the source 8236 * address picked may not match the prefix of the 8237 * destination routes prefix as ipif_select_source 8238 * does not look at "dst" while picking a source 8239 * address. 8240 * If we want the same behavior as (2), we will need 8241 * to change the behavior of ipif_select_source. 8242 */ 8243 ASSERT(src_ipif == NULL); 8244 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8245 /* 8246 * The RTF_SETSRC flag is set in the parent ire (sire). 8247 * Check that the ipif matching the requested source 8248 * address still exists. 8249 */ 8250 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8251 zoneid, NULL, NULL, NULL, NULL, ipst); 8252 } 8253 if (src_ipif == NULL) { 8254 ire_marks |= IRE_MARK_USESRC_CHECK; 8255 if ((dst_ill->ill_group != NULL) || 8256 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8257 (connp != NULL && ire->ire_zoneid != zoneid && 8258 ire->ire_zoneid != ALL_ZONES) || 8259 (dst_ill->ill_usesrc_ifindex != 0)) { 8260 /* 8261 * If the destination is reachable via a 8262 * given gateway, the selected source address 8263 * should be in the same subnet as the gateway. 8264 * Otherwise, the destination is not reachable. 8265 * 8266 * If there are no interfaces on the same subnet 8267 * as the destination, ipif_select_source gives 8268 * first non-deprecated interface which might be 8269 * on a different subnet than the gateway. 8270 * This is not desirable. Hence pass the dst_ire 8271 * source address to ipif_select_source. 8272 * It is sure that the destination is reachable 8273 * with the dst_ire source address subnet. 8274 * So passing dst_ire source address to 8275 * ipif_select_source will make sure that the 8276 * selected source will be on the same subnet 8277 * as dst_ire source address. 8278 */ 8279 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8280 src_ipif = ipif_select_source(dst_ill, saddr, 8281 zoneid); 8282 if (src_ipif == NULL) { 8283 if (ip_debug > 2) { 8284 pr_addr_dbg("ip_newroute: " 8285 "no src for dst %s ", 8286 AF_INET, &dst); 8287 printf("through interface %s\n", 8288 dst_ill->ill_name); 8289 } 8290 goto icmp_err_ret; 8291 } 8292 } else { 8293 src_ipif = ire->ire_ipif; 8294 ASSERT(src_ipif != NULL); 8295 /* hold src_ipif for uniformity */ 8296 ipif_refhold(src_ipif); 8297 } 8298 } 8299 8300 /* 8301 * Assign a source address while we have the conn. 8302 * We can't have ip_wput_ire pick a source address when the 8303 * packet returns from arp since we need to look at 8304 * conn_unspec_src and conn_zoneid, and we lose the conn when 8305 * going through arp. 8306 * 8307 * NOTE : ip_newroute_v6 does not have this piece of code as 8308 * it uses ip6i to store this information. 8309 */ 8310 if (ipha->ipha_src == INADDR_ANY && 8311 (connp == NULL || !connp->conn_unspec_src)) { 8312 ipha->ipha_src = src_ipif->ipif_src_addr; 8313 } 8314 if (ip_debug > 3) { 8315 /* ip2dbg */ 8316 pr_addr_dbg("ip_newroute: first hop %s\n", 8317 AF_INET, &gw); 8318 } 8319 ip2dbg(("\tire type %s (%d)\n", 8320 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8321 8322 /* 8323 * The TTL of multirouted packets is bounded by the 8324 * ip_multirt_ttl ndd variable. 8325 */ 8326 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8327 /* Force TTL of multirouted packets */ 8328 if ((ipst->ips_ip_multirt_ttl > 0) && 8329 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8330 ip2dbg(("ip_newroute: forcing multirt TTL " 8331 "to %d (was %d), dst 0x%08x\n", 8332 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8333 ntohl(sire->ire_addr))); 8334 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8335 } 8336 } 8337 /* 8338 * At this point in ip_newroute(), ire is either the 8339 * IRE_CACHE of the next-hop gateway for an off-subnet 8340 * destination or an IRE_INTERFACE type that should be used 8341 * to resolve an on-subnet destination or an on-subnet 8342 * next-hop gateway. 8343 * 8344 * In the IRE_CACHE case, we have the following : 8345 * 8346 * 1) src_ipif - used for getting a source address. 8347 * 8348 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8349 * means packets using this IRE_CACHE will go out on 8350 * dst_ill. 8351 * 8352 * 3) The IRE sire will point to the prefix that is the 8353 * longest matching route for the destination. These 8354 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8355 * 8356 * The newly created IRE_CACHE entry for the off-subnet 8357 * destination is tied to both the prefix route and the 8358 * interface route used to resolve the next-hop gateway 8359 * via the ire_phandle and ire_ihandle fields, 8360 * respectively. 8361 * 8362 * In the IRE_INTERFACE case, we have the following : 8363 * 8364 * 1) src_ipif - used for getting a source address. 8365 * 8366 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8367 * means packets using the IRE_CACHE that we will build 8368 * here will go out on dst_ill. 8369 * 8370 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8371 * to be created will only be tied to the IRE_INTERFACE 8372 * that was derived from the ire_ihandle field. 8373 * 8374 * If sire is non-NULL, it means the destination is 8375 * off-link and we will first create the IRE_CACHE for the 8376 * gateway. Next time through ip_newroute, we will create 8377 * the IRE_CACHE for the final destination as described 8378 * above. 8379 * 8380 * In both cases, after the current resolution has been 8381 * completed (or possibly initialised, in the IRE_INTERFACE 8382 * case), the loop may be re-entered to attempt the resolution 8383 * of another RTF_MULTIRT route. 8384 * 8385 * When an IRE_CACHE entry for the off-subnet destination is 8386 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8387 * for further processing in emission loops. 8388 */ 8389 save_ire = ire; 8390 switch (ire->ire_type) { 8391 case IRE_CACHE: { 8392 ire_t *ipif_ire; 8393 8394 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8395 if (gw == 0) 8396 gw = ire->ire_gateway_addr; 8397 /* 8398 * We need 3 ire's to create a new cache ire for an 8399 * off-link destination from the cache ire of the 8400 * gateway. 8401 * 8402 * 1. The prefix ire 'sire' (Note that this does 8403 * not apply to the conn_nexthop_set case) 8404 * 2. The cache ire of the gateway 'ire' 8405 * 3. The interface ire 'ipif_ire' 8406 * 8407 * We have (1) and (2). We lookup (3) below. 8408 * 8409 * If there is no interface route to the gateway, 8410 * it is a race condition, where we found the cache 8411 * but the interface route has been deleted. 8412 */ 8413 if (ip_nexthop) { 8414 ipif_ire = ire_ihandle_lookup_onlink(ire); 8415 } else { 8416 ipif_ire = 8417 ire_ihandle_lookup_offlink(ire, sire); 8418 } 8419 if (ipif_ire == NULL) { 8420 ip1dbg(("ip_newroute: " 8421 "ire_ihandle_lookup_offlink failed\n")); 8422 goto icmp_err_ret; 8423 } 8424 8425 /* 8426 * Check cached gateway IRE for any security 8427 * attributes; if found, associate the gateway 8428 * credentials group to the destination IRE. 8429 */ 8430 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8431 mutex_enter(&attrp->igsa_lock); 8432 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8433 GCGRP_REFHOLD(gcgrp); 8434 mutex_exit(&attrp->igsa_lock); 8435 } 8436 8437 /* 8438 * XXX For the source of the resolver mp, 8439 * we are using the same DL_UNITDATA_REQ 8440 * (from save_ire->ire_nce->nce_res_mp) 8441 * though the save_ire is not pointing at the same ill. 8442 * This is incorrect. We need to send it up to the 8443 * resolver to get the right res_mp. For ethernets 8444 * this may be okay (ill_type == DL_ETHER). 8445 */ 8446 8447 ire = ire_create( 8448 (uchar_t *)&dst, /* dest address */ 8449 (uchar_t *)&ip_g_all_ones, /* mask */ 8450 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8451 (uchar_t *)&gw, /* gateway address */ 8452 &save_ire->ire_max_frag, 8453 save_ire->ire_nce, /* src nce */ 8454 dst_ill->ill_rq, /* recv-from queue */ 8455 dst_ill->ill_wq, /* send-to queue */ 8456 IRE_CACHE, /* IRE type */ 8457 src_ipif, 8458 (sire != NULL) ? 8459 sire->ire_mask : 0, /* Parent mask */ 8460 (sire != NULL) ? 8461 sire->ire_phandle : 0, /* Parent handle */ 8462 ipif_ire->ire_ihandle, /* Interface handle */ 8463 (sire != NULL) ? (sire->ire_flags & 8464 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8465 (sire != NULL) ? 8466 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8467 NULL, 8468 gcgrp, 8469 ipst); 8470 8471 if (ire == NULL) { 8472 if (gcgrp != NULL) { 8473 GCGRP_REFRELE(gcgrp); 8474 gcgrp = NULL; 8475 } 8476 ire_refrele(ipif_ire); 8477 ire_refrele(save_ire); 8478 break; 8479 } 8480 8481 /* reference now held by IRE */ 8482 gcgrp = NULL; 8483 8484 ire->ire_marks |= ire_marks; 8485 8486 /* 8487 * Prevent sire and ipif_ire from getting deleted. 8488 * The newly created ire is tied to both of them via 8489 * the phandle and ihandle respectively. 8490 */ 8491 if (sire != NULL) { 8492 IRB_REFHOLD(sire->ire_bucket); 8493 /* Has it been removed already ? */ 8494 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8495 IRB_REFRELE(sire->ire_bucket); 8496 ire_refrele(ipif_ire); 8497 ire_refrele(save_ire); 8498 break; 8499 } 8500 } 8501 8502 IRB_REFHOLD(ipif_ire->ire_bucket); 8503 /* Has it been removed already ? */ 8504 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8505 IRB_REFRELE(ipif_ire->ire_bucket); 8506 if (sire != NULL) 8507 IRB_REFRELE(sire->ire_bucket); 8508 ire_refrele(ipif_ire); 8509 ire_refrele(save_ire); 8510 break; 8511 } 8512 8513 xmit_mp = first_mp; 8514 /* 8515 * In the case of multirouting, a copy 8516 * of the packet is done before its sending. 8517 * The copy is used to attempt another 8518 * route resolution, in a next loop. 8519 */ 8520 if (ire->ire_flags & RTF_MULTIRT) { 8521 copy_mp = copymsg(first_mp); 8522 if (copy_mp != NULL) { 8523 xmit_mp = copy_mp; 8524 MULTIRT_DEBUG_TAG(first_mp); 8525 } 8526 } 8527 ire_add_then_send(q, ire, xmit_mp); 8528 ire_refrele(save_ire); 8529 8530 /* Assert that sire is not deleted yet. */ 8531 if (sire != NULL) { 8532 ASSERT(sire->ire_ptpn != NULL); 8533 IRB_REFRELE(sire->ire_bucket); 8534 } 8535 8536 /* Assert that ipif_ire is not deleted yet. */ 8537 ASSERT(ipif_ire->ire_ptpn != NULL); 8538 IRB_REFRELE(ipif_ire->ire_bucket); 8539 ire_refrele(ipif_ire); 8540 8541 /* 8542 * If copy_mp is not NULL, multirouting was 8543 * requested. We loop to initiate a next 8544 * route resolution attempt, starting from sire. 8545 */ 8546 if (copy_mp != NULL) { 8547 /* 8548 * Search for the next unresolved 8549 * multirt route. 8550 */ 8551 copy_mp = NULL; 8552 ipif_ire = NULL; 8553 ire = NULL; 8554 multirt_resolve_next = B_TRUE; 8555 continue; 8556 } 8557 if (sire != NULL) 8558 ire_refrele(sire); 8559 ipif_refrele(src_ipif); 8560 ill_refrele(dst_ill); 8561 return; 8562 } 8563 case IRE_IF_NORESOLVER: { 8564 8565 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8566 dst_ill->ill_resolver_mp == NULL) { 8567 ip1dbg(("ip_newroute: dst_ill %p " 8568 "for IRE_IF_NORESOLVER ire %p has " 8569 "no ill_resolver_mp\n", 8570 (void *)dst_ill, (void *)ire)); 8571 break; 8572 } 8573 8574 /* 8575 * TSol note: We are creating the ire cache for the 8576 * destination 'dst'. If 'dst' is offlink, going 8577 * through the first hop 'gw', the security attributes 8578 * of 'dst' must be set to point to the gateway 8579 * credentials of gateway 'gw'. If 'dst' is onlink, it 8580 * is possible that 'dst' is a potential gateway that is 8581 * referenced by some route that has some security 8582 * attributes. Thus in the former case, we need to do a 8583 * gcgrp_lookup of 'gw' while in the latter case we 8584 * need to do gcgrp_lookup of 'dst' itself. 8585 */ 8586 ga.ga_af = AF_INET; 8587 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8588 &ga.ga_addr); 8589 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8590 8591 ire = ire_create( 8592 (uchar_t *)&dst, /* dest address */ 8593 (uchar_t *)&ip_g_all_ones, /* mask */ 8594 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8595 (uchar_t *)&gw, /* gateway address */ 8596 &save_ire->ire_max_frag, 8597 NULL, /* no src nce */ 8598 dst_ill->ill_rq, /* recv-from queue */ 8599 dst_ill->ill_wq, /* send-to queue */ 8600 IRE_CACHE, 8601 src_ipif, 8602 save_ire->ire_mask, /* Parent mask */ 8603 (sire != NULL) ? /* Parent handle */ 8604 sire->ire_phandle : 0, 8605 save_ire->ire_ihandle, /* Interface handle */ 8606 (sire != NULL) ? sire->ire_flags & 8607 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8608 &(save_ire->ire_uinfo), 8609 NULL, 8610 gcgrp, 8611 ipst); 8612 8613 if (ire == NULL) { 8614 if (gcgrp != NULL) { 8615 GCGRP_REFRELE(gcgrp); 8616 gcgrp = NULL; 8617 } 8618 ire_refrele(save_ire); 8619 break; 8620 } 8621 8622 /* reference now held by IRE */ 8623 gcgrp = NULL; 8624 8625 ire->ire_marks |= ire_marks; 8626 8627 /* Prevent save_ire from getting deleted */ 8628 IRB_REFHOLD(save_ire->ire_bucket); 8629 /* Has it been removed already ? */ 8630 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8631 IRB_REFRELE(save_ire->ire_bucket); 8632 ire_refrele(save_ire); 8633 break; 8634 } 8635 8636 /* 8637 * In the case of multirouting, a copy 8638 * of the packet is made before it is sent. 8639 * The copy is used in the next 8640 * loop to attempt another resolution. 8641 */ 8642 xmit_mp = first_mp; 8643 if ((sire != NULL) && 8644 (sire->ire_flags & RTF_MULTIRT)) { 8645 copy_mp = copymsg(first_mp); 8646 if (copy_mp != NULL) { 8647 xmit_mp = copy_mp; 8648 MULTIRT_DEBUG_TAG(first_mp); 8649 } 8650 } 8651 ire_add_then_send(q, ire, xmit_mp); 8652 8653 /* Assert that it is not deleted yet. */ 8654 ASSERT(save_ire->ire_ptpn != NULL); 8655 IRB_REFRELE(save_ire->ire_bucket); 8656 ire_refrele(save_ire); 8657 8658 if (copy_mp != NULL) { 8659 /* 8660 * If we found a (no)resolver, we ignore any 8661 * trailing top priority IRE_CACHE in further 8662 * loops. This ensures that we do not omit any 8663 * (no)resolver. 8664 * This IRE_CACHE, if any, will be processed 8665 * by another thread entering ip_newroute(). 8666 * IRE_CACHE entries, if any, will be processed 8667 * by another thread entering ip_newroute(), 8668 * (upon resolver response, for instance). 8669 * This aims to force parallel multirt 8670 * resolutions as soon as a packet must be sent. 8671 * In the best case, after the tx of only one 8672 * packet, all reachable routes are resolved. 8673 * Otherwise, the resolution of all RTF_MULTIRT 8674 * routes would require several emissions. 8675 */ 8676 multirt_flags &= ~MULTIRT_CACHEGW; 8677 8678 /* 8679 * Search for the next unresolved multirt 8680 * route. 8681 */ 8682 copy_mp = NULL; 8683 save_ire = NULL; 8684 ire = NULL; 8685 multirt_resolve_next = B_TRUE; 8686 continue; 8687 } 8688 8689 /* 8690 * Don't need sire anymore 8691 */ 8692 if (sire != NULL) 8693 ire_refrele(sire); 8694 8695 ipif_refrele(src_ipif); 8696 ill_refrele(dst_ill); 8697 return; 8698 } 8699 case IRE_IF_RESOLVER: 8700 /* 8701 * We can't build an IRE_CACHE yet, but at least we 8702 * found a resolver that can help. 8703 */ 8704 res_mp = dst_ill->ill_resolver_mp; 8705 if (!OK_RESOLVER_MP(res_mp)) 8706 break; 8707 8708 /* 8709 * To be at this point in the code with a non-zero gw 8710 * means that dst is reachable through a gateway that 8711 * we have never resolved. By changing dst to the gw 8712 * addr we resolve the gateway first. 8713 * When ire_add_then_send() tries to put the IP dg 8714 * to dst, it will reenter ip_newroute() at which 8715 * time we will find the IRE_CACHE for the gw and 8716 * create another IRE_CACHE in case IRE_CACHE above. 8717 */ 8718 if (gw != INADDR_ANY) { 8719 /* 8720 * The source ipif that was determined above was 8721 * relative to the destination address, not the 8722 * gateway's. If src_ipif was not taken out of 8723 * the IRE_IF_RESOLVER entry, we'll need to call 8724 * ipif_select_source() again. 8725 */ 8726 if (src_ipif != ire->ire_ipif) { 8727 ipif_refrele(src_ipif); 8728 src_ipif = ipif_select_source(dst_ill, 8729 gw, zoneid); 8730 if (src_ipif == NULL) { 8731 if (ip_debug > 2) { 8732 pr_addr_dbg( 8733 "ip_newroute: no " 8734 "src for gw %s ", 8735 AF_INET, &gw); 8736 printf("through " 8737 "interface %s\n", 8738 dst_ill->ill_name); 8739 } 8740 goto icmp_err_ret; 8741 } 8742 } 8743 save_dst = dst; 8744 dst = gw; 8745 gw = INADDR_ANY; 8746 } 8747 8748 /* 8749 * We obtain a partial IRE_CACHE which we will pass 8750 * along with the resolver query. When the response 8751 * comes back it will be there ready for us to add. 8752 * The ire_max_frag is atomically set under the 8753 * irebucket lock in ire_add_v[46]. 8754 */ 8755 8756 ire = ire_create_mp( 8757 (uchar_t *)&dst, /* dest address */ 8758 (uchar_t *)&ip_g_all_ones, /* mask */ 8759 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8760 (uchar_t *)&gw, /* gateway address */ 8761 NULL, /* ire_max_frag */ 8762 NULL, /* no src nce */ 8763 dst_ill->ill_rq, /* recv-from queue */ 8764 dst_ill->ill_wq, /* send-to queue */ 8765 IRE_CACHE, 8766 src_ipif, /* Interface ipif */ 8767 save_ire->ire_mask, /* Parent mask */ 8768 0, 8769 save_ire->ire_ihandle, /* Interface handle */ 8770 0, /* flags if any */ 8771 &(save_ire->ire_uinfo), 8772 NULL, 8773 NULL, 8774 ipst); 8775 8776 if (ire == NULL) { 8777 ire_refrele(save_ire); 8778 break; 8779 } 8780 8781 if ((sire != NULL) && 8782 (sire->ire_flags & RTF_MULTIRT)) { 8783 copy_mp = copymsg(first_mp); 8784 if (copy_mp != NULL) 8785 MULTIRT_DEBUG_TAG(copy_mp); 8786 } 8787 8788 ire->ire_marks |= ire_marks; 8789 8790 /* 8791 * Construct message chain for the resolver 8792 * of the form: 8793 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8794 * Packet could contain a IPSEC_OUT mp. 8795 * 8796 * NOTE : ire will be added later when the response 8797 * comes back from ARP. If the response does not 8798 * come back, ARP frees the packet. For this reason, 8799 * we can't REFHOLD the bucket of save_ire to prevent 8800 * deletions. We may not be able to REFRELE the bucket 8801 * if the response never comes back. Thus, before 8802 * adding the ire, ire_add_v4 will make sure that the 8803 * interface route does not get deleted. This is the 8804 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8805 * where we can always prevent deletions because of 8806 * the synchronous nature of adding IRES i.e 8807 * ire_add_then_send is called after creating the IRE. 8808 */ 8809 ASSERT(ire->ire_mp != NULL); 8810 ire->ire_mp->b_cont = first_mp; 8811 /* Have saved_mp handy, for cleanup if canput fails */ 8812 saved_mp = mp; 8813 mp = copyb(res_mp); 8814 if (mp == NULL) { 8815 /* Prepare for cleanup */ 8816 mp = saved_mp; /* pkt */ 8817 ire_delete(ire); /* ire_mp */ 8818 ire = NULL; 8819 ire_refrele(save_ire); 8820 if (copy_mp != NULL) { 8821 MULTIRT_DEBUG_UNTAG(copy_mp); 8822 freemsg(copy_mp); 8823 copy_mp = NULL; 8824 } 8825 break; 8826 } 8827 linkb(mp, ire->ire_mp); 8828 8829 /* 8830 * Fill in the source and dest addrs for the resolver. 8831 * NOTE: this depends on memory layouts imposed by 8832 * ill_init(). 8833 */ 8834 areq = (areq_t *)mp->b_rptr; 8835 addrp = (ipaddr_t *)((char *)areq + 8836 areq->areq_sender_addr_offset); 8837 if (do_attach_ill) { 8838 /* 8839 * This is bind to no failover case. 8840 * arp packet also must go out on attach_ill. 8841 */ 8842 ASSERT(ipha->ipha_src != NULL); 8843 *addrp = ipha->ipha_src; 8844 } else { 8845 *addrp = save_ire->ire_src_addr; 8846 } 8847 8848 ire_refrele(save_ire); 8849 addrp = (ipaddr_t *)((char *)areq + 8850 areq->areq_target_addr_offset); 8851 *addrp = dst; 8852 /* Up to the resolver. */ 8853 if (canputnext(dst_ill->ill_rq) && 8854 !(dst_ill->ill_arp_closing)) { 8855 putnext(dst_ill->ill_rq, mp); 8856 ire = NULL; 8857 if (copy_mp != NULL) { 8858 /* 8859 * If we found a resolver, we ignore 8860 * any trailing top priority IRE_CACHE 8861 * in the further loops. This ensures 8862 * that we do not omit any resolver. 8863 * IRE_CACHE entries, if any, will be 8864 * processed next time we enter 8865 * ip_newroute(). 8866 */ 8867 multirt_flags &= ~MULTIRT_CACHEGW; 8868 /* 8869 * Search for the next unresolved 8870 * multirt route. 8871 */ 8872 first_mp = copy_mp; 8873 copy_mp = NULL; 8874 /* Prepare the next resolution loop. */ 8875 mp = first_mp; 8876 EXTRACT_PKT_MP(mp, first_mp, 8877 mctl_present); 8878 if (mctl_present) 8879 io = (ipsec_out_t *) 8880 first_mp->b_rptr; 8881 ipha = (ipha_t *)mp->b_rptr; 8882 8883 ASSERT(sire != NULL); 8884 8885 dst = save_dst; 8886 multirt_resolve_next = B_TRUE; 8887 continue; 8888 } 8889 8890 if (sire != NULL) 8891 ire_refrele(sire); 8892 8893 /* 8894 * The response will come back in ip_wput 8895 * with db_type IRE_DB_TYPE. 8896 */ 8897 ipif_refrele(src_ipif); 8898 ill_refrele(dst_ill); 8899 return; 8900 } else { 8901 /* Prepare for cleanup */ 8902 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8903 mp); 8904 mp->b_cont = NULL; 8905 freeb(mp); /* areq */ 8906 /* 8907 * this is an ire that is not added to the 8908 * cache. ire_freemblk will handle the release 8909 * of any resources associated with the ire. 8910 */ 8911 ire_delete(ire); /* ire_mp */ 8912 mp = saved_mp; /* pkt */ 8913 ire = NULL; 8914 if (copy_mp != NULL) { 8915 MULTIRT_DEBUG_UNTAG(copy_mp); 8916 freemsg(copy_mp); 8917 copy_mp = NULL; 8918 } 8919 break; 8920 } 8921 default: 8922 break; 8923 } 8924 } while (multirt_resolve_next); 8925 8926 ip1dbg(("ip_newroute: dropped\n")); 8927 /* Did this packet originate externally? */ 8928 if (mp->b_prev) { 8929 mp->b_next = NULL; 8930 mp->b_prev = NULL; 8931 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8932 } else { 8933 if (dst_ill != NULL) { 8934 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8935 } else { 8936 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8937 } 8938 } 8939 ASSERT(copy_mp == NULL); 8940 MULTIRT_DEBUG_UNTAG(first_mp); 8941 freemsg(first_mp); 8942 if (ire != NULL) 8943 ire_refrele(ire); 8944 if (sire != NULL) 8945 ire_refrele(sire); 8946 if (src_ipif != NULL) 8947 ipif_refrele(src_ipif); 8948 if (dst_ill != NULL) 8949 ill_refrele(dst_ill); 8950 return; 8951 8952 icmp_err_ret: 8953 ip1dbg(("ip_newroute: no route\n")); 8954 if (src_ipif != NULL) 8955 ipif_refrele(src_ipif); 8956 if (dst_ill != NULL) 8957 ill_refrele(dst_ill); 8958 if (sire != NULL) 8959 ire_refrele(sire); 8960 /* Did this packet originate externally? */ 8961 if (mp->b_prev) { 8962 mp->b_next = NULL; 8963 mp->b_prev = NULL; 8964 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8965 q = WR(q); 8966 } else { 8967 /* 8968 * There is no outgoing ill, so just increment the 8969 * system MIB. 8970 */ 8971 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8972 /* 8973 * Since ip_wput() isn't close to finished, we fill 8974 * in enough of the header for credible error reporting. 8975 */ 8976 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8977 /* Failed */ 8978 MULTIRT_DEBUG_UNTAG(first_mp); 8979 freemsg(first_mp); 8980 if (ire != NULL) 8981 ire_refrele(ire); 8982 return; 8983 } 8984 } 8985 8986 /* 8987 * At this point we will have ire only if RTF_BLACKHOLE 8988 * or RTF_REJECT flags are set on the IRE. It will not 8989 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8990 */ 8991 if (ire != NULL) { 8992 if (ire->ire_flags & RTF_BLACKHOLE) { 8993 ire_refrele(ire); 8994 MULTIRT_DEBUG_UNTAG(first_mp); 8995 freemsg(first_mp); 8996 return; 8997 } 8998 ire_refrele(ire); 8999 } 9000 if (ip_source_routed(ipha, ipst)) { 9001 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9002 zoneid, ipst); 9003 return; 9004 } 9005 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9006 } 9007 9008 ip_opt_info_t zero_info; 9009 9010 /* 9011 * IPv4 - 9012 * ip_newroute_ipif is called by ip_wput_multicast and 9013 * ip_rput_forward_multicast whenever we need to send 9014 * out a packet to a destination address for which we do not have specific 9015 * routing information. It is used when the packet will be sent out 9016 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9017 * socket option is set or icmp error message wants to go out on a particular 9018 * interface for a unicast packet. 9019 * 9020 * In most cases, the destination address is resolved thanks to the ipif 9021 * intrinsic resolver. However, there are some cases where the call to 9022 * ip_newroute_ipif must take into account the potential presence of 9023 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9024 * that uses the interface. This is specified through flags, 9025 * which can be a combination of: 9026 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9027 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9028 * and flags. Additionally, the packet source address has to be set to 9029 * the specified address. The caller is thus expected to set this flag 9030 * if the packet has no specific source address yet. 9031 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9032 * flag, the resulting ire will inherit the flag. All unresolved routes 9033 * to the destination must be explored in the same call to 9034 * ip_newroute_ipif(). 9035 */ 9036 static void 9037 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9038 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9039 { 9040 areq_t *areq; 9041 ire_t *ire = NULL; 9042 mblk_t *res_mp; 9043 ipaddr_t *addrp; 9044 mblk_t *first_mp; 9045 ire_t *save_ire = NULL; 9046 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9047 ipif_t *src_ipif = NULL; 9048 ushort_t ire_marks = 0; 9049 ill_t *dst_ill = NULL; 9050 boolean_t mctl_present; 9051 ipsec_out_t *io; 9052 ipha_t *ipha; 9053 int ihandle = 0; 9054 mblk_t *saved_mp; 9055 ire_t *fire = NULL; 9056 mblk_t *copy_mp = NULL; 9057 boolean_t multirt_resolve_next; 9058 ipaddr_t ipha_dst; 9059 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9060 9061 /* 9062 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9063 * here for uniformity 9064 */ 9065 ipif_refhold(ipif); 9066 9067 /* 9068 * This loop is run only once in most cases. 9069 * We loop to resolve further routes only when the destination 9070 * can be reached through multiple RTF_MULTIRT-flagged ires. 9071 */ 9072 do { 9073 if (dst_ill != NULL) { 9074 ill_refrele(dst_ill); 9075 dst_ill = NULL; 9076 } 9077 if (src_ipif != NULL) { 9078 ipif_refrele(src_ipif); 9079 src_ipif = NULL; 9080 } 9081 multirt_resolve_next = B_FALSE; 9082 9083 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9084 ipif->ipif_ill->ill_name)); 9085 9086 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9087 if (mctl_present) 9088 io = (ipsec_out_t *)first_mp->b_rptr; 9089 9090 ipha = (ipha_t *)mp->b_rptr; 9091 9092 /* 9093 * Save the packet destination address, we may need it after 9094 * the packet has been consumed. 9095 */ 9096 ipha_dst = ipha->ipha_dst; 9097 9098 /* 9099 * If the interface is a pt-pt interface we look for an 9100 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9101 * local_address and the pt-pt destination address. Otherwise 9102 * we just match the local address. 9103 * NOTE: dst could be different than ipha->ipha_dst in case 9104 * of sending igmp multicast packets over a point-to-point 9105 * connection. 9106 * Thus we must be careful enough to check ipha_dst to be a 9107 * multicast address, otherwise it will take xmit_if path for 9108 * multicast packets resulting into kernel stack overflow by 9109 * repeated calls to ip_newroute_ipif from ire_send(). 9110 */ 9111 if (CLASSD(ipha_dst) && 9112 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9113 goto err_ret; 9114 } 9115 9116 /* 9117 * We check if an IRE_OFFSUBNET for the addr that goes through 9118 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9119 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9120 * propagate its flags to the new ire. 9121 */ 9122 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9123 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9124 ip2dbg(("ip_newroute_ipif: " 9125 "ipif_lookup_multi_ire(" 9126 "ipif %p, dst %08x) = fire %p\n", 9127 (void *)ipif, ntohl(dst), (void *)fire)); 9128 } 9129 9130 if (mctl_present && io->ipsec_out_attach_if) { 9131 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9132 io->ipsec_out_ill_index, B_FALSE, ipst); 9133 9134 /* Failure case frees things for us. */ 9135 if (attach_ill == NULL) { 9136 ipif_refrele(ipif); 9137 if (fire != NULL) 9138 ire_refrele(fire); 9139 return; 9140 } 9141 9142 /* 9143 * Check if we need an ire that will not be 9144 * looked up by anybody else i.e. HIDDEN. 9145 */ 9146 if (ill_is_probeonly(attach_ill)) { 9147 ire_marks = IRE_MARK_HIDDEN; 9148 } 9149 /* 9150 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9151 * case. 9152 */ 9153 dst_ill = ipif->ipif_ill; 9154 /* attach_ill has been refheld by ip_grab_attach_ill */ 9155 ASSERT(dst_ill == attach_ill); 9156 } else { 9157 /* 9158 * If this is set by IP_XMIT_IF, then make sure that 9159 * ipif is pointing to the same ill as the IP_XMIT_IF 9160 * specified ill. 9161 */ 9162 ASSERT((connp == NULL) || 9163 (connp->conn_xmit_if_ill == NULL) || 9164 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9165 /* 9166 * If the interface belongs to an interface group, 9167 * make sure the next possible interface in the group 9168 * is used. This encourages load spreading among 9169 * peers in an interface group. 9170 * Note: load spreading is disabled for RTF_MULTIRT 9171 * routes. 9172 */ 9173 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9174 (fire->ire_flags & RTF_MULTIRT)) { 9175 /* 9176 * Don't perform outbound load spreading 9177 * in the case of an RTF_MULTIRT issued route, 9178 * we actually typically want to replicate 9179 * outgoing packets through particular 9180 * interfaces. 9181 */ 9182 dst_ill = ipif->ipif_ill; 9183 ill_refhold(dst_ill); 9184 } else { 9185 dst_ill = ip_newroute_get_dst_ill( 9186 ipif->ipif_ill); 9187 } 9188 if (dst_ill == NULL) { 9189 if (ip_debug > 2) { 9190 pr_addr_dbg("ip_newroute_ipif: " 9191 "no dst ill for dst %s\n", 9192 AF_INET, &dst); 9193 } 9194 goto err_ret; 9195 } 9196 } 9197 9198 /* 9199 * Pick a source address preferring non-deprecated ones. 9200 * Unlike ip_newroute, we don't do any source address 9201 * selection here since for multicast it really does not help 9202 * in inbound load spreading as in the unicast case. 9203 */ 9204 if ((flags & RTF_SETSRC) && (fire != NULL) && 9205 (fire->ire_flags & RTF_SETSRC)) { 9206 /* 9207 * As requested by flags, an IRE_OFFSUBNET was looked up 9208 * on that interface. This ire has RTF_SETSRC flag, so 9209 * the source address of the packet must be changed. 9210 * Check that the ipif matching the requested source 9211 * address still exists. 9212 */ 9213 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9214 zoneid, NULL, NULL, NULL, NULL, ipst); 9215 } 9216 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9217 (connp != NULL && ipif->ipif_zoneid != zoneid && 9218 ipif->ipif_zoneid != ALL_ZONES)) && 9219 (src_ipif == NULL)) { 9220 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9221 if (src_ipif == NULL) { 9222 if (ip_debug > 2) { 9223 /* ip1dbg */ 9224 pr_addr_dbg("ip_newroute_ipif: " 9225 "no src for dst %s", 9226 AF_INET, &dst); 9227 } 9228 ip1dbg((" through interface %s\n", 9229 dst_ill->ill_name)); 9230 goto err_ret; 9231 } 9232 ipif_refrele(ipif); 9233 ipif = src_ipif; 9234 ipif_refhold(ipif); 9235 } 9236 if (src_ipif == NULL) { 9237 src_ipif = ipif; 9238 ipif_refhold(src_ipif); 9239 } 9240 9241 /* 9242 * Assign a source address while we have the conn. 9243 * We can't have ip_wput_ire pick a source address when the 9244 * packet returns from arp since conn_unspec_src might be set 9245 * and we loose the conn when going through arp. 9246 */ 9247 if (ipha->ipha_src == INADDR_ANY && 9248 (connp == NULL || !connp->conn_unspec_src)) { 9249 ipha->ipha_src = src_ipif->ipif_src_addr; 9250 } 9251 9252 /* 9253 * In the case of IP_XMIT_IF, it is possible that the 9254 * outgoing interface does not have an interface ire. 9255 */ 9256 if (CLASSD(ipha_dst) && (connp == NULL || 9257 connp->conn_xmit_if_ill == NULL) && 9258 infop->ip_opt_ill_index == 0) { 9259 /* ipif_to_ire returns an held ire */ 9260 ire = ipif_to_ire(ipif); 9261 if (ire == NULL) 9262 goto err_ret; 9263 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9264 goto err_ret; 9265 /* 9266 * ihandle is needed when the ire is added to 9267 * cache table. 9268 */ 9269 save_ire = ire; 9270 ihandle = save_ire->ire_ihandle; 9271 9272 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9273 "flags %04x\n", 9274 (void *)ire, (void *)ipif, flags)); 9275 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9276 (fire->ire_flags & RTF_MULTIRT)) { 9277 /* 9278 * As requested by flags, an IRE_OFFSUBNET was 9279 * looked up on that interface. This ire has 9280 * RTF_MULTIRT flag, so the resolution loop will 9281 * be re-entered to resolve additional routes on 9282 * other interfaces. For that purpose, a copy of 9283 * the packet is performed at this point. 9284 */ 9285 fire->ire_last_used_time = lbolt; 9286 copy_mp = copymsg(first_mp); 9287 if (copy_mp) { 9288 MULTIRT_DEBUG_TAG(copy_mp); 9289 } 9290 } 9291 if ((flags & RTF_SETSRC) && (fire != NULL) && 9292 (fire->ire_flags & RTF_SETSRC)) { 9293 /* 9294 * As requested by flags, an IRE_OFFSUBET was 9295 * looked up on that interface. This ire has 9296 * RTF_SETSRC flag, so the source address of the 9297 * packet must be changed. 9298 */ 9299 ipha->ipha_src = fire->ire_src_addr; 9300 } 9301 } else { 9302 ASSERT((connp == NULL) || 9303 (connp->conn_xmit_if_ill != NULL) || 9304 (connp->conn_dontroute) || 9305 infop->ip_opt_ill_index != 0); 9306 /* 9307 * The only ways we can come here are: 9308 * 1) IP_XMIT_IF socket option is set 9309 * 2) SO_DONTROUTE socket option is set 9310 * 3) IP_PKTINFO option is passed in as ancillary data. 9311 * In all cases, the new ire will not be added 9312 * into cache table. 9313 */ 9314 ire_marks |= IRE_MARK_NOADD; 9315 } 9316 9317 switch (ipif->ipif_net_type) { 9318 case IRE_IF_NORESOLVER: { 9319 /* We have what we need to build an IRE_CACHE. */ 9320 9321 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9322 (dst_ill->ill_resolver_mp == NULL)) { 9323 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9324 "for IRE_IF_NORESOLVER ire %p has " 9325 "no ill_resolver_mp\n", 9326 (void *)dst_ill, (void *)ire)); 9327 break; 9328 } 9329 9330 /* 9331 * The new ire inherits the IRE_OFFSUBNET flags 9332 * and source address, if this was requested. 9333 */ 9334 ire = ire_create( 9335 (uchar_t *)&dst, /* dest address */ 9336 (uchar_t *)&ip_g_all_ones, /* mask */ 9337 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9338 NULL, /* gateway address */ 9339 &ipif->ipif_mtu, 9340 NULL, /* no src nce */ 9341 dst_ill->ill_rq, /* recv-from queue */ 9342 dst_ill->ill_wq, /* send-to queue */ 9343 IRE_CACHE, 9344 src_ipif, 9345 (save_ire != NULL ? save_ire->ire_mask : 0), 9346 (fire != NULL) ? /* Parent handle */ 9347 fire->ire_phandle : 0, 9348 ihandle, /* Interface handle */ 9349 (fire != NULL) ? 9350 (fire->ire_flags & 9351 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9352 (save_ire == NULL ? &ire_uinfo_null : 9353 &save_ire->ire_uinfo), 9354 NULL, 9355 NULL, 9356 ipst); 9357 9358 if (ire == NULL) { 9359 if (save_ire != NULL) 9360 ire_refrele(save_ire); 9361 break; 9362 } 9363 9364 ire->ire_marks |= ire_marks; 9365 9366 /* 9367 * If IRE_MARK_NOADD is set then we need to convert 9368 * the max_fragp to a useable value now. This is 9369 * normally done in ire_add_v[46]. We also need to 9370 * associate the ire with an nce (normally would be 9371 * done in ip_wput_nondata()). 9372 * 9373 * Note that IRE_MARK_NOADD packets created here 9374 * do not have a non-null ire_mp pointer. The null 9375 * value of ire_bucket indicates that they were 9376 * never added. 9377 */ 9378 if (ire->ire_marks & IRE_MARK_NOADD) { 9379 uint_t max_frag; 9380 9381 max_frag = *ire->ire_max_fragp; 9382 ire->ire_max_fragp = NULL; 9383 ire->ire_max_frag = max_frag; 9384 9385 if ((ire->ire_nce = ndp_lookup_v4( 9386 ire_to_ill(ire), 9387 (ire->ire_gateway_addr != INADDR_ANY ? 9388 &ire->ire_gateway_addr : &ire->ire_addr), 9389 B_FALSE)) == NULL) { 9390 if (save_ire != NULL) 9391 ire_refrele(save_ire); 9392 break; 9393 } 9394 ASSERT(ire->ire_nce->nce_state == 9395 ND_REACHABLE); 9396 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9397 } 9398 9399 /* Prevent save_ire from getting deleted */ 9400 if (save_ire != NULL) { 9401 IRB_REFHOLD(save_ire->ire_bucket); 9402 /* Has it been removed already ? */ 9403 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9404 IRB_REFRELE(save_ire->ire_bucket); 9405 ire_refrele(save_ire); 9406 break; 9407 } 9408 } 9409 9410 ire_add_then_send(q, ire, first_mp); 9411 9412 /* Assert that save_ire is not deleted yet. */ 9413 if (save_ire != NULL) { 9414 ASSERT(save_ire->ire_ptpn != NULL); 9415 IRB_REFRELE(save_ire->ire_bucket); 9416 ire_refrele(save_ire); 9417 save_ire = NULL; 9418 } 9419 if (fire != NULL) { 9420 ire_refrele(fire); 9421 fire = NULL; 9422 } 9423 9424 /* 9425 * the resolution loop is re-entered if this 9426 * was requested through flags and if we 9427 * actually are in a multirouting case. 9428 */ 9429 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9430 boolean_t need_resolve = 9431 ire_multirt_need_resolve(ipha_dst, 9432 MBLK_GETLABEL(copy_mp), ipst); 9433 if (!need_resolve) { 9434 MULTIRT_DEBUG_UNTAG(copy_mp); 9435 freemsg(copy_mp); 9436 copy_mp = NULL; 9437 } else { 9438 /* 9439 * ipif_lookup_group() calls 9440 * ire_lookup_multi() that uses 9441 * ire_ftable_lookup() to find 9442 * an IRE_INTERFACE for the group. 9443 * In the multirt case, 9444 * ire_lookup_multi() then invokes 9445 * ire_multirt_lookup() to find 9446 * the next resolvable ire. 9447 * As a result, we obtain an new 9448 * interface, derived from the 9449 * next ire. 9450 */ 9451 ipif_refrele(ipif); 9452 ipif = ipif_lookup_group(ipha_dst, 9453 zoneid, ipst); 9454 ip2dbg(("ip_newroute_ipif: " 9455 "multirt dst %08x, ipif %p\n", 9456 htonl(dst), (void *)ipif)); 9457 if (ipif != NULL) { 9458 mp = copy_mp; 9459 copy_mp = NULL; 9460 multirt_resolve_next = B_TRUE; 9461 continue; 9462 } else { 9463 freemsg(copy_mp); 9464 } 9465 } 9466 } 9467 if (ipif != NULL) 9468 ipif_refrele(ipif); 9469 ill_refrele(dst_ill); 9470 ipif_refrele(src_ipif); 9471 return; 9472 } 9473 case IRE_IF_RESOLVER: 9474 /* 9475 * We can't build an IRE_CACHE yet, but at least 9476 * we found a resolver that can help. 9477 */ 9478 res_mp = dst_ill->ill_resolver_mp; 9479 if (!OK_RESOLVER_MP(res_mp)) 9480 break; 9481 9482 /* 9483 * We obtain a partial IRE_CACHE which we will pass 9484 * along with the resolver query. When the response 9485 * comes back it will be there ready for us to add. 9486 * The new ire inherits the IRE_OFFSUBNET flags 9487 * and source address, if this was requested. 9488 * The ire_max_frag is atomically set under the 9489 * irebucket lock in ire_add_v[46]. Only in the 9490 * case of IRE_MARK_NOADD, we set it here itself. 9491 */ 9492 ire = ire_create_mp( 9493 (uchar_t *)&dst, /* dest address */ 9494 (uchar_t *)&ip_g_all_ones, /* mask */ 9495 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9496 NULL, /* gateway address */ 9497 (ire_marks & IRE_MARK_NOADD) ? 9498 ipif->ipif_mtu : 0, /* max_frag */ 9499 NULL, /* no src nce */ 9500 dst_ill->ill_rq, /* recv-from queue */ 9501 dst_ill->ill_wq, /* send-to queue */ 9502 IRE_CACHE, 9503 src_ipif, 9504 (save_ire != NULL ? save_ire->ire_mask : 0), 9505 (fire != NULL) ? /* Parent handle */ 9506 fire->ire_phandle : 0, 9507 ihandle, /* Interface handle */ 9508 (fire != NULL) ? /* flags if any */ 9509 (fire->ire_flags & 9510 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9511 (save_ire == NULL ? &ire_uinfo_null : 9512 &save_ire->ire_uinfo), 9513 NULL, 9514 NULL, 9515 ipst); 9516 9517 if (save_ire != NULL) { 9518 ire_refrele(save_ire); 9519 save_ire = NULL; 9520 } 9521 if (ire == NULL) 9522 break; 9523 9524 ire->ire_marks |= ire_marks; 9525 /* 9526 * Construct message chain for the resolver of the 9527 * form: 9528 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9529 * 9530 * NOTE : ire will be added later when the response 9531 * comes back from ARP. If the response does not 9532 * come back, ARP frees the packet. For this reason, 9533 * we can't REFHOLD the bucket of save_ire to prevent 9534 * deletions. We may not be able to REFRELE the 9535 * bucket if the response never comes back. 9536 * Thus, before adding the ire, ire_add_v4 will make 9537 * sure that the interface route does not get deleted. 9538 * This is the only case unlike ip_newroute_v6, 9539 * ip_newroute_ipif_v6 where we can always prevent 9540 * deletions because ire_add_then_send is called after 9541 * creating the IRE. 9542 * If IRE_MARK_NOADD is set, then ire_add_then_send 9543 * does not add this IRE into the IRE CACHE. 9544 */ 9545 ASSERT(ire->ire_mp != NULL); 9546 ire->ire_mp->b_cont = first_mp; 9547 /* Have saved_mp handy, for cleanup if canput fails */ 9548 saved_mp = mp; 9549 mp = copyb(res_mp); 9550 if (mp == NULL) { 9551 /* Prepare for cleanup */ 9552 mp = saved_mp; /* pkt */ 9553 ire_delete(ire); /* ire_mp */ 9554 ire = NULL; 9555 if (copy_mp != NULL) { 9556 MULTIRT_DEBUG_UNTAG(copy_mp); 9557 freemsg(copy_mp); 9558 copy_mp = NULL; 9559 } 9560 break; 9561 } 9562 linkb(mp, ire->ire_mp); 9563 9564 /* 9565 * Fill in the source and dest addrs for the resolver. 9566 * NOTE: this depends on memory layouts imposed by 9567 * ill_init(). 9568 */ 9569 areq = (areq_t *)mp->b_rptr; 9570 addrp = (ipaddr_t *)((char *)areq + 9571 areq->areq_sender_addr_offset); 9572 *addrp = ire->ire_src_addr; 9573 addrp = (ipaddr_t *)((char *)areq + 9574 areq->areq_target_addr_offset); 9575 *addrp = dst; 9576 /* Up to the resolver. */ 9577 if (canputnext(dst_ill->ill_rq) && 9578 !(dst_ill->ill_arp_closing)) { 9579 putnext(dst_ill->ill_rq, mp); 9580 /* 9581 * The response will come back in ip_wput 9582 * with db_type IRE_DB_TYPE. 9583 */ 9584 } else { 9585 mp->b_cont = NULL; 9586 freeb(mp); /* areq */ 9587 ire_delete(ire); /* ire_mp */ 9588 saved_mp->b_next = NULL; 9589 saved_mp->b_prev = NULL; 9590 freemsg(first_mp); /* pkt */ 9591 ip2dbg(("ip_newroute_ipif: dropped\n")); 9592 } 9593 9594 if (fire != NULL) { 9595 ire_refrele(fire); 9596 fire = NULL; 9597 } 9598 9599 9600 /* 9601 * The resolution loop is re-entered if this was 9602 * requested through flags and we actually are 9603 * in a multirouting case. 9604 */ 9605 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9606 boolean_t need_resolve = 9607 ire_multirt_need_resolve(ipha_dst, 9608 MBLK_GETLABEL(copy_mp), ipst); 9609 if (!need_resolve) { 9610 MULTIRT_DEBUG_UNTAG(copy_mp); 9611 freemsg(copy_mp); 9612 copy_mp = NULL; 9613 } else { 9614 /* 9615 * ipif_lookup_group() calls 9616 * ire_lookup_multi() that uses 9617 * ire_ftable_lookup() to find 9618 * an IRE_INTERFACE for the group. 9619 * In the multirt case, 9620 * ire_lookup_multi() then invokes 9621 * ire_multirt_lookup() to find 9622 * the next resolvable ire. 9623 * As a result, we obtain an new 9624 * interface, derived from the 9625 * next ire. 9626 */ 9627 ipif_refrele(ipif); 9628 ipif = ipif_lookup_group(ipha_dst, 9629 zoneid, ipst); 9630 if (ipif != NULL) { 9631 mp = copy_mp; 9632 copy_mp = NULL; 9633 multirt_resolve_next = B_TRUE; 9634 continue; 9635 } else { 9636 freemsg(copy_mp); 9637 } 9638 } 9639 } 9640 if (ipif != NULL) 9641 ipif_refrele(ipif); 9642 ill_refrele(dst_ill); 9643 ipif_refrele(src_ipif); 9644 return; 9645 default: 9646 break; 9647 } 9648 } while (multirt_resolve_next); 9649 9650 err_ret: 9651 ip2dbg(("ip_newroute_ipif: dropped\n")); 9652 if (fire != NULL) 9653 ire_refrele(fire); 9654 ipif_refrele(ipif); 9655 /* Did this packet originate externally? */ 9656 if (dst_ill != NULL) 9657 ill_refrele(dst_ill); 9658 if (src_ipif != NULL) 9659 ipif_refrele(src_ipif); 9660 if (mp->b_prev || mp->b_next) { 9661 mp->b_next = NULL; 9662 mp->b_prev = NULL; 9663 } else { 9664 /* 9665 * Since ip_wput() isn't close to finished, we fill 9666 * in enough of the header for credible error reporting. 9667 */ 9668 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9669 /* Failed */ 9670 freemsg(first_mp); 9671 if (ire != NULL) 9672 ire_refrele(ire); 9673 return; 9674 } 9675 } 9676 /* 9677 * At this point we will have ire only if RTF_BLACKHOLE 9678 * or RTF_REJECT flags are set on the IRE. It will not 9679 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9680 */ 9681 if (ire != NULL) { 9682 if (ire->ire_flags & RTF_BLACKHOLE) { 9683 ire_refrele(ire); 9684 freemsg(first_mp); 9685 return; 9686 } 9687 ire_refrele(ire); 9688 } 9689 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9690 } 9691 9692 /* Name/Value Table Lookup Routine */ 9693 char * 9694 ip_nv_lookup(nv_t *nv, int value) 9695 { 9696 if (!nv) 9697 return (NULL); 9698 for (; nv->nv_name; nv++) { 9699 if (nv->nv_value == value) 9700 return (nv->nv_name); 9701 } 9702 return ("unknown"); 9703 } 9704 9705 /* 9706 * This is a module open, i.e. this is a control stream for access 9707 * to a DLPI device. We allocate an ill_t as the instance data in 9708 * this case. 9709 */ 9710 int 9711 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9712 { 9713 ill_t *ill; 9714 int err; 9715 zoneid_t zoneid; 9716 netstack_t *ns; 9717 ip_stack_t *ipst; 9718 9719 /* 9720 * Prevent unprivileged processes from pushing IP so that 9721 * they can't send raw IP. 9722 */ 9723 if (secpolicy_net_rawaccess(credp) != 0) 9724 return (EPERM); 9725 9726 ns = netstack_find_by_cred(credp); 9727 ASSERT(ns != NULL); 9728 ipst = ns->netstack_ip; 9729 ASSERT(ipst != NULL); 9730 9731 /* 9732 * For exclusive stacks we set the zoneid to zero 9733 * to make IP operate as if in the global zone. 9734 */ 9735 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9736 zoneid = GLOBAL_ZONEID; 9737 else 9738 zoneid = crgetzoneid(credp); 9739 9740 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9741 q->q_ptr = WR(q)->q_ptr = ill; 9742 ill->ill_ipst = ipst; 9743 ill->ill_zoneid = zoneid; 9744 9745 /* 9746 * ill_init initializes the ill fields and then sends down 9747 * down a DL_INFO_REQ after calling qprocson. 9748 */ 9749 err = ill_init(q, ill); 9750 if (err != 0) { 9751 mi_free(ill); 9752 netstack_rele(ipst->ips_netstack); 9753 q->q_ptr = NULL; 9754 WR(q)->q_ptr = NULL; 9755 return (err); 9756 } 9757 9758 /* ill_init initializes the ipsq marking this thread as writer */ 9759 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9760 /* Wait for the DL_INFO_ACK */ 9761 mutex_enter(&ill->ill_lock); 9762 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9763 /* 9764 * Return value of 0 indicates a pending signal. 9765 */ 9766 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9767 if (err == 0) { 9768 mutex_exit(&ill->ill_lock); 9769 (void) ip_close(q, 0); 9770 return (EINTR); 9771 } 9772 } 9773 mutex_exit(&ill->ill_lock); 9774 9775 /* 9776 * ip_rput_other could have set an error in ill_error on 9777 * receipt of M_ERROR. 9778 */ 9779 9780 err = ill->ill_error; 9781 if (err != 0) { 9782 (void) ip_close(q, 0); 9783 return (err); 9784 } 9785 9786 ill->ill_credp = credp; 9787 crhold(credp); 9788 9789 mutex_enter(&ipst->ips_ip_mi_lock); 9790 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9791 credp); 9792 mutex_exit(&ipst->ips_ip_mi_lock); 9793 if (err) { 9794 (void) ip_close(q, 0); 9795 return (err); 9796 } 9797 return (0); 9798 } 9799 9800 /* IP open routine. */ 9801 int 9802 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9803 { 9804 conn_t *connp; 9805 major_t maj; 9806 zoneid_t zoneid; 9807 netstack_t *ns; 9808 ip_stack_t *ipst; 9809 9810 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9811 9812 /* Allow reopen. */ 9813 if (q->q_ptr != NULL) 9814 return (0); 9815 9816 if (sflag & MODOPEN) { 9817 /* This is a module open */ 9818 return (ip_modopen(q, devp, flag, sflag, credp)); 9819 } 9820 9821 ns = netstack_find_by_cred(credp); 9822 ASSERT(ns != NULL); 9823 ipst = ns->netstack_ip; 9824 ASSERT(ipst != NULL); 9825 9826 /* 9827 * For exclusive stacks we set the zoneid to zero 9828 * to make IP operate as if in the global zone. 9829 */ 9830 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9831 zoneid = GLOBAL_ZONEID; 9832 else 9833 zoneid = crgetzoneid(credp); 9834 9835 /* 9836 * We are opening as a device. This is an IP client stream, and we 9837 * allocate an conn_t as the instance data. 9838 */ 9839 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9840 9841 /* 9842 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9843 * done by netstack_find_by_cred() 9844 */ 9845 netstack_rele(ipst->ips_netstack); 9846 9847 connp->conn_zoneid = zoneid; 9848 9849 connp->conn_upq = q; 9850 q->q_ptr = WR(q)->q_ptr = connp; 9851 9852 if (flag & SO_SOCKSTR) 9853 connp->conn_flags |= IPCL_SOCKET; 9854 9855 /* Minor tells us which /dev entry was opened */ 9856 if (geteminor(*devp) == IPV6_MINOR) { 9857 connp->conn_flags |= IPCL_ISV6; 9858 connp->conn_af_isv6 = B_TRUE; 9859 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 9860 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9861 } else { 9862 connp->conn_af_isv6 = B_FALSE; 9863 connp->conn_pkt_isv6 = B_FALSE; 9864 } 9865 9866 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9867 /* CONN_DEC_REF takes care of netstack_rele() */ 9868 q->q_ptr = WR(q)->q_ptr = NULL; 9869 CONN_DEC_REF(connp); 9870 return (EBUSY); 9871 } 9872 9873 maj = getemajor(*devp); 9874 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9875 9876 /* 9877 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9878 */ 9879 connp->conn_cred = credp; 9880 crhold(connp->conn_cred); 9881 9882 /* 9883 * If the caller has the process-wide flag set, then default to MAC 9884 * exempt mode. This allows read-down to unlabeled hosts. 9885 */ 9886 if (getpflags(NET_MAC_AWARE, credp) != 0) 9887 connp->conn_mac_exempt = B_TRUE; 9888 9889 /* 9890 * This should only happen for ndd, netstat, raw socket or other SCTP 9891 * administrative ops. In these cases, we just need a normal conn_t 9892 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9893 * an error will be returned. 9894 */ 9895 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9896 connp->conn_rq = q; 9897 connp->conn_wq = WR(q); 9898 } else { 9899 connp->conn_ulp = IPPROTO_SCTP; 9900 connp->conn_rq = connp->conn_wq = NULL; 9901 } 9902 /* Non-zero default values */ 9903 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9904 9905 /* 9906 * Make the conn globally visible to walkers 9907 */ 9908 ASSERT(connp->conn_ref == 1); 9909 mutex_enter(&connp->conn_lock); 9910 connp->conn_state_flags &= ~CONN_INCIPIENT; 9911 mutex_exit(&connp->conn_lock); 9912 9913 qprocson(q); 9914 9915 return (0); 9916 } 9917 9918 /* 9919 * Change q_qinfo based on the value of isv6. 9920 * This can not called on an ill queue. 9921 * Note that there is no race since either q_qinfo works for conn queues - it 9922 * is just an optimization to enter the best wput routine directly. 9923 */ 9924 void 9925 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 9926 { 9927 ASSERT(q->q_flag & QREADR); 9928 ASSERT(WR(q)->q_next == NULL); 9929 ASSERT(q->q_ptr != NULL); 9930 9931 if (minor == IPV6_MINOR) { 9932 if (bump_mib) { 9933 BUMP_MIB(&ipst->ips_ip6_mib, 9934 ipIfStatsOutSwitchIPVersion); 9935 } 9936 q->q_qinfo = &rinit_ipv6; 9937 WR(q)->q_qinfo = &winit_ipv6; 9938 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9939 } else { 9940 if (bump_mib) { 9941 BUMP_MIB(&ipst->ips_ip_mib, 9942 ipIfStatsOutSwitchIPVersion); 9943 } 9944 q->q_qinfo = &iprinit; 9945 WR(q)->q_qinfo = &ipwinit; 9946 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9947 } 9948 9949 } 9950 9951 /* 9952 * See if IPsec needs loading because of the options in mp. 9953 */ 9954 static boolean_t 9955 ipsec_opt_present(mblk_t *mp) 9956 { 9957 uint8_t *optcp, *next_optcp, *opt_endcp; 9958 struct opthdr *opt; 9959 struct T_opthdr *topt; 9960 int opthdr_len; 9961 t_uscalar_t optname, optlevel; 9962 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9963 ipsec_req_t *ipsr; 9964 9965 /* 9966 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9967 * return TRUE. 9968 */ 9969 9970 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9971 opt_endcp = optcp + tor->OPT_length; 9972 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9973 opthdr_len = sizeof (struct T_opthdr); 9974 } else { /* O_OPTMGMT_REQ */ 9975 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9976 opthdr_len = sizeof (struct opthdr); 9977 } 9978 for (; optcp < opt_endcp; optcp = next_optcp) { 9979 if (optcp + opthdr_len > opt_endcp) 9980 return (B_FALSE); /* Not enough option header. */ 9981 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9982 topt = (struct T_opthdr *)optcp; 9983 optlevel = topt->level; 9984 optname = topt->name; 9985 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9986 } else { 9987 opt = (struct opthdr *)optcp; 9988 optlevel = opt->level; 9989 optname = opt->name; 9990 next_optcp = optcp + opthdr_len + 9991 _TPI_ALIGN_OPT(opt->len); 9992 } 9993 if ((next_optcp < optcp) || /* wraparound pointer space */ 9994 ((next_optcp >= opt_endcp) && /* last option bad len */ 9995 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9996 return (B_FALSE); /* bad option buffer */ 9997 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9998 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9999 /* 10000 * Check to see if it's an all-bypass or all-zeroes 10001 * IPsec request. Don't bother loading IPsec if 10002 * the socket doesn't want to use it. (A good example 10003 * is a bypass request.) 10004 * 10005 * Basically, if any of the non-NEVER bits are set, 10006 * load IPsec. 10007 */ 10008 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10009 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10010 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10011 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10012 != 0) 10013 return (B_TRUE); 10014 } 10015 } 10016 return (B_FALSE); 10017 } 10018 10019 /* 10020 * If conn is is waiting for ipsec to finish loading, kick it. 10021 */ 10022 /* ARGSUSED */ 10023 static void 10024 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10025 { 10026 t_scalar_t optreq_prim; 10027 mblk_t *mp; 10028 cred_t *cr; 10029 int err = 0; 10030 10031 /* 10032 * This function is called, after ipsec loading is complete. 10033 * Since IP checks exclusively and atomically (i.e it prevents 10034 * ipsec load from completing until ip_optcom_req completes) 10035 * whether ipsec load is complete, there cannot be a race with IP 10036 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10037 */ 10038 mutex_enter(&connp->conn_lock); 10039 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10040 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10041 mp = connp->conn_ipsec_opt_mp; 10042 connp->conn_ipsec_opt_mp = NULL; 10043 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10044 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10045 mutex_exit(&connp->conn_lock); 10046 10047 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10048 10049 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10050 if (optreq_prim == T_OPTMGMT_REQ) { 10051 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10052 &ip_opt_obj); 10053 } else { 10054 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10055 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10056 &ip_opt_obj); 10057 } 10058 if (err != EINPROGRESS) 10059 CONN_OPER_PENDING_DONE(connp); 10060 return; 10061 } 10062 mutex_exit(&connp->conn_lock); 10063 } 10064 10065 /* 10066 * Called from the ipsec_loader thread, outside any perimeter, to tell 10067 * ip qenable any of the queues waiting for the ipsec loader to 10068 * complete. 10069 */ 10070 void 10071 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10072 { 10073 netstack_t *ns = ipss->ipsec_netstack; 10074 10075 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10076 } 10077 10078 /* 10079 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10080 * determines the grp on which it has to become exclusive, queues the mp 10081 * and sq draining restarts the optmgmt 10082 */ 10083 static boolean_t 10084 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10085 { 10086 conn_t *connp = Q_TO_CONN(q); 10087 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10088 10089 /* 10090 * Take IPsec requests and treat them special. 10091 */ 10092 if (ipsec_opt_present(mp)) { 10093 /* First check if IPsec is loaded. */ 10094 mutex_enter(&ipss->ipsec_loader_lock); 10095 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10096 mutex_exit(&ipss->ipsec_loader_lock); 10097 return (B_FALSE); 10098 } 10099 mutex_enter(&connp->conn_lock); 10100 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10101 10102 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10103 connp->conn_ipsec_opt_mp = mp; 10104 mutex_exit(&connp->conn_lock); 10105 mutex_exit(&ipss->ipsec_loader_lock); 10106 10107 ipsec_loader_loadnow(ipss); 10108 return (B_TRUE); 10109 } 10110 return (B_FALSE); 10111 } 10112 10113 /* 10114 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10115 * all of them are copied to the conn_t. If the req is "zero", the policy is 10116 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10117 * fields. 10118 * We keep only the latest setting of the policy and thus policy setting 10119 * is not incremental/cumulative. 10120 * 10121 * Requests to set policies with multiple alternative actions will 10122 * go through a different API. 10123 */ 10124 int 10125 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10126 { 10127 uint_t ah_req = 0; 10128 uint_t esp_req = 0; 10129 uint_t se_req = 0; 10130 ipsec_selkey_t sel; 10131 ipsec_act_t *actp = NULL; 10132 uint_t nact; 10133 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10134 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10135 ipsec_policy_root_t *pr; 10136 ipsec_policy_head_t *ph; 10137 int fam; 10138 boolean_t is_pol_reset; 10139 int error = 0; 10140 netstack_t *ns = connp->conn_netstack; 10141 ip_stack_t *ipst = ns->netstack_ip; 10142 ipsec_stack_t *ipss = ns->netstack_ipsec; 10143 10144 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10145 10146 /* 10147 * The IP_SEC_OPT option does not allow variable length parameters, 10148 * hence a request cannot be NULL. 10149 */ 10150 if (req == NULL) 10151 return (EINVAL); 10152 10153 ah_req = req->ipsr_ah_req; 10154 esp_req = req->ipsr_esp_req; 10155 se_req = req->ipsr_self_encap_req; 10156 10157 /* 10158 * Are we dealing with a request to reset the policy (i.e. 10159 * zero requests). 10160 */ 10161 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10162 (esp_req & REQ_MASK) == 0 && 10163 (se_req & REQ_MASK) == 0); 10164 10165 if (!is_pol_reset) { 10166 /* 10167 * If we couldn't load IPsec, fail with "protocol 10168 * not supported". 10169 * IPsec may not have been loaded for a request with zero 10170 * policies, so we don't fail in this case. 10171 */ 10172 mutex_enter(&ipss->ipsec_loader_lock); 10173 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10174 mutex_exit(&ipss->ipsec_loader_lock); 10175 return (EPROTONOSUPPORT); 10176 } 10177 mutex_exit(&ipss->ipsec_loader_lock); 10178 10179 /* 10180 * Test for valid requests. Invalid algorithms 10181 * need to be tested by IPsec code because new 10182 * algorithms can be added dynamically. 10183 */ 10184 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10185 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10186 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10187 return (EINVAL); 10188 } 10189 10190 /* 10191 * Only privileged users can issue these 10192 * requests. 10193 */ 10194 if (((ah_req & IPSEC_PREF_NEVER) || 10195 (esp_req & IPSEC_PREF_NEVER) || 10196 (se_req & IPSEC_PREF_NEVER)) && 10197 secpolicy_ip_config(cr, B_FALSE) != 0) { 10198 return (EPERM); 10199 } 10200 10201 /* 10202 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10203 * are mutually exclusive. 10204 */ 10205 if (((ah_req & REQ_MASK) == REQ_MASK) || 10206 ((esp_req & REQ_MASK) == REQ_MASK) || 10207 ((se_req & REQ_MASK) == REQ_MASK)) { 10208 /* Both of them are set */ 10209 return (EINVAL); 10210 } 10211 } 10212 10213 mutex_enter(&connp->conn_lock); 10214 10215 /* 10216 * If we have already cached policies in ip_bind_connected*(), don't 10217 * let them change now. We cache policies for connections 10218 * whose src,dst [addr, port] is known. 10219 */ 10220 if (connp->conn_policy_cached) { 10221 mutex_exit(&connp->conn_lock); 10222 return (EINVAL); 10223 } 10224 10225 /* 10226 * We have a zero policies, reset the connection policy if already 10227 * set. This will cause the connection to inherit the 10228 * global policy, if any. 10229 */ 10230 if (is_pol_reset) { 10231 if (connp->conn_policy != NULL) { 10232 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10233 connp->conn_policy = NULL; 10234 } 10235 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10236 connp->conn_in_enforce_policy = B_FALSE; 10237 connp->conn_out_enforce_policy = B_FALSE; 10238 mutex_exit(&connp->conn_lock); 10239 return (0); 10240 } 10241 10242 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10243 ipst->ips_netstack); 10244 if (ph == NULL) 10245 goto enomem; 10246 10247 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10248 if (actp == NULL) 10249 goto enomem; 10250 10251 /* 10252 * Always allocate IPv4 policy entries, since they can also 10253 * apply to ipv6 sockets being used in ipv4-compat mode. 10254 */ 10255 bzero(&sel, sizeof (sel)); 10256 sel.ipsl_valid = IPSL_IPV4; 10257 10258 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10259 ipst->ips_netstack); 10260 if (pin4 == NULL) 10261 goto enomem; 10262 10263 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10264 ipst->ips_netstack); 10265 if (pout4 == NULL) 10266 goto enomem; 10267 10268 if (connp->conn_pkt_isv6) { 10269 /* 10270 * We're looking at a v6 socket, also allocate the 10271 * v6-specific entries... 10272 */ 10273 sel.ipsl_valid = IPSL_IPV6; 10274 pin6 = ipsec_policy_create(&sel, actp, nact, 10275 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10276 if (pin6 == NULL) 10277 goto enomem; 10278 10279 pout6 = ipsec_policy_create(&sel, actp, nact, 10280 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10281 if (pout6 == NULL) 10282 goto enomem; 10283 10284 /* 10285 * .. and file them away in the right place. 10286 */ 10287 fam = IPSEC_AF_V6; 10288 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10289 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10290 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10291 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10292 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10293 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10294 } 10295 10296 ipsec_actvec_free(actp, nact); 10297 10298 /* 10299 * File the v4 policies. 10300 */ 10301 fam = IPSEC_AF_V4; 10302 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10303 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10304 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10305 10306 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10307 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10308 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10309 10310 /* 10311 * If the requests need security, set enforce_policy. 10312 * If the requests are IPSEC_PREF_NEVER, one should 10313 * still set conn_out_enforce_policy so that an ipsec_out 10314 * gets attached in ip_wput. This is needed so that 10315 * for connections that we don't cache policy in ip_bind, 10316 * if global policy matches in ip_wput_attach_policy, we 10317 * don't wrongly inherit global policy. Similarly, we need 10318 * to set conn_in_enforce_policy also so that we don't verify 10319 * policy wrongly. 10320 */ 10321 if ((ah_req & REQ_MASK) != 0 || 10322 (esp_req & REQ_MASK) != 0 || 10323 (se_req & REQ_MASK) != 0) { 10324 connp->conn_in_enforce_policy = B_TRUE; 10325 connp->conn_out_enforce_policy = B_TRUE; 10326 connp->conn_flags |= IPCL_CHECK_POLICY; 10327 } 10328 10329 mutex_exit(&connp->conn_lock); 10330 return (error); 10331 #undef REQ_MASK 10332 10333 /* 10334 * Common memory-allocation-failure exit path. 10335 */ 10336 enomem: 10337 mutex_exit(&connp->conn_lock); 10338 if (actp != NULL) 10339 ipsec_actvec_free(actp, nact); 10340 if (pin4 != NULL) 10341 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10342 if (pout4 != NULL) 10343 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10344 if (pin6 != NULL) 10345 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10346 if (pout6 != NULL) 10347 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10348 return (ENOMEM); 10349 } 10350 10351 /* 10352 * Only for options that pass in an IP addr. Currently only V4 options 10353 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10354 * So this function assumes level is IPPROTO_IP 10355 */ 10356 int 10357 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10358 mblk_t *first_mp) 10359 { 10360 ipif_t *ipif = NULL; 10361 int error; 10362 ill_t *ill; 10363 int zoneid; 10364 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10365 10366 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10367 10368 if (addr != INADDR_ANY || checkonly) { 10369 ASSERT(connp != NULL); 10370 zoneid = IPCL_ZONEID(connp); 10371 if (option == IP_NEXTHOP) { 10372 ipif = ipif_lookup_onlink_addr(addr, 10373 connp->conn_zoneid, ipst); 10374 } else { 10375 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10376 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10377 &error, ipst); 10378 } 10379 if (ipif == NULL) { 10380 if (error == EINPROGRESS) 10381 return (error); 10382 else if ((option == IP_MULTICAST_IF) || 10383 (option == IP_NEXTHOP)) 10384 return (EHOSTUNREACH); 10385 else 10386 return (EINVAL); 10387 } else if (checkonly) { 10388 if (option == IP_MULTICAST_IF) { 10389 ill = ipif->ipif_ill; 10390 /* not supported by the virtual network iface */ 10391 if (IS_VNI(ill)) { 10392 ipif_refrele(ipif); 10393 return (EINVAL); 10394 } 10395 } 10396 ipif_refrele(ipif); 10397 return (0); 10398 } 10399 ill = ipif->ipif_ill; 10400 mutex_enter(&connp->conn_lock); 10401 mutex_enter(&ill->ill_lock); 10402 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10403 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10404 mutex_exit(&ill->ill_lock); 10405 mutex_exit(&connp->conn_lock); 10406 ipif_refrele(ipif); 10407 return (option == IP_MULTICAST_IF ? 10408 EHOSTUNREACH : EINVAL); 10409 } 10410 } else { 10411 mutex_enter(&connp->conn_lock); 10412 } 10413 10414 /* None of the options below are supported on the VNI */ 10415 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10416 mutex_exit(&ill->ill_lock); 10417 mutex_exit(&connp->conn_lock); 10418 ipif_refrele(ipif); 10419 return (EINVAL); 10420 } 10421 10422 switch (option) { 10423 case IP_DONTFAILOVER_IF: 10424 /* 10425 * This option is used by in.mpathd to ensure 10426 * that IPMP probe packets only go out on the 10427 * test interfaces. in.mpathd sets this option 10428 * on the non-failover interfaces. 10429 * For backward compatibility, this option 10430 * implicitly sets IP_MULTICAST_IF, as used 10431 * be done in bind(), so that ip_wput gets 10432 * this ipif to send mcast packets. 10433 */ 10434 if (ipif != NULL) { 10435 ASSERT(addr != INADDR_ANY); 10436 connp->conn_nofailover_ill = ipif->ipif_ill; 10437 connp->conn_multicast_ipif = ipif; 10438 } else { 10439 ASSERT(addr == INADDR_ANY); 10440 connp->conn_nofailover_ill = NULL; 10441 connp->conn_multicast_ipif = NULL; 10442 } 10443 break; 10444 10445 case IP_MULTICAST_IF: 10446 connp->conn_multicast_ipif = ipif; 10447 break; 10448 case IP_NEXTHOP: 10449 connp->conn_nexthop_v4 = addr; 10450 connp->conn_nexthop_set = B_TRUE; 10451 break; 10452 } 10453 10454 if (ipif != NULL) { 10455 mutex_exit(&ill->ill_lock); 10456 mutex_exit(&connp->conn_lock); 10457 ipif_refrele(ipif); 10458 return (0); 10459 } 10460 mutex_exit(&connp->conn_lock); 10461 /* We succeded in cleared the option */ 10462 return (0); 10463 } 10464 10465 /* 10466 * For options that pass in an ifindex specifying the ill. V6 options always 10467 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10468 */ 10469 int 10470 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10471 int level, int option, mblk_t *first_mp) 10472 { 10473 ill_t *ill = NULL; 10474 int error = 0; 10475 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10476 10477 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10478 if (ifindex != 0) { 10479 ASSERT(connp != NULL); 10480 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10481 first_mp, ip_restart_optmgmt, &error, ipst); 10482 if (ill != NULL) { 10483 if (checkonly) { 10484 /* not supported by the virtual network iface */ 10485 if (IS_VNI(ill)) { 10486 ill_refrele(ill); 10487 return (EINVAL); 10488 } 10489 ill_refrele(ill); 10490 return (0); 10491 } 10492 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10493 0, NULL)) { 10494 ill_refrele(ill); 10495 ill = NULL; 10496 mutex_enter(&connp->conn_lock); 10497 goto setit; 10498 } 10499 mutex_enter(&connp->conn_lock); 10500 mutex_enter(&ill->ill_lock); 10501 if (ill->ill_state_flags & ILL_CONDEMNED) { 10502 mutex_exit(&ill->ill_lock); 10503 mutex_exit(&connp->conn_lock); 10504 ill_refrele(ill); 10505 ill = NULL; 10506 mutex_enter(&connp->conn_lock); 10507 } 10508 goto setit; 10509 } else if (error == EINPROGRESS) { 10510 return (error); 10511 } else { 10512 error = 0; 10513 } 10514 } 10515 mutex_enter(&connp->conn_lock); 10516 setit: 10517 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10518 10519 /* 10520 * The options below assume that the ILL (if any) transmits and/or 10521 * receives traffic. Neither of which is true for the virtual network 10522 * interface, so fail setting these on a VNI. 10523 */ 10524 if (IS_VNI(ill)) { 10525 ASSERT(ill != NULL); 10526 mutex_exit(&ill->ill_lock); 10527 mutex_exit(&connp->conn_lock); 10528 ill_refrele(ill); 10529 return (EINVAL); 10530 } 10531 10532 if (level == IPPROTO_IP) { 10533 switch (option) { 10534 case IP_BOUND_IF: 10535 connp->conn_incoming_ill = ill; 10536 connp->conn_outgoing_ill = ill; 10537 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10538 0 : ifindex; 10539 break; 10540 10541 case IP_XMIT_IF: 10542 /* 10543 * Similar to IP_BOUND_IF, but this only 10544 * determines the outgoing interface for 10545 * unicast packets. Also no IRE_CACHE entry 10546 * is added for the destination of the 10547 * outgoing packets. 10548 */ 10549 connp->conn_xmit_if_ill = ill; 10550 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10551 0 : ifindex; 10552 break; 10553 10554 case IP_MULTICAST_IF: 10555 /* 10556 * This option is an internal special. The socket 10557 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10558 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10559 * specifies an ifindex and we try first on V6 ill's. 10560 * If we don't find one, we they try using on v4 ill's 10561 * intenally and we come here. 10562 */ 10563 if (!checkonly && ill != NULL) { 10564 ipif_t *ipif; 10565 ipif = ill->ill_ipif; 10566 10567 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10568 mutex_exit(&ill->ill_lock); 10569 mutex_exit(&connp->conn_lock); 10570 ill_refrele(ill); 10571 ill = NULL; 10572 mutex_enter(&connp->conn_lock); 10573 } else { 10574 connp->conn_multicast_ipif = ipif; 10575 } 10576 } 10577 break; 10578 } 10579 } else { 10580 switch (option) { 10581 case IPV6_BOUND_IF: 10582 connp->conn_incoming_ill = ill; 10583 connp->conn_outgoing_ill = ill; 10584 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10585 0 : ifindex; 10586 break; 10587 10588 case IPV6_BOUND_PIF: 10589 /* 10590 * Limit all transmit to this ill. 10591 * Unlike IPV6_BOUND_IF, using this option 10592 * prevents load spreading and failover from 10593 * happening when the interface is part of the 10594 * group. That's why we don't need to remember 10595 * the ifindex in orig_bound_ifindex as in 10596 * IPV6_BOUND_IF. 10597 */ 10598 connp->conn_outgoing_pill = ill; 10599 break; 10600 10601 case IPV6_DONTFAILOVER_IF: 10602 /* 10603 * This option is used by in.mpathd to ensure 10604 * that IPMP probe packets only go out on the 10605 * test interfaces. in.mpathd sets this option 10606 * on the non-failover interfaces. 10607 */ 10608 connp->conn_nofailover_ill = ill; 10609 /* 10610 * For backward compatibility, this option 10611 * implicitly sets ip_multicast_ill as used in 10612 * IP_MULTICAST_IF so that ip_wput gets 10613 * this ipif to send mcast packets. 10614 */ 10615 connp->conn_multicast_ill = ill; 10616 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10617 0 : ifindex; 10618 break; 10619 10620 case IPV6_MULTICAST_IF: 10621 /* 10622 * Set conn_multicast_ill to be the IPv6 ill. 10623 * Set conn_multicast_ipif to be an IPv4 ipif 10624 * for ifindex to make IPv4 mapped addresses 10625 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10626 * Even if no IPv6 ill exists for the ifindex 10627 * we need to check for an IPv4 ifindex in order 10628 * for this to work with mapped addresses. In that 10629 * case only set conn_multicast_ipif. 10630 */ 10631 if (!checkonly) { 10632 if (ifindex == 0) { 10633 connp->conn_multicast_ill = NULL; 10634 connp->conn_orig_multicast_ifindex = 0; 10635 connp->conn_multicast_ipif = NULL; 10636 } else if (ill != NULL) { 10637 connp->conn_multicast_ill = ill; 10638 connp->conn_orig_multicast_ifindex = 10639 ifindex; 10640 } 10641 } 10642 break; 10643 } 10644 } 10645 10646 if (ill != NULL) { 10647 mutex_exit(&ill->ill_lock); 10648 mutex_exit(&connp->conn_lock); 10649 ill_refrele(ill); 10650 return (0); 10651 } 10652 mutex_exit(&connp->conn_lock); 10653 /* 10654 * We succeeded in clearing the option (ifindex == 0) or failed to 10655 * locate the ill and could not set the option (ifindex != 0) 10656 */ 10657 return (ifindex == 0 ? 0 : EINVAL); 10658 } 10659 10660 /* This routine sets socket options. */ 10661 /* ARGSUSED */ 10662 int 10663 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10664 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10665 void *dummy, cred_t *cr, mblk_t *first_mp) 10666 { 10667 int *i1 = (int *)invalp; 10668 conn_t *connp = Q_TO_CONN(q); 10669 int error = 0; 10670 boolean_t checkonly; 10671 ire_t *ire; 10672 boolean_t found; 10673 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10674 10675 switch (optset_context) { 10676 10677 case SETFN_OPTCOM_CHECKONLY: 10678 checkonly = B_TRUE; 10679 /* 10680 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10681 * inlen != 0 implies value supplied and 10682 * we have to "pretend" to set it. 10683 * inlen == 0 implies that there is no 10684 * value part in T_CHECK request and just validation 10685 * done elsewhere should be enough, we just return here. 10686 */ 10687 if (inlen == 0) { 10688 *outlenp = 0; 10689 return (0); 10690 } 10691 break; 10692 case SETFN_OPTCOM_NEGOTIATE: 10693 case SETFN_UD_NEGOTIATE: 10694 case SETFN_CONN_NEGOTIATE: 10695 checkonly = B_FALSE; 10696 break; 10697 default: 10698 /* 10699 * We should never get here 10700 */ 10701 *outlenp = 0; 10702 return (EINVAL); 10703 } 10704 10705 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10706 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10707 10708 /* 10709 * For fixed length options, no sanity check 10710 * of passed in length is done. It is assumed *_optcom_req() 10711 * routines do the right thing. 10712 */ 10713 10714 switch (level) { 10715 case SOL_SOCKET: 10716 /* 10717 * conn_lock protects the bitfields, and is used to 10718 * set the fields atomically. 10719 */ 10720 switch (name) { 10721 case SO_BROADCAST: 10722 if (!checkonly) { 10723 /* TODO: use value someplace? */ 10724 mutex_enter(&connp->conn_lock); 10725 connp->conn_broadcast = *i1 ? 1 : 0; 10726 mutex_exit(&connp->conn_lock); 10727 } 10728 break; /* goto sizeof (int) option return */ 10729 case SO_USELOOPBACK: 10730 if (!checkonly) { 10731 /* TODO: use value someplace? */ 10732 mutex_enter(&connp->conn_lock); 10733 connp->conn_loopback = *i1 ? 1 : 0; 10734 mutex_exit(&connp->conn_lock); 10735 } 10736 break; /* goto sizeof (int) option return */ 10737 case SO_DONTROUTE: 10738 if (!checkonly) { 10739 mutex_enter(&connp->conn_lock); 10740 connp->conn_dontroute = *i1 ? 1 : 0; 10741 mutex_exit(&connp->conn_lock); 10742 } 10743 break; /* goto sizeof (int) option return */ 10744 case SO_REUSEADDR: 10745 if (!checkonly) { 10746 mutex_enter(&connp->conn_lock); 10747 connp->conn_reuseaddr = *i1 ? 1 : 0; 10748 mutex_exit(&connp->conn_lock); 10749 } 10750 break; /* goto sizeof (int) option return */ 10751 case SO_PROTOTYPE: 10752 if (!checkonly) { 10753 mutex_enter(&connp->conn_lock); 10754 connp->conn_proto = *i1; 10755 mutex_exit(&connp->conn_lock); 10756 } 10757 break; /* goto sizeof (int) option return */ 10758 case SO_ALLZONES: 10759 if (!checkonly) { 10760 mutex_enter(&connp->conn_lock); 10761 if (IPCL_IS_BOUND(connp)) { 10762 mutex_exit(&connp->conn_lock); 10763 return (EINVAL); 10764 } 10765 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10766 mutex_exit(&connp->conn_lock); 10767 } 10768 break; /* goto sizeof (int) option return */ 10769 case SO_ANON_MLP: 10770 if (!checkonly) { 10771 mutex_enter(&connp->conn_lock); 10772 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10773 mutex_exit(&connp->conn_lock); 10774 } 10775 break; /* goto sizeof (int) option return */ 10776 case SO_MAC_EXEMPT: 10777 if (secpolicy_net_mac_aware(cr) != 0 || 10778 IPCL_IS_BOUND(connp)) 10779 return (EACCES); 10780 if (!checkonly) { 10781 mutex_enter(&connp->conn_lock); 10782 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10783 mutex_exit(&connp->conn_lock); 10784 } 10785 break; /* goto sizeof (int) option return */ 10786 default: 10787 /* 10788 * "soft" error (negative) 10789 * option not handled at this level 10790 * Note: Do not modify *outlenp 10791 */ 10792 return (-EINVAL); 10793 } 10794 break; 10795 case IPPROTO_IP: 10796 switch (name) { 10797 case IP_NEXTHOP: 10798 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10799 return (EPERM); 10800 /* FALLTHRU */ 10801 case IP_MULTICAST_IF: 10802 case IP_DONTFAILOVER_IF: { 10803 ipaddr_t addr = *i1; 10804 10805 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10806 first_mp); 10807 if (error != 0) 10808 return (error); 10809 break; /* goto sizeof (int) option return */ 10810 } 10811 10812 case IP_MULTICAST_TTL: 10813 /* Recorded in transport above IP */ 10814 *outvalp = *invalp; 10815 *outlenp = sizeof (uchar_t); 10816 return (0); 10817 case IP_MULTICAST_LOOP: 10818 if (!checkonly) { 10819 mutex_enter(&connp->conn_lock); 10820 connp->conn_multicast_loop = *invalp ? 1 : 0; 10821 mutex_exit(&connp->conn_lock); 10822 } 10823 *outvalp = *invalp; 10824 *outlenp = sizeof (uchar_t); 10825 return (0); 10826 case IP_ADD_MEMBERSHIP: 10827 case MCAST_JOIN_GROUP: 10828 case IP_DROP_MEMBERSHIP: 10829 case MCAST_LEAVE_GROUP: { 10830 struct ip_mreq *mreqp; 10831 struct group_req *greqp; 10832 ire_t *ire; 10833 boolean_t done = B_FALSE; 10834 ipaddr_t group, ifaddr; 10835 struct sockaddr_in *sin; 10836 uint32_t *ifindexp; 10837 boolean_t mcast_opt = B_TRUE; 10838 mcast_record_t fmode; 10839 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10840 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10841 10842 switch (name) { 10843 case IP_ADD_MEMBERSHIP: 10844 mcast_opt = B_FALSE; 10845 /* FALLTHRU */ 10846 case MCAST_JOIN_GROUP: 10847 fmode = MODE_IS_EXCLUDE; 10848 optfn = ip_opt_add_group; 10849 break; 10850 10851 case IP_DROP_MEMBERSHIP: 10852 mcast_opt = B_FALSE; 10853 /* FALLTHRU */ 10854 case MCAST_LEAVE_GROUP: 10855 fmode = MODE_IS_INCLUDE; 10856 optfn = ip_opt_delete_group; 10857 break; 10858 } 10859 10860 if (mcast_opt) { 10861 greqp = (struct group_req *)i1; 10862 sin = (struct sockaddr_in *)&greqp->gr_group; 10863 if (sin->sin_family != AF_INET) { 10864 *outlenp = 0; 10865 return (ENOPROTOOPT); 10866 } 10867 group = (ipaddr_t)sin->sin_addr.s_addr; 10868 ifaddr = INADDR_ANY; 10869 ifindexp = &greqp->gr_interface; 10870 } else { 10871 mreqp = (struct ip_mreq *)i1; 10872 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10873 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10874 ifindexp = NULL; 10875 } 10876 10877 /* 10878 * In the multirouting case, we need to replicate 10879 * the request on all interfaces that will take part 10880 * in replication. We do so because multirouting is 10881 * reflective, thus we will probably receive multi- 10882 * casts on those interfaces. 10883 * The ip_multirt_apply_membership() succeeds if the 10884 * operation succeeds on at least one interface. 10885 */ 10886 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10887 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10888 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10889 if (ire != NULL) { 10890 if (ire->ire_flags & RTF_MULTIRT) { 10891 error = ip_multirt_apply_membership( 10892 optfn, ire, connp, checkonly, group, 10893 fmode, INADDR_ANY, first_mp); 10894 done = B_TRUE; 10895 } 10896 ire_refrele(ire); 10897 } 10898 if (!done) { 10899 error = optfn(connp, checkonly, group, ifaddr, 10900 ifindexp, fmode, INADDR_ANY, first_mp); 10901 } 10902 if (error) { 10903 /* 10904 * EINPROGRESS is a soft error, needs retry 10905 * so don't make *outlenp zero. 10906 */ 10907 if (error != EINPROGRESS) 10908 *outlenp = 0; 10909 return (error); 10910 } 10911 /* OK return - copy input buffer into output buffer */ 10912 if (invalp != outvalp) { 10913 /* don't trust bcopy for identical src/dst */ 10914 bcopy(invalp, outvalp, inlen); 10915 } 10916 *outlenp = inlen; 10917 return (0); 10918 } 10919 case IP_BLOCK_SOURCE: 10920 case IP_UNBLOCK_SOURCE: 10921 case IP_ADD_SOURCE_MEMBERSHIP: 10922 case IP_DROP_SOURCE_MEMBERSHIP: 10923 case MCAST_BLOCK_SOURCE: 10924 case MCAST_UNBLOCK_SOURCE: 10925 case MCAST_JOIN_SOURCE_GROUP: 10926 case MCAST_LEAVE_SOURCE_GROUP: { 10927 struct ip_mreq_source *imreqp; 10928 struct group_source_req *gsreqp; 10929 in_addr_t grp, src, ifaddr = INADDR_ANY; 10930 uint32_t ifindex = 0; 10931 mcast_record_t fmode; 10932 struct sockaddr_in *sin; 10933 ire_t *ire; 10934 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10935 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10936 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10937 10938 switch (name) { 10939 case IP_BLOCK_SOURCE: 10940 mcast_opt = B_FALSE; 10941 /* FALLTHRU */ 10942 case MCAST_BLOCK_SOURCE: 10943 fmode = MODE_IS_EXCLUDE; 10944 optfn = ip_opt_add_group; 10945 break; 10946 10947 case IP_UNBLOCK_SOURCE: 10948 mcast_opt = B_FALSE; 10949 /* FALLTHRU */ 10950 case MCAST_UNBLOCK_SOURCE: 10951 fmode = MODE_IS_EXCLUDE; 10952 optfn = ip_opt_delete_group; 10953 break; 10954 10955 case IP_ADD_SOURCE_MEMBERSHIP: 10956 mcast_opt = B_FALSE; 10957 /* FALLTHRU */ 10958 case MCAST_JOIN_SOURCE_GROUP: 10959 fmode = MODE_IS_INCLUDE; 10960 optfn = ip_opt_add_group; 10961 break; 10962 10963 case IP_DROP_SOURCE_MEMBERSHIP: 10964 mcast_opt = B_FALSE; 10965 /* FALLTHRU */ 10966 case MCAST_LEAVE_SOURCE_GROUP: 10967 fmode = MODE_IS_INCLUDE; 10968 optfn = ip_opt_delete_group; 10969 break; 10970 } 10971 10972 if (mcast_opt) { 10973 gsreqp = (struct group_source_req *)i1; 10974 if (gsreqp->gsr_group.ss_family != AF_INET) { 10975 *outlenp = 0; 10976 return (ENOPROTOOPT); 10977 } 10978 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10979 grp = (ipaddr_t)sin->sin_addr.s_addr; 10980 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10981 src = (ipaddr_t)sin->sin_addr.s_addr; 10982 ifindex = gsreqp->gsr_interface; 10983 } else { 10984 imreqp = (struct ip_mreq_source *)i1; 10985 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10986 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10987 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10988 } 10989 10990 /* 10991 * In the multirouting case, we need to replicate 10992 * the request as noted in the mcast cases above. 10993 */ 10994 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10995 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10996 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10997 if (ire != NULL) { 10998 if (ire->ire_flags & RTF_MULTIRT) { 10999 error = ip_multirt_apply_membership( 11000 optfn, ire, connp, checkonly, grp, 11001 fmode, src, first_mp); 11002 done = B_TRUE; 11003 } 11004 ire_refrele(ire); 11005 } 11006 if (!done) { 11007 error = optfn(connp, checkonly, grp, ifaddr, 11008 &ifindex, fmode, src, first_mp); 11009 } 11010 if (error != 0) { 11011 /* 11012 * EINPROGRESS is a soft error, needs retry 11013 * so don't make *outlenp zero. 11014 */ 11015 if (error != EINPROGRESS) 11016 *outlenp = 0; 11017 return (error); 11018 } 11019 /* OK return - copy input buffer into output buffer */ 11020 if (invalp != outvalp) { 11021 bcopy(invalp, outvalp, inlen); 11022 } 11023 *outlenp = inlen; 11024 return (0); 11025 } 11026 case IP_SEC_OPT: 11027 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11028 if (error != 0) { 11029 *outlenp = 0; 11030 return (error); 11031 } 11032 break; 11033 case IP_HDRINCL: 11034 case IP_OPTIONS: 11035 case T_IP_OPTIONS: 11036 case IP_TOS: 11037 case T_IP_TOS: 11038 case IP_TTL: 11039 case IP_RECVDSTADDR: 11040 case IP_RECVOPTS: 11041 /* OK return - copy input buffer into output buffer */ 11042 if (invalp != outvalp) { 11043 /* don't trust bcopy for identical src/dst */ 11044 bcopy(invalp, outvalp, inlen); 11045 } 11046 *outlenp = inlen; 11047 return (0); 11048 case IP_RECVIF: 11049 /* Retrieve the inbound interface index */ 11050 if (!checkonly) { 11051 mutex_enter(&connp->conn_lock); 11052 connp->conn_recvif = *i1 ? 1 : 0; 11053 mutex_exit(&connp->conn_lock); 11054 } 11055 break; /* goto sizeof (int) option return */ 11056 case IP_RECVPKTINFO: 11057 if (!checkonly) { 11058 mutex_enter(&connp->conn_lock); 11059 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11060 mutex_exit(&connp->conn_lock); 11061 } 11062 break; /* goto sizeof (int) option return */ 11063 case IP_RECVSLLA: 11064 /* Retrieve the source link layer address */ 11065 if (!checkonly) { 11066 mutex_enter(&connp->conn_lock); 11067 connp->conn_recvslla = *i1 ? 1 : 0; 11068 mutex_exit(&connp->conn_lock); 11069 } 11070 break; /* goto sizeof (int) option return */ 11071 case MRT_INIT: 11072 case MRT_DONE: 11073 case MRT_ADD_VIF: 11074 case MRT_DEL_VIF: 11075 case MRT_ADD_MFC: 11076 case MRT_DEL_MFC: 11077 case MRT_ASSERT: 11078 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11079 *outlenp = 0; 11080 return (error); 11081 } 11082 error = ip_mrouter_set((int)name, q, checkonly, 11083 (uchar_t *)invalp, inlen, first_mp); 11084 if (error) { 11085 *outlenp = 0; 11086 return (error); 11087 } 11088 /* OK return - copy input buffer into output buffer */ 11089 if (invalp != outvalp) { 11090 /* don't trust bcopy for identical src/dst */ 11091 bcopy(invalp, outvalp, inlen); 11092 } 11093 *outlenp = inlen; 11094 return (0); 11095 case IP_BOUND_IF: 11096 case IP_XMIT_IF: 11097 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11098 level, name, first_mp); 11099 if (error != 0) 11100 return (error); 11101 break; /* goto sizeof (int) option return */ 11102 11103 case IP_UNSPEC_SRC: 11104 /* Allow sending with a zero source address */ 11105 if (!checkonly) { 11106 mutex_enter(&connp->conn_lock); 11107 connp->conn_unspec_src = *i1 ? 1 : 0; 11108 mutex_exit(&connp->conn_lock); 11109 } 11110 break; /* goto sizeof (int) option return */ 11111 default: 11112 /* 11113 * "soft" error (negative) 11114 * option not handled at this level 11115 * Note: Do not modify *outlenp 11116 */ 11117 return (-EINVAL); 11118 } 11119 break; 11120 case IPPROTO_IPV6: 11121 switch (name) { 11122 case IPV6_BOUND_IF: 11123 case IPV6_BOUND_PIF: 11124 case IPV6_DONTFAILOVER_IF: 11125 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11126 level, name, first_mp); 11127 if (error != 0) 11128 return (error); 11129 break; /* goto sizeof (int) option return */ 11130 11131 case IPV6_MULTICAST_IF: 11132 /* 11133 * The only possible errors are EINPROGRESS and 11134 * EINVAL. EINPROGRESS will be restarted and is not 11135 * a hard error. We call this option on both V4 and V6 11136 * If both return EINVAL, then this call returns 11137 * EINVAL. If at least one of them succeeds we 11138 * return success. 11139 */ 11140 found = B_FALSE; 11141 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11142 level, name, first_mp); 11143 if (error == EINPROGRESS) 11144 return (error); 11145 if (error == 0) 11146 found = B_TRUE; 11147 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11148 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11149 if (error == 0) 11150 found = B_TRUE; 11151 if (!found) 11152 return (error); 11153 break; /* goto sizeof (int) option return */ 11154 11155 case IPV6_MULTICAST_HOPS: 11156 /* Recorded in transport above IP */ 11157 break; /* goto sizeof (int) option return */ 11158 case IPV6_MULTICAST_LOOP: 11159 if (!checkonly) { 11160 mutex_enter(&connp->conn_lock); 11161 connp->conn_multicast_loop = *i1; 11162 mutex_exit(&connp->conn_lock); 11163 } 11164 break; /* goto sizeof (int) option return */ 11165 case IPV6_JOIN_GROUP: 11166 case MCAST_JOIN_GROUP: 11167 case IPV6_LEAVE_GROUP: 11168 case MCAST_LEAVE_GROUP: { 11169 struct ipv6_mreq *ip_mreqp; 11170 struct group_req *greqp; 11171 ire_t *ire; 11172 boolean_t done = B_FALSE; 11173 in6_addr_t groupv6; 11174 uint32_t ifindex; 11175 boolean_t mcast_opt = B_TRUE; 11176 mcast_record_t fmode; 11177 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11178 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11179 11180 switch (name) { 11181 case IPV6_JOIN_GROUP: 11182 mcast_opt = B_FALSE; 11183 /* FALLTHRU */ 11184 case MCAST_JOIN_GROUP: 11185 fmode = MODE_IS_EXCLUDE; 11186 optfn = ip_opt_add_group_v6; 11187 break; 11188 11189 case IPV6_LEAVE_GROUP: 11190 mcast_opt = B_FALSE; 11191 /* FALLTHRU */ 11192 case MCAST_LEAVE_GROUP: 11193 fmode = MODE_IS_INCLUDE; 11194 optfn = ip_opt_delete_group_v6; 11195 break; 11196 } 11197 11198 if (mcast_opt) { 11199 struct sockaddr_in *sin; 11200 struct sockaddr_in6 *sin6; 11201 greqp = (struct group_req *)i1; 11202 if (greqp->gr_group.ss_family == AF_INET) { 11203 sin = (struct sockaddr_in *) 11204 &(greqp->gr_group); 11205 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11206 &groupv6); 11207 } else { 11208 sin6 = (struct sockaddr_in6 *) 11209 &(greqp->gr_group); 11210 groupv6 = sin6->sin6_addr; 11211 } 11212 ifindex = greqp->gr_interface; 11213 } else { 11214 ip_mreqp = (struct ipv6_mreq *)i1; 11215 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11216 ifindex = ip_mreqp->ipv6mr_interface; 11217 } 11218 /* 11219 * In the multirouting case, we need to replicate 11220 * the request on all interfaces that will take part 11221 * in replication. We do so because multirouting is 11222 * reflective, thus we will probably receive multi- 11223 * casts on those interfaces. 11224 * The ip_multirt_apply_membership_v6() succeeds if 11225 * the operation succeeds on at least one interface. 11226 */ 11227 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11228 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11229 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11230 if (ire != NULL) { 11231 if (ire->ire_flags & RTF_MULTIRT) { 11232 error = ip_multirt_apply_membership_v6( 11233 optfn, ire, connp, checkonly, 11234 &groupv6, fmode, &ipv6_all_zeros, 11235 first_mp); 11236 done = B_TRUE; 11237 } 11238 ire_refrele(ire); 11239 } 11240 if (!done) { 11241 error = optfn(connp, checkonly, &groupv6, 11242 ifindex, fmode, &ipv6_all_zeros, first_mp); 11243 } 11244 if (error) { 11245 /* 11246 * EINPROGRESS is a soft error, needs retry 11247 * so don't make *outlenp zero. 11248 */ 11249 if (error != EINPROGRESS) 11250 *outlenp = 0; 11251 return (error); 11252 } 11253 /* OK return - copy input buffer into output buffer */ 11254 if (invalp != outvalp) { 11255 /* don't trust bcopy for identical src/dst */ 11256 bcopy(invalp, outvalp, inlen); 11257 } 11258 *outlenp = inlen; 11259 return (0); 11260 } 11261 case MCAST_BLOCK_SOURCE: 11262 case MCAST_UNBLOCK_SOURCE: 11263 case MCAST_JOIN_SOURCE_GROUP: 11264 case MCAST_LEAVE_SOURCE_GROUP: { 11265 struct group_source_req *gsreqp; 11266 in6_addr_t v6grp, v6src; 11267 uint32_t ifindex; 11268 mcast_record_t fmode; 11269 ire_t *ire; 11270 boolean_t done = B_FALSE; 11271 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11272 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11273 11274 switch (name) { 11275 case MCAST_BLOCK_SOURCE: 11276 fmode = MODE_IS_EXCLUDE; 11277 optfn = ip_opt_add_group_v6; 11278 break; 11279 case MCAST_UNBLOCK_SOURCE: 11280 fmode = MODE_IS_EXCLUDE; 11281 optfn = ip_opt_delete_group_v6; 11282 break; 11283 case MCAST_JOIN_SOURCE_GROUP: 11284 fmode = MODE_IS_INCLUDE; 11285 optfn = ip_opt_add_group_v6; 11286 break; 11287 case MCAST_LEAVE_SOURCE_GROUP: 11288 fmode = MODE_IS_INCLUDE; 11289 optfn = ip_opt_delete_group_v6; 11290 break; 11291 } 11292 11293 gsreqp = (struct group_source_req *)i1; 11294 ifindex = gsreqp->gsr_interface; 11295 if (gsreqp->gsr_group.ss_family == AF_INET) { 11296 struct sockaddr_in *s; 11297 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11298 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11299 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11300 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11301 } else { 11302 struct sockaddr_in6 *s6; 11303 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11304 v6grp = s6->sin6_addr; 11305 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11306 v6src = s6->sin6_addr; 11307 } 11308 11309 /* 11310 * In the multirouting case, we need to replicate 11311 * the request as noted in the mcast cases above. 11312 */ 11313 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11314 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11315 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11316 if (ire != NULL) { 11317 if (ire->ire_flags & RTF_MULTIRT) { 11318 error = ip_multirt_apply_membership_v6( 11319 optfn, ire, connp, checkonly, 11320 &v6grp, fmode, &v6src, first_mp); 11321 done = B_TRUE; 11322 } 11323 ire_refrele(ire); 11324 } 11325 if (!done) { 11326 error = optfn(connp, checkonly, &v6grp, 11327 ifindex, fmode, &v6src, first_mp); 11328 } 11329 if (error != 0) { 11330 /* 11331 * EINPROGRESS is a soft error, needs retry 11332 * so don't make *outlenp zero. 11333 */ 11334 if (error != EINPROGRESS) 11335 *outlenp = 0; 11336 return (error); 11337 } 11338 /* OK return - copy input buffer into output buffer */ 11339 if (invalp != outvalp) { 11340 bcopy(invalp, outvalp, inlen); 11341 } 11342 *outlenp = inlen; 11343 return (0); 11344 } 11345 case IPV6_UNICAST_HOPS: 11346 /* Recorded in transport above IP */ 11347 break; /* goto sizeof (int) option return */ 11348 case IPV6_UNSPEC_SRC: 11349 /* Allow sending with a zero source address */ 11350 if (!checkonly) { 11351 mutex_enter(&connp->conn_lock); 11352 connp->conn_unspec_src = *i1 ? 1 : 0; 11353 mutex_exit(&connp->conn_lock); 11354 } 11355 break; /* goto sizeof (int) option return */ 11356 case IPV6_RECVPKTINFO: 11357 if (!checkonly) { 11358 mutex_enter(&connp->conn_lock); 11359 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11360 mutex_exit(&connp->conn_lock); 11361 } 11362 break; /* goto sizeof (int) option return */ 11363 case IPV6_RECVTCLASS: 11364 if (!checkonly) { 11365 if (*i1 < 0 || *i1 > 1) { 11366 return (EINVAL); 11367 } 11368 mutex_enter(&connp->conn_lock); 11369 connp->conn_ipv6_recvtclass = *i1; 11370 mutex_exit(&connp->conn_lock); 11371 } 11372 break; 11373 case IPV6_RECVPATHMTU: 11374 if (!checkonly) { 11375 if (*i1 < 0 || *i1 > 1) { 11376 return (EINVAL); 11377 } 11378 mutex_enter(&connp->conn_lock); 11379 connp->conn_ipv6_recvpathmtu = *i1; 11380 mutex_exit(&connp->conn_lock); 11381 } 11382 break; 11383 case IPV6_RECVHOPLIMIT: 11384 if (!checkonly) { 11385 mutex_enter(&connp->conn_lock); 11386 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11387 mutex_exit(&connp->conn_lock); 11388 } 11389 break; /* goto sizeof (int) option return */ 11390 case IPV6_RECVHOPOPTS: 11391 if (!checkonly) { 11392 mutex_enter(&connp->conn_lock); 11393 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11394 mutex_exit(&connp->conn_lock); 11395 } 11396 break; /* goto sizeof (int) option return */ 11397 case IPV6_RECVDSTOPTS: 11398 if (!checkonly) { 11399 mutex_enter(&connp->conn_lock); 11400 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11401 mutex_exit(&connp->conn_lock); 11402 } 11403 break; /* goto sizeof (int) option return */ 11404 case IPV6_RECVRTHDR: 11405 if (!checkonly) { 11406 mutex_enter(&connp->conn_lock); 11407 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11408 mutex_exit(&connp->conn_lock); 11409 } 11410 break; /* goto sizeof (int) option return */ 11411 case IPV6_RECVRTHDRDSTOPTS: 11412 if (!checkonly) { 11413 mutex_enter(&connp->conn_lock); 11414 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11415 mutex_exit(&connp->conn_lock); 11416 } 11417 break; /* goto sizeof (int) option return */ 11418 case IPV6_PKTINFO: 11419 if (inlen == 0) 11420 return (-EINVAL); /* clearing option */ 11421 error = ip6_set_pktinfo(cr, connp, 11422 (struct in6_pktinfo *)invalp, first_mp); 11423 if (error != 0) 11424 *outlenp = 0; 11425 else 11426 *outlenp = inlen; 11427 return (error); 11428 case IPV6_NEXTHOP: { 11429 struct sockaddr_in6 *sin6; 11430 11431 /* Verify that the nexthop is reachable */ 11432 if (inlen == 0) 11433 return (-EINVAL); /* clearing option */ 11434 11435 sin6 = (struct sockaddr_in6 *)invalp; 11436 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11437 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11438 NULL, MATCH_IRE_DEFAULT, ipst); 11439 11440 if (ire == NULL) { 11441 *outlenp = 0; 11442 return (EHOSTUNREACH); 11443 } 11444 ire_refrele(ire); 11445 return (-EINVAL); 11446 } 11447 case IPV6_SEC_OPT: 11448 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11449 if (error != 0) { 11450 *outlenp = 0; 11451 return (error); 11452 } 11453 break; 11454 case IPV6_SRC_PREFERENCES: { 11455 /* 11456 * This is implemented strictly in the ip module 11457 * (here and in tcp_opt_*() to accomodate tcp 11458 * sockets). Modules above ip pass this option 11459 * down here since ip is the only one that needs to 11460 * be aware of source address preferences. 11461 * 11462 * This socket option only affects connected 11463 * sockets that haven't already bound to a specific 11464 * IPv6 address. In other words, sockets that 11465 * don't call bind() with an address other than the 11466 * unspecified address and that call connect(). 11467 * ip_bind_connected_v6() passes these preferences 11468 * to the ipif_select_source_v6() function. 11469 */ 11470 if (inlen != sizeof (uint32_t)) 11471 return (EINVAL); 11472 error = ip6_set_src_preferences(connp, 11473 *(uint32_t *)invalp); 11474 if (error != 0) { 11475 *outlenp = 0; 11476 return (error); 11477 } else { 11478 *outlenp = sizeof (uint32_t); 11479 } 11480 break; 11481 } 11482 case IPV6_V6ONLY: 11483 if (*i1 < 0 || *i1 > 1) { 11484 return (EINVAL); 11485 } 11486 mutex_enter(&connp->conn_lock); 11487 connp->conn_ipv6_v6only = *i1; 11488 mutex_exit(&connp->conn_lock); 11489 break; 11490 default: 11491 return (-EINVAL); 11492 } 11493 break; 11494 default: 11495 /* 11496 * "soft" error (negative) 11497 * option not handled at this level 11498 * Note: Do not modify *outlenp 11499 */ 11500 return (-EINVAL); 11501 } 11502 /* 11503 * Common case of return from an option that is sizeof (int) 11504 */ 11505 *(int *)outvalp = *i1; 11506 *outlenp = sizeof (int); 11507 return (0); 11508 } 11509 11510 /* 11511 * This routine gets default values of certain options whose default 11512 * values are maintained by protocol specific code 11513 */ 11514 /* ARGSUSED */ 11515 int 11516 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11517 { 11518 int *i1 = (int *)ptr; 11519 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11520 11521 switch (level) { 11522 case IPPROTO_IP: 11523 switch (name) { 11524 case IP_MULTICAST_TTL: 11525 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11526 return (sizeof (uchar_t)); 11527 case IP_MULTICAST_LOOP: 11528 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11529 return (sizeof (uchar_t)); 11530 default: 11531 return (-1); 11532 } 11533 case IPPROTO_IPV6: 11534 switch (name) { 11535 case IPV6_UNICAST_HOPS: 11536 *i1 = ipst->ips_ipv6_def_hops; 11537 return (sizeof (int)); 11538 case IPV6_MULTICAST_HOPS: 11539 *i1 = IP_DEFAULT_MULTICAST_TTL; 11540 return (sizeof (int)); 11541 case IPV6_MULTICAST_LOOP: 11542 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11543 return (sizeof (int)); 11544 case IPV6_V6ONLY: 11545 *i1 = 1; 11546 return (sizeof (int)); 11547 default: 11548 return (-1); 11549 } 11550 default: 11551 return (-1); 11552 } 11553 /* NOTREACHED */ 11554 } 11555 11556 /* 11557 * Given a destination address and a pointer to where to put the information 11558 * this routine fills in the mtuinfo. 11559 */ 11560 int 11561 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11562 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11563 { 11564 ire_t *ire; 11565 ip_stack_t *ipst = ns->netstack_ip; 11566 11567 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11568 return (-1); 11569 11570 bzero(mtuinfo, sizeof (*mtuinfo)); 11571 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11572 mtuinfo->ip6m_addr.sin6_port = port; 11573 mtuinfo->ip6m_addr.sin6_addr = *in6; 11574 11575 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11576 if (ire != NULL) { 11577 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11578 ire_refrele(ire); 11579 } else { 11580 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11581 } 11582 return (sizeof (struct ip6_mtuinfo)); 11583 } 11584 11585 /* 11586 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11587 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11588 * isn't. This doesn't matter as the error checking is done properly for the 11589 * other MRT options coming in through ip_opt_set. 11590 */ 11591 int 11592 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11593 { 11594 conn_t *connp = Q_TO_CONN(q); 11595 ipsec_req_t *req = (ipsec_req_t *)ptr; 11596 11597 switch (level) { 11598 case IPPROTO_IP: 11599 switch (name) { 11600 case MRT_VERSION: 11601 case MRT_ASSERT: 11602 (void) ip_mrouter_get(name, q, ptr); 11603 return (sizeof (int)); 11604 case IP_SEC_OPT: 11605 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11606 case IP_NEXTHOP: 11607 if (connp->conn_nexthop_set) { 11608 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11609 return (sizeof (ipaddr_t)); 11610 } else 11611 return (0); 11612 case IP_RECVPKTINFO: 11613 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11614 return (sizeof (int)); 11615 default: 11616 break; 11617 } 11618 break; 11619 case IPPROTO_IPV6: 11620 switch (name) { 11621 case IPV6_SEC_OPT: 11622 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11623 case IPV6_SRC_PREFERENCES: { 11624 return (ip6_get_src_preferences(connp, 11625 (uint32_t *)ptr)); 11626 } 11627 case IPV6_V6ONLY: 11628 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11629 return (sizeof (int)); 11630 case IPV6_PATHMTU: 11631 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11632 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11633 default: 11634 break; 11635 } 11636 break; 11637 default: 11638 break; 11639 } 11640 return (-1); 11641 } 11642 11643 /* Named Dispatch routine to get a current value out of our parameter table. */ 11644 /* ARGSUSED */ 11645 static int 11646 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11647 { 11648 ipparam_t *ippa = (ipparam_t *)cp; 11649 11650 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11651 return (0); 11652 } 11653 11654 /* ARGSUSED */ 11655 static int 11656 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11657 { 11658 11659 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11660 return (0); 11661 } 11662 11663 /* 11664 * Set ip{,6}_forwarding values. This means walking through all of the 11665 * ill's and toggling their forwarding values. 11666 */ 11667 /* ARGSUSED */ 11668 static int 11669 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11670 { 11671 long new_value; 11672 int *forwarding_value = (int *)cp; 11673 ill_t *ill; 11674 boolean_t isv6; 11675 ill_walk_context_t ctx; 11676 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11677 11678 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11679 11680 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11681 new_value < 0 || new_value > 1) { 11682 return (EINVAL); 11683 } 11684 11685 *forwarding_value = new_value; 11686 11687 /* 11688 * Regardless of the current value of ip_forwarding, set all per-ill 11689 * values of ip_forwarding to the value being set. 11690 * 11691 * Bring all the ill's up to date with the new global value. 11692 */ 11693 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11694 11695 if (isv6) 11696 ill = ILL_START_WALK_V6(&ctx, ipst); 11697 else 11698 ill = ILL_START_WALK_V4(&ctx, ipst); 11699 11700 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11701 (void) ill_forward_set(ill, new_value != 0); 11702 11703 rw_exit(&ipst->ips_ill_g_lock); 11704 return (0); 11705 } 11706 11707 /* 11708 * Walk through the param array specified registering each element with the 11709 * Named Dispatch handler. This is called only during init. So it is ok 11710 * not to acquire any locks 11711 */ 11712 static boolean_t 11713 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11714 ipndp_t *ipnd, size_t ipnd_cnt) 11715 { 11716 for (; ippa_cnt-- > 0; ippa++) { 11717 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11718 if (!nd_load(ndp, ippa->ip_param_name, 11719 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11720 nd_free(ndp); 11721 return (B_FALSE); 11722 } 11723 } 11724 } 11725 11726 for (; ipnd_cnt-- > 0; ipnd++) { 11727 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11728 if (!nd_load(ndp, ipnd->ip_ndp_name, 11729 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11730 ipnd->ip_ndp_data)) { 11731 nd_free(ndp); 11732 return (B_FALSE); 11733 } 11734 } 11735 } 11736 11737 return (B_TRUE); 11738 } 11739 11740 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11741 /* ARGSUSED */ 11742 static int 11743 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11744 { 11745 long new_value; 11746 ipparam_t *ippa = (ipparam_t *)cp; 11747 11748 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11749 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11750 return (EINVAL); 11751 } 11752 ippa->ip_param_value = new_value; 11753 return (0); 11754 } 11755 11756 /* 11757 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11758 * When an ipf is passed here for the first time, if 11759 * we already have in-order fragments on the queue, we convert from the fast- 11760 * path reassembly scheme to the hard-case scheme. From then on, additional 11761 * fragments are reassembled here. We keep track of the start and end offsets 11762 * of each piece, and the number of holes in the chain. When the hole count 11763 * goes to zero, we are done! 11764 * 11765 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11766 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11767 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11768 * after the call to ip_reassemble(). 11769 */ 11770 int 11771 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11772 size_t msg_len) 11773 { 11774 uint_t end; 11775 mblk_t *next_mp; 11776 mblk_t *mp1; 11777 uint_t offset; 11778 boolean_t incr_dups = B_TRUE; 11779 boolean_t offset_zero_seen = B_FALSE; 11780 boolean_t pkt_boundary_checked = B_FALSE; 11781 11782 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11783 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11784 11785 /* Add in byte count */ 11786 ipf->ipf_count += msg_len; 11787 if (ipf->ipf_end) { 11788 /* 11789 * We were part way through in-order reassembly, but now there 11790 * is a hole. We walk through messages already queued, and 11791 * mark them for hard case reassembly. We know that up till 11792 * now they were in order starting from offset zero. 11793 */ 11794 offset = 0; 11795 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11796 IP_REASS_SET_START(mp1, offset); 11797 if (offset == 0) { 11798 ASSERT(ipf->ipf_nf_hdr_len != 0); 11799 offset = -ipf->ipf_nf_hdr_len; 11800 } 11801 offset += mp1->b_wptr - mp1->b_rptr; 11802 IP_REASS_SET_END(mp1, offset); 11803 } 11804 /* One hole at the end. */ 11805 ipf->ipf_hole_cnt = 1; 11806 /* Brand it as a hard case, forever. */ 11807 ipf->ipf_end = 0; 11808 } 11809 /* Walk through all the new pieces. */ 11810 do { 11811 end = start + (mp->b_wptr - mp->b_rptr); 11812 /* 11813 * If start is 0, decrease 'end' only for the first mblk of 11814 * the fragment. Otherwise 'end' can get wrong value in the 11815 * second pass of the loop if first mblk is exactly the 11816 * size of ipf_nf_hdr_len. 11817 */ 11818 if (start == 0 && !offset_zero_seen) { 11819 /* First segment */ 11820 ASSERT(ipf->ipf_nf_hdr_len != 0); 11821 end -= ipf->ipf_nf_hdr_len; 11822 offset_zero_seen = B_TRUE; 11823 } 11824 next_mp = mp->b_cont; 11825 /* 11826 * We are checking to see if there is any interesing data 11827 * to process. If there isn't and the mblk isn't the 11828 * one which carries the unfragmentable header then we 11829 * drop it. It's possible to have just the unfragmentable 11830 * header come through without any data. That needs to be 11831 * saved. 11832 * 11833 * If the assert at the top of this function holds then the 11834 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11835 * is infrequently traveled enough that the test is left in 11836 * to protect against future code changes which break that 11837 * invariant. 11838 */ 11839 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11840 /* Empty. Blast it. */ 11841 IP_REASS_SET_START(mp, 0); 11842 IP_REASS_SET_END(mp, 0); 11843 /* 11844 * If the ipf points to the mblk we are about to free, 11845 * update ipf to point to the next mblk (or NULL 11846 * if none). 11847 */ 11848 if (ipf->ipf_mp->b_cont == mp) 11849 ipf->ipf_mp->b_cont = next_mp; 11850 freeb(mp); 11851 continue; 11852 } 11853 mp->b_cont = NULL; 11854 IP_REASS_SET_START(mp, start); 11855 IP_REASS_SET_END(mp, end); 11856 if (!ipf->ipf_tail_mp) { 11857 ipf->ipf_tail_mp = mp; 11858 ipf->ipf_mp->b_cont = mp; 11859 if (start == 0 || !more) { 11860 ipf->ipf_hole_cnt = 1; 11861 /* 11862 * if the first fragment comes in more than one 11863 * mblk, this loop will be executed for each 11864 * mblk. Need to adjust hole count so exiting 11865 * this routine will leave hole count at 1. 11866 */ 11867 if (next_mp) 11868 ipf->ipf_hole_cnt++; 11869 } else 11870 ipf->ipf_hole_cnt = 2; 11871 continue; 11872 } else if (ipf->ipf_last_frag_seen && !more && 11873 !pkt_boundary_checked) { 11874 /* 11875 * We check datagram boundary only if this fragment 11876 * claims to be the last fragment and we have seen a 11877 * last fragment in the past too. We do this only 11878 * once for a given fragment. 11879 * 11880 * start cannot be 0 here as fragments with start=0 11881 * and MF=0 gets handled as a complete packet. These 11882 * fragments should not reach here. 11883 */ 11884 11885 if (start + msgdsize(mp) != 11886 IP_REASS_END(ipf->ipf_tail_mp)) { 11887 /* 11888 * We have two fragments both of which claim 11889 * to be the last fragment but gives conflicting 11890 * information about the whole datagram size. 11891 * Something fishy is going on. Drop the 11892 * fragment and free up the reassembly list. 11893 */ 11894 return (IP_REASS_FAILED); 11895 } 11896 11897 /* 11898 * We shouldn't come to this code block again for this 11899 * particular fragment. 11900 */ 11901 pkt_boundary_checked = B_TRUE; 11902 } 11903 11904 /* New stuff at or beyond tail? */ 11905 offset = IP_REASS_END(ipf->ipf_tail_mp); 11906 if (start >= offset) { 11907 if (ipf->ipf_last_frag_seen) { 11908 /* current fragment is beyond last fragment */ 11909 return (IP_REASS_FAILED); 11910 } 11911 /* Link it on end. */ 11912 ipf->ipf_tail_mp->b_cont = mp; 11913 ipf->ipf_tail_mp = mp; 11914 if (more) { 11915 if (start != offset) 11916 ipf->ipf_hole_cnt++; 11917 } else if (start == offset && next_mp == NULL) 11918 ipf->ipf_hole_cnt--; 11919 continue; 11920 } 11921 mp1 = ipf->ipf_mp->b_cont; 11922 offset = IP_REASS_START(mp1); 11923 /* New stuff at the front? */ 11924 if (start < offset) { 11925 if (start == 0) { 11926 if (end >= offset) { 11927 /* Nailed the hole at the begining. */ 11928 ipf->ipf_hole_cnt--; 11929 } 11930 } else if (end < offset) { 11931 /* 11932 * A hole, stuff, and a hole where there used 11933 * to be just a hole. 11934 */ 11935 ipf->ipf_hole_cnt++; 11936 } 11937 mp->b_cont = mp1; 11938 /* Check for overlap. */ 11939 while (end > offset) { 11940 if (end < IP_REASS_END(mp1)) { 11941 mp->b_wptr -= end - offset; 11942 IP_REASS_SET_END(mp, offset); 11943 BUMP_MIB(ill->ill_ip_mib, 11944 ipIfStatsReasmPartDups); 11945 break; 11946 } 11947 /* Did we cover another hole? */ 11948 if ((mp1->b_cont && 11949 IP_REASS_END(mp1) != 11950 IP_REASS_START(mp1->b_cont) && 11951 end >= IP_REASS_START(mp1->b_cont)) || 11952 (!ipf->ipf_last_frag_seen && !more)) { 11953 ipf->ipf_hole_cnt--; 11954 } 11955 /* Clip out mp1. */ 11956 if ((mp->b_cont = mp1->b_cont) == NULL) { 11957 /* 11958 * After clipping out mp1, this guy 11959 * is now hanging off the end. 11960 */ 11961 ipf->ipf_tail_mp = mp; 11962 } 11963 IP_REASS_SET_START(mp1, 0); 11964 IP_REASS_SET_END(mp1, 0); 11965 /* Subtract byte count */ 11966 ipf->ipf_count -= mp1->b_datap->db_lim - 11967 mp1->b_datap->db_base; 11968 freeb(mp1); 11969 BUMP_MIB(ill->ill_ip_mib, 11970 ipIfStatsReasmPartDups); 11971 mp1 = mp->b_cont; 11972 if (!mp1) 11973 break; 11974 offset = IP_REASS_START(mp1); 11975 } 11976 ipf->ipf_mp->b_cont = mp; 11977 continue; 11978 } 11979 /* 11980 * The new piece starts somewhere between the start of the head 11981 * and before the end of the tail. 11982 */ 11983 for (; mp1; mp1 = mp1->b_cont) { 11984 offset = IP_REASS_END(mp1); 11985 if (start < offset) { 11986 if (end <= offset) { 11987 /* Nothing new. */ 11988 IP_REASS_SET_START(mp, 0); 11989 IP_REASS_SET_END(mp, 0); 11990 /* Subtract byte count */ 11991 ipf->ipf_count -= mp->b_datap->db_lim - 11992 mp->b_datap->db_base; 11993 if (incr_dups) { 11994 ipf->ipf_num_dups++; 11995 incr_dups = B_FALSE; 11996 } 11997 freeb(mp); 11998 BUMP_MIB(ill->ill_ip_mib, 11999 ipIfStatsReasmDuplicates); 12000 break; 12001 } 12002 /* 12003 * Trim redundant stuff off beginning of new 12004 * piece. 12005 */ 12006 IP_REASS_SET_START(mp, offset); 12007 mp->b_rptr += offset - start; 12008 BUMP_MIB(ill->ill_ip_mib, 12009 ipIfStatsReasmPartDups); 12010 start = offset; 12011 if (!mp1->b_cont) { 12012 /* 12013 * After trimming, this guy is now 12014 * hanging off the end. 12015 */ 12016 mp1->b_cont = mp; 12017 ipf->ipf_tail_mp = mp; 12018 if (!more) { 12019 ipf->ipf_hole_cnt--; 12020 } 12021 break; 12022 } 12023 } 12024 if (start >= IP_REASS_START(mp1->b_cont)) 12025 continue; 12026 /* Fill a hole */ 12027 if (start > offset) 12028 ipf->ipf_hole_cnt++; 12029 mp->b_cont = mp1->b_cont; 12030 mp1->b_cont = mp; 12031 mp1 = mp->b_cont; 12032 offset = IP_REASS_START(mp1); 12033 if (end >= offset) { 12034 ipf->ipf_hole_cnt--; 12035 /* Check for overlap. */ 12036 while (end > offset) { 12037 if (end < IP_REASS_END(mp1)) { 12038 mp->b_wptr -= end - offset; 12039 IP_REASS_SET_END(mp, offset); 12040 /* 12041 * TODO we might bump 12042 * this up twice if there is 12043 * overlap at both ends. 12044 */ 12045 BUMP_MIB(ill->ill_ip_mib, 12046 ipIfStatsReasmPartDups); 12047 break; 12048 } 12049 /* Did we cover another hole? */ 12050 if ((mp1->b_cont && 12051 IP_REASS_END(mp1) 12052 != IP_REASS_START(mp1->b_cont) && 12053 end >= 12054 IP_REASS_START(mp1->b_cont)) || 12055 (!ipf->ipf_last_frag_seen && 12056 !more)) { 12057 ipf->ipf_hole_cnt--; 12058 } 12059 /* Clip out mp1. */ 12060 if ((mp->b_cont = mp1->b_cont) == 12061 NULL) { 12062 /* 12063 * After clipping out mp1, 12064 * this guy is now hanging 12065 * off the end. 12066 */ 12067 ipf->ipf_tail_mp = mp; 12068 } 12069 IP_REASS_SET_START(mp1, 0); 12070 IP_REASS_SET_END(mp1, 0); 12071 /* Subtract byte count */ 12072 ipf->ipf_count -= 12073 mp1->b_datap->db_lim - 12074 mp1->b_datap->db_base; 12075 freeb(mp1); 12076 BUMP_MIB(ill->ill_ip_mib, 12077 ipIfStatsReasmPartDups); 12078 mp1 = mp->b_cont; 12079 if (!mp1) 12080 break; 12081 offset = IP_REASS_START(mp1); 12082 } 12083 } 12084 break; 12085 } 12086 } while (start = end, mp = next_mp); 12087 12088 /* Fragment just processed could be the last one. Remember this fact */ 12089 if (!more) 12090 ipf->ipf_last_frag_seen = B_TRUE; 12091 12092 /* Still got holes? */ 12093 if (ipf->ipf_hole_cnt) 12094 return (IP_REASS_PARTIAL); 12095 /* Clean up overloaded fields to avoid upstream disasters. */ 12096 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12097 IP_REASS_SET_START(mp1, 0); 12098 IP_REASS_SET_END(mp1, 0); 12099 } 12100 return (IP_REASS_COMPLETE); 12101 } 12102 12103 /* 12104 * ipsec processing for the fast path, used for input UDP Packets 12105 * Returns true if ready for passup to UDP. 12106 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12107 * was an ESP-in-UDP packet, etc.). 12108 */ 12109 static boolean_t 12110 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12111 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12112 { 12113 uint32_t ill_index; 12114 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12115 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12116 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12117 udp_t *udp = connp->conn_udp; 12118 12119 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12120 /* The ill_index of the incoming ILL */ 12121 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12122 12123 /* pass packet up to the transport */ 12124 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12125 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12126 NULL, mctl_present); 12127 if (*first_mpp == NULL) { 12128 return (B_FALSE); 12129 } 12130 } 12131 12132 /* Initiate IPPF processing for fastpath UDP */ 12133 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12134 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12135 if (*mpp == NULL) { 12136 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12137 "deferred/dropped during IPPF processing\n")); 12138 return (B_FALSE); 12139 } 12140 } 12141 /* 12142 * Remove 0-spi if it's 0, or move everything behind 12143 * the UDP header over it and forward to ESP via 12144 * ip_proto_input(). 12145 */ 12146 if (udp->udp_nat_t_endpoint) { 12147 if (mctl_present) { 12148 /* mctl_present *shouldn't* happen. */ 12149 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12150 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12151 &ipss->ipsec_dropper); 12152 *first_mpp = NULL; 12153 return (B_FALSE); 12154 } 12155 12156 /* "ill" is "recv_ill" in actuality. */ 12157 if (!zero_spi_check(q, *mpp, ipha, ire, ill, ipss)) 12158 return (B_FALSE); 12159 12160 /* Else continue like a normal UDP packet. */ 12161 } 12162 12163 /* 12164 * We make the checks as below since we are in the fast path 12165 * and want to minimize the number of checks if the IP_RECVIF and/or 12166 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12167 */ 12168 if (connp->conn_recvif || connp->conn_recvslla || 12169 connp->conn_ip_recvpktinfo) { 12170 if (connp->conn_recvif) { 12171 in_flags = IPF_RECVIF; 12172 } 12173 /* 12174 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12175 * so the flag passed to ip_add_info is based on IP version 12176 * of connp. 12177 */ 12178 if (connp->conn_ip_recvpktinfo) { 12179 if (connp->conn_af_isv6) { 12180 /* 12181 * V6 only needs index 12182 */ 12183 in_flags |= IPF_RECVIF; 12184 } else { 12185 /* 12186 * V4 needs index + matching address. 12187 */ 12188 in_flags |= IPF_RECVADDR; 12189 } 12190 } 12191 if (connp->conn_recvslla) { 12192 in_flags |= IPF_RECVSLLA; 12193 } 12194 /* 12195 * since in_flags are being set ill will be 12196 * referenced in ip_add_info, so it better not 12197 * be NULL. 12198 */ 12199 /* 12200 * the actual data will be contained in b_cont 12201 * upon successful return of the following call. 12202 * If the call fails then the original mblk is 12203 * returned. 12204 */ 12205 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12206 ipst); 12207 } 12208 12209 return (B_TRUE); 12210 } 12211 12212 /* 12213 * Fragmentation reassembly. Each ILL has a hash table for 12214 * queuing packets undergoing reassembly for all IPIFs 12215 * associated with the ILL. The hash is based on the packet 12216 * IP ident field. The ILL frag hash table was allocated 12217 * as a timer block at the time the ILL was created. Whenever 12218 * there is anything on the reassembly queue, the timer will 12219 * be running. Returns B_TRUE if successful else B_FALSE; 12220 * frees mp on failure. 12221 */ 12222 static boolean_t 12223 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12224 uint32_t *cksum_val, uint16_t *cksum_flags) 12225 { 12226 uint32_t frag_offset_flags; 12227 ill_t *ill = (ill_t *)q->q_ptr; 12228 mblk_t *mp = *mpp; 12229 mblk_t *t_mp; 12230 ipaddr_t dst; 12231 uint8_t proto = ipha->ipha_protocol; 12232 uint32_t sum_val; 12233 uint16_t sum_flags; 12234 ipf_t *ipf; 12235 ipf_t **ipfp; 12236 ipfb_t *ipfb; 12237 uint16_t ident; 12238 uint32_t offset; 12239 ipaddr_t src; 12240 uint_t hdr_length; 12241 uint32_t end; 12242 mblk_t *mp1; 12243 mblk_t *tail_mp; 12244 size_t count; 12245 size_t msg_len; 12246 uint8_t ecn_info = 0; 12247 uint32_t packet_size; 12248 boolean_t pruned = B_FALSE; 12249 ip_stack_t *ipst = ill->ill_ipst; 12250 12251 if (cksum_val != NULL) 12252 *cksum_val = 0; 12253 if (cksum_flags != NULL) 12254 *cksum_flags = 0; 12255 12256 /* 12257 * Drop the fragmented as early as possible, if 12258 * we don't have resource(s) to re-assemble. 12259 */ 12260 if (ipst->ips_ip_reass_queue_bytes == 0) { 12261 freemsg(mp); 12262 return (B_FALSE); 12263 } 12264 12265 /* Check for fragmentation offset; return if there's none */ 12266 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12267 (IPH_MF | IPH_OFFSET)) == 0) 12268 return (B_TRUE); 12269 12270 /* 12271 * We utilize hardware computed checksum info only for UDP since 12272 * IP fragmentation is a normal occurence for the protocol. In 12273 * addition, checksum offload support for IP fragments carrying 12274 * UDP payload is commonly implemented across network adapters. 12275 */ 12276 ASSERT(ill != NULL); 12277 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12278 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12279 mblk_t *mp1 = mp->b_cont; 12280 int32_t len; 12281 12282 /* Record checksum information from the packet */ 12283 sum_val = (uint32_t)DB_CKSUM16(mp); 12284 sum_flags = DB_CKSUMFLAGS(mp); 12285 12286 /* IP payload offset from beginning of mblk */ 12287 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12288 12289 if ((sum_flags & HCK_PARTIALCKSUM) && 12290 (mp1 == NULL || mp1->b_cont == NULL) && 12291 offset >= DB_CKSUMSTART(mp) && 12292 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12293 uint32_t adj; 12294 /* 12295 * Partial checksum has been calculated by hardware 12296 * and attached to the packet; in addition, any 12297 * prepended extraneous data is even byte aligned. 12298 * If any such data exists, we adjust the checksum; 12299 * this would also handle any postpended data. 12300 */ 12301 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12302 mp, mp1, len, adj); 12303 12304 /* One's complement subtract extraneous checksum */ 12305 if (adj >= sum_val) 12306 sum_val = ~(adj - sum_val) & 0xFFFF; 12307 else 12308 sum_val -= adj; 12309 } 12310 } else { 12311 sum_val = 0; 12312 sum_flags = 0; 12313 } 12314 12315 /* Clear hardware checksumming flag */ 12316 DB_CKSUMFLAGS(mp) = 0; 12317 12318 ident = ipha->ipha_ident; 12319 offset = (frag_offset_flags << 3) & 0xFFFF; 12320 src = ipha->ipha_src; 12321 dst = ipha->ipha_dst; 12322 hdr_length = IPH_HDR_LENGTH(ipha); 12323 end = ntohs(ipha->ipha_length) - hdr_length; 12324 12325 /* If end == 0 then we have a packet with no data, so just free it */ 12326 if (end == 0) { 12327 freemsg(mp); 12328 return (B_FALSE); 12329 } 12330 12331 /* Record the ECN field info. */ 12332 ecn_info = (ipha->ipha_type_of_service & 0x3); 12333 if (offset != 0) { 12334 /* 12335 * If this isn't the first piece, strip the header, and 12336 * add the offset to the end value. 12337 */ 12338 mp->b_rptr += hdr_length; 12339 end += offset; 12340 } 12341 12342 msg_len = MBLKSIZE(mp); 12343 tail_mp = mp; 12344 while (tail_mp->b_cont != NULL) { 12345 tail_mp = tail_mp->b_cont; 12346 msg_len += MBLKSIZE(tail_mp); 12347 } 12348 12349 /* If the reassembly list for this ILL will get too big, prune it */ 12350 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12351 ipst->ips_ip_reass_queue_bytes) { 12352 ill_frag_prune(ill, 12353 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12354 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12355 pruned = B_TRUE; 12356 } 12357 12358 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12359 mutex_enter(&ipfb->ipfb_lock); 12360 12361 ipfp = &ipfb->ipfb_ipf; 12362 /* Try to find an existing fragment queue for this packet. */ 12363 for (;;) { 12364 ipf = ipfp[0]; 12365 if (ipf != NULL) { 12366 /* 12367 * It has to match on ident and src/dst address. 12368 */ 12369 if (ipf->ipf_ident == ident && 12370 ipf->ipf_src == src && 12371 ipf->ipf_dst == dst && 12372 ipf->ipf_protocol == proto) { 12373 /* 12374 * If we have received too many 12375 * duplicate fragments for this packet 12376 * free it. 12377 */ 12378 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12379 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12380 freemsg(mp); 12381 mutex_exit(&ipfb->ipfb_lock); 12382 return (B_FALSE); 12383 } 12384 /* Found it. */ 12385 break; 12386 } 12387 ipfp = &ipf->ipf_hash_next; 12388 continue; 12389 } 12390 12391 /* 12392 * If we pruned the list, do we want to store this new 12393 * fragment?. We apply an optimization here based on the 12394 * fact that most fragments will be received in order. 12395 * So if the offset of this incoming fragment is zero, 12396 * it is the first fragment of a new packet. We will 12397 * keep it. Otherwise drop the fragment, as we have 12398 * probably pruned the packet already (since the 12399 * packet cannot be found). 12400 */ 12401 if (pruned && offset != 0) { 12402 mutex_exit(&ipfb->ipfb_lock); 12403 freemsg(mp); 12404 return (B_FALSE); 12405 } 12406 12407 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12408 /* 12409 * Too many fragmented packets in this hash 12410 * bucket. Free the oldest. 12411 */ 12412 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12413 } 12414 12415 /* New guy. Allocate a frag message. */ 12416 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12417 if (mp1 == NULL) { 12418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12419 freemsg(mp); 12420 reass_done: 12421 mutex_exit(&ipfb->ipfb_lock); 12422 return (B_FALSE); 12423 } 12424 12425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12426 mp1->b_cont = mp; 12427 12428 /* Initialize the fragment header. */ 12429 ipf = (ipf_t *)mp1->b_rptr; 12430 ipf->ipf_mp = mp1; 12431 ipf->ipf_ptphn = ipfp; 12432 ipfp[0] = ipf; 12433 ipf->ipf_hash_next = NULL; 12434 ipf->ipf_ident = ident; 12435 ipf->ipf_protocol = proto; 12436 ipf->ipf_src = src; 12437 ipf->ipf_dst = dst; 12438 ipf->ipf_nf_hdr_len = 0; 12439 /* Record reassembly start time. */ 12440 ipf->ipf_timestamp = gethrestime_sec(); 12441 /* Record ipf generation and account for frag header */ 12442 ipf->ipf_gen = ill->ill_ipf_gen++; 12443 ipf->ipf_count = MBLKSIZE(mp1); 12444 ipf->ipf_last_frag_seen = B_FALSE; 12445 ipf->ipf_ecn = ecn_info; 12446 ipf->ipf_num_dups = 0; 12447 ipfb->ipfb_frag_pkts++; 12448 ipf->ipf_checksum = 0; 12449 ipf->ipf_checksum_flags = 0; 12450 12451 /* Store checksum value in fragment header */ 12452 if (sum_flags != 0) { 12453 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12454 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12455 ipf->ipf_checksum = sum_val; 12456 ipf->ipf_checksum_flags = sum_flags; 12457 } 12458 12459 /* 12460 * We handle reassembly two ways. In the easy case, 12461 * where all the fragments show up in order, we do 12462 * minimal bookkeeping, and just clip new pieces on 12463 * the end. If we ever see a hole, then we go off 12464 * to ip_reassemble which has to mark the pieces and 12465 * keep track of the number of holes, etc. Obviously, 12466 * the point of having both mechanisms is so we can 12467 * handle the easy case as efficiently as possible. 12468 */ 12469 if (offset == 0) { 12470 /* Easy case, in-order reassembly so far. */ 12471 ipf->ipf_count += msg_len; 12472 ipf->ipf_tail_mp = tail_mp; 12473 /* 12474 * Keep track of next expected offset in 12475 * ipf_end. 12476 */ 12477 ipf->ipf_end = end; 12478 ipf->ipf_nf_hdr_len = hdr_length; 12479 } else { 12480 /* Hard case, hole at the beginning. */ 12481 ipf->ipf_tail_mp = NULL; 12482 /* 12483 * ipf_end == 0 means that we have given up 12484 * on easy reassembly. 12485 */ 12486 ipf->ipf_end = 0; 12487 12488 /* Forget checksum offload from now on */ 12489 ipf->ipf_checksum_flags = 0; 12490 12491 /* 12492 * ipf_hole_cnt is set by ip_reassemble. 12493 * ipf_count is updated by ip_reassemble. 12494 * No need to check for return value here 12495 * as we don't expect reassembly to complete 12496 * or fail for the first fragment itself. 12497 */ 12498 (void) ip_reassemble(mp, ipf, 12499 (frag_offset_flags & IPH_OFFSET) << 3, 12500 (frag_offset_flags & IPH_MF), ill, msg_len); 12501 } 12502 /* Update per ipfb and ill byte counts */ 12503 ipfb->ipfb_count += ipf->ipf_count; 12504 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12505 ill->ill_frag_count += ipf->ipf_count; 12506 /* If the frag timer wasn't already going, start it. */ 12507 mutex_enter(&ill->ill_lock); 12508 ill_frag_timer_start(ill); 12509 mutex_exit(&ill->ill_lock); 12510 goto reass_done; 12511 } 12512 12513 /* 12514 * If the packet's flag has changed (it could be coming up 12515 * from an interface different than the previous, therefore 12516 * possibly different checksum capability), then forget about 12517 * any stored checksum states. Otherwise add the value to 12518 * the existing one stored in the fragment header. 12519 */ 12520 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12521 sum_val += ipf->ipf_checksum; 12522 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12523 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12524 ipf->ipf_checksum = sum_val; 12525 } else if (ipf->ipf_checksum_flags != 0) { 12526 /* Forget checksum offload from now on */ 12527 ipf->ipf_checksum_flags = 0; 12528 } 12529 12530 /* 12531 * We have a new piece of a datagram which is already being 12532 * reassembled. Update the ECN info if all IP fragments 12533 * are ECN capable. If there is one which is not, clear 12534 * all the info. If there is at least one which has CE 12535 * code point, IP needs to report that up to transport. 12536 */ 12537 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12538 if (ecn_info == IPH_ECN_CE) 12539 ipf->ipf_ecn = IPH_ECN_CE; 12540 } else { 12541 ipf->ipf_ecn = IPH_ECN_NECT; 12542 } 12543 if (offset && ipf->ipf_end == offset) { 12544 /* The new fragment fits at the end */ 12545 ipf->ipf_tail_mp->b_cont = mp; 12546 /* Update the byte count */ 12547 ipf->ipf_count += msg_len; 12548 /* Update per ipfb and ill byte counts */ 12549 ipfb->ipfb_count += msg_len; 12550 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12551 ill->ill_frag_count += msg_len; 12552 if (frag_offset_flags & IPH_MF) { 12553 /* More to come. */ 12554 ipf->ipf_end = end; 12555 ipf->ipf_tail_mp = tail_mp; 12556 goto reass_done; 12557 } 12558 } else { 12559 /* Go do the hard cases. */ 12560 int ret; 12561 12562 if (offset == 0) 12563 ipf->ipf_nf_hdr_len = hdr_length; 12564 12565 /* Save current byte count */ 12566 count = ipf->ipf_count; 12567 ret = ip_reassemble(mp, ipf, 12568 (frag_offset_flags & IPH_OFFSET) << 3, 12569 (frag_offset_flags & IPH_MF), ill, msg_len); 12570 /* Count of bytes added and subtracted (freeb()ed) */ 12571 count = ipf->ipf_count - count; 12572 if (count) { 12573 /* Update per ipfb and ill byte counts */ 12574 ipfb->ipfb_count += count; 12575 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12576 ill->ill_frag_count += count; 12577 } 12578 if (ret == IP_REASS_PARTIAL) { 12579 goto reass_done; 12580 } else if (ret == IP_REASS_FAILED) { 12581 /* Reassembly failed. Free up all resources */ 12582 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12583 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12584 IP_REASS_SET_START(t_mp, 0); 12585 IP_REASS_SET_END(t_mp, 0); 12586 } 12587 freemsg(mp); 12588 goto reass_done; 12589 } 12590 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12591 } 12592 /* 12593 * We have completed reassembly. Unhook the frag header from 12594 * the reassembly list. 12595 * 12596 * Before we free the frag header, record the ECN info 12597 * to report back to the transport. 12598 */ 12599 ecn_info = ipf->ipf_ecn; 12600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12601 ipfp = ipf->ipf_ptphn; 12602 12603 /* We need to supply these to caller */ 12604 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12605 sum_val = ipf->ipf_checksum; 12606 else 12607 sum_val = 0; 12608 12609 mp1 = ipf->ipf_mp; 12610 count = ipf->ipf_count; 12611 ipf = ipf->ipf_hash_next; 12612 if (ipf != NULL) 12613 ipf->ipf_ptphn = ipfp; 12614 ipfp[0] = ipf; 12615 ill->ill_frag_count -= count; 12616 ASSERT(ipfb->ipfb_count >= count); 12617 ipfb->ipfb_count -= count; 12618 ipfb->ipfb_frag_pkts--; 12619 mutex_exit(&ipfb->ipfb_lock); 12620 /* Ditch the frag header. */ 12621 mp = mp1->b_cont; 12622 12623 freeb(mp1); 12624 12625 /* Restore original IP length in header. */ 12626 packet_size = (uint32_t)msgdsize(mp); 12627 if (packet_size > IP_MAXPACKET) { 12628 freemsg(mp); 12629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12630 return (B_FALSE); 12631 } 12632 12633 if (DB_REF(mp) > 1) { 12634 mblk_t *mp2 = copymsg(mp); 12635 12636 freemsg(mp); 12637 if (mp2 == NULL) { 12638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12639 return (B_FALSE); 12640 } 12641 mp = mp2; 12642 } 12643 ipha = (ipha_t *)mp->b_rptr; 12644 12645 ipha->ipha_length = htons((uint16_t)packet_size); 12646 /* We're now complete, zip the frag state */ 12647 ipha->ipha_fragment_offset_and_flags = 0; 12648 /* Record the ECN info. */ 12649 ipha->ipha_type_of_service &= 0xFC; 12650 ipha->ipha_type_of_service |= ecn_info; 12651 *mpp = mp; 12652 12653 /* Reassembly is successful; return checksum information if needed */ 12654 if (cksum_val != NULL) 12655 *cksum_val = sum_val; 12656 if (cksum_flags != NULL) 12657 *cksum_flags = sum_flags; 12658 12659 return (B_TRUE); 12660 } 12661 12662 /* 12663 * Perform ip header check sum update local options. 12664 * return B_TRUE if all is well, else return B_FALSE and release 12665 * the mp. caller is responsible for decrementing ire ref cnt. 12666 */ 12667 static boolean_t 12668 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12669 ip_stack_t *ipst) 12670 { 12671 mblk_t *first_mp; 12672 boolean_t mctl_present; 12673 uint16_t sum; 12674 12675 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12676 /* 12677 * Don't do the checksum if it has gone through AH/ESP 12678 * processing. 12679 */ 12680 if (!mctl_present) { 12681 sum = ip_csum_hdr(ipha); 12682 if (sum != 0) { 12683 if (ill != NULL) { 12684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12685 } else { 12686 BUMP_MIB(&ipst->ips_ip_mib, 12687 ipIfStatsInCksumErrs); 12688 } 12689 freemsg(first_mp); 12690 return (B_FALSE); 12691 } 12692 } 12693 12694 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12695 if (mctl_present) 12696 freeb(first_mp); 12697 return (B_FALSE); 12698 } 12699 12700 return (B_TRUE); 12701 } 12702 12703 /* 12704 * All udp packet are delivered to the local host via this routine. 12705 */ 12706 void 12707 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12708 ill_t *recv_ill) 12709 { 12710 uint32_t sum; 12711 uint32_t u1; 12712 boolean_t mctl_present; 12713 conn_t *connp; 12714 mblk_t *first_mp; 12715 uint16_t *up; 12716 ill_t *ill = (ill_t *)q->q_ptr; 12717 uint16_t reass_hck_flags = 0; 12718 ip_stack_t *ipst; 12719 12720 ASSERT(recv_ill != NULL); 12721 ipst = recv_ill->ill_ipst; 12722 12723 #define rptr ((uchar_t *)ipha) 12724 12725 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12726 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12727 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12728 ASSERT(ill != NULL); 12729 12730 /* 12731 * FAST PATH for udp packets 12732 */ 12733 12734 /* u1 is # words of IP options */ 12735 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12736 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12737 12738 /* IP options present */ 12739 if (u1 != 0) 12740 goto ipoptions; 12741 12742 /* Check the IP header checksum. */ 12743 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12744 /* Clear the IP header h/w cksum flag */ 12745 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12746 } else if (!mctl_present) { 12747 /* 12748 * Don't verify header checksum if this packet is coming 12749 * back from AH/ESP as we already did it. 12750 */ 12751 #define uph ((uint16_t *)ipha) 12752 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12753 uph[6] + uph[7] + uph[8] + uph[9]; 12754 #undef uph 12755 /* finish doing IP checksum */ 12756 sum = (sum & 0xFFFF) + (sum >> 16); 12757 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12758 if (sum != 0 && sum != 0xFFFF) { 12759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12760 freemsg(first_mp); 12761 return; 12762 } 12763 } 12764 12765 /* 12766 * Count for SNMP of inbound packets for ire. 12767 * if mctl is present this might be a secure packet and 12768 * has already been counted for in ip_proto_input(). 12769 */ 12770 if (!mctl_present) { 12771 UPDATE_IB_PKT_COUNT(ire); 12772 ire->ire_last_used_time = lbolt; 12773 } 12774 12775 /* packet part of fragmented IP packet? */ 12776 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12777 if (u1 & (IPH_MF | IPH_OFFSET)) { 12778 goto fragmented; 12779 } 12780 12781 /* u1 = IP header length (20 bytes) */ 12782 u1 = IP_SIMPLE_HDR_LENGTH; 12783 12784 /* packet does not contain complete IP & UDP headers */ 12785 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12786 goto udppullup; 12787 12788 /* up points to UDP header */ 12789 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12790 #define iphs ((uint16_t *)ipha) 12791 12792 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12793 if (up[3] != 0) { 12794 mblk_t *mp1 = mp->b_cont; 12795 boolean_t cksum_err; 12796 uint16_t hck_flags = 0; 12797 12798 /* Pseudo-header checksum */ 12799 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12800 iphs[9] + up[2]; 12801 12802 /* 12803 * Revert to software checksum calculation if the interface 12804 * isn't capable of checksum offload or if IPsec is present. 12805 */ 12806 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12807 hck_flags = DB_CKSUMFLAGS(mp); 12808 12809 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12810 IP_STAT(ipst, ip_in_sw_cksum); 12811 12812 IP_CKSUM_RECV(hck_flags, u1, 12813 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12814 (int32_t)((uchar_t *)up - rptr), 12815 mp, mp1, cksum_err); 12816 12817 if (cksum_err) { 12818 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12819 if (hck_flags & HCK_FULLCKSUM) 12820 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12821 else if (hck_flags & HCK_PARTIALCKSUM) 12822 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12823 else 12824 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12825 12826 freemsg(first_mp); 12827 return; 12828 } 12829 } 12830 12831 /* Non-fragmented broadcast or multicast packet? */ 12832 if (ire->ire_type == IRE_BROADCAST) 12833 goto udpslowpath; 12834 12835 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12836 ire->ire_zoneid, ipst)) != NULL) { 12837 ASSERT(connp->conn_upq != NULL); 12838 IP_STAT(ipst, ip_udp_fast_path); 12839 12840 if (CONN_UDP_FLOWCTLD(connp)) { 12841 freemsg(mp); 12842 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12843 } else { 12844 if (!mctl_present) { 12845 BUMP_MIB(ill->ill_ip_mib, 12846 ipIfStatsHCInDelivers); 12847 } 12848 /* 12849 * mp and first_mp can change. 12850 */ 12851 if (ip_udp_check(q, connp, recv_ill, 12852 ipha, &mp, &first_mp, mctl_present, ire)) { 12853 /* Send it upstream */ 12854 CONN_UDP_RECV(connp, mp); 12855 } 12856 } 12857 /* 12858 * freeb() cannot deal with null mblk being passed 12859 * in and first_mp can be set to null in the call 12860 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12861 */ 12862 if (mctl_present && first_mp != NULL) { 12863 freeb(first_mp); 12864 } 12865 CONN_DEC_REF(connp); 12866 return; 12867 } 12868 12869 /* 12870 * if we got here we know the packet is not fragmented and 12871 * has no options. The classifier could not find a conn_t and 12872 * most likely its an icmp packet so send it through slow path. 12873 */ 12874 12875 goto udpslowpath; 12876 12877 ipoptions: 12878 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12879 goto slow_done; 12880 } 12881 12882 UPDATE_IB_PKT_COUNT(ire); 12883 ire->ire_last_used_time = lbolt; 12884 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12885 if (u1 & (IPH_MF | IPH_OFFSET)) { 12886 fragmented: 12887 /* 12888 * "sum" and "reass_hck_flags" are non-zero if the 12889 * reassembled packet has a valid hardware computed 12890 * checksum information associated with it. 12891 */ 12892 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12893 goto slow_done; 12894 /* 12895 * Make sure that first_mp points back to mp as 12896 * the mp we came in with could have changed in 12897 * ip_rput_fragment(). 12898 */ 12899 ASSERT(!mctl_present); 12900 ipha = (ipha_t *)mp->b_rptr; 12901 first_mp = mp; 12902 } 12903 12904 /* Now we have a complete datagram, destined for this machine. */ 12905 u1 = IPH_HDR_LENGTH(ipha); 12906 /* Pull up the UDP header, if necessary. */ 12907 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12908 udppullup: 12909 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12911 freemsg(first_mp); 12912 goto slow_done; 12913 } 12914 ipha = (ipha_t *)mp->b_rptr; 12915 } 12916 12917 /* 12918 * Validate the checksum for the reassembled packet; for the 12919 * pullup case we calculate the payload checksum in software. 12920 */ 12921 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12922 if (up[3] != 0) { 12923 boolean_t cksum_err; 12924 12925 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12926 IP_STAT(ipst, ip_in_sw_cksum); 12927 12928 IP_CKSUM_RECV_REASS(reass_hck_flags, 12929 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12930 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12931 iphs[9] + up[2], sum, cksum_err); 12932 12933 if (cksum_err) { 12934 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12935 12936 if (reass_hck_flags & HCK_FULLCKSUM) 12937 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12938 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12939 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12940 else 12941 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12942 12943 freemsg(first_mp); 12944 goto slow_done; 12945 } 12946 } 12947 udpslowpath: 12948 12949 /* Clear hardware checksum flag to be safe */ 12950 DB_CKSUMFLAGS(mp) = 0; 12951 12952 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12953 (ire->ire_type == IRE_BROADCAST), 12954 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12955 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12956 12957 slow_done: 12958 IP_STAT(ipst, ip_udp_slow_path); 12959 return; 12960 12961 #undef iphs 12962 #undef rptr 12963 } 12964 12965 /* ARGSUSED */ 12966 static mblk_t * 12967 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12968 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12969 ill_rx_ring_t *ill_ring) 12970 { 12971 conn_t *connp; 12972 uint32_t sum; 12973 uint32_t u1; 12974 uint16_t *up; 12975 int offset; 12976 ssize_t len; 12977 mblk_t *mp1; 12978 boolean_t syn_present = B_FALSE; 12979 tcph_t *tcph; 12980 uint_t ip_hdr_len; 12981 ill_t *ill = (ill_t *)q->q_ptr; 12982 zoneid_t zoneid = ire->ire_zoneid; 12983 boolean_t cksum_err; 12984 uint16_t hck_flags = 0; 12985 ip_stack_t *ipst = recv_ill->ill_ipst; 12986 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12987 12988 #define rptr ((uchar_t *)ipha) 12989 12990 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12991 ASSERT(ill != NULL); 12992 12993 /* 12994 * FAST PATH for tcp packets 12995 */ 12996 12997 /* u1 is # words of IP options */ 12998 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12999 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13000 13001 /* IP options present */ 13002 if (u1) { 13003 goto ipoptions; 13004 } else { 13005 /* Check the IP header checksum. */ 13006 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13007 /* Clear the IP header h/w cksum flag */ 13008 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13009 } else if (!mctl_present) { 13010 /* 13011 * Don't verify header checksum if this packet 13012 * is coming back from AH/ESP as we already did it. 13013 */ 13014 #define uph ((uint16_t *)ipha) 13015 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13016 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13017 #undef uph 13018 /* finish doing IP checksum */ 13019 sum = (sum & 0xFFFF) + (sum >> 16); 13020 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13021 if (sum != 0 && sum != 0xFFFF) { 13022 BUMP_MIB(ill->ill_ip_mib, 13023 ipIfStatsInCksumErrs); 13024 goto error; 13025 } 13026 } 13027 } 13028 13029 if (!mctl_present) { 13030 UPDATE_IB_PKT_COUNT(ire); 13031 ire->ire_last_used_time = lbolt; 13032 } 13033 13034 /* packet part of fragmented IP packet? */ 13035 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13036 if (u1 & (IPH_MF | IPH_OFFSET)) { 13037 goto fragmented; 13038 } 13039 13040 /* u1 = IP header length (20 bytes) */ 13041 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13042 13043 /* does packet contain IP+TCP headers? */ 13044 len = mp->b_wptr - rptr; 13045 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13046 IP_STAT(ipst, ip_tcppullup); 13047 goto tcppullup; 13048 } 13049 13050 /* TCP options present? */ 13051 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13052 13053 /* 13054 * If options need to be pulled up, then goto tcpoptions. 13055 * otherwise we are still in the fast path 13056 */ 13057 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13058 IP_STAT(ipst, ip_tcpoptions); 13059 goto tcpoptions; 13060 } 13061 13062 /* multiple mblks of tcp data? */ 13063 if ((mp1 = mp->b_cont) != NULL) { 13064 /* more then two? */ 13065 if (mp1->b_cont != NULL) { 13066 IP_STAT(ipst, ip_multipkttcp); 13067 goto multipkttcp; 13068 } 13069 len += mp1->b_wptr - mp1->b_rptr; 13070 } 13071 13072 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13073 13074 /* part of pseudo checksum */ 13075 13076 /* TCP datagram length */ 13077 u1 = len - IP_SIMPLE_HDR_LENGTH; 13078 13079 #define iphs ((uint16_t *)ipha) 13080 13081 #ifdef _BIG_ENDIAN 13082 u1 += IPPROTO_TCP; 13083 #else 13084 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13085 #endif 13086 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13087 13088 /* 13089 * Revert to software checksum calculation if the interface 13090 * isn't capable of checksum offload or if IPsec is present. 13091 */ 13092 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13093 hck_flags = DB_CKSUMFLAGS(mp); 13094 13095 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13096 IP_STAT(ipst, ip_in_sw_cksum); 13097 13098 IP_CKSUM_RECV(hck_flags, u1, 13099 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13100 (int32_t)((uchar_t *)up - rptr), 13101 mp, mp1, cksum_err); 13102 13103 if (cksum_err) { 13104 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13105 13106 if (hck_flags & HCK_FULLCKSUM) 13107 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13108 else if (hck_flags & HCK_PARTIALCKSUM) 13109 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13110 else 13111 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13112 13113 goto error; 13114 } 13115 13116 try_again: 13117 13118 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13119 zoneid, ipst)) == NULL) { 13120 /* Send the TH_RST */ 13121 goto no_conn; 13122 } 13123 13124 /* 13125 * TCP FAST PATH for AF_INET socket. 13126 * 13127 * TCP fast path to avoid extra work. An AF_INET socket type 13128 * does not have facility to receive extra information via 13129 * ip_process or ip_add_info. Also, when the connection was 13130 * established, we made a check if this connection is impacted 13131 * by any global IPsec policy or per connection policy (a 13132 * policy that comes in effect later will not apply to this 13133 * connection). Since all this can be determined at the 13134 * connection establishment time, a quick check of flags 13135 * can avoid extra work. 13136 */ 13137 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13138 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13139 ASSERT(first_mp == mp); 13140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13141 SET_SQUEUE(mp, tcp_rput_data, connp); 13142 return (mp); 13143 } 13144 13145 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13146 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13147 if (IPCL_IS_TCP(connp)) { 13148 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13149 DB_CKSUMSTART(mp) = 13150 (intptr_t)ip_squeue_get(ill_ring); 13151 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13152 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13153 BUMP_MIB(ill->ill_ip_mib, 13154 ipIfStatsHCInDelivers); 13155 SET_SQUEUE(mp, connp->conn_recv, connp); 13156 return (mp); 13157 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13158 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13159 BUMP_MIB(ill->ill_ip_mib, 13160 ipIfStatsHCInDelivers); 13161 ip_squeue_enter_unbound++; 13162 SET_SQUEUE(mp, tcp_conn_request_unbound, 13163 connp); 13164 return (mp); 13165 } 13166 syn_present = B_TRUE; 13167 } 13168 13169 } 13170 13171 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13172 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13173 13174 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13175 /* No need to send this packet to TCP */ 13176 if ((flags & TH_RST) || (flags & TH_URG)) { 13177 CONN_DEC_REF(connp); 13178 freemsg(first_mp); 13179 return (NULL); 13180 } 13181 if (flags & TH_ACK) { 13182 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13183 ipst->ips_netstack->netstack_tcp); 13184 CONN_DEC_REF(connp); 13185 return (NULL); 13186 } 13187 13188 CONN_DEC_REF(connp); 13189 freemsg(first_mp); 13190 return (NULL); 13191 } 13192 13193 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13194 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13195 ipha, NULL, mctl_present); 13196 if (first_mp == NULL) { 13197 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13198 CONN_DEC_REF(connp); 13199 return (NULL); 13200 } 13201 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13202 ASSERT(syn_present); 13203 if (mctl_present) { 13204 ASSERT(first_mp != mp); 13205 first_mp->b_datap->db_struioflag |= 13206 STRUIO_POLICY; 13207 } else { 13208 ASSERT(first_mp == mp); 13209 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13210 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13211 } 13212 } else { 13213 /* 13214 * Discard first_mp early since we're dealing with a 13215 * fully-connected conn_t and tcp doesn't do policy in 13216 * this case. 13217 */ 13218 if (mctl_present) { 13219 freeb(first_mp); 13220 mctl_present = B_FALSE; 13221 } 13222 first_mp = mp; 13223 } 13224 } 13225 13226 /* Initiate IPPF processing for fastpath */ 13227 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13228 uint32_t ill_index; 13229 13230 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13231 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13232 if (mp == NULL) { 13233 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13234 "deferred/dropped during IPPF processing\n")); 13235 CONN_DEC_REF(connp); 13236 if (mctl_present) 13237 freeb(first_mp); 13238 return (NULL); 13239 } else if (mctl_present) { 13240 /* 13241 * ip_process might return a new mp. 13242 */ 13243 ASSERT(first_mp != mp); 13244 first_mp->b_cont = mp; 13245 } else { 13246 first_mp = mp; 13247 } 13248 13249 } 13250 13251 if (!syn_present && connp->conn_ip_recvpktinfo) { 13252 /* 13253 * TCP does not support IP_RECVPKTINFO for v4 so lets 13254 * make sure IPF_RECVIF is passed to ip_add_info. 13255 */ 13256 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13257 IPCL_ZONEID(connp), ipst); 13258 if (mp == NULL) { 13259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13260 CONN_DEC_REF(connp); 13261 if (mctl_present) 13262 freeb(first_mp); 13263 return (NULL); 13264 } else if (mctl_present) { 13265 /* 13266 * ip_add_info might return a new mp. 13267 */ 13268 ASSERT(first_mp != mp); 13269 first_mp->b_cont = mp; 13270 } else { 13271 first_mp = mp; 13272 } 13273 } 13274 13275 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13276 if (IPCL_IS_TCP(connp)) { 13277 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13278 return (first_mp); 13279 } else { 13280 putnext(connp->conn_rq, first_mp); 13281 CONN_DEC_REF(connp); 13282 return (NULL); 13283 } 13284 13285 no_conn: 13286 /* Initiate IPPf processing, if needed. */ 13287 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13288 uint32_t ill_index; 13289 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13290 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13291 if (first_mp == NULL) { 13292 return (NULL); 13293 } 13294 } 13295 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13296 13297 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13298 ipst->ips_netstack->netstack_tcp); 13299 return (NULL); 13300 ipoptions: 13301 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13302 goto slow_done; 13303 } 13304 13305 UPDATE_IB_PKT_COUNT(ire); 13306 ire->ire_last_used_time = lbolt; 13307 13308 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13309 if (u1 & (IPH_MF | IPH_OFFSET)) { 13310 fragmented: 13311 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13312 if (mctl_present) 13313 freeb(first_mp); 13314 goto slow_done; 13315 } 13316 /* 13317 * Make sure that first_mp points back to mp as 13318 * the mp we came in with could have changed in 13319 * ip_rput_fragment(). 13320 */ 13321 ASSERT(!mctl_present); 13322 ipha = (ipha_t *)mp->b_rptr; 13323 first_mp = mp; 13324 } 13325 13326 /* Now we have a complete datagram, destined for this machine. */ 13327 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13328 13329 len = mp->b_wptr - mp->b_rptr; 13330 /* Pull up a minimal TCP header, if necessary. */ 13331 if (len < (u1 + 20)) { 13332 tcppullup: 13333 if (!pullupmsg(mp, u1 + 20)) { 13334 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13335 goto error; 13336 } 13337 ipha = (ipha_t *)mp->b_rptr; 13338 len = mp->b_wptr - mp->b_rptr; 13339 } 13340 13341 /* 13342 * Extract the offset field from the TCP header. As usual, we 13343 * try to help the compiler more than the reader. 13344 */ 13345 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13346 if (offset != 5) { 13347 tcpoptions: 13348 if (offset < 5) { 13349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13350 goto error; 13351 } 13352 /* 13353 * There must be TCP options. 13354 * Make sure we can grab them. 13355 */ 13356 offset <<= 2; 13357 offset += u1; 13358 if (len < offset) { 13359 if (!pullupmsg(mp, offset)) { 13360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13361 goto error; 13362 } 13363 ipha = (ipha_t *)mp->b_rptr; 13364 len = mp->b_wptr - rptr; 13365 } 13366 } 13367 13368 /* Get the total packet length in len, including headers. */ 13369 if (mp->b_cont) { 13370 multipkttcp: 13371 len = msgdsize(mp); 13372 } 13373 13374 /* 13375 * Check the TCP checksum by pulling together the pseudo- 13376 * header checksum, and passing it to ip_csum to be added in 13377 * with the TCP datagram. 13378 * 13379 * Since we are not using the hwcksum if available we must 13380 * clear the flag. We may come here via tcppullup or tcpoptions. 13381 * If either of these fails along the way the mblk is freed. 13382 * If this logic ever changes and mblk is reused to say send 13383 * ICMP's back, then this flag may need to be cleared in 13384 * other places as well. 13385 */ 13386 DB_CKSUMFLAGS(mp) = 0; 13387 13388 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13389 13390 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13391 #ifdef _BIG_ENDIAN 13392 u1 += IPPROTO_TCP; 13393 #else 13394 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13395 #endif 13396 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13397 /* 13398 * Not M_DATA mblk or its a dup, so do the checksum now. 13399 */ 13400 IP_STAT(ipst, ip_in_sw_cksum); 13401 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13402 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13403 goto error; 13404 } 13405 13406 IP_STAT(ipst, ip_tcp_slow_path); 13407 goto try_again; 13408 #undef iphs 13409 #undef rptr 13410 13411 error: 13412 freemsg(first_mp); 13413 slow_done: 13414 return (NULL); 13415 } 13416 13417 /* ARGSUSED */ 13418 static void 13419 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13420 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13421 { 13422 conn_t *connp; 13423 uint32_t sum; 13424 uint32_t u1; 13425 ssize_t len; 13426 sctp_hdr_t *sctph; 13427 zoneid_t zoneid = ire->ire_zoneid; 13428 uint32_t pktsum; 13429 uint32_t calcsum; 13430 uint32_t ports; 13431 in6_addr_t map_src, map_dst; 13432 ill_t *ill = (ill_t *)q->q_ptr; 13433 ip_stack_t *ipst; 13434 sctp_stack_t *sctps; 13435 13436 ASSERT(recv_ill != NULL); 13437 ipst = recv_ill->ill_ipst; 13438 sctps = ipst->ips_netstack->netstack_sctp; 13439 13440 #define rptr ((uchar_t *)ipha) 13441 13442 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13443 ASSERT(ill != NULL); 13444 13445 /* u1 is # words of IP options */ 13446 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13447 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13448 13449 /* IP options present */ 13450 if (u1 > 0) { 13451 goto ipoptions; 13452 } else { 13453 /* Check the IP header checksum. */ 13454 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13455 !mctl_present) { 13456 #define uph ((uint16_t *)ipha) 13457 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13458 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13459 #undef uph 13460 /* finish doing IP checksum */ 13461 sum = (sum & 0xFFFF) + (sum >> 16); 13462 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13463 /* 13464 * Don't verify header checksum if this packet 13465 * is coming back from AH/ESP as we already did it. 13466 */ 13467 if (sum != 0 && sum != 0xFFFF) { 13468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13469 goto error; 13470 } 13471 } 13472 /* 13473 * Since there is no SCTP h/w cksum support yet, just 13474 * clear the flag. 13475 */ 13476 DB_CKSUMFLAGS(mp) = 0; 13477 } 13478 13479 /* 13480 * Don't verify header checksum if this packet is coming 13481 * back from AH/ESP as we already did it. 13482 */ 13483 if (!mctl_present) { 13484 UPDATE_IB_PKT_COUNT(ire); 13485 ire->ire_last_used_time = lbolt; 13486 } 13487 13488 /* packet part of fragmented IP packet? */ 13489 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13490 if (u1 & (IPH_MF | IPH_OFFSET)) 13491 goto fragmented; 13492 13493 /* u1 = IP header length (20 bytes) */ 13494 u1 = IP_SIMPLE_HDR_LENGTH; 13495 13496 find_sctp_client: 13497 /* Pullup if we don't have the sctp common header. */ 13498 len = MBLKL(mp); 13499 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13500 if (mp->b_cont == NULL || 13501 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13503 goto error; 13504 } 13505 ipha = (ipha_t *)mp->b_rptr; 13506 len = MBLKL(mp); 13507 } 13508 13509 sctph = (sctp_hdr_t *)(rptr + u1); 13510 #ifdef DEBUG 13511 if (!skip_sctp_cksum) { 13512 #endif 13513 pktsum = sctph->sh_chksum; 13514 sctph->sh_chksum = 0; 13515 calcsum = sctp_cksum(mp, u1); 13516 if (calcsum != pktsum) { 13517 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13518 goto error; 13519 } 13520 sctph->sh_chksum = pktsum; 13521 #ifdef DEBUG /* skip_sctp_cksum */ 13522 } 13523 #endif 13524 /* get the ports */ 13525 ports = *(uint32_t *)&sctph->sh_sport; 13526 13527 IRE_REFRELE(ire); 13528 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13529 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13530 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13531 sctps)) == NULL) { 13532 /* Check for raw socket or OOTB handling */ 13533 goto no_conn; 13534 } 13535 13536 /* Found a client; up it goes */ 13537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13538 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13539 return; 13540 13541 no_conn: 13542 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13543 ports, mctl_present, flags, B_TRUE, zoneid); 13544 return; 13545 13546 ipoptions: 13547 DB_CKSUMFLAGS(mp) = 0; 13548 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13549 goto slow_done; 13550 13551 UPDATE_IB_PKT_COUNT(ire); 13552 ire->ire_last_used_time = lbolt; 13553 13554 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13555 if (u1 & (IPH_MF | IPH_OFFSET)) { 13556 fragmented: 13557 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13558 goto slow_done; 13559 /* 13560 * Make sure that first_mp points back to mp as 13561 * the mp we came in with could have changed in 13562 * ip_rput_fragment(). 13563 */ 13564 ASSERT(!mctl_present); 13565 ipha = (ipha_t *)mp->b_rptr; 13566 first_mp = mp; 13567 } 13568 13569 /* Now we have a complete datagram, destined for this machine. */ 13570 u1 = IPH_HDR_LENGTH(ipha); 13571 goto find_sctp_client; 13572 #undef iphs 13573 #undef rptr 13574 13575 error: 13576 freemsg(first_mp); 13577 slow_done: 13578 IRE_REFRELE(ire); 13579 } 13580 13581 #define VER_BITS 0xF0 13582 #define VERSION_6 0x60 13583 13584 static boolean_t 13585 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13586 ipaddr_t *dstp, ip_stack_t *ipst) 13587 { 13588 uint_t opt_len; 13589 ipha_t *ipha; 13590 ssize_t len; 13591 uint_t pkt_len; 13592 13593 ASSERT(ill != NULL); 13594 IP_STAT(ipst, ip_ipoptions); 13595 ipha = *iphapp; 13596 13597 #define rptr ((uchar_t *)ipha) 13598 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13599 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13601 freemsg(mp); 13602 return (B_FALSE); 13603 } 13604 13605 /* multiple mblk or too short */ 13606 pkt_len = ntohs(ipha->ipha_length); 13607 13608 /* Get the number of words of IP options in the IP header. */ 13609 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13610 if (opt_len) { 13611 /* IP Options present! Validate and process. */ 13612 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13614 goto done; 13615 } 13616 /* 13617 * Recompute complete header length and make sure we 13618 * have access to all of it. 13619 */ 13620 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13621 if (len > (mp->b_wptr - rptr)) { 13622 if (len > pkt_len) { 13623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13624 goto done; 13625 } 13626 if (!pullupmsg(mp, len)) { 13627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13628 goto done; 13629 } 13630 ipha = (ipha_t *)mp->b_rptr; 13631 } 13632 /* 13633 * Go off to ip_rput_options which returns the next hop 13634 * destination address, which may have been affected 13635 * by source routing. 13636 */ 13637 IP_STAT(ipst, ip_opt); 13638 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13640 return (B_FALSE); 13641 } 13642 } 13643 *iphapp = ipha; 13644 return (B_TRUE); 13645 done: 13646 /* clear b_prev - used by ip_mroute_decap */ 13647 mp->b_prev = NULL; 13648 freemsg(mp); 13649 return (B_FALSE); 13650 #undef rptr 13651 } 13652 13653 /* 13654 * Deal with the fact that there is no ire for the destination. 13655 */ 13656 static ire_t * 13657 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13658 { 13659 ipha_t *ipha; 13660 ill_t *ill; 13661 ire_t *ire; 13662 boolean_t check_multirt = B_FALSE; 13663 ip_stack_t *ipst; 13664 13665 ipha = (ipha_t *)mp->b_rptr; 13666 ill = (ill_t *)q->q_ptr; 13667 13668 ASSERT(ill != NULL); 13669 ipst = ill->ill_ipst; 13670 13671 /* 13672 * No IRE for this destination, so it can't be for us. 13673 * Unless we are forwarding, drop the packet. 13674 * We have to let source routed packets through 13675 * since we don't yet know if they are 'ping -l' 13676 * packets i.e. if they will go out over the 13677 * same interface as they came in on. 13678 */ 13679 if (ll_multicast) { 13680 freemsg(mp); 13681 return (NULL); 13682 } 13683 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13685 freemsg(mp); 13686 return (NULL); 13687 } 13688 13689 /* 13690 * Mark this packet as having originated externally. 13691 * 13692 * For non-forwarding code path, ire_send later double 13693 * checks this interface to see if it is still exists 13694 * post-ARP resolution. 13695 * 13696 * Also, IPQOS uses this to differentiate between 13697 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13698 * QOS packet processing in ip_wput_attach_llhdr(). 13699 * The QoS module can mark the b_band for a fastpath message 13700 * or the dl_priority field in a unitdata_req header for 13701 * CoS marking. This info can only be found in 13702 * ip_wput_attach_llhdr(). 13703 */ 13704 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13705 /* 13706 * Clear the indication that this may have a hardware checksum 13707 * as we are not using it 13708 */ 13709 DB_CKSUMFLAGS(mp) = 0; 13710 13711 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13712 MBLK_GETLABEL(mp), ipst); 13713 13714 if (ire == NULL && check_multirt) { 13715 /* Let ip_newroute handle CGTP */ 13716 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13717 return (NULL); 13718 } 13719 13720 if (ire != NULL) 13721 return (ire); 13722 13723 mp->b_prev = mp->b_next = 0; 13724 /* send icmp unreachable */ 13725 q = WR(q); 13726 /* Sent by forwarding path, and router is global zone */ 13727 if (ip_source_routed(ipha, ipst)) { 13728 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13729 GLOBAL_ZONEID, ipst); 13730 } else { 13731 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13732 ipst); 13733 } 13734 13735 return (NULL); 13736 13737 } 13738 13739 /* 13740 * check ip header length and align it. 13741 */ 13742 static boolean_t 13743 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13744 { 13745 ssize_t len; 13746 ill_t *ill; 13747 ipha_t *ipha; 13748 13749 len = MBLKL(mp); 13750 13751 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13752 ill = (ill_t *)q->q_ptr; 13753 13754 if (!OK_32PTR(mp->b_rptr)) 13755 IP_STAT(ipst, ip_notaligned1); 13756 else 13757 IP_STAT(ipst, ip_notaligned2); 13758 /* Guard against bogus device drivers */ 13759 if (len < 0) { 13760 /* clear b_prev - used by ip_mroute_decap */ 13761 mp->b_prev = NULL; 13762 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13763 freemsg(mp); 13764 return (B_FALSE); 13765 } 13766 13767 if (ip_rput_pullups++ == 0) { 13768 ipha = (ipha_t *)mp->b_rptr; 13769 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13770 "ip_check_and_align_header: %s forced us to " 13771 " pullup pkt, hdr len %ld, hdr addr %p", 13772 ill->ill_name, len, ipha); 13773 } 13774 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13775 /* clear b_prev - used by ip_mroute_decap */ 13776 mp->b_prev = NULL; 13777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13778 freemsg(mp); 13779 return (B_FALSE); 13780 } 13781 } 13782 return (B_TRUE); 13783 } 13784 13785 ire_t * 13786 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13787 { 13788 ire_t *new_ire; 13789 ill_t *ire_ill; 13790 uint_t ifindex; 13791 ip_stack_t *ipst = ill->ill_ipst; 13792 boolean_t strict_check = B_FALSE; 13793 13794 /* 13795 * This packet came in on an interface other than the one associated 13796 * with the first ire we found for the destination address. We do 13797 * another ire lookup here, using the ingress ill, to see if the 13798 * interface is in an interface group. 13799 * As long as the ills belong to the same group, we don't consider 13800 * them to be arriving on the wrong interface. Thus, if the switch 13801 * is doing inbound load spreading, we won't drop packets when the 13802 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13803 * for 'usesrc groups' where the destination address may belong to 13804 * another interface to allow multipathing to happen. 13805 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13806 * where the local address may not be unique. In this case we were 13807 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13808 * actually returned. The new lookup, which is more specific, should 13809 * only find the IRE_LOCAL associated with the ingress ill if one 13810 * exists. 13811 */ 13812 13813 if (ire->ire_ipversion == IPV4_VERSION) { 13814 if (ipst->ips_ip_strict_dst_multihoming) 13815 strict_check = B_TRUE; 13816 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13817 ill->ill_ipif, ALL_ZONES, NULL, 13818 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13819 } else { 13820 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13821 if (ipst->ips_ipv6_strict_dst_multihoming) 13822 strict_check = B_TRUE; 13823 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13824 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13825 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13826 } 13827 /* 13828 * If the same ire that was returned in ip_input() is found then this 13829 * is an indication that interface groups are in use. The packet 13830 * arrived on a different ill in the group than the one associated with 13831 * the destination address. If a different ire was found then the same 13832 * IP address must be hosted on multiple ills. This is possible with 13833 * unnumbered point2point interfaces. We switch to use this new ire in 13834 * order to have accurate interface statistics. 13835 */ 13836 if (new_ire != NULL) { 13837 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13838 ire_refrele(ire); 13839 ire = new_ire; 13840 } else { 13841 ire_refrele(new_ire); 13842 } 13843 return (ire); 13844 } else if ((ire->ire_rfq == NULL) && 13845 (ire->ire_ipversion == IPV4_VERSION)) { 13846 /* 13847 * The best match could have been the original ire which 13848 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13849 * the strict multihoming checks are irrelevant as we consider 13850 * local addresses hosted on lo0 to be interface agnostic. We 13851 * only expect a null ire_rfq on IREs which are associated with 13852 * lo0 hence we can return now. 13853 */ 13854 return (ire); 13855 } 13856 13857 /* 13858 * Chase pointers once and store locally. 13859 */ 13860 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13861 (ill_t *)(ire->ire_rfq->q_ptr); 13862 ifindex = ill->ill_usesrc_ifindex; 13863 13864 /* 13865 * Check if it's a legal address on the 'usesrc' interface. 13866 */ 13867 if ((ifindex != 0) && (ire_ill != NULL) && 13868 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13869 return (ire); 13870 } 13871 13872 /* 13873 * If the ip*_strict_dst_multihoming switch is on then we can 13874 * only accept this packet if the interface is marked as routing. 13875 */ 13876 if (!(strict_check)) 13877 return (ire); 13878 13879 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13880 ILLF_ROUTER) != 0) { 13881 return (ire); 13882 } 13883 13884 ire_refrele(ire); 13885 return (NULL); 13886 } 13887 13888 ire_t * 13889 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13890 { 13891 ipha_t *ipha; 13892 ipaddr_t ip_dst, ip_src; 13893 ire_t *src_ire = NULL; 13894 ill_t *stq_ill; 13895 uint_t hlen; 13896 uint_t pkt_len; 13897 uint32_t sum; 13898 queue_t *dev_q; 13899 boolean_t check_multirt = B_FALSE; 13900 ip_stack_t *ipst = ill->ill_ipst; 13901 13902 ipha = (ipha_t *)mp->b_rptr; 13903 13904 /* 13905 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13906 * The loopback address check for both src and dst has already 13907 * been checked in ip_input 13908 */ 13909 ip_dst = ntohl(dst); 13910 ip_src = ntohl(ipha->ipha_src); 13911 13912 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13913 IN_CLASSD(ip_src)) { 13914 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13915 goto drop; 13916 } 13917 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13918 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13919 13920 if (src_ire != NULL) { 13921 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13922 goto drop; 13923 } 13924 13925 13926 /* No ire cache of nexthop. So first create one */ 13927 if (ire == NULL) { 13928 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13929 /* 13930 * We only come to ip_fast_forward if ip_cgtp_filter is 13931 * is not set. So upon return from ire_forward 13932 * check_multirt should remain as false. 13933 */ 13934 ASSERT(!check_multirt); 13935 if (ire == NULL) { 13936 /* An attempt was made to forward the packet */ 13937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13938 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13939 mp->b_prev = mp->b_next = 0; 13940 /* send icmp unreachable */ 13941 /* Sent by forwarding path, and router is global zone */ 13942 if (ip_source_routed(ipha, ipst)) { 13943 icmp_unreachable(ill->ill_wq, mp, 13944 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13945 ipst); 13946 } else { 13947 icmp_unreachable(ill->ill_wq, mp, 13948 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13949 ipst); 13950 } 13951 return (ire); 13952 } 13953 } 13954 13955 /* 13956 * Forwarding fastpath exception case: 13957 * If either of the follwoing case is true, we take 13958 * the slowpath 13959 * o forwarding is not enabled 13960 * o incoming and outgoing interface are the same, or the same 13961 * IPMP group 13962 * o corresponding ire is in incomplete state 13963 * o packet needs fragmentation 13964 * 13965 * The codeflow from here on is thus: 13966 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13967 */ 13968 pkt_len = ntohs(ipha->ipha_length); 13969 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13970 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13971 !(ill->ill_flags & ILLF_ROUTER) || 13972 (ill == stq_ill) || 13973 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13974 (ire->ire_nce == NULL) || 13975 (ire->ire_nce->nce_state != ND_REACHABLE) || 13976 (pkt_len > ire->ire_max_frag) || 13977 ipha->ipha_ttl <= 1) { 13978 ip_rput_process_forward(ill->ill_rq, mp, ire, 13979 ipha, ill, B_FALSE); 13980 return (ire); 13981 } 13982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13983 13984 DTRACE_PROBE4(ip4__forwarding__start, 13985 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13986 13987 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13988 ipst->ips_ipv4firewall_forwarding, 13989 ill, stq_ill, ipha, mp, mp, ipst); 13990 13991 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13992 13993 if (mp == NULL) 13994 goto drop; 13995 13996 mp->b_datap->db_struioun.cksum.flags = 0; 13997 /* Adjust the checksum to reflect the ttl decrement. */ 13998 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13999 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14000 ipha->ipha_ttl--; 14001 14002 dev_q = ire->ire_stq->q_next; 14003 if ((dev_q->q_next != NULL || 14004 dev_q->q_first != NULL) && !canput(dev_q)) { 14005 goto indiscard; 14006 } 14007 14008 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14009 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14010 14011 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14012 mblk_t *mpip = mp; 14013 14014 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14015 if (mp != NULL) { 14016 DTRACE_PROBE4(ip4__physical__out__start, 14017 ill_t *, NULL, ill_t *, stq_ill, 14018 ipha_t *, ipha, mblk_t *, mp); 14019 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14020 ipst->ips_ipv4firewall_physical_out, 14021 NULL, stq_ill, ipha, mp, mpip, ipst); 14022 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14023 mp); 14024 if (mp == NULL) 14025 goto drop; 14026 14027 UPDATE_IB_PKT_COUNT(ire); 14028 ire->ire_last_used_time = lbolt; 14029 BUMP_MIB(stq_ill->ill_ip_mib, 14030 ipIfStatsHCOutForwDatagrams); 14031 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14032 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14033 pkt_len); 14034 putnext(ire->ire_stq, mp); 14035 return (ire); 14036 } 14037 } 14038 14039 indiscard: 14040 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14041 drop: 14042 if (mp != NULL) 14043 freemsg(mp); 14044 if (src_ire != NULL) 14045 ire_refrele(src_ire); 14046 return (ire); 14047 14048 } 14049 14050 /* 14051 * This function is called in the forwarding slowpath, when 14052 * either the ire lacks the link-layer address, or the packet needs 14053 * further processing(eg. fragmentation), before transmission. 14054 */ 14055 14056 static void 14057 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14058 ill_t *ill, boolean_t ll_multicast) 14059 { 14060 ill_group_t *ill_group; 14061 ill_group_t *ire_group; 14062 queue_t *dev_q; 14063 ire_t *src_ire; 14064 ip_stack_t *ipst = ill->ill_ipst; 14065 14066 ASSERT(ire->ire_stq != NULL); 14067 14068 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14069 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14070 14071 if (ll_multicast != 0) { 14072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14073 goto drop_pkt; 14074 } 14075 14076 /* 14077 * check if ipha_src is a broadcast address. Note that this 14078 * check is redundant when we get here from ip_fast_forward() 14079 * which has already done this check. However, since we can 14080 * also get here from ip_rput_process_broadcast() or, for 14081 * for the slow path through ip_fast_forward(), we perform 14082 * the check again for code-reusability 14083 */ 14084 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14085 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14086 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14087 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14088 if (src_ire != NULL) 14089 ire_refrele(src_ire); 14090 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14091 ip2dbg(("ip_rput_process_forward: Received packet with" 14092 " bad src/dst address on %s\n", ill->ill_name)); 14093 goto drop_pkt; 14094 } 14095 14096 ill_group = ill->ill_group; 14097 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14098 /* 14099 * Check if we want to forward this one at this time. 14100 * We allow source routed packets on a host provided that 14101 * they go out the same interface or same interface group 14102 * as they came in on. 14103 * 14104 * XXX To be quicker, we may wish to not chase pointers to 14105 * get the ILLF_ROUTER flag and instead store the 14106 * forwarding policy in the ire. An unfortunate 14107 * side-effect of that would be requiring an ire flush 14108 * whenever the ILLF_ROUTER flag changes. 14109 */ 14110 if (((ill->ill_flags & 14111 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14112 ILLF_ROUTER) == 0) && 14113 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14114 (ill_group != NULL && ill_group == ire_group)))) { 14115 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14116 if (ip_source_routed(ipha, ipst)) { 14117 q = WR(q); 14118 /* 14119 * Clear the indication that this may have 14120 * hardware checksum as we are not using it. 14121 */ 14122 DB_CKSUMFLAGS(mp) = 0; 14123 /* Sent by forwarding path, and router is global zone */ 14124 icmp_unreachable(q, mp, 14125 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14126 return; 14127 } 14128 goto drop_pkt; 14129 } 14130 14131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14132 14133 /* Packet is being forwarded. Turning off hwcksum flag. */ 14134 DB_CKSUMFLAGS(mp) = 0; 14135 if (ipst->ips_ip_g_send_redirects) { 14136 /* 14137 * Check whether the incoming interface and outgoing 14138 * interface is part of the same group. If so, 14139 * send redirects. 14140 * 14141 * Check the source address to see if it originated 14142 * on the same logical subnet it is going back out on. 14143 * If so, we should be able to send it a redirect. 14144 * Avoid sending a redirect if the destination 14145 * is directly connected (i.e., ipha_dst is the same 14146 * as ire_gateway_addr or the ire_addr of the 14147 * nexthop IRE_CACHE ), or if the packet was source 14148 * routed out this interface. 14149 */ 14150 ipaddr_t src, nhop; 14151 mblk_t *mp1; 14152 ire_t *nhop_ire = NULL; 14153 14154 /* 14155 * Check whether ire_rfq and q are from the same ill 14156 * or if they are not same, they at least belong 14157 * to the same group. If so, send redirects. 14158 */ 14159 if ((ire->ire_rfq == q || 14160 (ill_group != NULL && ill_group == ire_group)) && 14161 !ip_source_routed(ipha, ipst)) { 14162 14163 nhop = (ire->ire_gateway_addr != 0 ? 14164 ire->ire_gateway_addr : ire->ire_addr); 14165 14166 if (ipha->ipha_dst == nhop) { 14167 /* 14168 * We avoid sending a redirect if the 14169 * destination is directly connected 14170 * because it is possible that multiple 14171 * IP subnets may have been configured on 14172 * the link, and the source may not 14173 * be on the same subnet as ip destination, 14174 * even though they are on the same 14175 * physical link. 14176 */ 14177 goto sendit; 14178 } 14179 14180 src = ipha->ipha_src; 14181 14182 /* 14183 * We look up the interface ire for the nexthop, 14184 * to see if ipha_src is in the same subnet 14185 * as the nexthop. 14186 * 14187 * Note that, if, in the future, IRE_CACHE entries 14188 * are obsoleted, this lookup will not be needed, 14189 * as the ire passed to this function will be the 14190 * same as the nhop_ire computed below. 14191 */ 14192 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14193 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14194 0, NULL, MATCH_IRE_TYPE, ipst); 14195 14196 if (nhop_ire != NULL) { 14197 if ((src & nhop_ire->ire_mask) == 14198 (nhop & nhop_ire->ire_mask)) { 14199 /* 14200 * The source is directly connected. 14201 * Just copy the ip header (which is 14202 * in the first mblk) 14203 */ 14204 mp1 = copyb(mp); 14205 if (mp1 != NULL) { 14206 icmp_send_redirect(WR(q), mp1, 14207 nhop, ipst); 14208 } 14209 } 14210 ire_refrele(nhop_ire); 14211 } 14212 } 14213 } 14214 sendit: 14215 dev_q = ire->ire_stq->q_next; 14216 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14217 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14218 freemsg(mp); 14219 return; 14220 } 14221 14222 ip_rput_forward(ire, ipha, mp, ill); 14223 return; 14224 14225 drop_pkt: 14226 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14227 freemsg(mp); 14228 } 14229 14230 ire_t * 14231 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14232 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14233 { 14234 queue_t *q; 14235 uint16_t hcksumflags; 14236 ip_stack_t *ipst = ill->ill_ipst; 14237 14238 q = *qp; 14239 14240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14241 14242 /* 14243 * Clear the indication that this may have hardware 14244 * checksum as we are not using it for forwarding. 14245 */ 14246 hcksumflags = DB_CKSUMFLAGS(mp); 14247 DB_CKSUMFLAGS(mp) = 0; 14248 14249 /* 14250 * Directed broadcast forwarding: if the packet came in over a 14251 * different interface then it is routed out over we can forward it. 14252 */ 14253 if (ipha->ipha_protocol == IPPROTO_TCP) { 14254 ire_refrele(ire); 14255 freemsg(mp); 14256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14257 return (NULL); 14258 } 14259 /* 14260 * For multicast we have set dst to be INADDR_BROADCAST 14261 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14262 * only for broadcast packets. 14263 */ 14264 if (!CLASSD(ipha->ipha_dst)) { 14265 ire_t *new_ire; 14266 ipif_t *ipif; 14267 /* 14268 * For ill groups, as the switch duplicates broadcasts 14269 * across all the ports, we need to filter out and 14270 * send up only one copy. There is one copy for every 14271 * broadcast address on each ill. Thus, we look for a 14272 * specific IRE on this ill and look at IRE_MARK_NORECV 14273 * later to see whether this ill is eligible to receive 14274 * them or not. ill_nominate_bcast_rcv() nominates only 14275 * one set of IREs for receiving. 14276 */ 14277 14278 ipif = ipif_get_next_ipif(NULL, ill); 14279 if (ipif == NULL) { 14280 ire_refrele(ire); 14281 freemsg(mp); 14282 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14283 return (NULL); 14284 } 14285 new_ire = ire_ctable_lookup(dst, 0, 0, 14286 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14287 ipif_refrele(ipif); 14288 14289 if (new_ire != NULL) { 14290 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14291 ire_refrele(ire); 14292 ire_refrele(new_ire); 14293 freemsg(mp); 14294 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14295 return (NULL); 14296 } 14297 /* 14298 * In the special case of multirouted broadcast 14299 * packets, we unconditionally need to "gateway" 14300 * them to the appropriate interface here. 14301 * In the normal case, this cannot happen, because 14302 * there is no broadcast IRE tagged with the 14303 * RTF_MULTIRT flag. 14304 */ 14305 if (new_ire->ire_flags & RTF_MULTIRT) { 14306 ire_refrele(new_ire); 14307 if (ire->ire_rfq != NULL) { 14308 q = ire->ire_rfq; 14309 *qp = q; 14310 } 14311 } else { 14312 ire_refrele(ire); 14313 ire = new_ire; 14314 } 14315 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14316 if (!ipst->ips_ip_g_forward_directed_bcast) { 14317 /* 14318 * Free the message if 14319 * ip_g_forward_directed_bcast is turned 14320 * off for non-local broadcast. 14321 */ 14322 ire_refrele(ire); 14323 freemsg(mp); 14324 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14325 return (NULL); 14326 } 14327 } else { 14328 /* 14329 * This CGTP packet successfully passed the 14330 * CGTP filter, but the related CGTP 14331 * broadcast IRE has not been found, 14332 * meaning that the redundant ipif is 14333 * probably down. However, if we discarded 14334 * this packet, its duplicate would be 14335 * filtered out by the CGTP filter so none 14336 * of them would get through. So we keep 14337 * going with this one. 14338 */ 14339 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14340 if (ire->ire_rfq != NULL) { 14341 q = ire->ire_rfq; 14342 *qp = q; 14343 } 14344 } 14345 } 14346 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14347 /* 14348 * Verify that there are not more then one 14349 * IRE_BROADCAST with this broadcast address which 14350 * has ire_stq set. 14351 * TODO: simplify, loop over all IRE's 14352 */ 14353 ire_t *ire1; 14354 int num_stq = 0; 14355 mblk_t *mp1; 14356 14357 /* Find the first one with ire_stq set */ 14358 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14359 for (ire1 = ire; ire1 && 14360 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14361 ire1 = ire1->ire_next) 14362 ; 14363 if (ire1) { 14364 ire_refrele(ire); 14365 ire = ire1; 14366 IRE_REFHOLD(ire); 14367 } 14368 14369 /* Check if there are additional ones with stq set */ 14370 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14371 if (ire->ire_addr != ire1->ire_addr) 14372 break; 14373 if (ire1->ire_stq) { 14374 num_stq++; 14375 break; 14376 } 14377 } 14378 rw_exit(&ire->ire_bucket->irb_lock); 14379 if (num_stq == 1 && ire->ire_stq != NULL) { 14380 ip1dbg(("ip_rput_process_broadcast: directed " 14381 "broadcast to 0x%x\n", 14382 ntohl(ire->ire_addr))); 14383 mp1 = copymsg(mp); 14384 if (mp1) { 14385 switch (ipha->ipha_protocol) { 14386 case IPPROTO_UDP: 14387 ip_udp_input(q, mp1, ipha, ire, ill); 14388 break; 14389 default: 14390 ip_proto_input(q, mp1, ipha, ire, ill, 14391 B_FALSE); 14392 break; 14393 } 14394 } 14395 /* 14396 * Adjust ttl to 2 (1+1 - the forward engine 14397 * will decrement it by one. 14398 */ 14399 if (ip_csum_hdr(ipha)) { 14400 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14401 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14402 freemsg(mp); 14403 ire_refrele(ire); 14404 return (NULL); 14405 } 14406 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14407 ipha->ipha_hdr_checksum = 0; 14408 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14409 ip_rput_process_forward(q, mp, ire, ipha, 14410 ill, ll_multicast); 14411 ire_refrele(ire); 14412 return (NULL); 14413 } 14414 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14415 ntohl(ire->ire_addr))); 14416 } 14417 14418 14419 /* Restore any hardware checksum flags */ 14420 DB_CKSUMFLAGS(mp) = hcksumflags; 14421 return (ire); 14422 } 14423 14424 /* ARGSUSED */ 14425 static boolean_t 14426 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14427 int *ll_multicast, ipaddr_t *dstp) 14428 { 14429 ip_stack_t *ipst = ill->ill_ipst; 14430 14431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14432 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14433 ntohs(ipha->ipha_length)); 14434 14435 /* 14436 * Forward packets only if we have joined the allmulti 14437 * group on this interface. 14438 */ 14439 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14440 int retval; 14441 14442 /* 14443 * Clear the indication that this may have hardware 14444 * checksum as we are not using it. 14445 */ 14446 DB_CKSUMFLAGS(mp) = 0; 14447 retval = ip_mforward(ill, ipha, mp); 14448 /* ip_mforward updates mib variables if needed */ 14449 /* clear b_prev - used by ip_mroute_decap */ 14450 mp->b_prev = NULL; 14451 14452 switch (retval) { 14453 case 0: 14454 /* 14455 * pkt is okay and arrived on phyint. 14456 * 14457 * If we are running as a multicast router 14458 * we need to see all IGMP and/or PIM packets. 14459 */ 14460 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14461 (ipha->ipha_protocol == IPPROTO_PIM)) { 14462 goto done; 14463 } 14464 break; 14465 case -1: 14466 /* pkt is mal-formed, toss it */ 14467 goto drop_pkt; 14468 case 1: 14469 /* pkt is okay and arrived on a tunnel */ 14470 /* 14471 * If we are running a multicast router 14472 * we need to see all igmp packets. 14473 */ 14474 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14475 *dstp = INADDR_BROADCAST; 14476 *ll_multicast = 1; 14477 return (B_FALSE); 14478 } 14479 14480 goto drop_pkt; 14481 } 14482 } 14483 14484 ILM_WALKER_HOLD(ill); 14485 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14486 /* 14487 * This might just be caused by the fact that 14488 * multiple IP Multicast addresses map to the same 14489 * link layer multicast - no need to increment counter! 14490 */ 14491 ILM_WALKER_RELE(ill); 14492 freemsg(mp); 14493 return (B_TRUE); 14494 } 14495 ILM_WALKER_RELE(ill); 14496 done: 14497 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14498 /* 14499 * This assumes the we deliver to all streams for multicast 14500 * and broadcast packets. 14501 */ 14502 *dstp = INADDR_BROADCAST; 14503 *ll_multicast = 1; 14504 return (B_FALSE); 14505 drop_pkt: 14506 ip2dbg(("ip_rput: drop pkt\n")); 14507 freemsg(mp); 14508 return (B_TRUE); 14509 } 14510 14511 static boolean_t 14512 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14513 int *ll_multicast, mblk_t **mpp) 14514 { 14515 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14516 boolean_t must_copy = B_FALSE; 14517 struct iocblk *iocp; 14518 ipha_t *ipha; 14519 ip_stack_t *ipst = ill->ill_ipst; 14520 14521 #define rptr ((uchar_t *)ipha) 14522 14523 first_mp = *first_mpp; 14524 mp = *mpp; 14525 14526 ASSERT(first_mp == mp); 14527 14528 /* 14529 * if db_ref > 1 then copymsg and free original. Packet may be 14530 * changed and do not want other entity who has a reference to this 14531 * message to trip over the changes. This is a blind change because 14532 * trying to catch all places that might change packet is too 14533 * difficult (since it may be a module above this one) 14534 * 14535 * This corresponds to the non-fast path case. We walk down the full 14536 * chain in this case, and check the db_ref count of all the dblks, 14537 * and do a copymsg if required. It is possible that the db_ref counts 14538 * of the data blocks in the mblk chain can be different. 14539 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14540 * count of 1, followed by a M_DATA block with a ref count of 2, if 14541 * 'snoop' is running. 14542 */ 14543 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14544 if (mp1->b_datap->db_ref > 1) { 14545 must_copy = B_TRUE; 14546 break; 14547 } 14548 } 14549 14550 if (must_copy) { 14551 mp1 = copymsg(mp); 14552 if (mp1 == NULL) { 14553 for (mp1 = mp; mp1 != NULL; 14554 mp1 = mp1->b_cont) { 14555 mp1->b_next = NULL; 14556 mp1->b_prev = NULL; 14557 } 14558 freemsg(mp); 14559 if (ill != NULL) { 14560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14561 } else { 14562 BUMP_MIB(&ipst->ips_ip_mib, 14563 ipIfStatsInDiscards); 14564 } 14565 return (B_TRUE); 14566 } 14567 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14568 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14569 /* Copy b_prev - used by ip_mroute_decap */ 14570 to_mp->b_prev = from_mp->b_prev; 14571 from_mp->b_prev = NULL; 14572 } 14573 *first_mpp = first_mp = mp1; 14574 freemsg(mp); 14575 mp = mp1; 14576 *mpp = mp1; 14577 } 14578 14579 ipha = (ipha_t *)mp->b_rptr; 14580 14581 /* 14582 * previous code has a case for M_DATA. 14583 * We want to check how that happens. 14584 */ 14585 ASSERT(first_mp->b_datap->db_type != M_DATA); 14586 switch (first_mp->b_datap->db_type) { 14587 case M_PROTO: 14588 case M_PCPROTO: 14589 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14590 DL_UNITDATA_IND) { 14591 /* Go handle anything other than data elsewhere. */ 14592 ip_rput_dlpi(q, mp); 14593 return (B_TRUE); 14594 } 14595 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14596 /* Ditch the DLPI header. */ 14597 mp1 = mp->b_cont; 14598 ASSERT(first_mp == mp); 14599 *first_mpp = mp1; 14600 freeb(mp); 14601 *mpp = mp1; 14602 return (B_FALSE); 14603 case M_IOCACK: 14604 ip1dbg(("got iocack ")); 14605 iocp = (struct iocblk *)mp->b_rptr; 14606 switch (iocp->ioc_cmd) { 14607 case DL_IOC_HDR_INFO: 14608 ill = (ill_t *)q->q_ptr; 14609 ill_fastpath_ack(ill, mp); 14610 return (B_TRUE); 14611 case SIOCSTUNPARAM: 14612 case OSIOCSTUNPARAM: 14613 /* Go through qwriter_ip */ 14614 break; 14615 case SIOCGTUNPARAM: 14616 case OSIOCGTUNPARAM: 14617 ip_rput_other(NULL, q, mp, NULL); 14618 return (B_TRUE); 14619 default: 14620 putnext(q, mp); 14621 return (B_TRUE); 14622 } 14623 /* FALLTHRU */ 14624 case M_ERROR: 14625 case M_HANGUP: 14626 /* 14627 * Since this is on the ill stream we unconditionally 14628 * bump up the refcount 14629 */ 14630 ill_refhold(ill); 14631 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14632 return (B_TRUE); 14633 case M_CTL: 14634 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14635 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14636 IPHADA_M_CTL)) { 14637 /* 14638 * It's an IPsec accelerated packet. 14639 * Make sure that the ill from which we received the 14640 * packet has enabled IPsec hardware acceleration. 14641 */ 14642 if (!(ill->ill_capabilities & 14643 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14644 /* IPsec kstats: bean counter */ 14645 freemsg(mp); 14646 return (B_TRUE); 14647 } 14648 14649 /* 14650 * Make mp point to the mblk following the M_CTL, 14651 * then process according to type of mp. 14652 * After this processing, first_mp will point to 14653 * the data-attributes and mp to the pkt following 14654 * the M_CTL. 14655 */ 14656 mp = first_mp->b_cont; 14657 if (mp == NULL) { 14658 freemsg(first_mp); 14659 return (B_TRUE); 14660 } 14661 /* 14662 * A Hardware Accelerated packet can only be M_DATA 14663 * ESP or AH packet. 14664 */ 14665 if (mp->b_datap->db_type != M_DATA) { 14666 /* non-M_DATA IPsec accelerated packet */ 14667 IPSECHW_DEBUG(IPSECHW_PKT, 14668 ("non-M_DATA IPsec accelerated pkt\n")); 14669 freemsg(first_mp); 14670 return (B_TRUE); 14671 } 14672 ipha = (ipha_t *)mp->b_rptr; 14673 if (ipha->ipha_protocol != IPPROTO_AH && 14674 ipha->ipha_protocol != IPPROTO_ESP) { 14675 IPSECHW_DEBUG(IPSECHW_PKT, 14676 ("non-M_DATA IPsec accelerated pkt\n")); 14677 freemsg(first_mp); 14678 return (B_TRUE); 14679 } 14680 *mpp = mp; 14681 return (B_FALSE); 14682 } 14683 putnext(q, mp); 14684 return (B_TRUE); 14685 case M_IOCNAK: 14686 ip1dbg(("got iocnak ")); 14687 iocp = (struct iocblk *)mp->b_rptr; 14688 switch (iocp->ioc_cmd) { 14689 case SIOCSTUNPARAM: 14690 case OSIOCSTUNPARAM: 14691 /* 14692 * Since this is on the ill stream we unconditionally 14693 * bump up the refcount 14694 */ 14695 ill_refhold(ill); 14696 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14697 return (B_TRUE); 14698 case DL_IOC_HDR_INFO: 14699 case SIOCGTUNPARAM: 14700 case OSIOCGTUNPARAM: 14701 ip_rput_other(NULL, q, mp, NULL); 14702 return (B_TRUE); 14703 default: 14704 break; 14705 } 14706 /* FALLTHRU */ 14707 default: 14708 putnext(q, mp); 14709 return (B_TRUE); 14710 } 14711 } 14712 14713 /* Read side put procedure. Packets coming from the wire arrive here. */ 14714 void 14715 ip_rput(queue_t *q, mblk_t *mp) 14716 { 14717 ill_t *ill = (ill_t *)q->q_ptr; 14718 ip_stack_t *ipst = ill->ill_ipst; 14719 union DL_primitives *dl; 14720 14721 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14722 14723 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14724 /* 14725 * If things are opening or closing, only accept high-priority 14726 * DLPI messages. (On open ill->ill_ipif has not yet been 14727 * created; on close, things hanging off the ill may have been 14728 * freed already.) 14729 */ 14730 dl = (union DL_primitives *)mp->b_rptr; 14731 if (DB_TYPE(mp) != M_PCPROTO || 14732 dl->dl_primitive == DL_UNITDATA_IND) { 14733 /* 14734 * SIOC[GS]TUNPARAM ioctls can come here. 14735 */ 14736 inet_freemsg(mp); 14737 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14738 "ip_rput_end: q %p (%S)", q, "uninit"); 14739 return; 14740 } 14741 } 14742 14743 /* 14744 * if db_ref > 1 then copymsg and free original. Packet may be 14745 * changed and we do not want the other entity who has a reference to 14746 * this message to trip over the changes. This is a blind change because 14747 * trying to catch all places that might change the packet is too 14748 * difficult. 14749 * 14750 * This corresponds to the fast path case, where we have a chain of 14751 * M_DATA mblks. We check the db_ref count of only the 1st data block 14752 * in the mblk chain. There doesn't seem to be a reason why a device 14753 * driver would send up data with varying db_ref counts in the mblk 14754 * chain. In any case the Fast path is a private interface, and our 14755 * drivers don't do such a thing. Given the above assumption, there is 14756 * no need to walk down the entire mblk chain (which could have a 14757 * potential performance problem) 14758 */ 14759 if (mp->b_datap->db_ref > 1) { 14760 mblk_t *mp1; 14761 boolean_t adjusted = B_FALSE; 14762 IP_STAT(ipst, ip_db_ref); 14763 14764 /* 14765 * The IP_RECVSLLA option depends on having the link layer 14766 * header. First check that: 14767 * a> the underlying device is of type ether, since this 14768 * option is currently supported only over ethernet. 14769 * b> there is enough room to copy over the link layer header. 14770 * 14771 * Once the checks are done, adjust rptr so that the link layer 14772 * header will be copied via copymsg. Note that, IFT_ETHER may 14773 * be returned by some non-ethernet drivers but in this case the 14774 * second check will fail. 14775 */ 14776 if (ill->ill_type == IFT_ETHER && 14777 (mp->b_rptr - mp->b_datap->db_base) >= 14778 sizeof (struct ether_header)) { 14779 mp->b_rptr -= sizeof (struct ether_header); 14780 adjusted = B_TRUE; 14781 } 14782 mp1 = copymsg(mp); 14783 if (mp1 == NULL) { 14784 mp->b_next = NULL; 14785 /* clear b_prev - used by ip_mroute_decap */ 14786 mp->b_prev = NULL; 14787 freemsg(mp); 14788 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14789 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14790 "ip_rput_end: q %p (%S)", q, "copymsg"); 14791 return; 14792 } 14793 if (adjusted) { 14794 /* 14795 * Copy is done. Restore the pointer in the _new_ mblk 14796 */ 14797 mp1->b_rptr += sizeof (struct ether_header); 14798 } 14799 /* Copy b_prev - used by ip_mroute_decap */ 14800 mp1->b_prev = mp->b_prev; 14801 mp->b_prev = NULL; 14802 freemsg(mp); 14803 mp = mp1; 14804 } 14805 14806 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14807 "ip_rput_end: q %p (%S)", q, "end"); 14808 14809 ip_input(ill, NULL, mp, NULL); 14810 } 14811 14812 /* 14813 * Direct read side procedure capable of dealing with chains. GLDv3 based 14814 * drivers call this function directly with mblk chains while STREAMS 14815 * read side procedure ip_rput() calls this for single packet with ip_ring 14816 * set to NULL to process one packet at a time. 14817 * 14818 * The ill will always be valid if this function is called directly from 14819 * the driver. 14820 * 14821 * If ip_input() is called from GLDv3: 14822 * 14823 * - This must be a non-VLAN IP stream. 14824 * - 'mp' is either an untagged or a special priority-tagged packet. 14825 * - Any VLAN tag that was in the MAC header has been stripped. 14826 * 14827 * If the IP header in packet is not 32-bit aligned, every message in the 14828 * chain will be aligned before further operations. This is required on SPARC 14829 * platform. 14830 */ 14831 /* ARGSUSED */ 14832 void 14833 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14834 struct mac_header_info_s *mhip) 14835 { 14836 ipaddr_t dst = NULL; 14837 ipaddr_t prev_dst; 14838 ire_t *ire = NULL; 14839 ipha_t *ipha; 14840 uint_t pkt_len; 14841 ssize_t len; 14842 uint_t opt_len; 14843 int ll_multicast; 14844 int cgtp_flt_pkt; 14845 queue_t *q = ill->ill_rq; 14846 squeue_t *curr_sqp = NULL; 14847 mblk_t *head = NULL; 14848 mblk_t *tail = NULL; 14849 mblk_t *first_mp; 14850 mblk_t *mp; 14851 mblk_t *dmp; 14852 int cnt = 0; 14853 ip_stack_t *ipst = ill->ill_ipst; 14854 14855 ASSERT(mp_chain != NULL); 14856 ASSERT(ill != NULL); 14857 14858 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14859 14860 #define rptr ((uchar_t *)ipha) 14861 14862 while (mp_chain != NULL) { 14863 first_mp = mp = mp_chain; 14864 mp_chain = mp_chain->b_next; 14865 mp->b_next = NULL; 14866 ll_multicast = 0; 14867 14868 /* 14869 * We do ire caching from one iteration to 14870 * another. In the event the packet chain contains 14871 * all packets from the same dst, this caching saves 14872 * an ire_cache_lookup for each of the succeeding 14873 * packets in a packet chain. 14874 */ 14875 prev_dst = dst; 14876 14877 /* 14878 * Check and align the IP header. 14879 */ 14880 if (DB_TYPE(mp) == M_DATA) { 14881 dmp = mp; 14882 } else if (DB_TYPE(mp) == M_PROTO && 14883 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14884 dmp = mp->b_cont; 14885 } else { 14886 dmp = NULL; 14887 } 14888 if (dmp != NULL) { 14889 /* 14890 * IP header ptr not aligned? 14891 * OR IP header not complete in first mblk 14892 */ 14893 if (!OK_32PTR(dmp->b_rptr) || 14894 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14895 if (!ip_check_and_align_header(q, dmp, ipst)) 14896 continue; 14897 } 14898 } 14899 14900 /* 14901 * ip_input fast path 14902 */ 14903 14904 /* mblk type is not M_DATA */ 14905 if (DB_TYPE(mp) != M_DATA) { 14906 if (ip_rput_process_notdata(q, &first_mp, ill, 14907 &ll_multicast, &mp)) 14908 continue; 14909 } 14910 14911 /* Make sure its an M_DATA and that its aligned */ 14912 ASSERT(DB_TYPE(mp) == M_DATA); 14913 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14914 14915 ipha = (ipha_t *)mp->b_rptr; 14916 len = mp->b_wptr - rptr; 14917 pkt_len = ntohs(ipha->ipha_length); 14918 14919 /* 14920 * We must count all incoming packets, even if they end 14921 * up being dropped later on. 14922 */ 14923 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14924 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14925 14926 /* multiple mblk or too short */ 14927 len -= pkt_len; 14928 if (len != 0) { 14929 /* 14930 * Make sure we have data length consistent 14931 * with the IP header. 14932 */ 14933 if (mp->b_cont == NULL) { 14934 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14935 BUMP_MIB(ill->ill_ip_mib, 14936 ipIfStatsInHdrErrors); 14937 ip2dbg(("ip_input: drop pkt\n")); 14938 freemsg(mp); 14939 continue; 14940 } 14941 mp->b_wptr = rptr + pkt_len; 14942 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14943 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14944 BUMP_MIB(ill->ill_ip_mib, 14945 ipIfStatsInHdrErrors); 14946 ip2dbg(("ip_input: drop pkt\n")); 14947 freemsg(mp); 14948 continue; 14949 } 14950 (void) adjmsg(mp, -len); 14951 IP_STAT(ipst, ip_multimblk3); 14952 } 14953 } 14954 14955 /* Obtain the dst of the current packet */ 14956 dst = ipha->ipha_dst; 14957 14958 if (IP_LOOPBACK_ADDR(dst) || 14959 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14961 cmn_err(CE_CONT, "dst %X src %X\n", 14962 dst, ipha->ipha_src); 14963 freemsg(mp); 14964 continue; 14965 } 14966 14967 /* 14968 * The event for packets being received from a 'physical' 14969 * interface is placed after validation of the source and/or 14970 * destination address as being local so that packets can be 14971 * redirected to loopback addresses using ipnat. 14972 */ 14973 DTRACE_PROBE4(ip4__physical__in__start, 14974 ill_t *, ill, ill_t *, NULL, 14975 ipha_t *, ipha, mblk_t *, first_mp); 14976 14977 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14978 ipst->ips_ipv4firewall_physical_in, 14979 ill, NULL, ipha, first_mp, mp, ipst); 14980 14981 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14982 14983 if (first_mp == NULL) { 14984 continue; 14985 } 14986 dst = ipha->ipha_dst; 14987 14988 /* 14989 * Attach any necessary label information to 14990 * this packet 14991 */ 14992 if (is_system_labeled() && 14993 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14995 freemsg(mp); 14996 continue; 14997 } 14998 14999 /* 15000 * Reuse the cached ire only if the ipha_dst of the previous 15001 * packet is the same as the current packet AND it is not 15002 * INADDR_ANY. 15003 */ 15004 if (!(dst == prev_dst && dst != INADDR_ANY) && 15005 (ire != NULL)) { 15006 ire_refrele(ire); 15007 ire = NULL; 15008 } 15009 opt_len = ipha->ipha_version_and_hdr_length - 15010 IP_SIMPLE_HDR_VERSION; 15011 15012 /* 15013 * Check to see if we can take the fastpath. 15014 * That is possible if the following conditions are met 15015 * o Tsol disabled 15016 * o CGTP disabled 15017 * o ipp_action_count is 0 15018 * o no options in the packet 15019 * o not a RSVP packet 15020 * o not a multicast packet 15021 */ 15022 if (!is_system_labeled() && 15023 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15024 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15025 !ll_multicast && !CLASSD(dst)) { 15026 if (ire == NULL) 15027 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15028 ipst); 15029 15030 /* incoming packet is for forwarding */ 15031 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15032 ire = ip_fast_forward(ire, dst, ill, mp); 15033 continue; 15034 } 15035 /* incoming packet is for local consumption */ 15036 if (ire->ire_type & IRE_LOCAL) 15037 goto local; 15038 } 15039 15040 /* 15041 * Disable ire caching for anything more complex 15042 * than the simple fast path case we checked for above. 15043 */ 15044 if (ire != NULL) { 15045 ire_refrele(ire); 15046 ire = NULL; 15047 } 15048 15049 /* Full-blown slow path */ 15050 if (opt_len != 0) { 15051 if (len != 0) 15052 IP_STAT(ipst, ip_multimblk4); 15053 else 15054 IP_STAT(ipst, ip_ipoptions); 15055 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15056 &dst, ipst)) 15057 continue; 15058 } 15059 15060 /* 15061 * Invoke the CGTP (multirouting) filtering module to process 15062 * the incoming packet. Packets identified as duplicates 15063 * must be discarded. Filtering is active only if the 15064 * the ip_cgtp_filter ndd variable is non-zero. 15065 */ 15066 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15067 if (ipst->ips_ip_cgtp_filter && 15068 ipst->ips_ip_cgtp_filter_ops != NULL) { 15069 netstackid_t stackid; 15070 15071 stackid = ipst->ips_netstack->netstack_stackid; 15072 cgtp_flt_pkt = 15073 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15074 ill->ill_phyint->phyint_ifindex, mp); 15075 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15076 freemsg(first_mp); 15077 continue; 15078 } 15079 } 15080 15081 /* 15082 * If rsvpd is running, let RSVP daemon handle its processing 15083 * and forwarding of RSVP multicast/unicast packets. 15084 * If rsvpd is not running but mrouted is running, RSVP 15085 * multicast packets are forwarded as multicast traffic 15086 * and RSVP unicast packets are forwarded by unicast router. 15087 * If neither rsvpd nor mrouted is running, RSVP multicast 15088 * packets are not forwarded, but the unicast packets are 15089 * forwarded like unicast traffic. 15090 */ 15091 if (ipha->ipha_protocol == IPPROTO_RSVP && 15092 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15093 NULL) { 15094 /* RSVP packet and rsvpd running. Treat as ours */ 15095 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15096 /* 15097 * This assumes that we deliver to all streams for 15098 * multicast and broadcast packets. 15099 * We have to force ll_multicast to 1 to handle the 15100 * M_DATA messages passed in from ip_mroute_decap. 15101 */ 15102 dst = INADDR_BROADCAST; 15103 ll_multicast = 1; 15104 } else if (CLASSD(dst)) { 15105 /* packet is multicast */ 15106 mp->b_next = NULL; 15107 if (ip_rput_process_multicast(q, mp, ill, ipha, 15108 &ll_multicast, &dst)) 15109 continue; 15110 } 15111 15112 if (ire == NULL) { 15113 ire = ire_cache_lookup(dst, ALL_ZONES, 15114 MBLK_GETLABEL(mp), ipst); 15115 } 15116 15117 if (ire == NULL) { 15118 /* 15119 * No IRE for this destination, so it can't be for us. 15120 * Unless we are forwarding, drop the packet. 15121 * We have to let source routed packets through 15122 * since we don't yet know if they are 'ping -l' 15123 * packets i.e. if they will go out over the 15124 * same interface as they came in on. 15125 */ 15126 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15127 if (ire == NULL) 15128 continue; 15129 } 15130 15131 /* 15132 * Broadcast IRE may indicate either broadcast or 15133 * multicast packet 15134 */ 15135 if (ire->ire_type == IRE_BROADCAST) { 15136 /* 15137 * Skip broadcast checks if packet is UDP multicast; 15138 * we'd rather not enter ip_rput_process_broadcast() 15139 * unless the packet is broadcast for real, since 15140 * that routine is a no-op for multicast. 15141 */ 15142 if (ipha->ipha_protocol != IPPROTO_UDP || 15143 !CLASSD(ipha->ipha_dst)) { 15144 ire = ip_rput_process_broadcast(&q, mp, 15145 ire, ipha, ill, dst, cgtp_flt_pkt, 15146 ll_multicast); 15147 if (ire == NULL) 15148 continue; 15149 } 15150 } else if (ire->ire_stq != NULL) { 15151 /* fowarding? */ 15152 ip_rput_process_forward(q, mp, ire, ipha, ill, 15153 ll_multicast); 15154 /* ip_rput_process_forward consumed the packet */ 15155 continue; 15156 } 15157 15158 local: 15159 /* 15160 * If the queue in the ire is different to the ingress queue 15161 * then we need to check to see if we can accept the packet. 15162 * Note that for multicast packets and broadcast packets sent 15163 * to a broadcast address which is shared between multiple 15164 * interfaces we should not do this since we just got a random 15165 * broadcast ire. 15166 */ 15167 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15168 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15169 ill)) == NULL) { 15170 /* Drop packet */ 15171 BUMP_MIB(ill->ill_ip_mib, 15172 ipIfStatsForwProhibits); 15173 freemsg(mp); 15174 continue; 15175 } 15176 if (ire->ire_rfq != NULL) 15177 q = ire->ire_rfq; 15178 } 15179 15180 switch (ipha->ipha_protocol) { 15181 case IPPROTO_TCP: 15182 ASSERT(first_mp == mp); 15183 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15184 mp, 0, q, ip_ring)) != NULL) { 15185 if (curr_sqp == NULL) { 15186 curr_sqp = GET_SQUEUE(mp); 15187 ASSERT(cnt == 0); 15188 cnt++; 15189 head = tail = mp; 15190 } else if (curr_sqp == GET_SQUEUE(mp)) { 15191 ASSERT(tail != NULL); 15192 cnt++; 15193 tail->b_next = mp; 15194 tail = mp; 15195 } else { 15196 /* 15197 * A different squeue. Send the 15198 * chain for the previous squeue on 15199 * its way. This shouldn't happen 15200 * often unless interrupt binding 15201 * changes. 15202 */ 15203 IP_STAT(ipst, ip_input_multi_squeue); 15204 squeue_enter_chain(curr_sqp, head, 15205 tail, cnt, SQTAG_IP_INPUT); 15206 curr_sqp = GET_SQUEUE(mp); 15207 head = mp; 15208 tail = mp; 15209 cnt = 1; 15210 } 15211 } 15212 continue; 15213 case IPPROTO_UDP: 15214 ASSERT(first_mp == mp); 15215 ip_udp_input(q, mp, ipha, ire, ill); 15216 continue; 15217 case IPPROTO_SCTP: 15218 ASSERT(first_mp == mp); 15219 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15220 q, dst); 15221 /* ire has been released by ip_sctp_input */ 15222 ire = NULL; 15223 continue; 15224 default: 15225 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15226 continue; 15227 } 15228 } 15229 15230 if (ire != NULL) 15231 ire_refrele(ire); 15232 15233 if (head != NULL) 15234 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15235 15236 /* 15237 * This code is there just to make netperf/ttcp look good. 15238 * 15239 * Its possible that after being in polling mode (and having cleared 15240 * the backlog), squeues have turned the interrupt frequency higher 15241 * to improve latency at the expense of more CPU utilization (less 15242 * packets per interrupts or more number of interrupts). Workloads 15243 * like ttcp/netperf do manage to tickle polling once in a while 15244 * but for the remaining time, stay in higher interrupt mode since 15245 * their packet arrival rate is pretty uniform and this shows up 15246 * as higher CPU utilization. Since people care about CPU utilization 15247 * while running netperf/ttcp, turn the interrupt frequency back to 15248 * normal/default if polling has not been used in ip_poll_normal_ticks. 15249 */ 15250 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15251 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15252 ip_ring->rr_poll_state &= ~ILL_POLLING; 15253 ip_ring->rr_blank(ip_ring->rr_handle, 15254 ip_ring->rr_normal_blank_time, 15255 ip_ring->rr_normal_pkt_cnt); 15256 } 15257 } 15258 15259 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15260 "ip_input_end: q %p (%S)", q, "end"); 15261 #undef rptr 15262 } 15263 15264 static void 15265 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15266 t_uscalar_t err) 15267 { 15268 if (dl_err == DL_SYSERR) { 15269 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15270 "%s: %s failed: DL_SYSERR (errno %u)\n", 15271 ill->ill_name, dlpi_prim_str(prim), err); 15272 return; 15273 } 15274 15275 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15276 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15277 dlpi_err_str(dl_err)); 15278 } 15279 15280 /* 15281 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15282 * than DL_UNITDATA_IND messages. If we need to process this message 15283 * exclusively, we call qwriter_ip, in which case we also need to call 15284 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15285 */ 15286 void 15287 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15288 { 15289 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15290 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15291 ill_t *ill = (ill_t *)q->q_ptr; 15292 boolean_t pending; 15293 15294 ip1dbg(("ip_rput_dlpi")); 15295 if (dloa->dl_primitive == DL_ERROR_ACK) { 15296 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15297 "%s (0x%x), unix %u\n", ill->ill_name, 15298 dlpi_prim_str(dlea->dl_error_primitive), 15299 dlea->dl_error_primitive, 15300 dlpi_err_str(dlea->dl_errno), 15301 dlea->dl_errno, 15302 dlea->dl_unix_errno)); 15303 } 15304 15305 /* 15306 * If we received an ACK but didn't send a request for it, then it 15307 * can't be part of any pending operation; discard up-front. 15308 */ 15309 switch (dloa->dl_primitive) { 15310 case DL_NOTIFY_IND: 15311 pending = B_TRUE; 15312 break; 15313 case DL_ERROR_ACK: 15314 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15315 break; 15316 case DL_OK_ACK: 15317 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15318 break; 15319 case DL_INFO_ACK: 15320 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15321 break; 15322 case DL_BIND_ACK: 15323 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15324 break; 15325 case DL_PHYS_ADDR_ACK: 15326 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15327 break; 15328 case DL_NOTIFY_ACK: 15329 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15330 break; 15331 case DL_CONTROL_ACK: 15332 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15333 break; 15334 case DL_CAPABILITY_ACK: 15335 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15336 break; 15337 default: 15338 /* Not a DLPI message we support or were expecting */ 15339 freemsg(mp); 15340 return; 15341 } 15342 15343 if (!pending) { 15344 freemsg(mp); 15345 return; 15346 } 15347 15348 switch (dloa->dl_primitive) { 15349 case DL_ERROR_ACK: 15350 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15351 mutex_enter(&ill->ill_lock); 15352 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15353 cv_signal(&ill->ill_cv); 15354 mutex_exit(&ill->ill_lock); 15355 } 15356 break; 15357 15358 case DL_OK_ACK: 15359 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15360 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15361 switch (dloa->dl_correct_primitive) { 15362 case DL_UNBIND_REQ: 15363 mutex_enter(&ill->ill_lock); 15364 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15365 cv_signal(&ill->ill_cv); 15366 mutex_exit(&ill->ill_lock); 15367 break; 15368 15369 case DL_ENABMULTI_REQ: 15370 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15371 ill->ill_dlpi_multicast_state = IDS_OK; 15372 break; 15373 } 15374 break; 15375 default: 15376 break; 15377 } 15378 15379 /* 15380 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15381 * and we need to become writer to continue to process it. If it's not 15382 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15383 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15384 * some work as part of the current exclusive operation that actually 15385 * is not part of it -- which is wrong, but better than the 15386 * alternative of deadlock (if NEW_OP is always used). Someday, we 15387 * should track which DLPI requests have ACKs that we wait on 15388 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15389 * 15390 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15391 * Since this is on the ill stream we unconditionally bump up the 15392 * refcount without doing ILL_CAN_LOOKUP(). 15393 */ 15394 ill_refhold(ill); 15395 if (dloa->dl_primitive == DL_NOTIFY_IND) 15396 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15397 else 15398 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15399 } 15400 15401 /* 15402 * Handling of DLPI messages that require exclusive access to the ipsq. 15403 * 15404 * Need to do ill_pending_mp_release on ioctl completion, which could 15405 * happen here. (along with mi_copy_done) 15406 */ 15407 /* ARGSUSED */ 15408 static void 15409 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15410 { 15411 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15412 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15413 int err = 0; 15414 ill_t *ill; 15415 ipif_t *ipif = NULL; 15416 mblk_t *mp1 = NULL; 15417 conn_t *connp = NULL; 15418 t_uscalar_t paddrreq; 15419 mblk_t *mp_hw; 15420 boolean_t success; 15421 boolean_t ioctl_aborted = B_FALSE; 15422 boolean_t log = B_TRUE; 15423 hook_nic_event_t *info; 15424 ip_stack_t *ipst; 15425 15426 ip1dbg(("ip_rput_dlpi_writer ..")); 15427 ill = (ill_t *)q->q_ptr; 15428 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15429 15430 ASSERT(IAM_WRITER_ILL(ill)); 15431 15432 ipst = ill->ill_ipst; 15433 15434 /* 15435 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15436 * both are null or non-null. However we can assert that only 15437 * after grabbing the ipsq_lock. So we don't make any assertion 15438 * here and in other places in the code. 15439 */ 15440 ipif = ipsq->ipsq_pending_ipif; 15441 /* 15442 * The current ioctl could have been aborted by the user and a new 15443 * ioctl to bring up another ill could have started. We could still 15444 * get a response from the driver later. 15445 */ 15446 if (ipif != NULL && ipif->ipif_ill != ill) 15447 ioctl_aborted = B_TRUE; 15448 15449 switch (dloa->dl_primitive) { 15450 case DL_ERROR_ACK: 15451 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15452 dlpi_prim_str(dlea->dl_error_primitive))); 15453 15454 switch (dlea->dl_error_primitive) { 15455 case DL_PROMISCON_REQ: 15456 case DL_PROMISCOFF_REQ: 15457 case DL_DISABMULTI_REQ: 15458 case DL_UNBIND_REQ: 15459 case DL_ATTACH_REQ: 15460 case DL_INFO_REQ: 15461 ill_dlpi_done(ill, dlea->dl_error_primitive); 15462 break; 15463 case DL_NOTIFY_REQ: 15464 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15465 log = B_FALSE; 15466 break; 15467 case DL_PHYS_ADDR_REQ: 15468 /* 15469 * For IPv6 only, there are two additional 15470 * phys_addr_req's sent to the driver to get the 15471 * IPv6 token and lla. This allows IP to acquire 15472 * the hardware address format for a given interface 15473 * without having built in knowledge of the hardware 15474 * address. ill_phys_addr_pend keeps track of the last 15475 * DL_PAR sent so we know which response we are 15476 * dealing with. ill_dlpi_done will update 15477 * ill_phys_addr_pend when it sends the next req. 15478 * We don't complete the IOCTL until all three DL_PARs 15479 * have been attempted, so set *_len to 0 and break. 15480 */ 15481 paddrreq = ill->ill_phys_addr_pend; 15482 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15483 if (paddrreq == DL_IPV6_TOKEN) { 15484 ill->ill_token_length = 0; 15485 log = B_FALSE; 15486 break; 15487 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15488 ill->ill_nd_lla_len = 0; 15489 log = B_FALSE; 15490 break; 15491 } 15492 /* 15493 * Something went wrong with the DL_PHYS_ADDR_REQ. 15494 * We presumably have an IOCTL hanging out waiting 15495 * for completion. Find it and complete the IOCTL 15496 * with the error noted. 15497 * However, ill_dl_phys was called on an ill queue 15498 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15499 * set. But the ioctl is known to be pending on ill_wq. 15500 */ 15501 if (!ill->ill_ifname_pending) 15502 break; 15503 ill->ill_ifname_pending = 0; 15504 if (!ioctl_aborted) 15505 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15506 if (mp1 != NULL) { 15507 /* 15508 * This operation (SIOCSLIFNAME) must have 15509 * happened on the ill. Assert there is no conn 15510 */ 15511 ASSERT(connp == NULL); 15512 q = ill->ill_wq; 15513 } 15514 break; 15515 case DL_BIND_REQ: 15516 ill_dlpi_done(ill, DL_BIND_REQ); 15517 if (ill->ill_ifname_pending) 15518 break; 15519 /* 15520 * Something went wrong with the bind. We presumably 15521 * have an IOCTL hanging out waiting for completion. 15522 * Find it, take down the interface that was coming 15523 * up, and complete the IOCTL with the error noted. 15524 */ 15525 if (!ioctl_aborted) 15526 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15527 if (mp1 != NULL) { 15528 /* 15529 * This operation (SIOCSLIFFLAGS) must have 15530 * happened from a conn. 15531 */ 15532 ASSERT(connp != NULL); 15533 q = CONNP_TO_WQ(connp); 15534 if (ill->ill_move_in_progress) { 15535 ILL_CLEAR_MOVE(ill); 15536 } 15537 (void) ipif_down(ipif, NULL, NULL); 15538 /* error is set below the switch */ 15539 } 15540 break; 15541 case DL_ENABMULTI_REQ: 15542 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15543 15544 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15545 ill->ill_dlpi_multicast_state = IDS_FAILED; 15546 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15547 ipif_t *ipif; 15548 15549 printf("ip: joining multicasts failed (%d)" 15550 " on %s - will use link layer " 15551 "broadcasts for multicast\n", 15552 dlea->dl_errno, ill->ill_name); 15553 15554 /* 15555 * Set up the multicast mapping alone. 15556 * writer, so ok to access ill->ill_ipif 15557 * without any lock. 15558 */ 15559 ipif = ill->ill_ipif; 15560 mutex_enter(&ill->ill_phyint->phyint_lock); 15561 ill->ill_phyint->phyint_flags |= 15562 PHYI_MULTI_BCAST; 15563 mutex_exit(&ill->ill_phyint->phyint_lock); 15564 15565 if (!ill->ill_isv6) { 15566 (void) ipif_arp_setup_multicast(ipif, 15567 NULL); 15568 } else { 15569 (void) ipif_ndp_setup_multicast(ipif, 15570 NULL); 15571 } 15572 } 15573 freemsg(mp); /* Don't want to pass this up */ 15574 return; 15575 15576 case DL_CAPABILITY_REQ: 15577 case DL_CONTROL_REQ: 15578 ill_dlpi_done(ill, dlea->dl_error_primitive); 15579 ill->ill_dlpi_capab_state = IDS_FAILED; 15580 freemsg(mp); 15581 return; 15582 } 15583 /* 15584 * Note the error for IOCTL completion (mp1 is set when 15585 * ready to complete ioctl). If ill_ifname_pending_err is 15586 * set, an error occured during plumbing (ill_ifname_pending), 15587 * so we want to report that error. 15588 * 15589 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15590 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15591 * expected to get errack'd if the driver doesn't support 15592 * these flags (e.g. ethernet). log will be set to B_FALSE 15593 * if these error conditions are encountered. 15594 */ 15595 if (mp1 != NULL) { 15596 if (ill->ill_ifname_pending_err != 0) { 15597 err = ill->ill_ifname_pending_err; 15598 ill->ill_ifname_pending_err = 0; 15599 } else { 15600 err = dlea->dl_unix_errno ? 15601 dlea->dl_unix_errno : ENXIO; 15602 } 15603 /* 15604 * If we're plumbing an interface and an error hasn't already 15605 * been saved, set ill_ifname_pending_err to the error passed 15606 * up. Ignore the error if log is B_FALSE (see comment above). 15607 */ 15608 } else if (log && ill->ill_ifname_pending && 15609 ill->ill_ifname_pending_err == 0) { 15610 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15611 dlea->dl_unix_errno : ENXIO; 15612 } 15613 15614 if (log) 15615 ip_dlpi_error(ill, dlea->dl_error_primitive, 15616 dlea->dl_errno, dlea->dl_unix_errno); 15617 break; 15618 case DL_CAPABILITY_ACK: { 15619 boolean_t reneg_flag = B_FALSE; 15620 /* Call a routine to handle this one. */ 15621 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15622 /* 15623 * Check if the ACK is due to renegotiation case since we 15624 * will need to send a new CAPABILITY_REQ later. 15625 */ 15626 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15627 /* This is the ack for a renogiation case */ 15628 reneg_flag = B_TRUE; 15629 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15630 } 15631 ill_capability_ack(ill, mp); 15632 if (reneg_flag) 15633 ill_capability_probe(ill); 15634 break; 15635 } 15636 case DL_CONTROL_ACK: 15637 /* We treat all of these as "fire and forget" */ 15638 ill_dlpi_done(ill, DL_CONTROL_REQ); 15639 break; 15640 case DL_INFO_ACK: 15641 /* Call a routine to handle this one. */ 15642 ill_dlpi_done(ill, DL_INFO_REQ); 15643 ip_ll_subnet_defaults(ill, mp); 15644 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15645 return; 15646 case DL_BIND_ACK: 15647 /* 15648 * We should have an IOCTL waiting on this unless 15649 * sent by ill_dl_phys, in which case just return 15650 */ 15651 ill_dlpi_done(ill, DL_BIND_REQ); 15652 if (ill->ill_ifname_pending) 15653 break; 15654 15655 if (!ioctl_aborted) 15656 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15657 if (mp1 == NULL) 15658 break; 15659 /* 15660 * Because mp1 was added by ill_dl_up(), and it always 15661 * passes a valid connp, connp must be valid here. 15662 */ 15663 ASSERT(connp != NULL); 15664 q = CONNP_TO_WQ(connp); 15665 15666 /* 15667 * We are exclusive. So nothing can change even after 15668 * we get the pending mp. If need be we can put it back 15669 * and restart, as in calling ipif_arp_up() below. 15670 */ 15671 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15672 15673 mutex_enter(&ill->ill_lock); 15674 15675 ill->ill_dl_up = 1; 15676 15677 if ((info = ill->ill_nic_event_info) != NULL) { 15678 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15679 "attached for %s\n", info->hne_event, 15680 ill->ill_name)); 15681 if (info->hne_data != NULL) 15682 kmem_free(info->hne_data, info->hne_datalen); 15683 kmem_free(info, sizeof (hook_nic_event_t)); 15684 } 15685 15686 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15687 if (info != NULL) { 15688 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15689 info->hne_lif = 0; 15690 info->hne_event = NE_UP; 15691 info->hne_data = NULL; 15692 info->hne_datalen = 0; 15693 info->hne_family = ill->ill_isv6 ? 15694 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15695 } else 15696 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15697 "event information for %s (ENOMEM)\n", 15698 ill->ill_name)); 15699 15700 ill->ill_nic_event_info = info; 15701 15702 mutex_exit(&ill->ill_lock); 15703 15704 /* 15705 * Now bring up the resolver; when that is complete, we'll 15706 * create IREs. Note that we intentionally mirror what 15707 * ipif_up() would have done, because we got here by way of 15708 * ill_dl_up(), which stopped ipif_up()'s processing. 15709 */ 15710 if (ill->ill_isv6) { 15711 /* 15712 * v6 interfaces. 15713 * Unlike ARP which has to do another bind 15714 * and attach, once we get here we are 15715 * done with NDP. Except in the case of 15716 * ILLF_XRESOLV, in which case we send an 15717 * AR_INTERFACE_UP to the external resolver. 15718 * If all goes well, the ioctl will complete 15719 * in ip_rput(). If there's an error, we 15720 * complete it here. 15721 */ 15722 if ((err = ipif_ndp_up(ipif)) == 0) { 15723 if (ill->ill_flags & ILLF_XRESOLV) { 15724 mutex_enter(&connp->conn_lock); 15725 mutex_enter(&ill->ill_lock); 15726 success = ipsq_pending_mp_add( 15727 connp, ipif, q, mp1, 0); 15728 mutex_exit(&ill->ill_lock); 15729 mutex_exit(&connp->conn_lock); 15730 if (success) { 15731 err = ipif_resolver_up(ipif, 15732 Res_act_initial); 15733 if (err == EINPROGRESS) { 15734 freemsg(mp); 15735 return; 15736 } 15737 ASSERT(err != 0); 15738 mp1 = ipsq_pending_mp_get(ipsq, 15739 &connp); 15740 ASSERT(mp1 != NULL); 15741 } else { 15742 /* conn has started closing */ 15743 err = EINTR; 15744 } 15745 } else { /* Non XRESOLV interface */ 15746 (void) ipif_resolver_up(ipif, 15747 Res_act_initial); 15748 err = ipif_up_done_v6(ipif); 15749 } 15750 } 15751 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15752 /* 15753 * ARP and other v4 external resolvers. 15754 * Leave the pending mblk intact so that 15755 * the ioctl completes in ip_rput(). 15756 */ 15757 mutex_enter(&connp->conn_lock); 15758 mutex_enter(&ill->ill_lock); 15759 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15760 mutex_exit(&ill->ill_lock); 15761 mutex_exit(&connp->conn_lock); 15762 if (success) { 15763 err = ipif_resolver_up(ipif, Res_act_initial); 15764 if (err == EINPROGRESS) { 15765 freemsg(mp); 15766 return; 15767 } 15768 ASSERT(err != 0); 15769 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15770 } else { 15771 /* The conn has started closing */ 15772 err = EINTR; 15773 } 15774 } else { 15775 /* 15776 * This one is complete. Reply to pending ioctl. 15777 */ 15778 (void) ipif_resolver_up(ipif, Res_act_initial); 15779 err = ipif_up_done(ipif); 15780 } 15781 15782 if ((err == 0) && (ill->ill_up_ipifs)) { 15783 err = ill_up_ipifs(ill, q, mp1); 15784 if (err == EINPROGRESS) { 15785 freemsg(mp); 15786 return; 15787 } 15788 } 15789 15790 if (ill->ill_up_ipifs) { 15791 ill_group_cleanup(ill); 15792 } 15793 15794 break; 15795 case DL_NOTIFY_IND: { 15796 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15797 ire_t *ire; 15798 boolean_t need_ire_walk_v4 = B_FALSE; 15799 boolean_t need_ire_walk_v6 = B_FALSE; 15800 15801 switch (notify->dl_notification) { 15802 case DL_NOTE_PHYS_ADDR: 15803 err = ill_set_phys_addr(ill, mp); 15804 break; 15805 15806 case DL_NOTE_FASTPATH_FLUSH: 15807 ill_fastpath_flush(ill); 15808 break; 15809 15810 case DL_NOTE_SDU_SIZE: 15811 /* 15812 * Change the MTU size of the interface, of all 15813 * attached ipif's, and of all relevant ire's. The 15814 * new value's a uint32_t at notify->dl_data. 15815 * Mtu change Vs. new ire creation - protocol below. 15816 * 15817 * a Mark the ipif as IPIF_CHANGING. 15818 * b Set the new mtu in the ipif. 15819 * c Change the ire_max_frag on all affected ires 15820 * d Unmark the IPIF_CHANGING 15821 * 15822 * To see how the protocol works, assume an interface 15823 * route is also being added simultaneously by 15824 * ip_rt_add and let 'ipif' be the ipif referenced by 15825 * the ire. If the ire is created before step a, 15826 * it will be cleaned up by step c. If the ire is 15827 * created after step d, it will see the new value of 15828 * ipif_mtu. Any attempt to create the ire between 15829 * steps a to d will fail because of the IPIF_CHANGING 15830 * flag. Note that ire_create() is passed a pointer to 15831 * the ipif_mtu, and not the value. During ire_add 15832 * under the bucket lock, the ire_max_frag of the 15833 * new ire being created is set from the ipif/ire from 15834 * which it is being derived. 15835 */ 15836 mutex_enter(&ill->ill_lock); 15837 ill->ill_max_frag = (uint_t)notify->dl_data; 15838 15839 /* 15840 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15841 * leave it alone 15842 */ 15843 if (ill->ill_mtu_userspecified) { 15844 mutex_exit(&ill->ill_lock); 15845 break; 15846 } 15847 ill->ill_max_mtu = ill->ill_max_frag; 15848 if (ill->ill_isv6) { 15849 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15850 ill->ill_max_mtu = IPV6_MIN_MTU; 15851 } else { 15852 if (ill->ill_max_mtu < IP_MIN_MTU) 15853 ill->ill_max_mtu = IP_MIN_MTU; 15854 } 15855 for (ipif = ill->ill_ipif; ipif != NULL; 15856 ipif = ipif->ipif_next) { 15857 /* 15858 * Don't override the mtu if the user 15859 * has explicitly set it. 15860 */ 15861 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15862 continue; 15863 ipif->ipif_mtu = (uint_t)notify->dl_data; 15864 if (ipif->ipif_isv6) 15865 ire = ipif_to_ire_v6(ipif); 15866 else 15867 ire = ipif_to_ire(ipif); 15868 if (ire != NULL) { 15869 ire->ire_max_frag = ipif->ipif_mtu; 15870 ire_refrele(ire); 15871 } 15872 if (ipif->ipif_flags & IPIF_UP) { 15873 if (ill->ill_isv6) 15874 need_ire_walk_v6 = B_TRUE; 15875 else 15876 need_ire_walk_v4 = B_TRUE; 15877 } 15878 } 15879 mutex_exit(&ill->ill_lock); 15880 if (need_ire_walk_v4) 15881 ire_walk_v4(ill_mtu_change, (char *)ill, 15882 ALL_ZONES, ipst); 15883 if (need_ire_walk_v6) 15884 ire_walk_v6(ill_mtu_change, (char *)ill, 15885 ALL_ZONES, ipst); 15886 break; 15887 case DL_NOTE_LINK_UP: 15888 case DL_NOTE_LINK_DOWN: { 15889 /* 15890 * We are writer. ill / phyint / ipsq assocs stable. 15891 * The RUNNING flag reflects the state of the link. 15892 */ 15893 phyint_t *phyint = ill->ill_phyint; 15894 uint64_t new_phyint_flags; 15895 boolean_t changed = B_FALSE; 15896 boolean_t went_up; 15897 15898 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15899 mutex_enter(&phyint->phyint_lock); 15900 new_phyint_flags = went_up ? 15901 phyint->phyint_flags | PHYI_RUNNING : 15902 phyint->phyint_flags & ~PHYI_RUNNING; 15903 if (new_phyint_flags != phyint->phyint_flags) { 15904 phyint->phyint_flags = new_phyint_flags; 15905 changed = B_TRUE; 15906 } 15907 mutex_exit(&phyint->phyint_lock); 15908 /* 15909 * ill_restart_dad handles the DAD restart and routing 15910 * socket notification logic. 15911 */ 15912 if (changed) { 15913 ill_restart_dad(phyint->phyint_illv4, went_up); 15914 ill_restart_dad(phyint->phyint_illv6, went_up); 15915 } 15916 break; 15917 } 15918 case DL_NOTE_PROMISC_ON_PHYS: 15919 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15920 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15921 mutex_enter(&ill->ill_lock); 15922 ill->ill_promisc_on_phys = B_TRUE; 15923 mutex_exit(&ill->ill_lock); 15924 break; 15925 case DL_NOTE_PROMISC_OFF_PHYS: 15926 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15927 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15928 mutex_enter(&ill->ill_lock); 15929 ill->ill_promisc_on_phys = B_FALSE; 15930 mutex_exit(&ill->ill_lock); 15931 break; 15932 case DL_NOTE_CAPAB_RENEG: 15933 /* 15934 * Something changed on the driver side. 15935 * It wants us to renegotiate the capabilities 15936 * on this ill. The most likely cause is the 15937 * aggregation interface under us where a 15938 * port got added or went away. 15939 * 15940 * We reset the capabilities and set the 15941 * state to IDS_RENG so that when the ack 15942 * comes back, we can start the 15943 * renegotiation process. 15944 */ 15945 ill_capability_reset(ill); 15946 ill->ill_dlpi_capab_state = IDS_RENEG; 15947 break; 15948 default: 15949 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15950 "type 0x%x for DL_NOTIFY_IND\n", 15951 notify->dl_notification)); 15952 break; 15953 } 15954 15955 /* 15956 * As this is an asynchronous operation, we 15957 * should not call ill_dlpi_done 15958 */ 15959 break; 15960 } 15961 case DL_NOTIFY_ACK: { 15962 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15963 15964 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15965 ill->ill_note_link = 1; 15966 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15967 break; 15968 } 15969 case DL_PHYS_ADDR_ACK: { 15970 /* 15971 * As part of plumbing the interface via SIOCSLIFNAME, 15972 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 15973 * whose answers we receive here. As each answer is received, 15974 * we call ill_dlpi_done() to dispatch the next request as 15975 * we're processing the current one. Once all answers have 15976 * been received, we use ipsq_pending_mp_get() to dequeue the 15977 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 15978 * is invoked from an ill queue, conn_oper_pending_ill is not 15979 * available, but we know the ioctl is pending on ill_wq.) 15980 */ 15981 uint_t paddrlen, paddroff; 15982 15983 paddrreq = ill->ill_phys_addr_pend; 15984 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 15985 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 15986 15987 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15988 if (paddrreq == DL_IPV6_TOKEN) { 15989 /* 15990 * bcopy to low-order bits of ill_token 15991 * 15992 * XXX Temporary hack - currently, all known tokens 15993 * are 64 bits, so I'll cheat for the moment. 15994 */ 15995 bcopy(mp->b_rptr + paddroff, 15996 &ill->ill_token.s6_addr32[2], paddrlen); 15997 ill->ill_token_length = paddrlen; 15998 break; 15999 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16000 ASSERT(ill->ill_nd_lla_mp == NULL); 16001 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16002 mp = NULL; 16003 break; 16004 } 16005 16006 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16007 ASSERT(ill->ill_phys_addr_mp == NULL); 16008 if (!ill->ill_ifname_pending) 16009 break; 16010 ill->ill_ifname_pending = 0; 16011 if (!ioctl_aborted) 16012 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16013 if (mp1 != NULL) { 16014 ASSERT(connp == NULL); 16015 q = ill->ill_wq; 16016 } 16017 /* 16018 * If any error acks received during the plumbing sequence, 16019 * ill_ifname_pending_err will be set. Break out and send up 16020 * the error to the pending ioctl. 16021 */ 16022 if (ill->ill_ifname_pending_err != 0) { 16023 err = ill->ill_ifname_pending_err; 16024 ill->ill_ifname_pending_err = 0; 16025 break; 16026 } 16027 16028 ill->ill_phys_addr_mp = mp; 16029 ill->ill_phys_addr = mp->b_rptr + paddroff; 16030 mp = NULL; 16031 16032 /* 16033 * If paddrlen is zero, the DLPI provider doesn't support 16034 * physical addresses. The other two tests were historical 16035 * workarounds for bugs in our former PPP implementation, but 16036 * now other things have grown dependencies on them -- e.g., 16037 * the tun module specifies a dl_addr_length of zero in its 16038 * DL_BIND_ACK, but then specifies an incorrect value in its 16039 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16040 * but only after careful testing ensures that all dependent 16041 * broken DLPI providers have been fixed. 16042 */ 16043 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16044 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16045 ill->ill_phys_addr = NULL; 16046 } else if (paddrlen != ill->ill_phys_addr_length) { 16047 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16048 paddrlen, ill->ill_phys_addr_length)); 16049 err = EINVAL; 16050 break; 16051 } 16052 16053 if (ill->ill_nd_lla_mp == NULL) { 16054 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16055 err = ENOMEM; 16056 break; 16057 } 16058 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16059 } 16060 16061 /* 16062 * Set the interface token. If the zeroth interface address 16063 * is unspecified, then set it to the link local address. 16064 */ 16065 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16066 (void) ill_setdefaulttoken(ill); 16067 16068 ASSERT(ill->ill_ipif->ipif_id == 0); 16069 if (ipif != NULL && 16070 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16071 (void) ipif_setlinklocal(ipif); 16072 } 16073 break; 16074 } 16075 case DL_OK_ACK: 16076 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16077 dlpi_prim_str((int)dloa->dl_correct_primitive), 16078 dloa->dl_correct_primitive)); 16079 switch (dloa->dl_correct_primitive) { 16080 case DL_PROMISCON_REQ: 16081 case DL_PROMISCOFF_REQ: 16082 case DL_ENABMULTI_REQ: 16083 case DL_DISABMULTI_REQ: 16084 case DL_UNBIND_REQ: 16085 case DL_ATTACH_REQ: 16086 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16087 break; 16088 } 16089 break; 16090 default: 16091 break; 16092 } 16093 16094 freemsg(mp); 16095 if (mp1 != NULL) { 16096 /* 16097 * The operation must complete without EINPROGRESS 16098 * since ipsq_pending_mp_get() has removed the mblk 16099 * from ipsq_pending_mp. Otherwise, the operation 16100 * will be stuck forever in the ipsq. 16101 */ 16102 ASSERT(err != EINPROGRESS); 16103 16104 switch (ipsq->ipsq_current_ioctl) { 16105 case 0: 16106 ipsq_current_finish(ipsq); 16107 break; 16108 16109 case SIOCLIFADDIF: 16110 case SIOCSLIFNAME: 16111 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16112 break; 16113 16114 default: 16115 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16116 break; 16117 } 16118 } 16119 } 16120 16121 /* 16122 * ip_rput_other is called by ip_rput to handle messages modifying the global 16123 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16124 */ 16125 /* ARGSUSED */ 16126 void 16127 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16128 { 16129 ill_t *ill; 16130 struct iocblk *iocp; 16131 mblk_t *mp1; 16132 conn_t *connp = NULL; 16133 16134 ip1dbg(("ip_rput_other ")); 16135 ill = (ill_t *)q->q_ptr; 16136 /* 16137 * This routine is not a writer in the case of SIOCGTUNPARAM 16138 * in which case ipsq is NULL. 16139 */ 16140 if (ipsq != NULL) { 16141 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16142 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16143 } 16144 16145 switch (mp->b_datap->db_type) { 16146 case M_ERROR: 16147 case M_HANGUP: 16148 /* 16149 * The device has a problem. We force the ILL down. It can 16150 * be brought up again manually using SIOCSIFFLAGS (via 16151 * ifconfig or equivalent). 16152 */ 16153 ASSERT(ipsq != NULL); 16154 if (mp->b_rptr < mp->b_wptr) 16155 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16156 if (ill->ill_error == 0) 16157 ill->ill_error = ENXIO; 16158 if (!ill_down_start(q, mp)) 16159 return; 16160 ipif_all_down_tail(ipsq, q, mp, NULL); 16161 break; 16162 case M_IOCACK: 16163 iocp = (struct iocblk *)mp->b_rptr; 16164 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16165 switch (iocp->ioc_cmd) { 16166 case SIOCSTUNPARAM: 16167 case OSIOCSTUNPARAM: 16168 ASSERT(ipsq != NULL); 16169 /* 16170 * Finish socket ioctl passed through to tun. 16171 * We should have an IOCTL waiting on this. 16172 */ 16173 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16174 if (ill->ill_isv6) { 16175 struct iftun_req *ta; 16176 16177 /* 16178 * if a source or destination is 16179 * being set, try and set the link 16180 * local address for the tunnel 16181 */ 16182 ta = (struct iftun_req *)mp->b_cont-> 16183 b_cont->b_rptr; 16184 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16185 ipif_set_tun_llink(ill, ta); 16186 } 16187 16188 } 16189 if (mp1 != NULL) { 16190 /* 16191 * Now copy back the b_next/b_prev used by 16192 * mi code for the mi_copy* functions. 16193 * See ip_sioctl_tunparam() for the reason. 16194 * Also protect against missing b_cont. 16195 */ 16196 if (mp->b_cont != NULL) { 16197 mp->b_cont->b_next = 16198 mp1->b_cont->b_next; 16199 mp->b_cont->b_prev = 16200 mp1->b_cont->b_prev; 16201 } 16202 inet_freemsg(mp1); 16203 ASSERT(connp != NULL); 16204 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16205 iocp->ioc_error, NO_COPYOUT, ipsq); 16206 } else { 16207 ASSERT(connp == NULL); 16208 putnext(q, mp); 16209 } 16210 break; 16211 case SIOCGTUNPARAM: 16212 case OSIOCGTUNPARAM: 16213 /* 16214 * This is really M_IOCDATA from the tunnel driver. 16215 * convert back and complete the ioctl. 16216 * We should have an IOCTL waiting on this. 16217 */ 16218 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16219 if (mp1) { 16220 /* 16221 * Now copy back the b_next/b_prev used by 16222 * mi code for the mi_copy* functions. 16223 * See ip_sioctl_tunparam() for the reason. 16224 * Also protect against missing b_cont. 16225 */ 16226 if (mp->b_cont != NULL) { 16227 mp->b_cont->b_next = 16228 mp1->b_cont->b_next; 16229 mp->b_cont->b_prev = 16230 mp1->b_cont->b_prev; 16231 } 16232 inet_freemsg(mp1); 16233 if (iocp->ioc_error == 0) 16234 mp->b_datap->db_type = M_IOCDATA; 16235 ASSERT(connp != NULL); 16236 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16237 iocp->ioc_error, COPYOUT, NULL); 16238 } else { 16239 ASSERT(connp == NULL); 16240 putnext(q, mp); 16241 } 16242 break; 16243 default: 16244 break; 16245 } 16246 break; 16247 case M_IOCNAK: 16248 iocp = (struct iocblk *)mp->b_rptr; 16249 16250 switch (iocp->ioc_cmd) { 16251 int mode; 16252 16253 case DL_IOC_HDR_INFO: 16254 /* 16255 * If this was the first attempt turn of the 16256 * fastpath probing. 16257 */ 16258 mutex_enter(&ill->ill_lock); 16259 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16260 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16261 mutex_exit(&ill->ill_lock); 16262 ill_fastpath_nack(ill); 16263 ip1dbg(("ip_rput: DLPI fastpath off on " 16264 "interface %s\n", 16265 ill->ill_name)); 16266 } else { 16267 mutex_exit(&ill->ill_lock); 16268 } 16269 freemsg(mp); 16270 break; 16271 case SIOCSTUNPARAM: 16272 case OSIOCSTUNPARAM: 16273 ASSERT(ipsq != NULL); 16274 /* 16275 * Finish socket ioctl passed through to tun 16276 * We should have an IOCTL waiting on this. 16277 */ 16278 /* FALLTHRU */ 16279 case SIOCGTUNPARAM: 16280 case OSIOCGTUNPARAM: 16281 /* 16282 * This is really M_IOCDATA from the tunnel driver. 16283 * convert back and complete the ioctl. 16284 * We should have an IOCTL waiting on this. 16285 */ 16286 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16287 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16288 mp1 = ill_pending_mp_get(ill, &connp, 16289 iocp->ioc_id); 16290 mode = COPYOUT; 16291 ipsq = NULL; 16292 } else { 16293 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16294 mode = NO_COPYOUT; 16295 } 16296 if (mp1 != NULL) { 16297 /* 16298 * Now copy back the b_next/b_prev used by 16299 * mi code for the mi_copy* functions. 16300 * See ip_sioctl_tunparam() for the reason. 16301 * Also protect against missing b_cont. 16302 */ 16303 if (mp->b_cont != NULL) { 16304 mp->b_cont->b_next = 16305 mp1->b_cont->b_next; 16306 mp->b_cont->b_prev = 16307 mp1->b_cont->b_prev; 16308 } 16309 inet_freemsg(mp1); 16310 if (iocp->ioc_error == 0) 16311 iocp->ioc_error = EINVAL; 16312 ASSERT(connp != NULL); 16313 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16314 iocp->ioc_error, mode, ipsq); 16315 } else { 16316 ASSERT(connp == NULL); 16317 putnext(q, mp); 16318 } 16319 break; 16320 default: 16321 break; 16322 } 16323 default: 16324 break; 16325 } 16326 } 16327 16328 /* 16329 * NOTE : This function does not ire_refrele the ire argument passed in. 16330 * 16331 * IPQoS notes 16332 * IP policy is invoked twice for a forwarded packet, once on the read side 16333 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16334 * enabled. An additional parameter, in_ill, has been added for this purpose. 16335 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16336 * because ip_mroute drops this information. 16337 * 16338 */ 16339 void 16340 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16341 { 16342 uint32_t old_pkt_len; 16343 uint32_t pkt_len; 16344 queue_t *q; 16345 uint32_t sum; 16346 #define rptr ((uchar_t *)ipha) 16347 uint32_t max_frag; 16348 uint32_t ill_index; 16349 ill_t *out_ill; 16350 mib2_ipIfStatsEntry_t *mibptr; 16351 ip_stack_t *ipst = in_ill->ill_ipst; 16352 16353 /* Get the ill_index of the incoming ILL */ 16354 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16355 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16356 16357 /* Initiate Read side IPPF processing */ 16358 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16359 ip_process(IPP_FWD_IN, &mp, ill_index); 16360 if (mp == NULL) { 16361 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16362 "during IPPF processing\n")); 16363 return; 16364 } 16365 } 16366 16367 /* Adjust the checksum to reflect the ttl decrement. */ 16368 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16369 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16370 16371 if (ipha->ipha_ttl-- <= 1) { 16372 if (ip_csum_hdr(ipha)) { 16373 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16374 goto drop_pkt; 16375 } 16376 /* 16377 * Note: ire_stq this will be NULL for multicast 16378 * datagrams using the long path through arp (the IRE 16379 * is not an IRE_CACHE). This should not cause 16380 * problems since we don't generate ICMP errors for 16381 * multicast packets. 16382 */ 16383 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16384 q = ire->ire_stq; 16385 if (q != NULL) { 16386 /* Sent by forwarding path, and router is global zone */ 16387 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16388 GLOBAL_ZONEID, ipst); 16389 } else 16390 freemsg(mp); 16391 return; 16392 } 16393 16394 /* 16395 * Don't forward if the interface is down 16396 */ 16397 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16398 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16399 ip2dbg(("ip_rput_forward:interface is down\n")); 16400 goto drop_pkt; 16401 } 16402 16403 /* Get the ill_index of the outgoing ILL */ 16404 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16405 16406 out_ill = ire->ire_ipif->ipif_ill; 16407 16408 DTRACE_PROBE4(ip4__forwarding__start, 16409 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16410 16411 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16412 ipst->ips_ipv4firewall_forwarding, 16413 in_ill, out_ill, ipha, mp, mp, ipst); 16414 16415 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16416 16417 if (mp == NULL) 16418 return; 16419 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16420 16421 if (is_system_labeled()) { 16422 mblk_t *mp1; 16423 16424 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16425 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16426 goto drop_pkt; 16427 } 16428 /* Size may have changed */ 16429 mp = mp1; 16430 ipha = (ipha_t *)mp->b_rptr; 16431 pkt_len = ntohs(ipha->ipha_length); 16432 } 16433 16434 /* Check if there are options to update */ 16435 if (!IS_SIMPLE_IPH(ipha)) { 16436 if (ip_csum_hdr(ipha)) { 16437 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16438 goto drop_pkt; 16439 } 16440 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16441 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16442 return; 16443 } 16444 16445 ipha->ipha_hdr_checksum = 0; 16446 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16447 } 16448 max_frag = ire->ire_max_frag; 16449 if (pkt_len > max_frag) { 16450 /* 16451 * It needs fragging on its way out. We haven't 16452 * verified the header checksum yet. Since we 16453 * are going to put a surely good checksum in the 16454 * outgoing header, we have to make sure that it 16455 * was good coming in. 16456 */ 16457 if (ip_csum_hdr(ipha)) { 16458 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16459 goto drop_pkt; 16460 } 16461 /* Initiate Write side IPPF processing */ 16462 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16463 ip_process(IPP_FWD_OUT, &mp, ill_index); 16464 if (mp == NULL) { 16465 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16466 " during IPPF processing\n")); 16467 return; 16468 } 16469 } 16470 /* 16471 * Handle labeled packet resizing. 16472 * 16473 * If we have added a label, inform ip_wput_frag() of its 16474 * effect on the MTU for ICMP messages. 16475 */ 16476 if (pkt_len > old_pkt_len) { 16477 uint32_t secopt_size; 16478 16479 secopt_size = pkt_len - old_pkt_len; 16480 if (secopt_size < max_frag) 16481 max_frag -= secopt_size; 16482 } 16483 16484 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16485 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16486 return; 16487 } 16488 16489 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16490 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16491 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16492 ipst->ips_ipv4firewall_physical_out, 16493 NULL, out_ill, ipha, mp, mp, ipst); 16494 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16495 if (mp == NULL) 16496 return; 16497 16498 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16499 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16500 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16501 /* ip_xmit_v4 always consumes the packet */ 16502 return; 16503 16504 drop_pkt:; 16505 ip1dbg(("ip_rput_forward: drop pkt\n")); 16506 freemsg(mp); 16507 #undef rptr 16508 } 16509 16510 void 16511 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16512 { 16513 ire_t *ire; 16514 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16515 16516 ASSERT(!ipif->ipif_isv6); 16517 /* 16518 * Find an IRE which matches the destination and the outgoing 16519 * queue in the cache table. All we need is an IRE_CACHE which 16520 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16521 * then it is enough to have some IRE_CACHE in the group. 16522 */ 16523 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16524 dst = ipif->ipif_pp_dst_addr; 16525 16526 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16527 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16528 if (ire == NULL) { 16529 /* 16530 * Mark this packet to make it be delivered to 16531 * ip_rput_forward after the new ire has been 16532 * created. 16533 */ 16534 mp->b_prev = NULL; 16535 mp->b_next = mp; 16536 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16537 NULL, 0, GLOBAL_ZONEID, &zero_info); 16538 } else { 16539 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16540 IRE_REFRELE(ire); 16541 } 16542 } 16543 16544 /* Update any source route, record route or timestamp options */ 16545 static int 16546 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16547 { 16548 ipoptp_t opts; 16549 uchar_t *opt; 16550 uint8_t optval; 16551 uint8_t optlen; 16552 ipaddr_t dst; 16553 uint32_t ts; 16554 ire_t *dst_ire = NULL; 16555 ire_t *tmp_ire = NULL; 16556 timestruc_t now; 16557 16558 ip2dbg(("ip_rput_forward_options\n")); 16559 dst = ipha->ipha_dst; 16560 for (optval = ipoptp_first(&opts, ipha); 16561 optval != IPOPT_EOL; 16562 optval = ipoptp_next(&opts)) { 16563 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16564 opt = opts.ipoptp_cur; 16565 optlen = opts.ipoptp_len; 16566 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16567 optval, opts.ipoptp_len)); 16568 switch (optval) { 16569 uint32_t off; 16570 case IPOPT_SSRR: 16571 case IPOPT_LSRR: 16572 /* Check if adminstratively disabled */ 16573 if (!ipst->ips_ip_forward_src_routed) { 16574 if (ire->ire_stq != NULL) { 16575 /* 16576 * Sent by forwarding path, and router 16577 * is global zone 16578 */ 16579 icmp_unreachable(ire->ire_stq, mp, 16580 ICMP_SOURCE_ROUTE_FAILED, 16581 GLOBAL_ZONEID, ipst); 16582 } else { 16583 ip0dbg(("ip_rput_forward_options: " 16584 "unable to send unreach\n")); 16585 freemsg(mp); 16586 } 16587 return (-1); 16588 } 16589 16590 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16591 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16592 if (dst_ire == NULL) { 16593 /* 16594 * Must be partial since ip_rput_options 16595 * checked for strict. 16596 */ 16597 break; 16598 } 16599 off = opt[IPOPT_OFFSET]; 16600 off--; 16601 redo_srr: 16602 if (optlen < IP_ADDR_LEN || 16603 off > optlen - IP_ADDR_LEN) { 16604 /* End of source route */ 16605 ip1dbg(( 16606 "ip_rput_forward_options: end of SR\n")); 16607 ire_refrele(dst_ire); 16608 break; 16609 } 16610 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16611 bcopy(&ire->ire_src_addr, (char *)opt + off, 16612 IP_ADDR_LEN); 16613 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16614 ntohl(dst))); 16615 16616 /* 16617 * Check if our address is present more than 16618 * once as consecutive hops in source route. 16619 */ 16620 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16621 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16622 if (tmp_ire != NULL) { 16623 ire_refrele(tmp_ire); 16624 off += IP_ADDR_LEN; 16625 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16626 goto redo_srr; 16627 } 16628 ipha->ipha_dst = dst; 16629 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16630 ire_refrele(dst_ire); 16631 break; 16632 case IPOPT_RR: 16633 off = opt[IPOPT_OFFSET]; 16634 off--; 16635 if (optlen < IP_ADDR_LEN || 16636 off > optlen - IP_ADDR_LEN) { 16637 /* No more room - ignore */ 16638 ip1dbg(( 16639 "ip_rput_forward_options: end of RR\n")); 16640 break; 16641 } 16642 bcopy(&ire->ire_src_addr, (char *)opt + off, 16643 IP_ADDR_LEN); 16644 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16645 break; 16646 case IPOPT_TS: 16647 /* Insert timestamp if there is room */ 16648 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16649 case IPOPT_TS_TSONLY: 16650 off = IPOPT_TS_TIMELEN; 16651 break; 16652 case IPOPT_TS_PRESPEC: 16653 case IPOPT_TS_PRESPEC_RFC791: 16654 /* Verify that the address matched */ 16655 off = opt[IPOPT_OFFSET] - 1; 16656 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16657 dst_ire = ire_ctable_lookup(dst, 0, 16658 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16659 MATCH_IRE_TYPE, ipst); 16660 if (dst_ire == NULL) { 16661 /* Not for us */ 16662 break; 16663 } 16664 ire_refrele(dst_ire); 16665 /* FALLTHRU */ 16666 case IPOPT_TS_TSANDADDR: 16667 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16668 break; 16669 default: 16670 /* 16671 * ip_*put_options should have already 16672 * dropped this packet. 16673 */ 16674 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16675 "unknown IT - bug in ip_rput_options?\n"); 16676 return (0); /* Keep "lint" happy */ 16677 } 16678 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16679 /* Increase overflow counter */ 16680 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16681 opt[IPOPT_POS_OV_FLG] = 16682 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16683 (off << 4)); 16684 break; 16685 } 16686 off = opt[IPOPT_OFFSET] - 1; 16687 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16688 case IPOPT_TS_PRESPEC: 16689 case IPOPT_TS_PRESPEC_RFC791: 16690 case IPOPT_TS_TSANDADDR: 16691 bcopy(&ire->ire_src_addr, 16692 (char *)opt + off, IP_ADDR_LEN); 16693 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16694 /* FALLTHRU */ 16695 case IPOPT_TS_TSONLY: 16696 off = opt[IPOPT_OFFSET] - 1; 16697 /* Compute # of milliseconds since midnight */ 16698 gethrestime(&now); 16699 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16700 now.tv_nsec / (NANOSEC / MILLISEC); 16701 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16702 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16703 break; 16704 } 16705 break; 16706 } 16707 } 16708 return (0); 16709 } 16710 16711 /* 16712 * This is called after processing at least one of AH/ESP headers. 16713 * 16714 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16715 * the actual, physical interface on which the packet was received, 16716 * but, when ip_strict_dst_multihoming is set to 1, could be the 16717 * interface which had the ipha_dst configured when the packet went 16718 * through ip_rput. The ill_index corresponding to the recv_ill 16719 * is saved in ipsec_in_rill_index 16720 * 16721 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16722 * cannot assume "ire" points to valid data for any IPv6 cases. 16723 */ 16724 void 16725 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16726 { 16727 mblk_t *mp; 16728 ipaddr_t dst; 16729 in6_addr_t *v6dstp; 16730 ipha_t *ipha; 16731 ip6_t *ip6h; 16732 ipsec_in_t *ii; 16733 boolean_t ill_need_rele = B_FALSE; 16734 boolean_t rill_need_rele = B_FALSE; 16735 boolean_t ire_need_rele = B_FALSE; 16736 netstack_t *ns; 16737 ip_stack_t *ipst; 16738 16739 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16740 ASSERT(ii->ipsec_in_ill_index != 0); 16741 ns = ii->ipsec_in_ns; 16742 ASSERT(ii->ipsec_in_ns != NULL); 16743 ipst = ns->netstack_ip; 16744 16745 mp = ipsec_mp->b_cont; 16746 ASSERT(mp != NULL); 16747 16748 16749 if (ill == NULL) { 16750 ASSERT(recv_ill == NULL); 16751 /* 16752 * We need to get the original queue on which ip_rput_local 16753 * or ip_rput_data_v6 was called. 16754 */ 16755 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16756 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16757 ill_need_rele = B_TRUE; 16758 16759 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16760 recv_ill = ill_lookup_on_ifindex( 16761 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16762 NULL, NULL, NULL, NULL, ipst); 16763 rill_need_rele = B_TRUE; 16764 } else { 16765 recv_ill = ill; 16766 } 16767 16768 if ((ill == NULL) || (recv_ill == NULL)) { 16769 ip0dbg(("ip_fanout_proto_again: interface " 16770 "disappeared\n")); 16771 if (ill != NULL) 16772 ill_refrele(ill); 16773 if (recv_ill != NULL) 16774 ill_refrele(recv_ill); 16775 freemsg(ipsec_mp); 16776 return; 16777 } 16778 } 16779 16780 ASSERT(ill != NULL && recv_ill != NULL); 16781 16782 if (mp->b_datap->db_type == M_CTL) { 16783 /* 16784 * AH/ESP is returning the ICMP message after 16785 * removing their headers. Fanout again till 16786 * it gets to the right protocol. 16787 */ 16788 if (ii->ipsec_in_v4) { 16789 icmph_t *icmph; 16790 int iph_hdr_length; 16791 int hdr_length; 16792 16793 ipha = (ipha_t *)mp->b_rptr; 16794 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16795 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16796 ipha = (ipha_t *)&icmph[1]; 16797 hdr_length = IPH_HDR_LENGTH(ipha); 16798 /* 16799 * icmp_inbound_error_fanout may need to do pullupmsg. 16800 * Reset the type to M_DATA. 16801 */ 16802 mp->b_datap->db_type = M_DATA; 16803 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16804 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16805 B_FALSE, ill, ii->ipsec_in_zoneid); 16806 } else { 16807 icmp6_t *icmp6; 16808 int hdr_length; 16809 16810 ip6h = (ip6_t *)mp->b_rptr; 16811 /* Don't call hdr_length_v6() unless you have to. */ 16812 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16813 hdr_length = ip_hdr_length_v6(mp, ip6h); 16814 else 16815 hdr_length = IPV6_HDR_LEN; 16816 16817 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16818 /* 16819 * icmp_inbound_error_fanout_v6 may need to do 16820 * pullupmsg. Reset the type to M_DATA. 16821 */ 16822 mp->b_datap->db_type = M_DATA; 16823 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16824 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16825 } 16826 if (ill_need_rele) 16827 ill_refrele(ill); 16828 if (rill_need_rele) 16829 ill_refrele(recv_ill); 16830 return; 16831 } 16832 16833 if (ii->ipsec_in_v4) { 16834 ipha = (ipha_t *)mp->b_rptr; 16835 dst = ipha->ipha_dst; 16836 if (CLASSD(dst)) { 16837 /* 16838 * Multicast has to be delivered to all streams. 16839 */ 16840 dst = INADDR_BROADCAST; 16841 } 16842 16843 if (ire == NULL) { 16844 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16845 MBLK_GETLABEL(mp), ipst); 16846 if (ire == NULL) { 16847 if (ill_need_rele) 16848 ill_refrele(ill); 16849 if (rill_need_rele) 16850 ill_refrele(recv_ill); 16851 ip1dbg(("ip_fanout_proto_again: " 16852 "IRE not found")); 16853 freemsg(ipsec_mp); 16854 return; 16855 } 16856 ire_need_rele = B_TRUE; 16857 } 16858 16859 switch (ipha->ipha_protocol) { 16860 case IPPROTO_UDP: 16861 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16862 recv_ill); 16863 if (ire_need_rele) 16864 ire_refrele(ire); 16865 break; 16866 case IPPROTO_TCP: 16867 if (!ire_need_rele) 16868 IRE_REFHOLD(ire); 16869 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16870 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16871 IRE_REFRELE(ire); 16872 if (mp != NULL) 16873 squeue_enter_chain(GET_SQUEUE(mp), mp, 16874 mp, 1, SQTAG_IP_PROTO_AGAIN); 16875 break; 16876 case IPPROTO_SCTP: 16877 if (!ire_need_rele) 16878 IRE_REFHOLD(ire); 16879 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16880 ipsec_mp, 0, ill->ill_rq, dst); 16881 break; 16882 default: 16883 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16884 recv_ill, B_FALSE); 16885 if (ire_need_rele) 16886 ire_refrele(ire); 16887 break; 16888 } 16889 } else { 16890 uint32_t rput_flags = 0; 16891 16892 ip6h = (ip6_t *)mp->b_rptr; 16893 v6dstp = &ip6h->ip6_dst; 16894 /* 16895 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16896 * address. 16897 * 16898 * Currently, we don't store that state in the IPSEC_IN 16899 * message, and we may need to. 16900 */ 16901 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16902 IP6_IN_LLMCAST : 0); 16903 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16904 NULL, NULL); 16905 } 16906 if (ill_need_rele) 16907 ill_refrele(ill); 16908 if (rill_need_rele) 16909 ill_refrele(recv_ill); 16910 } 16911 16912 /* 16913 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16914 * returns 'true' if there are still fragments left on the queue, in 16915 * which case we restart the timer. 16916 */ 16917 void 16918 ill_frag_timer(void *arg) 16919 { 16920 ill_t *ill = (ill_t *)arg; 16921 boolean_t frag_pending; 16922 ip_stack_t *ipst = ill->ill_ipst; 16923 16924 mutex_enter(&ill->ill_lock); 16925 ASSERT(!ill->ill_fragtimer_executing); 16926 if (ill->ill_state_flags & ILL_CONDEMNED) { 16927 ill->ill_frag_timer_id = 0; 16928 mutex_exit(&ill->ill_lock); 16929 return; 16930 } 16931 ill->ill_fragtimer_executing = 1; 16932 mutex_exit(&ill->ill_lock); 16933 16934 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16935 16936 /* 16937 * Restart the timer, if we have fragments pending or if someone 16938 * wanted us to be scheduled again. 16939 */ 16940 mutex_enter(&ill->ill_lock); 16941 ill->ill_fragtimer_executing = 0; 16942 ill->ill_frag_timer_id = 0; 16943 if (frag_pending || ill->ill_fragtimer_needrestart) 16944 ill_frag_timer_start(ill); 16945 mutex_exit(&ill->ill_lock); 16946 } 16947 16948 void 16949 ill_frag_timer_start(ill_t *ill) 16950 { 16951 ip_stack_t *ipst = ill->ill_ipst; 16952 16953 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16954 16955 /* If the ill is closing or opening don't proceed */ 16956 if (ill->ill_state_flags & ILL_CONDEMNED) 16957 return; 16958 16959 if (ill->ill_fragtimer_executing) { 16960 /* 16961 * ill_frag_timer is currently executing. Just record the 16962 * the fact that we want the timer to be restarted. 16963 * ill_frag_timer will post a timeout before it returns, 16964 * ensuring it will be called again. 16965 */ 16966 ill->ill_fragtimer_needrestart = 1; 16967 return; 16968 } 16969 16970 if (ill->ill_frag_timer_id == 0) { 16971 /* 16972 * The timer is neither running nor is the timeout handler 16973 * executing. Post a timeout so that ill_frag_timer will be 16974 * called 16975 */ 16976 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16977 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 16978 ill->ill_fragtimer_needrestart = 0; 16979 } 16980 } 16981 16982 /* 16983 * This routine is needed for loopback when forwarding multicasts. 16984 * 16985 * IPQoS Notes: 16986 * IPPF processing is done in fanout routines. 16987 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16988 * processing for IPsec packets is done when it comes back in clear. 16989 * NOTE : The callers of this function need to do the ire_refrele for the 16990 * ire that is being passed in. 16991 */ 16992 void 16993 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16994 ill_t *recv_ill, boolean_t esp_in_udp_packet) 16995 { 16996 ill_t *ill = (ill_t *)q->q_ptr; 16997 uint32_t sum; 16998 uint32_t u1; 16999 uint32_t u2; 17000 int hdr_length; 17001 boolean_t mctl_present; 17002 mblk_t *first_mp = mp; 17003 mblk_t *hada_mp = NULL; 17004 ipha_t *inner_ipha; 17005 ip_stack_t *ipst; 17006 17007 ASSERT(recv_ill != NULL); 17008 ipst = recv_ill->ill_ipst; 17009 17010 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17011 "ip_rput_locl_start: q %p", q); 17012 17013 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17014 ASSERT(ill != NULL); 17015 17016 17017 #define rptr ((uchar_t *)ipha) 17018 #define iphs ((uint16_t *)ipha) 17019 17020 /* 17021 * no UDP or TCP packet should come here anymore. 17022 */ 17023 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17024 ipha->ipha_protocol != IPPROTO_UDP); 17025 17026 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17027 if (mctl_present && 17028 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17029 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17030 17031 /* 17032 * It's an IPsec accelerated packet. 17033 * Keep a pointer to the data attributes around until 17034 * we allocate the ipsec_info_t. 17035 */ 17036 IPSECHW_DEBUG(IPSECHW_PKT, 17037 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17038 hada_mp = first_mp; 17039 hada_mp->b_cont = NULL; 17040 /* 17041 * Since it is accelerated, it comes directly from 17042 * the ill and the data attributes is followed by 17043 * the packet data. 17044 */ 17045 ASSERT(mp->b_datap->db_type != M_CTL); 17046 first_mp = mp; 17047 mctl_present = B_FALSE; 17048 } 17049 17050 /* 17051 * IF M_CTL is not present, then ipsec_in_is_secure 17052 * should return B_TRUE. There is a case where loopback 17053 * packets has an M_CTL in the front with all the 17054 * IPsec options set to IPSEC_PREF_NEVER - which means 17055 * ipsec_in_is_secure will return B_FALSE. As loopback 17056 * packets never comes here, it is safe to ASSERT the 17057 * following. 17058 */ 17059 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17060 17061 /* 17062 * Also, we should never have an mctl_present if this is an 17063 * ESP-in-UDP packet. 17064 */ 17065 ASSERT(!mctl_present || !esp_in_udp_packet); 17066 17067 17068 /* u1 is # words of IP options */ 17069 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17070 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17071 17072 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17073 if (u1) { 17074 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17075 if (hada_mp != NULL) 17076 freemsg(hada_mp); 17077 return; 17078 } 17079 } else { 17080 /* Check the IP header checksum. */ 17081 #define uph ((uint16_t *)ipha) 17082 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17083 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17084 #undef uph 17085 /* finish doing IP checksum */ 17086 sum = (sum & 0xFFFF) + (sum >> 16); 17087 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17088 if (sum && sum != 0xFFFF) { 17089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17090 goto drop_pkt; 17091 } 17092 } 17093 } 17094 17095 /* 17096 * Count for SNMP of inbound packets for ire. As ip_proto_input 17097 * might be called more than once for secure packets, count only 17098 * the first time. 17099 */ 17100 if (!mctl_present) { 17101 UPDATE_IB_PKT_COUNT(ire); 17102 ire->ire_last_used_time = lbolt; 17103 } 17104 17105 /* Check for fragmentation offset. */ 17106 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17107 u1 = u2 & (IPH_MF | IPH_OFFSET); 17108 if (u1) { 17109 /* 17110 * We re-assemble fragments before we do the AH/ESP 17111 * processing. Thus, M_CTL should not be present 17112 * while we are re-assembling. 17113 */ 17114 ASSERT(!mctl_present); 17115 ASSERT(first_mp == mp); 17116 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17117 return; 17118 } 17119 /* 17120 * Make sure that first_mp points back to mp as 17121 * the mp we came in with could have changed in 17122 * ip_rput_fragment(). 17123 */ 17124 ipha = (ipha_t *)mp->b_rptr; 17125 first_mp = mp; 17126 } 17127 17128 /* 17129 * Clear hardware checksumming flag as it is currently only 17130 * used by TCP and UDP. 17131 */ 17132 DB_CKSUMFLAGS(mp) = 0; 17133 17134 /* Now we have a complete datagram, destined for this machine. */ 17135 u1 = IPH_HDR_LENGTH(ipha); 17136 switch (ipha->ipha_protocol) { 17137 case IPPROTO_ICMP: { 17138 ire_t *ire_zone; 17139 ilm_t *ilm; 17140 mblk_t *mp1; 17141 zoneid_t last_zoneid; 17142 17143 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17144 ASSERT(ire->ire_type == IRE_BROADCAST); 17145 /* 17146 * In the multicast case, applications may have joined 17147 * the group from different zones, so we need to deliver 17148 * the packet to each of them. Loop through the 17149 * multicast memberships structures (ilm) on the receive 17150 * ill and send a copy of the packet up each matching 17151 * one. However, we don't do this for multicasts sent on 17152 * the loopback interface (PHYI_LOOPBACK flag set) as 17153 * they must stay in the sender's zone. 17154 * 17155 * ilm_add_v6() ensures that ilms in the same zone are 17156 * contiguous in the ill_ilm list. We use this property 17157 * to avoid sending duplicates needed when two 17158 * applications in the same zone join the same group on 17159 * different logical interfaces: we ignore the ilm if 17160 * its zoneid is the same as the last matching one. 17161 * In addition, the sending of the packet for 17162 * ire_zoneid is delayed until all of the other ilms 17163 * have been exhausted. 17164 */ 17165 last_zoneid = -1; 17166 ILM_WALKER_HOLD(recv_ill); 17167 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17168 ilm = ilm->ilm_next) { 17169 if ((ilm->ilm_flags & ILM_DELETED) || 17170 ipha->ipha_dst != ilm->ilm_addr || 17171 ilm->ilm_zoneid == last_zoneid || 17172 ilm->ilm_zoneid == ire->ire_zoneid || 17173 ilm->ilm_zoneid == ALL_ZONES || 17174 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17175 continue; 17176 mp1 = ip_copymsg(first_mp); 17177 if (mp1 == NULL) 17178 continue; 17179 icmp_inbound(q, mp1, B_TRUE, ill, 17180 0, sum, mctl_present, B_TRUE, 17181 recv_ill, ilm->ilm_zoneid); 17182 last_zoneid = ilm->ilm_zoneid; 17183 } 17184 ILM_WALKER_RELE(recv_ill); 17185 } else if (ire->ire_type == IRE_BROADCAST) { 17186 /* 17187 * In the broadcast case, there may be many zones 17188 * which need a copy of the packet delivered to them. 17189 * There is one IRE_BROADCAST per broadcast address 17190 * and per zone; we walk those using a helper function. 17191 * In addition, the sending of the packet for ire is 17192 * delayed until all of the other ires have been 17193 * processed. 17194 */ 17195 IRB_REFHOLD(ire->ire_bucket); 17196 ire_zone = NULL; 17197 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17198 ire)) != NULL) { 17199 mp1 = ip_copymsg(first_mp); 17200 if (mp1 == NULL) 17201 continue; 17202 17203 UPDATE_IB_PKT_COUNT(ire_zone); 17204 ire_zone->ire_last_used_time = lbolt; 17205 icmp_inbound(q, mp1, B_TRUE, ill, 17206 0, sum, mctl_present, B_TRUE, 17207 recv_ill, ire_zone->ire_zoneid); 17208 } 17209 IRB_REFRELE(ire->ire_bucket); 17210 } 17211 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17212 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17213 ire->ire_zoneid); 17214 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17215 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17216 return; 17217 } 17218 case IPPROTO_IGMP: 17219 /* 17220 * If we are not willing to accept IGMP packets in clear, 17221 * then check with global policy. 17222 */ 17223 if (ipst->ips_igmp_accept_clear_messages == 0) { 17224 first_mp = ipsec_check_global_policy(first_mp, NULL, 17225 ipha, NULL, mctl_present, ipst->ips_netstack); 17226 if (first_mp == NULL) 17227 return; 17228 } 17229 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17230 freemsg(first_mp); 17231 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17233 return; 17234 } 17235 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17236 /* Bad packet - discarded by igmp_input */ 17237 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17238 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17239 if (mctl_present) 17240 freeb(first_mp); 17241 return; 17242 } 17243 /* 17244 * igmp_input() may have returned the pulled up message. 17245 * So first_mp and ipha need to be reinitialized. 17246 */ 17247 ipha = (ipha_t *)mp->b_rptr; 17248 if (mctl_present) 17249 first_mp->b_cont = mp; 17250 else 17251 first_mp = mp; 17252 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17253 connf_head != NULL) { 17254 /* No user-level listener for IGMP packets */ 17255 goto drop_pkt; 17256 } 17257 /* deliver to local raw users */ 17258 break; 17259 case IPPROTO_PIM: 17260 /* 17261 * If we are not willing to accept PIM packets in clear, 17262 * then check with global policy. 17263 */ 17264 if (ipst->ips_pim_accept_clear_messages == 0) { 17265 first_mp = ipsec_check_global_policy(first_mp, NULL, 17266 ipha, NULL, mctl_present, ipst->ips_netstack); 17267 if (first_mp == NULL) 17268 return; 17269 } 17270 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17271 freemsg(first_mp); 17272 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17273 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17274 return; 17275 } 17276 if (pim_input(q, mp, ill) != 0) { 17277 /* Bad packet - discarded by pim_input */ 17278 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17279 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17280 if (mctl_present) 17281 freeb(first_mp); 17282 return; 17283 } 17284 17285 /* 17286 * pim_input() may have pulled up the message so ipha needs to 17287 * be reinitialized. 17288 */ 17289 ipha = (ipha_t *)mp->b_rptr; 17290 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17291 connf_head != NULL) { 17292 /* No user-level listener for PIM packets */ 17293 goto drop_pkt; 17294 } 17295 /* deliver to local raw users */ 17296 break; 17297 case IPPROTO_ENCAP: 17298 /* 17299 * Handle self-encapsulated packets (IP-in-IP where 17300 * the inner addresses == the outer addresses). 17301 */ 17302 hdr_length = IPH_HDR_LENGTH(ipha); 17303 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17304 mp->b_wptr) { 17305 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17306 sizeof (ipha_t) - mp->b_rptr)) { 17307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17308 freemsg(first_mp); 17309 return; 17310 } 17311 ipha = (ipha_t *)mp->b_rptr; 17312 } 17313 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17314 /* 17315 * Check the sanity of the inner IP header. 17316 */ 17317 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17319 freemsg(first_mp); 17320 return; 17321 } 17322 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17323 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17324 freemsg(first_mp); 17325 return; 17326 } 17327 if (inner_ipha->ipha_src == ipha->ipha_src && 17328 inner_ipha->ipha_dst == ipha->ipha_dst) { 17329 ipsec_in_t *ii; 17330 17331 /* 17332 * Self-encapsulated tunnel packet. Remove 17333 * the outer IP header and fanout again. 17334 * We also need to make sure that the inner 17335 * header is pulled up until options. 17336 */ 17337 mp->b_rptr = (uchar_t *)inner_ipha; 17338 ipha = inner_ipha; 17339 hdr_length = IPH_HDR_LENGTH(ipha); 17340 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17341 if (!pullupmsg(mp, (uchar_t *)ipha + 17342 + hdr_length - mp->b_rptr)) { 17343 freemsg(first_mp); 17344 return; 17345 } 17346 ipha = (ipha_t *)mp->b_rptr; 17347 } 17348 if (!mctl_present) { 17349 ASSERT(first_mp == mp); 17350 /* 17351 * This means that somebody is sending 17352 * Self-encapsualted packets without AH/ESP. 17353 * If AH/ESP was present, we would have already 17354 * allocated the first_mp. 17355 */ 17356 first_mp = ipsec_in_alloc(B_TRUE, 17357 ipst->ips_netstack); 17358 if (first_mp == NULL) { 17359 ip1dbg(("ip_proto_input: IPSEC_IN " 17360 "allocation failure.\n")); 17361 BUMP_MIB(ill->ill_ip_mib, 17362 ipIfStatsInDiscards); 17363 freemsg(mp); 17364 return; 17365 } 17366 first_mp->b_cont = mp; 17367 } 17368 /* 17369 * We generally store the ill_index if we need to 17370 * do IPsec processing as we lose the ill queue when 17371 * we come back. But in this case, we never should 17372 * have to store the ill_index here as it should have 17373 * been stored previously when we processed the 17374 * AH/ESP header in this routine or for non-ipsec 17375 * cases, we still have the queue. But for some bad 17376 * packets from the wire, we can get to IPsec after 17377 * this and we better store the index for that case. 17378 */ 17379 ill = (ill_t *)q->q_ptr; 17380 ii = (ipsec_in_t *)first_mp->b_rptr; 17381 ii->ipsec_in_ill_index = 17382 ill->ill_phyint->phyint_ifindex; 17383 ii->ipsec_in_rill_index = 17384 recv_ill->ill_phyint->phyint_ifindex; 17385 if (ii->ipsec_in_decaps) { 17386 /* 17387 * This packet is self-encapsulated multiple 17388 * times. We don't want to recurse infinitely. 17389 * To keep it simple, drop the packet. 17390 */ 17391 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17392 freemsg(first_mp); 17393 return; 17394 } 17395 ii->ipsec_in_decaps = B_TRUE; 17396 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17397 ire); 17398 return; 17399 } 17400 break; 17401 case IPPROTO_AH: 17402 case IPPROTO_ESP: { 17403 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17404 17405 /* 17406 * Fast path for AH/ESP. If this is the first time 17407 * we are sending a datagram to AH/ESP, allocate 17408 * a IPSEC_IN message and prepend it. Otherwise, 17409 * just fanout. 17410 */ 17411 17412 int ipsec_rc; 17413 ipsec_in_t *ii; 17414 netstack_t *ns = ipst->ips_netstack; 17415 17416 IP_STAT(ipst, ipsec_proto_ahesp); 17417 if (!mctl_present) { 17418 ASSERT(first_mp == mp); 17419 first_mp = ipsec_in_alloc(B_TRUE, ns); 17420 if (first_mp == NULL) { 17421 ip1dbg(("ip_proto_input: IPSEC_IN " 17422 "allocation failure.\n")); 17423 freemsg(hada_mp); /* okay ifnull */ 17424 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17425 freemsg(mp); 17426 return; 17427 } 17428 /* 17429 * Store the ill_index so that when we come back 17430 * from IPsec we ride on the same queue. 17431 */ 17432 ill = (ill_t *)q->q_ptr; 17433 ii = (ipsec_in_t *)first_mp->b_rptr; 17434 ii->ipsec_in_ill_index = 17435 ill->ill_phyint->phyint_ifindex; 17436 ii->ipsec_in_rill_index = 17437 recv_ill->ill_phyint->phyint_ifindex; 17438 first_mp->b_cont = mp; 17439 /* 17440 * Cache hardware acceleration info. 17441 */ 17442 if (hada_mp != NULL) { 17443 IPSECHW_DEBUG(IPSECHW_PKT, 17444 ("ip_rput_local: caching data attr.\n")); 17445 ii->ipsec_in_accelerated = B_TRUE; 17446 ii->ipsec_in_da = hada_mp; 17447 hada_mp = NULL; 17448 } 17449 } else { 17450 ii = (ipsec_in_t *)first_mp->b_rptr; 17451 } 17452 17453 if (!ipsec_loaded(ipss)) { 17454 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17455 ire->ire_zoneid, ipst); 17456 return; 17457 } 17458 17459 ns = ipst->ips_netstack; 17460 /* select inbound SA and have IPsec process the pkt */ 17461 if (ipha->ipha_protocol == IPPROTO_ESP) { 17462 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17463 boolean_t esp_in_udp_sa; 17464 if (esph == NULL) 17465 return; 17466 ASSERT(ii->ipsec_in_esp_sa != NULL); 17467 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17468 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17469 IPSA_F_NATT) != 0); 17470 /* 17471 * The following is a fancy, but quick, way of saying: 17472 * ESP-in-UDP SA and Raw ESP packet --> drop 17473 * OR 17474 * ESP SA and ESP-in-UDP packet --> drop 17475 */ 17476 if (esp_in_udp_sa != esp_in_udp_packet) { 17477 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17478 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17479 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17480 &ns->netstack_ipsec->ipsec_dropper); 17481 return; 17482 } 17483 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17484 first_mp, esph); 17485 } else { 17486 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17487 if (ah == NULL) 17488 return; 17489 ASSERT(ii->ipsec_in_ah_sa != NULL); 17490 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17491 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17492 first_mp, ah); 17493 } 17494 17495 switch (ipsec_rc) { 17496 case IPSEC_STATUS_SUCCESS: 17497 break; 17498 case IPSEC_STATUS_FAILED: 17499 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17500 /* FALLTHRU */ 17501 case IPSEC_STATUS_PENDING: 17502 return; 17503 } 17504 /* we're done with IPsec processing, send it up */ 17505 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17506 return; 17507 } 17508 default: 17509 break; 17510 } 17511 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17512 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17513 ire->ire_zoneid)); 17514 goto drop_pkt; 17515 } 17516 /* 17517 * Handle protocols with which IP is less intimate. There 17518 * can be more than one stream bound to a particular 17519 * protocol. When this is the case, each one gets a copy 17520 * of any incoming packets. 17521 */ 17522 ip_fanout_proto(q, first_mp, ill, ipha, 17523 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17524 B_TRUE, recv_ill, ire->ire_zoneid); 17525 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17526 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17527 return; 17528 17529 drop_pkt: 17530 freemsg(first_mp); 17531 if (hada_mp != NULL) 17532 freeb(hada_mp); 17533 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17534 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17535 #undef rptr 17536 #undef iphs 17537 17538 } 17539 17540 /* 17541 * Update any source route, record route or timestamp options. 17542 * Check that we are at end of strict source route. 17543 * The options have already been checked for sanity in ip_rput_options(). 17544 */ 17545 static boolean_t 17546 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17547 ip_stack_t *ipst) 17548 { 17549 ipoptp_t opts; 17550 uchar_t *opt; 17551 uint8_t optval; 17552 uint8_t optlen; 17553 ipaddr_t dst; 17554 uint32_t ts; 17555 ire_t *dst_ire; 17556 timestruc_t now; 17557 zoneid_t zoneid; 17558 ill_t *ill; 17559 17560 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17561 17562 ip2dbg(("ip_rput_local_options\n")); 17563 17564 for (optval = ipoptp_first(&opts, ipha); 17565 optval != IPOPT_EOL; 17566 optval = ipoptp_next(&opts)) { 17567 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17568 opt = opts.ipoptp_cur; 17569 optlen = opts.ipoptp_len; 17570 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17571 optval, optlen)); 17572 switch (optval) { 17573 uint32_t off; 17574 case IPOPT_SSRR: 17575 case IPOPT_LSRR: 17576 off = opt[IPOPT_OFFSET]; 17577 off--; 17578 if (optlen < IP_ADDR_LEN || 17579 off > optlen - IP_ADDR_LEN) { 17580 /* End of source route */ 17581 ip1dbg(("ip_rput_local_options: end of SR\n")); 17582 break; 17583 } 17584 /* 17585 * This will only happen if two consecutive entries 17586 * in the source route contains our address or if 17587 * it is a packet with a loose source route which 17588 * reaches us before consuming the whole source route 17589 */ 17590 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17591 if (optval == IPOPT_SSRR) { 17592 goto bad_src_route; 17593 } 17594 /* 17595 * Hack: instead of dropping the packet truncate the 17596 * source route to what has been used by filling the 17597 * rest with IPOPT_NOP. 17598 */ 17599 opt[IPOPT_OLEN] = (uint8_t)off; 17600 while (off < optlen) { 17601 opt[off++] = IPOPT_NOP; 17602 } 17603 break; 17604 case IPOPT_RR: 17605 off = opt[IPOPT_OFFSET]; 17606 off--; 17607 if (optlen < IP_ADDR_LEN || 17608 off > optlen - IP_ADDR_LEN) { 17609 /* No more room - ignore */ 17610 ip1dbg(( 17611 "ip_rput_local_options: end of RR\n")); 17612 break; 17613 } 17614 bcopy(&ire->ire_src_addr, (char *)opt + off, 17615 IP_ADDR_LEN); 17616 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17617 break; 17618 case IPOPT_TS: 17619 /* Insert timestamp if there is romm */ 17620 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17621 case IPOPT_TS_TSONLY: 17622 off = IPOPT_TS_TIMELEN; 17623 break; 17624 case IPOPT_TS_PRESPEC: 17625 case IPOPT_TS_PRESPEC_RFC791: 17626 /* Verify that the address matched */ 17627 off = opt[IPOPT_OFFSET] - 1; 17628 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17629 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17630 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17631 ipst); 17632 if (dst_ire == NULL) { 17633 /* Not for us */ 17634 break; 17635 } 17636 ire_refrele(dst_ire); 17637 /* FALLTHRU */ 17638 case IPOPT_TS_TSANDADDR: 17639 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17640 break; 17641 default: 17642 /* 17643 * ip_*put_options should have already 17644 * dropped this packet. 17645 */ 17646 cmn_err(CE_PANIC, "ip_rput_local_options: " 17647 "unknown IT - bug in ip_rput_options?\n"); 17648 return (B_TRUE); /* Keep "lint" happy */ 17649 } 17650 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17651 /* Increase overflow counter */ 17652 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17653 opt[IPOPT_POS_OV_FLG] = 17654 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17655 (off << 4)); 17656 break; 17657 } 17658 off = opt[IPOPT_OFFSET] - 1; 17659 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17660 case IPOPT_TS_PRESPEC: 17661 case IPOPT_TS_PRESPEC_RFC791: 17662 case IPOPT_TS_TSANDADDR: 17663 bcopy(&ire->ire_src_addr, (char *)opt + off, 17664 IP_ADDR_LEN); 17665 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17666 /* FALLTHRU */ 17667 case IPOPT_TS_TSONLY: 17668 off = opt[IPOPT_OFFSET] - 1; 17669 /* Compute # of milliseconds since midnight */ 17670 gethrestime(&now); 17671 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17672 now.tv_nsec / (NANOSEC / MILLISEC); 17673 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17674 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17675 break; 17676 } 17677 break; 17678 } 17679 } 17680 return (B_TRUE); 17681 17682 bad_src_route: 17683 q = WR(q); 17684 if (q->q_next != NULL) 17685 ill = q->q_ptr; 17686 else 17687 ill = NULL; 17688 17689 /* make sure we clear any indication of a hardware checksum */ 17690 DB_CKSUMFLAGS(mp) = 0; 17691 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17692 if (zoneid == ALL_ZONES) 17693 freemsg(mp); 17694 else 17695 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17696 return (B_FALSE); 17697 17698 } 17699 17700 /* 17701 * Process IP options in an inbound packet. If an option affects the 17702 * effective destination address, return the next hop address via dstp. 17703 * Returns -1 if something fails in which case an ICMP error has been sent 17704 * and mp freed. 17705 */ 17706 static int 17707 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17708 ip_stack_t *ipst) 17709 { 17710 ipoptp_t opts; 17711 uchar_t *opt; 17712 uint8_t optval; 17713 uint8_t optlen; 17714 ipaddr_t dst; 17715 intptr_t code = 0; 17716 ire_t *ire = NULL; 17717 zoneid_t zoneid; 17718 ill_t *ill; 17719 17720 ip2dbg(("ip_rput_options\n")); 17721 dst = ipha->ipha_dst; 17722 for (optval = ipoptp_first(&opts, ipha); 17723 optval != IPOPT_EOL; 17724 optval = ipoptp_next(&opts)) { 17725 opt = opts.ipoptp_cur; 17726 optlen = opts.ipoptp_len; 17727 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17728 optval, optlen)); 17729 /* 17730 * Note: we need to verify the checksum before we 17731 * modify anything thus this routine only extracts the next 17732 * hop dst from any source route. 17733 */ 17734 switch (optval) { 17735 uint32_t off; 17736 case IPOPT_SSRR: 17737 case IPOPT_LSRR: 17738 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17739 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17740 if (ire == NULL) { 17741 if (optval == IPOPT_SSRR) { 17742 ip1dbg(("ip_rput_options: not next" 17743 " strict source route 0x%x\n", 17744 ntohl(dst))); 17745 code = (char *)&ipha->ipha_dst - 17746 (char *)ipha; 17747 goto param_prob; /* RouterReq's */ 17748 } 17749 ip2dbg(("ip_rput_options: " 17750 "not next source route 0x%x\n", 17751 ntohl(dst))); 17752 break; 17753 } 17754 ire_refrele(ire); 17755 17756 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17757 ip1dbg(( 17758 "ip_rput_options: bad option offset\n")); 17759 code = (char *)&opt[IPOPT_OLEN] - 17760 (char *)ipha; 17761 goto param_prob; 17762 } 17763 off = opt[IPOPT_OFFSET]; 17764 off--; 17765 redo_srr: 17766 if (optlen < IP_ADDR_LEN || 17767 off > optlen - IP_ADDR_LEN) { 17768 /* End of source route */ 17769 ip1dbg(("ip_rput_options: end of SR\n")); 17770 break; 17771 } 17772 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17773 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17774 ntohl(dst))); 17775 17776 /* 17777 * Check if our address is present more than 17778 * once as consecutive hops in source route. 17779 * XXX verify per-interface ip_forwarding 17780 * for source route? 17781 */ 17782 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17783 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17784 17785 if (ire != NULL) { 17786 ire_refrele(ire); 17787 off += IP_ADDR_LEN; 17788 goto redo_srr; 17789 } 17790 17791 if (dst == htonl(INADDR_LOOPBACK)) { 17792 ip1dbg(("ip_rput_options: loopback addr in " 17793 "source route!\n")); 17794 goto bad_src_route; 17795 } 17796 /* 17797 * For strict: verify that dst is directly 17798 * reachable. 17799 */ 17800 if (optval == IPOPT_SSRR) { 17801 ire = ire_ftable_lookup(dst, 0, 0, 17802 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17803 MBLK_GETLABEL(mp), 17804 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17805 if (ire == NULL) { 17806 ip1dbg(("ip_rput_options: SSRR not " 17807 "directly reachable: 0x%x\n", 17808 ntohl(dst))); 17809 goto bad_src_route; 17810 } 17811 ire_refrele(ire); 17812 } 17813 /* 17814 * Defer update of the offset and the record route 17815 * until the packet is forwarded. 17816 */ 17817 break; 17818 case IPOPT_RR: 17819 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17820 ip1dbg(( 17821 "ip_rput_options: bad option offset\n")); 17822 code = (char *)&opt[IPOPT_OLEN] - 17823 (char *)ipha; 17824 goto param_prob; 17825 } 17826 break; 17827 case IPOPT_TS: 17828 /* 17829 * Verify that length >= 5 and that there is either 17830 * room for another timestamp or that the overflow 17831 * counter is not maxed out. 17832 */ 17833 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17834 if (optlen < IPOPT_MINLEN_IT) { 17835 goto param_prob; 17836 } 17837 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17838 ip1dbg(( 17839 "ip_rput_options: bad option offset\n")); 17840 code = (char *)&opt[IPOPT_OFFSET] - 17841 (char *)ipha; 17842 goto param_prob; 17843 } 17844 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17845 case IPOPT_TS_TSONLY: 17846 off = IPOPT_TS_TIMELEN; 17847 break; 17848 case IPOPT_TS_TSANDADDR: 17849 case IPOPT_TS_PRESPEC: 17850 case IPOPT_TS_PRESPEC_RFC791: 17851 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17852 break; 17853 default: 17854 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17855 (char *)ipha; 17856 goto param_prob; 17857 } 17858 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17859 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17860 /* 17861 * No room and the overflow counter is 15 17862 * already. 17863 */ 17864 goto param_prob; 17865 } 17866 break; 17867 } 17868 } 17869 17870 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17871 *dstp = dst; 17872 return (0); 17873 } 17874 17875 ip1dbg(("ip_rput_options: error processing IP options.")); 17876 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17877 17878 param_prob: 17879 q = WR(q); 17880 if (q->q_next != NULL) 17881 ill = q->q_ptr; 17882 else 17883 ill = NULL; 17884 17885 /* make sure we clear any indication of a hardware checksum */ 17886 DB_CKSUMFLAGS(mp) = 0; 17887 /* Don't know whether this is for non-global or global/forwarding */ 17888 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17889 if (zoneid == ALL_ZONES) 17890 freemsg(mp); 17891 else 17892 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17893 return (-1); 17894 17895 bad_src_route: 17896 q = WR(q); 17897 if (q->q_next != NULL) 17898 ill = q->q_ptr; 17899 else 17900 ill = NULL; 17901 17902 /* make sure we clear any indication of a hardware checksum */ 17903 DB_CKSUMFLAGS(mp) = 0; 17904 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17905 if (zoneid == ALL_ZONES) 17906 freemsg(mp); 17907 else 17908 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17909 return (-1); 17910 } 17911 17912 /* 17913 * IP & ICMP info in >=14 msg's ... 17914 * - ip fixed part (mib2_ip_t) 17915 * - icmp fixed part (mib2_icmp_t) 17916 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17917 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17918 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17919 * - ipRouteAttributeTable (ip 102) labeled routes 17920 * - ip multicast membership (ip_member_t) 17921 * - ip multicast source filtering (ip_grpsrc_t) 17922 * - igmp fixed part (struct igmpstat) 17923 * - multicast routing stats (struct mrtstat) 17924 * - multicast routing vifs (array of struct vifctl) 17925 * - multicast routing routes (array of struct mfcctl) 17926 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17927 * One per ill plus one generic 17928 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17929 * One per ill plus one generic 17930 * - ipv6RouteEntry all IPv6 IREs 17931 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17932 * - ipv6NetToMediaEntry all Neighbor Cache entries 17933 * - ipv6AddrEntry all IPv6 ipifs 17934 * - ipv6 multicast membership (ipv6_member_t) 17935 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17936 * 17937 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17938 * 17939 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17940 * already filled in by the caller. 17941 * Return value of 0 indicates that no messages were sent and caller 17942 * should free mpctl. 17943 */ 17944 int 17945 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17946 { 17947 ip_stack_t *ipst; 17948 sctp_stack_t *sctps; 17949 17950 17951 if (q->q_next != NULL) { 17952 ipst = ILLQ_TO_IPST(q); 17953 } else { 17954 ipst = CONNQ_TO_IPST(q); 17955 } 17956 ASSERT(ipst != NULL); 17957 sctps = ipst->ips_netstack->netstack_sctp; 17958 17959 if (mpctl == NULL || mpctl->b_cont == NULL) { 17960 return (0); 17961 } 17962 17963 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 17964 ipst)) == NULL) { 17965 return (1); 17966 } 17967 17968 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 17969 return (1); 17970 } 17971 17972 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 17973 return (1); 17974 } 17975 17976 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 17977 return (1); 17978 } 17979 17980 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 17981 return (1); 17982 } 17983 17984 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 17985 return (1); 17986 } 17987 17988 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 17989 return (1); 17990 } 17991 17992 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 17993 return (1); 17994 } 17995 17996 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 17997 return (1); 17998 } 17999 18000 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18001 return (1); 18002 } 18003 18004 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18005 return (1); 18006 } 18007 18008 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18009 return (1); 18010 } 18011 18012 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18013 return (1); 18014 } 18015 18016 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18017 return (1); 18018 } 18019 18020 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18021 return (1); 18022 } 18023 18024 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18025 if (mpctl == NULL) { 18026 return (1); 18027 } 18028 18029 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18030 return (1); 18031 } 18032 freemsg(mpctl); 18033 return (1); 18034 } 18035 18036 18037 /* Get global (legacy) IPv4 statistics */ 18038 static mblk_t * 18039 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18040 ip_stack_t *ipst) 18041 { 18042 mib2_ip_t old_ip_mib; 18043 struct opthdr *optp; 18044 mblk_t *mp2ctl; 18045 18046 /* 18047 * make a copy of the original message 18048 */ 18049 mp2ctl = copymsg(mpctl); 18050 18051 /* fixed length IP structure... */ 18052 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18053 optp->level = MIB2_IP; 18054 optp->name = 0; 18055 SET_MIB(old_ip_mib.ipForwarding, 18056 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18057 SET_MIB(old_ip_mib.ipDefaultTTL, 18058 (uint32_t)ipst->ips_ip_def_ttl); 18059 SET_MIB(old_ip_mib.ipReasmTimeout, 18060 ipst->ips_ip_g_frag_timeout); 18061 SET_MIB(old_ip_mib.ipAddrEntrySize, 18062 sizeof (mib2_ipAddrEntry_t)); 18063 SET_MIB(old_ip_mib.ipRouteEntrySize, 18064 sizeof (mib2_ipRouteEntry_t)); 18065 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18066 sizeof (mib2_ipNetToMediaEntry_t)); 18067 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18068 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18069 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18070 sizeof (mib2_ipAttributeEntry_t)); 18071 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18072 18073 /* 18074 * Grab the statistics from the new IP MIB 18075 */ 18076 SET_MIB(old_ip_mib.ipInReceives, 18077 (uint32_t)ipmib->ipIfStatsHCInReceives); 18078 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18079 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18080 SET_MIB(old_ip_mib.ipForwDatagrams, 18081 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18082 SET_MIB(old_ip_mib.ipInUnknownProtos, 18083 ipmib->ipIfStatsInUnknownProtos); 18084 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18085 SET_MIB(old_ip_mib.ipInDelivers, 18086 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18087 SET_MIB(old_ip_mib.ipOutRequests, 18088 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18089 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18090 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18091 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18092 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18093 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18094 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18095 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18096 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18097 18098 /* ipRoutingDiscards is not being used */ 18099 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18100 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18101 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18102 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18103 SET_MIB(old_ip_mib.ipReasmDuplicates, 18104 ipmib->ipIfStatsReasmDuplicates); 18105 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18106 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18107 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18108 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18109 SET_MIB(old_ip_mib.rawipInOverflows, 18110 ipmib->rawipIfStatsInOverflows); 18111 18112 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18113 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18114 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18115 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18116 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18117 ipmib->ipIfStatsOutSwitchIPVersion); 18118 18119 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18120 (int)sizeof (old_ip_mib))) { 18121 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18122 (uint_t)sizeof (old_ip_mib))); 18123 } 18124 18125 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18126 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18127 (int)optp->level, (int)optp->name, (int)optp->len)); 18128 qreply(q, mpctl); 18129 return (mp2ctl); 18130 } 18131 18132 /* Per interface IPv4 statistics */ 18133 static mblk_t * 18134 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18135 { 18136 struct opthdr *optp; 18137 mblk_t *mp2ctl; 18138 ill_t *ill; 18139 ill_walk_context_t ctx; 18140 mblk_t *mp_tail = NULL; 18141 mib2_ipIfStatsEntry_t global_ip_mib; 18142 18143 /* 18144 * Make a copy of the original message 18145 */ 18146 mp2ctl = copymsg(mpctl); 18147 18148 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18149 optp->level = MIB2_IP; 18150 optp->name = MIB2_IP_TRAFFIC_STATS; 18151 /* Include "unknown interface" ip_mib */ 18152 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18153 ipst->ips_ip_mib.ipIfStatsIfIndex = 18154 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18155 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18156 (ipst->ips_ip_g_forward ? 1 : 2)); 18157 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18158 (uint32_t)ipst->ips_ip_def_ttl); 18159 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18160 sizeof (mib2_ipIfStatsEntry_t)); 18161 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18162 sizeof (mib2_ipAddrEntry_t)); 18163 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18164 sizeof (mib2_ipRouteEntry_t)); 18165 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18166 sizeof (mib2_ipNetToMediaEntry_t)); 18167 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18168 sizeof (ip_member_t)); 18169 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18170 sizeof (ip_grpsrc_t)); 18171 18172 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18173 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18174 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18175 "failed to allocate %u bytes\n", 18176 (uint_t)sizeof (ipst->ips_ip_mib))); 18177 } 18178 18179 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18180 18181 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18182 ill = ILL_START_WALK_V4(&ctx, ipst); 18183 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18184 ill->ill_ip_mib->ipIfStatsIfIndex = 18185 ill->ill_phyint->phyint_ifindex; 18186 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18187 (ipst->ips_ip_g_forward ? 1 : 2)); 18188 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18189 (uint32_t)ipst->ips_ip_def_ttl); 18190 18191 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18192 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18193 (char *)ill->ill_ip_mib, 18194 (int)sizeof (*ill->ill_ip_mib))) { 18195 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18196 "failed to allocate %u bytes\n", 18197 (uint_t)sizeof (*ill->ill_ip_mib))); 18198 } 18199 } 18200 rw_exit(&ipst->ips_ill_g_lock); 18201 18202 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18203 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18204 "level %d, name %d, len %d\n", 18205 (int)optp->level, (int)optp->name, (int)optp->len)); 18206 qreply(q, mpctl); 18207 18208 if (mp2ctl == NULL) 18209 return (NULL); 18210 18211 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18212 } 18213 18214 /* Global IPv4 ICMP statistics */ 18215 static mblk_t * 18216 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18217 { 18218 struct opthdr *optp; 18219 mblk_t *mp2ctl; 18220 18221 /* 18222 * Make a copy of the original message 18223 */ 18224 mp2ctl = copymsg(mpctl); 18225 18226 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18227 optp->level = MIB2_ICMP; 18228 optp->name = 0; 18229 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18230 (int)sizeof (ipst->ips_icmp_mib))) { 18231 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18232 (uint_t)sizeof (ipst->ips_icmp_mib))); 18233 } 18234 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18235 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18236 (int)optp->level, (int)optp->name, (int)optp->len)); 18237 qreply(q, mpctl); 18238 return (mp2ctl); 18239 } 18240 18241 /* Global IPv4 IGMP statistics */ 18242 static mblk_t * 18243 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18244 { 18245 struct opthdr *optp; 18246 mblk_t *mp2ctl; 18247 18248 /* 18249 * make a copy of the original message 18250 */ 18251 mp2ctl = copymsg(mpctl); 18252 18253 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18254 optp->level = EXPER_IGMP; 18255 optp->name = 0; 18256 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18257 (int)sizeof (ipst->ips_igmpstat))) { 18258 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18259 (uint_t)sizeof (ipst->ips_igmpstat))); 18260 } 18261 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18262 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18263 (int)optp->level, (int)optp->name, (int)optp->len)); 18264 qreply(q, mpctl); 18265 return (mp2ctl); 18266 } 18267 18268 /* Global IPv4 Multicast Routing statistics */ 18269 static mblk_t * 18270 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18271 { 18272 struct opthdr *optp; 18273 mblk_t *mp2ctl; 18274 18275 /* 18276 * make a copy of the original message 18277 */ 18278 mp2ctl = copymsg(mpctl); 18279 18280 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18281 optp->level = EXPER_DVMRP; 18282 optp->name = 0; 18283 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18284 ip0dbg(("ip_mroute_stats: failed\n")); 18285 } 18286 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18287 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18288 (int)optp->level, (int)optp->name, (int)optp->len)); 18289 qreply(q, mpctl); 18290 return (mp2ctl); 18291 } 18292 18293 /* IPv4 address information */ 18294 static mblk_t * 18295 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18296 { 18297 struct opthdr *optp; 18298 mblk_t *mp2ctl; 18299 mblk_t *mp_tail = NULL; 18300 ill_t *ill; 18301 ipif_t *ipif; 18302 uint_t bitval; 18303 mib2_ipAddrEntry_t mae; 18304 zoneid_t zoneid; 18305 ill_walk_context_t ctx; 18306 18307 /* 18308 * make a copy of the original message 18309 */ 18310 mp2ctl = copymsg(mpctl); 18311 18312 /* ipAddrEntryTable */ 18313 18314 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18315 optp->level = MIB2_IP; 18316 optp->name = MIB2_IP_ADDR; 18317 zoneid = Q_TO_CONN(q)->conn_zoneid; 18318 18319 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18320 ill = ILL_START_WALK_V4(&ctx, ipst); 18321 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18322 for (ipif = ill->ill_ipif; ipif != NULL; 18323 ipif = ipif->ipif_next) { 18324 if (ipif->ipif_zoneid != zoneid && 18325 ipif->ipif_zoneid != ALL_ZONES) 18326 continue; 18327 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18328 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18329 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18330 18331 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18332 OCTET_LENGTH); 18333 mae.ipAdEntIfIndex.o_length = 18334 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18335 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18336 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18337 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18338 mae.ipAdEntInfo.ae_subnet_len = 18339 ip_mask_to_plen(ipif->ipif_net_mask); 18340 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18341 for (bitval = 1; 18342 bitval && 18343 !(bitval & ipif->ipif_brd_addr); 18344 bitval <<= 1) 18345 noop; 18346 mae.ipAdEntBcastAddr = bitval; 18347 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18348 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18349 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18350 mae.ipAdEntInfo.ae_broadcast_addr = 18351 ipif->ipif_brd_addr; 18352 mae.ipAdEntInfo.ae_pp_dst_addr = 18353 ipif->ipif_pp_dst_addr; 18354 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18355 ill->ill_flags | ill->ill_phyint->phyint_flags; 18356 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18357 18358 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18359 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18360 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18361 "allocate %u bytes\n", 18362 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18363 } 18364 } 18365 } 18366 rw_exit(&ipst->ips_ill_g_lock); 18367 18368 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18369 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18370 (int)optp->level, (int)optp->name, (int)optp->len)); 18371 qreply(q, mpctl); 18372 return (mp2ctl); 18373 } 18374 18375 /* IPv6 address information */ 18376 static mblk_t * 18377 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18378 { 18379 struct opthdr *optp; 18380 mblk_t *mp2ctl; 18381 mblk_t *mp_tail = NULL; 18382 ill_t *ill; 18383 ipif_t *ipif; 18384 mib2_ipv6AddrEntry_t mae6; 18385 zoneid_t zoneid; 18386 ill_walk_context_t ctx; 18387 18388 /* 18389 * make a copy of the original message 18390 */ 18391 mp2ctl = copymsg(mpctl); 18392 18393 /* ipv6AddrEntryTable */ 18394 18395 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18396 optp->level = MIB2_IP6; 18397 optp->name = MIB2_IP6_ADDR; 18398 zoneid = Q_TO_CONN(q)->conn_zoneid; 18399 18400 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18401 ill = ILL_START_WALK_V6(&ctx, ipst); 18402 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18403 for (ipif = ill->ill_ipif; ipif != NULL; 18404 ipif = ipif->ipif_next) { 18405 if (ipif->ipif_zoneid != zoneid && 18406 ipif->ipif_zoneid != ALL_ZONES) 18407 continue; 18408 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18409 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18410 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18411 18412 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18413 OCTET_LENGTH); 18414 mae6.ipv6AddrIfIndex.o_length = 18415 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18416 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18417 mae6.ipv6AddrPfxLength = 18418 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18419 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18420 mae6.ipv6AddrInfo.ae_subnet_len = 18421 mae6.ipv6AddrPfxLength; 18422 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18423 18424 /* Type: stateless(1), stateful(2), unknown(3) */ 18425 if (ipif->ipif_flags & IPIF_ADDRCONF) 18426 mae6.ipv6AddrType = 1; 18427 else 18428 mae6.ipv6AddrType = 2; 18429 /* Anycast: true(1), false(2) */ 18430 if (ipif->ipif_flags & IPIF_ANYCAST) 18431 mae6.ipv6AddrAnycastFlag = 1; 18432 else 18433 mae6.ipv6AddrAnycastFlag = 2; 18434 18435 /* 18436 * Address status: preferred(1), deprecated(2), 18437 * invalid(3), inaccessible(4), unknown(5) 18438 */ 18439 if (ipif->ipif_flags & IPIF_NOLOCAL) 18440 mae6.ipv6AddrStatus = 3; 18441 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18442 mae6.ipv6AddrStatus = 2; 18443 else 18444 mae6.ipv6AddrStatus = 1; 18445 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18446 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18447 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18448 ipif->ipif_v6pp_dst_addr; 18449 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18450 ill->ill_flags | ill->ill_phyint->phyint_flags; 18451 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18452 mae6.ipv6AddrIdentifier = ill->ill_token; 18453 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18454 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18455 mae6.ipv6AddrRetransmitTime = 18456 ill->ill_reachable_retrans_time; 18457 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18458 (char *)&mae6, 18459 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18460 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18461 "allocate %u bytes\n", 18462 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18463 } 18464 } 18465 } 18466 rw_exit(&ipst->ips_ill_g_lock); 18467 18468 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18469 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18470 (int)optp->level, (int)optp->name, (int)optp->len)); 18471 qreply(q, mpctl); 18472 return (mp2ctl); 18473 } 18474 18475 /* IPv4 multicast group membership. */ 18476 static mblk_t * 18477 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18478 { 18479 struct opthdr *optp; 18480 mblk_t *mp2ctl; 18481 ill_t *ill; 18482 ipif_t *ipif; 18483 ilm_t *ilm; 18484 ip_member_t ipm; 18485 mblk_t *mp_tail = NULL; 18486 ill_walk_context_t ctx; 18487 zoneid_t zoneid; 18488 18489 /* 18490 * make a copy of the original message 18491 */ 18492 mp2ctl = copymsg(mpctl); 18493 zoneid = Q_TO_CONN(q)->conn_zoneid; 18494 18495 /* ipGroupMember table */ 18496 optp = (struct opthdr *)&mpctl->b_rptr[ 18497 sizeof (struct T_optmgmt_ack)]; 18498 optp->level = MIB2_IP; 18499 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18500 18501 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18502 ill = ILL_START_WALK_V4(&ctx, ipst); 18503 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18504 ILM_WALKER_HOLD(ill); 18505 for (ipif = ill->ill_ipif; ipif != NULL; 18506 ipif = ipif->ipif_next) { 18507 if (ipif->ipif_zoneid != zoneid && 18508 ipif->ipif_zoneid != ALL_ZONES) 18509 continue; /* not this zone */ 18510 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18511 OCTET_LENGTH); 18512 ipm.ipGroupMemberIfIndex.o_length = 18513 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18514 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18515 ASSERT(ilm->ilm_ipif != NULL); 18516 ASSERT(ilm->ilm_ill == NULL); 18517 if (ilm->ilm_ipif != ipif) 18518 continue; 18519 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18520 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18521 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18522 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18523 (char *)&ipm, (int)sizeof (ipm))) { 18524 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18525 "failed to allocate %u bytes\n", 18526 (uint_t)sizeof (ipm))); 18527 } 18528 } 18529 } 18530 ILM_WALKER_RELE(ill); 18531 } 18532 rw_exit(&ipst->ips_ill_g_lock); 18533 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18534 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18535 (int)optp->level, (int)optp->name, (int)optp->len)); 18536 qreply(q, mpctl); 18537 return (mp2ctl); 18538 } 18539 18540 /* IPv6 multicast group membership. */ 18541 static mblk_t * 18542 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18543 { 18544 struct opthdr *optp; 18545 mblk_t *mp2ctl; 18546 ill_t *ill; 18547 ilm_t *ilm; 18548 ipv6_member_t ipm6; 18549 mblk_t *mp_tail = NULL; 18550 ill_walk_context_t ctx; 18551 zoneid_t zoneid; 18552 18553 /* 18554 * make a copy of the original message 18555 */ 18556 mp2ctl = copymsg(mpctl); 18557 zoneid = Q_TO_CONN(q)->conn_zoneid; 18558 18559 /* ip6GroupMember table */ 18560 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18561 optp->level = MIB2_IP6; 18562 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18563 18564 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18565 ill = ILL_START_WALK_V6(&ctx, ipst); 18566 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18567 ILM_WALKER_HOLD(ill); 18568 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18569 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18570 ASSERT(ilm->ilm_ipif == NULL); 18571 ASSERT(ilm->ilm_ill != NULL); 18572 if (ilm->ilm_zoneid != zoneid) 18573 continue; /* not this zone */ 18574 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18575 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18576 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18577 if (!snmp_append_data2(mpctl->b_cont, 18578 &mp_tail, 18579 (char *)&ipm6, (int)sizeof (ipm6))) { 18580 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18581 "failed to allocate %u bytes\n", 18582 (uint_t)sizeof (ipm6))); 18583 } 18584 } 18585 ILM_WALKER_RELE(ill); 18586 } 18587 rw_exit(&ipst->ips_ill_g_lock); 18588 18589 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18590 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18591 (int)optp->level, (int)optp->name, (int)optp->len)); 18592 qreply(q, mpctl); 18593 return (mp2ctl); 18594 } 18595 18596 /* IP multicast filtered sources */ 18597 static mblk_t * 18598 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18599 { 18600 struct opthdr *optp; 18601 mblk_t *mp2ctl; 18602 ill_t *ill; 18603 ipif_t *ipif; 18604 ilm_t *ilm; 18605 ip_grpsrc_t ips; 18606 mblk_t *mp_tail = NULL; 18607 ill_walk_context_t ctx; 18608 zoneid_t zoneid; 18609 int i; 18610 slist_t *sl; 18611 18612 /* 18613 * make a copy of the original message 18614 */ 18615 mp2ctl = copymsg(mpctl); 18616 zoneid = Q_TO_CONN(q)->conn_zoneid; 18617 18618 /* ipGroupSource table */ 18619 optp = (struct opthdr *)&mpctl->b_rptr[ 18620 sizeof (struct T_optmgmt_ack)]; 18621 optp->level = MIB2_IP; 18622 optp->name = EXPER_IP_GROUP_SOURCES; 18623 18624 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18625 ill = ILL_START_WALK_V4(&ctx, ipst); 18626 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18627 ILM_WALKER_HOLD(ill); 18628 for (ipif = ill->ill_ipif; ipif != NULL; 18629 ipif = ipif->ipif_next) { 18630 if (ipif->ipif_zoneid != zoneid) 18631 continue; /* not this zone */ 18632 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18633 OCTET_LENGTH); 18634 ips.ipGroupSourceIfIndex.o_length = 18635 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18636 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18637 ASSERT(ilm->ilm_ipif != NULL); 18638 ASSERT(ilm->ilm_ill == NULL); 18639 sl = ilm->ilm_filter; 18640 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18641 continue; 18642 ips.ipGroupSourceGroup = ilm->ilm_addr; 18643 for (i = 0; i < sl->sl_numsrc; i++) { 18644 if (!IN6_IS_ADDR_V4MAPPED( 18645 &sl->sl_addr[i])) 18646 continue; 18647 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18648 ips.ipGroupSourceAddress); 18649 if (snmp_append_data2(mpctl->b_cont, 18650 &mp_tail, (char *)&ips, 18651 (int)sizeof (ips)) == 0) { 18652 ip1dbg(("ip_snmp_get_mib2_" 18653 "ip_group_src: failed to " 18654 "allocate %u bytes\n", 18655 (uint_t)sizeof (ips))); 18656 } 18657 } 18658 } 18659 } 18660 ILM_WALKER_RELE(ill); 18661 } 18662 rw_exit(&ipst->ips_ill_g_lock); 18663 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18664 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18665 (int)optp->level, (int)optp->name, (int)optp->len)); 18666 qreply(q, mpctl); 18667 return (mp2ctl); 18668 } 18669 18670 /* IPv6 multicast filtered sources. */ 18671 static mblk_t * 18672 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18673 { 18674 struct opthdr *optp; 18675 mblk_t *mp2ctl; 18676 ill_t *ill; 18677 ilm_t *ilm; 18678 ipv6_grpsrc_t ips6; 18679 mblk_t *mp_tail = NULL; 18680 ill_walk_context_t ctx; 18681 zoneid_t zoneid; 18682 int i; 18683 slist_t *sl; 18684 18685 /* 18686 * make a copy of the original message 18687 */ 18688 mp2ctl = copymsg(mpctl); 18689 zoneid = Q_TO_CONN(q)->conn_zoneid; 18690 18691 /* ip6GroupMember table */ 18692 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18693 optp->level = MIB2_IP6; 18694 optp->name = EXPER_IP6_GROUP_SOURCES; 18695 18696 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18697 ill = ILL_START_WALK_V6(&ctx, ipst); 18698 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18699 ILM_WALKER_HOLD(ill); 18700 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18701 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18702 ASSERT(ilm->ilm_ipif == NULL); 18703 ASSERT(ilm->ilm_ill != NULL); 18704 sl = ilm->ilm_filter; 18705 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18706 continue; 18707 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18708 for (i = 0; i < sl->sl_numsrc; i++) { 18709 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18710 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18711 (char *)&ips6, (int)sizeof (ips6))) { 18712 ip1dbg(("ip_snmp_get_mib2_ip6_" 18713 "group_src: failed to allocate " 18714 "%u bytes\n", 18715 (uint_t)sizeof (ips6))); 18716 } 18717 } 18718 } 18719 ILM_WALKER_RELE(ill); 18720 } 18721 rw_exit(&ipst->ips_ill_g_lock); 18722 18723 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18724 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18725 (int)optp->level, (int)optp->name, (int)optp->len)); 18726 qreply(q, mpctl); 18727 return (mp2ctl); 18728 } 18729 18730 /* Multicast routing virtual interface table. */ 18731 static mblk_t * 18732 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18733 { 18734 struct opthdr *optp; 18735 mblk_t *mp2ctl; 18736 18737 /* 18738 * make a copy of the original message 18739 */ 18740 mp2ctl = copymsg(mpctl); 18741 18742 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18743 optp->level = EXPER_DVMRP; 18744 optp->name = EXPER_DVMRP_VIF; 18745 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18746 ip0dbg(("ip_mroute_vif: failed\n")); 18747 } 18748 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18749 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18750 (int)optp->level, (int)optp->name, (int)optp->len)); 18751 qreply(q, mpctl); 18752 return (mp2ctl); 18753 } 18754 18755 /* Multicast routing table. */ 18756 static mblk_t * 18757 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18758 { 18759 struct opthdr *optp; 18760 mblk_t *mp2ctl; 18761 18762 /* 18763 * make a copy of the original message 18764 */ 18765 mp2ctl = copymsg(mpctl); 18766 18767 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18768 optp->level = EXPER_DVMRP; 18769 optp->name = EXPER_DVMRP_MRT; 18770 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18771 ip0dbg(("ip_mroute_mrt: failed\n")); 18772 } 18773 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18774 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18775 (int)optp->level, (int)optp->name, (int)optp->len)); 18776 qreply(q, mpctl); 18777 return (mp2ctl); 18778 } 18779 18780 /* 18781 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18782 * in one IRE walk. 18783 */ 18784 static mblk_t * 18785 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18786 { 18787 struct opthdr *optp; 18788 mblk_t *mp2ctl; /* Returned */ 18789 mblk_t *mp3ctl; /* nettomedia */ 18790 mblk_t *mp4ctl; /* routeattrs */ 18791 iproutedata_t ird; 18792 zoneid_t zoneid; 18793 18794 /* 18795 * make copies of the original message 18796 * - mp2ctl is returned unchanged to the caller for his use 18797 * - mpctl is sent upstream as ipRouteEntryTable 18798 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18799 * - mp4ctl is sent upstream as ipRouteAttributeTable 18800 */ 18801 mp2ctl = copymsg(mpctl); 18802 mp3ctl = copymsg(mpctl); 18803 mp4ctl = copymsg(mpctl); 18804 if (mp3ctl == NULL || mp4ctl == NULL) { 18805 freemsg(mp4ctl); 18806 freemsg(mp3ctl); 18807 freemsg(mp2ctl); 18808 freemsg(mpctl); 18809 return (NULL); 18810 } 18811 18812 bzero(&ird, sizeof (ird)); 18813 18814 ird.ird_route.lp_head = mpctl->b_cont; 18815 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18816 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18817 18818 zoneid = Q_TO_CONN(q)->conn_zoneid; 18819 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18820 18821 /* ipRouteEntryTable in mpctl */ 18822 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18823 optp->level = MIB2_IP; 18824 optp->name = MIB2_IP_ROUTE; 18825 optp->len = msgdsize(ird.ird_route.lp_head); 18826 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18827 (int)optp->level, (int)optp->name, (int)optp->len)); 18828 qreply(q, mpctl); 18829 18830 /* ipNetToMediaEntryTable in mp3ctl */ 18831 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18832 optp->level = MIB2_IP; 18833 optp->name = MIB2_IP_MEDIA; 18834 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18835 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18836 (int)optp->level, (int)optp->name, (int)optp->len)); 18837 qreply(q, mp3ctl); 18838 18839 /* ipRouteAttributeTable in mp4ctl */ 18840 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18841 optp->level = MIB2_IP; 18842 optp->name = EXPER_IP_RTATTR; 18843 optp->len = msgdsize(ird.ird_attrs.lp_head); 18844 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18845 (int)optp->level, (int)optp->name, (int)optp->len)); 18846 if (optp->len == 0) 18847 freemsg(mp4ctl); 18848 else 18849 qreply(q, mp4ctl); 18850 18851 return (mp2ctl); 18852 } 18853 18854 /* 18855 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18856 * ipv6NetToMediaEntryTable in an NDP walk. 18857 */ 18858 static mblk_t * 18859 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18860 { 18861 struct opthdr *optp; 18862 mblk_t *mp2ctl; /* Returned */ 18863 mblk_t *mp3ctl; /* nettomedia */ 18864 mblk_t *mp4ctl; /* routeattrs */ 18865 iproutedata_t ird; 18866 zoneid_t zoneid; 18867 18868 /* 18869 * make copies of the original message 18870 * - mp2ctl is returned unchanged to the caller for his use 18871 * - mpctl is sent upstream as ipv6RouteEntryTable 18872 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18873 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18874 */ 18875 mp2ctl = copymsg(mpctl); 18876 mp3ctl = copymsg(mpctl); 18877 mp4ctl = copymsg(mpctl); 18878 if (mp3ctl == NULL || mp4ctl == NULL) { 18879 freemsg(mp4ctl); 18880 freemsg(mp3ctl); 18881 freemsg(mp2ctl); 18882 freemsg(mpctl); 18883 return (NULL); 18884 } 18885 18886 bzero(&ird, sizeof (ird)); 18887 18888 ird.ird_route.lp_head = mpctl->b_cont; 18889 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18890 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18891 18892 zoneid = Q_TO_CONN(q)->conn_zoneid; 18893 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18894 18895 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18896 optp->level = MIB2_IP6; 18897 optp->name = MIB2_IP6_ROUTE; 18898 optp->len = msgdsize(ird.ird_route.lp_head); 18899 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18900 (int)optp->level, (int)optp->name, (int)optp->len)); 18901 qreply(q, mpctl); 18902 18903 /* ipv6NetToMediaEntryTable in mp3ctl */ 18904 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18905 18906 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18907 optp->level = MIB2_IP6; 18908 optp->name = MIB2_IP6_MEDIA; 18909 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18910 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18911 (int)optp->level, (int)optp->name, (int)optp->len)); 18912 qreply(q, mp3ctl); 18913 18914 /* ipv6RouteAttributeTable in mp4ctl */ 18915 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18916 optp->level = MIB2_IP6; 18917 optp->name = EXPER_IP_RTATTR; 18918 optp->len = msgdsize(ird.ird_attrs.lp_head); 18919 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18920 (int)optp->level, (int)optp->name, (int)optp->len)); 18921 if (optp->len == 0) 18922 freemsg(mp4ctl); 18923 else 18924 qreply(q, mp4ctl); 18925 18926 return (mp2ctl); 18927 } 18928 18929 /* 18930 * IPv6 mib: One per ill 18931 */ 18932 static mblk_t * 18933 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18934 { 18935 struct opthdr *optp; 18936 mblk_t *mp2ctl; 18937 ill_t *ill; 18938 ill_walk_context_t ctx; 18939 mblk_t *mp_tail = NULL; 18940 18941 /* 18942 * Make a copy of the original message 18943 */ 18944 mp2ctl = copymsg(mpctl); 18945 18946 /* fixed length IPv6 structure ... */ 18947 18948 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18949 optp->level = MIB2_IP6; 18950 optp->name = 0; 18951 /* Include "unknown interface" ip6_mib */ 18952 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 18953 ipst->ips_ip6_mib.ipIfStatsIfIndex = 18954 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18955 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 18956 ipst->ips_ipv6_forward ? 1 : 2); 18957 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 18958 ipst->ips_ipv6_def_hops); 18959 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 18960 sizeof (mib2_ipIfStatsEntry_t)); 18961 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 18962 sizeof (mib2_ipv6AddrEntry_t)); 18963 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 18964 sizeof (mib2_ipv6RouteEntry_t)); 18965 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 18966 sizeof (mib2_ipv6NetToMediaEntry_t)); 18967 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 18968 sizeof (ipv6_member_t)); 18969 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 18970 sizeof (ipv6_grpsrc_t)); 18971 18972 /* 18973 * Synchronize 64- and 32-bit counters 18974 */ 18975 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 18976 ipIfStatsHCInReceives); 18977 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 18978 ipIfStatsHCInDelivers); 18979 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 18980 ipIfStatsHCOutRequests); 18981 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 18982 ipIfStatsHCOutForwDatagrams); 18983 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 18984 ipIfStatsHCOutMcastPkts); 18985 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 18986 ipIfStatsHCInMcastPkts); 18987 18988 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18989 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 18990 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18991 (uint_t)sizeof (ipst->ips_ip6_mib))); 18992 } 18993 18994 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18995 ill = ILL_START_WALK_V6(&ctx, ipst); 18996 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18997 ill->ill_ip_mib->ipIfStatsIfIndex = 18998 ill->ill_phyint->phyint_ifindex; 18999 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19000 ipst->ips_ipv6_forward ? 1 : 2); 19001 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19002 ill->ill_max_hops); 19003 19004 /* 19005 * Synchronize 64- and 32-bit counters 19006 */ 19007 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19008 ipIfStatsHCInReceives); 19009 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19010 ipIfStatsHCInDelivers); 19011 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19012 ipIfStatsHCOutRequests); 19013 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19014 ipIfStatsHCOutForwDatagrams); 19015 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19016 ipIfStatsHCOutMcastPkts); 19017 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19018 ipIfStatsHCInMcastPkts); 19019 19020 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19021 (char *)ill->ill_ip_mib, 19022 (int)sizeof (*ill->ill_ip_mib))) { 19023 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19024 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19025 } 19026 } 19027 rw_exit(&ipst->ips_ill_g_lock); 19028 19029 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19030 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19031 (int)optp->level, (int)optp->name, (int)optp->len)); 19032 qreply(q, mpctl); 19033 return (mp2ctl); 19034 } 19035 19036 /* 19037 * ICMPv6 mib: One per ill 19038 */ 19039 static mblk_t * 19040 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19041 { 19042 struct opthdr *optp; 19043 mblk_t *mp2ctl; 19044 ill_t *ill; 19045 ill_walk_context_t ctx; 19046 mblk_t *mp_tail = NULL; 19047 /* 19048 * Make a copy of the original message 19049 */ 19050 mp2ctl = copymsg(mpctl); 19051 19052 /* fixed length ICMPv6 structure ... */ 19053 19054 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19055 optp->level = MIB2_ICMP6; 19056 optp->name = 0; 19057 /* Include "unknown interface" icmp6_mib */ 19058 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19059 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19060 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19061 sizeof (mib2_ipv6IfIcmpEntry_t); 19062 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19063 (char *)&ipst->ips_icmp6_mib, 19064 (int)sizeof (ipst->ips_icmp6_mib))) { 19065 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19066 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19067 } 19068 19069 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19070 ill = ILL_START_WALK_V6(&ctx, ipst); 19071 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19072 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19073 ill->ill_phyint->phyint_ifindex; 19074 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19075 (char *)ill->ill_icmp6_mib, 19076 (int)sizeof (*ill->ill_icmp6_mib))) { 19077 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19078 "%u bytes\n", 19079 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19080 } 19081 } 19082 rw_exit(&ipst->ips_ill_g_lock); 19083 19084 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19085 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19086 (int)optp->level, (int)optp->name, (int)optp->len)); 19087 qreply(q, mpctl); 19088 return (mp2ctl); 19089 } 19090 19091 /* 19092 * ire_walk routine to create both ipRouteEntryTable and 19093 * ipRouteAttributeTable in one IRE walk 19094 */ 19095 static void 19096 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19097 { 19098 ill_t *ill; 19099 ipif_t *ipif; 19100 mib2_ipRouteEntry_t *re; 19101 mib2_ipAttributeEntry_t *iae, *iaeptr; 19102 ipaddr_t gw_addr; 19103 tsol_ire_gw_secattr_t *attrp; 19104 tsol_gc_t *gc = NULL; 19105 tsol_gcgrp_t *gcgrp = NULL; 19106 uint_t sacnt = 0; 19107 int i; 19108 19109 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19110 19111 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19112 return; 19113 19114 if ((attrp = ire->ire_gw_secattr) != NULL) { 19115 mutex_enter(&attrp->igsa_lock); 19116 if ((gc = attrp->igsa_gc) != NULL) { 19117 gcgrp = gc->gc_grp; 19118 ASSERT(gcgrp != NULL); 19119 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19120 sacnt = 1; 19121 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19122 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19123 gc = gcgrp->gcgrp_head; 19124 sacnt = gcgrp->gcgrp_count; 19125 } 19126 mutex_exit(&attrp->igsa_lock); 19127 19128 /* do nothing if there's no gc to report */ 19129 if (gc == NULL) { 19130 ASSERT(sacnt == 0); 19131 if (gcgrp != NULL) { 19132 /* we might as well drop the lock now */ 19133 rw_exit(&gcgrp->gcgrp_rwlock); 19134 gcgrp = NULL; 19135 } 19136 attrp = NULL; 19137 } 19138 19139 ASSERT(gc == NULL || (gcgrp != NULL && 19140 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19141 } 19142 ASSERT(sacnt == 0 || gc != NULL); 19143 19144 if (sacnt != 0 && 19145 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19146 kmem_free(re, sizeof (*re)); 19147 rw_exit(&gcgrp->gcgrp_rwlock); 19148 return; 19149 } 19150 19151 /* 19152 * Return all IRE types for route table... let caller pick and choose 19153 */ 19154 re->ipRouteDest = ire->ire_addr; 19155 ipif = ire->ire_ipif; 19156 re->ipRouteIfIndex.o_length = 0; 19157 if (ire->ire_type == IRE_CACHE) { 19158 ill = (ill_t *)ire->ire_stq->q_ptr; 19159 re->ipRouteIfIndex.o_length = 19160 ill->ill_name_length == 0 ? 0 : 19161 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19162 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19163 re->ipRouteIfIndex.o_length); 19164 } else if (ipif != NULL) { 19165 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19166 re->ipRouteIfIndex.o_length = 19167 mi_strlen(re->ipRouteIfIndex.o_bytes); 19168 } 19169 re->ipRouteMetric1 = -1; 19170 re->ipRouteMetric2 = -1; 19171 re->ipRouteMetric3 = -1; 19172 re->ipRouteMetric4 = -1; 19173 19174 gw_addr = ire->ire_gateway_addr; 19175 19176 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19177 re->ipRouteNextHop = ire->ire_src_addr; 19178 else 19179 re->ipRouteNextHop = gw_addr; 19180 /* indirect(4), direct(3), or invalid(2) */ 19181 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19182 re->ipRouteType = 2; 19183 else 19184 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19185 re->ipRouteProto = -1; 19186 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19187 re->ipRouteMask = ire->ire_mask; 19188 re->ipRouteMetric5 = -1; 19189 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19190 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19191 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19192 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19193 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19194 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19195 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19196 re->ipRouteInfo.re_flags = ire->ire_flags; 19197 19198 if (ire->ire_flags & RTF_DYNAMIC) { 19199 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19200 } else { 19201 re->ipRouteInfo.re_ire_type = ire->ire_type; 19202 } 19203 19204 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19205 (char *)re, (int)sizeof (*re))) { 19206 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19207 (uint_t)sizeof (*re))); 19208 } 19209 19210 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19211 iaeptr->iae_routeidx = ird->ird_idx; 19212 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19213 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19214 } 19215 19216 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19217 (char *)iae, sacnt * sizeof (*iae))) { 19218 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19219 (unsigned)(sacnt * sizeof (*iae)))); 19220 } 19221 19222 /* bump route index for next pass */ 19223 ird->ird_idx++; 19224 19225 kmem_free(re, sizeof (*re)); 19226 if (sacnt != 0) 19227 kmem_free(iae, sacnt * sizeof (*iae)); 19228 19229 if (gcgrp != NULL) 19230 rw_exit(&gcgrp->gcgrp_rwlock); 19231 } 19232 19233 /* 19234 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19235 */ 19236 static void 19237 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19238 { 19239 ill_t *ill; 19240 ipif_t *ipif; 19241 mib2_ipv6RouteEntry_t *re; 19242 mib2_ipAttributeEntry_t *iae, *iaeptr; 19243 in6_addr_t gw_addr_v6; 19244 tsol_ire_gw_secattr_t *attrp; 19245 tsol_gc_t *gc = NULL; 19246 tsol_gcgrp_t *gcgrp = NULL; 19247 uint_t sacnt = 0; 19248 int i; 19249 19250 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19251 19252 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19253 return; 19254 19255 if ((attrp = ire->ire_gw_secattr) != NULL) { 19256 mutex_enter(&attrp->igsa_lock); 19257 if ((gc = attrp->igsa_gc) != NULL) { 19258 gcgrp = gc->gc_grp; 19259 ASSERT(gcgrp != NULL); 19260 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19261 sacnt = 1; 19262 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19263 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19264 gc = gcgrp->gcgrp_head; 19265 sacnt = gcgrp->gcgrp_count; 19266 } 19267 mutex_exit(&attrp->igsa_lock); 19268 19269 /* do nothing if there's no gc to report */ 19270 if (gc == NULL) { 19271 ASSERT(sacnt == 0); 19272 if (gcgrp != NULL) { 19273 /* we might as well drop the lock now */ 19274 rw_exit(&gcgrp->gcgrp_rwlock); 19275 gcgrp = NULL; 19276 } 19277 attrp = NULL; 19278 } 19279 19280 ASSERT(gc == NULL || (gcgrp != NULL && 19281 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19282 } 19283 ASSERT(sacnt == 0 || gc != NULL); 19284 19285 if (sacnt != 0 && 19286 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19287 kmem_free(re, sizeof (*re)); 19288 rw_exit(&gcgrp->gcgrp_rwlock); 19289 return; 19290 } 19291 19292 /* 19293 * Return all IRE types for route table... let caller pick and choose 19294 */ 19295 re->ipv6RouteDest = ire->ire_addr_v6; 19296 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19297 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19298 re->ipv6RouteIfIndex.o_length = 0; 19299 ipif = ire->ire_ipif; 19300 if (ire->ire_type == IRE_CACHE) { 19301 ill = (ill_t *)ire->ire_stq->q_ptr; 19302 re->ipv6RouteIfIndex.o_length = 19303 ill->ill_name_length == 0 ? 0 : 19304 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19305 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19306 re->ipv6RouteIfIndex.o_length); 19307 } else if (ipif != NULL) { 19308 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19309 re->ipv6RouteIfIndex.o_length = 19310 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19311 } 19312 19313 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19314 19315 mutex_enter(&ire->ire_lock); 19316 gw_addr_v6 = ire->ire_gateway_addr_v6; 19317 mutex_exit(&ire->ire_lock); 19318 19319 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19320 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19321 else 19322 re->ipv6RouteNextHop = gw_addr_v6; 19323 19324 /* remote(4), local(3), or discard(2) */ 19325 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19326 re->ipv6RouteType = 2; 19327 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19328 re->ipv6RouteType = 3; 19329 else 19330 re->ipv6RouteType = 4; 19331 19332 re->ipv6RouteProtocol = -1; 19333 re->ipv6RoutePolicy = 0; 19334 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19335 re->ipv6RouteNextHopRDI = 0; 19336 re->ipv6RouteWeight = 0; 19337 re->ipv6RouteMetric = 0; 19338 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19339 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19340 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19341 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19342 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19343 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19344 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19345 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19346 19347 if (ire->ire_flags & RTF_DYNAMIC) { 19348 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19349 } else { 19350 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19351 } 19352 19353 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19354 (char *)re, (int)sizeof (*re))) { 19355 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19356 (uint_t)sizeof (*re))); 19357 } 19358 19359 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19360 iaeptr->iae_routeidx = ird->ird_idx; 19361 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19362 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19363 } 19364 19365 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19366 (char *)iae, sacnt * sizeof (*iae))) { 19367 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19368 (unsigned)(sacnt * sizeof (*iae)))); 19369 } 19370 19371 /* bump route index for next pass */ 19372 ird->ird_idx++; 19373 19374 kmem_free(re, sizeof (*re)); 19375 if (sacnt != 0) 19376 kmem_free(iae, sacnt * sizeof (*iae)); 19377 19378 if (gcgrp != NULL) 19379 rw_exit(&gcgrp->gcgrp_rwlock); 19380 } 19381 19382 /* 19383 * ndp_walk routine to create ipv6NetToMediaEntryTable 19384 */ 19385 static int 19386 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19387 { 19388 ill_t *ill; 19389 mib2_ipv6NetToMediaEntry_t ntme; 19390 dl_unitdata_req_t *dl; 19391 19392 ill = nce->nce_ill; 19393 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19394 return (0); 19395 19396 /* 19397 * Neighbor cache entry attached to IRE with on-link 19398 * destination. 19399 */ 19400 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19401 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19402 if ((ill->ill_flags & ILLF_XRESOLV) && 19403 (nce->nce_res_mp != NULL)) { 19404 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19405 ntme.ipv6NetToMediaPhysAddress.o_length = 19406 dl->dl_dest_addr_length; 19407 } else { 19408 ntme.ipv6NetToMediaPhysAddress.o_length = 19409 ill->ill_phys_addr_length; 19410 } 19411 if (nce->nce_res_mp != NULL) { 19412 bcopy((char *)nce->nce_res_mp->b_rptr + 19413 NCE_LL_ADDR_OFFSET(ill), 19414 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19415 ntme.ipv6NetToMediaPhysAddress.o_length); 19416 } else { 19417 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19418 ill->ill_phys_addr_length); 19419 } 19420 /* 19421 * Note: Returns ND_* states. Should be: 19422 * reachable(1), stale(2), delay(3), probe(4), 19423 * invalid(5), unknown(6) 19424 */ 19425 ntme.ipv6NetToMediaState = nce->nce_state; 19426 ntme.ipv6NetToMediaLastUpdated = 0; 19427 19428 /* other(1), dynamic(2), static(3), local(4) */ 19429 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19430 ntme.ipv6NetToMediaType = 4; 19431 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19432 ntme.ipv6NetToMediaType = 1; 19433 } else { 19434 ntme.ipv6NetToMediaType = 2; 19435 } 19436 19437 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19438 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19439 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19440 (uint_t)sizeof (ntme))); 19441 } 19442 return (0); 19443 } 19444 19445 /* 19446 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19447 */ 19448 /* ARGSUSED */ 19449 int 19450 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19451 { 19452 switch (level) { 19453 case MIB2_IP: 19454 case MIB2_ICMP: 19455 switch (name) { 19456 default: 19457 break; 19458 } 19459 return (1); 19460 default: 19461 return (1); 19462 } 19463 } 19464 19465 /* 19466 * When there exists both a 64- and 32-bit counter of a particular type 19467 * (i.e., InReceives), only the 64-bit counters are added. 19468 */ 19469 void 19470 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19471 { 19472 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19473 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19474 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19475 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19476 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19477 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19478 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19479 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19480 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19481 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19482 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19483 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19484 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19485 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19486 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19487 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19488 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19489 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19490 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19491 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19492 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19493 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19494 o2->ipIfStatsInWrongIPVersion); 19495 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19496 o2->ipIfStatsInWrongIPVersion); 19497 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19498 o2->ipIfStatsOutSwitchIPVersion); 19499 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19500 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19501 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19502 o2->ipIfStatsHCInForwDatagrams); 19503 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19504 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19505 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19506 o2->ipIfStatsHCOutForwDatagrams); 19507 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19508 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19509 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19510 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19511 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19512 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19513 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19514 o2->ipIfStatsHCOutMcastOctets); 19515 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19516 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19517 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19518 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19519 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19520 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19521 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19522 } 19523 19524 void 19525 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19526 { 19527 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19528 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19529 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19530 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19531 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19532 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19533 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19534 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19535 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19536 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19537 o2->ipv6IfIcmpInRouterSolicits); 19538 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19539 o2->ipv6IfIcmpInRouterAdvertisements); 19540 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19541 o2->ipv6IfIcmpInNeighborSolicits); 19542 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19543 o2->ipv6IfIcmpInNeighborAdvertisements); 19544 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19545 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19546 o2->ipv6IfIcmpInGroupMembQueries); 19547 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19548 o2->ipv6IfIcmpInGroupMembResponses); 19549 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19550 o2->ipv6IfIcmpInGroupMembReductions); 19551 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19552 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19553 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19554 o2->ipv6IfIcmpOutDestUnreachs); 19555 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19556 o2->ipv6IfIcmpOutAdminProhibs); 19557 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19558 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19559 o2->ipv6IfIcmpOutParmProblems); 19560 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19561 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19562 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19563 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19564 o2->ipv6IfIcmpOutRouterSolicits); 19565 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19566 o2->ipv6IfIcmpOutRouterAdvertisements); 19567 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19568 o2->ipv6IfIcmpOutNeighborSolicits); 19569 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19570 o2->ipv6IfIcmpOutNeighborAdvertisements); 19571 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19572 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19573 o2->ipv6IfIcmpOutGroupMembQueries); 19574 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19575 o2->ipv6IfIcmpOutGroupMembResponses); 19576 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19577 o2->ipv6IfIcmpOutGroupMembReductions); 19578 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19579 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19580 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19581 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19582 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19583 o2->ipv6IfIcmpInBadNeighborSolicitations); 19584 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19585 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19586 o2->ipv6IfIcmpInGroupMembTotal); 19587 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19588 o2->ipv6IfIcmpInGroupMembBadQueries); 19589 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19590 o2->ipv6IfIcmpInGroupMembBadReports); 19591 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19592 o2->ipv6IfIcmpInGroupMembOurReports); 19593 } 19594 19595 /* 19596 * Called before the options are updated to check if this packet will 19597 * be source routed from here. 19598 * This routine assumes that the options are well formed i.e. that they 19599 * have already been checked. 19600 */ 19601 static boolean_t 19602 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19603 { 19604 ipoptp_t opts; 19605 uchar_t *opt; 19606 uint8_t optval; 19607 uint8_t optlen; 19608 ipaddr_t dst; 19609 ire_t *ire; 19610 19611 if (IS_SIMPLE_IPH(ipha)) { 19612 ip2dbg(("not source routed\n")); 19613 return (B_FALSE); 19614 } 19615 dst = ipha->ipha_dst; 19616 for (optval = ipoptp_first(&opts, ipha); 19617 optval != IPOPT_EOL; 19618 optval = ipoptp_next(&opts)) { 19619 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19620 opt = opts.ipoptp_cur; 19621 optlen = opts.ipoptp_len; 19622 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19623 optval, optlen)); 19624 switch (optval) { 19625 uint32_t off; 19626 case IPOPT_SSRR: 19627 case IPOPT_LSRR: 19628 /* 19629 * If dst is one of our addresses and there are some 19630 * entries left in the source route return (true). 19631 */ 19632 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19633 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19634 if (ire == NULL) { 19635 ip2dbg(("ip_source_routed: not next" 19636 " source route 0x%x\n", 19637 ntohl(dst))); 19638 return (B_FALSE); 19639 } 19640 ire_refrele(ire); 19641 off = opt[IPOPT_OFFSET]; 19642 off--; 19643 if (optlen < IP_ADDR_LEN || 19644 off > optlen - IP_ADDR_LEN) { 19645 /* End of source route */ 19646 ip1dbg(("ip_source_routed: end of SR\n")); 19647 return (B_FALSE); 19648 } 19649 return (B_TRUE); 19650 } 19651 } 19652 ip2dbg(("not source routed\n")); 19653 return (B_FALSE); 19654 } 19655 19656 /* 19657 * Check if the packet contains any source route. 19658 */ 19659 static boolean_t 19660 ip_source_route_included(ipha_t *ipha) 19661 { 19662 ipoptp_t opts; 19663 uint8_t optval; 19664 19665 if (IS_SIMPLE_IPH(ipha)) 19666 return (B_FALSE); 19667 for (optval = ipoptp_first(&opts, ipha); 19668 optval != IPOPT_EOL; 19669 optval = ipoptp_next(&opts)) { 19670 switch (optval) { 19671 case IPOPT_SSRR: 19672 case IPOPT_LSRR: 19673 return (B_TRUE); 19674 } 19675 } 19676 return (B_FALSE); 19677 } 19678 19679 /* 19680 * Called when the IRE expiration timer fires. 19681 */ 19682 void 19683 ip_trash_timer_expire(void *args) 19684 { 19685 int flush_flag = 0; 19686 ire_expire_arg_t iea; 19687 ip_stack_t *ipst = (ip_stack_t *)args; 19688 19689 iea.iea_ipst = ipst; /* No netstack_hold */ 19690 19691 /* 19692 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19693 * This lock makes sure that a new invocation of this function 19694 * that occurs due to an almost immediate timer firing will not 19695 * progress beyond this point until the current invocation is done 19696 */ 19697 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19698 ipst->ips_ip_ire_expire_id = 0; 19699 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19700 19701 /* Periodic timer */ 19702 if (ipst->ips_ip_ire_arp_time_elapsed >= 19703 ipst->ips_ip_ire_arp_interval) { 19704 /* 19705 * Remove all IRE_CACHE entries since they might 19706 * contain arp information. 19707 */ 19708 flush_flag |= FLUSH_ARP_TIME; 19709 ipst->ips_ip_ire_arp_time_elapsed = 0; 19710 IP_STAT(ipst, ip_ire_arp_timer_expired); 19711 } 19712 if (ipst->ips_ip_ire_rd_time_elapsed >= 19713 ipst->ips_ip_ire_redir_interval) { 19714 /* Remove all redirects */ 19715 flush_flag |= FLUSH_REDIRECT_TIME; 19716 ipst->ips_ip_ire_rd_time_elapsed = 0; 19717 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19718 } 19719 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19720 ipst->ips_ip_ire_pathmtu_interval) { 19721 /* Increase path mtu */ 19722 flush_flag |= FLUSH_MTU_TIME; 19723 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19724 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19725 } 19726 19727 /* 19728 * Optimize for the case when there are no redirects in the 19729 * ftable, that is, no need to walk the ftable in that case. 19730 */ 19731 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19732 iea.iea_flush_flag = flush_flag; 19733 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19734 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19735 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19736 NULL, ALL_ZONES, ipst); 19737 } 19738 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19739 ipst->ips_ip_redirect_cnt > 0) { 19740 iea.iea_flush_flag = flush_flag; 19741 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19742 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19743 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19744 } 19745 if (flush_flag & FLUSH_MTU_TIME) { 19746 /* 19747 * Walk all IPv6 IRE's and update them 19748 * Note that ARP and redirect timers are not 19749 * needed since NUD handles stale entries. 19750 */ 19751 flush_flag = FLUSH_MTU_TIME; 19752 iea.iea_flush_flag = flush_flag; 19753 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19754 ALL_ZONES, ipst); 19755 } 19756 19757 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19758 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19759 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19760 19761 /* 19762 * Hold the lock to serialize timeout calls and prevent 19763 * stale values in ip_ire_expire_id. Otherwise it is possible 19764 * for the timer to fire and a new invocation of this function 19765 * to start before the return value of timeout has been stored 19766 * in ip_ire_expire_id by the current invocation. 19767 */ 19768 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19769 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19770 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19771 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19772 } 19773 19774 /* 19775 * Called by the memory allocator subsystem directly, when the system 19776 * is running low on memory. 19777 */ 19778 /* ARGSUSED */ 19779 void 19780 ip_trash_ire_reclaim(void *args) 19781 { 19782 netstack_handle_t nh; 19783 netstack_t *ns; 19784 19785 netstack_next_init(&nh); 19786 while ((ns = netstack_next(&nh)) != NULL) { 19787 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19788 netstack_rele(ns); 19789 } 19790 netstack_next_fini(&nh); 19791 } 19792 19793 static void 19794 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19795 { 19796 ire_cache_count_t icc; 19797 ire_cache_reclaim_t icr; 19798 ncc_cache_count_t ncc; 19799 nce_cache_reclaim_t ncr; 19800 uint_t delete_cnt; 19801 /* 19802 * Memory reclaim call back. 19803 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19804 * Then, with a target of freeing 1/Nth of IRE_CACHE 19805 * entries, determine what fraction to free for 19806 * each category of IRE_CACHE entries giving absolute priority 19807 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19808 * entry will be freed unless all offlink entries are freed). 19809 */ 19810 icc.icc_total = 0; 19811 icc.icc_unused = 0; 19812 icc.icc_offlink = 0; 19813 icc.icc_pmtu = 0; 19814 icc.icc_onlink = 0; 19815 ire_walk(ire_cache_count, (char *)&icc, ipst); 19816 19817 /* 19818 * Free NCEs for IPv6 like the onlink ires. 19819 */ 19820 ncc.ncc_total = 0; 19821 ncc.ncc_host = 0; 19822 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19823 19824 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19825 icc.icc_pmtu + icc.icc_onlink); 19826 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19827 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19828 if (delete_cnt == 0) 19829 return; 19830 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19831 /* Always delete all unused offlink entries */ 19832 icr.icr_ipst = ipst; 19833 icr.icr_unused = 1; 19834 if (delete_cnt <= icc.icc_unused) { 19835 /* 19836 * Only need to free unused entries. In other words, 19837 * there are enough unused entries to free to meet our 19838 * target number of freed ire cache entries. 19839 */ 19840 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19841 ncr.ncr_host = 0; 19842 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19843 /* 19844 * Only need to free unused entries, plus a fraction of offlink 19845 * entries. It follows from the first if statement that 19846 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19847 */ 19848 delete_cnt -= icc.icc_unused; 19849 /* Round up # deleted by truncating fraction */ 19850 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19851 icr.icr_pmtu = icr.icr_onlink = 0; 19852 ncr.ncr_host = 0; 19853 } else if (delete_cnt <= 19854 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19855 /* 19856 * Free all unused and offlink entries, plus a fraction of 19857 * pmtu entries. It follows from the previous if statement 19858 * that icc_pmtu is non-zero, and that 19859 * delete_cnt != icc_unused + icc_offlink. 19860 */ 19861 icr.icr_offlink = 1; 19862 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19863 /* Round up # deleted by truncating fraction */ 19864 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19865 icr.icr_onlink = 0; 19866 ncr.ncr_host = 0; 19867 } else { 19868 /* 19869 * Free all unused, offlink, and pmtu entries, plus a fraction 19870 * of onlink entries. If we're here, then we know that 19871 * icc_onlink is non-zero, and that 19872 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19873 */ 19874 icr.icr_offlink = icr.icr_pmtu = 1; 19875 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19876 icc.icc_pmtu; 19877 /* Round up # deleted by truncating fraction */ 19878 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19879 /* Using the same delete fraction as for onlink IREs */ 19880 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19881 } 19882 #ifdef DEBUG 19883 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19884 "fractions %d/%d/%d/%d\n", 19885 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19886 icc.icc_unused, icc.icc_offlink, 19887 icc.icc_pmtu, icc.icc_onlink, 19888 icr.icr_unused, icr.icr_offlink, 19889 icr.icr_pmtu, icr.icr_onlink)); 19890 #endif 19891 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19892 if (ncr.ncr_host != 0) 19893 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19894 (uchar_t *)&ncr, ipst); 19895 #ifdef DEBUG 19896 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19897 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19898 ire_walk(ire_cache_count, (char *)&icc, ipst); 19899 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19900 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19901 icc.icc_pmtu, icc.icc_onlink)); 19902 #endif 19903 } 19904 19905 /* 19906 * ip_unbind is called when a copy of an unbind request is received from the 19907 * upper level protocol. We remove this conn from any fanout hash list it is 19908 * on, and zero out the bind information. No reply is expected up above. 19909 */ 19910 mblk_t * 19911 ip_unbind(queue_t *q, mblk_t *mp) 19912 { 19913 conn_t *connp = Q_TO_CONN(q); 19914 19915 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19916 19917 if (is_system_labeled() && connp->conn_anon_port) { 19918 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19919 connp->conn_mlp_type, connp->conn_ulp, 19920 ntohs(connp->conn_lport), B_FALSE); 19921 connp->conn_anon_port = 0; 19922 } 19923 connp->conn_mlp_type = mlptSingle; 19924 19925 ipcl_hash_remove(connp); 19926 19927 ASSERT(mp->b_cont == NULL); 19928 /* 19929 * Convert mp into a T_OK_ACK 19930 */ 19931 mp = mi_tpi_ok_ack_alloc(mp); 19932 19933 /* 19934 * should not happen in practice... T_OK_ACK is smaller than the 19935 * original message. 19936 */ 19937 if (mp == NULL) 19938 return (NULL); 19939 19940 /* 19941 * Don't bzero the ports if its TCP since TCP still needs the 19942 * lport to remove it from its own bind hash. TCP will do the 19943 * cleanup. 19944 */ 19945 if (!IPCL_IS_TCP(connp)) 19946 bzero(&connp->u_port, sizeof (connp->u_port)); 19947 19948 return (mp); 19949 } 19950 19951 /* 19952 * Write side put procedure. Outbound data, IOCTLs, responses from 19953 * resolvers, etc, come down through here. 19954 * 19955 * arg2 is always a queue_t *. 19956 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19957 * the zoneid. 19958 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19959 */ 19960 void 19961 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19962 { 19963 ip_output_options(arg, mp, arg2, caller, &zero_info); 19964 } 19965 19966 void 19967 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 19968 ip_opt_info_t *infop) 19969 { 19970 conn_t *connp = NULL; 19971 queue_t *q = (queue_t *)arg2; 19972 ipha_t *ipha; 19973 #define rptr ((uchar_t *)ipha) 19974 ire_t *ire = NULL; 19975 ire_t *sctp_ire = NULL; 19976 uint32_t v_hlen_tos_len; 19977 ipaddr_t dst; 19978 mblk_t *first_mp = NULL; 19979 boolean_t mctl_present; 19980 ipsec_out_t *io; 19981 int match_flags; 19982 ill_t *attach_ill = NULL; 19983 /* Bind to IPIF_NOFAILOVER ill etc. */ 19984 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19985 ipif_t *dst_ipif; 19986 boolean_t multirt_need_resolve = B_FALSE; 19987 mblk_t *copy_mp = NULL; 19988 int err; 19989 zoneid_t zoneid; 19990 int adjust; 19991 uint16_t iplen; 19992 boolean_t need_decref = B_FALSE; 19993 boolean_t ignore_dontroute = B_FALSE; 19994 boolean_t ignore_nexthop = B_FALSE; 19995 boolean_t ip_nexthop = B_FALSE; 19996 ipaddr_t nexthop_addr; 19997 ip_stack_t *ipst; 19998 19999 #ifdef _BIG_ENDIAN 20000 #define V_HLEN (v_hlen_tos_len >> 24) 20001 #else 20002 #define V_HLEN (v_hlen_tos_len & 0xFF) 20003 #endif 20004 20005 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20006 "ip_wput_start: q %p", q); 20007 20008 /* 20009 * ip_wput fast path 20010 */ 20011 20012 /* is packet from ARP ? */ 20013 if (q->q_next != NULL) { 20014 zoneid = (zoneid_t)(uintptr_t)arg; 20015 goto qnext; 20016 } 20017 20018 connp = (conn_t *)arg; 20019 ASSERT(connp != NULL); 20020 zoneid = connp->conn_zoneid; 20021 ipst = connp->conn_netstack->netstack_ip; 20022 20023 /* is queue flow controlled? */ 20024 if ((q->q_first != NULL || connp->conn_draining) && 20025 (caller == IP_WPUT)) { 20026 ASSERT(!need_decref); 20027 (void) putq(q, mp); 20028 return; 20029 } 20030 20031 /* Multidata transmit? */ 20032 if (DB_TYPE(mp) == M_MULTIDATA) { 20033 /* 20034 * We should never get here, since all Multidata messages 20035 * originating from tcp should have been directed over to 20036 * tcp_multisend() in the first place. 20037 */ 20038 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20039 freemsg(mp); 20040 return; 20041 } else if (DB_TYPE(mp) != M_DATA) 20042 goto notdata; 20043 20044 if (mp->b_flag & MSGHASREF) { 20045 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20046 mp->b_flag &= ~MSGHASREF; 20047 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20048 need_decref = B_TRUE; 20049 } 20050 ipha = (ipha_t *)mp->b_rptr; 20051 20052 /* is IP header non-aligned or mblk smaller than basic IP header */ 20053 #ifndef SAFETY_BEFORE_SPEED 20054 if (!OK_32PTR(rptr) || 20055 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20056 goto hdrtoosmall; 20057 #endif 20058 20059 ASSERT(OK_32PTR(ipha)); 20060 20061 /* 20062 * This function assumes that mp points to an IPv4 packet. If it's the 20063 * wrong version, we'll catch it again in ip_output_v6. 20064 * 20065 * Note that this is *only* locally-generated output here, and never 20066 * forwarded data, and that we need to deal only with transports that 20067 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20068 * label.) 20069 */ 20070 if (is_system_labeled() && 20071 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20072 !connp->conn_ulp_labeled) { 20073 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20074 connp->conn_mac_exempt, ipst); 20075 ipha = (ipha_t *)mp->b_rptr; 20076 if (err != 0) { 20077 first_mp = mp; 20078 if (err == EINVAL) 20079 goto icmp_parameter_problem; 20080 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20081 goto discard_pkt; 20082 } 20083 iplen = ntohs(ipha->ipha_length) + adjust; 20084 ipha->ipha_length = htons(iplen); 20085 } 20086 20087 ASSERT(infop != NULL); 20088 20089 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20090 /* 20091 * IP_PKTINFO ancillary option is present. 20092 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20093 * allows using address of any zone as the source address. 20094 */ 20095 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20096 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20097 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20098 if (ire == NULL) 20099 goto drop_pkt; 20100 ire_refrele(ire); 20101 ire = NULL; 20102 } 20103 20104 /* 20105 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20106 * ill index passed in IP_PKTINFO. 20107 */ 20108 if (infop->ip_opt_ill_index != 0 && 20109 connp->conn_xmit_if_ill == NULL && 20110 connp->conn_nofailover_ill == NULL) { 20111 20112 xmit_ill = ill_lookup_on_ifindex( 20113 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20114 ipst); 20115 20116 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20117 goto drop_pkt; 20118 /* 20119 * check that there is an ipif belonging 20120 * to our zone. IPCL_ZONEID is not used because 20121 * IP_ALLZONES option is valid only when the ill is 20122 * accessible from all zones i.e has a valid ipif in 20123 * all zones. 20124 */ 20125 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20126 goto drop_pkt; 20127 } 20128 } 20129 20130 /* 20131 * If there is a policy, try to attach an ipsec_out in 20132 * the front. At the end, first_mp either points to a 20133 * M_DATA message or IPSEC_OUT message linked to a 20134 * M_DATA message. We have to do it now as we might 20135 * lose the "conn" if we go through ip_newroute. 20136 */ 20137 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20138 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20139 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20140 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20141 if (need_decref) 20142 CONN_DEC_REF(connp); 20143 return; 20144 } else { 20145 ASSERT(mp->b_datap->db_type == M_CTL); 20146 first_mp = mp; 20147 mp = mp->b_cont; 20148 mctl_present = B_TRUE; 20149 } 20150 } else { 20151 first_mp = mp; 20152 mctl_present = B_FALSE; 20153 } 20154 20155 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20156 20157 /* is wrong version or IP options present */ 20158 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20159 goto version_hdrlen_check; 20160 dst = ipha->ipha_dst; 20161 20162 if (connp->conn_nofailover_ill != NULL) { 20163 attach_ill = conn_get_held_ill(connp, 20164 &connp->conn_nofailover_ill, &err); 20165 if (err == ILL_LOOKUP_FAILED) { 20166 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20167 if (need_decref) 20168 CONN_DEC_REF(connp); 20169 freemsg(first_mp); 20170 return; 20171 } 20172 } 20173 20174 20175 /* is packet multicast? */ 20176 if (CLASSD(dst)) 20177 goto multicast; 20178 20179 /* 20180 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20181 * takes precedence over conn_dontroute and conn_nexthop_set 20182 */ 20183 if (xmit_ill != NULL) { 20184 goto send_from_ill; 20185 } 20186 20187 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20188 (connp->conn_nexthop_set)) { 20189 /* 20190 * If the destination is a broadcast or a loopback 20191 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20192 * through the standard path. But in the case of local 20193 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20194 * the standard path not IP_XMIT_IF. 20195 */ 20196 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20197 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20198 (ire->ire_type != IRE_LOOPBACK))) { 20199 if ((connp->conn_dontroute || 20200 connp->conn_nexthop_set) && (ire != NULL) && 20201 (ire->ire_type == IRE_LOCAL)) 20202 goto standard_path; 20203 20204 if (ire != NULL) { 20205 ire_refrele(ire); 20206 /* No more access to ire */ 20207 ire = NULL; 20208 } 20209 /* 20210 * bypass routing checks and go directly to 20211 * interface. 20212 */ 20213 if (connp->conn_dontroute) { 20214 goto dontroute; 20215 } else if (connp->conn_nexthop_set) { 20216 ip_nexthop = B_TRUE; 20217 nexthop_addr = connp->conn_nexthop_v4; 20218 goto send_from_ill; 20219 } 20220 20221 /* 20222 * If IP_XMIT_IF socket option is set, 20223 * then we allow unicast and multicast 20224 * packets to go through the ill. It is 20225 * quite possible that the destination 20226 * is not in the ire cache table and we 20227 * do not want to go to ip_newroute() 20228 * instead we call ip_newroute_ipif. 20229 */ 20230 xmit_ill = conn_get_held_ill(connp, 20231 &connp->conn_xmit_if_ill, &err); 20232 if (err == ILL_LOOKUP_FAILED) { 20233 BUMP_MIB(&ipst->ips_ip_mib, 20234 ipIfStatsOutDiscards); 20235 if (attach_ill != NULL) 20236 ill_refrele(attach_ill); 20237 if (need_decref) 20238 CONN_DEC_REF(connp); 20239 freemsg(first_mp); 20240 return; 20241 } 20242 goto send_from_ill; 20243 } 20244 standard_path: 20245 /* Must be a broadcast, a loopback or a local ire */ 20246 if (ire != NULL) { 20247 ire_refrele(ire); 20248 /* No more access to ire */ 20249 ire = NULL; 20250 } 20251 } 20252 20253 if (attach_ill != NULL) 20254 goto send_from_ill; 20255 20256 /* 20257 * We cache IRE_CACHEs to avoid lookups. We don't do 20258 * this for the tcp global queue and listen end point 20259 * as it does not really have a real destination to 20260 * talk to. This is also true for SCTP. 20261 */ 20262 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20263 !connp->conn_fully_bound) { 20264 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20265 if (ire == NULL) 20266 goto noirefound; 20267 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20268 "ip_wput_end: q %p (%S)", q, "end"); 20269 20270 /* 20271 * Check if the ire has the RTF_MULTIRT flag, inherited 20272 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20273 */ 20274 if (ire->ire_flags & RTF_MULTIRT) { 20275 20276 /* 20277 * Force the TTL of multirouted packets if required. 20278 * The TTL of such packets is bounded by the 20279 * ip_multirt_ttl ndd variable. 20280 */ 20281 if ((ipst->ips_ip_multirt_ttl > 0) && 20282 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20283 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20284 "(was %d), dst 0x%08x\n", 20285 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20286 ntohl(ire->ire_addr))); 20287 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20288 } 20289 /* 20290 * We look at this point if there are pending 20291 * unresolved routes. ire_multirt_resolvable() 20292 * checks in O(n) that all IRE_OFFSUBNET ire 20293 * entries for the packet's destination and 20294 * flagged RTF_MULTIRT are currently resolved. 20295 * If some remain unresolved, we make a copy 20296 * of the current message. It will be used 20297 * to initiate additional route resolutions. 20298 */ 20299 multirt_need_resolve = 20300 ire_multirt_need_resolve(ire->ire_addr, 20301 MBLK_GETLABEL(first_mp), ipst); 20302 ip2dbg(("ip_wput[TCP]: ire %p, " 20303 "multirt_need_resolve %d, first_mp %p\n", 20304 (void *)ire, multirt_need_resolve, 20305 (void *)first_mp)); 20306 if (multirt_need_resolve) { 20307 copy_mp = copymsg(first_mp); 20308 if (copy_mp != NULL) { 20309 MULTIRT_DEBUG_TAG(copy_mp); 20310 } 20311 } 20312 } 20313 20314 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20315 20316 /* 20317 * Try to resolve another multiroute if 20318 * ire_multirt_need_resolve() deemed it necessary. 20319 */ 20320 if (copy_mp != NULL) 20321 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20322 if (need_decref) 20323 CONN_DEC_REF(connp); 20324 return; 20325 } 20326 20327 /* 20328 * Access to conn_ire_cache. (protected by conn_lock) 20329 * 20330 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20331 * the ire bucket lock here to check for CONDEMNED as it is okay to 20332 * send a packet or two with the IRE_CACHE that is going away. 20333 * Access to the ire requires an ire refhold on the ire prior to 20334 * its use since an interface unplumb thread may delete the cached 20335 * ire and release the refhold at any time. 20336 * 20337 * Caching an ire in the conn_ire_cache 20338 * 20339 * o Caching an ire pointer in the conn requires a strict check for 20340 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20341 * ires before cleaning up the conns. So the caching of an ire pointer 20342 * in the conn is done after making sure under the bucket lock that the 20343 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20344 * caching an ire after the unplumb thread has cleaned up the conn. 20345 * If the conn does not send a packet subsequently the unplumb thread 20346 * will be hanging waiting for the ire count to drop to zero. 20347 * 20348 * o We also need to atomically test for a null conn_ire_cache and 20349 * set the conn_ire_cache under the the protection of the conn_lock 20350 * to avoid races among concurrent threads trying to simultaneously 20351 * cache an ire in the conn_ire_cache. 20352 */ 20353 mutex_enter(&connp->conn_lock); 20354 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20355 20356 if (ire != NULL && ire->ire_addr == dst && 20357 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20358 20359 IRE_REFHOLD(ire); 20360 mutex_exit(&connp->conn_lock); 20361 20362 } else { 20363 boolean_t cached = B_FALSE; 20364 connp->conn_ire_cache = NULL; 20365 mutex_exit(&connp->conn_lock); 20366 /* Release the old ire */ 20367 if (ire != NULL && sctp_ire == NULL) 20368 IRE_REFRELE_NOTR(ire); 20369 20370 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20371 if (ire == NULL) 20372 goto noirefound; 20373 IRE_REFHOLD_NOTR(ire); 20374 20375 mutex_enter(&connp->conn_lock); 20376 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20377 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20378 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20379 if (connp->conn_ulp == IPPROTO_TCP) 20380 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20381 connp->conn_ire_cache = ire; 20382 cached = B_TRUE; 20383 } 20384 rw_exit(&ire->ire_bucket->irb_lock); 20385 } 20386 mutex_exit(&connp->conn_lock); 20387 20388 /* 20389 * We can continue to use the ire but since it was 20390 * not cached, we should drop the extra reference. 20391 */ 20392 if (!cached) 20393 IRE_REFRELE_NOTR(ire); 20394 } 20395 20396 20397 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20398 "ip_wput_end: q %p (%S)", q, "end"); 20399 20400 /* 20401 * Check if the ire has the RTF_MULTIRT flag, inherited 20402 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20403 */ 20404 if (ire->ire_flags & RTF_MULTIRT) { 20405 20406 /* 20407 * Force the TTL of multirouted packets if required. 20408 * The TTL of such packets is bounded by the 20409 * ip_multirt_ttl ndd variable. 20410 */ 20411 if ((ipst->ips_ip_multirt_ttl > 0) && 20412 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20413 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20414 "(was %d), dst 0x%08x\n", 20415 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20416 ntohl(ire->ire_addr))); 20417 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20418 } 20419 20420 /* 20421 * At this point, we check to see if there are any pending 20422 * unresolved routes. ire_multirt_resolvable() 20423 * checks in O(n) that all IRE_OFFSUBNET ire 20424 * entries for the packet's destination and 20425 * flagged RTF_MULTIRT are currently resolved. 20426 * If some remain unresolved, we make a copy 20427 * of the current message. It will be used 20428 * to initiate additional route resolutions. 20429 */ 20430 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20431 MBLK_GETLABEL(first_mp), ipst); 20432 ip2dbg(("ip_wput[not TCP]: ire %p, " 20433 "multirt_need_resolve %d, first_mp %p\n", 20434 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20435 if (multirt_need_resolve) { 20436 copy_mp = copymsg(first_mp); 20437 if (copy_mp != NULL) { 20438 MULTIRT_DEBUG_TAG(copy_mp); 20439 } 20440 } 20441 } 20442 20443 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20444 20445 /* 20446 * Try to resolve another multiroute if 20447 * ire_multirt_resolvable() deemed it necessary 20448 */ 20449 if (copy_mp != NULL) 20450 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20451 if (need_decref) 20452 CONN_DEC_REF(connp); 20453 return; 20454 20455 qnext: 20456 /* 20457 * Upper Level Protocols pass down complete IP datagrams 20458 * as M_DATA messages. Everything else is a sideshow. 20459 * 20460 * 1) We could be re-entering ip_wput because of ip_neworute 20461 * in which case we could have a IPSEC_OUT message. We 20462 * need to pass through ip_wput like other datagrams and 20463 * hence cannot branch to ip_wput_nondata. 20464 * 20465 * 2) ARP, AH, ESP, and other clients who are on the module 20466 * instance of IP stream, give us something to deal with. 20467 * We will handle AH and ESP here and rest in ip_wput_nondata. 20468 * 20469 * 3) ICMP replies also could come here. 20470 */ 20471 ipst = ILLQ_TO_IPST(q); 20472 20473 if (DB_TYPE(mp) != M_DATA) { 20474 notdata: 20475 if (DB_TYPE(mp) == M_CTL) { 20476 /* 20477 * M_CTL messages are used by ARP, AH and ESP to 20478 * communicate with IP. We deal with IPSEC_IN and 20479 * IPSEC_OUT here. ip_wput_nondata handles other 20480 * cases. 20481 */ 20482 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20483 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20484 first_mp = mp->b_cont; 20485 first_mp->b_flag &= ~MSGHASREF; 20486 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20487 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20488 CONN_DEC_REF(connp); 20489 connp = NULL; 20490 } 20491 if (ii->ipsec_info_type == IPSEC_IN) { 20492 /* 20493 * Either this message goes back to 20494 * IPsec for further processing or to 20495 * ULP after policy checks. 20496 */ 20497 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20498 return; 20499 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20500 io = (ipsec_out_t *)ii; 20501 if (io->ipsec_out_proc_begin) { 20502 /* 20503 * IPsec processing has already started. 20504 * Complete it. 20505 * IPQoS notes: We don't care what is 20506 * in ipsec_out_ill_index since this 20507 * won't be processed for IPQoS policies 20508 * in ipsec_out_process. 20509 */ 20510 ipsec_out_process(q, mp, NULL, 20511 io->ipsec_out_ill_index); 20512 return; 20513 } else { 20514 connp = (q->q_next != NULL) ? 20515 NULL : Q_TO_CONN(q); 20516 first_mp = mp; 20517 mp = mp->b_cont; 20518 mctl_present = B_TRUE; 20519 } 20520 zoneid = io->ipsec_out_zoneid; 20521 ASSERT(zoneid != ALL_ZONES); 20522 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20523 /* 20524 * It's an IPsec control message requesting 20525 * an SADB update to be sent to the IPsec 20526 * hardware acceleration capable ills. 20527 */ 20528 ipsec_ctl_t *ipsec_ctl = 20529 (ipsec_ctl_t *)mp->b_rptr; 20530 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20531 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20532 mblk_t *cmp = mp->b_cont; 20533 20534 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20535 ASSERT(cmp != NULL); 20536 20537 freeb(mp); 20538 ill_ipsec_capab_send_all(satype, cmp, sa, 20539 ipst->ips_netstack); 20540 return; 20541 } else { 20542 /* 20543 * This must be ARP or special TSOL signaling. 20544 */ 20545 ip_wput_nondata(NULL, q, mp, NULL); 20546 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20547 "ip_wput_end: q %p (%S)", q, "nondata"); 20548 return; 20549 } 20550 } else { 20551 /* 20552 * This must be non-(ARP/AH/ESP) messages. 20553 */ 20554 ASSERT(!need_decref); 20555 ip_wput_nondata(NULL, q, mp, NULL); 20556 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20557 "ip_wput_end: q %p (%S)", q, "nondata"); 20558 return; 20559 } 20560 } else { 20561 first_mp = mp; 20562 mctl_present = B_FALSE; 20563 } 20564 20565 ASSERT(first_mp != NULL); 20566 /* 20567 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20568 * to make sure that this packet goes out on the same interface it 20569 * came in. We handle that here. 20570 */ 20571 if (mctl_present) { 20572 uint_t ifindex; 20573 20574 io = (ipsec_out_t *)first_mp->b_rptr; 20575 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20576 /* 20577 * We may have lost the conn context if we are 20578 * coming here from ip_newroute(). Copy the 20579 * nexthop information. 20580 */ 20581 if (io->ipsec_out_ip_nexthop) { 20582 ip_nexthop = B_TRUE; 20583 nexthop_addr = io->ipsec_out_nexthop_addr; 20584 20585 ipha = (ipha_t *)mp->b_rptr; 20586 dst = ipha->ipha_dst; 20587 goto send_from_ill; 20588 } else { 20589 ASSERT(io->ipsec_out_ill_index != 0); 20590 ifindex = io->ipsec_out_ill_index; 20591 attach_ill = ill_lookup_on_ifindex(ifindex, 20592 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20593 if (attach_ill == NULL) { 20594 ASSERT(xmit_ill == NULL); 20595 ip1dbg(("ip_output: bad ifindex for " 20596 "(BIND TO IPIF_NOFAILOVER) %d\n", 20597 ifindex)); 20598 freemsg(first_mp); 20599 BUMP_MIB(&ipst->ips_ip_mib, 20600 ipIfStatsOutDiscards); 20601 ASSERT(!need_decref); 20602 return; 20603 } 20604 } 20605 } 20606 } 20607 20608 ASSERT(xmit_ill == NULL); 20609 20610 /* We have a complete IP datagram heading outbound. */ 20611 ipha = (ipha_t *)mp->b_rptr; 20612 20613 #ifndef SPEED_BEFORE_SAFETY 20614 /* 20615 * Make sure we have a full-word aligned message and that at least 20616 * a simple IP header is accessible in the first message. If not, 20617 * try a pullup. 20618 */ 20619 if (!OK_32PTR(rptr) || 20620 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20621 hdrtoosmall: 20622 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20623 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20624 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20625 if (first_mp == NULL) 20626 first_mp = mp; 20627 goto discard_pkt; 20628 } 20629 20630 /* This function assumes that mp points to an IPv4 packet. */ 20631 if (is_system_labeled() && q->q_next == NULL && 20632 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20633 !connp->conn_ulp_labeled) { 20634 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20635 &adjust, connp->conn_mac_exempt, ipst); 20636 ipha = (ipha_t *)mp->b_rptr; 20637 if (first_mp != NULL) 20638 first_mp->b_cont = mp; 20639 if (err != 0) { 20640 if (first_mp == NULL) 20641 first_mp = mp; 20642 if (err == EINVAL) 20643 goto icmp_parameter_problem; 20644 ip2dbg(("ip_wput: label check failed (%d)\n", 20645 err)); 20646 goto discard_pkt; 20647 } 20648 iplen = ntohs(ipha->ipha_length) + adjust; 20649 ipha->ipha_length = htons(iplen); 20650 } 20651 20652 ipha = (ipha_t *)mp->b_rptr; 20653 if (first_mp == NULL) { 20654 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20655 /* 20656 * If we got here because of "goto hdrtoosmall" 20657 * We need to attach a IPSEC_OUT. 20658 */ 20659 if (connp->conn_out_enforce_policy) { 20660 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20661 NULL, ipha->ipha_protocol, 20662 ipst->ips_netstack)) == NULL)) { 20663 BUMP_MIB(&ipst->ips_ip_mib, 20664 ipIfStatsOutDiscards); 20665 if (need_decref) 20666 CONN_DEC_REF(connp); 20667 return; 20668 } else { 20669 ASSERT(mp->b_datap->db_type == M_CTL); 20670 first_mp = mp; 20671 mp = mp->b_cont; 20672 mctl_present = B_TRUE; 20673 } 20674 } else { 20675 first_mp = mp; 20676 mctl_present = B_FALSE; 20677 } 20678 } 20679 } 20680 #endif 20681 20682 /* Most of the code below is written for speed, not readability */ 20683 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20684 20685 /* 20686 * If ip_newroute() fails, we're going to need a full 20687 * header for the icmp wraparound. 20688 */ 20689 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20690 uint_t v_hlen; 20691 version_hdrlen_check: 20692 ASSERT(first_mp != NULL); 20693 v_hlen = V_HLEN; 20694 /* 20695 * siphon off IPv6 packets coming down from transport 20696 * layer modules here. 20697 * Note: high-order bit carries NUD reachability confirmation 20698 */ 20699 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20700 /* 20701 * XXX implement a IPv4 and IPv6 packet counter per 20702 * conn and switch when ratio exceeds e.g. 10:1 20703 */ 20704 #ifdef notyet 20705 if (q->q_next == NULL) /* Avoid ill queue */ 20706 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 20707 #endif 20708 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20709 ASSERT(xmit_ill == NULL); 20710 if (attach_ill != NULL) 20711 ill_refrele(attach_ill); 20712 if (need_decref) 20713 mp->b_flag |= MSGHASREF; 20714 (void) ip_output_v6(arg, first_mp, arg2, caller); 20715 return; 20716 } 20717 20718 if ((v_hlen >> 4) != IP_VERSION) { 20719 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20720 "ip_wput_end: q %p (%S)", q, "badvers"); 20721 goto discard_pkt; 20722 } 20723 /* 20724 * Is the header length at least 20 bytes? 20725 * 20726 * Are there enough bytes accessible in the header? If 20727 * not, try a pullup. 20728 */ 20729 v_hlen &= 0xF; 20730 v_hlen <<= 2; 20731 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20732 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20733 "ip_wput_end: q %p (%S)", q, "badlen"); 20734 goto discard_pkt; 20735 } 20736 if (v_hlen > (mp->b_wptr - rptr)) { 20737 if (!pullupmsg(mp, v_hlen)) { 20738 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20739 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20740 goto discard_pkt; 20741 } 20742 ipha = (ipha_t *)mp->b_rptr; 20743 } 20744 /* 20745 * Move first entry from any source route into ipha_dst and 20746 * verify the options 20747 */ 20748 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20749 zoneid, ipst)) { 20750 ASSERT(xmit_ill == NULL); 20751 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20752 if (attach_ill != NULL) 20753 ill_refrele(attach_ill); 20754 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20755 "ip_wput_end: q %p (%S)", q, "badopts"); 20756 if (need_decref) 20757 CONN_DEC_REF(connp); 20758 return; 20759 } 20760 } 20761 dst = ipha->ipha_dst; 20762 20763 /* 20764 * Try to get an IRE_CACHE for the destination address. If we can't, 20765 * we have to run the packet through ip_newroute which will take 20766 * the appropriate action to arrange for an IRE_CACHE, such as querying 20767 * a resolver, or assigning a default gateway, etc. 20768 */ 20769 if (CLASSD(dst)) { 20770 ipif_t *ipif; 20771 uint32_t setsrc = 0; 20772 20773 multicast: 20774 ASSERT(first_mp != NULL); 20775 ip2dbg(("ip_wput: CLASSD\n")); 20776 if (connp == NULL) { 20777 /* 20778 * Use the first good ipif on the ill. 20779 * XXX Should this ever happen? (Appears 20780 * to show up with just ppp and no ethernet due 20781 * to in.rdisc.) 20782 * However, ire_send should be able to 20783 * call ip_wput_ire directly. 20784 * 20785 * XXX Also, this can happen for ICMP and other packets 20786 * with multicast source addresses. Perhaps we should 20787 * fix things so that we drop the packet in question, 20788 * but for now, just run with it. 20789 */ 20790 ill_t *ill = (ill_t *)q->q_ptr; 20791 20792 /* 20793 * Don't honor attach_if for this case. If ill 20794 * is part of the group, ipif could belong to 20795 * any ill and we cannot maintain attach_ill 20796 * and ipif_ill same anymore and the assert 20797 * below would fail. 20798 */ 20799 if (mctl_present && io->ipsec_out_attach_if) { 20800 io->ipsec_out_ill_index = 0; 20801 io->ipsec_out_attach_if = B_FALSE; 20802 ASSERT(attach_ill != NULL); 20803 ill_refrele(attach_ill); 20804 attach_ill = NULL; 20805 } 20806 20807 ASSERT(attach_ill == NULL); 20808 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20809 if (ipif == NULL) { 20810 if (need_decref) 20811 CONN_DEC_REF(connp); 20812 freemsg(first_mp); 20813 return; 20814 } 20815 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20816 ntohl(dst), ill->ill_name)); 20817 } else { 20818 /* 20819 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 20820 * and IP_MULTICAST_IF. 20821 * Block comment above this function explains the 20822 * locking mechanism used here 20823 */ 20824 if (xmit_ill == NULL) { 20825 xmit_ill = conn_get_held_ill(connp, 20826 &connp->conn_xmit_if_ill, &err); 20827 if (err == ILL_LOOKUP_FAILED) { 20828 ip1dbg(("ip_wput: No ill for " 20829 "IP_XMIT_IF\n")); 20830 BUMP_MIB(&ipst->ips_ip_mib, 20831 ipIfStatsOutNoRoutes); 20832 goto drop_pkt; 20833 } 20834 } 20835 20836 if (xmit_ill == NULL) { 20837 ipif = conn_get_held_ipif(connp, 20838 &connp->conn_multicast_ipif, &err); 20839 if (err == IPIF_LOOKUP_FAILED) { 20840 ip1dbg(("ip_wput: No ipif for " 20841 "multicast\n")); 20842 BUMP_MIB(&ipst->ips_ip_mib, 20843 ipIfStatsOutNoRoutes); 20844 goto drop_pkt; 20845 } 20846 } 20847 if (xmit_ill != NULL) { 20848 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20849 if (ipif == NULL) { 20850 ip1dbg(("ip_wput: No ipif for " 20851 "IP_XMIT_IF\n")); 20852 BUMP_MIB(&ipst->ips_ip_mib, 20853 ipIfStatsOutNoRoutes); 20854 goto drop_pkt; 20855 } 20856 } else if (ipif == NULL || ipif->ipif_isv6) { 20857 /* 20858 * We must do this ipif determination here 20859 * else we could pass through ip_newroute 20860 * and come back here without the conn context. 20861 * 20862 * Note: we do late binding i.e. we bind to 20863 * the interface when the first packet is sent. 20864 * For performance reasons we do not rebind on 20865 * each packet but keep the binding until the 20866 * next IP_MULTICAST_IF option. 20867 * 20868 * conn_multicast_{ipif,ill} are shared between 20869 * IPv4 and IPv6 and AF_INET6 sockets can 20870 * send both IPv4 and IPv6 packets. Hence 20871 * we have to check that "isv6" matches above. 20872 */ 20873 if (ipif != NULL) 20874 ipif_refrele(ipif); 20875 ipif = ipif_lookup_group(dst, zoneid, ipst); 20876 if (ipif == NULL) { 20877 ip1dbg(("ip_wput: No ipif for " 20878 "multicast\n")); 20879 BUMP_MIB(&ipst->ips_ip_mib, 20880 ipIfStatsOutNoRoutes); 20881 goto drop_pkt; 20882 } 20883 err = conn_set_held_ipif(connp, 20884 &connp->conn_multicast_ipif, ipif); 20885 if (err == IPIF_LOOKUP_FAILED) { 20886 ipif_refrele(ipif); 20887 ip1dbg(("ip_wput: No ipif for " 20888 "multicast\n")); 20889 BUMP_MIB(&ipst->ips_ip_mib, 20890 ipIfStatsOutNoRoutes); 20891 goto drop_pkt; 20892 } 20893 } 20894 } 20895 ASSERT(!ipif->ipif_isv6); 20896 /* 20897 * As we may lose the conn by the time we reach ip_wput_ire, 20898 * we copy conn_multicast_loop and conn_dontroute on to an 20899 * ipsec_out. In case if this datagram goes out secure, 20900 * we need the ill_index also. Copy that also into the 20901 * ipsec_out. 20902 */ 20903 if (mctl_present) { 20904 io = (ipsec_out_t *)first_mp->b_rptr; 20905 ASSERT(first_mp->b_datap->db_type == M_CTL); 20906 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20907 } else { 20908 ASSERT(mp == first_mp); 20909 if ((first_mp = allocb(sizeof (ipsec_info_t), 20910 BPRI_HI)) == NULL) { 20911 ipif_refrele(ipif); 20912 first_mp = mp; 20913 goto discard_pkt; 20914 } 20915 first_mp->b_datap->db_type = M_CTL; 20916 first_mp->b_wptr += sizeof (ipsec_info_t); 20917 /* ipsec_out_secure is B_FALSE now */ 20918 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20919 io = (ipsec_out_t *)first_mp->b_rptr; 20920 io->ipsec_out_type = IPSEC_OUT; 20921 io->ipsec_out_len = sizeof (ipsec_out_t); 20922 io->ipsec_out_use_global_policy = B_TRUE; 20923 io->ipsec_out_ns = ipst->ips_netstack; 20924 first_mp->b_cont = mp; 20925 mctl_present = B_TRUE; 20926 } 20927 if (attach_ill != NULL) { 20928 ASSERT(attach_ill == ipif->ipif_ill); 20929 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20930 20931 /* 20932 * Check if we need an ire that will not be 20933 * looked up by anybody else i.e. HIDDEN. 20934 */ 20935 if (ill_is_probeonly(attach_ill)) { 20936 match_flags |= MATCH_IRE_MARK_HIDDEN; 20937 } 20938 io->ipsec_out_ill_index = 20939 attach_ill->ill_phyint->phyint_ifindex; 20940 io->ipsec_out_attach_if = B_TRUE; 20941 } else { 20942 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20943 io->ipsec_out_ill_index = 20944 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20945 } 20946 if (connp != NULL) { 20947 io->ipsec_out_multicast_loop = 20948 connp->conn_multicast_loop; 20949 io->ipsec_out_dontroute = connp->conn_dontroute; 20950 io->ipsec_out_zoneid = connp->conn_zoneid; 20951 } 20952 /* 20953 * If the application uses IP_MULTICAST_IF with 20954 * different logical addresses of the same ILL, we 20955 * need to make sure that the soruce address of 20956 * the packet matches the logical IP address used 20957 * in the option. We do it by initializing ipha_src 20958 * here. This should keep IPsec also happy as 20959 * when we return from IPsec processing, we don't 20960 * have to worry about getting the right address on 20961 * the packet. Thus it is sufficient to look for 20962 * IRE_CACHE using MATCH_IRE_ILL rathen than 20963 * MATCH_IRE_IPIF. 20964 * 20965 * NOTE : We need to do it for non-secure case also as 20966 * this might go out secure if there is a global policy 20967 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20968 * address, the source should be initialized already and 20969 * hence we won't be initializing here. 20970 * 20971 * As we do not have the ire yet, it is possible that 20972 * we set the source address here and then later discover 20973 * that the ire implies the source address to be assigned 20974 * through the RTF_SETSRC flag. 20975 * In that case, the setsrc variable will remind us 20976 * that overwritting the source address by the one 20977 * of the RTF_SETSRC-flagged ire is allowed. 20978 */ 20979 if (ipha->ipha_src == INADDR_ANY && 20980 (connp == NULL || !connp->conn_unspec_src)) { 20981 ipha->ipha_src = ipif->ipif_src_addr; 20982 setsrc = RTF_SETSRC; 20983 } 20984 /* 20985 * Find an IRE which matches the destination and the outgoing 20986 * queue (i.e. the outgoing interface.) 20987 * For loopback use a unicast IP address for 20988 * the ire lookup. 20989 */ 20990 if (IS_LOOPBACK(ipif->ipif_ill)) 20991 dst = ipif->ipif_lcl_addr; 20992 20993 /* 20994 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20995 * We don't need to lookup ire in ctable as the packet 20996 * needs to be sent to the destination through the specified 20997 * ill irrespective of ires in the cache table. 20998 */ 20999 ire = NULL; 21000 if (xmit_ill == NULL) { 21001 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21002 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21003 } 21004 21005 /* 21006 * refrele attach_ill as its not needed anymore. 21007 */ 21008 if (attach_ill != NULL) { 21009 ill_refrele(attach_ill); 21010 attach_ill = NULL; 21011 } 21012 21013 if (ire == NULL) { 21014 /* 21015 * Multicast loopback and multicast forwarding is 21016 * done in ip_wput_ire. 21017 * 21018 * Mark this packet to make it be delivered to 21019 * ip_wput_ire after the new ire has been 21020 * created. 21021 * 21022 * The call to ip_newroute_ipif takes into account 21023 * the setsrc reminder. In any case, we take care 21024 * of the RTF_MULTIRT flag. 21025 */ 21026 mp->b_prev = mp->b_next = NULL; 21027 if (xmit_ill == NULL || 21028 xmit_ill->ill_ipif_up_count > 0) { 21029 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21030 setsrc | RTF_MULTIRT, zoneid, infop); 21031 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21032 "ip_wput_end: q %p (%S)", q, "noire"); 21033 } else { 21034 freemsg(first_mp); 21035 } 21036 ipif_refrele(ipif); 21037 if (xmit_ill != NULL) 21038 ill_refrele(xmit_ill); 21039 if (need_decref) 21040 CONN_DEC_REF(connp); 21041 return; 21042 } 21043 21044 ipif_refrele(ipif); 21045 ipif = NULL; 21046 ASSERT(xmit_ill == NULL); 21047 21048 /* 21049 * Honor the RTF_SETSRC flag for multicast packets, 21050 * if allowed by the setsrc reminder. 21051 */ 21052 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21053 ipha->ipha_src = ire->ire_src_addr; 21054 } 21055 21056 /* 21057 * Unconditionally force the TTL to 1 for 21058 * multirouted multicast packets: 21059 * multirouted multicast should not cross 21060 * multicast routers. 21061 */ 21062 if (ire->ire_flags & RTF_MULTIRT) { 21063 if (ipha->ipha_ttl > 1) { 21064 ip2dbg(("ip_wput: forcing multicast " 21065 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21066 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21067 ipha->ipha_ttl = 1; 21068 } 21069 } 21070 } else { 21071 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21072 if ((ire != NULL) && (ire->ire_type & 21073 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21074 ignore_dontroute = B_TRUE; 21075 ignore_nexthop = B_TRUE; 21076 } 21077 if (ire != NULL) { 21078 ire_refrele(ire); 21079 ire = NULL; 21080 } 21081 /* 21082 * Guard against coming in from arp in which case conn is NULL. 21083 * Also guard against non M_DATA with dontroute set but 21084 * destined to local, loopback or broadcast addresses. 21085 */ 21086 if (connp != NULL && connp->conn_dontroute && 21087 !ignore_dontroute) { 21088 dontroute: 21089 /* 21090 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21091 * routing protocols from seeing false direct 21092 * connectivity. 21093 */ 21094 ipha->ipha_ttl = 1; 21095 /* 21096 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21097 * along with SO_DONTROUTE, higher precedence is 21098 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21099 */ 21100 if (connp->conn_xmit_if_ill == NULL) { 21101 /* If suitable ipif not found, drop packet */ 21102 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21103 ipst); 21104 if (dst_ipif == NULL) { 21105 ip1dbg(("ip_wput: no route for " 21106 "dst using SO_DONTROUTE\n")); 21107 BUMP_MIB(&ipst->ips_ip_mib, 21108 ipIfStatsOutNoRoutes); 21109 mp->b_prev = mp->b_next = NULL; 21110 if (first_mp == NULL) 21111 first_mp = mp; 21112 goto drop_pkt; 21113 } else { 21114 /* 21115 * If suitable ipif has been found, set 21116 * xmit_ill to the corresponding 21117 * ipif_ill because we'll be following 21118 * the IP_XMIT_IF logic. 21119 */ 21120 ASSERT(xmit_ill == NULL); 21121 xmit_ill = dst_ipif->ipif_ill; 21122 mutex_enter(&xmit_ill->ill_lock); 21123 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21124 mutex_exit(&xmit_ill->ill_lock); 21125 xmit_ill = NULL; 21126 ipif_refrele(dst_ipif); 21127 ip1dbg(("ip_wput: no route for" 21128 " dst using" 21129 " SO_DONTROUTE\n")); 21130 BUMP_MIB(&ipst->ips_ip_mib, 21131 ipIfStatsOutNoRoutes); 21132 mp->b_prev = mp->b_next = NULL; 21133 if (first_mp == NULL) 21134 first_mp = mp; 21135 goto drop_pkt; 21136 } 21137 ill_refhold_locked(xmit_ill); 21138 mutex_exit(&xmit_ill->ill_lock); 21139 ipif_refrele(dst_ipif); 21140 } 21141 } 21142 21143 } 21144 /* 21145 * If we are bound to IPIF_NOFAILOVER address, look for 21146 * an IRE_CACHE matching the ill. 21147 */ 21148 send_from_ill: 21149 if (attach_ill != NULL) { 21150 ipif_t *attach_ipif; 21151 21152 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21153 21154 /* 21155 * Check if we need an ire that will not be 21156 * looked up by anybody else i.e. HIDDEN. 21157 */ 21158 if (ill_is_probeonly(attach_ill)) { 21159 match_flags |= MATCH_IRE_MARK_HIDDEN; 21160 } 21161 21162 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21163 if (attach_ipif == NULL) { 21164 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21165 goto discard_pkt; 21166 } 21167 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21168 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21169 ipif_refrele(attach_ipif); 21170 } else if (xmit_ill != NULL || (connp != NULL && 21171 connp->conn_xmit_if_ill != NULL)) { 21172 /* 21173 * Mark this packet as originated locally 21174 */ 21175 mp->b_prev = mp->b_next = NULL; 21176 /* 21177 * xmit_ill could be NULL if SO_DONTROUTE 21178 * is also set. 21179 */ 21180 if (xmit_ill == NULL) { 21181 xmit_ill = conn_get_held_ill(connp, 21182 &connp->conn_xmit_if_ill, &err); 21183 if (err == ILL_LOOKUP_FAILED) { 21184 BUMP_MIB(&ipst->ips_ip_mib, 21185 ipIfStatsOutDiscards); 21186 if (need_decref) 21187 CONN_DEC_REF(connp); 21188 freemsg(first_mp); 21189 return; 21190 } 21191 if (xmit_ill == NULL) { 21192 if (connp->conn_dontroute) 21193 goto dontroute; 21194 goto send_from_ill; 21195 } 21196 } 21197 /* 21198 * Could be SO_DONTROUTE case also. 21199 * check at least one interface is UP as 21200 * specified by this ILL 21201 */ 21202 if (xmit_ill->ill_ipif_up_count > 0) { 21203 ipif_t *ipif; 21204 21205 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21206 if (ipif == NULL) { 21207 ip1dbg(("ip_output: " 21208 "xmit_ill NULL ipif\n")); 21209 goto drop_pkt; 21210 } 21211 /* 21212 * Look for a ire that is part of the group, 21213 * if found use it else call ip_newroute_ipif. 21214 * IPCL_ZONEID is not used for matching because 21215 * IP_ALLZONES option is valid only when the 21216 * ill is accessible from all zones i.e has a 21217 * valid ipif in all zones. 21218 */ 21219 match_flags = MATCH_IRE_ILL_GROUP | 21220 MATCH_IRE_SECATTR; 21221 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21222 MBLK_GETLABEL(mp), match_flags, ipst); 21223 /* 21224 * If an ire exists use it or else create 21225 * an ire but don't add it to the cache. 21226 * Adding an ire may cause issues with 21227 * asymmetric routing. 21228 * In case of multiroute always act as if 21229 * ire does not exist. 21230 */ 21231 if (ire == NULL || 21232 ire->ire_flags & RTF_MULTIRT) { 21233 if (ire != NULL) 21234 ire_refrele(ire); 21235 ip_newroute_ipif(q, first_mp, ipif, 21236 dst, connp, 0, zoneid, infop); 21237 ipif_refrele(ipif); 21238 ip1dbg(("ip_wput: ip_unicast_if\n")); 21239 ill_refrele(xmit_ill); 21240 if (need_decref) 21241 CONN_DEC_REF(connp); 21242 return; 21243 } 21244 ipif_refrele(ipif); 21245 } else { 21246 goto drop_pkt; 21247 } 21248 } else if (ip_nexthop || (connp != NULL && 21249 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21250 if (!ip_nexthop) { 21251 ip_nexthop = B_TRUE; 21252 nexthop_addr = connp->conn_nexthop_v4; 21253 } 21254 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21255 MATCH_IRE_GW; 21256 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21257 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21258 } else { 21259 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21260 ipst); 21261 } 21262 if (!ire) { 21263 /* 21264 * Make sure we don't load spread if this 21265 * is IPIF_NOFAILOVER case. 21266 */ 21267 if ((attach_ill != NULL) || 21268 (ip_nexthop && !ignore_nexthop)) { 21269 if (mctl_present) { 21270 io = (ipsec_out_t *)first_mp->b_rptr; 21271 ASSERT(first_mp->b_datap->db_type == 21272 M_CTL); 21273 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21274 } else { 21275 ASSERT(mp == first_mp); 21276 first_mp = allocb( 21277 sizeof (ipsec_info_t), BPRI_HI); 21278 if (first_mp == NULL) { 21279 first_mp = mp; 21280 goto discard_pkt; 21281 } 21282 first_mp->b_datap->db_type = M_CTL; 21283 first_mp->b_wptr += 21284 sizeof (ipsec_info_t); 21285 /* ipsec_out_secure is B_FALSE now */ 21286 bzero(first_mp->b_rptr, 21287 sizeof (ipsec_info_t)); 21288 io = (ipsec_out_t *)first_mp->b_rptr; 21289 io->ipsec_out_type = IPSEC_OUT; 21290 io->ipsec_out_len = 21291 sizeof (ipsec_out_t); 21292 io->ipsec_out_use_global_policy = 21293 B_TRUE; 21294 io->ipsec_out_ns = ipst->ips_netstack; 21295 first_mp->b_cont = mp; 21296 mctl_present = B_TRUE; 21297 } 21298 if (attach_ill != NULL) { 21299 io->ipsec_out_ill_index = attach_ill-> 21300 ill_phyint->phyint_ifindex; 21301 io->ipsec_out_attach_if = B_TRUE; 21302 } else { 21303 io->ipsec_out_ip_nexthop = ip_nexthop; 21304 io->ipsec_out_nexthop_addr = 21305 nexthop_addr; 21306 } 21307 } 21308 noirefound: 21309 /* 21310 * Mark this packet as having originated on 21311 * this machine. This will be noted in 21312 * ire_add_then_send, which needs to know 21313 * whether to run it back through ip_wput or 21314 * ip_rput following successful resolution. 21315 */ 21316 mp->b_prev = NULL; 21317 mp->b_next = NULL; 21318 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21319 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21320 "ip_wput_end: q %p (%S)", q, "newroute"); 21321 if (attach_ill != NULL) 21322 ill_refrele(attach_ill); 21323 if (xmit_ill != NULL) 21324 ill_refrele(xmit_ill); 21325 if (need_decref) 21326 CONN_DEC_REF(connp); 21327 return; 21328 } 21329 } 21330 21331 /* We now know where we are going with it. */ 21332 21333 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21334 "ip_wput_end: q %p (%S)", q, "end"); 21335 21336 /* 21337 * Check if the ire has the RTF_MULTIRT flag, inherited 21338 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21339 */ 21340 if (ire->ire_flags & RTF_MULTIRT) { 21341 /* 21342 * Force the TTL of multirouted packets if required. 21343 * The TTL of such packets is bounded by the 21344 * ip_multirt_ttl ndd variable. 21345 */ 21346 if ((ipst->ips_ip_multirt_ttl > 0) && 21347 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21348 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21349 "(was %d), dst 0x%08x\n", 21350 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21351 ntohl(ire->ire_addr))); 21352 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21353 } 21354 /* 21355 * At this point, we check to see if there are any pending 21356 * unresolved routes. ire_multirt_resolvable() 21357 * checks in O(n) that all IRE_OFFSUBNET ire 21358 * entries for the packet's destination and 21359 * flagged RTF_MULTIRT are currently resolved. 21360 * If some remain unresolved, we make a copy 21361 * of the current message. It will be used 21362 * to initiate additional route resolutions. 21363 */ 21364 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21365 MBLK_GETLABEL(first_mp), ipst); 21366 ip2dbg(("ip_wput[noirefound]: ire %p, " 21367 "multirt_need_resolve %d, first_mp %p\n", 21368 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21369 if (multirt_need_resolve) { 21370 copy_mp = copymsg(first_mp); 21371 if (copy_mp != NULL) { 21372 MULTIRT_DEBUG_TAG(copy_mp); 21373 } 21374 } 21375 } 21376 21377 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21378 /* 21379 * Try to resolve another multiroute if 21380 * ire_multirt_resolvable() deemed it necessary. 21381 * At this point, we need to distinguish 21382 * multicasts from other packets. For multicasts, 21383 * we call ip_newroute_ipif() and request that both 21384 * multirouting and setsrc flags are checked. 21385 */ 21386 if (copy_mp != NULL) { 21387 if (CLASSD(dst)) { 21388 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21389 if (ipif) { 21390 ASSERT(infop->ip_opt_ill_index == 0); 21391 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21392 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21393 ipif_refrele(ipif); 21394 } else { 21395 MULTIRT_DEBUG_UNTAG(copy_mp); 21396 freemsg(copy_mp); 21397 copy_mp = NULL; 21398 } 21399 } else { 21400 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21401 } 21402 } 21403 if (attach_ill != NULL) 21404 ill_refrele(attach_ill); 21405 if (xmit_ill != NULL) 21406 ill_refrele(xmit_ill); 21407 if (need_decref) 21408 CONN_DEC_REF(connp); 21409 return; 21410 21411 icmp_parameter_problem: 21412 /* could not have originated externally */ 21413 ASSERT(mp->b_prev == NULL); 21414 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21415 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21416 /* it's the IP header length that's in trouble */ 21417 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21418 first_mp = NULL; 21419 } 21420 21421 discard_pkt: 21422 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21423 drop_pkt: 21424 ip1dbg(("ip_wput: dropped packet\n")); 21425 if (ire != NULL) 21426 ire_refrele(ire); 21427 if (need_decref) 21428 CONN_DEC_REF(connp); 21429 freemsg(first_mp); 21430 if (attach_ill != NULL) 21431 ill_refrele(attach_ill); 21432 if (xmit_ill != NULL) 21433 ill_refrele(xmit_ill); 21434 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21435 "ip_wput_end: q %p (%S)", q, "droppkt"); 21436 } 21437 21438 /* 21439 * If this is a conn_t queue, then we pass in the conn. This includes the 21440 * zoneid. 21441 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21442 * in which case we use the global zoneid since those are all part of 21443 * the global zone. 21444 */ 21445 void 21446 ip_wput(queue_t *q, mblk_t *mp) 21447 { 21448 if (CONN_Q(q)) 21449 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21450 else 21451 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21452 } 21453 21454 /* 21455 * 21456 * The following rules must be observed when accessing any ipif or ill 21457 * that has been cached in the conn. Typically conn_nofailover_ill, 21458 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21459 * 21460 * Access: The ipif or ill pointed to from the conn can be accessed under 21461 * the protection of the conn_lock or after it has been refheld under the 21462 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21463 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21464 * The reason for this is that a concurrent unplumb could actually be 21465 * cleaning up these cached pointers by walking the conns and might have 21466 * finished cleaning up the conn in question. The macros check that an 21467 * unplumb has not yet started on the ipif or ill. 21468 * 21469 * Caching: An ipif or ill pointer may be cached in the conn only after 21470 * making sure that an unplumb has not started. So the caching is done 21471 * while holding both the conn_lock and the ill_lock and after using the 21472 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21473 * flag before starting the cleanup of conns. 21474 * 21475 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21476 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21477 * or a reference to the ipif or a reference to an ire that references the 21478 * ipif. An ipif does not change its ill except for failover/failback. Since 21479 * failover/failback happens only after bringing down the ipif and making sure 21480 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21481 * the above holds. 21482 */ 21483 ipif_t * 21484 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21485 { 21486 ipif_t *ipif; 21487 ill_t *ill; 21488 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21489 21490 *err = 0; 21491 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21492 mutex_enter(&connp->conn_lock); 21493 ipif = *ipifp; 21494 if (ipif != NULL) { 21495 ill = ipif->ipif_ill; 21496 mutex_enter(&ill->ill_lock); 21497 if (IPIF_CAN_LOOKUP(ipif)) { 21498 ipif_refhold_locked(ipif); 21499 mutex_exit(&ill->ill_lock); 21500 mutex_exit(&connp->conn_lock); 21501 rw_exit(&ipst->ips_ill_g_lock); 21502 return (ipif); 21503 } else { 21504 *err = IPIF_LOOKUP_FAILED; 21505 } 21506 mutex_exit(&ill->ill_lock); 21507 } 21508 mutex_exit(&connp->conn_lock); 21509 rw_exit(&ipst->ips_ill_g_lock); 21510 return (NULL); 21511 } 21512 21513 ill_t * 21514 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21515 { 21516 ill_t *ill; 21517 21518 *err = 0; 21519 mutex_enter(&connp->conn_lock); 21520 ill = *illp; 21521 if (ill != NULL) { 21522 mutex_enter(&ill->ill_lock); 21523 if (ILL_CAN_LOOKUP(ill)) { 21524 ill_refhold_locked(ill); 21525 mutex_exit(&ill->ill_lock); 21526 mutex_exit(&connp->conn_lock); 21527 return (ill); 21528 } else { 21529 *err = ILL_LOOKUP_FAILED; 21530 } 21531 mutex_exit(&ill->ill_lock); 21532 } 21533 mutex_exit(&connp->conn_lock); 21534 return (NULL); 21535 } 21536 21537 static int 21538 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21539 { 21540 ill_t *ill; 21541 21542 ill = ipif->ipif_ill; 21543 mutex_enter(&connp->conn_lock); 21544 mutex_enter(&ill->ill_lock); 21545 if (IPIF_CAN_LOOKUP(ipif)) { 21546 *ipifp = ipif; 21547 mutex_exit(&ill->ill_lock); 21548 mutex_exit(&connp->conn_lock); 21549 return (0); 21550 } 21551 mutex_exit(&ill->ill_lock); 21552 mutex_exit(&connp->conn_lock); 21553 return (IPIF_LOOKUP_FAILED); 21554 } 21555 21556 /* 21557 * This is called if the outbound datagram needs fragmentation. 21558 * 21559 * NOTE : This function does not ire_refrele the ire argument passed in. 21560 */ 21561 static void 21562 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21563 ip_stack_t *ipst) 21564 { 21565 ipha_t *ipha; 21566 mblk_t *mp; 21567 uint32_t v_hlen_tos_len; 21568 uint32_t max_frag; 21569 uint32_t frag_flag; 21570 boolean_t dont_use; 21571 21572 if (ipsec_mp->b_datap->db_type == M_CTL) { 21573 mp = ipsec_mp->b_cont; 21574 } else { 21575 mp = ipsec_mp; 21576 } 21577 21578 ipha = (ipha_t *)mp->b_rptr; 21579 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21580 21581 #ifdef _BIG_ENDIAN 21582 #define V_HLEN (v_hlen_tos_len >> 24) 21583 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21584 #else 21585 #define V_HLEN (v_hlen_tos_len & 0xFF) 21586 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21587 #endif 21588 21589 #ifndef SPEED_BEFORE_SAFETY 21590 /* 21591 * Check that ipha_length is consistent with 21592 * the mblk length 21593 */ 21594 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21595 ip0dbg(("Packet length mismatch: %d, %ld\n", 21596 LENGTH, msgdsize(mp))); 21597 freemsg(ipsec_mp); 21598 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21599 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21600 "packet length mismatch"); 21601 return; 21602 } 21603 #endif 21604 /* 21605 * Don't use frag_flag if pre-built packet or source 21606 * routed or if multicast (since multicast packets do not solicit 21607 * ICMP "packet too big" messages). Get the values of 21608 * max_frag and frag_flag atomically by acquiring the 21609 * ire_lock. 21610 */ 21611 mutex_enter(&ire->ire_lock); 21612 max_frag = ire->ire_max_frag; 21613 frag_flag = ire->ire_frag_flag; 21614 mutex_exit(&ire->ire_lock); 21615 21616 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21617 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21618 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21619 21620 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21621 (dont_use ? 0 : frag_flag), zoneid, ipst); 21622 } 21623 21624 /* 21625 * Used for deciding the MSS size for the upper layer. Thus 21626 * we need to check the outbound policy values in the conn. 21627 */ 21628 int 21629 conn_ipsec_length(conn_t *connp) 21630 { 21631 ipsec_latch_t *ipl; 21632 21633 ipl = connp->conn_latch; 21634 if (ipl == NULL) 21635 return (0); 21636 21637 if (ipl->ipl_out_policy == NULL) 21638 return (0); 21639 21640 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21641 } 21642 21643 /* 21644 * Returns an estimate of the IPsec headers size. This is used if 21645 * we don't want to call into IPsec to get the exact size. 21646 */ 21647 int 21648 ipsec_out_extra_length(mblk_t *ipsec_mp) 21649 { 21650 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21651 ipsec_action_t *a; 21652 21653 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21654 if (!io->ipsec_out_secure) 21655 return (0); 21656 21657 a = io->ipsec_out_act; 21658 21659 if (a == NULL) { 21660 ASSERT(io->ipsec_out_policy != NULL); 21661 a = io->ipsec_out_policy->ipsp_act; 21662 } 21663 ASSERT(a != NULL); 21664 21665 return (a->ipa_ovhd); 21666 } 21667 21668 /* 21669 * Returns an estimate of the IPsec headers size. This is used if 21670 * we don't want to call into IPsec to get the exact size. 21671 */ 21672 int 21673 ipsec_in_extra_length(mblk_t *ipsec_mp) 21674 { 21675 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21676 ipsec_action_t *a; 21677 21678 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21679 21680 a = ii->ipsec_in_action; 21681 return (a == NULL ? 0 : a->ipa_ovhd); 21682 } 21683 21684 /* 21685 * If there are any source route options, return the true final 21686 * destination. Otherwise, return the destination. 21687 */ 21688 ipaddr_t 21689 ip_get_dst(ipha_t *ipha) 21690 { 21691 ipoptp_t opts; 21692 uchar_t *opt; 21693 uint8_t optval; 21694 uint8_t optlen; 21695 ipaddr_t dst; 21696 uint32_t off; 21697 21698 dst = ipha->ipha_dst; 21699 21700 if (IS_SIMPLE_IPH(ipha)) 21701 return (dst); 21702 21703 for (optval = ipoptp_first(&opts, ipha); 21704 optval != IPOPT_EOL; 21705 optval = ipoptp_next(&opts)) { 21706 opt = opts.ipoptp_cur; 21707 optlen = opts.ipoptp_len; 21708 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21709 switch (optval) { 21710 case IPOPT_SSRR: 21711 case IPOPT_LSRR: 21712 off = opt[IPOPT_OFFSET]; 21713 /* 21714 * If one of the conditions is true, it means 21715 * end of options and dst already has the right 21716 * value. 21717 */ 21718 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21719 off = optlen - IP_ADDR_LEN; 21720 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21721 } 21722 return (dst); 21723 default: 21724 break; 21725 } 21726 } 21727 21728 return (dst); 21729 } 21730 21731 mblk_t * 21732 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21733 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21734 { 21735 ipsec_out_t *io; 21736 mblk_t *first_mp; 21737 boolean_t policy_present; 21738 ip_stack_t *ipst; 21739 ipsec_stack_t *ipss; 21740 21741 ASSERT(ire != NULL); 21742 ipst = ire->ire_ipst; 21743 ipss = ipst->ips_netstack->netstack_ipsec; 21744 21745 first_mp = mp; 21746 if (mp->b_datap->db_type == M_CTL) { 21747 io = (ipsec_out_t *)first_mp->b_rptr; 21748 /* 21749 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21750 * 21751 * 1) There is per-socket policy (including cached global 21752 * policy) or a policy on the IP-in-IP tunnel. 21753 * 2) There is no per-socket policy, but it is 21754 * a multicast packet that needs to go out 21755 * on a specific interface. This is the case 21756 * where (ip_wput and ip_wput_multicast) attaches 21757 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21758 * 21759 * In case (2) we check with global policy to 21760 * see if there is a match and set the ill_index 21761 * appropriately so that we can lookup the ire 21762 * properly in ip_wput_ipsec_out. 21763 */ 21764 21765 /* 21766 * ipsec_out_use_global_policy is set to B_FALSE 21767 * in ipsec_in_to_out(). Refer to that function for 21768 * details. 21769 */ 21770 if ((io->ipsec_out_latch == NULL) && 21771 (io->ipsec_out_use_global_policy)) { 21772 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21773 ire, connp, unspec_src, zoneid)); 21774 } 21775 if (!io->ipsec_out_secure) { 21776 /* 21777 * If this is not a secure packet, drop 21778 * the IPSEC_OUT mp and treat it as a clear 21779 * packet. This happens when we are sending 21780 * a ICMP reply back to a clear packet. See 21781 * ipsec_in_to_out() for details. 21782 */ 21783 mp = first_mp->b_cont; 21784 freeb(first_mp); 21785 } 21786 return (mp); 21787 } 21788 /* 21789 * See whether we need to attach a global policy here. We 21790 * don't depend on the conn (as it could be null) for deciding 21791 * what policy this datagram should go through because it 21792 * should have happened in ip_wput if there was some 21793 * policy. This normally happens for connections which are not 21794 * fully bound preventing us from caching policies in 21795 * ip_bind. Packets coming from the TCP listener/global queue 21796 * - which are non-hard_bound - could also be affected by 21797 * applying policy here. 21798 * 21799 * If this packet is coming from tcp global queue or listener, 21800 * we will be applying policy here. This may not be *right* 21801 * if these packets are coming from the detached connection as 21802 * it could have gone in clear before. This happens only if a 21803 * TCP connection started when there is no policy and somebody 21804 * added policy before it became detached. Thus packets of the 21805 * detached connection could go out secure and the other end 21806 * would drop it because it will be expecting in clear. The 21807 * converse is not true i.e if somebody starts a TCP 21808 * connection and deletes the policy, all the packets will 21809 * still go out with the policy that existed before deleting 21810 * because ip_unbind sends up policy information which is used 21811 * by TCP on subsequent ip_wputs. The right solution is to fix 21812 * TCP to attach a dummy IPSEC_OUT and set 21813 * ipsec_out_use_global_policy to B_FALSE. As this might 21814 * affect performance for normal cases, we are not doing it. 21815 * Thus, set policy before starting any TCP connections. 21816 * 21817 * NOTE - We might apply policy even for a hard bound connection 21818 * - for which we cached policy in ip_bind - if somebody added 21819 * global policy after we inherited the policy in ip_bind. 21820 * This means that the packets that were going out in clear 21821 * previously would start going secure and hence get dropped 21822 * on the other side. To fix this, TCP attaches a dummy 21823 * ipsec_out and make sure that we don't apply global policy. 21824 */ 21825 if (ipha != NULL) 21826 policy_present = ipss->ipsec_outbound_v4_policy_present; 21827 else 21828 policy_present = ipss->ipsec_outbound_v6_policy_present; 21829 if (!policy_present) 21830 return (mp); 21831 21832 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21833 zoneid)); 21834 } 21835 21836 ire_t * 21837 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21838 { 21839 ipaddr_t addr; 21840 ire_t *save_ire; 21841 irb_t *irb; 21842 ill_group_t *illgrp; 21843 int err; 21844 21845 save_ire = ire; 21846 addr = ire->ire_addr; 21847 21848 ASSERT(ire->ire_type == IRE_BROADCAST); 21849 21850 illgrp = connp->conn_outgoing_ill->ill_group; 21851 if (illgrp == NULL) { 21852 *conn_outgoing_ill = conn_get_held_ill(connp, 21853 &connp->conn_outgoing_ill, &err); 21854 if (err == ILL_LOOKUP_FAILED) { 21855 ire_refrele(save_ire); 21856 return (NULL); 21857 } 21858 return (save_ire); 21859 } 21860 /* 21861 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21862 * If it is part of the group, we need to send on the ire 21863 * that has been cleared of IRE_MARK_NORECV and that belongs 21864 * to this group. This is okay as IP_BOUND_IF really means 21865 * any ill in the group. We depend on the fact that the 21866 * first ire in the group is always cleared of IRE_MARK_NORECV 21867 * if such an ire exists. This is possible only if you have 21868 * at least one ill in the group that has not failed. 21869 * 21870 * First get to the ire that matches the address and group. 21871 * 21872 * We don't look for an ire with a matching zoneid because a given zone 21873 * won't always have broadcast ires on all ills in the group. 21874 */ 21875 irb = ire->ire_bucket; 21876 rw_enter(&irb->irb_lock, RW_READER); 21877 if (ire->ire_marks & IRE_MARK_NORECV) { 21878 /* 21879 * If the current zone only has an ire broadcast for this 21880 * address marked NORECV, the ire we want is ahead in the 21881 * bucket, so we look it up deliberately ignoring the zoneid. 21882 */ 21883 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21884 if (ire->ire_addr != addr) 21885 continue; 21886 /* skip over deleted ires */ 21887 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21888 continue; 21889 } 21890 } 21891 while (ire != NULL) { 21892 /* 21893 * If a new interface is coming up, we could end up 21894 * seeing the loopback ire and the non-loopback ire 21895 * may not have been added yet. So check for ire_stq 21896 */ 21897 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21898 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21899 break; 21900 } 21901 ire = ire->ire_next; 21902 } 21903 if (ire != NULL && ire->ire_addr == addr && 21904 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21905 IRE_REFHOLD(ire); 21906 rw_exit(&irb->irb_lock); 21907 ire_refrele(save_ire); 21908 *conn_outgoing_ill = ire_to_ill(ire); 21909 /* 21910 * Refhold the ill to make the conn_outgoing_ill 21911 * independent of the ire. ip_wput_ire goes in a loop 21912 * and may refrele the ire. Since we have an ire at this 21913 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21914 */ 21915 ill_refhold(*conn_outgoing_ill); 21916 return (ire); 21917 } 21918 rw_exit(&irb->irb_lock); 21919 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21920 /* 21921 * If we can't find a suitable ire, return the original ire. 21922 */ 21923 return (save_ire); 21924 } 21925 21926 /* 21927 * This function does the ire_refrele of the ire passed in as the 21928 * argument. As this function looks up more ires i.e broadcast ires, 21929 * it needs to REFRELE them. Currently, for simplicity we don't 21930 * differentiate the one passed in and looked up here. We always 21931 * REFRELE. 21932 * IPQoS Notes: 21933 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21934 * IPsec packets are done in ipsec_out_process. 21935 * 21936 */ 21937 void 21938 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21939 zoneid_t zoneid) 21940 { 21941 ipha_t *ipha; 21942 #define rptr ((uchar_t *)ipha) 21943 queue_t *stq; 21944 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21945 uint32_t v_hlen_tos_len; 21946 uint32_t ttl_protocol; 21947 ipaddr_t src; 21948 ipaddr_t dst; 21949 uint32_t cksum; 21950 ipaddr_t orig_src; 21951 ire_t *ire1; 21952 mblk_t *next_mp; 21953 uint_t hlen; 21954 uint16_t *up; 21955 uint32_t max_frag = ire->ire_max_frag; 21956 ill_t *ill = ire_to_ill(ire); 21957 int clusterwide; 21958 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21959 int ipsec_len; 21960 mblk_t *first_mp; 21961 ipsec_out_t *io; 21962 boolean_t conn_dontroute; /* conn value for multicast */ 21963 boolean_t conn_multicast_loop; /* conn value for multicast */ 21964 boolean_t multicast_forward; /* Should we forward ? */ 21965 boolean_t unspec_src; 21966 ill_t *conn_outgoing_ill = NULL; 21967 ill_t *ire_ill; 21968 ill_t *ire1_ill; 21969 ill_t *out_ill; 21970 uint32_t ill_index = 0; 21971 boolean_t multirt_send = B_FALSE; 21972 int err; 21973 ipxmit_state_t pktxmit_state; 21974 ip_stack_t *ipst = ire->ire_ipst; 21975 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21976 21977 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21978 "ip_wput_ire_start: q %p", q); 21979 21980 multicast_forward = B_FALSE; 21981 unspec_src = (connp != NULL && connp->conn_unspec_src); 21982 21983 if (ire->ire_flags & RTF_MULTIRT) { 21984 /* 21985 * Multirouting case. The bucket where ire is stored 21986 * probably holds other RTF_MULTIRT flagged ire 21987 * to the destination. In this call to ip_wput_ire, 21988 * we attempt to send the packet through all 21989 * those ires. Thus, we first ensure that ire is the 21990 * first RTF_MULTIRT ire in the bucket, 21991 * before walking the ire list. 21992 */ 21993 ire_t *first_ire; 21994 irb_t *irb = ire->ire_bucket; 21995 ASSERT(irb != NULL); 21996 21997 /* Make sure we do not omit any multiroute ire. */ 21998 IRB_REFHOLD(irb); 21999 for (first_ire = irb->irb_ire; 22000 first_ire != NULL; 22001 first_ire = first_ire->ire_next) { 22002 if ((first_ire->ire_flags & RTF_MULTIRT) && 22003 (first_ire->ire_addr == ire->ire_addr) && 22004 !(first_ire->ire_marks & 22005 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22006 break; 22007 } 22008 } 22009 22010 if ((first_ire != NULL) && (first_ire != ire)) { 22011 IRE_REFHOLD(first_ire); 22012 ire_refrele(ire); 22013 ire = first_ire; 22014 ill = ire_to_ill(ire); 22015 } 22016 IRB_REFRELE(irb); 22017 } 22018 22019 /* 22020 * conn_outgoing_ill is used only in the broadcast loop. 22021 * for performance we don't grab the mutexs in the fastpath 22022 */ 22023 if ((connp != NULL) && 22024 (connp->conn_xmit_if_ill == NULL) && 22025 (ire->ire_type == IRE_BROADCAST) && 22026 ((connp->conn_nofailover_ill != NULL) || 22027 (connp->conn_outgoing_ill != NULL))) { 22028 /* 22029 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22030 * option. So, see if this endpoint is bound to a 22031 * IPIF_NOFAILOVER address. If so, honor it. This implies 22032 * that if the interface is failed, we will still send 22033 * the packet on the same ill which is what we want. 22034 */ 22035 conn_outgoing_ill = conn_get_held_ill(connp, 22036 &connp->conn_nofailover_ill, &err); 22037 if (err == ILL_LOOKUP_FAILED) { 22038 ire_refrele(ire); 22039 freemsg(mp); 22040 return; 22041 } 22042 if (conn_outgoing_ill == NULL) { 22043 /* 22044 * Choose a good ill in the group to send the 22045 * packets on. 22046 */ 22047 ire = conn_set_outgoing_ill(connp, ire, 22048 &conn_outgoing_ill); 22049 if (ire == NULL) { 22050 freemsg(mp); 22051 return; 22052 } 22053 } 22054 } 22055 22056 if (mp->b_datap->db_type != M_CTL) { 22057 ipha = (ipha_t *)mp->b_rptr; 22058 } else { 22059 io = (ipsec_out_t *)mp->b_rptr; 22060 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22061 ASSERT(zoneid == io->ipsec_out_zoneid); 22062 ASSERT(zoneid != ALL_ZONES); 22063 ipha = (ipha_t *)mp->b_cont->b_rptr; 22064 dst = ipha->ipha_dst; 22065 /* 22066 * For the multicast case, ipsec_out carries conn_dontroute and 22067 * conn_multicast_loop as conn may not be available here. We 22068 * need this for multicast loopback and forwarding which is done 22069 * later in the code. 22070 */ 22071 if (CLASSD(dst)) { 22072 conn_dontroute = io->ipsec_out_dontroute; 22073 conn_multicast_loop = io->ipsec_out_multicast_loop; 22074 /* 22075 * If conn_dontroute is not set or conn_multicast_loop 22076 * is set, we need to do forwarding/loopback. For 22077 * datagrams from ip_wput_multicast, conn_dontroute is 22078 * set to B_TRUE and conn_multicast_loop is set to 22079 * B_FALSE so that we neither do forwarding nor 22080 * loopback. 22081 */ 22082 if (!conn_dontroute || conn_multicast_loop) 22083 multicast_forward = B_TRUE; 22084 } 22085 } 22086 22087 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22088 ire->ire_zoneid != ALL_ZONES) { 22089 /* 22090 * When a zone sends a packet to another zone, we try to deliver 22091 * the packet under the same conditions as if the destination 22092 * was a real node on the network. To do so, we look for a 22093 * matching route in the forwarding table. 22094 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22095 * ip_newroute() does. 22096 * Note that IRE_LOCAL are special, since they are used 22097 * when the zoneid doesn't match in some cases. This means that 22098 * we need to handle ipha_src differently since ire_src_addr 22099 * belongs to the receiving zone instead of the sending zone. 22100 * When ip_restrict_interzone_loopback is set, then 22101 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22102 * for loopback between zones when the logical "Ethernet" would 22103 * have looped them back. 22104 */ 22105 ire_t *src_ire; 22106 22107 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22108 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22109 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22110 if (src_ire != NULL && 22111 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22112 (!ipst->ips_ip_restrict_interzone_loopback || 22113 ire_local_same_ill_group(ire, src_ire))) { 22114 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22115 ipha->ipha_src = src_ire->ire_src_addr; 22116 ire_refrele(src_ire); 22117 } else { 22118 ire_refrele(ire); 22119 if (conn_outgoing_ill != NULL) 22120 ill_refrele(conn_outgoing_ill); 22121 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22122 if (src_ire != NULL) { 22123 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22124 ire_refrele(src_ire); 22125 freemsg(mp); 22126 return; 22127 } 22128 ire_refrele(src_ire); 22129 } 22130 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22131 /* Failed */ 22132 freemsg(mp); 22133 return; 22134 } 22135 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22136 ipst); 22137 return; 22138 } 22139 } 22140 22141 if (mp->b_datap->db_type == M_CTL || 22142 ipss->ipsec_outbound_v4_policy_present) { 22143 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22144 unspec_src, zoneid); 22145 if (mp == NULL) { 22146 ire_refrele(ire); 22147 if (conn_outgoing_ill != NULL) 22148 ill_refrele(conn_outgoing_ill); 22149 return; 22150 } 22151 } 22152 22153 first_mp = mp; 22154 ipsec_len = 0; 22155 22156 if (first_mp->b_datap->db_type == M_CTL) { 22157 io = (ipsec_out_t *)first_mp->b_rptr; 22158 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22159 mp = first_mp->b_cont; 22160 ipsec_len = ipsec_out_extra_length(first_mp); 22161 ASSERT(ipsec_len >= 0); 22162 /* We already picked up the zoneid from the M_CTL above */ 22163 ASSERT(zoneid == io->ipsec_out_zoneid); 22164 ASSERT(zoneid != ALL_ZONES); 22165 22166 /* 22167 * Drop M_CTL here if IPsec processing is not needed. 22168 * (Non-IPsec use of M_CTL extracted any information it 22169 * needed above). 22170 */ 22171 if (ipsec_len == 0) { 22172 freeb(first_mp); 22173 first_mp = mp; 22174 } 22175 } 22176 22177 /* 22178 * Fast path for ip_wput_ire 22179 */ 22180 22181 ipha = (ipha_t *)mp->b_rptr; 22182 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22183 dst = ipha->ipha_dst; 22184 22185 /* 22186 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22187 * if the socket is a SOCK_RAW type. The transport checksum should 22188 * be provided in the pre-built packet, so we don't need to compute it. 22189 * Also, other application set flags, like DF, should not be altered. 22190 * Other transport MUST pass down zero. 22191 */ 22192 ip_hdr_included = ipha->ipha_ident; 22193 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22194 22195 if (CLASSD(dst)) { 22196 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22197 ntohl(dst), 22198 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22199 ntohl(ire->ire_addr))); 22200 } 22201 22202 /* Macros to extract header fields from data already in registers */ 22203 #ifdef _BIG_ENDIAN 22204 #define V_HLEN (v_hlen_tos_len >> 24) 22205 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22206 #define PROTO (ttl_protocol & 0xFF) 22207 #else 22208 #define V_HLEN (v_hlen_tos_len & 0xFF) 22209 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22210 #define PROTO (ttl_protocol >> 8) 22211 #endif 22212 22213 22214 orig_src = src = ipha->ipha_src; 22215 /* (The loop back to "another" is explained down below.) */ 22216 another:; 22217 /* 22218 * Assign an ident value for this packet. We assign idents on 22219 * a per destination basis out of the IRE. There could be 22220 * other threads targeting the same destination, so we have to 22221 * arrange for a atomic increment. Note that we use a 32-bit 22222 * atomic add because it has better performance than its 22223 * 16-bit sibling. 22224 * 22225 * If running in cluster mode and if the source address 22226 * belongs to a replicated service then vector through 22227 * cl_inet_ipident vector to allocate ip identifier 22228 * NOTE: This is a contract private interface with the 22229 * clustering group. 22230 */ 22231 clusterwide = 0; 22232 if (cl_inet_ipident) { 22233 ASSERT(cl_inet_isclusterwide); 22234 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22235 AF_INET, (uint8_t *)(uintptr_t)src)) { 22236 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22237 AF_INET, (uint8_t *)(uintptr_t)src, 22238 (uint8_t *)(uintptr_t)dst); 22239 clusterwide = 1; 22240 } 22241 } 22242 if (!clusterwide) { 22243 ipha->ipha_ident = 22244 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22245 } 22246 22247 #ifndef _BIG_ENDIAN 22248 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22249 #endif 22250 22251 /* 22252 * Set source address unless sent on an ill or conn_unspec_src is set. 22253 * This is needed to obey conn_unspec_src when packets go through 22254 * ip_newroute + arp. 22255 * Assumes ip_newroute{,_multi} sets the source address as well. 22256 */ 22257 if (src == INADDR_ANY && !unspec_src) { 22258 /* 22259 * Assign the appropriate source address from the IRE if none 22260 * was specified. 22261 */ 22262 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22263 22264 /* 22265 * With IP multipathing, broadcast packets are sent on the ire 22266 * that has been cleared of IRE_MARK_NORECV and that belongs to 22267 * the group. However, this ire might not be in the same zone so 22268 * we can't always use its source address. We look for a 22269 * broadcast ire in the same group and in the right zone. 22270 */ 22271 if (ire->ire_type == IRE_BROADCAST && 22272 ire->ire_zoneid != zoneid) { 22273 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22274 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22275 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22276 if (src_ire != NULL) { 22277 src = src_ire->ire_src_addr; 22278 ire_refrele(src_ire); 22279 } else { 22280 ire_refrele(ire); 22281 if (conn_outgoing_ill != NULL) 22282 ill_refrele(conn_outgoing_ill); 22283 freemsg(first_mp); 22284 if (ill != NULL) { 22285 BUMP_MIB(ill->ill_ip_mib, 22286 ipIfStatsOutDiscards); 22287 } else { 22288 BUMP_MIB(&ipst->ips_ip_mib, 22289 ipIfStatsOutDiscards); 22290 } 22291 return; 22292 } 22293 } else { 22294 src = ire->ire_src_addr; 22295 } 22296 22297 if (connp == NULL) { 22298 ip1dbg(("ip_wput_ire: no connp and no src " 22299 "address for dst 0x%x, using src 0x%x\n", 22300 ntohl(dst), 22301 ntohl(src))); 22302 } 22303 ipha->ipha_src = src; 22304 } 22305 stq = ire->ire_stq; 22306 22307 /* 22308 * We only allow ire chains for broadcasts since there will 22309 * be multiple IRE_CACHE entries for the same multicast 22310 * address (one per ipif). 22311 */ 22312 next_mp = NULL; 22313 22314 /* broadcast packet */ 22315 if (ire->ire_type == IRE_BROADCAST) 22316 goto broadcast; 22317 22318 /* loopback ? */ 22319 if (stq == NULL) 22320 goto nullstq; 22321 22322 /* The ill_index for outbound ILL */ 22323 ill_index = Q_TO_INDEX(stq); 22324 22325 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22326 ttl_protocol = ((uint16_t *)ipha)[4]; 22327 22328 /* pseudo checksum (do it in parts for IP header checksum) */ 22329 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22330 22331 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22332 queue_t *dev_q = stq->q_next; 22333 22334 /* flow controlled */ 22335 if ((dev_q->q_next || dev_q->q_first) && 22336 !canput(dev_q)) 22337 goto blocked; 22338 if ((PROTO == IPPROTO_UDP) && 22339 (ip_hdr_included != IP_HDR_INCLUDED)) { 22340 hlen = (V_HLEN & 0xF) << 2; 22341 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22342 if (*up != 0) { 22343 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22344 hlen, LENGTH, max_frag, ipsec_len, cksum); 22345 /* Software checksum? */ 22346 if (DB_CKSUMFLAGS(mp) == 0) { 22347 IP_STAT(ipst, ip_out_sw_cksum); 22348 IP_STAT_UPDATE(ipst, 22349 ip_udp_out_sw_cksum_bytes, 22350 LENGTH - hlen); 22351 } 22352 } 22353 } 22354 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22355 hlen = (V_HLEN & 0xF) << 2; 22356 if (PROTO == IPPROTO_TCP) { 22357 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22358 /* 22359 * The packet header is processed once and for all, even 22360 * in the multirouting case. We disable hardware 22361 * checksum if the packet is multirouted, as it will be 22362 * replicated via several interfaces, and not all of 22363 * them may have this capability. 22364 */ 22365 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22366 LENGTH, max_frag, ipsec_len, cksum); 22367 /* Software checksum? */ 22368 if (DB_CKSUMFLAGS(mp) == 0) { 22369 IP_STAT(ipst, ip_out_sw_cksum); 22370 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22371 LENGTH - hlen); 22372 } 22373 } else { 22374 sctp_hdr_t *sctph; 22375 22376 ASSERT(PROTO == IPPROTO_SCTP); 22377 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22378 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22379 /* 22380 * Zero out the checksum field to ensure proper 22381 * checksum calculation. 22382 */ 22383 sctph->sh_chksum = 0; 22384 #ifdef DEBUG 22385 if (!skip_sctp_cksum) 22386 #endif 22387 sctph->sh_chksum = sctp_cksum(mp, hlen); 22388 } 22389 } 22390 22391 /* 22392 * If this is a multicast packet and originated from ip_wput 22393 * we need to do loopback and forwarding checks. If it comes 22394 * from ip_wput_multicast, we SHOULD not do this. 22395 */ 22396 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22397 22398 /* checksum */ 22399 cksum += ttl_protocol; 22400 22401 /* fragment the packet */ 22402 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22403 goto fragmentit; 22404 /* 22405 * Don't use frag_flag if packet is pre-built or source 22406 * routed or if multicast (since multicast packets do 22407 * not solicit ICMP "packet too big" messages). 22408 */ 22409 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22410 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22411 !ip_source_route_included(ipha)) && 22412 !CLASSD(ipha->ipha_dst)) 22413 ipha->ipha_fragment_offset_and_flags |= 22414 htons(ire->ire_frag_flag); 22415 22416 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22417 /* calculate IP header checksum */ 22418 cksum += ipha->ipha_ident; 22419 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22420 cksum += ipha->ipha_fragment_offset_and_flags; 22421 22422 /* IP options present */ 22423 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22424 if (hlen) 22425 goto checksumoptions; 22426 22427 /* calculate hdr checksum */ 22428 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22429 cksum = ~(cksum + (cksum >> 16)); 22430 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22431 } 22432 if (ipsec_len != 0) { 22433 /* 22434 * We will do the rest of the processing after 22435 * we come back from IPsec in ip_wput_ipsec_out(). 22436 */ 22437 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22438 22439 io = (ipsec_out_t *)first_mp->b_rptr; 22440 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22441 ill_phyint->phyint_ifindex; 22442 22443 ipsec_out_process(q, first_mp, ire, ill_index); 22444 ire_refrele(ire); 22445 if (conn_outgoing_ill != NULL) 22446 ill_refrele(conn_outgoing_ill); 22447 return; 22448 } 22449 22450 /* 22451 * In most cases, the emission loop below is entered only 22452 * once. Only in the case where the ire holds the 22453 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22454 * flagged ires in the bucket, and send the packet 22455 * through all crossed RTF_MULTIRT routes. 22456 */ 22457 if (ire->ire_flags & RTF_MULTIRT) { 22458 multirt_send = B_TRUE; 22459 } 22460 do { 22461 if (multirt_send) { 22462 irb_t *irb; 22463 /* 22464 * We are in a multiple send case, need to get 22465 * the next ire and make a duplicate of the packet. 22466 * ire1 holds here the next ire to process in the 22467 * bucket. If multirouting is expected, 22468 * any non-RTF_MULTIRT ire that has the 22469 * right destination address is ignored. 22470 */ 22471 irb = ire->ire_bucket; 22472 ASSERT(irb != NULL); 22473 22474 IRB_REFHOLD(irb); 22475 for (ire1 = ire->ire_next; 22476 ire1 != NULL; 22477 ire1 = ire1->ire_next) { 22478 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22479 continue; 22480 if (ire1->ire_addr != ire->ire_addr) 22481 continue; 22482 if (ire1->ire_marks & 22483 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22484 continue; 22485 22486 /* Got one */ 22487 IRE_REFHOLD(ire1); 22488 break; 22489 } 22490 IRB_REFRELE(irb); 22491 22492 if (ire1 != NULL) { 22493 next_mp = copyb(mp); 22494 if ((next_mp == NULL) || 22495 ((mp->b_cont != NULL) && 22496 ((next_mp->b_cont = 22497 dupmsg(mp->b_cont)) == NULL))) { 22498 freemsg(next_mp); 22499 next_mp = NULL; 22500 ire_refrele(ire1); 22501 ire1 = NULL; 22502 } 22503 } 22504 22505 /* Last multiroute ire; don't loop anymore. */ 22506 if (ire1 == NULL) { 22507 multirt_send = B_FALSE; 22508 } 22509 } 22510 22511 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22512 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22513 mblk_t *, mp); 22514 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22515 ipst->ips_ipv4firewall_physical_out, 22516 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22517 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22518 if (mp == NULL) 22519 goto release_ire_and_ill; 22520 22521 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22522 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22523 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22524 if ((pktxmit_state == SEND_FAILED) || 22525 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22526 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22527 "- packet dropped\n")); 22528 release_ire_and_ill: 22529 ire_refrele(ire); 22530 if (next_mp != NULL) { 22531 freemsg(next_mp); 22532 ire_refrele(ire1); 22533 } 22534 if (conn_outgoing_ill != NULL) 22535 ill_refrele(conn_outgoing_ill); 22536 return; 22537 } 22538 22539 if (CLASSD(dst)) { 22540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22541 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22542 LENGTH); 22543 } 22544 22545 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22546 "ip_wput_ire_end: q %p (%S)", 22547 q, "last copy out"); 22548 IRE_REFRELE(ire); 22549 22550 if (multirt_send) { 22551 ASSERT(ire1); 22552 /* 22553 * Proceed with the next RTF_MULTIRT ire, 22554 * Also set up the send-to queue accordingly. 22555 */ 22556 ire = ire1; 22557 ire1 = NULL; 22558 stq = ire->ire_stq; 22559 mp = next_mp; 22560 next_mp = NULL; 22561 ipha = (ipha_t *)mp->b_rptr; 22562 ill_index = Q_TO_INDEX(stq); 22563 ill = (ill_t *)stq->q_ptr; 22564 } 22565 } while (multirt_send); 22566 if (conn_outgoing_ill != NULL) 22567 ill_refrele(conn_outgoing_ill); 22568 return; 22569 22570 /* 22571 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22572 */ 22573 broadcast: 22574 { 22575 /* 22576 * Avoid broadcast storms by setting the ttl to 1 22577 * for broadcasts. This parameter can be set 22578 * via ndd, so make sure that for the SO_DONTROUTE 22579 * case that ipha_ttl is always set to 1. 22580 * In the event that we are replying to incoming 22581 * ICMP packets, conn could be NULL. 22582 */ 22583 if ((connp != NULL) && connp->conn_dontroute) 22584 ipha->ipha_ttl = 1; 22585 else 22586 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22587 22588 /* 22589 * Note that we are not doing a IRB_REFHOLD here. 22590 * Actually we don't care if the list changes i.e 22591 * if somebody deletes an IRE from the list while 22592 * we drop the lock, the next time we come around 22593 * ire_next will be NULL and hence we won't send 22594 * out multiple copies which is fine. 22595 */ 22596 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22597 ire1 = ire->ire_next; 22598 if (conn_outgoing_ill != NULL) { 22599 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22600 ASSERT(ire1 == ire->ire_next); 22601 if (ire1 != NULL && ire1->ire_addr == dst) { 22602 ire_refrele(ire); 22603 ire = ire1; 22604 IRE_REFHOLD(ire); 22605 ire1 = ire->ire_next; 22606 continue; 22607 } 22608 rw_exit(&ire->ire_bucket->irb_lock); 22609 /* Did not find a matching ill */ 22610 ip1dbg(("ip_wput_ire: broadcast with no " 22611 "matching IP_BOUND_IF ill %s\n", 22612 conn_outgoing_ill->ill_name)); 22613 freemsg(first_mp); 22614 if (ire != NULL) 22615 ire_refrele(ire); 22616 ill_refrele(conn_outgoing_ill); 22617 return; 22618 } 22619 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22620 /* 22621 * If the next IRE has the same address and is not one 22622 * of the two copies that we need to send, try to see 22623 * whether this copy should be sent at all. This 22624 * assumes that we insert loopbacks first and then 22625 * non-loopbacks. This is acheived by inserting the 22626 * loopback always before non-loopback. 22627 * This is used to send a single copy of a broadcast 22628 * packet out all physical interfaces that have an 22629 * matching IRE_BROADCAST while also looping 22630 * back one copy (to ip_wput_local) for each 22631 * matching physical interface. However, we avoid 22632 * sending packets out different logical that match by 22633 * having ipif_up/ipif_down supress duplicate 22634 * IRE_BROADCASTS. 22635 * 22636 * This feature is currently used to get broadcasts 22637 * sent to multiple interfaces, when the broadcast 22638 * address being used applies to multiple interfaces. 22639 * For example, a whole net broadcast will be 22640 * replicated on every connected subnet of 22641 * the target net. 22642 * 22643 * Each zone has its own set of IRE_BROADCASTs, so that 22644 * we're able to distribute inbound packets to multiple 22645 * zones who share a broadcast address. We avoid looping 22646 * back outbound packets in different zones but on the 22647 * same ill, as the application would see duplicates. 22648 * 22649 * If the interfaces are part of the same group, 22650 * we would want to send only one copy out for 22651 * whole group. 22652 * 22653 * This logic assumes that ire_add_v4() groups the 22654 * IRE_BROADCAST entries so that those with the same 22655 * ire_addr and ill_group are kept together. 22656 */ 22657 ire_ill = ire->ire_ipif->ipif_ill; 22658 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22659 if (ire_ill->ill_group != NULL && 22660 (ire->ire_marks & IRE_MARK_NORECV)) { 22661 /* 22662 * If the current zone only has an ire 22663 * broadcast for this address marked 22664 * NORECV, the ire we want is ahead in 22665 * the bucket, so we look it up 22666 * deliberately ignoring the zoneid. 22667 */ 22668 for (ire1 = ire->ire_bucket->irb_ire; 22669 ire1 != NULL; 22670 ire1 = ire1->ire_next) { 22671 ire1_ill = 22672 ire1->ire_ipif->ipif_ill; 22673 if (ire1->ire_addr != dst) 22674 continue; 22675 /* skip over the current ire */ 22676 if (ire1 == ire) 22677 continue; 22678 /* skip over deleted ires */ 22679 if (ire1->ire_marks & 22680 IRE_MARK_CONDEMNED) 22681 continue; 22682 /* 22683 * non-loopback ire in our 22684 * group: use it for the next 22685 * pass in the loop 22686 */ 22687 if (ire1->ire_stq != NULL && 22688 ire1_ill->ill_group == 22689 ire_ill->ill_group) 22690 break; 22691 } 22692 } 22693 } else { 22694 while (ire1 != NULL && ire1->ire_addr == dst) { 22695 ire1_ill = ire1->ire_ipif->ipif_ill; 22696 /* 22697 * We can have two broadcast ires on the 22698 * same ill in different zones; here 22699 * we'll send a copy of the packet on 22700 * each ill and the fanout code will 22701 * call conn_wantpacket() to check that 22702 * the zone has the broadcast address 22703 * configured on the ill. If the two 22704 * ires are in the same group we only 22705 * send one copy up. 22706 */ 22707 if (ire1_ill != ire_ill && 22708 (ire1_ill->ill_group == NULL || 22709 ire_ill->ill_group == NULL || 22710 ire1_ill->ill_group != 22711 ire_ill->ill_group)) { 22712 break; 22713 } 22714 ire1 = ire1->ire_next; 22715 } 22716 } 22717 } 22718 ASSERT(multirt_send == B_FALSE); 22719 if (ire1 != NULL && ire1->ire_addr == dst) { 22720 if ((ire->ire_flags & RTF_MULTIRT) && 22721 (ire1->ire_flags & RTF_MULTIRT)) { 22722 /* 22723 * We are in the multirouting case. 22724 * The message must be sent at least 22725 * on both ires. These ires have been 22726 * inserted AFTER the standard ones 22727 * in ip_rt_add(). There are thus no 22728 * other ire entries for the destination 22729 * address in the rest of the bucket 22730 * that do not have the RTF_MULTIRT 22731 * flag. We don't process a copy 22732 * of the message here. This will be 22733 * done in the final sending loop. 22734 */ 22735 multirt_send = B_TRUE; 22736 } else { 22737 next_mp = ip_copymsg(first_mp); 22738 if (next_mp != NULL) 22739 IRE_REFHOLD(ire1); 22740 } 22741 } 22742 rw_exit(&ire->ire_bucket->irb_lock); 22743 } 22744 22745 if (stq) { 22746 /* 22747 * A non-NULL send-to queue means this packet is going 22748 * out of this machine. 22749 */ 22750 out_ill = (ill_t *)stq->q_ptr; 22751 22752 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22753 ttl_protocol = ((uint16_t *)ipha)[4]; 22754 /* 22755 * We accumulate the pseudo header checksum in cksum. 22756 * This is pretty hairy code, so watch close. One 22757 * thing to keep in mind is that UDP and TCP have 22758 * stored their respective datagram lengths in their 22759 * checksum fields. This lines things up real nice. 22760 */ 22761 cksum = (dst >> 16) + (dst & 0xFFFF) + 22762 (src >> 16) + (src & 0xFFFF); 22763 /* 22764 * We assume the udp checksum field contains the 22765 * length, so to compute the pseudo header checksum, 22766 * all we need is the protocol number and src/dst. 22767 */ 22768 /* Provide the checksums for UDP and TCP. */ 22769 if ((PROTO == IPPROTO_TCP) && 22770 (ip_hdr_included != IP_HDR_INCLUDED)) { 22771 /* hlen gets the number of uchar_ts in the IP header */ 22772 hlen = (V_HLEN & 0xF) << 2; 22773 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22774 IP_STAT(ipst, ip_out_sw_cksum); 22775 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22776 LENGTH - hlen); 22777 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22778 } else if (PROTO == IPPROTO_SCTP && 22779 (ip_hdr_included != IP_HDR_INCLUDED)) { 22780 sctp_hdr_t *sctph; 22781 22782 hlen = (V_HLEN & 0xF) << 2; 22783 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22784 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22785 sctph->sh_chksum = 0; 22786 #ifdef DEBUG 22787 if (!skip_sctp_cksum) 22788 #endif 22789 sctph->sh_chksum = sctp_cksum(mp, hlen); 22790 } else { 22791 queue_t *dev_q = stq->q_next; 22792 22793 if ((dev_q->q_next || dev_q->q_first) && 22794 !canput(dev_q)) { 22795 blocked: 22796 ipha->ipha_ident = ip_hdr_included; 22797 /* 22798 * If we don't have a conn to apply 22799 * backpressure, free the message. 22800 * In the ire_send path, we don't know 22801 * the position to requeue the packet. Rather 22802 * than reorder packets, we just drop this 22803 * packet. 22804 */ 22805 if (ipst->ips_ip_output_queue && 22806 connp != NULL && 22807 caller != IRE_SEND) { 22808 if (caller == IP_WSRV) { 22809 connp->conn_did_putbq = 1; 22810 (void) putbq(connp->conn_wq, 22811 first_mp); 22812 conn_drain_insert(connp); 22813 /* 22814 * This is the service thread, 22815 * and the queue is already 22816 * noenabled. The check for 22817 * canput and the putbq is not 22818 * atomic. So we need to check 22819 * again. 22820 */ 22821 if (canput(stq->q_next)) 22822 connp->conn_did_putbq 22823 = 0; 22824 IP_STAT(ipst, ip_conn_flputbq); 22825 } else { 22826 /* 22827 * We are not the service proc. 22828 * ip_wsrv will be scheduled or 22829 * is already running. 22830 */ 22831 (void) putq(connp->conn_wq, 22832 first_mp); 22833 } 22834 } else { 22835 out_ill = (ill_t *)stq->q_ptr; 22836 BUMP_MIB(out_ill->ill_ip_mib, 22837 ipIfStatsOutDiscards); 22838 freemsg(first_mp); 22839 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22840 "ip_wput_ire_end: q %p (%S)", 22841 q, "discard"); 22842 } 22843 ire_refrele(ire); 22844 if (next_mp) { 22845 ire_refrele(ire1); 22846 freemsg(next_mp); 22847 } 22848 if (conn_outgoing_ill != NULL) 22849 ill_refrele(conn_outgoing_ill); 22850 return; 22851 } 22852 if ((PROTO == IPPROTO_UDP) && 22853 (ip_hdr_included != IP_HDR_INCLUDED)) { 22854 /* 22855 * hlen gets the number of uchar_ts in the 22856 * IP header 22857 */ 22858 hlen = (V_HLEN & 0xF) << 2; 22859 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22860 max_frag = ire->ire_max_frag; 22861 if (*up != 0) { 22862 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22863 up, PROTO, hlen, LENGTH, max_frag, 22864 ipsec_len, cksum); 22865 /* Software checksum? */ 22866 if (DB_CKSUMFLAGS(mp) == 0) { 22867 IP_STAT(ipst, ip_out_sw_cksum); 22868 IP_STAT_UPDATE(ipst, 22869 ip_udp_out_sw_cksum_bytes, 22870 LENGTH - hlen); 22871 } 22872 } 22873 } 22874 } 22875 /* 22876 * Need to do this even when fragmenting. The local 22877 * loopback can be done without computing checksums 22878 * but forwarding out other interface must be done 22879 * after the IP checksum (and ULP checksums) have been 22880 * computed. 22881 * 22882 * NOTE : multicast_forward is set only if this packet 22883 * originated from ip_wput. For packets originating from 22884 * ip_wput_multicast, it is not set. 22885 */ 22886 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22887 multi_loopback: 22888 ip2dbg(("ip_wput: multicast, loop %d\n", 22889 conn_multicast_loop)); 22890 22891 /* Forget header checksum offload */ 22892 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22893 22894 /* 22895 * Local loopback of multicasts? Check the 22896 * ill. 22897 * 22898 * Note that the loopback function will not come 22899 * in through ip_rput - it will only do the 22900 * client fanout thus we need to do an mforward 22901 * as well. The is different from the BSD 22902 * logic. 22903 */ 22904 if (ill != NULL) { 22905 ilm_t *ilm; 22906 22907 ILM_WALKER_HOLD(ill); 22908 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22909 ALL_ZONES); 22910 ILM_WALKER_RELE(ill); 22911 if (ilm != NULL) { 22912 /* 22913 * Pass along the virtual output q. 22914 * ip_wput_local() will distribute the 22915 * packet to all the matching zones, 22916 * except the sending zone when 22917 * IP_MULTICAST_LOOP is false. 22918 */ 22919 ip_multicast_loopback(q, ill, first_mp, 22920 conn_multicast_loop ? 0 : 22921 IP_FF_NO_MCAST_LOOP, zoneid); 22922 } 22923 } 22924 if (ipha->ipha_ttl == 0) { 22925 /* 22926 * 0 => only to this host i.e. we are 22927 * done. We are also done if this was the 22928 * loopback interface since it is sufficient 22929 * to loopback one copy of a multicast packet. 22930 */ 22931 freemsg(first_mp); 22932 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22933 "ip_wput_ire_end: q %p (%S)", 22934 q, "loopback"); 22935 ire_refrele(ire); 22936 if (conn_outgoing_ill != NULL) 22937 ill_refrele(conn_outgoing_ill); 22938 return; 22939 } 22940 /* 22941 * ILLF_MULTICAST is checked in ip_newroute 22942 * i.e. we don't need to check it here since 22943 * all IRE_CACHEs come from ip_newroute. 22944 * For multicast traffic, SO_DONTROUTE is interpreted 22945 * to mean only send the packet out the interface 22946 * (optionally specified with IP_MULTICAST_IF) 22947 * and do not forward it out additional interfaces. 22948 * RSVP and the rsvp daemon is an example of a 22949 * protocol and user level process that 22950 * handles it's own routing. Hence, it uses the 22951 * SO_DONTROUTE option to accomplish this. 22952 */ 22953 22954 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22955 ill != NULL) { 22956 /* Unconditionally redo the checksum */ 22957 ipha->ipha_hdr_checksum = 0; 22958 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22959 22960 /* 22961 * If this needs to go out secure, we need 22962 * to wait till we finish the IPsec 22963 * processing. 22964 */ 22965 if (ipsec_len == 0 && 22966 ip_mforward(ill, ipha, mp)) { 22967 freemsg(first_mp); 22968 ip1dbg(("ip_wput: mforward failed\n")); 22969 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22970 "ip_wput_ire_end: q %p (%S)", 22971 q, "mforward failed"); 22972 ire_refrele(ire); 22973 if (conn_outgoing_ill != NULL) 22974 ill_refrele(conn_outgoing_ill); 22975 return; 22976 } 22977 } 22978 } 22979 max_frag = ire->ire_max_frag; 22980 cksum += ttl_protocol; 22981 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22982 /* No fragmentation required for this one. */ 22983 /* 22984 * Don't use frag_flag if packet is pre-built or source 22985 * routed or if multicast (since multicast packets do 22986 * not solicit ICMP "packet too big" messages). 22987 */ 22988 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22989 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22990 !ip_source_route_included(ipha)) && 22991 !CLASSD(ipha->ipha_dst)) 22992 ipha->ipha_fragment_offset_and_flags |= 22993 htons(ire->ire_frag_flag); 22994 22995 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22996 /* Complete the IP header checksum. */ 22997 cksum += ipha->ipha_ident; 22998 cksum += (v_hlen_tos_len >> 16)+ 22999 (v_hlen_tos_len & 0xFFFF); 23000 cksum += ipha->ipha_fragment_offset_and_flags; 23001 hlen = (V_HLEN & 0xF) - 23002 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23003 if (hlen) { 23004 checksumoptions: 23005 /* 23006 * Account for the IP Options in the IP 23007 * header checksum. 23008 */ 23009 up = (uint16_t *)(rptr+ 23010 IP_SIMPLE_HDR_LENGTH); 23011 do { 23012 cksum += up[0]; 23013 cksum += up[1]; 23014 up += 2; 23015 } while (--hlen); 23016 } 23017 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23018 cksum = ~(cksum + (cksum >> 16)); 23019 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23020 } 23021 if (ipsec_len != 0) { 23022 ipsec_out_process(q, first_mp, ire, ill_index); 23023 if (!next_mp) { 23024 ire_refrele(ire); 23025 if (conn_outgoing_ill != NULL) 23026 ill_refrele(conn_outgoing_ill); 23027 return; 23028 } 23029 goto next; 23030 } 23031 23032 /* 23033 * multirt_send has already been handled 23034 * for broadcast, but not yet for multicast 23035 * or IP options. 23036 */ 23037 if (next_mp == NULL) { 23038 if (ire->ire_flags & RTF_MULTIRT) { 23039 multirt_send = B_TRUE; 23040 } 23041 } 23042 23043 /* 23044 * In most cases, the emission loop below is 23045 * entered only once. Only in the case where 23046 * the ire holds the RTF_MULTIRT flag, do we loop 23047 * to process all RTF_MULTIRT ires in the bucket, 23048 * and send the packet through all crossed 23049 * RTF_MULTIRT routes. 23050 */ 23051 do { 23052 if (multirt_send) { 23053 irb_t *irb; 23054 23055 irb = ire->ire_bucket; 23056 ASSERT(irb != NULL); 23057 /* 23058 * We are in a multiple send case, 23059 * need to get the next IRE and make 23060 * a duplicate of the packet. 23061 */ 23062 IRB_REFHOLD(irb); 23063 for (ire1 = ire->ire_next; 23064 ire1 != NULL; 23065 ire1 = ire1->ire_next) { 23066 if (!(ire1->ire_flags & 23067 RTF_MULTIRT)) { 23068 continue; 23069 } 23070 if (ire1->ire_addr != 23071 ire->ire_addr) { 23072 continue; 23073 } 23074 if (ire1->ire_marks & 23075 (IRE_MARK_CONDEMNED| 23076 IRE_MARK_HIDDEN)) { 23077 continue; 23078 } 23079 23080 /* Got one */ 23081 IRE_REFHOLD(ire1); 23082 break; 23083 } 23084 IRB_REFRELE(irb); 23085 23086 if (ire1 != NULL) { 23087 next_mp = copyb(mp); 23088 if ((next_mp == NULL) || 23089 ((mp->b_cont != NULL) && 23090 ((next_mp->b_cont = 23091 dupmsg(mp->b_cont)) 23092 == NULL))) { 23093 freemsg(next_mp); 23094 next_mp = NULL; 23095 ire_refrele(ire1); 23096 ire1 = NULL; 23097 } 23098 } 23099 23100 /* 23101 * Last multiroute ire; don't loop 23102 * anymore. The emission is over 23103 * and next_mp is NULL. 23104 */ 23105 if (ire1 == NULL) { 23106 multirt_send = B_FALSE; 23107 } 23108 } 23109 23110 out_ill = ire->ire_ipif->ipif_ill; 23111 DTRACE_PROBE4(ip4__physical__out__start, 23112 ill_t *, NULL, 23113 ill_t *, out_ill, 23114 ipha_t *, ipha, mblk_t *, mp); 23115 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23116 ipst->ips_ipv4firewall_physical_out, 23117 NULL, out_ill, ipha, mp, mp, ipst); 23118 DTRACE_PROBE1(ip4__physical__out__end, 23119 mblk_t *, mp); 23120 if (mp == NULL) 23121 goto release_ire_and_ill_2; 23122 23123 ASSERT(ipsec_len == 0); 23124 mp->b_prev = 23125 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23126 DTRACE_PROBE2(ip__xmit__2, 23127 mblk_t *, mp, ire_t *, ire); 23128 pktxmit_state = ip_xmit_v4(mp, ire, 23129 NULL, B_TRUE); 23130 if ((pktxmit_state == SEND_FAILED) || 23131 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23132 release_ire_and_ill_2: 23133 if (next_mp) { 23134 freemsg(next_mp); 23135 ire_refrele(ire1); 23136 } 23137 ire_refrele(ire); 23138 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23139 "ip_wput_ire_end: q %p (%S)", 23140 q, "discard MDATA"); 23141 if (conn_outgoing_ill != NULL) 23142 ill_refrele(conn_outgoing_ill); 23143 return; 23144 } 23145 23146 if (CLASSD(dst)) { 23147 BUMP_MIB(out_ill->ill_ip_mib, 23148 ipIfStatsHCOutMcastPkts); 23149 UPDATE_MIB(out_ill->ill_ip_mib, 23150 ipIfStatsHCOutMcastOctets, 23151 LENGTH); 23152 } else if (ire->ire_type == IRE_BROADCAST) { 23153 BUMP_MIB(out_ill->ill_ip_mib, 23154 ipIfStatsHCOutBcastPkts); 23155 } 23156 23157 if (multirt_send) { 23158 /* 23159 * We are in a multiple send case, 23160 * need to re-enter the sending loop 23161 * using the next ire. 23162 */ 23163 ire_refrele(ire); 23164 ire = ire1; 23165 stq = ire->ire_stq; 23166 mp = next_mp; 23167 next_mp = NULL; 23168 ipha = (ipha_t *)mp->b_rptr; 23169 ill_index = Q_TO_INDEX(stq); 23170 } 23171 } while (multirt_send); 23172 23173 if (!next_mp) { 23174 /* 23175 * Last copy going out (the ultra-common 23176 * case). Note that we intentionally replicate 23177 * the putnext rather than calling it before 23178 * the next_mp check in hopes of a little 23179 * tail-call action out of the compiler. 23180 */ 23181 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23182 "ip_wput_ire_end: q %p (%S)", 23183 q, "last copy out(1)"); 23184 ire_refrele(ire); 23185 if (conn_outgoing_ill != NULL) 23186 ill_refrele(conn_outgoing_ill); 23187 return; 23188 } 23189 /* More copies going out below. */ 23190 } else { 23191 int offset; 23192 fragmentit: 23193 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23194 /* 23195 * If this would generate a icmp_frag_needed message, 23196 * we need to handle it before we do the IPsec 23197 * processing. Otherwise, we need to strip the IPsec 23198 * headers before we send up the message to the ULPs 23199 * which becomes messy and difficult. 23200 */ 23201 if (ipsec_len != 0) { 23202 if ((max_frag < (unsigned int)(LENGTH + 23203 ipsec_len)) && (offset & IPH_DF)) { 23204 out_ill = (ill_t *)stq->q_ptr; 23205 BUMP_MIB(out_ill->ill_ip_mib, 23206 ipIfStatsOutFragFails); 23207 BUMP_MIB(out_ill->ill_ip_mib, 23208 ipIfStatsOutFragReqds); 23209 ipha->ipha_hdr_checksum = 0; 23210 ipha->ipha_hdr_checksum = 23211 (uint16_t)ip_csum_hdr(ipha); 23212 icmp_frag_needed(ire->ire_stq, first_mp, 23213 max_frag, zoneid, ipst); 23214 if (!next_mp) { 23215 ire_refrele(ire); 23216 if (conn_outgoing_ill != NULL) { 23217 ill_refrele( 23218 conn_outgoing_ill); 23219 } 23220 return; 23221 } 23222 } else { 23223 /* 23224 * This won't cause a icmp_frag_needed 23225 * message. to be generated. Send it on 23226 * the wire. Note that this could still 23227 * cause fragmentation and all we 23228 * do is the generation of the message 23229 * to the ULP if needed before IPsec. 23230 */ 23231 if (!next_mp) { 23232 ipsec_out_process(q, first_mp, 23233 ire, ill_index); 23234 TRACE_2(TR_FAC_IP, 23235 TR_IP_WPUT_IRE_END, 23236 "ip_wput_ire_end: q %p " 23237 "(%S)", q, 23238 "last ipsec_out_process"); 23239 ire_refrele(ire); 23240 if (conn_outgoing_ill != NULL) { 23241 ill_refrele( 23242 conn_outgoing_ill); 23243 } 23244 return; 23245 } 23246 ipsec_out_process(q, first_mp, 23247 ire, ill_index); 23248 } 23249 } else { 23250 /* 23251 * Initiate IPPF processing. For 23252 * fragmentable packets we finish 23253 * all QOS packet processing before 23254 * calling: 23255 * ip_wput_ire_fragmentit->ip_wput_frag 23256 */ 23257 23258 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23259 ip_process(IPP_LOCAL_OUT, &mp, 23260 ill_index); 23261 if (mp == NULL) { 23262 out_ill = (ill_t *)stq->q_ptr; 23263 BUMP_MIB(out_ill->ill_ip_mib, 23264 ipIfStatsOutDiscards); 23265 if (next_mp != NULL) { 23266 freemsg(next_mp); 23267 ire_refrele(ire1); 23268 } 23269 ire_refrele(ire); 23270 TRACE_2(TR_FAC_IP, 23271 TR_IP_WPUT_IRE_END, 23272 "ip_wput_ire: q %p (%S)", 23273 q, "discard MDATA"); 23274 if (conn_outgoing_ill != NULL) { 23275 ill_refrele( 23276 conn_outgoing_ill); 23277 } 23278 return; 23279 } 23280 } 23281 if (!next_mp) { 23282 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23283 "ip_wput_ire_end: q %p (%S)", 23284 q, "last fragmentation"); 23285 ip_wput_ire_fragmentit(mp, ire, 23286 zoneid, ipst); 23287 ire_refrele(ire); 23288 if (conn_outgoing_ill != NULL) 23289 ill_refrele(conn_outgoing_ill); 23290 return; 23291 } 23292 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23293 } 23294 } 23295 } else { 23296 nullstq: 23297 /* A NULL stq means the destination address is local. */ 23298 UPDATE_OB_PKT_COUNT(ire); 23299 ire->ire_last_used_time = lbolt; 23300 ASSERT(ire->ire_ipif != NULL); 23301 if (!next_mp) { 23302 /* 23303 * Is there an "in" and "out" for traffic local 23304 * to a host (loopback)? The code in Solaris doesn't 23305 * explicitly draw a line in its code for in vs out, 23306 * so we've had to draw a line in the sand: ip_wput_ire 23307 * is considered to be the "output" side and 23308 * ip_wput_local to be the "input" side. 23309 */ 23310 out_ill = ire->ire_ipif->ipif_ill; 23311 23312 DTRACE_PROBE4(ip4__loopback__out__start, 23313 ill_t *, NULL, ill_t *, out_ill, 23314 ipha_t *, ipha, mblk_t *, first_mp); 23315 23316 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23317 ipst->ips_ipv4firewall_loopback_out, 23318 NULL, out_ill, ipha, first_mp, mp, ipst); 23319 23320 DTRACE_PROBE1(ip4__loopback__out_end, 23321 mblk_t *, first_mp); 23322 23323 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23324 "ip_wput_ire_end: q %p (%S)", 23325 q, "local address"); 23326 23327 if (first_mp != NULL) 23328 ip_wput_local(q, out_ill, ipha, 23329 first_mp, ire, 0, ire->ire_zoneid); 23330 ire_refrele(ire); 23331 if (conn_outgoing_ill != NULL) 23332 ill_refrele(conn_outgoing_ill); 23333 return; 23334 } 23335 23336 out_ill = ire->ire_ipif->ipif_ill; 23337 23338 DTRACE_PROBE4(ip4__loopback__out__start, 23339 ill_t *, NULL, ill_t *, out_ill, 23340 ipha_t *, ipha, mblk_t *, first_mp); 23341 23342 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23343 ipst->ips_ipv4firewall_loopback_out, 23344 NULL, out_ill, ipha, first_mp, mp, ipst); 23345 23346 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23347 23348 if (first_mp != NULL) 23349 ip_wput_local(q, out_ill, ipha, 23350 first_mp, ire, 0, ire->ire_zoneid); 23351 } 23352 next: 23353 /* 23354 * More copies going out to additional interfaces. 23355 * ire1 has already been held. We don't need the 23356 * "ire" anymore. 23357 */ 23358 ire_refrele(ire); 23359 ire = ire1; 23360 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23361 mp = next_mp; 23362 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23363 ill = ire_to_ill(ire); 23364 first_mp = mp; 23365 if (ipsec_len != 0) { 23366 ASSERT(first_mp->b_datap->db_type == M_CTL); 23367 mp = mp->b_cont; 23368 } 23369 dst = ire->ire_addr; 23370 ipha = (ipha_t *)mp->b_rptr; 23371 /* 23372 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23373 * Restore ipha_ident "no checksum" flag. 23374 */ 23375 src = orig_src; 23376 ipha->ipha_ident = ip_hdr_included; 23377 goto another; 23378 23379 #undef rptr 23380 #undef Q_TO_INDEX 23381 } 23382 23383 /* 23384 * Routine to allocate a message that is used to notify the ULP about MDT. 23385 * The caller may provide a pointer to the link-layer MDT capabilities, 23386 * or NULL if MDT is to be disabled on the stream. 23387 */ 23388 mblk_t * 23389 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23390 { 23391 mblk_t *mp; 23392 ip_mdt_info_t *mdti; 23393 ill_mdt_capab_t *idst; 23394 23395 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23396 DB_TYPE(mp) = M_CTL; 23397 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23398 mdti = (ip_mdt_info_t *)mp->b_rptr; 23399 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23400 idst = &(mdti->mdt_capab); 23401 23402 /* 23403 * If the caller provides us with the capability, copy 23404 * it over into our notification message; otherwise 23405 * we zero out the capability portion. 23406 */ 23407 if (isrc != NULL) 23408 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23409 else 23410 bzero((caddr_t)idst, sizeof (*idst)); 23411 } 23412 return (mp); 23413 } 23414 23415 /* 23416 * Routine which determines whether MDT can be enabled on the destination 23417 * IRE and IPC combination, and if so, allocates and returns the MDT 23418 * notification mblk that may be used by ULP. We also check if we need to 23419 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23420 * MDT usage in the past have been lifted. This gets called during IP 23421 * and ULP binding. 23422 */ 23423 mblk_t * 23424 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23425 ill_mdt_capab_t *mdt_cap) 23426 { 23427 mblk_t *mp; 23428 boolean_t rc = B_FALSE; 23429 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23430 23431 ASSERT(dst_ire != NULL); 23432 ASSERT(connp != NULL); 23433 ASSERT(mdt_cap != NULL); 23434 23435 /* 23436 * Currently, we only support simple TCP/{IPv4,IPv6} with 23437 * Multidata, which is handled in tcp_multisend(). This 23438 * is the reason why we do all these checks here, to ensure 23439 * that we don't enable Multidata for the cases which we 23440 * can't handle at the moment. 23441 */ 23442 do { 23443 /* Only do TCP at the moment */ 23444 if (connp->conn_ulp != IPPROTO_TCP) 23445 break; 23446 23447 /* 23448 * IPsec outbound policy present? Note that we get here 23449 * after calling ipsec_conn_cache_policy() where the global 23450 * policy checking is performed. conn_latch will be 23451 * non-NULL as long as there's a policy defined, 23452 * i.e. conn_out_enforce_policy may be NULL in such case 23453 * when the connection is non-secure, and hence we check 23454 * further if the latch refers to an outbound policy. 23455 */ 23456 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23457 break; 23458 23459 /* CGTP (multiroute) is enabled? */ 23460 if (dst_ire->ire_flags & RTF_MULTIRT) 23461 break; 23462 23463 /* Outbound IPQoS enabled? */ 23464 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23465 /* 23466 * In this case, we disable MDT for this and all 23467 * future connections going over the interface. 23468 */ 23469 mdt_cap->ill_mdt_on = 0; 23470 break; 23471 } 23472 23473 /* socket option(s) present? */ 23474 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23475 break; 23476 23477 rc = B_TRUE; 23478 /* CONSTCOND */ 23479 } while (0); 23480 23481 /* Remember the result */ 23482 connp->conn_mdt_ok = rc; 23483 23484 if (!rc) 23485 return (NULL); 23486 else if (!mdt_cap->ill_mdt_on) { 23487 /* 23488 * If MDT has been previously turned off in the past, and we 23489 * currently can do MDT (due to IPQoS policy removal, etc.) 23490 * then enable it for this interface. 23491 */ 23492 mdt_cap->ill_mdt_on = 1; 23493 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23494 "interface %s\n", ill_name)); 23495 } 23496 23497 /* Allocate the MDT info mblk */ 23498 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23499 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23500 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23501 return (NULL); 23502 } 23503 return (mp); 23504 } 23505 23506 /* 23507 * Routine to allocate a message that is used to notify the ULP about LSO. 23508 * The caller may provide a pointer to the link-layer LSO capabilities, 23509 * or NULL if LSO is to be disabled on the stream. 23510 */ 23511 mblk_t * 23512 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23513 { 23514 mblk_t *mp; 23515 ip_lso_info_t *lsoi; 23516 ill_lso_capab_t *idst; 23517 23518 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23519 DB_TYPE(mp) = M_CTL; 23520 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23521 lsoi = (ip_lso_info_t *)mp->b_rptr; 23522 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23523 idst = &(lsoi->lso_capab); 23524 23525 /* 23526 * If the caller provides us with the capability, copy 23527 * it over into our notification message; otherwise 23528 * we zero out the capability portion. 23529 */ 23530 if (isrc != NULL) 23531 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23532 else 23533 bzero((caddr_t)idst, sizeof (*idst)); 23534 } 23535 return (mp); 23536 } 23537 23538 /* 23539 * Routine which determines whether LSO can be enabled on the destination 23540 * IRE and IPC combination, and if so, allocates and returns the LSO 23541 * notification mblk that may be used by ULP. We also check if we need to 23542 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23543 * LSO usage in the past have been lifted. This gets called during IP 23544 * and ULP binding. 23545 */ 23546 mblk_t * 23547 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23548 ill_lso_capab_t *lso_cap) 23549 { 23550 mblk_t *mp; 23551 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23552 23553 ASSERT(dst_ire != NULL); 23554 ASSERT(connp != NULL); 23555 ASSERT(lso_cap != NULL); 23556 23557 connp->conn_lso_ok = B_TRUE; 23558 23559 if ((connp->conn_ulp != IPPROTO_TCP) || 23560 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23561 (dst_ire->ire_flags & RTF_MULTIRT) || 23562 !CONN_IS_LSO_MD_FASTPATH(connp) || 23563 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23564 connp->conn_lso_ok = B_FALSE; 23565 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23566 /* 23567 * Disable LSO for this and all future connections going 23568 * over the interface. 23569 */ 23570 lso_cap->ill_lso_on = 0; 23571 } 23572 } 23573 23574 if (!connp->conn_lso_ok) 23575 return (NULL); 23576 else if (!lso_cap->ill_lso_on) { 23577 /* 23578 * If LSO has been previously turned off in the past, and we 23579 * currently can do LSO (due to IPQoS policy removal, etc.) 23580 * then enable it for this interface. 23581 */ 23582 lso_cap->ill_lso_on = 1; 23583 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23584 ill_name)); 23585 } 23586 23587 /* Allocate the LSO info mblk */ 23588 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23589 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23590 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23591 23592 return (mp); 23593 } 23594 23595 /* 23596 * Create destination address attribute, and fill it with the physical 23597 * destination address and SAP taken from the template DL_UNITDATA_REQ 23598 * message block. 23599 */ 23600 boolean_t 23601 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23602 { 23603 dl_unitdata_req_t *dlurp; 23604 pattr_t *pa; 23605 pattrinfo_t pa_info; 23606 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23607 uint_t das_len, das_off; 23608 23609 ASSERT(dlmp != NULL); 23610 23611 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23612 das_len = dlurp->dl_dest_addr_length; 23613 das_off = dlurp->dl_dest_addr_offset; 23614 23615 pa_info.type = PATTR_DSTADDRSAP; 23616 pa_info.len = sizeof (**das) + das_len - 1; 23617 23618 /* create and associate the attribute */ 23619 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23620 if (pa != NULL) { 23621 ASSERT(*das != NULL); 23622 (*das)->addr_is_group = 0; 23623 (*das)->addr_len = (uint8_t)das_len; 23624 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23625 } 23626 23627 return (pa != NULL); 23628 } 23629 23630 /* 23631 * Create hardware checksum attribute and fill it with the values passed. 23632 */ 23633 boolean_t 23634 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23635 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23636 { 23637 pattr_t *pa; 23638 pattrinfo_t pa_info; 23639 23640 ASSERT(mmd != NULL); 23641 23642 pa_info.type = PATTR_HCKSUM; 23643 pa_info.len = sizeof (pattr_hcksum_t); 23644 23645 /* create and associate the attribute */ 23646 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23647 if (pa != NULL) { 23648 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23649 23650 hck->hcksum_start_offset = start_offset; 23651 hck->hcksum_stuff_offset = stuff_offset; 23652 hck->hcksum_end_offset = end_offset; 23653 hck->hcksum_flags = flags; 23654 } 23655 return (pa != NULL); 23656 } 23657 23658 /* 23659 * Create zerocopy attribute and fill it with the specified flags 23660 */ 23661 boolean_t 23662 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23663 { 23664 pattr_t *pa; 23665 pattrinfo_t pa_info; 23666 23667 ASSERT(mmd != NULL); 23668 pa_info.type = PATTR_ZCOPY; 23669 pa_info.len = sizeof (pattr_zcopy_t); 23670 23671 /* create and associate the attribute */ 23672 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23673 if (pa != NULL) { 23674 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23675 23676 zcopy->zcopy_flags = flags; 23677 } 23678 return (pa != NULL); 23679 } 23680 23681 /* 23682 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23683 * block chain. We could rewrite to handle arbitrary message block chains but 23684 * that would make the code complicated and slow. Right now there three 23685 * restrictions: 23686 * 23687 * 1. The first message block must contain the complete IP header and 23688 * at least 1 byte of payload data. 23689 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23690 * so that we can use a single Multidata message. 23691 * 3. No frag must be distributed over two or more message blocks so 23692 * that we don't need more than two packet descriptors per frag. 23693 * 23694 * The above restrictions allow us to support userland applications (which 23695 * will send down a single message block) and NFS over UDP (which will 23696 * send down a chain of at most three message blocks). 23697 * 23698 * We also don't use MDT for payloads with less than or equal to 23699 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23700 */ 23701 boolean_t 23702 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23703 { 23704 int blocks; 23705 ssize_t total, missing, size; 23706 23707 ASSERT(mp != NULL); 23708 ASSERT(hdr_len > 0); 23709 23710 size = MBLKL(mp) - hdr_len; 23711 if (size <= 0) 23712 return (B_FALSE); 23713 23714 /* The first mblk contains the header and some payload. */ 23715 blocks = 1; 23716 total = size; 23717 size %= len; 23718 missing = (size == 0) ? 0 : (len - size); 23719 mp = mp->b_cont; 23720 23721 while (mp != NULL) { 23722 /* 23723 * Give up if we encounter a zero length message block. 23724 * In practice, this should rarely happen and therefore 23725 * not worth the trouble of freeing and re-linking the 23726 * mblk from the chain to handle such case. 23727 */ 23728 if ((size = MBLKL(mp)) == 0) 23729 return (B_FALSE); 23730 23731 /* Too many payload buffers for a single Multidata message? */ 23732 if (++blocks > MULTIDATA_MAX_PBUFS) 23733 return (B_FALSE); 23734 23735 total += size; 23736 /* Is a frag distributed over two or more message blocks? */ 23737 if (missing > size) 23738 return (B_FALSE); 23739 size -= missing; 23740 23741 size %= len; 23742 missing = (size == 0) ? 0 : (len - size); 23743 23744 mp = mp->b_cont; 23745 } 23746 23747 return (total > ip_wput_frag_mdt_min); 23748 } 23749 23750 /* 23751 * Outbound IPv4 fragmentation routine using MDT. 23752 */ 23753 static void 23754 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23755 uint32_t frag_flag, int offset) 23756 { 23757 ipha_t *ipha_orig; 23758 int i1, ip_data_end; 23759 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23760 mblk_t *hdr_mp, *md_mp = NULL; 23761 unsigned char *hdr_ptr, *pld_ptr; 23762 multidata_t *mmd; 23763 ip_pdescinfo_t pdi; 23764 ill_t *ill; 23765 ip_stack_t *ipst = ire->ire_ipst; 23766 23767 ASSERT(DB_TYPE(mp) == M_DATA); 23768 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23769 23770 ill = ire_to_ill(ire); 23771 ASSERT(ill != NULL); 23772 23773 ipha_orig = (ipha_t *)mp->b_rptr; 23774 mp->b_rptr += sizeof (ipha_t); 23775 23776 /* Calculate how many packets we will send out */ 23777 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23778 pkts = (i1 + len - 1) / len; 23779 ASSERT(pkts > 1); 23780 23781 /* Allocate a message block which will hold all the IP Headers. */ 23782 wroff = ipst->ips_ip_wroff_extra; 23783 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23784 23785 i1 = pkts * hdr_chunk_len; 23786 /* 23787 * Create the header buffer, Multidata and destination address 23788 * and SAP attribute that should be associated with it. 23789 */ 23790 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23791 ((hdr_mp->b_wptr += i1), 23792 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23793 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23794 freemsg(mp); 23795 if (md_mp == NULL) { 23796 freemsg(hdr_mp); 23797 } else { 23798 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23799 freemsg(md_mp); 23800 } 23801 IP_STAT(ipst, ip_frag_mdt_allocfail); 23802 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23803 return; 23804 } 23805 IP_STAT(ipst, ip_frag_mdt_allocd); 23806 23807 /* 23808 * Add a payload buffer to the Multidata; this operation must not 23809 * fail, or otherwise our logic in this routine is broken. There 23810 * is no memory allocation done by the routine, so any returned 23811 * failure simply tells us that we've done something wrong. 23812 * 23813 * A failure tells us that either we're adding the same payload 23814 * buffer more than once, or we're trying to add more buffers than 23815 * allowed. None of the above cases should happen, and we panic 23816 * because either there's horrible heap corruption, and/or 23817 * programming mistake. 23818 */ 23819 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23820 goto pbuf_panic; 23821 23822 hdr_ptr = hdr_mp->b_rptr; 23823 pld_ptr = mp->b_rptr; 23824 23825 /* Establish the ending byte offset, based on the starting offset. */ 23826 offset <<= 3; 23827 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23828 IP_SIMPLE_HDR_LENGTH; 23829 23830 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23831 23832 while (pld_ptr < mp->b_wptr) { 23833 ipha_t *ipha; 23834 uint16_t offset_and_flags; 23835 uint16_t ip_len; 23836 int error; 23837 23838 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23839 ipha = (ipha_t *)(hdr_ptr + wroff); 23840 ASSERT(OK_32PTR(ipha)); 23841 *ipha = *ipha_orig; 23842 23843 if (ip_data_end - offset > len) { 23844 offset_and_flags = IPH_MF; 23845 } else { 23846 /* 23847 * Last frag. Set len to the length of this last piece. 23848 */ 23849 len = ip_data_end - offset; 23850 /* A frag of a frag might have IPH_MF non-zero */ 23851 offset_and_flags = 23852 ntohs(ipha->ipha_fragment_offset_and_flags) & 23853 IPH_MF; 23854 } 23855 offset_and_flags |= (uint16_t)(offset >> 3); 23856 offset_and_flags |= (uint16_t)frag_flag; 23857 /* Store the offset and flags in the IP header. */ 23858 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23859 23860 /* Store the length in the IP header. */ 23861 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23862 ipha->ipha_length = htons(ip_len); 23863 23864 /* 23865 * Set the IP header checksum. Note that mp is just 23866 * the header, so this is easy to pass to ip_csum. 23867 */ 23868 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23869 23870 /* 23871 * Record offset and size of header and data of the next packet 23872 * in the multidata message. 23873 */ 23874 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23875 PDESC_PLD_INIT(&pdi); 23876 i1 = MIN(mp->b_wptr - pld_ptr, len); 23877 ASSERT(i1 > 0); 23878 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23879 if (i1 == len) { 23880 pld_ptr += len; 23881 } else { 23882 i1 = len - i1; 23883 mp = mp->b_cont; 23884 ASSERT(mp != NULL); 23885 ASSERT(MBLKL(mp) >= i1); 23886 /* 23887 * Attach the next payload message block to the 23888 * multidata message. 23889 */ 23890 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23891 goto pbuf_panic; 23892 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23893 pld_ptr = mp->b_rptr + i1; 23894 } 23895 23896 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23897 KM_NOSLEEP)) == NULL) { 23898 /* 23899 * Any failure other than ENOMEM indicates that we 23900 * have passed in invalid pdesc info or parameters 23901 * to mmd_addpdesc, which must not happen. 23902 * 23903 * EINVAL is a result of failure on boundary checks 23904 * against the pdesc info contents. It should not 23905 * happen, and we panic because either there's 23906 * horrible heap corruption, and/or programming 23907 * mistake. 23908 */ 23909 if (error != ENOMEM) { 23910 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23911 "pdesc logic error detected for " 23912 "mmd %p pinfo %p (%d)\n", 23913 (void *)mmd, (void *)&pdi, error); 23914 /* NOTREACHED */ 23915 } 23916 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23917 /* Free unattached payload message blocks as well */ 23918 md_mp->b_cont = mp->b_cont; 23919 goto free_mmd; 23920 } 23921 23922 /* Advance fragment offset. */ 23923 offset += len; 23924 23925 /* Advance to location for next header in the buffer. */ 23926 hdr_ptr += hdr_chunk_len; 23927 23928 /* Did we reach the next payload message block? */ 23929 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23930 mp = mp->b_cont; 23931 /* 23932 * Attach the next message block with payload 23933 * data to the multidata message. 23934 */ 23935 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23936 goto pbuf_panic; 23937 pld_ptr = mp->b_rptr; 23938 } 23939 } 23940 23941 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23942 ASSERT(mp->b_wptr == pld_ptr); 23943 23944 /* Update IP statistics */ 23945 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23946 23947 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23948 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23949 23950 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23951 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23952 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23953 23954 if (pkt_type == OB_PKT) { 23955 ire->ire_ob_pkt_count += pkts; 23956 if (ire->ire_ipif != NULL) 23957 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23958 } else { 23959 /* The type is IB_PKT in the forwarding path. */ 23960 ire->ire_ib_pkt_count += pkts; 23961 ASSERT(!IRE_IS_LOCAL(ire)); 23962 if (ire->ire_type & IRE_BROADCAST) { 23963 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23964 } else { 23965 UPDATE_MIB(ill->ill_ip_mib, 23966 ipIfStatsHCOutForwDatagrams, pkts); 23967 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23968 } 23969 } 23970 ire->ire_last_used_time = lbolt; 23971 /* Send it down */ 23972 putnext(ire->ire_stq, md_mp); 23973 return; 23974 23975 pbuf_panic: 23976 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23977 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23978 pbuf_idx); 23979 /* NOTREACHED */ 23980 } 23981 23982 /* 23983 * Outbound IP fragmentation routine. 23984 * 23985 * NOTE : This routine does not ire_refrele the ire that is passed in 23986 * as the argument. 23987 */ 23988 static void 23989 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23990 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23991 { 23992 int i1; 23993 mblk_t *ll_hdr_mp; 23994 int ll_hdr_len; 23995 int hdr_len; 23996 mblk_t *hdr_mp; 23997 ipha_t *ipha; 23998 int ip_data_end; 23999 int len; 24000 mblk_t *mp = mp_orig, *mp1; 24001 int offset; 24002 queue_t *q; 24003 uint32_t v_hlen_tos_len; 24004 mblk_t *first_mp; 24005 boolean_t mctl_present; 24006 ill_t *ill; 24007 ill_t *out_ill; 24008 mblk_t *xmit_mp; 24009 mblk_t *carve_mp; 24010 ire_t *ire1 = NULL; 24011 ire_t *save_ire = NULL; 24012 mblk_t *next_mp = NULL; 24013 boolean_t last_frag = B_FALSE; 24014 boolean_t multirt_send = B_FALSE; 24015 ire_t *first_ire = NULL; 24016 irb_t *irb = NULL; 24017 mib2_ipIfStatsEntry_t *mibptr = NULL; 24018 24019 ill = ire_to_ill(ire); 24020 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24021 24022 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24023 24024 if (max_frag == 0) { 24025 ip1dbg(("ip_wput_frag: ire frag size is 0" 24026 " - dropping packet\n")); 24027 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24028 freemsg(mp); 24029 return; 24030 } 24031 24032 /* 24033 * IPsec does not allow hw accelerated packets to be fragmented 24034 * This check is made in ip_wput_ipsec_out prior to coming here 24035 * via ip_wput_ire_fragmentit. 24036 * 24037 * If at this point we have an ire whose ARP request has not 24038 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24039 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24040 * This packet and all fragmentable packets for this ire will 24041 * continue to get dropped while ire_nce->nce_state remains in 24042 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24043 * ND_REACHABLE, all subsquent large packets for this ire will 24044 * get fragemented and sent out by this function. 24045 */ 24046 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24047 /* If nce_state is ND_INITIAL, trigger ARP query */ 24048 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24049 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24050 " - dropping packet\n")); 24051 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24052 freemsg(mp); 24053 return; 24054 } 24055 24056 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24057 "ip_wput_frag_start:"); 24058 24059 if (mp->b_datap->db_type == M_CTL) { 24060 first_mp = mp; 24061 mp_orig = mp = mp->b_cont; 24062 mctl_present = B_TRUE; 24063 } else { 24064 first_mp = mp; 24065 mctl_present = B_FALSE; 24066 } 24067 24068 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24069 ipha = (ipha_t *)mp->b_rptr; 24070 24071 /* 24072 * If the Don't Fragment flag is on, generate an ICMP destination 24073 * unreachable, fragmentation needed. 24074 */ 24075 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24076 if (offset & IPH_DF) { 24077 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24078 if (is_system_labeled()) { 24079 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24080 ire->ire_max_frag - max_frag, AF_INET); 24081 } 24082 /* 24083 * Need to compute hdr checksum if called from ip_wput_ire. 24084 * Note that ip_rput_forward verifies the checksum before 24085 * calling this routine so in that case this is a noop. 24086 */ 24087 ipha->ipha_hdr_checksum = 0; 24088 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24089 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24090 ipst); 24091 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24092 "ip_wput_frag_end:(%S)", 24093 "don't fragment"); 24094 return; 24095 } 24096 /* 24097 * Labeled systems adjust max_frag if they add a label 24098 * to send the correct path mtu. We need the real mtu since we 24099 * are fragmenting the packet after label adjustment. 24100 */ 24101 if (is_system_labeled()) 24102 max_frag = ire->ire_max_frag; 24103 if (mctl_present) 24104 freeb(first_mp); 24105 /* 24106 * Establish the starting offset. May not be zero if we are fragging 24107 * a fragment that is being forwarded. 24108 */ 24109 offset = offset & IPH_OFFSET; 24110 24111 /* TODO why is this test needed? */ 24112 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24113 if (((max_frag - LENGTH) & ~7) < 8) { 24114 /* TODO: notify ulp somehow */ 24115 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24116 freemsg(mp); 24117 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24118 "ip_wput_frag_end:(%S)", 24119 "len < 8"); 24120 return; 24121 } 24122 24123 hdr_len = (V_HLEN & 0xF) << 2; 24124 24125 ipha->ipha_hdr_checksum = 0; 24126 24127 /* 24128 * Establish the number of bytes maximum per frag, after putting 24129 * in the header. 24130 */ 24131 len = (max_frag - hdr_len) & ~7; 24132 24133 /* Check if we can use MDT to send out the frags. */ 24134 ASSERT(!IRE_IS_LOCAL(ire)); 24135 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24136 ipst->ips_ip_multidata_outbound && 24137 !(ire->ire_flags & RTF_MULTIRT) && 24138 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24139 ill != NULL && ILL_MDT_CAPABLE(ill) && 24140 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24141 ASSERT(ill->ill_mdt_capab != NULL); 24142 if (!ill->ill_mdt_capab->ill_mdt_on) { 24143 /* 24144 * If MDT has been previously turned off in the past, 24145 * and we currently can do MDT (due to IPQoS policy 24146 * removal, etc.) then enable it for this interface. 24147 */ 24148 ill->ill_mdt_capab->ill_mdt_on = 1; 24149 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24150 ill->ill_name)); 24151 } 24152 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24153 offset); 24154 return; 24155 } 24156 24157 /* Get a copy of the header for the trailing frags */ 24158 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24159 if (!hdr_mp) { 24160 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24161 freemsg(mp); 24162 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24163 "ip_wput_frag_end:(%S)", 24164 "couldn't copy hdr"); 24165 return; 24166 } 24167 if (DB_CRED(mp) != NULL) 24168 mblk_setcred(hdr_mp, DB_CRED(mp)); 24169 24170 /* Store the starting offset, with the MoreFrags flag. */ 24171 i1 = offset | IPH_MF | frag_flag; 24172 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24173 24174 /* Establish the ending byte offset, based on the starting offset. */ 24175 offset <<= 3; 24176 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24177 24178 /* Store the length of the first fragment in the IP header. */ 24179 i1 = len + hdr_len; 24180 ASSERT(i1 <= IP_MAXPACKET); 24181 ipha->ipha_length = htons((uint16_t)i1); 24182 24183 /* 24184 * Compute the IP header checksum for the first frag. We have to 24185 * watch out that we stop at the end of the header. 24186 */ 24187 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24188 24189 /* 24190 * Now carve off the first frag. Note that this will include the 24191 * original IP header. 24192 */ 24193 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24194 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24195 freeb(hdr_mp); 24196 freemsg(mp_orig); 24197 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24198 "ip_wput_frag_end:(%S)", 24199 "couldn't carve first"); 24200 return; 24201 } 24202 24203 /* 24204 * Multirouting case. Each fragment is replicated 24205 * via all non-condemned RTF_MULTIRT routes 24206 * currently resolved. 24207 * We ensure that first_ire is the first RTF_MULTIRT 24208 * ire in the bucket. 24209 */ 24210 if (ire->ire_flags & RTF_MULTIRT) { 24211 irb = ire->ire_bucket; 24212 ASSERT(irb != NULL); 24213 24214 multirt_send = B_TRUE; 24215 24216 /* Make sure we do not omit any multiroute ire. */ 24217 IRB_REFHOLD(irb); 24218 for (first_ire = irb->irb_ire; 24219 first_ire != NULL; 24220 first_ire = first_ire->ire_next) { 24221 if ((first_ire->ire_flags & RTF_MULTIRT) && 24222 (first_ire->ire_addr == ire->ire_addr) && 24223 !(first_ire->ire_marks & 24224 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24225 break; 24226 } 24227 } 24228 24229 if (first_ire != NULL) { 24230 if (first_ire != ire) { 24231 IRE_REFHOLD(first_ire); 24232 /* 24233 * Do not release the ire passed in 24234 * as the argument. 24235 */ 24236 ire = first_ire; 24237 } else { 24238 first_ire = NULL; 24239 } 24240 } 24241 IRB_REFRELE(irb); 24242 24243 /* 24244 * Save the first ire; we will need to restore it 24245 * for the trailing frags. 24246 * We REFHOLD save_ire, as each iterated ire will be 24247 * REFRELEd. 24248 */ 24249 save_ire = ire; 24250 IRE_REFHOLD(save_ire); 24251 } 24252 24253 /* 24254 * First fragment emission loop. 24255 * In most cases, the emission loop below is entered only 24256 * once. Only in the case where the ire holds the RTF_MULTIRT 24257 * flag, do we loop to process all RTF_MULTIRT ires in the 24258 * bucket, and send the fragment through all crossed 24259 * RTF_MULTIRT routes. 24260 */ 24261 do { 24262 if (ire->ire_flags & RTF_MULTIRT) { 24263 /* 24264 * We are in a multiple send case, need to get 24265 * the next ire and make a copy of the packet. 24266 * ire1 holds here the next ire to process in the 24267 * bucket. If multirouting is expected, 24268 * any non-RTF_MULTIRT ire that has the 24269 * right destination address is ignored. 24270 * 24271 * We have to take into account the MTU of 24272 * each walked ire. max_frag is set by the 24273 * the caller and generally refers to 24274 * the primary ire entry. Here we ensure that 24275 * no route with a lower MTU will be used, as 24276 * fragments are carved once for all ires, 24277 * then replicated. 24278 */ 24279 ASSERT(irb != NULL); 24280 IRB_REFHOLD(irb); 24281 for (ire1 = ire->ire_next; 24282 ire1 != NULL; 24283 ire1 = ire1->ire_next) { 24284 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24285 continue; 24286 if (ire1->ire_addr != ire->ire_addr) 24287 continue; 24288 if (ire1->ire_marks & 24289 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24290 continue; 24291 /* 24292 * Ensure we do not exceed the MTU 24293 * of the next route. 24294 */ 24295 if (ire1->ire_max_frag < max_frag) { 24296 ip_multirt_bad_mtu(ire1, max_frag); 24297 continue; 24298 } 24299 24300 /* Got one. */ 24301 IRE_REFHOLD(ire1); 24302 break; 24303 } 24304 IRB_REFRELE(irb); 24305 24306 if (ire1 != NULL) { 24307 next_mp = copyb(mp); 24308 if ((next_mp == NULL) || 24309 ((mp->b_cont != NULL) && 24310 ((next_mp->b_cont = 24311 dupmsg(mp->b_cont)) == NULL))) { 24312 freemsg(next_mp); 24313 next_mp = NULL; 24314 ire_refrele(ire1); 24315 ire1 = NULL; 24316 } 24317 } 24318 24319 /* Last multiroute ire; don't loop anymore. */ 24320 if (ire1 == NULL) { 24321 multirt_send = B_FALSE; 24322 } 24323 } 24324 24325 ll_hdr_len = 0; 24326 LOCK_IRE_FP_MP(ire); 24327 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24328 if (ll_hdr_mp != NULL) { 24329 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24330 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24331 } else { 24332 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24333 } 24334 24335 /* If there is a transmit header, get a copy for this frag. */ 24336 /* 24337 * TODO: should check db_ref before calling ip_carve_mp since 24338 * it might give us a dup. 24339 */ 24340 if (!ll_hdr_mp) { 24341 /* No xmit header. */ 24342 xmit_mp = mp; 24343 24344 /* We have a link-layer header that can fit in our mblk. */ 24345 } else if (mp->b_datap->db_ref == 1 && 24346 ll_hdr_len != 0 && 24347 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24348 /* M_DATA fastpath */ 24349 mp->b_rptr -= ll_hdr_len; 24350 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24351 xmit_mp = mp; 24352 24353 /* Corner case if copyb has failed */ 24354 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24355 UNLOCK_IRE_FP_MP(ire); 24356 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24357 freeb(hdr_mp); 24358 freemsg(mp); 24359 freemsg(mp_orig); 24360 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24361 "ip_wput_frag_end:(%S)", 24362 "discard"); 24363 24364 if (multirt_send) { 24365 ASSERT(ire1); 24366 ASSERT(next_mp); 24367 24368 freemsg(next_mp); 24369 ire_refrele(ire1); 24370 } 24371 if (save_ire != NULL) 24372 IRE_REFRELE(save_ire); 24373 24374 if (first_ire != NULL) 24375 ire_refrele(first_ire); 24376 return; 24377 24378 /* 24379 * Case of res_mp OR the fastpath mp can't fit 24380 * in the mblk 24381 */ 24382 } else { 24383 xmit_mp->b_cont = mp; 24384 if (DB_CRED(mp) != NULL) 24385 mblk_setcred(xmit_mp, DB_CRED(mp)); 24386 /* 24387 * Get priority marking, if any. 24388 * We propagate the CoS marking from the 24389 * original packet that went to QoS processing 24390 * in ip_wput_ire to the newly carved mp. 24391 */ 24392 if (DB_TYPE(xmit_mp) == M_DATA) 24393 xmit_mp->b_band = mp->b_band; 24394 } 24395 UNLOCK_IRE_FP_MP(ire); 24396 24397 q = ire->ire_stq; 24398 out_ill = (ill_t *)q->q_ptr; 24399 24400 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24401 24402 DTRACE_PROBE4(ip4__physical__out__start, 24403 ill_t *, NULL, ill_t *, out_ill, 24404 ipha_t *, ipha, mblk_t *, xmit_mp); 24405 24406 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24407 ipst->ips_ipv4firewall_physical_out, 24408 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24409 24410 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24411 24412 if (xmit_mp != NULL) { 24413 putnext(q, xmit_mp); 24414 24415 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24416 UPDATE_MIB(out_ill->ill_ip_mib, 24417 ipIfStatsHCOutOctets, i1); 24418 24419 if (pkt_type != OB_PKT) { 24420 /* 24421 * Update the packet count and MIB stats 24422 * of trailing RTF_MULTIRT ires. 24423 */ 24424 UPDATE_OB_PKT_COUNT(ire); 24425 BUMP_MIB(out_ill->ill_ip_mib, 24426 ipIfStatsOutFragReqds); 24427 } 24428 } 24429 24430 if (multirt_send) { 24431 /* 24432 * We are in a multiple send case; look for 24433 * the next ire and re-enter the loop. 24434 */ 24435 ASSERT(ire1); 24436 ASSERT(next_mp); 24437 /* REFRELE the current ire before looping */ 24438 ire_refrele(ire); 24439 ire = ire1; 24440 ire1 = NULL; 24441 mp = next_mp; 24442 next_mp = NULL; 24443 } 24444 } while (multirt_send); 24445 24446 ASSERT(ire1 == NULL); 24447 24448 /* Restore the original ire; we need it for the trailing frags */ 24449 if (save_ire != NULL) { 24450 /* REFRELE the last iterated ire */ 24451 ire_refrele(ire); 24452 /* save_ire has been REFHOLDed */ 24453 ire = save_ire; 24454 save_ire = NULL; 24455 q = ire->ire_stq; 24456 } 24457 24458 if (pkt_type == OB_PKT) { 24459 UPDATE_OB_PKT_COUNT(ire); 24460 } else { 24461 out_ill = (ill_t *)q->q_ptr; 24462 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24463 UPDATE_IB_PKT_COUNT(ire); 24464 } 24465 24466 /* Advance the offset to the second frag starting point. */ 24467 offset += len; 24468 /* 24469 * Update hdr_len from the copied header - there might be less options 24470 * in the later fragments. 24471 */ 24472 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24473 /* Loop until done. */ 24474 for (;;) { 24475 uint16_t offset_and_flags; 24476 uint16_t ip_len; 24477 24478 if (ip_data_end - offset > len) { 24479 /* 24480 * Carve off the appropriate amount from the original 24481 * datagram. 24482 */ 24483 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24484 mp = NULL; 24485 break; 24486 } 24487 /* 24488 * More frags after this one. Get another copy 24489 * of the header. 24490 */ 24491 if (carve_mp->b_datap->db_ref == 1 && 24492 hdr_mp->b_wptr - hdr_mp->b_rptr < 24493 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24494 /* Inline IP header */ 24495 carve_mp->b_rptr -= hdr_mp->b_wptr - 24496 hdr_mp->b_rptr; 24497 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24498 hdr_mp->b_wptr - hdr_mp->b_rptr); 24499 mp = carve_mp; 24500 } else { 24501 if (!(mp = copyb(hdr_mp))) { 24502 freemsg(carve_mp); 24503 break; 24504 } 24505 /* Get priority marking, if any. */ 24506 mp->b_band = carve_mp->b_band; 24507 mp->b_cont = carve_mp; 24508 } 24509 ipha = (ipha_t *)mp->b_rptr; 24510 offset_and_flags = IPH_MF; 24511 } else { 24512 /* 24513 * Last frag. Consume the header. Set len to 24514 * the length of this last piece. 24515 */ 24516 len = ip_data_end - offset; 24517 24518 /* 24519 * Carve off the appropriate amount from the original 24520 * datagram. 24521 */ 24522 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24523 mp = NULL; 24524 break; 24525 } 24526 if (carve_mp->b_datap->db_ref == 1 && 24527 hdr_mp->b_wptr - hdr_mp->b_rptr < 24528 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24529 /* Inline IP header */ 24530 carve_mp->b_rptr -= hdr_mp->b_wptr - 24531 hdr_mp->b_rptr; 24532 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24533 hdr_mp->b_wptr - hdr_mp->b_rptr); 24534 mp = carve_mp; 24535 freeb(hdr_mp); 24536 hdr_mp = mp; 24537 } else { 24538 mp = hdr_mp; 24539 /* Get priority marking, if any. */ 24540 mp->b_band = carve_mp->b_band; 24541 mp->b_cont = carve_mp; 24542 } 24543 ipha = (ipha_t *)mp->b_rptr; 24544 /* A frag of a frag might have IPH_MF non-zero */ 24545 offset_and_flags = 24546 ntohs(ipha->ipha_fragment_offset_and_flags) & 24547 IPH_MF; 24548 } 24549 offset_and_flags |= (uint16_t)(offset >> 3); 24550 offset_and_flags |= (uint16_t)frag_flag; 24551 /* Store the offset and flags in the IP header. */ 24552 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24553 24554 /* Store the length in the IP header. */ 24555 ip_len = (uint16_t)(len + hdr_len); 24556 ipha->ipha_length = htons(ip_len); 24557 24558 /* 24559 * Set the IP header checksum. Note that mp is just 24560 * the header, so this is easy to pass to ip_csum. 24561 */ 24562 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24563 24564 /* Attach a transmit header, if any, and ship it. */ 24565 if (pkt_type == OB_PKT) { 24566 UPDATE_OB_PKT_COUNT(ire); 24567 } else { 24568 out_ill = (ill_t *)q->q_ptr; 24569 BUMP_MIB(out_ill->ill_ip_mib, 24570 ipIfStatsHCOutForwDatagrams); 24571 UPDATE_IB_PKT_COUNT(ire); 24572 } 24573 24574 if (ire->ire_flags & RTF_MULTIRT) { 24575 irb = ire->ire_bucket; 24576 ASSERT(irb != NULL); 24577 24578 multirt_send = B_TRUE; 24579 24580 /* 24581 * Save the original ire; we will need to restore it 24582 * for the tailing frags. 24583 */ 24584 save_ire = ire; 24585 IRE_REFHOLD(save_ire); 24586 } 24587 /* 24588 * Emission loop for this fragment, similar 24589 * to what is done for the first fragment. 24590 */ 24591 do { 24592 if (multirt_send) { 24593 /* 24594 * We are in a multiple send case, need to get 24595 * the next ire and make a copy of the packet. 24596 */ 24597 ASSERT(irb != NULL); 24598 IRB_REFHOLD(irb); 24599 for (ire1 = ire->ire_next; 24600 ire1 != NULL; 24601 ire1 = ire1->ire_next) { 24602 if (!(ire1->ire_flags & RTF_MULTIRT)) 24603 continue; 24604 if (ire1->ire_addr != ire->ire_addr) 24605 continue; 24606 if (ire1->ire_marks & 24607 (IRE_MARK_CONDEMNED| 24608 IRE_MARK_HIDDEN)) { 24609 continue; 24610 } 24611 /* 24612 * Ensure we do not exceed the MTU 24613 * of the next route. 24614 */ 24615 if (ire1->ire_max_frag < max_frag) { 24616 ip_multirt_bad_mtu(ire1, 24617 max_frag); 24618 continue; 24619 } 24620 24621 /* Got one. */ 24622 IRE_REFHOLD(ire1); 24623 break; 24624 } 24625 IRB_REFRELE(irb); 24626 24627 if (ire1 != NULL) { 24628 next_mp = copyb(mp); 24629 if ((next_mp == NULL) || 24630 ((mp->b_cont != NULL) && 24631 ((next_mp->b_cont = 24632 dupmsg(mp->b_cont)) == NULL))) { 24633 freemsg(next_mp); 24634 next_mp = NULL; 24635 ire_refrele(ire1); 24636 ire1 = NULL; 24637 } 24638 } 24639 24640 /* Last multiroute ire; don't loop anymore. */ 24641 if (ire1 == NULL) { 24642 multirt_send = B_FALSE; 24643 } 24644 } 24645 24646 /* Update transmit header */ 24647 ll_hdr_len = 0; 24648 LOCK_IRE_FP_MP(ire); 24649 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24650 if (ll_hdr_mp != NULL) { 24651 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24652 ll_hdr_len = MBLKL(ll_hdr_mp); 24653 } else { 24654 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24655 } 24656 24657 if (!ll_hdr_mp) { 24658 xmit_mp = mp; 24659 24660 /* 24661 * We have link-layer header that can fit in 24662 * our mblk. 24663 */ 24664 } else if (mp->b_datap->db_ref == 1 && 24665 ll_hdr_len != 0 && 24666 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24667 /* M_DATA fastpath */ 24668 mp->b_rptr -= ll_hdr_len; 24669 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24670 ll_hdr_len); 24671 xmit_mp = mp; 24672 24673 /* 24674 * Case of res_mp OR the fastpath mp can't fit 24675 * in the mblk 24676 */ 24677 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24678 xmit_mp->b_cont = mp; 24679 if (DB_CRED(mp) != NULL) 24680 mblk_setcred(xmit_mp, DB_CRED(mp)); 24681 /* Get priority marking, if any. */ 24682 if (DB_TYPE(xmit_mp) == M_DATA) 24683 xmit_mp->b_band = mp->b_band; 24684 24685 /* Corner case if copyb failed */ 24686 } else { 24687 /* 24688 * Exit both the replication and 24689 * fragmentation loops. 24690 */ 24691 UNLOCK_IRE_FP_MP(ire); 24692 goto drop_pkt; 24693 } 24694 UNLOCK_IRE_FP_MP(ire); 24695 24696 mp1 = mp; 24697 out_ill = (ill_t *)q->q_ptr; 24698 24699 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24700 24701 DTRACE_PROBE4(ip4__physical__out__start, 24702 ill_t *, NULL, ill_t *, out_ill, 24703 ipha_t *, ipha, mblk_t *, xmit_mp); 24704 24705 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24706 ipst->ips_ipv4firewall_physical_out, 24707 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24708 24709 DTRACE_PROBE1(ip4__physical__out__end, 24710 mblk_t *, xmit_mp); 24711 24712 if (mp != mp1 && hdr_mp == mp1) 24713 hdr_mp = mp; 24714 if (mp != mp1 && mp_orig == mp1) 24715 mp_orig = mp; 24716 24717 if (xmit_mp != NULL) { 24718 putnext(q, xmit_mp); 24719 24720 BUMP_MIB(out_ill->ill_ip_mib, 24721 ipIfStatsHCOutTransmits); 24722 UPDATE_MIB(out_ill->ill_ip_mib, 24723 ipIfStatsHCOutOctets, ip_len); 24724 24725 if (pkt_type != OB_PKT) { 24726 /* 24727 * Update the packet count of trailing 24728 * RTF_MULTIRT ires. 24729 */ 24730 UPDATE_OB_PKT_COUNT(ire); 24731 } 24732 } 24733 24734 /* All done if we just consumed the hdr_mp. */ 24735 if (mp == hdr_mp) { 24736 last_frag = B_TRUE; 24737 BUMP_MIB(out_ill->ill_ip_mib, 24738 ipIfStatsOutFragOKs); 24739 } 24740 24741 if (multirt_send) { 24742 /* 24743 * We are in a multiple send case; look for 24744 * the next ire and re-enter the loop. 24745 */ 24746 ASSERT(ire1); 24747 ASSERT(next_mp); 24748 /* REFRELE the current ire before looping */ 24749 ire_refrele(ire); 24750 ire = ire1; 24751 ire1 = NULL; 24752 q = ire->ire_stq; 24753 mp = next_mp; 24754 next_mp = NULL; 24755 } 24756 } while (multirt_send); 24757 /* 24758 * Restore the original ire; we need it for the 24759 * trailing frags 24760 */ 24761 if (save_ire != NULL) { 24762 ASSERT(ire1 == NULL); 24763 /* REFRELE the last iterated ire */ 24764 ire_refrele(ire); 24765 /* save_ire has been REFHOLDed */ 24766 ire = save_ire; 24767 q = ire->ire_stq; 24768 save_ire = NULL; 24769 } 24770 24771 if (last_frag) { 24772 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24773 "ip_wput_frag_end:(%S)", 24774 "consumed hdr_mp"); 24775 24776 if (first_ire != NULL) 24777 ire_refrele(first_ire); 24778 return; 24779 } 24780 /* Otherwise, advance and loop. */ 24781 offset += len; 24782 } 24783 24784 drop_pkt: 24785 /* Clean up following allocation failure. */ 24786 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24787 freemsg(mp); 24788 if (mp != hdr_mp) 24789 freeb(hdr_mp); 24790 if (mp != mp_orig) 24791 freemsg(mp_orig); 24792 24793 if (save_ire != NULL) 24794 IRE_REFRELE(save_ire); 24795 if (first_ire != NULL) 24796 ire_refrele(first_ire); 24797 24798 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24799 "ip_wput_frag_end:(%S)", 24800 "end--alloc failure"); 24801 } 24802 24803 /* 24804 * Copy the header plus those options which have the copy bit set 24805 */ 24806 static mblk_t * 24807 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24808 { 24809 mblk_t *mp; 24810 uchar_t *up; 24811 24812 /* 24813 * Quick check if we need to look for options without the copy bit 24814 * set 24815 */ 24816 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24817 if (!mp) 24818 return (mp); 24819 mp->b_rptr += ipst->ips_ip_wroff_extra; 24820 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24821 bcopy(rptr, mp->b_rptr, hdr_len); 24822 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24823 return (mp); 24824 } 24825 up = mp->b_rptr; 24826 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24827 up += IP_SIMPLE_HDR_LENGTH; 24828 rptr += IP_SIMPLE_HDR_LENGTH; 24829 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24830 while (hdr_len > 0) { 24831 uint32_t optval; 24832 uint32_t optlen; 24833 24834 optval = *rptr; 24835 if (optval == IPOPT_EOL) 24836 break; 24837 if (optval == IPOPT_NOP) 24838 optlen = 1; 24839 else 24840 optlen = rptr[1]; 24841 if (optval & IPOPT_COPY) { 24842 bcopy(rptr, up, optlen); 24843 up += optlen; 24844 } 24845 rptr += optlen; 24846 hdr_len -= optlen; 24847 } 24848 /* 24849 * Make sure that we drop an even number of words by filling 24850 * with EOL to the next word boundary. 24851 */ 24852 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24853 hdr_len & 0x3; hdr_len++) 24854 *up++ = IPOPT_EOL; 24855 mp->b_wptr = up; 24856 /* Update header length */ 24857 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24858 return (mp); 24859 } 24860 24861 /* 24862 * Delivery to local recipients including fanout to multiple recipients. 24863 * Does not do checksumming of UDP/TCP. 24864 * Note: q should be the read side queue for either the ill or conn. 24865 * Note: rq should be the read side q for the lower (ill) stream. 24866 * We don't send packets to IPPF processing, thus the last argument 24867 * to all the fanout calls are B_FALSE. 24868 */ 24869 void 24870 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24871 int fanout_flags, zoneid_t zoneid) 24872 { 24873 uint32_t protocol; 24874 mblk_t *first_mp; 24875 boolean_t mctl_present; 24876 int ire_type; 24877 #define rptr ((uchar_t *)ipha) 24878 ip_stack_t *ipst = ill->ill_ipst; 24879 24880 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24881 "ip_wput_local_start: q %p", q); 24882 24883 if (ire != NULL) { 24884 ire_type = ire->ire_type; 24885 } else { 24886 /* 24887 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24888 * packet is not multicast, we can't tell the ire type. 24889 */ 24890 ASSERT(CLASSD(ipha->ipha_dst)); 24891 ire_type = IRE_BROADCAST; 24892 } 24893 24894 first_mp = mp; 24895 if (first_mp->b_datap->db_type == M_CTL) { 24896 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24897 if (!io->ipsec_out_secure) { 24898 /* 24899 * This ipsec_out_t was allocated in ip_wput 24900 * for multicast packets to store the ill_index. 24901 * As this is being delivered locally, we don't 24902 * need this anymore. 24903 */ 24904 mp = first_mp->b_cont; 24905 freeb(first_mp); 24906 first_mp = mp; 24907 mctl_present = B_FALSE; 24908 } else { 24909 /* 24910 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24911 * security properties for the looped-back packet. 24912 */ 24913 mctl_present = B_TRUE; 24914 mp = first_mp->b_cont; 24915 ASSERT(mp != NULL); 24916 ipsec_out_to_in(first_mp); 24917 } 24918 } else { 24919 mctl_present = B_FALSE; 24920 } 24921 24922 DTRACE_PROBE4(ip4__loopback__in__start, 24923 ill_t *, ill, ill_t *, NULL, 24924 ipha_t *, ipha, mblk_t *, first_mp); 24925 24926 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24927 ipst->ips_ipv4firewall_loopback_in, 24928 ill, NULL, ipha, first_mp, mp, ipst); 24929 24930 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24931 24932 if (first_mp == NULL) 24933 return; 24934 24935 ipst->ips_loopback_packets++; 24936 24937 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24938 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24939 if (!IS_SIMPLE_IPH(ipha)) { 24940 ip_wput_local_options(ipha, ipst); 24941 } 24942 24943 protocol = ipha->ipha_protocol; 24944 switch (protocol) { 24945 case IPPROTO_ICMP: { 24946 ire_t *ire_zone; 24947 ilm_t *ilm; 24948 mblk_t *mp1; 24949 zoneid_t last_zoneid; 24950 24951 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24952 ASSERT(ire_type == IRE_BROADCAST); 24953 /* 24954 * In the multicast case, applications may have joined 24955 * the group from different zones, so we need to deliver 24956 * the packet to each of them. Loop through the 24957 * multicast memberships structures (ilm) on the receive 24958 * ill and send a copy of the packet up each matching 24959 * one. However, we don't do this for multicasts sent on 24960 * the loopback interface (PHYI_LOOPBACK flag set) as 24961 * they must stay in the sender's zone. 24962 * 24963 * ilm_add_v6() ensures that ilms in the same zone are 24964 * contiguous in the ill_ilm list. We use this property 24965 * to avoid sending duplicates needed when two 24966 * applications in the same zone join the same group on 24967 * different logical interfaces: we ignore the ilm if 24968 * it's zoneid is the same as the last matching one. 24969 * In addition, the sending of the packet for 24970 * ire_zoneid is delayed until all of the other ilms 24971 * have been exhausted. 24972 */ 24973 last_zoneid = -1; 24974 ILM_WALKER_HOLD(ill); 24975 for (ilm = ill->ill_ilm; ilm != NULL; 24976 ilm = ilm->ilm_next) { 24977 if ((ilm->ilm_flags & ILM_DELETED) || 24978 ipha->ipha_dst != ilm->ilm_addr || 24979 ilm->ilm_zoneid == last_zoneid || 24980 ilm->ilm_zoneid == zoneid || 24981 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24982 continue; 24983 mp1 = ip_copymsg(first_mp); 24984 if (mp1 == NULL) 24985 continue; 24986 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24987 mctl_present, B_FALSE, ill, 24988 ilm->ilm_zoneid); 24989 last_zoneid = ilm->ilm_zoneid; 24990 } 24991 ILM_WALKER_RELE(ill); 24992 /* 24993 * Loopback case: the sending endpoint has 24994 * IP_MULTICAST_LOOP disabled, therefore we don't 24995 * dispatch the multicast packet to the sending zone. 24996 */ 24997 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24998 freemsg(first_mp); 24999 return; 25000 } 25001 } else if (ire_type == IRE_BROADCAST) { 25002 /* 25003 * In the broadcast case, there may be many zones 25004 * which need a copy of the packet delivered to them. 25005 * There is one IRE_BROADCAST per broadcast address 25006 * and per zone; we walk those using a helper function. 25007 * In addition, the sending of the packet for zoneid is 25008 * delayed until all of the other ires have been 25009 * processed. 25010 */ 25011 IRB_REFHOLD(ire->ire_bucket); 25012 ire_zone = NULL; 25013 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25014 ire)) != NULL) { 25015 mp1 = ip_copymsg(first_mp); 25016 if (mp1 == NULL) 25017 continue; 25018 25019 UPDATE_IB_PKT_COUNT(ire_zone); 25020 ire_zone->ire_last_used_time = lbolt; 25021 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25022 mctl_present, B_FALSE, ill, 25023 ire_zone->ire_zoneid); 25024 } 25025 IRB_REFRELE(ire->ire_bucket); 25026 } 25027 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25028 0, mctl_present, B_FALSE, ill, zoneid); 25029 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25030 "ip_wput_local_end: q %p (%S)", 25031 q, "icmp"); 25032 return; 25033 } 25034 case IPPROTO_IGMP: 25035 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25036 /* Bad packet - discarded by igmp_input */ 25037 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25038 "ip_wput_local_end: q %p (%S)", 25039 q, "igmp_input--bad packet"); 25040 if (mctl_present) 25041 freeb(first_mp); 25042 return; 25043 } 25044 /* 25045 * igmp_input() may have returned the pulled up message. 25046 * So first_mp and ipha need to be reinitialized. 25047 */ 25048 ipha = (ipha_t *)mp->b_rptr; 25049 if (mctl_present) 25050 first_mp->b_cont = mp; 25051 else 25052 first_mp = mp; 25053 /* deliver to local raw users */ 25054 break; 25055 case IPPROTO_ENCAP: 25056 /* 25057 * This case is covered by either ip_fanout_proto, or by 25058 * the above security processing for self-tunneled packets. 25059 */ 25060 break; 25061 case IPPROTO_UDP: { 25062 uint16_t *up; 25063 uint32_t ports; 25064 25065 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25066 UDP_PORTS_OFFSET); 25067 /* Force a 'valid' checksum. */ 25068 up[3] = 0; 25069 25070 ports = *(uint32_t *)up; 25071 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25072 (ire_type == IRE_BROADCAST), 25073 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25074 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25075 ill, zoneid); 25076 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25077 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25078 return; 25079 } 25080 case IPPROTO_TCP: { 25081 25082 /* 25083 * For TCP, discard broadcast packets. 25084 */ 25085 if ((ushort_t)ire_type == IRE_BROADCAST) { 25086 freemsg(first_mp); 25087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25088 ip2dbg(("ip_wput_local: discard broadcast\n")); 25089 return; 25090 } 25091 25092 if (mp->b_datap->db_type == M_DATA) { 25093 /* 25094 * M_DATA mblk, so init mblk (chain) for no struio(). 25095 */ 25096 mblk_t *mp1 = mp; 25097 25098 do { 25099 mp1->b_datap->db_struioflag = 0; 25100 } while ((mp1 = mp1->b_cont) != NULL); 25101 } 25102 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25103 <= mp->b_wptr); 25104 ip_fanout_tcp(q, first_mp, ill, ipha, 25105 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25106 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25107 mctl_present, B_FALSE, zoneid); 25108 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25109 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25110 return; 25111 } 25112 case IPPROTO_SCTP: 25113 { 25114 uint32_t ports; 25115 25116 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25117 ip_fanout_sctp(first_mp, ill, ipha, ports, 25118 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25119 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25120 return; 25121 } 25122 25123 default: 25124 break; 25125 } 25126 /* 25127 * Find a client for some other protocol. We give 25128 * copies to multiple clients, if more than one is 25129 * bound. 25130 */ 25131 ip_fanout_proto(q, first_mp, ill, ipha, 25132 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25133 mctl_present, B_FALSE, ill, zoneid); 25134 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25135 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25136 #undef rptr 25137 } 25138 25139 /* 25140 * Update any source route, record route, or timestamp options. 25141 * Check that we are at end of strict source route. 25142 * The options have been sanity checked by ip_wput_options(). 25143 */ 25144 static void 25145 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25146 { 25147 ipoptp_t opts; 25148 uchar_t *opt; 25149 uint8_t optval; 25150 uint8_t optlen; 25151 ipaddr_t dst; 25152 uint32_t ts; 25153 ire_t *ire; 25154 timestruc_t now; 25155 25156 ip2dbg(("ip_wput_local_options\n")); 25157 for (optval = ipoptp_first(&opts, ipha); 25158 optval != IPOPT_EOL; 25159 optval = ipoptp_next(&opts)) { 25160 opt = opts.ipoptp_cur; 25161 optlen = opts.ipoptp_len; 25162 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25163 switch (optval) { 25164 uint32_t off; 25165 case IPOPT_SSRR: 25166 case IPOPT_LSRR: 25167 off = opt[IPOPT_OFFSET]; 25168 off--; 25169 if (optlen < IP_ADDR_LEN || 25170 off > optlen - IP_ADDR_LEN) { 25171 /* End of source route */ 25172 break; 25173 } 25174 /* 25175 * This will only happen if two consecutive entries 25176 * in the source route contains our address or if 25177 * it is a packet with a loose source route which 25178 * reaches us before consuming the whole source route 25179 */ 25180 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25181 if (optval == IPOPT_SSRR) { 25182 return; 25183 } 25184 /* 25185 * Hack: instead of dropping the packet truncate the 25186 * source route to what has been used by filling the 25187 * rest with IPOPT_NOP. 25188 */ 25189 opt[IPOPT_OLEN] = (uint8_t)off; 25190 while (off < optlen) { 25191 opt[off++] = IPOPT_NOP; 25192 } 25193 break; 25194 case IPOPT_RR: 25195 off = opt[IPOPT_OFFSET]; 25196 off--; 25197 if (optlen < IP_ADDR_LEN || 25198 off > optlen - IP_ADDR_LEN) { 25199 /* No more room - ignore */ 25200 ip1dbg(( 25201 "ip_wput_forward_options: end of RR\n")); 25202 break; 25203 } 25204 dst = htonl(INADDR_LOOPBACK); 25205 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25206 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25207 break; 25208 case IPOPT_TS: 25209 /* Insert timestamp if there is romm */ 25210 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25211 case IPOPT_TS_TSONLY: 25212 off = IPOPT_TS_TIMELEN; 25213 break; 25214 case IPOPT_TS_PRESPEC: 25215 case IPOPT_TS_PRESPEC_RFC791: 25216 /* Verify that the address matched */ 25217 off = opt[IPOPT_OFFSET] - 1; 25218 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25219 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25220 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25221 ipst); 25222 if (ire == NULL) { 25223 /* Not for us */ 25224 break; 25225 } 25226 ire_refrele(ire); 25227 /* FALLTHRU */ 25228 case IPOPT_TS_TSANDADDR: 25229 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25230 break; 25231 default: 25232 /* 25233 * ip_*put_options should have already 25234 * dropped this packet. 25235 */ 25236 cmn_err(CE_PANIC, "ip_wput_local_options: " 25237 "unknown IT - bug in ip_wput_options?\n"); 25238 return; /* Keep "lint" happy */ 25239 } 25240 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25241 /* Increase overflow counter */ 25242 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25243 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25244 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25245 (off << 4); 25246 break; 25247 } 25248 off = opt[IPOPT_OFFSET] - 1; 25249 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25250 case IPOPT_TS_PRESPEC: 25251 case IPOPT_TS_PRESPEC_RFC791: 25252 case IPOPT_TS_TSANDADDR: 25253 dst = htonl(INADDR_LOOPBACK); 25254 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25255 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25256 /* FALLTHRU */ 25257 case IPOPT_TS_TSONLY: 25258 off = opt[IPOPT_OFFSET] - 1; 25259 /* Compute # of milliseconds since midnight */ 25260 gethrestime(&now); 25261 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25262 now.tv_nsec / (NANOSEC / MILLISEC); 25263 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25264 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25265 break; 25266 } 25267 break; 25268 } 25269 } 25270 } 25271 25272 /* 25273 * Send out a multicast packet on interface ipif. 25274 * The sender does not have an conn. 25275 * Caller verifies that this isn't a PHYI_LOOPBACK. 25276 */ 25277 void 25278 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25279 { 25280 ipha_t *ipha; 25281 ire_t *ire; 25282 ipaddr_t dst; 25283 mblk_t *first_mp; 25284 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25285 25286 /* igmp_sendpkt always allocates a ipsec_out_t */ 25287 ASSERT(mp->b_datap->db_type == M_CTL); 25288 ASSERT(!ipif->ipif_isv6); 25289 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25290 25291 first_mp = mp; 25292 mp = first_mp->b_cont; 25293 ASSERT(mp->b_datap->db_type == M_DATA); 25294 ipha = (ipha_t *)mp->b_rptr; 25295 25296 /* 25297 * Find an IRE which matches the destination and the outgoing 25298 * queue (i.e. the outgoing interface.) 25299 */ 25300 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25301 dst = ipif->ipif_pp_dst_addr; 25302 else 25303 dst = ipha->ipha_dst; 25304 /* 25305 * The source address has already been initialized by the 25306 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25307 * be sufficient rather than MATCH_IRE_IPIF. 25308 * 25309 * This function is used for sending IGMP packets. We need 25310 * to make sure that we send the packet out of the interface 25311 * (ipif->ipif_ill) where we joined the group. This is to 25312 * prevent from switches doing IGMP snooping to send us multicast 25313 * packets for a given group on the interface we have joined. 25314 * If we can't find an ire, igmp_sendpkt has already initialized 25315 * ipsec_out_attach_if so that this will not be load spread in 25316 * ip_newroute_ipif. 25317 */ 25318 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25319 MATCH_IRE_ILL, ipst); 25320 if (!ire) { 25321 /* 25322 * Mark this packet to make it be delivered to 25323 * ip_wput_ire after the new ire has been 25324 * created. 25325 */ 25326 mp->b_prev = NULL; 25327 mp->b_next = NULL; 25328 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25329 zoneid, &zero_info); 25330 return; 25331 } 25332 25333 /* 25334 * Honor the RTF_SETSRC flag; this is the only case 25335 * where we force this addr whatever the current src addr is, 25336 * because this address is set by igmp_sendpkt(), and 25337 * cannot be specified by any user. 25338 */ 25339 if (ire->ire_flags & RTF_SETSRC) { 25340 ipha->ipha_src = ire->ire_src_addr; 25341 } 25342 25343 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25344 } 25345 25346 /* 25347 * NOTE : This function does not ire_refrele the ire argument passed in. 25348 * 25349 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25350 * failure. The nce_fp_mp can vanish any time in the case of 25351 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25352 * the ire_lock to access the nce_fp_mp in this case. 25353 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25354 * prepending a fastpath message IPQoS processing must precede it, we also set 25355 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25356 * (IPQoS might have set the b_band for CoS marking). 25357 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25358 * must follow it so that IPQoS can mark the dl_priority field for CoS 25359 * marking, if needed. 25360 */ 25361 static mblk_t * 25362 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25363 { 25364 uint_t hlen; 25365 ipha_t *ipha; 25366 mblk_t *mp1; 25367 boolean_t qos_done = B_FALSE; 25368 uchar_t *ll_hdr; 25369 ip_stack_t *ipst = ire->ire_ipst; 25370 25371 #define rptr ((uchar_t *)ipha) 25372 25373 ipha = (ipha_t *)mp->b_rptr; 25374 hlen = 0; 25375 LOCK_IRE_FP_MP(ire); 25376 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25377 ASSERT(DB_TYPE(mp1) == M_DATA); 25378 /* Initiate IPPF processing */ 25379 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25380 UNLOCK_IRE_FP_MP(ire); 25381 ip_process(proc, &mp, ill_index); 25382 if (mp == NULL) 25383 return (NULL); 25384 25385 ipha = (ipha_t *)mp->b_rptr; 25386 LOCK_IRE_FP_MP(ire); 25387 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25388 qos_done = B_TRUE; 25389 goto no_fp_mp; 25390 } 25391 ASSERT(DB_TYPE(mp1) == M_DATA); 25392 } 25393 hlen = MBLKL(mp1); 25394 /* 25395 * Check if we have enough room to prepend fastpath 25396 * header 25397 */ 25398 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25399 ll_hdr = rptr - hlen; 25400 bcopy(mp1->b_rptr, ll_hdr, hlen); 25401 /* 25402 * Set the b_rptr to the start of the link layer 25403 * header 25404 */ 25405 mp->b_rptr = ll_hdr; 25406 mp1 = mp; 25407 } else { 25408 mp1 = copyb(mp1); 25409 if (mp1 == NULL) 25410 goto unlock_err; 25411 mp1->b_band = mp->b_band; 25412 mp1->b_cont = mp; 25413 /* 25414 * certain system generated traffic may not 25415 * have cred/label in ip header block. This 25416 * is true even for a labeled system. But for 25417 * labeled traffic, inherit the label in the 25418 * new header. 25419 */ 25420 if (DB_CRED(mp) != NULL) 25421 mblk_setcred(mp1, DB_CRED(mp)); 25422 /* 25423 * XXX disable ICK_VALID and compute checksum 25424 * here; can happen if nce_fp_mp changes and 25425 * it can't be copied now due to insufficient 25426 * space. (unlikely, fp mp can change, but it 25427 * does not increase in length) 25428 */ 25429 } 25430 UNLOCK_IRE_FP_MP(ire); 25431 } else { 25432 no_fp_mp: 25433 mp1 = copyb(ire->ire_nce->nce_res_mp); 25434 if (mp1 == NULL) { 25435 unlock_err: 25436 UNLOCK_IRE_FP_MP(ire); 25437 freemsg(mp); 25438 return (NULL); 25439 } 25440 UNLOCK_IRE_FP_MP(ire); 25441 mp1->b_cont = mp; 25442 /* 25443 * certain system generated traffic may not 25444 * have cred/label in ip header block. This 25445 * is true even for a labeled system. But for 25446 * labeled traffic, inherit the label in the 25447 * new header. 25448 */ 25449 if (DB_CRED(mp) != NULL) 25450 mblk_setcred(mp1, DB_CRED(mp)); 25451 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25452 ip_process(proc, &mp1, ill_index); 25453 if (mp1 == NULL) 25454 return (NULL); 25455 } 25456 } 25457 return (mp1); 25458 #undef rptr 25459 } 25460 25461 /* 25462 * Finish the outbound IPsec processing for an IPv6 packet. This function 25463 * is called from ipsec_out_process() if the IPsec packet was processed 25464 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25465 * asynchronously. 25466 */ 25467 void 25468 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25469 ire_t *ire_arg) 25470 { 25471 in6_addr_t *v6dstp; 25472 ire_t *ire; 25473 mblk_t *mp; 25474 ip6_t *ip6h1; 25475 uint_t ill_index; 25476 ipsec_out_t *io; 25477 boolean_t attach_if, hwaccel; 25478 uint32_t flags = IP6_NO_IPPOLICY; 25479 int match_flags; 25480 zoneid_t zoneid; 25481 boolean_t ill_need_rele = B_FALSE; 25482 boolean_t ire_need_rele = B_FALSE; 25483 ip_stack_t *ipst; 25484 25485 mp = ipsec_mp->b_cont; 25486 ip6h1 = (ip6_t *)mp->b_rptr; 25487 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25488 ASSERT(io->ipsec_out_ns != NULL); 25489 ipst = io->ipsec_out_ns->netstack_ip; 25490 ill_index = io->ipsec_out_ill_index; 25491 if (io->ipsec_out_reachable) { 25492 flags |= IPV6_REACHABILITY_CONFIRMATION; 25493 } 25494 attach_if = io->ipsec_out_attach_if; 25495 hwaccel = io->ipsec_out_accelerated; 25496 zoneid = io->ipsec_out_zoneid; 25497 ASSERT(zoneid != ALL_ZONES); 25498 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25499 /* Multicast addresses should have non-zero ill_index. */ 25500 v6dstp = &ip6h->ip6_dst; 25501 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25502 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25503 ASSERT(!attach_if || ill_index != 0); 25504 if (ill_index != 0) { 25505 if (ill == NULL) { 25506 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25507 B_TRUE, ipst); 25508 25509 /* Failure case frees things for us. */ 25510 if (ill == NULL) 25511 return; 25512 25513 ill_need_rele = B_TRUE; 25514 } 25515 /* 25516 * If this packet needs to go out on a particular interface 25517 * honor it. 25518 */ 25519 if (attach_if) { 25520 match_flags = MATCH_IRE_ILL; 25521 25522 /* 25523 * Check if we need an ire that will not be 25524 * looked up by anybody else i.e. HIDDEN. 25525 */ 25526 if (ill_is_probeonly(ill)) { 25527 match_flags |= MATCH_IRE_MARK_HIDDEN; 25528 } 25529 } 25530 } 25531 ASSERT(mp != NULL); 25532 25533 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25534 boolean_t unspec_src; 25535 ipif_t *ipif; 25536 25537 /* 25538 * Use the ill_index to get the right ill. 25539 */ 25540 unspec_src = io->ipsec_out_unspec_src; 25541 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25542 if (ipif == NULL) { 25543 if (ill_need_rele) 25544 ill_refrele(ill); 25545 freemsg(ipsec_mp); 25546 return; 25547 } 25548 25549 if (ire_arg != NULL) { 25550 ire = ire_arg; 25551 } else { 25552 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25553 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25554 ire_need_rele = B_TRUE; 25555 } 25556 if (ire != NULL) { 25557 ipif_refrele(ipif); 25558 /* 25559 * XXX Do the multicast forwarding now, as the IPsec 25560 * processing has been done. 25561 */ 25562 goto send; 25563 } 25564 25565 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25566 mp->b_prev = NULL; 25567 mp->b_next = NULL; 25568 25569 /* 25570 * If the IPsec packet was processed asynchronously, 25571 * drop it now. 25572 */ 25573 if (q == NULL) { 25574 if (ill_need_rele) 25575 ill_refrele(ill); 25576 freemsg(ipsec_mp); 25577 return; 25578 } 25579 25580 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25581 unspec_src, zoneid); 25582 ipif_refrele(ipif); 25583 } else { 25584 if (attach_if) { 25585 ipif_t *ipif; 25586 25587 ipif = ipif_get_next_ipif(NULL, ill); 25588 if (ipif == NULL) { 25589 if (ill_need_rele) 25590 ill_refrele(ill); 25591 freemsg(ipsec_mp); 25592 return; 25593 } 25594 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25595 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25596 ire_need_rele = B_TRUE; 25597 ipif_refrele(ipif); 25598 } else { 25599 if (ire_arg != NULL) { 25600 ire = ire_arg; 25601 } else { 25602 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25603 ipst); 25604 ire_need_rele = B_TRUE; 25605 } 25606 } 25607 if (ire != NULL) 25608 goto send; 25609 /* 25610 * ire disappeared underneath. 25611 * 25612 * What we need to do here is the ip_newroute 25613 * logic to get the ire without doing the IPsec 25614 * processing. Follow the same old path. But this 25615 * time, ip_wput or ire_add_then_send will call us 25616 * directly as all the IPsec operations are done. 25617 */ 25618 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25619 mp->b_prev = NULL; 25620 mp->b_next = NULL; 25621 25622 /* 25623 * If the IPsec packet was processed asynchronously, 25624 * drop it now. 25625 */ 25626 if (q == NULL) { 25627 if (ill_need_rele) 25628 ill_refrele(ill); 25629 freemsg(ipsec_mp); 25630 return; 25631 } 25632 25633 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25634 zoneid, ipst); 25635 } 25636 if (ill != NULL && ill_need_rele) 25637 ill_refrele(ill); 25638 return; 25639 send: 25640 if (ill != NULL && ill_need_rele) 25641 ill_refrele(ill); 25642 25643 /* Local delivery */ 25644 if (ire->ire_stq == NULL) { 25645 ill_t *out_ill; 25646 ASSERT(q != NULL); 25647 25648 /* PFHooks: LOOPBACK_OUT */ 25649 out_ill = ire->ire_ipif->ipif_ill; 25650 25651 DTRACE_PROBE4(ip6__loopback__out__start, 25652 ill_t *, NULL, ill_t *, out_ill, 25653 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25654 25655 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25656 ipst->ips_ipv6firewall_loopback_out, 25657 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25658 25659 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25660 25661 if (ipsec_mp != NULL) 25662 ip_wput_local_v6(RD(q), out_ill, 25663 ip6h, ipsec_mp, ire, 0); 25664 if (ire_need_rele) 25665 ire_refrele(ire); 25666 return; 25667 } 25668 /* 25669 * Everything is done. Send it out on the wire. 25670 * We force the insertion of a fragment header using the 25671 * IPH_FRAG_HDR flag in two cases: 25672 * - after reception of an ICMPv6 "packet too big" message 25673 * with a MTU < 1280 (cf. RFC 2460 section 5) 25674 * - for multirouted IPv6 packets, so that the receiver can 25675 * discard duplicates according to their fragment identifier 25676 */ 25677 /* XXX fix flow control problems. */ 25678 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25679 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25680 if (hwaccel) { 25681 /* 25682 * hardware acceleration does not handle these 25683 * "slow path" cases. 25684 */ 25685 /* IPsec KSTATS: should bump bean counter here. */ 25686 if (ire_need_rele) 25687 ire_refrele(ire); 25688 freemsg(ipsec_mp); 25689 return; 25690 } 25691 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25692 (mp->b_cont ? msgdsize(mp) : 25693 mp->b_wptr - (uchar_t *)ip6h)) { 25694 /* IPsec KSTATS: should bump bean counter here. */ 25695 ip0dbg(("Packet length mismatch: %d, %ld\n", 25696 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25697 msgdsize(mp))); 25698 if (ire_need_rele) 25699 ire_refrele(ire); 25700 freemsg(ipsec_mp); 25701 return; 25702 } 25703 ASSERT(mp->b_prev == NULL); 25704 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25705 ntohs(ip6h->ip6_plen) + 25706 IPV6_HDR_LEN, ire->ire_max_frag)); 25707 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25708 ire->ire_max_frag); 25709 } else { 25710 UPDATE_OB_PKT_COUNT(ire); 25711 ire->ire_last_used_time = lbolt; 25712 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25713 } 25714 if (ire_need_rele) 25715 ire_refrele(ire); 25716 freeb(ipsec_mp); 25717 } 25718 25719 void 25720 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25721 { 25722 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25723 da_ipsec_t *hada; /* data attributes */ 25724 ill_t *ill = (ill_t *)q->q_ptr; 25725 25726 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25727 25728 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25729 /* IPsec KSTATS: Bump lose counter here! */ 25730 freemsg(mp); 25731 return; 25732 } 25733 25734 /* 25735 * It's an IPsec packet that must be 25736 * accelerated by the Provider, and the 25737 * outbound ill is IPsec acceleration capable. 25738 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25739 * to the ill. 25740 * IPsec KSTATS: should bump packet counter here. 25741 */ 25742 25743 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25744 if (hada_mp == NULL) { 25745 /* IPsec KSTATS: should bump packet counter here. */ 25746 freemsg(mp); 25747 return; 25748 } 25749 25750 hada_mp->b_datap->db_type = M_CTL; 25751 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25752 hada_mp->b_cont = mp; 25753 25754 hada = (da_ipsec_t *)hada_mp->b_rptr; 25755 bzero(hada, sizeof (da_ipsec_t)); 25756 hada->da_type = IPHADA_M_CTL; 25757 25758 putnext(q, hada_mp); 25759 } 25760 25761 /* 25762 * Finish the outbound IPsec processing. This function is called from 25763 * ipsec_out_process() if the IPsec packet was processed 25764 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25765 * asynchronously. 25766 */ 25767 void 25768 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25769 ire_t *ire_arg) 25770 { 25771 uint32_t v_hlen_tos_len; 25772 ipaddr_t dst; 25773 ipif_t *ipif = NULL; 25774 ire_t *ire; 25775 ire_t *ire1 = NULL; 25776 mblk_t *next_mp = NULL; 25777 uint32_t max_frag; 25778 boolean_t multirt_send = B_FALSE; 25779 mblk_t *mp; 25780 ipha_t *ipha1; 25781 uint_t ill_index; 25782 ipsec_out_t *io; 25783 boolean_t attach_if; 25784 int match_flags; 25785 irb_t *irb = NULL; 25786 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25787 zoneid_t zoneid; 25788 ipxmit_state_t pktxmit_state; 25789 ip_stack_t *ipst; 25790 25791 #ifdef _BIG_ENDIAN 25792 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25793 #else 25794 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25795 #endif 25796 25797 mp = ipsec_mp->b_cont; 25798 ipha1 = (ipha_t *)mp->b_rptr; 25799 ASSERT(mp != NULL); 25800 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25801 dst = ipha->ipha_dst; 25802 25803 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25804 ill_index = io->ipsec_out_ill_index; 25805 attach_if = io->ipsec_out_attach_if; 25806 zoneid = io->ipsec_out_zoneid; 25807 ASSERT(zoneid != ALL_ZONES); 25808 ipst = io->ipsec_out_ns->netstack_ip; 25809 ASSERT(io->ipsec_out_ns != NULL); 25810 25811 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25812 if (ill_index != 0) { 25813 if (ill == NULL) { 25814 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25815 ill_index, B_FALSE, ipst); 25816 25817 /* Failure case frees things for us. */ 25818 if (ill == NULL) 25819 return; 25820 25821 ill_need_rele = B_TRUE; 25822 } 25823 /* 25824 * If this packet needs to go out on a particular interface 25825 * honor it. 25826 */ 25827 if (attach_if) { 25828 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25829 25830 /* 25831 * Check if we need an ire that will not be 25832 * looked up by anybody else i.e. HIDDEN. 25833 */ 25834 if (ill_is_probeonly(ill)) { 25835 match_flags |= MATCH_IRE_MARK_HIDDEN; 25836 } 25837 } 25838 } 25839 25840 if (CLASSD(dst)) { 25841 boolean_t conn_dontroute; 25842 /* 25843 * Use the ill_index to get the right ipif. 25844 */ 25845 conn_dontroute = io->ipsec_out_dontroute; 25846 if (ill_index == 0) 25847 ipif = ipif_lookup_group(dst, zoneid, ipst); 25848 else 25849 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25850 if (ipif == NULL) { 25851 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25852 " multicast\n")); 25853 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25854 freemsg(ipsec_mp); 25855 goto done; 25856 } 25857 /* 25858 * ipha_src has already been intialized with the 25859 * value of the ipif in ip_wput. All we need now is 25860 * an ire to send this downstream. 25861 */ 25862 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25863 MBLK_GETLABEL(mp), match_flags, ipst); 25864 if (ire != NULL) { 25865 ill_t *ill1; 25866 /* 25867 * Do the multicast forwarding now, as the IPsec 25868 * processing has been done. 25869 */ 25870 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25871 (ill1 = ire_to_ill(ire))) { 25872 if (ip_mforward(ill1, ipha, mp)) { 25873 freemsg(ipsec_mp); 25874 ip1dbg(("ip_wput_ipsec_out: mforward " 25875 "failed\n")); 25876 ire_refrele(ire); 25877 goto done; 25878 } 25879 } 25880 goto send; 25881 } 25882 25883 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25884 mp->b_prev = NULL; 25885 mp->b_next = NULL; 25886 25887 /* 25888 * If the IPsec packet was processed asynchronously, 25889 * drop it now. 25890 */ 25891 if (q == NULL) { 25892 freemsg(ipsec_mp); 25893 goto done; 25894 } 25895 25896 /* 25897 * We may be using a wrong ipif to create the ire. 25898 * But it is okay as the source address is assigned 25899 * for the packet already. Next outbound packet would 25900 * create the IRE with the right IPIF in ip_wput. 25901 * 25902 * Also handle RTF_MULTIRT routes. 25903 */ 25904 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25905 zoneid, &zero_info); 25906 } else { 25907 if (attach_if) { 25908 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25909 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25910 } else { 25911 if (ire_arg != NULL) { 25912 ire = ire_arg; 25913 ire_need_rele = B_FALSE; 25914 } else { 25915 ire = ire_cache_lookup(dst, zoneid, 25916 MBLK_GETLABEL(mp), ipst); 25917 } 25918 } 25919 if (ire != NULL) { 25920 goto send; 25921 } 25922 25923 /* 25924 * ire disappeared underneath. 25925 * 25926 * What we need to do here is the ip_newroute 25927 * logic to get the ire without doing the IPsec 25928 * processing. Follow the same old path. But this 25929 * time, ip_wput or ire_add_then_put will call us 25930 * directly as all the IPsec operations are done. 25931 */ 25932 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25933 mp->b_prev = NULL; 25934 mp->b_next = NULL; 25935 25936 /* 25937 * If the IPsec packet was processed asynchronously, 25938 * drop it now. 25939 */ 25940 if (q == NULL) { 25941 freemsg(ipsec_mp); 25942 goto done; 25943 } 25944 25945 /* 25946 * Since we're going through ip_newroute() again, we 25947 * need to make sure we don't: 25948 * 25949 * 1.) Trigger the ASSERT() with the ipha_ident 25950 * overloading. 25951 * 2.) Redo transport-layer checksumming, since we've 25952 * already done all that to get this far. 25953 * 25954 * The easiest way not do either of the above is to set 25955 * the ipha_ident field to IP_HDR_INCLUDED. 25956 */ 25957 ipha->ipha_ident = IP_HDR_INCLUDED; 25958 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25959 zoneid, ipst); 25960 } 25961 goto done; 25962 send: 25963 if (ire->ire_stq == NULL) { 25964 ill_t *out_ill; 25965 /* 25966 * Loopbacks go through ip_wput_local except for one case. 25967 * We come here if we generate a icmp_frag_needed message 25968 * after IPsec processing is over. When this function calls 25969 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25970 * icmp_frag_needed. The message generated comes back here 25971 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25972 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25973 * source address as it is usually set in ip_wput_ire. As 25974 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25975 * and we end up here. We can't enter ip_wput_ire once the 25976 * IPsec processing is over and hence we need to do it here. 25977 */ 25978 ASSERT(q != NULL); 25979 UPDATE_OB_PKT_COUNT(ire); 25980 ire->ire_last_used_time = lbolt; 25981 if (ipha->ipha_src == 0) 25982 ipha->ipha_src = ire->ire_src_addr; 25983 25984 /* PFHooks: LOOPBACK_OUT */ 25985 out_ill = ire->ire_ipif->ipif_ill; 25986 25987 DTRACE_PROBE4(ip4__loopback__out__start, 25988 ill_t *, NULL, ill_t *, out_ill, 25989 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25990 25991 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25992 ipst->ips_ipv4firewall_loopback_out, 25993 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25994 25995 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25996 25997 if (ipsec_mp != NULL) 25998 ip_wput_local(RD(q), out_ill, 25999 ipha, ipsec_mp, ire, 0, zoneid); 26000 if (ire_need_rele) 26001 ire_refrele(ire); 26002 goto done; 26003 } 26004 26005 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26006 /* 26007 * We are through with IPsec processing. 26008 * Fragment this and send it on the wire. 26009 */ 26010 if (io->ipsec_out_accelerated) { 26011 /* 26012 * The packet has been accelerated but must 26013 * be fragmented. This should not happen 26014 * since AH and ESP must not accelerate 26015 * packets that need fragmentation, however 26016 * the configuration could have changed 26017 * since the AH or ESP processing. 26018 * Drop packet. 26019 * IPsec KSTATS: bump bean counter here. 26020 */ 26021 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26022 "fragmented accelerated packet!\n")); 26023 freemsg(ipsec_mp); 26024 } else { 26025 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26026 } 26027 if (ire_need_rele) 26028 ire_refrele(ire); 26029 goto done; 26030 } 26031 26032 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26033 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26034 (void *)ire->ire_ipif, (void *)ipif)); 26035 26036 /* 26037 * Multiroute the secured packet, unless IPsec really 26038 * requires the packet to go out only through a particular 26039 * interface. 26040 */ 26041 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26042 ire_t *first_ire; 26043 irb = ire->ire_bucket; 26044 ASSERT(irb != NULL); 26045 /* 26046 * This ire has been looked up as the one that 26047 * goes through the given ipif; 26048 * make sure we do not omit any other multiroute ire 26049 * that may be present in the bucket before this one. 26050 */ 26051 IRB_REFHOLD(irb); 26052 for (first_ire = irb->irb_ire; 26053 first_ire != NULL; 26054 first_ire = first_ire->ire_next) { 26055 if ((first_ire->ire_flags & RTF_MULTIRT) && 26056 (first_ire->ire_addr == ire->ire_addr) && 26057 !(first_ire->ire_marks & 26058 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26059 break; 26060 } 26061 } 26062 26063 if ((first_ire != NULL) && (first_ire != ire)) { 26064 /* 26065 * Don't change the ire if the packet must 26066 * be fragmented if sent via this new one. 26067 */ 26068 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26069 IRE_REFHOLD(first_ire); 26070 if (ire_need_rele) 26071 ire_refrele(ire); 26072 else 26073 ire_need_rele = B_TRUE; 26074 ire = first_ire; 26075 } 26076 } 26077 IRB_REFRELE(irb); 26078 26079 multirt_send = B_TRUE; 26080 max_frag = ire->ire_max_frag; 26081 } else { 26082 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26083 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26084 "flag, attach_if %d\n", attach_if)); 26085 } 26086 } 26087 26088 /* 26089 * In most cases, the emission loop below is entered only once. 26090 * Only in the case where the ire holds the RTF_MULTIRT 26091 * flag, we loop to process all RTF_MULTIRT ires in the 26092 * bucket, and send the packet through all crossed 26093 * RTF_MULTIRT routes. 26094 */ 26095 do { 26096 if (multirt_send) { 26097 /* 26098 * ire1 holds here the next ire to process in the 26099 * bucket. If multirouting is expected, 26100 * any non-RTF_MULTIRT ire that has the 26101 * right destination address is ignored. 26102 */ 26103 ASSERT(irb != NULL); 26104 IRB_REFHOLD(irb); 26105 for (ire1 = ire->ire_next; 26106 ire1 != NULL; 26107 ire1 = ire1->ire_next) { 26108 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26109 continue; 26110 if (ire1->ire_addr != ire->ire_addr) 26111 continue; 26112 if (ire1->ire_marks & 26113 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26114 continue; 26115 /* No loopback here */ 26116 if (ire1->ire_stq == NULL) 26117 continue; 26118 /* 26119 * Ensure we do not exceed the MTU 26120 * of the next route. 26121 */ 26122 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26123 ip_multirt_bad_mtu(ire1, max_frag); 26124 continue; 26125 } 26126 26127 IRE_REFHOLD(ire1); 26128 break; 26129 } 26130 IRB_REFRELE(irb); 26131 if (ire1 != NULL) { 26132 /* 26133 * We are in a multiple send case, need to 26134 * make a copy of the packet. 26135 */ 26136 next_mp = copymsg(ipsec_mp); 26137 if (next_mp == NULL) { 26138 ire_refrele(ire1); 26139 ire1 = NULL; 26140 } 26141 } 26142 } 26143 /* 26144 * Everything is done. Send it out on the wire 26145 * 26146 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26147 * either send it on the wire or, in the case of 26148 * HW acceleration, call ipsec_hw_putnext. 26149 */ 26150 if (ire->ire_nce && 26151 ire->ire_nce->nce_state != ND_REACHABLE) { 26152 DTRACE_PROBE2(ip__wput__ipsec__bail, 26153 (ire_t *), ire, (mblk_t *), ipsec_mp); 26154 /* 26155 * If ire's link-layer is unresolved (this 26156 * would only happen if the incomplete ire 26157 * was added to cachetable via forwarding path) 26158 * don't bother going to ip_xmit_v4. Just drop the 26159 * packet. 26160 * There is a slight risk here, in that, if we 26161 * have the forwarding path create an incomplete 26162 * IRE, then until the IRE is completed, any 26163 * transmitted IPsec packets will be dropped 26164 * instead of being queued waiting for resolution. 26165 * 26166 * But the likelihood of a forwarding packet and a wput 26167 * packet sending to the same dst at the same time 26168 * and there not yet be an ARP entry for it is small. 26169 * Furthermore, if this actually happens, it might 26170 * be likely that wput would generate multiple 26171 * packets (and forwarding would also have a train 26172 * of packets) for that destination. If this is 26173 * the case, some of them would have been dropped 26174 * anyway, since ARP only queues a few packets while 26175 * waiting for resolution 26176 * 26177 * NOTE: We should really call ip_xmit_v4, 26178 * and let it queue the packet and send the 26179 * ARP query and have ARP come back thus: 26180 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26181 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26182 * hw accel work. But it's too complex to get 26183 * the IPsec hw acceleration approach to fit 26184 * well with ip_xmit_v4 doing ARP without 26185 * doing IPsec simplification. For now, we just 26186 * poke ip_xmit_v4 to trigger the arp resolve, so 26187 * that we can continue with the send on the next 26188 * attempt. 26189 * 26190 * XXX THis should be revisited, when 26191 * the IPsec/IP interaction is cleaned up 26192 */ 26193 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26194 " - dropping packet\n")); 26195 freemsg(ipsec_mp); 26196 /* 26197 * Call ip_xmit_v4() to trigger ARP query 26198 * in case the nce_state is ND_INITIAL 26199 */ 26200 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26201 goto drop_pkt; 26202 } 26203 26204 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26205 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26206 mblk_t *, ipsec_mp); 26207 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26208 ipst->ips_ipv4firewall_physical_out, 26209 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26210 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26211 if (ipsec_mp == NULL) 26212 goto drop_pkt; 26213 26214 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26215 pktxmit_state = ip_xmit_v4(mp, ire, 26216 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26217 26218 if ((pktxmit_state == SEND_FAILED) || 26219 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26220 26221 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26222 drop_pkt: 26223 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26224 ipIfStatsOutDiscards); 26225 if (ire_need_rele) 26226 ire_refrele(ire); 26227 if (ire1 != NULL) { 26228 ire_refrele(ire1); 26229 freemsg(next_mp); 26230 } 26231 goto done; 26232 } 26233 26234 freeb(ipsec_mp); 26235 if (ire_need_rele) 26236 ire_refrele(ire); 26237 26238 if (ire1 != NULL) { 26239 ire = ire1; 26240 ire_need_rele = B_TRUE; 26241 ASSERT(next_mp); 26242 ipsec_mp = next_mp; 26243 mp = ipsec_mp->b_cont; 26244 ire1 = NULL; 26245 next_mp = NULL; 26246 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26247 } else { 26248 multirt_send = B_FALSE; 26249 } 26250 } while (multirt_send); 26251 done: 26252 if (ill != NULL && ill_need_rele) 26253 ill_refrele(ill); 26254 if (ipif != NULL) 26255 ipif_refrele(ipif); 26256 } 26257 26258 /* 26259 * Get the ill corresponding to the specified ire, and compare its 26260 * capabilities with the protocol and algorithms specified by the 26261 * the SA obtained from ipsec_out. If they match, annotate the 26262 * ipsec_out structure to indicate that the packet needs acceleration. 26263 * 26264 * 26265 * A packet is eligible for outbound hardware acceleration if the 26266 * following conditions are satisfied: 26267 * 26268 * 1. the packet will not be fragmented 26269 * 2. the provider supports the algorithm 26270 * 3. there is no pending control message being exchanged 26271 * 4. snoop is not attached 26272 * 5. the destination address is not a broadcast or multicast address. 26273 * 26274 * Rationale: 26275 * - Hardware drivers do not support fragmentation with 26276 * the current interface. 26277 * - snoop, multicast, and broadcast may result in exposure of 26278 * a cleartext datagram. 26279 * We check all five of these conditions here. 26280 * 26281 * XXX would like to nuke "ire_t *" parameter here; problem is that 26282 * IRE is only way to figure out if a v4 address is a broadcast and 26283 * thus ineligible for acceleration... 26284 */ 26285 static void 26286 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26287 { 26288 ipsec_out_t *io; 26289 mblk_t *data_mp; 26290 uint_t plen, overhead; 26291 ip_stack_t *ipst; 26292 26293 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26294 return; 26295 26296 if (ill == NULL) 26297 return; 26298 ipst = ill->ill_ipst; 26299 /* 26300 * Destination address is a broadcast or multicast. Punt. 26301 */ 26302 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26303 IRE_LOCAL))) 26304 return; 26305 26306 data_mp = ipsec_mp->b_cont; 26307 26308 if (ill->ill_isv6) { 26309 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26310 26311 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26312 return; 26313 26314 plen = ip6h->ip6_plen; 26315 } else { 26316 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26317 26318 if (CLASSD(ipha->ipha_dst)) 26319 return; 26320 26321 plen = ipha->ipha_length; 26322 } 26323 /* 26324 * Is there a pending DLPI control message being exchanged 26325 * between IP/IPsec and the DLS Provider? If there is, it 26326 * could be a SADB update, and the state of the DLS Provider 26327 * SADB might not be in sync with the SADB maintained by 26328 * IPsec. To avoid dropping packets or using the wrong keying 26329 * material, we do not accelerate this packet. 26330 */ 26331 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26332 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26333 "ill_dlpi_pending! don't accelerate packet\n")); 26334 return; 26335 } 26336 26337 /* 26338 * Is the Provider in promiscous mode? If it does, we don't 26339 * accelerate the packet since it will bounce back up to the 26340 * listeners in the clear. 26341 */ 26342 if (ill->ill_promisc_on_phys) { 26343 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26344 "ill in promiscous mode, don't accelerate packet\n")); 26345 return; 26346 } 26347 26348 /* 26349 * Will the packet require fragmentation? 26350 */ 26351 26352 /* 26353 * IPsec ESP note: this is a pessimistic estimate, but the same 26354 * as is used elsewhere. 26355 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26356 * + 2-byte trailer 26357 */ 26358 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26359 IPSEC_BASE_ESP_HDR_SIZE(sa); 26360 26361 if ((plen + overhead) > ill->ill_max_mtu) 26362 return; 26363 26364 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26365 26366 /* 26367 * Can the ill accelerate this IPsec protocol and algorithm 26368 * specified by the SA? 26369 */ 26370 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26371 ill->ill_isv6, sa, ipst->ips_netstack)) { 26372 return; 26373 } 26374 26375 /* 26376 * Tell AH or ESP that the outbound ill is capable of 26377 * accelerating this packet. 26378 */ 26379 io->ipsec_out_is_capab_ill = B_TRUE; 26380 } 26381 26382 /* 26383 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26384 * 26385 * If this function returns B_TRUE, the requested SA's have been filled 26386 * into the ipsec_out_*_sa pointers. 26387 * 26388 * If the function returns B_FALSE, the packet has been "consumed", most 26389 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26390 * 26391 * The SA references created by the protocol-specific "select" 26392 * function will be released when the ipsec_mp is freed, thanks to the 26393 * ipsec_out_free destructor -- see spd.c. 26394 */ 26395 static boolean_t 26396 ipsec_out_select_sa(mblk_t *ipsec_mp) 26397 { 26398 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26399 ipsec_out_t *io; 26400 ipsec_policy_t *pp; 26401 ipsec_action_t *ap; 26402 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26403 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26404 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26405 26406 if (!io->ipsec_out_secure) { 26407 /* 26408 * We came here by mistake. 26409 * Don't bother with ipsec processing 26410 * We should "discourage" this path in the future. 26411 */ 26412 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26413 return (B_FALSE); 26414 } 26415 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26416 ASSERT((io->ipsec_out_policy != NULL) || 26417 (io->ipsec_out_act != NULL)); 26418 26419 ASSERT(io->ipsec_out_failed == B_FALSE); 26420 26421 /* 26422 * IPsec processing has started. 26423 */ 26424 io->ipsec_out_proc_begin = B_TRUE; 26425 ap = io->ipsec_out_act; 26426 if (ap == NULL) { 26427 pp = io->ipsec_out_policy; 26428 ASSERT(pp != NULL); 26429 ap = pp->ipsp_act; 26430 ASSERT(ap != NULL); 26431 } 26432 26433 /* 26434 * We have an action. now, let's select SA's. 26435 * (In the future, we can cache this in the conn_t..) 26436 */ 26437 if (ap->ipa_want_esp) { 26438 if (io->ipsec_out_esp_sa == NULL) { 26439 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26440 IPPROTO_ESP); 26441 } 26442 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26443 } 26444 26445 if (ap->ipa_want_ah) { 26446 if (io->ipsec_out_ah_sa == NULL) { 26447 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26448 IPPROTO_AH); 26449 } 26450 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26451 /* 26452 * The ESP and AH processing order needs to be preserved 26453 * when both protocols are required (ESP should be applied 26454 * before AH for an outbound packet). Force an ESP ACQUIRE 26455 * when both ESP and AH are required, and an AH ACQUIRE 26456 * is needed. 26457 */ 26458 if (ap->ipa_want_esp && need_ah_acquire) 26459 need_esp_acquire = B_TRUE; 26460 } 26461 26462 /* 26463 * Send an ACQUIRE (extended, regular, or both) if we need one. 26464 * Release SAs that got referenced, but will not be used until we 26465 * acquire _all_ of the SAs we need. 26466 */ 26467 if (need_ah_acquire || need_esp_acquire) { 26468 if (io->ipsec_out_ah_sa != NULL) { 26469 IPSA_REFRELE(io->ipsec_out_ah_sa); 26470 io->ipsec_out_ah_sa = NULL; 26471 } 26472 if (io->ipsec_out_esp_sa != NULL) { 26473 IPSA_REFRELE(io->ipsec_out_esp_sa); 26474 io->ipsec_out_esp_sa = NULL; 26475 } 26476 26477 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26478 return (B_FALSE); 26479 } 26480 26481 return (B_TRUE); 26482 } 26483 26484 /* 26485 * Process an IPSEC_OUT message and see what you can 26486 * do with it. 26487 * IPQoS Notes: 26488 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26489 * IPsec. 26490 * XXX would like to nuke ire_t. 26491 * XXX ill_index better be "real" 26492 */ 26493 void 26494 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26495 { 26496 ipsec_out_t *io; 26497 ipsec_policy_t *pp; 26498 ipsec_action_t *ap; 26499 ipha_t *ipha; 26500 ip6_t *ip6h; 26501 mblk_t *mp; 26502 ill_t *ill; 26503 zoneid_t zoneid; 26504 ipsec_status_t ipsec_rc; 26505 boolean_t ill_need_rele = B_FALSE; 26506 ip_stack_t *ipst; 26507 ipsec_stack_t *ipss; 26508 26509 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26510 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26511 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26512 ipst = io->ipsec_out_ns->netstack_ip; 26513 mp = ipsec_mp->b_cont; 26514 26515 /* 26516 * Initiate IPPF processing. We do it here to account for packets 26517 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26518 * We can check for ipsec_out_proc_begin even for such packets, as 26519 * they will always be false (asserted below). 26520 */ 26521 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26522 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26523 io->ipsec_out_ill_index : ill_index); 26524 if (mp == NULL) { 26525 ip2dbg(("ipsec_out_process: packet dropped "\ 26526 "during IPPF processing\n")); 26527 freeb(ipsec_mp); 26528 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26529 return; 26530 } 26531 } 26532 26533 if (!io->ipsec_out_secure) { 26534 /* 26535 * We came here by mistake. 26536 * Don't bother with ipsec processing 26537 * Should "discourage" this path in the future. 26538 */ 26539 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26540 goto done; 26541 } 26542 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26543 ASSERT((io->ipsec_out_policy != NULL) || 26544 (io->ipsec_out_act != NULL)); 26545 ASSERT(io->ipsec_out_failed == B_FALSE); 26546 26547 ipss = ipst->ips_netstack->netstack_ipsec; 26548 if (!ipsec_loaded(ipss)) { 26549 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26550 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26551 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26552 } else { 26553 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26554 } 26555 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26556 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26557 &ipss->ipsec_dropper); 26558 return; 26559 } 26560 26561 /* 26562 * IPsec processing has started. 26563 */ 26564 io->ipsec_out_proc_begin = B_TRUE; 26565 ap = io->ipsec_out_act; 26566 if (ap == NULL) { 26567 pp = io->ipsec_out_policy; 26568 ASSERT(pp != NULL); 26569 ap = pp->ipsp_act; 26570 ASSERT(ap != NULL); 26571 } 26572 26573 /* 26574 * Save the outbound ill index. When the packet comes back 26575 * from IPsec, we make sure the ill hasn't changed or disappeared 26576 * before sending it the accelerated packet. 26577 */ 26578 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26579 int ifindex; 26580 ill = ire_to_ill(ire); 26581 ifindex = ill->ill_phyint->phyint_ifindex; 26582 io->ipsec_out_capab_ill_index = ifindex; 26583 } 26584 26585 /* 26586 * The order of processing is first insert a IP header if needed. 26587 * Then insert the ESP header and then the AH header. 26588 */ 26589 if ((io->ipsec_out_se_done == B_FALSE) && 26590 (ap->ipa_want_se)) { 26591 /* 26592 * First get the outer IP header before sending 26593 * it to ESP. 26594 */ 26595 ipha_t *oipha, *iipha; 26596 mblk_t *outer_mp, *inner_mp; 26597 26598 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26599 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26600 "ipsec_out_process: " 26601 "Self-Encapsulation failed: Out of memory\n"); 26602 freemsg(ipsec_mp); 26603 if (ill != NULL) { 26604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26605 } else { 26606 BUMP_MIB(&ipst->ips_ip_mib, 26607 ipIfStatsOutDiscards); 26608 } 26609 return; 26610 } 26611 inner_mp = ipsec_mp->b_cont; 26612 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26613 oipha = (ipha_t *)outer_mp->b_rptr; 26614 iipha = (ipha_t *)inner_mp->b_rptr; 26615 *oipha = *iipha; 26616 outer_mp->b_wptr += sizeof (ipha_t); 26617 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26618 sizeof (ipha_t)); 26619 oipha->ipha_protocol = IPPROTO_ENCAP; 26620 oipha->ipha_version_and_hdr_length = 26621 IP_SIMPLE_HDR_VERSION; 26622 oipha->ipha_hdr_checksum = 0; 26623 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26624 outer_mp->b_cont = inner_mp; 26625 ipsec_mp->b_cont = outer_mp; 26626 26627 io->ipsec_out_se_done = B_TRUE; 26628 io->ipsec_out_tunnel = B_TRUE; 26629 } 26630 26631 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26632 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26633 !ipsec_out_select_sa(ipsec_mp)) 26634 return; 26635 26636 /* 26637 * By now, we know what SA's to use. Toss over to ESP & AH 26638 * to do the heavy lifting. 26639 */ 26640 zoneid = io->ipsec_out_zoneid; 26641 ASSERT(zoneid != ALL_ZONES); 26642 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26643 ASSERT(io->ipsec_out_esp_sa != NULL); 26644 io->ipsec_out_esp_done = B_TRUE; 26645 /* 26646 * Note that since hw accel can only apply one transform, 26647 * not two, we skip hw accel for ESP if we also have AH 26648 * This is an design limitation of the interface 26649 * which should be revisited. 26650 */ 26651 ASSERT(ire != NULL); 26652 if (io->ipsec_out_ah_sa == NULL) { 26653 ill = (ill_t *)ire->ire_stq->q_ptr; 26654 ipsec_out_is_accelerated(ipsec_mp, 26655 io->ipsec_out_esp_sa, ill, ire); 26656 } 26657 26658 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26659 switch (ipsec_rc) { 26660 case IPSEC_STATUS_SUCCESS: 26661 break; 26662 case IPSEC_STATUS_FAILED: 26663 if (ill != NULL) { 26664 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26665 } else { 26666 BUMP_MIB(&ipst->ips_ip_mib, 26667 ipIfStatsOutDiscards); 26668 } 26669 /* FALLTHRU */ 26670 case IPSEC_STATUS_PENDING: 26671 return; 26672 } 26673 } 26674 26675 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26676 ASSERT(io->ipsec_out_ah_sa != NULL); 26677 io->ipsec_out_ah_done = B_TRUE; 26678 if (ire == NULL) { 26679 int idx = io->ipsec_out_capab_ill_index; 26680 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26681 NULL, NULL, NULL, NULL, ipst); 26682 ill_need_rele = B_TRUE; 26683 } else { 26684 ill = (ill_t *)ire->ire_stq->q_ptr; 26685 } 26686 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26687 ire); 26688 26689 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26690 switch (ipsec_rc) { 26691 case IPSEC_STATUS_SUCCESS: 26692 break; 26693 case IPSEC_STATUS_FAILED: 26694 if (ill != NULL) { 26695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26696 } else { 26697 BUMP_MIB(&ipst->ips_ip_mib, 26698 ipIfStatsOutDiscards); 26699 } 26700 /* FALLTHRU */ 26701 case IPSEC_STATUS_PENDING: 26702 if (ill != NULL && ill_need_rele) 26703 ill_refrele(ill); 26704 return; 26705 } 26706 } 26707 /* 26708 * We are done with IPsec processing. Send it over 26709 * the wire. 26710 */ 26711 done: 26712 mp = ipsec_mp->b_cont; 26713 ipha = (ipha_t *)mp->b_rptr; 26714 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26715 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26716 } else { 26717 ip6h = (ip6_t *)ipha; 26718 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26719 } 26720 if (ill != NULL && ill_need_rele) 26721 ill_refrele(ill); 26722 } 26723 26724 /* ARGSUSED */ 26725 void 26726 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26727 { 26728 opt_restart_t *or; 26729 int err; 26730 conn_t *connp; 26731 26732 ASSERT(CONN_Q(q)); 26733 connp = Q_TO_CONN(q); 26734 26735 ASSERT(first_mp->b_datap->db_type == M_CTL); 26736 or = (opt_restart_t *)first_mp->b_rptr; 26737 /* 26738 * We don't need to pass any credentials here since this is just 26739 * a restart. The credentials are passed in when svr4_optcom_req 26740 * is called the first time (from ip_wput_nondata). 26741 */ 26742 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26743 err = svr4_optcom_req(q, first_mp, NULL, 26744 &ip_opt_obj); 26745 } else { 26746 ASSERT(or->or_type == T_OPTMGMT_REQ); 26747 err = tpi_optcom_req(q, first_mp, NULL, 26748 &ip_opt_obj); 26749 } 26750 if (err != EINPROGRESS) { 26751 /* operation is done */ 26752 CONN_OPER_PENDING_DONE(connp); 26753 } 26754 } 26755 26756 /* 26757 * ioctls that go through a down/up sequence may need to wait for the down 26758 * to complete. This involves waiting for the ire and ipif refcnts to go down 26759 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26760 */ 26761 /* ARGSUSED */ 26762 void 26763 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26764 { 26765 struct iocblk *iocp; 26766 mblk_t *mp1; 26767 ip_ioctl_cmd_t *ipip; 26768 int err; 26769 sin_t *sin; 26770 struct lifreq *lifr; 26771 struct ifreq *ifr; 26772 26773 iocp = (struct iocblk *)mp->b_rptr; 26774 ASSERT(ipsq != NULL); 26775 /* Existence of mp1 verified in ip_wput_nondata */ 26776 mp1 = mp->b_cont->b_cont; 26777 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26778 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26779 /* 26780 * Special case where ipsq_current_ipif is not set: 26781 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26782 * ill could also have become part of a ipmp group in the 26783 * process, we are here as were not able to complete the 26784 * operation in ipif_set_values because we could not become 26785 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26786 * will not be set so we need to set it. 26787 */ 26788 ill_t *ill = q->q_ptr; 26789 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26790 } 26791 ASSERT(ipsq->ipsq_current_ipif != NULL); 26792 26793 if (ipip->ipi_cmd_type == IF_CMD) { 26794 /* This a old style SIOC[GS]IF* command */ 26795 ifr = (struct ifreq *)mp1->b_rptr; 26796 sin = (sin_t *)&ifr->ifr_addr; 26797 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26798 /* This a new style SIOC[GS]LIF* command */ 26799 lifr = (struct lifreq *)mp1->b_rptr; 26800 sin = (sin_t *)&lifr->lifr_addr; 26801 } else { 26802 sin = NULL; 26803 } 26804 26805 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26806 ipip, mp1->b_rptr); 26807 26808 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26809 } 26810 26811 /* 26812 * ioctl processing 26813 * 26814 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26815 * the ioctl command in the ioctl tables, determines the copyin data size 26816 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26817 * 26818 * ioctl processing then continues when the M_IOCDATA makes its way down to 26819 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26820 * associated 'conn' is refheld till the end of the ioctl and the general 26821 * ioctl processing function ip_process_ioctl() is called to extract the 26822 * arguments and process the ioctl. To simplify extraction, ioctl commands 26823 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26824 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26825 * is used to extract the ioctl's arguments. 26826 * 26827 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26828 * so goes thru the serialization primitive ipsq_try_enter. Then the 26829 * appropriate function to handle the ioctl is called based on the entry in 26830 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26831 * which also refreleases the 'conn' that was refheld at the start of the 26832 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26833 * 26834 * Many exclusive ioctls go thru an internal down up sequence as part of 26835 * the operation. For example an attempt to change the IP address of an 26836 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26837 * does all the cleanup such as deleting all ires that use this address. 26838 * Then we need to wait till all references to the interface go away. 26839 */ 26840 void 26841 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26842 { 26843 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26844 ip_ioctl_cmd_t *ipip = arg; 26845 ip_extract_func_t *extract_funcp; 26846 cmd_info_t ci; 26847 int err; 26848 boolean_t entered_ipsq = B_FALSE; 26849 26850 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26851 26852 if (ipip == NULL) 26853 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26854 26855 /* 26856 * SIOCLIFADDIF needs to go thru a special path since the 26857 * ill may not exist yet. This happens in the case of lo0 26858 * which is created using this ioctl. 26859 */ 26860 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26861 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26862 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26863 return; 26864 } 26865 26866 ci.ci_ipif = NULL; 26867 if (ipip->ipi_cmd_type == MISC_CMD) { 26868 /* 26869 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26870 */ 26871 if (ipip->ipi_cmd == IF_UNITSEL) { 26872 /* ioctl comes down the ill */ 26873 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26874 ipif_refhold(ci.ci_ipif); 26875 } 26876 err = 0; 26877 ci.ci_sin = NULL; 26878 ci.ci_sin6 = NULL; 26879 ci.ci_lifr = NULL; 26880 } else { 26881 switch (ipip->ipi_cmd_type) { 26882 case IF_CMD: 26883 case LIF_CMD: 26884 extract_funcp = ip_extract_lifreq; 26885 break; 26886 26887 case ARP_CMD: 26888 case XARP_CMD: 26889 extract_funcp = ip_extract_arpreq; 26890 break; 26891 26892 case TUN_CMD: 26893 extract_funcp = ip_extract_tunreq; 26894 break; 26895 26896 case MSFILT_CMD: 26897 extract_funcp = ip_extract_msfilter; 26898 break; 26899 26900 default: 26901 ASSERT(0); 26902 } 26903 26904 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26905 if (err != 0) { 26906 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26907 return; 26908 } 26909 26910 /* 26911 * All of the extraction functions return a refheld ipif. 26912 */ 26913 ASSERT(ci.ci_ipif != NULL); 26914 } 26915 26916 /* 26917 * If ipsq is non-null, we are already being called exclusively 26918 */ 26919 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26920 if (!(ipip->ipi_flags & IPI_WR)) { 26921 /* 26922 * A return value of EINPROGRESS means the ioctl is 26923 * either queued and waiting for some reason or has 26924 * already completed. 26925 */ 26926 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26927 ci.ci_lifr); 26928 if (ci.ci_ipif != NULL) 26929 ipif_refrele(ci.ci_ipif); 26930 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26931 return; 26932 } 26933 26934 ASSERT(ci.ci_ipif != NULL); 26935 26936 if (ipsq == NULL) { 26937 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26938 ip_process_ioctl, NEW_OP, B_TRUE); 26939 entered_ipsq = B_TRUE; 26940 } 26941 /* 26942 * Release the ipif so that ipif_down and friends that wait for 26943 * references to go away are not misled about the current ipif_refcnt 26944 * values. We are writer so we can access the ipif even after releasing 26945 * the ipif. 26946 */ 26947 ipif_refrele(ci.ci_ipif); 26948 if (ipsq == NULL) 26949 return; 26950 26951 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26952 26953 /* 26954 * For most set ioctls that come here, this serves as a single point 26955 * where we set the IPIF_CHANGING flag. This ensures that there won't 26956 * be any new references to the ipif. This helps functions that go 26957 * through this path and end up trying to wait for the refcnts 26958 * associated with the ipif to go down to zero. Some exceptions are 26959 * Failover, Failback, and Groupname commands that operate on more than 26960 * just the ci.ci_ipif. These commands internally determine the 26961 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26962 * flags on that set. Another exception is the Removeif command that 26963 * sets the IPIF_CONDEMNED flag internally after identifying the right 26964 * ipif to operate on. 26965 */ 26966 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26967 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26968 ipip->ipi_cmd != SIOCLIFFAILOVER && 26969 ipip->ipi_cmd != SIOCLIFFAILBACK && 26970 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26971 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26972 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26973 26974 /* 26975 * A return value of EINPROGRESS means the ioctl is 26976 * either queued and waiting for some reason or has 26977 * already completed. 26978 */ 26979 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26980 26981 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26982 26983 if (entered_ipsq) 26984 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26985 } 26986 26987 /* 26988 * Complete the ioctl. Typically ioctls use the mi package and need to 26989 * do mi_copyout/mi_copy_done. 26990 */ 26991 void 26992 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26993 { 26994 conn_t *connp = NULL; 26995 26996 if (err == EINPROGRESS) 26997 return; 26998 26999 if (CONN_Q(q)) { 27000 connp = Q_TO_CONN(q); 27001 ASSERT(connp->conn_ref >= 2); 27002 } 27003 27004 switch (mode) { 27005 case COPYOUT: 27006 if (err == 0) 27007 mi_copyout(q, mp); 27008 else 27009 mi_copy_done(q, mp, err); 27010 break; 27011 27012 case NO_COPYOUT: 27013 mi_copy_done(q, mp, err); 27014 break; 27015 27016 default: 27017 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27018 break; 27019 } 27020 27021 /* 27022 * The refhold placed at the start of the ioctl is released here. 27023 */ 27024 if (connp != NULL) 27025 CONN_OPER_PENDING_DONE(connp); 27026 27027 if (ipsq != NULL) 27028 ipsq_current_finish(ipsq); 27029 } 27030 27031 /* 27032 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27033 */ 27034 /* ARGSUSED */ 27035 void 27036 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27037 { 27038 conn_t *connp = arg; 27039 tcp_t *tcp; 27040 27041 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27042 tcp = connp->conn_tcp; 27043 27044 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27045 freemsg(mp); 27046 else 27047 tcp_rput_other(tcp, mp); 27048 CONN_OPER_PENDING_DONE(connp); 27049 } 27050 27051 /* Called from ip_wput for all non data messages */ 27052 /* ARGSUSED */ 27053 void 27054 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27055 { 27056 mblk_t *mp1; 27057 ire_t *ire, *fake_ire; 27058 ill_t *ill; 27059 struct iocblk *iocp; 27060 ip_ioctl_cmd_t *ipip; 27061 cred_t *cr; 27062 conn_t *connp; 27063 int err; 27064 nce_t *nce; 27065 ipif_t *ipif; 27066 ip_stack_t *ipst; 27067 char *proto_str; 27068 27069 if (CONN_Q(q)) { 27070 connp = Q_TO_CONN(q); 27071 ipst = connp->conn_netstack->netstack_ip; 27072 } else { 27073 connp = NULL; 27074 ipst = ILLQ_TO_IPST(q); 27075 } 27076 27077 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27078 27079 /* Check if it is a queue to /dev/sctp. */ 27080 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27081 connp->conn_rq == NULL) { 27082 sctp_wput(q, mp); 27083 return; 27084 } 27085 27086 switch (DB_TYPE(mp)) { 27087 case M_IOCTL: 27088 /* 27089 * IOCTL processing begins in ip_sioctl_copyin_setup which 27090 * will arrange to copy in associated control structures. 27091 */ 27092 ip_sioctl_copyin_setup(q, mp); 27093 return; 27094 case M_IOCDATA: 27095 /* 27096 * Ensure that this is associated with one of our trans- 27097 * parent ioctls. If it's not ours, discard it if we're 27098 * running as a driver, or pass it on if we're a module. 27099 */ 27100 iocp = (struct iocblk *)mp->b_rptr; 27101 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27102 if (ipip == NULL) { 27103 if (q->q_next == NULL) { 27104 goto nak; 27105 } else { 27106 putnext(q, mp); 27107 } 27108 return; 27109 } 27110 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27111 /* 27112 * the ioctl is one we recognise, but is not 27113 * consumed by IP as a module, pass M_IOCDATA 27114 * for processing downstream, but only for 27115 * common Streams ioctls. 27116 */ 27117 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27118 putnext(q, mp); 27119 return; 27120 } else { 27121 goto nak; 27122 } 27123 } 27124 27125 /* IOCTL continuation following copyin or copyout. */ 27126 if (mi_copy_state(q, mp, NULL) == -1) { 27127 /* 27128 * The copy operation failed. mi_copy_state already 27129 * cleaned up, so we're out of here. 27130 */ 27131 return; 27132 } 27133 /* 27134 * If we just completed a copy in, we become writer and 27135 * continue processing in ip_sioctl_copyin_done. If it 27136 * was a copy out, we call mi_copyout again. If there is 27137 * nothing more to copy out, it will complete the IOCTL. 27138 */ 27139 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27140 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27141 mi_copy_done(q, mp, EPROTO); 27142 return; 27143 } 27144 /* 27145 * Check for cases that need more copying. A return 27146 * value of 0 means a second copyin has been started, 27147 * so we return; a return value of 1 means no more 27148 * copying is needed, so we continue. 27149 */ 27150 if (ipip->ipi_cmd_type == MSFILT_CMD && 27151 MI_COPY_COUNT(mp) == 1) { 27152 if (ip_copyin_msfilter(q, mp) == 0) 27153 return; 27154 } 27155 /* 27156 * Refhold the conn, till the ioctl completes. This is 27157 * needed in case the ioctl ends up in the pending mp 27158 * list. Every mp in the ill_pending_mp list and 27159 * the ipsq_pending_mp must have a refhold on the conn 27160 * to resume processing. The refhold is released when 27161 * the ioctl completes. (normally or abnormally) 27162 * In all cases ip_ioctl_finish is called to finish 27163 * the ioctl. 27164 */ 27165 if (connp != NULL) { 27166 /* This is not a reentry */ 27167 ASSERT(ipsq == NULL); 27168 CONN_INC_REF(connp); 27169 } else { 27170 if (!(ipip->ipi_flags & IPI_MODOK)) { 27171 mi_copy_done(q, mp, EINVAL); 27172 return; 27173 } 27174 } 27175 27176 ip_process_ioctl(ipsq, q, mp, ipip); 27177 27178 } else { 27179 mi_copyout(q, mp); 27180 } 27181 return; 27182 nak: 27183 iocp->ioc_error = EINVAL; 27184 mp->b_datap->db_type = M_IOCNAK; 27185 iocp->ioc_count = 0; 27186 qreply(q, mp); 27187 return; 27188 27189 case M_IOCNAK: 27190 /* 27191 * The only way we could get here is if a resolver didn't like 27192 * an IOCTL we sent it. This shouldn't happen. 27193 */ 27194 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27195 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27196 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27197 freemsg(mp); 27198 return; 27199 case M_IOCACK: 27200 /* /dev/ip shouldn't see this */ 27201 if (CONN_Q(q)) 27202 goto nak; 27203 27204 /* Finish socket ioctls passed through to ARP. */ 27205 ip_sioctl_iocack(q, mp); 27206 return; 27207 case M_FLUSH: 27208 if (*mp->b_rptr & FLUSHW) 27209 flushq(q, FLUSHALL); 27210 if (q->q_next) { 27211 putnext(q, mp); 27212 return; 27213 } 27214 if (*mp->b_rptr & FLUSHR) { 27215 *mp->b_rptr &= ~FLUSHW; 27216 qreply(q, mp); 27217 return; 27218 } 27219 freemsg(mp); 27220 return; 27221 case IRE_DB_REQ_TYPE: 27222 if (connp == NULL) { 27223 proto_str = "IRE_DB_REQ_TYPE"; 27224 goto protonak; 27225 } 27226 /* An Upper Level Protocol wants a copy of an IRE. */ 27227 ip_ire_req(q, mp); 27228 return; 27229 case M_CTL: 27230 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27231 break; 27232 27233 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27234 TUN_HELLO) { 27235 ASSERT(connp != NULL); 27236 connp->conn_flags |= IPCL_IPTUN; 27237 freeb(mp); 27238 return; 27239 } 27240 27241 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27242 IP_ULP_OUT_LABELED) { 27243 out_labeled_t *olp; 27244 27245 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27246 break; 27247 olp = (out_labeled_t *)mp->b_rptr; 27248 connp->conn_ulp_labeled = olp->out_qnext == q; 27249 freemsg(mp); 27250 return; 27251 } 27252 27253 /* M_CTL messages are used by ARP to tell us things. */ 27254 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27255 break; 27256 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27257 case AR_ENTRY_SQUERY: 27258 ip_wput_ctl(q, mp); 27259 return; 27260 case AR_CLIENT_NOTIFY: 27261 ip_arp_news(q, mp); 27262 return; 27263 case AR_DLPIOP_DONE: 27264 ASSERT(q->q_next != NULL); 27265 ill = (ill_t *)q->q_ptr; 27266 /* qwriter_ip releases the refhold */ 27267 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27268 ill_refhold(ill); 27269 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27270 return; 27271 case AR_ARP_CLOSING: 27272 /* 27273 * ARP (above us) is closing. If no ARP bringup is 27274 * currently pending, ack the message so that ARP 27275 * can complete its close. Also mark ill_arp_closing 27276 * so that new ARP bringups will fail. If any 27277 * ARP bringup is currently in progress, we will 27278 * ack this when the current ARP bringup completes. 27279 */ 27280 ASSERT(q->q_next != NULL); 27281 ill = (ill_t *)q->q_ptr; 27282 mutex_enter(&ill->ill_lock); 27283 ill->ill_arp_closing = 1; 27284 if (!ill->ill_arp_bringup_pending) { 27285 mutex_exit(&ill->ill_lock); 27286 qreply(q, mp); 27287 } else { 27288 mutex_exit(&ill->ill_lock); 27289 freemsg(mp); 27290 } 27291 return; 27292 case AR_ARP_EXTEND: 27293 /* 27294 * The ARP module above us is capable of duplicate 27295 * address detection. Old ATM drivers will not send 27296 * this message. 27297 */ 27298 ASSERT(q->q_next != NULL); 27299 ill = (ill_t *)q->q_ptr; 27300 ill->ill_arp_extend = B_TRUE; 27301 freemsg(mp); 27302 return; 27303 default: 27304 break; 27305 } 27306 break; 27307 case M_PROTO: 27308 case M_PCPROTO: 27309 /* 27310 * The only PROTO messages we expect are ULP binds and 27311 * copies of option negotiation acknowledgements. 27312 */ 27313 switch (((union T_primitives *)mp->b_rptr)->type) { 27314 case O_T_BIND_REQ: 27315 case T_BIND_REQ: { 27316 /* Request can get queued in bind */ 27317 if (connp == NULL) { 27318 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27319 goto protonak; 27320 } 27321 /* 27322 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27323 * instead of going through this path. We only get 27324 * here in the following cases: 27325 * 27326 * a. Bind retries, where ipsq is non-NULL. 27327 * b. T_BIND_REQ is issued from non TCP/UDP 27328 * transport, e.g. icmp for raw socket, 27329 * in which case ipsq will be NULL. 27330 */ 27331 ASSERT(ipsq != NULL || 27332 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27333 27334 /* Don't increment refcnt if this is a re-entry */ 27335 if (ipsq == NULL) 27336 CONN_INC_REF(connp); 27337 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27338 connp, NULL) : ip_bind_v4(q, mp, connp); 27339 if (mp == NULL) 27340 return; 27341 if (IPCL_IS_TCP(connp)) { 27342 /* 27343 * In the case of TCP endpoint we 27344 * come here only for bind retries 27345 */ 27346 ASSERT(ipsq != NULL); 27347 CONN_INC_REF(connp); 27348 squeue_fill(connp->conn_sqp, mp, 27349 ip_resume_tcp_bind, connp, 27350 SQTAG_BIND_RETRY); 27351 return; 27352 } else if (IPCL_IS_UDP(connp)) { 27353 /* 27354 * In the case of UDP endpoint we 27355 * come here only for bind retries 27356 */ 27357 ASSERT(ipsq != NULL); 27358 udp_resume_bind(connp, mp); 27359 return; 27360 } 27361 qreply(q, mp); 27362 CONN_OPER_PENDING_DONE(connp); 27363 return; 27364 } 27365 case T_SVR4_OPTMGMT_REQ: 27366 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27367 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27368 27369 if (connp == NULL) { 27370 proto_str = "T_SVR4_OPTMGMT_REQ"; 27371 goto protonak; 27372 } 27373 27374 if (!snmpcom_req(q, mp, ip_snmp_set, 27375 ip_snmp_get, cr)) { 27376 /* 27377 * Call svr4_optcom_req so that it can 27378 * generate the ack. We don't come here 27379 * if this operation is being restarted. 27380 * ip_restart_optmgmt will drop the conn ref. 27381 * In the case of ipsec option after the ipsec 27382 * load is complete conn_restart_ipsec_waiter 27383 * drops the conn ref. 27384 */ 27385 ASSERT(ipsq == NULL); 27386 CONN_INC_REF(connp); 27387 if (ip_check_for_ipsec_opt(q, mp)) 27388 return; 27389 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27390 if (err != EINPROGRESS) { 27391 /* Operation is done */ 27392 CONN_OPER_PENDING_DONE(connp); 27393 } 27394 } 27395 return; 27396 case T_OPTMGMT_REQ: 27397 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27398 /* 27399 * Note: No snmpcom_req support through new 27400 * T_OPTMGMT_REQ. 27401 * Call tpi_optcom_req so that it can 27402 * generate the ack. 27403 */ 27404 if (connp == NULL) { 27405 proto_str = "T_OPTMGMT_REQ"; 27406 goto protonak; 27407 } 27408 27409 ASSERT(ipsq == NULL); 27410 /* 27411 * We don't come here for restart. ip_restart_optmgmt 27412 * will drop the conn ref. In the case of ipsec option 27413 * after the ipsec load is complete 27414 * conn_restart_ipsec_waiter drops the conn ref. 27415 */ 27416 CONN_INC_REF(connp); 27417 if (ip_check_for_ipsec_opt(q, mp)) 27418 return; 27419 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27420 if (err != EINPROGRESS) { 27421 /* Operation is done */ 27422 CONN_OPER_PENDING_DONE(connp); 27423 } 27424 return; 27425 case T_UNBIND_REQ: 27426 if (connp == NULL) { 27427 proto_str = "T_UNBIND_REQ"; 27428 goto protonak; 27429 } 27430 mp = ip_unbind(q, mp); 27431 qreply(q, mp); 27432 return; 27433 default: 27434 /* 27435 * Have to drop any DLPI messages coming down from 27436 * arp (such as an info_req which would cause ip 27437 * to receive an extra info_ack if it was passed 27438 * through. 27439 */ 27440 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27441 (int)*(uint_t *)mp->b_rptr)); 27442 freemsg(mp); 27443 return; 27444 } 27445 /* NOTREACHED */ 27446 case IRE_DB_TYPE: { 27447 nce_t *nce; 27448 ill_t *ill; 27449 in6_addr_t gw_addr_v6; 27450 27451 27452 /* 27453 * This is a response back from a resolver. It 27454 * consists of a message chain containing: 27455 * IRE_MBLK-->LL_HDR_MBLK->pkt 27456 * The IRE_MBLK is the one we allocated in ip_newroute. 27457 * The LL_HDR_MBLK is the DLPI header to use to get 27458 * the attached packet, and subsequent ones for the 27459 * same destination, transmitted. 27460 */ 27461 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27462 break; 27463 /* 27464 * First, check to make sure the resolution succeeded. 27465 * If it failed, the second mblk will be empty. 27466 * If it is, free the chain, dropping the packet. 27467 * (We must ire_delete the ire; that frees the ire mblk) 27468 * We're doing this now to support PVCs for ATM; it's 27469 * a partial xresolv implementation. When we fully implement 27470 * xresolv interfaces, instead of freeing everything here 27471 * we'll initiate neighbor discovery. 27472 * 27473 * For v4 (ARP and other external resolvers) the resolver 27474 * frees the message, so no check is needed. This check 27475 * is required, though, for a full xresolve implementation. 27476 * Including this code here now both shows how external 27477 * resolvers can NACK a resolution request using an 27478 * existing design that has no specific provisions for NACKs, 27479 * and also takes into account that the current non-ARP 27480 * external resolver has been coded to use this method of 27481 * NACKing for all IPv6 (xresolv) cases, 27482 * whether our xresolv implementation is complete or not. 27483 * 27484 */ 27485 ire = (ire_t *)mp->b_rptr; 27486 ill = ire_to_ill(ire); 27487 mp1 = mp->b_cont; /* dl_unitdata_req */ 27488 if (mp1->b_rptr == mp1->b_wptr) { 27489 if (ire->ire_ipversion == IPV6_VERSION) { 27490 /* 27491 * XRESOLV interface. 27492 */ 27493 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27494 mutex_enter(&ire->ire_lock); 27495 gw_addr_v6 = ire->ire_gateway_addr_v6; 27496 mutex_exit(&ire->ire_lock); 27497 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27498 nce = ndp_lookup_v6(ill, 27499 &ire->ire_addr_v6, B_FALSE); 27500 } else { 27501 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27502 B_FALSE); 27503 } 27504 if (nce != NULL) { 27505 nce_resolv_failed(nce); 27506 ndp_delete(nce); 27507 NCE_REFRELE(nce); 27508 } 27509 } 27510 mp->b_cont = NULL; 27511 freemsg(mp1); /* frees the pkt as well */ 27512 ASSERT(ire->ire_nce == NULL); 27513 ire_delete((ire_t *)mp->b_rptr); 27514 return; 27515 } 27516 27517 /* 27518 * Split them into IRE_MBLK and pkt and feed it into 27519 * ire_add_then_send. Then in ire_add_then_send 27520 * the IRE will be added, and then the packet will be 27521 * run back through ip_wput. This time it will make 27522 * it to the wire. 27523 */ 27524 mp->b_cont = NULL; 27525 mp = mp1->b_cont; /* now, mp points to pkt */ 27526 mp1->b_cont = NULL; 27527 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27528 if (ire->ire_ipversion == IPV6_VERSION) { 27529 /* 27530 * XRESOLV interface. Find the nce and put a copy 27531 * of the dl_unitdata_req in nce_res_mp 27532 */ 27533 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27534 mutex_enter(&ire->ire_lock); 27535 gw_addr_v6 = ire->ire_gateway_addr_v6; 27536 mutex_exit(&ire->ire_lock); 27537 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27538 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27539 B_FALSE); 27540 } else { 27541 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27542 } 27543 if (nce != NULL) { 27544 /* 27545 * We have to protect nce_res_mp here 27546 * from being accessed by other threads 27547 * while we change the mblk pointer. 27548 * Other functions will also lock the nce when 27549 * accessing nce_res_mp. 27550 * 27551 * The reason we change the mblk pointer 27552 * here rather than copying the resolved address 27553 * into the template is that, unlike with 27554 * ethernet, we have no guarantee that the 27555 * resolved address length will be 27556 * smaller than or equal to the lla length 27557 * with which the template was allocated, 27558 * (for ethernet, they're equal) 27559 * so we have to use the actual resolved 27560 * address mblk - which holds the real 27561 * dl_unitdata_req with the resolved address. 27562 * 27563 * Doing this is the same behavior as was 27564 * previously used in the v4 ARP case. 27565 */ 27566 mutex_enter(&nce->nce_lock); 27567 if (nce->nce_res_mp != NULL) 27568 freemsg(nce->nce_res_mp); 27569 nce->nce_res_mp = mp1; 27570 mutex_exit(&nce->nce_lock); 27571 /* 27572 * We do a fastpath probe here because 27573 * we have resolved the address without 27574 * using Neighbor Discovery. 27575 * In the non-XRESOLV v6 case, the fastpath 27576 * probe is done right after neighbor 27577 * discovery completes. 27578 */ 27579 if (nce->nce_res_mp != NULL) { 27580 int res; 27581 nce_fastpath_list_add(nce); 27582 res = ill_fastpath_probe(ill, 27583 nce->nce_res_mp); 27584 if (res != 0 && res != EAGAIN) 27585 nce_fastpath_list_delete(nce); 27586 } 27587 27588 ire_add_then_send(q, ire, mp); 27589 /* 27590 * Now we have to clean out any packets 27591 * that may have been queued on the nce 27592 * while it was waiting for address resolution 27593 * to complete. 27594 */ 27595 mutex_enter(&nce->nce_lock); 27596 mp1 = nce->nce_qd_mp; 27597 nce->nce_qd_mp = NULL; 27598 mutex_exit(&nce->nce_lock); 27599 while (mp1 != NULL) { 27600 mblk_t *nxt_mp; 27601 queue_t *fwdq = NULL; 27602 ill_t *inbound_ill; 27603 uint_t ifindex; 27604 27605 nxt_mp = mp1->b_next; 27606 mp1->b_next = NULL; 27607 /* 27608 * Retrieve ifindex stored in 27609 * ip_rput_data_v6() 27610 */ 27611 ifindex = 27612 (uint_t)(uintptr_t)mp1->b_prev; 27613 inbound_ill = 27614 ill_lookup_on_ifindex(ifindex, 27615 B_TRUE, NULL, NULL, NULL, 27616 NULL, ipst); 27617 mp1->b_prev = NULL; 27618 if (inbound_ill != NULL) 27619 fwdq = inbound_ill->ill_rq; 27620 27621 if (fwdq != NULL) { 27622 put(fwdq, mp1); 27623 ill_refrele(inbound_ill); 27624 } else 27625 put(WR(ill->ill_rq), mp1); 27626 mp1 = nxt_mp; 27627 } 27628 NCE_REFRELE(nce); 27629 } else { /* nce is NULL; clean up */ 27630 ire_delete(ire); 27631 freemsg(mp); 27632 freemsg(mp1); 27633 return; 27634 } 27635 } else { 27636 nce_t *arpce; 27637 /* 27638 * Link layer resolution succeeded. Recompute the 27639 * ire_nce. 27640 */ 27641 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27642 if ((arpce = ndp_lookup_v4(ill, 27643 (ire->ire_gateway_addr != INADDR_ANY ? 27644 &ire->ire_gateway_addr : &ire->ire_addr), 27645 B_FALSE)) == NULL) { 27646 freeb(ire->ire_mp); 27647 freeb(mp1); 27648 freemsg(mp); 27649 return; 27650 } 27651 mutex_enter(&arpce->nce_lock); 27652 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27653 if (arpce->nce_state == ND_REACHABLE) { 27654 /* 27655 * Someone resolved this before us; 27656 * cleanup the res_mp. Since ire has 27657 * not been added yet, the call to ire_add_v4 27658 * from ire_add_then_send (when a dup is 27659 * detected) will clean up the ire. 27660 */ 27661 freeb(mp1); 27662 } else { 27663 ASSERT(arpce->nce_res_mp == NULL); 27664 arpce->nce_res_mp = mp1; 27665 arpce->nce_state = ND_REACHABLE; 27666 } 27667 mutex_exit(&arpce->nce_lock); 27668 if (ire->ire_marks & IRE_MARK_NOADD) { 27669 /* 27670 * this ire will not be added to the ire 27671 * cache table, so we can set the ire_nce 27672 * here, as there are no atomicity constraints. 27673 */ 27674 ire->ire_nce = arpce; 27675 /* 27676 * We are associating this nce with the ire 27677 * so change the nce ref taken in 27678 * ndp_lookup_v4() from 27679 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27680 */ 27681 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27682 } else { 27683 NCE_REFRELE(arpce); 27684 } 27685 ire_add_then_send(q, ire, mp); 27686 } 27687 return; /* All is well, the packet has been sent. */ 27688 } 27689 case IRE_ARPRESOLVE_TYPE: { 27690 27691 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27692 break; 27693 mp1 = mp->b_cont; /* dl_unitdata_req */ 27694 mp->b_cont = NULL; 27695 /* 27696 * First, check to make sure the resolution succeeded. 27697 * If it failed, the second mblk will be empty. 27698 */ 27699 if (mp1->b_rptr == mp1->b_wptr) { 27700 /* cleanup the incomplete ire, free queued packets */ 27701 freemsg(mp); /* fake ire */ 27702 freeb(mp1); /* dl_unitdata response */ 27703 return; 27704 } 27705 27706 /* 27707 * update any incomplete nce_t found. we lookup the ctable 27708 * and find the nce from the ire->ire_nce because we need 27709 * to pass the ire to ip_xmit_v4 later, and can find both 27710 * ire and nce in one lookup from the ctable. 27711 */ 27712 fake_ire = (ire_t *)mp->b_rptr; 27713 /* 27714 * By the time we come back here from ARP 27715 * the logical outgoing interface of the incomplete ire 27716 * we added in ire_forward could have disappeared, 27717 * causing the incomplete ire to also have 27718 * dissapeared. So we need to retreive the 27719 * proper ipif for the ire before looking 27720 * in ctable; do the ctablelookup based on ire_ipif_seqid 27721 */ 27722 ill = q->q_ptr; 27723 27724 /* Get the outgoing ipif */ 27725 mutex_enter(&ill->ill_lock); 27726 if (ill->ill_state_flags & ILL_CONDEMNED) { 27727 mutex_exit(&ill->ill_lock); 27728 freemsg(mp); /* fake ire */ 27729 freeb(mp1); /* dl_unitdata response */ 27730 return; 27731 } 27732 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27733 27734 if (ipif == NULL) { 27735 mutex_exit(&ill->ill_lock); 27736 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27737 freemsg(mp); 27738 freeb(mp1); 27739 return; 27740 } 27741 ipif_refhold_locked(ipif); 27742 mutex_exit(&ill->ill_lock); 27743 ire = ire_ctable_lookup(fake_ire->ire_addr, 27744 fake_ire->ire_gateway_addr, IRE_CACHE, 27745 ipif, fake_ire->ire_zoneid, NULL, 27746 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27747 ipif_refrele(ipif); 27748 if (ire == NULL) { 27749 /* 27750 * no ire was found; check if there is an nce 27751 * for this lookup; if it has no ire's pointing at it 27752 * cleanup. 27753 */ 27754 if ((nce = ndp_lookup_v4(ill, 27755 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27756 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27757 B_FALSE)) != NULL) { 27758 /* 27759 * cleanup: 27760 * We check for refcnt 2 (one for the nce 27761 * hash list + 1 for the ref taken by 27762 * ndp_lookup_v4) to check that there are 27763 * no ire's pointing at the nce. 27764 */ 27765 if (nce->nce_refcnt == 2) 27766 ndp_delete(nce); 27767 NCE_REFRELE(nce); 27768 } 27769 freeb(mp1); /* dl_unitdata response */ 27770 freemsg(mp); /* fake ire */ 27771 return; 27772 } 27773 nce = ire->ire_nce; 27774 DTRACE_PROBE2(ire__arpresolve__type, 27775 ire_t *, ire, nce_t *, nce); 27776 ASSERT(nce->nce_state != ND_INITIAL); 27777 mutex_enter(&nce->nce_lock); 27778 nce->nce_last = TICK_TO_MSEC(lbolt64); 27779 if (nce->nce_state == ND_REACHABLE) { 27780 /* 27781 * Someone resolved this before us; 27782 * our response is not needed any more. 27783 */ 27784 mutex_exit(&nce->nce_lock); 27785 freeb(mp1); /* dl_unitdata response */ 27786 } else { 27787 ASSERT(nce->nce_res_mp == NULL); 27788 nce->nce_res_mp = mp1; 27789 nce->nce_state = ND_REACHABLE; 27790 mutex_exit(&nce->nce_lock); 27791 nce_fastpath(nce); 27792 } 27793 /* 27794 * The cached nce_t has been updated to be reachable; 27795 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27796 */ 27797 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27798 freemsg(mp); 27799 /* 27800 * send out queued packets. 27801 */ 27802 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27803 27804 IRE_REFRELE(ire); 27805 return; 27806 } 27807 default: 27808 break; 27809 } 27810 if (q->q_next) { 27811 putnext(q, mp); 27812 } else 27813 freemsg(mp); 27814 return; 27815 27816 protonak: 27817 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27818 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27819 qreply(q, mp); 27820 } 27821 27822 /* 27823 * Process IP options in an outbound packet. Modify the destination if there 27824 * is a source route option. 27825 * Returns non-zero if something fails in which case an ICMP error has been 27826 * sent and mp freed. 27827 */ 27828 static int 27829 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27830 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27831 { 27832 ipoptp_t opts; 27833 uchar_t *opt; 27834 uint8_t optval; 27835 uint8_t optlen; 27836 ipaddr_t dst; 27837 intptr_t code = 0; 27838 mblk_t *mp; 27839 ire_t *ire = NULL; 27840 27841 ip2dbg(("ip_wput_options\n")); 27842 mp = ipsec_mp; 27843 if (mctl_present) { 27844 mp = ipsec_mp->b_cont; 27845 } 27846 27847 dst = ipha->ipha_dst; 27848 for (optval = ipoptp_first(&opts, ipha); 27849 optval != IPOPT_EOL; 27850 optval = ipoptp_next(&opts)) { 27851 opt = opts.ipoptp_cur; 27852 optlen = opts.ipoptp_len; 27853 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27854 optval, optlen)); 27855 switch (optval) { 27856 uint32_t off; 27857 case IPOPT_SSRR: 27858 case IPOPT_LSRR: 27859 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27860 ip1dbg(( 27861 "ip_wput_options: bad option offset\n")); 27862 code = (char *)&opt[IPOPT_OLEN] - 27863 (char *)ipha; 27864 goto param_prob; 27865 } 27866 off = opt[IPOPT_OFFSET]; 27867 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27868 ntohl(dst))); 27869 /* 27870 * For strict: verify that dst is directly 27871 * reachable. 27872 */ 27873 if (optval == IPOPT_SSRR) { 27874 ire = ire_ftable_lookup(dst, 0, 0, 27875 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27876 MBLK_GETLABEL(mp), 27877 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27878 if (ire == NULL) { 27879 ip1dbg(("ip_wput_options: SSRR not" 27880 " directly reachable: 0x%x\n", 27881 ntohl(dst))); 27882 goto bad_src_route; 27883 } 27884 ire_refrele(ire); 27885 } 27886 break; 27887 case IPOPT_RR: 27888 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27889 ip1dbg(( 27890 "ip_wput_options: bad option offset\n")); 27891 code = (char *)&opt[IPOPT_OLEN] - 27892 (char *)ipha; 27893 goto param_prob; 27894 } 27895 break; 27896 case IPOPT_TS: 27897 /* 27898 * Verify that length >=5 and that there is either 27899 * room for another timestamp or that the overflow 27900 * counter is not maxed out. 27901 */ 27902 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27903 if (optlen < IPOPT_MINLEN_IT) { 27904 goto param_prob; 27905 } 27906 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27907 ip1dbg(( 27908 "ip_wput_options: bad option offset\n")); 27909 code = (char *)&opt[IPOPT_OFFSET] - 27910 (char *)ipha; 27911 goto param_prob; 27912 } 27913 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27914 case IPOPT_TS_TSONLY: 27915 off = IPOPT_TS_TIMELEN; 27916 break; 27917 case IPOPT_TS_TSANDADDR: 27918 case IPOPT_TS_PRESPEC: 27919 case IPOPT_TS_PRESPEC_RFC791: 27920 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27921 break; 27922 default: 27923 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27924 (char *)ipha; 27925 goto param_prob; 27926 } 27927 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27928 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27929 /* 27930 * No room and the overflow counter is 15 27931 * already. 27932 */ 27933 goto param_prob; 27934 } 27935 break; 27936 } 27937 } 27938 27939 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27940 return (0); 27941 27942 ip1dbg(("ip_wput_options: error processing IP options.")); 27943 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27944 27945 param_prob: 27946 /* 27947 * Since ip_wput() isn't close to finished, we fill 27948 * in enough of the header for credible error reporting. 27949 */ 27950 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27951 /* Failed */ 27952 freemsg(ipsec_mp); 27953 return (-1); 27954 } 27955 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27956 return (-1); 27957 27958 bad_src_route: 27959 /* 27960 * Since ip_wput() isn't close to finished, we fill 27961 * in enough of the header for credible error reporting. 27962 */ 27963 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27964 /* Failed */ 27965 freemsg(ipsec_mp); 27966 return (-1); 27967 } 27968 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27969 return (-1); 27970 } 27971 27972 /* 27973 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27974 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27975 * thru /etc/system. 27976 */ 27977 #define CONN_MAXDRAINCNT 64 27978 27979 static void 27980 conn_drain_init(ip_stack_t *ipst) 27981 { 27982 int i; 27983 27984 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27985 27986 if ((ipst->ips_conn_drain_list_cnt == 0) || 27987 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27988 /* 27989 * Default value of the number of drainers is the 27990 * number of cpus, subject to maximum of 8 drainers. 27991 */ 27992 if (boot_max_ncpus != -1) 27993 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27994 else 27995 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27996 } 27997 27998 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27999 sizeof (idl_t), KM_SLEEP); 28000 28001 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28002 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28003 MUTEX_DEFAULT, NULL); 28004 } 28005 } 28006 28007 static void 28008 conn_drain_fini(ip_stack_t *ipst) 28009 { 28010 int i; 28011 28012 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28013 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28014 kmem_free(ipst->ips_conn_drain_list, 28015 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28016 ipst->ips_conn_drain_list = NULL; 28017 } 28018 28019 /* 28020 * Note: For an overview of how flowcontrol is handled in IP please see the 28021 * IP Flowcontrol notes at the top of this file. 28022 * 28023 * Flow control has blocked us from proceeding. Insert the given conn in one 28024 * of the conn drain lists. These conn wq's will be qenabled later on when 28025 * STREAMS flow control does a backenable. conn_walk_drain will enable 28026 * the first conn in each of these drain lists. Each of these qenabled conns 28027 * in turn enables the next in the list, after it runs, or when it closes, 28028 * thus sustaining the drain process. 28029 * 28030 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28031 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28032 * running at any time, on a given conn, since there can be only 1 service proc 28033 * running on a queue at any time. 28034 */ 28035 void 28036 conn_drain_insert(conn_t *connp) 28037 { 28038 idl_t *idl; 28039 uint_t index; 28040 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28041 28042 mutex_enter(&connp->conn_lock); 28043 if (connp->conn_state_flags & CONN_CLOSING) { 28044 /* 28045 * The conn is closing as a result of which CONN_CLOSING 28046 * is set. Return. 28047 */ 28048 mutex_exit(&connp->conn_lock); 28049 return; 28050 } else if (connp->conn_idl == NULL) { 28051 /* 28052 * Assign the next drain list round robin. We dont' use 28053 * a lock, and thus it may not be strictly round robin. 28054 * Atomicity of load/stores is enough to make sure that 28055 * conn_drain_list_index is always within bounds. 28056 */ 28057 index = ipst->ips_conn_drain_list_index; 28058 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28059 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28060 index++; 28061 if (index == ipst->ips_conn_drain_list_cnt) 28062 index = 0; 28063 ipst->ips_conn_drain_list_index = index; 28064 } 28065 mutex_exit(&connp->conn_lock); 28066 28067 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28068 if ((connp->conn_drain_prev != NULL) || 28069 (connp->conn_state_flags & CONN_CLOSING)) { 28070 /* 28071 * The conn is already in the drain list, OR 28072 * the conn is closing. We need to check again for 28073 * the closing case again since close can happen 28074 * after we drop the conn_lock, and before we 28075 * acquire the CONN_DRAIN_LIST_LOCK. 28076 */ 28077 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28078 return; 28079 } else { 28080 idl = connp->conn_idl; 28081 } 28082 28083 /* 28084 * The conn is not in the drain list. Insert it at the 28085 * tail of the drain list. The drain list is circular 28086 * and doubly linked. idl_conn points to the 1st element 28087 * in the list. 28088 */ 28089 if (idl->idl_conn == NULL) { 28090 idl->idl_conn = connp; 28091 connp->conn_drain_next = connp; 28092 connp->conn_drain_prev = connp; 28093 } else { 28094 conn_t *head = idl->idl_conn; 28095 28096 connp->conn_drain_next = head; 28097 connp->conn_drain_prev = head->conn_drain_prev; 28098 head->conn_drain_prev->conn_drain_next = connp; 28099 head->conn_drain_prev = connp; 28100 } 28101 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28102 } 28103 28104 /* 28105 * This conn is closing, and we are called from ip_close. OR 28106 * This conn has been serviced by ip_wsrv, and we need to do the tail 28107 * processing. 28108 * If this conn is part of the drain list, we may need to sustain the drain 28109 * process by qenabling the next conn in the drain list. We may also need to 28110 * remove this conn from the list, if it is done. 28111 */ 28112 static void 28113 conn_drain_tail(conn_t *connp, boolean_t closing) 28114 { 28115 idl_t *idl; 28116 28117 /* 28118 * connp->conn_idl is stable at this point, and no lock is needed 28119 * to check it. If we are called from ip_close, close has already 28120 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28121 * called us only because conn_idl is non-null. If we are called thru 28122 * service, conn_idl could be null, but it cannot change because 28123 * service is single-threaded per queue, and there cannot be another 28124 * instance of service trying to call conn_drain_insert on this conn 28125 * now. 28126 */ 28127 ASSERT(!closing || (connp->conn_idl != NULL)); 28128 28129 /* 28130 * If connp->conn_idl is null, the conn has not been inserted into any 28131 * drain list even once since creation of the conn. Just return. 28132 */ 28133 if (connp->conn_idl == NULL) 28134 return; 28135 28136 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28137 28138 if (connp->conn_drain_prev == NULL) { 28139 /* This conn is currently not in the drain list. */ 28140 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28141 return; 28142 } 28143 idl = connp->conn_idl; 28144 if (idl->idl_conn_draining == connp) { 28145 /* 28146 * This conn is the current drainer. If this is the last conn 28147 * in the drain list, we need to do more checks, in the 'if' 28148 * below. Otherwwise we need to just qenable the next conn, 28149 * to sustain the draining, and is handled in the 'else' 28150 * below. 28151 */ 28152 if (connp->conn_drain_next == idl->idl_conn) { 28153 /* 28154 * This conn is the last in this list. This round 28155 * of draining is complete. If idl_repeat is set, 28156 * it means another flow enabling has happened from 28157 * the driver/streams and we need to another round 28158 * of draining. 28159 * If there are more than 2 conns in the drain list, 28160 * do a left rotate by 1, so that all conns except the 28161 * conn at the head move towards the head by 1, and the 28162 * the conn at the head goes to the tail. This attempts 28163 * a more even share for all queues that are being 28164 * drained. 28165 */ 28166 if ((connp->conn_drain_next != connp) && 28167 (idl->idl_conn->conn_drain_next != connp)) { 28168 idl->idl_conn = idl->idl_conn->conn_drain_next; 28169 } 28170 if (idl->idl_repeat) { 28171 qenable(idl->idl_conn->conn_wq); 28172 idl->idl_conn_draining = idl->idl_conn; 28173 idl->idl_repeat = 0; 28174 } else { 28175 idl->idl_conn_draining = NULL; 28176 } 28177 } else { 28178 /* 28179 * If the next queue that we are now qenable'ing, 28180 * is closing, it will remove itself from this list 28181 * and qenable the subsequent queue in ip_close(). 28182 * Serialization is acheived thru idl_lock. 28183 */ 28184 qenable(connp->conn_drain_next->conn_wq); 28185 idl->idl_conn_draining = connp->conn_drain_next; 28186 } 28187 } 28188 if (!connp->conn_did_putbq || closing) { 28189 /* 28190 * Remove ourself from the drain list, if we did not do 28191 * a putbq, or if the conn is closing. 28192 * Note: It is possible that q->q_first is non-null. It means 28193 * that these messages landed after we did a enableok() in 28194 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28195 * service them. 28196 */ 28197 if (connp->conn_drain_next == connp) { 28198 /* Singleton in the list */ 28199 ASSERT(connp->conn_drain_prev == connp); 28200 idl->idl_conn = NULL; 28201 idl->idl_conn_draining = NULL; 28202 } else { 28203 connp->conn_drain_prev->conn_drain_next = 28204 connp->conn_drain_next; 28205 connp->conn_drain_next->conn_drain_prev = 28206 connp->conn_drain_prev; 28207 if (idl->idl_conn == connp) 28208 idl->idl_conn = connp->conn_drain_next; 28209 ASSERT(idl->idl_conn_draining != connp); 28210 28211 } 28212 connp->conn_drain_next = NULL; 28213 connp->conn_drain_prev = NULL; 28214 } 28215 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28216 } 28217 28218 /* 28219 * Write service routine. Shared perimeter entry point. 28220 * ip_wsrv can be called in any of the following ways. 28221 * 1. The device queue's messages has fallen below the low water mark 28222 * and STREAMS has backenabled the ill_wq. We walk thru all the 28223 * the drain lists and backenable the first conn in each list. 28224 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28225 * qenabled non-tcp upper layers. We start dequeing messages and call 28226 * ip_wput for each message. 28227 */ 28228 28229 void 28230 ip_wsrv(queue_t *q) 28231 { 28232 conn_t *connp; 28233 ill_t *ill; 28234 mblk_t *mp; 28235 28236 if (q->q_next) { 28237 ill = (ill_t *)q->q_ptr; 28238 if (ill->ill_state_flags == 0) { 28239 /* 28240 * The device flow control has opened up. 28241 * Walk through conn drain lists and qenable the 28242 * first conn in each list. This makes sense only 28243 * if the stream is fully plumbed and setup. 28244 * Hence the if check above. 28245 */ 28246 ip1dbg(("ip_wsrv: walking\n")); 28247 conn_walk_drain(ill->ill_ipst); 28248 } 28249 return; 28250 } 28251 28252 connp = Q_TO_CONN(q); 28253 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28254 28255 /* 28256 * 1. Set conn_draining flag to signal that service is active. 28257 * 28258 * 2. ip_output determines whether it has been called from service, 28259 * based on the last parameter. If it is IP_WSRV it concludes it 28260 * has been called from service. 28261 * 28262 * 3. Message ordering is preserved by the following logic. 28263 * i. A directly called ip_output (i.e. not thru service) will queue 28264 * the message at the tail, if conn_draining is set (i.e. service 28265 * is running) or if q->q_first is non-null. 28266 * 28267 * ii. If ip_output is called from service, and if ip_output cannot 28268 * putnext due to flow control, it does a putbq. 28269 * 28270 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28271 * (causing an infinite loop). 28272 */ 28273 ASSERT(!connp->conn_did_putbq); 28274 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28275 connp->conn_draining = 1; 28276 noenable(q); 28277 while ((mp = getq(q)) != NULL) { 28278 ASSERT(CONN_Q(q)); 28279 28280 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28281 if (connp->conn_did_putbq) { 28282 /* ip_wput did a putbq */ 28283 break; 28284 } 28285 } 28286 /* 28287 * At this point, a thread coming down from top, calling 28288 * ip_wput, may end up queueing the message. We have not yet 28289 * enabled the queue, so ip_wsrv won't be called again. 28290 * To avoid this race, check q->q_first again (in the loop) 28291 * If the other thread queued the message before we call 28292 * enableok(), we will catch it in the q->q_first check. 28293 * If the other thread queues the message after we call 28294 * enableok(), ip_wsrv will be called again by STREAMS. 28295 */ 28296 connp->conn_draining = 0; 28297 enableok(q); 28298 } 28299 28300 /* Enable the next conn for draining */ 28301 conn_drain_tail(connp, B_FALSE); 28302 28303 connp->conn_did_putbq = 0; 28304 } 28305 28306 /* 28307 * Walk the list of all conn's calling the function provided with the 28308 * specified argument for each. Note that this only walks conn's that 28309 * have been bound. 28310 * Applies to both IPv4 and IPv6. 28311 */ 28312 static void 28313 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28314 { 28315 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28316 ipst->ips_ipcl_udp_fanout_size, 28317 func, arg, zoneid); 28318 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28319 ipst->ips_ipcl_conn_fanout_size, 28320 func, arg, zoneid); 28321 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28322 ipst->ips_ipcl_bind_fanout_size, 28323 func, arg, zoneid); 28324 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28325 IPPROTO_MAX, func, arg, zoneid); 28326 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28327 IPPROTO_MAX, func, arg, zoneid); 28328 } 28329 28330 /* 28331 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28332 * of conns that need to be drained, check if drain is already in progress. 28333 * If so set the idl_repeat bit, indicating that the last conn in the list 28334 * needs to reinitiate the drain once again, for the list. If drain is not 28335 * in progress for the list, initiate the draining, by qenabling the 1st 28336 * conn in the list. The drain is self-sustaining, each qenabled conn will 28337 * in turn qenable the next conn, when it is done/blocked/closing. 28338 */ 28339 static void 28340 conn_walk_drain(ip_stack_t *ipst) 28341 { 28342 int i; 28343 idl_t *idl; 28344 28345 IP_STAT(ipst, ip_conn_walk_drain); 28346 28347 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28348 idl = &ipst->ips_conn_drain_list[i]; 28349 mutex_enter(&idl->idl_lock); 28350 if (idl->idl_conn == NULL) { 28351 mutex_exit(&idl->idl_lock); 28352 continue; 28353 } 28354 /* 28355 * If this list is not being drained currently by 28356 * an ip_wsrv thread, start the process. 28357 */ 28358 if (idl->idl_conn_draining == NULL) { 28359 ASSERT(idl->idl_repeat == 0); 28360 qenable(idl->idl_conn->conn_wq); 28361 idl->idl_conn_draining = idl->idl_conn; 28362 } else { 28363 idl->idl_repeat = 1; 28364 } 28365 mutex_exit(&idl->idl_lock); 28366 } 28367 } 28368 28369 /* 28370 * Walk an conn hash table of `count' buckets, calling func for each entry. 28371 */ 28372 static void 28373 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28374 zoneid_t zoneid) 28375 { 28376 conn_t *connp; 28377 28378 while (count-- > 0) { 28379 mutex_enter(&connfp->connf_lock); 28380 for (connp = connfp->connf_head; connp != NULL; 28381 connp = connp->conn_next) { 28382 if (zoneid == GLOBAL_ZONEID || 28383 zoneid == connp->conn_zoneid) { 28384 CONN_INC_REF(connp); 28385 mutex_exit(&connfp->connf_lock); 28386 (*func)(connp, arg); 28387 mutex_enter(&connfp->connf_lock); 28388 CONN_DEC_REF(connp); 28389 } 28390 } 28391 mutex_exit(&connfp->connf_lock); 28392 connfp++; 28393 } 28394 } 28395 28396 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28397 static void 28398 conn_report1(conn_t *connp, void *mp) 28399 { 28400 char buf1[INET6_ADDRSTRLEN]; 28401 char buf2[INET6_ADDRSTRLEN]; 28402 uint_t print_len, buf_len; 28403 28404 ASSERT(connp != NULL); 28405 28406 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28407 if (buf_len <= 0) 28408 return; 28409 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28410 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28411 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28412 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28413 "%5d %s/%05d %s/%05d\n", 28414 (void *)connp, (void *)CONNP_TO_RQ(connp), 28415 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28416 buf1, connp->conn_lport, 28417 buf2, connp->conn_fport); 28418 if (print_len < buf_len) { 28419 ((mblk_t *)mp)->b_wptr += print_len; 28420 } else { 28421 ((mblk_t *)mp)->b_wptr += buf_len; 28422 } 28423 } 28424 28425 /* 28426 * Named Dispatch routine to produce a formatted report on all conns 28427 * that are listed in one of the fanout tables. 28428 * This report is accessed by using the ndd utility to "get" ND variable 28429 * "ip_conn_status". 28430 */ 28431 /* ARGSUSED */ 28432 static int 28433 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28434 { 28435 conn_t *connp = Q_TO_CONN(q); 28436 28437 (void) mi_mpprintf(mp, 28438 "CONN " MI_COL_HDRPAD_STR 28439 "rfq " MI_COL_HDRPAD_STR 28440 "stq " MI_COL_HDRPAD_STR 28441 " zone local remote"); 28442 28443 /* 28444 * Because of the ndd constraint, at most we can have 64K buffer 28445 * to put in all conn info. So to be more efficient, just 28446 * allocate a 64K buffer here, assuming we need that large buffer. 28447 * This should be OK as only privileged processes can do ndd /dev/ip. 28448 */ 28449 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28450 /* The following may work even if we cannot get a large buf. */ 28451 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28452 return (0); 28453 } 28454 28455 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28456 connp->conn_netstack->netstack_ip); 28457 return (0); 28458 } 28459 28460 /* 28461 * Determine if the ill and multicast aspects of that packets 28462 * "matches" the conn. 28463 */ 28464 boolean_t 28465 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28466 zoneid_t zoneid) 28467 { 28468 ill_t *in_ill; 28469 boolean_t found; 28470 ipif_t *ipif; 28471 ire_t *ire; 28472 ipaddr_t dst, src; 28473 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28474 28475 dst = ipha->ipha_dst; 28476 src = ipha->ipha_src; 28477 28478 /* 28479 * conn_incoming_ill is set by IP_BOUND_IF which limits 28480 * unicast, broadcast and multicast reception to 28481 * conn_incoming_ill. conn_wantpacket itself is called 28482 * only for BROADCAST and multicast. 28483 * 28484 * 1) ip_rput supresses duplicate broadcasts if the ill 28485 * is part of a group. Hence, we should be receiving 28486 * just one copy of broadcast for the whole group. 28487 * Thus, if it is part of the group the packet could 28488 * come on any ill of the group and hence we need a 28489 * match on the group. Otherwise, match on ill should 28490 * be sufficient. 28491 * 28492 * 2) ip_rput does not suppress duplicate multicast packets. 28493 * If there are two interfaces in a ill group and we have 28494 * 2 applications (conns) joined a multicast group G on 28495 * both the interfaces, ilm_lookup_ill filter in ip_rput 28496 * will give us two packets because we join G on both the 28497 * interfaces rather than nominating just one interface 28498 * for receiving multicast like broadcast above. So, 28499 * we have to call ilg_lookup_ill to filter out duplicate 28500 * copies, if ill is part of a group. 28501 */ 28502 in_ill = connp->conn_incoming_ill; 28503 if (in_ill != NULL) { 28504 if (in_ill->ill_group == NULL) { 28505 if (in_ill != ill) 28506 return (B_FALSE); 28507 } else if (in_ill->ill_group != ill->ill_group) { 28508 return (B_FALSE); 28509 } 28510 } 28511 28512 if (!CLASSD(dst)) { 28513 if (IPCL_ZONE_MATCH(connp, zoneid)) 28514 return (B_TRUE); 28515 /* 28516 * The conn is in a different zone; we need to check that this 28517 * broadcast address is configured in the application's zone and 28518 * on one ill in the group. 28519 */ 28520 ipif = ipif_get_next_ipif(NULL, ill); 28521 if (ipif == NULL) 28522 return (B_FALSE); 28523 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28524 connp->conn_zoneid, NULL, 28525 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28526 ipif_refrele(ipif); 28527 if (ire != NULL) { 28528 ire_refrele(ire); 28529 return (B_TRUE); 28530 } else { 28531 return (B_FALSE); 28532 } 28533 } 28534 28535 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28536 connp->conn_zoneid == zoneid) { 28537 /* 28538 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28539 * disabled, therefore we don't dispatch the multicast packet to 28540 * the sending zone. 28541 */ 28542 return (B_FALSE); 28543 } 28544 28545 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28546 /* 28547 * Multicast packet on the loopback interface: we only match 28548 * conns who joined the group in the specified zone. 28549 */ 28550 return (B_FALSE); 28551 } 28552 28553 if (connp->conn_multi_router) { 28554 /* multicast packet and multicast router socket: send up */ 28555 return (B_TRUE); 28556 } 28557 28558 mutex_enter(&connp->conn_lock); 28559 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28560 mutex_exit(&connp->conn_lock); 28561 return (found); 28562 } 28563 28564 /* 28565 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28566 */ 28567 /* ARGSUSED */ 28568 static void 28569 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28570 { 28571 ill_t *ill = (ill_t *)q->q_ptr; 28572 mblk_t *mp1, *mp2; 28573 ipif_t *ipif; 28574 int err = 0; 28575 conn_t *connp = NULL; 28576 ipsq_t *ipsq; 28577 arc_t *arc; 28578 28579 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28580 28581 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28582 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28583 28584 ASSERT(IAM_WRITER_ILL(ill)); 28585 mp2 = mp->b_cont; 28586 mp->b_cont = NULL; 28587 28588 /* 28589 * We have now received the arp bringup completion message 28590 * from ARP. Mark the arp bringup as done. Also if the arp 28591 * stream has already started closing, send up the AR_ARP_CLOSING 28592 * ack now since ARP is waiting in close for this ack. 28593 */ 28594 mutex_enter(&ill->ill_lock); 28595 ill->ill_arp_bringup_pending = 0; 28596 if (ill->ill_arp_closing) { 28597 mutex_exit(&ill->ill_lock); 28598 /* Let's reuse the mp for sending the ack */ 28599 arc = (arc_t *)mp->b_rptr; 28600 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28601 arc->arc_cmd = AR_ARP_CLOSING; 28602 qreply(q, mp); 28603 } else { 28604 mutex_exit(&ill->ill_lock); 28605 freeb(mp); 28606 } 28607 28608 ipsq = ill->ill_phyint->phyint_ipsq; 28609 ipif = ipsq->ipsq_pending_ipif; 28610 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28611 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28612 if (mp1 == NULL) { 28613 /* bringup was aborted by the user */ 28614 freemsg(mp2); 28615 return; 28616 } 28617 28618 /* 28619 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28620 * must have an associated conn_t. Otherwise, we're bringing this 28621 * interface back up as part of handling an asynchronous event (e.g., 28622 * physical address change). 28623 */ 28624 if (ipsq->ipsq_current_ioctl != 0) { 28625 ASSERT(connp != NULL); 28626 q = CONNP_TO_WQ(connp); 28627 } else { 28628 ASSERT(connp == NULL); 28629 q = ill->ill_rq; 28630 } 28631 28632 /* 28633 * If the DL_BIND_REQ fails, it is noted 28634 * in arc_name_offset. 28635 */ 28636 err = *((int *)mp2->b_rptr); 28637 if (err == 0) { 28638 if (ipif->ipif_isv6) { 28639 if ((err = ipif_up_done_v6(ipif)) != 0) 28640 ip0dbg(("ip_arp_done: init failed\n")); 28641 } else { 28642 if ((err = ipif_up_done(ipif)) != 0) 28643 ip0dbg(("ip_arp_done: init failed\n")); 28644 } 28645 } else { 28646 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28647 } 28648 28649 freemsg(mp2); 28650 28651 if ((err == 0) && (ill->ill_up_ipifs)) { 28652 err = ill_up_ipifs(ill, q, mp1); 28653 if (err == EINPROGRESS) 28654 return; 28655 } 28656 28657 if (ill->ill_up_ipifs) 28658 ill_group_cleanup(ill); 28659 28660 /* 28661 * The operation must complete without EINPROGRESS since 28662 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28663 * Otherwise, the operation will be stuck forever in the ipsq. 28664 */ 28665 ASSERT(err != EINPROGRESS); 28666 if (ipsq->ipsq_current_ioctl != 0) 28667 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28668 else 28669 ipsq_current_finish(ipsq); 28670 } 28671 28672 /* Allocate the private structure */ 28673 static int 28674 ip_priv_alloc(void **bufp) 28675 { 28676 void *buf; 28677 28678 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28679 return (ENOMEM); 28680 28681 *bufp = buf; 28682 return (0); 28683 } 28684 28685 /* Function to delete the private structure */ 28686 void 28687 ip_priv_free(void *buf) 28688 { 28689 ASSERT(buf != NULL); 28690 kmem_free(buf, sizeof (ip_priv_t)); 28691 } 28692 28693 /* 28694 * The entry point for IPPF processing. 28695 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28696 * routine just returns. 28697 * 28698 * When called, ip_process generates an ipp_packet_t structure 28699 * which holds the state information for this packet and invokes the 28700 * the classifier (via ipp_packet_process). The classification, depending on 28701 * configured filters, results in a list of actions for this packet. Invoking 28702 * an action may cause the packet to be dropped, in which case the resulting 28703 * mblk (*mpp) is NULL. proc indicates the callout position for 28704 * this packet and ill_index is the interface this packet on or will leave 28705 * on (inbound and outbound resp.). 28706 */ 28707 void 28708 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28709 { 28710 mblk_t *mp; 28711 ip_priv_t *priv; 28712 ipp_action_id_t aid; 28713 int rc = 0; 28714 ipp_packet_t *pp; 28715 #define IP_CLASS "ip" 28716 28717 /* If the classifier is not loaded, return */ 28718 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28719 return; 28720 } 28721 28722 mp = *mpp; 28723 ASSERT(mp != NULL); 28724 28725 /* Allocate the packet structure */ 28726 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28727 if (rc != 0) { 28728 *mpp = NULL; 28729 freemsg(mp); 28730 return; 28731 } 28732 28733 /* Allocate the private structure */ 28734 rc = ip_priv_alloc((void **)&priv); 28735 if (rc != 0) { 28736 *mpp = NULL; 28737 freemsg(mp); 28738 ipp_packet_free(pp); 28739 return; 28740 } 28741 priv->proc = proc; 28742 priv->ill_index = ill_index; 28743 ipp_packet_set_private(pp, priv, ip_priv_free); 28744 ipp_packet_set_data(pp, mp); 28745 28746 /* Invoke the classifier */ 28747 rc = ipp_packet_process(&pp); 28748 if (pp != NULL) { 28749 mp = ipp_packet_get_data(pp); 28750 ipp_packet_free(pp); 28751 if (rc != 0) { 28752 freemsg(mp); 28753 *mpp = NULL; 28754 } 28755 } else { 28756 *mpp = NULL; 28757 } 28758 #undef IP_CLASS 28759 } 28760 28761 /* 28762 * Propagate a multicast group membership operation (add/drop) on 28763 * all the interfaces crossed by the related multirt routes. 28764 * The call is considered successful if the operation succeeds 28765 * on at least one interface. 28766 */ 28767 static int 28768 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28769 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28770 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28771 mblk_t *first_mp) 28772 { 28773 ire_t *ire_gw; 28774 irb_t *irb; 28775 int error = 0; 28776 opt_restart_t *or; 28777 ip_stack_t *ipst = ire->ire_ipst; 28778 28779 irb = ire->ire_bucket; 28780 ASSERT(irb != NULL); 28781 28782 ASSERT(DB_TYPE(first_mp) == M_CTL); 28783 28784 or = (opt_restart_t *)first_mp->b_rptr; 28785 IRB_REFHOLD(irb); 28786 for (; ire != NULL; ire = ire->ire_next) { 28787 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28788 continue; 28789 if (ire->ire_addr != group) 28790 continue; 28791 28792 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28793 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28794 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28795 /* No resolver exists for the gateway; skip this ire. */ 28796 if (ire_gw == NULL) 28797 continue; 28798 28799 /* 28800 * This function can return EINPROGRESS. If so the operation 28801 * will be restarted from ip_restart_optmgmt which will 28802 * call ip_opt_set and option processing will restart for 28803 * this option. So we may end up calling 'fn' more than once. 28804 * This requires that 'fn' is idempotent except for the 28805 * return value. The operation is considered a success if 28806 * it succeeds at least once on any one interface. 28807 */ 28808 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28809 NULL, fmode, src, first_mp); 28810 if (error == 0) 28811 or->or_private = CGTP_MCAST_SUCCESS; 28812 28813 if (ip_debug > 0) { 28814 ulong_t off; 28815 char *ksym; 28816 ksym = kobj_getsymname((uintptr_t)fn, &off); 28817 ip2dbg(("ip_multirt_apply_membership: " 28818 "called %s, multirt group 0x%08x via itf 0x%08x, " 28819 "error %d [success %u]\n", 28820 ksym ? ksym : "?", 28821 ntohl(group), ntohl(ire_gw->ire_src_addr), 28822 error, or->or_private)); 28823 } 28824 28825 ire_refrele(ire_gw); 28826 if (error == EINPROGRESS) { 28827 IRB_REFRELE(irb); 28828 return (error); 28829 } 28830 } 28831 IRB_REFRELE(irb); 28832 /* 28833 * Consider the call as successful if we succeeded on at least 28834 * one interface. Otherwise, return the last encountered error. 28835 */ 28836 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28837 } 28838 28839 28840 /* 28841 * Issue a warning regarding a route crossing an interface with an 28842 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28843 * amount of time is logged. 28844 */ 28845 static void 28846 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28847 { 28848 hrtime_t current = gethrtime(); 28849 char buf[INET_ADDRSTRLEN]; 28850 ip_stack_t *ipst = ire->ire_ipst; 28851 28852 /* Convert interval in ms to hrtime in ns */ 28853 if (ipst->ips_multirt_bad_mtu_last_time + 28854 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28855 current) { 28856 cmn_err(CE_WARN, "ip: ignoring multiroute " 28857 "to %s, incorrect MTU %u (expected %u)\n", 28858 ip_dot_addr(ire->ire_addr, buf), 28859 ire->ire_max_frag, max_frag); 28860 28861 ipst->ips_multirt_bad_mtu_last_time = current; 28862 } 28863 } 28864 28865 28866 /* 28867 * Get the CGTP (multirouting) filtering status. 28868 * If 0, the CGTP hooks are transparent. 28869 */ 28870 /* ARGSUSED */ 28871 static int 28872 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28873 { 28874 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28875 28876 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28877 return (0); 28878 } 28879 28880 28881 /* 28882 * Set the CGTP (multirouting) filtering status. 28883 * If the status is changed from active to transparent 28884 * or from transparent to active, forward the new status 28885 * to the filtering module (if loaded). 28886 */ 28887 /* ARGSUSED */ 28888 static int 28889 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28890 cred_t *ioc_cr) 28891 { 28892 long new_value; 28893 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28894 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28895 28896 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28897 return (EPERM); 28898 28899 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28900 new_value < 0 || new_value > 1) { 28901 return (EINVAL); 28902 } 28903 28904 if ((!*ip_cgtp_filter_value) && new_value) { 28905 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28906 ipst->ips_ip_cgtp_filter_ops == NULL ? 28907 " (module not loaded)" : ""); 28908 } 28909 if (*ip_cgtp_filter_value && (!new_value)) { 28910 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28911 ipst->ips_ip_cgtp_filter_ops == NULL ? 28912 " (module not loaded)" : ""); 28913 } 28914 28915 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28916 int res; 28917 netstackid_t stackid; 28918 28919 stackid = ipst->ips_netstack->netstack_stackid; 28920 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28921 new_value); 28922 if (res) 28923 return (res); 28924 } 28925 28926 *ip_cgtp_filter_value = (boolean_t)new_value; 28927 28928 return (0); 28929 } 28930 28931 28932 /* 28933 * Return the expected CGTP hooks version number. 28934 */ 28935 int 28936 ip_cgtp_filter_supported(void) 28937 { 28938 return (ip_cgtp_filter_rev); 28939 } 28940 28941 28942 /* 28943 * CGTP hooks can be registered by invoking this function. 28944 * Checks that the version number matches. 28945 */ 28946 int 28947 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28948 { 28949 netstack_t *ns; 28950 ip_stack_t *ipst; 28951 28952 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28953 return (ENOTSUP); 28954 28955 ns = netstack_find_by_stackid(stackid); 28956 if (ns == NULL) 28957 return (EINVAL); 28958 ipst = ns->netstack_ip; 28959 ASSERT(ipst != NULL); 28960 28961 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28962 netstack_rele(ns); 28963 return (EALREADY); 28964 } 28965 28966 ipst->ips_ip_cgtp_filter_ops = ops; 28967 netstack_rele(ns); 28968 return (0); 28969 } 28970 28971 /* 28972 * CGTP hooks can be unregistered by invoking this function. 28973 * Returns ENXIO if there was no registration. 28974 * Returns EBUSY if the ndd variable has not been turned off. 28975 */ 28976 int 28977 ip_cgtp_filter_unregister(netstackid_t stackid) 28978 { 28979 netstack_t *ns; 28980 ip_stack_t *ipst; 28981 28982 ns = netstack_find_by_stackid(stackid); 28983 if (ns == NULL) 28984 return (EINVAL); 28985 ipst = ns->netstack_ip; 28986 ASSERT(ipst != NULL); 28987 28988 if (ipst->ips_ip_cgtp_filter) { 28989 netstack_rele(ns); 28990 return (EBUSY); 28991 } 28992 28993 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28994 netstack_rele(ns); 28995 return (ENXIO); 28996 } 28997 ipst->ips_ip_cgtp_filter_ops = NULL; 28998 netstack_rele(ns); 28999 return (0); 29000 } 29001 29002 /* 29003 * Check whether there is a CGTP filter registration. 29004 * Returns non-zero if there is a registration, otherwise returns zero. 29005 * Note: returns zero if bad stackid. 29006 */ 29007 int 29008 ip_cgtp_filter_is_registered(netstackid_t stackid) 29009 { 29010 netstack_t *ns; 29011 ip_stack_t *ipst; 29012 int ret; 29013 29014 ns = netstack_find_by_stackid(stackid); 29015 if (ns == NULL) 29016 return (0); 29017 ipst = ns->netstack_ip; 29018 ASSERT(ipst != NULL); 29019 29020 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29021 ret = 1; 29022 else 29023 ret = 0; 29024 29025 netstack_rele(ns); 29026 return (ret); 29027 } 29028 29029 static squeue_func_t 29030 ip_squeue_switch(int val) 29031 { 29032 squeue_func_t rval = squeue_fill; 29033 29034 switch (val) { 29035 case IP_SQUEUE_ENTER_NODRAIN: 29036 rval = squeue_enter_nodrain; 29037 break; 29038 case IP_SQUEUE_ENTER: 29039 rval = squeue_enter; 29040 break; 29041 default: 29042 break; 29043 } 29044 return (rval); 29045 } 29046 29047 /* ARGSUSED */ 29048 static int 29049 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29050 caddr_t addr, cred_t *cr) 29051 { 29052 int *v = (int *)addr; 29053 long new_value; 29054 29055 if (secpolicy_net_config(cr, B_FALSE) != 0) 29056 return (EPERM); 29057 29058 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29059 return (EINVAL); 29060 29061 ip_input_proc = ip_squeue_switch(new_value); 29062 *v = new_value; 29063 return (0); 29064 } 29065 29066 /* ARGSUSED */ 29067 static int 29068 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29069 caddr_t addr, cred_t *cr) 29070 { 29071 int *v = (int *)addr; 29072 long new_value; 29073 29074 if (secpolicy_net_config(cr, B_FALSE) != 0) 29075 return (EPERM); 29076 29077 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29078 return (EINVAL); 29079 29080 *v = new_value; 29081 return (0); 29082 } 29083 29084 /* 29085 * Handle changes to ipmp_hook_emulation ndd variable. 29086 * Need to update phyint_hook_ifindex. 29087 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29088 */ 29089 static void 29090 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29091 { 29092 phyint_t *phyi; 29093 phyint_t *phyi_tmp; 29094 char *groupname; 29095 int namelen; 29096 ill_t *ill; 29097 boolean_t new_group; 29098 29099 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29100 /* 29101 * Group indicies are stored in the phyint - a common structure 29102 * to both IPv4 and IPv6. 29103 */ 29104 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29105 for (; phyi != NULL; 29106 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29107 phyi, AVL_AFTER)) { 29108 /* Ignore the ones that do not have a group */ 29109 if (phyi->phyint_groupname_len == 0) 29110 continue; 29111 29112 /* 29113 * Look for other phyint in group. 29114 * Clear name/namelen so the lookup doesn't find ourselves. 29115 */ 29116 namelen = phyi->phyint_groupname_len; 29117 groupname = phyi->phyint_groupname; 29118 phyi->phyint_groupname_len = 0; 29119 phyi->phyint_groupname = NULL; 29120 29121 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29122 /* Restore */ 29123 phyi->phyint_groupname_len = namelen; 29124 phyi->phyint_groupname = groupname; 29125 29126 new_group = B_FALSE; 29127 if (ipst->ips_ipmp_hook_emulation) { 29128 /* 29129 * If the group already exists and has already 29130 * been assigned a group ifindex, we use the existing 29131 * group_ifindex, otherwise we pick a new group_ifindex 29132 * here. 29133 */ 29134 if (phyi_tmp != NULL && 29135 phyi_tmp->phyint_group_ifindex != 0) { 29136 phyi->phyint_group_ifindex = 29137 phyi_tmp->phyint_group_ifindex; 29138 } else { 29139 /* XXX We need a recovery strategy here. */ 29140 if (!ip_assign_ifindex( 29141 &phyi->phyint_group_ifindex, ipst)) 29142 cmn_err(CE_PANIC, 29143 "ip_assign_ifindex() failed"); 29144 new_group = B_TRUE; 29145 } 29146 } else { 29147 phyi->phyint_group_ifindex = 0; 29148 } 29149 if (ipst->ips_ipmp_hook_emulation) 29150 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29151 else 29152 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29153 29154 /* 29155 * For IP Filter to find out the relationship between 29156 * names and interface indicies, we need to generate 29157 * a NE_PLUMB event when a new group can appear. 29158 * We always generate events when a new interface appears 29159 * (even when ipmp_hook_emulation is set) so there 29160 * is no need to generate NE_PLUMB events when 29161 * ipmp_hook_emulation is turned off. 29162 * And since it isn't critical for IP Filter to get 29163 * the NE_UNPLUMB events we skip those here. 29164 */ 29165 if (new_group) { 29166 /* 29167 * First phyint in group - generate group PLUMB event. 29168 * Since we are not running inside the ipsq we do 29169 * the dispatch immediately. 29170 */ 29171 if (phyi->phyint_illv4 != NULL) 29172 ill = phyi->phyint_illv4; 29173 else 29174 ill = phyi->phyint_illv6; 29175 29176 if (ill != NULL) { 29177 mutex_enter(&ill->ill_lock); 29178 ill_nic_info_plumb(ill, B_TRUE); 29179 ill_nic_info_dispatch(ill); 29180 mutex_exit(&ill->ill_lock); 29181 } 29182 } 29183 } 29184 rw_exit(&ipst->ips_ill_g_lock); 29185 } 29186 29187 /* ARGSUSED */ 29188 static int 29189 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29190 caddr_t addr, cred_t *cr) 29191 { 29192 int *v = (int *)addr; 29193 long new_value; 29194 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29195 29196 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29197 return (EINVAL); 29198 29199 if (*v != new_value) { 29200 *v = new_value; 29201 ipmp_hook_emulation_changed(ipst); 29202 } 29203 return (0); 29204 } 29205 29206 static void * 29207 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29208 { 29209 kstat_t *ksp; 29210 29211 ip_stat_t template = { 29212 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29213 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29214 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29215 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29216 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29217 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29218 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29219 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29220 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29221 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29222 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29223 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29224 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29225 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29226 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29227 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29228 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29229 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29230 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29231 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29232 { "ip_opt", KSTAT_DATA_UINT64 }, 29233 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29234 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29235 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29236 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29237 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29238 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29239 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29240 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29241 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29242 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29243 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29244 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29245 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29246 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29247 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29248 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29249 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29250 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29251 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29252 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29253 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29254 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29255 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29256 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29257 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29258 }; 29259 29260 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29261 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29262 KSTAT_FLAG_VIRTUAL, stackid); 29263 29264 if (ksp == NULL) 29265 return (NULL); 29266 29267 bcopy(&template, ip_statisticsp, sizeof (template)); 29268 ksp->ks_data = (void *)ip_statisticsp; 29269 ksp->ks_private = (void *)(uintptr_t)stackid; 29270 29271 kstat_install(ksp); 29272 return (ksp); 29273 } 29274 29275 static void 29276 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29277 { 29278 if (ksp != NULL) { 29279 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29280 kstat_delete_netstack(ksp, stackid); 29281 } 29282 } 29283 29284 static void * 29285 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29286 { 29287 kstat_t *ksp; 29288 29289 ip_named_kstat_t template = { 29290 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29291 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29292 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29293 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29294 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29295 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29296 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29297 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29298 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29299 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29300 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29301 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29302 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29303 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29304 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29305 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29306 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29307 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29308 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29309 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29310 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29311 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29312 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29313 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29314 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29315 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29316 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29317 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29318 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29319 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29320 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29321 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29322 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29323 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29324 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29325 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29326 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29327 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29328 }; 29329 29330 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29331 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29332 if (ksp == NULL || ksp->ks_data == NULL) 29333 return (NULL); 29334 29335 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29336 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29337 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29338 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29339 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29340 29341 template.netToMediaEntrySize.value.i32 = 29342 sizeof (mib2_ipNetToMediaEntry_t); 29343 29344 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29345 29346 bcopy(&template, ksp->ks_data, sizeof (template)); 29347 ksp->ks_update = ip_kstat_update; 29348 ksp->ks_private = (void *)(uintptr_t)stackid; 29349 29350 kstat_install(ksp); 29351 return (ksp); 29352 } 29353 29354 static void 29355 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29356 { 29357 if (ksp != NULL) { 29358 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29359 kstat_delete_netstack(ksp, stackid); 29360 } 29361 } 29362 29363 static int 29364 ip_kstat_update(kstat_t *kp, int rw) 29365 { 29366 ip_named_kstat_t *ipkp; 29367 mib2_ipIfStatsEntry_t ipmib; 29368 ill_walk_context_t ctx; 29369 ill_t *ill; 29370 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29371 netstack_t *ns; 29372 ip_stack_t *ipst; 29373 29374 if (kp == NULL || kp->ks_data == NULL) 29375 return (EIO); 29376 29377 if (rw == KSTAT_WRITE) 29378 return (EACCES); 29379 29380 ns = netstack_find_by_stackid(stackid); 29381 if (ns == NULL) 29382 return (-1); 29383 ipst = ns->netstack_ip; 29384 if (ipst == NULL) { 29385 netstack_rele(ns); 29386 return (-1); 29387 } 29388 ipkp = (ip_named_kstat_t *)kp->ks_data; 29389 29390 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29391 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29392 ill = ILL_START_WALK_V4(&ctx, ipst); 29393 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29394 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29395 rw_exit(&ipst->ips_ill_g_lock); 29396 29397 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29398 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29399 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29400 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29401 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29402 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29403 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29404 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29405 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29406 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29407 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29408 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29409 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29410 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29411 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29412 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29413 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29414 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29415 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29416 29417 ipkp->routingDiscards.value.ui32 = 0; 29418 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29419 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29420 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29421 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29422 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29423 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29424 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29425 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29426 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29427 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29428 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29429 29430 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29431 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29432 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29433 29434 netstack_rele(ns); 29435 29436 return (0); 29437 } 29438 29439 static void * 29440 icmp_kstat_init(netstackid_t stackid) 29441 { 29442 kstat_t *ksp; 29443 29444 icmp_named_kstat_t template = { 29445 { "inMsgs", KSTAT_DATA_UINT32 }, 29446 { "inErrors", KSTAT_DATA_UINT32 }, 29447 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29448 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29449 { "inParmProbs", KSTAT_DATA_UINT32 }, 29450 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29451 { "inRedirects", KSTAT_DATA_UINT32 }, 29452 { "inEchos", KSTAT_DATA_UINT32 }, 29453 { "inEchoReps", KSTAT_DATA_UINT32 }, 29454 { "inTimestamps", KSTAT_DATA_UINT32 }, 29455 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29456 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29457 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29458 { "outMsgs", KSTAT_DATA_UINT32 }, 29459 { "outErrors", KSTAT_DATA_UINT32 }, 29460 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29461 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29462 { "outParmProbs", KSTAT_DATA_UINT32 }, 29463 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29464 { "outRedirects", KSTAT_DATA_UINT32 }, 29465 { "outEchos", KSTAT_DATA_UINT32 }, 29466 { "outEchoReps", KSTAT_DATA_UINT32 }, 29467 { "outTimestamps", KSTAT_DATA_UINT32 }, 29468 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29469 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29470 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29471 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29472 { "inUnknowns", KSTAT_DATA_UINT32 }, 29473 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29474 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29475 { "outDrops", KSTAT_DATA_UINT32 }, 29476 { "inOverFlows", KSTAT_DATA_UINT32 }, 29477 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29478 }; 29479 29480 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29481 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29482 if (ksp == NULL || ksp->ks_data == NULL) 29483 return (NULL); 29484 29485 bcopy(&template, ksp->ks_data, sizeof (template)); 29486 29487 ksp->ks_update = icmp_kstat_update; 29488 ksp->ks_private = (void *)(uintptr_t)stackid; 29489 29490 kstat_install(ksp); 29491 return (ksp); 29492 } 29493 29494 static void 29495 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29496 { 29497 if (ksp != NULL) { 29498 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29499 kstat_delete_netstack(ksp, stackid); 29500 } 29501 } 29502 29503 static int 29504 icmp_kstat_update(kstat_t *kp, int rw) 29505 { 29506 icmp_named_kstat_t *icmpkp; 29507 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29508 netstack_t *ns; 29509 ip_stack_t *ipst; 29510 29511 if ((kp == NULL) || (kp->ks_data == NULL)) 29512 return (EIO); 29513 29514 if (rw == KSTAT_WRITE) 29515 return (EACCES); 29516 29517 ns = netstack_find_by_stackid(stackid); 29518 if (ns == NULL) 29519 return (-1); 29520 ipst = ns->netstack_ip; 29521 if (ipst == NULL) { 29522 netstack_rele(ns); 29523 return (-1); 29524 } 29525 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29526 29527 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29528 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29529 icmpkp->inDestUnreachs.value.ui32 = 29530 ipst->ips_icmp_mib.icmpInDestUnreachs; 29531 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29532 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29533 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29534 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29535 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29536 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29537 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29538 icmpkp->inTimestampReps.value.ui32 = 29539 ipst->ips_icmp_mib.icmpInTimestampReps; 29540 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29541 icmpkp->inAddrMaskReps.value.ui32 = 29542 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29543 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29544 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29545 icmpkp->outDestUnreachs.value.ui32 = 29546 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29547 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29548 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29549 icmpkp->outSrcQuenchs.value.ui32 = 29550 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29551 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29552 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29553 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29554 icmpkp->outTimestamps.value.ui32 = 29555 ipst->ips_icmp_mib.icmpOutTimestamps; 29556 icmpkp->outTimestampReps.value.ui32 = 29557 ipst->ips_icmp_mib.icmpOutTimestampReps; 29558 icmpkp->outAddrMasks.value.ui32 = 29559 ipst->ips_icmp_mib.icmpOutAddrMasks; 29560 icmpkp->outAddrMaskReps.value.ui32 = 29561 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29562 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29563 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29564 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29565 icmpkp->outFragNeeded.value.ui32 = 29566 ipst->ips_icmp_mib.icmpOutFragNeeded; 29567 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29568 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29569 icmpkp->inBadRedirects.value.ui32 = 29570 ipst->ips_icmp_mib.icmpInBadRedirects; 29571 29572 netstack_rele(ns); 29573 return (0); 29574 } 29575 29576 /* 29577 * This is the fanout function for raw socket opened for SCTP. Note 29578 * that it is called after SCTP checks that there is no socket which 29579 * wants a packet. Then before SCTP handles this out of the blue packet, 29580 * this function is called to see if there is any raw socket for SCTP. 29581 * If there is and it is bound to the correct address, the packet will 29582 * be sent to that socket. Note that only one raw socket can be bound to 29583 * a port. This is assured in ipcl_sctp_hash_insert(); 29584 */ 29585 void 29586 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29587 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29588 zoneid_t zoneid) 29589 { 29590 conn_t *connp; 29591 queue_t *rq; 29592 mblk_t *first_mp; 29593 boolean_t secure; 29594 ip6_t *ip6h; 29595 ip_stack_t *ipst = recv_ill->ill_ipst; 29596 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29597 29598 first_mp = mp; 29599 if (mctl_present) { 29600 mp = first_mp->b_cont; 29601 secure = ipsec_in_is_secure(first_mp); 29602 ASSERT(mp != NULL); 29603 } else { 29604 secure = B_FALSE; 29605 } 29606 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29607 29608 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29609 if (connp == NULL) { 29610 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29611 return; 29612 } 29613 rq = connp->conn_rq; 29614 if (!canputnext(rq)) { 29615 CONN_DEC_REF(connp); 29616 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29617 freemsg(first_mp); 29618 return; 29619 } 29620 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29621 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29622 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29623 (isv4 ? ipha : NULL), ip6h, mctl_present); 29624 if (first_mp == NULL) { 29625 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29626 CONN_DEC_REF(connp); 29627 return; 29628 } 29629 } 29630 /* 29631 * We probably should not send M_CTL message up to 29632 * raw socket. 29633 */ 29634 if (mctl_present) 29635 freeb(first_mp); 29636 29637 /* Initiate IPPF processing here if needed. */ 29638 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29639 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29640 ip_process(IPP_LOCAL_IN, &mp, 29641 recv_ill->ill_phyint->phyint_ifindex); 29642 if (mp == NULL) { 29643 CONN_DEC_REF(connp); 29644 return; 29645 } 29646 } 29647 29648 if (connp->conn_recvif || connp->conn_recvslla || 29649 ((connp->conn_ip_recvpktinfo || 29650 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29651 (flags & IP_FF_IPINFO))) { 29652 int in_flags = 0; 29653 29654 /* 29655 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29656 * IPF_RECVIF. 29657 */ 29658 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29659 in_flags = IPF_RECVIF; 29660 } 29661 if (connp->conn_recvslla) { 29662 in_flags |= IPF_RECVSLLA; 29663 } 29664 if (isv4) { 29665 mp = ip_add_info(mp, recv_ill, in_flags, 29666 IPCL_ZONEID(connp), ipst); 29667 } else { 29668 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29669 if (mp == NULL) { 29670 BUMP_MIB(recv_ill->ill_ip_mib, 29671 ipIfStatsInDiscards); 29672 CONN_DEC_REF(connp); 29673 return; 29674 } 29675 } 29676 } 29677 29678 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29679 /* 29680 * We are sending the IPSEC_IN message also up. Refer 29681 * to comments above this function. 29682 */ 29683 putnext(rq, mp); 29684 CONN_DEC_REF(connp); 29685 } 29686 29687 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29688 { \ 29689 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29690 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29691 } 29692 /* 29693 * This function should be called only if all packet processing 29694 * including fragmentation is complete. Callers of this function 29695 * must set mp->b_prev to one of these values: 29696 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29697 * prior to handing over the mp as first argument to this function. 29698 * 29699 * If the ire passed by caller is incomplete, this function 29700 * queues the packet and if necessary, sends ARP request and bails. 29701 * If the ire passed is fully resolved, we simply prepend 29702 * the link-layer header to the packet, do ipsec hw acceleration 29703 * work if necessary, and send the packet out on the wire. 29704 * 29705 * NOTE: IPsec will only call this function with fully resolved 29706 * ires if hw acceleration is involved. 29707 * TODO list : 29708 * a Handle M_MULTIDATA so that 29709 * tcp_multisend->tcp_multisend_data can 29710 * call ip_xmit_v4 directly 29711 * b Handle post-ARP work for fragments so that 29712 * ip_wput_frag can call this function. 29713 */ 29714 ipxmit_state_t 29715 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29716 { 29717 nce_t *arpce; 29718 queue_t *q; 29719 int ill_index; 29720 mblk_t *nxt_mp, *first_mp; 29721 boolean_t xmit_drop = B_FALSE; 29722 ip_proc_t proc; 29723 ill_t *out_ill; 29724 int pkt_len; 29725 29726 arpce = ire->ire_nce; 29727 ASSERT(arpce != NULL); 29728 29729 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29730 29731 mutex_enter(&arpce->nce_lock); 29732 switch (arpce->nce_state) { 29733 case ND_REACHABLE: 29734 /* If there are other queued packets, queue this packet */ 29735 if (arpce->nce_qd_mp != NULL) { 29736 if (mp != NULL) 29737 nce_queue_mp_common(arpce, mp, B_FALSE); 29738 mp = arpce->nce_qd_mp; 29739 } 29740 arpce->nce_qd_mp = NULL; 29741 mutex_exit(&arpce->nce_lock); 29742 29743 /* 29744 * Flush the queue. In the common case, where the 29745 * ARP is already resolved, it will go through the 29746 * while loop only once. 29747 */ 29748 while (mp != NULL) { 29749 29750 nxt_mp = mp->b_next; 29751 mp->b_next = NULL; 29752 ASSERT(mp->b_datap->db_type != M_CTL); 29753 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29754 /* 29755 * This info is needed for IPQOS to do COS marking 29756 * in ip_wput_attach_llhdr->ip_process. 29757 */ 29758 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29759 mp->b_prev = NULL; 29760 29761 /* set up ill index for outbound qos processing */ 29762 out_ill = ire->ire_ipif->ipif_ill; 29763 ill_index = out_ill->ill_phyint->phyint_ifindex; 29764 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29765 ill_index); 29766 if (first_mp == NULL) { 29767 xmit_drop = B_TRUE; 29768 BUMP_MIB(out_ill->ill_ip_mib, 29769 ipIfStatsOutDiscards); 29770 goto next_mp; 29771 } 29772 /* non-ipsec hw accel case */ 29773 if (io == NULL || !io->ipsec_out_accelerated) { 29774 /* send it */ 29775 q = ire->ire_stq; 29776 if (proc == IPP_FWD_OUT) { 29777 UPDATE_IB_PKT_COUNT(ire); 29778 } else { 29779 UPDATE_OB_PKT_COUNT(ire); 29780 } 29781 ire->ire_last_used_time = lbolt; 29782 29783 if (flow_ctl_enabled || canputnext(q)) { 29784 if (proc == IPP_FWD_OUT) { 29785 29786 BUMP_MIB(out_ill->ill_ip_mib, 29787 ipIfStatsHCOutForwDatagrams); 29788 29789 } 29790 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29791 pkt_len); 29792 29793 putnext(q, first_mp); 29794 } else { 29795 BUMP_MIB(out_ill->ill_ip_mib, 29796 ipIfStatsOutDiscards); 29797 xmit_drop = B_TRUE; 29798 freemsg(first_mp); 29799 } 29800 } else { 29801 /* 29802 * Safety Pup says: make sure this 29803 * is going to the right interface! 29804 */ 29805 ill_t *ill1 = 29806 (ill_t *)ire->ire_stq->q_ptr; 29807 int ifindex = 29808 ill1->ill_phyint->phyint_ifindex; 29809 if (ifindex != 29810 io->ipsec_out_capab_ill_index) { 29811 xmit_drop = B_TRUE; 29812 freemsg(mp); 29813 } else { 29814 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29815 pkt_len); 29816 ipsec_hw_putnext(ire->ire_stq, mp); 29817 } 29818 } 29819 next_mp: 29820 mp = nxt_mp; 29821 } /* while (mp != NULL) */ 29822 if (xmit_drop) 29823 return (SEND_FAILED); 29824 else 29825 return (SEND_PASSED); 29826 29827 case ND_INITIAL: 29828 case ND_INCOMPLETE: 29829 29830 /* 29831 * While we do send off packets to dests that 29832 * use fully-resolved CGTP routes, we do not 29833 * handle unresolved CGTP routes. 29834 */ 29835 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29836 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29837 29838 if (mp != NULL) { 29839 /* queue the packet */ 29840 nce_queue_mp_common(arpce, mp, B_FALSE); 29841 } 29842 29843 if (arpce->nce_state == ND_INCOMPLETE) { 29844 mutex_exit(&arpce->nce_lock); 29845 DTRACE_PROBE3(ip__xmit__incomplete, 29846 (ire_t *), ire, (mblk_t *), mp, 29847 (ipsec_out_t *), io); 29848 return (LOOKUP_IN_PROGRESS); 29849 } 29850 29851 arpce->nce_state = ND_INCOMPLETE; 29852 mutex_exit(&arpce->nce_lock); 29853 /* 29854 * Note that ire_add() (called from ire_forward()) 29855 * holds a ref on the ire until ARP is completed. 29856 */ 29857 29858 ire_arpresolve(ire, ire_to_ill(ire)); 29859 return (LOOKUP_IN_PROGRESS); 29860 default: 29861 ASSERT(0); 29862 mutex_exit(&arpce->nce_lock); 29863 return (LLHDR_RESLV_FAILED); 29864 } 29865 } 29866 29867 #undef UPDATE_IP_MIB_OB_COUNTERS 29868 29869 /* 29870 * Return B_TRUE if the buffers differ in length or content. 29871 * This is used for comparing extension header buffers. 29872 * Note that an extension header would be declared different 29873 * even if all that changed was the next header value in that header i.e. 29874 * what really changed is the next extension header. 29875 */ 29876 boolean_t 29877 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29878 uint_t blen) 29879 { 29880 if (!b_valid) 29881 blen = 0; 29882 29883 if (alen != blen) 29884 return (B_TRUE); 29885 if (alen == 0) 29886 return (B_FALSE); /* Both zero length */ 29887 return (bcmp(abuf, bbuf, alen)); 29888 } 29889 29890 /* 29891 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29892 * Return B_FALSE if memory allocation fails - don't change any state! 29893 */ 29894 boolean_t 29895 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29896 const void *src, uint_t srclen) 29897 { 29898 void *dst; 29899 29900 if (!src_valid) 29901 srclen = 0; 29902 29903 ASSERT(*dstlenp == 0); 29904 if (src != NULL && srclen != 0) { 29905 dst = mi_alloc(srclen, BPRI_MED); 29906 if (dst == NULL) 29907 return (B_FALSE); 29908 } else { 29909 dst = NULL; 29910 } 29911 if (*dstp != NULL) 29912 mi_free(*dstp); 29913 *dstp = dst; 29914 *dstlenp = dst == NULL ? 0 : srclen; 29915 return (B_TRUE); 29916 } 29917 29918 /* 29919 * Replace what is in *dst, *dstlen with the source. 29920 * Assumes ip_allocbuf has already been called. 29921 */ 29922 void 29923 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29924 const void *src, uint_t srclen) 29925 { 29926 if (!src_valid) 29927 srclen = 0; 29928 29929 ASSERT(*dstlenp == srclen); 29930 if (src != NULL && srclen != 0) 29931 bcopy(src, *dstp, srclen); 29932 } 29933 29934 /* 29935 * Free the storage pointed to by the members of an ip6_pkt_t. 29936 */ 29937 void 29938 ip6_pkt_free(ip6_pkt_t *ipp) 29939 { 29940 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29941 29942 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29943 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29944 ipp->ipp_hopopts = NULL; 29945 ipp->ipp_hopoptslen = 0; 29946 } 29947 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29948 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29949 ipp->ipp_rtdstopts = NULL; 29950 ipp->ipp_rtdstoptslen = 0; 29951 } 29952 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29953 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29954 ipp->ipp_dstopts = NULL; 29955 ipp->ipp_dstoptslen = 0; 29956 } 29957 if (ipp->ipp_fields & IPPF_RTHDR) { 29958 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29959 ipp->ipp_rthdr = NULL; 29960 ipp->ipp_rthdrlen = 0; 29961 } 29962 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29963 IPPF_RTHDR); 29964 } 29965